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Abstract 

Mutations in the melanocortin-4 receptor (MC4R) are the most common cause 

of monogenic obesity. The majority of MC4R mutations are predicted to cause 

the receptor to aberrantly fold. Misfolded MC4R fails to traffic to the plasma 

membrane (PM) and is retained in the endoplasmic reticulum (ER). Recent 

studies with other G-protein coupled receptors have shown that stabilisation of 

misfolded receptor, by pharmacological chaperones, promotes trafficking to 

the cell surface where the receptor may be functional. The objective of this 

thesis was to develop a rapid throughput cell culture based assay to monitor 

MC4R trafficking to the PM and to screen chemical chaperones and inducers 

and inhibitors of endogenous molecular chaperones, for the ability to promote 

folding and cell surface expression of mutant MC4R.  

 

The work presented here confirmed that clinically occurring MC4R mutants 

S58C, N62S, P78L, D90N, L106P, C271Y and P299H are intracellularly 

retained in HEK 293 cells. The cell culture assay was used to screen a 

number of compounds, which have been previously reported to act as 

chemical chaperones by stabilising protein folding. Treatment with 4-phenyl 

butyric acid (4-PBA) and trehalose increased total cellular levels of wild-type 

and mutant MC4R.  The benzoquinone ansamycin, geldanamycin, has been 

identified as a potent inhibitor of Hsp90 activity and an inducer of the heat 

shock response. Geldanamycin treatment altered the cell surface expression 

of wild-type and mutant MC4R. Furthermore, over expression of Hsp90 co-

chaperone Aha1, also effected MC4R processing. Over-expression of Hsp70 

has been shown to promote the trafficking of other aberrantly folded proteins. 

Over-expression of Hsc70 increased trafficking levels of wild-type and mutant 

MC4R and promoted mutant MC4R functional expression. 
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In conclusion this data suggests using compounds that stabilise protein folding 

and/or targeting endogenous molecular chaperone machineries may have 

efficacy for altering cell surface expression of mutant MC4R.  
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1.1 Obesity 

The World Health Organisation projections for 2005 indicate that globally over 1.6 

billion adults are overweight (body mass index ≥ 25kg/m2); with 400 million 

individuals considered clinically obese (body mass index ≥ 30 kg/m2) 

(http://www.who.int, factsheet 311 September 2006). Obesity is a metabolic 

disorder that occurs when there is an excess in energy intake over energy 

expenditure, leading to an accumulation of excess fat (Ben-Sefer et al., 2009). 

Obesity is linked to a number of diseases including, cancer, osteoarthritis and an 

increased predisposition to diabetes mellitus and heart disease (Oswal & Yeo., 

2007). Worryingly, the number of obese children has risen considerably over the 

last ten years largely due to an increase in food availability and a change in 

lifestyle, with an estimated 20 million children overweight in 2005 

(http://www.who.int, factsheet 311 September 2006). Although environmental 

factors are involved in obesity it has been consistently reported that genetic factors 

also play a role.  Quantitative genetic analyses, comprising of family based studies 

and twin studies, have produced high heritability for obesity with estimates of 

typically above 70% (Walley et al., 2006).  

 

1.1.1 Genetics of Obesity 

Obesity is a complex metabolic disease, and in recent years the genetic, biological 

and biochemical factors underlying this disease have begun to unravel. Obesity 

can be split into three different genetic types: polygenic obesity, syndromic obesity 

and monogenic obesity.  

 

1.1.2 Polygenic Obesity 

Polygenic obesity refers to the involvement of a number of different genes in the 

disease. Two different approaches have been adopted to find the genes 

responsible for polygenic obesity, linkage studies and association studies (Ichihara 

& Yamada, 2008). Both approaches have yielded results, with linkage studies 

http://www.who.int/
http://www.who.int/
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identifying a number of different gene variants in different ethnic groups. For 

example in West African families three quantitative trait loci (QTL) affecting body 

fat mass have been linked to chromosomes 2p16-p13.3 (D2S2739-D2S441), 4q24 

(D4S1647-D4S2623), and 5q14.3 (D5S1725), whilst in a separate study QTLs 

influencing BMI in European-American families were linked to 2p24.2 and 4q28.3 

and over a broad region of chromosome 13q21.1-q32.2 (Rankinen et al., 2006). 

Genome-wide association studies (GWAS) have identified single-nucleotide 

polymorphisms (SNPs), in a number of other obesity linked genes (Table 1.1). The 

human gene most strongly associated with obesity, identified by GWAS, is ‘Fat 

Mass and Obesity Associated gene’ (FTO) located on chromosome 16.  SNPs 

within a 47-kb region, containing parts of the first two introns as well as exon 2 of 

FTO were identified to have an association with obesity in children from the age of 

7 years into old age (Frayling et al., 2007). Furthermore, the transcriptional start of 

RPGRIP1L (the human ortholog of mouse Ftm, referred as FTM) has been 

reported to be ~3.4kb upstream of FTO in humans (Stratigopoulos et al., 2008). 

Therefore, due to their close proximity, it has been proposed that either FTO or 

FTM or both may account for the differences in adiposity in humans 

(Stratigopoulos et al., 2008). However it has been subsequently shown that in FTO 

knockout mice, where FTM expression is unaltered, a significant reduction in body 

weight, adipose tissue and adipocyte size was reported (Fischer et al., 2009).  

 

1.1.3 Syndromic Obesity 

Syndromic obesity describes clinically obese patients that also suffer from 

additional symptoms such as mental retardation and developmental abnormalities 

arising from discrete genetic defects or chromosomal abnormalities (Mutch & 

Clément, 2006). Multiple forms of syndromic obesity have been reported with the 

most common disorders being Prader-Willi syndrome (PWS) and Bardet-Biedl 

syndrome (BBS).   
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PWS arises from the loss of expression of the paternally transmitted genes in the 

imprinted region of 15q11-13. The genes expressed within this region include, 

SNRPN encoding the small nuclear ribonucleoprotein polypeptide N thought to be 

involved in alternative splicing of neuronal genes (Schmauss et al., 1992), NDN 

gene encoding the protein necdin a cell cycle regulatory protein (Baker & Salehi, 

2002) and a cluster of small nucleolar RNAs required for RNA post-transcriptional 

modification (Hamma & Ferré-D'Amaré, 2010). Many of the PWS deleted genes 

are normally expressed in the hypothalamus, the area of the brain known to 

regulate energy homeostasis. Their lack of expression could indicate a central 

mechanism for obesity. However to date no gene within this region has been 

shown to be in linkage or in association with obesity. Recent studies have shown 

that PWS individuals have increased circulating levels of ghrelin, a hormone that 

stimulates food intake and acts as an endogenous ligand for the growth hormone 

secretagogue receptor (GHS-R) in the hypothalamus (Cummings et al., 2002). 

Further elucidating these mechanisms might prove useful in identifying the genes 

linking PWS with obesity.  

 

Mutations in at least 12 genes have been identified as causative for BBS (Harville 

et al., 2009). Localisation studies have shown BBS gene products to be associated 

with primary cilia (Bell et al., 2005). Recent studies have shown that disruption of 

cilia function, by utilising conditional null alleles of ciliogenic genes Tg737 and 

Kif3a, in adult mice caused the mice to become obese, with elevated levels of 

serum insulin, glucose and leptin (Davenport et al., 2007). Furthermore, by 

specifically disrupting cilia on pro-opiomelanocortin expressing cells, mice became 

obese, suggesting the involvement of neuronal cilia function in pathways regulating 

satiety responses (Davenport et al., 2007). Moreover BBS genes have also been 

shown to be required for leptin receptor signalling (LepR) in the hypothalamus and 

mediate LepR trafficking (Seo et al., 2009). It was reported that Bbs2(-/-), Bbs4(-/-) 

and Bbs6(-/-) mice, compared to wild-type (WT) littermates, did not show 

decreased weight loss or appetite when leptin injections were administered. The 

leptin resistance in these mice was attributed to attenuated leptin signalling in pro-
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opiomelanocortin (POMC) neurons, as decreased levels of phosphorylated signal 

transducer and activator of transcription 3 (STAT3) and Pomc transcripts was 

observed (Mok et al., 2010). Interestingly, BBS1 protein has been shown to 

physically interact with the LepR in HEK293 cells and in ARPE-19 cells (human 

retinal pigment epithelial cell line) was shown to mediate the trafficking of LepR 

between the golgi and cell surface (Mok et al., 2010). The BBSome is a complex 

composed of seven of the BBS proteins and is thought to mediate vesicle 

trafficking to the ciliary membrane (Seo et al., 2010). In addition BBS proteins, 

BBS6, BBS10, and BBS12, have chaperonin-like function and form a complex with 

CCT/TRiC chaperonins to mediate BBSome assembly (Seo et al., 2010).  

 

1.1.4 Monogenic Obesity 

Monogenic obesity results from mutations within a single gene. Homologues for 

many of these genes have been identified in mice, and which, when mutated cause 

obesity, providing useful disease models (Oswal & Yeo, 2007). The majority of the 

products of these genes function in the leptin/melanocortin pathway, which is 

critical in the regulation of energy homeostasis (Rankinen et al., 2006). Friedman 

et al (1994) discovered that a mutation in the obese gene (ob) in mice resulted in 

no production of leptin and caused severe obesity in mice (Zhang et al., 1994). 

Human congenital leptin deficiency was first described in 1997 in two severely 

obese cousins of Pakistani origin (Montague et al., 1997). Since 1997 an additional 

five other affected individuals, from four different Pakistani families, homozygous 

for the same mutation in leptin have been identified along with three related 

Turkish individuals carrying a homozygous missense mutation (Arg105Trp) in the 

LEP gene (Farooqi & O'Rahilly, 2009). Leptin’s involvement in regulating energy 

homeostasis is largely mediated by the hypothalamic melanocortin pathway. Leptin 

acts on two distinct sets of neurons in the arcuate nucleus (ARC); one class co-

expressing POMC and Cocaine and Amphetamine Related Transcript (CART), 

which act to reduce food intake and a second class co-expressing neuropeptide Y 

(NPY) and agouti-related protein (AGRP), which increases food intake. Proteolytic 
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processing of the large POMC precursor by prohormone convertase 1 and 2 

occurs in a tissue specific manner and results in an array of smaller biologically 

active products including the melanocortin peptides adrenocorticotrophic hormone 

(ACTH) and α, β and γ melanocyte stimulating hormone (MSH). The melanocortin 

peptides bind to and act as agonists for a family of five G-protein coupled receptors 

known as the melanocortins receptors (MCRs) with melanocortin 4-receptor 

(MC4R) involved in the leptin pathway. A single mutation in any one of the genes 

encoding leptin, the leptin receptor or another member of the leptin/melanocortin 

pathway results in monogenic obesity. Interestingly, mutations within MC4R are the 

most common cause of monogenic obesity (Fig.1.1) (Farooqi & O'Rahilly, 2009).  

 

1.1.5 MC4R’s association with Obesity 

Multiple studies have reported that the genes encoding the melanocortin receptors 

are involved in obesity in different ethnic populations (Table 1.1). In a Québec 

family study both MC4R and MC5R were found to be linked to obesity phenotypes 

(such as adiposity, energy metabolism, and insulin and glucose homeostasis) 

(Chagnon et al., 1997).  In a separate study in North Americans, MC4R but not 

MC3R mutations were found to be associated with severely obese adults (Calton 

et al., 2009). More recently genome-wide association studies from individuals of 

European descent, Indian Asians and Danes have identified variants near MC4R 

that are associated with increased fat mass, increased weight (Loos et al., 2008),  

increased waist circumference, increased insulin resistance (Chambers et al., 

2008), and increased BMI (Zobel et al., 2009). These newly identified SNPs are 

possibly involved in regulation of the MC4R gene. Interestingly, studies 

investigating some specific MC4R polymorphisms have reported negative 

association with obesity. For example, in children and adult populations of 

European origin, MC4R polymorphism I251L was found to be in negative 

association with BMI (Stutzmann et al., 2007) and in a large meta-analysis 

including individuals of East Asian ancestry MC4R polymorphism V103I was also 

found to be negatively associated with obesity (Wang et al., 2010). Functional 



Chapter 1 - Introduction 

28 

 

studies reported that I251L increased the receptor’s basal activity and V103I had 

decreased orexigenic antagonist affinity (Xiang et al., 2006).  

 

Overall these studies implicate MC4R as a key modulator of body weight (Table 

1.1). The importance of MC4R in the regulation of human body weight became 

apparent in 1998, when mutations in the human MC4R were first described as a 

cause for human obesity. Two separate studies reported heterozygous frameshift 

mutations in the human MC4R that co-segregated in a dominant fashion with 

severe early-onset obesity (Yeo et al., 1998; Vaisse et al., 1998). Subsequently, 

multiple missense and nonsense mutations in MC4R have been reported, largely in 

patients with severe obesity commencing in childhood.  MC4R mutations now 

represent the commonest known monogenic cause of non-syndromic human 

obesity. To date over 130 human obesity causing mutations have been identified in 

MC4R, with approximately 2-6% of morbidly obese patients harboring mutations 

within MC4R (Hinney et al., 2009). 
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Table 1.1: Genes identified in genome wide association studies associated 

with obesity 

Gene or SNPs Population Reference 

SOX 6 (rs297325 & rs4756846) 

Near MC4R (rs12970134) 

Near MC4R (rs17782313) 

FTO (rs9939609) 

FTO, MC4R, BDNF & SH2B1 

 

FTO, MC4R, TMEM18, KCTD15, 

GNPDA2, SH2B1, MTCH2 &NEGR 

 

NCP1, near MAF (rs1424233), 

Near PTER (rs10508503) 

 

FTO, MC4R, GNPDA2, SH2B1 & NEGR 

 

FTO, MC4R, NRXN3      

Caucasians 

Indian Asians 

European Ancestry 

U.K population 

Icelanders, Dutch, 

African Americans & 

European Americans 

European Ancestry 

 

European population 

 

Swedish population 

 

Caucasians  

 

(Liu et al., 2009) 

(Chambers et al., 2008) 

(Loos et al., 2008) 

(Frayling et al., 2007) 

(Thorleifsson et al., 2009) 

 

(Willer et al., 2009) 

 

(Meyre et al., 2009) 

 

(Renström et al., 2009) 

 

(Heard-Costa et al., 2009) 

 

 

1.2 Melanocortin 4-receptor: A key regulator of energy 

homeostasis  

There are five members of the melanocortin receptor family, MC1R-MC5R, all of 

which have potency for MSH ligands except for MC2R which specifically binds to 

ACTH (Tatro JB, 1996) (Table 1.2). The MC1R is expressed in the skin and 

controls pigmentation. MC2R is the ACTH receptor and is expressed in the adrenal 

gland regulating adrenal steroidogenesis and growth. MC3R and MC4R are 

expressed primarily in the brain and regulate different aspects of energy 

homeostasis (Butler, 2006). MC5R is expressed in exocrine glands and regulates 

secretion from these glands. All endogenous agonists of melanocortin receptors 

are encoded by a single gene that generates a large precursor, POMC. This 

undergoes post-translational processing by prohormone convertase PC1 and PC2 
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to generate α-MSH, ACTH, β-MSH, γ-MSH and β-endorphin in a tissue specific 

manner (Table 1.2) (Nargund et al., 2006).   

 

In 1993, the fourth melanocortin receptor was first cloned (Gantz et al., 1993). It 

was localised to chromosome 18 (q21.3) and found to encode a 333 amino acid 

protein (Gantz et al., 1993). Direct evidence that MC4R is a key regulator of 

appetite and body weight was provided by Huszar et al (1997), who demonstrated 

that mice with a targeted disruption of the MC4R gene have increased food intake, 

obesity and hyperinsulinaemia (Huszar et al., 1997). Animals heterozygous for the 

null allele showed an intermediate obesity phenotype when compared with their 

wildtype counterparts and homozygous WT littermates (Huszar et al., 1997).  

 

Table 1.2: Members of the Melanocortin receptor family 

Receptor Ligand 

Specificity 

Main site of 

Expression 

Physiological 

function 

Disease 

MC1R α-MSH=β-MSH= 

ACTH>γ-MSH 

Melanocytes Pigmentation, 

inflammation 

Increase risk of skin 

cancers 

MC2R ACTH     Adrenal cortex   Adrenal 

steroidogenesis 

FGD 

MC3R γ-MSH=ACTH= 

α-MSH=β-MSH             

CNS, GI tract, 

kidney 

Energy 

homeostasis 

Obesity 

MC4R α-MSH=β-MSH= 

ACTH >γ-MSH 

CNS Energy 

homeostasis, 

appetite 

Obesity 

MC5R α-MSH>β-MSH= 

ACTH>γ-MSH 

Exocrine cells Exocrine function, 

regulation of 

sebaceous glands 

Decreased production of 

sebaceous lipids in mice 
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Figure 1.1: The melanocortin pathway 

Distinct neuronal populations control and regulate food intake and satiety. POMC 

neurons in the arcuate nucleus are activated by leptin and insulin and produce α-

MSH, which leads to the activation of MC4R in the paraventricular nucleus, 

resulting in a satiety signal. A separate population of neurons expressing NYP and 

AGRP produce molecules that inhibit MC4R signalling. The downstream roles of 

SIM1, BDNF, and TKRB in energy homeostasis remains to be fully elucidated. 

POMC, proopiomelanocortin; α-MSH, alpha melanocyte stimulating hormone; 

NYP, neropeptide Y; PC1 and 2, proconvertase 1 and 2; GHR, ghrelin receptor; 

ISR, insulin receptor; LepR, leptin receptor; SIM1, single-minded homologue 1 

(Drosophila); TRKB, tyrosine kinase receptor; BDNF, brain-derived neurotrophic 

factor. Adapted from Balthasar et al (2005). 
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1.3 MC4R: A G-protein coupled receptor 

MC4R is a member of the G-protein coupled receptor family (GPCRs). GPCRs are 

the largest class of transmembrane proteins in the human genome. The crystal 

structures of two GPCRs, Rhodopsin and human β2 adrenergic receptor, have 

been solved leading to a better understanding of GPCRs active and non-active 

conformations (Palczewski et al., 2000; Rasmussen et al., 2007). The structural 

features of GPCRs include (Rosenbaum et al., 2009; Hofmann et al., 2009): 

 Seven transmembrane (TM) spanning helices with a cytoplasmic 8th helix 

running parallel to the membrane surface 

 For rhodopsin the extracellular domain and the ligand binding site is very 

compact to shield the hydrophobic ligand but for other GPCRs the 

extracellular domain has been reported to have a more open conformation 

to allow for the entrance of diffusible water soluble ligands 

 The conserved DRY motif forms part of a hydrogen bonding network linking 

TM3 and TM6 in an ‘ionic lock’ stabilising the inactive state of rhodopsin 

 The NPXXY motif localised to the cytoplasmic end of TM7 causes a 

conformational change in the inactive GPCR allowing for the formation of 

hydrogen bonds which presumably stabilises the inactive GPCR, but the 

bonds formed are thought to be weak allowing for the rapid toggling to the 

active state upon agonist binding 
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All GPCRs have the basic structural elements (listed above) but are divided into six 

different classes based on sequence similarity between the seven transmembrane 

(TM) regions and function (Gao & Wang, 2006):  

 Class A- Rhodopsin-like  

 Class B- Secretin receptor family  

 Class C- Metabotropic glutamate/pheromone  

 Class D- Fungal mating pheromone receptors  

 Class E- Cyclic AMP receptors  

 Class F- Frizzled/Smoothened 

The Class A (Rhodopsin-like) GPCRs, of which MC4R is a member, comprises 

over a 1000 receptors and can be further divided into sub-classes with the amine 

and olfactory receptors  including ~165 and ~551 proteins respectively (Gao & 

Wang, 2006).                                                              

1.3.1 Trafficking of GPCRs 

Before GPCRs can carry out their functions they need to acquire the correct native 

conformation. Different organelles within the cell, such as the endoplasmic 

reticulum (ER) and mitochondria, possess different folding conditions for proteins 

of different functions (Riemer et al., 2009). The cellular conditions within the ER 

favour folding of ER, transmembrane and secreted proteins including GPCRs. The 

ER possesses a highly oxidising environment to promote the formation of disulfide 

bonds required for protein folding/stabilisation and the homeostatic balance of the 

redox environment of the ER is maintained by numerous redox proteins including, 

thiol-disulfide oxidoreductases, protein disulfide isomerase (PDI) and associated 

flavoprotein Ero1p (Sevier et al., 2007). Synthesis of transmembrane polypeptides 

occurs on membrane bound ribosomes. Nascent polypeptides are co-

translationally translocated into the ER through the Sec61 translocon complex 

(Naidoo, 2009). To preserve cellular homeostasis a number of molecular 

chaperones reside within the ER and are involved with the assembly, folding and 

http://en.wikipedia.org/wiki/Rhodopsin-like_receptors
http://en.wikipedia.org/wiki/Secretin_receptor_family
http://en.wikipedia.org/wiki/Class_C_GPCR
http://en.wikipedia.org/wiki/Metabotropic_glutamate_receptor
http://en.wikipedia.org/wiki/Fungal_mating_pheromone_receptors
http://en.wikipedia.org/wiki/Cyclic_AMP_receptors
http://en.wikipedia.org/wiki/Frizzled
http://en.wikipedia.org/wiki/Smoothened
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the quality control of nascent polypeptides. There are three main groups of ER 

chaperones (Ni & Lee, 2007): 

 

(a) chaperones of the heat shock family e.g. BiP, GRP79 

(b) chaperone lectins e.g. calnexin, calreticulin, EDEM 

(c) substrate specific chaperones e.g. Hsp47  

 

Calnexin an ER membrane protein and calrecticulin an ER luminal protein 

recognise nascent polypeptides with monoglycosylated N-linked glycans and target 

them for subsequent folding and assembly steps. If correct folding of the protein is 

not achieved another ER protein UDP-glucose glycoprotein-glucosyltransferase 

(UGGT) is thought to recognise the exposed hydrophobic regions on the 

unfolded/misfolded polypeptide (Ni & Lee, 2007). UGGT catalyses the transfer of a 

glucose unit to a specific mannose residue within the N-linked glycan, resulting in 

the regeneration of a polypeptide with monoglycosylated N-linked glycans, and 

provides a new binding site for calnexin/calrecticulin for refolding of the peptide (Ni 

& Lee, 2007). BiP, an ER member of the Hsp70 protein family possesses an 

ATPase binding domain and a peptide domain. BiP also recognises exposed 

hydrophobic regions on misfolded polypeptides and within a large multi-complex 

protein unit, including GRP94 (Hsp90 ER homologue), misfolded protein substrates 

are processed for assembly and folding (Ni & Lee, 2007).  

Once the native conformation of the receptor is achieved GPCRs are able to exit 

the ER in COP II (coat protein) vesicles mediated by ER export signal in the C-

termini of the GPCR binding to components of the COP II vesicles (Dong et al., 

2007). There are several motifs that have been identified in the C-terminus for 

different GPCRs that play a critical role for ER export. These include the 

FN(X)2LL(X)3L motif found within the vasopressin receptors, the E(X)3LL (dileucine) 

motif for GPCRs including the vasopressin V2 receptor, and the melanocortin 

receptors; F(X)3F(X)3F (triple phenylalanine) motif found in the dopamine D1 

receptor, and the F(X)6LL motif found within the α2β-adrenergic receptor (α2βR) and 

the angiotensin II type 1 receptor (Dong et al., 2007). N-terminal export signals 
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have not been fully elucidated and although necessary for some GPCRs to be 

exported from the ER (e.g.endothelin B receptor and α2βR) they are not necessary 

for the export of other GPCRs (α1DR) (Dong et al., 2007). 

 

Packaged in COP II transport vesicles, GPCRs exit the ER via the ER-Golgi 

intermediate complex (ERGIC), through the Golgi and then the trans-Golgi network 

(TGN). As the receptor progresses through the secretory pathway it undergoes 

post translational modifications until finally the mature GPCR reaches its functional 

destination at the cell surface (Dong et al., 2007). RabGTPases have been found 

to be involved in almost every step of GPCR anterograde trafficking in particular 

with targeting, tethering and fusion of receptor transport vesicles with the 

appropriate cell surface membrane (Dong et al., 2007).  

 

1.3.2 Post-translational modifications of GPCRs 

1.3.2.1 Glycosylation of GPCRs 

The majority (~ 95%) of GPCRs undergo the addition of saccharides to nascent 

polypeptides in the biosynthetic events of glycosylation (Yurugi-Kobayashi et al., 

2009). N-linked glycosylation involves the addition of, three glucose, nine mannose 

and two N-acetylglucosamine molecules, to the nascent polypeptide chain as it is 

translocated into the ER lumen and this occurs at the consensus sequence Asn-

Xaa-Ser/Thr (Duvernay et al., 2005). N-linked glycoslation has been shown to be 

essential for GPCRs to achieve the correct conformation to be exported from the 

ER. For example, shifting the N-linked glycoslation site of the human angiotensin II 

receptor subtype 1 caused it to have reduced cell surface expression and binding 

affinity due to an abnormal conformation of the polypeptide (Lanctot et al., 2005). A 

similar result was also observed for the neurokinin 1 receptor (NK1R) where 

glycosylation mutants possessed half the signalling capabilities of the (WT) 

receptor and double mutants internalised more rapidly indicating that N-linked 

glycoslation may be required for the stabilisation of NK1R in the plasma membrane 

http://en.wikipedia.org/wiki/Glucose
http://en.wikipedia.org/wiki/Mannose
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(Tansky et al., 2007). Further processing of the glucose and mannose chains 

occurs after export of the folded and immaturely glycoslated protein from the ER to 

the Golgi. The Golgi is thought to be the site of O-linked glycosylation. O-linked 

glycosylation involves the addition of N-acetyl-galactosamine to serine or threonine 

residues followed by the addition of other carbohydrates such as glucose or sialic 

acids to form a mature glycoprotein (Ruddock & Molinari 2006). However unlike N-

linked glycosylation, O-linked glycosylation lacks a known consensus motif and 

therefore has been more difficult to study (Duvernay et al., 2005). 

 

1.3.2.2 Palmitoylation of GPCRs 

Other post-translational modifications of GPCRs occur. This includes the addition 

of lipids, most commonly in the form of the 16 carbon saturated fatty acid, palmitic 

acid to cysteine residues proximal to the cytosolic end of the seventh 

transmembrane  (in the case of rhodopsin and the β2-adrenergic receptor) (Qanbar 

& Bouvier, 2003). The extent of GPCR palmitoylation has been shown to depend 

on agonist activation in that agonist binding increases the proportion of receptors 

being palmitoylated or agonist binding increases the turnover rate of receptor-

linked palmitate (Chini & Parenti, 2009). Palmitoylation has a number of functional 

consequences for GPCRs. Lack of palmitoylation has been shown to cause a 

decrease in the cell surface expression of some GPCRs including the dopamine, 

vasopressin, chemokine and δ-opioid receptors, indicating palmitoylation occurs at 

the ER (Chini & Parenti, 2009). Palmitoylation of the β2-adrenergic receptor has 

been shown to be necessary for the efficient coupling of the receptor to Gs protein 

and also affects its desensitisation and internalisation upon agonist stimulation 

(Chini & Parenti, 2009).  

 

 

 

http://en.wikipedia.org/wiki/Serine
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1.3.2.3 Phosphorylation of GPCRs 

It is thought that the primary function of receptor phosphorylation is to cause the 

attenuation of GPCR signalling by promoting the recruitment of arrestin (Tobin et 

al., 2008). Phosphorylation sites for the majority of GPCRs are located at the C-

terminus or within the third intracellular loop. Phosphorylation is regulated by 

members of the G-protein-coupled-receptor kinase (GRK) family (Tobin et al., 

2008). For MC4R it has been shown that both protein kinase A (PKA) and GRKs, 

in particular GRK2, are involved in MC4R phosphorylation and that Thr312 and 

Ser329/330 in the C-terminal tail are potential sites for PKA and GRK 

phosphorylation (Shinyama et al., 2003).  

 

Phosphorylation of non-visual GPCRs results in a ~2-3 fold increase in affinity 

binding sites for β-arrestins, resulting in the uncoupling of the G proteins from the 

receptor and receptor desensitisation (Tobin, 2008). It is thought that β-arrestin-1 

and -4 are expressed solely in rod and cone photoreceptors and regulate the 

phototransduction of visual GPCR rhodopsin, with arrestin-2 and -3 regulating the 

signalling of non-visual GPCRs (Tobin, 2008).  For MC4R, (a non visual GPCR), 

overexpression of dominant-negative mutants of β-arrestin1-V53D was found to 

prevent desensitisation and subsequent internalisation of MC4R in HEK293 cells 

(Shinyama et al., 2003). Recently, it has been shown that β-arrestins act as 

scaffolding proteins and are involved in numerous developmental signalling 

pathways including Hedgehog, Wnt, Notch, and TGFbeta pathways (Kovacs et al., 

2009). Interestingly, β-arrestin has been implicated in the regulation of 

inflammatory signalling cascades involving mitogen activated protein kinases 

(MAPK) (Kovacs et al., 2009) and MC4R activation in vitro has also been shown to 

increase the phosphorylation of MAPK in hypothalamic neurons indicating MC4Rs 

involvement in inflammatory pathways (Lasaga et al., 2008).  

 

β-arrestin binding to the GPCR also mediates the formation of clathrin-coated-

vesicles that causes endocytosis of the GPCR. At this point the GPCR can become 



Chapter 1 - Introduction 

38 

 

degraded by lysosomes, causing a down-regulation of GPCR at the cell surface, or 

may recycle back to the cell surface for re-signalling (Gao et al., 2003).  Exposure 

to α-MSH causes rapid internalisation of MC4R in HEK293 cells (Gao et al., 2003; 

Shinyama et al., 2003). Furthermore, inefficient recycling back to the cell surface 

was observed for MC4R and MC4R ligand in HEK293 cells (Gao et al., 2003). In 

addition, another study has reported that MC4R inverse agonist AGRP also 

induces β-arrestin mediated endocytosis of MC4R in a cell line derived from murine 

hypothalamic neurons endogenously expressing MC4R (Breit et al., 2006). 

