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Abstract
As the availability of structured documents, formatted in markup languages such as SGML, RDF,
or XML, increases, retrieval systems increasingly focus on the retrieval of document-elements,
rather than entire documents. Additionally, abstraction layers in the form of formalised retrieval
logics have allowed developers to include search facilities into numerous applications, without
the need of having detailed knowledge of retrieval models.

Although automatic document summarisation has been recognised as a useful tool for reduc-
ing the workload of information system users, very few such abstraction layers have been devel-
oped for the task of automatic document summarisation. This thesis describes the development
of an abstraction logic for summarisation, called POLIS, which provides users (such as develop-
ers or knowledge engineers) with a high-level access to summarisation facilities. Furthermore,
POLIS allows users to exploit the hierarchical information provided by structured documents.

The development of POLIS is carried out in a step-by-step way. We start by defining a series
of probabilistic summarisation models, which provide weights to document-elements at a user
selected level. These summarisation models are those accessible through POLIS. The formal
definition of POLIS is performed in three steps. We start by providing a syntax for POLIS,
through which users/knowledge engineers interact with the logic. This is followed by a definition
of the logics semantics. Finally, we provide details of an implementation of POLIS.

The final chapters of this dissertation are concerned with the evaluation of POLIS, which is
conducted in two stages. Firstly, we evaluate the performance of the summarisation models by
applying POLIS to two test collections, the DUC AQUAINT corpus, and the INEX IEEE corpus.
This is followed by application scenarios for POLIS, in which we discuss how POLIS can be
used in specific IR tasks.
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Chapter 1

Introduction

To mention the ever increasing amount of data, triggered by the ubiquity of computers, has be-

come a mainstay of publications in information retrieval. Although the statement “data is ever

increasing” can safely be considered a truism, the large amounts of data held on personal comput-

ers, and accessible via the internet, require advanced processing methods to not be overwhelming,

but useful for searchers (Wurman et al. (2000)).

Automatic document summarisation has been recognised as a useful means to reduce the in-

formation load of information systems. Tombros and Sanderson showed that users of a retrieval

system that presents query-based summaries of retrieved documents were able to judge the rele-

vance of documents more quickly and more reliable than users of a “typical” IR systems, which

only display document titles and leading text (Tombros and Sanderson (1998)).

Wolf et al. confirmed these findings in a later study, showing that users of a technical sup-

port system were able to determine the relevance of retrieved documents more accurately when

presented with short summaries, compared to being shown only the title (Wolf et al. (2004)).

In addition to reducing the information load of users, summarisation systems have also been

considered for reducing the data load of information systems. Sakai and Sparck-Jones showed

that – given a summariser of sufficiently high quality – indexing summaries instead of full texts

does not adversely affect the retrieval quality of an IR system (Sakai and Sparck-Jones (2001)).
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1.1 Motivation

Prior research on automatic summarisation has established the usefulness of automatic summari-

sation methods as a means for reducing information overload. A multitude of strategies and

models for the generation of summaries have been developed, using diverse methods such as

term frequencies for determining the most salient sentences (e.g. Luhn (1958) and Edmundson

(1969)), machine learning techniques (e.g. Kupiec et al. (1995)), functional classification of sen-

tences (e.g. Teufel and Moens (2002) and Teufel and Moens (1998a)), or form-filling approaches

(Radev and McKeown (1998); McKeown and Radev (1995)).

All of these methodologies were either developed in the context of a summarisation system,

or were implemented in a summarisation system after their formal definition. This, consequently,

has led to the development of a large number of automatic summarisation systems, such as SUM-

MARIST (Hovy and Lin (1998)), SUMMONS (Radev and McKeown (1998)), OCELOT (Berger

and Mittal (2000)), SUSY (Fum et al. (1985)), TOPIC (Reimer and Hahn (1988)), or SCISORS

(Rau et al. (1989)). However, these systems provide a black box approach to summarisation: it is

not clear to users of such systems how the summaries are generated, or how (and if) the process

of generating summaries could be tailored to individual needs. Interaction with such summarisa-

tion systems is usually achieved through either a Graphical User Interface (GUI), or by means of

a configuration file.

However, both interaction strategies have drawbacks: the expressive power of summarisation

systems controlled through GUIs is limit by screen estate, while the expressiveness of config-

uration files is limited by the set of options available (we discuss examples of both GUIs and

configuration files in Section 3.7). A careful comparison of the expressive powers of these ap-

proaches with logical retrieval approaches further motivates the development of POLIS.

While the expressiveness of both GUIs and configuration files is limited by the predefined

number of options, POLIS in comparison has a higher expressiveness, as it allows the defini-

tion of entirely new summarisation frameworks, customised to specific scenarios. POLIS is not

intended to be a replacement of GUIs or configuration files, but instead provides an intermedi-

ate layer between the actual summariser implementation, and the user interaction layer. In this

tiered architecture, POLIS itself could be controlled through GUIs, or could be used by other

applications as a summarisation service (Figure 1.1).

