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Abstract 

Rheumatoid arthritis (RA) is a chronic inflammatory condition affecting 

diarthrodial synovial joints. Non-random patterns of inflammatory cell 

recruitment suggest the presence of synovial-specific vascular determinants which 

enable recruitment of specific inflammatory cell subsets.  Using a model whereby 

human synovial and skin tissue is transplanted into SCID mice, we have 

previously used in vivo peptide phage display to identify novel peptide sequences 

which confer synovial homing specificity to human synovium. This synovial 

localisation was blocked by co-administration of free peptide thus confirming its 

specificity. 

In this project the in vivo homing properties of the peptide were further explored. 

The synovial localization of the synovial-specific phage was shown to be 

specifically increased after intragraft injection of TNFα. Sequence homology was 

shown between the expressed CKSTHDRLC (3.1) peptide and an extracellular 

domain of the leucocyte integrin mac-1. The homing properties of the free peptide 

were investigated by conjugation to the radioisotopes 111In and 99mTc. No 

significant differences were found in vivo between homing of the 3.1 monomeric 

peptide to transplanted human skin and synovium. The influence of valency and 

size of the molecules were investigated through the development of novel 

techniques: polymerization of the peptide was achieved by conjugation to 

radiolabelled streptavidin and fluorescent microspheres. In vivo experiments 

found no significant difference between localization of polymerised 3.1 or 

scrambled control peptide to either transplanted skin or synovium with either 

construct. Despite the negative results reported here, the techniques described 

have potential for the investigation of other targeted short-peptide sequences. 

Finally, the model was further developed as a tool for the pre-clinical imaging of 

human synovium in vivo using an 111In- conjugated anti-E-selectin antibody. It 

was shown that this could be used to resolve specific from non-specific uptake 

and hence represents, potentially, a powerful new tool for the development of 

human tissue-specific targeting strategies. 
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1.1 Rheumatoid arthritis 

Rheumatoid arthritis (RA) is a chronic inflammatory condition affecting the 

synovial joints. Clinically it is characterised by joint inflammation which is 

usually symmetrical with a predilection for the hands, feet, elbows and knees as 

well as the cervical spine. It is also associated with variable extra-articular 

involvement, the presence of which is predictive of poorer prognosis (see later). 

Presentation can vary substantially between individual patients but standardised 

classification criteria provide a useful guide in diagnosis (Arnett et al. 1988). The 

economic cost of RA, both to the individual and to society, is considerable. A 

review published in 2000 put the annual costs per patient with RA at £3575 with 

indirect costs (principally due to lost work days) at £3638 (Cooper 2000) and the 

cost to the British economy of RA in 1992 was estimated at £1.256 billion 

(McIntosh 1996). 

1.1.1 Epidemiology 

There are relatively few studies of incidence of RA and of those the sample size 

has been generally small. This and different sample populations is likely to 

explain, at least in part, the variability in their findings with estimates ranging 

from overall incidences of 24-75.3 cases per hundred thousand per year with 

ranges for women and men of 35.9-98.1 and 12-49.7 respectively (Gabriel 2001). 

A further problem is that of reliable diagnosis in the early stages of disease: a 

comparison between incidence derived from symptom reporting up to 12 months 

and up to 5 years in which cumulative criteria were allowed to meet the conditions 

for diagnosis, found that incidence for men and women rose from 30.8 to 54 and 

12.7 to 24.5 respectively (Wiles et al. 1999). Estimates of disease prevalence are 

generally more homogeneous, with most studies reporting prevalence for 0.5-1% 

with around a 2:1 female: male ratio (Gabriel 2001): the disease tends to be more 

severe in male patients (Weyand et al. 1998). 

1.1.2 Genetics 

It has been established for some time that there is a considerable genetic 

component to RA susceptibility. Most estimates of the genetic contribution are 
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derived from studies of monozygotic and dizygotic twins, from which the relative 

contribution of genetic and non-genetic factors can be estimated. This is, however, 

subject to problems such as the heterogeneity of the disease, variations between 

monozygotic twins in somatic rearrangement and x-chromosome inactivation 

(Ollier & MacGregor 1995). Estimates of ‘heritability’, which take into account 

confounding factors such as disease prevalence within the population, are thought 

to be more representative of the true genetic liability. A twin heritability study of 

two separate (UK and Finnish) populations put the genetic contribution at 60% 

(MacGregor et al. 2000).  

 

The strongest genetic association of RA is that with the human leucocyte antigen 

(HLA) class II molecule HLA-DR4 and this has been mapped to an area known as 

the third hypervariable region within the HLA-DRβ1 chain, of which 3 sequences 

are found in up to 85% of RA patients (Lanchbury 1992). This locus, however, 

only accounts for a proportion of the genetic contribution to the disease and much 

research is concentrated on the identification of other associations both within the 

HLA region and elsewhere in the genome. Rapid advances in sequencing and 

genetic screening technology, particularly the increasingly dense single nucleotide 

polymorphism (SNP) map of the human genome, allow for whole-genome 

screening as well as the investigation of individual candidate genes. These have 

identified a number of potential susceptibility regions, as well as those which 

influence disease severity or appear to have protective effects (Oliver, 

Worthington, & Silman 2006).  

1.1.3 Other risk factors for RA 

Besides sex and genetic risk factors, several other factors can contribute to RA 

risk. It has been suggested that exogenous oestrogens may be protective, although 

there has been significant disagreement between studies (Gabriel 2001) and the 

jury has yet to return.  Similarly, there has long been a suspicion of the 

contribution of an infective trigger to disease: this is supported by, for instance, 

evidence of mechanisms of lymphocyte-circulation between the gut and the joint 

(as will be discussed later) and the genetic association with the antigen-presenting 
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HLA molecules: supporting evidence of spatial or temporal disease clustering is, 

however, weak (Gabriel 2001). 

 

The identification of antibodies to cyclic citrullinated peptides (CCPs) and their 

association with RA has provided a useful new clinical tool for the assessment of 

patients with inflammatory arthritis. Citrulline is formed by the post-translational 

modification of arginine residues: antibodies with immunoreactivity against 

citrulline are present in around 80% of RA patients- a similar value to rheumatoid 

factor. Their specificity is significantly greater however, with in one study only 

finding positivity of 1% in healthy controls compared with 10% for rheumatoid 

factor (Zendman, van Venrooij, & Pruijn 2006). The presence of anti-CCP 

antibodies can predict the subsequent development of RA in patients presenting 

with early inflammatory arthritis (van Gaalen et al. 2004) and antibodies have 

been detected in the serum of patients up to 10 years prior to disease onset (Nielen 

et al. 2004). A recent meta-analysis has confirmed the enhanced sensitivity of 

anti-CCP antibodies over rheumatoid factor (Nishimura et al. 2007). 

 

A number of studies have identified significantly increased relative risk of RA in 

smokers (Gabriel 2001): the risk of smoking has been found in an epidemiological 

study to be restricted to patients developing anti-CCP antibody-positive RA; 

furthermore, the risk conferred by HLA-DR4 genes was restricted to anti-CCP 

positive disease (Klareskog et al. 2006).  

1.1.4 Clinical features 

The cardinal features of rheumatoid arthritis are pain and swelling of the joints 

with stiffness, particularly after periods of immobility, often being particularly 

disabling (Gordon & Hastings 1998). Onset of the disease may take various 

forms, ranging from acute to gradual onset, as well as atypical presentations such 

as an acute monoarthritis or initial presentation with polymylagia (not uncommon 

in the elderly). Joint involvement is typically symmetrical with the most 

commonly involved joints being the wrists, fingers, knees and feet. Chronic 

inflammation characteristically results in progressive destruction of the joint with 
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the appearance of typical erosive features on X-ray, with consequent impairment 

of function and disability. Other large joints may also be involved, particularly the 

elbows and shoulders in more severe disease, as well as the cervical spine: erosion 

of the odontoid peg and consequent subluxation of C1 on C2 can progress to 

potentially life-threatening spinal cord involvement. Chronic inflammation is 

associated with progressive joint destruction with resultant loss of use and 

disability. Tenosynovitis is also common: avulsion of tendons in combination 

with erosive joint destruction leads to the characteristic deformities which may be 

seen in the disease: in one long-term series 19% of patients were severely disabled 

after 20 years and 35% were dead (Scott et al. 1987). Disease activity correlates 

strongly with disability, with radiographic change correlating with disability in the 

medium-to-long term (Drossaers-Bakker et al. 1999). 

 

As well as joint involvement, RA is associated with a wide spectrum of extra-

articular manifestations involving a range of organs and tissues, with one series 

showing a 30-year cumulative incidence of 57% (Turesson et al. 2002) (Table 1). 

Extra-articular manifestations are associated with increased mortality, this being 

largely due to the presence of the ‘severe’ features of neuropathy, vasculitis, 

serositis and Felty’s syndrome (Turesson et al. 2002;Turesson et al. 2003): the 

presence of multiple extra-articular features is also associated with increased 

mortality (Turesson et al. 2006). Contrary to what is perhaps commonly 

perceived, studies have not shown a decrease in incidence of extra-articular 

manifestations over recent decades, at least as far as the mid-1990s (Turesson et 

al. 2003); it is not yet known whether the introduction of biological agents and 

more aggressive treatment regimes have had an impact.  

 

Comparative studies have suggested that the disease has become, on average, 

milder over recent decades, with reductions in both indices of disease activity and 

disability. This is apparent in series examining patient populations both up to 

(Bergstrom et al. 1999) and beyond (Pincus, Sokka, & Kautiainen 2005) the 

introduction of the routine use of  TNFα inhibitors. Improvements in the incidence 

of radiographic damage were also seen in a recent study (Pincus, Sokka, & 
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Kautiainen 2005). These improvements are associated with significant changes in 

treatment strategies, with patients in the more recent cohorts more likely to be on 

any form of treatment and more likely to be on steroid treatment (which in turn 

was more frequently in combination with other DMARDs): the DMARDs used 

have also changed with use of methotrexate increasing from 10% in 1985 to 77% 

in 2000 (Pincus, Sokka, & Kautiainen 2005).  The increased understanding of the 

importance of earlier intervention over the past 20 years is also likely to have had 

a significant impact: a survey published in 1999 showed a dramatic fall in the time 

from presentation to the GP to secondary referral, and from the time to DMARD 

treatment (Irvine, Munro, & Porter 1999): these are likely to have improved 

further since these data were published. It is probable, therefore, that earlier and 

more aggressive treatment is largely responsible for these observations, although 

other non-medical and environmental factors may be relevant. The relationship 

between improvement in disease activity and functional disability is not, however, 

always apparent in these studies: another recent series did not see improvements 

in self-reported function despite better disease control in sequential cohorts of 

patients (Welsing, Fransen, & van Riel 2005). The authors suggest that this 

observation may be due to higher patient expectations.  
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Extra-articular feature Incidence (%) 

Subcutaneous nodules 39.4 

Sjögren's syndrome 17.1 

Keratoconjunctivitis sicca 15.4 

Pericarditis 10.9 

Pleuritis 9.4 

Pulmonary fibrosis 9.4 

Cutaneous vasculitis 5.1 

Cervical myelopathy 3.5 

Glomerulonephritis 2.9 

Neuropathy 2.8 

Felty's syndrome 2.7 

Bronchiolitis obliterans 1.2 

Scleritis 1.0 

Amyloidosis 1.0 

Xerostomia 1.0 

Episcleritis 0.8 

Table 1.1: Incidence of extra-articular features in a cohort of 464 U.S. rheumatoid 

arthritis patients. (Turesson et al. 2002) 

 

1.1.4.1 Prognosis and mortality 
The excess mortality in RA is well-established: this is exemplified by a recent 

study of 1429 patients recruited within 2 years of symptom onset and followed up 

for up to 18 years (Young et al. 2007). These researchers found a standardised 

mortality ratio (SMR) of 1.27 in the RA cohort, with excess mortality particularly 

high within the first 7 years. Their finding indicate that the single biggest cause 

was cardiovascular disease (in particular ischaemic heart disease) and are in 

keeping with previous work: other notable increased causes of death were 

lymphoma (2.3%) and pulmonary fibrosis (6%) - rates of malignancy were not 



28 
 

otherwise raised above expected values. Another recent study of patients initially 

presenting with inflammatory polyarthritis, 60% of whom subsequently satisfied 

classification criteria for RA,  found that, whilst agreeing with the rates of cancer 

incidence, survival in patients with malignancy is reduced compared to the 

population as a whole (Franklin et al. 2007). Significant risk factors for early 

death in the former study were age, baseline ESR, low haemoglobin, raised serum 

rheumatoid factor and indices of functional disability. Early functional disability 

has been found to be predictive of mortality in RA in another recent study: an 

analysis of a large cohort (1010) of RA patients found a significant correlation 

between the health assessment questionnaire (HAQ) score and both cardiovascular 

and all-cause mortality over a 10-year follow-up period (Farragher et al. 2007). 

One might therefore expect mortality to have improved with the increasing use of 

disease modifying drugs in recent decades. This, however, at least until recently, 

does not seem to have been the case with, for instance, a study of 3 successive 

cohorts of patients between 1965 and 1985 finding no change in mortality with a 

persistently high SMR (Gabriel, Crowson, & O'Fallon 1999). More recent data 

suggest that the more pro-active use of disease modifying therapy and the use 

TNFα blockers may have an impact on mortality. Two prospective studies have 

shown a decrease in mortality risk with methotrexate and TNFα inhibition in RA, 

although the latter was only seen in women (Choi et al. 2002;Jacobsson et al. 

2007).  

 

1.1.5 Pathology 

Normal synovium lines the articular cavity of all diarthrodial joints. The intima, 

which is in direct contact with the joint cavity, is only one or two cells thick and 

does not have a true basement membrane (Firestein 1998). The intima is formed 

of two specialised types of cell, known as synoviocytes: type A synoviocytes, or 

synovial macrophages, are of myeloid origin and share a number of surface 

markers with macrophages including CD68 and CD14 as well as major 

histocompatiblity class II proteins and Fcγ receptors (Tarner et al. 2005). Type B 

synoviocytes, or synovial fibroblasts, are of mesenchymal origin and express 
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VCAM-1, complement decay accelerating factor and uridine diphosphoglucose 

dehydrogenase (UPDG)(Edwards 2000). The synovial sublining consists of a 

connective tissue matrix with relatively sparse cellularity consisting 

predominantly of fibroblasts (which appear to be non-specialised and thus distinct 

from the type B synoviocytes), macrophages, blood vessels and lymphatics, fat 

and nerve cells. 

 

Macroscopically the inflamed synovium is thickened and villous and can extend 

onto the articular surface of the joint. This ‘front’ of inflamed synovium is known 

and pannus and its invasive and destructive properties are responsible for much of 

the joint damage that is seen in RA. Histologically the inflamed synovium is 

hyperplastic and hypercellular. The lining layer is thickened and may be up to 10 

cells thick with dramatic increases in type A and B synoviocytes. The sublining 

also exhibits cellular infiltration by lymphocytes and macrophages as well as 

florid neoangiogenesis. The components of theses inflammatory changes will be 

described in more detail in the following sections. 

1.1.5.1 T-cells 

T-lymphocytes are the largest subgroup of cells present in the inflamed synovium. 

This, along with other evidence that will be discussed, as well as the previously 

described association of RA with HLA-DR alleles, suggests a central role for T-

cells in RA pathogenesis. As will be described, however, conflicting evidence, 

notably the failure of T-cell depleting antibodies to control disease  (Epstein 

1996), suggests that T-cells may not be essential to disease propagation.  

 

Several patterns of T-lymphocyte infiltration have been described in RA synovial 

tissue described by one group as diffuse, perivascular and lymphoid aggregates 

(Duke et al. 1982a). The diffuse infiltrates are made up predominantly of CD4+ 

cells with relatively few CD8+ or B-cells. Perivascular infiltrates also show a 

paucity of CD8+ cells with some evidence of close association with antigen-

presenting interdigitating dendritic cells. Germinal centres, resembling the 

paracortical region of lymph nodes, can also be seen with clusters of lymphocytes, 
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the majority of which are CD4 T-cells in close association with B-cells. Large 

lymphoid aggregates contain a predominance of CD45RA+ (naïve) T-cells, but 

smaller aggregates and diffuse infiltrates contain a greater proportion of 

CD45RO+ (memory) cells. Another study identified 2 patterns of cellular 

aggregation as well as diffuse infiltration: granuloma formation was seen in 24% 

of patients, and the formation of lymphoid follicles some of which resembled 

ectopic germinal centre formation, a pattern seen in 24% of patients (Weyand & 

Goronzy 2003). Examination of T-cell populations from the synovial fluid of 

patients with RA reveal a significantly higher ratio of CD4 helper to CD4 

suppressor cells (despite similar proportions in the peripheral blood) (Lasky, 

Bauer, & Pope 1988;Pitzalis et al. 1987). Despite the lack of efficacy of T-cell 

depleting therapies, the role of T-cells in the pathogenesis of RA is supported by 

the efficacy of T-cell directed therapies, exemplified most recently by the success 

in clinical trials of the T-cell co-stimulation modifying drug abatacept (Genovese 

et al. 2005). Although T-cell clonal expansion can be shown in the RA synovium 

this seems to be somewhat heterogeneous (Kotzin & Kappler 1998): the argument 

in favour of a common pathogenic antigen remains unresolved. 

 

Pannus encroaching on cartilage consists predominantly of activated macrophages 

and synovial fibroblasts and these will be discussed in the next sections. 

1.1.5.2 Macrophages and synovial fibroblasts 
Accumulation of and macrophages as well as lymphocytes is a prominent feature 

of the inflamed synovium (pannus) where they express a number of activation 

markers: macrophage density in the synovial sublining has been correlated with 

clinical and histological findings (Kinne et al. 2006).  Activated CD4+ T-cells 

stimulate macrophages both directly and indirectly via soluble mediators such as 

interferon γ and IL-17 (Choy & Panayi 2001). This results in the release of 

effector molecules in including TNFα and IL-1, both of which have increased 

expression in the synovium and serum of RA patients (Choy & Panayi 2001). 

TNFα appears to have a dominant role in the pathogenesis of RA and its diverse 

actions include, along with IL-1, stimulation of matrix metalloproteinase release 

by synovial fibroblasts, chondrocytes and osteoclasts. Injection of either cytokine 
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into rabbit knee joints induced inflammatory changes with an apparent synergistic 

effect when co-injected (Henderson & Pettipher 1989). TNFα transgenic mice 

develop a chronic inflammatory  polyarthritis which is ameliorated by TNFα 

blockade (Keffer et al. 1991) and, as will be discussed later, the central role of 

these cytokines has been emphasised by the success of blocking strategies in 

clinical practice. In addition to these and other pro-inflammatory cytokines, 

macrophages also secrete a number of chemokines which are chemotactic for 

inflammatory cells (Szekanecz & Koch 2007). As will also be discussed later, 

there have been encouraging results with macrophage-targeted therapies in pre-

clinical arthritis models. 

 

Synovial fibroblasts are characterised by large pale nuclei and prominent nucleoli 

indicating active RNA synthesis (Huber et al. 2006). In a SCID mouse model 

human RA synovial fibroblasts were co-transplanted with cartilage under the renal 

capsule: the synovial fibroblasts maintained their destructive properties under 

these conditions indicating that T-cell independent mechanisms may also be 

important in their activation (Muller-Ladner et al. 1996) and there is considerable 

evidence that toll-like receptors may have an important role in fibroblast 

activation in RA (Brentano et al. 2005). It has been suggested that synovial 

fibroblasts have an aggressive tumour-like phenotype with reduced cell death and 

up-regulation of anti-apoptotic mediators (Perlman et al. 2000). A comparison of 

fibroblast-like synoviocytes from normal and RA synovium found increased 

expression of several integrins in the RA cells with enhanced adhesion in vitro to 

extracellular matrix proteins (Rinaldi et al. 1997a). Activated synovial fibroblasts 

secrete a number of matrix-degrading enzymes, including matrix 

metalloproteinases, which are responsible for the joint destruction seen in the 

disease (Pap et al. 2000). Fibroblasts therefore also represent an attractive target in 

RA and pre-clinical studies have indicated potential in this approach: 

methotrexate conjugated to albumin, which is actively taken up by fibroblasts, 

was significantly more effective than methotrexate alone in a mouse arthritis 

model (Wunder et al. 2003). 
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1.1.5.3 B-cells 

Rheumatoid factor (usually IgG autoantibodies directed against the constant 

region of IgG) has long been established as relevant to rheumatoid arthritis, being 

present in around 80% of patients. More recently the discovery of other 

autoantibodies, notably those directed against cyclic citrullinated peptides (CCP), 

have further implicated B-cells in the pathogenesis of RA (Zendman, van 

Venrooij, & Pruijn 2006). However, the role of these antibodies in disease 

pathogenesis, or indeed whether they are merely bystanders, remains unclear. 

Passive transfer of rheumatoid factor does not produce disease, although in RA 

complement consumption has been shown to be accelerated in seropositive 

patients (Kaplan et al. 1980). Furthermore, the presence of rheumatoid factor or 

anti-CCP antibodies have been associated both with increased disease severity and 

the presence of extra-articular disease (Turesson et al. 2007). Lymphoid 

aggregates of T- and B-lymphocytes are demonstrable in a subset of patients with 

RA (Weyand & Goronzy 2003) and oligoclonal B-cell expansion has been 

demonstrated in RA synovium (Lee et al. 1994). Recent results from the K/BxN 

murine arthritis model suggest that the formation of circulating immune 

complexes may be an early trigger of increases in endothelial permeability 

allowing access of antigen-specific antibodies into joints (Binstadt et al. 2006): 

whether this is a relevant mechanism in human disease is unknown. Although the 

precise role of B-cells in the pathogenesis of RA remains unclear, the recent 

observation that rituximab, a CD20+cell depleting antibody, is efficacious in the 

treatment of RA points to a central role of B-cells in driving synovial 

inflammation (Cohen et al. 2006). 

1.1.5.4 Neutrophils and mast cells 

Neutrophils are key components of the innate immune system and are the 

predominant cells type in RA synovial fluid as well as being present at the 

cartilage-pannus junction (Youssef et al. 1996a). As will be discussed later, 

chemokines chemotactic for neutrophils are over-expressed in the RA joint (Koch 

et al. 1991;Koch et al. 1995b).  
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Methylprednisolone has been shown to dramatically inhibit ingress of neutrophils 

into the joints of patients with RA (Youssef et al. 1996a). Activated neutrophils 

can release a number of pro-inflammatory cytokines, degradative enzymes and 

reactive oxygen intermediates which may contribute, directly or indirectly, to joint 

damage (Edwards & Hallett 1997).  Studies in antibody-mediated animal models 

of arthritis have found that neutrophil depletion can ameliorate disease  

(Nandakumar, Svensson, & Holmdahl 2003;Wipke et al. 2004).  

 

Mast cells are also present in increased numbers in the RA synovial membrane 

(Godfrey et al. 1984) and these cells also release a spectrum of pro-inflammatory 

molecules in activation (Woolley 2003). As with neutrophils, mast cells have been 

implicated in some animals models of arthritis and, interestingly, have been 

shown to be essential to the development of arthritis in the K/BxN model where 

they, along with neutrophils, can act as intermediaries in early immune complex-

mediated increases in endothelial permeability (Binstadt et al. 2006). Furthermore, 

it has recently been shown that mast cell stabilisation can limit joint inflammation 

in K/BxN serum transfer models of arthritis (Kneilling et al. 2007). 

1.1.5.5 Neoangiogenesis 

Neoangiogenesis is a normal part of embryonic development and the reproductive 

cycle: it is also seen in a number of disease states such as wound healing, 

malignancy, retinopathy and chronic inflammatory conditions such as psoriasis 

and RA (Pap & Distler 2005). As already mentioned, the inflamed synovial 

membrane in RA has abundant new vessel formation: this has been shown to 

correlate with the clinical degree of synovitis (Rooney et al. 1988) and it has been 

suggested that new vessels formation is the first event in early arthritis (Hirohata 

& Sakakibara 1999). Markers of endothelial proliferation such as PCNA and Ki67 

have been shown to be increased in rheumatoid synovium (Walsh et al. 1998) and 

endothelial proliferation has itself been found to correlate with clinical activity 

(FitzGerald et al. 1991). The macroscopic morphology of the vessels also exhibits 

some variation between patients: the ‘straight’ pattern has been observed more 
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frequently in RA with ‘tortuous’ more common in spondyloarthropathy, although 

RA patients may also have a tortuous or mixed pattern. The straight pattern was 

correlated with the presence of erosive disease in one series (Salvador et al. 2006). 

Despite this neoangiogenesis, the blood/ synovial volume ratio has been found to 

be similar or less to that seen in uninflamed tissue (Stevens et al. 1991a;Walsh et 

al. 1998) thus potentiating the hypoxia within the joint (Stevens et al. 1991b). The 

vascular endothelial cells, sitting at the interface between the circulation and the 

inflamed tissue, perform or mediate a number of functions, including leucocyte 

recruitment, regulation of vessel permeability and dilatation, cytokine production 

and extracellular matrix synthesis each of which is critical to the inflammatory 

response (Middleton et al. 2004). In lymphoid tissue endothelium leucocyte 

adhesion and migration takes place in specialised post-capillary vessels called 

high endothelial venules (HEVs). The endothelial cells of HEVs have a cuboidal 

appearance distinguishing them form the more usual flattened endothelial cell 

morphology. Histologically they also demonstrate high levels of synthetic 

activity, with a prominent Golgi complex and increased levels of polyribosomes 

and rough endoplasmic reticulum. Around 25% of lymphocytes circulating 

through HEV will adhere and transmigrate (Girard & Springer 1995). Histological 

examination of synovial vascular endothelium has shown morphological changes 

with the appearance of prominent vessels similar to HEV (FitzGerald et al. 1991), 

although the binding properties of synovial HEV have shown to be distinct to 

lymph node HEV (Jalkanen et al. 1986). 

 

A large number of angiogenic mediators can be identified in the RA synovium:  

many of these are directly pro-angiogenic such as fibroblast growth factor (FGF), 

platelet-derived endothelial growth factor (PDGF), vascular endothelial growth 

factor (VEGF), chemokines (particularly IL-8) and angiopoietin (Middleton et al. 

2004). Several pro-inflammatory cytokines such as TNFα and IL-1 are also pro-

angiogenic, largely via the stimulation of the release of mediators by synovial 

cells. RA vascular endothelial cells have increased expression of a number of 

adhesion molecules involved in leucocyte recruitment and these will be discussed 

later. There is some evidence that two of these, E-selectin and VCAM-1 (both 
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discussed later) can stimulate angiogenesis: in a rat cornea model, both were 

found to be pro-angiogenic (Koch et al. 1995a). Rheumatoid synovial fluid was 

also found to be pro-angiogenic in this model: this was significantly inhibited by 

the addition of E-selectin or VCAM-1 blocking antibodies (although it is arguable 

that this may have more to do with the recently discovered phenomenon of 

vasculogenesis as discussed later). 

 

VEGF is of particular interest: it induces endothelial permeability as well as 

angiogenesis, it is strongly up-regulated in rheumatoid synovium and synovial 

fluid (Fava et al. 1994) and is expressed by a number of synovial cells 

(Nagashima et al. 1995). Serum levels of VEGF have been found to be 

significantly higher in RA patients compared with controls (Harada et al. 

1998;Paleolog et al. 1998) or controls and patients with OA (Lee et al. 2001) and 

to correlate with serum inflammatory markers and clinical indices of disease 

activity (Harada et al. 1998;Lee et al. 2001;Paleolog et al. 1998). In another study 

of 40 patients with RA it was found that those who had evidence of follicular 

organisation on synovial biopsy had significantly higher levels of serum VEGF 

than those with diffuse infiltrates (Klimiuk et al. 2002) and VEGF staining in 

rheumatoid synovium has been found to be predictive of progression in the short 

(Ballara et al. 2001) and long (Latour et al. 2001) term. In vitro culture of synovial 

cells has shown that VEGF secretion is secreted constitutively by synovial 

fibroblasts (Jackson et al. 1997) and is stimulated by TNFα and IL-1 as well as 

under hypoxic conditions (Jackson et al. 1997;Paleolog et al. 1998): furthermore, 

VEGF polymorphisms have been associated with susceptibility to RA in a case-

control study (Han et al. 2004). Treatment with a number of agents has been 

shown to reduce circulating levels of VEGF, including anti-TNFα antibodies 

(Paleolog et al. 1998;Strunk, Bundke, & Lange 2006), the IL-6 receptor 

(Nakahara et al. 2003), glucocorticoids (Strunk, Bundke, & Lange 2006) and 

DMARDs (Nagashima et al. 2000).  

 

The findings described with VEGF serve to illustrate the central role of 

neoangiogenesis in RA and as a result there has been considerable interest in 
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therapeutic blockade of these mechanisms. Such trials have been carried out in 

oncology for a number of years: recently bevacizumab, a monoclonal anti-VEGF 

antibody, was shown to prolong survival in patients with metastatic colorectal 

cancer when added to standard chemotherapy (Hurwitz et al. 2004) and it has now 

been approved by the FDA. Pre-clinical trials have seen success with a number of 

inhibitors of angiogenesis: an inhibitor of FGF suppressed arthritis in a rat 

collagen-induced arthritis (CIA) model (Oliver, Banquerigo, & Brahn 1994) and a 

receptor tyrosine kinase inhibitor with specific activity against VEGF receptors 

successfully ameliorated arthritis in two murine arthritis models (Grosios et al. 

2004). In a murine CIA model polyclonal anti-VEGF were found to prevent 

arthritis or to ameliorate it in established disease (Sone et al. 2001): however, in 

another study in the K/BxN murine arthritis model, antibodies to VEGF were 

found to only transiently improve arthritis, whereas antibodies to the receptor 

VEGF-R1 had a profound effect and inhibited bone destruction (De Bandt et al. 

2003). In a SCID mouse transplantation model, in which human RA synovium 

was engrafted, vessel formation was inhibited by subcutaneous administration of 

the anti-angiogenic agent TNP-470 (Nagashima et al. 2002).  

 

An alternative mechanism for new vessel formation is that of vasculogenesis 

whereby, as opposed to the formation of new vessels from pre-existing ones, 

vessels are formed from bone marrow-derived endothelial progenitor cells (EPCs) 

recruited from the circulation. The hypothesis that this can occur in both RA and 

OA is supported by the observation of cell clusters in synovial tissue co-

expressing stem cell and endothelial cell markers (Ruger et al. 2004). It has been 

observed that circulating levels of EPCs are reduced in patients with RA and that 

levels inversely correlate with disease activity (Grisar et al. 2007), suggesting 

increased recruitment from the circulation to the inflamed synovium. Recent 

papers have started to define the adhesion mechanisms involved in recruitment of 

EPCs to inflamed synovial tissue: adhesion of these cells to cultured synovial 

tissue fibroblasts and frozen tissue sections was inhibited (completely in the case 

of fibroblasts) by antibodies to VCAM-1 or α4 integrin (Silverman et al. 2007). In 
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another study E-selectin was implicated in the recruitment of EPCs in a murine 

muscle ischaemia model (Oh et al. 2007). 

1.1.6 Organ-specific lymphocyte homing 

The observation that circulating leucocytes adhere to and migrate across the 

vascular endothelium was first made seventy years ago; this was noted to occur 

without breach of the endothelial barrier, suggesting the presence of complex 

regulatory mechanisms (Clark & Clark 1935). More recently, in a series of classic 

experiments, Gowans and Knight observed that lymphocytes isolated from the rat 

thoracic duct homed rapidly back to lymph nodes and secondary lymphoid organs 

upon re-injection: furthermore, it was noted that this occurred across the distinctly 

shaped endothelial cells of the post capillary venules (Gowans & Knight 1964). 

Since then we have learnt much about the molecular basis of leucocyte 

extravasation and the regulatory mechanisms involved. This understanding of 

adhesion mechanisms, and the ability of these interactions to enable specific 

lymphocyte recruitment, has provided a huge and valuable insight into the 

expression and behaviour of the endothelial molecules involved. Such tissue-

specific determinants are potentially of enormous value in the selective targeting 

of diseased synovium. 

1.1.7 Recruitment of leucocytes to inflammatory sit es: the 

multistep model 

The ‘multistep’ model of leucocyte migration (Figure 1.1) was originally 

described over a decade ago as the integration of a number of sequential, 

apparently discrete, stages beginning with the adhesion of white blood cells to the 

vascular lumen and culminating in migration through the endothelial cell layer 

into the extravascular space (Springer 1994). These steps are mediated by multiple 

molecules, and include: tethering and rolling, activation, firm adhesion and finally 

transendothelial migration (TEM) (Figure 1.1) Each of these steps, and the 

molecules involved, will be discussed in detail in the following sections.  
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Figure 1.1: The multistep model of leucocyte migration. 1. Interaction between 

selectins and their carbohydrate ligands results in slowing of the leucocyte as it 

comes into contact with the vessel wall. 2. Chemokines expressed at the 

endothelial surface bind their leucocyte receptors resulting in up-regulation of 

integrin affinity and avidity. 3. Integrin binding to endothelial cell adhesion 

molecules results in arrest of the leucocyte. 4. Morphological changes and 

polarisation of adhesion molecules to the leading edge of the leucocyte and 

followed by transmigration across the endothelial barrier. 

 

1.1.7.1 Selectins and their ligands 

Tethering and subsequent rolling represent the ‘braking’ of leucocytes flowing at 

speeds of up to 4000 µm/s, resulting from initial contact between the leucocyte, 

and the luminal endothelium. A series of relatively low-affinity interactions, 

mediated by several types of adhesion molecules (most importantly the selectins 

and their carbohydrate ligands) effects slowing of the leucocytes. 

 

The selectins (Table 1.2) are a group of structurally related transmembrane 

glycoproteins (reviewed in (Crockett-Torabi 1998;Patel, Cuvelier, & Wiehler 
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2002)) each consisting of an NH2-terminal calcium-dependent (‘c-type’) lectin 

terminal domain followed by an EGF like domain, both of which are likely to be 

required for ligand binding (Crockett-Torabi 1998),  and a variable number of 

consensus repeats  prior to a transmembrane domain and a short cytoplasmic tail 

(Patel, Cuvelier, & Wiehler 2002). They bind mucin ligands, proteins rich in 

serine and threonine residues with O-linked sugars, displaying specific 

carbohydrate epitopes containing sialylated/ fucosylated residues typified by the 

tetrasaccharide sialyl-Lewisx  (Patel, Cuvelier, & Wiehler 2002). Synthesis of 

these glycoproteins is mediated by enzymes of the large glycosyltransferase 

family, the expression of which regulates cellular synthesis of specific 

glycoprotein structures (Lowe 2002). Three selectins, designated L-, P- and E-

selectin, have been described in humans.  

 

L-selectin is constitutively expressed by most circulating leucocytes, although it is 

down-regulated after lymphocyte activation: the majority of cell-surface L-

selectin is expressed on the tips of microvilli (Bruehl, Springer, & Bainton 1996) 

which has been shown to enhance the initiation of rolling, particularly in larger 

diameter vessels (Stein et al. 1999). As will be discussed later, it is critical to the 

rolling of naїve lymphocytes on the HEVs of the secondary lymphoid organs and 

there is evidence to suggest that the rate of T-cell migration into lymph nodes can 

be regulated by leucocyte surface-density of L-selectin (Galkina et al. 2007). L-

selectin ligands are also expressed at sites of acute inflammation although they are 

less well characterised than those in the lymphoid tissues: significant reduction of 

leucocyte infiltration was observed in L-selectin knockout mice in a model of 

acute inflammation (Tedder, Steeber, & Pizcueta 1995) and  reduced levels of 

leucocyte rolling in inflamed post-capillary venules have been demonstrated in 

these animals (Arbones et al. 1994). In an in vivo model leucocyte rolling was 

examined in inflamed cremaster endothelium by intravital microscopy: the 

majority of L-selectin-mediated leucocyte adhesion was mediated by secondary 

tethering. Furthermore, in PSGL-1 knockout mice L-selectin dependent leucocyte-

rolling was abolished- a marked reduction was also seen after treatment of wild-

type mice with a blocking anti-PSGL-1 antibody (Sperandio et al. 2003). A more 
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recent animal study has shown that inactivation of an enzyme critical to the 

sulfation of heparan sulphate side-chains results in reduced leucocyte rolling in 

acute inflammation, suggesting a role for heparan sulphate proteoglycans as tissue 

receptors for L-selectin in this setting (Wang et al. 2005). In vitro adhesion assays 

have demonstrated that L-selectin can bind PSGL-1  and that leucocyte-expressed 

PSGL-1 can act as a ligand for L-selectin (Tu et al. 1996); such ‘secondary 

tethering’ to endothelial-adherent leucocytes enhances subsequent primary P-

selectin-mediated capture in these assays. This provides a mechanism of positive 

feedback whereby adherent leucocytes recruit more leucocytes exponentially; this 

amplification of recruitment is abolished when L-selectin  is blocked (Walcheck et 

al. 1996). L-selectin ligands can also be expressed by the vascular endothelium at 

sites of chronic inflammation: ectopic lymphoneogenesis with the formation of 

lymphoid follicles has been described in a number of diseases, often in association 

with the adoption of an HEV-like morphology by endothelial cells (Hjelmstrom 

2001) which can bind L-selectin (Rosen 2004). Such ectopic lymphoneogenesis is 

well described in the inflamed rheumatoid synovium (Duke et al. 

1982b;FitzGerald et al. 1991;Manzo et al. 2005;Weyand & Goronzy 2003).  

 

Endothelial receptor/ ligand Leucocyte receptor/ ligand 

CD34, podocalyxin, 
endomucin, GlyCAM-1, 
MAdCAM-1 
 

L-selectin (CD62L) 

E-selectin (CD62E) CLA 
 

P-selectin (CD62P) PSGL-1  
 

Abbreviations: GlyCAM-1, glycosaminoglycan cell adhesion molecule-1; CLA, cutaneous 

lymphocyte antigen; PSGL-1, P-selectin glycoprotein ligand-1; MAdCAM-1, mucosal addressin 

cell adhesion molecule-1 

 
Table 1.2: Selectins and their ligands 
 

P-selectin is expressed by activated platelets and the endothelial cells of inflamed 

tissues where it is stored in secretory granules (α-granules in platelets and Weibel-

Palade bodies in endothelium) which are translocated to the plasma membrane 
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upon activation (Patel, Cuvelier, & Wiehler 2002): this allows rapid up-regulation 

of surface expression in response to an inflammatory stimulus, often mediating 

early leucocyte recruitment.  Its major ligand is the sialylated and fucosylated 

glycoprotein P-selectin glycoprotein ligand-1 (PSGL-1) which is expressed by 

circulating myeloid cells and T-cells (Ley & Kansas 2004). As seen with L-

selectin, PSGL-1 is expressed on the tips of microvilli of leucocytes (Bruehl et al. 

1997). 

 

E-selectin is also expressed by inflamed endothelium but, unlike P-selectin, it is 

regulated by increased transcription in response to inflammatory stimuli with peak 

expression occurring at around 4 hours (Bevilacqua et al. 1987). The best 

characterised ligand for E-selectin is the cutaneous lymphocyte antigen (CLA), so 

called because it is expressed by up to 90% of T-cells at sites of chronic cutaneous 

inflammation compared with only 10-25% in the circulation (Berg et al. 1991). 

CLA is a sialylated carbohydrate epitope originally defined by reactivity with the 

HECA452 antibody: the precise structure is unknown, although has been shown 

that PSGL-1 can act as the core molecule (Borges et al. 1997;Fuhlbrigge et al. 

1997). As discussed above, E-selectin can also bind L-selectin and in vivo 

evidence suggests that it can contribute to PSGL-1-mediated TH1 cell rolling 

(Hirata et al. 2000). A recent paper elucidated the relative contributions of the E-

selectin ligands PSGL-1, E-selectin ligand-1 (ESL-1) and CD44 (discussed further 

below) in lymphocyte recruitment, with the demonstration of overlapping and 

sequential roles in leucocyte tethering and arrest (Hidalgo et al. 2007). Of 

particular interest in this paper was the observation that CD44 ligation (which is 

involved later in the leucocyte capture process) could influence the expression of 

PSGL-1 and ESL-1: this might suggest a role in the regulation of secondary 

tethering of further leucocytes from the circulation. As will be discussed, E-

selectin expression is increased in the endothelium in RA synovium: furthermore, 

T-cells isolated from RA synovium or synovial fluid show significantly enhanced 

adhesion to E-selectin in vitro compared to peripheral blood cells from RA 

patients or healthy donors (Postigo et al. 1992).  
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Although selectins are the best characterised mediators of lymphocyte rolling, 

they are not always required and it may be mediated by other cell adhesion 

molecules (CAMs). CD44 is a type I transmembrane glycoprotein that is 

expressed in an activated form by subgroups of activated lymphocytes (reviewed 

in Ponta, Sherman, & Herrlich 2003)and can mediate selectin-independent 

lymphocyte rolling on inflamed endothelium (DeGrendele, Estess, & Siegelman 

1997). Its principle endothelial ligand is hyaluronic acid, a polysaccharide 

component of the extracellular matrix, expression of which can be up-regulated by 

pro-inflammatory stimuli (Mohamadzadeh et al. 1998), although other ligands, 

including E-selectin, have been described (reviewed in (Naor & Nedvetzki 2003). 

CD44 expression is up-regulated on lymphocytes isolated from the synovial fluid 

of RA patients (Kelleher et al. 1995) and there is evidence from animal models of 

arthritis that CD44 is implicated in its pathogenesis (Mikecz et al. 1999;Sarraj et 

al. 2006).  

 

Slow lymphocyte rolling can also be mediated by the interaction of the α4 

integrins with their endothelial ligands. It appears, therefore, that a number of 

molecular interactions can be involved in the progressive slowing of a lymphocyte 

as it encounters the endothelial surface. In addition to  L, P and E-selectins, the α4-

integrins (which are also expressed on the tips of microvilli (Abitorabi et al. 

1997)) can support slow rolling (Alon et al. 1995), as can the β2-integrins in 

synergy with E- and L-selectin (Jung et al. 1998;Kadono et al. 2002).  

 

Rolling brings leucocytes into contact and allows them to sample the local 

microenvironment at the endothelial surface. In the absence of stimuli leucocytes 

detach and remain in the circulation; however, in the presence of luminally 

expressed activating molecules (principally chemokines) they progress to firm 

adhesion.  

1.1.7.2 Chemokines and leucocyte activation 

Chemokines (chemoattractant cytokines) (CKs) are secreted polypeptides of 67-

127 amino acids with molecular weights of 8-12 kDa (reviewed in Moser et al. 
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2004;Rollins 1997;Rossi & Zlotnik 2000). Structurally, in most CKs, the short -

NH2 terminus region precedes 3 anti-parallel β-strands forming a central core, 

with a COOH-terminal α-helix (Loetscher & Clark-Lewis 2001). Chemokines 

have been implicated in a variety of functions including angiogenesis, 

organogenesis and tumour metastasis as well as chemotaxis (Moser et al. 2004). 

They are classified into families according to the spacing of four highly conserved 

cysteine residues near the N-terminus: the largest of these are the CC (i.e. with the 

two cysteine residues adjacent) and CXC (in which they are separated by one 

amino acid) families. The XC chemokines (XCL1 and XCL2) containing one 

conserved cysteine only and the CX3C chemokine CX3CL1 containing 3 inter-

cysteine amino acids have also been described (Moser et al. 2004;Rollins 1997).  

The original nomenclature, whereby CKs were classified according to their 

(apparent) primary function has been replaced by a systematic classification by 

family (Table 1.3) (Zlotnik & Yoshie 2000). Their receptors are serpentine seven-

transmembrane G-protein coupled receptors which are classified according the 

family of their CK ligand(s), i.e. CCR1-9, CXCR1-5, XCR1 and CX3CR1 (Rossi 

& Zlotnik 2000). There is considerable overlap between receptor and ligand 

specificity, with some receptors binding only one CK and others having affinity 

for several. Equally, CKs may have one or more cognate receptors (Rossi & 

Zlotnik 2000). Ligation of the leucocyte-expressed CK receptor results in firm 

adhesion to the vascular lumen, a process mediated predominantly by leucocyte 

integrins and their endothelial ligands (see next section).  

 

Chemokine expression is up-regulated by a diverse range of stimuli in a large 

number of cell types. Expression is largely transcriptionally regulated although 

CKs may also possibly be stored in secretory granules; for instance, storage of 

CXCL8 (IL-8) in Weibel-Palade bodies has been demonstrated in human 

endothelial cells after prolonged stimulation (Wolff et al. 1998). CKs can also be 

broadly divided in to ‘inflammatory’ and ‘homeostatic’ (Table 1.3). Inflammatory 

CK mediate leucocyte recruitment to sites of inflammation whereas homeostatic 

CK mediate immunosurveillance of secondary lymphoid organs and the peripheral 
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tissues (Moser et al. 2004): some CKs do not fall neatly into either category and 

are referred to as  having ‘dual-function’.  

 

 

Inflammatory   
 

  Homeostatic   

Systematic 
name 

Functional 
name 

Receptor Systematic 
name 

Functional 
name 

Receptor 

CCL2 MCP-1 CCR2 CCL1* I-309 CCR8 
CCL3 MIP-1α CCR1,CCR5 CCL17* TARC CCR4 
CCL4 MIP-1β CCR5 CCL19 MIP-3β CCR7 
CCL5 RANTES CCR1 CCR3 

CCR5 
CCL21 
CCL22 

SLC 
MDC 

CCR7 
CCR4 

CCL11 Eotaxin CCR3 CCL25* TECK CCR9 
CCL27 CTACK CCR10 CXCL12* SDF-1α/β CXCR4 
CXCL8 IL-8 CXCR1 

CXCR2 
CXCL13 BCA-1 CXCR5 

CX3CL1 Fractalkine CX3CR1    

Chemokines marked with an asterisk have dual function 
Abbreviations: BCA-1, B-cell attracting chemokines-1; CTACK, cutaneous T-cell attracting 
chemokine; ELC, EBI1 ligand chemokines; MCP-1, monocyte chemotactic protein-1; MDC, 
macrophage-derived chemokine; MIP-1α, macrophage inflammation protein-1α; RANTES, 
regulated on activation normal T-cell expressed and secreted; SDF-1α, stromal-cell-derived 
factor-1α; SLC, secondary lymphoid tissue chemokines TARC, thymus- and activation-
regulated chemokine; TECK, thymus-expressed chemokine 

Table 1.3: Chemokines and receptors involved in leucocyte homing  

 

CKs expressed by lymph node HEV are not necessarily synthesised locally, as 

evidenced by the lack of local expression of, for instance, CCL19 mRNA 

(Baekkevold et al. 2001) and it has been shown that CK synthesised elsewhere 

within the LN or even arriving in the lymph can be transported to the luminal 

surface of the HEV (Baekkevold et al. 2001;Gretz et al. 2000); transcytosis of 

inflammatory CKs to the luminal endothelium from extravascular sources has also 

been demonstrated (Middleton et al. 1997). After secretion, CKs would simply be 

washed away by the blood flow if mechanisms for anchoring to the endothelial 

surface were not present. Glycosaminoglycans (GAGs) are polysaccharides 

attached to a protein core (proteoglycans); they are expressed by endothelial cells 

with heparan sulphate being the most abundant (Middleton et al. 2002). They can 

bind multiple CKs and hence present them to rolling leucocytes: GAGs bind CKs 
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with variable affinity and therefore provide a framework for the formation of 

hapotactic gradients (Patel et al. 2001). Furthermore, variations in patterns of 

GAG expression are demonstrable between the endothelia of normal and diseased 

tissues suggesting a further mechanism for differential CK expression (Middleton 

et al. 2002). Although CKs have been shown in vitro to be functional in the 

absence of GAGs, GAG binding significantly enhances their activity (Ali et al. 

2000)- this effect is at least in part to GAG-mediated stabilisation of the tertiary 

structure of CKs or the formation of CK oligomeric complexes in association with 

GAGs (Goger et al. 2002;Proudfoot et al. 2003). CXCL12 has been shown to bind 

heparan sulphate proteoglycans on rheumatoid synovial endothelial cells in 

culture (Santiago et al. 2006). 

 

A large number of human chemokines have now been described and many of 

these have been shown to activate specific leucocyte subtypes in vitro (Laudanna 

et al. 2002) although definite in vivo evidence is only available for a fraction of 

these (Ley 2003). CK ligation results in  up-regulation of integrin-mediated firm 

adhesion and TEM: this effect is both rapid and transient and is dependent on 

levels of receptor occupancy although, interestingly, the kinetics of CK-mediated 

firm adhesion and TEM may differ (Campbell et al. 1996). Clearly the expression 

of multiple CKRs by particular leucocyte subgroups in combination with variable 

expression of CKs within tissues has enormous potential for the differential tissue 

localisation of leucocytes, and it has been suggested that differential endothelial 

CK expression is responsible for the bulk of homing pattern variability (Hillyer et 

al. 2003). Furthermore, a number of features of CK/ CKR interaction can further 

contribute to the diversity of leucocyte response. It has been shown that some CKs 

can antagonise particular CKRs; agonists for CXCR3, for instance, can antagonise 

CCR3 (Loetscher & Clark-Lewis 2001). Moreover, ligation of different CKRs in 

the same cell can initiate different signalling pathways (Gerszten et al. 1999), 

indeed the same level of occupancy a particular CKR by different CKs can have 

differing effects (D'Ambrosio et al. 2002).  
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Apical endothelial chemokines may also directly regulate TEM. In an in vitro 

adhesion assay it was shown that the presence of CCL19 at the endothelial cell 

surface was required not only for integrin-mediated firm adhesion but also 

subsequent TEM. This was dependent on the presence of flow and occurred in the 

absence of a trans-endothelial chemokine gradient. Firm adhesion but not TEM 

was seen when non-chemokine integrin activators were used (Cinamon, Shinder, 

& Alon 2001).  

 

Ligation of CK receptors by cognate CK results in cellular activation and 

progression to firm adhesion to the vascular endothelium with the potential for 

extravasation into surrounding tissues. The mechanisms by which this is achieved, 

namely increased affinity, avidity and polarization of cell surface integrins, will be 

described in more detail below. 

1.1.7.3 Integrins and firm adhesion 

Integrins (reviewed in Danen & Sonnenberg 2003 and van der Flier & Sonnenberg 

2001) are glycosylated transmembrane proteins which exist as non-covalently 

associated dimers consisting of one α and one β-chain: they have a large 

extracellular domain consisting of 70-1100 residues and a short cytoplasmic 

domain of 30-50 residues (with the exception of β4 which has 1000-residues) (van 

der Flier & Sonnenberg 2001). To date, 18 α and 8 β subunits have been described 

in humans which form 24 known heterodimers. The integrins bind to components 

of the extracellular matrix or specific counter-receptors and have a diverse array of 

roles in mediating both within the immune system and in tissue organisation and 

cellular signalling (Danen & Sonnenberg 2003). Five integrins have been 

identified as being particularly important to leucocyte migration (Table 1.4) 

(Springer 1994). The endothelial counter-ligands for leucocyte integrins are 

members of the immunoglobulin superfamily and include ICAMs1-5, VCAM-1 

and MAdCAM-1. They are type I transmembrane glycoproteins consisting of a 

short cytoplasmic tail, a single transmembrane region and a variable number of 

extracellular immunoglobulin domains (Gahmberg, Tolvanen, & Kotovuori 1997).  

ICAM-1 and endothelium ICAM-2  are ligands for LFA-1 and Mac-1; ICAM-1 
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appears to be the dominant ligand in inflammation as it is up-regulated by pro-

inflammatory stimuli (Gahmberg, Tolvanen, & Kotovuori 1997), a process that is 

transcriptionally regulated (Hubbard & Rothlein 2000). Unlike ICAM-1, ICAM-2 

is expressed constitutively by the vascular and lymphatic endothelium and is not 

induced by inflammatory mediators (De Fougerolles et al. 1991;Geijtenbeek et al. 

2000). Both ICAM-1 and ICAM-2 are important LFA-1 ligands mediating 

leucocyte migration into peripheral lymph nodes. There is significant redundancy 

with both:  in vivo lymphocyte homing to  peripheral lymph nodes (PLNs) was 

affected little  with  either ICAM-1 or ICAM-2 blockade, whereas blocking both 

resulted in significant inhibition of homing (Lehmann et al. 2003). ICAM-2 has 

been shown to act as an endothelial counter-receptor for DC-SIGN, a C-type lectin 

expressed by circulating dendritic cell precursors: in an in vitro assay this 

interaction could support rolling under flow conditions and transendothelial 

migration (Geijtenbeek et al. 2000).  

 

Integrin Subunits Expression Ligands 
LFA-1, CD11a/ 
CD18 

αLβ2 Monocytes 
neutrophils 
T-cells 
Macrophages 
Dendritic cells 

ICAM-1,-2,-3 

Mac-1, CD11b/ 
CD18 

αMβ2 Monocytes 
neutrophils 
NK cells 

ICAM-1 
iC3b, Factor X 
Fibrinogen 

p150, 95, CR4 
CD11c/ CD18 

αXβ2 Monocytes 
NK cells 
neutrophils, 
subsets of B- and 
T-cells 

ICAM-1 
iC3b 
fibrinogen 

VLA-4, CD 
49d/CD29  

α4β1 B and T-cells 
monocytes 

VCAM-1 
MAdCAM-1 
fibronectin 

LPAM-1 α4β7 B and T-cells VCAM-1 
MAdCAM-1 

Abbreviations: LFA-1, leucocyte functional antigen-1; LPAM-1, lymphocyte Peyer’s patch 
adhesion molecule-1; VLA-4, very late antigen-4 

 

Table 1.4: Lymphocyte integrins and their endothelial ligands 
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ICAMs also appear to have a signalling function; ligation of ICAM-1 for instance 

has been shown to activate kinase-dependent signalling pathways with consequent 

up-regulation of  secreted cytokine and membrane-bound protein expression 

(Hubbard & Rothlein 2000). VCAM-1, like ICAM-1, is expressed at low levels 

by resting endothelial cells and is up-regulated by pro-inflammatory stimuli: it is 

the ligand for the α4β1 integrin (VLA-4) which is expressed by most leucocyte 

subtypes and can also bind α4β7 (Carter & Wicks 2001). As well as supporting 

firm adhesion, VCAM-1 can also support rolling mediated by VLA-4 and this can 

progress to firm adhesion in the absence of cytokine stimulation (Alon et al. 

1995). VLA-4- mediated T-lymphocyte adhesion to VCAM-1 has been shown to 

be up-regulated in cells isolated from RA synovium and synovial fluid compared 

to cells isolated from the peripheral blood of patients and healthy donors (Postigo 

et al. 1992). 

 

Up-regulation of integrin binding affinity has been shown to occur by two 

mechanisms, conformational change to a high affinity state and increased lateral 

mobility leading to cell surface clustering (increased avidity) and polarization. 

This up-regulation is transient (Campbell et al. 1998) and can be extremely rapid- 

cell-surface clustering has been shown to occur in less than 0.1s (Grabovsky et al. 

2000). These processes are dependent on a ‘inside-out’ signalling that follow 

engagement of cell surface receptors by external stimuli that lead to triggering of 

various intracellular signalling pathways. The same CK can induce up-regulation 

of the binding affinity of different integrins through separate pathways- in 

eosinophils conformational changes in Mac-1 and clustering of VLA-4 were both 

effected by CCL5 and CCL7, although it is unclear whether this is mediated by 

different CKRs (Weber, Kitayama, & Springer 1996). Interestingly, it was shown 

that rapid clustering of VLA-4 was stimulated only by localised CKR ligation and 

not by saturating levels of soluble CK, emphasising the importance of localised 

signalling for adhesion and subsequent migration (Grabovsky et al. 2000). 

Moreover, recent work has shown that only immobilised CK can induce LFA-1/ 

ICAM-1-mediated lymphocyte arrest  (Shamri et al. 2005): this report showed that 

induction of an intermediate affinity state in the integrin was essential to ICAM-1 
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binding in flow conditions. Binding to ICAM-1 induced a further conformational 

change to the high affinity state; this process was shown to be very rapid and not 

to require progressive ‘integration’ of CK signal  (Shamri et al. 2005):  this effect 

also appears to depend on the density of ICAM-1 expression and was not seen 

with soluble ICAM-1 (Ganpule et al. 1997). Integrins can also initiate internal 

signalling pathways following external stimuli- so-called ‘outside-in’ signalling. 

This follows receptor clustering and formation of the ‘focal  adhesion plaque’ 

with subsequent signalling dependent upon the GTPase RhoA and the mitogen-

activated protein kinase pathway (Jones & Walker 1999). Outside-in signalling 

has diverse functions in the regulation cell function including proliferation and 

apoptosis.  

 

Up-regulation of integrin binding results in firm adhesion, bringing the adherent 

cell to a halt and allowing progression to transendothelial migration. 

