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ABSTRACT 

Self-assembly is an effective biomimetic technique for surface functionalization and 

nanostructural synthesis. 3-Aminopropyltriethoxysilane (APTES) is a popular 

molecule that can assemble over substrates to modify surface properties. Titanium is a 

structural material with high weight-specific mechanical properties, 

corrosion-resistance and bioinertness. Here, a systematic investigation was carried out 

to optimize the self-assembly of an APTES-modified film on an oxidized titanium 

surface in order to improve its biocompatibility as an implant material and molecular 

selectivity, e.g. for CO2 capture. A clean TiOx layer was formed on titanium after the 

treatment in a Piranha solution of H2SO4 : H2O2 = 3:1. The IR spectra confirmed that 

the formation of the APTES-modified film (called APS film) on the surface by the 

presence of the Si-O-Ti and Si-O-Si covalent bonds. The ordering of the 

self-assembled film did not show strong temperature dependence from 30 to 70ºC, 

although a thicker film was noted at a higher temperature. Anhydrous toluene as the 

solvent is essential to the formation of a well-ordered and thin film, compared with 

hydrous toluene. The well-assembled film was formed on the oxidised titanium surface 

in the anhydrous toluene solution of ~0.2 v% APTES at 30°C for 16 hours. A higher 

APTES concentration leads to a disorder film with protonated –NH3
+ groups, whereas 

a lower concentration causes end groups of the adsorbed APTES to loop with the -OH 

groups on the surface. The APS film with the free –NH2 functional groups is more 

stable in aqueous solution with pH 10, although it is still hydrolyzed according to the 

intensity of the –Si-O-Si- bond in the IR spectra.  

The well-ordered APS film with the –NH2 groups cannot induce heterogeneous 

nucleation in a simulated body fluid (SBF), because the –NH2 groups are neutral in the 

solution and the –CH2- hydrophobic groups are exposed in the disordered structure of 
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the APS film. In the application of biofuel cells, the laccase from Trametes versicolor 

as an enzyme was immobilized on titanium and graphite with the APS film by the 

covalent bond, respectively. Compared with the native laccase, optimum pH of the 

immobilized laccase decreased to 3 because of the increase of turnover number (Kcat). 

Further comparison of Michaelis-Menten constant (Km) of the immobilized laccase 

with the native one clearly shows that the increase of Km value is mainly due to the 

change of configuration of the active site, further leading to the lower affinity of 

immobilized laccase towards the substrate. The laccase on graphite shows higher 

optimum temperature and twice lower the Km value, compared with the laccase on 

titanium, which results from the surface morphology of graphite after oxidation. For 

electrochemical behaviour, graphite with the laccase as electrode does not show direct 

electron transfer (DET), due to the long electron tunnel between the T1 centre and 

electrode surface. However, the electrode with laccase shows good mediator electron 

transfer (MET) in the presence of mediator. 
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CHAPTER 1 

INTRODUCTION 

To date, ‘nanotechnology’ has become very popular and been widely applied in 

medicine, electronics, biomaterials, energy production, IT and communications, as it 

can create new materials and devices on an atomic and molecular scale. Why 

nanotechnology is better than other forms? Nanotechnology is dramatically changing 

materials’ properties compared to that on macroscale, such as mechanical, electrical, 

thermal and catalytic properties, through the development of nano-systems. For 

example, gold, which is chemically inert at normal scales, can serve as a potent 

chemical catalyst at nanoscales. These systems incorporate novel nanostructures that 

integrate functional complexity directly into each individual nanoparticle, enabling the 

low-cost fabrication of high-value, high-performance applications. 

Generally, nanotechnology has two strategies: top-down and bottom-up. The top-down 

approach is to create nanoscale devices by using larger, externally-controlled materials 

into the desired shape and order. Several excellent top-down type approaches including 

photolithography and electron-beam lithography have been used to produce 

nanostructures. However, the top-down method is very expensive and cannot control 

the size, shape and order of particles well. The bottom-up approach is to have smaller 

components build up into more complex assemblies, which relies on the chemical 

properties of single molecules to form expected nanostructure by self-assembly and/or 

molecular recognition, has been drawn attention recently. Among bottom-up 

approaches, self-assembly is a most popular method  and become an important concept 

in nanotechnology [Ariga 2008]. Self-assembly is defined as the spontaneous 

formation of complex structures from pre-designed molecules by hydrogen bonds, 

aromatic π-stacking, van der Waal’s interactions, etc [Ariga 2008; Schreiber 2000]. 

Self-assembly is ubiquitous in nature. Various natural structures are formed by self-

assembly. For example, the self-assembly of the DNA double helix structures from two 

complementary oligonucleotides by base matching and  of the cell membrane from two 

layers of lipid molecules by hydrophobic interactions. 
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Since it is original from the biological structure, the self-assembly has many 

advantages. Firstly, it carries out many of the most difficult steps in nanofabrication, 

involving atomic-level modification of structure. Secondly, the structure of self-

assembly can be accurately and efficiently synthesized from relatively simple subunits. 

Moreover, this technology tends to produce structures that are relatively defect-free 

and self-healing [Van Alsten 1999].  

The self-assembly method as a biomimetic technique has been developed to produce 

new materials by different driven forces. For instance, melamine and cyanuric acid in 

aqueous solution can be self-assembled to form a linear tap and/or cyclic rosette 

structures by hydrogen bonds (Figure 1. 1), which is the most symmetrical prototype for 

the arrays of hydrogen bonds between base pairs in nuclei acids [Whitesides 1991]. 

This structure is very stable and can be heated at 450°C without decomposition. Due to 

good thermal stability, melamine-cyanuric can be assembled to form three-dimensional 

nanotube crystal structures.  

 

Figure 1. 1 Melamine-cyanuric acid hydrogen-bonded lattice. Two of the possible structures can 
be derived from the lattice: a linear tape and a cyclic rosette [Whitesides 1991].  

Biomembrane is another good sample for self-assembled structure, which can provide 

most important structural units in the biological cell. In 1964 Bangham and Horne 

demonstrated that the bilayer structure forms spontaneously from aqueous lipid 

dispersions [Bangham 1964]. In bilayer structure lipids have normally three parts: 

hydrophilic head group, hydrophobic aliphatic chain (s), and the region linking with 

+  
or  
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other molecules [Antonietti 2003]. Usually, bilayer has a hydrophobic core and 

hydrophilic surface. Under special conditions, bilayer can reversely have hydrophilic 

core and hydrophobic surface. So far, various lipid designs can introduce 

hydrophilic/hydrophobic amphiphilic molecules to different structures through self-

assembly processes, including vesicle, rod, micelle (reversed one), sheet and tube 

structures (Figure 1. 2), which has been successfully applied in drug delivery, biosensor, 

etc.  

 

                     

                    
 
 

Figure 1. 2 Formations of higher order structures of amphiphilic molecules assemblies by bilayers 
[Ariga 2008]. 

Apart from organic molecules, metal ions can also be assembled into a designed 

structure. Recently, Metal Organic Frameworks (MOFs) are identified a class of 

porous polymeric material, consisting of metal ions linked together by organic 

bridging ligands (molecules) [James 2003]. For example, in MOF-5 (Figure 1. 3), 

Zn4O(CO2)6 unit contains four Zn4O tetrahedral and six carboxylated carbon atoms, 

which is called secondary build unit (SBU). According to inorganic metal-ligand 

interactions, materials can be produced an infinite one-, two-, or three-dimensional 

structures by self-assembly process, with high stability, tunable metrics, organic 

functionality and porosity. Due to the porosity in the structure, MOF materials are 

highly studied for gas purification, separation and storage [Mueller 2005]. 

Micelle Vesicle Sheet 

Tube 
Rod Reversed micelle 
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Figure 1. 3 MOF-5 structure prepared from Zn and carboxyl acid. In Zn4O(CO2)6 SBU (secondary 
build unit), O, red and C, black; metal-oxygen polyhedra are blue and polyhedron by carboxylate 
carbon atoms are red . 

One of successful self-assembled structures is well-ordered molecules on a substrate, 

or self-assembled monolayers (SAMs) of ordered molecules. One of the early studies 

of SAMs on a substrate is the preparation of organic disulfide on a gold surface by 

Nuzzo and Allara [Nuzzo 1983]. Such molecules spontaneously assemble into ordered 

monolayers to form a nanometer-thick organic film on the surface. A strong interaction 

exists between a head group of a molecule and the substrate, involving the formation 

of a chemical bond. Because of the highly ordered nature and tight packing, the self-

assembled monolayer has now effectively been used for chemical synthesis, 

nanotechnology, polymer science and surface engineering [Van Alsten 1999]. For 

example, SAMs have been used for the corrosion protection on metal surfaces and to 

control the wetting property of a surface by functional groups (hydrophilic or 

hydrophobic) [Schreiber 2000]. SAMs are also good candidates for boundary 

lubrication because of their strong chemical bonds with the substrate [Ulman 1990]. 

SAMs have been employed for many biological applications because of their 

capability of immobilizing proteins by functional end groups (e.g. –COOH and –NH2).  

Titanium and its alloys are very widely used as load-bearing implants in medicine 

because of its good mechanical properties such as relative low modulus, excellent 

corrosion resistant ability, good fatigue strength and low specific weight [Liu 2004]. 

However, titanium with the native surface oxide is known to be bioinert, so it is 

difficult to achieve good chemical bonding with bones and form new bones on its 

surface at the early stage after implantation [Liu 2004; Majewski 2006; Ratner 1996], 

compared with other bioactive implant materials, such as calcium phosphates (CaPs). 

MOF-5 Octahedral SBU Zn4O(CO2)6  
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Although calcium phosphate can form strong chemical bonds with the surrounding 

bone, it cannot be applied along in the load-bearing implants due to its low fracture 

toughness and high elastic modulus [Legeros 2002]. Therefore, the remarkable 

biological activity of calcium phosphate with the excellent mechanical properties of 

titanium, makes suitable candidates as load-bearing implant materials. 

Although various methods have been developed to coat calcium phosphate on titanium, 

they all possess two major problems: high processing temperatures and the poor 

coating integration with the metal surface. Low temperature biomimetic-based 

methods have been developed as alternative methods for coating calcium phosphate 

with the strongly chemical bond. Here, the use of self-assembled monolayers has been 

drawn attention. Moreover, the functional groups in SAMs can bind with bioactive 

molecules on the surface, such as Arg-Gly-Asp [Rezania 1999], extracellular matrix 

and growth factors [Oji 1999; Pan 1998], to elicit specific cellular responses [Faucheux 

2004] and induce new tissue formation, finally to improve the biocompatibility of 

titanium.  

SAMs are formed by the spontaneous two-dimensional organization of an active 

surfactant at an interface. Indeed, the formation of SAMs provides one easy route 

towards surface functionalization by organic molecules containing suitable functional 

groups like –SH, -CN, -OH, -COOH, -NH2 with head groups on the surface [Love 

2005]. So far, SAMs with thiol as head group on metallic surfaces (Au, Ag, and Pt) 

have been researched very well, including effect of molecular concentration, 

temperature and time on the preparation of SAMs as well as the structure of SAMs and 

its stability in aqueous solution [Imamura 1995; Love 2005; Poirier 1996; Schreiber 

2000]. However, the thiol head group cannot form covalent bond with some solid 

surfaces, such as titanium (Ti), aluminum, silicon, glass and graphite. Since above 

mentioned surfaces can supply hydroxyl groups, which can form covalent bond (-M-

O-Si-) with silanols, organic silane-based molecules can be chosen for SAMs on these 

surfaces. Although there is a very comprehensive investigation on the growth of silane-

based SAM on silicon surfaces [Hsieh 2007; Ulman 1990] and other substrates, such 

as mica [Vallant 1998], glass [Chiang 1980] and aluminum [Lewington 2002], no 

much attention has been paid to the fundamental issues of the SAM formation on the 



                                                                                                   Chapter 1 – Introduction 

26 

Ti substrates. There is only limited work on the growth of silane-based and phosphate-

based SAM on Ti substrates, which has mostly been carried out on model silicon 

substrates coated with TiO2. Obtaining a highly ordered and fully covering SAM on 

real Ti surfaces still remains a challenge.  

Recently, the organic silane-based molecules with hydrophobic groups (-CH3 and –

CH=CH2) on silica have been investigated widely, for example, 

octadecyltrichlorosilane (OTS) on silica. Compared with hydrophobic groups, 

hydrophilic functional groups (-OH, -COOH and –NH2) are used widely in 

biochemistry and biotechnology. However, molecules with hydrophilic functional 

groups are very rare due to the formation of polymer after hydrolysis. For one-step 

preparation of SAMs by organic silane-based molecules, 3-aminopropyltriethoxysilane 

(APTES) is valid with the –NH2 functional group, involving three-carbon chain. 

Although it has been reported to prepare on glass [Chiang 1980] and on silica [Golub 

1996], APTES has not been systematically investigated on the metallic surface (e.g. Ti). 

Moreover, due to the wide applications of APTES, such as surface modification of bio-

implant and protein immobilization, it is necessary to study its stability in aqueous 

solution and thermal stability. 

Apart from the improvement of the biocompatibility of implants, self-assembled 

monolayers with the amine functional group could immobilize biomolecules by the 

functional groups. For example, enzyme as a kind of protein has been immobilized by 

thiol-based SAMs on gold surface [Gooding 1999; Mendes 2008]. Since enzymes are a 

particularly versatile class of catalysts, which are very effective and precise-catalysts 

that perform and regulate processes in living matter, they have been applied widely in 

many fields, such as in biosensors, nanotechnology and bioelectronic devices. In 

biofuel cells, SAMs with functional groups can be applied for the enzyme 

immobilization, which can convert chemical energy to electricity by redox reactions 

[Bullen 2006; Palmore 1994]. So far, among the varieties of enzymes, laccase has 

received much attention from researchers due to its ability to oxidize both phenolic and 

non-phenolic lignin related compounds as well as to reduce oxygen to water, which 

makes them very useful for its application to several biotechnological processes 

[Alexandre 2000; Reinhamm 1970; Yaropolov 1994]. 
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Various immobilization methods of laccase have been applied on solid supports, 

including adsorption, covalent attachment, cross-linking and entrapment in polymers 

[Trevan 1980]. In general, adsorption and entrapment methods are easy to perform, but 

the interaction force between the enzyme and support surface is often weak causing 

leaching. The covalent attachment and cross-linking by the -NH2 functional group 

could form chemical bond with enzymes, but suffer from a low reproducibility and a 

poor spatially controlled deposition, resulting in the lower activity of immobilized 

enzyme. Due to oxidation of substrate to product, laccase can be immobilized on 

functionalized titanium surface and its activity will be measured by UV-VIS 

spectrophotometer. According to the redox properties, laccase can also be immobilized 

on graphite as electrode by the APTES-modified film to investigate its electrochemical 

behaviour. There are two experimental approaches to study electron transfer reaction 

between laccase and electrode: Direct electron transfer (DET) and Mediated electron 

transfer (MET). The challenges for the laccase immobilized on electrode are: 1) to 

supply higher catalysis current from the redox reaction; 2) to be applied as long as they 

can. 

1) DET — Direct evidence from observation of independent electrochemical activity; 

2) MET — Indirect evidence from observing a catalytic response current in the 

presence of the substrate. 

Since the thickness of APTES-modified film on titanium cannot be measured, here self 

assembled APTES with the -NH2 groups is named 3-aminopropylsilane (APS) film. In 

order to clarify the above issues about the formation of the APS film and to improve 

further the biocompatibility on titanium and catalysis activity of the immobilized 

laccase, the investigation of the APS film on solid surfaces will focus on the following 

objectives: 

1. To investigate the influences of selected factors on the formation of a well 

defined, uniform thin film on titanium; to identify the stability of the APS film 

in the dry condition and aqueous solutions at different pH values and its 

thermal stability; 
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2. To clarify the inducibility of calcium phosphate by the -NH2 functional groups 

on titanium in simulated body fluid (SBF), so as to improve the 

biocompatibility of titanium surface; 

3. To investigate the optimum conditions for immobilization of the laccase; to 

study the effects of pH and temperature on activity of laccases immobilized 

on the surface including titanium and graphite; to determine the Michaelis-

Menten constant (Km) of immobilized laccase for the study of enzyme kinetics.  

4. To study the DET and MET electrochemical behaviour of immobilized 

laccase on electrodes. 

To increase the likelihood of success in this research for preparation and application of 

the APS film on titanium, several avenues of investigation were explored. A synopsis 

of this thesis is described here. Following the brief Introduction, Chapter 2 gives a 

thorough literature survey on self-assembled systems mainly including the formation 

and applications of self-assembled films. For the formation of APS film, the structure, 

the preparation methods, the principle of reactions and its fabrication in a solvent on 

solid surfaces are reviewed in detail in this chapter. Meanwhile, applications of self-

assembled films are also reviewed in this chapter, including calcium phosphate coating 

to improve biocompatibility on biomaterials and enzyme immobilization. Chapter 3 

introduces the experimental process including the formation of the APS film, 

immobilization of laccase on substrates and sample characterization involved in this 

section. 

The experimental results are separated into sub-sections in Chapter 4, each of which 

begins with a brief description of the specific objectives and method of the study, 

followed by the experimental investigation and analyses. Section 4.1 describes the 

effect of pre-treated titanium, APTES concentration, temperature and water content in 

toluene on the formation of the APS film. Moreover, stabilities of the APS film under 

different conditions and its thermal stability are studied in this section. Section 4.2 

describes the investigation of inducibility of calcium phosphate by the -NH2 functional 

groups on titanium in SBF with different ions concentration and different pH values. In 
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Section 4.3, a series of enzyme immobilization experiments are reported involving 

optimum conditions for laccase immobilized on titanium to clarify the effects of molar 

ratio of EDC/NHS, immersion time, pH and temperature on the activity of laccase 

immobilized, and calculate the Michaelis-Menten constant (Km). To further identify 

catalytic activity of immobilized laccase, the electrochemical behaviour of laccase 

immobilized on graphite including DET and MET reactions, are mainly reported in 

Section 4.4.  

Chapter 5 covers a general discussion of all the experimental findings, followed by 

concluding remarks of the investigation and future studies in Chapter 6 and Chapter 7, 

respectively. References cited in each chapter are listed together at the end of thesis. 

Lastly, the appendix cover some information related to this project.  
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CHAPTER 2 

OVERVIEW OF SELF-ASSEMBLED FILMS                                    

Self-assembly is dramatically drawn attention last twenty years. Research publications 

reveal a host of important self-assembled materials. Figure 2. 1 displays the number of 

times that the term “self-assembly” appears in titles of articles catalogued by Science 

Citation Index and Social Science Citation Index over the past 30 years [Maasen 2006; 

Tollas 2000]. These data include not only those articles that have the term in the title, 

but also many additional publications with self-assembly concepts. Here, we will talk 

about self-assembled monolayers (SAMs), which have been applied in chemical 

synthesis, nanotechnology, polymer science and surface engineering. Although silane-

based SAMs have been successfully formed on the oxidized silica, mica, glass and 

aluminium, limited work has reported on the titanium surfaces, especially with the 

hydrophilic functional groups (e.g. –NH2). In order to study silane-based SAMs 

systematically, it is necessary to know the reaction conditions of formation of well-

ordered and uniform structure in SAMs. Therefore, this review focuses on the 

preparation and applications of SAMs. A historical account of the overall self-

assembled monolayers is briefly described as follows. 

 

Figure 2. 1 “self-assembly” appears in titles of articles catalogued by Science Citation Index and 
social science citation index over the past 30 years [Maasen 2006; Tolles 2000].  
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Figure 2. 2 Benjamin 
Frankin first discovered the 
phenomena of self-assembly 
when oil was in a pond. 

2.1 Historical view of self-assembly films 

The first case of self-assembly in nature was discovered by 

Benjamin Frankin in 1773 during a teaspoon of oil in a 

pond [Petty 1996]. Over a century later, Lord Rayleigh 

repeated Franklin’s oil on water experiment in 1890 and 

calculated that the thickness of the film was 1.6 nm by 

knowing the volume of oil dropped and the area of 

coverage. Irving Langmuir was the first to perform 

systematic studies thin films and surface adsorption at 

General Electric. In 1917 Langmuir introduced the concept 

of a monolayer and the two-dimension physics that 

describe a surface, which was named ‘Langmuir films’- 

floating monolayers [Petty 1996]. 

Langmuir films are formed when amphiphilic molecules (hydrophilic heads and 

hydrophobic tails) interact with air at an air-water interface [Gainers 1996; Ulman 

1991]. When molecular concentration is less than critical micellar concentration, the 

molecules arrange themselves as shown below in Figure 2. 3. The association behaviour 

of molecules in solution and their affinity for the air/water interfaces are determined by 

the physical and chemical properties of the head groups and tails [Petty 1996]. Since 

the tails are hydrophobic, their exposure to air is favoured over that to water. Since the 

heads are hydrophilic, the interaction of the heads with water is more favourable than 

air-water interaction. A classical example of an amphiphilic molecule is stearic acid 

(C17H35CO2H) where the long hydrocarbon tail, (C17H35-), is hydrophobic, and the 

carboxylic acid head group (-COOH) is hydrophilic. The driving force behind the 

association is the reduction of the free energy of the system. Therefore, when 

molecules come in contact with water it accumulated at the air/water interface causing 

a decrease in the surface tension of water. 
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Figure 2. 3 Molecular arrangement of Langmuir film on air/water interface. 

After 1926, Irving Langmuir and Katharine B. Blodgett discovered that a solid surface 

was inserted into an aqueous solution containing monolayers of organics then the film 

would deposit homogeneously over the surface. This process created Langmuir-

Blodgett Films (LB films). A  LB film is a set of monolayers, including a single layer 

or multilayer films deposited on a solid substrate. Figure 2. 4 shows the commonest 

forms of LB films deposition. The substrate is hydrophilic and the first monolayer is 

transferred when the substrate is raised through the water. Therefore, the substrate may 

be placed in the sub-phase before the monolayer is spread. Subsequently, a monolayer 

is deposited on each traversal of the monolayers/air interface. As shown, multilayer of 

head-to-head and tail-to-tail in LB films are then formed later by hydrophilic or 

hydrophobic force. 

 

Figure 2. 4 Formation of assembled films on hydrophilic surface: (a) Langmuir film, (b) single 
layer of LB film on a solid substrate, (c) and (d) multilayer of LB films on the solid substrate 
[Petty 1996]. 

Gas phase  

Liquid phase  

Solid phase  

Polar head group 
(hydrophilic) 

Hydrocarbon tail 
(hydrophobic) 
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After Langmuir and Blodgett, Zisman and co-wokers prepared oleophobic molecules 

on platinum by Langmuir-Blodgett technique in 1946 [Zisman 1946]. Zisman reported 

that the molecules were close-packed and the outermost of the film was a plane surface 

with densely methyl groups. However, the reaction of heads with the surface was still 

poor due to physisorption. In 1983, Nuzzo and Allara prepared organic disulfides or 

alkanethiols on a gold surface by chemical bond of head group and surface [Nuzzo 

1983], which is one of the successful self-assembled monolayers on the solid substrate.  

Although SAMs are original from LB films, there is obvious difference between these 

two systems. The LB film is assembled vertically and usually composed of 

amphiphilic molecules with a hydrophilic head and a hydrophobic end. However, in 

SAMs, the molecules contain hydrophilic or hydrophobic end with a hydrophilic head. 

The key difference is that the LB films are on liquid surfaces and weakly bound to the 

solid surface by physisorption, while SAMs are on solid substrates and chemisorbed to 

form a strong bond [Petty 1996; Schreiber 2000]. Some of SAMs involve a three-

dimensional polymer network (e.g., alkanesilanes). In other words, the molecules in 

the monolayers are connected to each other by strong chemical bonds, which explain 

its excellent material properties [Hoffmann 1997; Ulman 1991; Wang 2005]. Therefore, 

the SAMs created by the chemisorption are more stable than the physisorbed bonds of 

LB films. 

2.2 Concept of self-assembled monolayers (SAMs): 

structures and components 

Self-assembled monolayers are defined that organic molecules spontaneously 

assembly into ordered molecules to form nanometre-thick organic films on substrates. 

The strong specific interaction exists between a reactive group of molecules and the 

surface, containing chemical groups with a strong bond to the surface by 

chemisorption. The structure of self-assembled molecules can be divided into three 

parts, as shown in Figure 2. 5. The first part is the head group that provides the most 

exothermic process [Valiokas 2000], i.e., chemisorption on the substrate. The very 

strong molecular-surface interactions results in an apparent pinning of the head group 
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to specific site on the surface through a chemical bond. The second part is the 

backbone. After molecules are put in place on the surface, formation of an ordered and 

closely packed assembly can only start by interactions among the alkyl chains. Van der 

Waals interaction is the one of main forces in the case of simple alkyl chains. The third 

part is the end group, also called functional group, i.e., a methyl (-CH3) group is the 

end group of a simple alkyl chain. 

                          

Figure 2. 5 Schematic structure of self-assembled monolayers. 

2.2.1 Head groups 

Typically, head groups are connected to a backbone with functional groups to vary the 

wetting and interfacial properties. According to difference in the head groups, there are 

different self-assembled molecules used so far, including alkanethiols (e.g. R-SH) and 

alkanesilanes (e.g. R-SiCl3), which are the most thoroughly studied. Surface active 

alkanethiols compounds that form monolayers have increased in recent years. These 

compounds include alkylthiol, dialkyl disulfide, dialkyl sulphide, alkyl xanthate and 

dialkylthiocarbamate, structures of which are shown in Figure 2. 6. Alkanethiols 

compounds form very strong covalent bond with the surface by thiol to gold [Byloos 

2001], silver, copper, platinum, iron [Love 2005; Schreiber 2000] and colloidal gold 

particles [Silin V 1997].  

The alkanesilanes have hydrolyzed head groups on the silicon atom which permit 

covalent bond (Si-O) formation to a solid surface as well as cross-linking within the 

organosiloxane layer [Allara 1995; Zhao 1996]. According to hydrolyzed head groups, 

most used amphiphilic molecules among the alkanesilanes are alkylchlorosilanes and 

alkylalkoxysilanes. For example, octadecyltrichlorosilane (OTS) molecule has -SiCl3 

 substrate 

head group 

backbone 

end group 
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as the head group, while 3-aminopropyltriethoxysilane (APTES) molecule has –

Si(OCH2CH3)3 as the head group. No matter which alkanesilane is chosen for SAMs, 

the head group will be hydrolyzed by water to form silanol, which forms chemical 

bond with the surface. 

Figure 2. 6 Surface-active alkanethiol compounds that form SAMs on gold. 

Selecting the type of head group in SAMs depends on the substrate. Alkanethiols and 

alkanedisulfides are the most commonly used for SAMs on noble metal substrates 

because of the strong affinity of sulphur for these metals, e.g. Au, Pt, Ag and Cu [Love 

2005; Scherer 1997]. Due to the formation of silanol after hydrolysis of molecules, the 

alkanesilanes are generally used on non-metallic oxide surfaces, i.e. silica wafer, mica, 

glass and Al [Legrange 1993; Wang 2005; Xiao 1996]. Since titanium surface can 

supply hydroxyl groups, which can react with silanol to form covalent bond (-Ti-O-Si-

), alkanesilanes will be chosen to form SAMs for titanium as substrate. 

2.2.2 End groups 

Functional groups are specific groups with molecules that are responsible for the 

characteristic chemical reactions. Alkanethiols have been reported to provide 

functional groups of the -CH3 [Wirth 1997; Yamada 2000], -CF3 [Love 2005], -OH 

[Tanahashi 1997], -Cl [Barrena 1999], -Br [Schweizer 2001], -COOH [Doudevski 

2001; Patel 1997; Sato 2000], -PO4OH2 [Woodward 1996], -CH=CH2 [Doudevski 

2001], -CN [Hooper 2001], -SO3H [Poirier 1996], -OCH3 [Brandriss 1993] -NH2 

[Hooper 2001], -COOCH3 [Jung 1998] and -CONH2 [Love 2005; White 2000] groups. 

However, it is quite difficult for alkanesilanes to find molecules with various terminal 

groups, because the alkanesilanes are sensitive to water, due to the hydrolysis of the 

head groups. The majority of alkanesilanes are molecules with hydrophobic groups, 
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i.e., -CH3 [Balgar 2003; Peters 2002] or -CH=CH2 [Liu 2002], while only a small part 

of them with hydrophilic groups, such as -NH2 [Minier 2005; Zhu 2004], -SOOH 

[Majewski 2006], -SH [Toworfe 2006], -COOH [Toworfe 2006], -OH [Faucheux 

2004], epoxide [Angst 1991]. Among these terminal groups mentioned above, some of 

terminal groups come from transforming of other terminal groups, i.e., hydroxyl (-OH) 

and carboxylic acid (-COOH) groups are normally generated from the -CH=CH2 

terminated SAMs [Wasserman 1989]. Among the silane-based SAMs, the -COOH, -

OH, -SOOH and –SH terminated SAMs are negatively charged, while only the -NH2 

terminated SAMs is positively charged in acid media. The -NH2 group as functional 

group which is similar to the -COOH group, is able to serve as a binding site for 

biomolecules such as enzymes, antibodies, and other proteins. 

2.2.3 Backbone  

The backbone is linking between head and functional groups in a molecule, and will 

stabilize the structure of self-assembled monolayers by interactions between molecules. 

According to the interactions, the backbone is classified into two groups: alkane chains 

and phenyl rings. The phenyl rings as backbone will introduce stronger interactions 

between molecules due to π-π bond, which might result in the difficulty to change the 

structure of SAMs on the surface. Moreover, in silane-based SAMs, functionalized 

molecules with the phenyl rings are not available so far. Thus, the alkane chains are 

only discussed further here. 

In SAMs system, the monolayer packs tightly due to van der Waals or hydrogen 

bonding between backbones when the head group-surface interaction is nominally 

fixed, thereby reducing its own free energy [Love 2005]. In principle the molecular 

backbone does not need to be fully extended, and different backbones have different 

degrees of freedom to describe their conformational state [Schreiber 2000; Tao 1994]. 

For non-corrugated, i.e., smooth chains, one would expect the impact of the chain 

length to be small. This should result in at most a slight and continuous variation of the 

tilt structure with the chain length. On the other hand, for the more realistic picture of 

corrugated chains (due to their internal structure), certain relative positions of the 

chains with respect to each other would be preferred.  
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The alkane chains could determine the arrangement of complex molecules in polymer 

assemblies. The intimate correlation of the chains with structure has led to the use of 

infrared spectra as a diagnostic tool of the chain conformation and thus of the structure 

of the molecular assembly [Finklea 1986; Snyder 1982]. The C-H stretching region is 

usually the strongest feature in the infrared spectra. Snyder and Strauss found that 

symmetric mode at ~ 2856 cm-1 and antisymmetric mode at ~ 2928 cm-1 for the C-H 

stretching indicated that disordered polymethylene chain conformation [Snyder 1982]. 

Finklea and coworkers then reported that the peak positions for methylene (-CH2-) 

symmetric and antisymmetric stretching modes of alkyl chains are typically to be in 

the range of 2846 – 2850 and 2915 – 2918 cm-1 for all-trans extended chains [Finklea 

1986]. Therefore, the IR positions for the C-H stretching region can estimate the 

ordering of structure of SAMs. 

In a broader sense, the chain-length dependence of the structure investigates the 

competition between the different interactions. For very long chains the interaction 

between alkane chains will be more important than the head group-substrate 

interaction, which results in the formation of the ordered structure of SAMs. For 

shorter chains  (typically for n< 8) it is not easy to form well-defined monolayers 

because of the less interaction of alkane chains compared with longer alkane chains 

[Peterlinz 1996]. On the other hand, although the longer molecules will form more 

dense monolayers, chain length affects SAM thickness which will impact on the 

applications of SAMs, such as electrochemical field. For example, 3-

mercaptopropionic acid (3-MPA) on gold with 2-carbon chain shows much better 

electric conduction than 11-mercaptoundecanoic acid (11-MUA) with 11-carbon chain 

on gold in the electrolyte with Fe(CN)6
3- [Mendes 2008]. 

2.3 Processing of self-assembled monolayers 

2.3.1 Preparation methods of SAMs 

The early literature on SAMs focused largely on the assemblies formed by the 

adsorption of organosulfur compounds from solution or the vapour phase onto planar 

metal substrates of gold and silver [Byloos 2001; Jung 1998; Love 2005; Vericat 2001]. 
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Assembly from solution on laboratory is convenient and sufficient for most 

applications of SAMs, especially for those requiring contact with other liquid phases in 

subsequent experiments (e.g. supports for enzyme immobilization). Assembly from the 

gas phase is necessary when the SAMs are prepared under UHV conditions for 

analysis by certain spectroscopy [Schreiber 2000]. The following sections will discuss 

into details about these two methods. 

The principle of gas phase deposition is very simple. The substrate is located in a 

generic ultrahigh vacuum (UHV) chamber, which allows for cleaning surface by, e.g. 

ion sputtering and annealing as done for metal single crystals. In this chamber, only 

one additional port is needed for attaching a valve through which the molecules can be 

dosed with a controllable flux from a little container (Figure 2. 7a). This method has 

been employed successfully [Eberhardt 1998; Poirier 1996; Poirier 1999]. Besides 

work in UHV it has also been shown that alkanethiols can be deposited by a nitrogen 

stream [Thomas 1991]. It should be noted for this method that the exact calibration of 

the vapour pressure is needed. The gas phase deposition in UHV has proven useful for 

studying the early-stage dynamics of assembly [Schreiber 2000]. However, this 

method cannot supply adequate vapour pressures for many precursors of SAMs and 

prepare low-coverage phase [Love 2005]. 

     (a)                (b) 

Figure 2. 7 SAMs formed from UHV chamber (a) and solvent (b) [Schreiber 2000]. 

In contrast to gas phase deposition, for the growth of SAMs in a solvent, a substrate is 

immersed into a solution of molecules for a certain period of time (Figure 2. 7b). After 

immersion, the substrate is rinsed with solvents (such as ethanol, acetone and distilled 

water) to wash away physisorbed molecules on the surface. Finally, it is dried in a 

steam of inert gas and the monolayer will assemble [Petty 1996; Schreiber 2000]. For 
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example, thiol-based SAMs produced by adsorption from solution are made by 

immersing a clean substrate into a dilute solution of alkanethiol in ethanol for 12 to 72 

hours at room temperature and dried with nitrogen [Jung 1998; Love 2005; Vericat 

2001]. This procedure is widely used and can be designed to optimize the 

reproducibility of the SAMs. Love and coworkers reported that dense coverage of 

molecules was obtained quickly from micromolar to millimolar solutions, but required 

a slow assembly process due to maximum the density of molecules and minimum the 

defects in the SAMs [Love 2005]. However, there are a number of experimental 

factors that can affect the structure of the SAMs and the rate of formation: solvent, 

temperature, concentration of molecules, immersion time, cleanliness of the substrate, 

and so on. All of factors mentioned above will be discussed further in Chapter 2.2.3.   

The equilibrium structures should be equivalent to those from solution and gas phase 

deposition, but the growth exhibits some differences [Ulman 1991]. According to Table 

2. 1, in solution deposition, the lying-down phase is more difficult to observe, although 

it was eventually found. This may be due to the facts that the standing-up phase can 

nucleate more easily and that the presence of the solvent molecules makes it more 

difficult to form the lying-down phase [Shreiber 2000]. Moreover, the method with a 

UHV chamber generally is more expensive than that with growth from solution, 

although it is in the clean environment. Therefore, the method of solution phase 

deposition is chosen in this project. 

Table 2. 1 Simplified comparison of solution and gas phase deposition of SAMs, based on results 
from alkanethiols on Au [Schreiber 2004]. 

 Solution deposition Gas phase deposition in UHV 

Apparatus Simple and inexpensive Sophisticated and expensive 

Environment 
Contamination difficult to 
exclude 

Clean 

For lying-down phase 
Formation might be 
hampered 

Formation easier 

For standing-up phase 
Formation might be 
facilitated 

Energy barrier can be higher 
for transition from lying-down 
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2.3.2 Principle of reactions of SAMs in solvent 

Growth from solution is the traditional route for the preparation of SAMs. Two of the 

most widely studied SAMs systems have received the most attention. The first one is 

conveniently prepared by exposure of gold surfaces to a thiol or disulfide solution. It 

relies on the strength of sulphur-gold interactions, which is a covalent bond, but 

slightly polar [Jung 1998; Nuzzo 1983]. The second one is based on the reaction of 

alkanesilanes on silicon wafer [Schreiber 2000; Ulman 1990; Zhao 1996]. The 

following sections are devoted to the main principles for the two SAMs systems. 

2.3.2.1 Alkanethiols on Au 

From  the first discovery of thiol-based SAMs on gold from the dilute solution 

produced by Nuzzo and Allara [Nuzzo 1983], we will see the functional organic 

molecules in regularly-oriented array on gold surface. So far, many other organosulfur 

compounds have been reported to form SAMs on gold, silver, copper, platinum and 

iron surfaces [Love 2005; Schreiber 2000]. However, SAMs of alkanethiols on Au are 

extensively studied and understood very well, such as the adsorption of alkanethiols 

and disulphides on gold, seen Figure 2. 8.  

        
Figure 2. 8 Schematic illustration showing the self assembly of (a) n-alkanethiols and (b) 
disulphides on gold. 

Its kinetics studies involve a two-step process [Bain 1989; Barrena 1999]. The first 

step, which proceeds via the physisorption of thiol-based molecules, takes a period of 

minutes. In the second step, which takes hours, significant rearrangement and 

reorganisation of the alkane chains occurs and the sulphur atoms bind to the gold 

surface by chemisorption (covalent bond) [Schreiber 2000]. The formation of SAMs of 
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alkanethiols on gold and the structure of the resulting monolayer are controlled by a 

complex interplay between competing head group-substrate and chain–chain 

interactions.  

2.3.2.2 Alkanesilanes on silicon  

Alkanesilanes are very well-known as adhesion promoters of polymers to silica 

[Bourkherroub 1999; Linford 1993; Wang 2003], glass[Christenson 2001; Mrksich 

1998], quartz [Brandriss 1993; Mathauer 1993], mica [Woodward 1996; Xiao 1996] 

and various metal oxides(e.g. Al2O3 [Lewington 2002; Oberg 2001] and  ZnSe [Buriak 

2002]). They were successfully used not only for the attachment of synthetic polymers 

but also for immobilization of various peptides (e.g. enzymes and proteins) with at 

least partial retention of their biological activity. The reaction of alkanesilane has been 

reported by several groups [Balgar 2003; Wang 2003; Wang 2005]. Alkanesilanes with 

different head groups (e.g. Cl and OR) react with the hydroxylated surface (M-OH) to 

yield M-O-Si chemical bond. For example, the scheme of silanization reaction of 

alkyltrichlorosilane on silicon includes three steps as seen in Figure 2. 9. At the first 

step, alkanesilanes are hydrolyzed by water to form silanols (-Si-OH) and HCl (Figure 

2.9a). Secondly, silanols link hydroxyl groups on the substrate surface by hydrogen 

bond and dehydrate to form the chemical bond of M-O-Si (Figure 2.9b). Finally, a 

condensation reaction is assumed to occur in which hydroxyl groups from silanols 

react with each other to form Si-O-Si cross-link within the monolayers (Figure 2.9c).  

This initial hydrolysis step can occur either in solution or at the substrate surface 

depending on the amount of water present in the system. If water is present in the 

solvent, condensation reaction will happen first and then dehydration will do, which 

might affect the ordering of the structure of SAMs on the surface. Due to the formation 

of cross-link between molecules, the silane-based SAMs are more stable compared 

with thiol-based SAMs. The stability and optically transparent substrates make silane-

based SAMs attractive for a number of technological applications. However, the 

quality of the monolayers is highly dependent on surface oxidation and hydration and 

the atmospheric conditions under which silanization is carried out [Plueddemann 1982]. 

Consequently, reproducibility of high quality silane-based monolayers between 
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laboratories has been poor, although continual improvement in understanding is 

changing this situation.  

   (a)                                          
 
 

(b)                      
 

      

    (c) 
                                  
Figure 2. 9 Schematic diagram illustrating reactions leading to the deposition of SAMs on M 
substrate: (a) hydrolysis reaction of alkyltrichlorosilane with water; (b) dehydration reaction of 
silanols on the surface; (c) condensation reaction with monolayers. 

2.3.2.3 3-Aminopropyltriethoxysilane (APTES)  

Due to the water sensitivity of silane-based molecules, there is a limit to the variety of 

terminal functional groups in alkylsilanes. So far, molecules with the -CH=CH2, -CH3 

and -NH2 functional groups are supplied directly from alkylsilanes, while molecules 

with the -COOH and -OH groups need to be diverted from the –CH=CH2 group 

[Toworfe 2006]. Currently aminated silanes (with the -NH2 group) are employed in a 

wide variety of both research and industrial applications. For example, aminated silane 

as a coupling agent is commonly used for the surface modification to increase adhesion 

[Plueddemann 1982]. It is also utilized to promote adhesion of polymer films on glass 
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or to produce temperature and photoresponsive films on silica [Howarter 2006]. 

Moreover, aminated film is used to attract protein to promote cell adhesion in 

biotechnology applications [Toworfe 2006; White 2000]. Since the amine group can 

react with carboxyl group, the aminated film is able to capture CO2 to reduce the 

influence of global warming of the planet [Rao 2002]. Molecules with longer carbon 

chain which present a higher degree of coverage are not suitable for substrates 

intended for electrochemical applications because they passivate the transduction 

interface, making it difficult to transfer electrons and reducing electrode sensitivity. 

For example, in relation to enzyme immobilization on gold electrode, it has been 

referred that monolayers that possess the -NH2 terminal groups with short chain length 

provide the best results [Mendes 2008] among various molecules with different end 

groups and carbon chains. 

Here, APTES was selected as the molecule in the self-assembly system, because it 

provides Si-OH as head group which form the covalent bond (-Si-O-Ti-) on the 

titanium surface and the -NH2 functional group for reaction with peptides, proteins and 

enzymes by the peptide bond (-NH-CO-). Moreover, SAMs with the -NH2 groups 

might induce calcium phosphate in a simulated body fluid to improve the bioactivity of 

implant [Toworfe 2006; Zhu 2004]. The structure of this molecule is shown in Figure 2. 

10, including three ethoxy groups (-OC2H5) as head groups, primary amine group as 

functional group and a 3-carbon chain. Triethoxy groups in APTES are rapidly 

hydrolyzed to produce ethanol and trisilanols. Since the Si-C bond is not hydrolyzed 

further, the aminopropyl group is not be cleaved from APTES molecule. This molecule 

usually exists liquid phase as the melting point is -70°C (Table 2. 2). Due to the 

sensitivity of carbon dioxide and water, a bottle of APTES is normally stored in a 

glove box under argon. 

 

Figure 2. 10 Structure of 3-aminopropyltriethoxysilane. 
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Table 2. 2 Physico-chemical properties of APTES. 

Property Value Comment 

Melting point -70°C  

Boiling point  223°C  

Relative density 0.95 at 25°C  

Vapour pressure 0.02 hPa at 20°C  

Water solubility 7.6 x 105 mg/l  at 25°C 

Estimated. This value may not be 

applicable because the material is 

hydrolytically unstable. 

Although APTES is one of the most popular coupling agents, the controversy is 

brought over its molecular structure. The problem is the variety of process conditions 

used in sample preparation, especially on metallic surfaces. Moreover, the head group 

(-Si-OH) after hydrolysis and the functional group (-NH2) are both hydrophilic, so it is 

possible for the amine group to form hydrogen bonds with hydroxyl groups from 

silanols and/or substrate surface, which leads to the disordered structure of the –NH2 

functionalized film. Many studies attempted to elucidate the molecular structure of the 

polysiloxane interphase with the amine groups [Arya 2007; Howarter 2006; White 

2000], because silane-based molecules with the –NH2 group reaction with solid 

surfaces lacks reproducibility in film quality, which arises from an acute sensitivity to 

reaction conditions. People reported that the structure of the APTES-modified film was 

highly dependent on deposition conditions and underlying substrate [Hooper 2001; 

Howarter 2006; Plueddemann 1982]. Factors, such as surface preparation, reaction 

temperature, silane concentration, incubation time, solvent and its water content, will 

all affect the final structure of the adsorbed aminated layer on the solid surface. 

Therefore, it is important to optimize the reaction conditions of the preparation of the 

APTES-modified film on the titanium surface from liquid phase. 

2.3.3 Formation of SAMs on substrates 

The early literature on SAMs focused largely on the assemblies formed by the 

adsorption or organosulfur compounds from solution onto planar metal substrates of 
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gold and silver [Bain 1989; Gun 1984; Nuzzo 1983]. Although the thiol-based and 

silane-based SAMs are slightly different on the head groups, the kinetics is quite 

similar for the formation of these two kinds of SAMs on solid substrate. According to 

the study of alkanethiols on Au [Love 2005; Schreiber 2000], dense coverage of 

molecules adsorbed on the surface is obtained quickly from solution, but a slow 

reorganization process requires hours to minimize the defects in the SAMs. To obtain 

densely packed and well-ordered self-assembled monolayers, substrate, molecular 

concentration, temperature, solvent, silanization time and residual water content in 

solvent during reaction of molecules on the substrate, should be considered. The 

following sections are devoted to further information of the effect of above factors on 

the fabrication of SAMs on the solid substrate. 

2.3.3.1 Pre-treatment of substrates 

2.3.3.1.1 Substrates for SAMs 

Types of substrates range from planar surfaces (e.g., glass or silicon, metal foils, single 

crystals) to highly curved nanostructures (colloids, nanocrystals, nanorods) [Love 

2005]. To select the type of substrate is dependent on the application for which the 

SAM is used. For example, gold is a standard substrate for alkanethiols due to the 

covalent bond of gold and thiol. For alkanethiols, the most common planar substrates 

are gold, silver, copper, palladium, platinum, nickel and their alloys [Schreiber 2000]. 

Due to the formation of silanols in molecules after the hydrolysis, it is necessary for 

substrates to supply hydroxyl groups on the surface. Therefore, mica, glass, silicon and 

alumina are widely used as the substrates for alkanesilanes. 