Ideally, it should be possible for users of a summarisation system (the issue is whether “users”
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here refers to end-users of a system, or to e.g. knowledge engineers who use a summariser as

a component for developing their own information system) to tailor the summarisation process

to their individual needs without any knowledge of how the actual summary generation is per-

formed. Users would issue a command to a system, detailing the textual components that should

make up the summary (that is, whether it should be composed of individual sentences, or larger

text fragments), query terms to be considered in the formation of the summary, and a quantifier

limiting the size of the summary to be generated, which would be processed by the system to

generate an appropriate summary.

Such a “summarisation command” would provide an abstraction layer from the actual sum-

marisation system, hiding technical details such as the model used, or the actual implementation

of the model, and instead provide a high level view of the summarisation process, consisting of

the summarisation command as input, and the generated summary as output.

Similar abstraction layers have been proposed and developed for the information retrieval

task of ad-hoc retrieval, where abstraction logics allow users to develop their own retrieval strate-

gies expressed as logical statements. Meghini et al. proposed to model ad-hoc retrieval as a ter-

minological logic, where a query consists of a logical expression, and all documents subsumed

by the query are considered relevant (Meghini et al. (1993)). Roelleke developed an abstraction

logic for the retrieval of structured documents, called POOL. In POOL, the syntax mirrors the

actual structure of documents to be retrieved (Rölleke and Fuhr (1996); Roelleke (1999)). Fur-

thermore, Fuhr et al. used POOL to develop a multimedia retrieval system (called DOLORES),

highlighting how abstraction logics can be used to quickly adapt retrieval systems to new tasks

(Fuhr et al. (1998)).

1.2 Summarisation Logic

The aim of the research reported here is the development of an abstraction logic for summari-

sation, similar to abstraction logics for ad-hoc retrieval. While such a summarisation logic will

need to use some models for the generation of summaries, the development of (probabilistic)

models is not the main focus of the work reported here. We will develop probabilistic mod-

els for the process of content extraction and summary generation, however, the actual models

used do not determine the summarisation logic, and could be substituted by other summarisation

methodologies.
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Instead, the work reported here will focus on ways in which users in need of a summarisation

facility could be able to express their need in an abstract way, and how such abstract summarisa-

tion expressions could be processed by an information retrieval framework.

To achieve this level of abstraction, we propose a summarisation logic with a syntax based on

XPath (Clark and DeRose (1999)), with additional quantification operators inspired by termino-

logical logics. Summarisation expressions mirror the structure of documents to be summarised,

thus specifying those structural elements which should form the summary. Quantification opera-

tors limit the size of the generated summaries, limiting either the maximum total number of words

in a summary, or the maximum number of textual elements (such as sentences) in a summary.

In addition, we develop a possible worlds based semantics for the summarisation logic, to

give meaning to the logical expressions, and acquire a solid foundation for the probabilistic

summarisation models developed.

POLIS

PRA

Apps

Figure 1.1: POLIS acts as an abstraction layer, providing summarisation facilities to applications
(e.g. information systems).

The resulting summarisation logic, POLIS, provides an abstraction layer which allows ap-

plications and information systems to integrate summarisation facilities, without detailed knowl-

edge of either the implementation, or the summarisation models. Figure 1.1 shows a hierarchical

decomposition of these abstraction layers, where POLIS separates applications using summari-

sation facilities from the lower implementation layers. We will discuss the implementation of

POLIS in more detail in Section 6.4.

1.3 Contributions of this Dissertation

The main contribution of this dissertation is the development of a summarisation logic, called

POLIS. POLIS provides an abstraction layer to the task of summarisation, which allows it to be

used as a service in a tiered architecture. At the same time, POLIS retains the high expressive



1.4. Dissertation Outline 22

power of logical retrieval approaches, allowing the definition of new summarisation methodolo-

gies.

The high-abstraction point of view of summarisation taken here also makes it possible to

compare automatic summarisation to other retrieval tasks on a conceptual level. We show the

similarity of summarisation to other retrieval tasks – such as anchor-text retrieval, structured

document retrieval, and page partitioning – when observing them on a conceptual level.

This high-level comparison of POLIS to ad-hoc retrieval tasks additionally motivates the

development of probabilistic summarisation models derived from existing retrieval approaches.

These models, together with an XPath-based syntax and a possible-worlds semantics, form a

main part of the specification of POLIS.

Finally, we provide two concrete example where POLIS can be used beneficially. Firstly, for

the task of expert finding, and using the Enterprise TREC Track as a test collection, we show

how POLIS can be used to generate expert profiles, and how these profiles can be used to find

“helpful” experts for given topics. Furthermore, using sample documents from Wikipedia, we

show how POLIS can be used to generate text snippets typically found on search engine result

pages.

1.4 Dissertation Outline

The remaining chapters of this dissertation are organised as follows:

Chapter 2 introduces the basic notions and terminology used in information retrieval, per-

tinent to the research reported here. This includes concepts common to information retrieval,

such as document representation, document-query matching, and the evaluation of information

retrieval systems.