 

1.3.2.4 GPCR dimerisation  

Numerous GPCRs have been shown to oligomerise with varying stability. In some 

cases they form permanent covalent bonds existing as dimers, or contrastingly, 

have fleeting unstable interactions (Gurevich & Gurevich, 2008). The majority of 

GPCR dimers are believed to be homodimers. However, there is increasing 

evidence of GPCR heterodimerisation (Milligan et al., 2008).  

Extensive studies on Class C GPCRs provide an insight into what domains are 

involved in the formation of GPCRs dimers.  For Class C GPCRs cystine rich 

domains (CRDs) have been shown to have a high propensity to dimerise (Gurevich 

& Gurevich, 2008). In addition, Class C GPCRs (e.g. glutamate receptors) have an 

N-terminal Venus flytrap module (VFT), and when expressed with an unrelated 

receptor (e.g natriuretic peptide receptor) are able to dimerise with its 

transmembrane domain, with or without ligands (Gurevich & Gurevich, 2008). For 

MC4R it has been shown that the receptor dimerises independently of unpaired 

extracellular cysteine residues indicating that the transmembrane region may be 

involved in receptor dimerisation (Elsner et al., 2006).  

Dimerisation of GPCRs is thought to occur at the ER. This has been shown for the 

class A, β2-adrenoceptor and chemokine receptors and the class C, metabotropic 

glutamate receptor-like GABAB receptor (Milligan, 2010). For MC4R a disulphide 

bond forms between C271-C277 and if disrupted cell surface expression of the 
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receptor is greatly reduced. However, MC4R mutants that lacked this disulphide 

bond showed a dimerisation pattern comparable to the WT receptor indicating that 

MC4R dimerisation occurs early in GPCR life cycle possibly at the ER (Elsner et 

al., 2006).  

It has been shown for rhodopsin, the β2-adrenoceptor (β2AR) and the neurotensin 

NTS1 receptor, three receptors that couple to three different G proteins, that one 

monomer in its active conformation is required to couple to a G protein and that 

dimeric forms of the receptor reduces or do not augment signalling (Gurevich & 

Gurevich, 2008). However receptor dimerisation, if not required for signalling, may 

be required for receptor desensitisation and intracellular trafficking (Gurevich & 

Gurevich, 2008).  

 

1.3.2.5 GPCR signalling and conformational states 

After agonist binding to the transmembrane and/or extracellular regions, GPCRs 

undergo a conformational change from their inactive state to their active state 

(Ritter & Hall, 2009). Acting as guanine nucleotide exchange factor, GPCRs 

interact with heterotrimeric G proteins catalysing the exchange of GDP (guanosine 

diphosphate) for GTP (Guanosine-5'-triphosphate) on the Gα subunit, initiating the 

dissociation of Gα and Gβγ from each other and from the GPCR (Ritter & Hall, 

2009). Subsequently, the activated GTP Gα subunit can regulate the activity of 

downstream effectors such as adenylyl cyclase, that then go on to modulate further 

downstream effectors such as PKA through the generation of second messengers 

(e.g. cyclic AMP) (Fig. 1.2) (Ritter & Hall, 2009).  Attenuation of GPCR signalling 

can be mediated through phosphorylation of the receptor resulting in receptor 

internalisation. However, it has been shown that some GPCRs can remain 

associated with their cognate G protein subunit after internalisation and continue to 

stimulate cAMP production within endosomal compartments (Jalink & Moolenaar, 

2010). Furthermore, some GPCRs are capable of signalling independent of G 

protein activation (Sun et al., 2007). For example, the β2AR has been shown to 
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switch from G protein-coupled to G protein-independent ERK (extracellular signal-

regulated kinase) activation in an agonist dosage-dependent manner (Sun et al., 

2007). It is thought that MC4R couples exclusively to G proteins (GS coupling 

specificity) with α-MSH binding sites on the first extracellular loop and the N-

terminus (Srinivasan et al., 2003).  

The exact way in which conformational change of the receptor occurs after ligand 

binding has not yet been elucidated for MCRs, but the structural changes observed 

for rhodopsin and human β2 adrenergic receptor have lead to a number of kinetic 

models to describe the conformational changes for GPCRs in general. The 

simplest of these models proposes that the receptor exists primarily in two states, 

an active state (R*) and an inactive state (R). If this model where applied to MC4R 

then in the absence of its ligand, α-MSH, the basal level of MC4R would be 

determined by the equilibrium between R* and R. Full agonists such as α-MSH 

would fully bind to MC4R and stabilise R*, while inverse agonists, AGRP, bind to 

and stabilise R. Partial agonists would have some affinity for both R and R* and 

therefore would be less effective in shifting the equilibrium towards R* (Kobilka, 

2007).  
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Figure 1.2 Schematic of MC4R signalling and phosphorylation 

The GPCR is activated by agonist leading to activated G protein leading to an 

increase in cAMP production which in turn activates PKA. The agonist-occupied 

GPCR is subsequently phosphorylated by GRK and arrestin binds to the 

phosphorylated GPCR, leading to receptor desensitisation, internalisation, 

dephosphorylation and recycling of the GPCR. Particularly with longer agonist 

treatments, internalised GPCR may also be targeted for degradation.  

α, β, γ, G-protein subunits; α-MSH, alpha melanocyte stimulating hormone; cAMP, 

cyclic adenosine monophosphate; PKA, protein kinase A; GRK, G protein-coupled 

receptor kinase; β-arr, β-Arrestins; P, phosphate group. Adapted from Ritter & Hall 

(2009). 
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1.4 MC4R mutations  

Over 70 missense, nonsense and frame shift mutations in MC4R have been 

identified; these are found across several different ethnic groups. Based on the life 

cycle of GPCRs a general classification scheme has been established to 

categorise GPCR mutations; Class I: defective receptor biosynthesis, class II: 

defective trafficking to the cell surface, class III: defective ligand binding, Class IV: 

defective receptor activation and Class V: mutant with no known defects (Tao, 

2005). An increasing number of MC4R mutations have been functionally 

characterised with many showing decreased cell surface expression resulting in 

reduced receptor function (Table 1.3). These mutations have been categorised as 

class II MC4R mutations. The defective trafficking to the cell surface of these 

mutants is believed to be due to misfolding of the protein leading to its detection by 

ER quality control systems, retention in the ER and subsequent degradation by ER 

associated protein degradation (ERAD) (discussed in Chapter 1, Section 1.9.3). 

For this study seven point mutations were selected all of which have been 

previously reported to have reduced cell surface expression and have been 

characterised as Class II mutations. These were, Ser58Cys, Asn62Ser, Pro78Leu, 

Asp90Asn, Leu106Pro, Cys271Tyr and Pro299His (Fig.1.3). 

 

The missense mutation Ser58Cys (S58C) was identified as dominantly inherited in 

4 of 63 severely obese children in a Turkish population (Dubern et al., 2001). In a 

separate French study mutant MC4R (S58C) was shown to have impaired 

response to α-MSH (Lubrano-Berthelier et al., 2003). 

 

Ans62Ser (N62S) was the first homozygous mutation to be described in obese 

individuals and inherited with as a recessive allele. MC4R (N62S) was found in five 

children with severe obesity from a consanguineous pedigree of Pakistani origin. 

Heterologously expressed MC4R (N62S) in HEK293 cells showed a limited 

response to α-MSH (Farooqi et al., 2000).  
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Screening the coding region of MC4R in 306 extremely obese children and 

adolescents (mean body mass index: BMI 34.4 ± 6.6 kg/m2) by single strand 

conformation polymorphism analysis identified the missense mutation Pro78Leu 

(P78L) (Hinney et al., 1999).  The mutation was identified in only extremely obese 

patient whose BMIs were all above the 99th percentile, suggesting that MC4R 

(P78L) is a severe mutation. Furthermore, functional studies show P78L had poor 

cell surface expression and reduced activation upon agonist stimulation possibly 

due to intracellular retention (Nijenhuis et al., 2003). 

 

Asp90Asn (D90N) was the first MC4R mutation reported to have a dominant 

negative effect on the WT receptor, through the formation of receptor 

heterodimers. The D90N loss of function mutation was found to have some cell 

surface expression, but loss of Gs/adenylyl cyclase activation (Biebermann et al., 

2003).  

 

The mutation Leu106Pro (L106P), located in the first extracellular loop of the 

receptor was found to be associated with severe familial early onset obesity and to 

have a limited response to α-MSH (Yeo et al., 2003).  

 

Cys271Tyr (C271Y) was identified in a U.K based study, where it was shown to be 

inherited in an autosomal dominant manner in an early onset severely obese 

cohort (Farooqi et al., 2003).  C271Y was shown to have a lack of cell surface 

expression and reduced signalling compared to WT receptor (Tao & Segaloff, 

2003). 

 

A French cohort of 172 patients presenting with severe childhood obesity and a 

family history of obesity, identified Pro299His (P229H) in 3 individuals. Functional 

studies indicated that P299H had a reduced cell surface expression compared to 

the WT receptor and no activation upon agonist (α-MSH) stimulation (Lubrano-

Berthelier et al., 2003). 
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           Figure 1.3: Clinically occurring MC4R mutations used in this study 
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Table 1.3: MC4R mutations response upon agonist stimulation and reported 

cell surface expression 

Mutation Response to NDP-MSH 
stimulation 

Reported cell 
surface 
expression 

Reference 

Frameshift CTCT 
(@ codon 211) 

no response ND (Lubrano-Berthelier et 
al., 2003) 

Insertion TGAT  
(@ codon 244) 

ND ND (Tao & Segaloff, 2003) 

750-751GA ND ND  

S58C partial decreased (Lubrano-Berthelier et 
al., 2003) 

N62S partial decreased (Farooqi et al., 2000) 

P78L no response decreased (Nijenhuis et al., 2003) 

G98R 

I102S 

L106P 

I125K 

R165Q 

R165W 

N240S 

L250Q 

Y287X 

C271R 

C271Y 

P299H 
 

I316S 

I317T 

D90N 
 

I125K 

V103I 

no response 

partial 

no response 

no response 

partial 

ND 

partial 

ND 

no response 

ND 

partial 

no response 
 

partial 

partial 

partial 
 

partial 

YES 

ND 

0-10% expression 

11-50% expression 

0-10% expression 

11-50% expression 

11-50% expression 

YES 

decreased 

11-50% expression 

decreased 

11-50% expression 

11-50% expression 
 

decreased 

decreased 

YES 
 

11-50% expression 

YES 

(Kobayashi et al., 2002) 

(Xiang et al., 2006) 

(Yeo et al., 2003) 

(Xiang et al., 2006) 

(Xiang et al., 2006) 

(Xiang et al., 2006) 

(Tao & Segaloff, 2003) 

(Xiang et al., 2006) 

(Xiang et al., 2006) 

(Tarnow et al., 2003) 

(Tao et al., 2003) 

(Lubrano-Berthelier et 
al., 2003) 

(Xiang et al., 2006) 

(Xiang et al., 2006) 

(Biebermann et al., 
2003) 

(Xiang et al., 2006) 

(Xiang et al., 2006) 
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Mutation Response to NDP-MSH 
stimulation 

Reported cell 
surface 
expression 

Reference 

I170V ND decreased (Xiang et al., 2006) 

S30F partial decreased (Xiang et al., 2006) 

G252S partial decreased (Xiang et al., 2006) 

R165Q ND ND (Xiang et al., 2006) 

Y157S partial decreased (Lee et al., 2008) 

Y35stop NO 0-10% expression (Xiang et al., 2006) 

V95I 

N97D 

I130T 

TM5del 

TM6Ins 

L54P 

E61K 

I69T 

S136P 

M161T 

T162I 

I269N 

G55V 

G55D 

S136F 

A303T 

S127L 

A244E 

V253I 

L250Q 

NO 

ND 

ND 

NO 

NO 

partial 

partial 

partial 

partial 

partial 

partial 

partial 

partial 

partial 

partial 

partial 

partial 

partial 

partial 

ND 

0-10% expression 

11-50% expression 

11-50% expression 

0-10% expression 

0-10% expression 

decreased 

decreased 

decreased 

decreased 

decreased 

decreased 

decreased 

YES 

YES 

YES 

YES 

YES 

YES 

YES 

decreased 

(Xiang et al., 2006) 

(Xiang et al., 2006) 

(Xiang et al., 2006) 

(Xiang et al., 2006) 

(Xiang et al., 2006) 

(Tan et al., 2009) 

(Tan et al., 2009) 

(Tan et al., 2009) 

(Tan et al., 2009) 

(Tan et al., 2009) 

(Tan et al., 2009) 

(Tan et al., 2009) 

(Tan et al., 2009) 

(Tan et al., 2009) 

(Tan et al., 2009) 

(Tan et al., 2009) 

(Xiang at el., 2006) 

(Xiang at el., 2006) 

(Xiang at el., 2006) 

(Lubrano-Berthelier et 
al., 2003) 
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1.5 The fate of misfolded proteins 

For MC4R mutations, the most common functional defect is intracellular retention; 

this is believed to be a result of aberrant folding of the protein (Lubrano-Berthelier 

et al., 2003). Generally, misfolded proteins can compromise the viability of a cell by 

either loss of function, gain of function or both. For example, Huntington’s disease 

(HD) is caused by trinucleotide CAG repeats in the coding sequence of the HD 

gene. This translates into the expansion of polyglutamine tracts in the cytosolic 

huntingtin protein, which is thought to cause a toxic gain of function with the mutant 

huntingtin protein interfering with the functions of other proteins (Zoghbi & Orr, 

2000; Rubinsztein, 2003). Whereas, for spinobulbar muscular atrophy, the 

expansion of the CAG repeats in the coding region of the androgen receptor gene 

is thought to cause partial loss of function of the androgen receptor, resulting in 

androgen insensitivity in affected males (Zoghbi & Orr, 2000). Therefore a 

sophisticated quality control mechanism enables recognition of conformationally 

aberrant proteins and their subsequent degradation, via autophagy and/or the 

ubiquitin proteasome system (UPS). 

  

1.5.1 The unfolded protein response 

The unfolded protein response (UPR) is a cellular stress response that is triggered 

by the accumulation of unfolded or misfolded proteins in the ER (Bakau et al., 

2006). The UPR utilises three main sensors for monitoring folding, endoplasmic 

reticulum-to-nucleus signalling 1 (IRE1), ER membrane protein kinase (PERK) and 

transmembrane transcription factor ATF6 (activating transcription factor 6) (Bukau 

et al., 2006). Activation of the PERK kinase in the presence of ER stress causes 

inhibition of translation and the upregulation of transcription factor ATF6. The 

accumulation of misfolded proteins allows ATF6 to reach the Golgi where it is 

cleaved by transmembrane proteases, site 1 protease (S1P)  and proteases site 2 

protease (S2P), resulting in a cytosolic fragment. The cytosolic fragment then 

migrates to the nucleus to activate transcription. ER stress causes 
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autophosphorylation and subsequent activation of IRE1 RNase activity resulting in 

splicing of XBP1 (x-box binding protein 1) to generate mature XBP1 mRNA, 

mediating transcription of ER chaperones and the ERAD machinery. The ER 

chaperone BiP (immunoglobulin heavy chain binding protein1 or glucose regulated 

protein, Grp78) acts as the master regulator of IRE1, PERK and ATF6. ER stress 

causes BiP to bind to unfolded protein and results in its release from the UPR 

transducers, allowing for their subsequent activation and proteolysis. Prolonged 

UPR activation leads to apoptotic cell death and cell cycle arrest to prevent cells 

from progressing through the cell cycle (Liu & Kaufman., 2003).   

 

1.5.2 ER associated degradation pathway 

ERAD degrades proteins that are unable to achieve their native conformation. 

These misfolded polypeptides are recognised by molecular chaperones and 

targeted for degradation by the ubiquitin- proteasome machinery (Vembar & 

Brodsky, 2008).  

Aberrantly folded proteins are recognised as ERAD substrates through the 

exposure of hydrophobic regions, which would otherwise have been buried within 

the native conformation of the polypeptide (Vembar & Brodsky, 2008). To prevent 

aggregation of these proteins molecular chaperones, such as Hsp70, regulated by 

Hsp40 and nucleotide exchange factors (NEFs), interacts with the misfolded 

protein in an ATP-dependant binding and release cycle (Vembar & Brodsky, 2008). 

The ER homologue of Hsp70, BiP and ER resident Hsp40 co-chaperones have 

been shown to maintain the solubility of misfolded proteins (Hegde et al., 2006). 

Prolonged association of Hsp70 with the aberrantly folded proteins causes 

polyubiquitination of the protein by E3 uibiquitin ligases.  Aberrantly folded proteins 

are also targeted for ERAD by possible recognition of abnormal N-linked glycan 

status or disulphide bond status (Vembar & Brodsky, 2008).  

Once substrates for ERAD have been identified they are targeted to the 

retrotranslocation channel and retrotranslocated back into the cytoplasm where 
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they are degraded by the UPS. Several ER resident proteins that target 

glycoproteins for retrotanslocation have been identified, including ER degradation-

enhancing α-mannosidase-like lectins (EDEMs) and lectins that contain mannose-

6-phosphate receptor-like domains, OS9 and XTP3-b (Vembar & Brodsky, 2008).  

 

Prior to degradation by the proteasome, ERAD substrates are ubiquitylated by E1 

ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzymes and E3 ubiquitin 

ligases. In mammals E3s such as membrane associate RMA1 (RING-finger protein 

with membrane anchor-1) and cytoplasmic CHIP (C terminus of HSC70-interacting 

protein) have been shown to ubiquitylate the cystic transmembrane conductance 

regulator (CFTR), whilst another E3, Parkin, has been shown to ubiquitylate the 

Pael receptor GPCR (Imai et al., 2002).  

 

1.5.3 Autophagy 

In addition to ERAD, autophagy is another mechanism by which misfolded proteins 

are removed from the cellular environment.  Three different types of autophagy 

have been described in mammalian cells: macroautophagy, microautophagy, and 

chaperone-mediated autophagy (CMA) (Martinez-Vicente & Cuervo, 2007). The 

induction of macroautophagy by the accumulation of misfolded proteins leads to 

the formation of de novo membranes in the cytoplasm (phagophores), which 

expands into a spherical double membrane bound structure known as the 

autophagosomes that engulf cargo for degradation and fuse with lysosomes 

(Nakatogawa et al., 2009). In microautophagy, substrates for degradation are 

directly internalised through invaginations of the lysosomal membrane. Whereas 

CMA involves selective degradation of substrate proteins, which after binding to 

lysosomal receptors are translocated to the lysosome for degradation (Martinez-

Vicente & Cuervo, 2007). Hsc70, the constitutive member of 70kDa chaperone 

family, recognises the CMA substrate motif and delivers the substrate protein to 

the lysosome. Once at the lysosomal membrane each CMA substrates binds to 
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lysosome associated membrane protein type-2 (LAMP-2A) before translocation 

can occur (Cuervo, 2010). 

 

1.6 Approaches to rescue the function of misfolded ER 

retained proteins  

A number of other genetic diseases are linked to aberrant folding and ER retention 

of transmembrane proteins. These include cystic fibrosis, nephrogenic diabetes 

insipidus, and retinitis pigmentosa.  A number of different therapeutic approaches 

have been tested to restore cell surface expression of intracellularly retained 

transmembrane proteins; the majority of these involve stabilising the misfolded 

protein. This has been achieved using three main approaches: 

I. kosmotropes 

II. small molecular ligands 

III. manipulating the cellular molecular chaperone environment 

 

1.6.1 The use of kosmotropes 

Kosmotropes, such as dimethyl sulfoxide (DMSO), 4-phenly butric (4-PBA) and 

trimethyl N-oxide dihydrate (TMAO), are small molecular weight compounds that 

facilitate folding without direct specific binding to the mutant protein (Cohen & 

Kelly., 2003). Chemical chaperones have also been shown to improve transport 

and enhance stability of mutant α-glucosidases in glycogen storage disease type II 

(GSDII). GSDII, is an autosomal recessive disorder, caused by lysosomal acid α-

glucosidase (AαGlu) deficiency resulting predominantly in skeletal muscle 

weakness. It was demonstrated that treatment of cultured fibroblasts, from GSDII 

patients, with 10 µl N-(n-butyl) α-glucosidasedeoxynojirimycin (NB-DNJ) promoted 

export of mutant AαGlu from the ER to the lysosomes, where normal activity was 

restored (Okumiya et al., 2007).  
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1.6.2 The use of small molecular ligands 

Nephrogenic diabetes insipidus (NDI) a rare X-linked disease is caused by 

mutations within the GPCR V2 vasopressin receptor. In most cases mutations 

within the receptor lead to the retention of the misfolded receptor in the ER. 

Affected patients suffer from an increased urinary output and infants are affected 

by severe episodes of dehydration resulting in growth and mental retardation 

(Robert et al., 2005). Previous studies have shown that treatment of cells, 

expressing the V2 receptor, with non-peptidic V2 receptor antagonists (SR121463, 

VPA985) are able to restore cell surface expression of mutated misfolded receptor 

(Bernier et al., 2004).  

The gonadotophin-releasing hormone (GnRHR) provides another example of cell 

surface rescue of a misfolded GPCR by non-peptidic antagonists. In this case 

treatment with GnRHR selective antagonist IN3 restored cell surface expression of 

eleven misfolded mutants. Furthermore, the rescued mutant receptor, similar to 

WT GnRHR, exhibited agonist mediated endocytosis suggesting that the mutant 

receptor had normal pharmacological and biochemical properties once released 

from the ER (Leanos-Miranda., et al 2005).  

 

1.6.3 Modulating the chaperone folding environment 

Another approach to rescuing misfolded proteins trapped in the ER is to modulate 

the endogenous molecular chaperone machinery. To achieve this, the roles of 

specific chaperones involved in the folding and quality control of specific misfolded 

proteins need to be understood. For example, in the case of cystic fibrosis 80% of 

patients harbour a deletion of phenylalanine at position 508 (ΔF508) in the cystic 

fibrosis transmembrane conductance regulator (CFTR). By assessing proteins that 

interacted with CFTR a protein interaction map was determined and revealed that 

Hsp90 co-chaperones modulate the stability of CFTR in the ER. siRNA mediated 

knock-down of Aha1, a co-chaperone that regulates interactions of Hsp90 with 

CFTR, rescued mutant CFTR folding and export from the ER (Wang et al., 2006).   
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1.7 Aims of the research described in this thesis 

The overall aims of this work were to develop and characterise cellular models to 

use in the identification of modulators of mutant MC4R functional expression. The 

work described in each chapter is summarised below: 

 

 Chapter 3-Development of a cellular model to monitor MC4R expression at 

the cell surface  

In this chapter seven misfolding MC4R mutants were created using site 

directed mutagenesis. The localisation of the mutants was determined using 

confocal microscopy and the extent of ER retention was investigated. The 

MC4R mutants were characterised for cell surface expression using a rapid 

cell culture assay and for signalling function using a dual reporter luciferase 

assay.  

 

 Chapter 4-Kosmotropes as modulators of MC4R trafficking and functional 

expression 

The data presented in chapter 4 investigates the effects of kosmotropes on 

mutant MC4R function. Kosmotropes, DMSO, trehalose and 4-PBA, were 

tested at varying concentrations, using the different assays established in 

chapter 3, for their effects on mutant MC4R cell surface expression and 

function.  

 

 Chapter 5-The effects of heat shock protein inducers and co-inducers on the 

cellular processing of MC4R 

In Chapter 5 the cellular chaperone environment was manipulated by 

inhibiting Hsp90 and over-expressing Hsc70, and the effect on mutant 

MC4R function was investigated.  
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 Chapter 6-Further strategies to promote cell surface expression of mutant 

MC4R 

The final results chapter looked at the effects of autophagy inducer 

rapamycin, phytoalexin resveratrol and MC2R accessory protein MRAP, on 

the cell surface expression and function of mutant MC4R.  
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2.1 Equipment, reagents and plasticware 

Details of all laboratory equipment are listed in the Appendix 1. General laboratory 

reagents and chemicals were purchased from Sigma-Aldrich, UK and general 

plasticware from VWR, UK unless stated otherwise. General buffers and solutions 

were prepared in deionised water and autoclaved or filtered where necessary.  

 

2.2 Nucleic acid amplification, extraction, purification and 

modification  

2.2.1 Oligonucleotide design 

After establishing the gene sequence of interest using internet databases NCBI 

and ENSEMBL, primer pairs were designed according to the basic principles listed 

below:  

 Primers should ideally be 15-25 bp in length  

 Sequences should be non-repetitive and non-palindromic  

 G/C content should designed to be between 40-60% 

 Forward and reverse primers should anneal at approximately the same 

temperature  

 Tm should be between 58 and 68˚C and is calculated (approximately) as 

follows: 

Melting temperature (˚C) = (number of C/G bases) x 4 + (number of A/T 

bases) x 2 

 Primers should not form secondary structures  

Primers used in RT-PCR were intron-spanning to ensure the PCR reaction 

amplified only cDNA and not contaminating genomic DNA. Primers used for site-

directed mutagenesis were created with the help of Stratagene’s web-based 
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QuikChange® program (http://www.stratagene.com/qcprimerdesign). Primer 

sequences are shown below in table 2.1. 

Table 2.1: List of primers                                                                                                           

Primer 

name 

                         Sequence (5’-3’) Genbank 

accession 

number 

MC4R F:GAATTCATGGTGAACTCCACCCACCGT 

R:TGCAGAATTCGCATATCTGCTAGACAAGTCACA     
NM 005912 

 

HA-

MC4R 
F:GAATTCATGTACCCATACGAT 

R: TGCAGAATTCGCATATCTGCTAGACAAGTCACA 
 

N62S F:GTCATCAGCTTGTTGGAGAGTATCTTAGTGATTGTGGCA 

R:TGCCACAATCACTAAGATACTCTCCAACAAGCTGATGAC 
 

P78L F:AGAACAAGAATCTGCATTCACTCATGTACTTTTTCATCTGCAG 

R:CTGCAGATGAAAAAGTACATGAGTGAATGCAGATTCTTGTTCT 
 

C271Y F:CTCCACTTAATATTCTACATCTCTTATCCTCAGAATCCATATTGTG 

R:CACAATATGGATTCTGAGGATAAGAGATGTAGAATATTAAGTGGAG 
 

P299H F:GTGTAATTCAATCATCGATCATCTGATTTATGCACTCCGGA 

R:TCCGGAGTGCATAAATCAGATGATCGATGATTGAATTACAC 
 

D90N F:AGCTTGGCTGTGGCTAATATGCTGGTGAGCG 

R:CGCTCACCAGCATATTAGCCACAGCCAAGCT 
 

S58C F:TGACTCTGGGTGTCATCTGCTTGTTGGAGAATATC 

R:GATATTCTCCAACAAGCAGATGACACCCAGAGTCA 
 

L106P F:AGAAACCATTGTCATCACCCCATTAAACAGTACAGATACGG 

R:CCGTATCTGTACTGTTTAATGGGGTGATGACAATGGTTTCT 
 

GAPDH 

 

HOP 

F:TGCACCACCAACTGCTTAG 

R:GGATGCAGGGATGATGTTC     

F: CTTCCAGAGAATAAGAAGCAG     

R:CTTTCTGAAAACACTCGTTGC           

NM 014364 

 

NM 006819 

   

 

 

 

http://www.stratagene.com/qcprimerdesign
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2.2.2 Total RNA extraction from cells  

RNA extraction was performed using the RNAeasy (Qiagen, UK) kit according to 

manufacturer’s instructions (http://www.qiagen.com/literature). This extraction 

technique is based on selective binding of RNA to a silica gel based membrane, 

hence enabling wash steps to remove contaminants such as DNA and protein. In 

brief, the samples (approximately 700 µl) were applied to an RNAeasy mini column 

in a 2 ml collection tube and centrifuged for 15 sec at 15000 g. The flow-through 

was discarded and the column transferred to a new collection tube and washed 

with 700 µl of Buffer RW1 after transfer to a new collection tube. Subsequently, 

500 μl of Buffer RPE was added and centrifuged for 2 min at 15000 g. This step 

was repeated, followed by centrifuging the column alone at 15000 g for 1 min to 

dry the silica-gel membrane. The RNA was eluted into a new 1.5 ml collection tube 

using 30-50 µl RNase-free water directly pipetted onto the membrane and left for 1 

min before centrifuging at 15000 g for 1 min. RNA collected was quantified using 

the Nanodrop ND 1000 spectrophotometer (Labtech International, UK).  

 

2.2.3 DNase treatment of RNA 

To ensure that the RNA samples were not contaminated with genomic DNA, total 

RNA extracts underwent DNase treatment (reagents were obtained from Promega, 

UK unless specified). In brief, 2.5 µg total RNA was added to 2 μl 10x RQ1 DNase 

buffer, 0.75 µl (30 units) RNasin, 10 µl (10 units) DNAseI and made up to 20 µl 

total volume using RNase-free water. The mixture was incubated at 37°C for 1 hr. 

The samples were either frozen to stop the reaction or precipitated as described in 

section 2.2.8.  
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2.2.4 First strand cDNA synthesis  

All reagents were purchased from Promega, UK. Subsequently, 2 µg of RNA was 

added to a sterile RNase-free microcentrifuge tube. Following this, 0.5 µg/1 µl of 

random primers was added and made up to a total volume of 15 µl with RNase-

free water. The tube was heated to 70°C for 5 min to melt secondary structures 

within the template. The tube was cooled immediately on ice to prevent secondary 

structures reforming. It was spun briefly to collect the solution at the bottom of the 

tube. The following reagents were added to the mixture:  

M-MLV 5X buffer        5 µl 

dATP, 10 mM        1.25 µl 

dCTP, 10 mM        1.25 µl 

dGTP, 10 mM        1.25 µl 

dTTP, 10 mM        1.25 µl  

rRNasin ® ribonuclease inhibitor       25 units (1 µl) 

M-MLV reverse transcriptase (Molony murine leukemia virus) 200 units (1µl) 

Nuclease-free water to final volume      25 µl  

 

The reaction was mixed gently, spun briefly and incubated at 37°C for 1hr. 