In this project, titanium is used as substrate to study the formation of self-assembled 

monolayers. As known, a native oxide film grows spontaneously on the titanium 

surface when it exposes to air. The characteristics of the oxide film grown at room 

temperature on pure titanium are schematically shown in Figure 2. 11 and summarized 

as follows: 

1) The amorphous or nanocrystalline oxide film is typically 3-7 nm thick and mainly 

composed of the stable oxide TiO2. 
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2) Hydroxide and chemisorbed water bond with Ti cations lead to weakly bound 

physisorbed water on the surface. In addition, some organic species like 

hydrocarbons and metal-organic species, such as alkoxides or carboxylates of 

titanium also exist on the outmost surface layer. The organic concentrations depend 

on not only the surface conditions, such as cleanliness, but also the exposure time 

to air during storage [Brunette 2001]. 

 

Figure 2. 11 Schematic view of the oxide film on pure titanium [Liu 2004]. 

A nonstoichiometric, amorphous, insoluble titanium oxide layer (~3-7 nm thick) forms 

spontaneously on the Ti upon contact with air. The oxide layer has a crucial role in the 

adsorption of cations and anions on the Ti surface. On the titanium surface, the TiO2 

molecule becomes a dipole with positive Ti+ and negative O- sites. In an aqueous 

electrolyte, OH- bonds to the Ti+ cation of TiO2 and forms Ti-OH groups [Diebold 

2003; Liu 2004]. Since hydroxides or hydro-complexes of multivalent (e.g. TiIV) 

cations are generally exhibiting both acid and base properties, depending on the pH of 

the electrolyte, acidic or basic Ti-OH groups could form on the surface as outlined 

below. According to Equation 2. 1 & 2.2, the titanium surface charge depends on the pH 

value of the solution. The isoelectric point (IEP) of titanium oxide is 5-6 [Diebold 

2003; Liu 2004]. Therefore, at lower pH (< 5), the formation of [Ti – OH2]
+ from a 

basic Ti-OH group causes a positive surface charge, whereas at higher pH (>6) acidic 

Ti-OH gives off proton and becomes [Ti – O]- causing a negative surface charge. 

Between pH 5-6, both acidic and basic hydroxyl coexist on the Ti surface. 
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Ti-OH   +   H2O                 [Ti – O]-   +   H3O
+      (basic reaction) 

                                                                                                                      Equation 2. 1 

Ti-OH   +   H2O                [Ti – OH2]
+     +   OH-     (acidic reaction)  

  Equation 2. 2                                                                                                                    

Besides the requirement of chemical properties, the crystalline state of the substrate 

needs to be considered, which will influence the morphology of the substrate. It is 

easier to form disordered SAMs on a rough surface. So far, single crystals are very 

frequently used in surface science (e.g. silicon and gold) because they constitute well-

defined substrates after pre-treatment. Therefore, no matter the substrate is planar or 

curved, the surface has to be as flat as possible. Since displacement with molecules 

first requires desorption of the contaminants and impurities, maintenance of the 

contaminants will affect the kinectics of SAMs formation. Therefore, the cleanliness of 

the substrate has a strong impact on the growth behaviour of SAMs [Jung 1998]. 

2.3.3.1.2 Treatment methods of substrates for SAMs 

As mentioned above, the hydroxyl groups are required for the self-assembly of 

alkanesilanes on the surface. In other words, the hydration state of the oxide surface 

was found to greatly influence the packing of the monolayers [Hoffmann 1997]. Allara 

and coworkers showed that adequate substrate hydration was critical for the deposition 

of densely-packed, highly organized alkylsilane monolayers of similar structure on 

solid substrates [Allara 1995]. Therefore, many of surface studies focused on the 

formation of hydroxyl groups on the surface, especially for titanium. 

Table 2. 3 gives an overview of different surface treatments used for titanium recently 

and the main effects obtained with each type of methods. The effects of the listed 

methods can be divided into three categories: a) cleaning and removal of native surface 

layers, b) modification of surface structure and topography, c) modification of 

composition and structure of the oxide layer or controlled formation of a new surface 

layer. It is necessary to descale and remove dirt firstly for the titanium surface. 
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Compared with other methods, hydrogen peroxide-treatment not only gives a clean 

surface, but also gives OH groups by hydroxylation. Pan et al. suggested that the oxide 

had a two-layer structure with a thin (< 5 nm) and dense inner oxide and an outer 

porous layer. Hydrogen peroxide treated surfaces often show extremely low carbon 

signals in surface analyses, typically 5% or less [Pan 1998]. However, this treatment 

needs longer treatment time, which will lead to roughening the surface on the sub-

micron scale and a significant growth in oxide thickness [Legrande 1993; Lewington 

2002]. 

Table 2. 3 Overview of commonly used surface treatment methods for titanium, and the main 
effects they have on different surface properties [Brunette]. 

Methods Main effect / Purpose of 
treatments References 

Grinding, polishing 
Descaling, removal of native layer, 

Smooth surface finish 
 

Solvent cleaning Removal of contamination  

Etching in HF/HNO3 or 

HCl/H2SO4 

Descaling, removal of native layer,  

Surface roughening, cleaning, 

Removal of stresses 

[Ungersbock 1994; 
Wong 1995] 

Alkaline etching 
Hydroxylation, 

Improve apatite formation,  

Surface roughening 

[Kim 1997; Wen 
1998] 

Passivation in HNO3 or 
by heat treatments 

Oxidation, minimize ion release 
[Kilpadi 1998; Oji 
1999] 

H2O2 treatment 

Oxidation, hydroxylation, 
Roughening/etching, 
Cleaning/sterilization,  

Removal of native layer 

[Pan 1998; Suzuki 
2000; Tengvall 
1989] 

Electropolishing 
Removal of stresses,  

Smooth surfaces 

[Larsson 1994; 
Petitjean 1990; 
Walivaara 1994] 

The total amount of oxygen on the titanium surface is very important, which indicates 

the quantity of OH groups. The oxygen functionalities depend on the oxidation 

conditions and the overall amount of oxygen increase with increasing power of the 

oxidation agents.  Figure 2. 12 shows the amount of oxygen on the surface of 
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multiwalled carbon nanotubes (MWCNTs) as detected by XPS measurements for 

different treatments [Datsyuk 2008]. They reported that the increase of surface oxygen 

per type of oxidation treatment follows the trend: hydrochloric acid < ammounium 

hydroxide/hydrogen peroxide < piranha < refluxed nitric acid. Many researchers 

reported the piranha solution has been used in pre-treatment of substrates [Ulman 1990; 

Depalma 1989; Mathauer 1993; Nyquist 2000], which involves H2SO4 and H2O2. For 

example, silicon, a very popular substrate for SAMs, has the clean and smooth surface 

with oxide layer after oxidation in the piranha solution [Allara 1995; Angst 1991; 

Bourkherroub 1999; Depalma 1989; Mathauer 1993; Nyquist 2000; Ulman 1990]. This 

oxide layer on silicon is hydrophilic and will form plenty of OH groups in the aqueous 

solution. Since nitric acid cannot hydrolyte the titanium surface according to Table 2. 3,  

hence the piranha method is chosen as oxidant for pre-treatment of titanium. 

 

Figure 2. 12 Oxygen content (at%) on the MWCNT walls after treatment with different oxidation 
agents [Datsyuk 2008]. 

The Piranha solution is a mixture of concentrated sulphuric acid and hydrogen 

peroxide, which is frequently employed for cleaning procedure. As the mixture is a 

strong oxidizer, it can remove most organic matter, and also oxidize/hydroxylate most 

metal surfaces, making them extremely hydrophilic. Usually, the piranha solution is 

prepared by adding the peroxide to the acid. Although the solution is a strong oxidizer 

with strong acid, there is almost no effect on surface roughness of single crystal 

substrates. However, it is quite difficult to control surface roughness on polycrystalline 

surface (e.g. commercial pure titanium) due to different oxidized states. Therefore, the 

oxidizing ability of the piranha solution, including the oxidizing time and temperature, 
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and the mixture ratio, will affect quantity of hydroxyl groups, surface roughness, and 

further the quality of SAMs. 

So far, different mixture ratios of H2SO4:H2O2 are used to form a Piranha solution. 

Silberzan used a solution of 1:1 at 80°C for 30 minutes to oxidize silicon surface 

[Silberzan 1991]; Love reported a solution of 3:1 for gold at 50°C for 1 hour [Love 

2005]; a solution of 1:1 at room temperature for 1 hour was used by Majewski for 

titanium [Majewski 2006]; other protocols may use a 7:3 or even 4:1 mixture. For 

polycrystalline titanium as substrate, it is an issue to optimize the oxidizing condition 

of Piranha solution in order to obtain the clean and flat surface with hydroxyl groups.  

2.3.3.2 Effect of silanization time 

Length of immersion time (also called silanization time in alkanesilane-based system) 

normally affects the final structure of SAMs. Generally, SAMs formation occurs in 

two steps, an initial fast step of adsorption and a second slower step of monolayers 

organization [Schreiber 2000]. The former step happen within minutes according to 

various molecules, but the latter step may take minutes to hours, even to days to 

eliminate defects in the final SAMs structure. For example, Britt and Hlady 

investigated that the mica surface was almost completely covered with 

octadecyltrichlorosilane (OTS)  after 300 seconds expect many small ‘pinholes’ [Britt 

1996]. Figure 2. 13 shows the silanization process of OTS on the hydrated mica within 

300 seconds at 25°C. The bright features in these images are condensed OTS islands or 

clusters and the darker features in the background is the mica surface.  

Macanov ic  and coworkers  s tud ied  that  the  s i lan iza t ion  t ime o f  3 -

glycidoxypropyltrimethoxysilane (GPTS) on silicon chips by varying the times (30, 60, 

90, 120, 360 and 480 minutes) by fluorescein-labelled bovine serum albumin protein 

(BSA) [Macanovic 1993]. The results show that optimal silanization time is 4 hours 

for GPTS on silicon chips, as shown in Figure 2.14. Although molecules can be covered 

on substrates within a few hours, there are still defects in the self-assembled films. 

Barrena et al. investigated the long-term effects on the island growth of 

hexadecanethiol by atomic force microscopy (AFM) [Barrena 1999]. At the beginning 
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Figure 2. 13 AFM images of the effect of silanization time from 10 to 300 seconds on growth of 
OTS on the hydrated mica at 25°C, and water contact angles shown at the bottom left corner of 
each image [Britt 1996]. 

within a couple of hours, the small islands are formed on the substrate due to the 

diffusion of molecules in the solvent. From several hours to days the islands exhibit a 

combination process, leading to the formation of fewer and larger islands and further 

resulting in a densification of the layer and the removal of defects.  

 

Figure 2. 14 Fluorescence intensity of BSA as function of the silanization time of GPTS on silicon 
[Macanovic 1993]. 

So far, these different time scales are reported for the formation of SAMs.  DeBono et 

al. demonstrated that hexane, dodecane, and hexadecane thiol adsorptions on gold 

surface were best fit by a two-step process (around 10 hours) using surface plasma 

resonance spectroscopy and surface plasmon microscopy [DeBono 1996]. However, 

Peterlinz and Georgiadis reported that there were at lest three distinct kinetics steps 

Silanization  
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(around 18 hours) in the film formation in ethanol [Peterlinz 1996]: the first step is the 

most rapid; the second step is depend on alkanethiol chain length, concentration, and 

practical film thickness; the third is slowest. Himmelhaus [Himmelhaus 2000] and 

Schreiber [Schreiber 2000] studied that the kinetics of film formation in the solution 

within 16 hours, and found that three different steps with significantly different time 

scales were identified. The first step in the formation process is the fastest step, related 

to the chemisorption of the head group (e.g., the formation of the Au-S bond). The 

second step (3-4 times slower than the first) comprises the straightening of the 

hydrocarbon chains. The third step (again 35-70 times slower than the second step) is 

related to the reorientation of the terminal groups.   

 

Figure 2. 15 Schematic illustration showing the formation of a SAM. 

According to the investigation of adsorption of docosanethiol (CH3(CH2)21SH) onto 

polycrystalline gold by Himmelhaus, 1000 minutes (about 16 hours) was needed for 

the total three steps of SAMs formation [Himmelhaus 2000]. Moreover, the common 

protocol for preparing SAMs on gold, silver, palladium and other materials is 

immersion of clean substrate into a solution of thiols for 12-18 hours [Love 2005]. 

These results imply that the coverage of the surface increases with extended immersion 

time and suggest two consequences: (1) the number of pinhole defects in the SAMs 

decreases and (2) the conformational defects in the alkane chains decrease. Therefore, 

according to the above conclusions, in this project the titanium surface will be 

silanized for 16 hours in the solvent with APTES.  

2.3.3.3 Effect of molecular concentration in solution 

Molecular concentration in solution during preparation of SAMs can influence the 

thickness and structure of the film. Many researches proved that low concentrations 

The third step The second step The first step 
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require longer immersion times and often create highly crystalline domains [Finklea 

1986; Rozlosinik 2003; Schreiber 2000; Wasserman 1989]. For SAMs formed from 

alkanethiols on gold, the typical surface density of molecules is ~ 4.5 × 1014 

molecules/cm2 [Schreiber 2000]. Thus, the minimum concentration for forming a 

dense SAM is ~ 1 µM, or ~ 6 × 1014 molecules/cm2, but substrates need immerse for a 

week in solutions. For the immersion time of 16 hours, thiol-based SAMs should be 

prepared in the solution with concentrations from 1 – 10 mM [Love 2005]. 

Rozlosnik et al. reported under a wide range of concentrations from 25 µM to 2.5 mM 

and normal laboratory air humidity (RH 45-85%) OTS dissolved in heptane caused the 

formation of a full-coverage self-assembled monolayer on hydrophilic silicon oxide 

[Rozlosinik 2003]. Doudevski et al. investigated self-assembled monolayers of 

octadecylphosphonic acid (OPA, CH3(CH2)17PO(OH)2) on mica by different 

concentrations from 0.01, 0.08, 0.17 to 0.45 mM [Doudevski 2001]. They found a 

solution concentration of 0.45 mM leads to the formation of larger island number 

density and full coverage on the surface, shown in Figure 2. 16.  

 

Figure 2. 16 AFM images (2µm× 2µm)))) of the surfaces topology of an OPA monolayer prepared 
with different concentrations [Doudevski 2001]. 

Karpovich and Blanchard reported that the growth rate of octadecanethiol (CH3-

(CH2)17-SH) increased with molecular concentrations [Karpovich 1994]. Peterlinze and 

Georgiadis changed the concentration of CH3(CH2)15SH in ethanol from  1.0 µM to1.0 

mM for film growth on a single gold film [Peterlinz 1996]. Kinetics results (Figure 2. 

17A) clearly demonstrate a decrease in the overall film growth rate as concentration 

decreases. Film thickness was monitored for the 1.0 mM, 10 µM, and 1.0 µM solutions 
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up to 20 h (Figure 2. 17B). A sudden increase in film growth rate happened at 8-9 Å for 

the 10 µM film (Figure 2. 17B, triangle labelled line). This increased rate matches the 

second step growth rate for the 1.0 mM solution, which also starts at 10-11 Å. This 

kinetic step does not occur for the lowest concentration studied (1.0 µM). Clearly, for 

these solutions, the self-assembly rate for the second kinetic step depends on molecular 

concentration. However, CH3(CH2)15SH molecules at lowest concentration assembled 

thinner layer on the surface (Figure 2.17B). 

 
Figure 2. 17 Concentration dependence of formation kinetics for hexadecanethiolate (C16) film 
from ethanol solutions. Shown are the thicknesses calculated from in situ SPR spectra measured 
during film formation from four different solutions , 1.0 mM, 0.10 mM, 10 µM, and 1.0 µM 
CH3(CH2)15SH in ethanol [Peterlinz 1996]. 

According to the above conclusions, the well-ordered thin film with full-coverage 

should be prepared at lower molecular concentration (~ 10 mM) in solution, especially 

with hydrophobic functional groups (e.g., -CH3). However, this conclusion does not 

suit for hydrophilic functional groups (e.g., -SH, -COOH and –OH). Akkerman et al. 

reported that high-concentration dithiol solutions result in a preferential standing-up 

phase [Akkerman 2008]. They found that SAMs with long alkanedithiols prepared 
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with 30 mM concentration is almost with full standing-up phase, but SAMs with 0.3 

mM concentration leads to a highly looped monolayer. The length of C14 was 

calculated to be 22.6 Å, including a 2.3 Å Au-S bond. When a tilt angle of 30° is 

assumed, a layer thickness of 1.93 nm is expected, which is the same as that from the 

experiment (Figure 2. 18). Moreover, from 0.03 mM and 0.3 mM concentration the 

peak intensity of unbound HS-C is found to be very low compared to the bound S-Au, 

which implies that almost all molecules are attached with both thiol end groups to the 

gold surface to form looping phase. 

     

Figure 2. 18 Results for concentration-dependent SAM formation of HS-C14H28-SH and HS-
C12H24-SH: (a) the layer thickness by Ellipsometer and (b) the HS-C:S-Au ratio in each layer by 
XPS [Akkerman 2008]. 

So far, APTES-modified self-assembled film was reported to be prepared in ethanol or 

toluene with molecular concentration from 1 to 3 vol% (422 mM ~ 1.266 M) [Golub 

1996; Majewski 2006; Zhu 2004]. Compared with OTS or thiol-based molecules, 

optimum molecular concentrations are obviously different in preparation of SAMs 

from solution deposition, because of the functional groups. However, there is no report 

about the effect of molecular concentration on the well-ordered APTES-modified film 

on titanium in the literature. Therefore, further investigation need to be carried out in 

the aspect. 

2.3.3.4 Effect of temperature during silanization  

Only a few studies exist concerning the influence of temperature on the formation of 

the self-assembled monolayers. On the early study, in order to reduce the density of 
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defects of SAMs, it is reported that thermal annealing of SAMs at >100°C resulted in 

the healing of the defects [Schreiber 2000], especially alkylchlorosilanes and 

alkanethiol monolayers. However, unexpected phenomenon is happened during 

thermal annealing process. For example, it is found for OTS to aggregate and form 

islands of multilayer at 150°C after for 5 hours [Britt 1996]. It is also found for 

octadecanethiol to desorb from Au after incubating at 120°C for several hours 

[Yamada 2000]. So a precise control of the temperature is needed to avoid desorption 

of the molecules during the annealing. Moreover, surface contamination could take 

place during the annealing process.  

Therefore, different research groups apply different temperatures during the formation 

of SAMs. Yamada et al. studied the self-assembled process of alkanethiols on an Au 

surface in 1 mM ethanol solutions at temperature from -20, 5, 25, 60 to 78°C, which 

was examined by scanning tunnelling microscopy [Yamada 2000]. They discovered 

that the higher temperature of the solution leaded to the larger size of the well-ordered 

domain structure. Nyquist and co-workers also suggested that the effect of temperature 

was particularly relevant during the first few minutes of the formation of SAMs when 

most of the adsorption and reorganization of the SAMs were taking place [Nyquist 

2000]. Tian et al. discovered the temperature range of 20-80°C had a negligible effect 

on the formation of octadecyltriethoxysilane monolayer in low humidity. However, in 

high humidity, the multilayers are formed on the surface at higher temperature [Tian 

2004].  

Forming SAMs at temperatures above 25°C can improve the kinetics of formation and 

reduce the number of defects in them [Love 2005]. Brzoska et al. demonstrated n-

alkyltrichlorosilane monolayers on the oxidized silicon wafer as a function of the 

temperature of the silanization reaction [Brzoska 1992]. They reported that 28 ± 5 °C 

was well-defined temperature for the formation of OTS on silicon. Britt and Hlady 

employed two silanization temperatures (25 and 9°C) on mica surface during 

silanization [Britt 1996]. A uniform distribution of OTS clusters on the surfaces is seen 

in all three images (Figure 2. 19a-c), while no large islands were present. However, at 

9°C, after 40 seconds of silanization (Figure 2. 19e) larger aggregates of condensed 

OTS are clearly seen and even larger after 300 seconds (Figure 2. 19f).  
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Figure 2. 19 AFM images of the effects of silanization temperature versus silanization time on the 
formation of OTS monolayers for 10, 40, 300 seconds on partially dehydrated mica at different 
temperatures: samples from a, b and c are prepared at 25°C; d, e and f are at 9°C, and water 
contact angles shown at the bottom left corner of each image [Britt 1996].  

The above findings do not clearly show the effect of temperature on the formation of 

SAMs, especially on the film structure. The effect of temperature may be dependent on 

individual molecules or environment. Certain achievement has been obtained so far, 

but further investigation is still required for APTES molecules in order to prepare the 

well-ordered film on titanium and satisfy practical requirements.  

2.3.3.5 Effect of solvent during silanization 

The studies of the effect of solvent on the SAMs of alkanethiols on gold indicate that 

the choice of solvent clearly is an important parameter for determining the resulting 

quality of a SAM prepared from solution. However, the influence of solvent on the 

kinetics of formation and the mechanism of assembly are complex and poorly 

understood [Love 2005]. Studies on this topic have led to some qualitative 

understanding of how solvent can affect the assembly process. The presence of a 

solvent adds additional parameters to the dynamic equilibrium during the adsorption of 

Silanization  
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thiols: solvent-substrate and solvent-adsorbates interactions complicate the 

thermodynamics and kinetics of assembly. Solvent-substrate interactions can hinder 

the rate of adsorption of thiols from solution because the solvent molecules must be 

displaced from the surface prior to adsorption of thiols [Love 2005; Schreiber 2000]. 

Ethanol as solvent is most widely used for preparation of SAMs. It is not noticeable 

difference for thiol-based SAMs with hydrophobic functional groups formed in ethanol 

compared with that from other solvents (tetrahydrofuran, dimetylformamide, 

acetonitrile, cyclooctane and toluene) [Schreiber 2000]. Peterlinz and Georgiadis 

compared the kinetics of formation in ethanol, a relatively weak alkanethiol solvent, 

with that in heptane, a relatively strong alkanethiol solvent [Peterlinz 1996]. Studies 

suggest that the rate of formation of SAMs of alkanethiolates is faster in certain 

nonpolar solvents (hexanes) than ethanol. As shown in Figure 2. 20, the kinetics of 

growing a self-assembled film in 1.0 mM hexadecanethiol in heptane and ethanol 

 

Figure 2. 20 Solvent dependence of formation kinetics for hexadecanethiolate (C16) film in 1.0 mM 
hexadecanethiol solutions. Shown are the thicknesses calculated from in situ SPR spectra 
measured during film formation from two different solutions, 1.0 mM CH3(CH2)15SH in ethanol 
and in heptane [Peterlinz 1996]. 



                                                                                      Chapter 2 –Self-Assembled Films 

                                                                                                                                                                                    59                                                                                                                                     

are dramatically different. The rate for the film grown in heptane at the initial step is 

notably larger. At the end of this first step, the film thickness in heptane is 22 Å versus 

12-13 Å for ethanol. Although there appears to be a 4 Å increase in film thickness over 

the next 43 h for the film grown in heptane, the thickness is largely increased with the 

film grown in ethanol. Therefore, there is relatively rapid kinetic step in heptane, 

compared with the formation in ethanol. However, Karpovich  did not observe 

significant differences between hexane and cyclohexane as solvents for the formation 

of 1-octadecanethiol (CH3-(CH2)17-SH) on gold [Karpovich 1994]. 

The use of long hydrocarbons, such as dodecane and hexadecane, as solvents reduces 

the rates of formation such that they are comparable to those for forming SAMs from 

ethanol solutions [Love 2005]. Hydrocarbon solvents may improve the kinetics of 

formation in some cases, but the strong solvent-adsorbate interactions in these 

solutions impede the organization of SAMs formed from alkanethiols. Dannenberger et 

al. studied the impact of the solvent chain length on the growth of dodecanethiol (CH3-

(CH2)11-SH) [Dannenberger 1998]. They found that the initial rate of chemisorption 

was significantly slower for longer-chain solvents. The slower adsorption for solvents 

with longer chains is considering that the interaction of the solvent molecules with the 

surface (from which they have to be displaced by the thiols) is larger for longer chains 

and that also the mobility of the molecules in solution is reduced for longer chains.  

Therefore, the chemical nature of a solvent will influence many parameters, such as 

polarity, mobility, solubility for SAM molecules, etc. Most of the research work in the 

literature reports that ethanol, toluene or a mixture of ethanol and water solvents are 

usually used for growth of SAMs with the -NH2 group. Kang and coworkers found, in 

a polar solvent (ethanol or acetone), although a polar SAM can be stabilized by solvent 

interactions, the -NH2 functional groups will connect to the solvent molecule by 

hydrogen bond, instead of free amine groups [Kang 1998]. Moreover, ethanol as the 

solvent will occupy the position of hydroxyl group on the surface by hydrogen bond, 

so that coverage of SAMs on the surface will decrease. Toluene as a dipolar solvent 

can overcome the above issues for growth of SAM with the -NH2 group on a 

hydroxylated surface. Some researchers investigated the solvent effects for the 

preparation of modified NH2-funcitonalized surface in different solvents (toluene, 
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ethanol and acetone) [Hsieh 2007]. After certain immersion time, they found 

NH2/Toluene combination provided the best and most repeatable signal (shown in 

Figure 2. 21), which implies that toluene is a better solvent than ethanol and acetone for 

growth of SAMs with the -NH2 group. According to the physical-chemical property of 

APTES, its solubility in toluene is much great than that in ethanol, which results in the 

better diffusion of APTES in solvent. Therefore, toluene is chosen as solvent for 

APTES during self-assembly on titanium in this project. 

 

Figure 2. 21 Bradykinin fragment abundance for several NH 2-terminated SAM modified Si 
substrates, an OH-rich Si substrates, and standard gold substrate [Hsieh 2007]. 

2.3.3.6 Effect of residual water content in solvent 

Compared with thiol-based SAMs, water is necessary for silane-based SAMs to 

hydrolyze head groups, which will form covalent bonds (Si-O-M) with the surface and 

three dimensional condensations (Si-O-Si) through polymerization, according to the 

reaction principle of SAMs on the surface in Chapter 2.2. Angst et al. showed that 

OTS molecules attached to a dry SiO2 surface to form disordered film [Angst 1991]. 

Tripp et al. reported that high water content of the solvent leaded to polymerization of 

alkanesilanes in bulk solution [Tripp 1992]. Therefore, the water content in solvent is 

an important parameter that plays a major role in quality of the final silane-based 

SAMs. However, the dependence of the monolayer growth kinetics on water content is 

still far from being understood.  



                                                                                      Chapter 2 –Self-Assembled Films 

                                                                                                                                                                                    61                                                                                                                                     

HCl 

HCl 

H2O 

H2O 

H2O 

H2O 

H2O 
OH 

Oxide layer 

OTS 

Water, which is either in solvent or present in the surface of substrate, hydrolyzes the 

alkanesilanes to form silanols [Silberzan 1991]. These silanols then form stable bonds 

to the substrate upon reacting with the hydroxylated surface and release water. 

Mcgovern et al. suggested a moisture quantity of 0.15 mg/100 mL of solvent as the 

optimum condition for the formation of closely packed monolayers for OTS 

[McGovern 1994]. It was reported that increasing age of the solution favours island-

type growth more strongly. Vallant and Burnner also reported that an island type 

growth of OTS on the surface was strongly favoured with increasing water content in 

solvent [Vallant 1998]. However, Silberzan et al. recommended that small amount of 

water in solvent would lead to the formation of large aggregates, which would block 

vacant adsorption sites on the surface. Consequently, the formation of well-defined 

SAMs will be prevented [Silberzan 1991], as shown in Figure 2.22a. 

Figure 2. 22 Schematic of OTS growth mechanisms on an oxide layer in (a) wet and (b) anhydrous 
conditions [Silberzan 1991]. 

In an anhydrous environment, a thin water on the substrate surface could act as a water 

reservoir for hydrolysis of the molecules and as a lubricating layer for the adsorbed 

molecules to move laterally on the surface and gather into a densely packed monolayer 

[Schreiber 2000]. Angst and Simmons  found that a water film on the silica substrate 

Water in solvent 

Water on surface 
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was necessary for the formation of a complete monolayer [Angst 1991]. Tripp and 

Hair used infrared spectroscopy to provide direct evidence for the full hydrolysis of 

methylchlorosilanes to methylsilanols, at the solid-gas interface, by surface water on a 

hydrated silica [Tripp 1995], as shown in Figure 2.22b. Britt and coworkers reported 

that a thinner water layer might result in the formation of an incomplete monolayer, 

which will affect its further applications. While, a thick water layer may eliminate the 

non-covalent interactions between the polar head group of monolayer molecules and 

the surface as well as prevent covalent bond formation between monolayer molecules 

and any surface hydroxyl groups [Britt 1996]. Therefore, water content during 

silanization needs to be carefully controlled. 

From the above assessment, where water comes from during silanization, is still a 

dispute for the formation of well-ordered silane-based SAMs. In order to clarify this 

point for the formation of the APTES-modified film, different solvents will be used to 

investigate this purpose according to the limitation of current laboratory: hydrous 

toluene (90%), which is assumed that residual water presents in solvent, and anhydrous 

toluene (+99.9%), which is assumed that water presents on the substrate surface. 

2.3.3.7 Stability of SAMs 

The stability of SAMs is an important parameter to be considered especially for its 

applications. For example, in biology-related applications, hydrolysis stability of 

SAMs in aqueous solution will determine the stability of protein on the surface. On 

other word, immobilized protein with SAMs will be dropping off from the surface 

when covalent bonds in SAMs (e.g. Si-O-M and Si-O-Si) are broken. Therefore, 

assessment of SAMs stability with time, under temperature and in solution is required 

and in this regard, several investigations were carried out in the past for SAMs with 

hydrophobic functional groups.   

Wang et al. have investigated the systematic stability of various alkylsilane SAMs on a 

silicon surface in vitro in a saline solution (0.9% NaCl in deionised water) at 37 oC for 

up to 10 days [Wang 2005]. They showed that SAMs with hydrophobic end groups 

and longer chains (e.g. OTS) show better stability compared to SAMs with hydrophilic 
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end groups and shorter chains. The reason could be that the hydrophobic SAMs 

prevent water penetration and longer chain of molecules form closely packed films due 

to increased van der Waals attractions between the backbone alkyl chains. The stability 

of alkyltrichlorosilane SAM was also investigated by Wassserman et al. [Wasserman 

1989]. They showed that CH3-terminated siloxanes were stable for 18 months storage 

in air. They also confirmed the stability of tetradecyltrichlorosilane in contact with the 

acid (0.1N HCl) at room temperature, however, in the basic solution (0.1N NaOH) 50 

% of the film was etched within 80 min. 

McElwee et al. have speculated that monolayer packing and mobility may affect its 

thermal stability [McElwee 2005]. They showed by the thermogravimetric analysis 

curves that the degradation of alkylsilane SAMs happens through pyrolysis of the 

hydrocarbon chains via cleavage of the C-C and Si-C bonds and the inorganic portion 

of the molecule remains attached to the surface. The maximum weight loss was 

obtained at ~ 400 - 450 oC for trifunctional and ~ 250 oC for mono-functional 

alkylsilanes. Furthermore, according to Cohen et al., OTS-based SAMs on silicon 

surfaces are stable up to 125 oC [Cohen 1998]. 

2.4 Enzyme immobilization 

Since the amine functional groups in APTES-modified SAMs can immobilized protein 

by covalent bond, this self-assembly technique is often applied for biosensors, 

bioelectronics. Here, we will talk about special protein – enzyme for biofuel cell. 

Enzymes as biocatalysts exhibit a number of features that make their use advantageous 

as compared to conventional chemical catalysts. Foremost among them are a high level 

of catalytic efficiency, often far superior to chemical catalysts, and high degree of 

specificity that allows them to discriminate not only between reactions but also 

between substrates (substrate specificity) and between optical isomers 

(stereospecificity) [Trvan 1980]. In addition, enzymes generally operate at mild 

conditions of temperature, pressure and pH with reaction rates compared with those 

achieved by chemical catalysts at more extreme conditions [Elsenthal 1993; Trevan 

1980]. Enzyme as biocatalysts, can also offer cost advantages over metallic catalysts. 
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Moreover, enzymes practically do not present disposal problems since being mostly 

proteins and peptides, and they are biodegradable and easily removed from 

contaminated streams. Therefore, enzymes as biocatalysts have been widely applied 

for industries. 

Reports on immobilization of proteins and enzymes first appeared 30 years ago 

[Zaborsky 1974]. Since then, immobilized proteins/enzymes have been widely used for 

the processing of a variety of products spanning industries from food to environmental 

control [Messing 1975]. In addition to their use in processing, immobilized enzymes 

have also been found useful in many fields, including bioanalysis, synthetic chemistry, 

industrial use, waste utilization, nanobiotechnology and etc. [Duran 2002]. For 

example, immobilized enzymes are used routinely in the medical field, such as in the 

diagnosis and treatment of various diseases. Immobilized antibodies, receptors, or 

enzymes are used in biosensors and Enzyme-linked immunosorbent assay (ELISA) for 

the detection of various bioactive substances in the diagnosis of disease states 

[Zaborsky 1974]. Encapsulated enzymes are also used in bioreactors for the removal of 

waste metabolites and correction of inborn metabolic deficiency. Moreover, the use of 

artificial cells as well as the development of controlled release drug delivery systems to 

release encapsulated enzymes or proteins may also be considered a form of 

immobilized enzyme use [Hanefeld 2009]. 

For the implementation in a commercial process, all beneficial and detrimental effects 

of whether an enzyme is chosen, and whether a free or immobilized enzyme is used, 

have to be weighed taking into account all relevant aspects, health and environmental 

included, in addition to obvious economical viability. Laccase, a copper-containing 

oxidase enzyme, is found in many plants, fungi and microorganisms and often used as 

the cathode in enzymatic biofuel cells and waste water treatment [Yaropolov 1994]. In 

order to re-use enzyme in a commercial process, it is essential to understand fully 

fundamental mechanisms of catalysis of enzyme, advantages and disadvantages of 

each immobilization method, and molecular structure and electrocatalytic properties of 

enzyme. 
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2.4.1 Introduction of enzyme immobilization 

Enzymes are protein molecules that catalyze chemical reactions of living cells. In 

enzymatic reactions, the molecules at the beginning of the process are called substrates, 

and the enzyme converts them into different molecules, called the products. Like all 

catalysts, enzymes work by lowering the activation energy (Ea or ∆G) for reaction, 

thus dramatically increasing the rate of the reactions (Figure 2.23) [Elsenthal 1993]. The 

substrates need a lot of energy to reach a transition state which then decays into 

products, while the enzyme can stabilize the transition state by reducing the energy 

needed to form products. Most enzyme reaction rates are millions of times faster than 

those of comparable un-catalyzed reactions. As with all catalysts, enzymes are not 

consumed by the reactions they catalyze, nor do they alter the equilibrium of these 

reactions.  

 

 

 

 

 

Figure 2. 23 Energies of the stages of a chemical reaction with or without enzyme [W3]. 

Enzymes are generally globular proteins and contains up to 2,500 amino acid residues. 

In the structure of enzymes, a specific region is know as the active site, which contains 

the catalytic residues, binds the substrate and then carries out the reaction. In 1894 

Emil Fischer suggested ‘the lock and key’ model for enzymatic reactions [Elsenthal 

1993]. However, this model fails to explain the stabilization of the transition state that 

enzymes achieve. In 1958, Daniel Koshland modified this model, shown in Figure 2. 24. 

When the substrate interacts with the enzyme, it does not simply bind to a rigid active 

site. So the active site changes the shape until the substrate is completely bound [W3]. 
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Enzyme/substrate complex is catalyzed to enzyme/products complex, and finally the 

product is separately from the enzyme. The activities of enzymes are determined by 

their three-dimensional structure of the activity site, and can be affected by other 

molecules (e.g. inhibitors), temperature, chemical environment (e.g. pH) and the 

concentration of substrate. 

 
Figure 2. 24 Process of enzymatic reaction with substrates in the ‘lock and key’ model [W3]. 

Enzymes are able to catalyze the most complex chemical processes under the most 

experimental and environmental conditions, because of their excellent functional 

properties (activity, selectivity, and specificity). Obviously, in addition to their 

excellent catalytic properties, enzymes also have some characteristics that are not very 

suitable for industrial applications: they are soluble catalysts, usually very sensitive 

and unstable, and may be strongly inhibited by substrates and products. Some enzymes 

only work well on natural substrates and under physiological conditions. In order to 

overcome above limitations and allow longer duration of activity of enzymes, one of 

the most successful technologies is enzyme immobilization.  

Enzyme immobilization may be defined as the ‘imprisonment’ of an enzyme molecule 

in a distinct phase by physical or chemical bonds and still act on its substrate [Treven 

1980]. General operational advantages of enzyme immobilization are reusability, 

possibility of continuous operational modes, rapid termination of reactions, controlled 

product formation, greater variety of engineering designs for continuous processes, and 

possible greater efficiency in consecutive multistep reactions (Table 2. 4). Therefore, it 

has to be emphasised that enzyme immobilization can help in the utilization of the 

enzyme [Hanefeld 2009]. However, immobilization often causes the reduction of 

enzyme activity and diffusion limitation during catalysis. Therefore, the 
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immobilization is required to optimize enzyme dispersion to improve accessibility for 

the substrates, as well as to avoid the aggregation of the hydrophilic protein particles. 

In addition, immobilization ensures that these biocatalysts can be readily recycled. The 

anchoring of an enzyme onto a solid insoluble support should be straightforward and 

cost efficient.  

Table 2. 4 Technological properties of immobilized enzyme systems. 

Advantages Disadvantages 

Catalyst reuse Loss or reduction in activity 

Easier reactor operation Diffusion limitation 

Easier product separation Additional cost 

2.4.2 Methods of enzyme immobilization 

Immobilization of an enzyme involves two species: enzyme and carrier. The enzymes 

have been introduced on the above section. An essential requirement for any carrier is 

to match either of these surface properties of the enzyme. The carriers can be small-

particle-size materials, though it will make separation difficult, or with highly porous 

materials with pores of sufficiently large dimensions that do not limit diffusion of the 

substrates. In the latter case the pores of the carrier have to be of sufficient size to 

guarantee unhindered diffusion of the substrates while ensuring that enzyme remains 

locked inside. Alternatively the carrier can immobilize enzymes by surface functional 

groups. For example, primary amine groups (-NH2) react with carboxyl groups (-

COOH) to form peptide bonds (-NH-CO-). Reactive functional groups can be 

introduced in the matrix of polymeric supports by choosing appropriate organic 

monomers. Moreover, the carrier needs to be chemically and mechanically stable. 

Therefore, many methods are available for enzyme immobilization. The most 

frequently used immobilisation techniques fall into four categories: adsorption, 

entrapment, cross-linking and covalent binding. 

Several techniques may be applied to immobilize enzymes on solid supports. They are 

mainly based on physical and chemical mechanisms. Physical immobilization methods 
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involve entrapment and adsorption through van der Waals, hydrogen bonds, etc. 

Chemical immobilization methods mainly include covalent binding and cross-linking 

using multifunctional reagents, such as carbodiimide and glutaraldehyde. Both 

physical and chemical methods of enzyme immobilization have advantages and 

disadvantages (Table 2. 5). In general, the entrapment and adsorption immobilization 

methods typically change the structure of enzyme much less and consequently offer 

retention of the enzyme properties resembling those in solution [Bailey 1986], but they 

results in the cleavage of immobilized enzymes from the carrier because of weak 

bonds. Although chemical immobilization methods tend to reduce the activity of the 

enzyme due to the change of the enzyme native structure, they can be used for longer 

time because of strong chemical bonds [Trvan 1980]. Usually, a long-time applicable 

immobilized enzyme with a lower initial activity is preferable to that with a high level 

of initial activity but with a short-time activity retention [Duran 2002]. In the following, 

the immobilization processes will be briefly discussed especially cross-link and 

covalent binding immobilization methods. 

Table 2. 5 Methods for enzyme immobilization [Hanefeld 2009; Treven 1980]. 

Method Advantages Disadvantages 

Adsorption 
Gently treatment of enzyme; no 
modification of enzyme; matrix 
can be regenerated 

Very weak bonds; susceptible 
to changes in pH, temperature, 
ionic strength 

Entrapment 
Gentle; no direct chemical 
modification; specificity and 
analyte interaction retained 

High diffusion barrier; only 
good for small analyses; 
continuous loss of enzyme 

Cross-linking 
Used in conjunction with 
entrapment to reduce loss of 
enzyme 

Covalent links formed 
between protein molecules 
rather than matrix and protein; 
may involve harsh/toxic 
chemicals 

Covalent binding 

Low diffusion resistance; strong 
binding force between enzyme 
and matrix; resistant to adverse 
conditions of pH, ionic strength 

Matrix not regenerable 
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2.4.2.1 Adsorption  

Immobilization of enzymes by adsorption is probably the mildest method available, 

being mediated by ionic, hydrophobic or hydrogen bonds [Hanefeld 2009]. Adsorption 

of enzymes onto insoluble supports is a very simple method of applications and 

capable of high enzyme loading. Simple mixing of the enzyme with a suitable 

adsorbent, under appropriated conditions of pH and ionic strength, followed after a 

sufficient incubation period, by washing off loosely bound and unbound enzyme, will 

produce the immobilized enzyme in a directly usable form. The driving force causing 

this physical binding is usually due to the combination of hydrophobic effects, van der 

Waals force, π-π bond, etc.  [Piacquadio 1997]. For example, enzymes with a large 

lipophilic surface area will interact well with a hydrophobic carrier. Sugar residues of 

glycosylated enzymes can ensure adsorption by hydrogen bonds; large hydrophilic 

surface areas of the enzyme will interact with a hydrophilic carrier [Zaborsky 1974]. 

The suitable carriers for adsorption of enzymes are ion-exchange matrices, porous 

carbon, hydrous metal oxides, glasses and polymeric aromatic resins [Hanefeld 2009]. 

2.4.2.2 Entrapment 

Apart from adsorption, the entrapment is one of most important physical 

immobilization methods and provides relatively small perturbation of the enzyme 

native structure and function. Generally, the entrapment of an enzyme molecule can be 

achieved in one of three ways [Treven 1980], as shown in Error! Reference source not 

found.25: 

1) Inclusion within the matrix of a highly cross-linked polymer; 

2) Separation from the bulk phase by a semipermeable ‘microcapsule’ (encapsulation); 

3) Dissolution in a distinct non-aqueous phase. 

In entrapment, the enzymes are not directly attached to the carrier, but simply trapped 

inside the polymer matrix by physical caging. Therefore, there is none of the steric 

problems associated with electrostatically binding an enzyme on to a polymer, which 
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results in the minimum of loss of enzyme activity. In general, entrapment methods are 

performed by dissolving the enzyme in a solution, followed by polymerization initiated  

 (a)                           (b) 

Figure 2. 25 Modes of enzyme immobilized by entrapment: (a) entrapment with crosslinked 
polymers; (b) encapsulation. 

by a change in temperature or by a chemical reaction. The polymer is formed either in 

particulate form or a block which can be disrupted to form discrete particles. The most 

commonly methods of entrapment use polyacrylamide, collagen, cellulose acetate, 

calcium alginate or carrageenan as the carriers [Elsenthal 1993; Hanefeld 2009]. 

Entrapment of enzymes within gels or fibres is a convenient method for use in process 

involving low molecular weight substrate and products. However, the difficulty which 

large molecules have in approaching the catalytic sites of entrapped enzymes precludes 

the use of entrapped enzymes with high molecular weight substrates. 

2.4.2.3 Cross-linking  

Immobilization of enzymes by chemical cross-linking is based on the formation of 

covalent bonds between enzyme molecules by functional groups (e.g. -NH2 and -SH), 

by means of bi- or multifunctional reagent, leading to three-dimensional cross-linked 

aggregates. Instead of fixing the enzyme directly to a carrier, a linker is necessary 

between enzyme and carrier. In general, N,N’- bisdiazobenzidine-2,2’ – disulphonic 

acid or 2,4- dinitro-3,5-difuorobenzene and glutaraldehyde (GLUTAL) regents have 

been used to cross-link enzymes. 2,4-Dinitro-3,5-difluorobenzene requires highly 

alkaline solutions to react and the presence of organic solvent to dissolve it; N,N’-

bisdizaobenzidine-2,2’-disulphonic acid is a potentially explosive carcinogen [Trevan 

1980]. Therefore, the most commonly used multifunctional reagent is GLUTAL 

because it reacts with enzymes readily under relative mild conditions. 

Enzyme 
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GLUTAL (CH2(CH2CHO)2) is an amine-reactive homo-bifunctional cross-linker 

containing an aldehyde residue at both ends of a 5-carbon chain. The amino group as 

nucleophile can attack an aldehyde to form the imine, which the reaction is shown in 

Error! Reference source not found.. When a carrier can supply the –NH2 functional groups, 

GLUTAL can both cross-link enzyme molecules and the carrier. This method produces 

multilayers of enzymes on the electrode surface [Imamura 1995]. Creager and Olsen 

reported that glucose electrodes where the enzyme was bound to the thiol using 

glutaraldehyde have at least 64 layers of glucose oxidase [Creager 1995]. This net 

effect is to increase the distance of the enzyme molecules to supports, so that the 

ability of transferring electrons will be affected between supports and enzymes. 

Moreover GLUTAL often preferentially attacks the active site of the enzyme, thus 

rendering it inactive [Trevan 1980].  

 

 

Figure 2. 26 Schematic diagram of enzyme immobilization by cross-linking with glutaraldehyde. 

2.4.2.4 Covalent binding 

Covalently binding enzymes has flourished since the 1950s and is now an important 

method of enzyme immobilization, because covalent bonds usually provide the 

strongest linkages between enzyme and carrier, compared with non-covalent 

adsorption-based enzyme immobilization. Thus leakage of enzyme from the carrier 

used is often minimized with covalently binding. Normally, enzyme immobilization by 

covalent binding is preferred when working in aqueous solution and when denaturing 

factors exist. This is due to the fact that the formation of multiple covalent bonds 
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between the enzyme and the carrier reduces conformational flexibility and thermal 

vibrations thus preventing protein unfolding and denaturation [Hanefeld 2009].  

In general, covalent binding of an enzyme to a carrier is based on chemical reaction 

between the active amino acid residues located on the enzyme surface and functional 

groups from the carrier surface. The functional groups from the carrier that may take 

part in this binding include amine (-NH2), carboxyl (-COOH), hydroxyl (-OH), 

imidazole (Figure 2. 27a), phenolic (Figure 2. 27b), thiol (-SH) and indole (Figure 2. 27c) 

groups. Table 2. 6 shows various covalent bonds in enzyme immobilization and most 

useful covalent bond is the amide bond (-CO-NH-). 