Chapter 3 provides an overview of past research on automatic summarisation, and the de-

velopment of abstraction layers to information retrieval tasks. It looks at models for the sum-

marisation of documents, systems that were developed in the course of this research, and the

way in which these systems allowed for user control. It also provides an overview of the use of

abstraction logics in information retrieval.

Chapter 4 shows how a high abstraction view of summarisation is similar to other retrieval

tasks, such as anchor-text retrieval, structured document retrieval, and web retrieval based on

page partitioning. All of these share the concept that information from different sources is aggre-
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gated, and the aggregated knowledge used relevance assessments.

Chapter 5 looks at probabilistic models for document summarisation. In this chapter, we

aim to provide a parallelism between ad-hoc retrieval models, and their application to the task of

document summarisation. Taking these modified ad-hoc models as a starting point, we then de-

velop probabilistic summarisation models which do not have a correspondence in ad-hoc retrieval

models. Some of the models developed here will be implemented in the POLIS summarisation

logic.

Chapter 6 provides a formal specification of POLIS. Specifically, Section 6.2 details the

development of the POLIS syntax, and provides BNF trees of POLIS. This is followed by Section

6.3, which discusses the possible worlds semantics employed by POLIS. Finally, Section 6.4

shows how POLIS is implemented. POLIS expressions are translated into a set of equivalent

Probabilistic Relational Algebra (PRA, Fuhr and Rölleke (1997)) expressions, which can be

executed on suitable IR frameworks (such as HySpirit (Fuhr and Rölleke (1998)), which was

used here).

Chapter 7 provides an evaluation of the summarisation models developed in chapter 5. We

use two corpora to test the proposed models: the Document Understanding Conference (DUC)

AQUAINT corpus, and the INitiative for the Evaluation of XML Retrieval (INEX) 2005 cor-

pus. These two corpora provide a coverage of both main aspects of POLIS: summarisation and

structured documents. While the DUC corpus was specifically developed for testing summarisa-

tion systems and methodologies, the INEX corpus consists of a large number of highly complex

structured documents. The efficiency of the proposed summarisation models is measured using

the ROUGE evaluation framework.

Chapter 8 discusses two real-world usage scenarios for POLIS: expert finding, and text

snippet generation. Expert finding is an information retrieval task which has gained attention in

recent years. Given a set of expert candidates, and a number of documents as evidence, the aim of

expert finding is to locate possible experts for a given topic-query. We argue that a summarisation

logic can be successfully used to address expert finding. Additionally, we discuss how POLIS

can be used to generate text snippets found in the results pages of search engines, and provide

samples derived from the Wikipedia collection.

Chapter 9 concludes the discussion. In this chapter, we provide a summary of the topics

discussed in this dissertation, and provide an outlook of future work, and possible future research
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continuing from the work discussed here.



25

Chapter 2

Basic Concepts of Information Retrieval

2.1 Introduction

Taking the expression “Information Retrieval” literally, IR is concerned with the retrieval of

information of any kind, including asking friends for information, or researching a topic in a

library. Consequently, Information Retrieval as a discipline is concerned with all aspects of

organising and structuring information. However, information retrieval systems have traditionally

only been concerned with the retrieval of information relevant to a user. A user of an information

retrieval system will have a need for specific information (the information need) formalised as

a query, and will have access to a large body of documents (the collection). The task of an

information retrieval system is to help a user locate those documents which potentially satisfy

her information need. This is usually achieved by ranking the documents in the collection by

their relevance to the user query.

These three blocks – a user’s information need formulated as a query, a collection of doc-

uments, and a system’s response to the user query – can be arranged to form the traditional

conceptual model of information retrieval, shown in Figure 2.1. A collection of documents is

indexed, resulting in an internal document representation, which can be further processed by the

system. Similarly, a user’s information need is formulated by the user as a query, which is stored

in the system in some internal representation, which might undergo further processing.

The query and document representations are matched using a retrieval function, resulting in a

list of documents ranked by their relevance to the user’s information need. Matching documents
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Figure 2.1: Conceptual model of a typical IR system (Croft (1993)).

and queries is one of the main research areas of information retrieval, where the goal is to find

an “ideal” model, which will always rank documents relevant to a user’s information need above

those non-relevant.

The list of ranked documents is presented to the user, and can be used to reformulate the

query, by transforming the query according to provided relevance feedback. Relevance feed-

back is optional, and can be included either as genuine user feedback, or more often as pseudo-

relevance feedback, where the top ranking documents are assumed to be relevant.

In this chapter, we look at the main concepts outlined in the conceptual model of information

retrieval. We start by discussing ways in which documents and user’s information needs can

be represented in an IR system. This is followed by an investigation of options to match the

document representation and the query. Our discussion then turns to evaluation measures used

to judge information retrieval systems. All of these topics are common to different information

retrieval tasks. The last section in this chapter will therefore look at how these different topics

are relevant to document summarisation, and where document summarisation diverges from the

conceptual IR model.
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2.2 Document and Query Representation

In a typical information retrieval system, documents are not processed in their original form, but

are handled in an internal representation which is the outcome of some indexing process. The

aim of this internal representation is to model the content of the original document as accurately

as possible, while ignoring details irrelevant or out of scope for the information retrieval system.