1.1.7.4  Transendothelial migration 

Transendothelial migration (TEM) is complex and the least understood stage of 

the extravasation process. It is dependent on CK activation of leucocytes and 

integrin binding to endothelial cell. The transmigrating cell is characterised by 

structural polarisation with re-organisation of the cytoskeleton and the formation 

of a lamellipodium at the leading edge of the cell (Springer 1994). TEM generally 

appears to occur through endothelial cell junctions, although there is some 

evidence that it can also occur by transcytosis through endothelial cells 

(Engelhardt & Wolburg 2004). Endothelial cell-cell junctions are formed by the 

interactions of a number of dedicated adhesion molecules including the junctional 

adhesion molecules (JAMs),  platelet/endothelial cell adhesion molecule 

(PECAM-1, a member of the immunoglobulin superfamily), occludins, vascular-

endothelial (VE)-cadherin, claudins and CD99 (van Buul & Hordijk 2004). The 

JAMs also act as integrin ligands: JAM-A,B and C bind LFA-1, Mac-1 and VLA-

4 respectively (van Buul & Hordijk 2004). TEM is mediated by the binding of 

leucocyte integrins to PECAM-1 (through homotypic adhesion) and endothelial 

CAMs to CD99 (which binds VLA-4). It involves the activation of multiple 
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signalling pathways mediated by the ligation of integrins on the leucocyte and 

endothelial cell CAMs. Intracellular signalling results in the breakage and 

formation of leucocyte-endothelial bonds, the opening of the endothelial barrier, 

as well as mediating the trailing edge retraction and leading edge protrusion of the 

leucocyte with  cell surface polarisation of CKRs (Nieto et al. 1997). It has been 

demonstrated in vitro that leucocytes can migrate through increasing 

concentration gradients towards the source of a CK (Foxman, Campbell, & 

Butcher 1997). Diverse patterns of CK are expressed at inflammatory sites: this, 

coupled with the expression of multiple CKRs by leucocytes, allows precise 

navigation and localisation of leucocytes. Leucocytes are able to respond to 

sequential CK gradients thus migrating in a ‘step-wise’ fashion; this is likely to be 

due in part to CKR desensitisation at high/ saturating concentrations when the 

orientation of CKR ligation will also be lost (Foxman, Campbell, & Butcher 

1997). Furthermore, it is apparent that some chemoattractants can augment the 

response to others, whilst for some cross-desensitisation of CKRs occurs in a 

hierarchical manner providing a potential mechanism for the step-wise response 

seen (Kitayama et al. 1997). Another mechanism for this effect appears to be the 

ability of leucocytes to prioritise their response to newly-encountered 

chemoattractants, i.e. they can ‘memorise’ previous components of the 

chemotactic cascade (Foxman, Kunkel, & Butcher 1999). 

The final obstacle to the extravasating leucocyte is the perivascular basement 

membrane (PBM). The mechanisms by which leucocytes cross the PBM remain 

incompletely defined; recent work has demonstrated a role for the laminin binding 

integrin α6β1 (Dangerfield et al. 2002a). Laminin is a component of the PBM and 

it has been shown that its surface expression on neutrophils is up-regulated by the 

homophilic interaction of leucocyte and endothelial PECAM-1: the passage of 

neutrophils across the PBM was inhibited by a α6β1-blocking antibody in vivo 

(Dangerfield et al. 2002b). In vitro studies have suggested a role for leucocyte 

proteases  in trans-PBM migration (reviewed in (Yadav et al. 2003)) although 

their role in vivo remains unproven. 
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1.1.8 Tissue–specific lymphocyte homing 

Lymphocytes circulate through the peripheral tissues in a non-random manner, 

allowing optimisation of the immune system’s resources. Re-circulation of naïve 

lymphocytes through lymphoid tissue maximises their chances of encountering 

antigen, and activation into effector phenotype is accompanied by the acquisition 

of homing properties for peripheral tissues where antigen may be re-encountered 

(Mackay 1993). Studies of lymphocyte adhesion to frozen sections of tissue have 

demonstrated that lymphocytes isolated from peripheral lymph nodes, gut mucosa 

and synovium exhibit enhanced binding properties to the tissue of origin (Salmi et 

al. 1992) and it can be shown that lymphocytes isolated from draining lymph at 

different sites have differential surface adhesion molecule expression (Abitorabi et 

al. 1996).  

1.1.8.1 Addressins and homing receptors 

Organ-specific lymphocyte homing is a complex process dependent on the 

presence of specific ligand/ receptor interactions at each stage of the adhesion 

process. Although many aspects still remain to be defined, for some tissues at 

least some of the homing mechanisms have been described. Tissue-specific 

ligands expressed by vascular endothelial cells are known as ‘addressins’ which 

bind homing receptors expressed by subpopulations of leucocytes.  

 

For example, the homing receptor/ addressin pair L-selectin/ peripheral lymph 

node addressin (PNAd) mediates lymphocyte adhesion to peripheral lymph node 

HEV (Rosen 2004). PNAd is a complex of sialomucins (defined by reactivity with 

the MECA-79 antibody) consisting, in humans, of CD34 podocalyxin and 

endomucin (for an  excellent review of L-selectin ligands see Rosen 2004); 

sulfation by a specific sulfotransferase is required for the recognition of these 

epitopes (Hemmerich et al. 2001). GlyCAM-1, another component of the PNAd 

family of ligands, is a secreted molecule (Kikuta & Rosen 1994) and may 

therefore have a role in regulation of selectin-mediated leucocyte binding 

(Crockett-Torabi 1998). This observation is supported by studies in knockout 

mice; in an L-selectin knockout there was no leucocyte adhesion to PLN HEV and 
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PLNs are smaller in size due to reduced numbers of intra-PLN lymphocytes 

(Arbones et al. 1994). These homing receptors are, however, neither sufficient nor 

always necessary for organ-specific homing. Endothelial VAP-1, for instance, 

may contribute to the adhesion of naïve lymphocytes to PLN HEV; this may be 

co-dependent on L-selectin or, in some cases, L-selectin independent (Salmi et al. 

1997). Another level of homing specificity is conferred by CKs: CCL19 and 

CCL21, ligands for the CK receptor CCR7, are transcytosed to lymphoid organ 

HEV and mediate lymphocyte extravasation to these sites (Baekkevold et al. 

2001;Gunn et al. 1998). CCR7 is required for homing of naïve lymphocytes to 

lymphoid tissue: mice expressing a mutant form of CCR7 have disordered PLN 

architecture (Forster et al. 1999). Furthermore, expression of L-selectin and CCR7 

defines a subset of memory T-cells (‘central memory’ T-cells) which retain 

homing affinity for lymphoid organs (Sallusto et al. 1999). All PLN naïve cells 

express CCR7, as do most peripheral tissue T-cells- this may be necessary for re-

entry of these cells into the lymphatics also expressing CCL21(Campbell et al. 

2001).  

 

Another example of homing receptor/addressin pair is represented by the integrin 

α4β7 that binds to MadCAM, expressed  specifically by gut mucosal venular 

endothelium, and is critical for lymphocyte recruitment to gut-associated 

lymphoid tissue  (GALT) (Berlin et al. 1993). MAdCAM-1 is expressed by the 

HEVs of Peyer’s patches in the gut : it contains both immunoglobulin and mucin 

domains (Shyjan et al. 1996) and can also support L-selectin-mediated rolling 

when decorated by MECA-79 –reactive epitopes (Berg et al. 1993). Antibodies to 

the α4β7 subunits inhibit lymphocyte recruitment to the gut (Hamann et al. 1994) 

and mice deficient in α4 or β7 integrin subunits have markedly underdeveloped 

GALT (Arroyo et al. 2000;Wagner et al. 1996). The CK CCL25, which is 

chemotactic for cells expressing CCR9, is expressed preferentially by regions of 

the small intestine, where a majority of infiltrating lymphocytes express CCR9, 

suggesting a further level of homing specificity for the gut (Kunkel et al. 

2000;Staton et al. 2006): interestingly, CCL25 was not expressed in the large 

intestine. 
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As already discussed, CLA, a glycosylation variant of PSGL-1, is a ligand for E-

selectin and is expressed by a majority of infiltrating lymphocytes in inflamed 

skin (Berg et al. 1991), and in patients with contact dermatitis a proliferative 

response to antigen is confined to cells expressing CLA (Santamaria Babi et al. 

1995). Moreover, infiltrating T-cells from  a series of patients with cutaneous T-

cell lymphomas were preferentially shown to express CLA (Picker et al. 1990). 

Further evidence that CLA+ cells have homing specificity for the inflamed skin 

comes from studies of patients with psoriatic arthritis: despite having 

inflammatory lesions at both the joints and the skin, CLA+ lymphocytes are 

confined to the skin (Pitzalis et al. 1996). However, E-selectin is widely expressed 

in inflammation and, as with gut-homing cells, further components of the ‘area 

code’ are necessary for specific recruitment. Most CLA+ skin-infiltrating 

lymphocytes express high levels of CCR4, the receptor for CCL17, expression of 

which is up-regulated in inflamed skin (Campbell et al. 1999) (although not 

exclusively); in this study CCR4 expression by α4β7+ cells was low or negative. 

An elegant study with an adoptive transfer model has shown that CCL17/ CCR4 

are necessary for lymphocyte trafficking to skin (Campbell, O'Connell, & Wurbel 

2007). CCL27 is expressed preferentially by resting and inflamed skin  and is 

chemotactic for a subset of CLA+ cells (Morales et al. 1999). In addition, CCR10 

is the receptor for CCL27 and is expressed by most infiltrating lymphocytes in 

inflamed skin (Homey et al. 2002). Furthermore, E-selectin, CCL17 and ICAM-1 

co-localise in some dermal vessels from non-inflamed skin, providing a molecular 

framework enabling immunosurveillance (Chong et al. 2004). It was recently 

reported that CCR8 is expressed a majority of T-cells in normal skin although 

rarely in peripheral blood: CCL1, the only ligand for CCR8, is expressed in 

normal skin; it is therefore likely that this CK has a role in cutaneous 

immunosurveillance (Schaerli et al. 2004). 

 

Whilst there may be evidence of specific lymphocyte infiltration at other sites, 

descriptions of specific addressin/ homing receptor pairs for the synovium are 

lacking. In animal models of arthritis a spectrum of adhesion molecules have been 
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implicated in pathogenesis including E-and P-selectin, the integrins LFA-1, VLA-

4 and mac-1,  and the immunoglobulin superfamily molecules ICAM-1 and 

PECAM-1 (Taylor et al. 1996) (Issekutz, Nakazato, & Issekutz 2003;Watts et al. 

2005). Vascular adhesion protein-1 (VAP-1, also known as amine oxidase, copper 

containing-3) is up-regulated in inflamed human synovium: in an animal model its 

enzymatic activity has been implicated in leucocyte recruitment and arthritis 

pathogenesis (Marttila-Ichihara et al. 2006). In vitro, distinct endothelial cell 

recognition systems for the human synovium have been described (Jalkanen et al. 

1986) and a number of leucocyte-expressed adhesion molecules have been 

implicated, including CD44, L-selectin, α4, β1 and β2 integrins on leucocytes and 

PNAd, VAP-1, P-selectin and E-selectin in the synovium  (Fischer, Thiele, & 

Hamann 1993;Salmi, Rajala, & Jalkanen 1997). Homeostatic chemokines have 

been associated with the formation of ectopic lymphoid tissue in the rheumatoid 

synovium and a number of inflammatory chemokines are up-regulated in inflamed 

RA tissue (Haringman et al. 2006b;Haringman, Ludikhuize, & Tak 2004). Indeed, 

infusion of CXCL8, the prototypical pro-inflammatory cytokine, into the knee 

joints of rabbits produces clinical arthritis (Endo et al. 1994). Administration of an 

anti-IL-8 antibody reduced polymorphonuclear cell infiltration and ameliorated 

arthritis in LPS and IL-1-induced arthritis in rabbits (Akahoshi et al. 1994).The 

CK receptors CXCR3, CXCR6 and CCR5 are preferentially expressed by 

lymphocytes in inflamed synovial tissue (Loetscher & Moser 2002;Norii et al. 

2006) and lymphocyte cell-surface density of CCR5 has been correlated with 

intensity of cell migration to the supernatant of TNFα-transduced synoviocytes in 

vitro (Desmetz et al. 2007); this pattern of expression is associated with the TH1 

phenotype (Kim et al. 2001). It has also been shown that leucocytes isolated from 

normal and inflamed gut adhere preferentially to inflamed synovium in vitro, 

suggesting a mechanism for re-circulation of effector cells between the synovium 

and gut and a possible pathogenic link for the known clinical association between 

gut and synovial inflammation (Salmi et al. 1995;Salmi & Jalkanen 2001). 

Specific adhesion molecule expression in the synovium may not be the only 

explanation for specific leucocyte homing; CS1, a splice variant of fibronectin and 

a counter receptor for α4β1, is expressed by synovial endothelial cells and up-
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regulated in inflammation (Elices et al. 1994). Fibronectin is a well-characterised 

example of an extracellular matrix protein which acts as a ligand for integrins, and 

expression of which is differentially regulated. It will therefore be discussed 

briefly in the following section. 

1.1.8.1.1 Fibronectin 

Fibronectin is a dimer consisting of 2 polypeptide subunits linked by disulphide 

bonds, each with a molecular weight of ~250 kDa (Kornblihtt et al. 1996). It 

exists in a soluble form in the plasma, synthesised by hepatocytes, and an 

insoluble form in the extracellular matrix synthesised by multiple cell types. It is 

made up of repeating subunits known as type I-III repeats. The fibronectin gene 

consists of 50 exons, and alternative splicing results in a number of polypeptide 

variants of which there are at least 20 in humans (Kornblihtt et al. 1996). The 

molecule contains at least two regions which mediate cell adhesion: the 10th type 

III repeat contains an RGD motif which mediates binding to a subset of integrins. 

Two alternative splice sites, known as extra domains A and B (ED-A and ED-B) 

are only found in tissue forms of fibronectin (Carsons 2001). Expression of ED-B 

is up-regulated in the vessels of some types of tumour (Nilsson et al. 2001) and in 

inflamed synovial tissue (Kriegsmann et al. 2004) and it has been exploited as a 

ligand for specific targeting of neoplastic tissues (Nilsson et al. 2001). Another 

alternative splice site is between the 14th and 15th type III repeats and is known as 

III-CS (connecting sequence). The CS-1 peptide sequence is contained within the 

III-CS, and includes the LDV motif which mediates binding to the integrin α4β1 

(Komoriya et al. 1991). Staining of rheumatoid synovium with antibodies specific 

to the CS-1 domain has shown expression at the luminal surface of vascular 

endothelial cells and on lining layer synoviocytes where they meet the joint 

cavity; minimal staining was seen in normal synovial tissue (Elices et al. 

1994;Muller-Ladner et al. 1997).  The CS-1 peptide was found to down-regulate 

in vitro lymphocyte adhesion to rheumatoid synovial tissue sections (Elices et al. 

1994).  
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Until recently it was unclear what drove the acquisition of a particular pattern of 

CAM and CKR expression by lymphocytes. More is now understood about the 

mechanisms of such ‘imprinting’ and this will be discussed briefly in the next 

section. 

1.1.8.2 Acquisition of homing properties by lymphocytes 

It is well established that differentiation in secondary lymphoid tissues of naïve 

lymphocytes into the effector/memory cells leads to changes in surface CAM and 

CKR expression associated with the acquisition of specific homing properties. 

Experiments utilising adoptive transfer of T-cells have shown that such 

acquisition of tissue-specific homing properties occurs within 2 days of antigenic 

stimulation according to the lymphoid tissue in which antigen is encountered 

(Campbell & Butcher 2002). Furthermore, cytokine-dependent L-selectin and 

CLA expression during T-cell maturation has also been demonstrated in vitro 

(Picker et al. 1993b;Picker et al. 1993a). More recently it has become clearer that 

dendritic cells (DCs) are essential for the differentiation of lymphocytes into 

populations with tissue-homing specificity. For instance, culture of naïve T-cells 

with antigen loaded DCs from mesenteric lymph nodes induced substantially 

more expression of α4β7 and CCR9 than was seen with splenic DCs (Johansson-

Lindbom et al. 2003).  Furthermore, DCs isolated from Peyer’s patches have also 

been shown to induce α4β7 and CCR9 in lymphocytes that could migrate along a 

CCL25 gradient in vitro and demonstrated tropism for the small intestine in vivo 

(Mora et al. 2003). In contrast down-regulation of L-selectin, a typical 

phenomenon associated with lymphocyte activation, was seen after incubation 

with DCs from both sites (Johansson-Lindbom et al. 2003). Taken together these 

data clearly indicate that DCs from different lymphoid stations can induce the 

repertoire of CAMs and CK-Rs associated with tissue specific homing as well as 

antigen specificity associated with immunological competence. The importance of 

the lymphoid tissue local microenvironment for the regulation of homing in vivo 

is further emphasized by the fact that that antigen-primed DCs can induce skin or 

gut-homing properties when given by intracutaneous or intraperitoneal injection 

respectively, an effect not seen after iv administration (Dudda, Simon, & Martin 
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2004).  This group also demonstrated differentiation into a skin-homing 

phenotype of T-cells cultured with Langerhans cells isolated from the skin 

(Dudda, Simon, & Martin 2004). An important question is whether, once 

activated, T-cells are permanently committed to a particular homing phenotype or 

can be ‘re-educated’. Recent work has shown that T-cells which have acquired 

skin or gut-homing properties can alter their surface CAM and CKR expression 

according to their most recent encounter with DCs  (Mora et al. 2005b). The 

mechanisms involved in T-cell imprinting by DCs are unclear, although T-cell 

activation is a necessary component (Mora et al. 2005a;Siewert et al. 2007). 

However, as far as the gut is concerned, Vitamin A appears to be a critical moiety 

in the induction of the gut homing repertoire.  In a recent landmark paper, Iwata 

and colleagues showed that exposure of naïve T-cells to retinoic acid under 

stimulatory conditions resulted in the expression of the gut-homing phenotype 

α4β7
+/CCR9+; expression of CLA was suppressed (Iwata et al. 2004). These cells 

showed chemotaxis to CCL25 and homed preferentially to the gut after adoptive 

transfer. They also showed that enzymes necessary for the oxidative metabolism 

of retinol to retinoic acid are expressed by DCs from mesenteric lymph nodes and 

Peyer’s patches as well as the intestinal epithelium, whilst they are only expressed 

at low levels by DCs from PLNs. Furthermore, it was demonstrated that inhibition 

of these enzymes suppressed α4β7
 and CCR9 expression, as did blockade of the 

nuclear retinoic acid receptor.  A wider understanding of these processes with 

particular reference to the joint could have significant therapeutic implications for 

the manipulation of the immune response and for targeting specific treatments to 

rheumatic diseases (for a more detailed review of this topic see Dudda & Martin 

2004). 

1.1.9 Therapeutic targeting of adhesion molecules 

Adhesion molecules are crucial to the orchestration of the immune response, and 

are therefore attractive therapeutic targets. Levels of soluble adhesion molecules 

can be correlated with disease activity in a number of inflammatory conditions, 

including RA (Klimiuk et al. 2002;Nassonov et al. 2000), although it is often 

debatable whether this confers any advantage over conventional inflammatory 
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markers (Marshall & Haskard 2002). There has also been some success reported 

with the targeting of adhesion molecules for imaging- a radiolabelled anti-E-

selectin antibody in RA was particularly promising (Jamar et al. 2002). The 

therapeutic targeting of a number of adhesion molecules have been investigated in 

animal models and, despite disappointing results with some agents, there have 

been encouraging results in some human studies. Perhaps the most successful to 

date are the glycoprotein IIb/IIIa (αIIbβ3) antagonists which inhibit platelet 

aggregation and are used clinically in acute coronary syndromes and following 

angioplasty (Hamm 2003). There is also encouraging data from human studies for 

α4-antagonists in multiple sclerosis and Crohn’s disease although natalizumab, a 

humanised monoclonal antibody against the α4 subunit, has recently been 

associated with progressive multifocal leucoencephalopathy secondary to 

reactivation of latent JC polyomavirus (Berger & Koralnik 2005). Blockade of 

CXCL8 (Marshall & Haskard 2002) and the αL  integrin subunit (Gordon et al. 

2003)  have been effective in cutaneous psoriasis. In a phase I/II trial, RA patients 

given a single iv dose of an anti-ICAM-1 monoclonal antibody sustained a clinical 

improvement (Kavanaugh et al. 1996) and a preliminary study with an oral CCR1 

(the ligand for the inflammatory CKs CCL3 and CCL5) antagonist showed a 

reduction in infiltrating macrophages and lymphocytes in the synovium of RA 

patients and a trend towards clinical improvement (Haringman et al. 2003). 

Another therapeutic trial of an antibody directed against CCL2 in RA patients 

failed to produce clinical improvement (Haringman et al. 2006a). A general 

concern regarding non-selective targeting of adhesion mechanisms may be the 

iatrogenic development of some of the clinical problems highlighted by the 

lecucoyte antigen deficiency syndromes. Therefore, as mentioned above, better 

understanding of the mechanisms involved in tissue specific lymphocyte 

recirculation is likely to bring more fruitful results. 

1.1.10 Treatment of rheumatoid arthritis 

Until relatively recently the management of RA was, generally, to gradually 

increase analgesic and conventional anti-inflammatory therapy, culminating in the 

use of disease-modifying anti-inflammatory drugs (DMARDs) until symptomatic 
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control was achieved. Over the last 15 years, however, there has been an inversion 

of this treatment ‘pyramid’ with the emphasis now on early intervention with 

disease modifying therapy. Firstly, it is now evident that the rate of progression of 

radiological damage is most rapid in the early stages of the disease: in one cohort 

of 181 patients with early RA followed up for 10 years it was found that 

radiographic progression was most rapid in the first 2 years with 75% of erosions 

occurring in the first 5 years (Lindqvist et al. 2003). Secondly, it has been 

consistently shown that earlier use of disease-modifying therapy has a better 

longer-term outcome, with better results seen with more aggressive treatment 

regimes (Goekoop-Ruiterman et al. 2005). These DMARDs and corticosteroids 

are discussed in more detail below. 

1.1.10.1 Corticosteroids 

It is now almost 60 years since the original reports of the efficacy of steroids on 

the clinical symptoms of RA (Hench et al. 1950). The original optimism has long-

since been superseded by the serious side-effects of the long-term use of systemic 

steroids, although  recent trials have suggested that the early limited use of 

steroids may significantly impact longer-term disease outcome (Landewe et al. 

2002). Despite this, their application is largely restricted to short-term use in 

disease flares either systemically or by intra-articular injection. However, recent 

evidence that low-dose systemic steroids retard disease progression may lead to 

their more widespread use (Wassenberg et al. 2005). Corticosteroids therefore 

provide the archetypical example of a treatment whose use is curtailed by toxicity: 

the potential advantages of tissue-specific targeting are clear and will be discussed 

later. Furthermore, concerns about the use of corticosteroids in RA, a condition 

already characterised by increased cardiovascular risk, have been underscored by 

a recent study showing significantly increased risk of cardiovascular risk in 

rheumatoid factor-positive patients who had received steroid treatment (Davis 

2007).  

1.1.10.2 Disease-modifying anti-rheumatic drugs 

By definition, a disease modifying drug in RA is one which slows radiographic 

progression of joint disease. Regular monitoring of the progression of joint 
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damage in RA is particularly important in light of the well-established observation 

that progression is common despite improvement in other indices of disease 

activity (Molenaar et al. 2004). The correlation of joint damage with disability 

(Scott et al. 2000) emphasises the importance of this as a therapeutic goal. A 

number of drugs have been shown clinically to influence disease progression: 

several of these such as intramuscular gold and penicillamine have largely fallen 

into disuse, principally due to adverse side-effect profiles. Methotrexate (MTX), a 

folic acid analogue, is the most commonly used first-line DMARD in the UK, 

with sulphasalazine (SSZ) and leflunomide (LEF) most commonly second line, 

either as monotherapy or in combinations. Methotrexate has been shown to 

consistently improve clinical and laboratory disease markers as well as functional 

outcome in clinical studies (Weinblatt et al. 1994). Furthermore, a study of 1240 

RA patients over a mean follow-up period of 6 years found that methotrexate use 

was associated with reduced mortality although this was significant only for 

cardiovascular causes (Choi et al. 2002). Sulphasalazine is also widely used: its 

mechanism of action is unclear with its effects most likely to be mediated by its 

metabolite suplfapyridine. Its efficacy in RA has been proven in several 

randomised controlled trials, both with placebo and active treatment control 

groups (Weinblatt et al. 1999). Leflunomide was the first disease-modifying drug 

for RA which was designed specifically for treatment of the disease. Its dominant 

mode of action is the blocking of pyrimidine synthesis by inhibition of the 

enzyme dihydrooratate dehydrogenase, with resultant inhibition of the cell cycle 

in activated lymphocytes. One large randomised study of 402 RA patients found 

significantly better improvement in clinical and laboratory parameters compared 

with placebo with an equivalent response to that seen with methotrexate (Strand et 

al. 1999). Each of these drugs is associated with a significant side-effect profile 

which can be dose-limiting: the most significant of these are myelosuppression 

and hepatotoxicity which can, in rare instances, be fatal, particularly if compliance 

with recommended blood monitoring is poor. Side-effects are a significant causes 

of longer-term treatment failure (Capell 2002), as is lack of efficacy in the short 

term or loss of efficacy over longer periods. Resistance to DMARDs are not yet 

fully understood although a variety of mechanisms have been suggested which 
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may be inherent or acquired with exposure to treatment (Van der Heijden et al. 

2007).  

 

All of the above-mentioned drugs appear to have disease-modifying activity 

radiographically. Since the efficacy of this group of drugs became apparent it has 

become ethically impossible to conduct placebo-controlled trials (Stein & Pincus 

1999), and therefore most trials now compare different therapeutic regimens. 

Most studies which have compared MTX, SSZ and LEF have found equivalent 

disease-modifying effects for all 3, although progression of disease is still seen in 

most studies (Pincus et al. 2002). The failure of DMARDs to fully control disease 

activity or progression in a majority of patients has led to widespread interest and 

increasingly routine clinical use of other approaches to treatment. These include 

the so-called biological agents which will be discussed in section 1.1.10.4, and the 

use of combinations of DMARDs as will be discussed in the next section. 

1.1.10.3 Combination therapy 

The failure of disease control by many patients in the short and longer term by 

many patients on DMARD monotherapy has precipitated a large number of trials 

in which various combinations of drugs are tried. A number of strategies may be 

used, often either increasing the number of drugs until control is achieved or 

starting with a particular combination before cutting down once the disease is 

under control. Contrary to what might be expected, some combinations have been 

shown to offer significantly better control without an increase in the frequency or 

severity of side effects (Garrood & Scott 2001). In particular, it has been noted 

that early aggressive management of the disease with a regime including steroids 

resulted not only in more rapid disease control but also a significant inhibition of 

radiological progression. Importantly, despite the withdrawal of steroids over the 

first few months of therapy this benefit was maintained over several years thus 

suggesting that aggressive therapy earlier in disease has sustained benefits at least 

into the medium term (Boers et al. 1997;Landewe et al. 2002). Another recent 

study randomised patients with early RA to one of four treatment groups: 

sequential monotherapy, step-up therapy with the addition of another DMARD if 
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required, initial combination therapy including MTX, SSZ and high-dose 

prednisolone, or initial combination therapy with MTX and infliximab (Goekoop-

Ruiterman et al. 2005). Initial disease control was better in the latter two groups 

receiving initial combination therapy and functional improvement remained 

significant at 1 year. By 2 years, however, disease activity was similar across all 4 

groups: despite this, there was a sustained difference in radiographic progression 

with the initial combination therapies continuing to confer an advantage at this 

stage (Goekoop-Ruiterman et al. 2007).  

 

It seems clear, therefore, that at least in a subgroup of patients with early RA, that 

aggressive treatment with combination therapy can have a sustained benefit on 

disease progression. What remains unclear is exactly which patients will benefit 

the most: the trials in early RA support the hypothesis that there is a window of 

opportunity earlier in the disease during which aggressive treatment can have a 

significant effect on longer-term prognosis. Stratification of patients according to 

sub-classifications based on disease phenotype (clinical or histological) or 

genotype will, it is hoped, eventually enable treatment to be targeted more 

effectively. An example of recent success in this respect was the association of 

gene polymorphisms of enzymes associated with adenosine release with clinical 

response to methotrexate (Wessels et al. 2006). Research in this area is ongoing. 

1.1.10.4 Biological therapy 

A number of biological agents are now licensed for use for the treatment of RA in 

the UK. The most popular of these are the anti-TNFα group of compounds, with 

drugs targeting other molecules such as interleukin-1, interleukin-6 and CTLA-4 

also in stage 3 clinical trials or expected to be licensed imminently. These will be 

reviewed briefly here. 

1.1.10.4.1 Anti-TNF α drugs and other ‘biologics’ 

Infliximab is a chimeric (human/murine) monoclonal antibody to TNFα which is 

administered intravenously and was the first of this group of drugs to be licensed 

in the UK. A number of randomised controlled trials have confirmed its efficacy 

in RA: as it is a chimeric antibody it is associated in some patients with the 
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formation of human anti-chimeric antibodies and therefore is frequently given in 

combination with methotrexate or another DMARD (Scott & Kingsley 2006). The 

ATTRACT study randomised 428 patients with active RA despite MTX treatment 

to concomitant therapy with infliximab in 2 dose groups or placebo. Significant 

clinical improvement was seen in the infliximab group which was sustained over 

54 weeks with subsequent extension of the trial showing persistent efficacy at 102 

weeks (Lipsky et al. 2000;Maini et al. 2004). Adalimumab is a fully humanised 

recombinant antibody to TNFα which is administered by subcutaneous injection. 

In a trial of RA patients with a partial response to methotrexate, 619 were 

randomised to one of two adalimumab treatment groups or placebo, with 

significantly more patients achieving clinical improvement at 24 and 48 weeks 

(Keystone et al. 2004). Etanercept is the third UK-licensed anti-TNFα therapy. It 

is a soluble p75 TNF-receptor fusion protein which is administered 

subcutaneously. In a trial of patients with early RA, 632 were randomised to 

placebo-controlled treatment in one of 2 etanercept groups or oral methotrexate 

(Bathon et al. 2000). Reponses to treatment were similar at 52 weeks, although 

response was significantly more rapid in those patients receiving etanercept. A 

striking feature of these trials is the response seen in terms of radiological 

progression. In all the trials quoted above there was significantly less radiographic 

progression than in the control groups, with some groups exhibiting virtual arrest 

of radiographic progression. These observations, particularly as clinical remission 

was only achieved in a minority of patients, lend further weight to the hypothesis 

that there is, at least to some degree, a dissociation between the disease processes 

responsible for clinical inflammation and radiological damage (Kirwan 2004).  

 

Despite the obvious promise of the anti-TNFα group of drugs, they have not been 

the panacea that perhaps was hoped. A significant proportion of patients fail to 

respond to treatment and they are also associated with a number of potentially 

serious adverse effects, including reactivation of tuberculosis, infection,  

demyelination, interstitial lungs disease, aplastic anaemia and worsening of heart 

failure (Scott & Kingsley 2006). A recent large retrospective cohort study 

confirmed the increased risk of infection with TNFα blockade (Curtis et al. 2007). 
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Despite this, another recent study, the first to specifically address mortality in 

patients treated with TNFα blockers, found reduced mortality in women treated 

with this group of drugs although this was not seen in men: the reasons for this are 

yet to be defined (Jacobbson 2007). Furthermore there is an unresolved debate 

about the possible association of TNFα blockade with lymphoma: an increased 

risk has been reported, but it is difficult to determine whether this is genuine in 

light of the known background increased risk of lymphoma with RA (Scott & 

Kingsley 2006). A recent study of almost 20,000 patients over up to 7 years of 

follow-up, more than half of whom received anti-TNFα therapy, found no 

increased risk of lymphoma associated with treatment (Wolfe & Michaud 2007). 

 

Recombinant protein technology and the increasingly widespread use of 

therapeutic monoclonal antibodies have led to an explosion in the possibilities for 

specific therapeutic intervention in RA. A number of these other than the TNFα 

inhibitors discussed above are either licensed or approaching licensing in the UK 

and will be discussed briefly. Anakinra is a recombinant human interleukin-1 

receptor antagonist (IL-1ra) which has produced significant clinical response 

either in combination with MTX or alone in placebo-controlled trials: it also 

impedes radiographic progression (Bresnihan & Cobby 2003). Despite this, its 

relatively modest effects in comparison with anti-TNFα-blockers (although no 

head-to-head studies have been done) have meant that it has not come into 

widespread use.  

 

Rituximab is a monoclonal antibody directed against the CD20 antigen with 

administration resulting in the depletion of CD20+ cells. It is well-established as 

an effective agent in the treatment of non-Hodgkins lymphoma and recent 

randomised controlled trials have shown it to be effective in the treatment of sero-

positive rheumatoid arthritis (Emery et al. 2006). Open-label studies have shown 

its effectiveness in patients who are resistant to anti-TNFα treatment (Jois et al. 

2007) and   the results of one large study suggest that rituximab may be more 

effective than alternative TNFα-blocking agents after failure of the first (Finckh et 

al. 2007). Synovial biopsies taken before and 1 month after rituximab treatment 
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have shown B-cell depletion in some, but not all patients, despite profound drops 

in circulating levels of CD20+ cells (Vos et al. 2007). This observation could 

reflect local variations, for instance, in B-cell survival factors- elucidating this 

further could enable better targeting of B-cell depleting therapy. Unfortunately 

this study did not report correlations between local synovial B-cell depletion and 

clinical outcome. 

 

Abatacept is a recombinant fusion protein consisting of the extra-cellular domain 

of human CTLA-4 and a human IgG1 Fc fragment. It interferes with the 

interaction of CTLA-4 with CD80 and CD86 on the surface of antigen presenting 

cells with CD28 on T-cells, thus inhibiting the co-stimulatory signal. It has been 

shown to be effective in patients in whom MTX or anti-TNFα therapy has been 

ineffective (Genovese et al. 2005;Kremer et al. 2003) and is likely to find a place 

as a second-line biological agent in RA. A humanised antibody to the interleukin-

6 receptor has also been shown to be effective in a trial of 164 patients refractory 

to at least one previous DMARD (Nishimoto et al. 2004). 

1.1.10.5 Gene therapy 

The identification of individual molecular components of RA pathogenic 

pathways and the success of biological therapies has emphasised the potential of 

gene therapy in the disease. A number of approaches in animal models have been 

successful, both with in vivo and ex vivo transfection techniques. Much of these 

have used adenoviral vectors, limitations of which include immunogenicity and 

limited transfected gene expression (reviewed in (Adriaansen, Vervoordeldonk, & 

Tak 2006)). Administration can be systemic or intra-articular: systemically 

administered vehicles will only accumulate at low concentrations in joints and 

there is therefore considerable interest in the specific targeting of adenovirus and 

other vectors. An example of this is the successful approach  of modifying 

adenovirus by the addition of an RGD sequence to a coat protein which results in 

significantly enhanced expression of a luciferase gene by synoviocytes  in vitro 

(Bakker et al. 2001). Similarly enhanced expression was seen after intra-articular 

injection of RGD-modified and non-modified vectors in mice in both inflamed 



66 
 

and non-inflamed joints: when used to transfect a IL-1ra gene intra-articular 

injection of the RGD-adenovirus resulted in significantly better amelioration of 

arthritis. The identification of specific targeting strategies therefore would have 

particular relevance to this area of RA therapy. 

 

The importance of early diagnosis of RA is clear from the increasing evidence that 

early intervention has long-term prognostic implications as has been discussed. 

These observations beg the question of whether earlier diagnosis is achievable. 

The increasing knowledge of RA epidemiology including risk factors, including 

demographic and genetic, may in the future enable identification of groups of 

patients at high risk of developing disease. The availability of diagnostic tools to 

identify patients with early disease is therefore crucial; furthermore sensitive 

detection of pathology could be invaluable in clarifying the diagnosis in patients 

who present with undifferentiated inflammatory arthritis, many of whom will 

eventually satisfy the criteria for RA.  The presence of inflammatory changes in 

clinically unaffected joints in patients with RA and the detection of such changes 

before the onset of clinical arthritis (Kraan et al. 1998) underlines the potential of 

sensitive imaging both for diagnosis and for the monitoring of response to 

treatment. This will be discussed in the next section.   

1.1.11 Diagnostic imaging of rheumatoid arthritis 

A number of modalities are used for the imaging of inflammatory joint disease: of 

these X-ray is the most accessible. The relative advantages of each of these will be 

discussed in this section. 

1.1.11.1 X-ray 

For decades plain x-rays have been a standard investigation in the diagnosis, 

assessment and monitoring of patients with rheumatoid arthritis (Brower 1990). 

X-rays have a number of obvious advantages over other imaging modalities which 

justify their widespread use: they are cheap and widely available with most 

hospitals having appropriate facilities. Furthermore the radiation dose is small 

compared to some other imaging modalities such as computed tomography (CT) 

and radionuclide scans. 
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A minimum radiological evaluation of patient with new-onset RA would include 

x-rays of the hands and feet, both in postero-anterior (PA) and oblique (e.g. 

Norgard) views. A number of abnormalities may be visible including soft tissue 

swelling, peri-articular osteoporosis, loss of joint space, the presence of bony 

erosions and, in the later stages of disease, joint destruction and deformity. The 

presence of erosions is one of the classification criteria of RA (Arnett et al. 1988) 

and indicative of a poorer prognosis. One study found that 35% of patients 

presenting within 3 months of symptom onset had erosions at presentation, rising 

to 73% in those presenting beyond 12 months (Irvine, Munro, & Porter 1999). 

Their presence is predictive of the development of further erosions (Boers et al. 

2001;Jansen et al. 2001;Scott 2000) and radiological bony damage correlates with 

long-term disability (Scott et al. 2000). One of the primary aims of RA therapy is, 

therefore, to retard the progression of radiological damage: disease modifying 

anti-rheumatic drugs (DMARDs) are so-defined by their ability to impede such 

changes. 

 

 Despite their routine use, X-rays remains far from ideal as a tool for imaging RA, 

particularly in monitoring response to therapy. Firstly, the development of 

erosions is an indicator of ‘end-organ’ damage and is therefore a relatively late 

event in the disease. Although other changes may be seen as noted above, these do 

not necessarily correlate with or predict bone damage. Secondly, their sensitivity 

to change is limited to periods of at least six months or more limiting their use as 

a tool in optimisation of therapy in the short term. This is particularly important 

for several reasons: it is now understood that development of erosions can occur 

most rapidly in the early stages of disease and therefore, ideally, more sensitive 

means of predicting bone damage are required during this crucial period. The 

importance of this is compounded by clinical data suggesting that a therapeutic 

‘window’ exists early in the disease in which aggressive treatment can modify 

long-term outcome. Furthermore, the availability of drugs which can modify 

disease progression make it ethically dubious for a placebo or no-treatment arm to 

be used in clinical trials: the resultant loss of relative effect size of drugs under 
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investigation necessitates the development of more sensitive tools to monitor 

response in terms of progression. Moreover, MRI and ultrasound studies 

(discussed below) have indicated that XR is insensitive to early erosions. Finally, 

X-rays can give virtually no information about soft tissue pathology such as 

synovial proliferation (Ostergaard & Szkudlarek 2003): as more is understood 

about the pathology of  RA the role of imaging modalities which can give 

information about the soft tissues is increasingly relevant. The importance of this 

is exemplified by data suggesting that there is a poor correlation between clinical 

disease activity and radiological progression (McQueen et al. 2003) with some 

patients continuing to progress radiologically despite clinical remission  

(McQueen et al. 1999;Molenaar et al. 2004). Despite this, the ready availability of 

X-rays means that they will continue to be a routine tool in the routine 

management of RA. Scoring systems (such as the Sharp and Larsen scores 

(Larsen, Dale, & Eek 1977;Sharp et al. 1985)) have been extensively validated for 

use in clinical trials and have been shown to have inter-observer reliability.  

 

A number of alternative imaging modalities are being investigated for use in RA 

with some of these becoming routine clinically. These will be discussed further 

below. 

1.1.11.2 Magnetic resonance imaging  

The ability of magnetic resonance imaging (MRI) to image in multiple planes 

lends it the potential to image erosions with greater sensitivity, and hence earlier, 

than plain X-ray. MRI can also image the soft tissues and therefore, for instance, 

synovial effusions and tenosynovitis as well as the synovium (Backhaus et al. 

1999) and the use of contrast enables the differentiation between active and 

inactive synovial hypertrophy (Cimmino et al. 2003). MRI therefore has a number 

of potential advantages which, along with the absence of ionising radiation, has 

made it the subject of intense study over recent years.  

 

A number of studies have compared the sensitivity of MRI and X-ray  for the 

detection of erosions and found enhanced sensitivity compared with x-ray 
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(Backhaus et al. 1999;Backhaus et al. 2002;Klarlund et al. 2000;Ostergaard et al. 

1999). Studies have confirmed that erosions detectable by MRI are the same 

lesions as those which are (or become) visible on X-ray (Backhaus et al. 

2002;Dohn et al. 2006) with such lesions often becoming visible on X-ray at 

follow-up, although ones study has put this figure at only 25% at 1 year 

(McQueen et al. 2001). A recent study showed that significantly more loss of 

bone volume was required for an erosion detected by MRI to be visible on plain 

X-ray (Ejbjerg et al. 2006). It is clear, therefore, that MRI-detected erosions can 

be predictive of X-ray erosions, but a key question is whether other changes 

imaged by MRI can be predictive of future damage. Bone oedema is a feature 

uniquely identifiable by MRI and has been shown to be predictive of subsequent 

erosive changes at the wrist in a site-specific manner, suggesting that bone 

oedema is a pre-erosive lesion (McQueen et al. 1999). Recently a study has, for 

the first time, looked at the correlation between MRI changes and bone histology 

in patients undergoing joint replacement (Jimenez-Boj et al. 2007). Bony erosions 

seen on MRI were found to be associated with infiltrating synovial tissue and 

lymphocytic infiltration at the interface between synovium and bone marrow fat 

confirming the presence of bone marrow-associated inflammation in these lesions. 

Quantification of synovial membrane volume is possible and, at the wrist, has 

been shown to be sensitive to treatment-induced change at 3 and 6 months 

(Ostergaard et al. 1999). Furthermore, this study showed that baseline synovial 

membrane volume correlated with development of erosions over 1 year.   

 

Despite the obvious attractiveness of MRI, there are several disadvantages. Firstly 

it is costly: this and limitations in access to routine scanning make it largely 

impractical for routine use, although dedicated coils for imaging peripheral joints 

may improve this situation. Secondly, due to acquisition times, it is only practical 

to image a limited number of joints, such as the MCPJs and thus information 

about non-imaged joints will be limited. Studies have shown that the rate of 

progression of erosive changes can progress at different rates in different joints 

(Scott, Coulton, & Popert 1986). This is important as it has been suggested that 

the predictive value of MRI may be most powerful at the individual joint level 
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(Boers et al. 2001). A further problem is that of inter-observer variability in MRI 

scoring, an inevitable problem with the enhanced quantity of information 

available from MRI, although recent reports have claimed good inter-observer 

agreement. Although results to date with MRI support its use for the detection of 

inflammatory joint lesions, its role as a predictive tool is less clear as such longer-

term follow-up data is currently unavailable. The relative availability and 

economy of ultrasound has, in light of these drawbacks, become increasingly 

attractive and will be discussed in the next section.  

1.1.11.3 Ultrasound  

Recent advances in ultrasound technology, particularly the availability of higher 

frequency machines which enable increased image resolution, have increased the 

popularity of ultrasound as a tool for routine joint assessment. It’s obvious 

advantages are as described above, although these have to be counterbalanced by 

limited depth penetration compared with MRI, limitation of multi-planar imaging 

in some joints (such as the 3rd and 4th metacarpophalangeal joints), and potential 

problems with inter-observer agreement.  

 

Ultrasound can detect synovial thickening and can be even more sensitive than 

MRI for the detection of synovial effusions and tenosynovitis (Backhaus et al. 

1999), and is more sensitive than X-ray for erosions (Backhaus et al. 

2002;Szkudlarek et al. 2006;Wakefield et al. 2000). Its inability to penetrate bone 

and limited planar access in some joints can limit this and MRI, particularly with 

techniques such as 3D MRI, remains more sensitive for bony lesions (Backhaus et 

al. 2002).  

 

The use of power Doppler, which can detect blood flow in synovial vessels, in 

conjunction with conventional ultrasound enables quantification of the synovial 

vascularisation: this technique has been shown to be effective at the finger joints 

(Qvistgaard et al. 2001) and at the knee joint where the power Doppler signal has 

been shown to correlate with the histological score of vascularity in synovial 

biopsies (Walther et al. 2001).  A recent randomised placebo-controlled trial 
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looked at ultrasound outcomes in a group of patients with early RA treated with 

methotrexate with or without infliximab (Taylor et al. 2004). A strong correlation 

was found between the ultrasound score of synovial thickening and vascularity 

and subsequent deterioration in radiographic joint scores: this was abolished in 

those patients treated with infliximab. These findings suggest that ultrasound may 

have a role in directing treatment in individual patients. Another recent study has 

shown a significant association between synovial vascularity and synovial 

hypertrophy, as assessed by ultrasound, with subsequent structural damage: this 

effect could be seen even in joints that were clinically asymptomatic (Brown et al. 

2008). 

 

In summary, MRI and ultrasound have provided valuable advances in the imaging 

of the inflammatory joint lesions of RA and may have an important role in 

predicting outcomes and response to therapy. The observation that progression of 

radiological damage occurs in the absence of clinically-detectable synovitis is 

well-established (as already discussed), and a recent study has underscored 

previous observations that synovitis can be detected both by MRI and ultrasound 

in such patients (Brown et al. 2006). However, as discussed, each of these has its 

own disadvantages. Furthermore, the practical limitation of both techniques to 

imaging a few joints at a time limit their use in extrapolating results to the patient 

as a whole. There is therefore continued interest in techniques which allow 

imaging of multiple groups of joints using tracers which take advantages of 

disease physiology or variations in molecular expression within diseased tissue. 

The most developed of these is nuclear scintigraphy, and will be discussed in the 

next section.    

1.1.11.4 Nuclear imaging 

Nuclear scintigraphy uses radioisotopes to label molecules, distribution of which 

can be assessed with a scintigraphic camera after administration to a patient. 2D 

imaging is the most commonly used, although 3D imaging is possible with single 

photon emission tomography (SPECT) or positron emission tomography (PET). 
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These can be combined with computed tomography (CT) or MRI to produce 

detailed composite images. 

 

The most frequently used reagent for imaging of bones and inflamed joints is 

methylene diphosphate (MDP) labelled with 99mTc. Uptake of this molecule is 

increased in areas of increased bone blood flow and turnover (which is seen 

adjacent to inflamed joints). Prospective studies have demonstrated the sensitivity  

of MDP scintigraphy for inflamed joints (Backhaus et al. 1999), with negative 

uptake at a joint having strong negative predictive value for the development of 

erosions (Mottonen et al. 1988). However, specificity for joints which will 

develop erosions is poor (Backhaus et al. 2002) and although sensitive to changes 

in disease activity over 1-2 years (Backhaus et al. 2002;Klarlund et al. 2000) it is 

unclear whether it has suitable sensitivity in the shorter term.  

 

The prognostic limitations of MDP scintigraphy along with its limited value in 

detecting short-term response treatment have resulted in the investigation of 

alternative agents. These can be divided into those which are non-specific, i.e. 

exploit local physiological changes, and those which target specific molecules up-

regulated in the inflamed synovium. These, and strategies for the specific 

targeting of therapeutic compounds will be discussed in detail in section 1.4. A 

limitation of conventional 2D nuclear scintigraphy is that of resolution. PET 

allows the capture of 3D images and hence enhanced resolution and spatial 

localisation of pathology: this will be discussed in the next section. 

1.1.11.5 Positron emission tomography 

PET imaging uses tracers containing radioisotopes whose decay causes the 

emission of two antiparallel photons resulting from the collision of a positron with 

an electron (reviewed in (Marsden & Sutcliffe-Goulden 2000). Simultaneous 

detection of these photons allows the origin to be plotted along a line between the 

detectors: an array of detectors can therefore produce high resolution 3D images. 

A further advantage of PET is that the radioisotopes used, such as 15O, 11C and 18F 

can be incorporated into biologically active molecules or closely-related 
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analogues such as 18fluorodeoxyglucose (18FDG). However, these isotopes have 

short half-lives (e.g. 20 minutes for 11C and 110 minutes for 18F): a cyclotron is 

required for their production and their use is therefore limited to a facility with a 

cyclotron on site or nearby. The cost of radionuclide production and the scanning 

equipment limits the use of PET to specialist centres. 

 

Clinically PET is used most frequently for diagnosis, staging and treatment 

monitoring in oncology. Many tumour cell types have up-regulated glucose 

uptake and metabolism and hence will exhibit increased uptake of 18FDG: once 

phosphorylated within the cell little further metabolism takes place and hence the 

radioisotope is trapped providing the opportunity for imaging (O'Doherty 2000). 

FDG uptake is also increased in inflammatory lesions with increased expression 

of glucoses transporters (Mochizuki et al. 2001); furthermore, TNFα has been 

shown to increase glucose uptake in fibroblasts and macrophages (Beckers et al. 

2004) and there is therefore obvious potential for its use in RA. The first 

published study consisted of a small series of RA patients and observed a 

correlation between MRI-derived synovial volume and 18FDG uptake at the wrist 

(Polisson et al. 1995) both before and after treatment although correlation with 

clinical outcome was limited. Recently another study in RA patients found strong 

correlation between synovial thickening measured by ultrasound and PET 

standardized uptake volume (Beckers et al. 2004). Globally, there was significant 

correlation with clinical parameters and disease markers, although PET did not 

appear to be more sensitive than clinical examination. Another study found good 

correlation between clinical evidence of inflammation and 18FDG uptake in the 

small joints of the hands of patients with RA, although PET seemed to confer 

little advantages over clinical examination (Elzinga et al. 2007). One report has 

described whole-body 18FDG PET imaging in RA which found correlation with 

clinical findings, including uptake in extra-articular sites (Goerres et al. 2006). 

Another recent paper described correlation between PET imaging using a 11C-

conjugated tracer targeting peripheral benzodiazepine  receptors expressed by 

macrophages, clinical findings and immunohistochemical staining for these 

receptors (van der Laken et al. 2008). 
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PET imaging of RA, although in its infancy, is promising and, in combination 

with advances with molecular targeting has significant potential. Availability of 

the technique, however, and cost are likely to limit its use to the research setting 

for some time to come. 

1.1.11.6 Emerging technologies 

The targeting of tissue or pathology-specific molecules lends itself most readily to 

use in nuclear imaging techniques: there is, however, increasing interest in its 

application to MRI and ultrasound. The use of contrast agents is routine is a 

means of enhancing delineation between tissues: contrast agents are generally 

non-specific, examples including gadolinium-DTPA as already mentioned in MRI 

and microbubbles to enhance the Doppler signal for in ultrasonography. The 

conjugation of standard or novel contrast agents to targeting molecules, such as 

antibodies or peptides, has the potential to enhance the imaging of diseased tissues 

and there has been success with a number of agents in pre-clinical models. 

Examples of this include the use of RGD peptides and proteins to target liposomes 

for MRI imaging (Mulder et al. 2005) and echistatin-conjugated microbubbles for 

use in ultrasound (Ellegala et al. 2003) in tumour models.  

 

Optical imaging using near-infrared fluorescent probes relies on the relatively 

high transparency of biological tissues to light in the wavelength region 600-

1000nm. Illumination from one or more sources allows the creation of 2D or 3D 

images. In a murine arthritis model cy5.5, a near-infrared fluorescent dye which 

binds serum albumin, was successfully used to image arthritic joints (Hansch et al. 

2004); in another study cy5.5 conjugated to an RGD-containing peptide could 

image tumours expressing αvβ3 in a xenograft model (Cheng et al. 2005).  
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1.2 Peptides as agents for tissue and receptor-spec ific 

targeting 

In the previous sections the molecular and immunological basis for endothelial 

diversity was discussed with implicit opportunities for tissue-specific targeting. In 

this project a short peptide sequence was identified and developed as a tool for the 

targeting of synovium: in this section I will discuss some of the developments 

already made in this area, with particular reference to the short amino-acid motif 

RGD. 

1.2.1 Somatostatin and other regulatory peptide ana logues 

Analogues of the regulatory peptide somatostatin are now well-established for the 

clinical imaging of neuroendocrine and other tumours and were the first group of 

peptide reagents to be used clinically for nuclear imaging. Somatostatin is a 

widely-expressed neuroendocrine peptide and expression of its receptor is up-

regulated on a variety of tumours arising from neuroendocrine tissues (Heppeler et 

al. 2000). Somatostatin is unstable in vivo and is subject to rapid degradation by 

serum and tissues proteases: modification was therefore required to produce a 

compound suitable for therapeutic use. The most widely used of these is 

octreotide which consists of a hexapeptide disulphide-constrained sequence 

consisting of substituted D-amino acids and a C-terminal amino-alcohol group 

(Pless 1992). Octreotide (and other somatostatin analogues) has enhanced plasma 

stability and is widely use clinically: its uptake and internalisation by subtypes of 

somatostatin receptor have also enabled its widespread use in imaging of a 

number of tumours. These structural differences illustrate how the substitution of 

unnatural amino acids can render enhanced metabolic stability to a peptide, and 

also how biological activity can be retained with the use of short amino-acid 

sequences. The first use of octreotide for imaging used a modified sequence with 

a substituted tyrosine for phenylalanine at position 3 which enabled labelling with 
123I. As a ‘non-residualising’ label 123I-tyrosine is rapidly removed from the cell 

after lysosomal degradation. 111In- DTPA and other bifunctional chelating agents, 

which can be conjugated to proteins and peptides via terminal amino groups and 

the ε-amino groups of lysine residues,prior to conjugation to a radiometal, are 
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‘residualising’- their retention in cells is longer due to the absence of a pathway 

for excretion from the cell and therefore they remain ‘trapped’. Results with 111In-

DTPA-octreotide gave better tumour-to-background ratios than with 123I-Tyr3-

octreotide due to lower circulating levels of degradation products than that seen 

with the former: tumour uptake was also probably enhanced by the longer 

circulating half-life of 111In-DTPA-octreotide (Krenning et al. 1992). 111In remains 

the most widespread isotope for use in somatostatin receptor imaging, although a 
99mTc-labelled somatostatin analogue is licensed in the US for the assessment of 

pulmonary nodules (Gotthardt et al. 2004) and there have recently been 

encouraging results with 99mTc-labelled octreotide (Gabriel et al. 2003). Recently 

a 18F-labelled octreotide analogue (with carbohydrate modification) has shown 

promising results for PET imaging (Meisetschlager et al. 2006). A number of 

other regulatory peptides, including gastrin, VIP substance P and bombesin are at 

various stage of pre-clinical and clinical development as imaging agents 

(Gotthardt et al. 2004). 

1.2.2 RGD-sequence containing peptides 

The integrin αvβ3 (also known as the vitronectin receptor) is expressed in health at 

low levels on vascular and uterine and intestinal smooth muscle cells; it is also 

expressed on a minority of neutrophils and on activated macrophages and 

osteoclasts (Eliceiri & Cheresh 1999;Wilder 2002). In angiogenesis its expression 

is markedly upregulated on endothelial cells and, in adult humans, this is seen in 

wound healing, chronic inflammatory lesions and placental tissue. It is also 

upregulated within some tumours, such as melanoma, glioma, ovarian and breast 

cancer (Wilder 2002). αvβ3 binds a number of components of the extracellular 

matrix, including vitronectin and fibronectin. Studies in animal models have 

shown that therapeutic blockade of αvβ3 can induce endothelial cell apoptosis, 

inhibit angiogenesis and can cause tumour regression (Brooks et al. 1995). αvβ3 is 

upregulated on the vascular endothelial cells of rheumatoid synovium and its 

expression can also be demonstrated in the synovial lining layer (Baeten et al. 

2000;Walsh et al. 1998). In RA synovium, endothelial αvβ3 expression correlates 

with serum CRP (Baeten et al. 2000). Interestingly, differential αvβ3 expression 
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has been demonstrated between RA and spondyloarthropathy synovium, with 

decreased expression in the synovial lining in RA compared with SpA (Baeten et 

al. 2000). A comparison of normal, OA and RA synovial tissue found that 

synovial lining cell β3 expression was seen in 2/15 samples and limited to a 

minority of cells, 7/17 RA sections were positive (Rinaldi et al. 1997b). Despite 

this, trials of Vitaxin, a humanized version of the murine antibody LM609, in RA 

have been discontinued due to lack of efficacy∗, although trials are ongoing in 

oncology. 

 

It is well established that short peptide motifs can act as ligands for integrins. The 

best, and first, described is the arginine-glycine-aspartic acid (RGD) sequence 

which is present in a number of proteins. Its original description was within the 

fibronectin molecule: in a series of experiments a series of peptide fragments from 

the fibronectin sequence were tested in order to determine the minimal sequence 

which was necessary for cell attachment; this resulted in the description of the 

RGDS motif as sufficient to support cell binding (Pierschbacher & Ruoslahti 

1984a). Initial experiments found that the substitution of any of the RGD residues 

resulted in loss of activity, although some amino acid substitutions of the serine 

were compatible with function (Pierschbacher & Ruoslahti 1984b). Further 

experiments testing peptide inhibition of fibronectin binding to the fibronectin 

receptor (later identified as αvβ1) found that inhibitory activity was affected by the 

amino acid ‘X’ in the RGDX sequence, as well as the flanking amino acid 

sequences (Hautanen et al. 1989). This finding was underscored by the 

observation that the peptide GRGDSP, whilst substantially less active than a large 

110 kDa fibronectin fragment, was significantly more active than an 11.5 kDa 

fragment containing the same sequence; this suggests the importance of protein 

conformation and/ or surrounding sequences on the affinity of RGD-dependent 

ligand binding (Hautanen et al. 1989). These sequence variations also affect 

ligand specificity- for instance vitronectin, another RGD containing protein was 

inactive in these experiments. Some amino acid substitutions in the RGD 

                                                 
∗ Medimmune press release 30/08/2004, available at http://phx.corporate-
ir.net/phoenix.zhtml?c=83037&p=irol-investornewsArticle&ID=607978&highlight= 
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sequence were compatible with retained, although markedly reduced, activity; the 

reversed DGR sequence also had markedly reduced potency. Stereochemistry is 

also important: substitution of the L-aspartic acid with the D-isomer in a 

fibronectin-derived peptide fragment resulted in loss of activity (Pierschbacher & 

Ruoslahti 1987). 