(a)                   (b)               (c) 

Figure 2. 27 Structures of imidazole (a), phenolic (b) and indole (c). 

Table 2. 6 Various covalent bonds between enzymes and carriers [Messing 1975; Trevan 1980]. 

Diazotization -N=N- 

Amide bond formation -CO-NH- 

Arylation -CH2-NH- 

Schiff’s base formation -CH=N- 

Amidation reaction -C=N-NH- 

Thiol-disulfide interchange -S-S- 

To achieve efficient linkage, the functional groups of the carrier or the enzyme must be 

activated before immobilization. A popular and highly versatile method for covalently 

attaching proteins to the carrier is by using carbodiimide coupling which couples 

carboxylic acids to amines [Hanefeld 2009]. A carbodiimide is a functional group 

consisting of the formula RN=C=NR, which hydrolyzes to form urea (H2N-CO-NH2). 

In carbodiimide family, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC, 

shown in Figure 2. 28a) is the most useful activator and converts the carboxyl groups 
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into a reactive unstable intermediate and then yield the amide bonds with primary 

amine groups. The formation of an amide using a carbodiimide is straightforward. The 

carboxyl group reacts with the EDC to produce the intermediate A: the O-acylisourea, 

which is with an activated leaving group and then reacts with amines to form the amide. 

If the intermediate reacts with an additional carboxyl group to form an acid anhydride, 

which can react further to form the amide. Apart from the carboxyl groups, the EDC 

can also activate phosphate groups. 

 (a)                           (b) 

Figure 2. 28 Molecular structures of EDC and NHS. 

 

 

 

Figure 2. 29 Formation of amide bond by the reaction of carboxyl group with amine group under 
activation of EDC [modified from W2]. 

However, the intermediate is not stable because two o-acylisourea molecules can react 

to form the stable N-acylurea. In order to decrease the side reaction, EDC is often used 

in combination with N-hydroxysuccinimide (NHS, shown in Figure 2. 28b) to increase 

coupling efficiency and create a stable amine-reactive product. In Figure 2.29, the 

A 
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intermediate A is formed by the activation of carboxyl group with EDC and further 

reacts with NHS to form a stable intermediate B. The latter will react with primary 

amine groups to obtain the amide bonds. Gooding et al. reported that XPS was used to 

determine the percentage of 3-mercaptopropionic acid (MPA) molecules which are 

activated with EDC alone and EDC with NHS. The XPS spectra reveal that with EDC 

alone only 40% of carboxyl groups on the surface are activated while 70% of those are 

activated by  EDC/NHS [Gooding 2001]. 

 

Figure 2. 30 Formation of amide bond by the reaction of carboxyl group with amine group under 
activation of EDC and NHS, which is modified from [Gooding 1999]. 

In this project, covalent binding by amide bond will be applied for the enzyme 

immobilization as the APTES-modified SAMs can supply the primary amine groups. 

The carboxyl groups from enzyme surface will be activated by EDC/NHS and then 

react with the –NH2 groups from the carrier surface, which might avoid attaching of 

active site of enzyme. However, covalent binding might alter the conformational 

structure of the enzyme (especially active site), resulting in loss of activity. Therefore, 

in order to obtain the maximum of enzyme activity, the optimum conditions for 

immobilization need to be investigated by covalent binding with the NH2-SAMs, such 

as EDC/NHS molar ratio, pH, temperature and immobilization time. 

2.4.3 Immobilization of laccase 

2.4.3.1 Introduction of laccase 

Laccase is one of the very few enzymes that have been studied since the end of 19th 

century [Yaropolov 1994]. It was first demonstrated in the exudates of Rhus 

vernicifiera, the Japanese lacquer tree (Yoshida, 1883). A few years later it was also 

B A 
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demonstrated in fungi (Bertrand, 1896). Laccases are typically found in many plants 

[Mayer 1979], fungi  [Thurston 1994] and microorganisms [Alexandre 2000]. Plant 

laccases participate in the radical-based mechanisms of lignin polymer formation 

[Boudet 2000; Sterjiades 1992], but fungi laccases probably have more roles including 

morphogenesis, fungal plant-pathogen/host interaction, and lignin degradation 

[Baldrian 2006]. A very wide range of substrates has been shown to be oxidized by 

fungal laccases [Baldrian 2006], such as 2,2’-azinobis(3-ethylbenzothiazoline-6-

sulfonic acid) (ABTS), 2,6-dimethoxyphenol (DMP), 2-methoxyphenol (guaiacol) and 

4-hydroxy-3,5-dimethoxybenzoic acid (syringaldazine).  There are also some reports 

about laccase activity in bacteria [Boudet 2000]. Probably the best characterized 

bacterial laccase is that isolated from Sinorhizobium meliloti, which has been described 

as a 45-kDz periphasmic protein with isoelectric point at pH 6.2 and the ability to 

oxidize syringaldazine [Baldrian 2006].  

In the last decades laccases have received much attention from researchers. Although 

known for a long time, laccases are attracted considerable attention only after the 

beginning of studies of enzymatic degradation of wood by white-rot wood-rotting 

fungi [Yaropolov 1994]. Due to their ability to oxidise both phenolic and non-phenolic 

lignin-related compounds, laccases have been used for some applications in several 

biotechnological processes. Such applications include the detoxification of industrial 

effluents, mostly from the paper and pulp [Camarero 2004], textile and petrochemical 

industries [Hou 2004], use as a tool for medical diagnostics, pesticides and certain 

explosives in soil [Susana 2006]. Laccases are also used as the cathode in novel 

enzyme-based catalyzed fuel cells [Palmore 1999], as cleaning agents for certain water 

purification systems and as catalysts for the manufacture of anti-cancer drugs and even 

as ingredients in cosmetics [Golz-Berner 2004; Lang 1999]. In addition, their capacity 

to remove xenobiotic substances and produce polymeric products makes them a useful 

tool for bioremediation purposes [Susana 2006]. The following sections are devoted to 

the structure and electrocatalytic properties of the laccase and its active sites. 

2.4.3.1.1 Molecular structure of laccase 

Laccase is an oxidoreductase enzyme that can catalyze the oxidation of various 

aromatic compounds with the concomitant reduction of oxygen to water [Duran 2002]. 
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Apart from plants and bacteria, the most studied laccases appear to be from fungi, such 

as Cerrena unicolor [Nogala 2006; Zawisza 2006], Rhus vernicifera [Reinhamm 1970], 

Rhizoctonia practicola [Leonowicz 1988; Palmore 1999], Trametes or Polyporus 

versicolor [Freire 2001; Liu 2007; Piacquadio 1997; Piontek 2002] and Coriolus 

hirsitus [Shleev 2005a; Xu 1997]. The molecular masses of laccases vary in a wide 

range and major discrepancies may well be related to the carbohydrate moiety of the 

molecule. The amino acid chain contains about 500 amino acids. 

The laccase from Trametes versicolor was determined by X-ray and the crystal 

structure of the fully active enzyme is shown in Figure 2. 31 [Piontek 2002].  The 

structure of T. versicolor laccase is a monomer, and has dimensions of about 65 

×55×45 Å. Each of the three domains is of similar β-barrel type architecture. Domain 1 

(D1) comprises two four-stranded β-sheets and four 310-helices. Domain 2 (D2) has 

one six-stranded and one five-stranded β-sheet. Domain 3 (D3) consists of a β-barrel 

formed by two five-stranded β-sheets, together within a α-helix and a β-turn, form the 

cavity in which the type-1 copper is located [Piontek 2002]. A 310-helix between D2 

and D3 forms part of a loop region.  

 

Figure 2. 31 Crytal structure of Trametes versicolor laccase (ribbon diagram). The arrangement of 
the domain structure is depicted in different colour coding (D1-D3). Copper ions are drawn as 
blue spheres; Carbohydrates and disulfide bonds are included as stick models [Christenson 2004; 
Piontek 2002]. 
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In general, laccase is a copper protein and contains 4 copper ions classified into 3 types: 

type-1(T1), type-2(T2) and type-3(T3) [Christenson 2004; Duran 2002; Solomon 

1996], which play an important role in the enzyme catalytic mechanisms. It was shown 

that laccase has a minimum of one mononuclear copper site containing one T1 copper, 

and a trinuclear copper cluster containing one T2 and two T3 coppers. The different 

copper centres can be identified on the basis of their spectroscopic properties. The T1 

copper lies embedded in D3 about 6.5 Å below the surface of the enzyme, which is 

characterized by a strong adsorption around 600 nm [Piontek 2002]. The T1 copper 

involved in substrate binding, occupies a room of the enzyme surface, delimited by a 

β-turn, belonging to D1, and two β-turns of D3 [Christenson 2004; Thurston 1994]. 

The trinuclear cluster (T2/T3) connects the T1 copper by a His-Cry-His tripeptide 

which is highly conserved among blue multicopper oxidases, as shown in Figure 2. 32. 

The T2 centre is 3-coordinate with two histidines (His) ligands and water as ligands 

and the T3 coppers are each 4-coordinate, having three His ligands and bridging 

hydroxide, where the reduction of molecular oxygen takes place. 

 

Figure 2. 32 Pictorial mode of laccase (T1 and T2/T3 copper centres) [Baldrian 2006; Duran 2002]. 

2.4.3.1.2 Electrocatalytic redox properties of laccase 

The electrocatalytic redox properties of laccase involve the copper centres: the T1, T2, 

and T3. Neither the electron transfer nor the oxygen reduction to water mechanisms is 

fully understood. Since the T1 centre is involved in substrate binding, some 

researchers have proved for some laccases that T1 is the primary centre at which 

electrons are accepted from reducing substrates [Solomon 1996; Xu 1999]. When 

substrates are oxidized by the T1 copper, the extracted electrons are transferred, 
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probably through a strong conserved His-Cys-His tripeptide to the trinuclear T2/T3, 

where molecular oxygen is reduced to water. The summary reaction of the 

electroreduction of oxygen to water is shown in Equation 2.3.  

O2   +   4e-  +   4H+       laccase     2H2O                                                                     (Equation 2. 3) 

Figure 2. 33 shows the proposed mechanisms for the reduction and reoxidation of the 

copper sites in the laccase. The major question remaining in the reductive part of the 

cycle is the mechanism by which the trinuclear cluster is reduced. In this figure (centre) 

starting from the “native intermediate,” the substrate reduces the T1 site (C), which in 

turn transfers the electron to the trinuclear cluster. Two possible mechanisms for the 

reduction of the trinuclear cluster are shown [Solomon 1996]: (A) The T1 copper 

transfers its electron to the T2 copper (A1)and then is re-reduced (A2); the T1 and T2 

coppers transfer its electron to the T3 copper (A3) and gets re-reduced (A4), ultimately 

resulting in the fully reduced form of the enzyme (D). This possible mechanism would 

be consistent with the fact that in resting fully oxidized laccase the T3 centre acts as a 

strictly two electron acceptor. (B) The trinuclear cluster is sequentially reduced by 

three one-electron transfer steps from the T1 site. The T1 transfers one electron to the 

T3 copper (B1) and then gets re-reduced (B2); the T1 transfers one electron to the T2 

(B3) and then is reduced (B4), which transfers one electron to T3 copper again, leading 

to the full reduction of the laccase. 

The fully reduced site reacts with O2 to generate a peroxide-level intermediate, best 

described as a bridged hydroperoxide species [Duran 2002; Solomon 1996]. This is 

activated for further oxidization to generate the native intermediate which is more 

appropriately described as a hydroxide product bridging the T2 and one of the T3 

coppers in the trinuclear copper cluster. Solomon et al. pointed to the fact that the rate 

limiting step could be found in the reaction sequence in the molecular mechanism of 

the 4 e- reduction of oxygen to water by laccase [Solomon 1996]. The enzyme binds 

one dioxygen and one water molecule prior to the formation of bound peroxide-level 

intermediate. Reduction of oxygen by laccase appears to occur in two 2e- steps. The 

first is rate-determining and the second is fast [Liu 2007; Xu 1999]. In this T3 bridging 

mode for the first 2e- reduced (oxidization of T3 coppers), the peroxide-level 
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intermediate would facilitate the second 2e- reduction (oxidization of T1 and T2 

coppers) in that the peroxide is directly coordinated to reduce T2, and the reduced T1 

is coupled to the T3 by the covalent Cys-His linkages. 

 

Figure 2. 33 Catalytic cycle of laccase shows the proposed mechanisms for the reduction and 
reoxidation of the copper sites (S stands for substrate) [Duran 2002; Solomon 1996]. 

The redox potential of the T1 copper-site has been determined using potentiometric 

titrations with redox mediators for a great number of different laccases and varies 

between 420 and 790 mV (vs. Standard Hydrogen Electrode (SHE)) [Call 1997; 

Reinhamm 1970; Xu 1999]. The catalytic efficiency depends on the redox potential of 

the T1 site [Duran 2002], which suggests that higher potential of the T1 site will result 

in higher catalytic efficiency. Therefore, from an electrochemical point of view, all 

laccases can be divided into three groups depending on the potential of the T1 site: low, 
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middle and high potential laccases. Table 2. 7 shows potentials of sites of laccases from 

different sources. The low potential group includes laccases from trees, e.g., Rhus 

vernicifera [Reinhamm 1970]; the middle group includes laccases from 

basidiomycetes, Rhizoctonia solany [Xu 1999], and Coprinus cinereus [Yaropolov 

1994]; The high potential laccases include Trametes (Polyporus. Coriolus) hirsute, T. 

versicolor, T. villosa  [Christenson 2004; Reinhamm 1970]. Thus, laccase from 

T.versicolor is chosen as enzyme in this project to obtain the higher catalytic efficiency. 

Table 2. 7 Potentials of sites of laccases from different sources. 

Active sites 
Low potential 

laccase(vs.SHE) (mV) 
Middle potential 

laccase(vs.SHE) (mV) 
High potential 

laccase(vs.SHE) (mV) 
T1 420 ~ 450 470 ～710 780 
T2 390 - - 
T3 450 - 785 

2.4.3.2 Immobilization of laccase 

The methods used in the immobilization procedures greatly influence the bioactivity of 

the resulting biocatalyst. This implies that the immobilization strategy may differ for 

different enzymes. They include several parameters such as overall catalytic activity, 

effective kinetics of the catalysis, and cost. Also toxicity of immobilization reagents 

should be considered in connection with the immobilization process, waste disposal 

and final application of the immobilized enzyme catalyst [Arica 2000; Messing 1975; 

Zaborsky 1974]. Therefore, a proper immobilization method is important to affect the 

activity of the immobilized enzyme. 

Laccases from different sources have different immobilization methods. For example, 

the laccase from Polyporus versicolor is immobilized by entrapment and adsorption on 

several carriers (i.e., gelatine, polyurethane and a metal-chelate affinity matrix) and 

used for different purposes [Arica 2000]. Laccases from Coriolus versicolor entrapped 

in calcium alginate gel beads or covalently immobilized on activated carbon are used 

in the treatment of effluents from the pulp and paper industry [Freire 2001]. The two 

methods (cross-linking and covalent bond) are used to immobilize the enzyme on the 
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activated carbon [Duran 2002]. Laccase immobilized on diimide-activated carbon 

shows a considerably higher activity and is used in large batches for both batch and 

reactor experiments [Davis 1992]. For the laccase from Pyricularia oryza, the enzyme 

can be linked by covalent bond to sugar carriers (e.g. CH-sepharose 4B), by adsorption, 

followed by treatment with GLUTAL, on both silica gel and florisil, by entrapment 

and by radiation polymerization on colloidal silica [Duran 2002]. 

Apart from the fungal laccases mentioned above, laccase from T.versicolor is 

extensively studied for several years because it has the high-potential T1 site. Table 2. 8 

reports this kind of laccase immobilized on different supports by different methods. 

The type of its supports and methods of immobilization used are specified in the 

catalytic process. Many researchers reported that glass beads activated with APTES 

and GLUTAL immobilized T. versicolor laccase in literature [Christenson 2004; 

Duran 2002; Liu 2007]. The reports show a very good immobilizing capability of 

retained activity (90%). Leonowicz also reported that a specific activity of 

immobilized enzyme higher than that of the free enzyme was also observed 

[Leonowicz 1988]. Laccase from T.versicolor is often immobilized for possible use as 

a biosensor. Biosensors are prepared on different pre-treated carbon fibres and utilizing 

different methods. For example, covalent binding of laccases onto the surface of glassy 

carbon electrode using polyethylene bis-glycidyl ether as a redox polymer linker 

[Leech 1998]. Freire et al. reported that the laccase from T.versicolor was immobilized 

by physical adsorption, carbodiimide coupling, GLUTAL activation, and combined 

use of carbodiimide and GLUTAL. They found that the carbodiimide/GLUTAL 

procedure gave the best results and the percentage of GLUTAL was the most 

important influencing parameter; 10% GLUTAL shows the most sensitivity for fungal 

laccase immobilization [Freire 2001]. 

Though it is advantageous, the immobilization will lead to a number of adverse effects 

degrading the activity of the enzymes. Compared with the native enzyme, the 

immobilized enzyme shows reduced activity and a higher Michaelis-Menten constant 

(Km) [Jiang 2005; Quan 2004; Zawisza 2006]. These alterations result from structural 

changes introduced to the enzyme by the applied immobilization procedure and from 

the creation of a microenvironment in which the enzyme works, different from the 
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bulk solution. The latter is strongly dependent on the reaction taking place, the nature 

of the support and on the design of the reactor. Therefore, the stable immobilization of 

enzymes on substrate with complete retention of their bioactivity is a crucial problem 

for practical commercial applications. 

Table 2. 8 Laccase from Trametes versicolor immobilized on different supports [Duran 2002]. 

 

2.5 Applications of Self-Assembled Monolayers  

The applications of self-assembled monolayers in materials are very diverse, ranging 

from the preparation of surfaces for protein and devices for nanoelectronics to 

strategies for biomimetic material synthesis. Protective coatings are ‘passive’ 

applications of SAMs. One example is their use for corrosion protection of copper 

[Scherer 1997]. SAMs can also be employed for mechanical protection of surfaces. 

Depalma et al. modified iron and steel surfaces with SAMs to make them more 

‘resistant’ to aqueous environment [Depalma 1989]. SAMs coatings on engineering 

metals has also been discussed by Van Alsten [Van Alsten 1999]. Variation of the 

reactive groups (hydrophilic or hydrophobic) leads to control of the wetting properties 

of surfaces. In particular, mixed SAMs are attractive, since these allow for a 

continuous change of the contact angle as a function of relative concentration [Mandler 

1996; Tao 1994]. SAMs represent an attractive alternative to these lubricants because 

of their strong adsorption to the surface; i.e., they are expected not to migrate on the 

Support Immobilization Reference 

Self-assembled monolayers Covalent bonding [Leonowicz 1988] 

Sepharose CL-6B Adsorption [Milstein 1989] 

Porous glass (activated) Covalent-APTES-GLUTAL [Rogalski 1991] 

Redox hidrogel eletrode Adsorption [Leech 1998] 

Hydrophilic PVDF, 
microfiltration membrane 

Covalent bonding [Jolivalt 2000] 

Carbon-fibers 
microelectrodes 

Adsorption, cross-linking, 
covalent bonding 

[Freire 2001] 

Polyacrilamide gel 80% Entrapped [Osiadacz 1999] 
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surface and not to transfer from one solid surface (e.g., the magnetic disk) to the other 

(e.g., the magnetic head) [Xiao 1996]. Due to the reaction between the –NH2 and CO2, 

the -NH2 as a functional group in SAMs is able to capture CO2 to reduce the influence 

of global warming of the planet. 

The biomimetic environment of SAM surface renders noble metal surfaces suitable 

substrates for biomolecular immobilization, e.g. for biofuel cells and bioelectronics 

applications (Figure 2. 34). For example, the affinity of thiols for gold surface makes 

alkanethiols ideal for the preparation of modified electrodes. The well ordered 

monolayers formed by alkanethiols on gold can be used to immobilise enzyme close to 

an electrode surface with a high degree of control over the molecular architecture of 

the recognition interface [Creager 1995; Imamura 1995; Gooding 1999]. As a 

consequence of this ability, SAMs have been used for the fabrication of a variety of 

biosensors including immunosensors [Jones 1998], for DNA hydridisation biosensors 

and enzyme biosensors. 

 

Figure 2. 34 Example for SAM-based biointerfaces, involving both components for specific 
adsorption of proteins and components for avoiding unspecific adsorption. 

Deposition of SAMs is very versatile, and several studies have shown possible 

directions of bio-compatible applications [Nyquist 2000; Wirth 1997]. They have been 

used to modulate the nucleation and growth of minerals [Zhu 2002], promote the 

attaching and spreading of neurons [Kleinfeld 1988], fix antigen / antibody 

[Chowdhury 1998], attach peptides to promote cell adhesion [Kam 2002], immobilize 

heparin and hyaluronate to enhance biocompatibility [Chen 2004]. Generally, SAMs 

form the link between organic and inorganic matter to modify material interface. 
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2.5.1 SAMs on bone implant materials 

The world wide orthopaedic implant and equipment market is $22 billion in 2007 

[Stryker 2008]. In fixing bone fracture and treating bone diseases, traditional synthetic 

materials such as metals, ceramics and polymers are used to repair load-bearing bones. 

Among these biomaterials, titanium and its alloy exhibit favourable biocompatibility 

and mechanical properties for applications as surgical implants, as well as non-load 

bearing situations, such as facial bone reconstruction [Liu 2004]. However, Ti and its 

alloys do not bond to bone within the first 6 months after implantation [Oji 1999]. 

Therefore, various methods have been employed to introduce hydroxyapatite (HA, 

Ca10(PO4)6(OH)2) or calcium phosphate (CaP) coatings onto Ti and its alloys implant 

surfaces to improve biocompatibility and accelerate their integration with natural bone 

matrix. The existing techniques for making CaP layers (e.g. thermal spraying, sputter 

coating, dip coating, sol-gel and electrophoretic deposition), still have an issue of lack 

of biological and chemical bonding between Ti implant surface and the natural bone 

[Ratner 1993]. In order to target the above problem, it is essential to know basic 

compositions of natural bone. With an understanding of the process of bone 

biomineralization, the properties of CaP and surface modification methods for CaP 

deposition will be introduced below.  

2.5.1.1 Bone biomineralization in vivo 

Bones of the skeletal system differ greatly in size and shape from person to person, but 

both compact and cancellous bones have a very similar basic composition, which is 

composed of collagen (organic phase) and inorganic salts (inorganic phase) [Currey 

2002; Olszta 2007]. Collagen gives bone its strength and resilience, whereas inorganic 

salts make it hard and resistant to crushing. These two phases have multiple 

components which consist of minerals, collagen, water, non-collagenous protein, lipids 

and cells [Williams 2004]. An overall composition of the bone is given in Table 2. 9. 

The inorganic phase of bone, also called bone mineral, is mainly composed of HA 

crystals that account for 69% of the weight of the bone [Van Blitterswijk 1986]. The 

organic phase is composed mainly of a protein, type I collagen. In bone, collagen acts 
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as a structural framework in which plate-like tiny crystals of HA are embedded to 

strengthen the bone [Currey 2002].  

Table 2. 9 Composition of Bone [Park 1984]. 

Inorganic phase wt%  Organic phase wt%  

Hydroxyapatite ~ 69 Collagen ~ 20 

Carbonate ~ 4 Water ~ 9 

Citrate ~ 0.9 Non-collagenous proteins ~ 3 

Sodium ~ 0.7 Other trace:lipids, cytokins -- 

Magnesium ~ 0.5 Primary bone cells: Osteoblasts, 
osteoclasts, osteocytes 

-- 

Other traces: Cl-, F-, K+, Zn2+, 
-

Cu2+, Fe2+, Sr2+, Pb2+ 
--   

Bone is a hierarchically structured composite material. An excellent review was 

provided by Weiner and Wagner, who broke down the structure of bone into seven 

levels of hierarchy [Weiner 1998]: nanoscale platelets of HA are oriented and aligned 

within self-assembled collagen fibrils; the collagen fibrils are layered in parallel 

arrangement within lamellae; the lamellae are arranged concentrically around 

trabecular network of microporous bone, as spongy or cancellous bone. Therefore, the 

mineralization of the bone occurs predominantly extracellularly within a matrix 

supersaturated with respect of calcium and phosphate, and then mineral of calcium 

phosphate is deposited on collagen.  

From the above process, there are two necessary requirements for bone mineralization: 

one is matrix with collagen and another one is inorganic phase of calcium and 

phosphate. The collagen fibrils in the bone are secreted by osteoblasts. They assemble 

into a highly organized, close-packed lamellar structure [Glorieux 2000]. The collagen 

alone took many years to resolve, and various permutations models are accepted as 

providing a reasonable description of the fibrillar organization. A schematic structure 

of collagen molecules is shown in Figure 2. 35. The repetitive nature of the amino acid 

sequences of collagen allows the protein to assemble into triple helical structures, 

referred to as tropocollagen molecules, where many -NH2, -COOH, -OH groups are 
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exposed out the surface. Interactions between tropocollagen units leads to self-

organization into fibrillar structures in the microfibril [Veis 1970]. Type-I collagen, the 

primary constituent of bone tissues, assembles its tropocollagen units in a quarter-

staggered array, which leads to hole and overlap zones. The quarter-stagger 

arrangement leaves a regular array of 40 nm gaps within each periodic unit, and these 

are reportedly and the locations where crystal nuclei of mineral phase are first 

observed in systems [Christoffersen 1991]. When hydroxyapatite crystals embed 

within the collagen and then encases the self-assembled fibrillar collagen, the high 

degree of mineral phase is forming by intrafibrillar mineralization. According to the 

mineralization process in bone, self-assembled monolayers with functional groups as a 

biomimetic coating method for implant surface modification, are given much attention 

recently. SAMs are not only for the design of biomimetic materials with bioactive 

molecules such as growth factor, but also can build a three dimensional biomimetic 

scaffold to direct new bone formation on the surface by deposition of CaP. 

 

Figure 2. 35 Schematic structure of collagen molecules (tropocollagen), microfibril and fibril [Veis 
1970].  

Calcium and phosphate crystals as calcium apatite, not unlike the organic matrix 

organization, remain a central part of the mineralization process. These crystals are 

composed of a specific amount of calcium, phosphate and carbonate in a ratio that is 

critical to the process of mineralization [Rey 1995; Sauer 1988]. During the early 

phases of this process, a Ca-P solid phase is produced which is amorphous rather than 

crystalline. With maturation, crystalline development occurs. Most of the initial 

crystals deposited in the newly developed collagen microfibrils are located in hole 
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zones between connecting microfibrils. Further calcification occurs both by primary 

heterogeneous nucleation and by secondary and tertiary nucleation from crystals 

already formed and propagated in the collagen pores [Glimcher 1968]. In addition, 

collagen fibrils expand in the regions of the hole zones, permitting additional 

deposition of crystals. Eventually, all the available space within the fibril becomes a 

continuous hard substance. 

The amorphous calcium phosphates do not have a rigidly defined chemical 

composition. The molar Ca/PO4 ratios are found to vary from 1.44 to 1.55 [Rey 1995]. 

Hydroxyapatite crystal forms a simple hexagonal lattice, the atomic contents of which 

is given by the formula Ca10(PO4)6(OH)2. Olszta et al. found that the Ca/P molar ratio 

ranged from 1.37 to 1.71. The ratio was age-dependent, with the lowest values being 

obtained for the bones of children and the elderly [Olszta 2007].  

2.5.1.2 Calcium phosphate deposition on Ti-based implant 

Titanium as bioinert material provides a limited response to surrounding tissue and a 

thin fibrous capsule will be formed around the material [Liu 2004]. In other words, 

titanium after implantation does not bond directly to bone resulting in loosening of the 

implant and undesirable movements at the implant-tissue interface results in failure 

cracks of the implant. So far, much work has been devoted to the improvement of 

biocompatibility of titanium surface. One of them is to coat a bioactive material on the 

surface, such as calcium phosphate [Brunette 2001]. Calcium phosphate coatings  have 

been widely used as bioactive materials that have been shown experimentally to 

promote early bone apposition on the surface of metallic implants [Dlecrin 1994; 

Maxian 1993]. Therefore, the application of bioactive coatings to titanium and its 

alloys will enhance the bonding of Ti-based implants to the existing bone via 

formation of an apatite layer on their surfaces [Murai 1996], resulting in significantly 

better implant lifetimes than can be achieved with materials in use today. The current 

methods used for calcium phosphates coatings on metallic implant substrates include 

plasma spraying, sputter coating [Ding 1999, 2003; Wolke 1994], chemical vapour 

deposition, alkaline etching, sol-gel coating [Chai 1998; Manso 2002], electrophoretic 

deposition [De Sena 2002; Han 2001; Manso 2000] and biomimetic coating 
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[Habibovic 2002; Oliveira 1999; Yang 2005]. The advantages and disadvantages for 

each coating method are discussed below in Table 2. 10. However, these processes 

mentioned above have limitations associated with their applications, including high 

temperatures and multistep, which prohibit for incorporation of biological molecules. 

Furthermore, many of these techniques cannot be applied to complex shapes and/or 

porous implants. Biomimetic coating can overcome these drawbacks and be mimicked 

in vitro to prepare calcium phosphate layers on implants surfaces by immersing the 

implant substrates at low temperatures in aqueous solutions. 

A self-assembled monolayer technique as biomimetic coating, allows for the 

systematic modification of surface chemical properties, and has advantages over 

conventional methods of calcium phosphate deposition. Traditional coating methods 

often clog or fill the implant porosity after coating on porous substrates, but self-

assembled method does not. Moreover, this method is very easily adaptable to most 

implant materials and does not need specialty equipment---lower coating costs. SAMs 

with highly ordered structure can incorporate a wide range of groups both in the alkyl 

chain and at the reactive group due to low-temperature process. Molecules are self-

assembled on the surface, so the structure of SAMs is more like that of collagen in 

nature bone and biomineralization will be easily happened on the surface with SAMs.  

Different researchers obtain different results about the inducibility of calcium 

phosphate by functional groups in SAMs. For example, Majewski and Allidi found that 

the –SOOH functionalized SAMs have better inducibility of CaP compared with the –

NH2 and -SH [Majewski 2006]. Zhu et al. reported that SAMs with OH groups show 

the best inducibility of CaP [Zhu 2002]. Moreover, they observed that the -NH2 

functional groups cannot induce CaP in simulated body fluid (SBF), pH 7.2 ~ 7.4, 

while it can do in SBF, pH 7.6 [Zhu 2004]. However, Toworfe et al. reported that the –

NH2 functional groups have inducibility of CaP in SBF, pH 7.4 [Toworfe 2006]. 

Therefore, it is still a debate whether the SAMs with the –NH2 functional group can 

induce calcium phosphate in SBF solution. 
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Table 2. 10 Different techniques to deposit HA coatings [Hench 1997; Li 1996; Li 2002; Liu 2001; 
Liu 2002; Mavis 2000; Ong 1994; Yang 2005; Zhitomirsky 2000]. 

Technique Thickness Advantages Disadvantages 

Thermal 
spraying 

30-200 µm 
High deposition rates; low 
cost 

Line of sight technique; 
high temperatures induce 
decompositions; rapid 
cooling produces 
amorphous coatings 

Sputter coating 0.5 – 3 µm 
Uniform coating thickness 
on flat substrates; dense 
coating 

Line of sight technique; 
produces amorphous 
coatings 

Dip coating 0.05-0.5 mm 
Inexpensive; coatings 
applied quickly; can coat 
complex substrates 

Requires high sintering 
temperature, thermal 
expansion mismatch 

Sol-gel < 1 µm 

Can coat complex shapes; 
low processing 
temperature; relatively 
cheap as coatings are very 
thin 

Some processes require 
controlled atmosphere 
processing; expensive raw 
materials 

Electrophoretic 
deposition 

0.1-2.0 mm 
Uniform coating thickness; 
rapid deposition rates; can 
coat complex substrates 

Difficult to produce crack-
free coatings; requires high 
sintering temperatures 

Biomimetic 
coating 

< 30 µm 

Low processing 
temperatures; can form 
bonelike apatite; can coat 
complex shapes; can 
incorporate bone growth 
stimulating factors 

Time consuming; Requires 
replenishment and a 
constant of pH of 
simulated body fluid 

 
 
 

2.5.2 SAMs for immobilization of biomolecules 

2.5.2.1 Introduction of biomolecules immobilized by SAMs  

The immobilization of biomolecules, in particular for proteins and enzymes, onto solid 

supports is fundamental in the development of advanced biosensors, bioreactors, 

affinity chromatographic separation materials and many diagnostic techniques. So far, 
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different methods have been investigated to increase the adhesion of individual 

molecules to a surface, including modifications of the substrate surface, e.g. surface 

charges, surface functionalization, surface porosity and particle size [Clarke 2006; 

Kasemo 1986]. Among the methods mentioned above, the functionalization of the 

surface with self-assembled monolayers is a popular method for the physical and 

chemical immobilizations of biomolecules, especially for enzymes. Table 2. 11 shows 

biomolecules immobilized on substrates by different SAMs. 

Table 2. 11 Biomolecules immobilized by different SAMs on substrates. 

Biomolecules Molecules of SAMs References 

Nucleotides 3,3’-dithiopropionic acid [Okahata 1998] 

Glucose oxidase 3-mercaptopropionic acid  [Gooding 2001] 

Bovine serum albumin 

Immunoglobulin G 

16-mercaptohexadecanoic 

acid; 16-

mercaptohexadecanol; 2-

aminoethanethiol 

[Silin 1997] 

Catalase 
11-mercaptoundecanoic acid 

(11-MUA) 
[Patel 1997] 

Poly(L-lysine)hydrobromide 11-MUA [Brian 1996] 

Horseradish peroxidase Cystamine & Thioctic acid  [Mendes 2008] 

Laccase 11-MUA [Quan 2004] 

Lisdat and co-workers used the layer-by-layer self-assembly technique to immobilize 

cytochrome c (cyt c) and bilirubin oxidase (BOD) on gold electrodes with the self-

assembled MUA layer and polyelectrolyte network [Lisdat 2009]. Due to the 

electroactive cyt c, a direct protein-protein electron transfer is achieved, although 

proteins and enzymes are assembled in complexes on electrodes, as shown in Figure 2. 

36. This design does not need a redox mediator and the electrode facilitates the electron 

transfer from the electrode via multiple protein layers to molecular oxygen resulting in 

a catalytic reduction current. 
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Figure 2. 36 Schematic illustration of the cyt c/BOD assembly on gold electrode with MUA and 
electron transfer: red circles = cyt c, blue shapes = BOD enzyme, brown lines = polyelectrolyte 
network, arrows indicate electron transfer pathways between cyt c and BOD within the 
polyelectrolyte network and the four-electron oxygen reduction process [Lisdat 2009]. 

The SAMs can be tailored to present a hydrophobic or charged surface, hence enabling 

hydrophobic or electrostatic interactions with molecules by physical methods. For 

chemical immobilization of proteins onto the SAMs, the general procedure involves 

the formation of either a disulfide or an amide by the covalent bond.  For example, the 

immobilization of enzymes on the surface of electrodes modified with SAMs provides 

a number of advantages as a method for the fabrication of enzyme electrodes. Using 

SAMs has the potential to provide enzyme electrodes with a high degree of 

reproducibility, molecular level control over the spatial distribution of the immobilized 

enzymes and the immobilization of the enzyme close to the electrode thus allowing 

direct electron transfer to be achieved. These advantages have resulted in a recent 

surge in research into self-assembled monolayers for biosensor and electrochemical 

applications in general, and enzyme electrodes in particular [Blanford 2007; White 

2000; Quan 2004]. 

2.5.2.2 Introduction of enzyme-based biofuel cells  

The enzyme electrode mentioned above can be used for biosensors, bioanalysis, 

nanobiotechnology, etc [Hanefeld 2009]. Today, one of major applications of the 

enzyme electrode is biofuel cells, which are able to directly transform chemical to 

electrical energy via electrochemical reactions involving biocatalysts, either 
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biomolecules (enzymes) or whole living organisms (bacterial) [Palmore 1994]. Biofuel 

cells are highly renewable, and capable of using naturally available biomass as fuel, 

which are excellent alternative compared with conventional fuel cells and batteries are 

plagued by non-renewability, non-implantability, size/weight, operating conditions 

(high temperature, acidity and toxicity) and waste issues [Bullen 2006]. 

The first discovery of the connection between biology and electricity has been known 

from the experiments of Galvani in the 1780s, when it was discovered that the current 

from a static electricity generator could cause a severed frog’s leg to twitch, 

revolutionising the understanding of the nervous system [Trevan 1980]. The expansion 

of interest in fuel cells triggered by the USA space program, in the late 1950s and early 

1960s, lead to the development of microbial biofuel cells as a possible technology for a 

waste disposal system for space flights that would also generate power [Katz 1999]. 

Also in the late 1960s, the biofuel cell using cell-free enzyme systems began to be used, 

with the early goal of a power supply for a permanently implantable artificial heart 

[Bullen 2006]. Presently there are two practically applied systems by biofuel cells: a 

test rig operating on starch plant wastewater, which has been operating for at least 5 

years has been demonstrated as a bioremediation method [Gil 2003] and as a biological 

oxygen demand sensor. The most obvious target for biofuel cell research is still for 

applications where the fuel used could provide higher voltage with a long-term or even 

permanent power supply for such devices. 

According to the source of the biocatalysts, biofuel cells can be divided into two 

categories: Microbial and Enzymatic fuel cells. Microbial fuel cells (MFCs) are 

devices that use living organism (e.g. bacteria) as the catalysts to oxidized organic and 

inorganic matter and generate current [Logan 2006]. Electrons produced by the 

bacteria from these substrates are transferred to the anode and flow to the cathode, 

which are usually capable of oxidizing the substrate completely to carbon dioxide and 

water. For example, bacteria in the anode compartment transfers electrons obtained 

from an electron donor (glucose) to the cathodic electrode, as shown in Figure 2. 37. 

During electron production protons are also produced in excess. These protons migrate 

through the cation exchange membrane into the cathode chamber, which will react 

with the final electron acceptor-oxygen to produce water. 
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Figure 2. 37 Operating principles of a MFC [Logan 2006]. 

The MFCs are successfully applied in wastewater treatment, but it depends on the 

concentration and biodegradability of the organic matter in the influent, the wastewater 

temperature, and the absence of toxic chemicals [Bullen 2006; Palmore 1994]. 

Moreover, carbon dioxide will be produced in the microbially catalysed system leading 

global warming. Therefore, the enzymatically catalysed system is developed using 

biological molecules as catalysts for achieving their redox reaction, either purified 

enzymes or enzyme derivatives to catalyse a specific reaction [Bullen 2006]. For 

example, Figure 2. 38 shows the configuration of the biofuel cell element with two 

enzyme electrodes: the anode is functionalized by a surface reconstituted glucose 

oxidase, and the cathode is presented by the reconstituted cytochrome c/cytochrome 

oxidase couple. At the GOx functionalized electrode, glucose is oxidized to gluconic 

acid by bio-electrocatalysis, resulting in electrons moving from the anode to cathode 

electrodes, whereas at the Cyt.C∣COx layered electrode, the reduction of O2 to water 

takes place by receiving the electrons. Since the current occur between the electrodes 

by the movement of the electrons, it is successfully transforming from the chemical to 

electrical energy.  
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Figure 2. 38 Schematic configuration of a biofuel cell employing glucose and O2 as a fuel and an 
oxidizer, respectively, and PQQ-FAD∣∣∣∣GOx and Cyt. C∣∣∣∣COx-functionalized electrodes as 
biocatalytic anode and cathode, respectively [Bullen 2006]. 

In order to study the enzymatic fuel cells, the electrochemistry method is normally 

chosen to evaluate the catalytic activity of the enzyme. Generally, electrons can 

transfer between the reaction site and the electrode via a direct electron transfer 

between the reaction site and the electrode or via a mediator molecule that repeatedly 

cycles [Bullen 2006], which can be divided into direct electron transfer (DET) and 

mediated electron transfer (MET). The DET is covering only systems where the 

electron tunnels directly from the active site fixed in the enzyme to the electrode. The 

very first reports on DET with a redox active protein were published in 1977 when 

Eddowes and Hill showed that cytochrome c on the bipyridyl modified gold with 

reversible electrochemistry [Eddowes 1977]. Due to realizing electron transferring 

between enzymes and an electrode is an indirect, the MET is using a small redox 

molecule serving as an electron transfer mediator and encompassing all forms of 

regenerative mediation whether diffusive or non-diffusive [Barton 2004]. However, 

most of the redox enzymes, lack direct electrical communication with electrode 

supports, and various electron mediators were used to contact the biocatalyst 

electrically with the electrode [Katz 1999]. So far, the methodology based on the 

application of purified redox enzymes for the reduction of specific fuel and oxidization 

of substrates at the electrode supports and the generation of the electrical current 

output is more successful for the development of biofuel cells. Recent examples of 

biofuel cells devices employing purified enzymes are summarised in Table 2. 12. 
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Table 2. 12 Summary of enzymatic bioelectrochemical devices [Bullen 2006]. 

System 
(oxidation/reduction) Bio-catalysts Electrodes 

Current 
density 

(µA cm-2) 

MET CH3OH to CO2, 
reducing NAD+, NADH 
reducing BV2+, BV+/oxygen 

ADH, AldDH, 
FDH and 
diaphorase 

Graogute okate abidem 
platinised platinum 
gauze cathode. 

2.6 

H2/MET O2 -/laccase 
Platinum gauze anode, 
either glassy carbon or 
platinum foil cathode. 

0.12 

MET glucose or hydrolysed 
corn syrup/MET H2O2 

GOx/HRP 
GOx/ferrocene-modified 
graphite anode, the same 
matrix on cathode. 

0.00594 

MET glucose/ MET O2 GOx/laccase 0.36 

MET glucose/O2 GOx/laccase 

Carbon fibre electrodes. 
Anode has GOx with 
redox polymer. Cathode 
has laccase with redox 
polymer. 

0.45 

However, enzyme-based electrodes in biofuel cell exist a number of practical problems 

in the use of enzymes: the instability of their structures once they are isolated from 

their natural environments to results in less catalysis activity, and their sensitivity both 

to process conditions other than the optimal ones and to trace levels of substances that 

can act as inhibitors. The latter two result in enzymes’ short operational lifetimes. In 

the system of the enzymatic fuel cells, the major barrier to any successful application is 

component lifetime, particularly in view of the limited enzyme lifetime and problems 

of electrode fouling/poisoning. 

2.5.2.3 Laccase-based biofuel cells  

Laccase (EC 1.10.3.2) is a multi-copper oxidase that catalyzes the reduction of O2 to 

water through receiving four electrons, so it is immobilized on an electrode as the 

cathode [Baldrian 2006]. Recently, the electroreduction of oxygen and electron 

transport were studied in the system of the oxygen-laccase-electrode with various 

sources of laccases. The achievement of a DET between electrodes and enzymes is a 

breakthrough, providing a simply and efficient way with signal transduction. DET 

avoids the use of redox mediators, reducing potential interferences and side reactions, 
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as well as being more compatible with in vivo conditions. The first publication on DET 

for a redox laccase was from the T.versicolor with high potential [Tarasevich 1979]. 

The authors showed that the laccase modified carbon electrode exhibited DET in the 

presence of the molecular oxygen. They also found that the redox potential shifting 

from 30 to 380 mV, was dependent on the electrode material, its method of preparation 

and immobilization methods. The DET for the native laccase from T.hirsuta at the 

highly ordered pyrolytic graphite was studied by cyclic voltammograms [Christenson 

2004], as shown in Figure 2. 39. It obviously shows the catalytic current when the 

laccase on the electrode reacts with the oxygen. 

 

Figure 2. 39 Cyclic voltammograms of laccase absorbed on highly ordered pyrolytic graphite, 0.1 
M phosphate buffer pH 6.5 with air-saturated oxygen. Scan rate 10 mV/s [Christenson 2004]. 

Lee and co-workers immobilized laccase from Polyporous versicolor on the pyrolytic 

graphite electrode by the physisorption, and found that the reduction proceeded 

quantitatively to water at potential as positive as ca. 0.5 V vs. sodium chloride 

saturated calomel electrode (SSCE) [Lee 1984]. The catalytic activity of the enzyme is 

greatest between pH 3 and 4. Shleev and co-workers entrapped the Lac from different 

sources, such as Trmetes ochracea, Cerrena maxima, Coriolopsis fulvocinerea and 

Cerrena unicolor under a dialysis membrane at spectrographic graphite electrodes, 

respectively [Shleev 2005b]. They found the DET from the laccase on the electrode by 

cyclic voltammetry at potentials of oxygen electroreduction from 800 to 740 mV vs. 

NHS, as shown in Figure 2.40.  
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Figure 2. 40 Electroreduction of molecular oxygen on: (1) naked spectrographic graphite; (2) 
electrodes modified with adsorbed laccases. Citrate-phophate buffer, 50 mM, saturated oxygen 
pH 3.0; ionic strength-100 mM NaClO4; scan rate-10 mV/s [Shleev 2005b]. 

Direct electron transfer can avoid the use of redox mediators, reducing potential 

interferences and side reactions. However, it is not possible to obtain a stable response 

without the presence of excess laccase due to the weak bond at the electrode [Duran 

2002]. Moreover, the catalytic current produced by the immobilized laccase is 

generally less 20 µA/cm-2 in the O2-saturated solution. Therefore, MET using redox 

molecule as mediator is developed to transfer electrons from the mediator to the 

enzyme. Figure 2. 41 shows the principle of a mediator transferring electrons to the 

laccase reducing O2 to water. 



                                                                                      Chapter 2 –Self-Assembled Films 

                                                                                                                                                                                    98                                                                                                                                     

 

Figure 2. 41 Electro-enzymatic reduction of dioxygen to water using laccase and the mediator in 
the cathode of a biofuel cell [Palmore 1999]. 