Samples were either stored at -20°C or used immediately.  

 

2.2.5 Polymerase Chain Reaction (PCR)  

PCR was performed to amplify genes of interest. The basic principle involves 

denaturing double stranded DNA at high temperatures, ~95°C. This is followed by 

annealing of sequence-specific oligonucleotide primers typically at temperatures 

50-60°C before synthesis of complementary DNA strands from 5’ to 3’ by a 

thermostable polymerase. Repeated cycles allow exponential multiplication of a 

specific portion of DNA.  

 



Chapter 2 – Materials and Methods 

59 

 

A PCR reaction mixture, typically in a total volume of 25 µl was as follows:  

Template      0.5-1 µl 

dH2O               19.75-20.25 µl 

10Xbuffer     2.5 µl  

dNTPs (10 mM)    0.5 µl  

Forward primer (10 µM)   0.5 µl  

Reverse primer (10 µM)   0.5 µl 

Taq DNA polymerase (5 U/µl)  0.25 µl    

Total volume     25 µl 

PCR automated cycling was typically carried out as follows. After initial 

denaturation at 95°C for 5 minutes, this was followed by 25 cycles of 95°C for 30 

sec, 55°C for 30 sec and 72°C for 1 min, with a final extension step at 72°C for 5 

min.  

 

2.2.6 Agarose gel electrophoresis  

All PCR products were run on 1-2% (w/v) agarose gel made in 1X TAE (40 mM 

Tris-acetate, 2 mM disodium ethylenediaminetetraacetate (Na2EDTA), pH 8.3; 

National Diagnostics, UK), and visualised alongside DNA markers (GeneRulerTM 

DNA Ladder Mix, 0.5 mg DNA/ml, Fermentas) with ethidium bromide (0.2 μg/ml) 

staining. 5 μl of each reaction was mixed with loading dye solution (40% w/v 

sucrose, 0.25% w/v bromophenol blue or Orange G, DEPC water) at a 1:5 ratio 

prior to loading the wells of a 1% (w/v) agarose gel. Electrophoresis was typically 

carried out at 120 V for 30 min or until clear separation of bands was achieved. 

Ethidium bromide intercalated into DNA fluoresces under UV light at 300 nm, 

allowing the DNA to be visualised. A transluminator (Uvitec, UK) was used to 

visualise bands, and capture an image of the resultant gel.  
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2.2.7 Extraction of DNA from agarose gels  

DNA was extracted from gel slices using the QIAquick® Gel Extraction Kit (Qiagen, 

UK) according to the manufacturer’s instructions 

(http://www.qiagen.com/literature). In brief, the DNA fragment of interest was 

visualised under UV light, and excised with a sharp clean blade. The gel slice was 

weighed in a microcentrifuge tube and the volume estimated, assuming 100 mg = 

100 µl. 3 x volume of buffer QG (binding and solubilisation buffer) was added to 1 

volume of gel. The sample was incubated at 50°C, vortexing intermittently until 

complete gel solubilisation was achieved. The sample was applied to the QIAquick 

column and centrifuged for 1 min at 15000 g. The flow-through was collected and 

discarded. The column was then washed with 0.75 ml of buffer PE and centrifuged 

at 15000 g for a further minute. The column was placed in a clean microcentrifuge 

tube and allowed to dry at room temperature for 2 min. Using 30-50 µl dH2O 

applied to the membrane the DNA sample was eluted after centrifugation at 15000 

g for 1 minute. The principle of QIAquick is based on binding properties of DNA to 

a silica membrane in the presence of high salt buffer. This allows washes with high 

salt buffers to remove impurities and contaminants, and elution of DNA from the 

membrane is then accomplished with low salt concentrations. Extracted DNA was 

stored at -20°C.  
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2.2.8 Nucleic acid precipitation 

An equal volume of phenol was added to the nucleic acid solution. The sample was 

mixed vigorously to create an emulsion and centrifuged for 5 min at 15000 g to 

separate the nucleic acids (upper aqueous phase) from contaminating proteins, 

lipids and carbohydrates (in phenol phase). The transparent upper phase was 

carefully removed and placed in a new RNase/DNase-free microcentrifuge tube. 

Precipitation of nucleic acids was performed by the addition of 1/10th volume of 3 

M sodium acetate pH 5.3, 2.5 volumes absolute ethanol and 1 µl glycogen (5 

mg/ml). The solution was mixed, vortexed briefly and incubated at -70°C for a 

minimum of 15 min and a maximum overnight to precipitate nucleic acids. 

Precipitated nucleic acids were centrifuged at 15000 g for 10 min. After 

visualisation of the pellet, the supernatant was carefully removed by pipetting. The 

pellet was washed with 70% ethanol and centrifuged again for a further 10 min at 

maximum speed. After removal of the ethanol, the pellet was air-dried and 

resuspended in 10 µl of RNase/DNase-free water. The NanoDrop ND-100 

spectrophotometer was also used to quantify nucleic acid concentration in 

accordance with the manufacturer’s instructions. 

 

2.2.9 DNA sequencing 

Sequencing of PCR products or clones was performed to ensure that they were 

specific. Sequencing was performed by the Genome Centre (Bart’s and The 

London, Queen Mary, University of London) using BigDye 3.1 chemistry (Applied 

Biosystems, UK), which is based on the Sanger dideoy-mediated chain termination 

method (Sanger et al., 1977). Analysis of sequence chromatograms was carried 

out using BioEdit (Hall, 1999).  
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2.3 Plasmid preparation, propagation and modification  

2.3.1 Cloning constructs and design of oligonucleotides  

Two sets of primers to human MC4R were designed, to introduce a GFP tag on the 

C-terminus and to remove the triple haemagglutinin (3xHA) tag on the N-terminus, 

to produce constructs, MC4R-GFP and HA-MC4R-GFP (Table 2.1). Enzyme 

cutting site EcoR1 was also incorporated into the primer sequences to enable 

direct cloning into pEGFP-N1 (Clontech). Restriction endonuclease digestion was 

performed with EcoR1 (NEB) and Pst1 (NEB) to ensure correct orientation of 

MC4R into vector pEGFP-N1. 

Other basic vectors used in this study included pGEM®-T (Promega, UK) and  

pcDNA3.1 (+) (Invitrogen, Carlsbad, CA). Vector maps are shown in Appendix 3. 

Rod opsin, MRAP-FLAG, Aha1 and Hsc70 vectors were obtained from Professor 

Mike Cheetham, Dr. Tom Webb, Professor Paul Workman and Professor Harm 

Kampinga respectively (Saliba et al., 2002; Webb et al., 2009; Holmes et al., 2008; 

Hageman et al., 2007). MRAP-FLAG was constructed by directional cloning of 

human MRAPα into p3xFLAG-CMV-14 expression vector (Webb et al., 2009). The 

correct sequence of all constructs was confirmed by sequencing.  

 

2.3.2 Restriction endonuclease digestion 

Restriction endonuclease digestion was used as part of the cloning strategy, to 

linearise vectors and to verify the presence and orientation of a given insert in a 

particular vector. Enzymes were obtained from New England Biolabs (NEB) or 

Promega, UK.  A typical reaction is shown below.  

DNA     1 µg  

10X reaction buffer   5 µl 

Restriction enzyme (2-10U/µl) 1 µl  

dH2O to a final volume of    50 µl 
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Digests were typically performed for 2 hr at 37°C. The program NEB CUTTER V2.0 

was used to determine enzyme restriction sites. Double digests were performed in 

a similar manner in either a one or two step procedure; the reaction buffers were 

selected using information available from manufacturers 

(http://www.promega.com/guides/re_guide/research.asp?search=buffer).  

 

2.3.3 Ligations 

Ligation reactions were set up as follows:  

T4 DNA Ligase (1-3 U/μl ; Promega, UK)   1 µl 

T4 DNA Ligase 10X buffer (Promega, UK)   1 µl  

Vector         1 µl 

Insert DNA        2 µl 

dH2O to a final volume of       10 µl   

The vector was digested with relevant enzymes and run on an agarose gel to 

ensure linearisation. The digested vector was gel cleaned as described in section 

2.2.7, prior to ligation. The ligation reaction was left overnight in an ice water bath 

prior to transforming competent bacteria.  

            

2.3.4 Transformation of competent bacteria 

Transformations were undertaken according to the protocol provided with JM109 

E-coli competent cells (Promega, UK). For each transformation a 50 µl aliquot of 

competent cells was transferred to a sterile 1.5 ml eppendorf. 5 µl of ligation 

mixture was added to the cells. The sample was placed on ice for 10 min and 

swirled intermittently. The cells were heat shocked at 42°C for 47 secs and 

returned immediately to ice for 2 min. 950 µl of SOC (super optimal culture) 

medium (Invitrogen Ltd, UK) was added to each tube and incubated at 37°C for 1 

hr at 225 rpm. Following this, the cells were centrifuged for 4 min at 1200 g. 
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Positioned next to a Bunsen burner, the supernatant was poured away and the 

remaining cells resuspended in the residual SOC media, normally 100 µl. This was 

plated using a sterile glass spreader onto a LB/agar plate with 100 µg/ml ampicillin 

plate (or 30 µg/ml kanamycin) and incubated overnight at 37°C. A positive control 

using the vector pGEM®-3Z (Promega, UK) was conducted for each set of 

ligations using control plasmid to assess transformation efficiency of cells.  

 

2.3.5 Blue/white screening 

In the case of the pGEM T vector, cells were plated onto agar plates previously 

coated with 50 µl of 50 mg/ml X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-

galactopyranoside, Promega, UK) and 100 µl of 0.1 M Isopropylβ-D-1-

thiogalactopyranoside (IPTG) (Promega, UK). The pGEM T vector contains the 

LacZ gene coding for the β-galactosidase enzyme that converts X-Gal into a blue 

product. Insertion of a piece of DNA into the multiple cloning site, which lies within 

the LacZ gene, would result in disruption of this gene and therefore prevent the 

production of the β-galactosidase enzyme. Hence, bacteria with plasmids 

containing the desired DNA insert would fail to metabolise X-Gal and remain white. 

On this basis the white colonies were picked after overnight incubation.  

 

2.3.6 Screening of colonies by PCR and restriction digests 

The selected colonies were screened for the presence of an insert by restriction 

digestion of the plasmid followed by gel electrophoresis. After screening, 

sequencing across the cloning site was performed to confirm that the insert was 

correctly introduced into the vector, in frame and in the correct orientation.  
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2.3.7 Bacterial cultures  

For each bacterial colony selected, 5 ml of sterile LB broth containing 100 µg/ml of 

ampicillin (or 30 µg/ml kanamycin) was poured into a 50 ml Falcon tube under 

sterile conditions. Colonies were selected (white colonies in the case of pGEM-T) 

from the LB/agar plate with a sterile pipette tip and transferred to the broth. The 

samples were incubated overnight at 37°C in a shaking incubator at 225 rpm. 

 

2.3.8 Glycerol stocks 

After overnight incubation 500 µl of the cultured transformed bacterial cells were 

pipetted into a sterile microcentrifuge tube. 500 µl of sterile glycerol (Sigma-Aldrich, 

UK) was added and mixed thoroughly. Glycerol stocks were stored at -70°C.  

 

2.3.9 Preparation of LB-Agar plates 

LB/Agar (10 g LB broth, 7.5 g agar, 500 ml water) was prepared and autoclaved. 

Once cooled to a temperature ~37°C, antibiotic was added to a total concentration 

of 100 µg/ml for ampicillin or 30 µg/ml for kanamycin. The mixture was poured into 

10 cm petri dishes, in a sterile field created by a Bunsen burner and left to set at 

room temperature. Once set these were sealed, with parafilm and stored at 4°C or 

used immediately.  

 

2.3.10 Plasmid DNA purification  

Depending on the amount of plasmid DNA required, either Qiagen mini- or midi-

preps (Qiagen, UK) were performed according to the protocol provided by the 

manufacturer (http://www.qiagen.com/literature). Although the exact compositions 

of the reagents are unavailable, the principle is based on alkaline lysis of bacterial 
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cells followed by absorption of plasmid DNA onto a silica membrane under high-

salt conditions.  

Miniprep for preparation of up to 20 μg of high-copy plasmid DNA 

Plasmid DNA was recovered from cells using the Qiagen miniprep kit according to 

Qiagen protocol. Briefly, 5 ml of bacterial culture was centrifuged in a 50 ml Falcon 

tube for 15 min at 3000 g. After removing the culture media the cell pellet was 

resuspended in 250 µl ice-cold buffer P1 (cell resuspension solution).  The cells 

were transferred into a 1.5 ml microcentrifuge tube and 250 µl of buffer P2 (cell 

lysis solution) was added. This was then mixed by inversion until homogenous. 

Immediately after this 350 µl of buffer N3 (neutralisation solution) was added and 

the sample mixed again. The microcentrifuge tube was then spun at 15000 g in a 

tabletop microcentrifuge for 10 min. The supernatant containing the plasmid DNA 

was applied to a QIAprep spin column and centrifuged for 30-60 sec. The flow-

through was discarded and the column washed by adding 0.75 ml of buffer PE 

(wash buffer). The column was placed in a clean 1.5 ml microcentrifuge tube and 

the DNA eluted by the addition of 30-50 µl of dH2O to the column, which was then 

centrifuged for 2 min at 15000 g.  

Midiprep for preparation of up to 100 μg of high-copy plasmid DNA 

Precisely 50 ml of bacterial cell culture was used for each midiprep. Bacterial cells 

were harvested after centrifugation at 3000 g for 15 min at 4˚C. The cell pellet was 

resuspended in 4 ml of buffer P1. Precisely 4 ml of lysis buffer was added and the 

tube inverted until thorough mixing was achieved. This was incubated at room 

temperature for 5 min. Subsequently 4 ml of neutralisation buffer was added and 

the solution mixed by inversion. The sample was then applied to a 20 ml syringe, 

having removed the plunger, and left for 10 min. In the meantime, the midi 100 

column was equilibrated with 4 ml buffer QBT (equilibration buffer). Once buffer 

QBT had run through the column the supernatant from the syringe was applied to 

the column.  This was allowed to flow through by gravity and the column was 

washed twice with wash buffer QC (2 x 10 ml). The DNA was eluted with 5 ml 
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buffer QF (elution buffer). DNA precipitation was performed by the addition of 0.7 

volumes of isopropanol (Sigma-Aldrich, UK) at room temperature and 

centrifugation at 4000 g for 1 hr at 4°C. The supernatant was decanted and the 

pellet washed with 2 ml of 70% v/v ethanol at room temperature and recentrifuged 

at 4000 g for 1 hr at 4°C, after which the supernatant was discarded and the pellet 

air dried. The DNA was then dissolved in a suitable amount of water and stored at -

20°C.  

 

2.3.11 Site-directed mutagenesis of MC4R constructs 

To create the seven selected MC4R mutants, primers (Table 2.1) were designed to 

introduce point mutations resulting in the required amino acid change. This was 

achieved by using the QuikChange II site-directed mutagenesis kit (Stratagene) 

and using MC4R-GFP or HA-MC4R-GFP or HA-MC4R constructs as template. The 

conditions for PCR are listed below: 

 

10 x reaction buffer (Stratagene)    5 µl 

construct template        125 ng 

forward primer (100 ng/ul)    1.25 µl 

reverse primer (100 ng/ul)    1.25 µl 

dNTP mix (Stratagene)     0.2 nM 

PfuUltra HF DNA polymerase (Stratagene)  1 µl 

ddH2O to a final volume of     50 µl 

Cycling conditions: 

1 cycle        95°C for 30 seconds 

16 cycles    95°C for 30 seconds 

                    55°C for 1 minute 

                    68°C for 5 minutes and 40 seconds 

Following the thermal cycling reaction the site-directed mutagenesis products were 

digested with 1 µl of Dpn1 restriction enzyme (10U/µl) at 37°C for 1 hour. This step 
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is necessary to digest the parental, non-mutated, supercoiled dsDNA. Plasmid 

DNA was then transformed as described in section 2.3.4 and signal colonies 

purified as described in section 2.3.10. DNA was sequenced (as described in 

section 2.2.9) to ensure that the plasmid contained the correct mutation. 

 

2.4 Cell culture, transfection and the development of stable 

cell lines 

2.4.1 Cell culture 
 
Human neuroblastoma cell line (SK-N-SH) and Chinese hamster ovary (CHO)  

cells were grown in DMEM/F12 (Sigma) containing 10% heat inactivated foetal 

bovine serum (FBS, Invitrogen) with 50 U/ml penicillin and 50 μg/ml streptomycin 

(Invitrogen). Human embryonic kidney (HEK 293) cells were grown in Dulbecco’s 

modified eagle’s medium (DMEM) containing 10% v/v FBS with 50 U/ml penicillin 

and 50 µg/ml streptomycin. Cells were kept in a humidified atmosphere of 5% v/v 

CO2
 
at 37°C.  

 

2.4.2 Transfection of cells 

Cells were seeded in 8, 12, 24, well cell culture plates or T25 cell culture flasks. 

After 48 hours or once cells had reached ~70% confluency, cells were transfected 

with the appropriate amount of plasmid DNA (Table 2.2) using Lipofectamine 

(Invitrogen) and Plus reagent (Invitrogen) in serum-free media for three hours 

according to manufacturer’s instructions. Following transfection 20% v/v FBS 

media was added in equal volume in order to restore a 10% v/v FBS solution. 
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Table 2.2: Amount of reagents used for transfection of MC4R plasmids 

Cell culture Vessel DNA (ng/µl) Lipofectamine (µl) Plus reagent (µl) 

24 well 200 1 2 

12 well 400 2 4 

8 well 800 4 8 

T25 flask 2000 8 16 

 

 

2.4.3 Preparation of stable cell lines expressing tagged WT 

and mutant MC4R 

HEK 293 cells were seeded in a 6-well plate and allowed to grow to approximately 

80% confluence. Cells were transfected with WT HA-MC4R and HA-MC4R (S58C, 

P78L, D90N and L106P) using the lipophilic agent Lipofectamine and Plus reagent 

(Invitrogen). To select for cells stably expressing MC4R Geneticin (G418) was 

utilised. Resistance to G418 is conferred by the neo gene from Tn5 encoding an 

aminoglycoside 3‘-phosphotransferase, APH 3‘II (Invitrogen). After optimisation of 

G418, transfectants were selected in G418 (1.5 mg/ml). After 14 days, cells were 

transferred to ninety-six well plate at a seeding density of 0.5 cells per well to 

achieve monoclonal MC4R expressing cell lines. The stable cell lines were 

gradually scaled up by transferring them to larger cell culture vessels once 100% 

confluence was achieved. HA-MC4R expression was tested by using Western blot 

analysis. 
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2.5 siRNA of Hop 

siRNA transfections were carried out in 6 well cell culture dishes in triplicate for 

each siRNA duplex. Three Mission® siRNA duplexes (ID: 00126805, 00126806, 

00126807) at a concentration of 10 nmol against Hop (NM 006819) were obtained 

from Sigma.  The sequence of the Mission siRNA (Sigma) and the negative siRNA 

(control#1) (Ambion) were not disclosed by the manufacturer.  Triplicate HEK 293 

cells cultures were transfected individually with 150 nM of the siRNA duplexes 

using Lipofectamine and plus reagent prepared in OptiMEM following the 

manufacturer's instructions.  RT-PCR was performed to confirm knockdown mRNA 

expression of Hop.   

 

2.6 Drug treatments 

All drug treatments were carried out upon the re-establishment of 10% v/v FBS 

solution, after the 3 hour serum free period, and incubated for 24 hours unless 

otherwise stated. Reagents used and the concentrations they were used at are 

detailed in Table 2.3. 
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Table 2.3: Reagent used in thesis 

Reagent Stock concentration  Supplier 

NDP-MSH 10-5M in dH20 Bachem 

AGRP 10-5M in dH20 Bachem 

DMSO >99% Sigma 

TMAO 1M in dH20 Sigma 

4-PBA 5M in dH20 Sigma 

Trehalose 0.3M in dH20 Sigma 

Geldanamycin 2mM in DMSO Sigma 

Rapmaycin 5mM in chloroform Sigma 

Resveratrol 10mM in ethanol Sigma 

 

2.7 Processing of cells for confocal microscopy 

Cells were seeded on round 15mm coverslips (VWR), which were placed in the 

wells of a 12 well cell culture plate, prior to transfection. 24 hours post-transfection, 

tagged MC4R expressing cells were washed once with phosphate buffer saline 

(PBS) (Sigma) prior to fixation with 3.7% v/v formaldehyde (TABB Laboratories, 

UK) for 15 minutes at room temperature (RT). Cells were permabilised with 

0.025% v/v Triton X-100 for 10 minutes and subsequently washed twice with PBS 

for 10 minutes. The cells were then blocked for 45 minutes in buffer A, which 

consisted of PBS containing 10% v/v donkey serum (Sigma) and 3% v/v albumin 

from bovine serum (BSA) (Sigma). To detect the N-terminal HA tag, cells were 

incubated for 1.5 hours in buffer A containing anti-HA monoclonal mouse antibody 

(Sigma) at a dilution of 1:500. Following this cells were washed with PBS, for a 
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duration of 10 minutes three times. Subsequently cells were incubated for a further 

hour in buffer A with cy3 conjugated anti-mouse secondary antibody at a dilution of 

1:100 (Jackson laboratory). Cells were washed three times for 10 minutes with 

PBS and incubated with 2 µg/ml 4',6-Diamidino-2-phenylindole dihydrochloride 

(DAPI, Sigma) for two minutes. Cells were washed for five minutes with PBS and 

the round coverslips were mounted using florescent mounting media (Invitrogen) 

on glass slides (VWR) prior to imaging using a LSM 510 confocal microscope 

(Zeiss). 

 

2.8 Processing of cells to assess cell surface expression 

24 hours post-transfection, HA tagged MC4R expressing cells were washed once 

with PBS prior to fixation with 3.7% v/v formaldehyde for 15 minutes. To detect 

intracellular retained MC4R half the 24 well cell culture plate was permeabilised 

with 0.025% v/v triton X-100 for 10 minutes, leaving the remaining half non-

permeabilised (Fig 2.1). Cells were washed with PBS for 10 minutes prior to 45 

minutes incubation with blocking buffer (LI-COR). Following this cells were 

incubated for 1.5 hours with anti-HA monoclonal mouse antibody (Sigma) in 

blocking buffer at a dilution of 1:1000. Cells were washed with PBS, with three 10 

minute washes. Cells were then incubated for 1 hour in blocking buffer with a dye 

that exists in the infrared spectrum (LI-COR) at a dilution of 1:1000 and SYTO 60 

red fluorescent nucleic acid stain (Invitrogen) at a dilution of 1:10000 to account for 

variation in cell number. Finally cells were washed with PBS, with three 10 minutes 

before scanning the plate(s) at 800nm to detect the HA tag and 700 nm to detect 

the DNA stain on Odyssey® infrared imaging system (LI-COR). 
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Figure 2.1: Schematic of immunocytochemistry staining to assess cell surface 

expression of MC4R 

The IR secondary antibody is unable to penetrate non-permeabilised cells, 

therefore any intracellular retained MC4R is not detected and only MC4-receptor at 

the cell surface can be quantified. When cells are permeabilised IR secondary 

antibody is able to enter the cell and detect HA-primary antibody bound to the HA-

epitope tag of MC4R. Therefore the total amount of MC4R, at the cell surface and 

intracellular, can be quantified and the percentage at the cell surface can be 

calculated. 

 



Chapter 2 – Materials and Methods 

74 

 

2.9 Confocal microscopy and cell inclusion counting 
 
SK-N-SH cells expressing MC4R-GFP were counted for inclusions using a 63x 

objective from a DMR Leica epifluorescence microscope. Cells were counted blind 

to experimental status in five different fields of view.  

When imaging, to compare between cells treated with pharmacological reagents 

and control cells, the confocal microscope settings were kept constant. 

MC4R expressing cells were visualised using a Zeiss LSM 510 microscope. The 

following excitations/emissions conditions were used in separate channels using 

the 63x objective: DAPI 364/475-525 nm, Cy2 488/505-530 nm, Cy3 543/560 nm.  

 

2.10  SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

T25 culture flasks were transfected with 2 µg of plasmid DNA. After 24 hours post 

transfection, MC4R expressing cells were washed twice with 4°C PBS before lysis. 

Cells were lysed using 250 µl Ripa buffer (Sigma) containing 0.1% v/v protease 

inhibitors (Sigma) and 0.1% v/v phosphatase inhibitors (Sigma). Cells were 

scraped on ice and collected in a 1.5 ml microcentrifuge tube. Cell lysates were 

incubated on ice for 30 minutes and subsequently centrifuged at 15000 g for 10 

minutes. Subsequently, 200 µl of the supernatant was removed and placed in a 

sterile 1.5 ml microcentrige tube and an equal volume of laemmli buffer (Sigma) 

was added to the sample. The samples were run on a 12% v/v polyacrylamide gel. 

The resolving gel consisted of: 2.6 µl 4x ProtoGel resolving buffer (1.5 M Tris-HCL, 

0.4% SDS, pH 8.8, National Diagnostics),  4.0µl 30% w/v acrylamide (National 

Diagnostics), 3.3 µl dH2O, 100 µl of 10% v/v ammonium persulfate (Sigma) and 20 

µl TEMED (Sigma). Once set the stacking gel was added and consisted of: 2.5 µl 

ProtoGel stacking buffer (0.5 M Tris-HCL, 0.4% SDS, pH 6.8, National 

Diagnostics), 1.3 µl 30% w/v acrylamide, 6.1 µl dH2O, 100 µl of 10% v/v 

ammonium persulfate and 10 µl TEMED.  Alternatively sample cell lysates were 

loaded into pre-cast 12% Nupage® Tris-HCl gels (Invitrogen). 
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Lysates were run alongside  5 µl of prestained protein marker (broad range 6-175 

kDa, New England Biolabs, UK) to enable an approximation of the molecular 

weight of indentified proteins. Using a Mini-PROEAN 3 Electrophoresis system 

(Bio-Rad Laboratories Ltd, UK) or for pre-cast gels a X-Cell surelock system 

(Invitrogen, UK), proteins were separated by SDS-PAGE at 120 V until the dye 

front reached the bottom of the gel. The Tris-glycine running buffer contained 25 

mM Tris-HCL, 250 mM Glycine and 0.1% v/v SDS.  

 

2.10.1 Protein transfer  

Proteins were transferred from 12% v/v polyacrylamide gels to Whatman® 

Protran® nitrocellulose transfer membrane (Sigma) using a semi dry 

electrophoretic transfer cell (Bio-Rad Laboratories Ltd, UK). The electrotransfer 

buffer was made up of 25 mM Tris, 192 mM glycine and 20% v/v methanol. 

Electrotransfer of proteins was carried out for 30 minutes at 15 V with a current of 

0.4 A per gel. 

 

2.10.2 Immunoblotting 

The nitrocellulose membrane was incubated in blocking buffer (PBS, 5% w/v 

Marvel
TM

, 0.1% v/v Tween-20 (polyoxyethylene (20) sorbitan monolaurate)) for 1 

hour with gentle agitation. Membranes were subsequently incubated with primary 

antibody (Table 2.4) at a concentration of 1:1000, in blocking buffer and left 

overnight at 4°C with gentle agitation. This was followed by three 5 minute washes 

in wash buffer (PBS, 0.1% v/v Tween 20). The blot was subsequently incubated 

with dyes that exist in the infrared spectrum, goat anti-rabbit® IRDye® 800CW or 

anti-mouse® IRDye® 800CW (LI-COR Biosciences) at a dilution of 1:10,000 in 

blocking buffer for 1 hour. Incubation with the secondary antibody and subsequent 

steps were performed in the dark in a blacked-out box. Prior to scanning the 

nitrocellulose membrane an Odyssey Infrared Imagaing system (LI-COR) the 

nitrocellulose membrane was washed three times for 5 minutes in wash buffer.  
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Table 2.4:  Antibodies used in this study 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.10.3 Detection of MC4R glycoforms 

The mobility of the different MC4R glycoforms were determined by digesting 10 μg 

of soluble cell lysates using Endoglycosidase H (EndoH) and Peptide N-

glycosidase F (PNGaseF) (NEB) for 2 hours at 37°C. Following deglycosylation, 

the samples were run on a gel and Western blotted as described in sections 2.10  

 

 

Primary antibody Supplier 

Mouse monoclonal 

antiHA clone HA-7 

Sigma 

Mouse monoclonal anti-

Hsp70 clone BRM-22 

Sigma 

Rabbit monoclonal anti-

V5 

Sigma 

Mouse monoclonal anti-

FLAG 

Sigma 

Rabbit polycolonal to 

human Aha1 

Professor Paul Workman, 

Institute of Cancer 

Research 

ID4 Rhodopsin Professor Mike 

Cheetham, Institute of 

Ophthalmology 
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The deglycosylation reactions were as follows:  

 

EndoH cloned from Streptomyces plicatus and over expressed in E.coli was 

supplied in 20 mM Tris-HCL (pH 7.5), 50 mM NaCl, 5 mM Na2EDTA. 10x G5 

buffer: 0.5 M sodium citrate (pH 5.5).  

 

Triton-X soluble lysate   10 µg  

10x G5 buffer    2 µl  

EndoH (500 U/μl)    1 µl  

ddH2O to     20 µl  

Total reaction volume:   20 µl  

Reaction was incubated for 2 hours at 37°C  

 

PNGaseF reaction:  

PNGaseF purified from Flavobacterium meningosepticum was supplied in 20 mM 

Tris-HCL (pH 7.5 at 25°C), 50 mM NaCl, 5 mM Na2EDTA and 50% glycerol. 10x 

G7 buffer: 0.5 M sodium phosphate (pH 7.5 at 25 °C).  