 

Since the original description of the fibronectin sequence a number of 

extracellular matrix proteins have been shown to contain the RGD motif, 

including vitronectin, fibrinogen, thrombospondin, von Willebrand factor and 

osteopontin; collagen  also contains an RGD sequence which is exposed only after 

proteolysis (Eliceiri & Cheresh 1999): a number of these are upregulated in RA 

synovium (Nikkari et al. 1995). Interestingly, a splice variant of fibronectin 

containing the non-RGD containing CS-1 polypeptide sequence, which is a ligand 

for the integrin α4β1 is preferentially expressed in rheumatoid synovium (Elices et 

al. 1994). 8 of the known 24 human integrins are known to bind the RGD 

sequence in proteins (Ruoslahti 1996) and these are summarized in Figure 1.2. As 

well as affecting the affinity of the RGD peptide for its ligands, the flanking 

sequence can also affect its specificity for different ligands. For instance, 

substitution of D-serine for L-serine in the linear peptide Gly-Srg-Gly-Asp-Ser-

Pro-Cys resulted in loss of the peptides ability to inhibit cell binding to vitronectin 

whilst inhibition of fibronectin-mediated binding was little changed 

(Pierschbacher & Ruoslahti 1987). This study also demonstrated the dramatic 

effect of stabilisation of the conformation of the peptide by cyclisation: a cyclic 

peptide containing the same sequence had a log reduction in IC50 in the same 

vitronectin-based adhesion assay although, unexpectedly, inhibition of binding to 

fibronectin was lost. Peptide conformation results in significant loss of 

‘conformational freedom’ in solution; as conformation in solution may not reflect 

that seen bound to a receptor, it has been theorised that such restriction, when it 

includes the biologically active tertiary structure, will increase receptor affinity 

(Gurrath et al. 1992). NMR studies of cyclic peptide confirmation have suggested 

that confirmation is critical to integrin specificity with the distance between the 

Arg and Asp side chain carbon atoms being particularly important to specificity 



79 
 

for αvβ3 (Pfaff et al. 1994). This is in keeping with data suggesting that αvβ3 has a 

narrower and hence more restrictive RGD biding site (Pfaff et al. 1994 and 

references therein). Previous studies have shown that cyclic peptides are also 

more stable to degradation in vivo (Veber & Freidinger 1985). Studies in vitro 

have shown greater stability of cyclic peptides containing a disulphide bond at 

acidic and neutral pH compared with their linear equivalents; although under more 

basic conditions peptide deterioration was more pronounced, largely due to 

degradation of the disulphide bond (Bogdanowich-Knipp et al. 1999). 

 

Several other short peptide sequences have been identified as having specificity 

for sub-groups of integrins, such as the LDV motif present in the CS-1 fibronectin 

sequence (related sequences are also found in MAdCAM-1 and ICAM-1) which 

binds α4β1, α4β7 and α9β1 (Humphries, Byron, & Humphries 2006). The crystal 

structure of αvβ3 in association with RGD peptide ligand has been determined 

(Xiong et al. 2002): divalent cation-dependent binding occurs in the cleft between 

the α and β-subunits with the arginine and aspartic acid residues in close 

association with residues on the α and β chains respectively.  

 

 

Figure 1.2: The known associations of integrin α and β subunits to form RGD-
containing protein-binding dimmers. 
 

The identification of this short sequence has clear potential applications for the 

imaging and delivery of therapeutic compounds to tissues, such as tumours, which 

over-express RGD-binding integrins. Short peptide sequences have a number of 

potential advantages as pharmacological agents over longer polypeptides and 
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proteins: potentially cheaper production of synthetic vs. recombinant molecules, 

greater activity as a ratio to molecular weight, enhanced stability in storage, less 

tendency to immunogenicity and better penetration to the extravascular space 

(Ladner et al. 2004).  

 

The upregulated expression of αvβ3 in many pathological states and the versatility 

and relatively easy production of RGD-based peptides makes this an attractive 

tool for imaging and drug delivery. The most extensively investigated synthetic 

RGD peptides are derived from the cyclic pentapeptide Arginine-Glycine-

Aspartic acid-Phenylalanine-Valine (RGDFV) which has been shown to have high 

affinity and specificity for αvβ3 (Aumailley et al. 1991). 125I-labelled peptides 

derived from the lead peptide cited above, in which F or V has been substituted by 

a tyrosine residue, were shown to have around 30x the inhibitory capacity of a 

linear peptide on vitronectin/ αvβ3 binding in vitro (Haubner et al. 1999). 

Biodistribution studies in a xenograft model, in which human αvβ3-expressing 

melanoma cells were grown in athymic mice, found that the radioiodinated 

peptide homed specifically to tumours, with a maximum tumour: blood ratio of 

7.7 at 60 minutes. Similar results were seen with osteosarcoma xenografts, with 

specific uptake still seen at 4 hours (Haubner et al. 1999). These experiments 

found that clearance of the peptide was predominantly hepatic or intestinal with 

consequent accumulation of activity in the abdominal area- clearly this presents 

problems for tracer studies.  

 

Substitution of the valine residue for a lysine allows further derivitisation of the 

peptide via the ε-NH2 group of the lysine: conjugation of DTPA, a bifunctional 

chelating agent, to the lysine group allows subsequent radiolabelling with 111In. 

Investigations into the effect of metal chelation on RGD affinity have found that 

binding remains unaffected with DOTA- and HYNIC-conjugated small cyclic 

RGD peptides (Liu 2006). Studies with this agent in a tumour xenograft model 

found specific tumour uptake with predominantly renal accumulation (van Hagen 

et al. 2000). 111In-DTPA also has the advantage that it is a residualising 

radionuclide with consequent longer retention times by cells following uptake, 
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whereas amino acids are rapidly excreted form cell following lysosomal 

degradation of the peptide (Gotthardt et al. 2004): specific uptake by tumour cells 

was demonstrated in vitro (van Hagen et al. 2000). Further modification of the 

peptide structure has been employed to favourably alter the pharmacokinetics. 

Glycosylation of the c(RGDyK) peptide via the lysine residue resulted in minimal 

alteration of inhibitory IC50 in vitro. In vivo there was reduced hepatic uptake, 

longer circulation half life and improved tumour uptake, probably due to 

increased hydrophilicity (Haubner et al. 2001). Radio-iodinated c(RGDyK) which 

had been conjugated to PEG via the lysine ε-amino group showed faster blood 

clearance, lower renal accumulation and improved tumour uptake compared to the 

non-PEGylated peptide (Chen et al. 2004b).  

 

Peptide phage display has provided a powerful tool for the discovery of novel 

RGD-sequences: screening RGD-binding integrins with phage libraries containing 

variable numbers of disulphide-constrained sequences found that both ring size 

and flanking sequences were important in defining specificity (Koivunen, Wang, 

& Ruoslahti 1995). One particular peptide, ACDCRGDCFCG (RGD-4C) 

containing four cysteine residues with two disulphide bonds had 20-fold greater 

inhibitory capacity for αvβ3 or αvβ5 binding to vitronectin than single disulphide-

bond peptides. More recently a peptide with a single disulphide bond was 

identified by phage display which had similar inhibitory capacity for phage 

expressing this sequence as the free RGD-4C peptide (Holig et al. 2004). A 99mTc-

RGD4C peptide was tested in human renal adenocarcinoma and colon carcinoma 

xenografts: no significant uptake was seen between the test and control sequence 

peptides (Su et al. 2002). Modification of the labelling method (using EDDA 

rather than tricine as the co-ligand) reduced peptide protein binding but had no 

effect on uptake by human endothelial cells in vitro (Su et al. 2003).Although αvβ3 

expression was not assessed in the tumours, in vitro assays suggested low cell 

surface expression. It is difficult to draw conclusions about the relative efficacy of 

these peptides when tested in different models, but on the evidence available the 

cyclic pentapeptides appear to be the most promising, although as discussed in the 
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next paragraph there has been some success with the use of the RGD4C peptide as 

a delivery vector for a pro-apoptotic peptide. 

 

As well as applications as imaging agents, RGD peptides have also been used 

successfully as delivery agents for therapeutic molecules in several pre-clinical 

models. Doxorubicin was conjugated to the RGD-4C sequence discussed above 

and used to treat mice xenografted with human breast carcinoma tissue: mice 

treated weekly the RGD-doxorubicin had prolonged survival times compared with 

control groups of mice treated with doxorubicin coupled to a control peptide, 

doxorubicin alone or vehicle alone (Arap, Pasqualini, & Ruoslahti 1998). 

Furthermore, reduced vascular toxicity was seen in the heart and liver in those 

animals treated with the peptide-conjugated drug. In a similar model, mice treated 

weekly with the RGD-4C conjugated to a pro-apoptotic peptide ((KLAKLAK)2) 

had smaller tumours at 90 days than those treated with unconjugated RGD-4C and 

KLAKLAK peptides (Ellerby et al. 1999). Conjugation of paclitaxel, an anti-

tumour agent used in metastatic breast cancer, to a dimeric RGD peptide produced 

a molecule with slightly reduced pro-apoptotic activity on carcinoma cells in vitro 

but with specific in vivo homing to xenografted tumour tissue (Chen et al. 2005).  

1.3 Selective targeting of the synovium 

Selective or specific targeting of the synovium can be broadly divided into two 

categories: approaches used for the targeting of radioisotopes and those used to 

deliver therapeutic compounds. Within each of these groups both non-specific 

(selective) and specific localisation techniques have been investigated, and these 

will be discussed separately. 

1.3.1.1 Non-specific strategies 

A number of approaches are available to alter the pharmacokinetics of 

systemically administered compounds in order to favourably improve their 

biodistribution and therapeutic index. Perhaps the simplest of these is conjugation 

to a larger molecule such as polyethylene glycol (PEG). By increasing the 

molecular weight (mw) of a polypeptide or other compound by 60 kDa or more, 

PEGylation has a number of effects: these are further affected by the binding of 
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water molecules increasing the effective mw. PEGylation can have a dramatic 

effect on the circulating half-life, with increases seen from minutes to hours or 

days, it reduces renal clearance, protects the drug from degradation and reduces 

immunogenicity (reviewed in (Harris & Chess 2003)). Although biological 

activity may also be reduced, this can be largely off-set by the increased half-life. 

Examples of currently available drugs include PEGylated forms of interferon-α 

doxorubicin for the treatment of hepatitis C and breast cancer respectively (Harris 

& Chess 2003). In addition a PEGylated anti-TNFα antibody fragment has 

undergone a successful phase II trial in RA patients (Choy et al. 2002).  

 

Human polyclonal IgG labelled with 99mTc has been shown to be superior to 

MDP-99mTc for the imaging of inflamed joints: in one study differences in uptake 

were seen in erosive and non-erosive disease, and between RA and OA which 

were not seen with MDP-99mTc (de Bois et al. 1994). Although increased vascular 

permeability is the likely dominant factor in immunoglobulin accumulation, it is 

also possible that Fc receptors expressed by cells within the synovium play a role. 

In a recent comparative study, IgG-99mTc was shown to be superior to MDP-99mTc 

in assessing the efficacy of radiation synovectomy at the knee (Arzu et al. 2003). 

Moreover, IgG-99mTc has been shown to better distinguish between active and 

inactive joints in chronic RA (Berna et al. 1992). Other agents which have been 

used with some success in RA in include 99mTc-dextran (Kaya et al. 2004) and 
99mTc-ciprofloxacin (Appelboom et al. 2003): the latter study lacked a control 

tracer group, and the uptake seen was likely to have, again, been non-specific.  

 

The conjugation of drugs to large carrier molecules has also been successfully 

employed in pre-clinical models. Methotrexate has a relatively short plasma half-

life, largely due to rapid renal excretion: radiolabelled albumin accumulates in 

inflamed joints (Wunder et al. 2003) and conjugation of albumin to methotrexate 

has been shown to prolong its circulation time and to improve the 

pharmacokinetics in animal tumour and arthritis models (Stehle et al. 

1997;Wunder et al. 2003). An albumin/ MTX conjugate has been shown to be 

significantly more effective than unconjugated methotrexate for both the treatment 
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and prophylaxis of collagen-induced arthritis: increased uptake by synovial 

fibroblasts was demonstrated thus suggesting a second mechanism for enhanced 

synovial uptake  (Fiehn et al. 2004b;Fiehn et al. 2004a). 

 

Another technique for the improvement of tissue drug delivery is encapsulation in 

liposomes. Liposomes are vesicles consisting of a phospholipid bi-layer 

encapsulating an aqueous core and they have been successfully used for the 

delivery of a variety of therapeutic compounds (Torchilin 2005). Early work with 

liposomes was hampered by their high clearance rate by the reticuloendothelial 

system largely limiting their use to the targeting of these organs; PEGylation and 

other modifications can reduce opsonisation in the circulation and dramatically 

increase their circulating half-life. Examples of liposome formulations now in 

routine clinical use include doxorubicin and daunorubicin for the treatment of 

metastatic breast cancer and Kaposi’s sarcoma, and amphotericin B for the 

management of systemic fungal infection in immunocompromised patients 

(Torchilin & Lukyanov 2003). Other formulations being studied include those 

intended for use in nuclear imaging and the delivery of cytotoxic drugs, cytokines 

and gene therapy. Construction of liposomes from pH-sensitive polymers can 

allow fusion with the endovacuolar membrane after endocytosis and thus release 

of the payload into the cytoplasm. Application of liposome technology to the 

imaging and treatment of RA has been attempted for some time. Intra-articular 

injection of liposome-encapsulated corticosteroids resulted in a therapeutic 

response in a small group of patients with RA (de Silva et al. 1979). Encouraging 

results have been reported after injection of liposomal drug formulations in animal 

models: both liposomal MTX and clodronate had enhanced efficacy over the free 

drug when injected intravenously in a rat arthritis model with a reduction in the 

hematopoietic toxicity of MTX (Richards et al. 1999;Williams, Camilleri, & 

Williams 1994). The efficacy of MTX-liposomes was reduced when PEG-

liposomes were used, probably due to reduced synovial macrophage uptake 

(Williams et al. 2000). More recently it was shown that liposomal prednisolone 

was significantly more efficacious than the same dose of the free drug in two 

murine arthritis models (Metselaar et al. 2003;Metselaar et al. 2004). It was shown 
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in these studies that the intravenously-administered PEG-liposomes homed to 

inflamed joints and that there was an associated reduction in cartilage damage. 

Histologically, liposomes were shown to accumulate mainly in the lining layer. 

Impressively, the same therapeutic effect could only be achieved by repeated 

pulsed treatment with 10-fold higher doses of free prednisolone. 99mTc-liposomes 

have been shown to accumulate in inflamed joints in an animal model (Boerman 

et al. 1997) and uptake was shown to be as good as 111In-IgG in a small clinical 

study of inflammatory lesions including arthritis (Dams et al. 2000).  

 

Despite the favourable effects of the above delivery strategies, they are non-

specific and the use of techniques to target specific tissue or cells, particularly 

when combined with those detailed above, have the potential to further refine 

tissue-specific targeting. This will be discussed in the next section.  

1.3.1.2 Specific approaches 

A number of molecules have been investigated as potential targets for 

radionuclide imaging in inflammatory arthritis. The success of biological agents 

targeted at cytokines involved in the inflammatory cascade has led to their 

investigation as imaging agents. 123I-labelled interleukin-1 receptor antagonist 

(IL1-ra) was shown to accumulate in inflamed joints in patients with RA, but 

similar uptake was seen with radiolabelled albumin suggesting that the effect was 

non-specific (Barrera et al. 2000). In another study 99mTc-labelled anti-TNFα 

antibody was shown to accumulate in inflamed joints and this uptake was 

sensitive to short term change after treatment with corticosteroid (Barrera et al. 

2003). However, pre-treatment with blocking antibody showed that much of this 

effect was non-specific, but 25% of tracer accumulation could be attributed to 

specific uptake. The difficulty of substantial non-specific uptake was also 

highlighted by another study with a radiolabelled monoclonal antibody to rat CD4 

which did not show increased uptake over isotype control in an experimental 

model (Kinne et al. 1993). 
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A more successful approach has been targeting of E-selectin, an adhesion 

molecule which is up-regulated in the vascular endothelium in inflammation but is 

virtually absent in uninflamed tissues. It is upregulated on the endothelium of RA 

synovium (Smith et al. 2001) and levels of soluble E-selectin are raised in the 

serum of RA patients (Klimiuk et al. 2002). A comparison between 99mTc-human 

immunoglobulin (HIg) and 111In-Fab (from the 1.2B6 murine IgG1 anti-human E-

selectin clone) in RA patients found that E-selectin targeting offered enhanced 

sensitivity and probably specificity at 24 hours (Jamar et al. 1997). A more recent 

study found that this 111In-Fab had enhanced specificity over conventional 99m-

oxidronate bone scanning (Jamar et al. 2002). In vitro evidence that E-selectin is 

internalised by activated endothelial cells upon ligation with specific antibody 

(von Asmuth et al. 1992) adds to its attractiveness as a target.  

Another encouraging approach has been the targeting of folic acid receptors (Turk 

et al. 2002): these are up-regulated on the cell membrane of RA macrophages. In a 

rat arthritis model specific uptake of 99mTc-folic acid was seen in inflamed joints: 

specificity was confirmed by significant reduction of uptake when co-

administered with a saturating dose of unlabelled folic acid; reduction in uptake 

was also seen after macrophage depletion. 

Despite the aforementioned disappointment with anti-αvβ3 antibody in the 

treatment of RA, results so far with RGD peptides as treatment or drug delivery 

agent in animal models of arthritis are encouraging. Weekly intra-articular 

administration of the RGD peptide c(RGDfV) in rabbits with antigen-induced 

arthritis resulted in reduced joint swelling, neovascularisation, inflammatory cell 

infiltrate, pannus formation and cartilage erosions compared with animals treated 

with a control peptide (Storgard et al. 1999). In mice with collagen-induced 

arthritis, phage expressing an RGD peptide containing 2 disulphide bonds 

(RGD4C) which has selectivity for αvβ3 and αvβ5 was shown to accumulate 

specifically in the synovium of inflamed joints: this homing was inhibited by co-

injection of the free RGD4C peptide (Gerlag et al. 2001). Administration of the 

peptide conjugated to the pro-apoptotic domain D(KLAKLAK) 2 reduced clinical 

arthritis with an increase in apoptosis in synovial endothelial cells. 
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There has also been success in pre-clinical models with the targeted delivery of 

liposomes. As well as improving regional homing, the use of internalizing 

antibodies can further enhance cellular delivery (Andresen, Jensen, & Jorgensen 

2005). A recent paper described the use of liposomes conjugated to a cyclic RGD 

peptide to deliver dexamethasone to inflamed joints in a rat adjuvant-induced 

arthritis model (Koning et al. 2006). Animals treated with RGD-conjugated 

liposomes had a significantly greater improvement in arthritis scores than those 

treated with unconjugated liposomes. A peptide (identified by screening of a 

phage library) with binding affinity for the VEGF receptor has been shown to 

target liposomes to cells expressing the receptor in vitro (Janssen et al. 2003) and 

this may have future potential as a strategy for targeting in inflammatory arthritis. 

1.4 Platform technologies used in the project and p revious 

work 

1.4.1 The SCID mouse chimeric transplantation model  

The SCID (severe combined immunodeficiency) autosomal recessive mutation 

was first described in mice in 1983 (Bosma, Custer, & Bosma 1983). Affected 

animals have a defect in V(D)J recombination and have no functional B- or T-

cells: the mutation, on chromosome 16, also results in defects in DNA repair 

(Fulop & Phillips 1990). Beige-SCID mice have, in addition, reduced NK cell 

function and therefore may be more suitable recipients of xenografted tissue 

(MacDougall et al. 1990). Furthermore, beige-SCID mice have a substantially 

reduced incidence of ‘leakiness’- this spontaneous production of T-cells and 

immunoglobulin can affect up to 25% of mice bearing the SCID mutation alone 

(Mosier et al. 1993).  

 

The first description of the xenografting of human synovial tissue cells into 

immunodeficient (nude) mice was in 1981 when it was shown that synovial cells 

derived from human rheumatoid synovial tissue could survive after subcutaneous 

injection for up to 30 days (Brinckerhoff & Harris, Jr. 1981). Another successful 

cell-based approach has been the co-transplantation of RA fibroblasts and 

cartilage under the renal capsule of SCID mice, in which invasion into the 
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cartilage was shown (Muller-Ladner et al. 1996;Pap et al. 2001). Several 

techniques have been adopted for the transplantation of human synovial tissue into 

SCID mice; tissue used for these studies is generally obtained from patients 

undergoing joint replacement. The first description was of transplantation of small 

volumes of synovium under the renal capsule which had impressive (96%) graft 

survival up to 66 days. The most common approach is of subcutaneous 

transplantation: graft survival can be seen for several weeks with a high frequency 

of graft survival: human endothelial cells can be seen in tissues stained for human-

specific vascular markers and transplanted tissue retains its morphology although 

there is a reduction in mononuclear cell density with time (Proudman et al. 1999). 

The formation of anastomoses between the human and murine circulation can be 

demonstrated by immunohistochemical or immunofluorescent co-staining for 

human and murine-specific vascular markers (Lee et al. 2002;Wahid et al. 2000). 

Furthermore, these anastomoses can be shown to be functional, as demonstrated 

by the co-localisation of a biotinylated anti-ICAM-1 with human vessels within 

the grafts after intravenous injection of a human specific antibody (Wahid et al. 

2000). Four weeks after transplantation there is also down-regulation of the 

inflammatory phenotype, with reduced expression of the adhesion molecules 

VCAM-1, ICAM-1 and E-selectin in RA synovial grafts compared with the fresh 

tissue (Proudman et al. 1999). Notably, however, intragraft injection of pro-

inflammatory cytokines TNFα or IL-1β can up-regulate the expression of E-

selectin, VCAM-1 and ICAM-1 in the grafts. E-selectin expression returns to 

baseline by 24 hours whilst VCAM-1 and ICAM-1 expression can persist up to 48 

hours post-stimulation (Proudman, Cleland, & Mayrhofer 1999;Wahid et al. 

2000). Our group and others have reported that TNFα stimulation has also been 

shown to enhance the homing of human peripheral blood lymphocytes to 

engrafted tissue after intravenous or intraperitoneal injection of 111In-labelled cells 

(Jorgensen et al. 1996;Wahid et al. 2000).  

1.4.2 Peptide phage display 

The exploitation of filamentous phage as an expression vector for peptide 

sequences was first described in 1985. Wild-type M13 phage consists of a single 
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6408 nucleotide strand of DNA encapsulated by a protein coat: this is made up of 

2700 copies of the major coat protein PVIII (Rodi & Makowski 1999). Additional 

proteins are expressed at each end of the phage: at one end five copies each of 

PVII and PIX, and five copies each of PIII and PVI at the other (Figure 1.3). M13 

phage replicates by infecting its intermediate host Escherichiae coli (E.coli). The 

PIII protein attaches to the F pilus of the bacteria which is followed by 

internalisation. Double-stranded DNA (dsDNA) is produced which enables 

synthesis of the phage proteins and replication of the ssDNA: after assembly the 

phage particle is extruded form the bacterium (Kehoe & Kay 2005). Fusion of 

randomly synthesised (degenerate) oligonucleotide sequences into the phage 

genome allows the expression of peptides with the phage on the phage coat as 

fusion proteins (Devlin, Panganiban, & Devlin 1990). Of the phage coat proteins 

PIII, PVIII and PVI have been utilised but by far the most frequently used is PIII. 

Libraries of phage expressing randomly-generated peptide sequences can be 

screened against target ligands: elution of unbound phage and amplification of the 

bound phage pool results in the enrichment of phage clones expressing specific 

peptide binding sequences (Devlin, Panganiban, & Devlin 1990). The 

incorporation of flanking cysteine residues allows the formation of disulphide 

bonds between the –SH side-chains with resulting cyclic peptides: when linear 

and cyclic libraries were used to select peptides binding streptavidin similar 

peptide sequences were identified with greater affinity shown by the cyclic 

peptides (Giebel et al. 1995;McLafferty et al. 1993).  
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Figure 1.3: M13 phage structure. The coat protein PVIII encases a single strand 

of DNA with the various minor coat proteins expressed at either end of the virion 

(adapted from (Kehoe & Kay 2005)). 

 

1.4.2.1 In vivo phage display for the selection of novel peptides to 

vascular luminal epitopes 

The versatility of phage display technology places it in a unique position in its 

application to the identification of novel peptide or antibody sequence for the 

targeting of tissue. The injection of phage libraries into animals can, using the 

same principles used for in vitro phage selection, be used to identify clones with 

binding specificity to an organ or tissue of interest. One of the most attractive 

features of this technique is that no prior knowledge is needed of the ligand to 

which the phage will bind, and hence phage can be isolated by screening on a 

particular cell line or tissue with the subsequent identification of clones which 

bind to what may be previously unidentified ligands. In vivo screening has a 

number of advantages over in vitro strategies. A significant problem with 
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endothelial cells in culture is that they may progressively de-differentiate with loss 

of phenotypic expression of membrane-bound molecules and altered adhesive 

characteristics (Borsum et al. 1982;de Bono & Green 1984): this could include the 

loss of tissue-specific molecular determinants. Reasons for this are likely to 

include loss of the chemical and cellular microenvironment- for instance, 

regulation of expression of endothelin expression by myocardial endothelial cells 

was shown to be dependent on the close proximity of cardiac myocytes in co-

culture (Nishida et al. 1993). A study in which human endothelial cells were co-

cultured with RA fibroblasts derived from patients with RA found that ECs co-

cultured with the synovial, but not skin, fibroblasts were capable of supporting 

neutrophil recruitment (Lally et al. 2005). Furthermore, the selection of phage 

from libraries injected intravenously enables isolation of clones binding 

specifically to endothelial ligands- this is clearly of critical importance for the 

selection of novel sequences intended for development as mediators for the 

targeting intravenously-administered compounds. Finally, this selection occurs 

under conditions of physiological flow and hence will restrict clones to those with 

greater binding affinities. There are clear ethical barriers to the screening of 

human subjects (although there have been a small number if such studies as will 

be described later) and the transplantation of human tissue into 

immunocompromised animals provides a unique platform for the in vivo 

screening of human vascular endothelia. Heterogeneity of surface molecule 

expression is extensive throughout the circulation and variation in expression of 

endothelial-specific genes is widespread (Aird 2003). As already discussed in 

section 1.2.2.1 the description of tissue-specific addressins (either identified or 

implied) provides a good example of this diversity. Further evidence comes from 

studies of phage library screening in vivo. Screening of a phage-displayed peptide 

library in mice produced, after 3 rounds of selection, phage with homing 

selectivity for a variety of tissues (indeed, selective phage were isolated for all 

tissues analysed): sequencing of clones showed that binding motifs differed for 

each organ (Rajotte et al. 1998). Limited studies in human patients have produced 

similar results. Arap et al screened a seven amino-acid disulphide-constrained 

phage-displayed peptide library in a patient who had been declared brain-dead 
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(Arap et al. 2002b). Biopsies were taken from multiple tissues 15 minutes after 

intravenous injection of the library and high-throughput screening was used to 

analyse large numbers of isolated clones. Comparison of peptide motifs from 

phage isolated from the various tissues demonstrated that phage were distributed 

in a non-random manner and that certain motifs could be shown to occur 

significantly more frequently in particular organs. In another study, in which a 

phage library was injected into patients with end-stage malignancy, phage clones 

were again shown to accumulate non-randomly in tumour tissue- in some of these 

patients repeat screening rounds were possible (Krag et al. 2006). Several studies 

have translated the identification of tissue-specific peptides identified from phage 

display into conjugates for the delivery of therapeutic agents. As already 

discussed, in vivo screening of a human breast carcinoma cell line transplanted 

into SCID mice identified the integrin-binding RGD motif: conjugation of the 

peptide to doxorubicin was shown to improve the therapeutic index when  

compared to the free drug (Arap, Pasqualini, & Ruoslahti 1998). In this study 

another peptide motif, NGR, was also identified which, when conjugated to 

doxorubicin, had similar results. Although the NGR peptide motif had some 

binding affinity for the αvβ3 integrin this was weaker that seen with RGD and was 

not inhibited by the RGD peptide. Its ligand was subsequently identified as 

aminopeptidase N (APN), and this was found to be up-regulated in the vasculature 

of human and murine tumours (Pasqualini et al. 2000). Furthermore, antibodies to 

APN were found to have anti-angiogenic activity  Screening of a cyclic 

nonapeptide phage-displayed library identified a murine breast-homing sequence, 

CPEGPGAGC, for which was identified as being membrane dipeptidase (Essler 

& Ruoslahti 2002) and a 13 amino acid murine lung-homing sequence was found 

to bind to membrane dipeptidase (Rajotte & Ruoslahti 1999). Arap et al identified 

a peptide sequence, SMSIARL, with homing specificity for the prostate after 

screening a phage library in mice. Conjugation of this peptide sequence to the pro-

apoptotic sequence D(KLAKLAK)2 followed by intravenous injection resulted in 

damage specifically to prostate cells: the conjugate also significantly prolonged 

survival in mice genetically susceptible to prostate cancer (Arap et al. 2002a). 

Phage expressing a disulphide-constrained prostate-homing sequence, 
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CRRAGGSC, were found to co-localise with the interleukin-11 receptor IL11-Rα 

and that this is up-regulated in prostatic malignancy (Zurita et al. 2004). In 

another study illustrating the potential diversity of peptide phage-display 

applications, screening of a phage library in genetically obese mice identified a 

sequence, CKGGRAKDC, which targets adipose tissue. Intravenous injection of 

D(KLAKLAK) 2-conjugated peptide could reverse obesity in mice fed a high-

calorie diet. The peptide was found to bind to prohibitin, a membrane associated 

protein, which is thought to have a role in the regulation of cell survival (Kolonin 

et al. 2004). 

 

The above examples demonstrate the diversity of protein ligands which have been 

found to act as vascular receptors for tissue-specific phage. Whilst the best 

described peptide homing motif, RGD, binds an endothelial integrin, there are 

many instances of the receptor being of another class of proteins which may not 

be classic adhesion molecules, examples of which are given above. It is even 

possible that tissue-specific determinants may not be protein-based, for instance 

considerable variation in tissue distribution of heparan sulphates have been 

demonstrated using antibodies developed from phage display (Dennissen et al. 

2002). This serves to underline the diversity of endothelial molecular expression. 

There is widespread heterogeneity both between and within tissue in patterns of 

endothelial protein expression reflecting the diversity in function of these cells. As 

already discussed, variation is also seen in the expression of extracellular matrix 

proteins such as that seen with fibronectin. 

 

1.4.3 Previous work 

In our laboratory we have adapted the aforementioned chimeric synovium 

transplantation models for the in vivo panning of phage display libraries and 

investigation of targeting strategies. In our model, human OA or RA synovial 

tissue obtained from patients undergoing joint replacement is co-transplanted with 

human skin as a human control tissue. The successful engraftment of human skin 

into SCID mice is well-established: in one study engraftment was 90% successful 
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with preservation of normal histology 4 weeks after transplantation and retention 

of human vascular endothelial determinants (Yan et al. 1993). As with synovial 

grafts, low levels of VCAM-1 and E-selectin expression were present in the grafts 

with somewhat higher levels of ICAM-1; all three were up-regulated by intragraft 

injection of TNFα (Yan et al. 1993). In this model TNFα stimulation induced 

ingress of murine leucocytes into the transplanted tissue and this was inhibited by 

prior intravenous administration of anti-E-selectin antibody (Yan et al. 1994). In 

agreement with previous researchers, we found successful engraftment of both 

skin and synovial tissues with the majority of transplants surviving; 

vascularisation was found to be similar for both tissues (Lee et al. 2002). The 

scheme for biopanning and enrichment of phage was as detailed in Figure 1.4.  A 

M13 phage library, in which seven amino-acid, disulphide-constrained peptides 

were expressed by the PIII protein were obtained from a commercial source (New 

England Biolabs, Hitchin, UK), was first validated by biopanning against 

streptavidin in vitro. The phage clones isolated, expressing a peptide containing 

the expected HPQ motif, were subsequently used as controls. 1011 plaque-forming 

units (pfu) of phage were injected intravenously into SCID mice double-

transplanted with 2 synovial and 2 skin transplants. After 15 minutes incubation 

the thoracic cavity was exposed under terminal anaesthesia and the circulation 

perfused via the left ventricle with saline. The grafts were extracted and 

homogenised prior to elution of bound phage form the tissue: this pool of phage 

was amplified by co-culture with the E.coli host before re-injection into 

transplanted mice. After 4 rounds of selection homing of the synovium-selected 

phage pool was increased 600-fold over the control phage clone. This specific 

homing was seen with both OA and RA grafts and co-localisation of the phage 

with human vascular endothelium was seen on immunofluorescent staining of the 

grafts, with minimal staining in the skin tissue. One clone from the final round of 

selection which exhibited 10-fold selectivity for synovium over the control was 

selected for further study. Homing of this clone, expressing the sequence 

CKSTHDRLC, was inhibited in a dose-dependent manner by co-injection of the 

free biotinylated synthetic peptide (not seen with the control peptide). Co-
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localisation of the peptide was also seen with human vascular endothelium within 

the synovial grafts. 

 

 

Figure 1.4: Outline of technique for in vivo phage selection. A Phage library 

expressing random peptide sequences is injected into SCID mice transplanted 

with human skin and synovium. After 15 minutes incubation the transplanted 

tissues are retrieved, homogenised and phage eluted (B). Phage concentration can 

then be determined in the tissue or phage can be re-amplified in plate culture (C), 

purified (D) and re-injected into transplanted mice. Successive enrichment rounds 

result in the identification of phage expressing peptide sequences which confer 

homing specificity for the tissue of interest.  
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1.5 Aims and outline of thesis 

The primary purpose of this thesis was to develop the synovial-homing peptide as 

a vector for the targeting of diagnostic and therapeutic agents to human synovium. 

In particular the aims were as follows: 

 

1. To further develop and characterise the synovial homing phage and the 

human SCID mouse transplantation model as a platform for the validation 

of novel targeting agents. 

2. To develop monomeric synthetic synovial homing peptides to deliver 

radioisotope imaging agents specifically to human synovium in in vivo 

biodistribution studies in the SCID mouse chimera model. 

3. To develop novel polymeric peptide constructs in order to increase 

specific affinity and tissue delivery. 

 

Firstly, in Chapter 3, I demonstrate that the synovial homing (3.1) phage clone 

localises reproducibly to transplanted human synovium. Notably synovial 

localisation was found to be increased by up-regulation of the inflammatory 

phenotype of the transplanted tissue. In particular adhesion molecule expression in 

stimulated tissue was examined to confirm up-regulation of endothelial 

inflammatory markers. Finally, in this Chapter, I examined sequence homology 

between the peptide and candidate molecular mediators of tissue-specific homing 

and investigated the potential of such candidates in ligand binding assays. 

 

In Chapter 4 the transplantation model was developed as a tool for the 

investigation of novel agents using SPECT-based imaging of synovial tissue. The 

SPECT/CT imaging system was validated specifically with the SCID mouse 

chimera model, as was the quantification of uptake of radioactivity within 

transplanted tissues. This system was used to demonstrate that specific uptake of a 

radiolabelled anti-E-selectin antibody could be differentiated form the non-

specific uptake of an isotype control, thereby demonstrating the potential of this 

model as a platform for testing novel tissue/inflammation specific agents. 
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In Chapter 5 the synovial homing peptide was labelled with the radioisotopes 111In 

or 99mTc and tested for homing specificity in the transplantation model. In vitro 

stability and protein binding of the 99mTc-labelled peptides were investigated and 

the effect of alternative labelling chemistries explored. The potential contribution 

of increased permeability of the vascular endothelium of the transplanted human 

synovium and skin was also investigated. 

 

In Chapter 6 a novel method was developed for the rapid tetramerisation and 

radiolabelling of peptide by conjugation to 111In-labelled streptavidin. The 

constructs were validated extensively in vitro using RGD peptides of similar 

length and identical linkers prior to the testing in vivo of synovial-homing 

specificity in transplanted SCID mice. 

 

Finally, in Chapter 7, a novel method is described for the coating of fluorescent 

microspheres with peptide. These were tested in vivo with RGD peptides before 

injection of synovial-homing peptide into transplanted mice in order to determine 

homing to transplanted tissues. 

 

In Chapter 8 the findings from the experimental work is discussed in detail and 

the thesis finishes with a discussion of future work which may be of benefit in this 

area. 
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2 Chapter 2: Materials and methods 
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2.1 The SCID mouse transplantation model 

The animal work described in this project is based on the human synovium 

chimeric transplantation model which has previously been described extensively.  

Human skin was co-transplanted when indicated as a human control tissue. 

2.1.1 Ethical approval 

Tissue collection was carried out at the time of operation in patients undergoing 

knee replacement surgery. Ethical approval was obtained from the local ethics 

committee (Local Research Ethics Committee number 05/Q0703/198). Informed 

written consent was obtained from patients at the time of surgery. 

A project license for all the animal work carried out was obtained from the Home 

Office. 

2.1.2 Tissue collection and processing 

Tissue removed during surgery was obtained from patients undergoing surgery at 

Guy’s Hospital. Tissue was collected in sterile containers and washed in sterile 

Hank’s balanced salt solution (HBSS). Synovium was dissected from the tissues 

in a class II laminar flow hood and cut into pieces of a suitable size for transplant 

(~5mm3). Freezing media was prepared by diluting 20% dimethyl sulphoxide 

(DMSO) (Sigma) in heat-inactivated fetal calf serum (Sigma) and mixing 1:1 with 

RPMI medium. Tissue in ~1 ml of freezing media was placed into cryovials 

(Nunc, Roskilde, Denmark) and put in an isopropanol cell freezing chamber 

which was transferred to a -80 0C freezer. Once frozen the vials were stored long-

term under liquid nitrogen. Tissues were prepared for histology by snap freezing 

in OCT embedding matrix (CellPath, Newtown, UK) in liquid nitrogen-cooled 

isopentane. Tissues were stored at -70 0C until needed. Tissue sections were cut at 

a thickness of 6 µm in a manual cryostat (Leica Microsystems, Milton Keynes, 

UK) and placed onto glass slides (Superfrost+, VWR, Poole, UK) and air dried 

overnight before storing at -700 C. 
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2.1.3 Animals 

Breeding pairs of severe combined immunodeficient (SCID) mice were 

maintained in sterile conditions in an isolator under positive pressure in the 

Biological Services Unit, St Thomas’ Hospital or at the William Harvey Institute, 

Queen Mary University of London. Mice were transplanted at 4-6 weeks old.  

2.1.4 Tissue processing for transplantation 

Prior to transplantation frozen tissue was defrosted at 370C in a SW20 circulatory 

water bath (Julabo, Peterborough, UK) and washed in sterile HBSS. The tissues 

were wrapped in sterile gauze moistened with HBSS and placed in sterile 50 ml 

centrifuge tubes (Corning, Artington, UK) for transport. 

 

Anaesthetic was prepared by mixing Hypnorm (0.315 mg/ml fentanyl citrate, 10 

mg/ml fluanisone; Vetapharma, Leeds, UK), Hypnoval (midazolam 5 mg/ml, 

Roche) and sterile water in a 1:1:6 ratio. Mice were anaesthetised by 

intraperitoneal injection of 100-120 µg of anaesthetic. One or two incisions 

(depending on whether the mice were to be transplanted with synovium and skin 

or synovium alone) either side of the midline were made in the dorsal skin and the 

tissue inserted and secured with insoluble sutures (Ethicon, Ohio, USA). Mice 

were used for experiments 2-4 weeks after tissue transplantation.  

2.1.5 Stimulation of grafts with TNF αααα 

For intragraft injection of TNFα mice were anaesthetised with 1.2 L/minute O2 +  

Halothane (induction concentration 4%, maintenance concentration 2%) using 

Boyle’s apparatus. Grafts were injected with 50 µL 0.9% saline containing 200 ng 

recombinant human TNFα (R and D Systems, Abingdon, UK) or 50 µL 0.9% 

saline control with a 1 ml insulin syringe (Becton Dickinson, Oxford, UK).  

2.1.6 Evans blue vascular permeability assay 

In order to assess the permeability of the transplanted tissues to macromolecules 

the Evans Blue permeability assay was used. SCID mice transplanted with human 

tissues were injected via the tail vein with 200 µL Evans Blue (Sigma) diluted to 

0.5 mg/ml in sterile PBS (~50 mg/kg). After an hour the thoracic cavity was 
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exposed under terminal anaesthesia and the circulation perfused with 50 ml 0.9% 

saline as described for the phage studies. Tissues were retrieved and frozen in 1.5 

ml centrifuge tubes until analysis.  

To quantify dye uptake in the tissues the tissues were defrosted, washed twice in 

PBS and weighed in clean 1.5 ml centrifuge tubes. 1 ml formamide (Sigma) was 

added and the tubes were incubated at room temperature for 6 days. At the end of 

the incubation period the samples were centrifuged in a microcentrifuge for 10 

minutes at 10,000 rpm: the formamide was then carefully pipetted into 1 ml 

plastic cuvettes and the absorbance at 620 nm read in a spectrophotometer 

(Ultrospec 2100 pro, Amersham Biosciences, Amersham, UK).  

2.2 Amplification, sequencing and titering of phage  

clones. 

In this project two phage clones were used for in vivo biodistribution and in vitro 

candidate ligand adhesion assay. The synovial-homing phage expressing the 

disulphide-constrained peptide sequence CKSTHDRLC (hereafter known as clone 

3.1) and a phage clone expressing the disulphide-constrained streptavidin-binding 

sequence CGTWSHPQC  (SC1) (as a negative control), both of which were 

isolated in the course of the work described in the introduction, were used for the 

in vivo  and in vitro experiments. 

2.2.1 Preparation of materials 

2.2.1.1 LB media 

10 g Bacto-tryptone 

5 g yeast extract 

5 g sodium chloride 

Reagents were dissolved in 1 L distilled water and autoclaved 

2.2.1.2 Xgal/IPTG Agar plates 

The phage used in this project were derived from a library created with the 

cloning vector M13mp19 which contains the lacZα gene. 5-Bromo-4-chloro-3-

indolyl-beta-D-galactopyranoside (X-Gal) is a substrate for β-galactosidase, 
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which is encoded for by the lacZα gene: phage plaques therefore appear blue 

allowing for easy identification. isopropyl β-D-thiogalactoside (IPTG) binds and 

inhibits the lac repressor and hence acts as an inducer for the enzyme. 

A solution was prepared by dissolving 1g of X-gal (Cambio, Cambridge, UK) and 

1.25 g of IPTG (Cambio) in 20 ml of dimethyl formamide. The solution was 

stored in the dark at -200 C. Agar was prepared by dissolving 14 g of agar in 1 L 

LB media and autoclaving: once the solution had cooled to <70 0C 1 ml of X-

gal/IPTG solution was added and the agar poured into triple-vented Petri dishes. 

The agar was allowed to harden overnight and stored in the dark at 4-80 C. 

2.2.1.3 Agar top 

7 g agar and 1 g MgCl2.6H2O were dissolved in 1 L LB media and autoclaved. 

The solution was decanted into sterile 50 ml tubes and stored at RT. 

2.2.1.4 TBS 

Tris-buffered saline (TBS) was prepared by dissolving 50 mM Trizma base and 

150 mM NaCl in 1 L distilled water. The pH was adjusted to 7.5 with HCl and the 

solution autoclaved. 

2.2.1.5 Minimal media agar plates 

2xM9 salt was prepared by dissolving 12 g Na2HPO4, 6 g KH2PO4, 1 g NaCl and 

2 g NH4Cl in 1 L distilled water. 

2.2.1.6 Maintenance of E.coli host 

In order to positively select for E.coli expressing the bacterial F-pilus, bacteria 

were streaked from -700C glycerol stocks onto minimal media agar plates and 

incubated overnight at 370C. Bacteria were amplified for use in phage 

experiments by seeding a single colony from the plate into a sterile cell culture 

flask containing 50 ml of LB media. The flask was incubated in a shaking 

incubator overnight at 37 0C and then stored at 4 0C. 
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2.2.2 Amplification 

Phage clones (from the library of M13 phage expressing seven-amino acid 

disulphide-constrained cyclic peptides (Ph.D.C7C system, New England Biolabs, 

Hitchin, UK) used to select for synovial-homing sequences in vivo as previously 

described)  were amplified by adding 5 µL phage stock and Escherichia coli host 

(New England Biolabs) to 3 ml agar top and incubating on IPTG/XGAL plates 

(agar (14g/L agar in LB media containing 1ml/L IPTG/XGAL (25 ml dimethyl 

formamide containing 1.25 g isopropyl β-D-thiogalactoside and 1 g 5-bromo-4-

chloro-3-indolyl-β-D-galactoside (Cambio)) overnight at 370 C. The phage layer 

was then homogenized in 25ml LB media and centrifuged for 1 hour at 2,400 g in 

50 ml centrifuge tubes in an ALC PK131R centrifuge (ALC, Italy). Phage was 

precipitated by the 1:6 addition of 20% PEG-8000 with 2.5 M NaCl and 

incubating in ice for 1 hour. The tubes were centrifuged again for 1 hour at 2,400 

g and the supernatant discarded. The pellet was re-suspended in 1 ml TBS (50 

mM Tris-HCl pH 7.5, 150 mM NaCl), transferred to 1.5 ml centrifuge tubes and 

centrifuged for 10 minutes at 13,000 rpm in a microcentrifuge (MSE 

Microcentaur, Sanyo, Watford, UK). The supernatant was transferred to 50 ml 

centrifuge tubes, diluted to 5 ml in TBS and 1:6 PEG/NaCl added before 

incubating for 1 hour on ice. The tubes were centrifuged for 30 minutes at 2,400 g 

and the phage pellet resuspended in 1ml TBS which was diluted 1:1glycine for 

storage at -200 C.  

2.2.3 Quantification by titration  

Phage concentrations were determined by diluting the stocks in 108-109 in LB 

media and adding 10 µL to 200 µL of amplified E.coli diluted 1:50 in LB media. 3 

ml agar top (melted and allow to cool to <500C) was added and the agar was 

poured onto IPTG/Xgal plates in triplicate and incubated overnight at 370 C. Blue 

plaques representing individual plaque-forming units (pfu) were counted: 

dilutions were carried out in order to ensure that the minimum number of counts 

per plate was 100 in order to maximize accuracy. 
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2.2.4 Confirmation of PIII displayed peptide sequen ces 

DNA was extracted from the phage stocks as follows. 100 µL of phage stock was 

diluted 1:10 in TBS in 1.5 ml centrifuge tubes and centrifuged for 10 minutes at 

13,000 rpm in a microcentrifuge. The supernatant was transferred to a clean 1.5 

ml centrifuge tube, diluted 2:5 with PEG/NaCl and incubated on ice for 10 

minutes. The tubes were centrifuged at 13,000 rpm for 10 minutes and the 

supernatant discarded. The pellet was re-suspended in 200 µL iodide buffer (10 

mM Tris pH 8.0 + 4 M NaI), 500 µL ethanol was added and the tubes incubated 

for 10 minutes at RT. The supernatant was discarded and the pellet washed in 

70% ethanol before re-suspension in TBS pH 8.0. The DNA concentration of the 

sample was confirmed with a Nanodrop spectrophotometer reading absorbance at 

260 nm. 8.8 µL of the DNA solution was added to thin walled PCT tubes 

(Greiner, Stonehouse, UK). 3.2 µL of -96 III primer (5´- HOCCC TCA TAG TTA 

GCG TAA CG –3’, New England Biolabs) at a concentration of 1 pmol/L in 

distilled water was added to the tubes. Finally, 8 µL of BigDye terminator ready 

reaction mix (Applied Biosystems, Warrington, UK) was added and the PCR 

performed in a GeneAmp 9600 PCR cycler (Applied Biosystems). At the end of 

the cycle unincorporated dye terminators were removed by ispropanol 

precipitation: 20 µL of distilled water and 60 µL of isopropanol was added to each 

tube, mixed and incubated at RT for 15 minutes. The tubes were centrifuged for 

20 minutes at 13,000 rpm and the supernatant removed. The DNA pellet was 

washed with 75% isopropanol and re-centrifuged. The supernatant was removed 

and the tubes stored at -20 0C until use. 

 

The sequencing gel was prepared by adding 35 µL of N,N,N’N’-

tetramethylethylenediamine and 250 µL of ammonium persulphate to 30 ml gel 

solution (5% polyacrylamide, 6 M urea) and pouring into a 36 cm glass plate 

cassette. A 36-lane comb was placed at the top of the gel after polymerisation and 

the cassette loaded into an ABI Prism 377 sequencer. The buffer tanks were filled 

with a tris-borate/ EDTA buffer (National diagnostics, Hessel, UK) and the pre-

run sequence (preSeq Run 36E-1200) initiated. The sequencer, controlled 

remotely by a Macintosh power PC, was set for a 1200 scans/hour using the run 
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module, Seq Run 36E-1200, and dye set/primer (mobility) file, DT [BD Set Any-

Primer], configured for the Filter Set E data collection.  

 

The loading buffer was prepared by adding 400 µL of formamide and 100 µL of 

blue dextran (25 mM EDTA (pH8.0) with blue dextran (50 mg/mL), Perkin-

Elmer). Once the plates had reached the optimal temperature the DNA samples 

were reconstituted in 3 µL of loading buffer and denatured by heating to 95°C for 

2 minutes on a PCR cycler. The samples were kept on ice whilst the samples were 

loaded onto the gel. For each of the samples, 2 µL were loaded into the wells 

according to the corresponding description on the sample sheet. The 7-hour run 

module program (Seq Run 36E-1200) was initiated for the electrophoresis of the 

PCR products. The data generated for the laser scanned gel image was analysed 

by ABI Prism software and the complementary insert sequence was derived. For 

later studies the sequencing system was unavailable and the primer and DNA 

were therefore sent for sequencing by a third party (Cogenics, Takeley, Essex, 

UK). 

 

The DNA sequence was then decoded for peptides using a website based 

translation utility (http:bio.lundberg.gu.se/edu/translat.html). The algorithm for 

translating the encoding DNA to the peptide sequence is described in Table 2.1. 
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 Clone 3.1 

3’5’ antisense sequence GCA CAG ACG ATC ATG AGT CGA CTT ACA 

Translated sequence Cys  Lys  Ser   Thr  His  Asp  Arg  Leu  Cys 

 

 Clone SC1 

3’5’ antisense sequence GCA CTG CGG ATG AGA CCA CGT ACC ACA 

Translated sequence Cys  Gly  Thr   Trp  Ser  His   Pro  Gln  Cys 

  

Table 2.1: PIII gene inserted sequences obtained by sequencing of 

phage clone DNA. The     3’5’ antisense sequence was translated using 

the web-based translation tool at http://www.expasy.ch/tools/dna.html 

2.2.5 ELISA of phage binding to candidate ligands 

This method was used to determine the binding of phage to immobilised candidate 

ligands. Divalent cations were added to all buffers used in the ELISA 

experiments. 

Buffers were made up for the ELISAs as follows 

Binding buffer: 20 mM Tris-buffered saline pH 7.4 (20 mM Tris Base, 150 mM 

NaCl) containing 0.5 mM MgCl2, 1 mM MnCl2 and 1 mM CaCl2 

Wash buffer: Binding buffer + 0.1% Tween-20 

Blocking buffer: Binding buffer + 2% bovine serum albumin (BSA) (VWR, 

Poole, UK) 

Conjugate buffer: Wash buffer + 1% BSA 

Recombinant ICAM-1 (R and D Systems), plasma fibronectin (Sigma) or 

streptavidin (Sigma) were dissolved to the required concentrations binding buffer 

and added to 96-well plates (Maxisorb, Nunc) and incubated overnight at 40 C. 

The plates were washed 4 times in wash buffer and then blocked with 200 µL 

blocking buffer for 2 hours at room temperature (RT). The plates were washed 

again 4 times and incubated with 50 µL phage at the required concentrations in 

conjugate buffer for 1 hour at RT. The plates were washed again 4 times in wash 

buffer and incubated with 50 µL HRP-conjugated anti-M13 antibody (Amersham 
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Biosciences, Amersham, UK) diluted 1:5,000 in conjugate buffer for 1 hour at 

RT. The substrate buffer was prepared by dissolving 1 tablet of  3,3’,5,5’–

Tetramethylbenzidine Dihydrochloride (TMB) (Sigma) in 10 ml 0.05 M 

phosphate-citrate buffer pH 5.0 with the addition of 2 µL of 30% H2O2 (Sigma) 

immediately prior to use. 50 µL of the substrate was added to each well and the 

colour allowed to develop. The reaction was stopped by the addition of 12.5 µL of 

2 M H2SO4 and the absorbance at 450 nm read in an automated plate reader 

(Anthos Scientific Instruments, Salzburg, Austria). 

2.2.6 In vivo distribution of phage 

Phage were diluted from stocks titrated as above to 1011 pfu/ 200 µL 0.9% saline 

and kept on ice until use. SCID mice transplanted with human synovium and skin 

injected intragraft 6 or 18 hours previously with TNFα or 0.9% saline were 

injected intravenously via the tail vein with 1011pfu of 3.1 or control phage and 

incubated for 15 minutes. Under terminal anaesthesia the chest cavity was 

exposed by an incision in the midline of the anterior chest wall and retracted with 

a clamp. The heart was cannulated via the left ventricle, an incision was made in 

the right atrium and the circulation perfused with 50 ml 0.9% saline. The 

transplanted tissues were retrieved and washed in sterile PBS before placing in 

sterile 7 mL plastic vials and storing at -200C. Tissues to be used for histology 

were immediately snap frozen in OCT in liquid nitrogen-cooled isopentane.  

 

Extracted grafts were defrosted to room temperature, washed 3 times in TBS and 

weighed before homogenization in TBS containing protease inhibitor cocktail. 

100 µL of homogenate was placed in a clean vial and the phage eluted by the 

addition of 200 µL 0.1 M glycine pH 2.0. After 2 minutes incubation the solution 

was neutralized by the addition of 12 µL 2 M tris base after which the solution 

was then diluted 1:10 or 1:100 in TBS containing 10 µL protease inhibitor 

cocktail/ 10mL and titrated onto IPTG/Xgal plates with E.coli host as detailed 

above. The plates were incubated overnight at 37 0C and individual plaques 

counted the following morning as detailed above. 
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At the end of experiments in which the transplants were required to be analysed 

histologically the transplants were placed in OCT and snap-frozen in liquid 

nitrogen-cooled isopentane and stored at -70 0C until needed 

2.2.7 BLAST search for protein sequence matches wit h the 

synovial-homing peptide 

In order to investigate whether the constrained peptide sequence expressed by the 

synovial-homing phage has any homology with known human proteins the 

peptide sequence was entered into the basic logic assignment search tool 

(BLAST) available at http://130.14.29.110/BLAST/. This tool searches for areas 

of sequence similarity between the reference sequence and registered protein 

sequences. The search was restricted to human proteins and modified to search for 

short sequences. 

2.3 Immunohistochemistry and immunofluorescence 

staining 

2.3.1 Immunohistochemistry protocols 

Fresh human synovium or skin, murine tissues, ex vivo transplants of tissues 

transplanted into SCID mice and ex vivo tumour tissue were prepared for 

histology by embedding in OCT media and snap-freezing in liquid-nitrogen 

cooled isopentane. Frozen tissues were stored at -80 0C until required. OCT-

embedded tissue was cut into 5 µm sections in a cryostat (Leica) and placed onto 

glass slides (Superfrost Plus, VWR, Poole, UK). Slides were dried overnight and 

frozen at -800C until required. 

2.3.1.1  Anti-E-selectin/ CEA 

For staining the slides were fixed in acetone at 4 0C for 10 minutes and blocked 

with serum-free protein block (Dako, Ely, UK) for 30 minutes at room 

temperature (RT). Slides were incubated in primary antibody (anti-CEA diluted 

1:100 (from 1 mg/ml stock), anti-E-selectin diluted 1:200 (from 2 mg/ml stock) in 

antibody diluent (Dako)) for 1 hour at RT. The slides were washed in TBS pH 7.4 



109 
 

3 times and incubated with Envision HRP-conjugated anti-mouse/ rabbit polymer 

(Dako) for 30 minutes at RT. After a further 3 washes the HRP substrate DAB 

was added for 3 minutes and rinsed off. The slides were washed in TBS for 5 

minutes and immersed in haematoxylin for 20 seconds before washing in distilled 

water for 3 minutes and tap water for a further 10 seconds. The sections were 

dehydrated and cleared by incubation for 2 minutes twice each in ethanol and 

xylene and mounted with Depex mounting medium (VWR).  

2.3.1.2 Staining  for human von Willebrand factor and murine 

CD31 

For quantification of total vascularisation of transplanted human skin and 

synovium and murine organs tissues were double-stained for the species-specific 

vascular endothelial markers human von Willebrand Factor (vWF) and murine 

CD31. 

 

Slides were defrosted and fixed in acetone for 10 minutes at 40 C. After air-drying 

the slides were rehydrated in TBS and blocked with biotin block (Dako) according 

to the manufacturer’s instructions. The slides were then washed twice in TBS for 

5 minutes each and blocked with serum-free protein block (Dako) for 30 minutes 

at RT. The slides were blotted dry and incubated with the primary antibodies- 

anti-human vWF (Dako, clone F8/86) 1:300 and biotinylated anti-murine CD31 

(clone MEC 13.3, BD Pharmingen, Oxford, UK) 1:400, diluted in antibody 

diluent (Dako) for 1 hour at RT. At the end of the incubation the slides were jet-

washed with TBS and washed twice in TBS as before. The slides were incubated 

with biotinylated rabbit anti-mouse antibody (Dako, clone E0464) diluted 1:300 in 

antibody diluent for a further 30 minutes at RT followed by horseradish 

peroxidase-conjugated avidin-biotin complex (Dako) for 30 minutes. The slides 

were washed again and incubated with the HRP substrate diaminobenzidine 

(DAB) (Dako) for 3 minutes. After washing the slides were counterstained by 

immersion in haematoxylin for 20 seconds and washed for 3 minutes in distilled 

water and 10 seconds in tap water. The slides were dehydrated by incubation for 5 
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minutes in 2 changes of ethanol and cleared by incubation in 2 changes of xylene, 

followed by immediate mounting in DePEX. 