There are six different commercially available mediators for the laccase, including the 

organic compounds 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 

syringaldazine, acetosyringone, promazine, hydroquinone and the inorganic compound 

ferrocyanide [Fernandez-Sanchez 2002]. They measured the catalytic activity of the 

physisorbed laccase on glassy carbon electrode and found that ABTS was chosen as 

the most suitable substrate for the laccase due to the better affinity between the enzyme 

and the mediator. Liu and co-workers entrapped the laccase on graphite electrode 

surface by nanotubes-ionic liquid gel and found that the laccase would reach the 

maximum activity at 70°C in the presence of ABTS [Liu 2007]. However, the stability 

of the electrode with the laccase is about 1-2 weeks. Zawisza et al. reported that the 

laccase immobilized in thin hydrophilic silicate gel on gold electrode, exhibited 

maximum activity in pH range 4.2 – 5.2 at temperature ranging from 40 to 50°C 

[Zawisza 2006]. Therefore, the mediated electron transfer can improve the catalysis of 

the enzyme, but the mediator still affect the lifetime of the immobilized enzyme.  

2.5.2.4 Graphite as electrode for biofuel cells  

So far, electrodes in biofuel cells are made of various materials, such as gold [Lisdat 

2009; Shleev 2005a; Zawisza 2006], platinum[Quan 2004], graphite [Bourbonnais 

1998; Christenson 2004; Fernandez-Sanchez 2002; Liu 2007; Shleev 2005b], TiO2 

nanotubes [Liu 2005]. Among above electrodes, graphite is a most popular material as 

electrode to be applied in bioelectronics devices, such as glassy carbon, pyrolytic 

graphite and activated carbon. 
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It is unique in that graphite has properties of both a metal and a non-metal. It is flexible 

but not elastic, has a high thermal and electrical conductivity, and is highly refractory 

and chemically inert. Moreover, graphite has a low adsorption of X-rays and neutrons 

making it a particularly useful material in nuclear applications [W7]. The unusual 

combination of properties is due to the crystal structure, as shown in Figure 2. 42. The 

carbon atoms are arranged hexagonally in a planar condensed ring system. The layers 

are stacked parallel to each other. The atoms within the rings are bonded covalently, 

whilst the layers are loosely bonded together by van der Waals forces. 

 

Figure 2. 42 Crystal structure of graphite [W7]. 

According to the above figure, graphite is composed of sheets of carbon atoms and 

each of these is bonded to only three atoms. This leads to the fourth valence electron of 

the carbon atom delocalized, which means it is free to move between the different 

sheets, therefore carrying the electrical charge through the network of carbon atoms 

which makes up the structure of graphite. Compared with other metal electrodes (e.g. 

gold and platinum), graphite is relatively cheap and a good conductor. Therefore, in 

this project, graphite is chosen as an electrode for the electrochemistry measurement of 

the immobilized laccase. 
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CHAPTER 3 

EXPERIMENTAL METHODS 

3.1 Materials and methods 

3.1.1 Preparation of self-assembled films on titanium  

3.1.1.1 Materials  

Self-assembled films with the functional -NH2 groups have been built as a bionic 

interface to investigate the thermodynamic and dynamic properties of some important 

biomolecules (especially proteins). Titanium and its alloys are most widely applied for 

biomedical materials because of its biocompatibility and high corrosion resistance. 

Therefore, titanium was selected as a support material for the fabrication of a well-

defined biofunctional membrane with good coverage by the self-assembly method.  

Table 3. 1 shows all of solvents and chemicals used during preparation of self-

assembled films with the -NH2 groups (also called APS film) on titanium. Since it is 

easily hydrolyzed by water and reacted with carbon dioxide, 3-

aminopropyltriethoxysilane (APTES), together with as-received toluene, was stored in 

a glove box under argon. Hydrogen peroxide as received was stored in a refrigerator at 

4°C. It is important to ensure a clean environment when preparing self-assembled film. 

Before use, all vials were soaked in a dilute hydroxychloride acid solution in a fume 

cupboard overnight, then washed again with the detergent and rinsed with deionized 

water (18.2 MΩ cm, Barnstead Easypure II) in order to remove potential organic and 

inorganic contaminants. Finally, these vials were dried in a vacuum oven for several 

hours and wrapped with foil for further use. 
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Table 3. 1 Solvents and chemicals used for preparing APS film. 

Chemicals Purity Formula Supplier 
Commercially pure titanium 99.9% Ti  
3-aminopropyltriethoxysilane 
(APTES) 

99% (H5C2O)3Si- 
(CH2)3NH2 

Aldrich 

99.8% anhydrous Toluene 
90% hydrous 

C6H5CH3 Aldrich 

Hydrogen peroxide 30 wt.% 
A.C.S. reagent 

H2O2 Sigma-Aldrich 

Sulfuric acid 98%, Analytical 
reagent grade 

H2SO4 VWR 

Ethanol 96%, GPR C2H5OH VWR 
Deionized water 18.2 Ω cm H2O water purification 

from Fisher 
Standard phosphate buffer 
pH 4, pH 7, pH 10 

― ― Acros Organics 

3.1.1.2 Experimental procedure 

Ti samples were firstly cut into approximately 10 ×10 ×1 mm3 squares from a 

commercially pure titanium sheet (grade 4, 99.9%). The small piece of titanium sample 

was consecutively ground on silicon carbide papers of 600#, 1200# and 2400# 

(Struers), respectively, and subsequently polished using polycrystalline diamond pastes 

of 3, 1 and 0.5 µm (Buehler), respectively, in order to remove the native titanium oxide 

layer and create a flat surface. Each polished sample was placed in a clean vial and 

sonicated with ethanol and then deionized water, respectively. Each cleaning stage was 

repeated 3 times with a fresh solvent for 5 minutes. Finally, the samples were dried 

under argon-gas stream (BOC) and stored in a desiccator (Fisher) at room temperature. 

Since ethoxy groups (R-OC2H5) in the APTES molecule is very easily hydrolyzed in 

water to produce hydroxyl groups (R-OH), the silanization process of titanium was 

carried out in a glove box under argon. The overall experiment of procedure is 

schematically shown in Figure 3. 1. Briefly, in order to form a uniform layer with -OH 

functional groups on the pretreated clean Ti surface, titanium samples were oxidized in 

a piranha solution (a mixture of sulfuric acid and hydrogen peroxide) as described in 

the following: 
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Here a typical Piranha solution (20 ml) of H2SO4:H2O2 = 3:1 was used for the 

introduction of oxidation process. Firstly, H2SO4 of 15 ml was poured out into a small 

beaker in a fume cupboard. Then, H2O2 of 5 ml was added into the above container. 

After that, polished titanium samples were placed thoroughly into the Piranha solution 

for different time to form -OH groups on the titanium surface. Once cooling down, the 

Piranha solution was transferred into a closed glass container for waste storage. 

Titanium samples after oxidation were cleaned in an Ultrasonic bath (Fisher) with 

distilled water for three times, each lasting 3 minutes, in order to remove residuals of 

H2SO4 and H2O2. Finally, oxidized titanium samples were dried under dry argon 

stream, stored in a desiccator for the next step of silanization.      

 
Ultrasonic 

 bath Ti sample 

    

Piranha 
solution 

APTES molecules 

 Toluene 

APS  
Ti substrate 

Ti sample grinding, 
pushing and ultrasonic 
cleaning 

Oxidation of titanium by 
piranha solution with 
H2SO4 and H2O2  

Formation of SAM with 
NH2 on titanium surface. 

Silanization of oxidized 
titanium by APTES with 
NH2 terminal group in 
anhydrous toluene under 
argon 

Figure 3. 1 Procedures of producing APS film on titanium. 

 



                                                                                  Chapter 3 – Experimental Methods 

                                                                                                                                                103                                                                                                                               

From the literature review, it is clear that different Piranha solutions have been used in 

the past under conditions. Therefore, it is important to clarify the effect of Piranha 

solution on the oxidation of titanium and the growth of SAMs. In order to obtain a 

clean and smooth TiOx layer on titanium, the effects of different temperatures and 

immersion durations in the Piranha solution of H2SO4:H2O2 = 1:1 were studied (Table 

3. 2). In order to investigate the effect of the Piranha solution on the formation of 

hydroxyl groups on titanium, polished titanium samples were cleaned and immersed in 

the solution with different ratios of H2SO4 to H2O2, from 1:3, 1:1, 2:1, 3:1 to 4:1, as 

shown in Table 3. 3. 

Table 3. 2 Different temperatures and immersion durations used in 1:1 Piranha solution. 

 

 

Room Temperature 50°C 100°C 

5 minutes SRT_5 ― ― 

15 minutes SRT_15 ― ― 

30 minutes SRT_30 S50C_30 S100C_30 

Table 3. 3 Different oxidation solutions used at room temperature for 15 minutes during pre-
treatment of titanium. 

Piranha solution (20 ml) Sample 
Code Volume of H2SO4 (ml) Volume of H2O2 (ml) 

Ratio of 
H2SO4: H2O2 

SH2SO4 20 - - 
SH2O2 - 20 - 
S1:3 5.0 15.0 1:3 
S1:1 10.0 10.0 1:1 
S2:1 13.3 6.7 2:1 
S3:1 15.0 5.0 3:1 
S4:1 16.0 4.0 4:1 

From the literature, a period of 16 hours is the optimum silanization time for the 

formation of self-assembled monolayers on a substrate. Following the oxidation of 

titanium in the Piranha solution, the titanium surface was silanized for 16 hours in a 

toluene solution of APTES, and placed in a glove box under argon (Figure 3. 2A). To 

Temperature 

D
u

ratio
n 

Sample 
Code 
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study the effect of APTES concentration, the titanium samples were placed in 5 ml 

anhydrous toluene with an APTES concentration of 0.02, 0.05, 0.1, 0.2, 0.5, 1 and 3 

volume%, respectively at 70°C (Table 3. 4).  

Table 3. 4 Different concentrations of APTES used in the toluene at different temperatures. 

Sample Code 
Volume of APTES in 

5 ml solvent (µl) 
Temperature (°C) Solvent (toluene) 

S0.02% 1 
S0.05% 2.5 
S0.1% 5 

S0.2% (S70) 

70 

S60 60 
S50 50 
S40 40 
S30 

Sanhydrous 

Anhydrous 

Shydrous 

10 

30 
Hydrous 

S0.5% 25 
S1% 50 
S3% 150 

70 Anhydrous 

For example, APTES of 0.2 v% was prepared from 10 µl APTES mixed with 5 ml 

anhydrous toluene. Therefore, in the glove box under argon, anhydrous toluene of 5 ml 

was transferred into a vial by a syringe (10 ml, VWR), and then APTES of 10 µl was 

dropped into the anhydrous toluene by a pipette (Standard Eppendorf, Fisher). Before 

the sample was put into the vial, the vial was shaken by hands to ensure that the 

APTES molecules can diffuse uniformly in the solvent. In order to avoid cross 

contamination, one vial was just soaked in one titanium plate and sealed by parafilm 

(Fisher). To evaluate the temperature effect, samples in 0.2 v% APTES were held in an 

incubator (Fisher) (Figure 3. 2B) at 30, 40, 50, 60 and 70°C, respectively (Table 3. 4). 

Titanium samples were also immersed in an anhydrous and a hydrous toluene solutions, 

respectively with 0.2 v% APTES at 30°C for 16 hours to investigate the effect of 

residual water content in the solvent (Table 3. 4). After silanization, the samples were 

repeatedly washed in the ultrasonic bath by toluene and ethanol for 3 times, each time 

for 3 minutes, in order to remove physically adsorbed APTES molecules on the surface. 

Finally, the samples were washed by deionized water in order to remove residual 

ethanol. After cleaning, the samples were dried under argon and analyzed with a few 
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hours. Stabilities of the APS film on the titanium surface were also investigated under 

vacuum and in aqueous solutions of pH range of 4 – 10 up to 72 hours at room 

temperature. The thermal stability of thin layers was performed at the temperature 

range 110 – 170°C under vacuum. 

                 

Figure 3. 2 (A) an anaerobic glove box and (B) Memmert incubator. 

3.1.2 Calcium phosphate deposition by APS film on titanium 

3.1.2.1 Preparation of simulated body fluid 

Simulated body fluid (SBF) is the solution with ion concentrations approximately 

equal to those of human blood plasma, which has been widely used for in vitro 

assessment of the bioactivity of artificial materials and for the formation of bone-like 

apatite on various substrates [Kokubo 2003]. As known, the SBF is normally used to 

measure inducibility of calcium phosphate (CaP) by materials in vitro. Since it takes 

more than 2 weeks to induce CaP in the SBF, 1.5 SBF has also been applied for 

experiments, which is 1.5 times higher ion concentrations than those in the SBF. Table 

3.5 shows ion concentrations in human blood plasma and two different SBF. Simulated 

body fluid is a highly saturated solution, so a careful preparation route is necessary to 

avoid apatite precipitation during preparation. Since glass containers or edge of 

scratches will induce apatite nucleation, a plastic container with smooth surface is used 

for SBF preparation. Table 3.6 below lists the recipe used in this study for 

A B 
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Table 3. 5 Ion concentrations of simulated body fluids and human blood plasma. 

Ion concentration (mM)  

Na+ K+ Mg2+ Ca2+ Cl- HCO3
- HPO4

2- SO4
2- 

Blood plasma 142.0 5.0 1.5 2.5 103.0 27.0 1.0 0.5 

SBF 142.0 5.0 1.5 2.5 103.0 10.0 1.0 0.5 

1.5 SBF 213.0 7.5 2.3 3.8 154.5 15.0 1.5 0.8 

Table 3. 6 Recipe of preparing 1L SBF and 1.5 SBF solutions. 

Amount Order Reagent Purity and supplier 
SBF 1.5 SBF 

1 Deionized water - 750 ml 750 ml 
2 NaCl 99+%, ACS, Aldrich 5.403 g 8.104 g 
3 NaHCO3 99.5%, ACS, Aldrich 0.504 g 0.756 g 
4 Na2CO3 99.5+%, ACS, Aldrich 0.426 g 0.639 g 
5 KCl 99+%, ACS, Aldrich 0.225 g 0.337 g 
6 K2HPO4·3H2O 99+%, ACS, Aldrich 0.230 g 0.345 g 
7 MgCl2·6H2O 98+%, ACS, Aldrich 0.311 g 0.466 g 
8* 0.2 M NaOH 97+%, ACS, Aldrich + 

distilled water 
0.293 g 0.439 g 

9* HEPES 99.5+%, ACS, Aldrich 17.892 g 26.838 g 
10 CaCl2 96+%, ACS, Aldrich 0.293 g 0.439 g 
11 NaSO4 99+%, ACS, Aldrich 0.072 g 0.108 g 
12 1.0 M NaOH 97+%, ACS, Aldrich + 

distilled water 
15 ~ 20 ml 15 ~ 20 ml 

*: HEPES previously are  dissolved in 100 ml and 150 ml of 0.2 M NaOH for SBF and 1.5 SBF, 
respectively. 

preparations of the SBF and 1.5 SBF. In order to prepare 1000 ml solution, the 

deionized water of 750 ml was firstly poured into a 1000 ml plastic container with a 

stirring bar. The water was heated to 36.5°C under stirring on the hot plate. Chemicals 

in Table 3. 6 were then added into the deionized water one by one in the order given, 

after each reagent was completely dissolved. The solution was adjusted to expected pH 

value by 1 M NaOH at 36.5°C before transferred to a 1000 ml plastic volumetric flask. 

When temperature of the solution was fallen to 20°C, the deionized water was added 

up to the marked line. Finally, the prepared simulated body fluid was preserved in the 

refrigerator at 4°C. 
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3.1.2.2 Bioactivity treatment 

Titanium with the APS film was produced by a self-assembly technique as described in 

Chapter 3.1.1. The samples were then immersed into the prepared SBF solution to test 

their bioactivity by inducibility of calcium phosphate. Each Ti sample was placed into 

a vessel with SBF of 15 ml. To study the effect of ions concentrations in simulated 

body fluid, the titanium samples were placed in the SBF and 1.5 SBF solutions, 

respectively at 37°C for 5-10 days. To evaluate the pH effect in the solution, the 

titanium samples were placed in 15 ml SBF with pH value of 7.0, 7.45 and 7.98, 

respectively at 37°C for 5 days. After being kept in the incubator, the samples were 

taken out from the solution and washed with the deionized water in the ultra bath for 3 

times, each time for 3 minutes to remove calcium phosphate deposited by the solution. 

All the samples were then dried in a vacuum oven at 50°C for overnight and stored at 

the desiccator for further analysis.  

3.1.3 Immobilization of laccase on Ti by the APS film 

In order to improve stability and re-usability, enzymes are normally immobilized on 

supports, such as glass, Pt, Au, etc. Solid-phase organic synthesis makes it possible to 

build a functional monolayer, which could act as an effective interlayer for enzyme 

immobilization, by a multistep route under simple and economic conditions in a clean 

and efficient way. The most employed functional groups of self-assembled monolayers 

for enzyme immobilization are amine and carboxylic groups, which could react with 

amino acids residues of enzymes to covalently bond them on SAMs. 

The most common immobilization strategies available to laccase (Lac) comprise 

physical adsorption, crosslinking and covalent binding. Although it is a fast and easy 

way to building up bio-recognition interfaces, physical adsorption approach is known 

to give sensing surfaces with the shortest stability [Treven 1980]. Crosslinking only 

forms covalent linkage between enzymes rather than between matrix and enzymes 

[Treven 1980], which may lead to the less stability of enzymes on substrates. Covalent 

binding, e.g., the formation of an amide bond between amino acids of enzymes and the 

functionalized matrix by the help of activation reagent of carbodiimide, is reported to 
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be a competitive method to immobilize laccase on titanium. The bound enzyme is 

expected to have long stability with good performance. 

3.1.3.1 Materials 

In this thesis, laccase from Trametes versicolor was covalently immobilized on the -

NH2 functionalized titanium substrate using N-ethyl-N’- (3-dimethylaminopropyl) 

carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as activation reagents. A 

titanium sample was silanized in 5 ml anhydrous toluene containing 0.2% APTES at 

30°C for 16 hours as mentioned above. The samples were then successively washed by 

toluene, ethanol and distilled water for 3 times, respectively. Finally the –NH2 

functionalized titanium sample was ready for immobilization of the laccase after being 

dried under argon. Since after silanization the titanium surface has plenty of -NH2 

groups, a carbodiimide activation approach (EDC/NHS) was used to activate -COOH 

groups from the amino acid residues of the laccase, and form amide bond with -NH2 

groups from APS (3-aminopropyltrisilanol which is a hydrolyzed APTES molecule) 

bound to titanium. Table 3. 7 below shows all of chemicals used for immobilization of 

laccase by EDC/NHS on titanium. 

3.1.3.2 Experimental procedure 

A solution with a buffered pH will supply a stable environment for enzymatic activity 

than a non-buffered solution (deionized water), so a buffer solution will be used both 

for immobilization and activity measurements of enzymes. In order to maximize the 

immobilization of laccase, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) is selected for the buffer solution with EDC/NHS to active the -NH2 groups 

on titanium instead of a phosphate buffer solution, because EDC can also activate 

phosphate groups. The preparations of different solutions including HEPES buffer, 

EDC, NHS and laccase, are very important before immobilization of the laccase and 

introduced as follows. 
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Table 3. 7 Chemicals for laccase immobilization on Ti with the APS film. 

Name Formula 
Molecular 

mass (g/M) 
Purity  Supplier 

Storage 

temperature 

4-(2-hydroxyethyl)-1-
piperazineethanesulfonic 
acid (HEPES) 

C8H18N2O4S 238.3012 > 99% Fisher Ambient 

Sodium hydrate NaOH 40 99+% 
Sigma-
Aldrich 

Ambient 

Laccase from Trametes 
versicolor 

― ― 
22.4 
U/mg 

Sigma -18°C 

N-(3-
Dimethylaminopropyl)-
N’-ethylcarbodiimide 
hydrochloride (EDC) 

C8H17N3 · HCl 191.70 
> 

99.9% 
Sigma-
Aldrich 

-20°C 

N-
hydroxysulfosuccinimide 
sodium salt (NHS) 

C4H4NNaO6S 217.13 
≥ 

98.5% 
Aldrich Ambient 

1) Preparation of 20 mM HEPES buffer: The require mass (m) in the solution can be 

calculated by the following equation: 

m = C × V × M                                                                                             (Equation 3. 1)                                                                     

where C is the concentration, V is the total volume of the solution and M denotes the 

molar mass of the chemical. Therefore, the amounts for 20 mM, 100 ml HEPES and 

0.1 M, 100 ml NaOH are shown below, respectively: 

mHEPES = (20 ×10-3) ×(100 ×10-3) × 238.3012 = 0.4766 g 

mNaOH = 0.1 ×(100 ×10-3) × 40 = 0.4 g 

NaOH powder of 0.4 g was weighed on a high precision balance (Fisher, shown in 

Figure 3. 3A), and then dissolved in a baker with 100 ml deionized water by a stir bar 

on a magnetic stirrer hotplate (Fisher) for 2 minutes. As the same procedure, HEPES 
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power of 0.4766 g was dissolved in 100 ml deionized water and then pH value of the 

solution was adjusted by 0.1 M NaOH using a pH meter (S20, Fisher, shown in Figure 

3. 3B). To evaluate the pH effect during the immobilization of laccase, the HEPES 

buffer was prepared with the pH value range of 3 – 8. After preparation, the HEPES 

buffer was sealed and then stored in a refrigerator at 4 °C. 

          

Figure 3. 3  (A) Adventurer SL 64 balance and (B) Fisher S20 pH meter. 

2) Preparations of EDC and NHS solutions in 20 mM HEPES buffer, respectively: 

Here 5 mM of EDC and NHS solutions are introduced for preparations. According to 

Equation 3.1, the masses of EDC and NHS in 1 ml are shown below, respectively: 

mEDC = (5 ×10-3) ×(1×10-3) ×191.70 = 0.9585 mg ≈ 1.0 mg 

mNHS = (5 ×10-3) ×(1×10-3) ×217.13 = 1.08565 mg ≈ 1.1 mg 

EDC of 1.0 mg was weighed in a microcentrifuge tube (1.5 ml, Fisher) with the 

balance, and then transferred into a tube with 1 ml of 20 mM HEPES buffer by the 

pipette. In order to dissolve EDC well in the HEPES buffer, the solution was mixed by 

a Vortexer (PV1, Fisher, shown in Figure 3. 4A) at a high speed for 1 minute. After that, 

the tube was centrifugated for 30 seconds by a microcentrifuge mini (1.5/2.0 ml rotor, 

Fisher, shown in Figure 3. 4B), in order for the EDC solution attached on the tube lid 

and side walls to flow back to the bulk solution. Eventually, the tube was sealed with 

parafilm (Fisher), labeled and stored in the refrigerator at - 21°C. The preparation 

procedure for the NHS solution in HEPES buffer was the same as that of the EDC 

solution. Briefly, NHS of 1.1 mg was dissolved in 1 ml of 20 mM HEPES by the 

A B 



                                                                                  Chapter 3 – Experimental Methods 

                                                                                                                                                111                                                                                                                               

vortexer. After centrifugated and labeled, the prepared NHS solution was preserved in 

the refrigerator at - 21°C, too. In order to investigate the effect of the molar ratio of 

EDC/NHS on the activity of immobilized laccase on the titanium with APS film, 

different concentrations of EDC and NHS from 5 – 20 mM were prepared, as shown in 

Table 3. 8.  

          

Figure 3. 4 (A) Fisher PV1 vortex mixer and (B) 1.5/2.0 ml microcentrifuge. 

Table 3. 8 Different molar ratios of EDC and NHS for immobilization.  

EDC (1ml) NHS (1ml) 
Molar Ratio 
of EDC/NHS Concentration 

(mM) 
Amount (mg) 

Concentration 
(mM) 

Amount (mg) 

1:3 15.0 3.3 
1:2 10.0 2.2 
1:1 

5.0 1.0 

2:1 10.0 2.0 
3:1 15.0 3.0 
4:1 20.0 4.0 

5.0 1.1 

3) Preparation of 10 mg/ml Lac solution: laccase of 10 mg was weighed in a tube with 

the balance, dissolved in 1 ml of 20 mM HEPES by the vortexer and finally stored in 

the refrigerator at – 21°C.  

In order to avoid inactivation of the above prepared solutions, EDC, NHS and Lac 

solutions were put in an ice-box when transferred from the refrigerator for experiments. 

For the immobilization of Lac, HEPES buffer of 400 µl, EDC solution of 200 µl and 

NHS solution of 200 µl were added into a conical tube (Fisher) and mixed together by 

the pipette. Then 200 µl of 10 mg/ml Lac solution was added into the mixture 

A B 
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mentioned above and mixed well. Finally, the titanium sample with APS film was 

immersed into the above mixture at 4°C. To evaluate the time effect on the 

immobilization, the titanium samples were placed in 1 ml mixed solution with laccase 

for 2, 6, 12, 18, 20 and 24 hours, respectively. After immobilization, the samples were 

rinsed with 20 mM HEPES buffer for 3 times, to remove physisorbed Lac on the 

surface. Finally, the titanium samples were stored in a dry condition and 20 mM 

HEPES buffer at the range of 3-8, respectively at 4°C for subsequent Lac activity 

measurement to investigate the effect of storage conditions on Lac activity. 

3.2 Characterization techniques 

3.2.1 Reflectance-Absorbance Fourier Transform Infrared 

spectroscopy (RA-FTIR) 

Infrared (IR) spectroscopy is a chemical analytical technique, which detects the 

vibration characteristics of chemical functional groups in a sample. When an infrared 

light (wavelength from 0.75 to 300 µm) interacts with matter, the permanent dipole is 

changed, leading to the vibrations of bonds (stretching, bending, rocking, etc). As a 

result, a chemical functional group tends to adsorb infrared radiation in a specific 

wavenumber range regardless of the structure of the rest of the molecule. Hence, the 

correlation of the band wavenumber position with the chemical structure is used to 

identify a functional group in a sample [Smith 1996].  

Since substrates in the whole experiments are titanium or graphite and the IR could not 

be transmitted through the samples, Reflectance – Absorbance Fourier Transform 

Infrared spectroscopy (RA-FTIR) was used here. Reflection occurs when light 

impinges on the surface of a material and is partially reflected, as shown in Figure 3. 5. 

Light that passes into the material may be absorbed or reflected out again. Finally, such 

scattered IR energy is collected by a spherical mirror that is focused onto the detector. 

The detected IR light is partially absorbed by the sample and provides the vibrational 

information of the sample.  
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Figure 3. 5 Schematic procedure of RA-FTIR working. 

 

 

Figure 3. 6 Digilab Varian 3100 FTIR (above) and sample chamber (bottom). 

According to the principles of RA-FTIR, the outmost layer on the sample will be 

detected, such as -NH2 functionalized monolayers and calcium phosphate layers on 

 Sample stage 

 Window for IR source 
 Detector window 



                                                                                  Chapter 3 – Experimental Methods 

                                                                                                                                                114                                                                                                                               

titanium. All of spectral analysis was performed throughout the spectral range (400 – 

4000 cm-1) by RA-FTIR (Varian 3100 FTIR, Excalibur HE series, Netherlands). The 

number of scans was 128, the scan speed was 5 kHz and the resolution was 4 cm-1. 

During the measurement, the accessory chamber was closed under purged air condition 

(Figure 3. 6). The spectra were collected between 4000 and 400 cm-1, and processed 

mathematically including normalizing and baseline correction to make the spectra 

comparable and to minimize noise. The backgrounds were collected from TiOx for 

titanium-based samples and oxidized graphite for graphite-based samples. All of 

samples were measured at room temperature after drying under an argon stream. 

3.2.2 Contact angle goniometry 

Contact angle, θ, is the angle at which a liquid/vapor interface meets the solid surface, 

and determined by the interactions across the three interfaces. Therefore, once the 

chemical components on the solid surface are changed, the interactions between liquid 

and solid are changed, leading to the change of the contact angle. As shown below 

(Figure 3. 7), it is the angle between the solid and the tangent to the drop profile at the 

intersection point. 

 

Figure 3. 7 Interfacial free energies of liquid dropped on solid. The surface energies forces,  γ, γLV , 
γSV,  γSL refer to the interfacial energies of the liquid/vapour interface, the solid/vapour interface 
and the solid/liquid interface. [Ulman 1991]. 

Equation 3.2 presents the relationship between the three phases given by the Young 

equation. Therefore, contact angle measurement gives information about surface 

tension /free surface energy indirectly with the shape of a drop placed on the sample 

surface. If there is no interaction between the solid and the liquid, the contact angle 

will be 180°. If the angle is less than 90°, the liquid is said to wet the solid. A zero 

contact angle represents complete wetting. Lower value of θ indicates that the surface 
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has great tension or free surface energy, while high values indicate poor surface tension 

and free surface energy [Hartland 2004]. 

γLV Cosθ =  γSV - γSL                                                                           (Equation 3. 2) 

Contact angle measurements were carried out in the Interdisciplinary Research Center 

(IRC) in Biomedical Materials at Queen Mary, University of London. The contact 

angle goniometry (CAM 100 system) equipped with a 1 milliliter syringe (Hamilton 

Company, UK), is manufactured by KSV Instruments Ltd. As shown in Figure 3. 8, the 

machine also includes a FireWire video camera, an adjustable sample stage and a LED 

light source. The static sessile drop method was employed in the whole experiments. 

Deionized water of 10 µl was dropped on the sample surface at room temperature, and 

calculated with KSV C200 software (Static Sessile Drop analysis). The results 

represent the average of three measurements for each sample and images of the droplet 

were taken by the video camera interfaced with a computer. 

 

Figure 3. 8 CAM 100 contact angle goniometry. 

 
 

 Syringe with needle 

 Sample stage 
 LED light   Camera 
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3.2.3 Atomic Force Microscopy (AFM) 

An atomic force microscopy (AFM) determines the topography and roughness of 

surfaces including defects or mixtures of different structures and generates high-

resolution 3D images at the nanometer scale without sample pre-treatment. Figure 3. 9 

below shows the main principle sketch of AFM. The probe tip, which is mounted to the 

end of the cantilever, scans across the sample surface, by direct physical contact with 

the sample. A light beam from a small laser is bounced off from the cantilever and 

reflected on to a four-section photodetector. As the probe tip scans, the photodetector 

will supply information of varying topographic features that cause the deflection of the 

tip and the cantilever.  

 
Figure 3. 9 Main principle sketch of AFM [modified from W4]. 

Since scanning a sample surface not only involves attractive but also repulsive forces, 

as demonstrated in Figure 3. 10, oscillations can take place in Contact, Semicontact and 

Non-contact modes. Compared with the contact mode, the force of the cantilever onto 

the surface is less in semicontact mode, which will not damage the sample surface and 

cause the cross-contaminant between the tip and sample. In non-contact mode, 

although the tip cannot touch the surface, lower resolution will be obtained compared 

with the semicontact mode. Therefore, the semicontact mode is more sensitive and will 

investigate truly characteristics of the surface than other two modes.  
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Multimode NTEGRA AFM (NT-MDT, Moscow, Russia) equipped with a head 

including cantilever stage, laser and photodetector, sample stage and anti-vibrator, are 

shown in Figure 3. 11. Images were acquired in the semicontact mode using an integral 

cantilever with attached silicon tips (PPP-FMR, Nanosensors, UK). The force constant 

of the tip was between 42 N/m and the resonance frequency was 330 kHz. Quantitative 

measurements of the local root-mean-square (RMS) surface roughness were 

determined from the 30 × 30 µm2 sample area, which was evaluated based on a 

standard formula integrated in the imaging software with NoVa. 

 

Figure 3. 10 Different oscillations of tip by force and distance between tip and sample [W5]. 

 

Figure 3. 11 Multimode NT-MDT AFM with anti-vibrato r. 

 Anti-vibrator 

 Head 

 Sample stage 

 Cantilever stage 
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3.2.4 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS), also known as Electron Spectroscopy for 

Chemical Analysis (ESCA), is a surface chemical analysis technique that can be used 

to analyze the surface chemistry of a material. It is a quantitative spectroscopic 

technique that measures the elemental composition (top 1 – 10 nm usually), chemical 

state and electronic state of the elements that exist within a material.  

As shown in Figure 3. 12, in XPS system, when a beam of X-rays irradiates a material, 

the photon is adsorbed by an atom in a molecule or solid, leading to ionization and the 

emission of a core (inner shell) electron from the top layer of the material. The kinetic 

energy distribution of the emitted photoelectrons can be measured by electron energy 

analyser and a photoelectron spectrum can thus be recorded. 

 

Figure 3. 12 Main principle sketch of XPS [modified from W1]. 

Since the energy of a particular X-ray wavelength equals a known quantity, the 

electron binding energy (BE) of each of the emitted electrons can be determined by the 

following equation, according to Ernest Rugherford (1914): 

Ebinding = Ephoton – Ekinetic – Ф                                                                    (Equation 3. 3) 
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Where Ebinding is the energy of the electron emitted from one electron configuration 

within the atom, Ephoton is the energy of the x-ray photons being used, Ekinetic is the 

kinetic energy of the emitted electron as measured by the instrument and Ф is the work 

function of the spectrometer. 

In this project, XPS was used to determine the OH group on titanium surface oxidized 

in the different piranha solutions. In the whole experiments, the XPS was performed 

using an Escalab 220i-XL instrument with monochromatized Al Kα radiation at 1486.6 

eV under ultra high vacuum. Survey scans were recorded in the range of 0 – 110 eV 

(binding energy), and then small-range and high-resolution scans were used to record 

of the principal peaks of Ti (2p), C (1s) and O (1s). The peaks were modelled using the 

CasaXPS software to determine their area. 

3.2.5 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) was used to characterise the particle morphology, 

phase distribution and particle size of material surface. The SEM apparatus used for 

obtaining high-resolution images is a field emission scanning electron microscopy 

(FE-SEM, JEOL JSM 6300F), which consists of a cold cathode field emission gun that 

requires a vacuum better than 10-8 Torr. For sample preparation, after inducibility of 

calcium phosphate in SBF and dried under vacuum, the sample was placed on a 

smooth metal stub with carbon sticker and ready for the SEM analysis. The phase 

composition on the surface was analysed on a JEOL JEM 6300 thermionic SEM 

equipped with an Energy Dispersive X-ray spectroscopy (EDX) detector of INCA 

Energy 300 Microanalysis System by Oxford Instruments Analytical.  

3.2.6 X-ray Diffraction (XRD) 

Thin Film X-ray Diffraction (XRD) is an analytical technique to reveal the information 

of phases present (peak position), phase concentrations (peak heights), amorphous 

content (background hump) and crystallite size/strain (peak width) in the materials. 

Since each crystalline substance has characteristic arrangement of atoms which 
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diffracts X-rays in a unique pattern. X-ray reflection takes place from lattice planes 

according to Bragg’s Law: 

 nλ = 2dsinθ (n=1,2,3…)                                                  (Equation 3. 4) 

where λ is the wavelength, d is the lattice plane distance, θ is an angle between the 

incident ray and the relevant crystal planes and n is integer number.  

The XRD measurements were performed on a Siemens D-5000 diffractometer. The X-

ray source was Cu Kα radiation generated from a conventional water-cooled X-ray 

tube. The Diffracplus Basic 4.0 software was used to analyze the obtained data. The 

XRD was performed at 2θ angles from 20° to 60° at a scanning speed of 1.5°/min. For 

specimen preparation, after immersed in simulated body fluid and dried in a vacuum 

oven, the samples then were placed in the middle of a plastic specimen holder and 

flattened by a clean glass plate. XRD used in this project are mainly for detecting the 

compound of calcium phosphate on the titanium surface. 

3.2.7 Laccase activity assay by UV-VIS spectrophotometer 

3.2.7.1 Enzyme activity assay --- Initial rate experiments  

Enzyme assays are laboratory procedures that measure the rate of product formation or 

substrate utilization during the enzyme-catalyzed reaction. For many enzymes there are 

several alternative assay procedures available and the choice between them may be 

made on the grounds of convenience, cost, the availability of appropriate equipment 

and reagents and the level of sensitivity required [Elsenthal 1993]. So far, the most 

commonly used type of experiment in enzyme kinetics is Initial rate experiments.  

Initial rate experiments are to measure the rate of reaction at very short time before any 

significant changes in concentration occur. When an enzyme is mixed with a large 

excess of the substrate, the enzyme-substrate intermediate builds up in a fast initial 

transient. Then the reaction achieves a steady-state kinetics in which the intermediates 
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remain constant over time and the reaction rate changes relatively slowly. Rates are 

measured for a short period by monitoring the accumulation of product with time. A 

typical progress curve for an enzyme-catalysed reaction with time is shown below 

(Figure 3. 13). The rate of product formation with time is decreasing, which results from 

product inhibition, substrate depletion, the enzyme-substrate intermediate instability 

and so on. However, at the beginning for a very short period of time, these effects 

should not be significant. Since the measurements are carried out for a very short 

period with the large excess of substrate, the initial substrate can be approximately 

considered as free substrate. Therefore, this linear initial rate is often related to the 

enzyme activity. 

 

Figure 3. 13 A typical progress curve of an enzyme-catalyzed reaction [Elsenthal 1993]. 

Normally, the initial rate over enzyme concentration is used to express the activity of 

an enzyme quantitatively. In this project, it is assumed that the quantities of 

immobilized Lac on titanium under different conditions are the same. Therefore, the 

initial rate can evaluate the catalysis activity of the enzyme. The linear initial rate is 

defined as the change in the concentration of the product (C) formed by the enzyme 

catalyzed reaction per unit time (minutes). 

Reaction rate = dC / dt                                                                       (Equation 3. 5) 

The change of the concentration of the product is related to that of the substrate 

because of single-substrate enzyme. Therefore, the change of the concentration of the 
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substrate can be monitored by the absorption of light to the properties of the substrate 

through the light is travelling. According to Beer-Lambert law [Elsenthal 1993], the 

absorption of light over the concentration of the substrate is expressed in Equation 3.6: 

A  = ε  ×    l  ×    c                                                                               (Equation 3. 6) 

where A is the absorbance of light, ε is the molar adsorptivity of substrate, l is the 

pathlength and C is denoted as the concentration of the substrate. Substituting 

Equation 3.6 into Equation 3.5, the linear initial rate of the enzyme catalyzed reaction 

could also be expressed as below: 

Reaction rate = (dA /εl)/dt                                                          (Equation 3. 7) 

In this project, 2,2’–azino-bis(3-ethylbenzthiazoline-6-sulphnic acid) (ABTS) is 

employed as the substrate for the Lac. In Equation 3.7, dA /dt is the slope of the initial 

curve, ε of ABTS is 3.6 ×104 M-1cm-1 at 420 nm and l is 1 cm (width of cuvette). 

According to the above equation, within the same time, the reaction rate is changing 

with that of absorbance of light.  

3.2.7.2 Michaelis-Menten constant (Km) 

The Michaelis-Menten kinetic mode is the basis for most single-substrate enzyme 

kinetics. The Michaelis-Mental equation relates the initial reaction rate to the substrate 

concentration. Two crucial assumptions underlie this equation: the total enzyme 

concentration and the concentration of the intermediate complex do not change over 

time. The enzymatic reaction is assumed to be irreversible and the product does not 

bind to the enzyme. Therefore, single-substrate mechanism for an enzyme reaction is 

expressed as follows: 

E  +  S             ES             E  + P                                       (Equation 3. 8) 

where κ1, κ-1and κcat are the rate constants for the individual steps. 

κ-1 

κ1 κcat 
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The first key assumption for the Michaelis-Menten equation is that the concentration 

of the substrate-bound enzyme ([ES]) changes much slowly than those of the product 

([P]) and the substrate ([S]). This allows the rate of change [ES] to be set to zero: 

d[ES] / dt = κ1[E][S] – [ES]( κ-1 + κcat) ≈ 0                                             (Equation 3. 9) 

The second key assumption is that the total enzyme concentration ([E]0) does not 

change over time, thus the total concentration of enzyme [E]0 is the sum of the free 

enzymes in the solution [E] and those which bound to the substrate [ES]: 

[E]0 = [E] + [ES] ≈ constant                                                                (Equation 3. 10) 

Substituting Equation 3.10 into Equation 3.9, an expression for [ES] is shown below: 

0 = κ1 [S] ([E]0 – [ES]) –[ES](κ-1 + κcat) 

[S][E]0 = [S][ES] + [ES] {(κ-1+ κcat) / κ1} 

                                                     Km 

[ES] = [S] [E]0 / (Km + [S])                                                                         (Equation 3. 11) 

According to Equation 3.8, the rate of product formation (V) is written as:  

V = d[P] / dt = κcat [ES]                                                                      (Equation 3. 12) 

Substituting Equation 3.11 into Equation 3.12, an expression for the rate of product 

formation is shown below: 

V = d[P] / dt = κcat [ES] = κcat [E]0 {[S] / ( Km + [S])}  

                                                  Vmax 



                                                                                  Chapter 3 – Experimental Methods 

                                                                                                                                                124                                                                                                                               

V = Vmax [S] / (Km + [S])                                                                    (Equation 3. 13)                      

Km = (κ-1+ κcat) / κ1                                                                                  (Equation 3. 14) 

where Km and Vmax are defined as the Michaelis constant and maximum rate, 

respectively. 

The Michaelis constant Km is an inverse measure of the affinity or strength of binding 

between the enzyme and its substrate, since the value of Km is decreasing with κ1 

increasing. It means that the lower Km, the greater the affinity between enzyme and 

substrate. According to Equation 3.14, Km is the constant for certain enzyme under 

certain substrate, which cannot be changed by the concentrations of enzyme and 

substrate, pH value of the solution, etc. Equation 3.13 above describes how the initial 

reaction rate depends on the concentration of a substrate under a certain concentration 

of enzyme, normally named as the Michaelis-Menten equation. The Michaelis-Menten 

equation predicts a hyperbolic relationship between initial reaction rate (V) and 

substrate concentration ([S]), as shown in Figure 3. 14A. Therefore, according to 

Equation 3.13, Km is experimentally defined as the concentration at which the rate of 

the enzyme reaction is half Vmax.  

1 / V = (Km / Vmax) · (1 / [S]) + 1 / Vmax                                                (Equation 3. 15) 

          

Figure 3. 14 Schematic picture showing the relation between the concentration of substrate the 
initial velocity (A) and the Lineweaver – Burk plot (B) [W6]. 

A B 
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Equation 3.14 can also be rewritten in Equation 3.15 which uses the inverse of V and 

[S], which makes it easier to determine the constants from measured data using 

Lineweaver – Burk plot [Elsenthal 1993]. Plotting the reciprocals of the same data 

points (Figure 3. 14A) yields a Lineweaver-Burk plot (Figure 3. 14B). This provides a 

more precise way to determine Vmax and Km. Vmax is determined by the point the line 

crosses the 1/V axis and Km is determined by the point the line cross the 1/[S] axis. 

3.2.7.3 Measurement of enzyme activity 

Laccase is a multi-copper oxidoreductase and able to catalyze the oxidation of various 

phenols, substituted polyphenols, aromaticamines and benzenethiols. Among these 

organic compounds, 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) is 

most commonly used as a substrate. This compound is easily oxidized by the Lac, 

turning it into a green and soluble end-product, which can be measured by UV-VIS 

spectrophotometer with absorbance of light at 420 nm. Chemicals for activity assay of 

immobilized Las on the surface are listed in Table 3. 9. 

Table 3. 9 Chemicals for activity assay of immobilized laccase on Ti. 

Name Formula 
Molecular 

mass (g/M) 
Purity Supplier 

Storage 

temperature 

2,2’-azino-bis(3-
ethylbenzthiazoli
ne-6-sulphonic 
acid) (ABTS) 

C18H24N6O6S4 548.68 ≥ 99% Fluka 4°C 

Sodium citrate 
dehydrate 

Na3C6H5O7 · 2H2O 294.10 > 99% Fisher Ambient 

Citric acid C6H8O7 · H2O 210.14 99.8% Fisher Ambient 

1) Preparation of 0.1 M citrate buffer: Fist of all, sodium citrate dehydrate solution of 

0.1 M and citric acid solution of 0.1 M were prepared, respectively. Briefly, 

according to Equation 3.1, masses for 100 ml of 0.1 M sodium citrate dehydrate and 

citric acid solutions are as follows, respectively: 
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msodium citrate dehydrate = (100 ×10-3) ×(100×10-3) ×294.10 = 2.941 g 

mcitric acid  = (100 ×10-3) ×(100×10-3) ×210.14 = 2.1014 g 

The powders of 2.941 g for sodium citrate dehydrate and 2.1014 g for citric acid were 

dissolved in 100 ml deionized water, respectively. Then 0.1 M sodium citrate 

dehydrate solution as base was poured into the 0.1 M citric acid solution and the pH 

value of the mixture was adjusted by the pH meter at room temperature. In order to 

evaluate the optimum pH for the activity of laccase, the citrate buffer of 0.1 M was 

prepared at 2.6, 3, 4, 4.5, 5 and 6, respectively. After preparation, the citrate buffer of 

0.1 M was then stored in the refrigerator at 4°C. 

2) Preparation of 5 mM ABTS in 0.1 M citrate buffer: The mass for 1 ml of 5 mM 

ABTS is shown below: 

mABTS = (5 ×10-3) ×(1×10-3) × 548.68 = 2.74 mg ≈ 2.7 mg 

The preparation procedure of 1 ml of 5 mM ABTS in 0.1 M citrate buffer is the same 

as that of 5 mM EDC solution in 20 mM HEPES buffer. Briefly, ABTS solid powder 

of 2.7 mg was dissolved in a microcentrifuge tube with 1 ml of 0.1 M citrate buffer. 

After mixing, ABTS solution of 5 mM was labeled and then preserved in the 

refrigerator at -21°C. 

3) Measurement of the laccase activity: At the first, the citrate solution 0.1 M of 1ml 

with 0.2 mM ABTS was prepared from 40 µl of 5 mM ABTS diluted into 960 µl of 0.1 

M citrate buffer to measure laccase activity. To measure the Km, titanium samples were 

immersed in 1 ml citrate solution with different ABTS concentrations from 0.005 to 

0.45 mM, as shown in Table 3. 10. Then the solutions with ABTS were transferred into 

a reference and sample cuvettes in UV-Vis spectroscopy, respectively. A titanium 

sample without laccase was placed into the reference cuvette as control, while another 

titanium sample with laccase was immersed into the sample cuvette. Figure 3. 15 shows 

UV-visible absorbance curve of the immobilized laccase on titanium with SAM-NH2 
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in ABTS solution for 2 minutes. In this figure, the linear part of the curve is within the 

first 30 seconds in the initial period. According to Equation 3.7, the initial reaction rate 

of immobilized laccase on titanium is as follows: 

Reaction rate = (0.13223-0.00289)/(0.5 ×(3.6×104
)×1)= 7.26 µmol/min 

 

Figure 3. 15 A progress curve of immobilized laccase-catalyzed ABTS reaction. 