 

Triton-X soluble lysate    10 µg  

10x G7 buffer    2 µl  

PNGaseF (500 U/μl)   1µl   

ddH2O to     20 µl  

Total reaction volume:  20 µl  

Reaction was incubated for 2 hours at 37°C 

 

2.11 Co-immunoprecipitation 

Cells lysates were prepared as previously described in section 2.10. Co-IP using 

anti-HA agarose conjugate, Clone HA-7 (Sigma-Aldrich, UK) was performed. For 

HA agarose, 40 µl agarose was placed into a 1.5 ml microcentrifuge tube. The 

agarose was washed five times in 1 ml PBS and after each wash the agarose was 
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centrifuged at 15000 g for 1 min. PBS was discarded carefully leaving the agarose 

intact. 700 µl of lysate was added to the agarose and placed on a rolling rotor 

overnight at 4°C. Following overnight incubation the agarose was washed five 

times with 1 ml PBS. On the last wash approximately 10 µl of supernatant was left 

on the agarose. 50 µl sample SDS buffer was added and the sample boiled for 3 

min. The samples were then spun at 15000 g for 2 min. The supernatant was 

carefully removed, passed through a 0.22 µm filter (Millipore), before being used 

for Co-IP. Typically 20 µl of this sample was loaded alongside 20 µl of untreated 

protein lysate for comparison. Blotting was performed using rabbit anti-V5 antibody 

or rabbit anti-Aha1.  

 

2.12 Measurement of MC4R signalling  

2.12.1 Measurement of cAMP levels in cells expressing 

MC4R 

The cAMP competitive binding assay is based on the competition between cAMP 

in the sample and [3H] cAMP for the binding protein extracted from bovine adrenal 

glands. Any free [3H] cAMP are absorbed by charcoal and removed by 

centrifugation and bound [3H] cAMP that remains in the supernatant is determined 

by liquid scintillation counting (Brown et al., 1971). 

After 24 hours post transfection, cells were starved for 30 minutes in serum free 

media and subsequently incubated with 1mM of IBMX for 60 minutes. After this 

period the cells were stimulated with 10-7 M NDP-MSH for 30 minutes. After 

stimulation, cells were harvested on ice by scraping them into the medium and 

harvested cells were placed in microcentifuge tubes. Cells were lysed by boiling for 

five minutes to release intracellular cAMP. The insoluble material was pelleted by 

centrifugation at 15000 g and the supernantant was transferred to fresh 

microcentrifuge tubes and stored at -20°C. 
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Serial dilution of stock cAMP was carried out to produce a standard curve with a 

range from 0.125 pmol to 64 pmol. Subsequently, 100 µl of each sample was 

placed into a separate 0.5 µl tube and was performed in duplicate. To the sample 

tubes, 50 µl of [3H] cAMP was added followed by 100 µl of diluted binding protein, 

and the tubes were then vortexed. Several controls were also incorporated. To 

measure the total radioactivity possible, total count, 400 µl of assay buffer and 50 

µl [3H] cAMP was placed in a 0.5 µl tube with no cold cAMP. The non-specific 

binding control was prepared by adding 200 µl and 50 µl [3H] cAMP, and was used 

to ensure that [3H] cAMP does not bind to endogenous factors in the buffer. B0 was 

prepared by adding 100 µl buffer, 100 µl binding protein and 50 µl [3H] cAMP to a 

0.5 µl tube. Individual B0 controls were included for each batch of 16 samples 

centrifuged as to correct for any potential drift in B0 with time, especially in cases 

where many samples were measured. 

Calculation: 

 (X-NSB/ B0-NSB) X 100      X = sample, NSB = Non specific binding 

The count was expressed as a percentage of the total count. The percentage (y-

axis) was plotted against cAMP content of the standards (x-axis) and the cAMP 

content for the unknown samples was then extrapolated from the standard curve. 

 

Figure 2.2: An example of the standard curve obtained from a cAMP assay 

Inter-assay and Intra-assay coefficient of variance (CV) values were calculated 

using the equation: CV=SD/Mean. Inter-assay coefficient of variance: 12%, Intra-

assay coefficient of variance: 15%. 
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2.12.2  Measurement of luciferase activity 

Genetic reporter systems are widely used to study eukaryotic gene expression and 

cellular physiology. Applications include the study of receptor activity, transcription 

factors, intracellular signaling, mRNA processing and protein folding.  

Dual-Luciferase Reporter assay (Promega) assays the activity of firefly (Photinus 

pyralis) and Renilla (Renilla reniformis) luciferases which are measured 

sequentially from a single sample (Fig.2.3).  

Luciferase Assay Reagent II was prepared by re-suspending the lyophilized 

Luciferase Assay Substrate in 10 ml Luciferase Assay Buffer II (LAR II) and stored 

at -70°C. 1 volume of 50X Stop and Glo Substrate was added to 50 volumes of 

Stop and Glo Buffer and stored at -20°C. 

Cells were co-transfected with a plasmid containing luciferase driven by the cAMP 

responsive promoter α-GSU-846 and pRL-CMV Renilla luciferase plasmid, which is 

driven by the CMV immediate-early enhancer/promoter. 24 hours post-transfection 

cells were washed with PBS and stimulated with 10-7M NDP-MSH for 6 hours. 

Stimulation of the cells causes an increase of cAMP levels in the cells and this 

ultimately leads to the transcription of luciferase. 

Cells were lysed with 100 µl of the the supplied Passive Lysis Buffer. The lysates 

were transferred to microcentrifuge tubes and incubated on ice for 15 minutes 

before centrifugation for 10 minutes at 15000 g. The supernantant was transferred 

to the fresh microcentrifuge tubes and stored at -20°C. 

25 µl of the each sample was placed in a 96 well plate, and 80 µl of LAR II and 80 

µl of Stop and Glo was automatically added to each sample. Luciferase and renilla 

activity was measured using a Polestar Omega illuminometer (BMG labtech). 
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Figure 2.3:  Activation of the cAMP signalling cascade 

Agonist dependant stimulation of MC4R causes the dissociation of the α-subunit of 

the heterotrimeric G protein complex. The α-subunit then activates adenylyl 

cyclase which converts ATP to cAMP. cAMP in turn activates PKA (cAMP 

dependant protein kinase A) which phosphorylates the transcription factor CREB 

(cAMP response element binding protein) which regulates the activity of the 

luciferase gene containing CRE ( cAMP response element). 
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2.13 Statistical analysis 

All statistical analysis was performed using Microsoft Excel 2007. The 

determination of significance was performed using a student’s t-test. In some 

instances, a one way analysis of variance (ANOVA) was performed followed by 

Dunnett's Multiple Comparison post-test using GraphPad PRISM2 (GraphPAD 

Software, San Diego, CA). In experiments where statistical analysis was used, 

experiments were performed with an n of 5 and represent at least 3 independent 

experiments.  Error bars represent the mean standard deviation of the independent 

experiments. Statistical significance was taken as p<0.05.  
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3.1 Introduction 

A number of Melanocortin 4 receptor (MC4R) mutations have been studied in detail 

at the biochemical and cellular level (Tao, 2010; Adan et al., 2006). These studies 

have suggested that MC4R mutations, like other naturally occurring mutations in 

GPCRs, can be divided into several categories on the basis of mechanisms of 

pathogenesis. A number of point mutations in MC4R have been classified as 

misfolding mutations based on the mutant receptor being intracellularly retained at 

the endoplasmic reticulum (ER), most likely due to the cells chaperone mediated 

quality control machinery detecting the mutant protein as aberrantly folded.  One of 

the key aims of this study was to identify potential pharmacological modulators of 

MC4R folding and cell surface expression.  In order to achieve this study aimed to 

identify ER retained MC4R misfolding mutants and develop a cell culture model 

designed to determine the cellular fate of wild-type and mutant MC4R.  

The aim was to develop an assay suitable for screening molecules in the following 

classes of compounds i) chemical chaperones/kosmotropes and ii) inducers and 

inhibitors of molecular chaperones, for the ability to improve the processing of wild-

type and mutant MC4R to the plasma membrane and to clarify the mechanism of 

action of any drugs identified as modulators of MC4R cell surface expression.  

Previous studies have indicated a degree of variability in the severity of MC4R 

misfolding mutations with some mutants showing significant cell surface 

expression (Vaisse et al., 2000). Therefore, a cohort of MC4R mutations that had 

previously been suggested to be ER retained, were investigated. It was anticipated 

that these mutants would be defective in cell surface trafficking to varying degrees. 

In total seven MC4R misfolded mutations were selected and introduced into MC4R 

by site directed mutagenesis. The cellular localisation of each mutant was 

determined by confocal microscopy, and through the development of a cell culture 

assay, the cell surface expression of each mutant relative to wild-type MC4R was 

determined.  This cell culture model was further used for the quantitative analysis  
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of the efficacy of drugs that may potentially improve cell surface trafficking of 

mutant MC4R proteins. Another aim was to monitor the levels of maturely 

glycosylated wild-type and mutant MC4R proteins as a metric for receptor 

maturation after drug treatment. As a GPCR, MC4R activation via ligand binding 

results in an increase of intracellular cAMP level. In this chapter cAMP was 

measured, after the addition of the agonist, to determine whether the compounds 

had improved the functionality of the mutant receptor compared to the wild-type 

receptor. 

In summary the work described in this chapter represents the development of a cell 

culture model to monitor the trafficking and functional expression of wild-type (WT) 

and mutant MC4R to the plasma membrane. 
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3.2 Results 

3.2.1 Expression of MC4R in SK-N-SH and HEK 293 cell lines 

For this study it was intended to heterologously express wild-type and mutant 

MC4R in a cell line that did not express the endogenous protein.  Previous studies 

of MC4R mutants have most commonly used HEK 293 cells (Tao & Segaloff, 2005; 

Shinyama et al., 2003). Using RT-PCR it was shown that HEK 293s did not have 

detectable levels of endogenous MC4R mRNA (Fig. 3.1). As MC4R is expressed in 

the brain, the use a neuronal cell line was also utilised. The neuroblastoma derived 

cell line, SK-N-SH, was selected. SK-N-SH cells were also found not to express 

any detectable levels of MC4R mRNA and were therefore used alongside HEK 293 

cells in parts of this thesis (Fig. 3.1). 

 

3.2.2 Generation of constructs 

In order to investigate MC4R cellular localisation, a human MC4R cDNA clone that 

was tripled haemagglutinin (HA) tagged at the N-terminus in pcDNA 3.1 vector 

(HA-MC4R) was obtained from Missouri S&T cDNA Resource Center 

(www.cdna.org).  From this construct MC4R-GFP and HA-MC4R-GFP fusion 

proteins were generated (chapter 2, section 2.3.1) (Fig. 3.2). The MC4R-GFP 

construct was generated to observe the cellular localisation of mutant MC4R, in 

HEK 293 and SK-N-SH cells, using confocal microscopy. The initial use for the HA-

MC4R-GFP fusion protein was to easily quantify the proportion of the cell surface 

localised mutant MC4R and the proportion of intracellular localised mutant MC4R. 

In addition to using the HA-MC4R construct, which showed clear plasma 

membrane (PM) localisation (Fig. 3.3), the other HA-MC4R-GFP and MC4R-GFP 

constructs were also investigated. 

 

 

http://www.cdna.org/
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Figure 3.1: MC4R mRNA was not detected in HEK 293 or SK-N-SH cells 

mRNA from SK-N-SH or HEK 293 cells was reverse transcribed to obtain cDNA. 

Primers for MC4R were used to amplify MC4R transcript from the cDNA obtained 

from each cell line. No endogenous expression of MC4R was observed in SK-N-

SH or HEK 293 cell lines. GAPDH was used as a positive control for mRNA 

extraction and the RT reaction. Positive control for PCR shows amplification of 

MC4R from pcDNA3.1 3xHA-MC4R vector.  
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MC4R-332aa GFP epitope tag-239aa
3xHA epitope 

tag-39aa

 

Figure 3.2: Schematic of the three WT MC4R construct used in this thesis 

HA-MC4R was sub-cloned into pEGFP-N1 vector to generate the HA-MC4R-GFP 

fusion protein. MC4R-GFP was generated by PCR of the MC4R sequence from 

HA-MC4R pcDNA3.1 and sub-cloning the isolated MC4R insert into pEGFP-N1. 
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Figure 3.3: Wild-type HA-MC4R clearly localises to the plasma membrane 

(PM) 

HEK 293 (A) or SK-N-SH (B) cells were transfected with WT HA-MC4R. 24 hours 

post transfection permeabilised cells were stained for the N-terminal HA tag (red) 

and nuclei (blue). Scale bar = 10 µM 
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3.2.3 Localisation of HA-MC4R-GFP 

The HA-MC4R-GFP construct was designed to enable the quantification of cell 

surface and total levels of WT and mutant MC4R. The initial strategy was to 

measure cell surface levels of MC4R by immunostaining for the extracellular 

haemagglutinin (HA)-epitope tag, whilst total levels of the receptor were to be 

monitored by quantifying the GFP fluorescence. An added advantage of using a 

GFP-tagged construct was that the level of transfection efficiency could easily be 

determined by visualising the transfected cells using a fluorescent microscope 

before proceeding to subsequent assays.  

HEK 293 cells were transfected with the wild-type construct HA-MC4R-GFP (WT 

HA-MC4R-GFP) and 24 hours post-transfection cells were fixed and stained for the 

HA-epitope tag. The sub-cellular localisation of HA-MC4R-GFP was then analysed 

by confocal microscopy. Interestingly, in a high proportion of transfected cells, 

MC4R staining was not predominantly at the plasma membrane (Fig. 3.4, C). With 

respect to the HA-MC4R-GFP construct, despite clear PM localization being 

observed in the permeabilised cells stained with anti-HA antibody (Fig. 3.4, A), the 

majority of GFP expression was observed intracellularly (Fig. 3.4, B). This 

suggests that only a small amount of the HA-MC4R-GFP fusion protein efficiently 

trafficked to the PM. 

A possible reason for detecting the majority of HA-MC4R-GFP fusion protein as 

intracellular retained was that the amount of plasmid used in transfections, resulted 

in high levels of protein expression that saturated the cells ability to efficiently traffic 

MC4R. Therefore the amount of plasmid used to transfect cells was titred out 

resulting in a reduced level of protein being heterologously expressed. 

Visualisation of the cells transfected with a reduced amount of plasmid showed the 

majority of fusion protein still remained intracellularly localised (Fig. 3.4 D-E). In 

summary the WT HA-MC4R-GFP did not traffic efficiently to the PM with the 

majority of MC4R showing intracellular staining. 
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Figure 3.4: Localisation of HA-MC4R-GFP in HEK 293 

HEK 293 cells were transiently transfected with HA-MC4R-GFP construct and 24 

hours post-transfection were stained with primary anti-HA primary antibody and 

subsequently with Cy3 conjugated secondary antibody. Cell visualised by confocal 

microscopy showed PM localisation of N-terminal HA epitope tag (red) (A, D) 

intracellular localisation of C-terminal GFP tag (green) and (B, E) merged image 

with nuclei staining (blue). Although the amount of plasmid used for the 

transfection was reduced by half, the amount of HA-MC4R-GFP fusion protein at 

the cell surface did not increase suggesting that only a relatively small amount of 

protein was localized at the cell surface (D-F). Scale bar = 10 µM 

 

 

 



Chapter 3 - Development of a cellular model to monitor MC4R expression at the cell surface 

92 

 

3.2.4 Localisation of C-terminal tagged MC4R construct  

To test if the GFP fusion was causing the intracellular retention of HA-MC4R-GFP, 

a construct solely tagged with GFP was synthesised. Wild-type MC4R was cloned 

into pEGF-N1 introducing a GFP tag on the C-terminus of the receptor.  The 

selected mutations were then introduced by site directed mutagenesis and 

confirmed by sequencing. Wild-type MC4R-GFP was transiently transfected into 

HEK 293 cells and the WT fusion proteins localisation was observed by confocal 

microscopy. Once again little PM localisation of the GFP tagged MC4R protein was 

observed in fixed cells relative to intracellularly localised protein (Fig. 3.5). 

Furthermore, reducing the amount of plasmid DNA did not result in an increase in 

PM localisation of WT MC4R-GFP. In conclusion inefficient trafficking of C-terminal 

GFP tagged MC4R to the PM occurred in transfected HEK 293 cells. 

 

3.2.5 Quantification of cell surface expression for epitope 

tagged MC4R 

HEK 293 cells were transfected with all three WT constructs (HA-MC4R-GFP, 

MC4R-GFP, HA-MC4R), and 24 hours post transfection cells were fixed and 

stained. The number of cells with MC4R staining predominantly at the cell surface 

was quantified by blind counting after processing for immunofluorescence 

microscopy in 10 different fields of view. 70% of WT HA-MC4R transfected cells 

exhibited cell surface expression of the protein. However, HEK 293 cells 

transfected with GFP tagged MC4R had less than 20% of the cells predominantly 

expressing the receptor at the cell surface (Fig. 3.6). This may suggest that a C-

terminal GFP tag on the receptor may hinder the receptors trafficking to the cell 

surface. 

In order to investigate if inefficient trafficking of GFP tagged MC4R constructs was 

cell specific SK-N-SH cells were utilised. 
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Figure 3.5: Localisation of WT MC4R-GFP in HEK 293 cells 

HEK 293 cells were transiently transfected with WT MC4R-GFP (green), 24 hours 

post transfection cells were fixed and nuclei stained (blue). Cells were visualised 

by confocal microscopy. Arrows indicate areas of PM localisation. Scale bar = 

10µM 
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Figure 3.6: Quantification of cells showing PM localisation for epitope tagged 

MC4R  

HEK 293 cells were transiently transfected with MC4R-GFP or HA-MCR-GFP or 

HA-MC4R. Cells were fixed and processed for immunofluorescence. The 

percentages of cells showing PM localisation were counted blind to experimental 

status in 10 different fields of view. Error bars represent the mean ±SD.  
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3.2.6 Localisation of WT MC4R in SK-N-SH cells 

Localisation of MC4R fusion proteins was also analysed in SK-N-SH 

neuroblastoma cell line. The same amount of WT MC4R-GFP used in HEK 293 

cells was used to transfect SK-N-SH cells. Interestingly no PM localisation of WT 

MC4R-GFP was observed in SK-N-SH cells (Fig.3.7, A). However, an increase in 

the number of cells exhibiting an abnormal morphology was observed in mutant 

MC4R expressing SK-N-SH cells (Fig.3.7 B). Perinuclear inclusions of mutant 

MC4R in SK-N-SH cells were also observed (Fig.3.7, B). Furthermore, cells 

expressing mutant MC4R-GFP showed an increased number of inclusions when 

compared WT MC4R-GFP expressing cells (Fig.3.7, B).  The number of MC4R 

inclusions observed was quantified for both wild-type and mutant MC4R 

transfected SK-N-SH cells. A significant difference was observed in the percentage 

of inclusions for WT MC4R expressing SK-N-SH cells compared to mutant MC4R 

expressing SK-N-SH cells (Fig.3.7, C). Interestingly, severe mutant P78L 

(Lubrano-Berthelier et al., 2003) showed a higher incidence of inclusion formation 

compared to L106P, a mutation that has been previously described as a less 

severe mutation (retains partial function) (Tao & Segaloff, 2003). Therefore, the 

level of inclusion incidence may reflect the severity of MC4R mutations, with the 

more severe mutations such as MC4R-GFP (P78L) showing a higher incidence of 

inclusion formation than a less severe mutation such as MC4R-GFP (L106P). 

When SK-N-SH cells were transfected with HA-MC4R, clear PM localisation of the 

receptor was observed (Fig.3.3, B) 

In summary the WT MC4R was most efficient at trafficking to the PM with an N-

terminal HA epitope tag than a C-terminal GFP tag. Furthermore, mutant MC4R-

GFP caused an increased incidence of inclusion formation. In conclusion SK-N-SH 

cells appear to be highly sensitive to expression of intracellularly retained MC4R 

mutants rapidly forming MC4R “aggresome” like inclusions. Aggresomes are 

accumulated insoluble protein aggregates formed in a microtubule dependant 

fashion (Johnston et al., 1998) and have been previously described in intranuclear 
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and perinuclear inclusions in vitro models of Retinitis Pigmentosa disease (Mendes 

& Cheetham et al., 2008). Furthermore, as HA tagged MC4R localised at the cell 

surface, this suggests that the presence of the C-terminal GFP tag may inhibit 

MC4R trafficking to the PM. Therefore in all subsequent experiments HA-MC4R 

was the construct used for heterologous expression of MC4R. 

 

3.2.7 Expression analyses of MC4R expression in cells 

transfected with HA-MC4R 

MC4R mutants HA-MC4R (D90N, S58C, P78L, L106P, C271Y, N62S, and P299H) 

were introduced into the triple HA tagged WT MC4R vector by site directed 

mutagenesis. HEK 293 cells were transfected with vectors for the expression WT 

HA-MC4R or mutant HA-MC4R and 24 hours post transfection cell lysates were 

collected and resolved on an SDS-PAGE gel. For both WT and mutant HA-MC4R 

high molecular weight smears and a band of approximately 32.5kD in size were 

observed (Fig. 3.8). Although the same amount of WT and mutant MC4R plasmids 

were used during transfection and the same amount of total protein was loaded, 

higher cellular levels were observed for some mutant constructs (e.g.HA-MC4R 

(S58C), HA-MC4R (P78L), HA-MC4R (C271Y), and HA-MC4R (P299H)). Whilst 

HA-MC4R (L106P) and HA-MC4R (D90N) showed lower band intensities when 

compared to the other constructs (Fig. 3.8). For mutant HA-MC4R (N62S) an 

additional lower molecular weight band of approximately 16.5kD was observed 

(Fig. 3.8). This may represent a degradation product of mutant MC4R. 

 

As HA- MC4R was detected in HEK 293 cells by western analysis, the next step 

was to investigate MC4R sub-cellular localisation.   
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Figure 3.7: Immunofluorescence of wild-type and mutant MC4R-GFP 

constructs in SK-N-SH cells and quantification of MC4R inclusions  

SK-N-SH cells transfected with WT MC4R-GFP exhibited PM and intracellular 

localisation (A). SK-N-SH cells transfected with mutant MC4R-GFP (L106P) 

formed inclusions. Arrow shows MC4R inclusions scale bar = 10µM (B). 24-hours 

post transfection cell were fixed and stained. The percentage of cells with 

fluorescent intracellular inclusions were counted blind in 5 different fields of view 

(C). Using a student’s t-test P <0.001 for all mutants compared with WT. Using one 

way ANOVA and Dunnett's Multiple Comparison post-test P <0.0001 for all 

mutants compared with WT. Error bars represent the mean ±SD.   
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Figure 3.8: WT and mutant MC4R protein expression in HEK 293 cells   

HEK 293 cells were transfected with WT or mutant HA-MC4R. 24 hours post 

transfection cells were lysed in RIPA buffer containing phosphotase and protease 

inhibitors. Samples were resolved on a 12% SDS-PAGE gel and immunoblotted 

with anti-HA antibody and IRDye® 800CW secondary antibody. The membrane 

was scanned on a LI-COR infrared scanner detecting infrared fluorescence from 

the secondary antibody. *High molecular weight bands and ** distinct MC4R band 

size of ~ 32.5kD was observed. 
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3.2.8 Localisation of N-terminal HA-epitope tagged WT MC4R 

and mutant MC4R in HEK 293 cells  

Treatment of cells with detergent triton X-100 to permeabilise the PM, as would be 

predicted, showed some WT HA-MC4R protein was localised intracellularly (Fig. 

3.3). Varying degrees of PM localisation was observed for HA-MC4R mutant 

proteins, with HA-MC4R (L106P) showing partial PM localisation and HA-MC4R 

(P78L) no PM localisation (Fig. 3.9). Triton X-100 treatment of cells expressing HA-

MC4R mutant proteins showed that the majority of mutants had an intracellular 

localisation, with all mutants showing reduced PM localisation when compared to 

the WT receptor (Fig. 3.9). In summary the immunofluorescence data shows that 

HA-MC4R (P78L) and HA-MC4R (P299H) are completely intracellular retained, 

with HA-MC4R (C271Y), HA-MC4R (N62S) and HA-MC4R (D90N) showing a 

small amount of PM localisation compared to HA-MC4R (L106P) which shows the 

most PM localisation. 

To investigate whether the misfolding mutants were retained intracellularly within 

the ER additional staining with an antibody against ER retention peptide motif 

KDEL (lys-asp-glu-leu) was carried out. Some overlap between KDEL and WT HA-

MC4R was observed (Fig. 3.10). Furthermore, an apparent increase in overlap was 

observed for the more severe misfolding mutants, HA-MC4R (P78L), compared to 

less severe mutants HA-MC4R (L106P) (Fig. 3.10). Therefore it is likely that the 

selected MC4R misfolding mutants are intracellular retained at the ER.  
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Figure 3.9: Identification of ER retained MC4R mutants by confocal 

microscopy  

HEK 293 cells were transfected with either WT or mutant HA-MC4R. 24 hours post 

transfection cell staining for the N-terminal HA tag (red) and nuclei (blue) was 

carried out in permeabilised and non-permeabilised cells. Scale bar = 10 µM 
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Figure 3.10: Co-localisation of ER retained mutants with ER marker KDEL 

HEK 293 cells were transfected with WT or mutant HA-MC4R. 24 hours post 

transfection cell staining for the N-terminal HA-tag (red), ER marker KDEL (green) 

and nuclei (blue) was carried out in permeabilised cells.  Scale bar = 10 µM  
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3.2.9 Measurement of WT and mutant MC4R signalling at the 

cell surface using Luciferase assay 

Confocal microscopy demonstrated that WT HA-MC4R could traffic to the cell 

surface in our model but mutant MC4R was retained at the ER. Therefore, a 

luciferase reporter construct, which regulates the activity of the luciferase gene 

(Fowkes et al., 2003), was utilised to measure WT and mutant HA-MC4R signal 

transduction. The luciferase reporter construct (αGSU) was transiently co-

expressed with MC4R in HEK 293 cells. It was hypothesised that variability in 

activity for the different misfolded mutant MC4R would be observed, as some 

mutants are more intracellular retained than others.  

The results showed that WT HA-MC4R had more functional activity than mutant 

HA-MC4R (Fig.3.11). Furthermore, the data indicated that the more intracellular 

retained mutants e.g. HA-MC4R (P78L) were less capable of signalling than 

partially retained mutants e.g. HA-MC4R (L106P) (Fig.3.11). This assay was used 

to determine the efficacy of selected compounds on rescuing mutant function at the 

cell surface. 

As the bioluminescence measured in this assay is downstream from receptor, to 

confirm that WT MC4R does indeed have a greater functional activity than MC4R 

mutant protein a cAMP assay was also carried out. This data was concurrent with 

the luciferase assay clearly indicating that WT HA-MC4R is more functionally 

active than mutant HA-MC4R (P78L) (Fig.3.12).   
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Figure 3.11: Misfolding mutant MC4R is unable to signal as well as wild-type 

MC4R transducing receptor 

Using a luciferase reporter system for cAMP activity signalling was quantified for 

wild-type and mutant HA-MC4Rs. HEK 293 cells were transfected with equal 

concentrations of plasmids for expression of WT or mutant HA-MC4R, or empty 

control vector. Cells were co-transfected with a luciferase reporter construct for 

MC4R signalling, and a vector for renilla expression. 16 hours post transfection 

cells were stimulated with 10-7M NDP-MSH for 6 hours and luciferase activity was 

measured. Values were normalised to renilla activity to control for variability in 

transfection. P<0.05 for all mutants compared with WT. Error bars represent the 

mean ±SD. 

 

 

 

 



Chapter 3 - Development of a cellular model to monitor MC4R expression at the cell surface 

104 

 

 

 

 

 

Figure 3.12: HA-MC4R (P78L) is unable to signal as well as normal WT 

transducing receptor 

HEK 293 cells were transfected with WT HA-MC4R, severe misfolding mutant HA-

MC4R (P78L) or empty vector (pcDNA3.1). 24 hours post- transfection cells were 

stimulated with 10-7M NDP-MSH for 30 minutes, cell lysates were obtained and 

intracellular cAMP was measured. WT HA-MC4R shows a significant increase in 

cAMP production compared with the misfolding mutant HA-MC4R (P78L).  P<0.05. 

Error bars represent the mean ±SD. 
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3.2.10 Development of a rapid throughput assay to monitor 

MC4R cell surface expression 

The construct HA-MC4R-GFP was initially intended to be used to measure the cell 

surface expression of wild-type and mutant MC4R. However due to the lack of cell 

surface expression an (Fig.3.9) in cell western assay was developed using HA-

MC4R. The assay was designed to detect the HA tagged N-terminus of MC4R, 

which is localised extracellularly when the receptor is correctly trafficked to the PM. 

To obtain cell surface expression values, HA-MC4R localised at the PM in non-

permeabilised HEK 293 cells, was detected by immunofluorescence using an anti-

HA primary antibody and an infrared dye conjugated secondary antibody. This 

fluorescence staining was detected on an infrared scanner (Odyssey, LI-COR).  

Total cellular levels of MC4R were quantified in cells permeabilised (as antibody 

cannot enter non-permeabilised cells) with triton X-100 and also stained with an 

anti-HA primary antibody and an infrared dye conjugated secondary antibody 

(Fig.3.13, A). MC4R trafficking values were obtained by dividing integrated 

intensity values for each non-permeabilised well by the average integrated intensity 

value obtained for the matching permeabilised well. The values were normalised 

against WT HA-MC4R and a DNA stain to correct for any difference in cell number.  

Immunofluorescence data indicated reduced staining for MC4R mutant proteins 

compared to WT HA-MC4R in non-permeabilised cells, with more severely 

intracellulary retained mutants, e.g. HA-MC4R (P78L), showing a more dramatic 

percentage reduction (71.47±3.39%) when compared to less severe mutants e.g. 