2.3.1.3 Staining of ex vivo A375P tumours for murine CD31 and 

αvβ3 

Tissue sections were prepared for staining as above. Slides were removed from 

storage and allowed to come to room temperature after which they were fixed in 

acetone at 4 0C and blocked with biotin blocking solutions followed by protein 

block as in the previous sections. The slides were incubated with the primary 

antibodies biotinylated anti-murine CD31 (as above), anti- human αvβ3 

(Chemicon, clone LM609) diluted 1:200 or murine IgG1 isotype control. After 

washing the anti-αvβ3 treated sections were incubated with the secondary antibody 

biotinylated rabbit anti-mouse immunoglobulins (Dako, clone E0464) diluted 

1:300 for 30 minutes. After washing the sections were incubated with alkaline 

phosphate-conjugated avidin biotin complex (Dako) for 30 minutes followed by 

the alkaline phosphatase reagent Vector Red (Vector Laboratories, Peterborough, 

UK) for 20 minutes, made up in Tris-HCl pH 8.2 according to the manufacturers 

instructions, to which was added 50mg/ml levamisole (Sigma). After a further 

wash the slides were counterstained as previously and mounted with VectaMount 

(Vector Laboratories). 

2.3.2 Immunofluorescence 

2.3.2.1 Preparation of MOWIOL mounting media 

6 g glycerol (Sigma) was added to 2.4 g Mowiol 4-88 (Calbiochem, Darmstadt, 

Germany) in 6 ml double-distilled water with 12 ml 0.2M Tris buffer pH 8.5. 

(Calbiochem, Darmstadt, Germany) and mixed for 24 hours at RT on a magnetic 

stirrer. The solution was heated to and held at 50 0C for 10 minutes after which it 

was centrifuged for 15 minutes at 5,000 g. The supernatant was decanted and 

stored in aliquots at -20 0C until needed.  
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2.3.2.2 Immunofluorescent staining for M13 phage 

Transplant sections from mice injected intravenously with phage were stained for 

M13 phage with counterstaining for human vessels as follows: 

Tissue sections were prepared as for previous experiments and fixed in acetone at 

40C for 10 minutes. After air drying the slides were blocked with serum-free 

protein block (Dako) for 30 minutes at RT and then incubated with the primary 

murine anti-M13 antibody (Serotec, clone MCA1858R) diluted 1:400 for 1 hour 

at RT. The slides were washed 3 times in TBS and then incubated with 

biotinylated rabbit anti-mouse (Dako, as above) diluted 1:300 for 30 minutes. 

After washing the slides were incubated with Alexa Fluor 555-conjugated 

streptavidin (Molecular Probes, Invitrogen, Paisley, UK) 10 µg/ml for 30 minutes 

and washed. The sections were counterstained for human vWF by incubation with 

FITC-conjugated sheep anti-human vWF (Serotec, AHPO62F) diluted 1:100 for 

30 minutes. After a final wash the slides were mounted with MOWIOL mounting 

media supplemented with 90 mg/ml diazobicyclo-octane (DABCO) (Sigma).  

2.3.2.3 Immunofluorescent staining for ICAM-1and E-selectin 

Ex vivo transplants +/- TNFα pre-stimulation were stained for the adhesion 

molecules ICAM-1 and E-selectin using the primary antibodies synthesized from 

hybridoma supernatants as described above. The dilutions used were 0.2 µg/ml 

and 1 µg/ml for the anti-ICAM-1 anti E-selectin antibodies respectively. The 

protocol was otherwise as for M13 staining. 

 

For the quantification of the endothelial expression of E-selectin representative 

sections of grafts treated with TNFα or saline control were examined. 2 tissue 

sections from each experimental condition were examined at 3 different cutting 

levels: a minimum of 150 human vessels were identified from each tissue sample 

and the number with positive vessels staining for E-selectin determined. 

Expression of ICAM-1, which after TNFα stimulation is expressed widely in 

transplanted synovial tissue, was determined by examining tissue from 2-3 cutting 

levels in 2 tissue sections from each condition: a minimum of 35 fields were 

examined from each tissue and scored on an arbitrary scale from 0 (no expression) 
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to 3 (widespread expression). Representative sections were scored independently 

by a second blinded observer: inter-observer error was found to be <5%. 

2.3.2.4 Immunofluorescent staining for human and murine 

vascular endothelium 

In order to visualize anastomoses between the human and murine circulations 

immunofluorescent staining was carried out as follows (unless specified all 

incubation were carried out at room temperature). Frozen 5 µm sections of ex vivo 

synovium and skin grafts were allowed to defrost before fixing in acetone at 40C 

for 10 minutes. The slides were allowed to air dry and the sections encircled with 

a wax pen in order to prevent spillage of the staining reagents. The sections were 

blocked by incubation with 100 µl serum-free protein block for 30 minutes after 

which the slides were blotted dry. The sections were stained for murine CD31 by 

incubation with 50 µl biotinylated anti-murine CD31 antibody (clone MEC13.3, 

BD Pharmingen)  diluted 1:100 in Dako antibody diluent for 1 hour. The slides 

were jet washed with TBS and washed twice more for 5 minutes each and 

incubated with 50µL streptavidin-conjugated Alexa 555 (Invitrogen) diluted 1:200 

for 1 hour. After washing as before 50 µl of sheep antihuman vWF (Serotec) 

diluted 1:100 was added and incubated for 30 minutes at RT. After a final wash 

the slides were mounted in MOWIOL media as before. 

2.4 Recombinant antibody production from hybridoma cell 

culture and purification  

Anti ICAM-1 (6.5B6) and E-selectin (1.2B6) antibodies for use in 

immunohistochemical staining and, with anti-E-selectin, for in vivo imaging 

experiments were produced from hybridoma cell cultures as detailed below.  

2.4.1 Preparation of cell culture media 

Media for hybridoma cells was prepared by adding 4.5 mg/ml L-glutamine and 

penicillin/ streptomycin to 10% FCS in RPMI medium. 
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2.4.2 Maintenance of hybridoma cells 

Hybridoma cells were defrosted from liquid nitrogen-stored stocks and added to 

cell-culture media as above. Initially 6.5B6 cells were grown in smaller volume 

25 cm2 culture flasks (Corning) before transfer on reaching sufficient density to 

75 cm2 and 150 cm2 flasks. The cells were split on reaching sufficient density by 

centrifugation and re-suspension in twice the original volume before decanting 

into 2 new flasks. Prior to antibody purification the cells were incubated and 

grown to maximum density prior to termination of the incubation.  

 

1.2B6 hybridomas were grown using a different method using a Bioreactor as 

follows: the Bioreactor hybridoma incubation system (Celline, Integra 

Biosciences, Switzerland) consists of two chambers- a small lower chamber in 

which the cell suspension is placed with a larger (1L) upper compartment for cell 

culture media. Their compartments are separated by a 10 kDa cutoff semi-

permeable membrane: this allows the diffusion of smaller molecules between 

compartments with the retention of larger molecules and particles, including 

secreted immunoglobulin and cells, in the lower compartment. The lower 

compartment is lined by a silicon membrane which allows diffusion of O2 and 

CO2. The upper compartment was pre-equilibrated with 50ml of culture media for 

10 minutes after which 15ml of media containing >1.5x106 hybridoma cells/ml. 

The upper compartment was filled with 1 L of media. After 7 days the media was 

decanted from the upper compartment and the cell suspension aspirated from the 

lower compartment: 3 ml of this was diluted to 15 ml and returned to the chamber 

fresh media placed in the upper compartment. The retained cell suspension was 

immediately centrifuged as above and the supernatant frozen until required. 

2.4.3 Purification of antibody from hybridoma super natant 

Two methods were used for the purification of antibody from the hybridoma 

supernatants, depending on the original supernatant volume. 

2.4.3.1 Purification of 6.5B6 (anti ICAM-1) antibody  
The cell culture medium containing hybridoma cells suspension was poured into 

50 ml centrifuge tubes and centrifuged at 600 g for 10 minutes. A saturated 



114 
 

solution of ammonium sulphate was made up by adding ammonium sulphate to 

de-ionised water in a glass flask on a heated magnetic stirrer. The saturated 

solution was filtered by passing through filter paper (Whatman No. 1, Whatman, 

Maidstone, UK) and was then added 1:1 to the supernatant in 50 ml centrifuge 

tubes and incubated overnight at 40 C. The tubes were centrifuged for 30 minutes 

at 1850 g and the supernatant discarded. The pellet of precipitated protein 

containing the immunoglobulin fraction was resuspended in 20 mM PBS pH 7.0 

and transferred to prepared 12-14,000 mw cut-off dialysis tubing (VWR). The 

solution was dialysed against three changes of PBS, the last overnight at 40C. The 

antibody was purified from the dialysed solution by affinity chromatography 

using a protein G column (Hi-Trap, Amersham Biosciences), protein G having 

high affinity for murine IgG1. The 5 ml column was prepared by washing with 10 

column-volumes of 20 mM PBS pH 7.0 followed by the dialyte containing the 

antibody. The column was washed with a further 10 column volumes of PBS and 

the bound antibody then eluted with 0.1 M glycine-HCl pH 2.7. 2.5 ml fractions 

were collected in sterile tubes containing 0.25 ml 1 M Tris-HCl pH 9.0 to 

neutralize the acid. The antibody concentration was measured by 

spectrophotometric absorbance at 280 nm and the aliquots were then frozen at -20 
0C until required. 

2.4.3.2 Purification of 1.2B6 (anti E-selectin) antibody  
As the 1.2B6 (anti-E-selectin) hybridomas were cultured in bioreactors the 

volume of the supernatant was smaller and hence the following method was used 

to purify antibody: hybridoma supernatant was centrifuged at 2,400 g for 10 

minutes in 50 ml centrifuge tubes and the supernatant was decanted, passed 

through a 0.2 µm filter and transferred to a 15 ml ultracentrifuge unit with a 

10,000 Da molecular weight cut-off filter. The solution was centrifuged from an 

initial volume of 15 ml until reduced to1-2 ml, diluted up to 15 ml with 20 mM 

sodium phosphate buffer pH 7.0 (loading buffer) and repeated. The final 

purification step using the Protein G affinity column was as described above. 
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2.4.4 Radiolabelling of antibodies and in vivo imag ing with 
NanoSPECT/CT 

The aim of these experiments was to determine whether the NanoSPECT/CT 

system could be used to image specific uptake of radiolabelled anti E-selectin 

(1.2B6) antibody into transplanted human synovial tissue. Anti-human 

chorioembryonic antigen (CEA) for use as an isotype control was obtained from 

the Biotherapeutics Development Laboratory at Cancer Research UK. 

2.4.5 Conjugation of antibodies to DTPA 

In order to enable labelling of the antibodies with 111In the antibodies were 

conjugated to the bifunctional chelating agent diethylenetriaminepentaacetic acid 

(DTPA) using the method of Cooper et al (Cooper, Sabbah, & Mather 2006). The 

isocyanatobenzyl group of isocyanatobenzyl-DTPA (Macrocyclics, Dallas, TX) 

reacts with amino side chains within the protein to form a covalent bond. The 

product is stable for prolonged periods when stored at -200 C. 5 mg of antibody in 

was diluted to 5-10 ml in ultrapure H2O and pipetted into an ultrafiltration tube 

with a molecular weight cut-off of 10,000 Daltons (Amicon, Millipore, Watford, 

UK). In order to remove contaminating metal ions 50 µL of 0.1 M ammonium 

acetate buffer pH 6.0 (containing 300 µL/L acetic acid) + 50 mM EDTA was 

added per 10 mg of antibody and the solution incubated for 30 minutes at RT. The 

tube was centrifuged at 1360 g until the volume had reduced by 2-3-fold and the 

solution was then diluted to 15 ml with 0.1 M HEPES buffer pH 8.5. This was 

repeated 3 times and the solution was then transferred to a metal-free plastic tube 

(Cryovial, Nunc) after the pH had been checked to be 8.5. SCN-Bn-DTPA was 

prepared by dissolving 50 mg/ml in absolute ethanol: the absorbance of the 

antibody solution was read at 280 nm in a spectrophotometer and the antibody 

concentration derived. SCN-Bn-DTPA was added to give a 50-fold molar excess 

over the antibody and the reaction mixture was incubated at 4 0C overnight. The 

following day the retained ultrafiltration tube was rinsed with 0.1 M ammonium 

acetate pH 6.0 and the reaction mixture added, following which it was diluted to 

15 ml with ammonium acetate buffer. The tube was centrifuged until the volume 

had reduced ~3-fold: this step was repeated until the spectrophotometric 

absorbance of the ultrafiltrate was zero indicating removal of unconjugated SCN-
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Bn-DTPA. The absorbance of the protein solution was read at 280 nm in order to 

determine the concentration; the solution was sterile filtered using a 0.2 µm 

syringe filter and the final solution stored in aliquots at -200 C. 

2.4.5.1 Determination of antibody immunoreactivity by ELISA 

In order to confirm the specificity of purified antibody for ligand (E-selectin or 

ICAM-1) the binding affinity was tested by ELISA. The ligand was dissolved in 

PBS pH 7.4 at the specified concentrations, 50 µL was added per well of a 96-well 

plate (Maxisorb, Nunc) and the plate incubated overnight at 40 C. The following 

day the plate was washed 4 times with PBS containing 0.05% Tween-20 (Sigma) 

and blocked by incubating for 2 hours at RT with 2% bovine serum albumin 

(BSA) (VWR, Poole, UK) in PBS. The purified antibody and control antibodies 

were diluted 1:1,000 in PBS+1% BSA and 50 µL added to wells with a further 1 

hour incubation at RT. The plate was washed again and the wells incubated with 

50 µL HRP-conjugated goat anti-mouse antibody (Dako) diluted 1:10,000 in 

PBSA + 1% BSA for 1 hour at RT and washed again 4 times before being allowed 

to air-dry. The substrate buffer was prepared by dissolving 1 tablet of 3,3’,5,5’–

Tetramethylbenzidine Dihydrochloride (TMB) in 10 ml 0.05 M phosphate-citrate 

buffer pH 5.0 with the addition of 2 µL of 30% H2O2 immediately prior to use. 50 

µL of the substrate was added to each well and the colour allowed to develop. The 

reaction was stopped by the addition of 12.5 µL of 2 M H2SO4 and the absorbance 

at 450 nm read in an automated plate reader (Anthos Scientific Instruments, 

Salzburg, Austria). 

2.4.6 Radiolabelling of antibodies 

DTPA-conjugated protein was diluted from the concentrated stock to the desired 

concentration in ammonium acetate buffer pH 6.0. A volume of 111InCl3 in 0.05 M 

HCl of known activity was added in a volume not exceeding 20% of the total 

reaction volume. After incubation for 30 minutes at RT free 111In was chelated by 

the addition of 10% volume 50 mM EDTA in 0.1M ammonium acetate pH6.0. 

The reaction mixture was incubated for a further 5 minutes at RT following which 

the labelling efficiency was determined by size-exclusion high-performance liquid 

chromatography (SE-HPLC) or instant thin-layer chromatography (ITLC) with 
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ammonium acetate buffer pH 6.0 as the solvent as detailed previously. If required, 

the antibody was purified with 0.5 ml Zeba spin columns (Pierce, Cramlington, 

UK) pre-equilibrated with sterile PBS according to the manufacturer’s 

instructions. If the product was to be used for further experiments it was stored at 

4-8 0C until use. 

2.4.7 NanoSPECT/CT imaging of transplanted SCID mic e 

Single photon emission computed tomography (SPECT) is a scanning technique 

which uses mobile gamma camera to acquire images from multiple degrees of 

rotation around the subject. The use of multi-pinhole collimators allows much 

greater resolution images to be obtained; simultaneous computed tomography 

(CT) scanning allows the acquisition of matched CT and SPECT images which 

can then be fused to from 3D reconstructed images showing areas of uptake of an 

administered radiotracer. For these experiments a NanoSPECT/CT small animal 

imaging system was used (Bioscan, Washington, DC); this system employs an 

array of 4 multi-pinhole collimators in parallel with CT scanning in order to 

produce high resolution images of excellent quality. Proprietary software is used 

to construct 3-dimensional CT/SPECT fusion images which allow quantification 

of radioactivity within defined regions of interest (ROI). 

 

Prior to scanning mice were anaesthetised in an anaesthetic chamber with an in-

flow of 4% halothane, 1.5 L/min O2 and 0.8 L/min N2O2 from a Boyle’s 

apparatus. After induction anaesthesia was maintained with 2% halothane. The 

mouse was transferred to a bed kept at 37 0C on a gantry for imaging: gas 

anaesthesia was maintained for the duration of the scan. After acquisition of a CT 

topogram the region for scanning acquisition was defined (typically full body or 

the region of the transplants only). The full scanning protocol was commenced 

with CT scan followed by in-line SPECT with a minimum acquisition of 30,000 

counts per projection. At the end of the scan mice were allowed to recover: for the 

final scan of the series the mice were killed by intra-peritoneal injection of Sagatal 

prior to the scan. At the end of the study tissues and transplants were retrieved for 

weighing and measurement of radioactivity in a gamma counter. At the end of the 
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study tissues and transplants were retrieved for weighing and measurement of 

radioactivity in a gamma counter (LKB Wallac Compugamma 1282, Perkin 

Elmer, Beaconsfield, UK). The absolute activity was corrected for the graft 

weight and injected dose and the results expressed as the % of injected activity per 

gram of tissue. 

2.5 Radiolabelling and biodistribution of synthetic 

peptides  

Peptides of the same structure as those expressed by synovial-homing (3.1) phage 

and streptavidin-binding phage (as a negative control) were synthesized with the 

addition of various tags for visualisation by fluorescent microscopy or to enable 

radiolabelling. The sequences of the peptides used in this project are shown in 

Table 2.2. 

 

Peptide name Sequence 

3.1 (synovial homing peptide) CKSTHDRLC 

s3.1 (scrambled 3.1) CLTKRSHDC 

RGD2C CSPRGDHPC 

sRGD2C (scrambled RGD2C) CDPRPHSGC 

SC7 (streptavidin-binding sequence) CGRYDHPQC 

Table 2.2: The sequence of phage-derived peptides used in this project. For 

translation of the single-letter amino acid code see appendix 1 

 

2.5.1 Solid-phase peptide synthesis 

Some (FITC, DTPA and HYNIC-conjugated peptides) were synthesized in-house 

in the Department of Pharmacy, others (HYNIC and biotin-conjugated) were 

obtained according to our specifications from Genscript (Piscataway, NJ) and 

Peptide Protein Research (Wixkham, Hampshire, UK). When synthesized in-

house, the majority of this work was done by Dr Sukhi Bansal, Miss Katherine 

Segklia and Dr Lewis Lee. Peptides were produced by solid-phase synthesis using 

an automated synthesizer or manually using 9-fluorenylmethyloxycarbonyl 
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(fMOC) for temporary amino side-chain protection. The synthesis was carried out 

in 1000 Å pore sized control glass pore columns using O-Benzotriazole-

N,N,N’,N’-tetramethyl-uronium-hexafluoro-phosphate (HBTU, Applied 

Biosystems) as the coupling reagent. A 6-carbon spacer (6-aminohexanoic acid) 

was conjugated to the N-terminus prior to the addition of the labelling group. 

Except for DTPA, other groups (FITC, biotin and HYNIC) were conjugated to the 

peptide whilst on the solid phase. The peptides were cleaved off the column using 

a mixture of 90% trifluoroacetic acid/water, precipitated in ice-cold diethylether 

and then filtered through a sintered glass funnel under vacuum. The peptide 

precipitate was dissolved in 10% acetic acid/water and purified to >90% by 

reverse phase high performance liquid chromatography (HPLC, Gilson, Wien, 

Austria) using a 300 Å pore sized C18 column (Vydac, Hesperia, USA) and 

eluted with 0.05% trifluoroacetic acid (BDH) and 60% acetonitrile (BDH). The 

final product was freeze-dried for long-term stability.  Purity was confirmed as 

>95% for all peptides by reverse-phase high-performance liquid chromatography 

and the expected molecular weight confirmed by mass spectrometry as detailed 

below. 

2.5.2 Mass spectrometry 

Peptides produced in-house were analysed by matrix-assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to quantify 

molecular weight. The sample was prepared by adding 1 µl of peptide to 1 µl of a 

saturated solution of α-cyano-4-hydroxycinnamic acid in 50% acetonitrile + 50% 

m0.1% TFA and analysed with a Bruker Autoflex MALDI-TOF MS system 

(Bruker Daltonics, Coventry, UK).  

2.5.2.1 Staining of synovial tissue sections with fluorochrome-

conjugated peptides 

In these experiments peptides conjugated to the fluorochromes FITC or 

carboxyfluorescein were assessed for binding to synovial tissue sections from 

patients with OA or RA. The control sequence used was the streptavidin-binding 

sequence described in Table 2.1. Peptides were diluted in TBS to the indicated 
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concentration. Fluorescence of the peptide solution was quantified by pipetting 10 

µL into a haemocytometer and measuring the fluorescence intensity with the 

fluorescence microscope at 10x magnification. If required, adjustments were made 

to the stock dilution to ensure equal fluorescence intensity for the test and control 

peptides. Tissues were fixed in ice-cold acetone or 2.5% paraformaldehyde in 

PBS at RT for 10 minutes. Tissues fixed in paraformaldehyde were then incubated 

in 0.1% sodium borohydride on PBS in a fume hood for 20 minutes at RT to 

minimize background autofluorescence: these slides were then washed twice for 5 

minutes each in TBS. The slides were blocked for non-specific protein binding by 

incubation with 0.1% bovine serum albumin for 30 minutes at RT. The blocking 

solution was tapped off and the peptide solutions at various concentrations were 

added to the tissue sections and incubated for 1 hour at RT. The slides were jet 

washed with TBS and washed 2 further times in TBS. The sections were 

counterstained for human vessels by incubation with murine anti-human von 

Willebrand factor monoclonal antibody (Dako clone F8/86) diluted 1:80 in TBS + 

0.1% BSA for 1 hour at RT followed by washing as before. The TRITC- 

conjugated secondary antibody goat anti-mouse immunoglobulins (Dako) was 

diluted 1:50 in TBS and incubated on the slides for 30 minutes before further 

washing. Finally the slides were mounted with MOWIOL mounting media 

containing 90 mg/ml DABCO. The slides were examined on an Olympus 

fluorescence microscope: human vessels were identified by staining for von 

Willebrand Factor and assessed visually for intensity of peptide staining. 

 

Fluorescence intensity of vessel staining was also quantified by digital analysis. 

Using proprietary software (Cell-P, Olympus) a digital mask was created to 

exclude areas of tissue not staining for vWF. Fluorescence intensity of these areas 

in the FITC spectrum was measured on an arbitrary scale. Multiple tissue fields 

were examined at 20x magnification. 

2.5.3 Radiolabelling of peptide with 111In 

Lyophilised DTPA-conjugated peptide stored at 20 0C was allowed to equilibrate 

to room temperature and dissolved to 1 mg/ml in double-distilled water. 111InCl3 
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in 0.05 M HCl (Mallinckrodt Medical, Gosport, Hampshire, UK) was diluted 1:1 

with 1 M sodium acetate solution to which was added the required volume of 

peptide solution. The labelling reaction was allowed to proceed at room 

temperature for 15 minutes. Labelling efficiency was assessed by instant thin-

layer chromatography (ITLC) was follows: a sample (~1 µl) of the labelling 

solution was spotted onto a 10 cm silica gel strip (Pall Life Sciences, Ann Arbor, 

MI) at a point 1.5 cm from one end and placed in a glass beaker containing a 

small volume of acid citrate dextrose (4 g citric acid, 12.8 g trisodium citrate 

dehydrate and 6 g dextrose in 500 ml H2O) and allowed to run until the solvent 

had reached the upper border of the strip. With this technique unbound indium 

migrates with the solvent front (Rf=1.0) whilst indium bound to peptide remains 

at the solvent front (Rf= 0). Strips were allowed to dry, cut into sections and the 

activity counted in a well-type gamma counter (LKB Wallac Compugamma 1282, 

Perkin Elmer, Beaconsfield, UK).  

 

For in vivo biodistribution studies SCID mice were double-transplanted with 

human synovium and skin as previously described and the experiments were 

performed 2-4 weeks post-transplantation. The DTPA-peptide was radiolabelled 

as detailed above with ITLC performed prior to use to confirm acceptable 

radiolabelling and the radiolabelling solution was diluted with 0.9% saline to a 

final injection volume of 200 µl. Mice were injected with the radiolabelled 

peptide via the tail vein and incubated for 15 minutes. Under terminal anaesthesia 

the thoracic cavity was exposed and the circulation perfused with 50 ml 0.9% 

saline as previously described. Organs and transplanted tissues were removed and 

placed into pre-weighed plastic vials: these were weighed again in order to 

determine the tissue weight and the radioactivity measured in a gamma counter. 

Samples of the injected dose were also counted in triplicate. 

 

For the preliminary study animals were injected with test peptide or unconjugated 

indium; for subsequent studies the SC7 peptide was used as control. In two 

experiments grafts were pre-stimulated by the intragraft injection of rhTNFα or 
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saline control; this was carried out as detailed previously. The biodistribution 

experiments were carried out 6 hours post-intragraft injection. 

2.5.4 Radiolabelling of peptide with 99mTc 

Peptide conjugated to the bifunctional chelating agent HYNIC was conjugated to 

technetium using different co-ligands as detailed below 

2.5.4.1 Tricine as co-ligand 

Method 1: HYNIC-peptide was equilibrated to room temperature and dissolved 

to a concentration of 1 mg/ml in double-distilled H2O. In a screw-top cryovial 

(Corning) 10 µl peptide was added to 0.5 ml tricine (100 mg/ml in 25 mM 

succinic acid buffer) with ~50µl 99mTcO4
- (~10 MBq) and 25 µL SnCl2 (10 mg in 

10 ml 0.1 M HCl) and incubated for 45 minutes at room temperature. ITLC was 

run as described in section 2.6.5 with three different solvents: PBS was used to 

separate free from bound 99mTcO4
-, 2-butanone to separate 99mTc-tricine and 50% 

acetonitrile to determine the amount of insoluble 99mTc colloid (Decristoforo & 

Mather 1999b).   

Method 2: 5 µg of peptide (1 mg/ml in water) was added to 0.25 ml of tricine 

(100 mg/ml in water). 100 µl of 99mTcO4
- (~100MBq) was added followed by 5 µl 

SnCl2 (3mg/ml in absolute ethanol). The reaction was incubated for 30 minutes at 

room temperature. 

2.5.4.2 Ethylenediaminediacetic acid (EDDA) as co-ligand 

5µl of peptide (1mg/ml in H2O) was incubated with 0.125 ml 0.3 M Na2HPO4 and 

0.125 ml EDDA solution (10 mg/ml in 0.1 M NaOH), 100 µl of 99mTcO4
- (~100 

MBq) and 5 µl SnCl2 (3 mg/ml in absolute ethanol). The reaction mixture was 

incubated for 30 minutes at 95 0C on a dry heating block. 

2.5.4.3 EDDA + tricine as co-ligands 

5 µl of peptide (1 mg/ml in H2O) was incubated with 0.125 ml tricine solution (20 

mg/ml in 0.3 M Na2HPO4), 0.125 ml EDDA solution (10 mg/ml in 0.1 M NaOH), 
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100 µl of 99mTcO4
- (~100 MBq) and 5 µl SnCl2 (3 mg/ml in absolute ethanol). The 

reaction mixture was incubated for 30 minutes at 95 0C on a dry heating block. 

2.5.4.4 Tricine + nicotinic acid as co-ligands 

5 µl of peptide (1 mg/ml in H2O) was incubated with 0.2 ml tricine solution (100 

mg/ml in H2O), 0.05 ml nicotinic acid solution (90 mg/ml in H2O), 100 µl of 
99mTcO4

- (~100 MBq) and 5 µl SnCl2 (3 mg/ml in absolute ethanol). The reaction 

mixture was incubated for 30 minutes at 95 0C on a dry heating block. 

2.5.5 Instant thin-layer chromatography 

For indium-labelled antibodies ITLC was run on silica-gel ITLC strips (Pall Life 

Sciences, Ann Arbor, MI) with 0.1 M ammonium acetate pH 6.0 + 50 mM EDTA 

as solvent: strips were imaged using a Cyclone storage phosphor system (Perkin 

Elmer, Beaconsfield, UK) and the proportion of 111In at the origin (bound) and at 

the solvent front (unbound) determined using proprietary software. As an 

alternative to imaging the strips were cut in half and the activity on the pieces 

containing the origin or solvent front counted in a gamma counter. For 99mTc-

labelled peptides the solvents used were saline, 2-butanone and 50% acetonitrile 

for separation of free 99mTc/ chelator, 99mTcO4
- and 99mTc colloid respectively.  

2.5.6 High-performance liquid chromatography (HPLC)  

2.5.6.1 Reverse-phase HPLC 

Analysis of radiolabelled peptides was performed using RP-HPLC using a 

Beckman System Gold  (Beckman Coulter, High Wycombe, UK) running 

proprietary 24 Karat software with an in-line UV detector (Beckman 168) and 

GABI radioactivity monitor (Raytest, Straubenhart, Germany) with a 250x4.6 mm 

5 micron C18 column (Phenemonex, Macclesfield, UK). The solvents used were 

0.1% trifluoroacetic acid (TFA) and 0.1% TFA acetonitrile: the method used a 

gradient of 0-60% acetonitrile over 20 minutes after a 5 minute run-in time with a 

flow rate of 1 ml/min. 
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2.5.6.2 Size-exclusion HPLC 

Radiolabelling of antibodies and proteins was performed with size-exclusion 

chromatography: the pump and detector systems were identical to those for RP-

HPLC. A Biosep-sec-s 2000 column was used (Phenomenex) with isocratic 0.1 M 

phosphate buffer pH 7 + 2 mM EDTA with or without 10% ethanol as the running 

solvent. 

2.5.7 Serum stability 

Serum stability and protein binding were analysed using previously published 

methods (King et al. 2007). Serum was prepared by obtaining blood by cardiac 

puncture from SCID mice under terminal anaesthesia, allowing it to clot and 

centrifuging. To assess the stability of 99mTc-labelled peptides in serum 50 µl of 
99mTc-peptide was added to 200 µl of serum and incubated at 37 0C. At 1 and 4 

hours 40 µl of the sample was removed and mixed with 100 µl acetonitrile in a 1.5 

ml centrifuge tube to precipitate the serum proteins. The tube was centrifuged for 

5 minutes at 6,500 rpm in a microcentrifuge and the supernatant, containing non-

protein bound peptide and free 99mTc, analysed by RP-HPLC.  

2.5.8 Protein binding 

Binding of peptide to serum proteins was assessed by filtration in sephadex size-

exclusion spin columns. G-50 columns (Amersham Healthcare, Amersham, UK) 

were prepared by centrifuging at 2,000 g for 1 minute. 10 µl of serum was added 

to the top of the resin and the column spun at 2,000 g for a further 2 minutes. The 

activity of the retentate and filtrate, representing non-protein bound and protein 

bound fractions respectively, were measured in a gamma counter.  

2.5.9 Peptide biodistribution studies 

Peptide was radiolabelled as described. 2-4 weeks after transplantation with 

synovium and skin (2 transplants of each) mice were injected via the tail vein with 

radiolabelled peptide in 100-200 µl buffer. Mice were incubated for the indicated 

periods. At the end of the incubation period sodium pentobarbitone (Euthatal, 

Rhoen Merieux, Toulouse, France) was injected into the peritoneum: once under 
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terminal anaesthesia, if the circulation was to be perfused, the thoracic cavity was 

exposed and the circulation perfused via the left ventricle with 50 ml of 0.9% 

saline. Transplants, blood and tissues were removed and placed in pre-weighed 

vials. The vials were weighed again to determine the weight of the tissues and the 

activity measured in a gamma counter (Compugamma). When indicated, mice 

were co-injected with a 1000-fold excess of cold peptide as a block. 

2.6 In vitro cell adhesion assays and growth of melanoma 

cells in vivo 

For experiments in which binding of peptide or protein ligands to αvβ3 was tested 

cell lines expressing αvβ3 were used. The MCF7 β3 cell line is a human breast 

carcinoma cell line that has been stably transfected with the β3 integrin subunit 

and hence expresses αvβ3 on the cell surface (Pereira et al. 2004). These cells were 

used to validate the initial assays. However, they do not form xenograft tumours 

and therefore for later experiments the alternative A375P cell line was used. These 

are immortalised melanoma cells which express αvβ3 in their native form and form 

tumours when injected into immunodeficient mice. Both cell lines were kind gifts 

from Dr John Marshall (Cancer Research UK). 

2.6.1 Preparation of cell culture media 

Cell culture media was prepared as follows 

2.6.1.1 MCF7 cells 

Dulbecco’s Modified Eagles’ Medium (DMEM)(Sigma) containing 10% Fetal 

Calf Serum (Sigma), 5 ml penicillin and streptomycin (10,000 units Penicillin V 

and 5 mg streptomycin/ml) (Sigma), 4.5 g/L L-glutamine (Sigma) and 1 ml 10 

mg/ml insulin (Sigma) in 1% acetic acid. 

2.6.1.2 A375P cells 

DMEM containing 10% FCS, 5 ml penicillin and streptomycin (10,000 units 

Penicillin V and 5 mg streptomycin/ml), 4.5 g/L L-glutamine. 
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2.6.2 Maintenance of MCF7 and melanoma cell lines 

Cell lines were defrosted from frozen stocks (in 10% DMSO, 10% fetal calf 

serum in Dulbecco Modified Eagles Medium (DMEM) (Sigma)). The defrosted 

cell suspension was washed in cell culture medium in a 50 ml centrifuge tube 

followed by centrifugation at 220 g for 5 minutes. The cells were re-suspended in 

fresh media and 20 ml was poured into 75 cm2 culture flasks (Corning). Flasks 

were incubated at 37 0C with 5% CO2 in humidified incubator at 37 0C. When the 

cells reached ~90 % confluency they were split as follows: media was decanted 

from the flasks which were then washed twice with sterile PBS (Cambrex). 3 ml 

0.05% EDTA (Sigma) was poured into the flasks and incubated for 5 minutes at 

37 0C. The flasks were tapped several times in order to ensure maximal cell 

detachment: the cell suspension was transferred to a sterile 50 ml centrifuge tube 

containing PBS and centrifuged as above. The supernatant was discarded and the 

cells re-suspended in 20 ml of fresh media before transfer into fresh culture flasks. 

2.6.3 FACS analysis of ααααvββββ3 expression 

Sub-confluent cells were washed and detached from flasks as described in section 

2.2.2. The cells were washed three times in sterile PBS and re-suspended in FACS 

buffer (10 mM PBS or 20 mM TBS + 0.1% azide + 1% BSA) at a concentration 

of 106/ml. 100 µl of the cell suspension was transferred to FACS tubes and 

centrifuged at 250 g for 3 minutes: the cells were re-suspended in FACS buffer 

and washed again. After washing the supernatant was discarded from the tubes 

and the cells re-suspended in the remaining FACS buffer (~100 µL). 100 µL of 

anti-αvβ3 antibody clone LM609 (Chemicon, Chandler’s Ford, Hampshire) diluted 

to 10 µg/ml was added and mixed before incubating on ice for 40 minutes. At the 

end of the incubation the cells were washed twice in FACS buffer. 100 µL of 

Alexa Fluor 488-conjugated goat F(ab’)2 anti-murine IgG1 (Molecular Probes) 

diluted to 5 µg/ml was added and the cells incubated for a further 30 minutes on 

ice. The cells were then washed again twice and re-suspended in 300 µL of 1% 

paraformaldehyde in PBS. FACS analysis was performed using a FACSCalibur 

system (Becton Dickinson) controlled by an Apple Macintosh PC running 

CellQuest software (Becton Dickinson). 
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2.6.4 Tumour growth in vivo 

To assess the capacity of RGD-coated microspheres to home to cells expressing 

αvβ3 in vivo a tumour model was utilised. The A375P cell is an immortalised 

human melanoma cell line which constitutively expresses αvβ3. Initial experiments 

were performed in which the cells were suspended in Matrigel (BD Biosciences): 

tumours grew well reaching 0.5-1 cm after 3 weeks and αvβ3 expression was 

confirmed by histological analysis. Supplies of Matrigel, however, became 

problematic due to a recall by the manufacturer and therefore the model was 

adapted as follows. 

 

A375P cells were grown to sub-confluence in 75cm2 flasks and detached by 

incubation with 0.05% EDTA for 5 minutes. The cells were washed 3 times in 

serum-free media and resuspended in media at a concentration of 1-2 x 106 cells 

in 200 µl. 200 µl of cells were injected subcutaneously into the dorsum of SCID 

mice. The mice were used for further experiments when the tumours had reached 

0.5-1 cm diameter. 

2.7 Development of tetrameric peptide-streptavidin 

conjugate 

2.7.1 Biotinylation of cRGDyK peptide 

For some of the experiments in this section a commercially available cRGDyK 

peptide (Peptides International, Louisville, Kentucky) was used due to its proven 

efficacy as a αvβ3 ligand. The peptide was biotinylated via the ε-amino side chain 

of the lysine residue as follows. Peptide was dissolved in 0.2 M NaHCO3 buffer to 

which was added a 10-fold molar excess of the biotinylation reagent sulfo-NHS-

LC-biotin (Pierce). The reaction solution was incubated for 30 minutes at room 

temperature and terminated by the addition of 0.1% TFA. RP-HPLC analysis 

showed a shift of the retention time of the peptide confirming biotinylation. The 

peptide was purified by loading onto a preparative HPLC column run with a 0-

60% acetonitrile gradient over 60 minutes. Individual peaks were collected each 

of which was again analysed by HPLC to confirm that the expected fraction 
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contained the purified biotinylated peptide. The peptide was freeze dried and 

analysed by MALDI-TOF MS as described elsewhere. 

 

2.7.2 Optimisation of peptide binding to streptavid in 

In order to determine the optimal peptide concentration needed to maximize the 

valency of the peptide-streptavidin conjugates, streptavidin was incubated with 

varying concentrations of peptide and the concentration of unoccupied biotin 

binding sites determined. Relative concentrations of unoccupied binding sites, free 

biotin groups and streptavidin were determined by the use of streptavidin-

conjugated HRP, biotinylated HRP and anti-streptavidin antibodies respectively. 

 

Biotinylated peptides were dissolved in ultrapure water at a concentration of 

1mg/ml and stored at -20 0C until required. Streptavidin purified from 

Streptomyces avidinii (Sigma) was dissolved in ultrapure water at a concentration 

of 1 mg/ml. The stated biotin binding activity of streptavidin was 14 U/mg of 

protein (one unit will bind 1 µg biotin) which gives a theoretical molecular weight 

of 70,000 Da. As one molecule of streptavidin has 4 biotin-binding sites, peptide 

was added to streptavidin in a 4:1 molar ratio and multiples thereof in 0.5 ml 

centrifuge tubes. The reaction volume was diluted to 60 µg streptavidin/ml in TBS 

pH 7.4, vortexed and incubated for 1 hour at room temperature.  The solution was 

diluted sequentially 1:4, 50 µL added to wells on duplicate on a 96-well plate 

(Maxisorb, Nunc) and incubated overnight at 4 0C.  The plates were washed 4 

times in a plate washer with PBS containing 0.05% Tween-20 (Sigma) and each 

well incubated with 50 µL biotin-HRP diluted 1:12500 (from Dako ABC-HRP 

kit) in TBS, streptavidin-conjugated HRP (Sigma) 2 µg/ml in TBS or anti-

streptavidin antibody (AbCAM, ab10020). Wells incubated with anti-streptavidin 

antibody were incubated, after washing, with the secondary antibody HRP-

conjugated goat anti-mouse (Dako, P0447) diluted 1:5000 for a further hour. The 

HRP substrate was prepared by dissolving one tablet of 3,3’,5,5’ 

tetramethylbenzidine dihydrochloride (TMB)(Sigma) in 10ml 0.05 M phosphate-

citrate buffer with the addition of 2 µL 30% H2O2 immediately prior to use. The 

colour was allowed to develop and the reaction was then stopped by the addition 
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of 12.5 µL 2 M H2SO4 which produced a yellow colour. Absorbance was read at 

450 nm in an automated plate reader. The results of this experiment allowed, the 

biotin-binding capacity and hence the degree of saturation of the streptavidin to be 

determined after incubation with biotinylated peptide. This method was also used 

to determine the efficiency of the spin column purification described in the next 

section. 

2.7.3 Purification of streptavidin-peptide 

In order to remove unbound peptide following incubation of streptavidin with 

saturating concentrations, size-exclusion filtration was used. This has the 

advantage that it could also be used to purify radiolabelled streptavidin-DTPA 

from unbound 111In. 2 ml Zeba filtration columns (Pierce) were prepared by 

centrifugation for 1 minute at 1,000 g. Following this 1ml of PBS was added and 

the centrifugation repeated. This was repeated 3 times in order to equilibrate the 

column. A minimum volume of 200 µL of streptavidin/ peptide solution was 

added to the column followed by 40 µL of ultrapure water as a ‘stacker’. The 

column was centrifuged again for 1 minute at 1,000 g 

2.7.4 Conjugation of streptavidin to DTPA 

Diethylenetriaminepentaacetic acid (DTPA) is a chelating agent for trivalent metal 

cations commonly used in radiolabelling. DTPA was conjugated to streptavidin 

using the method described by Cooper et al (Cooper, Sabbah, & Mather 2006). 

Antibody or streptavidin was dissolved in double-distilled water (Egastat Maxima, 

Elga, Marlow, UK) to 1mg/ml and transferred to a 15ml ultrafiltration unit with a 

10,000 molecular weight cut-off filter (Amicon Ultra, Millipore, Watford, UK). In 

order to remove contaminating metal cations 50 µL of 50mM 

ethylenediaminetetraacetic acid (EDTA) in 0.1M acetate buffer pH 6.0 (prepared 

by dissolving 0.1 M sodium acetate in 1 L double-distilled water and adding 300 

µL acetic acid) was added per 10 mg of protein. The mixture was incubated for 30 

minutes at RT and then centrifuged at 1360 g until the volume had reduced 2-3 

fold. The solution was topped up to 15 ml with 0.1 M HEPES pH 8.5 and this was 

repeated 3 times, after which the pH was checked to be at 8.5. For the final 

centrifugation the volume was reduced to a protein concentration of ~10 mg/ml: 
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50 µL of the solution was removed and diluted in acetate buffer in order to 

determine the absorbance at 280nm. From this the protein concentration was 

derived and the solution was pipetted into a cryovial. The chelating agent with a 

reactive isothiocyanate group p-2-(4-isothiocyanatobenzyl)-DTPA (Macrocyclics, 

Dallas, TX) was dissolved at a concentration of 50 mg/ml in 100% ethanol 

(VWR, Lutterworth, UK) and added in 20-fold molar excess to the streptavidin 

solution. The vial was vortexed and incubated overnight at 4 0C. The 

ultrafiltration tube was rinsed with 0.1 M acetate buffer pH 6.0 and the 

streptavidin-DTPA solution was pipetted into the tube and diluted to 15 ml. The 

tube was centrifuged until the volume had reduced by >3x. The absorbance of the 

filtrate was read at 280 nm in order to assess the concentration of free DTPA and 

the washing step was repeated until the filtrate absorbance had stopped falling. 

The streptavidin or antibody-DTPA solution was removed from the tube and 

sterile filtered using a 0.22 µM syringe filter and frozen in aliquots after a sample 

was removed to measure absorbance. 

2.7.4.1 Determination of streptavidin-DTPA concentration by 

ELISA 

It is possible that the conjugation of DTPA to streptavidin alters the UV 

absorbance and that trace concentration of free DTPA could also interfere with 

spectrophotometric results. An ELISA was therefore developed to determine 

streptavidin-DTPA concentrations. Monoclonal antibody to streptavidin (AbCam, 

clone ab10020) was diluted to 0.2 µg/ml in PBS pH 7.4 and 50 µl was added to 

wells of a 96-well plate. After overnight incubation at 4 0C the plate was washed 4 

times with was buffer (PBS + 0.1% Tween-20) and blocked with 2%  BSA in PBS 

for 2 hours at RT. The plate was washed 4 times and incubated with sequential 

dilutions of streptavidin in PBS for 1 hour at RT. After a further 4 washes the 

plates was incubated with HRP-conjugated polyclonal rabbit anti-streptavidin 

antibody diluted 1:10,000 in PBS + 1% BSA and incubated for 1 hour at RT. 

After a final 4 washes the plate was developed with TMB substrate and the 

absorbance read as detailed for previous ELISA experiments. 
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2.7.5 Radiolabelling of streptavidin-peptide 

Streptavidin-DTPA was diluted to the required concentration in a total volume of 

50 µL acetate buffer pH 6.0 in a 1.5 ml centrifuge tube: 10 µL of 111InCl3 in 0.05 

M HCl (~5 MBq) was added and the solution was incubated for 30 minutes at RT. 

6 µL of 50 mM EDTA in acetate buffer was added in order to chelate unbound 

indium and incubated for a further 5 minutes. Radiolabelling efficiency was 

measured by instant thin layer chromatography (ITLC) with acetate buffer as the 

mobile phase and size-exclusion high-performance liquid chromatography (SE-

HPLC) as described in section 2.5.6.2. 

 

To radiolabel streptavidin-bound peptides, streptavidin was pre-incubated with 

peptide solutions in 4-fold excess for 1 hour in acetate buffer prior to the 

radiolabelling reaction. The solution was then added to a 0.5 ml Zeba spin-column 

pre-equilibrated with PBS according to the manufacturer’s instructions and 

centrifuged at 1,500 g for 2 minutes. Measurement of the radiochemical purity 

before and after filtration and measurement of activity of the purified sample 

allowed the concentration of radiolabelled streptavidin-peptide to be determined. 

2.7.6 RGD peptide binding assays 

A number of ELISA-based assays were used to examine binding of monovalent 

and tetravalent peptide to αvβ3, either directly or indirectly as in the binding 

inhibition assays. 

2.7.6.1 Fibronectin binding to ααααvββββ3 
To optimize the binding assays of fibronectin to αvβ3 was examined under varying 

cation conditions using buffer as described in section 2.2.5 as follows. Purified 

αvβ3 (Chemicon) was dissolved in 20 mM Tris-buffered saline pH 7.4 at a 

concentration of 0.5 µg/ml (or variable concentration as indicated) with cation 

concentrations as indicated in the results section (binding buffer) and 50 µL per 

well added to 96-well plates. After overnight incubation or incubation for 1 hour 

at 37 0C the plate was washed 6 times in wash buffer. 50 µL of purified 

fibronectin (Sigma) at a dilution of 2 µg/ml in conjugate buffer was added to the 
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wells and incubated for a further 1 hour at RT. After 4 washes the 50 µL of the 

secondary antibody HRP-conjugated anti-fibronectin (AbCam, Cambridge, UK, 

clone ab25467) diluted 1:2000 was added to the wells and incubated for one hour. 

After a final wash TMB substrate was added and the ELISA completed as 

previously described (section 2.2.5). 

2.7.6.2 Competitive binding assays 
For competitive binding assays the above protocol was used with the addition of 

25 µL of the competing peptide or streptavidin-conjugated peptide in conjugate 

buffer prior to the addition of 2 5µL of fibronectin 4 µg/ml in conjugate buffer 

(i.e. twice the concentration used for non-competitive binding assays to give the 

same final concentration). The assay was carried out otherwise as in the previous 

section. 

2.7.6.3 Binding of tetravalent peptide to ααααvββββ3 
αvβ3 plates were prepared as above. Tetravalent peptide was prepared by 

incubation of peptide with streptavidin as before, with subsequent dilution in 

conjugate buffer. 50 µL of dilutions were added to wells and incubated for 1 hour 

at RT. The plates were washed 4x with wash buffer and incubated with anti-

streptavidin antibody and completed as in section 2.7.1. 

2.7.6.4 Cell adhesion assays 

Adhesion of cells to immobilized ligand was assessed using a previously 

described colourimetric adhesion assay (Hapke et al. 2001) as follows. Ligand 

was diluted in PBS pH 7.4 and coated onto 96-well maxisorb plates by the 

addition of 50 µl per well followed by overnight incubation at 4 0C. The following 

day the plates were washed 4x in PBS containing 0.05% Tween-20 and blocked 

with 2%  BSA in PBS for 2 hours at RT. Subconfluent adherent cells were 

detached from 75cm2 flasks as follows: the media was decanted and the cells 

rinsed twice with PBS pH 7.4. 3 ml 0.02% EDTA was added to the flasks which 

were then incubated for 10 minutes at 37 0C. The cells were detached by tapping 

the flasks and transferred to a 50 ml centrifuge tube with a sterile 3 ml pipette. 

The cells were suspended in serum-free RPMI medium and centrifuged for 5 
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minutes at 220 g: the supernatant was decanted and the cells washed twice more. 

The cell concentration was measured using a Trypan blue exclusion assay: the cell 

suspension was mixed 1:1 with 0.4% solution of Trypan blue (Sigma) and the 

cells counted in a Neubauer Improved haemocytometer under a light microscope. 

The cell suspension was diluted with serum-free RPMI medium to the required 

concentration for use in the assay.  

 

After the blocking step the plates were washed and 50 µl of cell suspension added 

to each well. For competition assays the wells were pre-incubated with 25 µl of 

competitor solution prior to addition of 25 µL of cells at twice the required final 

concentration. Cell adhesion was allowed to take place over 1 hour at 37 0C. The 

plates were washed twice by gentle immersion in PBS pH 7.4 followed by the 

addition of 50 µl 4-Nitrophenyl N-acetyl-β-D-glucosaminide (NPAG, 7.5 mM in 

0.1 M sodium citrate pH 5.0 mixed 1:1 with 0.1% Triton X-100). NPAG is 

cleaved by the intracellular enzyme β-N-Acetylglucosaminidase releasing 4-

nitrophenol. The colour was allowed to develop by overnight incubation at 37 0C 

and the reaction stopped by the addition of 75 µl stop buffer (50 mM glycine pH 

10.5 containing 5 mM EDTA). Absorbance was read in a plate reader at 650 nm. 

2.7.7 In vitro RGD-streptavidin cell-binding assay 

To determine binding of 111In-labelled RGD-peptide to αvβ3-expressing cells a 

radioligand binding assay was performed as follows. MCF7β3 and A375P cells 

were grown to confluence as previously described, detached and washed twice in 

serum-free media prior to re-suspension in internalization buffer (RPMI medium 

containing 20mM HEPES + 1% BSA) at a concentration of 2x106 cells/ml. 

Various concentrations of 111In-labelled RGD2C-, cRGDyK- or scrambled 

RGD2C-streptavidin were added to 0.5 ml of cells in a 1.5 ml centrifuge tube, 

gently vortexed and incubated at 37 0C for 1 hour. The cell suspension was 

washed twice in ice-cold PBS and the radioactivity of the pellets read in a gamma 

counter. 
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2.7.8 Binding of 111In-streptavidin to biotinylated HRP in 

solution 

To confirm the binding of 111In-labelled streptavidin to biotin a 16-fold molar 

excess of biotinylated HRP (Pierce) was added to an aliquot of 111In-streptavidin 

in a 1.5 ml centrifuge tube. After 30 minutes a sample of the reaction solution was 

analysed by size-exclusion HPLC as were a samples of biotinylated HRP alone 

and 111In-labelled streptavidin alone. 

2.7.9 Binding of 111In-streptavidin- peptide to αvβ3 in solution 

Binding of the radiolabelled streptavidin-RGD2C peptide to αvβ3 in solution was 

examined in order to ensure that the radiolabelling did not abrogate binding to the 

ligand. The following experiment was therefore performed to see whether binding 

could be demonstrated in solution. 

 
111In-labelled streptavidin- cRGDyK or sRGD2C peptide was prepared as 

described previously and equilibrated in binding buffer and added to αvβ3 (original 

concentration 200 µl/ml) in a microcentrifuge tube to give a reaction volume of 

31.9 µl containing 4.5x10-7 mmol/ml 111In-streptavidin-peptide and 4.5x10-7 

mmol/ml. The solution was incubated for 1 hour at room temperature after which 

the solutions and 111In-streptavidin peptide alone were analysed by SE-HPLC. 

2.7.10 In vivo studies with streptavidin-synovial homing 

peptide 
111In-streptavidin-peptide was prepared as described and purified by spin column 

filtration into sterile PBS for injection into mice. Mice double transplanted with 

human skin and synovium or carrying αvβ3-positive tumours were injected 

intravenously with the solution at the doses indicated in the results sections. At the 

indicated time points the mice were killed by intra-peritoneal injection of Sagatal 

and the transplanted organs retrieved for weighing and measurement of 

radioactivity as for previous biodistribution experiments.  



135 
 

2.8  Polymerisation of peptide with fluorescent 

microspheres 

2.8.1 Conjugation to Neutravidin 
Neutravidin is a proprietary deglycosylated form of avidin which has lower non-

specific binding activity. It is also considerably cheaper than streptavidin and was 

therefore used for this part of the project. It was conjugated to fluorescent 

microspheres as follows. 

 

5 ml of a 2% aqueous suspension of 1 µm aldehyde-sulphate fluorescent 

microspheres with optimal excitation/ emission wavelengths of 496/506 nm and 

surface  (Fluospheres, Invitrogen, Paisley, UK) were added to 4 mg of 

Neutravidin in 2 ml of 50 mM phosphate buffer pH 6.5 in a 15 ml plastic 

centrifuge tube. This conjugates the Neutravidin to the microspheres by the 

formation of Schiff bases between the aldehyde surface groups and the ε-amino 

group of lysine residues in the protein molecule. The vial was protected from light 

and agitated at RT overnight. The microspheres were washed 4 times by 

centrifugation at 2,400 g for 15 minutes followed by re-suspension on PBS pH 7.4 

before final re-suspension in PBS containing 0.1% azide and 1% BSA. 1 ml of 

supernatant was retained from each centrifugation; this was centrifuged again at 

13,000 rpm for 15 minutes in a microcentrifuge and the absorbance read at 280 

nm in order to ensure removal of unbound Neutravidin.  

2.8.1.1 Confirmation of microsphere labelling with Neutravidin 
In order to confirm the presence of Neutravidin on the surface of the microspheres 

radio-labelled biotin was used: binding of the biotin would confirm the presence 

of conjugated Neutravidin.  

2.8.1.1.1 Radiolabelling of biotin 

Diethylenetriaminepentaacetic acid α,ω-bis(biocytinamide) (Sigma D1534, mw 

1102) (hereafter referred to as DTPA-(biotin)2) consists of 2 DTPA and 2 biotin 

groups per molecule. The compound was radiolabelled was follows: DTPA-

(biotin)2 was diluted to 1 µg in 50 µL acetate buffer pH 6.0 to which was added 10 
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µL of 111InCl3 stock and incubated for 30 minutes at RT. At the end of the 

incubation period 6 µL of acetate buffer containing 50 mM EDTA was added and 

the reaction mixture incubated for a further 5 minutes. To confirm radiolabelling 

of the biotin a previously published method was used (Rusckowski et al. 1995): a 

sample of the radiolabelled biotin-DTPA was incubated with a ten-fold excess of 

streptavidin in the radiolabelling buffer for 1 hour. A G-50 size-exclusion column 

(Amersham Biosciences) was prepared by centrifuging at 5,000 rpm in a 

microcentrifuge for 1 minute. 20-25 µL of the streptavidin solution was added to 

the column which was centrifuged again. Radioactivity of the column and the 

filtrate were measured in a gamma counter: protein-bound 111In-DTPA-biotin 

would be in the filtrate whilst unbound 111In is retained in the column. There are 

no published reports of the separation of unbound 111In from 111In-DTPA-biotin 

and therefore ITLC as described for 111In-labelled antibodies and streptavidin was 

carried out and compared with from SE-HPLC which was carried out in parallel 

as previously described. 

2.8.1.2 Confirmation of Neutravidin binding to microspheres by 
competitive binding assay 

Neutravidin-conjugated microspheres were incubated with a fixed concentration 

of 111In-biotin-DTPA in the presence of increasing concentration of cold biotin-

DTPA: these were mixed together prior to the addition to microspheres. The 

biotin-DTPA was added to 100 µL aliquots of Neutravidin-conjugated or 

unconjugated microspheres in 1.5 ml centrifuge tubes and incubated for 1 hour at 

RT with regular mixing. At the end of this period the microspheres were washed 

twice by diluting to 1 ml with PBS and centrifuging in a microcentrifuge at 5,000 

rpm for 10 minutes. After the second wash the supernatant was carefully aspirated 

and the radioactivity of the microsphere pellets read in a gamma counter. 

2.8.2 Conjugation of microspheres to RGD peptide 
To assess the capacity of peptide-conjugated microspheres to bind to a cell-

expressed ligand the RGD peptide as used in the previous chapter was employed. 

This would enable optimization the surface coating of the microspheres with 

peptide, binding affinity of which could then be assessed by FACS. The data from 

the previous experiment provided the concentration of peptide at which the 



137 
 

microspheres would be saturated. Peptide was added at a saturating concentration 

to a microsphere suspension in a 1.5 ml centrifuge tube and incubated for 1 hour 

at RT with regular mixing. The microspheres were washed by re-suspension in 

PBS and centrifuging in a microcentrifuge for 10 minutes at 5,000 rpm. After 3 

washes the microspheres were re-suspended in FACS buffer (TBS+100 mM 

MgCl2, 200 mM CaCl2 and 200 mM MnCl2 + 0.1% azide + 1% BSA) and stored 

at 4 0C.  