Table 3. 10 Different ABTS concentrations used for measurement of Km. 

Volume of 5 mM 
ABTS ( µl) 

Volume of 0.1 M 
citrate buffer (µl) 

Final 
concentration of 

ABTS (mM) 
1 999 0.005 
2 998 0.01 
8 992 0.04 
20 980 0.1 
30 970 0.15 
40 960 0.2 
50 950 0.25 
60 940 0.3 
70 930 0.35 
80 920 0.4 
90 910 0.45 
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3.2.7.4 Introduction of UV-VIS spectrophotometry 

UV-VIS spectrophotometry measures the absorbance of a given molecule in a solution 

at a special wavelength corresponding to the special molecule. Activity assay of the 

immobilized laccase on titanium or graphite will be obtained from Equation 3.7. Figure 

3. 16 demonstrates the main working principle of a typical spectrometer. The UV-

Visible spectrophotometer uses two light sources (coloured yellow), a deuterium (D2) 

lamp for ultraviolet light and a tungsten (W) lamp for visible light. After bouncing off 

a mirror (mirror 1), the light beam passes through a slit and hits a diffraction grating. 

The grating can be rotated allowing for a specific wavelength to be selected. At any 

specific orientation of the grating, only a monochromatic (single wavelength) wave 

successfully passes through a slit. A filter is used to remove unwanted higher orders of 

diffraction. The light beam hits a second mirror before it gets split by a half mirror 

(half of the light is reflected, the other half passes through). One of the beams is 

allowed to pass through the reference cuvette, the other passes through the sample 

cuvette. The intensities of the light beams are then measured at the end. 

 

Figure 3. 16 Schematic of a UV-VIS spectrometer and its working principle.  
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According to Beer-Lambert Law, there exists a logarithmic dependence between the 

transmission (T) of light through a substance and the product of the adsorption 

coefficient of the substrate (α), and the distance that the light travels through the 

solution (l). The adsorption coefficient can be written as product of a molar 

adsorptivity (ε) and the concentration of absorbing products in the solution (C). 

T = I/I0 = 10 -αl = 10 –εlc                                                                  (Equation 3. 16) 

Where I is the intensity of light at a specified wavelength that has passed through a 

sample and I0 is the intensity of the light before it enters the sample on incident light 

intensity. 

According to Equation 3.7, Equation 3.16 can be expressed as: 

A = - log (I/I0)                                                                              (Equation 3. 17) 

In the whole experiments, a Lambda 25 UV-VIS spectrophotometer (PerkinElmer LAS, 

UK) was used with UV Winlab V 2.85 software to measure laccase activity, as shown 

in Figure 3. 17. The reference and sample cuvettes were sealed with clean film in order 

to minimize the oxidization of ABTS by air. During the measurement, to remedy the 

limitation of diffusion of immobilized laccase, the sample cuvette was shaken by the 

vortexer every 10 seconds.  

             

Figure 3. 17 Lambda 25 UV-VIS spectrophotometer (right) and sample chamber (left). 

Reference cuvette 

Sample cuvette 

Beam 
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3.2.8 Electrochemical technique -- Cyclic voltammetry for the 

electrocatalytic activity of laccase 

3.2.8.1 Introduction of Cyclic Voltammetry 

Cyclic voltammetry (CV) is a most widely technique for studying electrochemical 

reactions. The power of cyclic voltammetry results from its ability to rapidly provide 

considerable information on the thermodynamics of redox processes and the kinetics of 

electron-transfer reactions. CV is often the first experiment performed in an electron-

analytical study and offers a rapid location of redox potentials of the electro-active 

species, and convenient evaluation of the effect of media upon the redox process. 

Cyclic voltammetry consists of scanning linearly the potential of a stationary working 

electrode, using a triangular potential waveform (potential vs. time), as shown in 

Figure 3.18. The complex waveform is composed of two isosceles triangles. The 

voltage is first held at the initial potential where no electrolysis occurs and hence no 

faradaic reduced compound is oxidised at the electrode surface. At a particular set 

value, the scan direction is reversed and the material that was oxidised in the outward 

excursion is then reduced. During the potential sweep, the potentiostat measures the 

current resulting from the applied potential. The resulting plot of current vs. potential 

is termed a cyclic voltammograms (Figure 3. 19). 

 

Figure 3.18 Cyclic voltammetry waveform [W3]. 
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In typical cyclic voltammetry, a solution component is electrolyzed (oxidized or 

reduced ) by placing the solution in contact with an electrode surface, and then making 

the surface sufficiently positive or negative in voltage to force electron transfer. The 

electrode voltage is changed to a higher or lower voltage at a linear rate. The voltage is 

then changed back to the original value at the same linear rate. When the surface of the 

electrode becomes sufficiently negative or positive, a solution species may gain 

electrons from the surface or transfer electrons to the surface. This results in a 

measurable current in the electrode circuitry. When the voltage cycle is reversed, the 

case that the electrons transfer between electrodes and chemical species will also be 

reversed, leading to an inverse current peak. 

[Fe(CN)6]
3-/[Fe(CN)6]

4- redox system is used frequently as a standard system in 

electrochemistry to study ideal reversible charge transfer behaviour because of the 

redox couple of Fe2+ and Fe3+, as shown in Equation 3.18. When the potential is applied 

on a working electrode from lower to higher voltage, Fe2+ is oxidized to Fe3+ as the 

surface of the working electrode will lose electrons; otherwise, Fe3+ is reduced to Fe2+ 

when the voltage is returned to the starting value. Cyclic votammogram of the redox 

reaction of [Fe(CN)6]
3-/Fe(CN)6]

4 is obtained from Autolab (Figure 3. 19). 

 [Fe(CN)6]
3- + e-                   [Fe(CN)6]

4-                                  (Equation 3. 18) 

 

Figure 3. 19 Cyclic voltammogram (second scan) at the bare graphite electrode in 0.1 M citrate 
buffer, pH 4.5 with 4 mM Fe(CN)6

3-. Scan rate: 50 mV/s. 

reduction 

oxidation 
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The important parameters obtained from a cyclic voltammograms are the anodic peak 

current (ia) (referred to oxidation peak), cathodic peak current (icat) (referred to 

reduction peak), anodic peak potential (Ea) and cathodic peak potential (Ec). All of 

these values can be readily obtained from the voltammograms. The formal reduction 

potential (E0) for a reversible system is centered between Ea and Ec. For example, from 

Figure 3. 19, ia = 290 µA, icat = 440 µA, Epa = 250 mV, Epc = 125 mV, E0 = 185 mV (vs. 

Ag/AgCl). In this project, the catalysis activity of laccase can be monitored with 

oxygen since the oxidation of the substrate is paired with the reduction of oxygen to 

water. Therefore, the value of icat and the ratio of icat to ia are more important than other 

parameters for evaluating the catalysis activity of laccase. 

3.2.8.2 Electrocatalytic measurements 

The electrochemical cell is needed during electrocatalytic measurements, which 

includes three electrodes: a reference electrode (RE), counter electrode (CE) and 

working electrode (WE). The RE acts as a reference in measuring and controlling the 

WE potential by a potentiometer and at no point does it pass any current, and the CE 

passes all the current needed to balance the current observed at the WE by a 

amperometer, as shown in Figure 3. 20. For the WE, it makes contact with the analyte, 

applies the desired potential and facilitates the transfer of electrons to and from the 

analyte. 

 

Figure 3. 20 A electrochemical cell with Three electrodes: (1) WE, (2) CE and (3) RE. A: 
amperometer and V:  potentiometer. 
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In this project, a bright platinum wire (99.9%, Fisher, D0.3mm) was used as the CE, 

and Ag/AgCl (saturated KCl, MF-2079, BASi) as the RE was used throughout the 

experiments and stored in 3 M NaCl after experiments, as shown in Figure 3. 21. 

Titanium and graphite are both WE. For preparation of the samples during cyclic 

voltammetry experiments, in order to avoid reaction of copper wire in the electrolyte, 

copper wire was wrapped completely by a mixture of Araldite resin and hardener 

(Bostik Findley Ltd, Staffordshire, UK). An electrochemical cell with cables connected 

to Autolab is shown below in Figure 3. 22. 

 
 

Figure 3. 21 Pt electrode (CE), Ag/AgCl electrode (RE) and graphite electrode (WE), from left to 
right. 

 

Figure 3. 22 An electrochemical cell with cables connected with the potentiostat: blue connector 
for RE, red one for WE and black one for CE. 

For titanium WE, bare TiOx and TiO2 electrodes were placed in 10 ml citrate buffer of 

0.1 M with 4 mM Fe(CN)6
3-, respectively at room temperature to measure the 

conductivity. Potassium heacyanoferrate (III)(K3Fe(CN)6, 329.24 g/mol, 99.0+%, 
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Fisher) 4 mM of 10 ml was prepared by dissolving 13.17 mg of potassium 

heacyanoferrate in 10 ml citrate buffer of 0.1 M, pH 4.50.  

For graphite WE, in order to investigate that laccase reduces oxygen to water, each 

working electrode was performed with and without oxygen, respectively. For 

anaerobic experiments, solutions were bubbled through with argon for 1 hour before 

being used and pure argon was maintained throughout the experiments. For aerobic 

experiments, pure oxygen (supplied from BOC) was bubbled the solution for at least 

10 minutes prior to application, and oxygen gas was also maintained throughout the 

experiments. For experiments of direct electron transfer (DET), the WE was immersed 

in 10 ml of 0.1 M citrate buffer, pH 4.50 at room temperature for study of 

voltammetric responses of immobilized laccase. For experiments of mediated electron 

transfer (MET), cyclic voltammogram was performed in 10 ml citrate buffer solution 

of 0.1M with 0.2 mM ABTS at a scan rate of 5, 10, 20 and 50 mV/s, respectively at 

room temperature. In ABTS – medicated system, to evaluate temperature effect on the 

catalytic activity of immobilized laccase, graphite electrodes in 10 ml ABTS solution, 

pH 4.50 were held in a water bath at the rang of 7 to 62°C, respectively. In order to 

investigate the pH effect of the citrate buffer, the electrodes were immersed in 10 ml 

ABTS solution with a pH range from 2.5 to 6, respectively.   

3.2.8.3 Introduction of Autolab 

The Autolab electrochemical instrument is a potentiostat, which can be further 

configured to needs by adding one ore more of the available modules. The instrument 

is controlled by powerful windows based software that allows you to perform a wide 

variety of electrochemical techniques as well as sophisticated data analysis. In this 

project, electrochemical experiments were performed with an Autolab PGSTAT302 

potentiostat (Eco Chemie, Netherlands) and controlled by General Purpose 

Electrochemical System (GPES) software, version 4.9 (Figure 3. 23).  
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Figure 3. 23 Autolab PGSTAT302 potentiostat. 
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CHAPTER 4  

EXPERIMENTAL RESULTS  

4.1 Formation of the APS film on Ti 

There are several factors that might influence the growth behaviour of self-assembled 

film on titanium, such as pre-treatment of substrate, molecular concentration and 

reaction temperature during silanization, water residual in solvent, etc. The aim of this 

work is to establish the optimum reaction conditions to form well-ordered thin film of 

APTES on the titanium surface. The following sections were focused on how the 

above factors affect the final structure of APTES on surface. 

4.1.1 Pre-treatment of titanium 

In order to clarify the above factors, the effect of titanium pre-treatment was first 

investigated since the quality of the APS (after the hydrolysis of APTES) film is 

dependent on both the effective surface area (cleanliness and roughness of titanium 

surface) and density of the –OH groups for silanization [Ulman 1991]. In order to 

obtain a clean and smooth TiOx layer with a high dense of hydroxyl group, the Piranha 

solution (98% H2SO4 + 30 wt% H2O2) is commonly used, but there is little 

mechanistic report on the resulting surface characteristics. Since titanium used here is a 

polycrystal and has various oxidized status (TiI, TiII, TiIII  and TiIV), it is quite difficult 

to prepare the flat surface. Therefore, a comprehensive research on the effect of 

piranha treatment on the surface properties of titanium was investigated, including 

temperature, time, and the volume ratio of H2SO4 and H2O2 during the oxidation. 

4.1.1.1 Temperature effect of oxidation on titanium 

Temperature applied during oxidation is known to affect considerably wetting property 
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of a surface. This is indeed the case for titanium surface. Figure 4. 1 shows the 

wettability of pure and hydrolyzed titanium surfaces prepared in a Piranha solution 

(H2SO4: H2O2 = 1:1) for 30 minutes at different temperatures, as described in Chapter 

3.1.1.2. Static water contact angles by contact angle goniometer for titanium samples 

are presented in Table 4. 1. The pure titanium surface is noted to be about 78.2° of a 

contact angle (Figure 4. 1a). Oxidation in the 1:1 Piranha solution at room temperature 

resulted in a significant reduction of the water contact angle to 24° (Figure 4. 1b). 

Increasing temperature to 50°C does not seem to introduce obvious additional 

reduction of contact angle (Figure 4. 1c). Further increasing temperature to 100°C leads 

to a reduction of the contact angle to 16°, which is almost completely spread out on the 

surface (Figure 4. 1d). 

            

           

Figure 4. 1 Images of water contact angles for surfaces of pure titanium (a) and TiOx prepared in 
the Piranha solution of H2SO4 : H2O2 = 1:1 for 30 minutes at different temperatures: (b)SRT_30, (c) 
S50C_30 and (d) S100C_30.  

Table 4. 1 Summary of the samples surfaces in terms of wettability (contact angle) and roughness 
(n=3). 

Oxidized titanium 
 

Pure 

titanium SRT_30 S50C_30 S100C_30 

Contact angle (°) 78.2±1.3 24±2.7 22±3.1 16±4.9 

Roughness (nm) 4.18±1.1 12.94±2.1 29.08±2.4 37.71±3.6 

The sudden decrease of water contact angle of the titanium surface in Figure 4.1a-b is 

mainly due to removal of organic contaminant and formation of titanium oxide. The 

a 

c 

b 

d 
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Piranha solution is very strong oxidant. The first and faster process is dehydration by 

the concentrated sulphuric acid to carbonise of common organic materials. The second 

step is oxidation of Ti to TiOx by hydrogen peroxide. The final step is conversion of 

TiOx to TiOH in the aqueous solution. When water is dropped off the surface, 

compared with pure titanium surface, OH group from the surface forms the bond with 

water molecules on the boundary, which results in the decrease of surface tension of 

water surface. In order to equilibrize intermolecular forces of boundary and interior 

molecules, more and more water molecules attach the surface to equilibrize, which 

leads to the decrease of water contact angle after oxidation. 

Atomic force microscopy (AFM) is used to study the surface topography. To this aim, 

micrographs of different surfaces were carried out by AFM with each scan 5 × 5 µm2. 

Surface roughness of the sample surfaces (root mean square (RMS) measured by AFM 

using Nova software) are presented in Table 4. 1. It can be seen in Figure 4. 2 that the 

appearance of surfaces strongly depends on the oxidation temperature. Polished pure 

titanium surface with fine scratch (Figure 4. 2a) is smoother than other three surfaces. 

After oxidation at room temperature, needle-like structures are observed on the 

surfaces and there are more and more produced as the temperature increases. The RMS 

values dramatically increase from 4.18 to 12.94 nm, which implies that oxidation in 

the Piranha solution resulted in a roughened surface. When the temperature increases 

to higher temperatures, the images show aggregated particles on the surfaces (Figure 4. 

2c-d) and the roughness increases significantly to 29.08 and 37.71 nm for S50C_30 and 

S100C_30, respectively.  

Generally, the wetting response is a result of two factors: the exposed chemical 

components at the surface and the surface roughness. When the pure titanium is 

oxidized in the Piranha solution, two reactions happened: first one is that organic 

contaminants are oxidized. At the same time, the surface is oxidized to TiOx and form 

Ti-OH in the aqueous solution according to the surface properties of titanium [Brunette 

2001]. Hydroxyl group (-OH) is a polar group which will strongly interact with the 

dipole of water molecules making the surface more wettable. Therefore, this is the 

reason that the water contact angle is changed significantly after oxidation from pure 

titanium. During the oxidation at the higher temperatures, the water contact angles are 
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Figure 4. 2 AFM images of titanium surfaces: (a) pure titanium, (b) SRT_30, (c) S50C_30 and (d) 
S100C_30. Scan size: 5 µm × 5 µm. 

slightly changed. One of the main reasons is the increase of the surface roughness. If a 

sample has similar chemical components on the surface, for a rough surface, the 

contact angle is defined by Wenzel equation: 

Cosθapparent  =  r Cosθtrue                                   (Equation 4. 1) 

where θapparent is the apparent contact angle which corresponds to the stable 

equilibrium state, r is donated to the ratio of true area of the solid surface to the 

apparent area and θtrue is the Young contact angle as defined an ideal surface. 

According to the Wenzel equation, the roughness of a surface further decreases the 

a 

d c 

b 
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contact angle if the contact angle is < 90°, while the roughness further increases the 

contact angle if the contact angle is > 90°, as shown in Figure 4. 3. In this case, the 

greater the surface roughness, the lower the water contact angle. When the temperature 

is increasing, oxidants accelerate the reaction speed. Polycrystal titanium is oxidized to 

different oxidation states (TiO, Ti2O3, and TiO2) on the surface, which results in the 

change of surface roughness. Another reason that results in decrease of the water 

contact angles, is assumed that the quantity of the -OH groups is increasing with 

temperature during the oxidation.  

 

Figure 4. 3 Schematic illustration of the relationship between surface roughness and contact angle. 

4.1.1.2 Time effect of oxidation on titanium 

On the above experiments, although S100C_30 and S50C_30 show more hydrophilic 

surfaces due to water contact angles, their RMS values show surfaces are very rough 

compared with the length of APTES molecule (about 1.2 nm). Therefore, the water 

contact angle and AFM analyses reveal that SRT_30 results in a relative clean and 

smooth titanium surface. In this continued study, oxidation of samples was carried out 

in the Piranha solution of 1:1 at room temperature for 5, 15 and 30 minutes, 

respectively, as described in Chapter 3.1.1.2. The surface roughness and water contact 

angles for the samples are presented in Table 4. 2. Figure 4. 4 shows the evolution of 

water contact angles of TiOx surfaces oxidized up to 30 minutes. The water contact 

angle of SRT_5 is 39° (Figure 4. 4a) with big variation after 5-minute oxidation. Further 

increasing up to 15 minutes resulted in the decrease of the contact angle to 26°. Since 
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the surface roughness is changed slightly from 6.12 to 7.57 nm (Figure 4. 5a-b) when 

the time increases to 15 minutes, it suggests that the titanium surface is not oxidized 

completely after 5 minutes at room temperature. In other words, OH groups on the 

surface might be increased greatly from 5 to 15 minutes. With increasing time up to 30 

minutes, there is no noticeable change for the water contact angles (Figure 4. 4b-c), 

while the surface roughness is increased to 11.26 nm (Figure 4. 5c). It is assumed that 

the surface roughness instead of OH groups results in the reduction of water contact 

angle during the oxidation from 15 to 30 minutes, which indicates that Piranha 

solution does react with titanium and will etch the surface if the samples are left in for 

a long period of time. Therefore, in order to obtain a relative thin and smooth TiOx 

layer, the titanium surface is oxidized completely for 15 minutes at room temperature. 

Table 4. 2 Summary of the samples surfaces in terms of wettability (contact angle) and roughness 
(n=3). 

Oxidized titanium 
 

SRT_5 SRT_15 SRT_30 

Contact angle (°) 39±7.1 27±1.4 24±2.9 

Roughness (nm) 6.12±1.3 7.57±1.8 11.26±2.0 
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Figure 4. 4 Images for water contact angles of TiOx surfaces prepared in Piranha solution (1:1) at room temperature for different immersed time: (a) SRT_5, (b) 
SRT_15 and (c) SRT_30 (n=6). 

 

              

Figure 4. 5 AFM images of oxidized titanium surfaces prepared in the Piranha solution (1:1) at room temperature: (a) SRT_5, (b) SRT_15 and (c) SRT_30 under 
laboratory atmosphere, scan size 5 µm × 5 µm.

a 

c b a 

c b 



Chapter 4 – Experimental Results 

                                                                                                                                 
143             

4.1.1.3 Effect of different oxidation solutions on titanium  

In order to get very thin, cleaned and smooth TiOx layer on titanium surface, water 

contact angle of the titanium surface was measured from different oxidation solutions 

at room temperature for 15 minutes (each solution is about 20 ml), as described in 

Chapter 3.1.1.2. In Figure 4. 6, the contact angle is reduced from 78.2° to 50° and 46.5°, 

respectively, after the titanium was immersed in the concentrated H2SO4 or the 

as-received H2O2 solution. For a mixture of H2SO4 and H2O2, increase of H2SO4 

concentration further reduces the water contact angle from 46.5° to 15.2°. When the 

ratio of H2SO4 and H2O2 in the piranha solution is ≥ 3:1, the contact angle of the 

titanium surface seems to be stable around 15°. 

 

Figure 4. 6 Water contact angles for pure titanium and TiOx prepared in different oxidized 
solution for 15 minutes at room temperature (n=6). 

Figure 4. 7 shows the key XPS core-level regions (Ti(2p), C(1s) and O(1s)) for oxidized 

titanium surfaces prepared in four different oxidation solutions (H2SO4 to H2O2 of 1:3, 

1:1, 2:1 and 3:1). For all samples, curve fitting indicated that the O1s peaks were 

located at 530.4 and 531.8 eV, corresponding to O from the TiOx and TiOH species, 

respectively. A slight increase of the amount of oxygen from the TiOH species is 

observed from all the O1s components: 30.38%, 33.14%, 34.45% and 39.14% for S1:3, 

S1:1, S2:1 and S3:1, respectively. In the Ti 2p regions there were two peaks at 459 and 

464.7 eV, respectively, corresponding to the TiOx species on the surface. On S1:1 and 
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S1:3 a small Ti2p peak at 453.8 eV is corresponding to pure titanium, which is 

non-oxidized. A C1s peak was observed at 284.8 eV corresponding to the contaminants 

on titanium surfaces under vacuum, which indicates that the C1s peak area decreases 

with the increase of H2SO4 concentration in the piranha solution. The Ti2p peak at 

453.8 eV combined with the C 1s peak indicates that titanium surfaces were not 

oxidized completely within 15 minutes for S1:1 and S1:3.  

  

 

Figure 4. 7 XPS core-level regions for key elements (O, Ti and C) in oxidized titanium prepared in 
the different piranha solutions. 

During oxidation of titanium, acid treatment is often used to remove the native oxide 

and contamination to obtain clean and uniform TiOx surface and generally leads to a 

thin surface oxide layer (< 10 nm). Hydrogen peroxide treatment yields a two-layer 
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titania gels, which consists of a thin (< 5 nm) and dense inner oxide and an outer 

porous layer [Wang 2002]. When H2SO4 and H2O2 are mixed together, the speed of the 

oxidation is accelerated compared with either H2SO4 or H2O2 solutions. According to 

contact angles and the XPS results, the oxidation of the solution is improved with 

increasing H2SO4 concentration in the Piranha solution. However, the quantity of the 

-OH functional groups on the surface is not increased dramatically with the oxidation 

ability of the Piranha solutions. It is assumed that the majority of the – OH functional 

group comes from the original titanium surface, instead of oxidation of the Piranha 

solution. From the above results, during a short chemical treatment time, the Piranha 

solution of 3:1 will oxidize titanium to obtain more cleaned, smooth and hydrophilic 

TiOH layer compared with other Piranha solutions. 

4.1.1.4 Summary 

In this section, a systematic investigation of pre-treatment of titanium was reported in 

order to obtain a relative clean and smooth TiOH layer. Water contact angles and AFM 

analyses reveal that the Piranha solution can only etch the titanium surface at higher 

temperatures for longer periods of time instead of oxidizing titanium. Further 

comparison of the different oxidation solutions clearly shows that there is no large 

difference on the quantity of the – OH functional groups on the titanium surface, which 

is confirmed by the XPS results. Compared with other solutions, the Piranha solution 

of 3:1 at room temperature for 15 minutes is the optimum condition for the 

pre-treatment of titanium in order to obtain the well-ordered self-assembled 

monolayers. 

4.1.2 Synthesis of the APS film on Ti 

The above section clearly shows that the Piranha solution of 3:1 (H2SO4 : H2O2) for 15 

minutes is sufficient to oxidize the titanium surface and to supply a clean and smooth 

TiOH layer. In order to obtain a well-ordered APS film on titanium, molecular 

concentrations and temperature during silanization, water content in a solvent and 

stability of the film were investigated in the following sections. For all the experiments, 
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the chemical components on the surface were characterized by water contact angle and 

FTIR, and surface topography was investigated by Atomic force microscopy (AFM). 

According to the physical - chemical properties of APTES (3-aminopropyltriethoxy 

silane) in Chapter 2, this molecule is hydrolyzed very quickly once it meets H2O, 

which results in the formation of polysiloxane. In order to prevent the loss of the 

reactive amine functional groups and the formation of the polysiloxane, the anhydrous 

toluene was used as the solvent at the beginning. After pre-treatment of titanium, the 

sample was immersed in 5 ml anhydrous toluene with 1 volume% APTES for 16 hours 

at 70°C for silanization, as described in Chapter 3.1.1.2. The structural characteristics 

of a APS film after washed were obtained by FT-IR analysis in the regions 800 – 2000 

and 2800 – 2950 cm-1 (Figure 4. 8).  

 

Figure 4. 8 IR spectra of titanium with the APS film produced in 5 ml toluene with 1 v% APTES: 
(A) the Si-O-Si and the NH regions (800 – 2000 cm-1); (B) the CH region (2800 – 3400 cm-1). 

A 
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The possible interactions of APTES molecules with the TiOH surface involve the 

formations of covalent Ti-O-Si and Si-O-Si bonds. According to [Socrates, 1980], a 

tabulation of the key bands and their assignments are provided in Table 4. 3, which 

shows noticeable differences between the IR spectra of pure APTES and the APS film 

on titanium. First, Table 4. 3 shows the vibrations corresponding to the ethoxy groups 

(ν (C-O) and δ (CH3)) are missing from the IR spectrum of the APS film between the 

region of 800 – 2000 cm-1, indicating that APTES was fully hydrolyzed when absorbed 

onto the TiOx surface (Figure 4. 8A). A weak band at 880 cm-1 is assigned to the Si-O 

stretching from Si-OH, which implies that APS molecules are not completely 

cross-linked to form Si-O-Si. A very weak band at 940 cm-1 is assumed to be the 

stretching vibration of Si-O-Ti, which indicates that APS molecules are covalently 

bonded on the titanium surface. In Table 4. 3, the two peaks at 1082 and 1103 cm-1 were 

disappeared and the new peaks at 1043 and 1132 cm-1 were formed instead. This 

change is assigned to the formation of Si-O-Si bonds, which can confirm further that 

ethoxy groups have been totally hydrolyzed. Normally, the primary amine vibration is 

confirmed by N-H deformation instead of stretching, so the wavenumber for the -NH2 

free groups on titanium is 1592-1605 cm-1.  

Table 4. 3 FTIR peak frequencies and infrared spectroscopic group assignments for bulk APTES 
[www.sigmaaldrich.com] and the APS film on titanium. 

Bulk APTES APS film on titanium 

Frequency (cm-1) Assignments Frequency (cm-1) Assignments 

956 νs (Si-O-C) 935 ν (Si-O-Ti) 
1082 νa (Si-O-C) 1043 νs (Si-O-Si) 
1103 νa (Si-O-C) 1132 νa (Si-O-Si) 
1167 ν (C-O)   
1311 δ (CH2) 1336 δ (CH2) 
1390 δ (CH3)   
1477 δ (CH2) 1475 δ (CH2) 
1596 δ (NH2) 1598 δ (NH2) 
2885 νs (CH2) 2851 νs (CH2) 
2927 νa (CH2) 2924 νa (CH2) 
2974 νa (CH3)   
3292 νs (NH2) 3275 νs (NH2) 
3366 νa (NH2) 3320 νa (NH2) 
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Figure 4. 8B shows the spectrum in the range from 2800 to 3400 cm-1 correspond to the 

experimental C-H stretching mode spectra of the APS film on the hydrated titanium 

surface. In Table 4. 3, there are two strong peaks for the CH2 stretching vibration: 2851 

(νs (C-H)) and 2924 cm-1(νa (C-H)), which are shifted to the left 34 cm-1 for νs (C-H) 

and 3 cm-1 for νa (C-H), respectively. Compared with frequencies from the bulk 

APTES, there is no CH3 asymmetric mode observed on Figure 4. 8B. It proves that 

APTES molecules are totally hydrolyzed on the surface. The two very weak peaks 

observed at 3275 and 3320 cm-1 shows the N-H stretching modes. Since the peak 

positions for symmetric and antisymmetric of alkyl chains are reported typically to be 

in the range ~ 2850 and ~ 2919 cm-1 for all-trans extended chains and at ~ 2856 and ~ 

2930 cm-1 for liquid-like disordered chains [Snyder 1982]. Therefore, it is concluded 

that the chains are predominantly in the liquid-like disordered conformation on the 

titanium surface. According to the FTIR results above, APTES molecules are all 

hydrolyzed and the APS film is formed on the titanium surface by Si-O-Ti and Si-O-Si 

bonds after 16-hour silanization. However, the film on the surface is not well-ordered, 

which will affect the applications of the amine functional group. 

4.1.2.1 Effect of APTES concentrations on self-assembly  

To investigate the effect of molecular concentrations, different concentrations of 

APTES in anhydrous toluene from 0.02 to 3 v% were used to study the growth 

behaviour of the APS film on the titanium surface and the preparation conditions of 

each sample was described in Table 3.4. The water contact angles of surfaces with the 

APS film prepared under different APTES concentrations are shown in Figure 4. 9. The 

water contact angle of S3% shows increases to 78° from the oxidized titanium of 15°, 

which suggests that the APS film has already been formed on the titanium surface. 

When the molecular concentration further reduces to 0.1 – 0.2 v%, the surface with the 

APS film produces a more hydrophilic surface with the contact angle of 67°. The 

interesting thing is, when the concentration reduces further to 0.02 v%, the water 

contact angle of the surface rises dramatically to 90°. The water contact angle results 

also show a large measurement error on S0.05% and S0.02%, which indicates hydrophobic 

groups (e.g. -CH2-) are probably formed on the titanium surface apart from the –NH2 

functional group and structures of the APS film is schematically shown in Figure 4. 10. 
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Figure 4. 9 Water contact angles for titanium surfaces with the APS films prepared in 5 ml 
anhydrous toluene with different APTES concentrations at 70°C for 16 hours (n=6). 

        

Figure 4. 10 Two possible schematic structures for APS molecules on Ti. 

Figure 4. 11 shows the IR spectra from titanium surfaces with the APS film prepared at 

different concentrations. The intensity of the two doublet peaks for the Si-O-Si 

stretching increases with APTES concentrations (Figure 4. 11A). However, Si-O-Si and 

N-H bonds cannot be detected on the IR spectra of S0.02% and S0.05%. When the APTES 

concentration increases up to 0.5 v%, the IR band observed at 1595 cm-1 on the spectra 

is assigned to the deformation mode of the free –NH2 functional group on the surface 

(Figure 4. 11A). When the APTES concentration is greater or equal to 1 v%, apart from 

the free –NH2 deformation band, another band at 1655 cm-1 is also found on the IR 

spectra of S1% and S3%, which is assigned to the –NH3
+ asymmetric deformation 

according to the reference [Socrates 1980]. This result reveals that a network structure 

of OH···+NH2– in the APS film is formed.  
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Figure 4. 11 IR spectra of the APS film prepared at different APTES concentrations: (A) the 
Si-O-Si and the NH regions (800 – 2000 cm-1); (B) the CH region (2800 – 2950 cm-1). 

Figure 4. 11B shows the IR spectra of different samples in the 2800-2950 cm-1 region of 

the C-H vibrations, which can suggest the ordered structure of the self-assembled film 

on the surface [Socrates 1980]. The C-H stretching vibrations on the IR spectra of 

S0.05% and S0.02% are at 2869 and 2936 cm-1, which suggests that the structure of the 

APS film on the surface is disordered. In the same way, the structures of the APS film 

with the concentrations of 1 v% and 3 v% are disordered as the C-H stretching 

vibrations on the IR spectra are at 2858 and 2923 cm-1. However, S0.1%, S0.2% and S0.5% 

show well-ordered structure of the APS film as the positions of C-H stretching modes 

A 
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of alkyl chain are in the range of ~ 2950 cm-1 and ~ 2920 cm-1 [Snyder 1982], because 

the APS film is closed packed, resulting in the formation of more chemical bonds (e.g. 

Si-O-Si), which leads to the redshifting (lower wavenumber).  

Several spectra are markedly different essentially due to varying structures of the APS 

film on titanium. According to [Socrates 1980], the N-H deformation mode for the free 

amine groups is observed between 1590 – 1605 cm-1. If it is out of this range, the –NH2 

group may participate in the formation of a weak hydrogen bonding (-NH3
+). The 

ordering of the APS film should be reflected on the IR spectra of the C-H stretching 

region. When the concentration of APTES in anhydrous toluene is lower than 0.1 v% 

or greater than 0.5 v%, the two predominant bands of the C-H stretching are 

blueshifted by 5 – 18 cm-1 (higher wavenumber), indicating an increasingly disordered 

state for the aminopropyl segments, in comparison with those on the IR spectra of S0.1%, 

S0.2% and S0.5%. Therefore, from the IR spectral characteristics of the APS film and the 

water contact angles, the range of the optimum APTES concentration on titanium 

should be between 0.1 – 0.5 v% in 5 ml anhydrous toluene. 

4.1.2.2 Stability of the APS film on Ti 

The APS film prepared by self-assembly is commonly employed as an adhesion 

promoter or molecular glue between substrates and molecules. For example, the APS 

film is used to promote the protein adhesion for biological implants. However, the 

APTES molecule includes 3-carbon chain length, which indicates that the structure of 

APS film on the surface will not be stable because of weak van der Waals interactions 

between chains, leading to the poor applications. Therefore, to further clarify the 

stability of the APS film, titanium samples were placed in a desiccator and in different 

solutions at room temperature up to 72 hours for measurement of hydrolytic stability of 

the APS film, such as phosphate buffer (pH 4 and pH 10) and distilled water (pH 6.5). 

According to the above section, titanium samples were prepared in 5 ml anhydrous 

toluene with 0.2 v% APTES at 70°C for 16 hours.  

Figure 4. 12 shows the water contact angles of the APS film on the titanium surface 

immersed in the phosphate buffer, pH 4 within 72 hours. The contact angle of the 
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surface slightly decreased to 66.5° from 68° within 10 hours. Immersion for 30 hours 

resulted in an obvious reduction of the contact angle to 47.1°. Further immersion up to 

72 hours, the surface produces a more hydrophilic surface with the contact angle of 

32.6°. The water contact angles are dramatically decreasing with large measurement 

errors from 10 to 72 hours, which indicates that hydrophilic groups (e.g. –HO-P(O)-) 

are probably produced on the titanium surface apart from primary amine groups.  

 

Figure 4. 12 Water contact angles for the APS film in a phosphate buffer, pH 4 vs. time (n=6). 

Figure 4. 13 reveals the structure of the APS film on the surface immersed in the 

phosphate buffer, pH 4 up to 72 hours at room temperature. During the first two hours 

in the buffer, the N-H deformation bands red-shifts from 1595 to 1578 cm-1, which is 

assigned the symmetric vibration of the –NH3
+ according to the reference [Socrates 

1980]. This is due to the high concentration of hydrogen ions in the phosphate buffer, 

pH4. When samples were immersed from 18 to 72 hours, the IR spectra show two 

peaks at 1557 and 1644 cm-1, respectively in Figure 4. 13A. Normally, the amine 

functional groups can easily react with –COOH groups or phosphate groups 

(HO-P(O)-) under the acidic condition to form amide bond, which are located at 1520 

and 1655 cm-1 according to the reference [Socrates 1980]. Therefore, the peaks at 1557 

and 1644 cm-1 on the IR spectra are assumed to be the vibration of physical adsorped 

–NH2···HO-P(O)-, which leads to the formation of hydrophilic surface. The band at 

1396 cm-1 is assigned to the deformation of CH3 according to the Table 4. 3, which 

suggests that the new molecules attach on the APS film. The intensities of Si-O-Si, 
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-CH2- and -NH2 bands on the IR spectra decrease with immersion time in the buffer, 

which indicates that the APS film is rapidly hydrolyzed in the acidic aqueous solution. 

However, the intensity of Si-O-Ti band does not decrease when immersion up to 48 

hours. Especially immersion up to 72 hour results in the disappearance of the Si-O-Ti 

bond on the IR spectrum, which implies that the APS film is almost hydrolyzed away 

from the surface.  

       

   

Figure 4. 13 IR spectra of the APS film in the phosphate buffer, pH 4: (A) the Si-O-Si and the NH 
regions (800 – 2000 cm-1); (B) the CH region (2800 – 2950 cm-1). 

Figure 4. 13B shows that the structure of the APS film is still well-ordered within 

2-hour immersion in the phosphate buffer, pH 4 because the C-H stretching modes 
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appear at 2844 and 2914 cm-1. However, immersion up to 72 hours results in that the 

structure of the APS film becomes disordered. Therefore, from the water contact 

angles and IR spectra, the APS film can be rapidly hydrolyzed in the acidic aqueous 

solution and primary amine functional groups can be easily protonated or form the new 

chemical bonds with other molecules. 

The stability of the APS film on titanium was studied in the distilled water (pH 6) for 

72 hours at room temperature and the results are shown in Figure 4. 14 and Figure 4. 15. 

The water contact angle is dramatically decreased to 47° from 68° with immersion 

time up to 35 hours (Figure 4. 14), which indicates that a hydrophilic chemical 

components are formed on the surface (e.g. –OH). However, immersion up to 72 hours 

results in the increase of the water contact angles to 63°, which implies hydrophobic 

groups (e.g. -CH2-) are probably formed on the titanium surface besides the primary 

amine groups. 

 

Figure 4. 14 Water contact angles of the APS film on titanium in the distilled water, pH 6.5 vs. time 
(n=6). 

Figure 4. 15 shows transformation of the structure of the APS film in the distilled water, 

pH 6.5 for 72 hours. Within 48 hours for the immersion time, the intensity of Si-O-Si 

stretching modes on the IR spectra is slightly decreased, which implies that the APS 

film is partly hydrolyzed to form the silanol. The formation of silanol is the reason that 

the contact angle decreases with immersion time up to 35 hours. During the whole 
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immersion time, the intensity of the Si-O-Ti stretching mode observed at 930 cm-1 in 

the IR spectra is not changed (Figure 4. 15A), which implies that APS molecules is not 

dropped off from the titanium surface by the hydrolysis. Also this result firms that the 

Si-O-Ti bond is more stable than the Si-O-Si stretching mode in the distilled water, pH 

6. Apart from the primary amine deformation at 1604 cm-1, other two peaks at 1559 

and 1663 cm-1 are observed on the IR spectra, which results from the –NH2 groups to 

form the –H2N…HO- bond by the hydrogen bond. The hydrolysis of Si-O-Si bond 

results in the less interaction between the carbon chains in the APS film. It is assumed 

that the free amine functional groups are bended to link the hydroxyl groups from the 

  

 

Figure 4. 15 IR spectra of the APS film on the titanium surface in the distilled water, pH 6.5: (A) 
the Si-O-Si and the NH regions (800 – 2000 cm-1); (B) the CH region (2800 – 2950 cm-1). 
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silanol, as shown in Figure 4. 10, which could result in the exposure of the -CH2- 

groups on the surface, leading to the increase of the contact angle during the 

immersion of 35 to 72 hours. The IR spectra in Figure 4. 15B show the positions of the 

C-H stretching models of the alkyl chain are in the ordered range of ~ 2850 and ~ 2920 

cm-1 when the titanium sample was immersed in the distilled water for 30 hours. 

Immersion up to 72 hours results in the disordered structure of the APS film because of 

the peaks of the C-H stretching modes at 2855 and 2929 cm-1 on the IR spectra, which 

can support the assumption of the disordered structure of the APS film on the surface.  

The above two sections show that the APS film on the surface is more stable in the 

distilled water compared with in the acidic aqueous phosphate buffer, although the 

–NH2 groups are protonated by the hydrogen bond. In this continued study, the 

titanium sample with the APS film was immersed in the phosphate buffer, pH 10 for 72 

hours to study the stability. Figure 4. 16 shows the water contact angles of the sample 

immersed in an alkali solution. The water contact angle of the sample decreases slowly 

to 58.1° from 68.3° with increasing immersion time. According to the results of the IR 

spectra of the APS film (Figure 4. 17A), the intensity of –Si-O-Si- stretching modes 

reduces with increasing immersion time, which indicates that the –Si-O-Si- bond is 

also easily hydrolyzed in the alkali condition. Up to 48 hours of the immersion time, 

the free –NH2 functional groups maintain on the APS film due to peak at 1598 cm-1. 

 

Figure 4. 16 Water contact angles of the APS film in the phosphate buffer, pH 10 vs. time (n=6). 
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Further immersion up to 72 hours leads to the formation of a small shoulder at 1671 

cm-1 on the IR spectrum, which is assigned for –NH3
+ deformation mode and renders 

the APS film disordered, as the positions of νs (CH2) and νa (CH2) at 2860 and 2931 

cm-1, respectively, as shown in Figure 4. 17B.  

  

  

Figure 4. 17 IR spectra of the APS film in the phosphate buffer, pH 10: (A) the Si-O-Si and the NH 
regions (800 – 2000 cm-1); (B) the CH region (2800 – 2950 cm-1). 

In the aqueous solution, the free amine functional groups easily form the -NH3
+, 

leading to the disordered structure in the APS film. In order to avoid the formation of 

the protonated amine groups on the surface, titanium samples with the APS film were 
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stored in a desiccator for 72 hours and the results are shown in Figure 4. 18-4.19. In 

Figure 4. 18, it is noted that the contact angle increases significantly to 102.5° from 

68.1° with increasing storage time, which confirms that the APS film produces a 

hydrophobic surface. Due to the sample stored under vacuum, it is assumed that the 

structure of the APS film is changed with 72 hours in the desiccator.  

 

Figure 4. 18 Water contact angles for the APS film in a desiccator vs. time (n=6). 

Figure 4. 19 shows the IR spectra of titanium samples with the APS film stored in the 

desiccator for 72 hours. The free amine functional groups observed at 1605 cm-1 on the 

IR spectra always exist on the APS film, as shown in Figure 4. 19A. A small shoulder 

peak at 1671 cm-1 is found on the IR spectrum with the immersion time up to 72 hours, 

which is assigned to the –NH3
+. Moreover, the intensity of the Si-O-Si stretching 

vibration is reduced after immersion for 72 hours. It is probably because the water in 

the ambient might protonate the –NH2 groups or hydrolyze the Si-O-Si bonds, 

respectively. Figure 4. 19B reveals that the structure of the APS film is disordered after 

2 to 72 hours in the desiccator, which might result from that the three-carbon chain of 

the APTES molecule shows less interactions in the APS film, leading to the unstable 

structure and further resulting in the increase of the contact angle. 
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Figure 4. 19 IR spectra of the APS film on the titanium surface in the desiccator: (A) the Si-O-Si 
and the NH regions (800 – 2000 cm-1); (B) the CH region (2800 – 2950 cm-1). 

4.1.2.3 Growth behaviour of APTES on self-assembly 

In order to understand the kinetics of silanization of APTES molecules on titanium, the 

growth process of the APS film prepared in anhydrous toluene with 0.2 v% APTES 

was studied from 5 to 960 minutes at 70°C by the contact angle goniometer and AFM. 

Figure 4. 20 shows the water contact angles of different titanium surfaces, including 

pure titanium, oxidized titanium and titanium with the APS film prepared for different 

durations in the solvent. The contact angle of the oxidized titanium decreases to 22° 
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from the pure titanium of 79°, which confirms that a clean titanium surface with TiOH 

is formed after treated by the piranha solution (3:1). When the titanium surface was 

treated in the solvent with APTES up to 120 minutes, the water contact angle of the 

surface rises dramatically to 63°, which indicates that the surface with the APS film 

produces a more hydrophobic surface compared with the oxidized titanium. When the 

immersion time lasts up to 960 minutes, the contact angle of the titanium surface 

trends to be stable around 65°. 

 

Figure 4. 20 Water contact angles of the pure titanium, oxidized titanium and titanium surfaces 
with the APS film for different immersion time (n=6).   

Different durations in the anhydrous toluene with 0.2 v% APTES were used to 

investigate the growth behaviour of the APS film on the titanium surface and the 

topography of each sample measured by AFM is shown in Figure 4. 21. After the 

silanization for 5 minutes, small white specks like islands around ~ 50 nm in diameter 

are observed on the surface. Immersion up to 120 minutes results in that the islands 

grow in size and number on the titanium surface with time. The globular islands then 

agglomerate together when the silanization time lasts up to 960 minutes and the 

surfaces show a patchy dense topography. Table 4. 4 reveals the roughness of different 

surfaces prepared with different conditions. The pure titanium and oxidized titanium 

samples both show relative smooth surfaces with the roughness of 4.22 and 7.67 nm, 

respectively, compared with that with the APS film. When titanium samples were 
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silanized in the solvent, the surface is getting rougher and rougher after 60 minutes. 

However, immersion up to 120 minutes results in a relative smoother surface with the 

roughness of 12.53 nm, which indicates that APS molecules are totally covered on the 

surface. The roughness of the surface then increases dramatically to 33.41 nm until the 

silanization of 960 minutes, which is probably attributed to the agglomeration of 

APTES molecules on the surface. 

Table 4. 4 Surface roughness for different titanium samples by AFM (10 µm ×10 µm) (n=3). 

Samples Surface roughness (nm) 

Pure titanium 4.22±0.9 

Oxidized titanium (TiOH) 7.67±1.2 

5 minutes 9.30±1.4 

10 minutes 11.65±2.1 

30 minutes 17.61±2.9 

60 minutes 19.66±4.0 

120 minutes 12.53±2.2 

360 minutes 16.82±2.6 

600 minutes 21.77±3.1 
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960 minutes 33.41±3.3 

Several things can be noted from the results of the water contact angles and surface 

topography by AFM. First of all, the water contact angle of the surface increases after 

the silanization compared to the TiOH surface, which indicates a general trend towards 

decreasing the wettability by the APTES self-assembly. Secondly, APS molecules 

seem to totally cover on the surface at 70°C in 0.2 v% APTES solvent for 120 minutes. 