HA-MC4R (L106P) (33.63±6.81%) (Fig.3.13, B).  Similar to previous studies there 

was variability in the severity of cell surface expression of MC4R misfolding 

mutants. For example mutant HA-MC4R (D90N) showed a more pronounced 

reduction in cell surface expression (55.22±15.17%) than HA-MC4R (P299H) 

(8.45±3.72%) (Fig.3.13, B). With the development of this assay the degree of cell 

surface expression of WT HA-MC4R and mutant MC4R can be quantified, and the 

effect of modulators of MC4R cell surface expression analysed.  
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Figure 3.13: Quantification of levels of cell surface expression of WT and 

mutant HA-MC4R using a rapid throughput cell surface assay 

Representative image of a culture plate containing HEK 293 cells expressing HA-

MC4R stained with an anti-HA primary antibody and IRDye® 800CW secondary 

antibody. The tissue culture plate was scanned on a LI-COR infrared scanner. Cell 

surface expression was detected in non-permeabilised cells and total expression in 

triton X-100 treated permeabilised cells (A). Comparison of the trafficking levels of 

WT HA-MC4R and MC4R harbouring clinically occurring mutations that are 

predicted to cause the protein to aberrantly fold (B). *P<0.05. Error bars represent 

the mean ±SD. 
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3.2.11 Development of HEK 293 cell lines stably expressing 

MC4R 

To further investigate the in vitro trafficking of MC4R mutants we developed HEK 

293 cell lines stably expressing WT HA-MC4R, HA-MC4R (L106P), HA-MC4R 

(D90N), HA-MC4R (S58C) and HA-MC4R (P78L) (Fig.3.13). Stable cell lines were 

also developed because of the limitations of transient transfections, such as 

variable transfection efficiency between experiments and were subsequently used 

as a complementary approach.  

Monoclonal stable cell lines under the selection of Geneticin (G418) were created. 

To determine the expression levels between the different clones the cell lysates 

were collected and run on an SDS-PAGE gel. Differential expression was observed 

for clones of the same mutant and the following clones that were easily detectable 

on an SDS-PAGE gel were selected and propagated; WT HA-MC4R clone 3, HA-

MC4R (D90N) clone 3, HA-MC4R (P78L) clone 6, HA-MC4R (S58C) clone 5 and 

HA-MC4R (L106P) clone 4 (Fig.3.14, A). To confirm the sub-cellular localisation of 

the receptor in the stably expressing HEK 293 cell lines, immunofluorescence was 

carried out using a primary antibody detecting the N-terminal HA tag. Localisation 

of WT HA-MC4R was visible at the cell surface (Fig.3.14, B). Mutant HA-MC4R 

(D90N) was partially localised at the cell surface but with the majority of the mutant 

receptor localised intracellularly (Fig.3.14, B).  
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Figure 3.14: Analysis of expression of HEK 293 cells stably expressing WT 

and mutant MC4R  

 MC4R cell lysate samples were resolved on a 12% SDS-PAGE gel and 

immunblotted for MC4R with anti-HA antibody (A). Immunofluorescence of HEK 

293 cells stably expressing WT HA-MC4R or mutant HA-MC4R (D90N) (B). Scale 

bar = 10μM 
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3.2.12 Analysis of WT and mutant MC4R glycosylation status  

Most GPCRs are glycosylated proteins and require this post-translational 

modification in order to reach the cell surface (Lanctot et al., 2006). In order to 

determine the extent of N-linked glycosylation, the selected MC4R mutant’s cell 

lysates were collected and treated with Endoglycosidase H (EndoH) or Peptide N-

glycosidase F (PNGaseF). EndoH is an enzyme that specifically cleaves high 

mannose oligosaccharides from N-linked glycoproteins and therefore will only 

cleave sugars from ER resident proteins. PNGaseF cleaves all oligosaccharides 

that are added in the secretory pathway, resulting in the unglycosylated form of the 

protein (Alberts et al., 2002).  

After PNGaseF treatment a band of approximately 30 kD was observed and levels 

of higher weight species were decreased (Fig.3.15, A). This suggested that sugars 

added to the glycosylated protein were effectively cleaved resulting in a lower 

molecular weight unglycosylated MC4R. WT HA-MC4R showed little resistance to 

EndoH digestion, producing a band of slightly higher molecular weight of ~ 31 kD 

in size (Fig.3.15, A). The same pattern of mobility was observed for the severe 

mutants HA-MC4R (P78L) and HA-MC4R (P299H) when treated with EndoH or 

PNGaseF (Fig.3.15, A).  

The majority of WT HA-MC4R appeared not to be maturely glycosylated in this 

model, particularly as functional WT HA-MC4R was observed at the cell surface 

(Fig.3.11). If levels of transfected MC4R were too high the endogenous cellular 

machinery could possibly fail to fully process all the heterologously expressed 

protein. To address this issue reduced amounts of plasmid was used in 

subsequent transfections. However, the same results were observed with the WT 

receptor showing little resistance to EndoH digestion (Fig.3.15, B). To ensure that 

the enzymes were functioning effectively two controls (rod opsin and MRAP 2) 

were also treated with EndoH and PNGaseF and analysed by western blot. 

Although the expected glycosylation states for both rod opsin and MRAP 2 were 

observed, WT MC4R continued to be digested with EndoH (Fig.3.15, C). 
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3.2.13 Effects of agonists on MC4R trafficking  

To investigate the practicality of testing the efficacy of different agonists and 

antagonists on MC4R trafficking, the in cell western assay was utilised to test 

MC4R agonist α-melanocyte-stimulating hormone (α-MSH) and agouti related 

peptide (AGRP) on MC4R trafficking. 

(α-MSH) synthetic analogue [Nle4-D-Phe7]-α-melanocyte-stimulating hormone 

(NDP-MSH) was used in the cell culture assay. NDP-MSH has similar binding 

affinity for MC4R compared to α-MSH and contains the minimal core sequence 

required for α-MSH biological activity (His-Phe-Arg-Trp) (Nargund et al., 2006). 

HEK 293 cells were seeded in a 24 well plate, transfected with WT HA-MC4R and 

incubated overnight with or without NDP-MSH. It was hypothesised that ligand 

binding at the ER may stabilise MC4R and promote cell surface expression. 

Because ligand binding at the cell surface causes receptor internalisation media 

was replaced, to remove NDP-MSH before assaying for cell surface expression of 

MC4R. However, even when NDP-MSH was removed from the cells 4 hours 

before assaying for cell surface expression, reduced cell surface levels of MC4R 

were observed suggesting that MC4R recycling was limited in HEK 293 cells 

(Fig.3.16, A).  

Therefore, it was hypothesised that it would be possible quantify the effects of 

agonist on MC4R trafficking if internalisation was blocked. It had been reported that 

agonist dependent internalisation of MC4R could be blocked with the pre-

incubation of cells with internalisation inhibitors (Hansen et al., 1993). The 

experiment was repeated again with a one hour pre-incubation of cells with an 

internalisation blocker methyl dansyl codavarine (MDC). It was observed that 

concentrations of MDC above 10 µM resulted in toxicity. The concentration of MDC 

pre-incubation was subsequently reduced to 5 µM and 2.5 µM, with 2.5 µM 

concentration of MDC showing no cell death and no reduction in cell surface 

expression of MC4R after 24 hour incubation with NDP-MSH (Fig.3.16, B).  
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In summary the cell culture plate based assay, developed in this study, confirmed 

previous findings that MC4R undergoes agonist dependent internalisation and 

inefficiently recycles back to the PM after agonist removal. Internalisation of NDP-

MSH was successfully blocked using the lowest concentration of MDC. This 

approach could be used if this type of assay was used to determine the effects of 

agonists on MC4R trafficking.   

 

3.2.14 The effect of antagonists on MC4R trafficking 

To investigate the practicality of testing the efficacy of different antagonists a 

similar approach to testing for agonist (above) was utilised.  HEK 293 cells were 

seeded in a 24 well plate and transiently transfected with WT HA-MC4R or mutant 

HA-MC4R (L106P) and subsequently incubated overnight with or without MC4R 

antagonist agouti related peptide (AGRP) (18-132) at concentrations of 1nM, 10nM 

and 100nM. 24 hours post transfection the cells were fixed and stained and cell 

surface expression of MC4R was quantified. In HEK 293 cells, expressing WT or 

mutant HA-MC4R, overnight exposure to 1-10 nM AGRP (18-132) caused a 

concentration dependant increase in cell surface levels of MC4R (Fig.3.17). At 100 

nM a slight decrease in cell surface levels was observed for both WT and mutant 

MC4R compared to concentrations of 1-10 nM (Fig.3.17).  
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Figure 3.15: Analysis of the glycosylation state of WT HA-MC4R suggests 

that the majority of the receptor is not maturely glycosylated  

HEK 293 cells were transfected with WT HA-MC4R or mutant HA-MC4R (P78L, 

P299H) (A), reduced concentrations of WT HA-MC4R (B), or WT HA-MC4R, Rod 

opsin and MRAP 2 (C). Cell lysates were collected for each transfection and 

treated with or without EndoH or PNGaseF for 2 hours at 37°C. Cell lysate samples 

were resolved on a 12% SDS-PAGE gel and immunblotted for MC4R with anti-HA 

antibody, for rod opsin with ID4 anti-rhodopsin antibody and for MRAP with anti 

FLAG-antibody. Digestion with EndoH produce a band of ~31 kD for both WT and 

mutant MC4R and a consistent band of ~30 kD was produced after digestion with 

PNGaseF. 
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Figure 3.16: Agonist dependent internalisation affects cell surface levels of 

MC4R  

HEK 293 cells were transfected with WT HA-MC4R and exposed to NDP-MSH for 

24 hours. NDP-MSH was then removed and cells were left incubating at 37°C  

before fixation at time points of 0, 30, 60, 120 and 240 minutes. Cell surface 

expression was measured for MC4R at each time point. P<0.05 for all time points 

compared to control (A). HEK 293 cells were transfected with WT HA-MC4R, and 

incubated with 10-7M NDP-MSH and in addition with indicated concentrations of 

MDC for 24 hours. 24 hours post-transfection cells were fixed and stained and cell 

surface expression was obtained for MC4R at each concentration (B). Error bars 

represent the mean ±SD. 
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Figure 3.17: AGRP (18-132) causes an increase in cell surface expression of 

MC4R in HEK 293 cells 

HEK 293 cells were transfected with WT (A), or mutant HA-MC4R (L106P) (B), and 

were exposed to 1, 10 or 100 nM AGRP (18-132) for 24 hours. Cell surface HA-

antigen was measured using the cell culture plate based assay to obtain cell 

surface expression levels of HA-MC4R. *P<0.05. Error bars represent the mean 

±SD. 
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3.3 Discussion  

Consistent with previous findings, the MC4R mutations selected for this study 

disrupt MC4R normal cellular trafficking, with the majority of the receptors retained 

intracellularly and not expressed at the cell surface in transiently transfected HEK 

293 cells. Using confocal analysis it has been shown that some misfolding mutants 

show more PM localisation than others, indicating that there is variability in the 

severity of trafficking defects among MC4R misfolding mutants, and that the 

majority of the mutants are ER retained. In agreement with confocal analysis, 

quantification of MC4R immunofluorescence, using the in cell western assay, 

indicated variability in trafficking between MC4R mutants to the cell surface. Using 

the dual reporter luciferase assay and consistent with previous published data, 

variability between the capabilities of mutant MC4R to signal was observed.  

To visualise the sub-cellular localisation of WT and mutant MC4R, constructs for 

expression of MC4R-GFP were generated. However, WT MC4R-GFP expressing 

protein in HEK 293 and SK-N-SH cells did not traffic efficiently to the PM. 

Furthermore, mutant C-terminal GFP tagged expressing SK-N-SH cells showed a 

high incidence of inclusion formation. Previously it has been reported that the 

expression of ER retained mutants of some GPCRs, for example rhodopsin, can 

result in cell death in neuronal cell types (Saliba et al., 2002). Furthermore, similar 

to SK-N-SH cells expressing MC4R mutant protein, mutant rhodopsin (P23H) 

expressing SK-N-SH cells, formed inclusions near the centrosome (Saliba et al., 

2002). As N-terminal HA tagged MC4R was capable of trafficking more efficiently 

to the PM it was concluded that the C-terminal GFP tag was disrupting the cellular 

trafficking of MC4R. Although GFP has been commonly used to monitor the 

biological functions of proteins, including MC4R, it has been reported to disrupt the 

localisation of MC2R (Roy et al., 2007). Roy et al (2007) reported that MC2R-GFP 

fusion protein impaired cell membrane localisation and signalling in the presence of 

its accessory protein MRAP (Roy et al., 2007). The carboxy-terminus of MCRs 

contain a conserved dihydrophobic sequence composed of leucine, isoleucine, 
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phenylalanine, valine or methionine, preceded by an acidic glutamate or aspartate. 

For MC4R the motif consists of di-isoleucine at codons 316/317 and disruption of 

either codon 316 or 317 have been shown to cause decreased cell surface 

expression and function (VanLeeuwen et al., 2003). Previous studies have shown 

that the di-leucine motif in the C-terminus of the vasopressin V2 receptor is required 

for exit of the receptor from the ER (Schulein et al., 1998). Although this has not 

been shown for MC4R, it can be hypothesised that the large GFP tag causes steric 

hindrance of the di-isoleucine motif at the C-terminus and disrupts its function 

decreasing MC4R trafficking.   

N-terminal tagged MC4R was expressed in HEK 293 cells and on SDS-PAGE ran 

as high molecular weight bands and one sharper band. The high molecular weight 

bands may represent different glycoforms of MC4R, with an additional smaller 

band observed for HA-MC4R (N62S) as a cleaved degradation product.  The lower 

band intensities for HA-MC4R (D90N) and HA-MC4R (L106P) may be due to the 

mutants being targeted for degradation and therefore lower cellular levels were 

observed for these mutants. The glycosylation experiments revealed that the 

majority of WT HA-MC4R was not maturely glycosylated in vitro and that the sharp 

band identified at 32.5kD may be the MC4R ER resident glycoform.  

Unlike C-terminal tagged MC4R, WT N-terminal tagged HA-MC4R was able to 

reach the PM more efficiently. Concurrent with previous research the confocal 

images show that some MC4R misfolding mutations, such as HA-MC4R (L106P), 

are partially localised at the cell surface whereas other misfolding mutations, such 

as HA-MC4R (P78L), are more intracellularly localised (Tao & Segaloff, 2003). The 

immunofluorescence data therefore confirms that some MC4R mutations are more 

intracellular retained than others. 

Treatment of MC4R expressing HEK 293 with NDP-MSH caused internalisation of 

MC4R. This data suggests that after removal of NDP-MSH MC4R fails to recycle 

back from the endosome to the cell surface. It has been previously reported that 

MC4R undergoes slow recycling back to the cell surface in HEK 293 cells (Gao et 
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al., 2003). Many GPCRs such as the β2-adrenergic receptor, thyrotropin-releasing 

receptor type A, C5a anaphylatoxin receptor and cholecystokinin receptor have 

been shown to recycle back to the cell surface in approximately 20-60 minutes 

(Gao et al., 2003). Although uncommon in GPCRs, it has been shown that the 

choriogonadotropin receptor/luteinizing hormone (hCG/LH) receptor and the 

thrombin receptor do not recycle back to the cell surface but are targeted to the 

lysosome mediated degradative pathway (Wong and Minchin, 1996). It has also 

been shown that MC1R expressing B16 melanoma cells treated with NDP-MSH 

undergo agonist mediated internalisation. In this case MC1R does not recycle back 

to the PM but is targeted to the lysosome compartment resulting in a down-

regulation of the MC1R at the cell surface (Wong and Minchin, 1996). Therefore in 

this in vitro model, after agonist mediated internalisation the majority of MC4R may 

be targeted to lysosomes instead of recycling back to the cell surface. 

It has been reported that a proportion of MC4R expressed in HEK 293 cells 

internalises spontaneously even in the absence of agonist, and that AGRP (18-

132) may inhibit the internalisation or facilitate the recruitment of internalised 

receptor to the cell membrane (Shinyama et al., 2003). However, to differentiate 

between AGRP stabilising existing MC4R at the cell surface or AGRP improving 

the recruitment of internalised receptor to the cell membrane would not be possible 

to decipher using the current in cell western assay. 

This chapter established a cellular model to monitor MC4R cell surface expression. 

The experimental approach used in subsequent chapters, to elucidate the efficacy 

of pharmacological reagents on MC4R cell surface expression, are outlined below 

(Fig. 3.18). 
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Pharmacological Reagent

Western blot Difference in expression 

In cell western assay

10% increase in MC4R cell surface 

expression 

No change or decrease in MC4R cell 

surface expression  

Luciferase reporter assay No further experiments

No difference in expression 

Repeat in cell western assay and 

luciferase assay using MC4R stable 

cell lines

 

Figure 3.18: Flow diagram to illustrate experimental approach  

Flow chart to describe the experiments carried out to elucidate the action of 

pharmacological reagents on the regulation of MC4R folding and cell surface 

expression. 
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CHAPTER 4 

Kosmotropes as modulators of MC4R 

trafficking and functional expression 
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4.1 Introduction  

A number of studies have shown that low molecular weight compounds, known as 

chemical chaperones/kosmotropes, have potential therapeutic benefit in models of 

conformational diseases (Powers et al., 2009; Chaudhuri & Paul, 2006). Chemicals 

with kosmotropic activity include polyols such as glycerol; solvents such as 

dimethyl sulfoxide (DMSO); methylamines such as trimethylamine-N-oxide 

(TMAO); fatty acids such as 4-phenylbutyric acid (4-PBA); and simple sugars such 

as trehalose. Kosmotropes affect protein folding via two different mechanisms. 

Firstly, kosmotropes promote protein stabilization by increasing the free-energy 

difference between a partially folded protein and its more compact native structure 

(Arakawa et al., 2006). Secondly, kosmotropes reduce the free movement of 

proteins to prevent aggregation of partially folded molecules (Papp & Csermely, 

2006). 

Kosmotropes have been tested in a number of disease models where 

transmembrane proteins are aberrantly folded and intracellularly retained, for 

example, cystic fibrosis. Mouse NIH 3T3 cells expressing the most common 

clinically occurring cystic fibrosis transmembrane conductance regulator (CFTR) 

mutation (∆F508) were treated with either 1.25 M glycerol or 100 mM TMAO for 

three days. Treatment with the kosmotropes restored the ability of the mutant 

expressing protein to traffic to the plasma membrane where it was functionally 

similar to the WT protein, in mediating chloride transport (Brown et al., 1996). 

Another example where kosmotropes have been used to rescue endoplasmic 

reticulum (ER) retention of misfolded proteins was explored in the disease model of 

Familial Hypercholesterolemia (FH). This disease is caused by mutation in the low-

density lipoprotein receptor (LDLR). At a concentration of 5 mM, and incubation 

time of 24 hours, 4-PBA was shown to mediate a 13 fold increase in the cell 

surface localisation of G544V-mutant LDLR in stably transfected CHO cells 

(Tveten et al., 2007). Furthermore, the authors demonstrated that once at the cell 
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surface the mutant receptor was able to bind and internalise LDL with similar 

efficacy to WT receptor (Tveten et al., 2007).  

Kosmotropes have not only been shown to be successful in reducing intracellular 

retention of misfolded proteins, but also reduce aggregate formation of proteins 

associated with neurodegeneration. Trehalose is a promising kosmotrope because 

of its lack of toxicity and high solubility. In vitro studies suggest that trehalose has 

the ability to bind and stabilize polyglutamine containing proteins and therefore 

may be incorporated into a treatment strategy for polyglutamine diseases such as 

Huntington disease (HD) and spinocerebellar ataxia 1 and 3 (Ignatova & Gierasch, 

2006). Supporting this idea, in transgenic HD mice, oral administration of trehalose 

decreased polyglutamine aggregates in the cerebrum and liver, improved motor 

dysfunction, and increased life span (Tanaka et al., 2004). 

Based on these studies it is clear that kosmotropes have the potential to be 

beneficial in the treatment of diseases caused by conformational defective proteins 

such as CFTR, LDLR. Kosmotropes have been shown to have some effect for, α1-

Antitrypsin (Burrows et al., 2000), Aquaporin-2 (Tamarappoo et al., 1999) and the 

glucocorticoid receptor (Baskakov et al., 1999). However chemical chaperones 

lack specificity, and are only effective at relatively high concentrations. These 

factors may limit their therapeutic value for some conditions (Ulloa-Aguirre et al., 

2004).  

In this chapter the potential of kosmotropes, DMSO, TMAO, 4-PBA, and trehalose 

(Fig.4.1), to rescue the functional expression of mutant MC4R and promote 

trafficking of the wild-type protein is investigated.  
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Figure 4.1: Graphical representation of the molecular structure of the 

chemical chaperones used in this study  
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4.2 Results 

4.2.1 The effect of DMSO on the cellular trafficking of MC4R 

Immediately after transfection with plasmids for the expression of WT or mutant 

HA-MC4R, HEK 293 cells were treated with kosmotropes for 24 hours (described 

in Chapter 2, section 2.6). After treatment cells were assessed for changes in cell 

surface expression and trafficking of MC4R (using the in cell western assay, 

described in Chapter 2, section 2.8). Changes in the total cellular level of MC4R 

(by western analysis, described in Chapter 2, section 2.10) and its functional 

activity (by the luciferase reporter assay), as described in Chapter 2, section 

2.12.2, were also monitored. The flow diagram outlined in Chapter 3 was followed 

to analyse the effects, if any, observed for each kosmotrope. When treatment of 

WT HA-MC4R or HA-MC4R (L106P) expressing cells, with a specific kosmotrope, 

resulted in an increase in total or cell surface levels of the receptor the compound 

was tested on cells expressing the other intracellular retained mutants. The 

concentration of kosmotrope used corresponded to that which most affected HA-

MC4R (L106P). 

No significant changes in the cell surface levels of WT or HA-MC4R (L106P) were 

observed after treatment with 0.1%-1.0% DMSO (Fig.4.2, A). However, a 

significant increase (24.13±2.79%) in the total cellular level of WT HA-MC4R was 

observed but no changes were observed for the mutant receptor (Fig.4.2, B). 

When cell surface levels of MC4R were normalised to total levels of expression 

(Chapter 2, section 2.8), to reflect changes in trafficking of the receptor, no change 

was detected in trafficking of the WT HA-MC4R or mutant HA-MC4R (L106P) 

(Fig.4.2, C). Concentrations of DMSO above 1% caused cells to become rounded 

and detached from the cell culture plate, possibly due to the cells suffering from 

osmotic shock. Therefore concentrations above 1% DMSO were not tested.  
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Figure 4.2: Treatment with DMSO increased total cellular levels of WT HA-

MC4R  

HEK 293 cells were transfected with plasmids for expression of WT HA-MC4R or 

mutant L106P HA-MC4R, 3 hours after transfection cells were incubated with 0, 

0.1, 0.5 or 1% DMSO for 24 hours prior to in cell western analysis. MC4R cell 

surface expression (A), total cellular levels (B), and trafficking to the cell surface 

(C) was quantified at each concentration of DMSO. *P<0.05. Error bars represent 

the mean ±SD. 
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4.2.2 The effect of TMAO on the cellular trafficking of MC4R 

The concentrations of TMAO used in this study (10-100 mM) did not result in any 

significant changes in MC4R cell surface expression or total cellular levels of the 

protein (Fig.4.3, A, B). A small but significant decrease in the percentage of WT 

and mutant HA-MC4R (L106P) receptor trafficking to the PM, after treatment with 

100 mM TMAO, was observed (Fig.4.3, C). For WT HA-MC4R a decrease in 

trafficking of 3.35±1.32% after treatment with 10 mM TMAO was observed, relative 

to untreated control cells. Treatment with TMAO to a final concentration of 100 mM 

further decreased trafficking, (5.07±3.53% decrease). For mutant L106P, a 

decrease in trafficking of 5.14±1.15% was observed after treatment with 100 mM 

TMAO (Fig.4.3, C). Concentrations of TMAO above 100 mM caused the cells to 

become rounded and detached from the cell culture plate (not shown).   

 

4.2.3 The effect of Trehalose on the cellular trafficking of 

MC4R 

100 mM trehalose increased total receptor levels of WT HA-MC4R and mutant HA-

MC4R (L106P), with the concentration of 100 mM proving to be the most effective 

(an increase of 56.04±19.16% and 42.04±16.06% for WT HA-MC4R and HA-

MC4R (L106P) respectively) (Fig.4.4, B). However, no corresponding significant 

changes were detected in the cell surface levels of HA-MC4R (L106P), but cell 

surface levels of WT HA-MC4R increased (43.42±20.43%) after treatment with 100 

mM trehalose (Fig.4.4, A). Therefore, the overall percentage of the receptor 

trafficking to the PM did not increase, and when expressed as a percentage of total 

cellular levels remained unchanged. (Fig.4.4, C).  
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To further confirm the increase in total levels of MC4R, after treatment with 1mM or 

100 mM trehalose, western analysis was performed (Fig.4.5). An increase in levels 

of both WT and mutant HA-MC4R (L106P) was detected (Fig.4.5). 

As trehalose increased the total cellular levels of HA-MC4R (L106P), presumably 

by stabilising the mutant receptor at the ER, it was further investigated whether 

trehalose could mediate the stabilisation of a more severe intracellular retained 

mutant HA-MC4R (P78L). Interestingly although 100 mM trehalose had no 

significant effect on the cell surface levels or trafficking of HA-MC4R (P78L) 

(Fig.4.6, A, C), similar to WT HA-MC4R and HA-MC4R (L106P), trehalose 

increased (41.23±22.30%) total cellular levels of HA-MC4R (P78L) (Fig.4.6, B). 

After detecting an increase in total cellular levels of protein in HEK 293 cells 

immunostaining of WT and mutant HA-MC4R was performed to investigate the 

localisation of the receptor after trehalose treatment (Fig.4.7). The confocal images 

suggested that there was indeed an increase in the total cellular levels of WT HA-

MC4R and mutant HA-MC4R (P78L and L106P) and that the localisation of MC4R 

was not altered after trehalose treatment (Fig.4.7 & Fig.4.8), supporting the finding 

from the previous experiment (Fig.4.6, B).  

 

4.2.4 The effect of 4-PBA on the cellular trafficking of MC4R 

Treatment with 5 mM 4-PBA, was explored for the other MC4R trafficking mutants 

in this study utilising the in cell western assay.  Furthermore, as 4-PBA had better 

efficacy in a rhodopsin retinitis pigmentosa model compared to trehalose (Mendes 

& Cheetham, 2008), it was decided to test all the mutants utilised in this study 

instead of solely limiting it the least severe mutant HA-MC4R (L106P).  

After 24 hours treatment with 5 mM 4-PBA  a small, yet significant, increase in cell 

surface levels of HA-MC4R (D90N) and HA-MC4R (P299H) was observed, 

13.20±1.13% and 6.22±4.18% respectively (Fig.4.9, A). Furthermore, a significant 

increase in total receptor levels was observed for HA-MC4R (S58C), HA-MC4R 
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(P78L) and HA-MC4R (L106P) (19.45±3.23%, 7.60±2.62% and 10.33±3.73%), 

however no change was detected for the WT receptor (Fig.4.9, B). The only mutant 

to show an increase in trafficking to the cell surface was HA-MC4R (D90N), with 

19.65±7.60% more receptor trafficking to the cell surface after 4-PBA treatment 

(Fig.4.9, C). WT and HA-MC4R (L106P) both showed a decrease in trafficking to 

the cell surface (Fig.4.9, C).  

Surprisingly in contrast to the in cell western assay, after treatment with 5mM 4-

PBA, a large increase in cellular levels of WT HA-MC4R was detected by western 

analysis (Fig.4.10). However, consistent with the in cell western analysis an 

increase in the cellular levels of mutant HA-MC4R (L106P, P78L) was observed 

(Fig.4.10). 

Once it was identified that 4-PBA did have a positive effect on some of the mutants 

tested, immunostaining of WT and mutant HA-MC4R was performed to investigate 

the localisation of the receptor after 4-PBA treatment. The confocal images 

revealed an increase in the total cellular levels of MC4R after 4-PBA treatment 

(Fig.4.11). Furthermore, an increase in the cell surface localisation of HA-MC4R 

(D90N) was observed in the confocal analysis (Fig.4.12).  