 

MCF7 β3 or A375P cells were grown to sub-confluence and detached as detailed 

previously. The cells were washed twice in PBS and twice in FACS buffer and 

105 cells were added in 0.5 ml FACS buffer to 1.5 ml centrifuge tubes. The tubes 

were centrifuged in a microcentrifuge for 3 minutes at 3,000 rpm and the 

supernatant discarded by pouring off- this left around 100 µl in the tube. The cells 

were re-suspended by gently vortexing and the required concentration of 

microspheres added. The tubes were incubated on ice for 1 hour with regular 

vortexing after which the cells were washed twice in FACS buffer. If FACS 

analysis was not to be carried out immediately the cells were fixed by re-

suspension in 1% paraformaldehyde in PBS. 

 

Radiolabelling of the microspheres was to be achieved by the substitution of 

biotinylated peptide with DTPA-(biotin)2. The effect of differing ratios of peptide: 

DTPA-(biotin)2 were determined as follows. 50 µl of Neutravidin-conjugated 

microspheres were added to 0.5 ml centrifuge tubes containing various ratios of 

biotinylated cRGDyK to DTPA-(biotin)2: the total molar concentration was equal 

in all tubes. After mixing the microspheres were incubated for 1 hour at RT and 

washed four times in FACS buffer. A375P cells were detached as detailed above 

and 105 cells in 100 µl FACS buffer added to 1.5 ml centrifuge tubes; 

microspheres were then added to the tubes in duplicate and the experiment 

completed as previously. 

 

FACS analysis was carried out with a FACSCalibur system (Beckton Dickinson) 

and analysed by CellQuest software run on an Apple Mac PC. Regions of interest 
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were defined of labelled and unlabelled cells and the results expressed as % cells 

labelled. 

2.8.3 Labelling of microspheres with peptide and 111In- DTPA-(biotin) 2 

and peptide and in vivo biodistribution experiments 

A 2% solution of Neutravidin-conjugated fluorescent microspheres was added to a 

4:1 solution of biotinylated peptide: 111In—biotin-DTPA in 1.5 ml centrifuge 

tubes to give a final biotinylated peptide/111In—biotin-DTPA concentration of 

2x10-5 mmol/ml (previously determined to be a saturating concentration). The 

solution was incubated for 1 hour at room temperature and washed 4 times in PBS 

containing 1% BSA before final re-suspension to give a 2% solution of 

microspheres.  

 

200 µL (~3 MBq) of RGDyC or sRGD2C peptide-labelled microspheres were 

injected into mice bearing A375P tumours via the tail vein. After 15 minutes the 

animals were killed and the tumours and murine organs retrieved, weighed and the 

activity measured in the gamma counter. Diluted triplicate reference samples of 

the injected solution were measured in the gamma counter in parallel with the 

tissues. 

 

For the 3.1 and scrambled 3.1 peptides, 6 hours after intragraft injection of 200ng 

TNFα, SCID mice transplanted with human skin and synovium were injected via 

the tail vein with 200 µl (~3 MBq) of the 3.1 peptide or scrambled 3.1 peptide-

labelled microsphere suspension. After 15 minutes, 1 hour or 24 hours the animals 

were killed and the transplants and organs retrieved as above. 

2.9 Statistical analysis 

All statistical analysis was performed using Prism 3.0 software (Graphpad, San 

Diego, Ca). Groups were compared using a 2-tailed unpaired t-test; multiple 

groups were analysed using one-way analysis of variance (ANOVA) with 

Bonferroni’s post test to pairs of columns of interest. Linear regression analysis 

was performed where indicated after log-transformation of the data. 
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Chapter 3 

Validation of the synovial homing phage 

in the SCID mouse transplantation model 

as a platform for testing in vivo 

localisation of novel targeting agents 
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3.1 Introduction 

The first stage of this project was to ensure the reproducibility of the SCID mouse 

transplantation model. This involved confirmation of transplant engraftment and 

vascularisation as well as confirmation of the specificity of 3.1 phage specificity 

for human synovium as described in the original phage work. As discussed in the 

introduction some preliminary data had shown that 3.1 phage homing to 

transplanted synovium could be up-regulated by intragraft injection of TNFα in a 

small number of animals. I therefore repeated this experiment with larger numbers 

of animals. Secondly, grafts from transplanted animals were also examined for the 

presence of murine/ human vascular anastomoses and the effect on adhesion 

molecule expression of TNFα stimulation. Finally, I investigated sequence 

homology between the 3.1 peptide sequence and potential candidates. I describe 

the identification of a striking sequence homology with the mac-1 leucocyte 

integrin and the experiments to test 3.1 phage binding affinity. I conclude 

discussing alternative potential candidate ligands for the 3.1 phage sequence. 

3.2 Validation of SCID mouse model and specific pha ge 

homing 

3.2.1 Confirmation of vascularisation of grafts 

Synovial tissue and skin were obtained from patients undergoing joint 

replacement surgery and transplanted under the dorsal skin of SCID mice at 3-6 

weeks of age. After 2-4 weeks tissues were retrieved and processed for histology 

as detailed in the methods section.  

 

Macroscopically grafts were well-vascularised after 2-4 weeks with >95% graft 

survival. In order to confirm the formation of anastomoses between the human 

and murine circulations the tissues were stained by immunofluorescence for the 

endothelial markers von Willebrand Factor (human) and CD31 (murine). Von 

Willebrand Factor is a glycoprotein involved in haemostasis which is expressed 

exclusively by endothelial cells, megakaryocytes and platelets (Ruggeri & Ware 

1993) and is therefore suitable as a specific marker for human endothelial cells in 
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this model. CD31 (also known as platelet-endothelial cell adhesion molecule-1/ 

PECAM-1) is expressed by a number of circulating cells including platelets, 

neutrophils, monocytes and some T-cell subsets, and by endothelial cells where it 

is a critical component of endothelial cell junctions (Newman 1997). Both ex vivo 

synovial and skin grafts were stained and representative sections are shown in 

Figure 3.1. Human vessels, indicated by green staining for vWF, and murine 

vessels, indicated by red CD31 staining are represented in both skin and synovium 

confirming the presence of both human and murine vessels within the grafts and, 

importantly, preservation of a human-specific phenotype. In addition, the 

formation of human-murine vessel anastomoses in clearly demonstrated and is 

indicated in the diagrams with arrows. This, therefore, supports the capacity of the 

model to enable delivery of systemically-administered compounds to the human 

vascular endothelium. 

 

 

Figure 3.1: The formation of anastomoses between human and murine vessels 

within transplanted human tissues. Frozen tissue sections of synovial (A) and 

skin (B) ex vivo transplants were stained by immunofluorescence for the vascular 

endothelial-specific markers human von Willebrand Factor (green) and  murine 

CD31 (red). The presence of both human and murine vessels was confirmed in the 

grafts with anastomoses between the human and murine vessels clearly visible 

(arrows). Original magnification x40 

 

A B 
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3.2.2 Sequencing of PIII gene confirms retention of  the 

expected inserted oligonucleotide sequences 

One of the enormous advantages of peptide phage display technology is the 

predictable link between phenotype and genotype. Transfection of oligonucleotide 

sequences into the phage surface protein PIII gene results in the expression of 

fusion proteins which, in the case of the 3.1 phage, confers homing specificity for 

human synovium in vivo. Prior to the use of the phage clones for in vivo or in vitro 

experiments, phage were amplified from frozen stocks as detailed in the methods 

and expression of the expected peptide sequences was confirmed by DNA 

sequencing. For the in vivo experiments a phage clone previously selected from 

the same library as the 3.1 clone for binding specificity to streptavidin was used. 

This clone, known as streptavidin clone 1 (SC1), expressed a peptide containing 

the expected HPQ sequence (discussed in more detail later). Both of these clones 

were isolated by Dr Lewis Lee during as part of the phage library validation 

experiments prior to the in vivo selection of the 3.1 phage. 

 

DNA was extracted from the phage stocks as detailed in the methods: a specific 

primer was used to amplify the DNA by PCR and the sequencing was carried out 

on an in-house automated sequencing system. For later experiments, due to the 

loss of the sequencing facility, the DNA and primers were sent to an external 

resource for PCR and sequencing. The phage were sequenced each time fresh 

stocks were produced by amplification and this consistently confirmed the 

presence of the expected DNA sequences.  

 

Representative sequencing chromatograms are shown in Figure 3.2: The 

oligonucleotide sequence was translated using an on-line tool and this confirmed 

the coding for the expected peptide sequence (Table 3.1).  
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Figure 3.2: Representative sequence chromatograms of the phage clones used 

in this project. DNA was extracted by PEG precipitation of phage from stock 

solutions followed by incubation with NaI/ ethanol to strip the phage proteins and 

precipitate DNA. After washing, DNA was amplified by PCR with a specific 

primer prior to sequencing. The chromatograms confirm the expected inserted 

DNA sequences: sequencing was performed each time phage were re-amplified 

from stocks. 
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 Clone 3.1 

3’5’ antisense sequence GCA CAG ACG ATC ATG AGT CGA CTT ACA 

Translated sequence Cys  Lys  Ser   Thr  His  Asp  Arg  Leu  Cys 

  

 Clone RGD 

3’5’ antisense sequence GCA AGG ATG ATC ACC ACG AGG AGA ACA 

Translated sequence Cys  Ser   Pro  Arg  Gly  Asp  His   Pro  Cys 

 

 Clone SC1 

3’5’ antisense sequence GCA CTG CGG ATG AGA CCA CGT ACC ACA 

Translated sequence Cys  Gly  Thr   Trp  Ser  His   Pro  Gln  Cys 

Table 3.1: Translation of fusion peptide sequence from sequencing data. After 

each phage amplification expression of the expected peptide sequence was 

confirmed by amplification of the DNA with specific primers and sequencing. 

The 3’5’ antisense sequence obtained was converted into the peptide sequence 

using an on-line DNA translation tool. 

 
3.2.3 TNFα up-regulates tissue localization of the synovial-

homing phage specifically to synovial but not skin grafts 

maximally 6 hours post- injection. 

Preliminary experiments, as discussed in the introduction, had shown that 

intragraft injection of recombinant human TNFα increased synovial-specific 

phage homing at 6 hours. TNFα is a dominant pro-inflammatory cytokine with a 

critical role in the pathogenesis of rheumatoid arthritis and part of its effects are 

mediated through its ability to modulate adhesion and migration: the use TNFα-

blocking therapies has now becoming routine in clinical practice (Feldmann & 

Maini 2001). Some of effects are mediated through its ability to modulate 

adhesion and migration: an early observation with the use of TNFα-blocking 

therapies was an increase in the number of circulating peripheral blood 

lymphocytes- this was associated with a reduction in synovial cellularity and 
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expression of E-selectin and VCAM-1 (Tak et al. 1996) The observation that 

synovial adhesion molecules are down-regulated following anti-TNFα therapy has 

been confirmed by other studies (Paleolog et al. 1996) underlining the key role of 

this cytokine in regulating adhesion and migration phenomena. Previously we 

have shown  in vivo that injection of human TNFα into human synovial grafts 

results in up-regulation of human CAM expression by the graft vasculature 

(Wahid et al. 2000) and that this correlates with an increased migration of human 

cells into stimulated grafts. 

 

To determine whether recombinant human TNFα modulates expression of the 

synovial MVE receptor recognized by the CKSTHDRLC-expressing 3.1 phage, 

synovial and skin grafts were pre-stimulated by intragraft injection of 200 ng 

TNFα or 0.9% saline control. 6 or 18 hours after TNFα injection, the mice were 

injected intravenously with 200 pfu of the CKSTHDRLC-expressing 3.1 phage or 

SC1 control sequence phage. Transplanted tissues were harvested after 15 minutes 

circulation time following perfusion of the systemic circulation via the left 

ventricle with 50 mls 0.9% saline to wash out unbound phage. The results of this 

experiment are shown in Figure 3.3. At baseline (no TNFα stimulation), 

CKSTHDRLC phage recovery from synovial grafts is significantly higher than 

that seen in skin grafts (p=<0.001) and that of the control phage to both synovial 

and skin grafts (p=<0.001), an observation consistent with our previous findings 

(Lee et al. 2002).  6 hours after TNFα intragraft injection phage homing to the 

synovial transplants issignificantly up-regulated compared with baseline, with 

approximately two-fold increase in synovial localization (p=<0.001). Importantly, 

no significant up-regulation of homing to the skin grafts is seen for either phage 

clone at 6 hours. At 18 hours post TNFα stimulation CKSTHDRLC phage 

localization to synovial grafts returned to levels similar to those seen at baseline 

(p=>0.05 compared with baseline). No significant changes were seen in the levels 

of control phage localization at 6 hours. Homing of both phage clones to the 

murine kidneys is similar at all time points indicating similar levels of injected 

phage. 
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Figure 3.3: Homing of CKSTHDRLC phage (A) and control phage (B) to 

transplanted human tissues in SCID mice. Four weeks post-transplantation 

human synovium and skin into SCID mice, the grafts were injected with 200 ng of 

rhTNFα or saline control. After 6 or 18 hours, the mice were injected 

intravenously with 1 x1011 pfu of 3.1 or strep clone 1 phage. The mice were 

culled, the transplanted tissues and murine kidney removed, and numbers of phage 

in each tissue determined as detailed in the materials and methods. The results are 

shown as the mean + S.E.M. of triplicate plate readings. At 6 hours, 3.1 phage 

binding in human synovium is significantly greater than at baseline (p=<0.001, 

unpaired, two tailed t-test). No significant effect is seen at 18 hours. No 

significant effects were seen on 3.1 phage binding in human skin or murine 

kidney; similarly, no significant effects were seen in any tissue on strep clone 1 at 

6 hours. The differences between phage homing to synovium and skin were 

significant at all time points. n=14-16 transplants per condition. 

3.2.4 Visualisation of phage homing and up-regulati on with 

TNFα by immunofluorescence 

In order to examine the localization of the phage within the tissues transplants 

from double-transplanted mice injected with 3.1 phage after intragraft rhTNFα or 

saline injection, grafts were extracted and stained by immunofluorescence for the 

major phage coat protein M13. Human vessels were counterstained for von 

Willebrand Factor as previously. Representative sections are shown in Figure 3.4: 

in the saline-treated tissues co-localisation of the phage with human vessels isseen 

in the synovial grafts, low levels of phage are also seen in the skin. After TNFα 

B A 
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stimulation increased co-localisation of phage with the human vasculature is seen 

in the synovial tissue with no observable change in levels of localization in the 

skin. 

 

These data suggest that the ligand for the CKSTHDRLC (3.1) phage is up-

regulated by TNFα as well as being present under basal conditions in these 

tissues. Furthermore, no significant differences were seen in the control tissue 

(skin), this is despite there being a clearly demonstrable pro-inflammatory effect 

as evidenced by up-regulation of both E-selectin and ICAM-1 expression at 6 

hours. These observations suggest that the phage are binding a synovium-specific 

TNFα–responsive ligand and raise the possibility that it may be a synovial 

homing-receptor. Although tissue-specific homing receptor/ addressin pairs have 

not been identified for human synovium there is substantial indirect evidence that 

such interactions may exist, such as the observation of non-random accumulation 

of lymphocyte subsets in the inflamed synovium (Pitzalis et al. 1987) and the 

selective adhesion of lymphocytes isolated from inflamed human synovium to 

synovial tissue sections (Salmi et al. 1992).  

 

The time course of up-regulation of phage homing to synovium may provide some 

insight into the nature of the ligand. The relatively short-term time frame, with 

down-regulation by 18 hours suggests cell membrane expression (as opposed to 

extracellular matrix). E-selectin expression peaks in vitro after TNFα-stimulation 

at 4-6 hours, although expression can remain up-regulated for 24-48 hours (To et 

al. 1996). However, the lack of an increase in homing of the 3.1 phage to skin 

despite up-regulation of E-selectin expression in our study makes this an unlikely 

candidate ligand although a tissue-specific post-translational modification is 

possible. Similarly, up-regulation of ICAM-1 expression is seen in both skin and 

synovium and is therefore less likely to be the target: furthermore the dynamics of 

ICAM-1 expression as already discussed are not in its favour and lack of binding 

of the phage to ICAM-1 was confirmed by ELISA (see next section). Although 

TNFα is known to synergise with VEGF in the stimulation of neoangiogenesis the 

short time frame of the effect on phage homing rules this out as an explanation for 
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the phenomenon. Our findings therefore raise the possibility that the synovial 

endothelial ligand may be a novel tissue homing receptor; the observation that 

phage homing is seen in the resting as well as the inflammatory state suggests that 

it may have roles in cell recruitment in diseases states as well, possibly, as in 

routine immuno-surveillance. The demonstration that the synovial-homing of the 

phage is up-regulated by TNFα adds significantly to the utility of the specific 

peptide sequence as targeting tool. Potentially, reagents bearing this specific 

sequence would be not only be selective for synovial tissue and but also 

preferentially accumulate in actively inflamed synovial tissues. This has obvious 

implications for imaging and optimal delivery of therapeutic molecules for 

rheumatoid arthritis.  

These findings confirm the potential of this peptide for the targeting of therapeutic 

agents to the synovium. Experiments to investigate the in vivo tissue specificity of 

the monomeric peptide will be discussed in Chapter 5. 

Synovium Skin

Saline

TNFα

vWF M13 vWF M13

 

Figure 3.4: Representative sections of grafts pre-stimulated 6 hours 

previously with TNFαααα or saline control from mice injected with the synovial-

specific phage.  Grafts were stained by immunofluorescence for the phage coat 

protein M13 (red) and counterstained for the human endothelial-specific marker 

von Willebrand factor (green). Low levels of phage co-localisation with vascular 

endothelium are seen in saline-treated synovium and, to a lesser degree, skin. 

There is increased phage localization and intensity in the TNFα-treated synovium 

with a minimal increase in the skin. These findings are consistent with that from 

the phage titration data shown in Figure 3.3. Original magnification x40. 
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3.2.5 TNFα up-regulates human adhesion molecule expression 

in both synovial and skin transplanted tissues 6 ho urs 

after injection  

We have shown in previously published work that adhesion molecule expression 

in transplanted human synovial tissue is significantly down-regulated 2-4 weeks 

post-transplant, suggesting that in the absence of continuing pro-inflammatory 

stimuli the transplants revert to a ‘resting state’ phenotype (Wahid et al. 2000). 

Despite this, the 3.1 phage clone was selected under these conditions thus 

suggesting the presence of the synovial ligand in uninflamed tissue. As discussed 

in the introduction, 24-48 hours post-injection intragraft of TNFα, ICAM-1 and 

VCAM1 are up-regulated in synovial grafts. Other groups have reported the up-

regulation of E-selectin in transplanted synovium at 6 hours indicating that TNFα 

up-regulates the inflammatory phenotype of the transplanted synovium at least as 

early as this time point. The results presented in the previous two sections 

describe the tissue-specific upregulation by TNFα of 3.1 phage homing to human 

synovial tissue. Although we and others have previously reported up-regulation of 

cell adhesion molecule expression in transplanted synovium after intragraft 

injection of TNFα, the conclusion that the 3.1 phage ligand is synovial-specific, 

and more critically that it is specifically up-regulated in inflamed synovium, is 

contingent on the demonstration of a comparable stimulatory effect of TNFα on 

both tissues at this time point. Ex vivo tissues injected with TNFα or vehicle-only 

control 6-hours prior to retrieval were therefore examined for the expression of 

the adhesion molecules E-selectin and ICAM-1. Briefly, SCID mice were double-

transplanted with human skin and synovium: after 2-4 weeks the grafts were 

injected with 200 ng rhTNFα or saline vehicle control. After 6 hours the animals 

were killed and the transplanted tissues processed for histological staining as 

detailed and stained by immunofluorescence for the adhesion molecules ICAM-1 

and E-selectin with counterstaining for the human-specific vascular endothelial 

marker von Willebrand Factor (vWF). Representative sections are shown in 

Figure 3.5. Low levels of staining were seen for both E-selectin and ICAM-1 in 

the unstimulated tissues. There is clear up-regulation of both E-selectin and 

ICAM-1 expression in TNFα-treated grafts at this 6-hour time point with a 
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positive effect apparent in both skin and synovial transplants- it can be seen that 

both adhesion molecules co-localise with the counterstain for human vessels. Low 

levels of ICAM-1 expression were seen in both the skin and synovium in 

untreated tissues, and widespread extravascular expression of ICAM-1 could be 

seen particularly in the synovial grafts after TNFα stimulation. Expression of both 

ICAM-1 and E-selectin have been described in normal synovial tissue (Fairburn et 

al. 1993), although in our unstimulated transplants it was virtually undetectable.   

 

An arbitrary scale (0-3) was used to grade the extent and intensity of ICAM-1 

expression in synovial tissue before and after TNFα injection. The results shown 

in Figure 2 A show a significant increase in ICAM-1 expression in the synovial 

tissue after TNFα stimulation (p=<0.05). 

 

It can be seen in Figure 3.5 that both adhesion molecules co-localise with the 

counterstain for human vessels. E-selectin expression is restricted to the vascular 

endothelium whilst, in synovium particularly after TNFα expression, ICAM-1 

expression can be seen both in the vessels and, as expected, by other synovial cell 

types. This restriction of E-selectin expression to vascular endothelial cells and 

both skin and synovium enabled the effect of TNFα stimulation to be compared. 

Human vessels were identified by vWF staining and the number counterstaining 

for E-selectin counted. The results, shown in Figure 2 B, demonstrate a significant 

up-regulation of E-selectin at 6 hours in both the synovial and skin transplants 

(p=<0.05). Notably, there is no significant difference in E-selectin expression in 

the TNFα-treated skin and synovial grafts. Thus we were able to show that TNFα 

upregulated the inflammatory phenotype of the transplanted human synovial and 

skin vascular endothelium, and that this upregulation is similar for the two tissues. 
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Figure 3.5: Representative sections from transplants 6 hours post-intragraft 

injection of TNFα or saline. Immunofluorescent staining was used to detect 

human von Willebrand factor (green) or ICAM-1/ E-selectin (red). There is clear 

up-regulation of both ICAM-1 and E-selectin expression; E-selectin expression is 

restricted to the vessels in both the skin and synovium. After TNFα stimulation 

there is up-regulation of expression in the vessels of both skin and synovium as 

well as more extensive extravascular expression in the synovium. Original 

magnification x40. 
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Figure 3.6: Quantification of ICAM-1 (A) and E-selectin (B) in transplanted 

tissues 6 hours post-intragraft injection of 200ng TNFα. A 2 synovial 

transplants were examined from each group and a minimum of 35 fields from 2-3 

cutting levels were examined. Regions of human tissue were identified by the 

vWF counterstain. The extent of staining for ICAM-1 was graded on an arbitrary 

scale from 0-3. Significantly more staining is seen after intragraft injection of 

TNFα (p=<0.05) B 2 transplants were examined from each group, each at 3 

different levels; human vessels were identified by staining for vWF and assessed 

for positive or negative staining for E-selectin: 150-350 vessels were examined 

per transplant. Differences were significant for TNFα-treated vs. saline-treated 

tissue (* p=<0.05, unpaired 2-tailed T-test). There is a non-significant difference 

in E-selectin expression in the TNFα-treated tissues in favour of skin. Results 

shown are mean +/- S.D.  

 

 

3.3 Identification of candidate phage/ peptide liga nds 

As discussed in the introduction, there is significant indirect evidence for the 

existence of a synovial-specific ‘addressin’ as evidenced by the apparent non-

random circulation of inflammatory cells. The observation that synovial-specific 

phage homing is up-regulated in inflamed tissue supports the possibility that one 

such addressin may be the receptor for the phage. Previously, however, several 

groups have reported receptors for tissue specific peptide-displaying phage as 

being non-classical adhesion molecules. Work is ongoing in our laboratory to 

identify the phage receptor by affinity chromatography; however a search of 
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protein sequence databases produced a striking match as discussed in the next 

section. 

3.3.1 BLAST search of the KSTHDRL sequence reveals 

sequence homology with an extracellular region of t he 

human mac-1 integrin. 

In order to investigate whether the constrained peptide sequence expressed by the 

synovial-homing phage has any homology with known human proteins the 

peptide sequence was entered into the Basic Logic Assignment Search Tool 

(BLAST) available at http://130.14.29.110/BLAST/. This tool searches for areas 

of sequence similarity between the reference sequence and registered protein 

sequences. The search was restricted to human proteins and modified to search for 

short sequences. A number of matches were obtained of 5-7 residues and these are 

summarized in Table 3.2. A number of the matched sequences are with proteins 

which are of unknown function; of the remainder the majority are intracellular and 

therefore unlikely to be relevant: as the phage is introduced to the tissues via the 

circulation the synovial ligand is likely to be encountered on the vascular luminal 

endothelium cells or the extracellular matrix. The most striking match is with an 

extracellular region at position 660-665 of the human integrin αm-integrin subunit. 

αm (CD11b) associates with β2 (CD18) to form the mac-1 integrin. The 7 residue 

sequence has 85% homology with the KSTHDRL sequence: the arginine/ 

histidine substitution at position 4 can be regarded as a ‘conservative’ substitution 

as both of these are basic residues. Of the remaining sequence matches, 

chemokine-like factor superfamily 6 is a protein with similarity to the chemokine 

family and although widely expressed it is of unknown function (Han et al. 2003). 

Regulator of G-protein signaling 3 (RGS3) is predominantly intracellular, 

although translocation to the plasma membrane can occur on G-protein activation 

(Dulin et al. 1999) and thus role in inflammatory synovitis can therefore not be 

excluded. 

 

Mac-1 (αmβ2) is part of the integrin family of heterodimeric receptors and is 

expressed predominantly by myeloid and natural killer cells, although it can also 

be expressed by lymphocytes (Li 1999).  It has been implicated in adhesive 
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interactions with a number of endothelial cell-expressed molecules and 

extracellular matrix proteins including ICAM-1(Diamond et al. 1991), ICAM-2 

(Xie et al. 1995), fibrinogen  (Lishko et al. 2004) and fibronectin (Lishko, 

Yakubenko, & Ugarova 2003) as well as non-protein ligands such as 

glycosaminoglycans (Diamond et al. 1995) and plastic (Yakubenko et al. 2002). 

Of these, fibronectin and ICAM-1 are the most interesting potential targets in RA 

tissue and the interaction of phage with these ligands was investigated further in 

the next section. 

 

Table 3.2: Results of a BLAST search of the synovial-homing peptide 

sequence. Matches spanning 5 or more residues are shown. Residues in red match 

residues in the reference sequence whereas residues in black are substitutions 

 

Peptide 

Sequence 

Database match 

KSTHDRL  

KSTRDRL Integrin alpha-m 

   STHNRL Wnt-8a precursor 

KSSHDR Thymopoietin 

   SAHDRL RING finger protein 150 

   STQDRL Bromodomain containing 7 

Protein geranylgeranyl transferase type I 

KSTQDR KIAA 1244 (hypothetical protein) 

   STHDKL strawberry notch homolog 1 

     THDRL RAD54-like 

PHLDB1 

v-akt murine thymoma viral oncogene homolog 

   STHDR chemokine-like superfamily 6 

KSTHD Regulator of G-protein signaling 3 

Pyrophosphatase (inorganic) 1 
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3.3.2 Optimisation of phage ligand binding assay 

As discussed above, the identification of sequence homology of the peptide 

sequence and of mac-1 integrin suggested a number of candidate ligands, 2 of 

which- ICAM-1 and fibronectin- were felt warrant further investigation. An 

ELISA-based assay would enable relatively quick screening of candidate ligands. 

For these assays the phage selected against streptavidin was to be used as a 

positive control.  

 

The candidate ligand was bound to a 96-well plate overnight and, after washing 

and blocking, was incubated with varying concentrations of phage. After a further 

wash bound phage was detected with an HRP-conjugated anti-M13 antibody and 

developed with TMB before reading absorbance at 450 nm. In preliminary 

experiments background binding of phage was found to be significant, therefore 

the experiments were repeated without the ligand on order to investigate different 

blocking agents. The blocking step was carried out with 1% casein, 5% BSA or 

2% milk, each made up in PBS. Phage were incubated on the plates in PBS + 

0.1% Tween-20 and the assay completed as detailed above. The results, shown in 

Figure 3.7, show a clear reduction in binding if BSA or milk are used instead of 

casein. There is a small difference between milk and BSA with lower binding on 

the milk-blocked plates. However, as milk contains biotin, BSA was used in order 

to allow the streptavidin-binding page to be used as a positive control in these 

assays. 
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Figure 3.7: Background binding of 3.1 phage clone in ELISA. 96-well plates 

were blocked with 5% BSA, 2% milk or 1% casein and incubated with various 

concentration of phage for 1 hour. The plates were washed and incubated with 

HRP-conjugated anti-M13 antibody and developed with TMB. There is 

considerably higher background binding with casein with a smaller difference 

between BSA and milk. Means of duplicate wells +/- SD 

 

3.3.3 Binding of phage to candidate ligands 

For these experiments the same streptavidin-binding HPQ motif phage clone was 

used as a control. This phage was isolated from the same library as the synovial-

homing phage and the peptide has the same seven amino acid, disulphide-

constrained structure. The sequence, CGTWHPQC, contains the HPQ motif 

which has been found to be the most frequently-occurring motif in previous 

panning experiments against streptavidin - indeed, one group found that all 

isolated sequences contained HPQ (Giebel et al. 1995). Crystal structure analysis 

of the peptide-streptavidin complex has shown that the HPQ motif occupies the 

biotin binding site of streptavidin (Weber, Pantoliano, & Thompson 1992). 

Previous studies have shown that cyclic HPQ-containing peptides have 

significantly enhanced binding affinity over linear peptides, with Kd values in the 

range 0.23-78 µM (Giebel et al. 1995). This is several orders of magnitude higher 
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than the Kd of the biotin for streptavidin (10-15 M) and is therefore ideal as a 

positive control. 

 

The assay detailed in the previous section was repeated with candidate ligands. 

Both ICAM-1 and fibronectin are up-regulated in rheumatoid synovium and are 

implicated in adhesion and the recruitment of leucocytes to the inflamed tissue. 

Fibronectin (isolated from human serum), recombinant human ICAM-1 or 

streptavidin (positive control) were coated to the plates overnight and blocked 

with BSA. Phage (3.1 or strep. clone 1) in conjugate buffer containing Tween-20 

and BSA were incubated on the plates in decreasing dilutions and the ELISA was 

completed as above. Binding of the ICAM-1 and fibronectin to the plates was 

confirmed by incubation with specific antibodies followed by HRP-conjugated 

anti-mouse immunoglobulin antibody. A separate plate was coated with anti-M13 

antibodies prior to incubation with phage and completed as for the other plates: 

this allowed confirmation and correction if necessary of the phage concentrations. 

Divalent cations were added to all the ELISA buffers as a number of integrin/ 

ligand interactions have been shown to be cation-dependent (Shimizu & Mobley 

1993). 

 

The results of the fibronectin and ICAM-1 plates are shown in Figure 3.8. The 

SC1 phage clone was used both as a positive control for binding to streptavidin 

and a negative control for binding to the candidate ligands. It can be seen that no 

specific binding is seen for the CKSTHDRLC-expressing 3.1 phage clone to 

either fibronectin or ICAM-1 or to streptavidin as negative control ligand. On the 

other hand, as expected, the HPQ SC1 phage clone clearly binds specifically to 

streptavidin but not to ICAM-1 or fibronectin. These results confirm that the 3.1 

phage does not bind ICAM-1 or fibronectin indicating the synovial endothelial 

receptor(s) represents represent an as yet unknown tissue determinant. 

 

This experiment, therefore, failed to demonstrate any specificity for the 3.1 phage 

to either of these antigens. Other than there genuinely being no specificity of the 

phage for the antigens there are two alternative explanations for these results. The 
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first is the sensitivity of the assays to detect low levels/ low affinity binding. As 

shown, the background binding of the phage in the first assay could obscure 

specific binding. With ICAM-1 it is theoretically possible that the monoclonal 

antibody used for detection and the phage recognise the same binding site on the 

molecule although this is unlikely. The second explanation is that the expression 

of the antigens differs in synovial tissue: as already discussed, splice variants of 

fibronectin are expressed selectively in inflamed synovium. Post-translational 

modification of ICAM-1 has been described with differential glycosylation 

demonstrated between cell types in vitro (Champagne et al. 1998). There are 

alternative means, potentially, of investigating phage binding to candidate ligands; 

however it was decided at this stage to concentrate on identification of the ligand 

by affinity chromatography which is being pursued as a separate project. 
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Figure 3.8: Binding of phage to candidate ligands. ICAM-1or fibronectin were 

incubated on 96-well plates overnight at concentrations of 10 µg/ml (A) or 1 

µg/ml (B) with streptavidin as positive control. The plates were incubated with 

various concentrations of 3.1 or SC1 phage:  bound phage were detected with 

HRP-conjugated anti-M13 antibodies followed by DAB substrate. Mean of 

duplicate wells +/- SD.  
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3.4 Summary 
In this chapter, importantly, the reproducibility of the model and the specificity of 

phage clone 3.1 homing to transplanted human synovium compared with control 

skin tissue was confirmed. In addition it has been shown that intragraft injection 

of TNFα results in specific upregulation of synovial-specific phage homing at 6 

hours post-stimulation and that this reverts to baseline levels after 18 hours. If the 

synovial ligand is, as hypothesised, a synovial-specific addressin, i.e. a homing 

receptor for tissue-specific lymphocyte homing, these data suggest a role for the 

molecule in both routine immunosurveillance as well as in the inflamed states 

seen in disease. This further emphasises the potential of the synovial receptor as a 

target, as the enhanced ability to concentrate a targeted compound at a diseased 

site could further minimise drug toxicity at non-inflamed loci. The observation 

that similar up-regulation of tissue markers of TNFα-induced stimulation is seen 

in both skin and synovial transplants confirms the tissue-specificity of the phage-

homing response.  

 

Despite the match of the peptide sequence with a sequence contained within the 

mac-1 integrin binding of phage clone 3.1 to purified recombinant ICAM-1 or 

purified fibronectin was not seen in vitro. Although there may have been 

limitations in the assay, or alternatively that the phage may be binding to tissue-

specific variants of these molecules, these data in association with the 

demonstrated kinetics of homing up-regulation following TNFα stimulation 

suggest that these are not the synovial ligands. However, what is known about the 

ligand profile of mac-1 make it the most promiscuous of the integrins and this 

would add weight to the possibility that the ligand is an as yet unidentified mac-1 

target. Further working is in progress to identify the synovial target for the phage-

expressed peptides. 
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4  

Chapter 4 

Development of the SCID mouse chimera 

model as a tool for imaging transplanted 

human synovium 
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4.1 Introduction 

A major focus of the work contained in this project was the identification and 

development of a peptide-based molecule that could be used as an agent for the 

imaging of inflamed synovial tissue. We therefore took the opportunity to 

examine whether the SCID mouse model could be further developed as a tool for 

the assessment of imaging agents. The availability of a SPECT-based imaging 

technique would not only advance the model in this respect, but could also have 

further advantages in the assessment of tissue-specific peptide homing. Of these 

the most obvious would be to enable uptake to be measured in transplanted tissues 

at sequential time points within the same animal. This would have clear 

advantages both experimentally in minimising variation between tissue at each of 

the observed time points, and in limiting the quantities of human tissue ad 

experimental animals needed for studies. 

 

Over recent years the development of increasingly sensitive small animal imaging 

systems has enabled closer approximation, in terms of resolution, to human 

imaging techniques. One of these, the Bioscan NanoSPECT/CT imaging system 

became available to us towards the end of this project and provided a unique 

opportunity for the imaging of transplanted human tissue in the SCID mouse 

model. A further advantage to the use of this system is that it enables 

quantification of localisation of exogenous radiolabelled molecules at multiple 

time points in the same animal. This has clear advantages for the assessment of 

the synovial specificity of peptide-based radiolabelled constructs such as those 

detailed in chapter 5.  

 

Single-photon emission tomography (SPECT) is a radionuclide-based imaging 

technique which utilises a pinhole collimator to focus the emitted gamma rays on 

a detector. The collimator can thus restrict image acquisition to one gamma ray 

per projection, magnifying the image with resultant enhancement in resolution 

(King et al. 2002). The use of multiple pin-holes produces multiple projections on 

a detector maximising use of the detector surface and optimisation of resolution. 

The NanoSPECT/CT imaging system consists of in-line SPECT and X-ray-based 
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helical computed tomography (CT) scanners. This enables the construction of 3D 

images derived from tissue-distribution of radioactivity and conventional CT 

which can be overlayed: these images can then be used to view and quantify 

accumulation of activity within specific organs. The SPECT component of the 

system uses helical scanning in conjunction with four cameras each with multi-

pinhole collimators. The resultant available resolution is down to 0.8mm which, 

for the purpose of our study, is excellent for the imaging of the transplanted 

human tissues.  

 

The aim of this part of the project was, therefore, to determine whether the tissues 

could be visualised after administration of an imaging agent, and to see whether 

differences between specific and non-specific uptake could be detected, with the 

ultimate intention of using this to evaluate the synovial-homing peptide as a tool 

for imaging. For this purpose, a murine antibody to human E-selectin, derived 

from the 1.2B6 hybridoma, was used. This antibody cross-reacts with porcine E-

selectin, but not murine and so is suitable for use in this model. The antibody and 

a scFv fragment have been successfully used to image inflammatory synovitis in 

human subjects as discussed in the introduction. The antibody was purified from 

the hybridoma (a generous gift from Professor D.Haskard, Imperial College 

London) supernatant and modified for radiolabelling. Radiolabelled 1.2B6 or 

isotype control antibodies were then injected into SCID mice transplanted with 

human synovium after intragraft injection of TNFα and imaged. The scans were 

used to quantify the intragraft accumulation of radioactivity and to determine 

whether specific from non-specific uptake could be resolved. 

 

4.2 Purification of and radiolabelling of antibodie s to 

human vascular endothelial inflammatory markers 

4.2.1 DTPA-conjugated antibodies retain affinity fo r E-selectin 

Anti E-selectin antibodies were purified from 1.2B6 hybridoma culture 

supernatant as detailed in the methods and were the same as those used for the 

immunofluorescence staining in section 3. 1.2B6 and isotype control antibodies 
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were derivatised by conjugation to DTPA to allow radiolabelling with 111In and 

washed in ultrafiltration columns until absorbance at 280nm of the filtrate was 

zero indicating removal of unbound DTPA: concentration of the final product was 

determined by spectrophotometry. It was important to confirm that 

immunoreactivity of the conjugated antibody was retained after DTPA 

conjugation: the affinity of the conjugated and unconjugated antibodies for 

immobilised E-selectin were therefore compared by ELISA. The results of this 

experiment are shown in Figure 4.1a. A clear dose-response curve is seen for both 

DTPA-conjugated and unconjugated antibodies with similar binding curves. Non-

linear regression analysis of the data allowed the EC50 of each antibody to be 

compared; these were 0.142 and 0.1408 µg/ml for the unconjugated and 

conjugated antibodies respectively and were not significantly different. No 

significant immunoreactivity was seen with an isotype control antibody. These 

data confirm that DTPA conjugation has no effect on immunoaffinity of 1.2B6 

mAb for E-selectin. 
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Figure 4.1: A Immunoaffinity of antibody before and after conjugation to 

DTPA. An ELISA plate was coated with E-selectin in reducing concentrations 

and incubated with purified anti-E-selectin (1.2B6) antibody before and after 

DTPA conjugation or an IgG1 isotype control. No difference is seen between the 

binding curves of the anti-E-selectin antibodies and non-linear regression analysis 

confirmed identical EC50 values. No specific immunoreactivity was seen with an 

isotype control antibody. Mean of duplicate wells +/- SD. 

B Immunohistochemical staining of human RA synovial tissue with anti E-

selectin and control antibodies. RA tissues sections were incubated with the 

same concentration (5 µg/ml) of anti-E-selectin or anti-CEA antibodies. A HRP-

conjugated anti-mouse immunoglobulin secondary antibody was used and 

developed with DAB substrate. No specific binding was seen on the anti-CEA 

section, specific staining of vessels is seen with anti-E-selectin. Original 

magnification x20.  
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4.2.2 Anti-CEA antibodies do not bind synovial tiss ue sections 
In order to confirm immunoreactivity on inflamed synovial tissue, frozen RA 

tissue sections were stained with equal concentrations of anti E-selectin or 

isotype-matched anti-CEA antibodies which were to be used as controls. E-

selectin expression by vascular endothelial cells is up-regulated in the synovium 

of patients with RA and RA tissue was therefore used to examine binding of anti-

E-selectin antibodies to activated synovial endothelial cells. Representative 

sections are shown in Figure 4.1B. As expected, specific staining of vessels is 

seen for E-selectin: expression is restricted to the vascular endothelium which is 

in keeping with the known expression pattern of E-selectin. No specific staining 

could be seen with the anti-CEA antibodies either on endothelial cells or 

elsewhere within the synovial tissue section thus confirming its suitability as a 

negative control. 

4.2.3 Radiolabelling and purification of 111In-antibodies 

The conjugation of DTPA to the antibody allows easy labelling with 111In by 

incubation with 111InCl3 at pH 6.0 for 30 minutes. In human studies the injected 

dose was around 35µg of DTPA-F(ab’)2 and therefore in mice we wanted to inject 

the minimum that the specific activity would allow. To investigate the maximal 

specific activity reducing concentrations of DTPA-1.2B6 were labelled with ~5 

MBq of 111In. The proportion of free 111In was then determined by instant thin-

layer chromatography (ITLC) with or without reverse-phase high-performance 

liquid chromatography.  The results, shown in Figure 4.2, show that 5 µg could be 

labelled with efficiency approaching 100%, below this there was a substantial loss 

of specific labelling. It was found that the radiochemical purity following the 

labelling reaction was somewhat variable. As we were trying to achieve maximum 

specific activity the process was sensitive to the quality of the radiochemical 

stock- labelling efficiency did tend to deteriorate during the week, probably due to 

a combination of decay and trace metal contamination of the stock. Therefore, as 

much as possible, labelling was done at the beginning of the week. If labelling fell 

below 95% a size-exclusion spin column purification step was used after which 

purity was >99%. Representative RP-HPLC chromatograms are shown in Figure 
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4.2. The large single peak seen with 280 nm absorbance confirms purity of the 

antibody (Figure 4.2A). A single peak of radioactivity is also seen confirming 

>99% conjugation of 111In to the antibody.   
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Figure 4.2: Radiolabelling efficiency of 1.2B6 (anti-E-selectin) antibodies. 

1.2B6 antibody was diluted as indicated in 50 µl 0.1 M ammonium acetate buffer 

and incubated with 5 MBq 111In for 30 minutes at room temperature. The reaction 

was stopped by the addition of 10% volume 50 mM EDTA and radiochemical 

purity determined by instant thin layer chromatography in duplicate. % labelling 

indicates the proportion of 111In bound to antibody. The optimum specific activity 

achieve was 1 MBq/µg. Mean +/- SD. 
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Figure 4.3: Radiolabelling of DTPA-conjugated antibodies. Size-exclusion 

high-performance liquid chromatograms of 1.2B6 antibody after purification and 

conjugation to DTPA (A, absorbance at 280nm) and after radiolabelling with 111In 

(B, radioactivity in counts per minute). 
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4.3 Synovial tissue grafts are visible on SPECT sca n after 

intravenous administration of 111In-antibodies  

The aim of imaging experiments was to determine whether the NanoSPECT/CT 

imaging system could be used to visualise uptake of a systemically administered 

radiolabelled compound and, furthermore, to discriminate specific from non-

specific uptake. As discussed in the introduction, the neoangiogenic vessels of 

inflamed synovium are hyperpermeable: this has been successfully exploited for 

the purposes of imaging with non-specific agents, but has also hampered the 

search for more specific imaging agents.  

 

SCID mice were double-transplanted with human synovial tissue. Two-three 

weeks after transplantation, the synovial grafts were injected with rhTNFα to 

stimulate expression of E-selectin by human endothelial cells. After 5 hours the 

mice were injected intravenously with 2-4 MBq 111In-labelled 1.2B6 (2-5 µg) or 

isotype control mAb (3.5-6.5 µg), with a slightly higher quantity of control 

antibody due to lower specific activity. After 1 hour and at 4, 24 and 48 hours 

mice were anaesthetised and imaged by in the NanoSPECT/CT imaging system. 

At the end of the experiment the transplanted organs were retrieved for weighing 

and measurement of radioactivity in a gamma counter.  

 

Fusion images of the CT and SPECT scans clearly identified the transplanted 

tissues: this enabled quantification of uptake at all time points. Representative 

SPECT/CT fusion images of 111In-1.2B6 injected animals are shown in Figure 

4.4: there is clear definition of the transplants with respect to background allowing 

acceptable delineation of the transplants for quantification. The 3D reconstruction 

(Figure 4.4A) shows uptake of the 111In-labelled 1.2B6 mAb clearly visible in the 

transplants at 24 hours. Saggital and transverse sections (Figure 4.4B) taken at 1 

and 24 hours show a clear increase in uptake of the radiolabelled antibody 

between the two time points. This indicates that the SCID mouse transplantation 

model is suitable for visualisation of antibody localisation in vivo to RA synovium 

at multiple time points. 
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Figure 4.4: Visualisation of transplanted synovial tissue by CT/ SPECT 

imaging .CT/SPECT images of a double-transplanted mouse injected with 111In 5 

hours post-intragraft injection of rhTNFα. Images shown are full body 3D 

reconstruction at 24 hours (A) coronal and saggital projections at 1 and 24 hours 

(B). The CT image is in greyscale and the colours represent radioactivity from 

low (dark) to high (white).The transplanted tissues are indicated by the white 

arrows. 
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4.4 Significant correlation between synovial graft acti vity 

on SPECT and ex vivo 

The NanoSPECT/CT system allows, following image reconstruction, for the 

quantification of activity in defined regions. This has the substantial advantage of 

enabling assessment of uptake in a transplant at multiple time points in the same 

animal. However, the small animals SPECT/CT imaging technology is relatively 

new and relatively little has been published to date. The accuracy of the 

NanoSPECT/CT for the quantification of tissue uptake of radioactivity has been 

published in abstract form (Gershman et al. 2007). This study used standards of 

known activity: there are to date no publications examining the correlation 

between activity of tissues as measured by NanoSPECT and activity ex vivo. I 

therefore wanted to validate the quantification of graft uptake of an injected dose 

of radioactivity by comparing uptake as quantified from the SPECT scan with that 

of the  ex vivo grafts as measured in a gamma counter. For the quantification 

experiment grafts were injected with TNFα five hours prior to the administration 

of 111In-1.2B6 or control antibody in order to up-regulate E-selectin expression by 

the microvascular endothelium. NanoSPECT/CT images were acquired at 1, 4, 24, 

and 48 hours: at the end of the experiment the transplanted tissues were retrieved 

were weighed and the SPECT-quantified activity plotted against that measured in 

the gamma counter. The results of the linear regression analysis are shown in 

Figure 4.5: highly significant correlation is significant with an r2 of 0.982. This 

validates the data acquired from this experiment for the quantification of the graft 

uptake activity at multiple time points in single animals. 
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Figure 4.5: Correlation between SPECT-determined graft activity and ex vivo 

activity measured in the gamma counter. Synovial transplant activity derived 

from in vivo SPECT imaging was plotted against counts per minute measured of 

ex vivo transplants in a gamma counter. There is significant correlation (r2 of 

0.982) between the gamma counter and SPECT data: this confirms the suitability 

of imaging under these conditions for the quantification of graft uptake of 

radioactivity. 
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4.5 Significantly greater uptake of anti-E-selectin  antibody 

vs. anti-CEA is seen 24 hours post-injection 

Uptake of radioactivity in each of the two synovial grafts was measured at 1, 4, 

24, and 48 hours in each animal. CT/SPECT fusion images were produced using 

the proprietary software and a region of interest drawn around the transplants. The 

activity within the area was corrected for the weight of the grafts, which were 

retrieved after the animals were killed at 48 hours, and for the injected dose. 

Finally, the results were corrected for the decay factor for the time between 

injection of the radioisotope and acquisition of the images. The results (shown as 

% of the injected dose per gram of tissue plotted against time) are shown in Figure 

4.6 and it can be seen that there are significant differences in graft uptake between 

the anti-E-selectin and isotype control antibodies at 4 and 24 hours (p=<0.05). The 

difference did not quite reach significance at 1 hour (p=0.054) and there was a 

non-significant trend in favour of E-selectin at 48 hours (p=0.14). Altogether, 

these experiments validate this model for the testing of ‘discovery’ reagents as 

imaging or delivery systems to human tissues. 
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Figure 4.6: Uptake of injected 111In-labelled anti-E-selectin or control 

antibodies into transplants after intravenous injection. SPECT quantification 

of graft uptake of 111In-labelled anti-E-selectin (1.2B6) and isotype control 

antibodies at 1, 4, 24 and 48 hours. Human synovial tissue grafts transplanted into 

SCID mice were injected with TNFα 5 hours prior to intravenous administration 

of radiolabelled antibody. Mice were scanned at the indicated time points and the 

transplanted tissues retrieved at the end of the study. 3 mice per group, n=6 

transplants (1.2B6), 5 transplants (control). Results are shown as % injected dose 

per gram of tissue. Mean +/- SEM. 
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4.6 Summary 

The results presented in this section demonstrate that the SCID mouse 

transplantation is a powerful novel tool for the imaging of human synovium in a 

pre-clinical model. Although there are published reports of the imaging of arthritis 

models in animals their application to the testing of human-specific reagents may 

be limited by species-specific restriction of the reagent. This is exemplified by the 

anti E-selectin antibody used in this study which, although cross reactive with 

porcine E-selectin, is not immunoreactive with the murine epitope. A further 

significant advantage of the model is the capacity to quantify graft uptake at 

multiple time-points in the same animals, minimising variation in results arising 

due to differences between individual transplants and donors. This also enables 

the maximisation of resources of human tissue which are finite, and increases the 

total number of samples per study.  

 

Purified 1.2B6 antibody was shown to be immunoreactive with vessels in RA 

synovial frozen tissue sections and with immobilised E-selectin by ELISA. 

Furthermore, no difference in immunoreactivity between unconjugated and 

DTPA-conjugated antibodies: DTPA is conjugated via the ε-amino group of 

lysine residues within the protein and thus could potentially affect reactivity by 

binding critical lysine residues within the ligand binding domain.  

 

Uptake of both the 1.2B6 and isotype control antibodies was seen at all time 

points in the TNFα-treated transplants. The substantial uptake seen of the control 

antibody underlines the difficulties with achieving specific uptake on a 

background of graft hyperpermeability. Several imaging agents have been used 

which successfully exploit vascular hyperpermeability in inflammatory synovitis 

including non-specific immunoglobulin (Berna et al. 1992). As discussed in the 

introduction, the use of specific agents have been met with variable success, 

enhanced uptake being often found to be due to non-specific mechanisms: only 

25% of joint uptake after administration of a 99mTc-labelled anti-TNFα antibody 

was found to be specific (Barrera et al. 2003). A recent case report suggested the 
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use of radiolabelled anti-TNFα for the monitoring of response to intra-articular 

anti-TNFα (Conti et al. 2005): it is not clear how much of an advantage this might 

be over a non-specific agent, or whether it is a sensitive tool for the assessment of 

intra-articular levels of TNFα.  

 

Larger particles such as liposomes (Dams et al. 2000) have also been used with 

some success in a limited number of patients. 99mTc-labelled nanocolloid, a 

denatured human albumin which forms particles of up to 80nm, has been 

investigated as a tool for the imaging of joint inflammation. In a series of 59 

patients with arthralgia 99mTc-nanocolloid scintigraphy detected 82% of clinically 

involved joints, positive uptake was also seen in the joints of 3 clinically negative 

patients (Adams 2001). More recently, Palosaari et al compared 99mTc-

nanocolloid scintigraphy and MRI at the wrist joint in patients with early RA 

(Palosaari et al. 2006). Scintigraphic uptake at the joint was associated with the 

development of erosions at 2 years, although the predictive value, or whether this 

was more sensitive than clinical scoring, was unclear. Furthermore the correlation 

between MRI and scintigraphic progression was not explored. 

 

It remains unclear, therefore, whether the use of non-specific radioisotope 

imaging modalities offer any real advantages over clinical measures. Hence there 

remains considerable potential for more specific imaging agents which may have 

greater sensitivity and predictive utility. Imaging E-selectin expression is 

therefore of considerable interest, and has been shown in a small number of 

patients to have greater sensitivity over non-specific immunoglobulin. This may 

be in part due the internalisation of antibody after ligation of E-selectin: evidence 

from in vitro internalisation studies has shown that ligation of E-selectin by 

antibody results in internalisation of the complex, an effect not seen with ligation 

of ICAM-1 by antibody (von Asmuth et al. 1992). E-selectin therefore has 

significant potential as an agent as an imaging for inflammatory arthritis: such 

specific imaging has the possible advantages of offering more sensitive prognostic 

assessments of patients with early arthritis. 
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Of particular relevance to this project is the demonstration that despite the clear 

levels of non-specific uptake of antibody demonstrated here, the SCID mouse 

transplantation model has the power to detect differences in specific versus non-

specific uptake. Furthermore it has been shown here that targeted molecules can 

offer higher selectivity in the targeted delivery of radioisotopes: these findings are 

pre-requisite for the application of small peptides to this, which are discussed in 

the next chapter. 
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5 Chapter 5                                          

Investigation of tissue specificity of the 

synovium-homing monomeric peptide 

in vitro and in vivo 
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5.1 Introduction 

The identification of a small peptide sequence which confers synovial specificity 

for the 3.1 phage has two major potential applications. Firstly, conjugation to 

radionuclides could enable its use as an imaging agent: as discussed in the 

introduction, molecular imaging has several possible advantages over 

conventional modalities in inflammatory arthritis. Principal of these is the 

visualisation of the disease process itself as opposed to surrogate markers such as 

bone erosions, synovial fluid and oedema. This could therefore have the 

advantages of enhanced specificity for synovial inflammation with consequent 

earlier diagnosis and the significant prognostic advantages that this may offer. 

Furthermore, imaging of molecules implicated in the disease process could enable 

earlier detection of response to therapy: again, in view of what is now understood 

about the benefits of early aggressive treatment, this could be crucial in 

ascertaining the efficacy of a particular therapeutic regimen. Second is the 

application of the peptide as a targeting molecule for therapeutic compounds, 

either in the form of directly conjugated molecules or for larger particles, such as 

liposomes, which can deliver a larger payload. Conventional (non-biological) 

disease-modifying therapy is still limited in its use by substantial systemic 

toxicity: specific targeting of these drugs could widen the therapeutic index by 

concentrating the drug at the site of action, with implications for efficacy and, by 

extension, cost. Although the synovial receptor for the peptide is unknown it was 

shown in Chapter 3 that its expression is likely to be upregulated by TNFα, and 

that this effect was specific to the synovium as it was not seen in human skin. This 

suggests that the receptor may be up-regulated in inflamed synovium further 

enhancing the selectivity of the peptide.  

 

The aims of this chapter were to investigate whether the peptide retains its 

specificity for synovial tissue in its monomeric form independently of the phage. 

For this several strategies were adopted: binding to synovial tissue sections was 

tested with peptide conjugated to fluorochromes and analysed by microscopic 

techniques. For in vivo homing the peptide was conjugated to radionuclides by a 
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variety of means: radioisotope labelling has the greatest sensitivity of in vivo 

techniques and has the advantage of allowing the injection of sub-micromolar 

quantities of peptide. These conjugates were tested in vivo against control peptides 

or human skin transplant controls: the in vitro stability and protein binding of the 
99mTc-conjugated peptides were tested and the effect of alternative labelling 

chemistries determined. Finally, as it was noted that uptake of peptide to both 

transplanted tissues was generally high, the permeability of the vascular 

endothelium of the transplanted human tissues was explored. 

5.2 Binding of fluorochrome-conjugated peptide to h uman 

synovial tissue sections 

Fluorochrome-conjugated cyclic peptides CKSTHDRLC synovial-binding 

sequence (hereafter referred to as 3.1 peptide) and CGRYDHPQC control 

streptavidin binding sequence (hereafter referred to as SC7) were incubated on 

RA or OA synovial tissue sections and counterstained for human vessels by 

staining for human vWF. Human vessels counterstained for von Willebrand factor 

were identified under fluorescence microscopy and assessed for peptide binding in 

the FITC spectrum. No difference was seen between the 3.1 or control peptides at 

any of the concentrations; at the higher concentrations widespread non-specific 

binding was seen and, as seen in the digital fluorescence analysis, at 10 µg/ml 

fluorescence approached saturation. These findings were supported by results 

from digital image analysis in which, again, no consistent significant differences 

were seen (Figure 5.1). The findings were similar for both RA and OA tissue 

sections with no consistent differences seen at any peptide concentration: at the 

lower concentrations fluorescence approached background levels (shown as 

‘control’ sections imaged with no peptide stain) with a linear increase with 

increasing concentration. Thus no specific binding of the 3.1 peptide was seen in 

these experiments. 