The Silanization up to 960 minutes at 70°C results in the formation of multilayer on 

the surface, which might cause that the APS film is not stable. Finally, from AFM 

images the growth behaviour of the APS film on the surface is the formation of islands 

first, and then each island as a centre extends and links each other to form the layer. 
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Figure 4. 21 AFM images of the APS film on titanium surfaces prepared in the anhydrous toluene with 0.2 v% APTES at 70°C for different immersion times, 
scan size 10 µm × 10 µm. 

5 mins 10 mins 30 mins 60 mins 

120 mins 360 mins 600 mins 960 mins 
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To further clarify the growth behaviour of the APS film on the surface, the APS film 

silanized for 5 minutes at 70°C was investigated by AFM and the topography of the 

surface is shown in Figure 4. 22. From the line measurement by AFM the height of 

islands is about 3.5 and 5 nm, respectively. According to the length of one APTES 

molecule (1.1 nm), the islands as shown are composed of 3 ~ 5 molecules on the 

vertical direction. It means that APS molecules cross-link to form the oligomer first in 

the solvent and then attach on the surface by the Si-O-Ti covalently bond. Apart from 

the humidity in the ambient during the silanization, the higher temperature leads to the 

molecular cross-linking, which probably accelerates the reaction rates including 

hydrolyzation and condensation of APTES molecules in the solvent. Therefore, lower 

temperature should be better for the silanization to obtain a well-ordered structure of the 

APS film on the surface. 

 

 

Figure 4. 22 AFM image of the APS film prepared in the anhydrous toluene with 0.2 v% APTES for 
5 minutes at 70°C (top) and line measurement by AFM (bottom). Scan size: 5 µm × 5 µm.  
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4.1.2.4 Effect of silanization temperature on self-assembly 

The results from the above experiments show the APS film contains multiple layers 

instead of monolayer. Even at the beginning of the silanization, the polysiloxane can be 

happened at higher temperature. In order to prepare a relatively thin and ordered 

molecular layer on the surface, the effect of temperature was investigated in the 

following experiments. The oxidized titanium samples were prepared in anhydrous 

toluene with 0.2 v% APTES for 16 hours at 30, 40, 50, 60 and 70°C, respectively. 

 

Figure 4. 23 Water contact angles for the APS film prepared for 16 hours at different temperatures 
(n=6). 

The water contact angles of titanium surfaces with the APS film prepared at different 

temperatures are shown in Figure 4. 23. When the temperatures decreases from 70 to 

30°C, the value of contact angles drops slightly from 68° to 60°. Figure 4. 24 shows the 

temperature dependence of the IR spectra of the APS film on titanium. The peaks at 

1592-1603 cm-1 on the IR spectra of S30 – S70 are assigned to the free amine group 

deformation vibration (Figure 4. 24A). Between 30 – 70°C, the IR spectra in Figure 4. 24B 

shows no remarkable shift of the C-H stretching variations in frequency: ~2850 and 

~2919 cm-1, respectively. This indicates that the environment of the propyl segments of 

the APS on titanium is thermally stable during the silanization. However, the intensity 

of the Si-O-Si and the N-H vibration modes on the IR spectra increase with the 

temperature, which implies a thick layer with –NH2 functional groups is formed on the 

titanium surface.   
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Figure 4. 24 IR spectra of the APS film on titanium surfaces prepared at different temperatures: (A) 
the Si-O-Si and the NH regions (800 – 2000 cm-1); (B) the CH region (2800 – 2950 cm-1). 

At a higher temperature, the increase of the collision between molecules in toluene leads 

to an increase of the reaction rate during the silanization, which further accelerate the 

kinetics of the APS growth on titanium. Moreover, as the temperature increases, water is 

able to desorb from the substrate and enter the toluene phase, resulting in the formation 

of polysiloxane. Because of the increased reaction rate, the initial film is formed and 

increased in thickness more quickly. From the intensity of Si-O-Si bond, the films 

created at 70°C were over at least three times as thick as that at 30°C, which implies a 

more aggressive initial deposition. Therefore, the lower temperature will result in the 

formation of a thinner film on titanium. 
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4.1.2.5 Effect of the residual water content in solvent on self-assembly 

As known, the hydrolysis of silane results in the attachment of the APTES to the 

substrate by the formation of Si-OH bonds at the surface. However, it is still debatable 

whether the initial hydrolysis step could occur either in solution or at the substrate 

surface. In order to further clarify this issue, according to the residual water content in 

solvent, two different organic solvents were used in the following experiments: 

anhydrous toluene (99.9+%, Sigma) and hydrous toluene (90%, Sigma). Titanium 

samples were immersed in the 5 ml above mentioned solvents with 0.2 v% APTES, 

respectively for 16 hours at 30°C and analyzed with the contact angle goniometer and 

FTIR immediately after silanization. 

           

Figure 4. 25 Images of the water contact angles for titanium samples with the APS film prepared 
with 0.2 v% APTES in: (a) anhydrous toluene and (b) hydrous toluene. 

Figure 4. 25 shows the water contact angles of APS films prepared in two solvents. 

Sanhydrous has more hydrophilic surface compared with Shydrous with a contact angle of 61° 

and 86°, respectively. Figure 4. 26 shows the IR spectra of APS films on the Ti surfaces. 

The intensity of the Si-O-Si stretching vibration on the IR spectrum of the Shydrous is 

evidently greater than that from the Sanhydrous, which implies the formation of thick 

layers on the Shydrous (Figure 4. 26A). Moreover, due to extra water in the hydrous solvent, 

the -NH3
+ vibrations at 1567 and 1647 cm-1 were observed on the IR spectrum of the 

Shydrous, instead of the –NH2 vibration at 1598 cm-1 on that of the Sanhydrous. Figure 4. 26B 

shows that the APS film on the Shydrous is disordered because of the C-H vibrations at 

2876 and 2933 cm-1 on the spectrum. Therefore, under the hydrous condition, the APS 

film will form a thick layer with disordered structure. 

 

a b 
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Figure 4. 26 IR spectra of the APS film prepared in anhydrous and hydrous toluene, respectively: 
(A) the Si-O-Si and the NH regions (800 – 2000 cm-1); (B) the CH region (2800 – 2950 cm-1). 

According to literature, the residual water content in the solvent must be carefully 

controlled during the silanization. If water comes from the solvent, APTES will easily 

form polysiloxane in the solvent and then form the covalent bond with TiOH on the 

surface, which leads to the formation of disordered thick layers. Due to the rapid 

hydrolysis of APTES in the solvent, it is possible for the -NH2 functional groups to 

partly form –NH3
+ groups with the –OH groups from the silanols, which affects the 

quality of the APS film and its applications. If water comes from the surface, the 

APTES will first be hydrolyzed slowly to form the covalent bond of Si-O-Ti and then 

crosslink between molecules to form the Si-O-Si bond. Therefore, the application of 

anhydrous solvent will result in a relative thin film with the well-ordered structure. 

A 

B 
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4.1.2.6 Thermal stability of the APS film on Ti  

The APS film by self-assembly is widely used for the development of advanced 

materials with a desirable interface. Since substrates with the APS film are applied at 

high temperature (up to 200°C), it is necessary to investigate the thermal stability of the 

APS film, especially for the stabilities of the amine functional group (N-H), the 

crosslinker (Si-O-Si) and covalent bond (Si-O-Ti).  

 

Figure 4. 27 Water contact angles of Ti the APS film in a vacuum oven vs. temperatures (n=6). 

Titanium samples were prepared in anhydrous toluene with 0.2 v% APTES at 30°C for 

16 hours and then heated from 110 to 170°C in a vacuum oven, each time for 30 

minutes. The water contact angles of titanium surface with the APS film treated at 

different temperatures are shown in Figure 4. 27. When the temperature increases to 

130°C, the value of contact angles increases dramatically from 58° to 117°, which is 

assumed that hydrophobic groups (e.g. -CH2-) are probably exposed on the outermost of 

the titanium surface. Figure 4. 28 shows the IR spectra of the APS film on the regions of 

800 – 2500 cm-1 and 2800 – 2950 cm-1. When the temperature increases up to 130°C, 

the peak at 1604 cm-1 assigned the –NH2 vibration is disappeared on the IR spectra 

(Figure 4. 28A), which indicates that the C-N bond is broken. This also confirms that the 

-CH2- functional groups result in the hydrophobic surface after the APS film was treated 

at 130°C. From the IR spectra the intensity of the Si-O-Si vibrations seems not to 

change on the whole experiments, which is assumed that the Si-O-Ti bond is not broken 
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at higher temperatures. The IR spectra in Figure 4. 28B implies that the structure of the 

APS film is disordered after the treatment at 110°C because of the C-H vibrations. 

 

  

Figure 4. 28 IR spectra of the APS film heated in a vacuum oven at different temperatures: (A) the 
Si-O-Si and the NH regions (800 – 2500 cm-1); (B) the CH region (2800 – 2950 cm-1). 

The bonding energy of different bonds in the APS film is shown in Table 4. 5. Among 

these bonds, the weakest one is C-N bond (308 kJ/mol). Since the C-N bond is broken 

since the treatment at 130°C, the -CH2- groups result in the very big hydrophobic angles 

with water. After the temperature increases up to 160°C, the intensity of -CH2- bond 

vibrations is reduced (Table 4. 5), which results from the break of the C-C bond (348 

A 

B 
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kJ/mol). After the treatment at 170°C, Si-O-Ti, Si-O-Si and Si-C bonds only exist on the 

titanium surface due to the stronger bonding energy. 

Table 4. 5 The bonding energy for different bonds in the APS film. 

 N-H C-N C-H C-C Si-C Si-O 

Bonding energy 

(kJ/mol) 
391 308 413 348 418 452 

4.1.2.7 Summary 

In this section, a systematic investigation of silanization of APTES molecules on the 

titanium surface was reported in order to identify the effects of parameters on the 

preparation of the thin and well-ordered APS film with the –NH2 functional groups and 

the relevant information about its stability. Overall, the results that adequate control of 

reaction conditions was important to obtain a desirable titanium surface by APTES. 

IR spectra and water contact angles reveal the structure of the APS film deposited from 

toluene is largely influenced by the APTES concentration, temperature and residual 

water content in the solvent. The APTES concentration had a great influence on the 

structure of the APS film. The films formed at a concentration > 0.5 v%, show 

protonated –NH3
+ groups on the titanium surface, while the internal loop of APTES is 

possibly formed on the surface when the concentration is lower than 0.1 v%. The film 

quality did not show strong temperature dependence. As compared to the APS film 

prepared at 70°C, the film prepared at 30°C was thinner because of the intensity of the 

Si-O-Si bonds on the IR spectra. The system with anhydrous toluene as the solvent 

produced well-ordered and thin film with primary amine functional groups. Therefore, 

under current laboratory conditions, the well-ordered and thin APS film on the surface 

was produced using an anhydrous toluene of 0.1~0.5 v% APTES at 30°C for 16 hours. 

For the stability of the APS film, titanium samples in aqueous solutions lead to 

hydrolysis of the film. The Si-O-Si bond is easily hydrolyzed to form HO-Si- in hydrous 

solutions (the acid or alkali solutions), even quicker in the acid solution. Thus, 
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compared with that in the alkali aqueous solution, the APS film is less stable in the 

acidic solution as the Si-O-Si bonds keep the stability of the film. Moreover, under the 

acidic conditions, the -NH2 functional groups trends to form protonated –NH3
+ groups, 

instead of the free amine groups in alkali solution. Moreover, the formation of the 

–NH3
+ groups in acidic solution leads to the disordered structure of the APS film, 

because of the internal loop on the surface. Under dry condition (desiccator), although 

there is no hydrolysis in the ambient, the APS film is still unstable due to the weak 

interactions between chains, and easily form cyclic and inner complexes, leading to the 

formation of the disordered structure of the APS film. 

Further investigation of the thermal stability of the APS film in the vacuum oven from 

110 to 170°C, clearly shows that the N-H and C-C bonds are broken at 130 and 160°C, 

respectively. The Si-O-Si and Si-O-Ti bonds are stable after the treatment at 170°C. 

Therefore, the film with –NH2 functional groups on the titanium surface has a poor 

thermal stability. 

4.2 Bioactivity of titanium with the APS film 

HA coating on titanium is traditionally applied to improve the bioactivity of 

titanium-based implants. The existing coating methods used mainly suffer from high 

processing temperatures. The biomimetic approach of HA deposition is one of the 

methods that can promote the disadvantage of titanium as implant. Therefore, surface 

functionalization with self-assembling film has gained interest. So far, the inducibility 

of calcium phosphate (CaP) by self-assembly films with different functional groups has 

been studied to improve the biocompatibility of the implant surface. For example, 

Majewski and Allidi found that the –SOOH functionalized film showed the better 

inducibility of CaP compared with the –NH2 and –SH functionalized films [Majewski 

2006]. Zhu et al. reported that the film with the -OH group shows the best inducibility 

of CaP [Zhu 2002]. However, it is still a debate whether the film with -NH2 functional 

group can induce calcium phosphate. Toworfe et al. reported that the -NH2 functional 

group has inducibility of CaP in the SBF, pH 7.4 [Toworfe 2006]. Zhu et al. observed 

that the -NH2 functional group cannot induce CaP in the SBF, pH 7.2 ~ 7.4, whereas it 
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can do in the SBF, pH 7.6 [Zhu 2004]. Therefore, extensive research is still being 

carried out in this field to improve the inducibility of CaP by the amine functional group 

on titanium surfaces. 

In this study, the deposition of calcium phosphate was investigated on the surfaces of 

TiOx and Ti with the amine group in the Simulated Body Fluid (SBF) solution to clarify 

whether the –NH2 functional group can induce calcium phosphate. The reason to choose 

SBF rather than other calcium phosphate solution is that the composition of SBF is 

similar to that of human blood plasma. Therefore, the structure of the precipitation on 

the surface would be close to biological apatite in human bone. Scanning electron 

microscopy (SEM) analysis was performed for imaging and morphology of the surface. 

X-ray diffraction (XRD) and FTIR were performed for structural characterisations of 

titanium samples. 

Titanium substrates that were chemically oxidized in the Piranha solution (H2SO4: 

H2O2= 3:1) were chosen as the control samples. The samples with the –NH2 functional 

groups were prepared in anhydrous toluene with 0.2 v% APTES for 16 hours at 30°C, 

and then placed upside up in the SBF, pH 7.45 for 10 days in an incubator at 37°C, as 

shown in Figure 4. 29. Once the substrates were removed from the solution, they were 

washed gently with distilled water for 3 times and dried at 100°C for 30 minutes for 

further analysis. 

                        

Figure 4. 29 Schematic diagram of the titanium sample with the APS film placed in the SBF. 

Figure 4. 30 shows the surface morphology of the samples after 10 days immersion in 

SBF. Micro-sized global particles of ~ 3 µm covered on the surface of TiOx (Figure 4. 

30A), but the spheres are not densely covering the surface and the underlying titanium 

substrate can also be observed in some areas between the spheres. In comparison, a 

    
Titanium sample 

APS film 
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dense film has homogenously covered the surface with the -NH2 group, shown in Figure 

4. 30B. The precipitate consists of a complete sublayer and a partial top layer. The 

spherical structure on the top layer is similar to those observed in case of TiOx. The 

cracks in the sublayer as shown in Figure 4. 30B, might be caused by the rapid drying of 

the layer during evacuation of the sample chamber of the SEM.  

 

 

Figure 4. 30 SEM micrographs showing Ca-P precipitates on oxidized titanium (A) and titanium 
with the APS film (B) after immersion for 10 days immersion in SBF, pH 7.45 at 37°C. 

The crystallinity of the precipitate was investigated by XRD after 10 days immersion in 

SBF. Figure 4. 31 shows the evolution of XRD analysis of titanium samples placed in the 

SBF from 25° to 37° at 2θ. Diffraction peaks are noted and the corresponding phases 

have been identified. It is important to note that the main CaP phase on the surfaces is 

hydroxyapatite (Ca10(PO4)6(OH)2, HA) at 26° and 32°, respectively. The higher XRD 

peaks of HA on the XRD spectra reveal that a relatively larger quantity of HA particles 

A 

B 

        10 µm 

        10 µm 
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formed on the surface with the APS film compared to that on the TiOx surface. The 

broad HA peaks indicate very small crystal size and/or the amorphous structure. 

Therefore, the XRD profiles show the poor crystalline phases of HA formed on the 

titanium surface.  

 

Figure 4. 31 XRD patterns on TiOx and Ti with the APS film surfaces immersed in SBF, pH 7.45 for 
10 days at 37°C. The HA and Ti mark represent the intensity of the HA and titanium, respectively. 

The existence of the apatite phase in the precipitate is normally indicated by the 

presence of different IR vibrational modes of phosphate ions. Figure 4. 32 presents the IR 

spectrum of calcium phosphate precipitate in the 400-4000 cm-1 regions after immersion 

in the SBF for 10 days at 37°C. According to the reference [Socrates 1980], two sharp 

bonds of phosphate (P-O) groups are observed at 560 and 598 cm-1 due to the vibration 

of P-O from -(HO)P=O and a weaker band at 871 cm-1 is due to P-O-C stretching. A 

sharp intense band at 1020 cm-1 and a shoulder band of P=O at 1112 cm-1 might result 

from the P-O stretching from –(OH)P=O. Two bands at 1416 and 1450 cm-1 are 

assigned for the C-O stretching, which might be due to precipitation of carbonate ions 

from the simulated body fluid. The P-O and C-O bonds reveal that the surface 

comprises of carbonated HA. One broad O-H bonds in the high-energy region at 3350 

cm-1 is indicative of adsorbed water on the Ca-P complex. 
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Figure 4. 32 IR spectrum of the Ca-P coating on titanium with the APS film after immersion in SBF, 
pH 7.45 for 10 days in the 400 – 4000 cm-1.  

The results from SEM, XRD and FTIR seem to confirm that the titanium samples with 

the –NH2 functional groups greatly enhance the nucleation and growth of calcium 

phosphate phases in a one-step nucleation process, compared with TiOx. The positively 

charged (-NH3
+) functional groups firstly extract PO4

3- ions by the APS film and then 

adsorb Ca2+ ions in the SBF in vitro processes of calcium phosphate deposition. 

However, the SBF solutions both showed the precipitate after the immersion, although 

the control SBF solution without sample was still clearly. As well-known, homogeneous 

nucleation can occur in unstable calcium phosphate solution, which means that there are 

no special objects inside. In other words, it occurs only in solution. Therefore, it is 

suspected that the CaP precipitate probably occurs in the SBF saturated solution and 

then deposit on the surface due to the gravitation. In order to avoid above nucleation 

process, titanium samples were hung in the SBF instead of upside up in the following 

experiments.  

4.2.1 Formation of CaP on TiOx and Ti with –NH2 

Although the SBF solution is commonly used in vitro to evaluate the biocompatibility of 

biomaterials, 1.5 SBF solution which contains 1.5 times ions concentrations than that in 

SBF, is also applied in many researches in order to shorten the time of nucleation time. 
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In order to clarify whether the –NH2 functional groups can induce calcium phosphate 

precipitate, TiOx and Ti with the –NH2 group were hanged in the SBF and 1.5 SBF 

solutions, respectively, pH 7.45 for 5 days at 37°C, as shown in Figure 4. 33. Samples 

were then washed with distilled water and dried at oven for 30 minutes. The CaP 

precipitates on the surfaces were characterized by SEM with EDX. 

 

Figure 4. 33 Schematic diagram of the titanium sample with the APS film placed in the solution. 

Figure 4. 34A and C show the surface morphologies and EDX profiles of TiOx after 

immersing in the SBF and 1.5 SBF in the incubator at 37°C for 5 days, respectively. On 

the surface of TiOx, homogeneous fine particles (Figure 4. 34A) and a dense film (Figure 

4. 34C) were uniformly formed in the SBF and 1.5 SBF, respectively. Table 4. 6 

summarised the EDX elemental quantitative information (atomic %) of each specimen 

after the SBF and 1.5 SBF immersions for the surface of TiOx. To determine which 

phase of CaP has formed, the Ca/P ratio was measured at several locations by EDX and 

the values were averaged. The atomic percents of P and Ca from the TiOx surface 

immersed in the 1.5 SBF are over twice than those in the SBF, and the ratio of Ca to P in 

the 1.5 SBF (1.22) is slightly higher than that in the SBF (1.16). This is due to that the 

higher ionic concentrations in the 1.5 SBF can accelerate the formation of calcium 

phosphate. The oxidized titanium surface normally can supply the negatively charged 

-OH groups, which initially combined with Ca2+ ions to form calcium titanate, and then 

attract PO4
3- ions to form an apatite nucleus. Once the apatite nuclei were formed, they 

spread out spontaneously and form the CaP layer on the surface.  
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Table 4. 6 Surface compositions of TiOx and titanium with the APS film immersed in the SBF and 
1.5 SBF, respectively, for 5 days by EDX elemental quantitative measurement (n=3). 

SBF (atomic %) 1.5 SBF (atomic %) 
 

TiO x APS film/Ti TiO x APS film/Ti 

C 0.32 3.11 - 3.61 

O 66.36 66.67 64.60 66.38 

Na - - - 0.22 

Mg 0.58 - 1.02 - 

Si - 0.54 - 0.51 

P 3.46 - 7.24 - 

Ca 4.16 - 8.80 0.04 

Cl - - - 0.43 

Ti 21.74 29.58 18.34 28.92 

Ca/P 1.16 - 1.22 - 

However, the surface with the amine groups seems to inhibit the nucleation and growth 

of HA, according to the results from SEM images and EDX profile, as shown in Figure 4. 

34B and D. It is noticed that the surface morphology in 1.5 SBF does not shown any 

change on inducibility of calcium phosphate. Only small peaks of Ca, Na, Cl were 

found in Figure 4. 34D, which are assumed that small amount of CaCl and NaCl were 

deposited on the surface by the aqueous solution because the 1.5 SBF is super saturated 

solution. After the immersion, the C and Si elements are detected on the titanium 

surface with the APS film according to the EDX results, which indicates that the APS 

film still remains on the surface. However, atomic percents of C and Si in the SBF on 

the surface are very low, 3.11% and 0.54%, respectively, which might be due to the 

hydrolysis of the APS film in the aqueous solution. From above experiments, it is 

concluded that TiOx surface has good inducibility of calcium phosphate, whereas the 

surface modified by the –NH2 group has not that ability at all in SBF, pH 7.45. The 

same experiments were repeated three times and got the same results.  
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Figure 4. 34 SEM images and EDX of CaP deposited on TiOx and titanium with the APS film surfaces after immersed in different solutions, pH 7.45 at 37°C for 5 
days: (A) and (B) in the SBF; (C) and (D) in the 1.5 SBF.
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The above results are totally reversed when samples were placed upside up and hanged 

in the solution. Figure 4. 35 shows obvious difference of titanium surfaces treated by 

different functional groups: Sample A was only oxidized by the Piranha solution 

(H2SO4:H2O2=3:1) for 15 minutes at room temperature (with -OH groups); Sample B 

(with the –OH and –NH2 groups) and C (with the –NH2 groups) were silanized for 5 and 

16 hours, respectively, in anhydrous toluene with 0.2 v% APTES at 30°C. They were 

immersed in SBF, pH 7.45 at 37°C for 5 days. The surface of sample A is fully covered 

by the calcium phosphate after the immersion, and the sample B is partly covered, 

which might result from that the APS film is not completely grown up on the whole 

surface. However, the surface of the sample C is not covered at all. This experiment 

confirms the above conclusion. 

 

Figure 4. 35 The image of titanium samples after immersed in the SBF, pH 7.45 at 37°C for 5 days, 
which were prepared under different conditions: A) oxidation in the piranha solution, B) 
silanization for 5 hours and C) silanization for 16 hours. 

 

4.2.2 Effect of pH in SBF on the deposition of CaP 

From literature, people reported that the positively charged amine group can induce 

calcium phosphate in unstable solution, whereas the negatively charged hydroxyl group 

cannot [Zhu 2004]. It is well-known that the stability of solutions deeply depends on pH 

Calcium phosphate 

Ti 
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values if other factors (temperature, ionic concentration, etc.) are fixed. Therefore, the 

effect of pH value in the SBF on the inducibility of calcium phosphate by the amine 

functional group was investigated in the following experiments. The oxidized titanium 

and Ti with the –NH2 group samples were hanged in the SBF with a pH value of 7.0, 

7.45 and 7.98 at 37°C for 5 days, respectively and SEM images are shown in Figure 4. 

36A-F. Clearly, TiOx samples show uniform precipitate particles on the surface (Figure 4. 

36A-C). The particle size of calcium phosphate induced by TiOx is increasing with the 

increase of pH value in the solution. This is probably due to homogeneous nucleation in 

the saturated solution. Apart from the calcium phosphate, magnesium phosphate was 

formed on the surface as well, according to the EDX elemental quantitative (Table 4. 7). 

The ratio of Ca/P deposited increases from 1.10 to 1.41, which is close to that of HA 

(Ca/P: 1.67). This is due to that higher pH value in the SBF can accelerate the formation 

of CaP on the surface.  

Figure 4. 36D-E do not show any calcium phosphate precipitates on the surfaces for the 

titanium sample with the amine group, and Figure 4. 36F shows very tiny depositions 

including CaP, MgCl, NaCl, etc. according to EDX file. SEM images and EDX results 

both confirm that pH value can influence CaP deposition behaviours on the surface and 

in the solution, but it cannot change the behaviour on the surface with the amine group. 

There are probably two reasons to cause these phenomena: one is that the –NH2 group 

cannot extract the negatively charged PO4
3- ions in the SBF, like neutral groups (e.g. 

–CH3 and –CH=CH2) inhibit nucleation and growth of CaP. Another reason is that the 

interaction between –NH3
+ and PO4

3- is too weaker to produce calcium phosphate nuclei 

on the surface. On other words, the nuclei are easily dropped off from the surface. On 

the other hand, due to the presence of residual Si element in EDX profile, it is necessary 

to investigate the hydrolysis stability of the APS film in SBF.
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Figure 4. 36 SEM images of CaP deposited on TiOx (above) and titanium with the APS film surfaces (bottom) after immersed for 5 days at 37°C in the SBF at 
different pH values: (A) and (D) at pH 7.0; (B) and (E) at pH 7.45; (C) and (F) at pH 7.98.
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Table 4. 7 Surface compositions (atomic %) of TiOx and titanium with the APS film after the SBF 
immersions at different pH for 5 days by EDX elemental quantitative measurement (n=3). 

SBF, pH 7.00 

 (atomic %) 

SBF, pH 7.45 (%) 

(atomic %) 

SBF, pH 7.98 (%) 

(atomic %) 
 

TiO x APS film/Ti  TiO x APS film/Ti  TiO x APS film/Ti  

C 0.84 3.06 0.16 2.92 - 2.15 

O 66.13 65.73 65.77 66.35 63.50 65.94 

Na - - - - 0.29 0.10 

Mg 0.29 - 0.83 - 0.85 0.17 

Si - 0.50 - 0.51 - 0.50 

P 2.34 - 5.39 - 9.04 0.85 

Ca 2.58 - 6.33 - 12.74 0.92 

Cl - - - - - 0.11 

Ti 27.82 30.71 20.88 30.22 13.58 29.02 

Ca/P 1.10 - 1.17 - 1.41 1.08 

4.2.3 Hydrolysis stability of the APS film in SBF 

In order to study the hydrolysis behaviour of the APS film and the protonation of the 

–NH2 functional group in the aqueous solution, titanium samples with the APS film 

were placed in the SBF, pH 7.45 at room temperature up to 72 hours. Contact angle 

goniometry and FTIR were preformed for the characterization of the surface at 

immersion time of 2, 18, 30, 48 and 72 hours, respectively. The decrease of water 

contact angles to 53° from 67° and the IR intensity of the Si-O-Si bond (Figure 4. 38A), 

both imply that the hydrolysis of the APS film occurs on the surface, because the 

hydroxyl group is more hydrophilic than the amine group. Due to the hydrolysis of the 

Si-O-Si bond, the molecule with the –NH2 group is continuously dropping off from the 

surface, which is probably a reason that the –NH2 group fails to form CaP precipitate in 

SBF solution. 
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Figure 4. 37 Water contact angles of the APS film on titanium in the SBF, pH 7.45 vs. time (n=6). 

In the N-H region of the IR spectra, two peaks at 1557 and 1646 cm-1 assigned for the 

vibration of the -NH3
+ and one peak at 1603 cm-1 assigned for the deformation of the 

free –NH2, are observed in Figure 4. 38A when samples were immersed up to 48 hours. 

Due to 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) as buffer agent in 

the SBF, the –SOOH functional group in HEPES molecule will attract with the –NH2 

group by the hydrogen bond: -NH2HOOS-, as shown in Equation 4.2, which results in 

the vibration of the –NH3
+ on the spectra.  

-NH2 + HOOS-           -NH2···HOOS-          -NH3
+···-OOS-  (Equation 4. 2) 

However, the position of the N-H deformation is primarily at 1603 cm-1 on the IR 

spectrum of the sample immersed in the SBF up to 72 hours. This is probably due to 

that the –NH2 converting into –NH3
+ alters pH value of the solution with time and 

HEPES as buffer agent needs release H+ to keep the pH value in the solution, which 

leads to the convert of the –NH2 from positively charged –NH3
+. Therefore, the neutral 

–NH2 functional groups still exist on the surface in the SBF after the immersion up to 

72 hours, which will be another reason that the free amine group cannot attract the 

negative PO4
3- ions in the solution. On the other hand, the structure of the APS film on 

the surface is disordered after 72 hours, as shown in Figure 4. 38B, as the positions of the 

C-H stretching modes of the alkyl chain are out the range of ~ 2850 and ~ 2918 cm-1. 

The disordered structure of the APS film might form the inter-loop structure, which 
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results in that the hydrophobic group (e.g. –CH2-) is exposed in the solution and further 

causes the failure of the inducibility of CaP. 

  

  

Figure 4. 38 IR spectra of the titanium surface with the APS film in the SBF, pH 7.45: (A) the 
Si-O-Si and the NH regions (800 – 2000 cm-1); (B) the CH region (2800 – 2950 cm-1). 

4.2.4 Summary 

Although many research have been carried out on the HA coating on titanium surface by 

biomimetic method, the reported data are opposite and many disputes exist in the 

nucleation and growth of HA. The reason is that the HA coating through biomimetic 
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method is highly condition-dependant and a slight change in the experimental condition 

could result in substantial difference. Therefore, a systematic investigation of titanium 

sample with the APS film was studied in order to identify the inducibility of CaP by the 

–NH2 functional group in the simulated body fluid.  

SEM images and XRD results reveal that the HA film on the TiOx surface consists of 

spherical structures with flake-type crystals covering the surface of spheres because of 

the natively charged Ti-OH groups, but it shows poor crystalline. Higher ions 

concentration in the solution can accelerate nucleation and growth of HA on the surface. 

The deposition of HA was formed on the amine functionalized surface due to the 

homogenous nucleation. However, HA precipitate cannot be induced on the surface by 

the –NH2 functional group, even in SBF with higher pH value. This might be because 

the APS film is continuously hydrolyzed in the SBF. According the IR spectra, the –NH2 

functional group is partly neutral after the immersion up to 72 hours, which can refuse 

attract any ions in the solution. Other reason is the exposure of the hydrophobic –CH2- 

group in the SBF due to the disordered structure of the APS film.  

4.3 Activity assay of laccase by UV-VIS 

spectrophotometer 

Self-assembled materials are applied for the preparation of surfaces for protein and 

devices for nanoelectronics to strategies for biomimetic material synthesis. The 

self-assembled film with the –NH2 functional group is able to capture CO2 by covalent 

bond (-NH-C(O)-) to reduce the influence of global warming of the planet, and also to 

immobilize proteins (e.g. growth factors and antibody) to promote cell adhesion on the 

material surface or/and to heal the sick tissue. Due to the excellent functional properties, 

enzyme as a special protein is able to catalyse a substrate efficiently and then convert 

chemical to electrical energy. Oliveira et al. reported the immobilization of glucose 

oxidase and horseradish peroxidase by APTES and ascorbic acid on the titanium dioxide 

surface [Oliveira 2007], which is assumed to be the anodic electrode. Laccase as a 

multi-copper oxidase is applied in the wastewater treatment, biosensor monitoring as 

well as biofuel cell since it can receive 4 electrons to reduce O2 to water. However, the 
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laccase (Lac) after immobilization can easily lose the activity due to change of the 

structure of the active site. There is no report about the Lac immobilized by APTES on 

the titanium-based electrode as cathode.  

Our present investigation was designed to optimize the conditions of the immobilization 

of laccase on the surface with the APS film by carbodiimide method (EDC/NHS) to 

obtain the maximum activity compared with the native Lac. Particularly, the study was 

focused on the effects of the immobilization time, the molar ratio of EDC/NHS and pH 

value in the solution during immobilization on the Lac activity. Furthermore, effects of 

pH value and temperature in solution with substrate, and determination of the kinetic 

parameter (Km) were investigated on the immobilized Lac on the surface. Finally, the 

stability in dry condition and aqueous solutions with pH value from 3 to 8 were studies 

to evaluate the possible effects of ambient on the activity of immobilized Lac.  

4.3.1 Conformation of immobilized Lac on Ti with the APS 

film 

The titanium samples with the APS film were prepared in 5 ml anhydrous toluene with 

0.2 v% APTES at 30°C for 16 hours, and then immersed in 1 ml mixture solution 

including 200µl of 5 mM EDC, 5 mM NHS and 10 mg/L Lac, and 400µl of HEPES 

buffer, pH 7 in a clean vial in a refrigerator at 4°C for 8 hours, which was described in 

Chapter 3.1.3. Finally they were washed with the citrate buffer, pH 4.5 for three times to 

remove physisorbed Lac and dried very gently under argon, then analysed immediately.  

Contact angles measurements were carried out to clarify the change of the chemical 

components on the surface using the sessile drop method. The water angle is reduced 

from 58° to 37° after the immobilization, as shown in Figure 4. 39, which is due to plenty 

of hydrophilic groups on the Lac surface. This change indicates that the Lac is 

immobilized on the surface with the APS film by EDC/NHS. 
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Figure 4. 39 Images of water contact angles on the surfaces with the APS film: (a) without Lac; (b) 
with Lac. 

 

 

Figure 4. 40 IR spectra of titanium with the APS film with/without Lac: (A) the Si-O-Si and the NH 
regions (800 – 2000 cm-1); (B) the CH region (2800 – 2950 cm-1). 

A 

B 

a b 
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Figure 4. 40 shows the IR spectra of titanium surfaces with the APS films before and 

after immobilization. The Si-O-Ti band at 936 cm-1 blueshifting (higher wavenumber) to 

944 cm-1, and Si-O-Si band at 1046 and 1136 cm-1 merging to 1101 cm-1 on the IR 

spectra, both result from large molecules immobilized on the top of the film affecting 

the vibration of bonds. The peak at 1603 cm-1 assigned for the N-H deformation from 

free amine functional group, is disappeared and two new peaks are observed on the IR 

spectra after the immobilization: 1515 and 1650 cm-1, as shown in Figure 4. 40A. 

According to IR reference book [Socrates 1980], the former is for C=O stretching and 

the latter is for Amide II band (N-H deformation and C-N stretching vibration), which 

confirm the formation of the amide bond (-NH-C(O)-). The C-H stretching vibrations 

redshifting (lower wavenumber) about 9-16 cm-1 after the Lac immobilization (Figure 4. 

40B), indicates that a new ordered structure is formed on the surface. The contact angles 

and IR spectra both confirm that the Lac has been successfully immobilized on the 

titanium surface with the APS film by EDC/NHS. 

4.3.2 Effect of molar ratio of EDC/NHS on Lac activity 

The above section clearly shows that the Lac is immobilized on the surface with the 

APS film. Next, the activity of Lac was evaluated in 0.1 M citrate buffer, pH 4.50 with 

0.2 mM 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) as substrate by 

UV-VIS spectrophotometer, as described in Chapter 3.2.7.3. Here, it is assumed that the 

quantity of the –NH2 functional groups in the APS film on each titanium sample is same. 

Therefore, the reaction rate of the Lac with ABTS only depends on the quantity of 

immobilized Lac on the surface: the higher reaction rate, the more actively immobilized 

Lac. In the carbodiimide method, EDC as the most useful activator converts the 

carboxyl group into a reactive unstable intermediate first and forms an amine-reactive 

intermediate that quickly reacts with an amino group to form an amide bond. In order to 

avoid reversal reaction of the unstable intermediate, NHS as an activator is normally 

added to convert the unstable to the stable intermediate, which will encourage the 

formation of the amide bond. On the other hand, since EDC and NHS are toxic, the 

higher concentration will lead to the inactivity of the Lac. Therefore, covalent bonding 

reaction depends on the amount of EDC and on the molar ratio of EDC/NHS. 
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Figure 4. 41 Reaction rate (V0) of Lac immobilized on the titanium surface with the APS film in 0.1 
M citrate buffer with 0.2 mM ABTS, pH 4.5 vs. the molar ratio of EDC/NHS (n=3). 

In this study, the Lac was immobilized in the mixture solution, pH 7 with different 

molar ratios of EDC/NHS from 1:3, 1:2, 1:1, 2:1, 3:1 and 4:1, respectively, in the 

refrigerator at 4°C for 8 hours, as shown in Table 3.8. Here, the volumes of EDC and 

NHS used for immobilization are 200 µl, respectively. Figure 4. 41 shows the reaction 

rate of immobilized Lac vs. the molar ratio of EDC/NHS. When the concentration of 

NHS in the solution decreases to 1:1 from 1:3, the reaction rate of the immobilized Lac 

is dramatically decreasing from 5.1 to 3.3 µM/minute. This is mainly due to the failure 

of the formation of the amide bond from the unstable intermediate formed by EDC with 

the carboxyl group. On the other hand, lower concentration of EDC&NHS could also 

result in less active intermediate. When the concentration of EDC increases to 3:1 from 

1:1, the reaction rate rapidly increases to 6.2 µM/minute, which indicates that more Lac 

are immobilized on the surface by EDC/NHS. When the ratio further increases to 4:1, 

the reaction rate slightly increases to 6.5 µM/minute, which believes that the activity of 

immobilized Lac on the surface has achieved maximum. The concentrations of EDC 

and NHS over 30 mM were used for immobilization of Lac, but the activity of Lac 

could not been detected by UV-VIS spectrophotometer, which suggests that higher 

concentration activator can kill laccase during immobilization due to the deformation of 

active site. Therefore, in this experiment, 3:1 (EDC of 15 mM and NHS of 5 mM) is the 

optimum molar ratio of EDC/NHS for the immobilization of Lac on the titanium surface 

with the APS film. 
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4.3.3 Effect of the immobilization time on the activity of Lac 

In order to obtain the maximum activity of Lac on the surface, the effect of the 

immobilization time was investigated in the following experiment. The Lac was 

immobilized in a mixture of EDC/NHS (3:1), pH 7 for 2, 6, 12, 18, 20 and 24 hours, 

respectively at 4°C. The reaction rate of the immobilized Lac vs. immobilization time is 

shown in Figure 4. 42. In the present study, the immobilized Lac exhibits the activity 

with the reaction rate of 1.8 µM/min after the immobilization of 2 hours, and increases 

dramatically until 10 hours, which implies that the enzyme are totally covered on the 

surface. The reaction rate slowly increases to 7.7 µM/min for further immobilization up 

to 20 hours. Further prolonged immobilization time to 24 hours causes the slight reduce 

of the reaction rate. During the process of the immobilization, EDC and NHS are able to 

activate the carboxyl groups from the surface of the enzyme to form the intermediate 

and then form the amide bond with the –NH2 functional groups. If the –NH2 groups are 

from the surface of the Lac, the enzyme could form the multilayer on the titanium 

surface, which might result in that excessive Lac immobilized on the surface leads to 

the lower accessibility of the substrate to the active sites. Therefore, the immobilization 

time of 20 hours is the optimum condition to obtain the maximum activity of Lac 

immobilized on the surface.  

 

Figure 4. 42 Reaction rate (V0) of the immobilized Lac on the titanium surface with the APS film n 
0.1 M citrate buffer with 0.2 mM ABTS, pH 4.5 vs. immobilization time (n=3). 
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4.3.4 Effect of pH on the activity of the immobilized Lac 

As known, the enzyme immobilization will be influenced easily by the ambient, which 

will further affect the enzyme activity. For example, pH value in the solution during the 

immobilization, will affect the structure of the active sites of the enzyme. Moreover, pH 

value will influence the activity of activators (i.e. EDC and NHS). In order to evaluate 

the effect of pH during the immobilization on the activity of Lac, Lac was immobilized 

at 4°C for 20 hours in a mixture of EDC/NHS (3:1) with pH value of 3, 4, 5, 6, 7 and 8, 

respectively and the reaction rate is shown in Figure 4. 43. The reaction rate of Lac 

continuously increases to 7.65 µM/min with the increase of the pH value from 3 to 7, 

which is probably due to that the reaction of NHS-activated molecules with primary 

amines is most efficient at pH 7-8. Another possible reason is that the structure of the 

active site of Lac is changed with higher H+ concentration, which leads to the failure of 

the bonding of the substrate to the active site. However, increasing pH up to 8 results in 

the slight reduction of the reaction rate to 7.16 µM/min, which is possibly due to that the 

activation reaction with EDC is most efficient at pH 3-6. In this study, Lac should be 

immobilized in EDC/NHS (3:1), pH 7 for 20 hours at 4°C to obtain the maximum 

activity of Lac on the titanium surface with the APS film.  

 

Figure 4. 43 Reaction rate (V0) of the immobilized Lac on the titanium surface with the APS film 0.1 
M citrate buffer with 0.2 mM ABTS, pH 4.5 vs. pH during the immobilization (n=3). 
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4.3.5 Optimum pH of the immobilized Lac 

Enzymes as amphoteric molecules include a large number of acid and basic groups on 

their surfaces. The charges on these groups will vary with the pH of environment, which 

will affect the total net charge of the enzymes and their structures, in addition to the 

activity of the catalytic active sites. Therefore, optimization of the working pH for the 

immobilized enzyme is considered to be important because the ability of amino acids 

present at the active sites to interact with the substrate depends on their electrostatic 

state, which in turn depends on the pH of the solution. The Lac was immobilized on the 

titanium surface in the mixture of EDC/NHS (3:1), pH 7 for 20 hours at 4°C and then its 

activity was measured by UV-VIS spectroscopy in 0.1 M citrate buffer with 0.2 mM 

ABTS with the pH range of 2.5 to 6.0 at room temperature.  

Figure 4. 44 shows the variety of the reaction rate of the immobilized Lac with pH value 

in the ABTS solution. It is clearly noticed that the reaction rate of Lac increases to 9.04 

µM/min with the decrease of pH value to 3 in the solution. The pH change in the 

environment will influence the charge and charge distribution on the substrates, 

products and enzyme, which will be further reflected in changes in the binding of the  

 

Figure 4. 44 Reaction rate (V0) of Lac immobilized on the titanium surface with the APS film in 0.1 
M citrate buffer with 0.2 mM ABTS with the pH of 2.5-6 (n=3). 
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substrate, the catalytic efficiency and the amount of active Lac. The effect of pH on the 

maximum velocity (Vmax) of the Lac catalysed reaction may be explained below: 

 E  +  H+       EH+ +  S       EH+S       E  + P  

  (Equation 4. 3) 

In this simple term, it assumes that EH+ is the only active form of the enzyme, which 

believes that all of EH+ bind the substrate to form EH+S for the catalytic reaction.  

[E]0 = [E] + [EH+] + [EH+S]                                    (Equation 4. 4) 

According to Equation 4.3, the rate constants of κ1 and κ2 are written as: 

κ1 = [E][H+] / [EH+]                                           (Equation 4. 5) 

κ2 = [EH+][S] / [EH+S]                                               (Equation 4. 6) 

Substituting Equation 4.5 and 4.6 into Equation 4.3, an expression for [E]0 is shown 

below: 

[E]0 = {κ1[EH+] / [H+]} + [EH+] +{[EH+][S] / κ2} = [EH+]{1 + κ1 / [H
+] + [S] / κ2}              

(Equation 4. 7) 

Substituting Equation 4.7 to the Michaelis-Menten equation to obtain the relationship 

between the maximum rate of the reaction and hydrogen ion concentration, an 

expression is shown below: 

Vmax = κ3 [EH+] = (κ3 [E]0) / {1 + κ1 / [H
+] + [S] / κ2}              (Equation 4. 8)    

According to the Equation 4.8, the maximum velocity of Lac increase with the hydrogen 

κ1 κ2 κ3 

κ-1 κ-2 
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ion concentration increasing, which explains that the decrease of pH value in the ABTS 

solution from 6.0 to 3.0 results in the greater of the reaction rate of Lac. However, 

further decrease of the pH to 2.6 in the solution results in the reduction of the reaction 

rate to 7.74 µM/min. This is probably due to that further decreasing pH value might 

alter the three-dimensional shape of the enzyme, change the ionic form of the active site 

and the activity of the enzyme, and hence change the reaction rate. Therefore, the 

optimum pH for the immobilized Lac on the titanium surface with the APS film at room 

temperature is 3. 

4.3.6 Thermal stability of the immobilized Lac 

The above section clearly shows that pH 3 in the ABTS solution is the optimum pH for 

the immobilized Lac on the titanium surface. In some industrial applications, the 

enzyme will be used at higher temperature. Therefore, it is necessary to investigate the 

thermal stability of the immobilized Lac on the surface. The Lac was immobilized in the 

mixture of EDC/NHS (3:1), pH 7 for 20 hours at 4°C and then the activity of the Lac 

was measured in 0.1 M citrate buffer, pH 3 with 0.2 mM ABTS at the temperature in the 

range of 15, 22, 28, 35, 41, 50 and 55°C, respectively and the results are shown in 

Figure 4. 45. 