This scope is determined by the information retrieval system, and might therefore vary from sys-

tem to system; for example, typical IR systems will ignore text formatting and images, whereas

a multi-media IR system might include images in its internal representation.

The process of indexing transforms an input document into a document identifier, and a set of

features, which are assigned to the document identifier. In the most simple form, features might

be a list of words or terms, which correspond to the words present in the original document,

however, more complicated indexing schemes are conceivable, where features are not individual

terms but term-phrases, or semantically augmented concepts (Lewis and Jones (1996)). Although

higher-level indexing features have been used, most IR systems will assign simple terms as in-

dexing features.

2.2.1 Term Pre-processing

Before terms are assigned to documents as indexing features, they will usually undergo further

processing steps, such as case-normalisation; two other common processing steps, which we will

discuss here, are stemming and stop-word removal .

Stemming is a process to reduce the risk of inadvertently mismatching terms in the document

representation and the query, by reducing terms both in the document representation and the

query to their stem. For example, a document represented by the feature “stemming” would not

be retrieved by a query containing the term “stemmed”, although both refer to the same concept.

A stemmer would reduce both “stemming” and “stemmed” to their common root form “stem”,

thus producing a match between document and query. One common class of stemmers are so-

called suffix strippers, such as the widely used Porter-Stemmer (Porter (1997)).

Stopword removal has two aims: to reduce the overall size of a document representation, and

to reduce “noise” in the documents. In his 1958 work, Luhn pointed out that when ordering words

in a collection of documents by their number of occurrences, the content bearing, or significant

words, would occupy the middle ranks, while the very frequent and very rare words would confer
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little information regarding the content of documents (Luhn (1958)). While Luhn considered the

significance of words in the context of automatic summarisation only, similar arguments also

apply with regard to the representation of documents in an information retrieval system (van

Rijsbergen (1979)). Low content bearing words such as articles (“the”) and prepositions (“in”,

“at”, “of”) can be safely removed from the document representation without losing significant

content, reducing the overall representation size by up to 50% (van Rijsbergen (1979)).

2.2.2 Term Weighting

Features assigned to documents should be as discriminating between documents as possible,

such that assigned features are very specific to the documents to which they were assigned. In

order to maximise the discriminativeness of terms, and to assign a large number of features

to documents, indexing schemes assign weights to terms to quantify the degree to which they

discriminate documents. Term weighting is a continuation of the work of Luhn (Luhn (1958)),

where terms are ranked according to the frequency with which they occur within a block of

text (e.g. a document). According to Luhn, highly significant words are those occurring with

a medium frequency: high frequency terms are most likely stop-words, whereas low-frequency

words are unlikely to be used in a query.

Accordingly, indexers assign to terms in documents a weight based on their number of occur-

rences: the tf, or term-frequency weight. This tf-weight can be estimated by a range of functions,

all of which focus on the idea of measuring how often a term occurs in a document with respect

to the the total number of terms. Weighting usually only occurs after stop-words have already

been filtered out of a document representation, so it is safe to assume that the highest frequency

terms at the weighting stage are medium frequency terms in the raw document representation.

The tf-measure assigns a higher weight to terms occurring more frequently. If nL(t,d) denotes

the number of occurrences of term t in document d, and NL(d) denotes the total number of term

occurrences in document d, a reasonable estimate of t f is nL(t,d)
NL(d) . Other t f estimates try to nor-

malise the weight according to document length or maximum t f (e.g. Singhal et al. (1996);

Salton (1971)).

In addition to weighting terms by their within-document occurrences, Sparck-Jones proposed

to include information about the prevalence of a term in an entire collection of documents (Jones

(1972)). This so-called inverse document frequency (idf) also provides a measure of the discrim-

inativeness of a term: if a term occurs in few documents, it is highly discriminative, and its idf
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score should be high. The inverse document frequency of a term t is measured as the logarithm

of the total collection size divided by the number of documents containing t: log
(
|D|
|dt |

)
, where

|D | is the size of the document collection, and | dt | is the number of documents containing term

t. A combination of tf and idf has led to the development of the tf-idf retrieval models, which

we will discuss in section 2.3.

Our outline of term weighting schemes provided here is by no means comprehensive. Instead,

it is meant to highlight the ideas behind weighting schemes, such as distinguishing between

a document-term frequency and a collection-term frequency, which can also be found in the

probability mixtures of Language Modelling approaches, or the different probability estimates in

the probabilistic retrieval models. We will discuss this in greater detail in chapter 5.

2.2.3 Data Structures

A third aspect concerning the representation of documents in information retrieval systems are

the data structures which contain the internal document representations. While this aspect is

usually hidden from users, and does not directly influence the choice of weighting scheme or

retrieval model, we believe it still warrants a closer look, if only for sake of completeness. While a

large number of data structures suitable for the representation of documents have been proposed,

we will only focus on three strategies, covering three major families of data structures.