As an increase in total cellular levels for some MC4R mutants and an increase in 

trafficking of HA-MC4R (D90N) was observed, it was investigated whether 4-PBA 

treatment increased receptor signaling in response to α-MSH stimulation. This was 

carried out using the luciferase reporter system (Chapter 2, section 2.12.2). For 

WT HA-MC4R and HA-MC4R (L106P), in agreement with the observation that 4-

PBA treatment did not promote trafficking, no increase in receptor signaling at the 

PM was observed in cells treated with 4-PBA. However, a significant increase in 

luciferase activity was observed for severely misfolded mutants HA-MC4R (P78L), 

HA-MC4R (D90N) and HA-MC4R (P299H) (Fig.4.8). 
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Figure 4.3: Treatment with TMAO causes a reduction of  MC4R trafficking to 

the cell surface 

HEK 293 cells were transfected with plasmids for expression of WT HA-MC4R or 

mutant HA-MC4R (L106P), 3 hours after transfection cells were incubated with 0, 

10, or 100  TMAO for 24 hours prior to in cell western analysis. MC4R cell surface 

expression (A), total cellular levels (B), and trafficking to the cell surface (C) was 

quantified at each concentration of TMAO. *P<0.05. Error bars represent the mean 

±SD. 
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Figure 4.4: Trehalose treatment increased total cellular levels but not 

trafficking of WT and HA-MC4R (L106P) 

HEK 293 cells were transfected with plasmids for expression of WT HA-MC4R or 

mutant HA-MC4R (L106P), 3 hours after transfection cells were incubated with 0, 

1, 10 or 100 mM  Trehalose for 24 hours prior to in cell western analysis. MC4R 

cell surface expression (A), total cellular levels (B) and trafficking to the cell surface 

(C) was quantified at each concentration of trehalose. *P<0.05. Error bars 

represent the mean ±SD. 
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Figure 4.5: Treatment of cells with kosmotrope trehalose increases total 

levels of MC4R 

Treatment of HEK 293 cells with indicated concentrations of trehalose, for 24 hours 

after transfection with plasmids for wild-type or mutant HA-MC4R expression, 

resulted in an increase in total levels of MC4R.  
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Figure 4.6: Trehalose treatment increased total cellular levels but not 

trafficking of WT and intracellular retained HA-MC4R (P78L) 

HEK 293 cells were transfected with plasmids for expression of WT HA-MC4R or 

mutant HA-MC4R (P78L), 3 hours after transfection cells were incubated with 0, 1, 

10 or 100 mM  Trehalose for 24 hours prior to in cell western analysis. MC4R cell 

surface expression (A) or total cellular levels (B) and trafficking to the cell surface 

(C) was quantified at each concentration of trehalose. *P<0.05. Error bars 

represent the mean ±SD. 
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Figure 4.7: Trehalose increases total cellular levels of MC4R  

HEK 293 cells were transfected with plasmids for expression of WT HA-MC4R or 

mutant HA-MC4R, 3 hours after transfection cells were incubated with 100mM  

trehalose for 24 hours prior to confocal analysis. 24 hours post transfection cells 

were formaldehyde fixed and immunostained with primary anti HA-antibodies, to 

detect the N-terminal HA-tagged MC4R, and Cy3 fluorescent secondary 

antibodies. Confocal settings including detector gain, amplifier offset and pinhole 

were constant for all imaging. Scale bar = 100 µM  
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Figure 4.8: Trehalose does not alter the localisation of MC4R  

HEK 293 cells were transfected with plasmids for expression of WT HA-MC4R or 

mutant HA-MC4R, 3 hours after transfection cells were incubated with 100mM  

trehalose for 24 hours prior to confocal analysis. 24 hours post transfection cells 

were formaldehyde fixed and immunostained with primary anti HA-antibodies, to 

detect the N-terminal HA-tagged MC4R, and Cy3 fluorescent secondary 

antibodies. Confocal settings including detector gain, amplifier offset and pinhole 

were constant for all imaging. Scale bar = 10 µM 
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Figure 4.9: 4-PBA promotes cell surface expression of HA-MC4R (D90N) 

HEK 293 cells were transfected with plasmids for expression of WT HA-MC4R or 

mutant HA-MC4R, 3 hours after transfection cells were incubated with 5mM 4-PBA 

for 48 hours prior to in cell western analysis. MC4R cell surface expression (A), 

total cellular levels (B), and trafficking to the cell surface (C) was quantified at each 

concentration of 4-PBA. *P<0.05. Error bars represent the mean ±SD. 
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Figure 4.10:  Treatment of cells with kosmotrope 4-PBA increases total levels 

of MC4R detected by western blotting 

Treatment of HEK 293 cells with 5 mM, for 48 hours after transfection with 

plasmids for wild-type or mutant HA-MC4R expression, resulted in an increase in 

total cellular levels of MC4R.  
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Figure 4.11: 4-PBA increases total cellular levels of MC4R 

HEK 293 cells were transfected with plasmids for expression of WT HA-MC4R or 

mutant HA-MC4R, 3 hours after transfection cells were incubated with 5  mM 4-

PBA for 48 hours prior to confocal analysis. 48 hours post transfection cells were 

formaldehyde fixed and immunostained with primary anti HA-antibodies, to detect 

the N-terminal HA-tagged MC4R, and fluorescent Cy3 secondary antibodies. 

Confocal settings including detector gain, amplifier offset and pinhole were 

constant for all imaging. Scale bar = 100 µM  
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Figure 4.12: 4-PBA does not alter the cellular localisation of MC4R 

HEK 293 cells were transfected with plasmids for expression of WT HA-MC4R or 

mutant HA-MC4R, 3 hours after transfection cells were incubated with 5 mM 4-

PBA for 48 hours prior to confocal analysis. 48 hours post transfection cells were 

formaldehyde fixed and immunostained with primary anti HA-antibodies, to detect 

the N-terminal HA-tagged MC4R, and fluorescent Cy3 secondary antibodies. 

Confocal settings including detector gain, amplifier offset and pinhole were 

constant for all imaging. Scale bar = 10 µM  
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Figure 4.13: 4-PBA promotes functional expression of intracellular retained 

mutants 

Using a luciferase reporter system for cAMP activity MC4R signalling was 

quantified for wild-type and mutant HA-MC4Rs. Cells were co-transfected with 

plasmids for expression of wild-type or mutant MC4R, a luciferase reporter 

construct for MC4R signalling, and a vector for renilla expression. 3 hours post-

transfection cells were incubated with 5 mM 4-PBA. 48 hours post transfection 

cells were stimulated with 10-7M NDP-MSH for 6 hours and luciferase activity was 

measured. Values were normalised to renilla activity of control to account for 

variability in transfection efficiency. Data is shown as fold increases in luciferase 

activity relative to untreated controls. *P<0.05. Error bars represent the mean ±SD. 
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4.3 Discussion 

In summary, 100 mM trehalose significantly increased the total cellular levels of 

both WT HA-MC4R and some MC4R mutants. Whilst treatment with 5mM 4-PBA 

increased the trafficking and increased the signalling of some MC4R mutants. 

Contrasting results were obtained for WT HA-MC4R after 4-PBA treatment, with 

the in cell western showing a reduction in total cellular levels of the WT receptor. 

Unfortunately due to time constraints this inconsistency was not fully resolved.   

The concentrations of kosmotropes used in this study that proved to be effective 

are similar to those used in other studies. For example, Oculopharyngeal 

musculardystrophy (OPMD) is caused by the abnormal expansion of a polyalanine 

tract within the coding region of poly (A) binding protein nuclear 1 (PABPN1). 

Abnormal PABPN1 forms aggregates within the nuclei of skeletal muscle fibres 

(Davies et al., 2006). Treatment of COS-7 cells expressing mutant PABPN1 with 

100mM trehalose, reduced aggregate formation and toxicity of mutant PABPN1. 

Furthermore, oral administration of trehalose in an OPMD transgenic mouse model 

attenuated muscle weakness and reduced aggregate formation (Davies et al., 

2006). In a different study, the kosmotrope 4-PBA was shown to be an effective 

treatment in reducing aggregate formation of mutant HFE, a type I transmembrane 

glycoprotein (de Almeida et al., 2007). The C287Y mutation of the HFE protein is 

associated with hereditary haemochromatosis, and similar to MC4R, the misfolded 

mutant protein is retained in the ER and fails to traffic to the cell surface. Treatment 

of HEK 293 cells expressing C287Y HFE with 5 mM 4-PBA prevented aggregate 

formation of the mutant protein (de Almeida et al., 2007). 

Osmolytes such as DMSO and TMAO are thought to stabilise misfolded proteins 

by increasing the relative hydration around the polypeptide and decreasing the 

surface area of the polypeptide (Gekko & Timasheff, 1981). For example, the 

formation of fibrils by amyloid-β is characteristic of Alzheimer’s disease. TMAO 

(150 µM) and glycerol (6.0 M) were found to accelerate amyloid-β random coils 

into more complex β-sheet formation, a conformational change required for fiber 



Chapter 4 – Kosmotropes as modulators of MC4R trafficking and functional expression 

140 
 

formation associated with Alzheimer’s disease (Yang et al., 1999). This indicates 

that osmolytes such as TMAO and glycerol are capable of stabilising and 

promoting the folding of unfolded proteins. Although the osmolytes used in this 

study did not prove to be very effective in improving MC4R trafficking they have 

been shown to have some effect in other disease paradigms associated with 

aberrantly folded proteins.  For example, the most commonly inherited disorder in 

sulfur metabolism is caused by mutations in the cystathionine beta-synthase (CBS) 

gene, resulting in a loss/decrease in enzyme activity due to misfolding of the 

enzyme (Singh et al., 2007). Kosmotropes, glycerol, DMSO and TMAO, were able 

to promote folding of the enzyme and restore function of human CBS enzyme in 

Saccharomyces cerevisiae and Escherichia coli models. Furthermore, by 

combining different kosmotropes together they were able to rescue enzyme 

function using lower concentrations of the reagents (Singh et al., 2007). With 

respect to MC4R, this experiment could be tested by combining different 

kosmotropes DMSO and TMAO together at a range of different concentrations to 

determine if it would promote MC4R folding and possibly trafficking.   

It seems likely that the increase in total cellular levels of mutant MC4R, seen after 

treatment with trehalose or 4-PBA, may reflect that the receptor is stabilised at the 

ER and is not being sent for degradation. However, with the exception of HA-

MC4R (D90N), stabilisation of the misfolded protein at the ER does not appear 

sufficient to allow the mutant proteins to exit from the ER. 

Interestingly, in addition to HA-MC4R (D90N), mutants HA-MC4R (P78L) and HA-

MC4R (P299H) showed an increase in functional activity after 4-PBA treatment 

(Fig.4.13). Although no increase in trafficking for HA-MC4R (P78L) or HA-MC4R 

(P299H) was observed, an increase in cell surface expression was detected for 

HA-MC4R (P299H) (Fig.4.9). This increase in cell surface expression for HA-

MC4R (P299H) may be the reason why an increase in functional activity was 

observed, as more protein may be present at the cell surface resulting in an 

increase in receptor signaling. For HA-MC4R (P78L) a slight, but not significant, 
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increase was observed in trafficking of the mutant and this was sufficient to cause 

an increase in functional activity of the mutant receptor.  

However, it is important to note that although the fold increase in signaling is more 

than WT MC4R the absolute levels of mutant receptor signaling after 4-PBA 

treatment are still not comparable to WT MC4R. This observation with 4-PBA is not 

unique to MC4R. In a model of Fabry disease, caused by deficiency of α-

galactosidases, 1 mM 4-PBA was found to improve trafficking of mutant α-

galactosidases in human fibroblasts, but did not restore functionality (Yam et al., 

2007).  

An alternative mechanism of action has been previously described for 4-PBA. It 

has been shown that exposure of IB3-1 cystic fibrosis epithelial cells to 4-PBA 

upregulates chaperones and co-chaperones involved in protein folding and 

trafficking, suggesting a potential role of 4-PBA acting as a transcriptional regulator 

(Singh et al., 2006). Furthermore, microarray analysis on 4-PBA treated IB3-1 

showed an upregulation of transcript levels of heat shock proteins (Hsp) 90 and 70, 

both of which are involved in protein folding (Wright et al., 2004). 4-PBA may be 

exerting a similar effect in HEK 293 cells expressing MC4R by altering the 

expression of key chaperones and co-chaperones allowing the stabilisation of 

mutant MC4R, thus increasing total levels of the receptor. The potential up-

regulation of heat shock proteins could be tested by treating WT HA-MC4R and 

mutant MC4R expressing HEK 293 cells with 4-PBA, and subsequently 

immunoblotting the lysates with antibodies against Hsp70, Hsp90 and other 

chaperones. 

The data presented in this chapter provides proof-of-principle that the kosmotropes 

4-PBA and trehalose are able to stabilise the protein structure of MC4R and 

increase total cellular levels of a misfolded potein. Furthermore, 4-PBA may be 

useful in improving the trafficking and function of some clinically occurring MC4R 

mutants (HA-MC4R (P78L), HA-MC4R (D90N), and HA-MC4R (P299H)). Both 4-

PBA, and trehalose (a natural sugar), are non-toxic to cells. Indeed 4-PBA has 

been approved by the U.S. Food and Drug Administration for use in urea-cycle 
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disorders in children, sickle cell disease and thalassemia (Qi et al., 2004). 

However, the direct use of kosmotropes to treat MC4R monogenic obesity may be 

effective as the effects observed, at the concentrations tested, were minimal. 



143 

 

 

 

 

 

 

CHAPTER 5 

The effects of heat shock protein 

inducers and co-inducers on the cellular 

processing of MC4R 

 

 

 

 

 

 

 



Chapter 5 – The effects of heat shock protein inducers and co-inducers on the cellular processing of MC4R  

144 

 

5.1 Introduction 

Heat shock proteins (Hsp) are a highly conserved functional class of proteins that 

are transcriptionally upregulated under conditions of cellular stress, such as 

exposure to elevated temperatures, heavy metals and oxygen free radicals (De 

Maio, 1999). Furthermore, under normal cellular conditions Hsp are involved in de 

novo protein folding, protein degradation and protein complex assembly. Hsps are 

part of a group of proteins known as molecular chaperones. Molecular chaperones 

are a large and diverse group of proteins that share the property of assisting the 

folding and unfolding and the assembly and disassembly of other macromolecular 

structures, but are not permanent components of these structures when they are 

performing their normal biological functions (Ellis, 2006). Molecular chaperones are 

also involved in numerous specific cellular functions such as, clathrin uncoating, 

exocytosis, mitochondrial protein import and intermediate filament organisation 

(Young et al., 2003).  

Hsp90 is one of the most abundant proteins in eukaryotic cells comprising 1-2% of 

total proteins under non-stress conditions (Marcos-Carcavilla et al., 2008). Under 

normal cellular conditions, Hsp90 is bound to the transcription factor, heat shock 

factor 1 (HSF-1) (Morimoto, 2002), forming part of a larger complex with histone 

deacetylase 6 (HDAC6) and its partner p97/VCP (Boyault et al., 2007). Under 

cellular stress, HDAC6 through its ubiquitin binding activity, binds to ubiquitinated 

proteins and becomes dissociated from p97/VCP. This in turn leads to p97/VCP 

using its segregase activity to release HSF-1 from Hsp90 (Boyault et al., 2007). 

Phosphorylation and trimerisation of dissociated HSF-1 enables activated HSF-1 to 

bind to DNA within the nucleus resulting in the upregulation of cytoplasmic Hsp70, 

Hsp40 and Hsp90 expression (Westerheide & Morimoto, 2005). Geldanamycin 

(GA), a natural occurring benzoquinone ansamycin antibiotic found in 

Streptomyces hygroscopicus var. geldanus (BeBoer et al., 1976),  has been shown 

to bind specifically to Hsp90 inhibiting its function (Smith et al., 1995; Prodromou et 

al., 1997). Therefore, inhibition of Hsp90 by GA causes Hsp90 to dissociate from 
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the HSF-1 complex resulting in the induction of the expression of Hsp70 and 

Hsp40 (Thomas et al., 2006). Interestingly, because of its ability to inhibit Hsp90, 

GA is being investigated as a therapeutic drug against cancer. This is because 

Hsp90 is required for the stability and folding of many oncoproteins, including 

protein kinases such as ErbB2, EGFR, Bcr-Abl tyrosine kinase, Met tyrosine 

kinase, PKB/Akt, c-Raf and b-Raf, androgen and oestrogen receptors, HIF-1α 

(hypoxia-inducible factor-1α) and telomerase (Pearl et al., 2008). Therefore, 

inhibition of Hsp90 leads to the protesomal degradation of numerous oncogenic 

client proteins thus affecting numerous oncogenic pathways including proliferation, 

evasion of apoptosis, immortalization, invasion, angiogenesis and metastasis 

(Pearl et al., 2008).  

The therapeutic potential of GA, in diseases where normal proteostasis is 

disrupted, has been most extensively explored in the context of 

neurodegeneration. For example, in an in vitro model of Huntington’s disease, 

COS-1 cells were treated with 360 nM GA, which resulted in a 3-4 fold up-

regulation of Hsp40, Hsp70 and Hsp90 when compared to untreated controls 

(Sittler et al., 2001). In addition, when the GA treated cells were analysed for the 

presence of aggregated huntingtin protein, an 80% reduction of aggregates was 

observed (Stittler et al., 2001). Similar to the GA effects, overexpression of Hsp70 

and Hsp40 independently or collectively, also inhibited huntingtin protein 

aggregation in COS-1 cells by 30-40% or 60-80% respectively (Stittler et al., 2001).  

Other examples of GA inducing Hsp70 and preventing neurotoxicity have been 

reported. In a cell culture model of Parkinson’s disease, human neuroglioma cells 

were pre-treated with 200 nM GA for 16-18 hours resulting in a 50 % reduction in 

α-synuclein inclusions (Mclean et al., 2004). In addition pre-treatment of cells with 

GA showed a 20% reduction in α-synuclein induced toxicity compared to untreated 

cells (Mclean et al., 2004). In an in vivo rodent model of Parkinson’s disease, 

intracerebral ventricular injection of 10 µg/kg GA into the rodent’s brain protected 
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against 1-methyl-4-pheny 1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity 

by induction of Hsp70 (Shen et al., 2005).  

These examples and others indicate that pharmacological induction of Hsp70 by 

GA can promote the clearance of misfolded proteins that manifest as aggregates. 

Furthermore, direct overexpression of Hsp70, or the use of agents that induce 

Hsp70 expression, have also proved to be effective in improving the trafficking of 

misfolded proteins. For example, overexpression of Hsp70 in IB3-1 cells 

expressing mutant ΔF508 CFTR, resulted in a 2 fold increase in the mature 180kD 

form of the protein when compared to mock transfected cells (Choo-Kang et al., 

2001). Whilst the non-essential amino acid glutamine, an inducer of Hsp70, also 

caused a ~2.5 fold increase of the mature 180kD form of the mutant CFTR protein 

when IB3-1 cells were treated with 50 nM glutamine (Choo-Kang et al., 2001).   

There is growing evidence that molecular chaperones that reside in the cytosol 

interact with the cytoplasmic domains of GPCRs and can promote their processing 

to the plasma membrane (PM) and functional expression (Meimaridou et al., 2009). 

For example, Hsc70/HspA8 has been demonstrated to interact with the 

cytoplasmic domains of non-glycosylated angiotensin II type 1 receptor (Lanctot et 

al., 2006), whilst the DnaJ protein, hlj1/DnaJB4 has been shown to interact with the 

human mu opioid receptor via binding to its C-terminal domain (Ancevska-Taneva 

et al., 2006). Some of the examples above demonstrate that Hsp70 can also 

promote the inhibition of a toxic gain of function caused by misfolded proteins. In 

light of these advances, in this chapter manipulation of the cellular chaperone 

environment and its affect on misfolded MC4R is investigated.  

Experiments involving Hsc70 were carried out with the assistance of Dr. Eirini 

Meimaridou. 
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5.2 Results 

5.2 The effect of geldanamycin on the cellular trafficking of 

MC4R 

Geldanamycin (Sigma) was used to induce Hsp70 expression. HEK 293 cells were 

seeded at equal density and treated with concentrations of GA ranging from 0-

1000 nM for 24 hours prior to cell lysis.  To determine the degree of Hsp70 

induction western analyses for Hsp70 and GAPDH was performed (Fig.5.1, A). As 

expected, an increase in Hsp70 expression was observed in cells treated with GA. 

A concentration of 0.4 µM GA proved to be most effective, causing an approximate 

10 fold increase in Hsp70 levels (Fig.5.1, B). Hsp70 was also induced in HEK 293 

cells expressing WT HA-MC4R or mutant HA-MC4R (L106P) after treatment with 

0.4 µM GA (Fig.5.1, C). Interestingly, the basal level (control untreated cells) of 

Hsp70 in MC4R (L106P) expressing cells appeared higher than WT HA-MC4R 

expressing cells (Fig.5.1, C).  

The effect of increasing cellular levels of Hsp70 via GA treatment, on MC4R 

expression was investigated using GA concentrations of 0.4 µM and 1.0 µM. GA 

was added to HEK 293 cells straight after transfection with plasmids for expression 

of WT or mutant HA-MC4R. After 24 hours of treatment, cells were assessed for 

changes in cell surface expression and trafficking of MC4R (using the in cell 

western assay, described in Chapter 2, section 2.8). Changes in the total cellular 

level of MC4R (by western analysis, described in Chapter 2, section 2.10) and its 

functional activity (by the luciferase reporter assay), as described in Chapter 2, 

section 2.12.2, were also monitored. Surprisingly, a significant decrease in the cell 

surface and total cellular levels of both WT and mutant receptor was observed after 

treatment with GA. (Fig.5.2, A, B). Importantly, the amount of WT and mutant 

receptor trafficking to the cell surface was decreased upon pharmacological 

induction of Hsp70 (Fig.5.2, C). In addition, confocal images of cells transiently 

expressing WT or mutant receptor treated with GA also suggested a decrease in 



Chapter 5 – The effects of heat shock protein inducers and co-inducers on the cellular processing of MC4R  

148 

 

total levels of the GPCR (Fig.5.3). These results indicated that the Hsp90 

chaperone machinery may have a role to play in MC4R trafficking as treatment 

with GA also inhibits Hsp90.  
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Figure 5.1:  400nM GA induces expression of Hsp70 

After treatment with varying concentrations of GA for 24 hours HEK 293 lysates 

were collected and immunoblotted for Hsp70 and housekeeping protein GAPDH.  

Western analysis showed an induction in the expression of Hsp70 with GA 

(representative image) (A). Densitometric analysis of immunoblot A and 3 other 

immunoblots were performed. An approximate 10 fold increase in Hsp70 induction 

was observed with 400 nM GA treatment (B). *P< 0.05. Western analysis showed 

an induction in the expression of Hsp70 after GA treatment (C). 
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Figure 5.2: Treatment of cells with the pharmacological inducer of Hsp70 

geldanamycin reduces cellular levels of MC4R   

HEK 293 cells were transfected with plasmids for expression of WT or mutant, HA-

MC4R (L106P or P78L). Immediately after transfection cells were incubated with 0, 

0.4, 1.0 µM GA for 24 hours prior to in cell western analysis. MC4R cell surface 

levels (A), total cellular levels (B), and trafficking to the cell surface (C) was 

quantified at each concentration of GA. *P< 0.05 for all GA treated cells compared 

to control cells. Error bars represent ±SD. 
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Figure 5.3: GA treated HEK 293 cells have lower cellular levels of HA-MC4R 

HEK 293 cells transiently expressing WT or mutant HA-MC4R were treated with 

0.4 µM GA for 24 hours. Cells were then fixed and stained with a monoclonal anti-

HA mouse primary antibody and a secondary Cy3 conjugated antibody. Cells were 

imaged using a Zeiss LSM confocal microscope keeping all settings between 

control and non-treated cells the same. Scale bar = 10µm 
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5.3 The effect of Hsp90 co-chaperone Aha1 on MC4R 

trafficking 

Unexpectedly, inhibition of Hsp90, decreased cell surface expression and total 

cellular levels of MC4R. This might indicate that inhibiting Hsp90 may be 

detrimental to MC4R processing. Therefore, it was hypothesised that upregulation 

of Hsp90 would increase MC4R expression levels. However, Hsp90 is an abundant 

protein and it has previously proved difficult to significantly increase cellular levels 

by heterologous expression (Chapple, personal communication), therefore the rate 

of Hsp90 client protein binding and release was targeted using activator of Hsp90 

ATPase (Aha1).  Aha1 is a co-chaperone of Hsp90 that binds to the middle domain 

of Hsp90 and stimulates its ATPase activity (Panaretou et al., 2002; Lotz et al., 

2003).  

HEK 293 cells were transiently co-transfected with plasmids encoding WT HA-

MC4R and Aha1 or an empty control vector at a 1:1, 1:5 or 1:10 ratio. Aha1 

expression significantly increased the cell surface expression of WT HA-MC4R at 

the 1:1 ratio (by 56.14±3.05%) and the 1:5 ratios (by 65.32±12.23%) (Fig.5.4, A). 

However, once the MC4R/Aha1 plasmid ratio was increased to a ratio 1:10 the 

level of receptor at the cell surface was not significantly different from the untreated 

control (Fig.5.4, A). Total cellular levels of WT HA-MC4R also increased in the 

presence of Aha1 with a significant increase at a 1:1 ratio (108.22±5.96%) and a 

1:5 ratio (134.16±4.21%)(Fig.5.4, B).  Transfecting the cells with MC4R:Aha1 

plasmids at a ratio exceeding 1:5 led to a reduction in MC4R levels (Fig.5.4, B).  

Based on the above findings, the effect of Aha1 (used at a 1:1 ratio to MC4R) on 

mutant MC4R processing was further investigated. Co-transfection with Aha1 

caused a significant increase in cell surface expression of mutant MC4R, with the 

exception of mutant HA-MC4R (C271Y) (Fig.5.18, A). The greatest increase in cell 

surface expression was observed for mutant receptor HA-MC4R (S58C) 

(26.17±8.78%) (Fig.5.18, A).  Similar to the WT receptor, the total cellular levels of 



Chapter 5 – The effects of heat shock protein inducers and co-inducers on the cellular processing of MC4R  

153 

 

MC4R mutants also significantly increased upon Aha1 expression, with the 

exception of HA-MC4R (C271Y) (this may have been due to reduced transfection 

efficiency for this mutant) (Fig.5.18, B).  In contrast, the level of receptor trafficking 

to the PM was not improved in cells over-expressing Aha1 for either the WT or 

mutant MC4R and once again a reduction in the proportion of receptor trafficking to 

the PM was observed (Fig.5.18, C). These findings suggests that Aha1, and thus 

Hsp90 stimulation, increase total cellular levels of WT and mutant MC4R but does 

not improve trafficking of the receptor to the PM.  

To further confirm the increase in total levels of MC4R after treatment with Aha1, 

western analysis was performed (Fig.5.19). An increase in total levels of both WT 

and mutant HA-MC4R (L106P, P78L) were detected (Fig.5.19). 

Confocal imaging of HEK 293 cells heterologously co-expressing MC4R and Aha1 

also suggested an increase in total cellular levels of the receptor. However, there 

was minimal evidence of co-localisation between the co-chaperone and GPCR 

(Fig.5.7). Furthermore, no co-immunoprecipitation of Aha1 with MC4R was 

detected (Fig.5.8, C). Together these results suggest that Aha1 does not interact 

directly with MC4R.  

To further investigate the effects of Aha1 on MC4R a functional assay was 

performed. HA-MC4R expressing HEK 293 cells, co-transfected with Aha1, 

showed a slight, but not significant increase, in signalling. HA-MC4R (D90N) was 

the only mutant to show a significant increase in reporter gene activity 

(8.46±1.90%), as detected by a luciferase reporter construct in the presence of 

Aha1 (Fig.5.9). This is consistent with Aha1 stabilising MC4R at the ER, and thus 

causing an increase in cellular levels, but not promoting trafficking of the mutant 

receptor.  

To further investigate the effects of Aha1 on MC4R cell surface expression the 

stable cell lines described in Chapter 3 were utilised. Similar to the transient MC4R 

expression system an increase in MC4R cell surface and total cellular levels were 
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observed when the mutant MC4R stable cell lines were transiently transfected for 

Aha1 expression (Fig.5.10, A, B). Unexpectedly, a slight but significant decrease 

(0.23±0.06) was observed for cell surface expression of the WT receptor in cells 

hetrologously over-expressing Aha1. 

Comparable to the transiently expressing MC4R cells, Aha1 did not promote the 

ratio of the receptor trafficking to the cell surface in the MC4R stable cell lines 

(Fig.5.10, C).  
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Figure 5.4: Increasing the ratio of Aha1 to HA-MC4R decreases cellular levels 

of MC4R  

HEK 293 cells were transiently co-transfected with plasmids encoding WT HA-

MC4R and increasing concentrations of plasmid for expression of Aha1. The total 

amount of DNA used in each transfection was kept constant by using empty control 

vector pcDNA3.1. 24 hours post transfection in cell western analysis was 

performed. Aha1 expression elevated cell surface levels of WT MC4R, but no 

further increase was observed with increased Aha1 expression (A). Increasing 

Aha1 expression increased total receptor levels (B). WT receptor trafficking to the 

cell surface slightly decreased with increased Aha1 expression (C). *P<0.05. Error 

bars represent ±SD 
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Figure 5.18: Over-expression of Hsp90 co-chaperone Aha1 causes a 

significant increase in the total cellular levels of MC4R 

HEK 293 cells were co-transfected with plasmids for expression of WT HA-MC4R 

or mutant MC4R with equal amounts of plasmid encoding Aha1 or empty control 

vector (pcDNA3.1). 24 hours post-transfection cells were fixed and stained and in 

cell western analysis performed. MC4R cell surface levels (A), total cellular levels 

(B), and trafficking to the cell surface (C) was quantified for cells co-expressing 

Aha1 and control cells. *P<0.05. Error bars represent ±SD. 
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Figure 5.19: Over-expression of Hsp90 co-chaperone Aha1 causes an 

increase in the total levels of MC4R 

HEK 293 cells were co-transfected with plasmids for expression of WT HA-MC4R 

or mutant MC4R with plasmid encoding Aha1 or empty control vector. 24 hours 

post-transfection cells were lysed and collected lysates were run on a 12% SDS-

PAGE gel followed by immunoblotting for HA-MC4R, Aha1 and GAPDH. 

 



Chapter 5 – The effects of heat shock protein inducers and co-inducers on the cellular processing of MC4R  

158 

 

 

 

Figure 5.7: Aha1 over-expression in HEK 293 cells increases MC4R cellular 

levels 

HEK 293 cells were co-transfected with plasmids expressing MC4R and Aha1 or 

control empty vector. 24 hours post transfection cells were fixed and stained with 

antibodies detecting HA-MC4R (red) and/or Aha1 (green) with nuclei staining 

(blue). Cells were imaged using a Zeiss Confocal LSM 510 confocal microscope. 

Scale bar = 10µm 
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Figure 5.8: Aha1 does not co-immunoprecipitate with MC4R 

WT HA-MC4R and Aha1 were immunoprecipitated from a RIPA buffer (Sigma) 

soluble cell lysate and immunoblotted with monoclonal anti HA antibody and HA-

MC4R proteins (A), or immunoblotted with anti-Aha1 antibody (B). 
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Figure 5.9: Over-expression of Aha1 promotes MC4R signalling 

Using a luciferase reporter system for cAMP activity MC4R signalling was 

quantified for WT and mutant HA-MC4Rs co-transfected with Aha1. HEK 293 cells 

were co-transfected with equal concentrations of plasmids for expression of WT or 

mutant HA-MC4R with Aha1 or empty control vector. Cells were also co-

transfected with a luciferase reporter construct for MC4R signalling, and a vector 

for renilla expression. 16 hours post transfection cells were stimulated with 10-7M 

NDP-MSH for 6 hours and luciferase activity was measured. Values were 

normalised to renilla activity to control for variability in transfection. *P<0.05. Error 

bars represent ±SD. 
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Figure 5.10: Over-expression of Aha1 increases total cellular MC4R levels   

HEK 293 cells stably expressing HA-MC4R were co-transfected with equal 

amounts of plasmid encoding Aha1 or control empty vector (pcDNA3.1). 24 hours 

post-transfection cells were fixed and stained and in cell western analysis 

performed. MC4R cell surface levels (A), total cellular levels (B), and trafficking to 

the cell surface (C) was quantified for cells co-expressing Aha1 and control cells. 