 

There are several potential explanations for the failure of these experiments to 

demonstrate specific binding. Firstly is the sensitivity of the assay: direct 

visualisation of fluorochrome-conjugated peptide may be insufficient to detect 
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specific binding at lower concentrations; the increase in both test and control 

peptide vessel fluorescence at higher levels suggests that under these conditions 

the binding seen is non-specific. Secondly, the optimal conditions for peptide 

binding are not known: these experiments were repeated with and without protein-

blocking steps, and with different fixative techniques with no difference noted in 

the results- the possibility that the tissue ligands denatured in the fixing process 

cannot be excluded. Furthermore, as is discussed in more detail later in this thesis, 

the physiological conditions required for binding, such as the presence of divalent 

cations, may not be optimal. Thirdly, as already discussed, the phage are likely to 

be identifying ligands expressed at the luminal surface of the synovial vessels: 

this, therefore, does not exclude the possibility that the ligand is expressed in the 

extravascular space- if this were so identification of contrast between vessels and 

extravascular difficult may be difficult if specific binding were achieved. 

Fourthly, the charges of the peptides at pH 7.4 differ and this may affect the non-

specific binding properties seen on tissue sections, possibly favouring the control 

peptide. The control peptide sequence was originally selected as it was a 

streptavidin-binding peptide sequence that was used in the original phage 

experiments; in later experiments detailed in Chapters 6 and 7 a scrambled 

sequence was used with the same charge as the 3.1 peptide sequence. Finally the 

possibility remains that the monomeric peptide has lost the some or all of its 

binding affinity when expressed by phage- this concept will be returned to later.  

For these reasons experiments with the monomeric peptide were concentrated on 

the in vivo model as described in the remainder of this chapter. 
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Figure 5.1 (next page): Digital fluorescence analysis of human vessels in RA 

synovial tissue sections stained with FITC-peptide. Tissue sections were 

incubated with FITC-conjugated 3.1 or control peptide and counterstained for the 

human endothelial cell marker vWF. The vWF staining was used to create a mask 

to exclude non-endothelial cell tissue in which the FITC fluorescence levels were 

quantified. A Fluorescence levels for a variety of peptide concentrations: no 

significant differences were seen between the 3.1 and control peptide (3-5 fields 

per condition). B Further analysis at peptide concentrations of 5 and 2.5µg/ml on 

sections from a different donor. There was a small but significant difference in 

favour of the control peptide at the lower concentration. After correction of each 

field for background fluorescence this difference disappears (C). (6-12 fields per 

condition). Mean +/- SEM 
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5.3 Conjugation of monomeric peptides to radioisotopes 

and investigation of in vivo homing specificity  

5.3.1 Labelling of DTPA-conjugated monomeric synthe tic 

peptides with 111In 

Diethyltriaminepentaacetic acid (DTPA) is a bifunctional chelating agent which is 

routinely used in clinical practice to label small peptides for imaging; the most 

frequently used of these is DTPA-octreotide. Its polydentate chemistry ensures 

stability of the conjugated radiolabel under physiological conditions making it 

suitable for in vivo  use (Liu & Edwards 2001). The structure of the 111In-DTPA 

complex is illustrated in Figure 5.2A. DTPA-3.1 and DTPA-control (streptavidin-

binding) peptides were labelled with 111In as described in the methods. Instant 

thin-layer chromatography (ITLC) allows fast assessment of the efficiency of the 

radiolabelling reactions and was used in all the experiments described here prior 

to in vivo experiments.  

 

In a preliminary experiment 4 MBq of 111In was added to 0.8 mg peptide or to 

solution containing no peptide. The results shown in Table 5.1 show, as expected, 

that 111In chelated to the DTPA-peptide remains at the origin whilst unbound 111In 

migrates with the solvent front, thus confirming the validity of the ITLC method. 

 

 Peptide No peptide 

Origin 58984 1667 

Solvent front 555 27833 

% at origin 99.07 5.65 

Table 5.1: ITLC results of 0.8 mg DTPA-3.1 peptide or control solution after 

incubation with 4 MBq  111In. 
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In a further experiment, 0.1 mg of DTPA-3.1 peptide was labelled with 3 MBq or 

9 Mbq of 111In. ITLC was performed immediately and after 6 hours of incubation 

at room temperature in order to confirm stability of the 111In conjugation over 

time. The results are shown in Table 5.2: >90% labelling is still present after 6 

hours at RT. Extension of this experiment to 24 hours showed significant loss of 

labelling beyond this point: these results are shown in Figure 5.2B. 

 

 Activity  

Hours 3MBq 9MBq 

0 98.4% 92.9% 

6 98.3% 93.0% 

Table 5.2: Percentage of 111In bound to DTPA-3.1 pep as quantified by 

instant thin layer chromatography. 



186 
 

 

Figure 5.2 Radiolabelling and stability of 111In-labelled peptide A The DTPA 

co-ordination complex with In3+. B Stability of 111In-labelled DTPA-peptide at 

room temperature over 24 hours: peptide was labelled with 111In and the 

proportion of free 111In determined at each time point by ITLC with acid citrate 

dextrose as solvent. 

 

 

In3+  

 
O- 

O- 

N 

N N 

O- 

O 

O 

CO2H 

HO2C 

O 

0 10 20 30
80

90

100

Time

%
 la

be
lli

ng

A 

B 



187 
 

5.3.2 In vivo studies with 111In-labelled 3.1peptide 

5.3.2.1 111In DTPA-3.1 peptide versus free indium 

As a preliminary experiment the in vivo biodistribution of radiolabelled 3.1-

peptide was compared with free indium, as at this stage of the project only the 3.1 

peptide was available for use. 200 µl of peptide was labelled with 0.2 MBq of 
111In for injection into each animal. For this and all subsequent experiments 

animals were injected within 2 hours of radiolabelling, with initial radiolabelling 

efficiency being >98%. The control animals were injected with the same activity 

of 111In in vehicle. Two animals were used for each condition, each of which was 

transplanted with 2 synovial grafts. After injection of the peptide the animals were 

incubated for 15 minutes prior to perfusion of the circulation and retrieval of 

organs and transplanted tissues. 

 

The results of the biodistribution study are shown in Figure 5.4A. There are clear 

differences between the organ distribution of the peptide-conjugated and 

unconjugated 111In, with significant differences as indicated and significantly 

greater homing of the peptide-conjugated 111In to synovium. This obviously does 

not imply specificity as the size and charge of the molecule can have major 

influences on behaviour in vivo. The experiment was therefore repeated with a 

control-sequence peptide. 

5.3.2.2 111-In test vs. control peptide 

For these experiments the streptavidin-binding SC7 peptide was conjugated to 

DTPA and used as an irrelevant control. Labelling of DTPA-peptide was carried 

out as before by the addition of 0.2 MBq 111In/ 200 µg peptide. Radiolabelling 

efficiency of the peptides for this experiment as determined by ITLC is detailed in 

Table 5.3. Labelling of the SC7 peptide was a little less efficient, although at 

>90% this was felt sufficient for the in vivo study. 
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Peptide Radiolabelling 

3.1 96.8% 

SC7 93.6% 

Table 5.3: Radiolabelling efficiency of peptide as measured by ITLC for use 

in second in vivo experiment. Results shown are the mean of duplicate tests. 

 

For the biodistribution experiment double-transplanted mice (5 injected with 3.1 

peptide and 4 with SC7 peptide) were injected as before with 200 µg peptide with, 

after 15 minutes incubation, perfusion of the systemic circulation and retrieval of 

tissues. The results are shown in Figure 5.4B. No significant difference is seen 

between the test and control peptides, or between skin and synovium for either 

peptide, or between synovium and skin. There are a number of potential 

explanations for the failure of this experiment to demonstrate selective homing of 

the 3.1 peptide. The first of these lies with the conjugation of the peptide to 

DTPA. Although HPLC suggested the presence of a pure product, MS analysis 

showed the presence of unconjugated peptide (Figure 5.3). It is possible, 

therefore, that if DTPA conjugation reduces the affinity of the peptide for its 

receptor that the unconjugated peptide competitively inhibited 111In, and hence 

detectable, binding. Secondly, the injected dose may have been saturating specific 

receptors: as illustrated in Figure 5.5, once the saturating dose is exceeded non-

specific binding is responsible for a linear increase in the total tissue concentration 

with consequent diminishment of the sensitivity of the assay to detect specific 

uptake. Although the injected dose (200 µg) of peptide was the same as that 

needed to maximally inhibit phage homing in previously described experiments 

(Lee et al. 2002) the affinity of the phage for the receptor may well be 

significantly in excess of that of the peptide, at least in part due to the polyvalent 

presentation of peptide on the phage. Both of these issues were addressed by the 

use of 99mTc in the labelling of peptides for subsequent experiments. 
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Figure 5.3: MALDI-TOF MS analysis of DTPA-peptide. The two major peaks 

correspond to the synovial-homing peptide with and without conjugated DTPA, 

confirming the presence of unconjugated peptide in the final product. 
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Figure 5.4: In vivo biodistribution of 111In-labelled peptides. A SCID mice 

transplanted with human synovium were injected with 111In-labelled 3.1 peptide or 

free 111In. After 15 minutes the circulation was perfused with 0.9% saline and the 

transplants and murine organs retrieved: a significant difference (p=<0.05) was 

seen in homing to the transplants between peptide and 111In (n=8 transplants per 

group). There are clear differences in the biodistribution of the 2 agents. B  SCID 

mice transplanted with human synovium and skin were injected with 111-labelled 
3.1 peptide or SC7 peptide and perfused after 15 minutes incubation as above.  No 

significant difference is seen between homing of the peptides to skin or synovium. 

Differing uptake by the kidney is likely to represent differences in charge between 

the peptides. n=4 animals/ 8 transplants per group. 
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Figure 5.5: Graphical illustration of the contribut ion of specific and non-

specific binding to tissue concentration of peptide. Non-specific binding 

increases in a linear fashion: as specific binding becomes saturated the proportion 

of tissue uptake attributable to specific binding diminishes as the administered 

dose is increased with progressive reduction in the sensitivity of the assay to 

detect specific uptake. 

 

5.4 Labelling of synovial homing peptides with 99mTc 

Although labelling of the DTPA-peptides was simple and efficient, the isotope 

had to be obtained commercially: as it has half-life of 2.6 days it was expensive to 

do repeat experiments. For the studies detailed in the previous section mice were 

injected with 20 0µg peptide: this was because at this dose it has previously been 

shown that homing of phage to the synovial transplants can be inhibited. 

However, it is possible that at this injected dose specific binding is saturated and 

specific uptake is not detected due to the level of non-specific homing of both 

peptides. Two alternative labelling strategies were attempted. First of these was 

the labelling of tyrosine residues with 125I: this has the advantage that as it labels 

native tyrosine residues large artificial chelating molecules need not be conjugated 

to the peptides with, theoretically, minimal disruption to the overall structure of 

the peptide. The control sequence already contains a tyrosine residue; as the 3.1 

peptide does not, a tyrosine residue was conjugated to the N-terminus of the 

peptide after a 6-aminohexanoic acid spacing group. The peptides were labelled 

using the Iodogen method (Butler, Lam, & Fisher 1984) and labelling assessed, as 

previously, with RP-HPLC. The in vivo experiments did not demonstrate any 
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significant difference between homing of the test or control peptides to skin or 

synovium: however, following the labelling reaction several species were seen on 

the chromatograms, with the largest peak responsible for <90% of the total 

radioactivity. It was therefore felt that these results were difficult to interpret and 

the use of 125I labelling was abandoned (data not shown). A further disadvantage 

of radioiodination for imaging studies is that following internalisation and 

lysosomal degradation, iodinated tyrosine may be rapidly removed from cells and 

subsequently de-iodinated in the liver. Thus the use of ‘residualising’ labels, such 

as 111In-DTPA or 99mTc-HYNIC can result in longer retention of the tracer by the 

target tissue and hence better target-to-background ratios (Gotthardt et al. 2004).  

For future experiments it was decided to switch to 99mTc. This isotope is the most 

commonly used in clinical practice: it is usually produced on-site and is therefore 

freely available at low cost. 99mTc is the metastable nuclear isomer of the 99Tc 

ground state: it emits monochromatic 140keV photons which enable excellent 

spatial resolution for imaging. The 6-hour half-life enables relatively large 

activities to me administered more safely than with other isotopes. It is produced 

from the parent radionuclide 99Mo in a 99mTc-99Mo generator: 99mTc is eluted with 

saline in the form 99mTc pertechnetate (Liu, Edwards, & Barrett 1997).  

 

6-Hydrazinopyridine 3-carboxylic acid (HYNIC) is a bifunctional chelating agent 

frequently used for the radiolabelling of proteins and peptides with 99mTc. For the 

labelling reaction TcO4
- is added to solution of peptide, SnCl2 and a co-ligand. 

The SnCl2 acts as a reducing agent, reducing the 99mTc7+ to the oxidation state 
99mTc4+. As HYNIC only contains one co-ordination site a co-ligand, such as 

tricine, is necessary to form the stable octahedral complex.  

5.4.1 Labelling with 99mTc 

HYNIC-peptide was labelled with 99mTc and tricine as co-ligand as detailed in the 

methods. There are several potential impurities following the labelling reaction, 

these being free 99mTcO4
-, 99mTc-tricine and insoluble 99mTc colloid. Three ITLC 

conditions were used to resolve these, 2-butanone to separate 99mTcO4
-, PBS to 

separate 99mTc-tricine and 50% acetonitrile for 99mTc colloid.  
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Results with 2-butanone and PBS were satisfactory, and showed that the majority 

of unbound 99mTc was in the form 99mTc-tricine. However, most of the activity 

remained at the origin of the strips with 50% acetonitrile with the 3.1 peptide, 

with increasing the concentration to 80% making little difference. The possible 

reasons for this were two-fold: firstly it was possible that all the 99mTc was in the 

form of the insoluble colloid or alternatively there was little motility of the peptide 

with the solvent. To resolve this, the labelled peptide was analysed by reverse-

phase high-performance liquid chromatography (RP-HPLC). A representative 

trace is shown in Figure 5.6. This shows a single peak with which is associated 

100% of the eluted activity. As 99mTc-colloid could be retained entirely by the 

column the RP-HPLC was repeated with collection of the fraction containing the 

eluted peak. This was compared with a reference sample and found to contain the 

same activity: this was therefore taken as conformation that the peak seen 

represented all the 99mTc in the sample which was conjugated to the peptide.  

 

To determine the maximum specific activity obtainable with this method the 

reaction was performed with reducing concentrations of peptide in parallel. For 

the in vivo experiments I wanted to try a range of injected doses: previous work 

with 111In-pentreotide in rats has found that the lowest possible dose may not 

produce the most sensitive results, with specific uptake in receptor-positive organs 

exhibiting a bell-shaped curve (Breeman et al. 1995). Earlier experiments had 

found that the majority of unbound 99mTc was in the form 99mTc-tricine, and PBS 

was therefore used as the solvent for this study. The results, seen in Figure 5.7, 

show that good labelling was achievable at a specific activity of 10 MBq/µg and 

that this was stable in the medium at room temperature over 24 hours. There was 

significant loss of labelling efficiency at peptide concentrations lower than this.  
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Figure 5.6: Labelling of HYNIC-peptide with 99mTc. Representative 

radiochromatogram of 99mTc-HYNIC-3.1peptide with tricine as co-ligand. 100% 

of activity is eluted in the peak at 16.5 minutes indicating excellent radiochemical 

yield. The double peak is likely to be due to isomerism within the labelling 

complex (Decristoforo & Mather 1999a). 
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Figure 5.7: Radiolabelling yield and stability of 99mTc-HYNIC-3.1 peptide. 

HYNIC peptide was radiolabelled with 10 MBq99mTc and tricine as co-ligand at 

the indicated concentrations and assessed by ITLC. Good radiolabelling efficiency 

was achieved at 10 MBq/µg with excellent stability in solution over 24 hours.  
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5.4.2 In vivo biodistribution studies with 99mTc-labelled peptides 

5.4.2.1 Tissue localisation of 99mTc-peptide with and without 

systemic perfusion 

Prior to carrying out full-scale biodistribution studies I wanted to assess whether 

perfusion of the murine circulation was necessary prior to extraction of the tissues. 

This was necessary for the in vivo phage experiments, particularly for selection of 

phage as it would, theoretically, clear low-affinity and non-specifically bound 

phage. However, it was not clear whether this was necessary for the peptide 

experiments. The low molecular weight of the peptides could lead to rapid tissue 

penetration as well as clearance from the circulation by the kidneys, with 

relatively little circulating peptide remaining in the blood proportionately to that 

in the tissues. As a preliminary experiment 4 double-transplanted mice were 

injected with 1 µg or 0.1 µg (~1 MBq) of 99mTc-peptide: after 15 minutes the 

circulation was perfused as before and the transplants removed. A further 2 

animals were injected but not perused at the end of the incubation period. The 

results of this are shown in Figure 5.8B. There are small non-significant 

differences between the synovium and skin at this time point with no differences 

between the perfused and unperfused animals.  

5.4.2.2 Half life of radiolabelled peptide in vivo 

In order to estimate the serum half-life of the 99mTc-3.1 peptide untransplanted 

SCID mice were injected with 1 µg (~1 MBq) of radiolabelled peptide and killed 

at various time points for measurement of radioactivity in the blood. The results 

are shown in Figure 5.8A. The fitting of a single-phase exponential curve to the 

graph allows an estimate of the half-life at 3 minutes, which is likely to be due to 

rapid renal excretion of the peptide. Although clearance from the circulation 

appears to be rapid, if there is significant non-specific extravasation of peptide 

into the grafts clearance of unbound peptide may be slower and therefore an 

incubation time of 1 hour was selected for the following biodistribution 

experiments. 
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5.4.2.3 In vivo biodistribution of 99mTc-HYNIC-peptide at 1 hour 

For the reasons discussed above the mice used in these experiments were 

incubated for 1 hour prior to retrieval of the transplants and murine organs. SCID 

mice double-transplanted with human skin and synovium were injected 

intravenously with the indicated dose of 99mTc-labelled 3.1 peptide. After 

incubation the mice were killed and the tissues retrieved for measurement of 

radioactivity.  Various injected doses were used and the results are shown in 

Figure 5.9. As with previous experiments, no significant differences were seen 

between peptide localisation to transplanted human skin or synovium at any of the 

injected doses. The tissue uptake was generally lower for the 1 µg dose than for 

the lowered injected doses although this was non-significant. It is not clear why 

this is seen: it could be argued that the larger injected dose results in inhibition of 

specific binding, although the lower tissue uptake is seen in both synovium and 

skin. 3.1 phage has previously been shown to home preferentially to synovium in 

animals transplanted with both tissues and therefore it seems improbable that we 

are seeing inhibition of specific uptake. 
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Figure 5.8: In vivo clearance and biodistribution of 99mTc-peptide. A Mice 

were injected with 1 µg 99mTc-3.1 peptide and killed at various time points for the 

collection of blood and measurement of radioactivity. Non-linear regression 

analysis of the data gives an estimated serum half-life of 3 minutes. n=1 mouse 

(1st and final time points), 2-3 mice (intermediate time-points). B SCID mice 

double-transplanted with human skin and synovium were injected with 99mTc-3.1 

peptide and killed after 15 minutes with or without perfusion. No differences were 
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seen between the perfused and un-perfused animals. n= 4 transplants per condition 

perfused/ 2 transplants per condition unperfused. Mean +/- SEM 
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Figure 5.9:  Biodistribution of  99mTc-peptides. SCID mice were double-

transplanted with human skin and synovium and injected intravenously with the 

indicated doses of 99mTc-3.1 peptide. After incubation for 1 hour the tissues were 

retrieved, weighed and the radioactivity measured. No significant difference was 

seen between the skin and synovium at any of these time points; tissue uptake was 

lower at the injected dose of 1 µg although this was non-significant. n=4 

transplants per condition (10 ng and 1 µg), 6 transplants (100 ng). Mean +/- SEM. 

5.4.3 Labelling of HYNIC peptide with 99mTc in the presence of 

various co-ligands 

Although tricine is the best-established co-ligand used for stabilisation of the 

HYNIC/ tricine/ 99mTc complex, there is increasing use of alternative co-ligands in 

view of  the findings that this can have significant effects on the properties of the 

labelled peptide with effects on lipophilicity (associated with altered RP-HPLC 

retention times) and serum protein binding: consequent effects on non-specific 

binding can be seen in vivo (Decristoforo et al. 2006;Decristoforo & Mather 

1999a). These in vitro properties are associated with altered biodistribution in 

vivo: increased lipophilicity can result in enhanced uptake by liver and gut which 
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can have particular consequences for imaging. Higher protein binding can result 

in prolonged retention in the circulation with consequently lower tumour to 

background ratios. Later in the project I therefore returned to the HYNIC peptide, 

at which stage I also had better access to HPLC facilities, and assessed the 

efficiency labelling with different co-ligands and the serum stability as well as 

protein binding of the labelled peptide. 

 

The HYNIC-peptide was labelled with 99mTc in the presence of various co-ligands 

as detailed in the methods. Representative reverse-phase HPLC 

radiochromatograms are shown in Figure 5.10. The best labelling was achieved 

with tricine or nicotinic acid (NA)/ tricine as co-ligands. Labelling with EDDA or 

with tricine/ EDDA exchange did not produce a clean product and were therefore 

not pursued. Both tricine and NA/tricine labelling produced peaks that appeared to 

contain more than a single species which is most likely to be due to isomerism 

within the complexes (Decristoforo & Mather 1999a).  
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Figure 5.10: Variation in 99mTc labelling chemistry. HYNIC-peptide was 

labelled with 99mTc in the presence of various co-ligands as detailed in the 

methods. Purity of the radiolabelled product was determined by RP-HPLC. 

Labelling with tricine or nicotinic acid/ tricine as co-ligands produced pure 

products, whereas EDDA/ tricine and EDDA produced multiple species with 

significant free 99mTc. Scales are counts per minute (cpm) on the y-axis, time 

(minutes) on the x-axis. 

 

5.4.4 Serum stability and protein binding of 99mTc-HYNIC-

peptide 

With a view to repetition of the biodistribution experiments with 99mTc-labelled 

peptide with the alternative NA/tricine co-ligand chemistry serum stability and 

protein binding of the two labelling complexes were compared. 

 

Serum stability and protein binding were assessed using a previously published 

method (King et al. 2007). Briefly, the HYNIC-peptide was labelled with 99mTc 
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with tricine or nicotinic acid and tricine as co-ligands. The peptide was incubated 

in murine serum at 370C and samples removed for analysis after 1 and 4 hours. 

RP-HPLC was performed after removal of serum proteins by acetonitrile 

precipitation and centrifugation; protein binding was assessed by retention of the 

radiolabel in size-exclusion spin columns. 

 

The results of the serum stability experiment are shown in Figure 5.11 and Table 

5.4. The peak at the earlier retention time seen in the 1 and 4 hours time points 

represents loss of the radiolabel from the peptide. At 1 hour both peptides are 

largely intact with 98% of the activity of the tricine/HYNIC peptide and 87% of 

the nicotinic acid/ tricine/ HYNIC peptide remaining at the later retention time 

corresponding to that seen at 0 hours. At 1 hour although there is some loss of 

radiolabelling the integrity of the peptide peaks is preserved indicating minimal 

breakdown of the peptides in serum. At 4 hours one peak is again seen for the 
99mTc-tricine –HYNIC peptide: however, at this time point a second peak has 

emerged with the 99mTc-NA/tricine-HYNIC-peptide suggesting that some 

degradation of the peptide has taken place.  However, the rapid elimination of 

peptide from the circulation shown with the tricine/ HYNIC peptide makes the 

reduced serum stability at 4 hours less relevant: if the peptide were specifically 

internalised by cells rapidly this should be seen in the biodistribution experiments 

as unbound peptide is cleared from the tissues.  

 

The results of the protein binding experiments are shown in Table 5.5. The 

differences in serum protein binding between the two co-ligand complexes are 

significant at both time points with there being less protein binding with 

NA/tricine as the co-ligands. This would results in significantly enhanced bio-

availability of the peptide and, therefore, could significantly impact tissue-specific 

uptake. This labelling chemistry was therefore used in a further biodistribution 

experiment. 
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Figure 5.11: Serum stability of 99mTc-HYNIC peptides. The HYNIC peptide 

was radiolabelled with tricine or nicotinic acid/ tricine as co-ligands and incubated 

in murine serum at 37 0C. At 0 (A), 1 (B) and 4 (C) hours samples of serum were 

removed and analysed by RP-HPLC after precipitation of serum proteins. Scales 

are counts per minute (cpm) on the y-axis, time (minutes) on the x-axis. 
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 Co-ligand % labelling  

Time (hours) Tricine  Nicotinic acid/ tricine 

0 100 100 

1 97.6 86.9 

4 60.3 84.2 

Table 5.4: Stability of 99mTc-labelled 3.1 HYNIC-peptide in murine serum. 

Radiolabelled peptide was incubated in murine serum at 370C. At the indicated 

time points samples were removed and analysed by RP-HPLC after acetonitrile 

precipitation of serum proteins. Integration of the peaks allowed quantification of 
99mTc remaining bound to the peptide. 

 

 Co-ligand  

Time (hours) Tricine Nicotinic acid/ tricine 

1 9.6 2.3 

4 18.1 6.4 

Table 5.5: %  binding of 99mTc-labelled 3.1 HYNIC-peptide to murine serum 

proteins. Radiolabelled peptide was incubated in murine serum at 370C. At the 

indicated time points samples were removed and added to size-exclusion filtration 

spin columns. Eluted (protein bound) peptide is shown as a percentage of the total 

activity added. Mean results of duplicate columns. 
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5.4.5 Biodistribution of 99mTc-HYNIC-3.1 peptide with nicotinic 

acid/ tricine as co-ligands 

HYNIC-3.1 peptide was radiolabelled with 99mTc with nicotinic acid and tricine as 

ternary ligands. 0.1 µg (~2.4 MBq) of the radiolabelled peptide was injected into 3 

SCID mice double-transplanted with human skin and synovium. After 1 or 4 

hours the mice were killed and the transplants and murine tissues retrieved, 

weighed and the radioactivity measured. An additional 3 mice were co-injected 

with an excess of cold peptide to determine whether this resulted in any 

significant inhibition of tissue uptake of peptide which would indicate specific 

localisation. The results of this experiment are shown in Figure 5.12: the 

differences between synovium and skin uptake of peptide are not significantly 

different at 1 or 4 hours, and the co-injection of excess free peptide did not result 

in significant down-regulation of peptide homing in either tissue. The levels 

detected in the tissue after 1 hour were similar to those seen with the 99mTc-

tricine-HYNIC-peptide. The lack of a significant difference between homing to 

human skin and synovium suggests that this is non-specific. The biodistribution 

results including murine organs are shown in Table 5.6. 

 

Although uptake in transplanted human skin and synovium are similar, these are 

generally high compared to some of the murine organs. Similar observations were 

made with the previous biodistribution experiments: this suggested that although 

uptake was non-specific, it was increased in the transplanted tissues. The reason 

for this was unclear but, bearing in mind the known hyperpermeability of 

inflamed synovial tissue, it was decided to further investigate tissue permeability 

to large molecules.  
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Figure 5.12: Biodistribution of 99mTc-HYNIC peptide with nicotinic acid/ 

tricine as co-ligands. SCID mice double –transplanted with human skin and 

synovium injected with 0.1µg of 99mTc-labelled HYNIC-peptide. After 1 or 4 

hours incubation the animals were killed and the transplants removed, weighed 

and radioactivity measured. An additional group was co-injected with an excess of 

unlabelled peptide to block specific binding.  6 transplants per condition. Results 

shown are % injected dose/ gram of tissue. Mean+/- SEM. 
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Tissue 1 hour 4 hours 

Synovium (T) 1.11   ±  0.05 0.28    ± 0.11 

Skin (T) 1.51   ±  0.21 0.29    ± 0.03 

Heart 0.19   ±  0.01 0.056  ± 0.006 

Lung 0.62   ±  0.03 0.23    ± 0.05 

Liver 1.42   ±  1.06 0.19    ± 0.03 

Kidney 17.57 ±  1.85 3.99    ± 0.73 

Spleen 0.22   ±   0.02 0.13    ± 0.06 

Gut 1.64   ±   1.25 0.42    ± 0.26 

Muscle  0.14   ±   0.01 0.58    ± 0.13 

Blood 0.53   ±   0.11 0.204  ± 0.83 

Table 5.6: Results of the biodistribution experiment detailed in section 5.4.6. 

Double transplanted SCID mice were injected with 99mTc-HYNIC-3.1 peptide. At 

the indicated time points the mice were killed, transplanted tissues and organs 

retrieved and radioactivity measured. Results shown are % injected dose/ gram of 

tissue. Mean +/- SEM. ((T) = transplant) 
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5.5 Permeability of graft vascular endothelium to 

macromolecules 

The results from the biodistribution experiments detailed in the previous sections 

show that specific uptake was not seen in transplanted human synovium compared 

with human skin. However, uptake in the human tissue was somewhat higher 

compared to that seen in some murine organs and therefore it was postulated that 

the transplant vessels might be hyperpermeable. This was investigated using a 2-

step method. Firstly, the vascularisation of the human and murine vessels was 

determined using immunohistochemistry and a point-counting method; and 

secondly the permeability of the tissues was determined using a dye based assay. 

Correction of the permeability experiments for vessel density would provide a 

estimate of relative vessel permeability between the tissues. 

5.5.1 Quantification of graft vascularisation 

The Evans Blue permeability assay detailed in the next section is dependent on the 

extravasation of albumin from the tissue vessels. This is obviously a function of 

vessel density in the tissue; as there is substantial variation between tissues it was 

decided to correct the results for vascularity. Tissues were stained as detailed in 

Chapter 2 and representative micrographs are shown in Figure 5.13A-D. A point 

counting method was used to determine the volume fraction of vascular 

endothelial cells: for this a number of fields were counted. In order to ensure that 

the mean obtained was representative of the vessel density the progressive mean 

was plotted and successive fields counted until the mean count stabilised: a 

representative plot is shown in Figure 5.13E. For the human synovium and skin it 

was expected that there might be significant variation between and within tissues, 

and therefore multiple representative grafts were assessed, with three levels cut 

from each. The results are shown in Figure 5.14A. The vessel density was similar 

in human skin and synovium with higher vessels counts in most of the sampled 

murine tissues, most markedly in the kidney. 
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Figure 5.13: Determination of the density of vascular endothelium in tissues. 

Representative micrographs of tissues stained for vascular endothelial specific 

markers A-B Representative micrographs of ex vivo human synovium (A) and 

skin transplants (B) stained for human vWF. C murine heart, D murine muscle. 

Original magnification x40 (A+B), x20 (C+D). E: Determination of the 

progressive mean of number of vessels/ field.  
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5.6  Evans Blue permeability assay 

Evans blue is a diazo dye that binds rapidly and with high affinity to serum 

albumin (Freedman & Johnson 1969). The stable interaction with albumin makes 

it very suitable as a means of tracking albumin extravasation and tissue 

permeability and hence is widely used for this purpose. The permeability assay 

was carried out using a previously published method (Lacolley et al. 1998). Mice 

transplanted with synovium or both synovium and skin were injected with 50 

mg/kg Evans Blue via the tail vein. After 1 hour under terminal anaesthesia the 

thoracic cavity was exposed and the circulation perused with 50 ml 0.9% saline. 

The transplanted tissues and organs of interest were removed and frozen. To 

quantify the dye the tissues were defrosted, washed twice and weighed before 

incubation for 6 days in formamide at RT. At the end of the incubation period the 

tubes were centrifuged briefly to sediment any debris and the absorbance 

measured at 620 nm. Serial absorbance measurement showed that by 6 days dye 

extraction had plateaued. The results were corrected for vessel density from the 

data presented in the previous section. The bar chart in Figure 5.14B shows the 

dye extraction corrected for tissue density and weight and expressed as a ratio of 

tissue to heart uptake: there are no significant differences between uptake in the 

murine control tissues indicating similar uptake of albumin in each of these. Both 

human skin and synovium have significantly greater uptake than each of the 

murine tissues (p=<0.05) with no significant differences between skin and 

synovium, indicating enhanced vessel permeability within the transplants to 

albumin (mw~60,000 Da). As already discussed, the vessels of hyperplastic 

synovial tissue are hyperpermeable to macromolecules and so this result is not 

unexpected. The cause of the high permeability in the skin is less clear: it is 

possible that damage occurs during the processing and freezing of the tissues prior 

to transplantation; it is also very possible that the vascular interfaces at the human/ 

murine anastomoses and associated neoangiogenic vessels are hyperpermeable, 

although more specific investigation of this hypothesis was not pursued. 
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Figure 5.14: Relative permeability of transplanted tissues and murine organs 

in vivo. A Volume fraction of vascular endothelial cells in transplants and murine 

tissues. Tissue sections were stained for the human and murine vascular 

endothelial cell-specific markers vWF and CD31 respectively. The volume 

fraction of endothelial cells was quantified by a point counting technique. B The 

albumin-binding dye Evan’s Blue was injected into transplanted SCID mice: after 

1 hour incubation the systemic circulation was perfused and the dye extracted 

from the tissues by incubation in formamide: after 6 days the absorbance was read 

at 620nm. There is significantly greater albumin extravasation in the transplanted 

tissue compared to the control murine tissues (p=<0.05). No significant 

differences are seen between the murine organs. Mean +/- SEM. n=7 animals/ 14 

transplants. 
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5.7  Summary 

Previous work has shown that the 3.1 peptide, when expressed by phage, homes 

selectively to transplanted human skin and it was shown in chapter 3 that this was 

selectively up-regulated in tissues pre-stimulated with TNFα. In this chapter the 

monomeric synthetic peptide was tested for its capacity to adhere in human 

synovial tissue sections or to home to transplanted human synovium in vivo. 

Although a linear increase was seen in vessel fluorescence with increasing 

concentrations of fluorochrome-conjugated peptide, no differences were seen 

between the test and control peptides suggesting that most or all of the binding 

seen was non-specific. There are a number of potential explanations for this 

finding which may have been the result of experimental conditions, in particular 

the effect of the fixation process on the tissue ligand, the differing amino acid 

components and hence charge of the peptides and the absence of potentially 

essential co-factors for binding such as divalent cations. A further possible 

limitation was the sensitivity of the assay to detect specific binding which may 

have been undetectable due to the background interference of non-specific 

binding and tissue autofluorescence. For these reasons the peptide was tested 

further in vivo in the SCID mouse transplantation model with radiolabelled 

peptide which offers the most sensitive detection of tissue localisation. 

 

The first experiments with 111In-conjugated peptide failed to show any differences 

between localisation of the test or control peptides to transplanted human skin or 

synovium. These findings may have been due to the relatively high, and therefore 

possibly saturating, doses used; furthermore, there was contamination of DTPA-

peptide with unconjugated peptide and impairment of ligand affinity by DTPA 

conjugation may have resulted in competitive inhibition of binding by the 

unconjugated peptide. This latter complication does seem less likely: the DTPA 

was separated from the cyclic peptide by the relatively rigid 6-carbon spacer 6-

aminoheaxanoic acid. However, for this combination of reasons, the relative 

expense of 111In and difficulties with 125I labelling, further experiments were 

conducted with 99mTc as the radiotracer. 
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A number of labelling chemistries were investigated, of which the co-ligands 

tricine or nicotinic acid/ tricine gave the best results with excellent radiochemical 

yield. Both had good stability in serum at 1 hour although at 4 hours there was 

significant loss of the radiolabel and, with the nicotinic acid/ tricine co-ligands, 

possibly deterioration of the HYNIC-peptide structure. Furthermore there were 

significant differences in serum protein binding in vitro with co-ligand variation. 

At 1 hour no significant differences were seen in the localisation of the peptides to 

human skin or synovium; a further experiment with a 4-hour incubation with the 
99mTc-nicotinic acid/ tricine-HYNIC-3.1 peptide again found no significant 

difference. The in vivo conditions for this experiment were, physiologically, 

identical to those for the phage selection and tissue homing experiments. 

Differences between the structure and behaviour of the monomeric peptides and 

the phage have to be considered, therefore, to explain the defences between the in 

vivo phage and monomeric peptide experiments. Of these, three stand out as of 

most likely significance. The first of these is size: bacteriophage are large particles 

and, therefore, are likely to extravasate much more slowly from the circulation, if 

at all. Tissue localisation therefore reflects phage that are still in the circulation 

(although this was minimised by systemic perfusion) or adhering, specifically or 

otherwise, to the luminal surface of the tissue vasculature. The peptide molecules 

are, conversely, much more likely to enter the extravascular space by passive 

diffusion, particularly in the hyperpermeable vessels of inflamed synovium. 

Longer incubation times would be expected to allow clearance of unbound 

peptide: however, at 1 and 4 hours no differences were seen between synovium 

and the human control tissue. This suggests that the peptide binding to receptors, 

if occurring at all, is low affinity and that little in any internalisation is taking 

place. Internalisation would be the ideal property of a tissue-specific targeting 

peptide and retention would be enhanced with the use of the ‘residualising’ 

bifunctional chelating agent complexes used in these experiments. The phage 

experiments do, of course, tell us nothing about whether the ligand/ receptor 

complex might be internalised and this therefore can only be hoped for rather than 

expected.  Secondly is valency: the phage are polyvalent, with each expressing 5 



213 
 

copies of the PIII surface protein-conjugated peptide. In vivo and in vitro studies 

have shown that increasing the valency of targeted peptides can significantly 

enhance binding affinity, sometimes dramatically (Chen et al. 2005;Kok et al. 

2002;Molenaar et al. 2002): polyvalency may therefore be critical to peptide 

homing in our model. A third possibility is that the PIII protein may be essential 

to the specific phage homing: there is at least one published report of tissue-

specific phage binding being conferred by the PIII protein rather than the 

expressed peptide sequence (Clement et al. 2003), although our experiments have 

shown the peptide is at least necessary to synovial homing: whether it is sufficient 

will be discussed in the final chapter. 

 

The final experiment in this chapter was to determine whether permeability of the 

transplanted tissue was increased compared to murine tissue. It was shown that 

there was significantly increased permeability to albumin in both transplanted skin 

and synovium compared to murine heart, liver, muscle and kidney. This 

experiment highlights a disadvantage of this model in assessing specific tissue 

localisation of short peptides, which reflects the disadvantage of the targeting of 

inflamed synovium generally. As previously discussed, enhanced permeability of 

the vessels of inflamed synovium to large molecules is likely to have been a 

significant impediment to the assessment of specific localisation of targeted 

molecules. For the reasons discussed above, a means of experimentally increasing 

both the size and valency of the peptide conjugates was sought and this is the 

subject of the next chapter.  
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6 Chapter 6 

Development of a tetravalent 

radiolabelled peptide molecule and 

investigation of in vivo synovial targeting 
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6.1 Introduction 

As discussed in the previous chapter, there are a number of potential reasons for 

the failure to show specificity of the peptide for transplanted human synovial 

tissue in vivo. Perhaps the most compelling of these is valency: peptide 

presentation of the phage particles is polyvalent, with 5 copies of the PIII fusion 

protein per phage, and hence this may be critical to the binding affinity. This 

effect may also be reflected in our previous observations of inhibition of phage 

homing by monovalent peptide: high concentrations were required in order to 

achieve maximal inhibition of phage homing (500 µg/ animal). This represents a 

huge molar excess of free peptide; much of this is likely to be lost by rapid renal 

excretion but to a certain degree the differences in valency between the free and 

phage-expressed peptide may be significant.  

 

Polyvalency is central to many biological interactions of which there are 

numerous examples; increasing the number of receptor/ ligand interactions at the 

site of an interaction between cells or proteins can not only increase the strength 

of that interaction but can also precipitate or enhance activation of a receptor 

(Mammen, Choi, & Whitesides 1998). Many examples of such polyvalent 

interactions are seen in the adhesion pathways discussed in the introduction, 

indeed integrin activation is frequently achieved via cell-surface clustering. In 

order to address this problem we investigated means of polymerising the peptide. 

The simplest means of achieving this was to use streptavidin (SA) to bind 

biotinylated peptide to form a tetravalent molecule. Streptavidin is a ~60,000 Da 

molecular weight protein which is isolated from the bacterium streptomyces 

avidinii: it consists of 4 identical subunits each consisting of 159 amino acid 

residues, each of which can bind one molecule of d-biotin. The dissociation 

constant of this interaction is around 10-15 M making one of the strongest non-

covalent molecular interactions known to occur naturally (Weber et al. 1989): the 

consequent stability of the tetravalent molecule makes streptavidin ideal as a tool 

for use in the delivery of biotinylated compounds. Of particular interest in recent 

years has been the use of streptavidin in the ‘pretargeting’ of radioisotopes to 
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tumours. This technique was borne out of the problems associated with direct 

labelling of tumour-targeting antibodies with radioisotopes for imaging or 

therapy, particularly with slow clearance and consequent high background 

radiation doses. A number of approaches have been successful in pre-clinical 

models, including the use of antibodies conjugated to streptavidin. Following 

administration of the conjugate a clearing agent can be administered to remove 

unbound conjugate from the circulation, followed by a low molecular-weight 

biotin-radioisotope conjugate which is cleared rapidly unless bound by 

streptavidin (Chang et al. 2002). This has been successful in a number of animal 

models and early clinical studies (Goldenberg et al. 2006).  

 

The polymerisation of biotinylated antibodies with streptavidin has been 

successfully employed to increase the binding avidity over monomeric antibodies 

as was found, for instance, in an investigation of the avidity of a polymerised scFv 

to CEA identified by phage display compared to the monomer (Cloutier et al. 

2000). Polymerisation of antibody molecules with multiple biotins can result in 

multimers of varying sizes which can influence cell binding and stimulate 

internalisation of antibodies, uptake of which is poor in the monomeric form. This 

has been shown with antibodies to ICAM- and PECAM in vitro  (Muro et al. 

2003;Wiewrodt et al. 2002) the latter of which was successfully used to deliver an 

antioxidant enzyme to rat lungs in an H2O2-injury model (Muzykantov et al. 

1999). This approach has also been successful with peptides: Molennar et al 

showed that the avidity of a P-selectin binding peptide identified by phage display 

was increased 200-fold increase in avidity in an ELISA-based assay (Molenaar et 

al. 2002). Conjugation of the peptide to streptavidin would also have the effect of 

prolonging the circulating half-life of the peptide. A study of the biodistribution of 
125I-labelled streptavidin in Balb/c mice found a circulating half-life of around 24 

hours, with the highest tissue uptake seen in the kidney (Schechter et al. 1990). 

Pre-incubation with biotin had little effect on the biodistribution. 

 

To develop this as a tool for polymerising the CKSTHDRLC peptide streptavidin 

was first used to polymerise an RGD peptide previously identified using the same 
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seven amino acid residue disulphide-constrained library to assess the effects of 

polymerisation on peptide binding. To enable in vivo biodistribution studies a 

novel DTPA-SA conjugate was synthesised to allow in vivo administration of 

radiolabelled SA-peptide.  

 

The first experiments in this chapter were aimed at optimising assays to determine 

RGD -peptide binding to plate or cell-bound ligand. A technique for rapid 

conjugation of biotinylated peptide and purification was optimised and the affinity 

of the polymeric peptides confirmed in the same assays. The streptavidin-peptide 

was then derivatised for conjugation to 111In and finally the tetravalent 3.1 and 

control (scrambled) sequence peptides were tested in the SCID mouse 

transplantation model. 

6.2 Characterisation of RGD peptide 

To validate tetramerisation of the peptide in vitro it was necessary to use a peptide 

of the same structure as the synovial homing peptide. For this purpose a novel 

RGD-containing peptide was used: this peptide was identified from the same 

phage display library as the synovial-homing phage and hence had the same 

disulphide-constrained seven amino acid basic structure. This had been done to 

validate the library and a peptide sequence, CSPRGDHPC (hereafter known as 

RGD2C), containing the expected RGD motif was identified. Fibronectin is an 

extracellular matrix protein containing an RGD-domain and is a biological ligand 

for αvβ3 (Ruoslahti 1996) as has been discussed in section 1.2.2. The peptide was 

first tested for its binding affinity for αvβ3: to enable comparison between 

monomeric and multimeric peptides a competitive binding assay was developed 

and used in the first instance to confirm activity of the RGD2C peptide. 

6.2.1 Optimisation of ααααvββββ3 binding to fibronectin in vitro 

To assess binding affinity of RGD to αvβ3 an ELISA-based assay was developed 

wherein the RGD peptide would compete with fibronectin for αvβ3 binding. 

Fibronectin is one of the extracellular matrix (ECM) ligands for αvβ3 and therefore 

suitable for use in this assay. As discussed in the introduction, binding of the RGD 

motif to αvβ3 is cation-dependent: the optimal cation conditions for this assay 
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were unknown and therefore fibronectin binding to immobilised αvβ3 was 

investigated under a number of different cation conditions.  

 

Purified αvβ3 was bound to 96-well plates in varying concentrations and incubated 

with fibronectin in binding buffer containing differing combinations of cations. 

After washing the plates were incubated with biotin-conjugated anti-fibronectin 

antibody before incubation with streptavidin-conjugated HRP and developing 

with TMB. Initial experiments confirmed significant variation in fibronectin 

binding under the various cation conditions and in a final experiment, the results 

of which are shown in Figure 6.1, all cation conditions were used in parallel on 

the same plate. This experiment confirmed that the combination of 0.5 mM 

MgCl2, 1 mM MnCl2 and 1 mM CaCl2 achieved optimal fibronectin binding. This 

is consistent with previous data: cation-dependency of the integrin binding to its 

ligands is well established with the description of cation binding sites within the 

binding domain of αvβ3. Both Mg2+ and Mn2+ have been shown to enhance 

binding: the role of Ca2+ may be more complicated as a biphasic effect has been 

shown with inhibition of binding at higher (physiological) concentrations in vitro 

(D'Souza et al. 1994;Hu, Barbas, & Smith 1996;Smith, Piotrowicz, & Mathis 

1994). Subsequent experiments were performed with solutions containing divalent 

cation supplementation with all 3 cations at the concentrations used in this 

experiment. 
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Figure 6.1: Optimisation of divalent cation conditions for RGD protein/ 

peptide binding ELISAs. Duplicate wells of a 96-well plate were coated with 

reducing concentrations of αvβ3. After washing the plate was incubated with 

5µg/ml fibronectin, followed by biotinylated anti-fibronectin antibody and finally 

HRP-conjugated streptavidin. The buffers used in each step were supplemented 

with cations as indicated. After the final wash the wells were developed with 

TMB and the absorbance read at 450nm. The results are expressed as mean +/- 

SD of duplicate wells. 

 

6.2.2 Competition of monovalent peptide with fibron ectin in the 

ααααvββββ3 binding assay 

In order to confirm that the RGD peptide competes with soluble fibronectin for 

binding to αvβ3 the above assay was adapted for competitive binding. A 

concentration 0.5 µg/ml αvβ3 was used for this and further experiments as it was 

within the optimum concentration range for fibronectin binding in this assay. αvβ3 

was bound to the plates overnight following which they were washed and blocked 

with 5% BSA. After washing again the plates were pre-incubated with varying 

concentrations of competing peptide before the addition of a fixed concentration 
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of fibronectin. The plates were washed again and incubated with HRP-conjugated 

anti-fibronectin antibody. After the final wash the HRP was developed with TMB 

and absorbance read at 450 nm. 

 

The results are shown in Figure 6.2. There is a clear dose-dependent inhibition of 

the fibronectin binding with no effect seen with the scrambled peptide sequence. 

Non-linear regression analysis was performed which gave an EC50 for the RGD 

peptide in this assay of 1.6x10-9 M. This experiment confirms that the peptide 

competes with fibronectin for αvβ3 and can completely inhibit binding. This assay 

was therefore used for further experiments in which competitive binding of 

monovalent and tetravalent peptides were compared. 

6.2.3 Adhesion of αvβ3-expressing cells to RGD ligands 

In the previous section it was shown that the RGD peptide derived from the 

peptide phage display library competes with fibronectin for binding to αvβ3. 

However, the immobilised integrin may be in a ‘superactivated’ form as a purified 

ligand bound to ELISA plates (John Marshall- personal communication), 

particularly in the presence of cations, and therefore it could not be assumed that 

activity was preserved in the more biologically relevant setting of the cell 

membrane.  It was important, therefore, to test the capacity of the peptide to bind 

the integrin in this more physiological environment. The series of experiments 

described in the next section were therefore aimed at optimising an assay to test 

the capacity of the peptides to bind cells expressing αvβ3. 
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Figure 6.2: Competitive binding assay of fibronectin with RGD-peptide for 

fibronectin. Fibronectin was incubated on an ELISA plate previously coated with 

αvβ3 in the presence of increasing concentration of RGD2C or scrambled peptide. 

Bound fibronectin was detected with an HRP-conjugated antibody and developed 

with TMB. Results are mean +/- SD of duplicate wells. There is clear dose-

dependent inhibition of fibronectin binding to αvβ3.  

 

6.2.4 Characterisation of cell line integrin expres sion 

For the cell binding assays two αvβ3-expressing cell lines were used. The MCF7 

β3 cell line is a human breast carcinoma cell line that has been stably transfected 

with the β3 integrin subunit and hence expresses αvβ3 on the cell surface (Pereira 

et al. 2004). These cells were used to validate the initial assays. However, they do 

not form xenograft tumours and therefore for later experiments the alternative 

A375P cell line was used. These are immortalised melanoma cells which express 

αvβ3 in their native form and form tumours when injected into immunodeficient 

mice. Both cell lines were kind gifts from Dr John Marshall (Cancer Research 

UK). Prior to use in experiments αvβ3 expression was confirmed by FACS. FACS 

analysis was repeated at regular intervals in both cell lines and expression of αvβ3 

was confirmed consistently. Representative plots are shown in Figure 6.3. 
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Figure 6.3: αvβ3 expression by MCF7 β3 and A375P cell lines. Representative 

histograms from FACS analysis of MCF7 β3 cells with primary antibodies IgG1 

isotype control (left) and anti-αvβ3 (right). The clear shift in fluorescence staining 

by the secondary antibody confirms expression of the αvβ3 dimer by the 

transfected cells. 

6.2.5 Validation of cell adhesion assays: a chromog enic assay 
produces linear results 

p-nitrophenyl-N-acetyl-β-D-glucosaminide (NPAG) is cleaved by the intracellular 

enzyme b-N-Acetylglucosaminidase to 4-nitrophenol which can be measured by 

spectrophotometric absorption at 450 nm: this can be utilized to quantify cells in a 

suspension or adherent to a surface and is thus an excellent means of assessing 

cell adhesion. 

 

IgG1 control Anti-αvβ3

MCF7 B3

A375P

IgG1 control Anti-αvβ3

MCF7 B3

A375P



223 
 

Firstly it was necessary that the NPAG assay worked with the cell lines under 

investigation and that this could produce an acceptable dose-response curve. To 

investigate these, doubling dilutions of the cells were prepared after preparation 

from culture flasks as above. The final re-suspension was made in NPAG buffer 

as described in the materials and methods as were subsequent dilutions. 50 µl of 

each dilution was added to a 96 well plate in duplicate. After overnight incubation 

at 37 0C and the addition of stop buffer the absorbance was read at 650 nm. The 

results, shown in Figure 6.4 show a clear dose-response with each of the two cell 

lines; for subsequent experiments starting concentrations of 10,000 cells per well 

or 5,000 cells per well were used for the MCF7 β3 and A375P cell lines 

respectively. 

6.2.6 Adhesion of αvβ3-expressing cells to fibronectin and 

vitronectin 

To confirm adhesion of the cell lines to their natural ligands the adhesion assay 

was carried out on plates coated with fibronectin or vitronectin, both of which are 

ECM ligands for αvβ3. Fibronectin was used preferentially as the protein (purified 

from plasma) was significantly cheaper. For the initial experiments fibronectin or 

vitronectin were coated to the plates overnight: after washing the plates were 

blocked before a further wash and addition of cells in 50 µl of serum-free media. 

Adhesion was allowed to take place for 1 hour at 37 0C and the plates were then 

gently washed prior to addition of the NPAG buffer. The reaction was allowed to 

take place overnight at 37 0C after which 75 µl of stop buffer was added and 

absorption read at 450 nm. The results are shown in Figure 6.5: there is clear 

demonstration of dose-dependent adhesion of the cells to both fibronectin and 

vitronectin. When visualised under an inverted microscope cell spreading was 

apparent in adherent cells suggesting activation via the receptor. Thus the assay 

was shown to be an appropriate means of testing adhesion of these cells to RGD-

containing αvβ3 ligands: it was therefore used to test for cell adhesion to short 

RGD-containing peptides as detailed in the next section. 
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Figure 6.4: Dose-response of the NPAG colorimetric assay: Dilutions of cells 

on 96-well plates were incubated with NPAG/ Triton X-100 substrate buffer 

overnight at 37 0C. After the addition of stop buffer absorbance was read at 450 

nm. A+C: Results of all cell concentrations used in the experiment for MCF7 B3 

(A) and A375P (C). B+D: linear regression analysis of the cell dilutions from the 

maximum concentration used for adhesion assays. r2= 0.9916 (B), 0.9945 (D). 

Results are from quadruplicate wells, mean +/- SD. 
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Figure 6.5:  Binding of MCF7 B3 and A375P cell lines to the RGD-motif 

containing extracellular matrix proteins fibronectin and vitronectin. 96-well 

plates were coated with reducing concentrations of protein and incubated with 104 

(MCF7) or 5x103 (A375P) cells/well for 1 hour at 37 0C. The plates were washed 

gently by hand twice in PBS and incubated overnight with NPAG substrate 

buffer. After addition of stop buffer absorbance was read at 450 nm. Mean of 

quadruplicate wells +/- SD 
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6.2.7 Adhesion of αvβ3 cells to monomeric peptide 

The previous experiment confirmed that the MCF7 β3 cells adhere to immobilised 

natural ligands expressing the RGD peptide motif. The next step was to confirm 

that the cells would bind the monomeric RGD peptide. For this experiment 

peptides with a 6-carbon aminohexanoic (AHA) acid linker between the biotin tag 

and the cyclic sequence were used. The biotinylated RGD2C peptide (bRGD2C) 

was bound to the plate overnight and the adhesion assay carried out as previously. 

MCF7 β3 and A375P ells were incubated on the plate in quadruplicate. The results 

are shown in Figure 6.6. There is a clear dose-response curve with the MCF7 β3 

cells, although the absolute levels were substantially less than those seen with 

fibronectin or vitronectin. Inspection under an inverted microscope found that 

whereas cell spreading was seen with fibronectin and vitronectin, no such 

activation was seen in the peptide-coated plate. Previous reports have 

demonstrated that although RGD peptide can mediate binding to αvβ3, firm 

adhesion requires domains within the ligand outside the RGD sequence. In this 

experiment no adhesion was seen of the A375P cells to the RGD2C peptide. The 

reason for this was unclear; expression of αvβ3 had been confirmed by FACS and 

the A375P cells adhere to both vitronectin and fibronectin. It was possible that the 

integrin was expressed in an inactive state or that the RGD2C peptide only bound 

the integrin in its most active conformation. A further possibility is that the 

peptide/ integrin interaction is insufficient to support adhesion during the washes: 

A375P cells are larger than MCF7 β3 cells and hence shear forces during washing 

will be proportionately greater (Lemmon et al. 2005). For in vivo experiments it 

was necessary to use a peptide that was known to bind the A375P cell line and 

therefore an alternative RGD peptide was used. This peptide, referred to here as 

cRGD has the structure c(RGDyK): the RGD sequence is followed by a d-tyrosine 

and a lysine. The peptide is cyclised via an amide bond and the amino side chain 

of the lysine enables further derivatisation of the peptide linkers and labels. As 

discussed in the introduction, this peptide sequence has been successfully used in 

the imaging of  αvβ3-expressing tumours in animal models in monomeric and 
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dimeric forms; furthermore internalisation of the peptide has been demonstrated in 

vitro of 111In-DTPA-c(RGDyK) (van Hagen et al. 2000). It was therefore thought 

appropriate to use this peptide as a ‘gold standard’ during the validation of the 

tetrameric constructs. 
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Figure 6.6: Adhesion of MCF7 ββββ3 and A375P cells to plates coated with 

RGD2C peptide. 96-well plates were coated with reducing concentrations of 

biotinylated RGD2C peptide and incubated with suspensions of MCF7 β3 or 

A375P cells. Dose-dependent binding is seen with the MCF7 β3 cells whereas 

none is seen with the A375P cells. Mean +/- SD of quadruplicate wells. 

6.2.8 Biotinylation of cyclic RGD peptide 

The peptide was biotinylated using sulfo-NHS biotin, a commercially available 

biotinylation reagent. The molecule consists of a reactive N- 

hydroxysulfosuccinimide (sulfo NHS) linked to biotin via a six-carbon spacer 

arm. This spacer is of the same length as the aminohexanoic acid spacer used for 

the other peptides in this part of the project and the spacer arm was thought likely 

to provide sufficient separation of the peptide and biotin group. The reagent was 

conjugated to the peptide in a one-step reaction by incubation of the peptide with 

a ten-fold molar excess of the biotinylation compound at pH 8.3 for 30 minutes at 

RT. The reaction was stopped by acidification of the reaction mixture. Prior to the 
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full-scale reaction it was confirmed that complete biotinylation of the peptide was 

achieved. Reverse-phase high-performance liquid chromatography (RP-HPLC) 

was run on the reaction products. The presence of the aromatic tyrosine side-chain 

in the peptide enables the UV absorption at 280 nm to be monitored: HPLC of the 

biotinylation reagent found minimal absorption at 280 nm. The HPLC 

chromatograms are shown in Figure 6.7. The UV absorption at both 220 nm and 

280 nm is presented: at 220 nm UV light is absorbed by peptide bonds and so will 

be absorbed by any peptide and at 280 nm is absorbed by aromatic residues; 

discrimination between peptide sequences with or without aromatic groups is 

therefore possible. The first part of the figure shows the trace from the un-

conjugated peptide confirming absorbance at 220 and 280 nm. The second trace 

shows the reaction products. Only one of the 220 nm peaks is associated with a 

280 nm peak: as the retention time has shifted from that seen with the 

unconjugated peptide, this suggests that all of the peptide has reacted. Solvent 

fractions containing the individual peaks were collected from the HPLC eluate. 