The first family of data structures are known as inverted lists (Harman et al. (1992)). In this

data structure, for each index term a list of all documents in which it occurs is stored. At retrieval

time, it is possible to immediately retrieve all documents in which the term occurs. Additionally,

it is possible to augment the entries in the inverted list such that the head of the list also contains

the idf weight, while all entries in the list represent both the documents in which the term occurs,

as well as the tf weight in the document. Inverted lists allow for very efficient implementations

of retrieval models.

A second family of data structures are centered around the concept of document vectors

(Salton et al. (1975)). Each document in the collection is represented by a vector of terms, where

the weight of a term is represented by the value of its dimension. The dimensions of the vector

can be set to either the number of terms in the document, or the number of terms in the collection,

such that all collection terms not present in a document are set to zero. The vector representation

is a very “natural” representation for systems implementing vector based retrieval.

The last family of data structures discussed here represents documents using a relational
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approach (Rölleke and Fuhr (1996)). In the most simple form the content of documents is repre-

sented using a binary relation term, where individual rows in the relation represent a term together

with document in which it occurs. Probabilistic relational operators applied on the “term” rela-

tion carry out the calculation of term weights. Relational data representations are commonly used

in the context of integration of IR and Database Management Systems (DBIR, or IR-on-DB).

2.2.4 Query Expansion and Reformulation

All the processing steps outlined for the indexing of documents similarly apply to queries.

Query terms are stop-word filtered, stemmed, and weighted in the same way as as terms in

documents. However, information retrieval systems can optionally include query expansion and

query-reformulation facilities, by which the representation of the query is augmented (Hancock-

Beaulieu (1992)).

Query expansion aims to increase recall, by adding to the expanded query all those terms

related to the concepts expressed in the original query. For example, if a user enters the query

“car manufacturers”, the query could be extended with all terms that also refer to the concept

“car”, such as “automobile”, or more general terms, such as “vehicle” (Qiu and Frei (1993)).

Expanding the query in this way reduces the risk of a mismatch between terms in the query and

terms in documents, and can be implemented by giving the IR system access to a thesaurus.

The unguided bulk expansion via a thesaurus can be turned into a more guided query expan-

sion strategy, by using relevance feedback (Rocchio (1971)). Relevance information provides an

IR system with feedback on the quality of documents retrieved in response to a query. This infor-

mation can then be used to reformulate the query, for example by increasing the weight of query

terms found in “good” documents, and decreasing the weight of terms found in “bad” documents.

The query can also be expanded with the top-weighted terms found in “good” documents. Rel-

evance feedback can be provided interactive, where a user actively labels returned documents

as relevant or non-relevant, or can be given as pseudo-relevance feedback. Pseudo-relevance

feedback is a two-staged retrieval strategy, where the system retrieves documents in response to

the original query, augments the original query by assuming the top-K returned document to be

relevant, and presents a user with the list of documents returned for the augmented query (Mitra

et al. (1998)).

While query expansion can increase recall, and relevance feedback can improve precision,

there is a risk in both strategies, called topic-drift. Topic drift occurs if the meaning of the original
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query is distorted by expansion and reformulation. While this is less of a problem with interactive

relevance feedback, where the user actively reinforces the intended meaning of the query, it can

become a problem with too aggressive automatic expansion strategies (Clough and Sanderson

(2004)).

2.3 Document and Query Matching

The task of an information retrieval system is to find in a collection of documents those which

most likely fulfil a user’s information need. However, a user’s information need is usually not

directly accessible, but is encapsulated in the entered query. A retrieval system will therefore

attempt to rank documents with respect to the query, according to some ranking model. The

assumption here is that that those documents which best match the query will be most relevant

for the user.

In this section, we will look at some ranking models to provide a historical timeline, and

to highlight the steps which led to the development of modern retrieval models, which will be

discussed in chapter 5.

2.3.1 Boolean Matching

Boolean matching was one of the earliest approaches for matching queries and documents. A

query is interpreted as a logical expression, where in the most basic case terms are assumed

to form a conjunction (Baeza-Yates and Ribeiro-Neto (1999)). For example, the query “car

manufacturers” is interpreted as meaning “car AND manufacturers”. In more advanced boolean

retrieval systems, the inclusion of keywords , such as OR and NOT allows for a larger degree of

freedom when forming a query.

Documents are retrieved if they subsume the logical expressions; for the sample query given,

all documents containing the terms “car” and “manufacturer” would be retrieved.