Data is shown as fold increases in MC4R expression relative to untreated controls. 

*P<0.05. Error bars represent ±SD.  
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5.2.3 The effect of Hsc70 on the cellular trafficking of MC4R 

Hsc70 has been shown to be involved in the folding of both WT and mutant 

proteins, and in some paradigms of protein misfolding disease has been shown to 

rescue cellular phenotypes (Spooner et al., 2008). Therefore it was decided that 

further investigation of the effects of Hsc70 on MC4R processing was required. 

After transfection of cells (with equal amounts) of Hsc70, HEK 293 cells were 

assessed for changes in cell surface expression and trafficking of MC4R 

(described in Chapter 2, section 2.8). Changes in the total cellular level of MC4R 

(by western analysis, described in Chapter 2, section 2.10) and its functional 

activity, as described in Chapter 2, section 2.12.2, were analysed.    

Except for the severe mutant HA-MC4R (P78L) Hsc70 expression increased the 

cell surface expression of WT HA-MC4R and the intracellular retained mutants 

(Fig.5.11, A). In addition Hsc70 expression increased the total cellular levels of 

both WT HA-MC4R and mutant receptor and interestingly promoted a more 

significant increase in the intracellular mutants compared to the WT receptor 

(Fig.5.11, B). Except for the severe intracellular retained mutant HA-MC4R (P78L), 

Hsc70 expression also elevated trafficking levels of WT and mutant MC4R.  

To further confirm the increase in total levels of MC4R after Hsc70 over-expression 

western analysis was performed (Fig.5.12). An increase in levels of both WT and 

mutant HA-MC4R was detected (Fig.5.12). 

After detecting an increase in total cellular levels of protein in HEK 293 cells, 

immunostaining of WT and mutant HA-MC4R (P78L) mutant was performed to 

obtain a visual image of the localisation of the receptor after Hsc70 over-

expression (Fig.5.13). Although not detected in the in cell western assay, upon 

Hsc70 expression cell surface expression of HA-MC4R (P78L) did improve in a 

sub-population of the transfected cells (Fig.5.13). 

To determine if there was a direct interaction between MC4R and Hsc70 in vitro, a 

co-immunoprecipitation experiment was carried out using a cell lysate from cells 
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expressing V5-tagged Hsc70 and HA tagged MC4R. The results clearly indicated 

that Hsc70 co-immunoprecipitates with WT HA-MC4R (Fig.5.14). 

As an increase in trafficking levels for most MC4R mutants was observed, it was 

investigated whether Hsc70 expression would increase receptor signalling in 

response to NDP-MSH stimulation. This was done using the luciferase reporter 

system (described in Chapter 2). In agreement with the observation that Hsc70 did 

promote trafficking, an increase in receptor signalling at the PM was observed in 

cells expressing WT and mutant HA-MC4R (Fig.5.15). A fold increase of 

1.21±0.02, 3.17±0.62, 2.51±0.07 and 1.02±0.05 was measured for mutants HA-

MC4R (S58C), HA-MC4R (P78L), HA-MC4R (D90N) and HA-MC4R (L106P) 

respectively.  

Over-expression of Hsc70 in stable HA-MC4R cell lines increased cell surface 

levels of mutant MC4R. A significant fold increase of 1.90±0.29, 6.01±1.34, 

4.28±0.52 was measured for stably expressing mutants HA-MC4R (S58C), HA-

MC4R (P78L) and HA-MC4R (L106P) (Fig.5.16, A). Similar to the transiently 

transfected cells, expression of Hsc70 in MC4R stable cell lines increased total 

cellular levels of MC4R (Fig.5.16, B), however due to the reduced effect of Hsc70 

on cell surface levels of MC4R, Hsc70 did not promote the ratio of MC4R trafficking 

to the cell surface to the same extent as observed in transiently transfected cells. 

Only HA-MC4R (P78L) showed a significant fold increase (3.64±0.88) in trafficking 

to the cell surface (Fig.5.16, C).  

As an increase in MC4R functional expression was observed upon NDP-MSH 

stimulation in the transiently transfected cells it was decided to determine if this 

also occurred in the MC4R stable expressing cell lines. Hsc70 expression did 

promote both WT and mutant MC4R signalling but to a lesser degree when 

compared to the transiently transfected HEK 293 cells (1.02±0.59, 0.84±0.07, 

1.11±0.14, 1.06±0.15 for HA-MC4R (S58C), HA-MC4R (P78L), HA-MC4R (D90N) 

and HA-MC4R (L106P) respectively) (Fig.5.17). 
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Figure 5.11: Expression of Hsc70 increases the trafficking of heterologous 

MC4R to the cell surface 

HEK 293 cells were co-transfected with plasmids for expression of WT HA-MC4R 

or mutant MC4R with equal amounts of plasmid encoding Hsc70 or control empty 

vector (pcDNAfrt/20). 24 hours post-transfection cells were fixed and stained and in 

cell western analysis was performed. MC4R cell surface expression (A), total 

cellular levels (B), and trafficking to the cell surface (C) was quantified for cell co-

expressing Hsc70 and control cells. *P<0.05. Error bars represent ±SD. 
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Figure 5.12: Expression of Hsc70 increases the total cellular expression of 

MC4R 

HEK 293 cells were transiently co-transfected with plasmids expressing WT or 

mutant HA-MC4R and Hsc70 or control empty vector (pcDNAfrt/20). 24 hours post-

transfection lysates were collected and resolved on a 12% SDS-PAGE gel prior to 

immunoblotting for HA tagged MC4R, V5 tagged Hsc70, endogenous Hsp70 and 

housekeeping protein GAPDH.  
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Figure 5.13: Hsc70 expression increases intracellular retained HA-MC4R 

(P78L) cell surface expression  

HEK 293 cells were co-transfected with plasmids expressing MC4R and Hsc70 or 

control empty vector. 24 hours post transfection cells were fixed and stained with 

antibodies detecting HA-MC4R (red) and/or Hsc70 (green) with nuclei staining 

(blue). Cells were imaged using a Zeiss Confocal LSM 510 confocal microscope. 

Arrow shows increase in cell surface expression of HA-MC4R (P78L) for cell 

transfected with Hsc70. Scale bar = 10 µm 
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Figure 5.14: Hsc70 co-immunoprecipitates with MC4R 

HEK 293 cells were transiently co-transfected with plasmids for the expression of 

WT HA-MC4R and Hsc70 or control empty vector (pcDNAfrt/20). 24 hours post-

transfection, WT HA-MC4R and Aha1 were immunoprecipitated from a RIPA buffer 

(Sigma) soluble cell lysate and immunoblotting against V5 tagged Hsc70 using an 

anti-V5 antibody. Both the input and Co-IP gels were run and blotted at the same 

time.  
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Figure 5.15: Over-expression of Hsc70 in HEK 293 increases functional 

expression of MC4R 

HEK 293 cells heterologously expressing WT or mutant MC4R were co-transfected 

with plasmids encoding Hsc70 or a control empty vector and plasmid for a 

luciferase reporter and a vector for renillia expression. 16 hours post transfection 

cell were stimulated with 10-7M NDP-MSH for 6 hours and luciferase activity was 

measured. Values were normalised to renilla activity to control for variability in 

transfection. Data is shown as fold increases in luciferase activity relative to 

untreated controls. *P<0.05. Error bars represent ±SD. 
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Figure 5.16: Over-expression of Hsc70 increases trafficking of stably 

expressing HA-MC4R (P78L) 

HEK 293 cells stably expressing HA-MC4R were co-transfected with equal 

amounts of plasmid for the expression of Aha1 or control empty vector 

(pcDNA3.1). 24 hours post-transfection cells were fixed and stained and in cell 

western analysis was performed. MC4R cell surface levels (A), total cellular levels 

(B), and trafficking to the cell surface (C) was quantified for cell co-expressing 

Hsc70 and control cells. Data is shown as fold increases in MC4R expression 

relative to untreated controls. *P<0.05. Error bars represent the ±SD. 
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Figure 5.17: Over-expression of Hsc70 promotes stably expressing MC4R 

functional expression 

Using a luciferase reporter system for cAMP activity MC4R signalling was 

quantified for wild-type and mutant HA-MC4Rs transfected with Hsc70. HEK 293 

cells stably expressing HA-MC4R were transfected with plasmids for the 

expression of Hsc70 or control empty vector. Cells were also co-transfected with a 

luciferase reporter construct for MC4R signalling, and a vector for renilla 

expression. 16 hours post transfection cells were stimulated with 10-7M NDP-MSH 

for 6 hours and luciferase activity was measured. Values were normalised to renilla 

activity to control for variability in transfection. Data is shown as fold increases in 

luciferase activity relative to untreated controls. *P<0.05. Error bars represent ±SD. 

 

 

 



Chapter 5 – The effects of heat shock protein inducers and co-inducers on the cellular processing of MC4R  

171 

 

5.2.4 Synergistic effect of Aha1 and Hsc70 

As both Aha1 and Hsc70 improved the functional expression of mutant MC4R 

independently it was hypothesised that the two combined would further magnify 

any MC4R signalling. Indeed, the data indicates that Aha1 and Hsc70 work 

synergistically and enhance MC4R functional activity compared to when acting 

independently of each other (Fig.5.18). Upon NDP-MSH stimulation, Hsc70 and 

Aha1 collectively caused a significant (*P<0.05) fold increase of MC4R functional 

expression compared to either Aha1 alone or Hsc70 alone. For the intracellular 

mutant tested, HA-MC4R (S58C), a greater fold increase in the synergistic effect 

was observed compared to WT HA-MC4R.  

The data presented thus far indicates that the two different chaperone machineries, 

namely Hsc70 and Hsp90, are important in the regulation of MC4R processing. It is 

known that Hsp90 and Hsp70 chaperone machineries play a vital role in the folding 

and maturation of key regulatory proteins such as kinases, steroid hormones and 

transcription factors (Wegele et al., 2004). Furthermore, it has been demonstrated 

that a third protein, the Hsp organiser protein (Hop) interacts with both Hsp90 and 

Hsp70 and functions as an adaptor protein (Chen & Smith, 1998). Therefore 

knockdown of Hop would potentially disrupt the functional interaction of the Hsp70 

and Hsp90 chaperone systems resulting in a decrease in MC4R signalling. This 

hypothesis was tested by selectively knocking down Hop, using siRNA oligos (1 in 

combination with siRNA oligo 3) targeted to Hop sequence in HEK 293 cells 

transiently expressing MC4R (Fig. 5.19, A). As predicted a reduction in MC4R 

signalling was observed but only for the intracellular retained mutants (0.17±0.08 

and 0.10±0.06 for HA-MC4R (S58C) and HA-MC4R (P78L) respectively) tested 

and not for the WT receptor (Fig.5.19, B).   
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Figure 5.18: Hsc70 and Aha1 have a synergistic effect on the functional 

expression of MC4R 

HEK 293 cells stably expressing WT HA-MC4R and intracellular retained mutant 

HA-MC4R (S58C) were transfected with plasmids for the expression of Hsc70, 

Aha1 or both Hsc70 and Aha1. Cells were also co-transfected with a luciferase 

reporter construct for MC4R signalling, and a vector for renilla expression. 16 

hours post transfection cells were stimulated with 10-7M NDP-MSH for 6 hours and 

luciferase activity was measured. Values were normalised to renilla activity to 

control for variability in transfection. Data is shown as fold increases in luciferase 

activity relative to untreated controls. *P<0.05. Error bars represent the mean ±SD. 
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Figure 5.19: Knockdown of Hop causes a reduction in mutant HA-MC4R 

(S58C, P78L) functional expression 

siRNA peptide oligos targeted for Hop were transfected into HEK 293 cells. mRNA 

from the cells was reverse transcribed to obtain cDNA. Primers for Hop were used 

to amplify Hop transcript from the cDNA obtained.  siRNA oligos 1 and 3 proved to 

be the most successful for effective knockdown of Hop (A). Using a luciferase 

reporter system for cAMP activity MC4R signalling was quantified for WT and 

mutant HA-MC4Rs co-transfected with either siRNA against a scrambled sequence 

or siRNA against Hop. Cells were also co-transfected with a luciferase reporter 

construct for MC4R signalling, and a vector for renilla expression. 16 hours post 

transfection cells were stimulated with 10-7M NDP-MSH for 6 hours and luciferase 

activity was measured. Values were normalised to renilla activity to control for 

variability in transfection (B). Data is shown as fold increases in luciferase activity 

relative to untreated controls. *P<0.05. Error bars represent the mean ±SD. 
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5.3 Discussion 

In summary, these results strongly implicate a role for the Hsp90 and Hsc70 

chaperone systems in MC4R processing. In agreement with previous in vitro 

(retinal epithelium cells) and in vivo (mouse brains) studies, treatment of HEK 293 

cells with 400 nM GA caused an ~10 fold induction in Hsp70 expression (Fig.5.1, 

B) (Wu et al., 2007; Kwon et al., 2009). However, Hsp70 pharmacological inducer 

GA did not promote MC4R trafficking or cell surface levels of MC4R. Therefore, 

this suggests that inhibition of Hsp90 with GA is not a potential method to rescue 

MC4R misfolding mutants. Hsp90 has been shown to interact with nascent CFTR 

polypeptide, with GA mediated inhibition of Hsp90 preventing nascent CFTR 

folding and promoting its degradation by the proteasome (Loo et al., 1998). 

Furthermore, disruption to Hsp90 function leads to the degradation of multiple 

steroid hormone receptors (Segnitz et al., 1997) and tyrosine kinases (Schnaider et 

al., 200) by the proteasome. Although not directly tested, the interpretation of the 

reduction of MC4R expression levels when treated with GA, may suggest that 

there may be a direct association of Hsp90 with the cytoplasmic domains of MC4R. 

If so, acting at the cytoplasmic face of the endoplasmic reticulum (ER), cytosolic 

Hsp90 may potentially interact with the cytoplasmic domains of ER retained MC4R 

mutants thereby possibly counteracting their susceptibility to become degraded by 

the proteasome. This data may also suggest that native MC4R may be a possible 

client protein of Hsp90, and that Hsp90 is required for its folding, and stability. GA 

inhibition of Hsp90 does not block the formation of Hsp90 complexes with folded or 

misfolded proteins, nor will it disrupt any existing complexes (Panaretou et al., 

1998; Obermann et al., 1998).  However, as GA binds to the ATP binding site of 

Hsp90, it will reduce the ability of Hsp90 to bind and release client proteins and 

therefore reduce the rate of Hsp90 natural chaperone cycle possibly resulting in 

the degradation of MC4R. GA also inhibits the glucose regulated protein (GRP94), 

the ER luminal homologue of Hsp90, and this data may also suggest that GRP94 

is required for MC4R processing, possibly by stabilising the receptor. In fact 

GRP94 and another ER luminal chaperone, calnexin, have been shown to stabilise 
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and promote the mobility of both native and misfolded human insulin receptor 

(Ramos et al., 2007). 

Therefore it was hypothesised that, stimulation of Hsp90 chaperone cycle would 

promote MC4R’s folding and functional expression of the receptor at the cell 

surface. The activator of the ATPase activity of Hsp90, Aha1 was used to increase 

the natural chaperone cycling activity of Hsp90 (Lotz et al., 2003). However, Aha1 

over-expression did not significantly increase MC4R functional expression at the 

PM. These results suggest that although Aha1 is able to increase the total levels of 

both WT and mutant MC4R it is not able to efficiently increase MC4R’s trafficking 

to the cell surface. 

It is not surprising that a partial positive effect of Aha1 was observed for the WT 

receptor, as confocal imaging indicated that a proportion of the WT receptor was 

localised intracellularly in transiently transfected HEK 293 cells. The data 

presented here leads to the speculation that, Hsp90 possibly binds to the cytosolic 

domains of mutant MC4R polypeptide intermediates and manages to stabilise 

them effectively at the ER.  

It could also be hypothesised that stabilisation of MC4R at the ER may allow 

mutant protein to escape from the cellular quality control machineries and therefore 

not become retro-translocated for degradation. However, the data suggests that 

only a minority of misfolded receptors possibly achieve a more native conformation 

to enter the secretory pathway and reach the cell surface.  

In contrast to the data obtained for Hsp90 and MC4R, for CFTR expressing cells, 

Aha1 knockdown increased trafficking of misfolded (ΔF508 mutant) protein to the 

cell surface (Wang et al., 2006). The authors demonstrated that silencing of Aha1 

reduced endoplasmic reticulum associated degradation (ERAD) of the mutant 

protein whereas over-expression of Aha1 destabilised both the WT and mutant 

ΔF508 CFTR protein and promoted their ER-associated degradation (Wang et al., 

2006). Further investigations suggested that the C-terminal domain of Aha1 helps 
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the dimerisation of Hsp90 N-terminal domains (Koulov et al., 2010) and the N-

terminal domain of Aha1 binds to the middle domain of Hsp90 (Meyer et al., 2004). 

With at least one Aha1 monomer interacting with one Hsp90 dimer, Aha1 bridges 

the Hsp90 dimer interface (Koulov et al., 2010). In the case of CFTR, it has been 

suggested that reduction of Aha1 levels possibly decreases Hsp90 ATPase activity 

thereby increasing client protein (ΔF508 CFTR) ‘dwell time’ with Hsp90 (Koulov et 

al., 2010). An increase in ‘dwell time’ potentially allows for increase association of 

client protein with Hsp90 and possibly the generation of more kinetically stable 

ΔF508 CFTR fold, resulting in export of the mutant protein from the ER (Koulov et 

al., 2010). This suggests that differential chaperone cellular environments may be 

required for different proteins.  

Heterologous expression of Hsc70 was successful in enhancing mutant MC4R 

functional expression. Cytoplasmic chaperones have been shown to influence the 

folding and processing of other GPCRs. For example, DnaJ proteins HSJ1a and 

HSJ1b regulate the ATPase activity and substrate binding of Hsp70. HSJ1b has 

been shown to modulate the processing of GPCR rhodopsin at the cytoplasmic 

face of the ER (Chapple et al., 2003). In another example, disruption of GPCR 

angiotensin II type I receptor (AT1) glycosylation, causes the receptor to become 

retained in the ER and associate with the cytosolic chaperone Hsp70 (Lanctot et 

al., 2005).  Hsc70 has also been shown to interact with the N-terminal cytosolic 

nucleotide-binding domain (NBD1) of CFTR and assists in the folding of NBD1 

(Meacham et al., 1999).  Furthermore, Hsc70 with co-chaperone CHIP forms part 

of a multisubunit CHIP E3 ubiquitin ligase complex that ubiquitinates cytosolic 

regions of CFTRΔF508 targeting it for proteasomal degradation (Younger et al., 

2006). This demonstrates that CHIP can convert Hsc70s function from a protein 

folding machine into a degradation component (Meacham et al., 2001).  

The data presented here strongly indicates a role for the Hsc70 and Hsp90 

chaperone machineries in MC4R processing; supporting this functional expression 

of MC4R was further elevated in cells expressing both Hsc70 and Aha1. In 
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addition, siRNA downregulation of the Hsp70/Hsp90 organising protein (Hop) 

caused a decrease in mutant MC4R signalling. One of the functions of Hop is to 

act as an adaptor protein, providing a physical link between chaperone 

machineries Hsc70/Hsp70 and Hsp90, and mediates the transfers of protein 

substrates from Hsp70 to Hsp90 (Wegele et al., 2006). Potentially acting as a 

monomer, Hop binds to the C-terminus of Hsp70 and one of the two TPR domains 

on Hsp90 (Yi et al., 2009). Interestingly, probable disruption of the Hsp70/Hsp90 

chaperone complex by knockdown of Hop causes a decrease in the functional 

expression of mutant HA-MC4R (S58C, P78L) but not the WT receptor. This data 

further indicates that the cytosolic chaperones Hsc70 and Hsp90 are involved in 

the processing of misfolded MC4R. Possible greater knockdown of Hop may effect 

WT receptor functional expression. 
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6.1 Introduction 

The experiments described in this chapter have been undertaken to investigate 

the effects of two compounds that are known modulators of cellular 

proteostasis, rapamycin and resveratrol, and melanocortin-2-accessory protein 

(MRAP) on the cell surface expression of mutant MC4R. 

 

6.1 Autophagy inducer, rapamycin 

As discussed in chapter 1, the ubiquitin-proteasome system and autophagy are 

the two major mechanisms responsible for the clearance of cellular proteins. 

Autophagy can be induced by inhibiting the mammalian target of rapamycin 

(mTOR), a negative regulator of autophagy (Winslow & Rubinsztein, 2008). 

mTOR is a well conserved 270kD phosphatidylinositol kinase-related kinase 

(Diaz-Troya et al., 2008). Rapamycin, a U.S. Food and Drug Administration 

approved lipophilic macrolide antibiotic, forms a complex with the immunophilin 

FK506-binding protein 12 (FKBP12), which in turns binds to and inactivates 

mTOR thereby inducing autophagy (Ravikumar et al., 2006).  

Numerous studies have investigated the induction of autophagy, using 

chemicals including rapamycin, in order to remove potential toxic aggregated 

proteins formed in neurodegenerative disorders. For example, the use of 

rapamycin or the rapamycin ester CCI-779 reduced aggregate formation and 

toxicity in mouse and drosophila models expressing mutant huntingtin 

(Ravikumar et al., 2004).  Furthermore, inhibition of autophagy with bafilomycin 

A1 increased the percentage of cells containing aggregated Olfactory GPCRs 

(Lu et al., 2003).   

Therefore it was hypothesised that induction of autophagy by rapamycin would 

possibly promote the clearance of misfolded MC4R leading to a reduction in the 

concentration of aberrantly folded MC4R. This in turn may improve the cellular 

protein homeostasis enabling any partially folded mutant MC4R to achieve a 
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more native conformation, thus allowing it to pass to the endoplasmic reticulum 

(ER) quality control resulting in an increase in MC4R trafficking and function. 

 

6.2 Resveratrol  

Resveratrol a naturally occurring molecule, classified as a polyphenol, is 

synthesized by plants in response to biological attack from fungi, bacteria or 

other injurious substances (Sadruddin et al., 2009). Found at a naturally high 

concentration in red grapes and red wine, resveratrol has been shown to have 

protective effects against a number of diseases including cancer, 

neurodegenerative diseases, and metabolic syndromes (Saiko et al., 2008).  

The effects of Resveratrol have been analyzed in various models of protein 

misfolding disease. For example, administration of 0.2% resveratrol for 45 days 

to Alzheimer’s disease (AD) transgenic mice reduced plaque counts (caused by 

aggregated beta amyloid deposits) in the medial cortex, striatum and 

hypothalamus regions of the brain (Karuppagounder et al., 2008). In a yeast 

model of Huntington’s disease (HD), misfolded/aggregated huntingtin was 

thought to be abnormally interacting with mitochondrial membranes resulting in 

disturbances to mitochondrial distribution and function leading to an increase in 

reactive oxygen species (ROS) (Solans et al., 2006). Treatment with 10-50 µM 

of the antioxidant resveratrol for 10-20 hours partially prevented the cells 

respiration dysfunction and cell death (Solan et al., 2006). Therefore, the effect 

of resveratrol on MC4R processing was investigated. It was hypothesised that 

resveratrol would reduce the concentration of intracellular misfolded protein, 

modulating cellular proteostasis and possibly increasing the cell surface 

expression and function of mutant MC4R. 
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6.1.3 MC2R accessory protein MRAP 

Previous studies have shown that in non-adrenal cell lines MC2R is retained in 

the ER (Noon et al., 2002). Later studies identified that MRAP, a small 

transmembrane protein, is required for the functional expression of MC2R 

(Metherell et al., 2005). MRAP is required to facilitate the trafficking of MC2R 

from the ER to the plasma membrane. Mutations in MRAP cause ER retention 

of MC2R and result in glucocorticoid deficiency type 2 (Metherell et al., 2005). 

MRAP has also been shown to be expressed in the hypothalamus by in situ 

hybridisation (Gardiner et al., 2002), interestingly this is the same localisation for 

MC4R expression (Balthasar et al., 2005). Recently, the MRAP homologue 

MRAP2 has been identified and characterized (Chan et al., 2009). MRAP2 has 

also been shown to be expressed in the hypothalamus (Lein et al., 2007). 

Furthermore, recent work has shown that both MRAP and MRAP2 are able to 

interact with WT MC4R and moderately attenuate its signalling in CHO cells 

(Chan et al., 2009).   

It was postulated that MRAP would also be able to bind to ER retained mutant 

MC4R, and may possibly stabilise it sufficiently to promote a degree of 

functional cell surface expression of the mutant receptor.  
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6.3 Results 

6.5 Effect of rapamycin on MC4R processing 

HEK 293 cells transiently expressing WT HA-MC4R or HA-MC4R (L106P) were 

treated with 1, 5 or 10 µM rapamycin or a vehicle control for 24 hours. Cell 

surface levels of WT HA-MC4R increased with increasing concentrations of 

rapamycin, with 10 µM causing an increase of 27.78%±12.81 (Fig.6.1, A). Cell 

surface levels of the mutant receptor HA-MC4R (L106P) remained unchanged 

(Fig.6.1, A). No change in total cellular levels of the WT or mutant receptor was 

observed after rapamycin treatment (Fig.6.1, B). Although, an increase of 

16.52±11.69% was observed for the proportion of WT receptor trafficking to the 

cell surface after treatment with 10 µM of rapamycin (Fig.6.1, C). However, the 

ratio of mutant receptor trafficking to the cell surface remained unchanged with 

increasing concentrations of rapamycin (Fig.6.1, C).  

 

After 48 hours treatment with rapamycin the same trends were observed for the 

WT receptor but more positive changes were seen for the mutant receptor. A 

significant but minimal increase of HA-MC4R (L106P) cell surface receptor 

levels was seen with increasing concentrations of rapamycin, with 10 µM 

causing an increase of 7.04±0.57% (Fig.6.2, A). Total cellular levels of the 

mutant receptor also increased with increasing concentration of rapamycin, with 

10 µM causing an increase of 11.68±4.09% (Fig.6.2, B). However, rapamycin 

did not cause any large changes in the proportion of MC4R trafficking to the cell 

surface after 48 hours treatment. 
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Figure 6.1: 24 hours treatment with rapamycin causes an increase in cell 

surface expression of WT MC4R 

HEK 293 cells were transfected with plasmids for the expression of WT HA-

MC4R or mutant HA-MC4R (L106P). Immediately after transfection cells were 

incubated with 1, 5 or 10 µM rapamycin or vehicle control for 24 hours prior to in 

cell western analysis. MC4R cell surface levels (A), total cellular levels (B), and 

trafficking to the cell surface (C) was quantified for MC4R at each concentration 

of rapamycin. *P<0.05. Error bars represent the mean ±SD. 
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Figure 6.2: 48 hours treatment with rapamycin does not promote 

trafficking of MC4R to the cell surface 

HEK 293 cells were transfected with plasmids for the expression of WT HA-

MC4R or mutant HA-MC4R (L106P). Immediately after transfection cells were 

incubated with 1, 5 or 10 µM rapamycin or vehicle control for 48 hours prior to in 

cell western analysis. MC4R cell surface levels (A), total cellular levels (B), and 

trafficking to the cell surface (C) was quantified for MC4R at each concentration 

of rapamycin. *P<0.05. Error bars represent the mean ±SD. 
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6.6 Effect of resveratrol on MC4R processing 

HEK 293 cells transiently expressing WT HA-MC4R or HA-MC4R (L106P) were 

treated with 1, 10 or 100 µM resveratrol or vehicle control. Surprisingly a 

significant reduction in cell surface levels of WT HA-MC4R were observed with 

increasing concentrations of resveratrol (Fig.6.3, A). A reduction of 

19.71±3.40% in cell surface levels of MC4R was recorded between control and 

100µM resveratrol treated cells expressing WT protein. However no reduction in 

cell surface levels of HA-MC4R (L106P) expressing cells was observed for 

resveratrol concentrations above 1µM compared to control cells. Total cellular 

levels of WT HA-MC4R and mutant HA-MC4R (L106P) were unaffected 

(Fig.6.3, B). In contrast to our hypothesis that resveratrol may be advantageous 

for MC4R trafficking to the PM, increasing concentrations of resveratrol caused 

a reduction in the proportion WT receptor trafficking to the PM, although no 

difference was observed for partially intracellular retained mutant HA-MC4R 

(L106P) (Fig.6.3, C).   