The peak containing the c(RGDyK) was analysed by MALDI-TOF MS as 

described in the materials and methods. The results, shown in Figure 6.8, confirm 

that the reaction product has the same mass as expected, thus confirming 

biotinylation of the peptide. 
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Figure 6.7: RP-HPLC of c(RGDyk) before (A) and after (B) biotinylation. 

Saturation of the peptide with the biotinylation reagent is confirmed by the shift of 

the retention time of the absorbance peak seen at 280 nm. 
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Figure 6.8: MALDI-TOF mass spectrometry of biotin-LC-c(RGDyK).  The 

expected molecular weight (960 Da) is confirmed as the major peak.  

 

6.2.9 Comparison of inhibition of fibronectin bindi ng to αvβ3 by 

RGD2C and cRGDyK peptides. 

The fibronectin/ αvβ3 binding inhibition assay as described in section 6.2.6 was 

carried out with cRGDyK before and after biotinylation as well as with the 

biotinylated RGD2C peptide. The assay was performed exactly as previously and 

the results are shown in Figure 6.9. The IC50 values were similar between the 3 

peptides (1.54x10-9 M, 8.44x10-10 M and 1.04x10-9 M for the RGD2C, cRGDyK 

and biotinylated cRGDyK peptides respectively, the differences were not 

significant). This confirms that the cRGDyK peptide binding was unchanged by 

biotinylation and that both RGD2C and cRGDyK peptides were comparable in 

this assay. As already discussed, however, behaviour of the peptide in an assay 

based on immobilised integrin may not necessarily reflect the situation of integrin 
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expressed on the cell surface and therefore the cell adhesion assays were repeated 

to address this. 
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Figure 6.9: Inhibition of fibronectin binding to immobilised αvβ3 by RGD 

peptides. RGD2C, cRGD and biotinylated cRGD (bcRGD) were pre-incubated in 

plates coated with αvβ3 prior to the addition of fibronectin. After washing bound 

fibronectin was detected with HRP-conjugated anti-fibronectin antibody followed 

by TMB substrate. There is dose dependent inhibition of fibronectin binding with 

all 3 RGD peptides: no difference is seen before or after biotinylation of the 

cRGD peptide. Mean of duplicate wells +/- SD. 

6.2.10 Adhesion of αvβ3 cells to biotin-RGD 

The first experiment to assess adhesion of A375P cells to biotin-cRGDyK showed 

no specific binding: this experiment was performed with an identical protocol to 

the previous peptide adhesion experiments. At the end of the experiment the plates 

were washed and incubated with streptavidin-conjugated HRP and developed with 

TMB in order to determine the presence of biotinylated peptide. This showed that 

binding of biotin-cRGDyK was minimal (Figure 6.10). To guarantee consistent 

peptide binding, therefore, 96-well plates pre-coated with streptavidin were used; 

this would have the added advantage of ensuring availability of the peptide 

binding site whilst bound to streptavidin. The pre-blocked plates were incubated 

with saturating concentrations of biotin-cRGDyK, biotin-RGD2C or biotin-
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sRGD2C peptides before washing and completion of the adhesion assay as before 

with both A375P and MCF7 B3 cells. The results are described in section 6.3.2.2. 
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Figure 6.10: Analysis of biotinylated peptide binding to plates. After the RGD-

peptide adhesion assay with αvβ3-expressing cells found no binding to cRGD 

peptide, the plates were incubated with HRP-conjugated streptavidin and 

developed with TMB substrate. Very little biotinylated cRGD peptide was bound 

to the plates indicating poor binding properties of the peptide. Mean of duplicate 

wells +/- SD. 

6.2.11 Competition assay of monomeric peptide for αvβ3 

cell adhesion to fibronectin 

The adhesion assay was repeated with the intention of showing inhibition of cell 

binding to fibronectin by the RGD2C peptide. From a series of experiments it was 

found that inhibition was seen only when the concentration of the fibronectin used 

to coat the plate was reduced to 0.25 µg/ml. The assay was performed with the 

MCF7 β3 cells: the wells were pre-incubated for 10 minutes with peptide prior to 

the addition of the cells; otherwise the procedure was carried out as before. The 

results are in Figure 6.11. There is dose-dependent inhibition of cell binding by 

the peptide which is not seen with the control peptide. However, the absolute 

absorbance readings are low and the error bars (from quadruplicate readings) 
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wide. It was therefore felt that the reliability of this assay as an assay for 

inhibitory activity of the peptides would not be optimal. 
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Figure 6.11: Inhibition of MCF7 B3 cell binding to fibronectin b y RGD 

peptide. Fibronectin was bound to wells at a concentration of 0.25 µg/ml: after 

washing the cells were pre-incubated with RGD2C or scrambled RGD2C peptides 

prior to incubation with MCF7 β3  cells. The wells were washed twice by hand and 

bound cells detected with NPAG substrate. Mean of quadruplicate wells +/- SD 

6.3 Polymerisation of peptide with streptavidin 

As described in the introduction to this chapter, the streptavidin molecule, with its 

4 biotin binding sites, is an ideal tool for the rapid tetramerisation of the peptide. 

A method was therefore developed for the rapid conjugation of biotinylated 

peptide to streptavidin followed by radiolabelling with 111In and purification. 

6.3.1 Saturation of streptavidin binding sites with  biotinylated 

peptide 

Streptavidin consists of 4 subunits each with a binding site for biotin: in order to 

achieve maximum valency, i.e. 4 biotinylated peptides per molecule, streptavidin 

was incubated with varying concentrations of peptide (in ratios of 4-fold molar 

excess) in order to assess at which concentrations saturation was achieved. After 

incubation for 1 hour the solution was diluted and bound to 96-well plates: free 

biotin binding sites were measured by incubation with biotin-HRP followed by 
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the addition of the HRP substrate TMB. Results are shown in Figure 6.12. By 

applying non-linear regression to the streptavidin-alone curve, the derived 

concentration of free biotin-binding sites for the 4:1 peptide:streptavidin reaction 

is ~28%. Saturation is effectively achieved with the addition of 8:1 or 16:1 molar 

ratios of peptide. It was therefore decided to use the 16:1 ratio (i.e. 4-fold excess) 

of peptide for all future experiments in order to achieve maximum saturation. This 

would results in the presence of excess free peptide which could interfere with 

binding studies, and therefore various methods were tested for the purification of 

tetravalent streptavidin. 
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Figure 6.12: Conjugation of streptavidin to biotinylated peptide. Streptavidin 

was incubated with 4:1, 8:1 or 16:1 molar ratios of peptide (Pep/ 2Pep/ 4Pep 

respectively) for 1 hour at RT. Dilutions of the reaction mixture were then bound 

to 96 –well plates followed by incubation with biotinylated HRP. The wells were 

developed with TMB substrate and absorbance read at 450 nm.  Mean of duplicate 

wells +/- SD 

 

6.3.1.1 Purification of tetravalent streptavidin-peptide by size 
exclusion filtration 

Several methods were investigated for the purification of tetravalent SA-peptide 

from unbound peptide molecules, including dialysis, molecular weight cut-off 
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filtration and size-exclusion filtration. Of these, size-exclusion filtration was the 

simplest and most successful: centrifugation of a solution through the embedded 

resin results in retention of low molecular weight solutes whilst larger molecules 

emerge in the filtrate. This method would allow rapid purification of the 

tetravalent streptavidin/ peptide molecule: an additional advantage would be the 

purification of free radioisotope when the complex was radiolabelled. 

 

The method was tested with an ELISA-based assay. After incubation of 

streptavidin with biotinylated peptide dilutions of the solution were incubated on 

ELISA plates with or without prior filtration. The plates were coated overnight 

and after washing and blocking with BSA were incubated with an anti-

streptavidin antibody, streptavidin-conjugated HRP or biotin-conjugated HRP. 

After a further wash the HRP-treated plates were developed with TMB, whilst the 

anti-streptavidin Ab-treated plate was incubated with an HRP-conjugated anti-

mouse antibody following which TMB could be used to develop the colour. The 

detection of streptavidin with antibody allows for correction for the amount of 

streptavidin bound to the plates: by using the unfiltered streptavidin as a reference 

curve, the bound concentration of filtered streptavidin could be determined and 

the values for streptavidin and biotin binding adjusted accordingly. Representative 

results are shown in Figure 6.13. The values have been corrected for variation in 

the concentration of bound peptide as described. Incubation with biotinylated 

HRP enables detection of free biotin binding sites on streptavidin: no biotin 

binding was seen with the streptavidin post-incubation with peptide before or after 

filtration- this confirms saturation of the molecule and that this is preserved after 

filtration. Incubation with streptavidin-HRP enables detection of free biotinylated 

peptide. Whilst some free peptide is detectable, this is around 3% of that present 

prior to filtration and it was decided that this would be acceptable for further 

studies.  
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Figure 6.13: Purification of streptavidin-peptide. Determination of streptavidin 

saturation (A) and free peptide concentration (B) after incubation with excess 

peptide before and after column filtration. After incubation with peptide for 1 hour 

at RT the reaction mixture was diluted and bound to 96-well plates. Streptavidin 

concentration was corrected by deriving a standard curve with anti-streptavidin 

antibody. The wells were incubated with biotinylated HRP to detect free biotin-

binding sites (A) or HRP-conjugated streptavidin to detect free biotinylated 

peptide (B). These results confirm saturation of the streptavidin in this assay: the 

free biotinylated peptide was ~3% of that seen pre-filtration as determined from 

non-linear regression analysis. Mean of duplicate wells +/- SD. 
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6.3.2 Tetrameric peptide binding to αvβ3 

The biotinylated peptides were designed with the incorporation of a spacer arm: 

streptavidin has a deep binding pocket for biotin and it has been shown that a 

short spacer sequence can result in loss of activity of the binding domain of a 

conjugated peptide (Boturyn et al. 2004). The next stage was therefore to confirm 

that once conjugated to streptavidin the RGD peptide retained affinity for its 

receptor. This would also support the prediction that the synovial-homing peptide 

would retain its affinity for its ligand. 

 

In the first instance, streptavidin was incubated with 1:1 molar ratio of 

biotinylated peptide (i.e. 1:1 for biotin binding sites). This would enable easy 

comparison of the RGD2C and scrambled peptide sequences without the need for 

a further step to quantify streptavidin concentration following column filtration. 

The plates were coated with αvβ3 as for the previous experiments and after 

blocking were incubated with streptavidin/ peptide. The streptavidin complex was 

allowed to bind for 1 hour at RT before washing. Streptavidin was detected with 

an anti-streptavidin antibody followed by HRP-conjugated anti-mouse antibody 

and developed with TMB. 

 

The results of the first experiment are shown in Figure 6.14A. There is obvious 

dose-dependent binding for streptavidin-conjugated RGD2C to αvβ3. There is 

possibly a low level of binding with the scrambled peptide: however, no inhibition 

of fibronectin binding to αvβ3 was seen in the previous experiments and it is 

therefore unlikely that the scrambled sequence has activity. The low level of 

binding seen is most likely to be non-specific, although streptavidin does contain 

an RGD-mimicking RYD sequence which has been shown to mediate binding to 

cell membranes (Alon, Bayer, & Wilchek 1990). The assay was later repeated 

with the cRGDyK peptide (Figure 6.14B). Although the assays were not done in 

parallel, the derived EC50 values were similar: the EC50 for the RGD2C and 

cRGDyK-streptavidin complexes were 1.6x10-8 and 1.08x10-8 M respectively, and 

these were not significantly different.  
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Figure 6.14: Binding of tetravalent peptides RGD2C and scrambled RGD2C 

(A) and cRGDyK (B) to immobilised αvβ3. Plates were incubated with dilutions 

of streptavidin-polymerised peptide: after washing bound streptavidin was 

detected with anti-streptavidin antibody and developed with TMB substrate. There 

is dose-dependent binding of both unscrambled peptides to αvβ3. Mean of 

duplicate wells +/- SD. 
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6.3.2.1 Competition of tetrameric peptide for fibronectin binding 

to αvβ3 

The next experiment was to compare the monomeric and tetravalent peptides in 

the competitive binding assay. This would, firstly, confirm that the spacer arms of 

the peptides were long enough to enable multimeric binding and, secondly, 

establish whether this could increase the avidity of the molecule.  

 

The experiment was repeated as with the monomeric peptide. For polymerisation 

streptavidin was incubated with a 1:1 ratio of peptide (to biotin binding sites) with 

the same concentration of peptide. The fixed concentration of peptide would 

enable accurate comparison of the monovalent and tetravalent molecules: the use 

of a purification step at this stage could introduce error due to the potential 

inaccuracy introduced by the need to quantify the concentration of purified 

streptavidin/ peptide. The results are shown in Figure 6.15. There is a small shift 

of the competitive binding curve to the left with the addition of streptavidin. 

Analysis by non-linear regression found that the IC50 had halved with the 

tetravalent peptide, although this was within the margin of error of the 

experiment.  
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Figure 6.15: Tetravalent peptide inhibition assay. Inhibition of fibronectin 

binding to αvβ3 by monomeric or tetravalent (streptavidin-conjugated) peptide. 

The competitive binding assay was performed as for previous experiments with 

monovalent or streptavidin-polymerised peptide. Non-linear regression analysis 

found the IC50 of the RGD2C and SA-RGD2C inhibitors to be 4.4 x10-9 mmol/ml 

2.3 x10-9 mmol/ml respectively although this difference was not significant.  Mean 

of duplicate wells +/- SD. 

6.3.2.2 Adhesion of αvβ3 cells to tetravalent peptide 

The previous experiment with peptide had shown binding of the MCF7 β3 cell 

line to the RGD2C peptide; binding was not seen to the A375P cells. Furthermore, 

binding of the cRGDyK peptide to the plates had been poor and no cell adhesion 

was seen. These adhesion assays were therefore repeated with plates to which 

streptavidin was pre-bound in fixed concentrations and pre-blocked. This would 

enable more uniform and reliable adhesion of the peptides to the plates and also, if 

binding was seen, confirm that the peptides could support cell adhesion whilst 

bound to streptavidin. 

 

The plates were incubated with fixed concentrations of biotinylated peptide for 1 

hour, washed and incubated with the cells. The adhesion assay was completed as 

previously. The results are shown in Figure 6.16. In this experiment binding is 
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seen to both peptides by the A375P cells and, as before, binding only of the 

MCF7 β3 cells to RGD2C. This observation, that RGD2C does not support 

A375P cell binding, suggests that the affinity of the RGD peptides differ, with 

increased cell binding seen to the cRGD peptide. The reason for the differential 

adhesion to the two cell lines is also unclear. It is likely, as discussed above, that 

the larger size of the A375P cells results in greater shear forces during the 

washing steps. It is also possible that there is an additional contribution from 

differences in the integrin conformation or the number and density of receptors. 

This could be the subject of future experiments, but at this stage it was sufficient 

to show that the new biotinylated cRGDyK peptide could support adhesion of 

both cell lines. 
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Figure 6.16: Adhesion of cells to plates coated with streptavidin + 

biotinylated peptide: A: cRGD B: RGD2C, C: sRGD2C. Streptavidin-coated 

plates were coated with peptide prior to incubation with cells as for the previous 

adhesion experiments and incubated with cells as previously.  There is 

significantly greater binding of MCF7 β3 cells to both peptides and of A375P cells 

to the cRGD peptide only. Mean +/- S.D *p<0.05 
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6.4 Radiolabelling of tetravalent peptide 

Radiolabelling provides a sensitive means of quantifying in vivo biodistribution. It 

was therefore decided to devise a means of radiolabelling streptavidin in order to 

track the tetravalent peptide after injection into transplanted mice. The simplest 

method for radiolabelling would be conjugation of 125I to tyrosine groups within 

the protein: it has been shown that a tyrosine residue within the biotin-binding 

pocket of streptavidin is critical for biotin binding, modification of which with a 

tyrosine-specific reagent abrogates binding (Gitlin, Bayer, & Wilchek 1990). 

Modification of lysine, however, only resulted in partial abrogation of biotin 

binding (Gitlin, Bayer, & Wilchek 1988). Furthermore, 111In  is preferable to 125I 

due to its shorter half life (2.7 vs. 60 days) and is more suitable, if required, for 

imaging studies. Streptavidin was therefore conjugated to DTPA, a bifunctional 

chelating agent which allows rapid labelling with 111In. 111In-DTPA has the 

additional advantage that there is no natural metabolic pathway for excretion from 

cells: if internalised, therefore, this ‘residualising’ property would result in longer 

retention of the radiolabel (Gotthardt et al. 2004). 

6.4.1 Conjugation of streptavidin to DTPA 

The method used was the same as that for the conjugation of DTPA to antibodies. 

The conjugated streptavidin was analysed by size-exclusion HPLC, representative 

results of which are shown in Figure 6.17A-B.  

 

It was considered possible that contaminating DTPA or bound DTPA may 

influence the spectrophotometric absorbance and therefore the concentration was 

determined by ELISA. A capture method was used whereby anti-streptavidin 

antibody was bound to the plate prior to incubation with the streptavidin solution. 

This was then detected with a second (polyclonal) HRP-conjugated anti-

streptavidin antibody and developed with TMB substrate. Streptavidin of known 

concentration was used to produce a standard curve against which the 

concentration of the streptavidin-DTPA was derived. The derived concentration of 

streptavidin-DTPA was 1.4 mg/ml 
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6.4.2 Radiolabelling of DTPA-streptavidin with 111In 

DTPA-conjugated streptavidin was labelled with 111In as described in the 

conjugation protocol. Indium was added to DTPA-SA in acetate buffer pH 6.0 and 

incubated for 30 minutes. At the end of the incubation period 50 mM EDTA in 

acetate buffer was added to chelate inbound indium and the radiolabelling 

efficiency measured ITLC. A 1 µl sample of the conjugation solution was spotted 

onto a silica gel ITCL strip which was then run with acetate buffer + 50 mM 

EDTA as solvent. Unbound indium would move with the solvent front whilst 

indium bound to peptide would stay at the origin. Strips were cut in half allowing 

activity at the origin and solvent front to be measured in a gamma counter. 

Labelling efficiency was derived from the ratio of activity at the solvent front to 

that at the origin. Results from duplicate strips showed that labelling efficiency 

(i.e. % 111In bound to peptide) was >95%. 111In-labelled streptavidin was also run 

on SE-HPLC: representative HPLC traces are shown in Figure 6.17C and show 

co-localisation of the 280 nm absorbance and radioactivity peaks at an elution 

time of ~20 minutes. There is a small secondary peak, likely to represent unbound 

DTPA: this would be removed with the purification of unbound peptide prior to in 

vivo injection. 
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Figure 6.17: Radiolabelling of streptavidin. SE-HPLC chromatograms of 

DTPA-SA. A: Standards (molecular weights 670 kDa, 158 kDa, 44 kDa, 17 kDa, 

1.35 kDa). B UV absorbance peak of cold DTPA-SA C Radioactivity peak of 
111In-DTPA-SA 
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6.4.3 Confirmation of biotin binding by DTPA-strept avidin 

Having confirmed that DTPA had been successfully conjugated to streptavidin 

and satisfactory 111In labelling efficiency it was important to ensure that the 

binding affinity of streptavidin for biotin was unaffected. The streptavidin binding 

pocket for biotin includes lysine: binding of DTPA to the ε-amino side-chain 

would be likely to disrupt this, although the probability of these lysine residues 

being affected is relatively low. The conjugation technique was designed to 

produce ~1 molecule of DTPA per molecule of protein making this less likely to 

be a problem: however, each subunit of streptavidin contains seven lysine residues 

(Argarana et al. 1986) and it is unclear whether local charge and protein folding 

may render some of these more susceptible to derivatisation. Streptavidin or 

DTPA-conjugated streptavidin were coated to 96-well plates overnight in 

doubling dilutions, after which the plates were blocked and incubated with 

biotinylated HRP for 1 hour. After a further wash TMB was added and, after the 

colour had developed, absorbance read at 450 nm. In order to correct for the 

concentration of streptavidin wells on a duplicate plate were incubated with anti-

streptavidin antibody followed by an HRP-conjugated anti-mouse antibody with 

completion of the ELISA as for the other plate. Non-linear regression was then 

used to correct for the differences in streptavidin concentration on the plates 

before plotting the biotin-binding curves. The ELISA results are shown in Figure 

6.18A. The biotin binding is effectively identical before and after DTPA-

conjugation: this was confirmed by non-linear regression analysis which found no 

significant difference between the EC50 of each protein. 

 

As a final experiment to confirm the activity of the tetrameric peptide, inhibition 

of fibronectin binding by RGD peptide-streptavidin and RGD peptide-DTPA-

streptavidin to αvβ3 were compared. This assay was carried out as before: in order 

to ensure direct comparability of the conjugates streptavidin was incubated with a 

1:4 molar ratio of peptide, rather than excess, in order to remove potential 

inaccuracy of quantification post-purification. The results of this experiment are 

shown in Figure 6.18B and confirm that DTPA conjugation does not affect 

binding activity of the RGD peptide 
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Figure 6.18: Affinity of streptavidin for biotin and streptavidi n-peptide for 

ligand before and after DTPA conjugation. A- Streptavidin before and after 

DTPA-conjugation was bound to 96-well plates followed by incubation with 

biotinylated HRP and developed with TMB substrate. The results were corrected 

for differences in streptavidin binding by incubation with anti-streptavidin 

antibody followed by an HRP-conjugated secondary antibody. No significant 

difference was seen in biotin binding. B- Fibronectin/ αvβ3 binding inhibition 

assay with tetrameric peptide bound to DTPA or non-DTPA conjugated 

streptavidin. No difference was seen between the IC50s. Results of triplicate wells 

+/- SD. 
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6.4.4 Radiolabelling of tetrameric peptide-streptav idin with 111In 

The use of size-exclusion purification has the advantage that it will remove all low 

molecular weight impurities in one step, therefore polymerisation of the peptide 

could be followed by radiolabelling prior to purification. 

 

SA-DTPA was incubated with a 4-fold molar excess of biotinylated peptide for 1 

hour at RT at pH 6.0. This was followed by the addition of 111InCl3  and a further 

incubation for 30 minutes. The conjugation reaction was stopped by the addition 

of 10% by volume 50 mM EDTA after which the reaction solution was purified 

by size-exclusion spin column filtration as before. Final radiochemical purity was 

routinely  >99%:  

6.4.5 Radioligand binding with 111In-SA-cRGD 

A number of experiments were performed as detailed in the methods in order to 

demonstrate binding of RGD peptide- streptavidin to αvβ3-expressing cells. No 

specific binding/ internalisation was seen across a range of concentrations. The 

absence of specific cell binding with the RGD-conjugated 111In-streptavidin has 

several possible explanations. Firstly is that the sensitivity of the assay was below 

the threshold for detection and hence missed a genuine effect. It is difficult to 

refute this, although other workers have shown substantial levels of binding/ 

internalisation with radiolabelled RGD-peptides in similar assays. It is also 

possible that conjugation to streptavidin has altered the kinetics of binding to αvβ3: 

earlier it was seen that A375P and MCF7 β3 cells bound to RGD peptides in an 

adhesion assay, but in this instance the presentation of the peptide was polymeric 

and not oligovalent as seen with the streptavidin-peptide. A further consideration 

is that the larger molecule does not internalise, as is seen with monomeric 

peptides, and that the complex dissociates from the integrin with the lower 

concentrations achieved during the washing steps. Finally, it may be that the 

concentration of the streptavidin-peptide is too low to start with: a level much 

below the Kd would result in minimal binding. The EC50 observed in the ELISA-

based assays was in the nanomolar range, although as already discussed this may 

be lower than could be seen under these more physiological conditions, with 
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presentation of integrin on the cell membrane as opposed to immobilised on 

plastic. 

 

For the purpose of the application of this model for testing the 3.1 peptide, a 

further possibility needed to be considered. It has already been shown that biotin-

binding of the streptavidin was unaffected by DTPA conjugation, but it is 

theoretically possible that the addition of 111In could abrogate biotin binding. This 

is unlikely- I have been unable to find any reports of such an effect with DTPA-

conjugated proteins- but despite this biotin-binding of 111In-DTPA-streptavidin 

was tested as follows. 111In-DTPA-streptavidin was incubated with a molar excess 

of biotinylated HRP for 1 hour at RT, following which the complexed and 

individual reagents were analysed by SE-HPLC. The chromatograms are shown in 

Figure 6.19 : there is a clear shift of the retention time to an earlier point after 

addition of bHRP, confirming binding of 111In-SA to bHRP with the formation of 

a larger complex: the multiple peaks are due to the formation of complexes of 

more than two molecules. Although this experiment does not confirm the affinity 

of the streptavidin for biotin, it does show that biotin binding is retained by the 

radiolabelled protein. 

 

As a final experiment, 111In-SA-c(RGD) and 111In-SA-sRGD2C were incubated in 

solution with purified αvβ3. After incubation for 1 hour the solutions were 

analysed by SE-HPLC: the results are shown in Figure 6.20. A small peak is seen 

after addition of αvβ3 to the c(RGD)-SA representing bound tetravalent peptide. 

Whilst this experiment is insufficient to give an accurate calculation of the Kd, an 

approximation can be obtained using the data obtained by integrating the peaks to 

derive the concentration of 111In- SA-peptide unbound and bound to αvβ3. The law 

of mass action equation below was used to estimate the Kd of the tetravalent 

peptide.  

 

 

 

 

Kd= 
[ligand].[receptor]

[ligand.receptor]
Kd= 

[ligand].[receptor]

[ligand.receptor]
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Using the figures derived from the radiochromatograms an estimated Kd of 2x10-5 

M  is obtained which is several orders of magnitude higher than the IC50 derived 

from the ELISA-based assays. Although IC50 is only, at best, an estimate of Kd 

this discrepancy strongly suggests that the affinity of the peptide for receptor 

differs substantially in solution to that seen when the integrin is immobilised on a 

plate.  

6.4.6 Tumour growth in SCID mice 

MCF7 β3 cells do not form tumours in vivo and A375P cells were therefore used 

for these experiments. Cells were injected subcutaneously in Matrigel and 

experiments were performed when the tumours reached ~0.5 cm. To confirm 

vascularisation and expression of αvβ3 ex vivo tumours were snap frozen and 

stained for murine CD31 and human αvβ3. Representative micrographs are shown 

in Figure 6.21. There is obvious vascularisation throughout the tumours and 

diffuse expression of αvβ3. 
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Figure 6.19: SE-HPLC analysis of 111SA-DTPA +/- biotinylated HRP. A 

Radiochromatogram of 111In-streptavidin B UV absorbance chromatogram of 

biotinylated HRP C Radiochromatogram of 111SA-DTPA after incubation for 1 

hour with an excess of biotinylated HRP. The complete shift to an earlier retention 

time confirms that 111SA-DTPA binds biotin. The presence of a second peak 

suggests the formation of polymeric products. 
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Figure 6.20: Binding of RGD-streptavidin to αvβ3 in solution. 

Radiochromatograms of 111In-conjugated SA-cRGD peptide or the scramble 

RD2C control incubated in solution with (B) or without (A) purified αvβ3. After 

1hour the samples were analysed by SE-HPLC. The appearance of a small (higher 

molecular weight) peak after incubation with the 111In-SA-cRGD peptide suggests 

the formation of complexes with αvβ3.  
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Figure 6.21: Expression of αvβ3 in tumours. Sections of ex vivo A375P tumours 

were stained for murine CD31 (A) αvβ3 (B) and IgG1 isotype control (C). CD31 

staining confirms vascularisation of the tumours whilst there is diffuse staining for 

αvβ3 throughout. Original magnification x20 

6.4.7 In vivo biodistribution of tetravalent RGD peptide 

The in vitro experiments had shown that, despite convincing binding of the 

monomeric and polymeric RGD peptides to immobilised αvβ3 in ELISA-based 

assays, binding to cell-expressed integrin was not seen: the possible reasons for 

this have been discussed. It was therefore unlikely that specific uptake would be 

seen in vivo. It was therefore decided to limit the in vivo experiments with the 

tumour model to a single time point. Mice were injected intravenously with 4 µg 

(0.6 MBq) of c(RGD)-SA-111In or scrambled control. After 4 hours the animals 

were killed and the tumours were removed, weighed and the activity counted in a 

gamma counter. The results are shown in Figure 6.22 and Table 6.1. No 

significant difference was seen between the peptides. Although the numbers of 

tumours were small the error bars are small and, in light of the in vitro 

experiments, it was not felt justified to pursue these experiments further. 

A B CA B C
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Figure 6.22: Biodistribution of RGD-streptavidin in A375P tumour -bearing 

mice. Mice were injected subcutaneously with A375P cells in Matrigel matrix. 

When the tumours reached ~0.5 cm the animals were injected intravenously with 

4 µg of 111In-labelled c(RGD)-SA or scrambled RGD2C-SA control. After 4 hours 

the tumours were removed, weighed and the radioactivity counted. n= 5 tumours 

(c(RGD)-SA), 4 tumours (sRGD2C).  No significant difference is seen between 

the RGD and control peptides. Mean +/- SEM. 
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Tissue 

%ID/g 

cRGD 

 

RGD2C 

Tumour 10.53 ±  1.01 9.83   ±  0.43 

Heart 8.01   ± 0.80 9.73   ± 0.58 

Lung 10.48 ± 2.91 11.52 ± 0.40 

Liver 13.31 ± 2.29 9.78   ± 0.24 

Kidney 70.34 ± 11.64 31.5   ± 5.76 

Spleen 12.48 ± 1.87 9.10   ± 0.26 

Gut 4.30   ± 0.85 4.19   ± 0.07 

Muscle  1.06   ± 0.47 2.20   ± 0.15 

Blood 18.44 ± 4.84 17.71 ± 3.77 

 

Table 6.1: In vivo biodistribution of RGD peptide-streptavidin. SCID mice 

carrying A375P tumours were injected with 111In-labelled cRGD or sRGD2C-SA. 

After 4 hours the tumors and murine organs were removed, weighed and 

radioactivity measured. Mean +/- SEM n=3 animals (cRGD), 2 animals 

(RGD2C), 2 transplants per animal 

 
6.4.8 In vivo biodistribution of tetravalent 3.1 peptide 

For the in vivo studies with 3.1 peptide DTPA-streptavidin was incubated with 

saturating concentrations of 3.1 peptide or scrambled control. After incubation for 

1 hour the complex was radiolabelled with 111In and purified by spin column 

filtration. Mice double transplanted with skin and synovium were injected with 

0.8 µg (~1 MBq) of 111In-streptavidin-peptide via the tail vein and incubated for 1, 

4 or 24 hours prior to sacrifice and excision of the grafts and organs. The tissues 

were weighed and the activity measured in a gamma counter: the results are 

shown in Figure 6.23 and Table 6.2. No difference was seen between the 3.1 or 

scrambled control tetravalent peptides at any of the indicated time points, nor 
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were there any differences between synovium and skin.  The results for blood in 

the same animals are shown in Figure . The levels seen in the tissues at 4 and 24 

hours are similar despite a clear reduction of the levels in circulating blood: this 

suggests that there is uptake of the tracer into the tissues and that the levels seen 

are not simply a reflection of the circulating blood pool. Non-specific uptake into 

the tissue is not unexpected and has been discussed in earlier chapters. 

Distribution in the murine organs was similar for the two peptides with the 

exception of kidney where there was significantly higher localisation of the 

RGD2C-SA. However, the lack of significant differences between the tissues and 

the test and control peptides suggests that the uptake seen was non-specific. 

Elimination of the radiolabelled complexes was the same for both peptides as 

indicated Figure  which shows similar circulating levels at all time points. The 

possibility that the assay has insufficient sensitivity to detect specific uptake 

cannot be entirely discounted: as discussed in an earlier chapter any specific 

uptake can be obscured by ‘noise’ from the non-specific signal. However, it is 

more likely that significant internalisation by cells would be seen as was shown 

with anti-E-selectin in chapter 3. Again, such an effect may exist below the 

detection threshold of this assay: if, however, there is specific binding the inability 

of this assay to detect it implies that this construct, and those of similar molecular 

weight, is unlikely to have any advantages as a specific delivery agent. The 

stability of the 111In-DTPA-SA was not investigated in this study. However, 

DTPA is frequently used as a bifunctional chelating agent and previous studies 

have shown that the conjugate has excellent stability in serum. 

 

Full results of the biodistribution of 3.1 peptide-111In-SA are shown in Table 6.2. 

This appears to show preferential accumulation of the complex in the transplanted 

tissues (bearing in mind the lower vascularity described in Chapter 3): as no 

selectivity was shown for transplanted synovium compared to skin, and levels 

were similar for the scrambled peptide, this effect appears to be non-specific. 

 

 
 



257 
 

 

 

Synovium Skin
0.0

2.5

5.0

7.5
%

ID
/g

4 hours

Synovium Skin
0.0

2.5

5.0

7.5

%
ID

/g

Synovium Skin
0.0

2.5

5.0

7.5

%
ID

/g
A 

B 

C 

3.1
Scrambled 3.1



258 
 

Figure 6.23 (previous page): Biodistribution of tetravalent SA-peptides. SCID 

mice double-transplanted with human skin and synovium were injected 

intravenously with 111In-3.1-SA or scrambled control. After 1 hour (A), 4 hours 

(B) and 24 hours (C) the transplants were removed, weighed and the radioactivity 

measured. No significant differences were seen between the test or control 

peptides, or between skin and synovium at any of the time points. n= 6 transplants 

per condition, mean +/- SEM. 
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Figure 6.24: Levels of 111In-SA-peptide in the blood of the animals used for 

the biodistribution experiment. There is no significant difference in the rate of 

decay between the two tetravalent peptides. Non-linear regression analysis 

suggested a half-life of around 6 hours. N= 3 mice per condition per time point. 

Mean +/- SEM. 
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Tissue 

%ID/g tissue 

1 hour 

 

4 hours 

 

24 hours 

Synovium 3.26    ± 0.35 5.42   ± 1.23 4.90   ± 0.55 

Skin 2.77    ± 0.28 5.31   ± 0.37 5.61   ± 0.49 

Heart 8.09    ± 0.75 5.40   ± 0.13 4.84   ± 1.01 

Lung 11.33  ± 1.95 6.91   ± 0.27 3.67   ± 0.46 

Liver 6.64    ± 0.66 6.24   ± 0.13 9.43   ± 0.25 

Kidney 22.90  ± 3.29 38.25 ± 1.48 74.66 ± 3.37 

Spleen 6.33    ± 0.70 8.19   ± 1.06 16.07 ± 2.61 

Gut 3.19    ± 1.33 2.95   ± 0.18 2.34   ± 0.17 

Muscle  1.48   ±  0.065 3.18   ± 1.07 1.09   ± 0.09 

Blood 24.09 ± 1.79 12.81 ± 0.83 1.77   ± 0.19 

 

Table 6.2A: Results of the biodistribution experiment with 3.1-peptide-

conjugated 111In-streptavidin . Double-transplanted mice were injected with 

0.8µg of the tetravalent peptide and incubated for 1, 4, or 24 hours after which the 

transplanted tissues were removed for weighing and measurement of radioactivity. 

Mean +/- SEM. n=3 animals (6 transplants) per condition 
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Tissue 

%ID/g tissue 

1 hour 

 

4 hours 

 

24 hours 

Synovium 4.30    ± 0.58 6.73   ± 0.40 5.27   ± 0.55 

Skin 2.55    ± 0.24 6.01   ± 0.56 5.03   ± 0.49 

Heart 8.18    ± 0.43 5.25   ± 0.0.30 3.57   ± 1.01 

Lung 10.36  ± 0.61 6.94   ± 0.0.43 3.21   ± 0.46 

Liver 6.36    ± 0.45 7.44   ± 0.55 9.20   ± 0.25 

Kidney 39.37  ± 4.46 85.96 ± 14.96 117.9 ± 3.37 

Spleen 7.23    ± 0.58 9.44   ± 1.42 15.41 ± 2.61 

Gut 4.63    ± 0.75 3.31   ± 0.18 2.14   ± 0.17 

Muscle  1.44    ±  0.09 1.91   ± 0.14 1.26   ± 0.09 

Blood 23.82  ± 1.62 12.56 ± 1.61 1.27   ± 0.19 

 

Table 6.2B: Results of the biodistribution experiment with scrambled 3.1-

peptide-conjugated 111In-streptavidin . Double-transplanted mice were injected 

with 0.8µg of the tetravalent peptide and incubated for 1, 4, or 24 hours after 

which the transplanted tissues were removed for weighing and measurement of 

radioactivity. Mean +/- SEM. n=3 animals (6 transplants) per condition 
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6.5 Summary  
In this chapter the two issues of peptide size and valency were addressed by 

producing complexes of peptide bound via biotin to streptavidin. It was possible 

that the larger molecular weight might limit extravasation into the transplanted 

tissues, although this would not be certain in light of the earlier data 

demonstrating increased extravasation of albumin. The increase in valency, it was 

hoped, would enhance the avidity of the peptide for its tissue receptor with a 

consequent increases in specific uptake: the strategy of complexing peptide with 

streptavidin was shown to be highly effective in a previous study in which it was 

demonstrated that tetramerisation resulted in a 200-fold increase in the EC50 of a 

P-selectin binding peptide in an adhesion assay (Molenaar et al. 2004). As no in 

vitro assay was available for the synovial-homing 3.1 peptide, RGD peptides of 

similar structure were used to validate the method in vitro and polymerised 

peptide were shown to be effective in ELISA-based assays of binding to αvβ3 

directly and in inhibition of fibronectin binding. The streptavidin-bound peptides 

were also shown to bind αvβ3-expressing cells, although this did not result in cell 

spreading as seen with the natural ECM ligands vitronectin and fibronectin. A 

method was also developed for the rapid conjugation to streptavidin and 

subsequent radiolabelling with 111In: the ensuing single-step purification produced 

a product with minimal contamination with free radioisotope or peptide.  

 

Despite the efficacy of the streptavidin-RGD peptide complexes in ELISA-based 

assays, binding of the radiolabelled complex was not shown in cell-based 

radioligand binding assays. The reasons for this are unclear: it was shown that 

DTPA-conjugation and radiolabelling did not affect biotin binding by streptavidin 

The remaining possibility, that radiolabelling abrogates binding affinity of bound 

RGD peptide seems most unlikely, particularly bearing in mind the presence of 

spacer arms between the biotin and the active peptide moiety. It was therefore 

unsurprising, although disappointing, that specific homing was not seen in a 

preliminary in vivo experiment. A tempting explanation for this stems from what 

is already known about the binding kinetics of RGD peptides, and this will be 

returned to in the final chapter.  
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In the final section, tetravalent 3.1 and scrambled control-peptide were tested in 

the SCID mouse transplantation model. As with the monomeric peptides, specific 

uptake of the complexes in synovium was not seen: the differences in uptake 

between synovium and skin, and between 3.1 and scrambled control peptides were 

not significant. Despite this, as has been previously observed, there did appear to 

be selective accumulation of the peptide complexes in the transplanted tissues, 

again reflecting earlier observations. This accumulation of large molecules in 

transplanted tissue suggests similarities with that observed in tumour tissues, 

known as the enhanced permeability and retention (EPR) effect, and this concept 

will be discussed in the final chapter. 

 

As discussed at the end of Chapter 5, the large phage particles, measuring around 

900 nm in length, are likely to be retained in the intravascular space more so than 

relatively small molecules or peptides. In the next chapter a method was 

developedto produce large polyvalent particles and to test whether specific 

synovial homing could be achieved by this novel approach. 
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7 Chapter 7                                                            

Peptide polymerisation by conjugation 

to fluorescent microspheres and 

investigation of synovial targeting in 

vivo 
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7.1 Introduction 

As already discussed, the presentation of the peptide by phage is multivalent, 

furthermore phage are large (~900x5 nm). This combination of oligovalency and 

particle size are likely to be responsible for the differences seen between in vivo 

localisation of the phage. In particular, phage valency could increase binding 

avidity whilst the large phage size prevents rapid extrusion from the circulation. In 

an attempt to overcome this issue I developed a novel multimerisation approach 

using fluorescent microspheres. The use of fluorescent microspheres has been 

described in a number of applications including as a marker for cell-surface 

antigens for detection by FACS. It has been shown that microspheres can be more 

sensitive than some conventionally used fluorescent markers and as such may be 

particularly suitable for the detection of low-abundance antigens (Bhalgat et al. 

1998;Wojchowski & Sytkowski 1986). The most frequent in vivo application of 

fluorescent microspheres is for the determination of regional blood flow: this 

relies on the trapping of large systemically-administered microspheres in the 

microcirculation of organs of interest (Deveci & Egginton 1999). There are few 

reports of the used of specifically-targeted fluorescent microspheres in vivo. Kiani 

et al used microspheres coated with an anti-ICAM-1 antibody to target irradiated 

brain tissue (Kiani et al. 2002): localisation was measured by intravital 

microscopy of an exposed area of brain tissue. This approach was successful with 

a highly significant increase in localisation of specifically targeted compared to 

control microspheres.  

 

The conjugation of peptide to fluorescent microspheres therefore offers a number 

of advantages. The size of those used in the proceeding experiments (1µm 

diameter) is similar to that of the phage and hence non-specific extravasation is 

likely to be minimised. Conjugation of the peptide to the microspheres will 

produce a polyvalent particle: the use of an intermediate molecule (in the case of 

this work Neutravidin) allows a simple final conjugation step and a means of easy 

radiolabelling by the use of 111In-labelled biotin. An added advantage of this 

approach is that surface coating of the microspheres with Neutravidin will 
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increase the spacing of the peptides and hence reduce steric hindrance which is a 

theoretical problem with closely-associated peptide molecules. Success with this 

approach would also provide information as to the capacity of the peptide to 

deliver larger particles (such as liposomes) in vivo. 

 

In this chapter a novel method was developed for the rapid and predictable 

labelling of fluorescent microspheres with peptide and 111In. It will be shown that 

RGD-peptide conjugated microspheres bind αvβ3–expressing cells in vitro and 

that this is dependent on the surface density of peptide. Finally the peptide-coated 

microspheres are tested in the SCID mouse model. 

7.2 Peptide conjugation to microspheres 

For these experiments a method was developed for the rapid conjugation of 

biotinylated peptide to microspheres. This involved coating of fluorescent 

microspheres with biotin-binding molecules with subsequent confirmation of 

peptide conjugation and assessment of the microsphere affinity for a ligand in 

vitro.  The lack of an in vitro assay for the synovial-homing peptide required the 

use of an alternative RGD-containing peptide as in the previous chapter.  

7.2.1 Radiolabelling of DTPA-(biotin) 2 

Radiolabelling of the microspheres for the in vivo experiments was to be achieved 

by simultaneous incubation of Neutravidin-coated microspheres with biotinylated 

peptide and the compound diethylenetriaminepentaacetic acid α,ω-

bis(biocytinamide) (DTPA-(biotin)2). This molecule contains a DTPA residue 

conjugated to 2 biotin molecules and is conjugated to 111In using an identical 

method to that used previously. Previous reports of radiolabelling of DTPA-

(biotin)2 have used a method in which the radiolabelled molecule is incubated 

with streptavidin prior to passing through a size-exclusion column to confirm 

radiolabelling. This is time consuming compared with ITLC (use of which for 
111In-DTPA-(biotin)2 has not been described): the two methods were therefore 

compared. It was not known whether 111In-DTPA-(biotin)2 would migrate with 

the acetate solvent (as used for earlier radiolabelling experiments) and ITLC of 
111In-DTPA-(biotin)2 before and after incubation with an excess of streptavidin 
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were compared, as well as the results of spin column filtration. It was shown in 

the previous chapter that purification of 111In-DTPA-SA from unconjugated 111In 

was effective using this method. The results are shown in Table 7.1 and Figure 

7.1. The RP-HPLC chromatograms show a shift to an earlier retention time of 
111In-DTPA-(biotin)2 after incubation with streptavidin suggesting that all 

detectable 111In is conjugated to DTPA-(biotin)2. This is supported by the ITLC 

data: here it is seen that the activity remaining at the origin is similar (~99%) 

before and after incubation of 111In-DTPA-(biotin)2 with streptavidin, and the data 

from size-exclusion spin column filtration (although) there is a little retention of 
111In-DTPA-(biotin)2 by the column. These results confirm that ITLC is effective 

for the confirmation of radiolabelling of DTPA-(biotin)2 with 111In. 

 

 

ITLC          (% at origin)   Size-exclusion column 

filtration (% in eluate) 
111In-DTPA-(biotin)2 

111In-DTPA-(biotin)2+ 

streptavidin 

111In-DTPA-(biotin)2+ 

streptavidin 

99.0% 99.8% 95.2% 

 

Table 7.1: ITLC and size-exclusion column analysis of 111In-DTPA-(biotin) 2 

with or without incubation with an excess of streptavidin. Almost all of the 

activity migrated with the solvent front on ITLC, whilst the majority of the 

activity was eluted thought the size-exclusion spin column resin. These results 

confirm excellent radiochemical yield (>10 MBq/ µg) and binding efficiency of 

the labelling reaction.  
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Figure 7.1: 111In labelling of DTPA-(biotin) 2.
 Size-exclusion HPLC 

chromatograms of 111In-DTPA-(biotin)2 before (A) and after (B) incubation with 

an excess of streptavidin. The shift of all detectable activity to an earlier retention 

time confirms high radiolabelling efficiency with almost 100% of the 111In being 

associated with DTPA-(biotin)2. The presence of an earlier peak in B is due to the 

formation of streptavidin-biotin multimers.  
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7.2.2 Confirmation of Neutravidin conjugation to mi crospheres 

by competitive radioligand binding assay 

Microspheres were coated with Neutravidin as described in Chapter 2: this allows 

coating of the microspheres with biotinylated peptide by a simple incubation step 

followed by washes repeated until there was no spectrophotometric detection of 

free Neutravidin in the wash buffer. Neutravidin is a proprietary de-glycosylated 

avidin analogue: the lack of glycosylated side chains reduces non-specific binding 

and the molecule has the added advantage that it lacks the RGD-mimicking RYD 

sequence of streptavidin. A further advantage is cost, Neutravidin being 

significantly cheaper than avidin or streptavidin. The first step in the validation 

process was to confirm the presence of surface Neutravidin by demonstrating 

competitive inhibition of 111In-DTPA-(biotin)2 by a competitive radioligand 

binding assay. The results, shown in Figure 7.1A, clearly demonstrate dose-

dependent inhibition of 111In-DTPA-(biotin)2 binding by cold DTPA-(biotin)2. 

These results also allowed the concentration of peptide at which saturation of 

biotin binding occurred to be determined; this allowed me to ensure that maximal 

labelling of microspheres with biotin-peptide was achieved. The results were also 

used to plot a saturation binding curve after subtraction of background binding 

(fig. 7.1B): although there are a limited number of data points, this allowed an 

estimate of Bmax (the maximum biotin binding of the microspheres). Correction 

of this figure for the number of microspheres and the Avagadro constant allows an 

approximate value to be calculated for the number of biotin binding sites per 

microsphere of ~80,000.  

 

To confirm that the peptides to be used in the in vivo experiment were bound to 

the microspheres 111In-DTPA-(biotin)2 was incubated with microspheres with or 

without pre-incubation with a ten-fold excess of 3.1 or scrambled 3.1 peptides. 

After incubation for an hour the microspheres were washed twice and the 

radioactivity of the pellets counted. The results are shown in Figure 7.2: there is 

binding of 111In-DTPA-(biotin)2 to Neutravidin-conjugated microspheres which is 
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almost completely inhibited by pre-incubation with either peptide; little binding is 

seen to non-Neutravidin conjugated microspheres. 
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Figure 7.2: Competitive binding assay of 111In-DTPA-(biotin) 2. A 111In-DTPA-

(biotin)2 was incubated with various concentrations of cold DTPA-(biotin)2 with 

Neutravidin-conjugated or unlabelled microspheres. There is dose-dependent 

inhibition of 111In-DTPA-(biotin)2 binding to Neutravidin-microspheres, with no 

specific binding to unconjugated microspheres thus showing specific binding of 

biotin. B Saturation binding curve from the same data after correction for 

background binding. The Bmax allows an approximate calculation of the number 

of biotin binding sites per microsphere of 80,000. 
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Figure 7.3: 111In-DTPA-(biotin) 2 labelling of fluorescent microspheres. 

Inhibition of 111In-DTPA-(biotin)2  binding to NA-MS by biotinylated 3.1 or 

scrambled 3.1 peptides. NA-MS were incubated with a sub-saturating 

concentration of 111In-DTPA-(biotin)2 with or without pre-incubation with 

peptide; non Neutravidin-conjugated MS were used as a control. There is almost 

complete inhibition of binding with each peptide. Results of duplicate samples +/- 

SD  
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7.3 RGD-microspheres bind αvβ3-expressing cells in vitro  

As discussed in the previous chapter, it is important to confirm the binding of 

RGD –coated microspheres to αvβ3-expressing cells. In the absence of an in vitro 

assay for the 3.1 peptide the RGD2C peptide, having the same basic seven amino-

acid, disulphide constrained structure was used to confirm activity of the peptide 

binding domain when bound to Neutravidin-microspheres. The potential problems 

of the fast off-rate of RGD peptides will be mentioned in the final chapter: the 

polyvalency of this model could increase the avidity of the peptide for ligand.  

 

Microspheres were coated with RGD2C, scrambled RGD2C or biotinylated 

cRGDyK peptides by incubation with saturating concentrations of peptide 

followed by 3 washes. The effect of washing on microsphere concentrations was 

assessed in one experiment by comparing the final microsphere concentration of 6 

separate samples and incubated at various microspheres-to-cell ratios: the 

variability between the samples was within 6% of the mean and this was thought 

acceptable for further experiments. The reproducibility of the counting technique 

was checked by counting the microsphere concentrations in the original stock 

solution: the derived concentration was within 0.5% of the expected 

concentration, and reproducibility was confirmed by demonstrating deviation 

from the mean of < 0.6% on 5 successive samples. After washing the cells were 

analysed by FACS analysis: regions of interest were drawn around cells labelled 

and unlabelled on the dot-plot and the proportion of labelled cells determined. The 

results are shown in Figure 7.5: a clear difference is seen between binding of the 

RGD and scrambled peptide-coated microspheres: the FACS plots and histograms 

suggest that the majority of these cells have only one microsphere attached- on the 

histogram discrete peaks can be seen representing increasing numbers of 

microspheres. The relatively low labelling efficiency again is likely to reflect the 

unfavourable kinetics of RGD peptide interactions with their ligands, however 

these experiments confirm successful coating of microspheres with the peptide 

and that this confers specific binding activity. 
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Figure 7.4: Binding of RGD peptide coated microspheres to ααααvββββ3-expressing 

cells. A Micrograph of A375P cell after incubation with RGD2C-conjugated 

fluorescent microspheres. Double exposure with fluorescent microscopy/ 

differential interference contrast, original magnification 60x. B + C 

Representative histograms from FACS analysis of A375P cells incubated with 

fluorescent microspheres conjugated to cRGDyK peptide (B) or scrambled 

RGD2C (C). 

A 

B C 
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Figure 7.5: Binding of RGD-microspheres to A375P cells. Data from FACS 

analysis of A375P cells incubated with fluorescent microspheres conjugated to 

cRGDyK or control peptide. Increased cell labelling was seen for the RGDyK 

peptide-microspheres at all concentrations, with the best ratio to control seen at a 

microsphere: cell ratio of 100:1. 

7.4 Substitution of peptide with 111In-DTPA-biotin results in 

a linear increase in specific activity of microsphe res 

Radiolabelling of the fluorescent microspheres was to be achieved by the 

substitution of peptide residues with 111In-DTPA-(biotin)2: adding accurate molar 

ratios of peptide and the radioligand to the microspheres would enable labelling 

with a known specific activity. A concern was that the bivalent structure of the 

DTPA-(biotin)2 would complicate the relative binding kinetics of DTPA-(biotin)2 

and peptide. In order to investigate the functional effects of the addition of DTPA-

(biotin)2 microspheres were incubated with a range of molar ratios of biotinylated 

cRGDyK and DTPA-(biotin)2. After washing the activity of the microsphere 

pellet was measured in a gamma counter. The results are shown in Figure 7.6: 

there is a linear relationship between the ratio of biotinylated peptide to 111In-

DTPA-biotin (r2=0.9968) suggesting that the biotinylated molecules have equal 
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affinity for the Neutravidin. This linear correlation supports the hypothesis that 

DTPA-(biotin)2 has similar Kd to biotinylated RGDyK and there is a predictable 

response to DTPA-(biotin)2 substitution. 

 

This confirms that substitution of peptide with radiolabelled biotin will produce 

predictable changes in the surface concentration of peptide: having ensured this 

the next experiment was designed to examine the effect of this substitution on 

affinity of the microspheres for the ligand. 
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Figure 7.6: Radiolabelling of fluorescent microspheres. Neutravidin-coated 

microspheres were incubated with varying molar ratios of biotinylated peptide and 
111In-DTPA-biotin. After washing the radioactivity of the pellets were measured 

in a gamma counter. The results confirm a linear correlation between the 

proportion of 111In-DTPA-biotin and radioactivity of the microsphere pellet. 

r2=0.997, mean +/- SD of duplicate samples. 
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7.5 Substitution of peptide with biotin-DTPA results in  

linear reduction in binding avidity of microspheres  

To test the peptide-conjugated microspheres’ avidity in vivo they were to be 

radiolabelled by substitution of active peptide residues with 111In-DTPA-(biotin)2. 

The disadvantage to this is the possibility that the microspheres’ avidity for the 

ligand would be reduced due to the reduced surface valency. To determine the 

effect of this substitution on binding affinity of the microspheres, Neutravidin-

microsphere suspensions were incubated with varying ratios of biotinylated 

RGD2C peptide to DTPA-(biotin)2 (non-radiolabelled). After incubation with 

peptide and washing as in previous experiments the microspheres were incubated 

with A375P cells at a concentration of 100:1. After incubation with cells for 1 

hour the cells were washed and analysed by FACS as before. The results are 

shown in Figure 7.7. There is a linear relationship between the relative 

concentration of microsphere surface-bound peptide and the percentage of 

labelled cells in the FACS analysis. This suggests that the relationship between 

surface density of peptide and microsphere avidity for the ligand is linear: it 

therefore likely that substitution of peptide with 20% 111In-DTPA-(biotin)2 would 

result in minimal loss of microsphere avidity.  

 

Radiolabelling of the microspheres using this method (incubation with an excess 

of peptide and 111In- DTPA-(biotin)2) would require large activities of 111In. To 

minimize this I wanted to ensure that the use of reagent concentrations less than 

the maximum used with cold reagents could still result in optimal ligand binding. 

It was anticipated that the results from this experiment would reflect those from 

the saturation binding experiments described in 7.2.2. Neutravidin-MS were 

incubated with doubling dilutions of biotinylated peptide and incubated with 

A375P cells as before with subsequent FACS analysis. The results are shown in 

Figure 7.8: binding avidity is maintained down to a peptide concentration of ~10-5 

mmol/ml which broadly reflects the results of the saturation binding experiment. 

These results allowed the reliable use of lower peptide concentrations for MS 

labelling, and hence lower activity of 111In.  
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Figure 7.7: Effect of variation of surface peptide density to in vitro binding of 

RGD-microspheres. Neutravidin microspheres were incubated with various 

ratios of biotinylated cRGDyK peptide to DTPA-(biotin)2 (not radiolabelled). 

After washing the microspheres were added to cell suspensions at a microsphere: 

cell ratio of 100:1 and incubated for 1 hour at the end of which the cells were 

washed and analysed by FACS. There is a linear relationship between the surface 

concentration of peptide and the proportion of cells labelled. r2=0.975, mean +/- 

SD of duplicate samples. 
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Figure 7.8: Effect of variation of concentration of peptide labelling solution 

on RGD-microsphere binding in vitro. Neutravidin-MS were incubated with 

doubling dilutions of biotinylated cRGDyK as for previous experiments and 

washed. MS were then incubated with A375P at a ratio of 100:1 for 1 hour prior 

to further washing and FACS analysis, with the proportion of labelled cells 

counted. Mean of 2 samples +/- SD. 

 

7.6 In vivo biodistribution of radiolabelled peptide-
microspheres  

7.6.1 Homing of RGD-microspheres to A375P tumours 

Although the RGD peptide-coated fluorescent microspheres bound αvβ3 in vitro, 

the data suggested that only a limited number of microspheres were bound to each 

cell and, therefore, that the absolute avidity of the microspheres for the ligand 

remained low. For this reason, and due to time constraints, a limited experiment 

was performed in vivo with A375P tumour-expressing SCID mice. Tumours were 

allowed to grow to 0.5-1cm in diameter prior to the experiment. Microspheres 

were incubated with a 4:1 molar ratio of bRGDyK to 111In-DTPA-biotin as before, 

washed and injected into the mice via the tail vein (total injected activity ~2 

MBq). After 15 minutes incubation the mice were killed, the transplants and 

organs retrieved and the radioactivity measured. The results are shown in Figure 

7.9 and Table 7.2. No significant difference was seen between the cRGDyK and 
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scrambled RGD2C peptide in the tumours: there was rapid clearance of the blood 

pool with very high uptake seen, as expected, in the liver.  

 

Although no specific uptake was seen between the cRGDyK and control peptide-

labelled microspheres, this may not have been unexpected. The tetravalent RGD  

peptide described in the previous chapter whilst showing consistent avidity for 

αvβ3 was not seen to bind to cells, and as will be discussed in the final chapter this 

may reflect the binding kinetics of RGD-containing peptides. Furthermore, in the 

previous sections it was shown that the polyvalent RGD microspheres, whilst 

showing specific avidity for αvβ3-expressing cells, only bound at relatively low 

levels. Despite this, it was clearly seen that there was a linear relationship between 

the density of bound peptide and binding. The binding properties of the peptide 

can not necessarily be extrapolated to that of the 3.1 peptide, and therefore further 

experiments were performed to determine whether specific uptake could be 

demonstrated in vivo in the synovial transplantation model. 
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Figure 7.9: In vivo biodistribution of RGD-microspheres. SCID mice carrying 

A375P tumours were injected with 111In-labelled cRGD-coated microspheres. 