Retrieval systems based on boolean matching suffer from a number of problems. The con-

junctive interpretation of queries leads to the exclusion of documents which would otherwise be

considered relevant for a user if they do no match a single query term; a careful query formu-

lation is necessary in order to achieve acceptable recall levels. Furthermore, boolean matching

does not allow for any ranking of documents; users would face a large, unordered collection of

documents in response to their queries.
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2.3.2 Coordination Level Matching

A second approach for matching queries to documents is the coordination level matching. Here,

the similarity between a document and a query is measured as the number of terms overlapping

between document and query. Assuming that both document and query are represented by a list

of terms of length n, where n is the number of terms, such that a position i in the list is set to 1 if

term i is present in the document or query, and is set to 0 otherwise, we can formally define the

coordination level similarity as:

Similarity(D,Q) :=
n

∑
i=1

DiQi (2.1)

The simple coordination function 2.1 can additionally be augmented by length normalisation

measures. Coordination level matching overcomes the problem of low recall by too specific

queries as outlined for boolean queries. Additionally, coordination level matching allows for a

ranking of documents. However, only the presence or absence of terms is considered for ranking

documents, ignoring term weights which might have been assigned by an indexer.

2.3.3 Cosine Coefficient Matching

A more advanced matching model is cosine coefficient matching, a geometric interpretation of

documents and queries. In this model, both document and query are interpreted as vectors, and

the similarity between query and document is measured as the cosine of the angle between the

two vectors, such that it varies between 0 for unrelated documents and queries (where the angle

between vectors is 90◦), and 1 for identical vectors (where the angle is 0◦). The cosine similarity

measure can be defined as:

Similarity(D,Q) :=

n
∑

i=1
DiQi√

n
∑

i=1
(Di)2·

n
∑

i=1
(Qi)2

(2.2)

The cosine measure allows for a more refined matching between documents and queries,

however, as with coordination level matching, term weights are not reflected in the model.

2.3.4 Vector Matching

Another geometric matching function between documents and queries is the vector matching

(Salton and McGill (1986)). Both documents and queries are vectors in an n-dimensional vector-
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space, where n corresponds to the number of distinct terms in the collection. The absence of term

ti in a document is denoted by setting the document vector’s dimension i to 0, however, unlike in

the cosine similarity measure, the presence of a term is denoted by setting its dimension to the

weight assigned by an indexer. The similarity of documents to the query is measured as the angle

between the query vector and the document vectors, such that smaller angles denote a higher

degree of similarity.

D1

Q

t1

D2

t2

α2

α1

Figure 2.2: Vector Space Model: Document D1 contains term t1, document D2 contains term t2.
Query Q contains both t1 and t2.

Figure 2.2 shows an example of matching two documents D1 and D2 against a query Q. D1

contains only term t1, and document D2 contains only term t2; query Q contains both t1 and

t2.The similarity between D1,D2 and Q is measured as the angle between the representation

vectors, here α1 and α2. In the given example, D2 is more similar to Q than D1, as α2 is smaller

than α1.

2.4 Evaluation in Information Retrieval

The purpose of an information retrieval system is to help a user locate those documents most

likely to fulfil his information need. To develop more efficient retrieval models, it is necessary to

first find criteria by which an information retrieval system can be judged. Developing sufficient

evaluation criteria is a complex task, as the perceived benefit of an IR systems is influenced along

a number of dimensions: a good IR system not only has to return relevant documents, but should

also do so quickly, and be easy to use.

The ease of use is of concern mostly to research carried out in the context of user interaction,

and will not be discussed any further. This leaves two main criteria by which IR systems can be
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judged: their efficiency, which concerns the speed with which a system can index documents and

process user queries, and their effectiveness, which measures how well a system returns those

documents relevant to a user query. While efficiency is important for the perceived usefulness

of information retrieval systems, and is a focal point of research in the context of DB-on-IR, we

will mainly focus on effectiveness here.

2.4.1 Information Need and Relevance

Any information system user’s motivation for using the system is his or her information need:

the actual or perceived lack of information necessary to perform a task. The user translates this

information need into the actual query presented to a system. The task of any information system

is to provide those documents in the collection most likely to contain information pertaining and

fulfilling the user’s information need. The criterion on which the decision whether to present a

document or not to the user is made is called relevance. A relevant document is thus a document

that both pertains to and fulfils a user’s information need. Information systems should ideally

also sort those documents shown to the user by their degree of relevance, such that most relevant

documents are ranked highest.

2.4.2 Performance Measures

Effectiveness is measured in terms of the quantity of relevant documents returned in response

to a user query (Cleverdon et al. (1966)). Several measures of effectiveness have been proposed

over the years, the most common of which will be discussed here.

Before we can start to talk about these retrieval methods, we first need to look at the different

states, or categories, a document can be in. Given a document collection and a query, a document

can be either relevant or non-relevant for the query. This state, relevance, is independent of the

actual IR system used. When an actual IR system processes a given query, it will retrieve a

number of documents. These documents can be classified as retrieved, while all other documents

remain non-retrieved. Every document in the context of an information retrieval system is thus

in one of four possible states: relevant retrieved, relevant non-retrieved, non-relevant retrieved,

and non-relevant non-retrieved (see Figure 2.3).