 

Figure 4. 45 Reaction rate of the Lac immobilized on the titanium surface with the APS film in 0.1 
M citrate buffer with 0.2 mM ABTS, pH 3 at temperatures from 15 to 55°C (n=3). 
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Like most chemical reactions, the reaction rate of an enzyme-catalyzed reaction 

increases as the temperature is raised. When temperature is increasing up to 35°C, the 

enzyme activity dramatically gets to the maximum velocity of 11.84 µM/min, which is 

explained by Arrhenius equation [Trevan 1980]: 

ln (k) = ln (A) – (Ea / RT)                                      (Equation 4. 9) 

where k is the rate constant of chemical reactions, R is the gas constant, T is the 

temperature, A is the frequency factor and Ea is the activation energy. 

According to Equation 4.9, when the temperature (T) is increasing, the rate constant (k) 

is getting greater, which indicates that the reaction rate of the chemical reaction is 

increasing. In the case of enzymatic reactions, every five degree centigrade rise in 

temperature from 15 to 35 °C will increase the activity of most enzymes by 50 to 100%, 

as shown in Figure 4. 45. Normally, at low temperatures the rate of enzyme reaction is 

very slow. An increase in temperature increases the enzyme activity since the molecules 

now possess greater kinetic energy. Moreover, the collisions between enzyme and 

substrate on the surface are more frequent at higher temperature, which leads to the 

increase of the reaction rate of Lac.  

However, further increase of temperature up to 55°C leads to abruptly decline of the 

reaction rate of the Lac to 5.33 µM/min, which indicates that higher temperatures results 

in the loss of Lac activity due to denaturation or unfolding. Since the Lac molecules will 

obtain too much kinetic energy when the temperature is increased too high, the increase 

in collisions between molecules could result in break or disrupt the chemical bond 

between the Lac and substrate. This might cause the change of shape of active site of 

the Lac, which indicates that the Lac is unable to combine with the substrate molecules. 

Therefore, the Lac become denatured and is inactive. Once the Lac has become 

denatured, the reaction rate would decrease as the activation energy has not been 

lowered. Therefore, the optimum temperature for the maximum velocity of the 

immobilized Lac on the titanium surface is 37~40°C. 
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4.3.7 Determination of the kinetic parameters (Vmax and Km) 

Characterization of an enzyme usually includes determination of the maximum activity 

velocity (Vmax) and of the Michaelis-Menten constant (Km) for a substrate. They are the 

most important parameters to describe the kinetics of enzymes, which indicates how 

enzymes work together with substrate. In this study, the Vmax and Km of the immobilized 

Lac with ABTS as substrate were measured at room temperature by UV-VIS 

spectroscopy in 0.1 M citrate buffer of 1 ml, pH 3 with an ABTS concentration of 0.005, 

0.01, 0.04, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 and 0.45 mM, respectively. 

 

 

Figure 4. 46 (A) Plot of the reaction rate (V0) against the ABTS concentration (S); (B) the 
Lineweaver – Burk plot of A. 

A 

B 
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The reaction rate (V0) as a function of the substrate concentration is shown in Figure 4. 

46A. The curve partly obeys the Michaelis-Menten equation compared with the standard 

hyperbolic curve shown in Figure 3.14A. When the ABTS concentration is higher than 

0.3 mM, the reaction rate suddenly decreases, which indicates that a substrate-inhibition 

phenomenon occurs in this system. According to Equation 3.15, the results can be 

converted to the Lineweaver-Burk plot, as shown in Figure 4. 46B. The Km and Vmax 

values of the immobilized Lac on the surface are 0.271 mM and 9.77 µM/min, 

respectively. The immobilized Lac shows 7 times greater on the Km value than the 

native Lac (0.038 mM), which implies that the immobilized Lac shows lower affinity to 

the substrate. It is in agreement with other researchers reporting significant decreases in 

affinity of enzymes after the immobilization. The diffusion resistance might mainly 

cause the increase in Km, because the product accumulates near the Lac surface to an 

undesirable high level, leading to product inhibition for the Lac. On the other hand, the 

enzyme fixed on the surface by the chemical bond, cannot combine randomly with the 

substrate like the native one due to the space conformation. 

4.3.8 Comparison the activity of the Lac immobilized on TiOx 

& Ti with the APS film 

In order to investigate the immobilization behaviour of laccases on TiOx and titanium 

with the APS film, two samples were immersed in the mixture of EDC/NHS (3:1), pH 7 

with Lac at 4°C for 20 hours, respectively and then measured by UV-VIS 

spectrophotometer at room temperature in 0.1 M citrate buffer, pH 3 with 0.2 mM 

ABTS. Figure 4. 47 shows the progress curves of laccase-catalysed reaction within 1 

minute. The slope of the curve of the titanium sample with the APS film is significantly 

greater than that of TiOx. According to Equation 3.6, the reaction rates of Lac are 

calculated: 9.19 and 1.85 µM/min for the activity of Lac immobilized on titanium with 

the APS film and TiOx, respectively, which confirms that the APS film can improve the 

activity of Lac on the titanium surface by the covalent bond. 

Reaction rate (■) = (0.17053-0.005)/(0.5 ×(3.6×104
)×1)= 9.19 µmol/min 

Reaction rate (●) = (0.03446-0.001)/(0.5 ×(3.6×104
)×1)= 1.85 µmol/min 



                                                       Chapter 4 – Experimental Results 

199 

Since TiOx sample can only supply the hydroxyl groups on the surface instead of the 

carboxyl group, the Lac can be immobilized by the hydrogen bond with the amine 

group on the Lac surface (-H2N
+···HO-) rather than the amide bond. Therefore, it leads 

to that the majority of Lac was washed off in the citrate buffer and further results in the 

slow catalysed reaction.   

 

Figure 4. 47 Progress curves of laccase-catalysed reaction in 0.1 M citrate buffer, pH 3 with 0.2 mM 
ABTS on different surfaces. 

4.3.9 Stability of the immobilized Lac 

The main purpose of the immobilization is to improve the re-usability of enzyme as 

catalyst in the application. However, people reported that the immobilized enzymes 

were easily inactive after couples of hours. This is probably due to that the 

immobilization of enzyme on the carrier often limits its freedom to suffer drastic 

conformational changes, thus resulting in the increase of the denaturation. In order to 

investigate the stability of the immobilized Lac, titanium samples with laccase were 

stored in dry and aqueous HEPES buffer with a pH value of 3, 4.5, 6, 7 and 8, 

respectively for 7 days at 4°C to study the stability of the immobilized Lac.  
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Figure 4. 48 The activity of the Lac immobilized on the titanium surface with the APS film in 
different storage conditions at 4°C within 7 days. 

Figure 4. 48 shows the activity of the Lac on titanium in different storage conditions and 

corresponding activity loss within 7 days is shown in Table 4. 8. No matter in dry or 

aqueous conditions, the activity of the Lac at the first day loses faster than that in the 

rest of 6 days. Compared with the Lac in the aqueous solution, the immobilized Lac 

much easier loses the activity in the dry condition. The activity of the Lac decreases 

dramatically to 17% of the initial activity after 2 days and there is almost no activity 

obtained after one week. In the aqueous solution, the activity loss of the Lac slows 

down to 41.82% with the increase of the pH value to 7 within 1 week, which indicates 

that the Lac will remain the lower activity in the aqueous solution for the longer 

usability. However, the activity loss of the Lac increases to 46.39% in an aqueous 

solution, which indicates that the OH- ions in the buffer might change the shape of the 

active site, leading to the Lac denature. On the other hand, the amide bond (-C(=O)NH-) 

for the immobilization, might be hydrolyzed in the presence of water. This hydrolysis 

process is faster in the acidic condition, which probably causes that the activity loss of 

the Lac reaches to 83.32% and 77.17% for pH 3 and 4.5, respectively. In this study, the 

optimum condition to store the immobilized laccase is an aqueous solution, pH 7, even 

though Lac only remains 60% of the initial activity.  
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Table 4. 8 Relative activity loss (%) of Lac immobilized on titanium with the APS film in different 
storage conditions for 1 week. 

Relative activity loss (%) 
Storage conditions 

1 day 2 days 5 days 6 days 7 days 

Dry 63.70 83.27 96.44 98.86 99.73 

pH 3 36.23 43.28 59.03 76.76 83.02 

pH 4.5 29.90 45.29 57.74 62.51 77.17 

pH 6 23.95 42.79 53.52 59.11 60.48 

pH 7 17.47 19.77 32.09 40.05 41.82 

pH 8 21.65 23.37 32.13 39.24 46.39 

4.3.10 Summary  

In this section, the activity of the Lac from Trametes versicolor immobilized on the 

titanium surface with the APS film by the covalent bond, was systematically 

investigated by the UV-VIS spectrophotometer. The water contact angles and FTIF 

analyses reveal that the Lac was successfully immobilized on the surface by the 

carbodiimide method. To optimize the condition of the immobilization, the molar ratio 

of EDC/NHS, the immobilization time and pH value in the solution were studied. The 

Lac is immobilized in the mixture of EDC/NHS (3:1), pH 7 at 4°C for 20 hours to get 

the maximum activity. Compared with that on the TiOx, the Lac on titanium with the 

APS film shows the higher activity due to the formation of the amide bond (–C(O)NH-). 

The effects of pH value in the citrate buffer and temperature were studied on the activity 

of the Lac on the surface. The immobilized Lac exhibited the maximal activity at pH 3.0 

compared with the native Lac at pH 4.50, which is due to the formation of [EH+S], 

leading to the increase of the Kcat. The activity of the Lac is lost when the temperature is 

higher than 40°C, which is the same as the native Lac. The Km value of the immobilized 

Lac was 0.271 mM according to the Michaelis - Menten equation, which is much higher 

than that of the native Lac. It confirms that the immobilized Lac has the lower affinity 

towards substrate. Moreover, ABTS as a substrate is an inhibitor to the Lac due to the 

reduction of the activity of the Lac when the concentration of ABTS is greater than 0.3 
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mM. Further investigation of the stability of the immobilized Lac in different storage 

conditions, clearly shows that the Lac is more stable in the HEPES buffer, pH 7.0, 

although the activity of the Lac maintains 60% of the initial activity after one week.   

4.4 Electrochemical behaviours of electrodes with Lac 

immobilized by the APS film 

In Chapter 4.3, the catalysis activity of the immobilized Lac on the titanium surface was 

investigated in the ABTS solution by UV-VIS spectrophotometer. Since the Lac is 

capable of catalytically reducing O2 to H2O by receiving 4 electrons, the catalysis 

activity of the Lac can also be measured by the electrochemistry method. In order to 

investigate the electrochemical behaviours of the immobilized Lac, two different 

electrodes with the APS film were studied in the electrolyte with ABTS: Titanium (Ti) 

and Graphite (G). Titanium dioxide (also named titania, TiO2) is one of the most widely 

used in electrocatalytic application due to its redox selectivity [Ronconi 2001]. For 

example, titania as a semiconductor to sense the amount of oxygen present in an 

atmosphere. Titania can also enhance the efficiency of electrolytic splitting of water into 

hydrogen and oxygen by photocatalysis. Moreover, Ti(IV)/Ti(III) as metal ionic redox 

couple was used as mediator or electron carrier [Chu 2009]. It is well known that 

graphite has good electrical conductivity due to the vast electron delocalization within 

the carbon layers from the Chapter 2.5.2.4. Therefore, it is interesting to compare the 

electrocatalysis activity of the Lac immobilized on Ti and G, respectively.  

According to Chapter 4.3, the Lac was immobilized on electrode in the HEPES buffer 

by EDC/NHS of 3:1, pH 7 for 20 hours at 4°C. Then the electrode with the Lac was 

washed in the citrate buffer, pH 3 for three times to remove the physisorbed Lac. In the 

electrochemical measurement, Ag/AgCl and platinum were used as reference electrode 

(RE) and counter electrode (CE), respectively. According to the result from Figure 4. 46, 

the citrate buffer contains 0.2 mM ABTS is as the electrolyte during electrochemical 

measurements. For titanium electrode, the electrochemical behaviour was studied in the 

citrate buffer with mediator. For the graphite electrode, the direct electron transfer (DET) 

and mediated electron transfer (MET) were investigated for the catalysis activity of the 
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Lac. Particularly, the effects of pH value and temperature, and determination of the 

kinetic parameter (Km) were studied on the activity of the Lac immobilized on G with 

the APS film. Normally, the graphite electrode with the Lac was stored in the HEPES 

buffer, pH 7 at 4°C after the measurement. 

4.4.1 Titanium as electrode 

In order to study the electrochemical behaviour of titanium as electrode, the Fe(CN)6
4-/3- 

redox couple is used as mediator, as shown in Equation 3.18, which is one of the most 

extensively studied redox couples in electrochemistry. Compared with titanium oxide 

electrode (TiOx), the titanium sample after the oxidation was calcined in a furnace 

around 800°C under air to form TiO2 layer on the titanium surface, since TiO2 is a 

well-known semiconductor, which is named TiO2 electrode. The cyclic voltammetry 

experiments of Fe2+/3+ redox couple were performed by placing the TiOx and TiO2 

electrodes in 0.1 M citrate buffer without and with 4 mM Fe(CN)6
3-, respectively under 

the ambient condition by Autolab.  

When TiOx electrode was immersed in the citrate buffer, the cyclic voltammogram 

(solid curve) in Figure 4. 49A only shows the oxidation curve without the reduction one 

(no cathodic current), which indicates that the electron cannot freely transfer through 

the electrode. This is likely due to the inert inhibiting property of the titanium oxide on 

electron transfer through it. Normally, three types of oxides, TiO, Ti2O3 and TiO2 are 

formed on the surface after the oxidation in the Piranha solution and TiO2 is on the 

outermost surface [Liu 2004]. TiO can lose electrons and be oxidized to Ti2O3 and 

further to TiO2, which results in that the electrons move from the WE to the CE when 

the voltage is added to the WE. However, when the voltage is added to the RE, TiO2 on 

the surface can receive electrons and be reduced to Ti2O3 and further to TiO, which 

implies that the electrons cannot transfer through the titanium electrode. Therefore, this 

is no reversible current observed (dash curve in Figure 4. 49A) when the TiOx electrode 

was placed in the citrate buffer with 4 mM Fe(CN)6
3-. 
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Figure 4. 49 Cyclic voltammograms at v = 20 mV/s of titanium-based electrodes in different 
solutions: (A) TiOx and (B) TiO2. 

There is a standard CV curve shown in Figure 4. 49B (solid curve) with anodic and 

cathodic currents, which implies that the electrons can transfer the electrode. However, 

the CV curve (dash curve) of the TiO2 electrode does not exhibit any observable redox 

peaks in the citrate buffer with the redox couple. This might be due to that the electrons 

transfer too slow to occur redox reactions. On the other hand, according to our 

experimental results, the TiO2 electrode that is produced in a furnace around 800°C 

under air, cannot be as a substrate for the formation of the APS film. Therefore, the 

titanium sample treated in the Piranha solution is not suitable for the electrochemistry 

study. 

A 

B 



                                                       Chapter 4 – Experimental Results 

205 

4.4.2 Graphite as electrode 

As known, graphite (G) is a good electrical conductor and can conduct electricity due to 

the vast electron delocalization within the carbon layers. Apart from the good electron 

transferring property, graphite has high chemical stability and mechanical strength. 

Moreover, compared with other electrode (e.g. gold & Pt), the graphite surface is able to 

supply the OH groups and further silanize APTES molecule to form the APS film. 

Figure 3.19 shows the cyclic voltammogram with the oxidation and reduction peaks for 

the graphite electrode in the citrate buffer with 0.4 mM Fe(CN)6
3- and the reduction 

(midpoint) potential of the mediator is 185 mV vs. Ag/AgCl (sat. KCl). Today, many 

researchers have studied graphite as an electrode for the electrochemical applications. 

For example, highly ordered pyrolytic graphite and glassy carbon with carbon 

nanotubes-ionic liquid gel have been studied in the biofuel cells for the physisorbed Lac 

on the catalysis activity, whereas they could not been reusable [Liu 2007; Shleev 2005]. 

So far, there is no report that the Lac is immobilized on graphite with the APS film by 

covalent bond. The following sections are devoted to study electrochemical behaviour 

of the Lac immobilized on graphite. 

According to the preparation methods of the APS film and enzyme immobilization on 

titanium, the APTES molecules were silanized on the graphite surface after the 

oxidation in H2O2 and the Lac was immobilized by the APS film through the peptide 

bond (-C(O)-NH-), which are confirmed by the water contact angle and FTIR. In order 

to investigate the DET of the Lac on graphite, Lac/APS film/G samples were analyzed 

by the Autolab in the citrate buffer under anaerobic and aerobic conditions, respectively. 

For the MET reactions, APS film/G samples were analyzed in the citrate buffer with 0.2 

mM ABTS under the ambient condition to study the electrochemical behaviour. The 

APS film/G and Lac/APS film/G samples were both studied in the 0.2 mM ABTS 

solution under the oxygen-saturated condition by the cyclic voltammetry to clarify the 

catalysis activity of the immobilized Lac. To further clarify the effect of the scan rate, 

pH value and temperature on the catalysis activity of the Lac, Lac/APS film/G samples 

were measured at the scan rate from 10 to 200 mV/s, or at pH of 3 – 7, or at temperature 

of 7 – 62°C, respectively. In the study of the stability of the Lac/APS film/G electrode, 

the samples were stored in the HEPES buffer, pH 7.0 at 4°C for 30 days.  
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4.4.2.1 Confirmation of the Lac on graphite with the APS film 

Like the preparation of the titanium sample, graphite was cut into approximately 10 × 

10 × 1 mm3 square shape from a graphite rod (99%, VWR). After ground and polished, 

the small piece of graphite was immersed in 5 ml H2O2 solution overnight at room 

temperature to form OH groups, and then washed with the distilled water in the 

sonicator for 5 times in order to remove the residue of the hydrogen peroxide. Figure 4. 

50 shows the SEM images of graphite surfaces before and after oxidation. After the 

H2O2 treatment, there are etching pores observed on the surface with the width of ~ 30 

µm, as shown in Figure 4. 50B. 

 

 

Figure 4. 50 SEM images of graphite surfaces: (A) as-received and (B) after the oxidation in H2O2. 

The silanization of APTES molecules on graphite is the same as that on titanium. 

Graphite samples after oxidation were immersed in anhydrous toluene of 5 ml with 0.2 

A 

B 

100 µm 

100 µm 
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v% APETS for 16 hours at 30°C, and then washed with toluene and ethanol for 3 times 

in order to remove the physisorbed APS molecules. For the immobilization of the Lac, 

the APS film/G sample was placed in the mixture of EDC/NHS (3:1) with the Lac at 

4°C for 20 hours and washed with the citrate buffer for three times to remove the 

physisorbed laccase. All of samples were analyzed in a few hours after being washed 

and dried under argon. Figure 4. 51 shows the variation of water contact angles of 

graphite samples. The decrease in the value of the contact angle from 87° ±2.8° for the 

bare graphite to 63°±1.6° for the APS film/G electrode, implies the formation of the 

APS film. In the same way, the contact angle was effectively reduced to 44°±1.5°, 

which indicates the immobilization of the Lac on graphite with the APS film.  

 

            

Figure 4. 51 Images of water contact angles for different graphite surfaces: (a) G after oxidation; (b) 
APS film/G; (c) Lac/ APS film/G. 

Figure 4. 52 shows IR spectra of the APS film/G sample before and after the Lac 

immobilization. Intensities of two peaks at 1049 and 1085 cm-1 assigned for the Si-O-Si 

vibration, reduce after the enzyme immobilization. Moreover, the N-H deformation at 

1606 cm-1 for the free amine functional group disappears on the spectrum of the 

Lac/APS film/G sample and forms two new peaks: 1518 and 1658 cm-1. According to 

IR reference book [Socrates 1980], the former is assigned for the C=O stretching and 

the latter for the Amide II band (N-H deformation and C-N stretching vibration), which 

confirm the formation of the amide bond (-NH-C(O)-). Combined with the C-H 

stretching vibrations red-shift about 30 – 53 cm-1 after the immobilization (Figure 4. 52B), 

all of change mentioned above on the spectra indicates that the Lac is successfully 

immobilized on the graphite surface by the APS film.  

(a) 

a 

b c 
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Figure 4. 52 IR spectra of the APS film/G and Lac/APS film/G samples: (A) the Si-O-Si and the NH 
regions (800 – 2000 cm-1); (B) the C-H region (2800 – 3080 cm-1). 

4.4.2.2 Direct electron transfer measurements 

In order to clarify the working potential range during the measurement, the APS film/G 

electrode was analyzed in the 0.1 M citrate buffer from -0.4 to 1 V vs Ag/AgCl under 

the argon-saturated and oxygen-saturated conditions, respectively and the results are 

shown in Figure 4. 53. Under the oxygen-saturated condition, cyclic voltammogram (red 

curve) is sharply dropping down at the potential from -0.4 to 0 V, which is probably due 

to the adsorption of the plenty of H+ ions on the surface of the APS film/G electrode to 

A 
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form NH3
+ species. From 0.7 to 1 V at the working potential, the curve is obviously 

going up, which assumes that oxygen is adsorbed on the sample surface. Normally, the 

redox potential of the T1 copper of the laccase from T. versicolor is from 0.55 to 0.59 V 

vs. Ag/AgCl [Yaropolov 1994]. Moreover, the redox potential of the mediator - ABTS / 

ABTS+· is 0.185 V vs. Ag/AgCl[Fernandez-Sanchez 2002]. Therefore, the range of the 

working potential for the electrochemistry measurement is from 0.1 to 0.7 V vs. 

Ag/AgCl. 

 

Figure 4. 53 Cyclic voltammograms of the APS film/G electrode in 0.1 M citrate buffer, pH 4.5; scan 
rate – 5 mV/s. 

Figure 4. 54 shows cyclic voltammograms of the Lac/APS film/G electrode in 0.1 M 

citrate buffer at pH 4.5. There is no observed redox peaks on the cyclic voltammogram 

(red curve) under the oxygen-saturated condition. Since the results from Chapter 4.3 by 

the UV-VIS spectroscopy have confirmed that the Lac has catalysis ability, it assumes 

that the structure of the activity site of the Lac immobilized on graphite is changed so 

that the Lac cannot receive electrons to reduce O2 to form water. According to the 

property of the Lac from Chapter 2.4.3.1, the copper T1 receives the electron to transfer 

to the T2/T3 cluster. Therefore, it is assumed that the T1 is far from the surface of the 

graphite electrode and cannot receive electrons. Possible structures of the Lac are shown 

in Figure 4. 55. Therefore, the Lac immobilized by the covalent bond with the APS film, 

cannot show the DET reactions. The following section is the investigation of the MET 

reactions of the Lac immobilized on graphite. 
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Figure 4. 54 Cyclic voltammograms of Lac/APS film/G electrode in 0.1 M citrate buffer, pH 4.5; 
scan rate – 5 mV/s. 

 (A) 

(B) 

Figure 4. 55 Possible structures of the Lac immobilized on the graphite electrode for the direct 
electron transfer. 

Graphite electrode 

Graphite electrode 
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4.4.2.3 ABTS mediated electron transfer measurements 

Since the Lac immobilized on graphite cannot show the DET reaction, a mediator will 

be added in the electrolyte to help transfer the electrons to the Lac. The ABTS is a good 

mediator to exhibit fast electron transfer kinetics between the electrode and laccase, and 

the sketch picture of the reduction of dioxygen to water by the Lac is shown in Figure 

2.41. Since the graphite electrode was linked with the connector from the Autolab by a 

copper wire (shown in Figure 3.22), it is necessary to study the electrochemistry 

behaviour of the APS film/G electrode in the citrate buffer with 0.2 mM ABTS. Figure 4. 

56 shows the CV curve of the graphite electrode with the APS film under the 

argon-saturated condition in the ABTS solution. There are three sharp redox peaks 

observed on the CV of the APTS film/G, whose potentials of 0.345 V (anodic), 0.270 

and 0.297 V (cathodic), respectively, are more negative than that of the ABTS / 

ABTS+· redox couple ( 0.472 V vs Ag/Ag/Cl) [Bourbonnais 1998]. It is assumed that 

these peaks probably originate from the copper wire and reactions are happened as 

below: 

Cu        Cu(І)        Cu(ІІ)                           (Equation 4. 10)  

 

Figure 4. 56 Cyclic voltammogram of the APS film/G electrode under argon atmosphere in 0.1 M 
citrate buffer, pH 4.5 with 0.2 mM ABTS. Scan rate: 10 mV/s. 

-e- 

+e- 

-e- 

+e- 
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Figure 4. 57 shows the effect of the scan rate on the electrochemistry behaviour of the 

APS film/G electrode. The redox potential of the ABTS for the graphite electrode is + 

0.435 V vs. Ag/AgCl, as shown in Figure 4. 57A. Figure 4. 57B shows the linear 

dependence of peak current on square root of the scan rate from 5 to 50 mV/s, which 

indicates that the redox process of the ABTS on the graphite electrode is controlled by 

the mass transport. It indicates that the relatively large mediator molecule can easily 

penetrate the APS film. 

 

  

Figure 4. 57 (A)Cyclic voltammograms of the APS film/G electrode in 0.1 M citrate buffer with 0.2 
mM ABTS, pH 4.5 at various potential scan rates: 50, 20, 10, 5 mV/s. (B) Plot of peak current 
density vs. square root of scan rate under oxygen atmosphere: (●) – anodic current and (■) – 
cathodic current. 
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Figure 4. 58 shows CVs of graphite electrodes in the oxygen-saturated solution 

containing 0.2 mM ABTS. In Figure 4. 58, a pair of redox peaks of the ABTS with the 

redox potential of 0.435 V (vs. Ag/AgCl) is observed on the CV of the APS 

film/graphite electrode. When the Lac is present on the electrode, the cyclic 

voltammogram (red curve) shows a sigmoidal cathodic wave for the catalytic reduction, 

which shows that the reduction peak current clearly increases and the oxidation peak 

current decreases, by comparison with that of the APS film/G electrode (blue curve). 

This process represents a typically electrocatalytic reduction of the oxygen by the Lac, 

which is agreeing with the previously reported results [Liu 2007; Zawisza 2006]. These 

phenomena imply that the Lac has been stably immobilized on the APS film/G electrode 

surface and especially, retains the good catalytic activity. There is a noticeable pair of 

redox peaks on the CV of the Lac/APS film/G electrode at 0.345V (anodic) and 0.273 

(cathodic), which are probably due to free Cu ions from the active site of the 

physisorbed Lac on the electrode. MET measurements confirm that the conformation 

changing of the immobilized Lac on the graphite surface results in no catalysis current 

observed for the DET reaction of the reduction of oxygen. 

 

Figure 4. 58 Cyclic voltammograms of the graphite-based electrodes in 0.1 M citrate buffer with 0.2 
mM ABTS, pH 4.5 under the oxygen-saturated condition. Scan rate: 5 mV/s.  

Figure 4. 59A and B show the CVs of the Lac/APS film/G electrode in 0.1 M citrate 

buffer with 0.2 mM ABTS under argon and oxygen-saturated conditions, respectively at 

different scan rates. In the absence of the Lac, CV curves (Figure 4. 59A) are almost  
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Figure 4. 59 Cyclic voltammograms of 0.2 mM ABTS in 0.1 M citrate buffer solution, pH 4.5 at 
various can rates: 5, 10, 20 and 50 mV/s for Lac/APS film/G electrode: (A) argon-saturated solution; 
(B) oxygen- saturated solution; (C) Plot of the ratio of the cathodic to anodic currents on scan rate 
under oxygen-saturated condition. 
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symmetric with the anodic and cathodic current well developed indicating the mass 

transport controlled process. However, the electrocatalytic reaction is still observed 

immediately after the immersion of the electrode at low scan rate (= 5 mV/s) because 

the solution is not 100% argon-saturated. For the Lac/APS film/G electrode under the 

oxygen-saturated condition, the anodic current is negligible at low scan rate (= 5 mV/s) 

(Figure 4. 59B). At larger scan rates the anodic peak appears due to the diffusion 

controlled oxidation of ABTS. Figure 4. 59C shows the ratio of the cathodic to anodic 

currents with the scan rates from 5 to 200 mV/s. The ratio decreases with the increase of 

the scan rate approaching unity for ν ≤50 mV/s. These experiments indicate that the 

electron transfer from the mediator to the Lac is too slow and time longer than 12 

seconds is required to observe the electrocatalytic process. 

The observed above changes in the cyclic voltammograms can be explained by the 

electrocatalytic reduction of O2 by the Lac in the presence of the mediator. There are 

three steps of the electron transfer during the processes. The first one is the reduction 

reaction of ABTS+·, involving the electrons transferred from the electrode surface to 

ABTS:  

4ABTS+· + 4e-      4ABTS                           (Equation 4. 11) 

At the second step, ABTS is oxidized by the Lac to form ABTS+·. Meanwhile, four 

electrons transfer from ABTS to the T1 centre of the Lac, including the reduction of 

Cu2+ to Cu+. 

Lac4Cu(ІІ) + 4ABTS       4ABTS+· + Lac4Cu(І) + 4e-       (Equation 4. 12) 

Finally, four electrons transfer from the T1 to T2/T3 copper cluster by three-peptide 

linker and Cu+ ion is re-oxidized to Cu2+, and then O2 is reduced to the H2O by the Lac. 

Lac4Cu(І) + O2 + 4H+ + 4e-      2H2O + Lac4Cu(ІІ)          (Equation 4. 13) 

During the redox reactions, the first and third steps are relative fast compared the 
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second one. According to the MET experimental results, the reduction of fully oxidized 

four Cu atoms in the Lac is the slowest reaction in the catalytic cycle. ABTS+· radical is 

produced by the electron transfer to Cu(II) at T1 centre. Next electrons are shuttled to 

T3/T2 trinuclei centres to oxidize remaining part of the enzyme [Lee 2002]. This 

nuclear centre is the binding site of molecular oxygen and the site of its catalytic 

reduction to H2O. The catalytic reaction requires re-oxidation of fully reduced Cu(I) 

atoms in enzyme to regenerate the enzyme. Slow catalytic reaction explains the 

disappearance of cathodic catalytic current at higher scan rates. Therefore, at slow scan 

rates time constant is sufficient to observe the catalytic process and the steady-state 

current is reached. 

4.4.2.4 Effect of temperature on the catalytic activity of the Lac 

In order to study the effect of temperature on the catalytic activity of the Lac, the 

Lac/APS film/G electrode was prepared following the method from Chapter 4.4.2.1 and 

performed in 0.2 mM ABTS solution, pH 4.5 in the water bath of 7 – 62°C under 

oxygen-saturated condition and the results are shown in Figure 4. 60. The catalytic 

ability of the Lac immobilized on graphite dramatically increases with the temperature 

until 19°C. When the temperature increases to 50°C, the reaction rate of the Lac 

increases with the temperature and the Lac immobilized on graphite obviously exhibits 

the maximum ratio of cathode to anodic currents (Figure 4. 60B), which indicates that 

reaction rate of the immobilized laccase obtains maximum. The catalytic ability of the 

Lac decreases suddenly at the temperature above 50°C, which might be due to the 

change of the configuration of the active site at the higher temperature leading to the 

denaturation of the enzyme. In general, the activity of enzymes is strongly dependent on 

the temperature. According to the property of the protein, at the temperature > 60°C, the 

secondary helical structure of the active site in the enzyme will disappear, which leads 

to the failure of the combination of the oxygen with the T2/T3 cluster centre, finally 

resulting in the decay in the catalysis activity. Therefore, the optimum temperature of 

the Lac from T. versicolor immobilized on graphite with the APS film is around 50°C. 
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Figure 4. 60 (A) Cyclic voltammograms of the Lac/APS film/G electrode in 0.1 M citrate buffer with 
0.2 mM ABTS, pH 4.5 under oxygen atmosphere vs. 5 mV/s at different temperature: (a) 7°C, 
(b)14°C, (c) 19°C, (d) 25°C, (e) 30°C, (f) 37°C, (g) 44°C, (h) 52°C, (i) 62°C. (B) Plot of the ratio of 
catalytic current over anodic current for ABTS·+ reduction for the same electrode vs. temperature. 

4.4.2.5 Effect of pH on catalytic activity of the Lac  

One of the most important characteristics of the Lac for the catalytic activity is the pH 

dependence, which can influence the ionization property of active site in enzyme. In 

order to investigate the effect of pH value on the catalytic activity of the Lac, the 

Lac/APS film/G electrode is measured in 0.2 mM ABTS solution over the pH range of 

2.5-5.0 at room temperature under the oxygen-saturated condition and the results are 
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shown in Figure 4. 61. The catalytic current of the Lac is increasing with the decrease of 

the pH value until 3, and then decrease at the pH of 2.5 (Figure 4. 61A). The ratio of 

cathodic to anodic currents with the pH in Figure 4. 61B shows the same trend.  

 

  

Figure 4. 61 (A) Cyclic voltammograms at v = 5 mV/s of the Lac/APS film/G electrode in 0.1 M 
citrate buffer with 0.2 mM ABTS under oxygen atmosphere at various pH values during the 
measurement: (a) 6, (b) 5, (c) 4.5, (d) 3, (e) 2.5. (B) Plot of the ratio of catalytic over anodic currents 
for the same electrode vs. pH. 

In general, the activity of the Lac is contributed by various structural and mechanistic 

factors of enzymes and substrates. According to the result reported by Xu et al., the 

dependence of the enzyme activity on pH is governed by the potential difference 

between redox potential of the Lac and the mediator and OH- inhibition effect [Xu 

1997]. The redox potential of the Lac is normally pH independent [Duran 2004], so the 
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effect of the potential difference is mainly determined by that of the mediator. However, 

the redox potential of ABTS remains constant at the pH range studies 

[Fernandez-Sanchez 2002], which means the formation of ABTS cation radical does not 

involve proton transfer and the redox potential of ABTS is pH independent. Thus the 

effect of the potential difference between redox potential of Lac & mediator is pH 

independent. Therefore, the contribution of the OH- inhibition is dominant over the 

whole pH range. At higher pH range, the OH- will inhibit T2/T3 site of the Lac to bind 

with the substrate, which will cause the descending of the catalytic activity. At lower pH 

range, excessive H+ ions might affect the shape of the active site and the charge property 

of the substrate so that either the substrate cannot bind to the Lac or it cannot undergo 

catalysis. According to the above results, the Lac immobilized on graphite shows the 

maximum catalytic current at pH 3 in the citrate buffer with 0.2 M ABTS. 

4.4.2.6 Calculation of Michaelis-Menten constant (Km) 

Michaelis-Menten constant (Km) is an important parameter in enzyme kinetics, and can 

evaluate the affinity of enzyme bonding with substrate which is related to the catalysis 

ability. The enzyme kinetics of the Lac immobilized on the APS film/G electrode was 

studied at room temperature by UV-VIS spectroscopy in the citrate buffer of 1 ml with 

different ABTS concentrations. The initial reaction velocity as a function of the 

substrate concentration is shown in Figure 4. 62A and the corresponding 

Lineweaver-Burk plot is shown in Figure 4. 62B. There is a dramatic drop of the initial 

velocity when the ABTS concentration is greater than 0.4 mM, which is due to the 

substrate-inhibition phenomenon. According to the Lineweaver-Burk plot in Figure 4. 

62B, Michaelis-Menten parameters Vm and Km are 60.98305 µM/min and 0.146 mM, 

respectively. Actually, the inhibition by ABTS has been observed also with the Lac from 

other origins. Compared with the Km of the native Lac of 0.036 mM, Km of 0.146 mM 

for the immobilized Lac implies that the affinity of the Lac is around 4 times reduced, 

which might be due to the limitation of the diffusion of the immobilized Lac. 
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Figure 4. 62 Initial velocity of the Lac immobilized on the Lac/APS film/G electrode with ABTS 
concentration from 0.005 to 1.0 mM in 0.1 mM citrate buffer, pH 3: (A) points (experimental), line 
(Michaelis-Menten equation). (B) Lineweaver-Burk plot. 

4.4.2.7 Stability of the laccase immobilized on graphite 

To investigate the stability of the Lac on the APS film/G electrode, graphite samples 

were stored in 20 mM HEPES buffer, pH 7 at 4°C before used, and then tested in 0.1 

citrate buffer, pH 3.0 by the cyclic voltammetry method at regular intervals for 30 days. 

Figure 4. 63 shows the plot of the ratio of cathodic and anodic currents with the storage 

time. Within 30 days, the Lac on the electrode still has a good catalytic activity, in 

agreement with the result from Table 4. 9 that shows the graphite electrode still remains 

about 84% of the initial catalytic activity. These imply that the immobilized Lac on the 

APS film/G electrode has good stability.  
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Figure 4. 63 Plot of the ratio of catalytic current over anodic current for the ABTS˙+ reduction on 
Lac/APS film/G immersed in 20 mM HEPES buffer, pH 7 for different durations. 

Table 4. 9 Activity loss of the Lac immobilized on graphite with the APS film stored in 0.2 mM 
HEPES buffer, pH 7 for 30 days. 

 0 d 3 d 7 d 15 d 30 d 

Activity loss  100% 9.43% 11.32% 18.87% 16.98% 

4.4.3 Summary 

In this section, electrochemical behaviours of the Lac immobilized on titanium and 

graphite by the cyclic voltammetry method were investigated, respectively. For titanium 

as electrode, amorphous TiOx film on the surface cannot show the proper electron 

conductivity in the citrate buffer, which might be due to the inert electron transferring 

property. TiO2 film on the titanium surface prepared in the furnace cannot show the 

redox reaction in the citrate buffer with Fe(CN)6
3- as a mediator, which is due to far 

slowness of electron transferring. 

For graphite as electrode, the formation of the amide bond at 1518 and 1650 cm-1 on the 

IR spectrum and changing of the water contact angles, reveal that the Lac was 

successfully immobilized on the graphite surface with the APS film. The direct electron 

transfer reaction was not detected under oxygen-saturated condition, which might result 

from the barrier of the electron transfer between the T1 centre and the electrode surface. 

For the MET reaction with ABTS as a mediator, the catalytic current of the Lac to the 
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oxygen reduction was observed at lower scan rate (≤ 50 mV/s). The optimal temperature 

and pH of the Lac immobilized on graphite were 50°C and 3, respectively. The Km value 

of the immobilized Lac was 0.146 mM, 4 times higher than that free Lac (0.036 mM), 

which shows lower affinity with ABTS. However, the Lac on graphite has a relative 

good stability in HEPES buffer, pH 7 within 30 days. 
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CHAPTER 5  

GENERAL DISCUSSION 

5.1 General issues of self-assembling APTES 

Considering the fact that silane-based SAMs (e.g., Octadecyltrichlorosilane, OTS) 

have been successfully formed on the oxidized Si surfaces and served as model 

systems for many years, but limited work was reported the growth of SAMs on the 

titanium surface, especially for the hydrophilic end group, such as 

3-aminopropyltriethoxysilane (APTES). The APTES as a silane agent can bond 

inorganic materials such as glass and silicon by self-assembly technology with the 

hydroxyl groups, hence it has been used widely for many applications. However, the 

APTES with short chain has less stability in aqueous media and at high temperatures, 

which will influence its applications. Moreover, APTES is an amphiphilic molecule 

after hydrolysis: the -OH group as head group and the –NH2 group as end group, so it 

will form multilayers and/or irregular structure on the surfaces without control, 

although it may be useful for some applications, e.g., the thick APS layers can be 

detrimental if depositing on spatially constrained regions. Therefore, it is very 

important to ensure that APTES deposits a thin and ordered film on the surface. Many 

experimental efforts have been devoted to the growth of silane molecules including the 

APTES molecule, but the results are very patchy, often inconsistent and lack of due 

interpretation, particularly alkylsilane molecules self-assembled on titanium has not 

been well studied before. Therefore, a clear understanding of the important factors 

which influence the growth of APTES on titanium is highly desirable.  

In this project, titanium with the APS film is applied in bio-implant and immobilization 

of enzymes in biofuel cells. Although some experimental efforts have been devoted to 

the inducibility of calcium phosphate (CaP) by the –NH2 functional groups, there is 

still a debate whether the amine group can induce CaP. On the other hand, the –NH2 

functional group can immobilize the enzyme by the covalent bond (-C(O)-NH-). 
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However, the immobilized enzyme can be easily inactive due to the change of the 

configuration, resulting in the short life time. Therefore, it is necessary to investigate 

the ability of catalysis and electrochemistry, and stability of the immobilized enzyme. 

Hence, the main objectives of this study were set: 1) to determine the effects of 

pre-treatment, temperature, molecular concentration and water content in solvent on 

the preparation of the relative thin and ordered APS film on titanium; 2) to evaluate the 

stability of the APS film on titanium in aqueous solutions with different pH values; 3) 

to evaluate the inducibility of calcium phosphate by the –NH2 functional groups in the 

simulated body fluid (SBF); 4) to improve the stability of the immobilized laccase on 

electrode surface; and 5) to improve the ability of electrochemistry of the immobilized 

laccase on graphite. The overall aims are to form well-ordered self-assembling film on 

surface and that the APS film can be successfully applied in bio-implant and bio-fuel 

cells. The general discussion is organised in line with the objectives.  

5.2 Effect of pre-treatment by Piranha solution 

Various titanium surface modification methods have been suggested in literature as a 

beneficial measure to improve its biological applications. In order to obtain clean 

and/or TiOx layer on the surface, the Piranha solution was used. In general, the 

Piranha treatment improves the surface hydrophilicity with a contact angle reduction 

from 78° to 16° (Figure 4.1 and Table 4.1). Advincula et al. have reported similar water 

contact angle of 20° on the Piranha treated Ti layer (with its native oxide) thermally 

evaporated on Si wafers [Advincula 2005]. Moreover, Liu et al. have shown a 

reduction in the water contact angle of titanium substrate from 68° to 40° after the 

Piranha treatment [Liu 2004]. Such reduction can result from the removal of organic 

contaminants and/or an increase in the density of surface hydroxyl groups. Majewski et 

al. have also applied the Piranha treatment on a Ti foil substrate and claim the 

facilitated hydroxylation of the Ti surface without showing supportive data [Majewski 

2006]. 
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However, the Piranha treatment resulted in high surface roughness (Table 4.1), which 

might not be desirable for the formation of a well-ordered self-assembled film for 

laboratory characterisation, though rough surfaces can be desirable for bony tissue 

ingrowth in practical applications. Therefore, reducing temperature or the immersion 

time or changing the concentration of the acid in the Piranha solution can tailor the 

surface roughness, e.g. generating a relatively smooth surface. The AFM images 

(Figure 4.2) show that changing temperature did affect the surface roughness 

significantly and the surface remains quite rough with a local RMS roughness of ~ 

37.71 nm. Moreover, the surface wettability changed slightly from 24° to 16°, which 

might be mainly affected by the surface roughness rather than the chemical component 

on the surface, according to the Wenzel equation.  

Prolonged treatment duration revealed no considerable difference in the local RMS 

roughness of the surfaces of 6.57 ~ 7.26 nm (Table 4.2). This was explained by the fact 

that the Piranha solution is a very strong etching reagent and even with a short 

exposure most of the porous native oxide layer is dissolved. However, a slight increase 

in surface hydrophilicity (Figure 4.4) was observed with prolonged processing 

durations from 5 to 30 minutes, which indicates that prolonged processing exposure to 

the Piranha solution further cleaned the surface without affecting its roughness (Figure 

4.5). 

In order to clarify the roles of H2SO4 and H2O2 in the Piranha solution, respectively, 

different concentrations of solutions were applied for the surface treatment. Water 

contact angles (Figure 4.6) show the Piranha solution has better ability to clean 

titanium surface compared with only H2O2 or H2SO4, respectively. With the increase of 

the concentration of H2SO4, the surface hydrophilicity increases with contact angles of 

45° to 15° (Figure 4.6) and XPS analysis also shows that the level of the carbon 

contamination decreased as well (Figure 4.7 C). Therefore, it is suggested that the role 

of the acid in the solution was to remove the contaminant. XPS spectra (Figure 4.7 Ti2P) 

also show that the Piranha treatment can form an oxide layer, mainly TiO2, and H2O2 

can oxide thoroughly Ti element with higher concentration of H2SO4 in the Piranha 

solution. Therefore, according to the above findings, the acid in the Piranha solution 

can enlarge the oxidation ability of H2O2. 
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However, XPS results show that the amount of surface hydroxyl groups remained 

relatively the same with varying Piranha solutions (Figure 4.7). Therefore, it was 

concluded that the increased hydrophilicity was due to the decontamination – not 

further hydroxylation of the titanium surface. This was further confirmed by water 

contact measurements that showed increased hydrophilicity with the same trend 

observed for the evolution of carbon contamination (Figure 4.6 and 4.7 C). 

5.3 Effect of molecular concentration on growth of the 

APS film 

The adsorption of APTES molecules on the Piranha treated titanium surfaces was 

carried out in the solvent with 1 v% APTES following the preparation conditions of the 

silane-based SAMs on silicon [Zhu 2004]. The strongest cross-linking of Si-O-Si 

stretching and free amine (N-H) deformation peaks were formed in the FTIR spectrum 

(Figure 4.8A), which is in the agreement with the report by other people [Chiang 1980; 

Hooper 2001]. A peak at 940 cm-1 in the spectrum was assigned for the Si-O-Ti 

vibration, which is agreed with the previous report [Matininna 2004]. White and Tripp 

suggested that the peak should be assigned for the Si-OH vibration, which is assumed 

that the hydrolyzed molecules are not crosslinked completely [White 2000]. When the 

APS film on titanium was heated up to 160°C, the intensity of this peak was not 

changed with the increase of the Si-OH groups (Figure 4.28A), which confirms the 

Si-O-Ti bond at 940 cm-1. However, assessment of the APS film order by FTIR (Figure 

4.8B) shows that the film is not well-organized and packed due to the position of the 

C-H vibrations. In order to clarify the above issue, the molecular concentration is 

further discussed below. 