After 15 minutes the tumors and murine organs were removed, weighed and 

radioactivity measured. This graph shows uptake of the test and control-peptide 

labelled microspheres in tumour tissue: no significant difference was seen 

between the peptides. Mean +/- SEM n=3 animals (2 transplants each) per 

condition 
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Tissue 

15 minutes, %ID/g 

cRGD 

 

RGD2C 

Tumour 0.16   ±  0.01 0.17   + 0.01 

Heart 0.21   ± 0.02 0.26   + 0.01 

Lung 2.72   ± 0.74 1.20   + 0.73 

Liver 97.5   ± 12.9 107.8 + 11.9 

Kidney 0.83   ± 0.03 1.92   + 0.948 

Spleen 19.2   ± 4.9 17.4  + 4.8 

Gut 0.23   ± 0.03 0.47  + 0.26 

Muscle  0.19   ± 0.08 0.14  + 0.02 

Blood 0.87  ± 0.06 1.30  + 0.15 

 

Table 7.2: In vivo biodistribution of RGD-microspheres. SCID mice carrying 

A375P tumours were injected with 111In-labelled cRGD or sRGD2C-coated 

microspheres. After 15 minutes the tumors and murine organs were removed, 

weighed and radioactivity measured. Mean +/- SEM n=3 animals per condition 
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7.6.2 Homing of synovial-homing peptide-coated microspher es 

in vivo 

Fluorescent microspheres were surface-coated with 111In and 3.1 or scrambled-

control peptide as described. SCID mice double-transplanted with human 

synovium and skin were injected intravenously with microsphere suspensions 6 

hours after intragraft injection of TNFα  and killed at 15 minutes, 1 or 4 hours. 

Localisation of radioactivity was determined for the transplants and murine tissues 

(Figure 7.10 and Table 7.3). 

 

Similar tissue uptake was seen to that observed with the RGD peptide 

experiments. There was rapid clearance of radioactivity from the blood pool with 

substantial uptake in the reticuloendothelial tissues. No significant differences 

were observed between the 3.1 or scrambled control peptide-labelled 

microspheres in uptake to synovium or skin at 15 minutes or 1 hour. At 4 hours 

there was slightly but significantly greater uptake in the synovium with the 

scrambled peptide. The reasons for this are unclear: the blood levels at 4 hours 

were slightly greater with the control peptide and this cannot, therefore be 

explained by faster clearance of the microspheres. This may results may, possibly, 

reflect differences in non-specific binding between the 3.1 and scrambled-

sequence peptides. These results do not support the specific homing of 3.1peptide-

coated microspheres to transplanted human synovium. 
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Figure 7.10: In vivo biodistribution of 3.1-microspheres. SCID mice double-

transplanted with human skin and synovial tissue were injected intravenously with 
111In-labelled 3.1 or scrambled 3.1 (s3.1)-coated microspheres. After 15 minutes 

(A), 1 (B) or 4 hours (C) the transplanted tissues and murine tissue were retrieved, 

weighed and radioactivity measured. The results for the transplants are shown 

here: no significant differences were seen at 15 minutes or 1 hour: at 4 hours 
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uptake of the scrambled peptide-microspheres was significantly greater in 

synovium than that seen for the 3.1 peptide. Mean +/- SEM n= 6 transplants per 

condition. 

 

 

Tissue 

%ID/g tissue 

15 minutes 

 

1 hour 

 

4 hours 

Synovium 0.51   ± 0.04 0.33   ± 0.04 0.72    ± 0.12 

Skin 0.39   ± 0.03 0.18   ± 0.02 0.41    ± 0.05 

Heart 0.52   ± 0.02 0.41   ± 0.04 0.73    ± 0.05 

Lung 10.76 ± 1.24 9.31   ± 0.69 11.34  ± 1.74 

Liver 66.23 ± 4.93 57.26 ± 1.82 61.23  ± 14.6 

Kidney 2.10   ± 0.06 1.56   ± 0.74 5.32    ± 0.68 

Spleen 27.62 ± 5.49 20.97 ± 1.75 22.64  ± 0.92 

Gut 0.61   ± 0.06 0.32   ± 0.04 0.63    ± 0.12 

Muscle  0.25   ± 0.06 0.11   ± 0.01 0.12    ± 0.03 

Blood 1.99   ± 0.30 1.44   ± 0.22 1.25    ± 0.03 

 
Table 7.3A: In vivo biodistribution of 3.1 peptide-microspheres. SCID mice 

double-transplanted with human skin and synovium tumours were injected with 
111In-labelled 3.1 or control peptide-coated microspheres. After 15 minutes the 

tumors and murine organs were removed, weighed and radioactivity measured. 

Mean +/- SEM. n=3 animals per condition. 
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Tissue 

%ID/g tissue 

15 minutes 

 

1 hour 

 

4 hours 

Synovium 0.55   ± 0.09 0.39   ± 0.07 1.07    ± 0.16 

Skin 0.38   ± 0.05 0.25   ± 0.06 0.45    ± 0.10 

Heart 0.48   ± 0.04 0.36   ± 0.04 0.70    ± 0.07 

Lung 10.29 ± 2.99 7.56   ± 3.70 8.85    ± 0.78 

Liver 63.99 ± 5.13 50.09 ± 1.65 68.40  ± 7.87 

Kidney 2.34   ± 0.18 1.65   ± 0.78 4.56    ± 0.16 

Spleen 29.02 ± 7.46 20.30 ± 2.34 24.11  ± 4.53 

Gut 0.63   ± 0.14 0.19   ± 0.04 0.59    ± 0.07 

Muscle  0.36   ± 0.19 0.11   ± 0.01 0.15    ± 0.04 

Blood 1.39   ± 0.18 1.10   ± 0.10 1.03    ± 0.07 

 

Table 7.4B: In vivo biodistribution of s3.1 peptide-microspheres. SCID mice 

double-transplanted with human skin and synovium tumours were injected with 
111In-labelled 3.1 or control peptide-coated microspheres. After 15 minutes the 

tumors and murine organs were removed, weighed and radioactivity measured. 

Mean +/- SEM. n=3 animals per condition. 



285 
 

 

7.7 Summary 

In this chapter a technique was developed for labelling fluorescent microspheres 

with biotinylated peptide which also allowed co-labelling with 111In thus enabling 

in vivo biodistribution studies.  

 

Firstly, it was shown that pre-coating of the microspheres with Neutravidin, a 

biotin-binding streptavidin analogue, allowed simple conjugation to both 

biotinylated 111In and biotinylated peptide in a simple step, with a predictable 

linear relationship between surface-bound groups and the relative concentrations 

of biotinylated compounds in solution.  Furthermore, it was shown that RGD 

peptide-coated microspheres bound αvβ3 –expressing cells whereas microspheres 

coated with a control sequence peptide did not. Moreover, it was seen that 

increasing the surface density of peptide resulted in a linear increase in binding as 

shown by the results of the FACS experiments and that the maximum binding 

affinities were achieved with the concentrations used.  Despite this, the absolute 

numbers of microspheres bound to cells appeared to be low suggesting that the 

absolute avidity of the microspheres under these conditions was relatively low: it 

was therefore disappointing although not unexpected that no specific binding was 

seen to αvβ3 –expressing A375P tumours in vivo.   

 

In the final experiment SCID mice double-transplanted with human skin and 

synovium were injected intravenously with ~3 MBq 111In-labelled 3.1 or 

scrambled 3.1 peptide-coated microspheres. For these experiments the grafts were 

pre-stimulated with TNFα 6 hours prior to administration of the microsphere 

suspensions. It was decided to adopt this strategy as the phage experiments 

described in chapter 3 showed that homing of the 3.1 phage clones was selectively 

upregulated to transplanted human synovium- this was not seen in human skin or 

with the control phage clone. A potential concern with the use of TNFα is its 

capacity to enhance endothelial permeability and thus to increase non-specific 

uptake. It is well established that TNFα increases vessel permeability (Royall et 
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al. 1989) and this property has been exploited to improve uptake of 

chemotherapeutic agents by tumour tissue (Lejeune 2002). Despite this, no 

increase was seen in the control groups in the phage experiments and, therefore, it 

was hoped that the larger particle size of the microspheres would limit 

susceptibility to such increases in permeability in this model. However, no 

significant differences were seen in favour of specific 3.1 peptide-microsphere 

homing, although, unexpectedly, there were differences in favour of the control 

peptide at 4 hours. The reason for this is unclear although and this possibly 

reflects modest differences in non-specific binding. The substantial uptake of 

polystyrene microspheres by the liver has been previously noted with 

corresponding rapid elimination from the blood: little difference was noted when 

50 nm and 500 nm microspheres were compared (Ogawara et al. 1999) although 

surface modification of microspheres can markedly limit hepatic uptake (Lode et 

al. 2001;Ogawara et al. 2001). A further consideration is the effect of the size of 

the particle in shear force: larger particle size can result in reduced adhesion due 

to higher shear force, as has been shown in vitro in a P-selectin-mediated adhesion 

model (Shinde et al. 2001). It is possible, therefore, that smaller particle size 

would increase sensitivity in this model. 
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8 Chapter 8                                                   
Final discussion and conclusions 
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As outlined in the Introduction, the aims of the work carried out for this thesis 

were threefold: 

1. To further develop and characterise the synovial-homing phage and the 

human SCID mouse transplantation model as a platform for the validation 

of novel targeting agents. 

2. To develop monomeric synthetic synovial homing peptides to deliver 

radioisotope imaging agents specifically to human synovium in in vivo 

biodistribution studies in the SCID mouse chimera model. 

3. To develop novel polymeric peptide constructs in order to increase 

specific affinity and tissue targeting delivery. 

 

The first two of these aims were successful in that a number of novel strategies 

were developed both for the exploitation of the SCID mouse transplantation 

model as a platform for the testing of novel agents for the specific delivery of 

agents for therapy or imaging, and for the polymerisation and radiolabelling of 

monovalent synthetic peptides. The third component of this thesis, the application 

of these tools to the testing of the synovial homing peptide, did not ultimately 

show any specificity of the 3.1 peptide for synovium under the conditions used in 

these experiments. The major findings of the thesis will be discussed here, along 

with the strengths and limitations of the techniques used. Finally, some 

conclusions will be drawn along with suggestions for future work in this area. 

 

8.1 Validation of the synovial homing phage in the SCID 
mouse transplantation model as a platform for testi ng 
in vivo localisation of novel targeting agents 

 
The aim of the work in Chapter 3 was, firstly, to confirm the viability of the SCID 

mouse transplantation model in my hands- this was achieved with similar graft 

viability to that seen in previous work. Furthermore, the presence of human/ 

murine anastomoses was confirmed in both transplanted synovium and skin. The 

specificity of phage 3.1 homing for transplanted human synovium was confirmed 

by repetition of in vivo experiments with 3.1 and the SC1 control phage clones. As 

had been seen before, specificity of the 3.1 phage was confirmed with 
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significantly higher numbers of phage clones retrieved from transplanted human 

synovium compared with skin in mice injected with 3.1 phage, and significantly 

greater homing seen in these animals compared with those injected with the 

control phage. These experiments confirm that the presence of the 3.1 peptide 

sequence confers homing specificity for human synovium compared with human 

skin and murine kidney. 

 

I also examined the effect of up-regulation of the inflammatory phenotype of the 

transplanted tissue by intragraft injection of TNFα. Up-regulation of the 

endothelial inflammatory phenotype was demonstrated by staining for the 

adhesion molecules ICAM-1 and E-selectin: these are eminently suitable markers 

of TNFα stimulation in this model- RA synovial tissue is characterized by marked 

up-regulation in the expression of both (Kriegsmann et al. 1995;Tak et al. 1995) 

and these are reduced following treatment with anti-TNFα (Smith 1997;Tak et al. 

1996) and other agents (Smith et al. 2001;Youssef et al. 1996b). Furthermore, it is 

well-established that TNFα stimulates ICAM-1 and E-selectin on synovial 

endothelial cell in vitro (To et al. 1996) and, as mentioned,  we have previously 

shown that intragraft injection of TNFα in this model produced up-regulation of 

ICAM-1 and VCAM-1 expression at 48 hours, although at this time point up-

regulation of E-selectin was no longer seen (Wahid et al. 2000). These results are 

in keeping with the observed expression dynamics of these adhesion molecules 

following TNFα stimulation (To et al. 1996), but at this time-point it is clear from 

these results that molecules that are constantly up-regulated under the influence of 

the pro-inflammatory cytokine environment in RA may be relatively under-

expressed in this model. We wanted, therefore, to confirm adhesion molecule up-

regulation at an earlier time point and to investigate the effects on graft 

localisation of the synovium homing phage. In order to assess the effect of TNFα 

stimulation on the transplanted tissues we assessed the expression of E-selectin 

and ICAM-1 at 6 hours, at which point both were substantially up-regulated. 

Previously we found that by 48 hours post-TNFα E-selectin expression was at 

basal levels whereas ICAM-1 and VCAM-1 up-regulation persisted at 48 hours 

(Wahid et al. 2000). In this study we showed that both ICAM-1 and E-selectin 
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were up-regulated in synovial transplants, and E-selectin equally in synovial and 

skin transplants as early as 6 hours after intragraft injection of TNFα. The 

observation of up-regulation of ICAM-1 and E-selectin in both human tissues 

confirms that the enhanced phage homing to synovium in response to TNFα is 

specific.  

 

In these experiments there was significant up-regulation of CKSTHDRLC (3.1) 

phage localization at 6 hours in the synovial tissue, with down-regulation to 

baseline by 18 hours. This suggests that the ligand for the 3.1 phage is up-

regulated by TNFα as well as being present under basal conditions in these 

tissues. Furthermore, no significant differences were seen in the control tissue 

(skin): this is despite there being a clearly demonstrable pro-inflammatory effect 

as evidenced by up-regulation of both E-selectin and ICAM-1 expression at 6 

hours. The observation that the phage are binding a synovium-specific TNFα–

responsive ligand supports the possibility of the presence of a synovial homing-

receptor. Although tissue-specific homing receptor/ addressin pairs have not been 

identified for human synovium there is substantial indirect evidence that such 

interactions may exist, such as the observation of non-random accumulation of 

lymphocyte subsets in the inflamed synovium (Pitzalis et al. 1987) and the 

selective adhesion of lymphocytes isolated from inflamed human synovium to 

synovial tissue sections (Salmi et al. 1992).  

 

As has been discussed in the introduction, in vivo phage display has a number of 

advantages in the identification of novel tissue-specific ligands. Foremost of these 

are the selection of phage under physiological conditions and from within the 

circulation: this will result in the selection of clones expressing peptide sequences 

which bind ligands expressed in the vascular lumen (most probably by vascular 

endothelial cells or the extracellular matrix), and that have the affinity to maintain 

tissue-binding under conditions of shear stress. Immunofluorescence microscopy 

of tissue sections from ex vivo transplants from mice injected with phage showed 

that phage were confined to the vasculature at the 15 minute time point at which 

tissues were retrieved for these experiments.  
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The time course of up-regulation of phage homing to synovium may provide some 

insight into the nature of the ligand. The relatively short-term time frame, with 

down-regulation by 18 hours, suggests cell membrane expression (as opposed to 

extracellular matrix). E-selectin expression peaks in vitro after TNFα-stimulation 

at 4-6 hours, although expression can remain up-regulated for 24-48 hours (To et 

al. 1996). However, the lack of an increase in homing of the 3.1 phage to skin 

despite up-regulation of E-selectin expression in our study makes this an unlikely 

ligand although tissue-specific post-translational modification is possible. 

Similarly, up-regulation of ICAM-1 expression is seen in both skin and synovium 

and is therefore less likely to be the target: furthermore the dynamics of ICAM-1 

expression as already discussed are not in its favour and lack of binding of the 

phage to ICAM-1 was confirmed later in this chapter by ELISA. Although TNFα 

is known to synergise with VEGF in the stimulation of neoangiogenesis, the short 

time frame of the effect on phage homing effectively rules this out as an 

explanation for the phenomenon. Our findings therefore raise the possibility that 

the synovial endothelial ligand may be a novel tissue homing receptor; the 

observation that phage homing is seen in the resting as well as the inflammatory 

state suggests that it may have roles in cell recruitment in diseases states as well, 

possibly, as in routine immunosurveillance. The demonstration that the synovial-

homing of the phage is up-regulated by TNFα adds significantly to the potential 

of the specific peptide sequence as targeting tool. Potentially, reagents bearing this 

specific sequence would be not only be selective for synovial tissue and but also 

preferentially accumulate in actively inflamed synovial tissue. This has obvious 

implications for imaging and tissue-specific delivery of therapeutic molecules for 

rheumatoid arthritis. 

 

A BLAST search of the peptide sequence produced a striking match with a 

sequence of the extracellular domain of the αm (CD11b) integrin subunit, which 

associates with β2 (CD18) to form the mac-1 integrin. The matched sequence is 

outside the I-domain of the sequence and is within the so-called membrane-

proximal ‘lectin-binding’ domain. Mac-1 is the most promiscuous of the 
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leukocyte integrins and adhesive interactions have been described with a number 

of endothelial cell-expressed molecules and extracellular matrix proteins 

including ICAM-1(Diamond et al. 1991), ICAM-2 (Xie et al. 1995), fibrinogen  

(Lishko et al. 2004) and fibronectin (Lishko, Yakubenko, & Ugarova 2003) as 

well as non-protein ligands such as glycosaminoglycans (Diamond et al. 1995). 

Of these, ICAM-1 and fibronectin are attractive candidates in the RA synovium, 

although our experiments did not show specificity of 3.1 clone phage binding for 

the purified proteins in an ELISA-based assay. 

 

A number of studies have implicated mac-1 in the pathogenesis of RA: increased 

cellular expression of mac-1 has been demonstrated in RA synovial tissue when 

compared with controls (Tak et al. 1995) and mac-1 expression by T-lymphocytes 

is increased in patients with active RA and this correlates with disease activity 

(Grober et al. 1993). Furthermore, increased peripheral blood neutrophil 

expression of mac-1 has also been shown in RA when compared with healthy 

controls which decreases after prednisolone treatment (Torsteinsdottir et al. 1999). 

This latter study contrasts with another study in which, although whilst peripheral 

blood neutrophil expression of CD11b was not raised, it was upregulated in 

mononuclear cells from synovial fluid (Lopez et al. 1995). In an in vitro adhesion 

assay monocyte adhesion to frozen RA synovial tissue sections was partially 

inhibited by pre-incubation with an antibody to αm (Grober et al. 1993). The 

promiscuity of mac-1 binding is well described and adds weight to the hypothesis 

that the synovial receptor for the peptide may be a novel ligand. As has already 

been described, ICAM-1 is up-regulated in the inflamed synovium and is a ligand 

for mac-1 although the time frame of TNFα-induced upregulation of phage 

homing are not consistent with its being the synovial receptor for the phage. 

Fibronectin is also well-established as a mac-1 ligand although our own 

experiments have not shown any specificity for plasma fibronectin or ICAM-1 in 

vitro. However, the fibronectin gene consists of 50 exons, and alternative splicing 

results in a number of polypeptide variants of which there are at least 20 in 

humans (Kornblihtt et al. 1996) with resultant differences in the tissue and plasma 

forms of the protein.  Two alternative splice sites, known as extra domains A and 
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B (ED-A and ED-B), are only found in tissue forms of fibronectin (Carsons 

2001). Expression of ED-B is up-regulated in the vessels of some types of tumour 

(Nilsson et al. 2001) and in inflamed synovial tissue (Kriegsmann et al. 2004) and 

it has been exploited as a ligand for specific targeting of neoplastic tissues 

(Nilsson et al. 2001). Another alternative splice site is between the 14th and 15th 

type III repeats and is known as III-CS (connecting sequence). The CS-1 peptide 

sequence is contained within the III-CS, and includes the LDV motif which 

mediates binding to the integrin α4β1 (Komoriya et al. 1991): staining of 

rheumatoid synovium with antibodies specific to the CS-1 domain has shown 

expression at the luminal surface of vascular endothelial cells and on lining layer 

synoviocytes where they meet the joint cavity; minimal staining was seen in 

normal synovial tissue (Elices et al. 1994;Muller-Ladner et al. 1997).  The CS-1 

peptide was found to down-regulate in vitro lymphocyte adhesion to rheumatoid 

synovial tissue sections (Elices et al. 1994). The sequence matched with that of 

the peptide within the αm subunit is at positions 660-666 which places it 

membrane-proximal to the I-domain binding region: regions of the I-domain have 

been shown to mediate binding of mac-1 to a number of its ligands including 

ICAM-1 (Ehirchiou et al. 2005). Site-specific mutagenesis studies within the I-

domain have found abrogation of ICAM-1 binding although the coincident 

finding that the I-domain can have a regulatory role over the confirmation of the 

integrin means that the existence of alternative binding sites cannot be precluded 

(Ehirchiou et al. 2005). Binding of other mac-1 ligands, such as ic3b, has been 

shown to persist if the αm I-domain is deleted from mac-1 (Yalamanchili et al. 

2000) and binding to carbohydrate ligands has been mapped to a ‘lectin-binding’ 

domain between residues 400-1092 of the αm subunit (Xia & Ross 1999); 

experiments with site-specific antibodies to the αm subunit suggest that lectin 

binding activity may be in the most membrane-proximal region of the sequence 

(Thornton et al. 1996). It is therefore possible that the peptide is binding a 

carbohydrate-based tissue ligand, although the nature of the tissue ligand remains 

unknown and this is the subject of ongoing work.  
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8.2 Development of the SCID transplantation model a s a 
tool for imaging transplanted human synovium 

 
In Chapter 4 the SCID mouse transplantation model was further developed as a 

tool for the pre-clinical assessment of agents for the imaging of inflamed 

synovium. Although the subsequent work did not produce agents with homing 

specificity suitable for further assessment in this model, its success with the anti 

E-selectin antibody has proved its potential for other agents in development. As 

discussed in detail in the introduction, there is substantial ongoing research into 

the development of novel agents for the nuclear imaging of inflamed synovial 

tissue in human subjects. There are strong justifications for the level of investment 

in such research: as already mentioned there is a clear need for the availability of 

relatively low cost, sensitive imaging techniques which can identify inflammation 

and quantify it over time. This would enable earlier diagnosis and sensitive 

monitoring of response to treatment, both of which are essential in light of the 

widely accepted paradigm in which early effective treatment of RA is critical to 

long term outcome. An obvious disadvantage to such research is the availability of 

patients willing to enrol in these studies which, in combination with the ethical 

constraints on denying patients optimum treatment, limits the pace at which this 

research can progress. 

 

The application of animal models to the development of novel imaging agents is 

hampered by the limited resolution of conventional 2D nuclear imaging 

techniques: consequently it is often impossible to determine the sensitivity of 

novel agents prior to clinical trials. However, advances in small animal imaging 

techniques, particularly SPECT and positron emission tomography (PET) 

scanning, both of which enable greater spatial resolution, are now enabling 

quantification of uptake within defined areas with some promising results 

(Kneilling et al. 2007;Ostendorf et al. 2006). Whilst widespread use of PET is 

limited by the poor availability and short half-life of positron-emitting isotopes, 

SPECT uses isotopes already in widespread use such as 111In and 99mTc. 

Furthermore, multi-pinhole collimators further increase SPECT sensitivity with 
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resolution greater than that of PET achievable in small animal imaging systems 

(King et al. 2002).Although animal models can be used for imaging studies, 

differences in pathology between animal models and human disease, as well as the 

presence of species-specific molecular determinants has limited the application of 

such models to arthritis research. This model, therefore, provides a powerful 

interface between the development of synovial-targeted imaging agents in vitro 

and clinical trials in human subjects. 

  

E-selectin has many of the properties of an ideal target for the specific imaging of 

inflamed tissue. It is confined to vascular endothelial tissue where its expression is 

minimal in the uninflamed state; it is dramatically and rapidly upregulated in 

synovial inflammation both in RA patients and under the experimental conditions 

described here and, crucially, binding antibody is internalised upon ligation. This, 

particularly when exploited with the use of a ‘residualising’ bifunctional 

radioisotope chelator such as DTPA, optimises the retention time of the tracer in 

the tissue and hence will maximise the tissue-to-background ratio.  

 

The NanoSPECT/CT technology used in this project is relatively new and there is 

no published data reporting its ability to accurately quantify tissue uptake. During 

the imaging experiments, therefore, the tissue uptake quantified by the SPECT 

software was correlated with the ‘gold standard’ of measurement in the gamma 

counter- this produced good correlation, although not perfect. Partly this will be 

accountable by the imprecision in exactly delineating the transplanted tissue on 

the images obtained, particularly as this has to be done in 2D on the maximum 

intensity projections (MIPs), and also by the difficulty in exactly dissecting all the 

transplanted tissue from the adherent skin. Despite this it was felt that the 

correlations were sufficient to determine whether the technique had the sensitivity 

to detect tissue-specific uptake.  

 

Image quality of the reconstructed CT/SPECT fusion images was excellent with 

the transplants clearly visible as early as 1 hour after injection of 111In-labelled 

antibody. The rapid ingress of antibody into the tissue suggests that the vessels of 
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TNFα-stimulated transplants are hyperpermeable. The vessels of inflamed 

synovium are known to have increased permeability (Levick 1981) and this is 

likely to account for the difficulties that have been encountered in developing 

agents with specific targeting properties that have enhanced uptake over agents, 

typified by HIg, which rely mainly on non-specific uptake. As was described in 

the introduction, HIg is an effective imaging agent in RA with superior properties 

to conventional diphosphate-based imaging (de Bois et al. 1994). Studies with 

agents directed at specific targets have met with mixed success, and although 

good synovial uptake is seen with macromolecule-based specific tracers, much or 

all of this uptake often seems to be due to a non-specific effect. This phenomenon 

invites comparison with the enhanced permeability and retention (EPR) effect 

which has been exploited so successfully in the therapy of some cancers. The EPR 

effect was originally described in the context of tumour tissue where there is 

vessel hyperpermeability and abnormal lymphatic drainage: it refers to the 

observed accumulation of macromolecules (typically >45 kDa) with resultant 

concentrations of several times that seen in normal tissues and plasma (Maeda et 

al. 2003) (Torchilin & Lukyanov 2003). RA synovium, as previously mentioned, 

is characterized by florid neoangiogenesis (Paleolog 2002) and shares a number of 

features with tumour tissue. Firstly, the aforementioned hyperpermeability which 

is also a feature of tumour vasculature, and this has been associated with more 

rapid egress of large molecules into the RA joint (Simkin 1979). Secondly, the 

abnormal vascularisation is associated in some patients with increased vessel 

tortuosity (Salvador et al. 2006), another feature of neovasularisation in tumour 

tissue, which further increases the relative tissue vessel density. Finally, a number 

of vasoactive mediators, notably VEGF are upregulated in the synovium and 

plasma of patients with RA (Salvador et al. 2006). Analysis of the distribution of 

the (non-specific) MRI contrast agent gadolinium-DTPA, in which there was 

rapid diffusion into the joint fluid, confirm that this hyperpermeability is also seen 

with small molecules (Ostergaard & Klarlund 2001). The conjugation of drugs or 

radioisotopes to large molecules is therefore a potential strategy for the targeting 

of inflamed synovium.  
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Despite these difficulties, radiolabelled E-selectin has been the most successful of 

the directly targeted agents and has shown superiority in direct comparison with 

HIg (Jamar et al. 1997) and thus has considerable potential both as an imaging 

agent and also as a means of targeting drugs or drug delivery vectors to inflamed 

synovium. E-selectin was thus regarded as an ideal target for the assessment of the 

imaging model to discriminate specific from non-specific uptake. As expected, 

there was substantial uptake of the isotype control antibody into the TNFα-

stimulated grafts and a clear transplant-to-background contrast was seen at all 

time points. Despite this, a significant difference was seen between the anti-E-

selectin and control antibodies at 4 and 24 hours indicating that there was 

additional specific uptake of the anti-E-selectin antibody. It should be noted that 

the 1.2B6 antibody also binds P-selectin with low affinity: P-selectin is also 

expressed in the vascular endothelium of RA synovial tissue (Johnson et al. 

1993)- the increased uptake seen may therefore also represent P-selectin binding 

to some degree, although this does not detract from our conclusions to this work. 

 

As well as reaffirming the potential of this antibody as a tool for specific delivery 

to RA tissues (something which could be further pursued in our transplantation 

model), this also demonstrates the potential of this model for the assessment of 

novel imaging agents. Crucially, it was shown that specific uptake could be 

resolved from non-specific uptake: this model could therefore be used to identify 

specific agents in the pre-clinical setting that may have increased sensitivity over 

radiotracers which rely on non-specific mechanisms to image inflamed synovial 

tissue. This is the first time, to our knowledge, that imaging of xenografted non-

malignant human tissue has been attempted. Although this project did not produce 

reagents which were suitable for further imaging experiments, we hope that this 

system will prove useful in the development of other agents.  

 

There are, of course, limitations to this model, particularly that the synovium is 

not being imaged in the context of the joint: resolution of synovial tissue uptake 

from other articular structures is not tested under these conditions. Furthermore 

there are significant differences in the expression of inflammatory molecules in 
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fresh and transplanted synovium: in this study TNFα was used to up-regulate E-

selectin expression but expression of other target molecules in the transplants 

would need to be validated prior to experiments with other agents. Despite this it 

gives a unique platform to image changes over time in the same tissue with 

evident applications to the testing of novel radiopharmaceutical agents and in 

particular their capacity to resolve specific from non-specific uptake and 

consequent potential to image specific molecules. Furthermore, this technology 

could be applied to other tissues: human lymph node tissue, for instance, has been 

successfully transplanted into SCID mice in our laboratory (Blades et al. 2002). 

8.3 Investigation of tissue specificity of the synovium -
homing monomeric peptide in vitro and in vivo 

In Chapter 5 the binding properties of monovalent peptide were examined in vitro 

and in vivo. One of the great advantages of in vivo phage display is its capacity to 

identify as yet unknown ligands and this is a powerful approach to the 

identification of tissue-specific epitopes. However, the lack of a purified ligand 

molecule for further in vitro analysis presents a number of problems, some of 

which were exemplified by the experiments in this chapter. Staining of tissue 

sections with fluorescent 3.1 and control peptides did not demonstrate a difference 

in binding. As discussed previously the different amino acid composition of the 

control peptide may have conferred a greater degree of non-specific binding 

which could mask specific binding of the control: previous workers have found 

that peptide binding can vary significantly with pH reflecting the importance of 

charge (Sherman et al. 1994). This aside, an essentially linear increase in binding 

of both peptides was observed with increasing concentration suggesting either a 

lack of specificity under these conditions or lack of sensitivity of the assay to 

detect specific binding. The methods used in the in vivo phage experiments allow 

very sensitive detection of phage homing to tissues, and this does not provide any 

information about the receptor density which may be below the detection limit of 

the in vitro assay. The in vitro conditions also differ from those in vivo and the 

importance of this is not known: cation conditions, for instance, may be critical as 

will be discussed later. Furthermore, the identification of tissue-specific peptide-

displaying phage by screening from within the vascular compartment does not 
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preclude the presence of the vascular antigen in the extravascular space: if there 

were specific binding to cells outside the vasculature this could also mask specific 

vessel binding. Finally, and perhaps most importantly, is the concept of valency 

and this will be returned to later. 

 

Several of these difficulties, particularly those due to differences between 

conditions in vivo and in vitro were addressed by the in vivo biodistribution 

experiments. For these experiments the peptides were linked, via an 

aminohexanoic acid spacer, to the bifunctional chelating agents DTPA and 

HYNIC for the conjugation of 111In and 99mTc respectively. It was already known 

that the free synthetic peptide could inhibit specific phage homing when co-

administered in vivo (Lee et al. 2002), albeit in high doses. In absolute terms, 

peptide was administered in ~106-fold excess to phage: the necessity for this is 

likely to be largely due to rapid elimination of the peptide from the circulation, 

although it is also very possible that the monovalent peptide has lower avidity for 

the tissue receptor than the phage and hence is required in substantial excess to 

block binding. Initial comparison of peptide-conjugated with free 111In with 

labelled 3.1 peptide did demonstrate increased transplant localisation but this is 

most likely to be due non-specific differences in pharmacokinetics. No difference 

was seen when the 111In-conjugated 3.1 and control peptides were compared in 

vivo, and, additionally, no differences were seen in homing of either peptide to 

transplanted human skin or synovium.  

 

These experiments were repeated with 99mTc-conjugated 3.1 peptide with the 

same results: extension of the incubation time to 4 hours did not identify synovial-

specific homing and the results were similar with variation of the co-ligand 

chemistry. Despite these results, there did appear to be relatively high uptake in 

the transplants compared with the murine organs. Once again, these results, this 

time in tissues not pre-stimulated with TNFα, suggest that there is 

hyperpermeability within the vasculature and that this is seen in both transplanted 

skin and synovium. This hypothesis was confirmed in the subsequent experiments 

examining tissue localisation of the albumin-binding dye Evans Blue. These 
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results were not unexpected in the synovium, although the reasons for the 

observed hyperpermeability in the transplanted skin tissue is less clear. We have 

shown that anastomoses are formed between the human and murine circulations in 

transplanted tissues and it is likely that this neoangiogenic vasculature is 

hyperpermeable. Furthermore, the presence of pro-angiogenic mediators such as 

VEGF may further contribute to this effect (Dvorak et al. 1995). Expression of 

angiogenic mediators has not been specifically examined in transplants in this 

model but may form an interesting basis for further work.   

 

Whether the 3.1 peptide is internalised upon ligation of its tissue receptor is 

unknown: the success of approaches to the radiolabelling of regulatory peptides 

for imaging is partly reliant on the fact that internalisation of the complex is an 

important pathway of peptide inactivation. This, in combination with the use of 

residualising radiotracers, will contribute to the effective tumour-to-background 

ratios that are achieved with these agents. In the case of peptides which bind the 

receptors for the naturally occurring peptides, it has been shown that agonists are 

more likely to induce internalisation than antagonists and this, therefore, is a 

critical factor in determining peptide structure for the development of novel 

radiotracers (Cescato et al. 2006;Mantey et al. 1993). Thus it might seem, perhaps, 

that the odds are somewhat stacked against the relative success of peptides 

selected by peptide phage display. However, the relatively weak binding of small 

peptides makes them less likely to have the binding energy to displace water 

molecules at sites other than the binding site of a target molecule, and hence 

phage-displayed peptides, as opposed to antibodies, are more likely to target a 

binding site (George, Lee, & Pitzalis 2003).  Even accounting for this, it seems 

intuitively more likely that selection of peptide from a randomly-generated library 

would be most likely to result in the identification of antagonist sequences. 

Despite this, there are reports of  peptides identified by phage display being phage 

internalised upon receptor ligation, either from direct evidence (Laakkonen et al. 

2004) or indirectly from the observed efficacy of conjugation to pro-apoptotic 

peptide sequences which are only cytotoxic upon internalisation (Kolonin et al. 

2004).  It is possible that more sophisticated methods of phage selection can result 
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in the identification of more peptides which are internalised, such as pre-screening 

with positive selection in vitro prior to in vivo biopanning (Laakkonen et al. 

2004).  

 

The findings from the work presented in this chapter suggested a two-fold 

approach to these problems: both of these- size and valency- were addressed in the 

following chapter.  

8.4 Development of a tetravalent radiolabelled peptide 
molecule and investigation of in vivo synovial 
targeting  

In chapter 6 a method was developed for the polymerisation and testing of 

tetravalent peptides by conjugation to streptavidin: this also enabled the 

radiolabelling of the construct for testing of in vivo biodistribution. As discussed 

in the introduction to the chapter, polyvalent interactions are ubiquitous in 

biological systems (Mammen, Choi, & Whitesides 1998): increased valency 

results in increased binding affinity and this can be used as a regulatory 

mechanism, for instance as described for integrin clustering in the cell adhesion 

cascade. Increasing the valency of peptides has been shown, for example, to 

enhance cellular uptake of vectors carrying short peptide ‘protein transduction 

domains’ (Sung, Poon, & Gariepy 2006) and to increase antigenicity of peptide in 

the form of multiple antigen peptides (MAPs) (Tam 1996): surface density of 

peptides conjugated to microspheres has been correlated with valency (Iannone & 

Consler 2006). Even a modest increases in valency, by the conjugation of 

biotinylated peptides to streptavidin, was shown to increase the inhibitory EC50 

of a P-selectin binding peptide 200-fold (Molenaar et al. 2002).  

 

Naturally occurring RGD peptide interactions take place in the context of 

multivalent presentation: the construction of molecules containing polyvalent 

RGD sites could therefore increase the binding avidity of the relatively weakly 

binding monomeric peptides. Increasing the valency of a molecule will allow it to 

potentially bind multiple receptors simultaneously thus decreasing the off-rate 

with resultant increase in apparent avidity. As will be discussed below, increases 
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in avidity seen when a multivalent molecule may not be large enough to bind two 

receptors are likely to be due to an increase in the effective local concentration of 

ligand with resultant increase in the on-rate (Liu 2006). Using a strategy in which 

multiple cyclic RGD peptide sequences were conjugated onto a decapeptide 

backbone it was shown that a molecule expressing 4 RGD domains had enhanced 

inhibitory activity compared to a monovalent peptide in cell adhesion inhibition 

assay, with around a 50-fold lower IC50 (Boturyn et al. 2004;Garanger et al. 

2006;Garanger et al. 2005). When these peptide constructs were conjugated to 

fluorescent dyes it could be shown that the CHO cells internalized the peptide, an 

effect not seen with a control peptide (Boturyn et al. 2004). Internalisation was 

also seen when biotinylated multivalent RGD molecules were conjugated to 

streptavidin, demonstrating intracellular delivery of large conjugated molecules. 

The concentrations used in this experiment (10 µM) were ten-fold higher than the 

maximum achieved in our experiments and this may explain why we did not show 

cell uptake in the radioligand binding assay. In a separate approach, Kok et al 

showed that conjugation of multiple copies of a cyclic RGD peptide to an 

irrelevant human immunoglobulin resulted in a molecule that inhibited αvβ3-

dependent cell binding to vitronectin in an adhesion assay, and had significantly 

lower IC50 than monomeric peptide for inhibition of the multivalent protein to 

cells in a radioligand binding assay (Kok et al. 2002). Dimeric RGD compounds 

have been tested for tumour homing in vivo. Two radiolabelled compounds, 64Cu-

DOTA-E[c(RGDfK)] and 64Cu-DOTA-E[c(RGDyK)], were tested in a human 

breast carcinoma xenograft model: both showed specific tumour uptake with the 

peptide containing the tyrosine substitution having slightly more favourable 

pharmacokinetics with improved tumour-to-blood and tumour-to-liver ratios 

(Chen et al. 2004a). An investigation of monomeric, dimeric and tetrameric cy5.5-

RGD peptides found and decrease in IC50 with increases in valency in an 

echistatin /αvβ3 radioligand binding assay (Cheng et al. 2005). When used for 

near-infrared fluorescence imaging in a tumour model the dimer was had 

significantly higher uptake than the monomer, with the tetramer showing a non-

significant improvement over the dimer. In another study the tetrameric peptide 

[cRGDfK)2]2 conjugated to 111In via DOTA had increased affinity for αvβ3 in vitro 
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and significantly enhanced tumour uptake in vivo compared with the dimer and 

monomer at 2.7,5.61 and 7.32 %ID/g respectively (Dijkgraaf et al. 2007a).  

 

Linker length has been shown to be critical in the design of peptides linked to 

functional groups, and at least two groups have reported their observations of this 

as applied to RGD peptides. Preliminary results with multivalent RGD peptides, 

synthesised on a short peptide backbone, in a vitronectin/ αvβ3 competitive 

binding assay showed that varying spacer length affected IC50, although not 

predictably so, with the IC50 rising or falling with increasing spacer length with 

bi- or tetravalent peptides respectively (Thumshirn et al. 2003). That an effect of 

spacer arm length could also be seen with varying spacer arm length of a 

hydrophilic, but not a lipophilic, spacer was also seen with a monomeric peptide 

demonstrates the relevance of the choice of spacer itself. The effect of the spacer 

arm length on behaviour of a biotinylated monovalent RGD peptide has been 

demonstrated when conjugated to streptavidin (Boturyn et al. 2004): cell adhesion 

to these peptides was only seen when the spacer arm consisted of 6 or more 

carbon atoms, emphasizing the importance of exceeding a minimum distance 

between the biotin and active binding domain of such molecules when conjugated 

to streptavidin. In another solid-phase adhesion assay, RGD peptides bound to a 

poly(methyl methacrylate) surface were found to require a minimum spacer length 

of >6 carbon residues in order to enable cell binding (Kantlehner et al. 2000)- this 

corresponds to an absolute distance of around 3.5 nm between the ligand and the 

surface. These results, and results from another study showing reduced activity of 

a peptide-linked multivalent RGD construct compared to constructs with lower 

valency but longer spacer groups (Garanger et al. 2006), suggest that steric 

hindrance may be an important factor in the design of these molecules. A further 

important consideration in the choice of linker is the effect of charge on 

biodistribution- linker variation can have a significant impact in this regard 

(Dijkgraaf et al. 2007b). 

 

Investigations into the binding kinetics of RGD-containing peptide fragments and 

natural RGD-containing ligands have provided interesting insights into the 
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mechanisms of RGD/ integrin interactions. Vitronectin and an RGD-containing 

vitronectin peptide fragment were compared a binding assay in which purified 

αvβ3 was immobilized on plates. Binding of 125I-vitronectin to immobilized 

integrin was found to be effectively non-dissociable when challenged with 

competing non-labelled vitronectin, and dissociated only when incubated with 

high concentrations of GRGDSPK peptide. The 15-amino acid residue peptide 

fragment also bound specifically but was dissociable with small concentrations of 

competing GRGDSPK peptide (Orlando & Cheresh 1991). These observations 

suggested that a second stabilizing event occurred after initial RGD ligation and 

that this was not seen with the peptide fragment: this implies that a 

complementary domain within vitronectin is responsible for this phenomenon. 

Similar results were seen in a cell adhesion assay: binding to immobilized 

vitronectin could be inhibited in a dose-dependent fashion when co-incubated 

with GRGDSPK peptide, but displacement was only seen with high 

concentrations of peptide if this was added after the initial adhesion had been 

allowed to take place. This mechanism involved is likely to be due to 

conformational change within the integrin structure as these observations were the 

same if the cells were pre-treated with cytochalasin B, which inhibits cytoskeletal 

actin polymerization, but stabilization was inhibited when immobilized integrin 

was treated with gluteraldehyde, which cross-links free amino groups within the 

protein (Orlando & Cheresh 1991). These findings were supported in a later study 

in which fibrinogen (another RGD-containing protein) and RGD peptide binding 

to αIIBβ3 incorporated into lipid bilayers was monitored in real time (Muller et al. 

1993). Once again rapid and stable association of fibrinogen with the integrin was 

seen which was non-dissociable. In contrast, binding of the GRGDSPC peptide 

was rapid but washing resulted in fast dissociation, this process was so fast that 

the off-rate could not be resolved within the resolution of the technique. This 

biphasic interaction with RGD ligands was further characterized more recently. 

Using an ELISA-based assay, where soluble αvβ3 was incubated on vitronectin-

coated plates in the presence of increasing concentrations of the cyclic peptide 

c(RGDfV) (Legler et al. 2001). It was found that at low (sub-nanomolar) 

concentrations the RGD peptide ‘superactivated’ the integrin with increasing 
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binding of αvβ3 to vitronectin, whereas at higher concentrations it had an 

inhibitory effect due to integrin binding. It is well-established that RGD ligation 

of cell-surface receptors can results in internalisation: increasing the valency of a 

fluorochrome-conjugated peptide-linked RGD group resulted in increased 

internalisation by αvβ3-expressing cells compared with a monovalent peptide 

(Boturyn et al. 2004). In a separate study a cy5.5-conjugated peptide was shown 

to be effectively internalised by cells expressing αvβ3, an effect not seen with a 

negative control cell line or in the presence of competing peptide (Chen, Conti, & 

Moats 2004). In a further study it was shown that although a monomeric RGD 

peptide could inhibit αvβ3-dependent cell adhesion, internalisation of the peptide 

occurred through αvβ3-independent fluid-phase endocytosis (Castel et al. 2001).  

 

As we did not have an in vitro assay for the synovial homing peptide, RGD 

peptides were used to validate the tetravalent peptide technique in vitro. The 

peptide used initially, RGD2C, was derived from the same phage display library 

as the 3.1 peptide and hence had the same basic peptide structure. Some of the 

experiments, including the in vivo experiment, were conducted with a different 

peptide (cRGDyK). This peptide had a smaller primary amino acid sequence 

consisting of 5 residues cyclised by an amino-bond, whereas the RGD2C and 3.1 

peptides have seven amino acids flanked by cysteine residues, between which a 

disulphide bind cyclises the peptide. It is unlikely that these small differences 

between the peptide structures would be of significance as the linkers separating 

the biotin from the peptide were the same. In the experiment reported here 

streptavidin-conjugated RGD peptides were effective in direct αvβ3 binding 

assays, in competitive binding assays with fibronectin and in cell adhesion assays. 

These results suggest the RGD activity is retained after streptavidin conjugation in 

these peptides which have 6-carbon spacers between the biotin and RGD groups. 

Conjugation to DTPA did not affect biotin biding and this was retained after 

radiolabelling. Thus, a method was developed for the rapid production of 

radiolabelled multimeric peptide constructs. Binding of the radiolabelled tetramers 

was not, however, seen to αvβ3 cells in vitro or in vivo. The concentrations used in 

the in vitro experiments were lower than those used in several of papers quoted 
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above, and it may be that in our system higher concentrations would have been 

required, particularly bearing in mind the kinetics of RGD binding discussed 

above. There are clear differences between the multimerisation techniques 

discussed: the use of small peptide backbones will result in a higher local 

concentration of RGD groups, whereas the relative size of streptavidin will result 

in lower local availability of these groups with implications for binding kinetics. It 

has been shown previously that the binding properties of purified and cell-bound 

receptors can differ substantially (Sherman et al. 1994) and it is possible that the 

plate-bound integrin, particularly in the this cation environment, is present in a 

‘superactivated’ form. As discussed above, the rapid binding kinetics of RGD 

peptides may prohibit binding under these conditions: this was therefore not seen 

as an impediment to proceeding with 3.1 peptide experiments as the binding 

kinetics may be very different. The phage work had shown that the peptide was 

effective in an oligovalent form and was capable of supporting the binding of 

large phage particles under physiological conditions. 

 

The stability of the peptide after conjugation to streptavidin was not examined as 

this would have been technically difficult, but it is conceivable that proteolytic 

breakdown could reduce the binding affinity of the streptavidin/ peptide 

conjugates. It is very possible, however that the conjugation enhances peptide 

stability- it has previously been shown that peptide conjugation to dendrimers 

results in increased stability (Bracci et al. 2003).  

 

The in vivo experiments with the tetrameric peptide did not show any significant 

differences in homing to skin or synovium of either test or control peptides at any 

of the 3 time-points. As has been discussed, it is probable that the peptide group 

was available and that the construct was stable in vivo and these results are likely, 

therefore, to show a genuine lack of specificity for synovium. Previous 

experiments have shown that the transplanted tissues are hyperpermeable to 

macromolecules (albumin) and the molecular weight of the streptavidin-peptide 

tetramers (~75,000 Da) is similar to that of albumin (~60,000 Da). It is possible 

that this is limiting the sensitivity of the model to determine specific uptake, 
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although after 24 hours (around 4 half-lives) specificity was still not seen. A 

further limitation is the valency; the tetrameric molecule caries four peptide 

groups but the structure is probably limiting the number of groups available to a 

surface-bound epitope to two. The phage express 5 copies of peptide at one end 

and the physiological valency is therefore probably greater than that seen with this 

molecule. For the final part of this work a method was developed for the 

production of polyvalent particles by conjugation of the peptide to fluorescent 

microspheres 

8.5 Polymerisation of peptide by conjugation to 
fluorescent microspheres and investigation of synov ial 
targeting in vivo 

In Chapter 7 a novel method was described for the surface labelling of fluorescent 

microspheres with peptide with or without co-labelling with a radioisotope. 

Binding of the peptide to Neutravidin-coated microspheres was confirmed by the 

demonstration of the blockade of biotin binding, and the RGD-microspheres were 

shown to bind αvβ3-expressing cells in vitro. Furthermore, it was shown that 

surface density of the peptide could be varied and this variation in valency had a 

linear relationship with cell binding. A limited in vivo experiment with RGD-

coated microspheres in A375P tumour carrying mice did not demonstrate specific 

uptake. Although specific binding had been shown in vitro the absolute numbers 

of microspheres binding to cells is likely to have been small, suggesting that the 

avidity of the microspheres for RGD-binding integrins is low. It is very likely, 

under conditions of flow, that binding of microspheres was limited. The 

experiment was therefore repeated with 3.1 or scrambled-control coated 

microspheres in the SCID mice double-transplanted with human skin and 

synovium. Again, no specific uptake was seen at any time point. The particles are 

polyvalent and therefore, under these conditions, it is unlikely that low valency is 

the problem. However, the 1µm microspheres are subject to significant shear 

stresses under flow conditions and the size of the particles is such that these will 

be somewhat greater to that experienced by phage.  A further consideration is the 

rapid clearance of the microspheres from the circulation seen in this and other 

work. Despite these observations, other workers have shown specific binding of 
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antibody-coated fluorescent microspheres in a model of brain inflammation (Kiani 

et al. 2002) and hence there is likely to be bioavailability of the microspheres to 

the transplanted tissues. The absence of specific homing was seen despite pre-

stimulation of the transplants with TNFα: pre-stimulation was shown to 

specifically up-regulate 3.1 phage binding to transplanted synovium at 6 hours in 

Chapter 3. The large size of the microspheres was anticipated to limit non-specific 

extravasation; although  TNFα can increase vessel permeability no increase of 

control phage homing was seen after TNFα stimulation. These findings therefore 

add weight to the possibility that the 3.1 peptide, in this form, does not confer 

homing specificity to conjugated molecules or microparticles. The stability of the 

peptide has been discussed: in Chapter 5 the stability of the HYNIC-conjugated 

(acetylated) peptide was shown to be reasonable at 1 hour, although there was 

significant loss of the label at 4 hours. Although the stability of the peptide in its 

tetrameric or microsphere-conjugated from was not tested, previously quoted 

work suggests that peptide conjugated to large particles is likely to have increased 

resistance to proteolytic digestion in serum. Furthermore, the rapid clearance of 

the microspheres from the circulation maximises the potential sensitivity of this 

assay at early time points.  

 

Although no specific uptake was seen in vivo, this fluorescent microsphere 

technique, as shown with the RGD peptide-based assays, represents a potentially 

powerful assay for the detection of peptide-binding epitopes on cells in vitro. 

Several groups have reported the use of microspheres for the in vitro detection of 

cell-surface epitopes and it has been shown that this technique can successfully 

detect epitopes present at low density (Wojchowski & Sytkowski 1986). Here it 

was shown that their use can be extended to small peptides: this technique may 

therefore prove invaluable for the detection of cell-surface ligands in vitro: it is 

hoped that endothelial cell-lines will be screened for the expression of 3.1 peptide-

binding epitopes.  
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8.6 Conclusions and future work 

To summarise, a number of approaches have been used to investigate the homing 

capacity of the 3.1 peptide. Both the monovalent peptide and multivalent 

constructs were investigated: I was unable to demonstrate specificity for 

transplanted synovium under any of these conditions. The limitations of the model 

and the various approaches have been discussed: however, the data presented in 

this thesis suggest that the peptide is unlikely to have potential as a mediator of 

specific delivery to human synovium.  

 

Despite this, several positive conclusions can be drawn. A number of novel 

techniques have been developed which, it is hoped, will prove useful to the 

investigation of specific peptide homing in other circumstances. The radiolabelled 

streptavidin-peptide tetramers described in Chapter 6 are a simple-to-use yet 

potentially powerful tool for the screening of potential homing peptides in vivo 

and the fluorescent microsphere techniques described here may have particular 

value for the investigation of cell-surface ligand expression in vitro. Furthermore, 

the SCID mouse model has been further characterised as a tool for the 

investigation of specific targeting strategies and a novel technique for the 

investigation of imaging agents was described in Chapter 4.  

 

It is, of course, disappointing that the in vivo peptide experiments were not more 

successful. So how can the convincing data from the phage experiments, in which 

the peptide-expressing phage were consistently shown to home specifically to 

human synovium, and the negative data from the peptide experiments be 

reconciled? Of course, the reasons for this may be methodological and the 

potential problems in this respect have been discussed at length. However, that 

multiple approaches to the question provided negative results provide an 

increasingly convincing body of evidence that the peptide on its own has limited, 

if any, specificity. This therefore raised the question of whether the peptide, fused 

to the phage PIII surface protein is necessary but not sufficient for specific 

homing. The sequence similarity between the peptide and a membrane-proximal 

domain of the mac-1 integrin is compelling, but, as this sequence is not within the 



310 
 

I-domain, it may represent a complementary biding sequence. There is one report 

in the literature of binding specificity of peptide-expressing phage, selected for 

binding affinity to bone marrow endothelial cells, in  which the specificity was 

ultimately found to be conferred not by the expressed peptide but by a domain of 

the PIII protein (Clement et al. 2003;Finger et al. 2002). It could therefore be 

hypothesised that a region of the PIII protein, acting as a mimotope for a synovial 

ligand, requires a synergistic interaction involving the expressed peptide. This 

hypothesis is also supported by the difficulty which we have encountered in our 

lab in attempts to isolate the synovial ligand by affinity chromatography using 

peptide-coated resin-containing columns. This raises the obvious question of 

whether this hypothesis can be tested: work in which leucocyte binding to frozen 

synovial tissue sections can be partially inhibited by antibodies to mac-1 has 

already been discussed (Grober et al. 1993) and it would be interesting to test the 

peptide as an inhibitor of cell binding under the same conditions.  

 

Despite the negative results reported in this thesis, the original phage work still 

provides convincing evidence for the presence of a synovial-specific molecule, 

available to circulating phage, which may be suitable for exploitation as a specific 

target. Work is currently underway in our laboratory to screen synovial tissue in 

the same model with antibody-based phage libraries and it is very possible that the 

very different in vivo pharmacokinetics of these larger molecules may enable 

greater success with this approach. As was shown in Chapter 4 and as has been 

shown in human imaging studies, antibodies to E-selectin, which although not 

specific are highly selective for inflamed tissue, have considerable potential as 

imaging agents and, possibly as tools for the delivery of therapeutic agents. Work 

in pre-clinical models has also produced promising results with a number of other 

potential targets and these were discussed earlier.  

 

Finally, the place of targeted therapies in the context of recent advances in RA 

therapeutics could perhaps be questioned. As has already been discussed, the 

advent of biological therapies has heralded a significant step forward in RA 

treatment, and anti-TNFα treatment is now firmly established as treatment for 
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DMARD non-responders. However, a significant proportion of patients do not 

respond to these agents. Furthermore, a large number of other targets are at 

various stages of investigation: so far the only other target for which therapy has 

been approved and recommended for routine use in the UK is CD20. Head-to-

head studies with anti-TNFα therapies have not been done and it is therefore 

likely to become the second-line biologic for those who have failed anti-TNFα. 

The (apparent) exponential increase in biologic agents is going to make informed 

treatment choice virtually impossible, as the trials to define which patients will 

respond to which treatment are likely to take years, if not decades. The medium-

term direction of therapeutics in this respect is therefore unclear, and it is likely 

that non-responders will simply be rotated through various biologic alternatives. 

Another possibility is the combination of these agents, but recent data have 

suggested significantly increased toxicity with the combinations that have been 

trialled (Genovese et al. 2004;Weinblatt et al. 2007;Weinblatt et al. 2006): 

specific targeting of biologics, as well as conventional DMARDs, may well still 

have an important role in the increasingly complex management of rheumatoid 

arthritis. 
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Appendix A: the amino acids and their abbreviations  
 
One-letter code Amino acid Three-letter code 

A Alanine Ala 

C Cysteine Cys 

D Aspartic acid Asp 

E Glutamic acid Glu 

F Phenylalanine Phe 

G Glycine Gly 

H Histidine His 

I Isoleucine Ile 

K Lysine Lys 

L Leucine Leu 

M Methionine Met 

N Asparagine Asn 

P Proline Pro 

Q Glutamine Gln 

R Arginine Arg 

S Serine Ser 

T Threonine Thr 

V Valine Val 

W Tryptophan Trp 

Y Tyrosine Tyr 
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Appendix B: Phage-derived peptides used in this pro ject 
 
Peptide name Sequence 

3.1 (synovial homing peptide) CKSTHDRLC 

s3.1 (scrambled 3.1) CLTKRSHDC 

RGD2C CSPRGDHPC 

sRGD2C (scrambled RGD2C) CDPRPHSGC 

SC7 (streptavidin-binding sequence) CGRYDHPQC 
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Appendix C: publications arising from this thesis 
 
Garrood T, Blades M, Haskard D, Mather S, Pitzalis C. A novel model for the 
pre-clinical imaging of inflamed human synovial vasculature. Under review 
 
Garrood T, Pitzalis C. Targeting the inflamed synovium: the quest for specificity. 
Arthritis Rheum 2006; 54 (4): 1055-60 
 
Garrood T, Lee L, Pitzalis C. Molecular mechanisms of cell recruitment to 
inflammatory sites: general and tissue specific pathways. Rheumatology (Oxford) 
2006; 45 (3): 250-60 
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