We can now define effectiveness measures in terms of these categories. The most commonly

used measures are precision and recall. Recall is defined as the fraction of relevant documents

which have been retrieved, while precision is the fraction of retrieved documents that are relevant.
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Documents retrieved non-retrieved
relevant A∩B ¬A∩B B

non-relevant A∩¬B ¬A∩¬B ¬B
A ¬A

Figure 2.3: Categories of documents.

We can thus formally define precision and recall as:

Precision =
| A∩B |
| A |

Recall =
| A∩B |
| B |

(2.3)

where | A∩B | is the number of documents relevant and retrieved, | A | is the number of doc-

uments retrieved, and | B | is the number of documents relevant. Another, less commonly used,

measure of effectiveness is fall-out, which can be interpreted as the inverse of recall. Fall-Out is

defined as the number of non-relevant documents retrieved out of all non-relevant documents, or

more formally:

Fall-Out =
| A∩¬B |
| ¬B |

(2.4)

Precision and Recall can be combined as a weighted harmonic mean, known as the F-

measure, which can be generally defined as (van Rijsbergen (1980)):

Fβ =
(1+β 2)∗ (precision∗ recall)

(β 2 ∗ precision+ recall)
(2.5)

The value of β determines the influence of recall on the weighted mean; recall is “β”-times

as important as precision. Commonly used F-measures are F1, where recall and precision are

evenly weighted, F0.5, where precision is weighted twice as much as recall, and F2, where recall

is weighted twice as much as precision.

2.4.3 Test Collections

For all these outlined effectiveness measures, it is necessary to have knowledge of both the collec-

tion size and the number of relevant documents in the collection. While the size of the collection

might be recorded by an indexer, it would be impossible to acquire relevance judgements for all

collections and all possible user queries. To overcome these limitations, a number of test collec-

tions were constructed, which consist of a collection of documents, a set of queries, and a list

of documents in the collection judged relevant by domain experts (Sparck-Jones and Rijsbergen
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Collection number of documents number of queries
Medlars 1033 30

Cranfield 1.400 1398 225
CACM 3204 65

Reuters-21578 21.578 5 categories
RCV-1 806.791 103 categories

DUC-AQUAINT 1250 50
TREC-1 742.611 50
TREC-8 1.634.243 400 (total)

E-TREC Emails 174,311 55
TREC Terabyte ∼ 25.000.000 50

Table 2.1: IR test collections

(1976)).

Judging the relevance of documents has become more problematic over time, as the size

of collections has increased: while for the initial, small, test collections, such as the Cranfield

collection, total relevance judgements were possible, where every document in the collection is

judged for relevance, more recent, larger collections, such as the TREC-1 to TREC-8 collections

(Harman (1993); Voorhees and Harman (2000)), do not allow for exhaustive relevance judge-

ments, so that documents are only partially judged. Table 2.1 lists some commonly used IR test

collections.

One way to carry out partial judgement is pooling: all IR systems participating in an eval-

uation conference report their top-K results for a given query; these results are pooled, and the

pooled set of documents is judged for relevance. However, pooling favours systems that partici-

pated in forming the pool, thus giving systems that did not participate in the pooling a disadvan-

tage at evaluation time (Voorhees and Harman (2000)).

While most test collections were constructed for evaluating the performance of ad-hoc re-

trieval systems, there are additional collections dedicated to evaluating other IR tasks. The

Reuters-21578 and the RCV-1 corpora were constructed to aid the evaluation of text classifica-

tion systems (Hayes and Weinstein (1991); Lewis et al. (2004)). Both corpora consist of Reuters

newswire stories, a set of categories, and an assignment of documents to categories as a “ground

truth”.

The DUC-AQUAINT corpus was built to aid the evaluation of multi-document summarisa-

tion systems. It consists of newswire stories from different sources, which are grouped into 50

topics. Each topic has a description, which could be interpreted as a query. The task is to generate

a summary for each topic, which is compared to a set of given “reference” summaries.
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Evaluation of summarisation systems is a notoriously difficult task, and will be discussed

in more depth in Chapter 3. However, there are subtleties and difficulties with the evaluation

of IR systems in general, such as the validity of pooling outlined above. Robertson devised a

methodology for carrying out experiments in IR, and for the validity of inferring results from the

experiments (Robertson (1981)).

2.5 Document Summarisation

The traditional purpose of an information retrieval systems has been to produce a ranked list

of documents in response to a user query, without informing the user about the contents of the

documents returned. In his 1968 book, Lancaster explicitly stated that

”An information retrieval system does not inform [...] the user on the subject

of his enquiry. It merely informs on the existence [...] of documents relating to his

request.” (Lancaster (1968))

Lancaster’s statement was correct with respect to early information retrieval systems, which

only reported on the existence of documents relevant to a given query. However, its validity is

questionable with regard to modern IR system, which provide text snippets highlighting the used

query terms in-situ, thus informing the user on the content of documents.