It is well known that the most important driving force of the formation of SAM is the 

chemisorption of the head group to the substrate surface, which are highly affected by 

the molecular concentration and water content in the solvent [Schreiber 2000; Ulman 

1991]. A lot of research has been carried out the effect of molecular concentration on 

the formation of SAMs. For instant, Rozlosnik et al. have shown that the optimum 

OTS concentration is 25 µmM to 2.5 mM (equal to ~ 0.013 v%), as a high solution 
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concentration causes a polymerized but weakly bound film, while a low solution 

concentration would result in a covalently bound monolayer [Rozlosnik 2003]. Other 

people reported that the molecular concentration was around 10 mM (equal to 0.05 v%) 

[Foisner 2003; Wang 2003; Yasseri 2006] for the OTS-based SAMs. However, Hooper 

considered that 0.2 v% was best concentration for the SAMs with APTES on silicon 

[Hooper 2001]. The concentration of 0.5 v% was used for the APTES to form the APS 

film on the titanium surface [Matinlinna 2004; Zhu 2004]. To confirm this, different 

concentration of APTES in the solvent from 0.02 to 3 v% were used for the 

investigation of the formation of a self-assembled film on titanium. The water contact 

angle of APTES-treated surfaces are range from 67 – 90° (Figure 4.9), compared with 

16° for the oxidized titanium. It was discussed that the increased hydrophobicity gives 

information about the surface coverage with the alkyl chain of the APS molecules, 

since head and end groups in the APS molecule are both hydrophilic. Therefore, an 

increase in the surface hydrophobicity can support the assumptions of the disordered 

structure of the APS film on the surface.  

Before the discussion of the effect of molecular concentration, it is necessary to 

identify the chemical reactions during the silanization. According to Chapter 2.3.2.2, 

there are generally three steps: (1) the alkanesilane molecule is hydrolyzed by the 

water which is from in the solvent and/or on the surface; (2) the hydroxyl groups from 

the molecules react with the hydroxyl group from the surface to form the covalent 

bond; (3) the hydrolyzed molecules on the surface condense to crosslink. The 

hydrolysis and condensation process of silane molecules are highly influenced by the 

pH value in the solvent [Plueddemann 1982], which means that acidic or alkali solvent 

will accelerate the hydrolysis or condensation.  

For the alkylalkoxysilanes, although the Isoelectric point of APTES is 9 [Matinlinna 

2004], the aggregation of ethanol after the hydrolysis will result in the pH of the 

solvent to be neutral at lower concentration, further leading to slow down of the 

reaction. Since the reaction is too slow, the free amine group is possible protonated by 

water from the condensation. According to the assessment of the ordering of the APS 

film by FTIR (Figure 4.11), the APS molecules were probably not vertically aligned on 

the surfaces, which were prepared at the concentrations lower than 0.1 v%, due to the 
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presence of –NH3
+ rather than –NH2 vibration peaks. It is assumed that the protonated 

amine groups will form the loop structure with the OH groups from the surface (Figure 

4.10). Moreover, the water contact angles are over 90° and there exists a relatively large 

scatter for titanium samples (Figure 4.9). It was explained that the looping of the –NH2 

end group with –OH groups on the Ti surface leads to some of the hydrophobic –CH2- 

groups from the APTES chain were exposed over the titanium surface. A similar 

phenomenon has been reported by Akkerman et al. for relatively low-concentration 

dithiol solutions, which results in looping of the –SH end group with surface atoms 

[Akkerman 2008]. Although the current APTES chain is not very long, compared with 

the dithiol chain, the bulky steric structure of the tri-ethoxyl head groups in APTES 

may over-shadow unbonded –OH groups on the Ti surface, and subsequent to its 

hydrolysis, for the amine end-group to bend and loop with such –OH groups to expose 

the –CH2- chain over the surface, particularly with APTES molecules are far apart at 

low concentrations. Figure 4.11A-B provides the evidence of the disordered film formed 

on the surface at lower concentrations. On the other hand, OTS molecule has 

hydrophobic end group (-CH3) with longer chain, which is prone to assemble together, 

rather than bend towards the surface. Moreover, HCl is one of products after the 

hydrolysis in OTS-based SAMs, which could accelerate the reaction rate. Therefore, 

well-ordered films are obtained from OTS at very lower molecular concentration. 

When the APTES concentration increases from 0.2 to 3 v%, the contact angle increases 

again, from 67° to 78°. A similar contact angle of 63° was reported for the –NH2 

functionalized thiol-based SAMs [Faucheux 2004; Matinlinna 2004]. Majewski et al. 

showed that the water contact angle of the SAMs with –NH2 group on Ti was 45° 

[Majewski 2006]. Due to the plenty of APTES molecules in the solvent at higher 

concentrations, the hydrolysis and condensation reactions are still fast, although 

C2H5OH presents in the ambient. However, due to the fast adsorption kinetics, the 

growth of the APTES on the Ti surface is out of control, so a network structure of 

HO…NH2- in the APS film was formed. Disordered structures of the APS film prepared 

at higher concentrations were detected by FTIR according to the C-H vibration (Figure 

4.11B).  
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Such behaviour has been explained by the fact that very lower concentrations is too 

slow to form the covalent bonding of Si-O-Ti and crosslinker of the Si-O-Si; at very 

high concentrations the adsorption of the APTES molecules on titanium is too fast to 

allow the formation of well-ordered and densely packed films. In this case, the surface 

is probably blocked by irregular chemisorption of the adsorbate molecules during the 

initial phase of the growth process. To avoid too fast or slow adsorption of the 

molecules in an irregular manner, the concentration of 0.2 v% was chosen for the 

APTES to form the well-ordered film on the titanium surface. 

5.4 Stability of the APS film in the aqueous solutions 

Although several synthetic approaches for the self-assembled technology have been 

reported, there has been little effort to study the hydrolytic stability of the SAMs. 

Hydrolytic stability is the key parameter that determines the applications of final 

materials and it is critical in choosing a synthetic strategy for surface functionalization. 

Therefore, the APS films on the Ti surfaces were immersed in different aqueous 

solutions with pH values of 4, 6.5 and 10 up to 72 hours to further investigate the 

hydrolytic stability.  

In terms of the structure of the APS film, the hydrolytic stability of the film is mainly 

depend on the covalent bonds of Si-O-Ti and Si-O-Si. In the acidic aqueous solution, 

the APS film was hydrolyzed rapidly in the acidic aqueous solution, due to that the 

vibration of the Si-O-Ti was not detected by the FTIR up to 72 hours (Figure 4.13A) 

and the water contact angles reduced from 68° to 26° (Figure 4.12). The results 

obtained agree well with literature [Marcinko 2003] that acidic solutions hydrolyzed 

the monolayers faster. Due to the hydrolysis of the Si-O-Ti bond, the part of the APS 

film was dropped off from the surface, so the value of contact angle of the surface is 

close to that of the oxidized Ti surface. In the neutral and alkali aqueous solutions, the 

APS film is hydrolyzed continuously, but slower than that in the acidic solution, which 

is confirmed by the presence of the Si-O-Ti bond on the surface (Figure 4.15A and 

4.17A). However, Marcinko et al. found the monolayers of C18H37Si(CH3)2Cl were 

hydrolyzed almost completely within 3 – 24 hours in the solution at neutral pH 

[Marcinko 2003]. It is probably because that the APS film as tri-functional silane 
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primarily supply stronger bonding, including siloxane (Si-O-Si), hydrogen bonds 

(Si-OH…HO-Si) and van der Walls interactions between chains. Therefore, the film 

from trifunctional silanes is more stable than that from monofunctional silanes.  

As the position of CH2 peak is an indicator of the conformation of hydrocarbon chains 

[Kessel 1991], the evolution of the film ordering in different aqueous solutions was 

investigated by the FTIR spectra. The shift of the peak towards a higher frequency 

after 2-hour immersion in the acidic solution (Figure 4.13B) confirmed that the film 

started disordering. However, in the alkali solution, the disorder structure of the film 

was formed after 48-hour immersion (Figure 4.17B). It was explained that the -NH2 

functional group with IEP of ~ 9 was easily protonated in the acidic solution, further 

resulting in the formation of hydrogen bond with the hydroxyl group from phosphate 

group or silanols. In the neutral solution, the Si-O-Si bond is hydrolyzed to form the 

–Si-OH, so protonated amine group forms the hydrogen bond with the silanols, leading 

to the disordered structure (Figure 4.15B). Figure 4.14 also provides clear evidence by 

the change of the water contact angles.  

To avoid the hydrolysis of the APS film, titanium samples were stored in a desiccator 

under vacuum up to 72 hours. It is noticed that the film after 2 hours was disordered 

due to the shift of the C-H vibration to higher wavenumber (Figure 4.19B). It was 

explained that the van de Waals force between the chains is very weak due to the short 

chain with 3-carbon length, which further results in the bend of the chains. The 

hydrophobicity of the surface (Figure 4.18) also confirms that the CH2 groups are 

exposed over the titanium surface due to the bending of the –NH2 end group with –OH 

groups. Therefore, the results showed that the APS film was not stable under dry 

condition, too. On the other hand, although the position of the C-H vibration confirms 

the ordering of the film, the real structure of the ordering film is not as the same as the 

‘idea’ structure – molecules aligns one by one, and it might be like dendritic structure. 
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5.5 Effects of temperature and water content on 

growth of the APS film 

The adsorption of APTES molecules on the titanium surface is a complex process. To 

date, there is little effort on the mechanisms of formation of self-assembled film. There 

are two assumptions for the growth of the SAMs: one is that individual molecules are 

adsorbed on the surface on vertical direction and then crosslink together on horizontal 

direction; another one is that once one molecule is adsorbed on the surface, other 

molecules will spread out in the central of the adsorbed molecule on the surface by the 

crosslink [Schreiber 2000]. To confirm this, the adsorption of APTES molecules was 

carried out on Ti surface with different times. 

Figure 4.21 shows once adsorbed on the Ti surface, the APTES molecules further react 

with water and other APTES molecules in the vicinity to form small aggregates. These 

aggregates can then be imaged readily by AFM to monitor a potential site-specific 

adsorption. It is in the agreement with the report from Balgar et al. [Balgar 2003]. 

They found that two types of islands have been identified on the oxidized Si with OTS 

molecules: small circular islands with a diameter around 0.1 µm and larger islands with 

branched shape indicative for a diffusion limited aggregation-type growth mechanism. 

Britt and Hlady also reported that condensed ‘island-like’ and expanded 

‘liquid-like’domains of OTS were formed on mica [Britt 1996]. The AFM analysis 

showed that the surface with the lower density was completely covered with 

island-type clusters after 2 hours, which is consistent with that the water contact angle 

of the APS film is stable around 63° (Figure 4.20). Although the surface was covered 

with high dense film up to 16 hours, the film with multilayers was observed on the 

surface. Poirier and Pylant also found that the monolayer formation follows a two-step 

process that begins with condensation of low-density crystalline islands, which will 

transit to a denser phase by realignment of the molecular axes with the surface normal 

[Poirier 1996]. 

The line-measurement by AFM in Figure 4.22 suggests that the cross-polymerization of 

the APS molecules occurs in a vertical direction, rather than horizontal direction. It 
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was explained that there was a probability for a surface hydroxyl group to be close to 

the first adsorption site of an APS molecule. In this case, vertical polymerization could 

occur, resulting in the formation of polysilane aggregates. Such behaviour was possible 

caused by the adsorption of APTES on the surface at higher temperature. Yamada et al. 

reported that the higher the temperature of the solution, the larger the size of the 

well-ordered domain. Moreover, the number of the vacancy islands of the gold surface 

decreased [Yamada 2000]. Once a monolayer was formed, further polymerization 

continued on the APS molecules at the edges of the monolayer leading to the formation 

of large aggregates as observed by AFM (Figure 4.21).  

As for the temperature, the existence of a critical temperature (Tc) has been confirmed 

to be an intrinsic property of alkylsilane on surface and it is independent of the solvent 

used for the reaction [Brzoska 1992]. According to Parikh et al. [Parikh 1994], films 

prepared above Tc exhibit a low surface coverage and a high conformational disorder, 

while below Tc, well-ordered films are formed. They have reported a critical 

temperature of 28±5°C for the growth of the OTS-based SAMs on the silicon surface. 

According to the FTIR spectra of the APS film at varying temperatures (Figure 4.24), 

the C-H vibration related to an organized film from 30 to 70°C was observed at 

frequencies representative of a well-ordered film, although the peaks shifts to higher 

wavenumber at higher temperature. This result confirms that temperature does not 

affect the ordering o the APS film on the surface. 

For low temperatures, a majority of the water presents in the system was adsorbed on 

the surface, which limited the silanes to react primarily at the substrate surface. As 

temperature was increased, it seems to lead to the formation of multilayers on the 

surface. This has been proved in Figure 4.24A for the IR spectra of the peak intensity of 

–Si-O-Si bond with temperature. During the silanization, water molecules from the 

surface are released into the solvent phase at the higher temperature, which results in 

that the hydrolysis and condensation happen in the solvent instead of the surface and 

then growth of the film is likely affected. On the other hand, the higher temperature 

leads to speed up the collision between molecules, and further accelerate the reaction 

rate. Moreover, as layers of APTES are built up, underlying APTES molecules which 

have not fully been hydrolyzed become isolated and the hydrolyzation reaction 
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becomes diffusion limited. For APTES films to hydrolyze, ethoxy groups must have 

access to water molecules. Thick films with an initial cross-linking between APTES 

molecules may prevent complete hydrolyzation by creating an impenetrable fully 

hydrolyzed surface film which protects the underlying APTES molecules from 

interaction with water. Thus, slowly developing film will occur at low temperature. In 

this set of experiments, since the FTIR is not enough sensitive to detect the chemical 

bond in the APS film prepared under 30°C, the optimum temperature is 30°C under 

our experimental conditions, which is in agreement of the results from Wang [Wang 

2003].  

The variation of water contact angles about the film with the -NH2 functional groups 

are reported in literature. The water contact angle obtained here is 60°. Majewski et al. 

reported that the water contact angle of film with the -NH2 group is 45° [Majewski 

2006] and 42° was reported by Toworfe et al. [Toworfe 2006]. However, Faucheux et 

al. reported that 60° and 40° were for advancing and receding water contact angles, 

respectively [Faucheux 2004]. The different results imply that the film with the -NH2 

groups is very unstable in the aqueous solution as the –NH2 can react with water 

molecules by the hydrogen bonding. 

It is well known that the process of the chemisorption for the growth of the APTES is 

highly affected by the water content on the substrate and/or in the solution. This is 

because silane adsorption does not occur in the absence of water. However, the 

presence of water also results in deposition of polymerized products and the lack of 

reproducibility arises from a competition between formation of chemisorbed and 

polymerized products [White 2000]. Therefore, the further investigate about the effect 

of water content during silanization was done for the APS film on the surface.  

The growth of the APS film in hydrous solution results in the formation of the 

disordered structure with the indicator of the C-H and N-H vibrations on the IR spectra 

(Figure 4.26). Moreover, hydrophobic surface formed in hydrous solution also confirms 

that some of –CH2 groups are exposed over the surface (Figure 4.25). It is explained 

that the presence of water in the solution causes the polymerisation of APTES in the 

solution before molecules attach on the surface, leading to the deposition of aggregates. 
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Although water on the surface or in the solution was more favourable than a totally 

anhydrous system, water may favour the cross-polymerization of APS molecules in the 

solution and formation of aggregates that may deposit on the surface and block the 

surface adsorption sites. 

It has been shown that a thin water layer on the surface could act as a water reservoir 

for the hydrolysis of molecules and serve as a lubricating layer for the adsorbed 

molecules to move laterally on the surface and gather into a densely packed monolayer. 

Moreover, by using a hydrophobic solvent, the water molecules on the substrate tend 

to stay on the surface and hydrolyze the arriving molecules only on the substrate 

surface. In current experiment conditions, a dry hydrophobic toluene was used to avoid 

cross-polymerization of the APTES molecules in the solution and to keep any water at 

the solution/substrate interface within a thin layer, so that inevitable traces of water can 

also induce the adsorption of the APTES molecules to the Ti surface. It is still not clear 

if the reaction directly occurs through the hydrolysis of the silane molecules by the 

surface hydroxyl groups, or the molecules needs to be pre-hydrolysed before reacting 

with the surface hydroxyl groups. 

5.6 Nucleation of HA by the –NH2 functional group 

One of objectives of this project is to improve the biocompatibility of titanium as 

implant by the self-assembled film. The titanium samples with the APS film used here 

were prepared with 0.2 v% APTES in 5 ml anhydrous toluene at 30°C for 16 hours, 

and immersed in the simulated body fluid to investigate its inducibility of calcium 

phosphate. However, samples placed upside up and hanged in the solution leads to the 

difference inducibility of the –NH2 group. The results involve two different mechanism 

nucleations of HA: homogeneous & heterogeneous nucleations. Homogeneous 

nucleation occurs spontaneously in solution and depends on the degree of 

supersaturation, and heterogeneous nucleation occurs on the surface with foreign 

bodies [Tanahashi 1997; Zhu 2004], which results from the difference nucleation 

barrier. 
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The investigations on the nucleation and growth of HA on the surface with varying 

surface chemistry showed that the inducibility of HA highly depend on the surface 

properties of the underlying substrate. According to the classical nucleation theory, 

nucleation is defined as a process during which the nuclei with a size larger than the 

critical size is created by overcoming the nucleation barrier [Jiang 2004]. Once this 

barrier is overcome, the growth from the nuclei into large crystals starts [Liu 2000a]. 

In fact, the nucleation and growth of HA depends on two main factors: 

1. A positive thermodynamic driving force (∆µ) is required, which drives the 

nucleation and growth and is given by Equation 5.1 [Jiang 2004]: 
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Where k is the Boltzmann constant, T is the absolute temperature, α is the actual 

activity of a given ion, Ksp is the solubility product and σ is the supersaturation of the 

solution - the source of the driving force for the mineralization in the solution. 

2. The nucleation barrier (∆G*) at a given thermodynamic driving force (∆µ) that 

needs to be overcome in order to start the nucleation. In the presence of foreign 

particles (e.g. a substrate), the heterogeneous nucleation barrier (∆G*
heter) is given 

by Equation 5.2 [Jiang 2004; Liu 2000a, 2000b]: 
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Where *
homoG∆ is the homogeneous nucleation barrier, f is the interfacial correlation 

function related to the reduction of *
homoG∆ to *

heterG∆ due to the occurrence of foreign 

bodies (e.g. a substrate), cfγ is the specific interfacial free energy between the crystal 

and the solution, and Ω is the volume of the growth unit.f  → 0 means that the 

interaction between the nucleating phase and the substrate is optimal and the 
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heterogeneous nucleation is favored. However, f  → 1 means that the substrate does 

not have any influence on the nucleation barrier and homogeneous nucleation occurs. 

Therefore, according to Equation 5.1-5.2, at low supersaturation, nucleation will be 

controlled by the process with a small interfacial correlation functionf , which results 

from a strong interaction and good structural match between the foreign bodies and the 

crystallizing phase [Liu 2000a]. Strong evidence for heterogeneous nucleation has 

been found on TiOx surfaces (Figure 4.34A&C and Figure 4.36A-B). The behaviour of 

oxidized titanium surface in SBF has been explained in detail by Rohanizadeh et al. 

[Rohanizadeh 2004]. According to their results, the Ti-OH groups on the surface as 

active site shows negatively charged at pH 7.45 due to the isoelectric point (IEP) of 

titanium oxide is 5-6 [Brunette 2001]. Ca2+ cations could be attracted to the negative 

charge of the OH- groups and the phosphate groups (H2PO4
-, HPO4

2- or PO4
3-) could be 

attracted to the Ti+ cations, then forming HA coating. At higher supersaturation, 

nucleation on foreign particles having a weak interaction and poor structural match 

with the crystallizing phase, which results in a big interfacial correlation function and 

the formation of homogeneous nucleation [Liu 2000a] (Figure 4.30A). On the other 

hand, since the SBF with higher pH value has greater driving force (∆µ), lower 

*
homoG∆  will be obtained, which results in that the homogeneous nucleation easily 

occurs in SBF with higher pH value (Figure 4.36C). 

When Ti sample with the APS film was upside up placed in a high supersaturation, it 

is possible that calcium phosphate critical nuclei in solution is formed, started to grow 

and then adsorbed onto the substrates, which result in the HA formation on the surface 

with the –NH2 group (Figure 4.30), which is in agreement with the finding from 

Majewski et al. [Majewski 2006]. Zhu et al. also suggested that the hydrogen bond 

was formed between particles of calcium phosphate and the amine groups in unstable 

solution [Zhu 2003], and then precipitation grew progressively into a thin film. When 

titanium samples were hanged in the solution with higher ionic concentration or with 

higher pH value, the conclusion is that the –NH2 functional group cannot induce 

calcium phosphate in SBF. In general, some of the possible reactions for the nucleation 

in SBF considering the compositions in SBF are as follows: 
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Ca2+ + HPO4
2- + 2H2O = CaHPO4 • 2H2O                      (Equation 5. 3) 

3Ca2+ + 2PO4
3- = Ca3(PO4)2                                      (Equation 5. 4) 

5Ca2+ + 3PO4
3- + OH- = Ca5(PO4)3OH                         (Equation 5. 5) 

Due to that pKa value of the –NH2 in APTES molecule is 8.0 – 9.7 from Table of 

selected pKa values, the –NH2 functional group should be positively charged. 

According to Equation 5.3-5.5, protonated –NH3
+ should attract negatively charged 

phosphated groups, then absorb cation Ca2+ to form calcium phosphate. However, 

EDX files in Figure 4.43 C&D do not show phosphate element on the surface. Tanahashi 

et al. explained that positively charged –NH3
+ group could form very weak interaction 

with negatively charged phosphate groups, which results in the failure of 

heterogeneous nucleation by the -NH2 functional group [Tanahashi 1997]. The 

interaction modes between participating ionic species and surface functional groups 

are represented in Figure 5.1. On other words, even if Ca2+ is attracted by the phosphate 

group on the surface, the nuclei could be dropped into the solution due to the weak 

interaction.  

             

Figure 5. 1 Interaction modes between calcium and phosphate ions and surface functional groups 
as an initial step for calcium phosphate formation. 

Although the trace of the silicon element in the EDX files indicate the presence of the 

APS film on the surface (Table 4.6-4.7), the IR spectra (Figure 4.38A) shows that the 

APS film is continuously hydrolyzing with immersion time due to the decrease of 

intensity of the Si-O-Si bond. Therefore, the APS molecules with the –NH2 group are 

dropping off from the surface, which also results in no CaP precipitation observed on 

the surface.  
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According to the study from Tanahashi and Matsuda, since the CONH2 group is 

non-ionic in the aqueous solution, it will form ionic-dipolar interaction with calcium 

ion complexation [Tanahashi 1997]. However, this interaction is much weaker than 

electrostatic interaction between Ca ion and the negatively charged groups, which may 

be responsible for a low calcium phosphate formation. Therefore, it is possible for the 

–NH2 group in solution to be non-ionic (neutral). This point is shown in Figure 4.38A, 

where the IR vibration of the –NH2 group at 1603 cm-1 present, instead of the vibration 

of the –NH3
+ after 72-hour immersion. The neutral amine group cannot attack any 

phosphate ions in the solution, which results in that heterogeneous nucleation cannot 

happen. Moreover, the disordered structure of the APS film occurs in the solution after 

longer immersion (Figure 4.38B), which results in the exposure of the hydrophobic 

group (-CH2-) on the surface. As well-known, the hydrophobic group (e.g. CH3-, 

-CH=CH2) cannot induce calcium phosphate in SBF. However, this is different from 

the result by Toworfe et al. [Toworfe 2006], in which calcium phosphate precipitate 

induced by the –NH2 functional groups was reported after immersion for 7 days. This 

phenomena can be explained that the homogenous nucleation occurs in the solution, 

resulting in the formation of CaP precipitation on the –NH2 functionalized surface. 

5.7 Comparison of the activity of the immobilized Lac  

Traditional enzyme immobilization by covalent bond is to use the –COOH groups 

from the surface to react with the –NH2 group from enzyme surface. For example, 

Mendes et al. reported that horseradish peroxidase (HRP) was immobilized on gold by 

SAMs with the -COOH groups [Mendes 2008]. However, in silane-based SAMs, 

molecules with the –COOH groups normally have longer chain length, which will 

influence the electrochemical behaviour of enzyme on electrode. Therefore, the 

APTES molecules as a linker immobilize the laccase through the amide bond by the 

carboxyl group from the laccase surface. Therefore, peaks of amide bond on the IR 

spectrum are directly determined whether enzyme has been immobilized on the surface 

by APTS film. Figure 4.40A and 4.52A both confirm the formation of amide bond on the 

surface: peaks at 1515-1518 cm-1 and 1655-1658 cm-1 assigned for the –C=O- and 

–NH- bonds, respectively. These are different from the result by Arya et al. [Arya 
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2007], in which the –C=O- and –NH- bonds are reported at 1537 and 1637 cm-1, 

respectively. The difference is possible due to that the difference of surface leads to the 

peak shift. On the other hand, IR spectra in Figure 4.13A, 4.15A and 4.17A show the 

peaks at ~1557 and ~1646 cm-1, which confirms the electrostatic adhesion between 

–NH3
+ and –COOH, or –NH3

+ and –H2PO4
-, as the carboxyl or phosphate groups 

cannot form the amide bond in the solution without activators. The decrease of the 

water contact angles in Figure 4.39 and 4.51 also confirm the immobilization of laccase 

on the surface. 

The pH value is a factor in the stability of enzymes. Extremely high or low pH values 

generally result in the loss of activity for most enzymes. It is necessary to study the 

most favourable pH value – the point where the enzyme is most active, also called 

optimum pH. The optimal pH for the laccase immobilized by EDC/NHS shifts slightly 

toward a more acidic region compared to the native laccase (pH 4.5). Such shifts have 

previously been detected for various immobilized enzymes [Shleev 2005b; Yu 2002] 

[Quan 2004; Zawisza 2006]. The shift is caused by the certain enzymatic reactions or 

charge of carrier. One explanation of this behaviour is based on the electrostatic field 

produced by a highly charged carrier, in which the pH shift is caused by an unequal 

distribution of hydrogen and hydroxyl ions between the polyelectrolyte phase on 

which the enzyme is immobilized and the external solution [Zaborsky 1974]. On the 

other word, enzymes are immobilized in a charged film as a result of a change in the 

microenvironment of the enzyme [Trevan 1980]. In essence, the hydrogen ion 

concentration in the immediate vicinity of a positively charged APS film is lower than 

its concentration in the external solution. Thus, the optimum pH for the laccases bound 

to a positively charged APS film is displaced toward lower pH values. In addition, Xu 

reported that mechanism involving the OH- inhibition of laccase was dominant for the 

nonphenolic substrates (e.g., ABTS and K4Fe(CN6)), resulting in the decrease of the 

reaction rate with the increase of pH in the solution [Xiu 1997]. 

The thermal stability was also investigated for the activity of the immobilized laccase, 

since most existing enzymatic industrial processes are carried out at elevated 

temperatures. Temperature effect on enzyme activity is very complex and able to affect 

a lot of different factors, such as the speeds of molecules, the activation energy of the 
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catalytic reaction and the combination binding of the enzyme and substrate. When the 

temperature increases to 40°C, the activity of the laccase on Ti (Figure 4.45) or graphite 

(Figure 4.60) is both increasing greatly. Like most chemical reactions, this is due to 

increasing the energy of molecules, resulting in more collisions per unit time. However, 

after 40°C, the activity of the laccase on Ti reduces dramatically, while the activity on 

graphite still slightly increases until 50°C, then decrease afterwards. This different is 

due to the result of the surfaces after treatment in the H2SO4/H2O2 solution. Normally, 

an increase in temperature to certain point (normally 37~40°C) leads to the protein 

unfolding and less ordered - inactivation. On the titanium surface, due to the dense 

surface, such unfolding behaviour directly results in disassembling of the 

three-dimensional structure. On the graphite surface, due to the porous surface (Figure 

4.50B), the unfolding structure can be re-assembled to new structures, which is 

different from the native laccase conformation. Finally, these incorrect structures at 

higher temperature remain in the laccase, resulting in inactivation. It has been 

previously reported that this influence is significantly different for the laccase of 

different origins. Jiang et al. reported that the thermal stability of immobilized laccase 

from Rhus vernicifera on chitosan is the same as that of native one [Jiang 2005]. Arya 

and his coworkers developed cholesterol oxidase immobilized by APTES and 

demonstrated that the optimum temperature is 50°C by UV-VIS spectroscopy [Arya 

2007]. Quan et al. used APTES to immobilize laccase from Coriolus hirsitus on 

platinum and found that the temperature profile of the immobilized laccase was very 

similar to that of free enzyme, in which the activity of the laccase starts to decrease 

above 60~65°C [Quan 2004]. Liu et al. reported that the laccase immobilized on 

hydrophobic graphite by carbon nanotubes, shows maximum activity at 70°C [Liu 

2007]. They explained that the microenvironment of carbon nanotube gel can protect 

the secondary structure of protein not to be destroyed by thermal treatment process. 

In order to investigate the kinetics of immobilized laccase on the solid surface, the 

Michaelis-Menten constants of laccase were further determined on titanium and 

graphite, respectively. The Michaelis-Menten constant, Km, is one of the most 

important and useful parameters in enzyme kinetics, which determines the affinity 

between enzyme and substrate. The Km values of the laccase immobilized either on 

titanium (Figure 4.46) or on graphite (Figure 4.62), are both far greater than that of 
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native laccase. This is in agreement with the reports in literature [Arya 2007; 

Fernandez-Sanchez 2002; Jiang 2005]. So far, the discussion of the Michaelis-Menten 

constant for immobilized enzyme has corresponded to diffusion limitations. Higher 

concentrations of substrates and products near the laccase could change the 

microenvironment and lead to activity inhibition of enzymes. On the other hand, 

covalent bond as one of chemical immobilization methods can change the 

conformation and properties of the laccase, which causes that the immobilized 

enzymes could not bond substrate like the native ones.  

The Km of the laccase on titanium (0.271 mM) is almost 2 times greater than that on 

graphite (0.146 mM). Moreover, the Vmax value of the laccase on titanium (9.8 µm/min) 

is approximately 5.8 times smaller than that on graphite (57 µm/min). This is due to 

the formation of etching pores on graphite after oxidation of H2O2. The pores of ~30 

µm on the surface increase the surface area of graphite, which results in more laccase 

immobilized on the surface. On the other hand, the laccase can be entrapped in the 

pores, which greatly improve the combination between the active site and substrate. 

Consequently, the laccase immobilized on the graphite surface shows greater affinity 

with the substrate (lower Km value) and maximum reaction rate.  

The storage stability of the immobilized laccase is largely determined by its 

conformational stability. No matter in dry condition or aqueous solution, the relative 

activity of the immobilized laccase lost 18 ~ 64% at the first day (Table 4.8). This might 

be due to that dilute enzyme concentration easily results in the inactivation [Elsenthal 

1993; Trevan 1980] and the details has not been cleared yet. Compared with dry 

condition, the laccases from Trametes versicolor on the surface prefer aqueous solution 

(Figure 4.48), which possibly results from the stability of the APS film in aqueous 

solution. The disordered structure of the APS film under dry condition will cause 

structure unfolding of the active site in the laccase, leading to the denaturation. 

Although the APS film in the solution, pH 7 is more stable than in other solutions, the 

Si-O-Si bond is still slowly hydrolyzed, causing that the APS molecules are dropping 

off from the surface. In the same way, the laccase can be falling off with the APS film, 

resulting in the activity loss. It is interesting that in the aqueous solution of pH 7, the 

activity of immobilized laccase on graphite (Figure 4.63 and Table 4.9) last longer than 
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that on titanium (Figure 4.48 and Table 4.8). This is probably due to the chemistry 

property of the surface pre-treated in oxidized solution, resulting in breaking or making 

of new bond with enzyme. In the buffer solution of pH 7, titanium surface after 

oxidation shows almost neutral as the IEP of titanium oxide is 6-7 [Brunette 2001], 

while the graphite surface after oxidation of H2O2 shows negatively charged as its IEP 

is 5-6. The negatively charged graphite surface will attract positively charged laccase 

by electrostatic force, which could enhance the stability of laccase immobilized on 

solid support. On the other hand, the covalent bond Si-O-C is more stable than Si-O-Ti 

in the aqueous solution as the Si-O-Ti bond involves ionic bond. 

The laccase cannot only oxidize ABTS to ABTS+•, but also reduce O2 to form H2O by 

receiving 4 electrons. Thus, laccase immobilized on electrode has been studied by 

cyclic voltammetry (CV) to investigate the catalytic activity of redox active enzyme 

with electrode material [Liu 2007; Nogala 2006; Zawisza 2006]. Firstly, it is important 

to study the electrical conductivity of electrodes without immobilization of enzymes.  

Compared with the titanium electrode oxidized in the piranha solution, TiO2 electrode 

shows electroconductivity, which is due to the formation of crystal structure like 

semiconductor. However, there is no redox current peaks observed on the CV curve of 

TiO2 in the solution with potassium ferricyanide (K3Fe(CN)6) (Figure 4.49). It is 

assumed that the amorphous structure is still present in the TiO2 electrode. Some 

research works have been done to modify titanium electrochemical surface. For 

example, Sirivisoot and Webster demonstrated multiwalled carbon nanotubes 

(MWCNTs) grown on anodized titanium and a well-defined redox peak appears in the 

solution with K3Fe(CN)6 [Sirivisoot 2008]. They believed that the electrolyte-electrode 

interface barriers are reduced by MWCNTs because they facilitate double-layer effects. 

Since the charge in the electrolyte solution causes the layer to be more compact, this 

compact layer can rapidly exchange electrons with the surface of the MWCNTs 

modified titanium electrode. Liu et al. immobilized horseradish peroxidase on TiO2 

nanotube arrays and the reduction potential range is between -0.7 and 0.0 V [Liu 2005]. 

However, only reduction peaks of the immobilized enzymes are observed and no 

oxidative peaks can be seen in the reverse potential scan because of the low electrical 

conductivity of the TiO2 nanotubes.  



                                          Chapter 5 – General Discussion 

243 

In order to investigate the electrochemical behaviour of the immobilized laccase on the 

APS film, graphite was chosen as electrode because of the good electrical conductivity 

(Figure 3.19), which shows well-defined redox peaks with anodic and cathodic 

potentials at 250 and 125 mV, respectively, when graphite was immersed in the 

solution with potassium ferricyanide. The study of direct electron transfer (DET) 

between enzyme and electrode can supply important information on the kinetics of the 

redox process. However, Figure 4.54 does not show any catalysis curve on the CV in 

the oxygen-saturated condition. Since the results in Figure 4.62-63 confirm that the 

immobilized laccase still can oxidize substrate to product, a main reason for the failure 

of DET according to Figure 2.33, is that the T1 Cu(II) cannot receive electron from the 

electrode to be reduced to Cu(I). Due to the formation of the chemical bond between 

the surface of the enzyme and the electrode, the structure of the active site of the 

laccase might be changed, resulting in block of the tunnel for electron transferring 

(Figure 4.55A). The APS film might be too thick to enlarge the tunnel distance between 

the electrode and T1 copper (Figure 4.55B), causing the failure of T1 copper receiving 

electron. So far, the DET is only happened with the laccase physisorbed on the 

electrode, as the conformation of enzyme immobilized is almost unchanged 

[Christenson 2004; Shleev 2005a]. 

When ABTS as mediator was added in the electrolyte, the catalysis current was 

observed on the CV (Figure 4.58). The maximum catalytic current can obtain 68 

µA/cm2, which are greater than previous reports [Liu 2007; Zawisza 2006]. This is due 

to that the entrap method by gel can limit the attachment between enzyme and 

mediator. Mendes et al. compared the electrochemical activity of horseradish 

peroxidase by SAMs with different groups (e.g. –NH2 and –COOH) in the electrolyte 

with a mediator [Mendes 2008]. They found monolayers possess the –NH2 terminal 

groups provided the best results. This might be due to that the –NH2 terminal group 

from the film can protect the active site of the enzyme. Blanford and coworkers 

developed redox film on the graphite surface to immobilize laccase and gain a 

maximum catalysis current with 60 µm/cm2 [Blanford 2007]. The redox film can help 

T1 centre receive electrons from the electrode. 
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CHAPTER 6 

CONCLUSIONS 

A systematic investigation of the formation of an 3-aminopropylsilane (APS) film on 

titanium has been successfully performed with 3-aminopropyltriethoxysilane (APTES) 

molecules in organic toluene solutions. The effects of pre-treatment of titanium, 

APTES concentration, silanized temperature and water content in the organic solution 

on the formation of the APS film are characterised using water contact goniometry, 

Atomic Force Microscopy (AFM), Fourier Transform Infrared spectroscopy (FTIR), 

X-ray Photoelectron Spectroscopy (XPS). The thermal and hydrolyzed stabilities of the 

APS film have been clearly identified using FT-IR.  

Formation of an APS film on Ti surface was first considered for the surface 

modification of biomaterials, to assess its ability of inducing calcium phosphates by 

the –NH2 functional group. The effects of ions concentrations and pH values in the 

simulated body fluid (SBF) are characterised using SEM with EDX, X-Ray Diffraction 

(XRD) and FTIR. Then, the APS film was applied to laccase immobilization by 

covalent bonding in biofuel cells. The optimum conditions for enzyme immobilization, 

including molar ratio of EDC/NHS, time and pH value, have been studied in order to 

maximise the activity of the laccase on electrode surfaces. Apart from calculation of 

Michaelis-Menten constant (Km), the influences of pH and temperature in the substrate 

solution on the activity of the immobilized laccase on titanium and on graphite have 

been investigated by UV-VIS spectrophotometry and electrochemistry (Autolab), 

respectively. Since the laccase can reduce O2 to H2O, the electrochemical behaviour of 

direct electron transfer (DET) and mediated electron transfer (MET) by the laccase 

were also investigated. The findings are very helpful in the development of the –NH2 

functionalized self assembled film on the titanium surface with a well ordered and 

relative thin structure. With consideration of the findings, the following specific 

conclusions may be drawn from the investigation. 
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1) Oxidation of titanium in the Piranha solution (H2O2 + H2SO4) has been shown to 

be an important factor of influencing the surface properties of titanium. Exposure 

at a higher temperature and/or for a longer period of immersion in a Piranha 

solution result in the formation of rough surfaces. Increasing the concentration of 

acid in the solution does not cause the change of the relative density of surface 

hydroxyl groups. A relative flat, clean and fresh oxidized film with maximum 

–OH groups on titanium, is obtained in the 3:1 (H2SO4 : H2O2) piranha solution 

for 15 minutes at room temperature.  

2) During silanization, higher or lower concentrations of APTES molecules in 

toluene can lead to formation of multilayers and/or protonated amine groups 

(-NH2•••HO-) on the titanium surface. Too high an APTES concentration leads to 

a disordered film with –NH3
+ groups, whereas too low a concentration causes 

end groups of the adsorbed APTES to loop with the –OH groups on the surface. 

Therefore, a relative thin and well-ordered film with free amine functional groups 

on titanium is prepared in ~ 0.2 v% APTES in 5 ml anhydrous toluene for 16 

hours at 30°C. 

3) For stability of the APS film under different conditions, dry condition leads to a 

disordered structure, as confirmed by contact angle and FTIR. In the aqueous 

solution, the APS film is hydrolyzed rapidly in an acidic buffer solution and 

relatively slowly in a basic buffer solution, according to the intensity of the 

Si-O-Si bond in the IR spectra. Under acidic conditions, amine groups on the 

surface are easily protonated to form –NH3
+ by hydrogen bonding or electrostatic 

forces. Under basic conditions, although the major functional groups are free 

–NH2 groups after 72-hour immersion, the APS film forms a disordered structure 

on the surface. 

4) AFM images reveal that the APS film is formed within 2 hours at 70°C. However, 

line measurement by AFM can confirm the formation of the APTES aggregate at 

the early stages. This phenomenon is believed to result from an increase of the 

collision between molecules at high temperatures. Increasing the temperature of 

silanization from 30 to 70°C does not seem to affect the ordering of the film, but 
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is likely to generate a multilayer film. It is therefore desirable to control the 

temperature at a relatively low level, e.g. 30°C. 

5) Comparison of the effects of water from the surface and from the solution for the 

formation of the APS film shows clearly that water from the solution results in 

formation of the disordered multilayer film with the – NH3
+ and –NH2 groups, 

whereas water from the surface leads to formation of a well-ordered structure 

with the –NH2 group only. This is because the presence of excess water in the 

solvent causes polymerization of APTES molecules before them being attached 

on the surface. Therefore, using anhydrous toluene as a solvent can produce 

well-ordered and thin film with primary amine functional groups. 

6) For thermal stability, the IR spectra reveal that the APS film can be stable below 

130°C, since the free amine groups will break off from the titanium surface at 

130°C through the weakest bond, the C-N bond (308 kJ/mol), in the APS film. 

7) SEM micrographs reveal that titanium samples with positively charged group 

(-NH2) have better homogenous calcium phosphate nucleation, compared with 

negatively charged (-OH) samples. XRD reveals that the precipitate of calcium 

phosphate on titanium is of relatively poor crystallinity. However, the –NH2 

groups cannot induce heterogeneous calcium phosphate nucleation in the SBF 

with different ionic concentration or pH value from 7.0 to 7.98, as confirmed by 

SEM with EDX. This is because of the weak interaction between the –NH2 and 

phosphate groups, and/or the neutral amine groups in the aqueous solution, 

and/or the exposure of the hydrophobic –CH2- groups in APS film on the surface.   

8) For the immobilization of the laccase by the covalent bonding method, the IR 

spectrum which reveals the vibration of the –C(=O)NH- bond at 1515 and 1650 

cm-1, and water contact angles both confirm that the laccase has been 

successfully immobilized on the surface by the APS film. Effects of molar ratio 

of EDC/NHS, pH value and immersion time during immobilization on the 

activity of the laccase have been demonstrated. In order to reach the maximum 

reaction rate, the laccase should be immobilized by the –NH2 groups on the 
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titanium surface in HEPE buffer, pH 7 with 3:1 of EDC/NHS for 20 hours at 4°C.  

9) A comparative study of the laccase immobilized on titanium and graphite both 

with the APS film, indicates that the optimum pH for activity of the laccase 

immobilized is 3. Compared with native laccase (pH 4.5), the optimum pH 

slightly decrease, which is mainly due to Kcat getting greater by hydrogen ions 

binding on active site of the laccases in the acidic condition. However, the 

optimum temperature is 40°C and 50°C for the laccase on titanium and graphite, 

respectively, which is due to the graphite surface structure after the pre-treatment.  

10) The Michaelis-Menten constant (Km) is an important parameter to describe the 

mechanism of the kinetics on the activity of the laccase. UV-VIS 

spectrophotometry reveals that the Km values of immobilized laccases are 0.271 

mM and 0.146 mM for the laccase on titanium and graphite, respectively; both 

cases show lower affinity towards substrate ABTS than that of free laccase 

(0.038 mM). Due to the limitation of the diffusion of the laccases, ABTS can 

inhibit the activity of the laccase when the substrate concentration is greater than 

0.4 mM. Further comparison of Km of immobilized laccase on different surfaces 

clearly shows that the Km value for laccase on Ti is almost twice as high as that 

on graphite, which mainly results from the surface topography of graphite after 

pre-treatment.  

11) For the stability of immobilized laccase, the laccase on titanium will prefer 

aqueous solution with pH 7, whereas it will lose most of its activity under dry 

conditions, which might be related to the stability of the APS film under different 

conditions. Compared with the laccase on titanium that shows a relative activity 

of 58% within 7 days, the laccase on graphite in the HEPES buffer, pH 7, has 

much improved storage stability with a relative activity of 83% within 30 days, 

because the surface pores on the graphite after treatment can supply more space 

for configurational change in the active site of the laccase. 

12) Titanium samples treated in the Piranha solution or calcined at 750°C cannot be 

applied for electrochemistry as electrode, because it readily forms a surface oxide 
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layer, which is a poor conductor. The laccase immobilized on graphite does not 

show any direct electron transfer reaction in 0.1 M citrate buffer under 

oxygen-saturated conditions by Autolab, which is due to the failure of the 

electrons transferring to the centre T1 from the electrode surface.  

13) For the electrochemical behaviour in mediated electron transfer, the redox 

process of the ABTS on the graphite electrode with the APS film is controlled by 

the mass transport, because of the linear dependence of peak current on square 

root of the scan rate. The laccase on graphite in ABTS solution shows the 

catalysis current of 60 µA/cm2 at 5 mV/s, which indicates that the electron 

transferring is very slow between the laccase and mediator.      
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CHAPTER 7   

FUTURE WORK 

From the present findings, a number of issues warrant further investigation, which 

range from preparation of the APS film to its applications in biomaterials and biofuel 

cells. These are outline as follows: 

1) To identify the statuses of amine functional group (-NH3
+ or –NH2) on the 

surface by X-ray Photoelectron Spectroscopy (XPS) during experiments, 

although Fourier Transform Infrared spectroscopy (FTIR) can show the evidence. 

For example, for investigation of stability of the APS film on titanium in the 

aqueous solutions with different pH values, the decreases of total quantities of 

N1S and Si1S on the surface strongly confirm the hydrolysis of the APS film and 

quantify the level of the hydrolysis. Moreover, when the APS film on titanium 

was placed in the simulated body fluid (SBF), the status of amine functional 

groups can further confirm the reason that the –NH2 groups could not induce 

calcium phosphate.  

2) To clarify the thickness of the APS film on the surface by Ellipsometer. 

According to the applications, the well-ordered APS film has to be as thin as 

monolayer, because multilayer film has less stability in aqueous solution. Atomic 

Force Microscopy (AFM) is only able to measure the surface morphology at 

atomic level. However, one requirement for ellipsometry measurement is that the 

first layer should be very flat, which is a challenge for the titanium surface 

prepared in the piranha solution. Electropholish method can be a choice to gain a 

flat surface for titanium, but it is still a doubt whether this method can supply 

water layers on the surface for silanization.  
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3) To immobilize small peptides (e.g., RGD) or growth factors by the –NH2 

functional groups to improve biocompatibility of implant surface, although the 

–NH2 groups cannot induce calcium phosphate in SBF. It is well-known that the 

small peptides or growth factors can be recognized by the ligands in bone cells, 

whose differentiation is able to improve the integration between implant and 

bone tissue by osteoinductivity.  

4) According to the Michaelis-Menten Equation, the different of the Km value 

results from the Kcat (rate constant at catalytic step), as it is assumed that the 

concentration of laccase immobilized is same for all of experiments. However, 

the challenge is to know the concentration of immobilized enzyme on the surface. 

This might be calculated from the quantity of the –NH2 groups in the APS film.  

5) Since ABTS as a mediator at higher concentration can inhibit the activity of the 

laccase, direct electron transfer of the laccase need to be improved by redox 

particles or good mediator. The T1 centre cannot receive electrons from the 

electrode surface because of longer electron tunnel, so redox particles or 

mediator can be fixed in the APS film to help transfer electrons to the active site. 
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