 

A longer incubation period of 48 hours did not change the pattern of WT HA-

MC4R expression levels when compared to 24 hours of treatment with 

resveratrol (Fig.6.4). After treatment with 10 µM resveratrol, a similar reduction 

in cell surface levels of WT receptor was observed after 24 hours 

(15.16±4.57%) and 48 hours (13.20±3.33%) (Fig.6.4, A). WT MC4R total 

cellular levels were not affected with increasing concentrations of resveratrol 

after 48 hours of treatment (Fig.6.4, B). Similar to results at 24 hours, 48 hour 

treatment with resveratrol caused a decrease in the proportion of WT receptor 

trafficking to the cell surface (Fig.6.4, C). In addition, similar to the WT receptor 

48 hours exposure to resveratrol reduced the proportion of mutant MC4R 

(L106P) trafficking to the cell surface at resveratrol concentrations of 1 µM 

(7.12±1.66%) and 10 µM (8.85±3.44%) (Fig. 6.4, C).  
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Figure 6.3: 24 hours treatment with resveratrol causes a reduction in WT 

MC4R cell surface expression  

HEK 293 cells were transfected with plasmids for the expression of WT HA-

MC4R or mutant HA-MC4R (L106P). Immediately after transfection cells were 

incubated with 1, 10 or 100 µM resveratrol or vehicle control for 24 hours prior to 

in cell western analysis. MC4R cell surface levels (A), total cellular levels (B), 

and trafficking to the cell surface (C) was quantified for MC4R at each 

concentration of resveratrol. *P<0.05. Error bars represent the mean ±SD. 
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Figure 6.4: 48 hours treatment with resveratrol does not improve the 

proportion of MC4R trafficking to the cell surface 

HEK 293 cells were transfected with plasmids for the expression of WT HA-

MC4R or mutant HA-MC4R (L106P). Immediately after transfection cells were 

incubated with 1, 5 or 10 µM resveratrol or vehicle control for 48 hours prior to in 

cell western analysis. MC4R cell surface levels (A), total cellular levels (B), and 

trafficking to the cell surface (C) was quantified for MC4R at each concentration 

of resveratrol. *P<0.05. Error bars represent the mean ±SD. 
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6.7 Effect of MRAP on the cellular trafficking and function of 

MC4R 

MRAP expression had no effect on WT HA-MC4R cell surface expression, but 

significantly improved the cell surface expression of all intracellular retained 

MC4R mutants. Surprisingly, the most severe mutant in the cohort HA-MC4R 

(P78L), showed the largest fold increase in cell surface expression (1.77±0.08) 

(Fig.6.5, A). Both WT and mutant HA-MC4R total cellular expression levels were 

slightly increased in MRAP expressing cells. Mutants HA-MC4R (D90N) and 

HA-MC4R (L106P) showed the largest fold increase of 0.34±0.023 and 

0.73±0.18 respectively (Fig.6.5, B). Interestingly, cells expressing MRAP had an 

increase in the proportion of mutant MC4R trafficking to the cell surface but a 

decrease in ratio of WT receptor trafficking to the cell surface. MRAP promoted 

the trafficking of the most severe mutant HA-MC4R (P78L) to the cell surface, 

resulting in a fold increase of 1.39±0.15 (Fig.6.5, C). 

Confocal analysis also suggested there was indeed an increase in the trafficking 

of misfolding MC4R mutants in the presence of MRAP supporting the findings 

from the in cell western assay (Fig.6.6). 

Measurements of reporter gene activity, using a luciferase reporter assay, 

revealed that MRAP expression improved the signalling and function of mutant 

HA-MC4R (P78L) but had no effect on WT signalling (Fig.6.7).  Mutant HA-

MC4R (P78L) signalling improved 3.71±0.37 fold in cells co-transfected for 

MRAP expression (Fig. 6.7). 
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Figure 6.5: MRAP promotes the trafficking of mutant receptor to the cell 

surface 

HEK293 cells were transiently co-transfected with equal amounts of plasmid for 

the expression of MC4R and MRAP or MC4R and empty vector for 24 hours 

prior to in cell western analysis. MC4R cell surface levels (A), total cellular levels 

(B), and trafficking to the cell surface (C) was quantified for cells co-expressing 

MRAP and control cells. *P<0.05. Error bars represent the mean ±SD. 
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Figure 6.6: MRAP promotes the cell surface expression of mutant MC4R 

HEK293 cells were transfected with plasmids for expression of WT HA-MC4R or 

mutant HA-MC4R and MRAP-FLAG or empty vector. 24 hours post transfection 

cells were formaldehyde fixed and immunostained with primary anti HA-

antibodies, to detect the N-terminal HA-tagged MC4R (red), primary anti-FLAG 

to detect the C-terminal FLAG tagged MRAP (green) with nuclei staining (blue) 

and Cy3 and Cy2 fluorescent secondary antibodies. Scale bar = 10 µM  
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Figure 6.7: MRAP promotes the functional expression of mutant HA-MC4R 

(P78L) MC4R at the cell surface 

Using a luciferase reporter system for cAMP activity MC4R signalling was 

quantified for wild-type and mutant HA-MC4Rs. Cells were co-transfected with 

plasmids for expression of WT or mutant MC4R and MRAP-FLAG, a luciferase 

reporter construct for MC4R signalling, and a vector for renilla expression. 16 

hours post transfection cells were stimulated with 10-7M NDP-MSH for 6 hours 

and luciferase activity was measured. Values were normalised to renilla activity 

to control for variability in transfection. *P<0.05. Error bars represent the mean 

±SD  
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6.4 Discussion 

6.4.1 Rapamycin 

In summary a minimal effect was observed with mTOR inhibitor rapamycin on 

MC4R processing. After 24 hours treatment with rapamycin, no effect was 

observed for the relative amount of HA-MC4R (L106P) trafficking to the cell 

surface and the same was observed for WT MC4R. Interestingly, after 48 hours 

treatment with 5 µM rapamycin, a small increase in the proportion of HA-MC4R 

(L106P) trafficking to the cell surface was observed. This may indicate that 

prolonged incubation with rapamycin may be advantageous for mutant MC4R 

trafficking.   

In this study the concentrations of rapamycin that showed some effect on MC4R 

processing are similar to those used in other cellular models of disease where 

aberrant protein folding is a feature. For example, rapamycin used at a 

concentration of ~0.2 µM was found to promote the clearance of cellular 

inclusions caused by non-HD polyglutamine expansions in COS-7 cells (Berger 

et al., 2006). Furthermore, it was demonstrated that rapamycin could clear 

aggregated mutant proteins in an in vivo Drosophila model (Berger et al., 2006). 

In a separate study, mutations within the collagen gene caused mutant 

procollagens to become misfolded and aggregate in the ER (Ishida et al., 2009). 

In mouse embryonic fibroblasts, activation of autophagy with ~10 µM rapamycin 

resulted in a reduction of aggregated procollagen trimers in the ER (Ishida et al., 

2009).  

The above examples demonstrate that rapamycin is able to promote the 

clearance of toxic aggregates from cells. Although aggregated mutant MC4R 

was observed when heterologously expressed in neuronal SK-N-SH cells, in 

HEK 293 cells misfolded MC4R does not seem to become aggregated in the 

cytosol or ER, and intracellularly retained MC4R does not seem to result in cell 

death and therefore is not toxic to HEK 293 cells. This may explain why 
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rapamycin is not as effective in this MC4R model compared to other published 

studies. In addition, different readouts were utilised to measure the reduction of 

toxic aggregates, however these were not used in this study. Therefore similar 

to soluble human misfolded α-antitrypsin Z variant, the majority of MC4R could 

be degraded by endoplasmic reticulum associated degradation (ERAD) rather 

than macroautophagy, reserving macroautophagy solely for the clearance of 

aggregated misfolded proteins localised in the cytosol (Kruse et al., 2006).  

 

 6.4.2 Resveratrol  

Resveratrol did not increase the proportion of WT or mutant HA-MC4R 

trafficking to the cell surface after 24 or 48 hours treatment.  

The concentrations of resveratrol used in this study are comparable to those 

used in other in vitro models. For example, Transthyretin (TTR) is a tetrameric 

protein that can dissociate into amyloidogenic monomers. Engineered 

monomeric M-TTR, has the same tertiary structure as the subunits of the wild-

type protein, but can achieve a misfolded state more easily since prior tetramer 

dissociation, the limiting step in the fibril formation process, is not required 

(Reixach et al., 2006). Resveratrol concentrations of 2 and 4 µM inhibited M-

TTR-induced cytotoxicity after 5 days in human neuroblastoma IMR-32 cells 

(Reixach et al., 2006).  It would therefore be interesting to investigate if an 

incubation period longer than 48 hours, with resveratrol, would have a more 

dramatic effect on mutant MC4R folding.  

In a separate study the, human neuroblastoma SK-N-BE cell line, expressing 

aggregated proteins such as amyloid β-peptide (Aβ42), associated with AD or α-

synuclein peptide (α-syn A30P), associated with Parkinson’s disease was 

treated with resveratrol. The study showed that 15 µM resveratrol protected the 

cells from the toxicity caused by the cellular aggregates (Albani et al., 2009).  

However, as no obvious cellular aggregated MC4R was observed in HEK 293 
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cells this may explain why incubation with resveratrol did not dramatically affect 

mutant MC4R cellular levels.  

A resveratrol concentration of 10 µM has also been shown to cause cell cycle 

arrest and proliferation inhibition via induction of unfolded protein response 

(UPR) in the human leukemia K562 cell line after 24 hours of treatment (Liu et 

al., 2010). In this MC4R model a small reduction in the proportion of MC4R 

trafficking to the cell surface was observed after 48 hours of 1-10 µM resveratrol 

treatment. Similar to the K562 cell line, resveratrol may cause HEK 293 cells to 

arrest in the G1 phase and result in a decrease in the overall rate of protein 

synthesis (Liu et al., 2010). 

 

6.4.3 MRAP 

In agreement with previous research, MRAP decreases the trafficking of WT 

MC4R to the cell surface (Chan et al., 2009). Interestingly, MRAP is able to 

increase the trafficking levels of mutant HA-MC4R (S58C, P78L) and can 

promote the signalling of mutant HA-MC4R (P78L).  

Unlike MC2R, no accessory proteins are required for the trafficking of MC4R to 

the cell surface. Here, MRAP may possibly be functioning as a chaperone for 

mutant MC4R. Other studies have shown accessory proteins interacting with 

other GPCRs. For example, the Dopamine receptor interacting protein 78 

(DRiP78) is an accessory protein and required for the trafficking of the D1 

dopamine receptor (Bermak et al., 2001). However, DRiP78 has demonstrated 

to have a role in the trafficking of AT1 angiotensin II receptors and M2 

muscarinic acetylcholine receptors to the cell surface (Leclerc et al., 2002). 

Furthermore, DRiP78 also plays a role as a molecular chaperone in the 

assembly of the G protein subunits Gβ/γ by protecting Gγ from degradation until 

it associates appropriately with the Gβ subunit (Dupre et al., 2007). 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3G-4TPX0R4-2&_user=125795&_coverDate=03%2F05%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1199878351&_rerunOrigin=google&_acct=C000010182&_version=1&_urlVersion=0&_userid=125795&md5=b2c93067516305a41f7ae42a0ece4b40#bib35#bib35
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3G-4TPX0R4-2&_user=125795&_coverDate=03%2F05%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1199878351&_rerunOrigin=google&_acct=C000010182&_version=1&_urlVersion=0&_userid=125795&md5=b2c93067516305a41f7ae42a0ece4b40#bib20#bib20
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As the total cellular levels of mutant MC4R improves when co-expressed with 

MRAP, it is reasonable to assume that MRAP may possibly stabilise mutant 

MC4R at the ER and prevent its degradation. Furthermore, as more mutant 

MC4R is also observed at the cell surface in the presence of MRAP this may 

indicate that MRAP not only stabilises mutant MC4R at the ER but may allow it 

to traffic through the secretory pathway to the cell surface. Interestingly, the 

effects of MRAP on mutant MC4R processing are most obvious with the more 

severely intracellular retained mutant HA-MC4R (P78L) used in this study and 

suggests that MRAP possibly enables HA-MC4R (P78L), to achieve a native 

conformational structure at the cell surface, enabling it to bind and become 

activated by MC4R agonist NDP-MSH. Although it has been shown that MRAP 

is a negative modulator of WT MC4R signalling (Chan et al., 2009), this data 

suggests that MRAP may prove to be an effective modulator of mutant MC4R 

signalling.  
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7.1 Discussion 

In summary a rapid throughput cell surface assay was designed to test the efficacy 

of compounds and molecular chaperones on the trafficking of mutant MC4R to the 

cell surface. A luciferase reporter assay was used in conjunction to test if an 

increase in levels of mutant MC4R at the cell surface, lead to an increase in MC4R 

functional activity. This data shows a limited effect of kosmotropes, a small positive 

effect with MRAP, and a role for the Hsp90/70 chaperone machineries in MC4R 

processing and trafficking (Table 7.1). 

Table 7.1: Table to show the effects of different pharmacological agents and 

proteins used in this study  

Pharmacological 

reagent 

Cell surface 

expression 

level 

Total cellular 

levels 

Trafficking 

levels 

Functional 

expression 

DMSO No effect Increase (WT) No effect ND 

TMAO No effect No effect Decrease  ND 

Trehalose Increase  Increase No effect ND 

4-PBA Increase  Increase Increase  Increase  

Geldanamycin Decrease  Decrease Decrease  ND 

Rapamycin No effect No effect  No effect ND 

Resveratrol Decrease Decrease Decrease ND 

Aha1 Increase  Increase  Decrease  No effect 

Hsc70 Increase Increase Increase Increase 

MRAP Increase Increase Increase Increase 

(P78L) 

ND = Not determined 
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The work presented in this thesis indicates a limited role for the use of 

kosmotropes in rescuing mutant MC4R function. Although an increase in total 

cellular levels of mutant MC4R was observed after treatment with trehalose and 4-

PBA, limited increase in the trafficking levels of the mutant receptors were 

quantified after 4-PBA treatment. This work would possibly benefit from treating 

mutant MC4R expressing cells with both 4-PBA and trehalose.  

MC2R accessory protein MRAP may have a promising role in improving mutant 

MC4R function. The data presented in chapter 6 suggests that MRAP improves 

trafficking levels of only a subset of the MC4R mutations selected for this study, 

possibly due to their differential conformations. This suggests that MRAP is unable 

to interact with some of the mutants, possibly due to their folding defect preventing 

MRAP interaction. However, MRAP may bind to all the MC4R mutants but possibly 

fails to stabilise them at the ER. MRAP also improved P78L functional activity 

which indicates that MRAP remains bound to P78L at the cell surface, allowing 

P78L to adopt a conformation that enables it to interact with NDP-MSH and signal. 

However more experimental work would be required to determine how and where 

MRAP interacts with MC4R mutants. It would also be interesting to explore the 

effects of MRAP homolog MRAP2 on mutant MC4R processing. Interestingly, 

MRAP2 is expressed in the ventromedial hypothalamus in the brain (Lein et al., 

2007), a site where MC4R is also expressed (Balthasar et al., 2005). MRAP2 

shares 27% homology with the MRAP splice variant, MRAPα (Webb & Clark, 

2010). MRAP2 may therefore bind differently to MC4R compared to MRAPα and 

may have the potential to improve the trafficking levels of a larger subset of MC4R 

ER retained mutants.  

However, the most significant work presented here is the manipulation of Hsp90 

and Hsc70 cellular molecular chaperone machineries to improve the signalling 

capability of mutant MC4R. It would be interesting to determine if the synergistic 

effect of Aha1/Hsc70 on increasing HA-MC4R (S58C) functional expression 

extends to the other MC4R mutants within this cohort. In this study the 
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manipulation of cytosolic chaperones on endoplasmic reticulum (ER) retained 

mutant MC4R was investigated. ER chaperones should also modulate MC4R 

processing. For example, ER chaperones calnexin, calreticulin and BiP have been 

shown to interact with a number of GPCRs including angiotensin II type 1 receptor 

(AT1R), thyrotropin receptor and luteinizing hormone receptor (LHR) (Dong et al., 

2007). It would therefore be interesting to compare the effects of ER chaperones to 

cytosolic chaperones. It has been shown that intracellular retained proteins can 

associate with different chaperones compared to their cognate WT proteins, due to 

the intracellular proteins being exposed to different chaperone networks involved in 

degradation (Mizrachi & Segaloff, 2004). For the glycoprotein hormone receptors, 

which are structurally related GPCRs, ER retained mutant forms of the protein 

were found to be associated with BiP (Mizrachi & Segaloff, 2004). It has been 

demonstrated that when antisense genes for the ER chaperone BiP were 

introduced into CHO cells, a 2-3 fold increase in the amount of variant protein was 

secreted from the cells rather than remaining ER retained (Welch, 2004). However, 

global knockdown of an important molecular chaperone involved in protein folding 

and quality control may in fact be detrimental to the cell. The approach of 

manipulating key chaperones via their co-chaperones may possibly prove to be a 

better alternative. As a member of the Hsp70 protein family, a number of proteins 

that stimulate BiP’s ATPase activity have been identified, including nucleotide 

exchange factor (NEF) BAP (Chung et al., 2002), and ER DNAJ homologues, 

ERdj1 (Chevalier et al., 2000), ERdj3 (Shen & Hendershot, 2005), ERdj4 (Shen et 

al., 2002), ERdj5 (Ushioda et al., 2008). Either silencing of these co-chaperones or 

over-expression may prove to be an effective approach at rescuing the function of 

misfolded proteins. Alternatively, BiP inducers such as BiP inducer X (BIX) have 

been shown to prevent neuronal cell death by ER stress through pretreatment of 

neuroblastoma cells with BIX (Kudo et al., 2008). If the same approach was used 

against misfolded proteins, that possibly cause ER stress, it would be interesting to 

see if an increase in cell surface expression of the aberrantly folded proteins would 

be observed.   
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Therefore it would be interesting to test if ER stress was induced by MC4R 

misfolding mutants by measuring the transcriptional levels of  ER stress markers 

such as BiP (Gething, 1999) or CHOP (Kaufman, 1999) and  to test any reduction 

in their levels upon treatment with the compounds used in this study.  

As a complex metabolic disorder, obesity contributes to a number of other 

complications (e.g. insulin resistance and diabetes) and has been associated with 

low grade chronic inflammation, characterised by elevated levels of inflammation 

markers (Bastard et al., 2000). Further studies have implicated c-Jun N-terminal 

kinase (JNK) activation as a mediator of insulin resistance and have shown ER 

stress as a potential mechanism leading to JNK activation and insulin resistance in 

obese animal models (Hotamisligil et al., 2005). Some of the compounds utilised in 

this study have been used to alleviate ER stress and/or treat insulin resistance in 

obese mice. 

For example Ozcan et al (2006) have demonstrated that treatment of obese and 

diabetic mice with, 4-PBA, resulted in normalisation of hyperglycemia, restoration 

of systemic insulin sensitivity, resolution of fatty liver disease, and enhancement of 

insulin action in liver, muscle and adipose tissues. In summary, they established 4-

PBA as a potential therapeutic agent for the treatment of type 2 diabetes (Ozcan et 

al., 2006).  More recently, Ozcan et al (2009) have shown that 4-PBA can also act 

as a leptin-sensitising agent and may be used as a novel treatment for obesity. For 

high fat diet-induced obese mice, administration of leptin resulted in an initial 

reduction in body weight but this weight loss was rapidly regained. However, 

pretreatment of these mice with 4-PBA resulted in a significant weight loss thus 

increasing leptin sensitivity (Ozcan et al., 2009). This indicates that 4-PBA may 

target several different pathways in obesity. It is therefore important that it also 

targets MC4R folding. 

In another example, research on type II diabetes and obesity, have shown that 

mTOR may have a role to play in the development of insulin resistance and obesity 

(Harrington et al., 2004; Um et al., 2004). Work carried out by Harrington et al 
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(2004) indicated that protein kinase S6K1, positively regulated by mTOR, 

inactivates insulin receptor substrate (IRS) function, by downregulation of IRS-1 

transcription and via direct phosphorylation of IRS-1 (Harrington et al., 2004).  

Another study has also shown that mTOR activity may be linked to obesity (Mori et 

al., 2009). Mice with deleted Tsc1, an upstream inhibitory regulator of mTOR 

signaling developed hyperphagia and obesity. These mice displayed increased 

mTOR signaling and enlarged neuronal cell size, including POMC neurons (Mori et 

al., 2009). Treatment with rapamycin (autophagy inducer) ameliorated the 

hyperphagia and obesity phenotypes (Mori et al., 2009). In a separate study, 

although administration of rapamycin reduced adiposity in diet-induced obese 

mice, long-term administration of rapamycin resulted in glucose intolerance (Chang 

et al., 2009). 

Resveratrol has also been found to protect against metabolic disease. Acting as an 

activator of the protein deacetylase, SIRT1, resveratrol treated mice showed an 

induction of genes for oxidative phosphorylation and mitochondrial biogenesis 

(Lagouge et al., 2006). Treatment with resveratrol in obese high-fat diet mice 

improved both muscle oxidation and sensitivity to insulin (Lagouge et al., 2006). 

Furthermore, resveratrol treated mice had reduced fat pad mass and reduction in 

adipocyte size (Lagouge et al., 2006). Consistent with the above findings, 

resveratrol treated adipocytes displayed increased apoptosis and reduced 

adipogenesis, as well as upregulating the expression of genes regulating 

mitochondrial activity (Rayalam, 2008). 

Hsp70 family member, Hsp72 has also been implicated to have a protective effect 

in obesity induced insulin resistance (Chung et al., 2008). Obese insulin resistant 

humans were shown to have reduced Hsp72 protein expression furthermore, 

elevated Hsp72 protein levels in skeletal muscles of mice was shown to protect 

against obesity-induced insulin resistance (Chung et al., 2008). This raises the 

interesting question of whether reduced Hsp70 in these animals could be altering 

MC4R processing in vivo. 
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Due to time limitations the effects of small molecular ligands on mutant MC4R 

trafficking were not investigated. The use of small molecular ligands in the 

treatment of aberrantly folded proteins is expanding and has proven successful for 

in vitro disease models of retinitis pigmentosa (Noorwez et al., 2008), nephrogenic 

diabetes insipidus (Morello et al., 2000; Hawtin, 2006; Robben et al., 2007), and 

diseases caused by mutation within the δ-opioid receptor (Leskela et al., 2007). A 

number of small molecular ligands have also been synthesised for MC4R, and 

provide new therapeutic agents against monogenic obesity (Joseph et al., 2008; 

Wang & Richards, 2005). Exciting data from Xiang et al (2007) demonstrated that 

peptides (e.g. NDP-MSH, MTII) and small molecular ligands (e.g. AMW3-130, 

THIQ, and AMW3-106) used at nanomolar to subnanomolar concentrations were 

able to rescue the functional activity of 13 human MC4R polymorphisms (Xiang et 

al., 2007). In addition, the MC4R inverse agonist ML00253764 has also been 

shown to be effective at rescuing the cell surface expression and function of MC4R 

intracellular retained mutants C84R and W174C (Fan & Tao, 2009).  

Importantly, the success of these emerging pharmacological chaperones on 

rescuing function of aberrantly folded proteins may critically depend on how 

effectively they can bind to the mutant protein and provide a folding template for 

the protein to escape the cellular QCS. For the human gonadotropin-releasing 

hormone receptor (hGnRHR) pharmacological chaperones in two different 

chemical classes (Indoles and Quinolones) were able to bind to a range of mutants 

by stabilizing them at the ER and creating a ligand mediated bridge stabilizing the 

interaction between TM2 and TM3, thereby allowing the stabilised mutant protein 

to pass the cellular quality control system (Janovick et al., 2009). The mechanism 

applied by the other pharmacological reagents used in this study in stabilizing 

MC4R, may be similar to that applied by small molecular ligands in the hGnRHR 

paradigm.  

The body of work described here primarily utilises heterologous expression of 

MC4R. Antibodies for MC4R are commercially available and protein has been 
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detected in astrocytes, the most abundant glial cell type in the brain (Caruso et al., 

2007). However, when using the hypothalamic cell line GT1-7, where MC4R mRNA 

message and cAMP response to agonist stimulation has been previously shown 

(Buch et al., 2009); no MC4R protein was detected using commercial MC4R 

antibodies (abcam).  This work would benefit from the production of an antibody 

against the N-terminus of MC4R and finding/generating a cell line with endogenous 

MC4R expression. This would avoid the need to employ transfections and cell lines 

stably expressing MC4R were the levels of MC4R expression can vary between 

experiments or over time.  

Ultimately, animal models of MC4R point mutations should be employed to test the 

efficacy of emerging pharmacological reagents on MC4R signaling. To date two 

mice lines have been identified with MC4R point mutations, namely fatboy (I194T) 

and southbeach (L300P).  Both mutations cause a reduction in MC4R signaling 

(Meehan et al., 2006). It would therefore be exciting to test if pharmacological 

reagents on these mice changed their fat mass by improving MC4R function.  

To conclude, this study has characterised and developed a cell model that mimics 

the mechanism of intracellular retention of clinically occurring MC4R misfolding 

mutations. This has resulted in the creation of an assay that allows for the rapid 

identification of drugs for the treatment of monogenic obesity caused by MC4R 

dysfunction. Furthermore this study provides ‘proof of principle’ that class II MC4R 

mutations can be manipulated through stablisation of the mutant receptor. For the 

pharmacological agents tested, that proved to be effective in improving mutant 

MC4R function, it would be interesting to test these in vivo prior to potential 

translation into the clinic.  
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1. Laboratory Equipment 

General 

Water purification system 

Purite Select Analyst HP50 (Purite Ltd, UK)  

Water baths 

Grant JB1 and SE10 (Grant instruments Ltd, UK) 

Ice machine 

Scotsman AF 10 ASB 2700 (Scotsman Ice Systems, Italy) 

Centrifuges 

Sorvall Cooling centrifuge legend RT (Thermal scientific, USA) 

Eppendorf Cooling centrifuge 5804R (Eppendorf, UK) 

Micro Centaur microcentrifuge (MSE, UK) 

Balances 

B30015 balance (Mettler Toledo, UK)  

Micro balance AB54 (Mettler Toledo, UK) 

Ultra micro balance UMX2 (Mettler Toledo, UK) 

pH meter 

Mettler Delta 320 (Mettler Toledo Ltd, UK) 

 

DNA/RNA 

PCR machines 

GeneAmp PCR system 2400 (PE Biosystems, UK) 

GeneAmp PCR system 9700 (PE Biosystems, UK) 

 

Electrophoresis tanks 

Mini-Sub Cell GT (Bio-Rad Laboratories Ltd, UK) 
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Wide Mini-Sub Cell GT (Bio-Rad Laboratories Ltd, UK) 

 

Electrophoresis power supply units  

Atto AE3105 (Genetic Research Instruments, UK) 

GIBCO BRL 400L (Life Technologies Ltd, UK) 

LKM Bromma 2197 (LKB Instruments Ltd, UK) 

Spectrophotometer  

GeneQuant RNA/DNA Calculator (Pharmacia Biotech, UK) 

NanoDrop ND1000 spectrophotometer (NanoDrop Technologies, USA) 

Ultraviolet transilluminator  

UVP20 (UVP, CA, USA) 

UVIdoc (UVItec Ltd, UK)  

 

Proteins and tissues 

Homogeniser  

Precellys 24 tissue homogeniser (Bertin Technologies, France) 

Microtome 

Rotary microtome RM2145 (Leica Microsystems Ltd, UK) 

Western blotting equipment  

Mini PROTEAN 3 electrophoresis apparatus (Bio-Rad Laboratories Ltd, UK) 

Mini Trans-Blot® Electrophoretic Transfer Cell (Bio-Rad Laboratories Ltd, UK) 

Semi-dry blotter: Trans-Blot SD semidry transfer cell (Bio-Rad Laboratories Ltd, 

UK) 

Protein imaging/quantification 

Compact X4 automatic film processor (Xonograph Imaging Systems, UK) 
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Odyssey Infrared Imaging System with Li-COR Odyssey Software 2.1 (Li-COR 

BioSciences Ltd, UK) 

UVmax kinetic microplate reader (Molecular devices, USA)  

 

Cell work 

Laminar flow cabinet 

Envair MSCII (Envair Ltd, UK) 

Microscopes 

Nikon Eclipse TS100 with Nikon C-SHG fluorescene observation device (Nikon 

Instruments, Netherlands) 

Leic DMIL with DC 200 digital camera system (Leic Microsystems, UK) 

LSM 510 confocal laser scanning microscope (Carl Zeiss Ltd, UK) 

Liquid nitrogen storage 

Cryolab25 (Statebourne Cryogenics, UK) 

Cell culture incubator 

CO2 research incubator (LEEC Ltd, UK) 

 

Assays 

Liquid Scintillation counter 

Wallac 1409 DSA (Perkin Elmer, UK) 

Fluorescence Polarization microplate reader 

POLARstar Omega (BMG Labtech, Germany) 
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2. Commercial Peptides 

NDP-MSH (H-1100, Bachem, Switzerland) 

Ac-Ser-Tyr-Ser-Nle-Glu-His-D-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2 

ACTH[1-39] (human) (H-1160, Bachem, Switzerland)  

H-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys-Arg-Arg-Pro-

Val-Lys-Val-Tyr-Pro-Asn-Gly-Ala-Glu-Asp-Glu-Ser-Ala-Glu-Ala-Phe-Pro-Leu-Glu-

Phe-OH 

 

3. Vector Maps 

pcDNA3.1(+) Vector Map (Invitrogen Ltd, UK) 
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pGEM®-T Easy Vector Map (Promega) 

 

pEGFP-N1 vector map (Clonetech) 
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p3XFLAG-CMV™-14 Vector map (Sigma)  
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F1007 mammalian expression vector map (Institute of cancer research, London, 

UK) 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

 

236 

 

 

pCDNA3.1 5/FRT/TO Vector map (Invitrogen, UK) 
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4. Presentations and Publications 

Manuscript in preparation for submission to the Journal of Biological Chemistry 

Gooljar,S.B., Meimaridou,E., and Chapple,J.P. (with Gooljar,S.B and Meimaridou,E 

as joint first authors). Hsp70 and Hsp90 chaperone systems can modulate the 

cellular processing of the obesity linked melanocortin-4 receptor.  

Meimaridou,E., Gooljar,S.B., and Chapple,J.P. (2009). From hatching to 

dispatching: the multiple cellular roles of the Hsp70 molecular chaperone 

machinery. J. Mol. Endocrinol. 42, 1-9. Review article. 

Poster: Modifying cell surface expression of the obesity linked G-protein coupled 

receptor MC4R by targeting protein folding 

Annual meeting ENDO 2009 

June 10th-13th, 2009. Washington DC, USA. 

Poster: Monitoring cellular trafficking of the obesity linked G-protein coupled 

receptor MC4R 

Society for Endocrinology BES 2009 

March 16th-19th, 2009. Harrogate, UK. 

Poster: Monitoring trafficking of MC4R to the plasma membrane 

Spring meeting for the British Society for Cell Biology 

March 31st – April 3rd, 2008. Warwick, UK. 
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