Furthermore, Lancaster’s interpretation of what an IR system does and does not do to a user’s

state of knowledge directly conflicts with the view of summarisation systems as a subclass of

information retrieval systems: a summarisation system does inform a user, by providing a con-

densed representation of one or more documents supplied by a user, or by presenting a condensed

representation of documents pertaining to a user’s information need (which, however, have not

been provided by the user), as is the case with a number of modern IR ad-hoc retrieval systems.

In addition to using summarisation systems to present a condensed information representa-

tion to users, summaries have successfully substituted full documents for the purpose of indexing,

resulting in a slimmer document representation (see e.g. Sakai and Sparck-Jones (2001)).

2.5.1 Summarisation Need

Although we defer a detailed discussion of the different aspects pertinent to summarisation sys-

tems and summarisation in general to the next chapter, we here turn to the influence of an in-

formation need on summarisation approaches. The conceptual model of information retrieval
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(Figure 2.1) shows that in traditional ad-hoc retrieval the actual, materialised query accessible

by a retrieval system is derived from an inaccessible information need. This information need

derives from a user’s lack of knowledge or understanding; the user hopes to fill this lack of

knowledge with information gained from those documents retrieved in response to the materi-

alised information need.

Query-based summarisation systems1 have been used in conjunction with ad-hoc retrieval

systems, to provide a condensed representation of the retrieved documents. In this context, the

query used to guide the summarisation process was the original query formulated from the user’s

information need. The information need that implied the original query thus also affects the

summary generation.

However, with abstraction layers to summarisation such as POLIS, or stand-alone summari-

sation systems, it is conceivable that users would input a specific document to a summariser,

which they know contains relevant information, and would provide a query specifically for the

purpose of summarisation, not for finding documents to fill an information need. Following the

conceptual model of information retrieval, what would this query be motivated by? We argue

that such a summarisation query originates from a summarisation need, which, however, is actu-

ally a more specific subclass of the traditional information need. We will illustrate this with an

example.

Suppose a user is interested in biographical information on the democratic candidates for the

2008 US presidential election. The user also has a document which contains all the necessary

information, but is too long and unspecific to be useful. A query-based summarisation system

could thus be asked to provide a summary, guided by the summarisation query “biographical

information democratic candidates 2008 US presidential election”. While this query is moti-

vated by the specific need for a summary, it actually still stems from an information need. The

query could similarly have been used for a question answering system, or for a focused retrieval

approach in the context of structured document retrieval (see Chapter 4).

For the remainder of this dissertation, we will therefore not distinguish between a traditional

information need, and the queries derived from it, and a summarisation need, and the queries

originating from this summarisation need.

1We will discuss the differences between generic and query-based summarisation approaches in Chap-
ter 3.
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Chapter 3

Literature Review and Background of

Document Summarisation

3.1 Introduction

In this chapter, we discuss methods of document summarisation, and other aspects and problems

pertinent to the summarisation process.

Before we can look at methods of automatic text summarisation, we need to find a definition

of what a summary is. Hovy defines a summary as “a text that is produced from one or more texts,

that contains a significant portion of the information in the original text(s)” (Hovy (2005)). Hovy

also rather arbitrarily specifies that a summary is “no longer than half of the original text(s)”

(ibid). While the ideal length of a summary (and thus its inverse, the compression rate) depends

on the context in which the summary will be used, Lin was able to show that most methods used

for automatic summarisation perform best for summaries between 15% and 40% the size of the

original document (Lin (1999)).

Sparck-Jones (Sparck-Jones (1998)) and Hovy and Lin (Hovy and Lin (1998)) identified a

number of different types of summaries, which can be classified along a number of dimensions:

• indicative vs informative vs critical summaries: indicative summaries provide a preview

of the content of the full text, while informative summaries should cover all main topics

of the full text. Critical summaries should additionally express opinions about the source

text(s).
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• extract vs abstract summaries: extracts are generated using material verbatim present in

the source text, whereas abstracts regenerate some of the content.

• single document vs multi document summaries: single document summaries provide a

summary for a single text, while multi document summaries provide a single summary for

a number of source texts.

• generic vs user oriented (query based) summaries: generic summaries are generated con-

sidering only the material present in the source text(s), while query-based summaries in-

clude external information (such as a query) into the generation process.

While research on automatic summarisation began as early as the late 1950s (Luhn (1958)),

it suffered a hiatus of some decades. Most of the material discussed in this chapter will therefore

only go back to the early 1980s.

3.1.1 Automatic Summarisation: Key aspects

Automatic text summarisation is determined by a number of key aspects, which have been ad-

dressed by research in the area. Conceptually, some of these aspects could be regarded as indi-

vidual modules, or stages, of a summarisation system, while others cover problems surrounding

research on summarisation, such as evaluation. While a clear distinction between some of these

aspects is not always possible, the summarisation process can be broadly split into three phases

(Hovy (2005); Sparck-Jones (1998)):

• Topic Identification: Detecting the most important concepts in documents. (Section 3.2)

• Topic Fusion (Interpretation): Combining the extracted material into a coherent represen-

tation. This includes a discussion of the difference between extract and abstracts, and

composition preprocessing steps such as anaphora resolution. (Section 3.3)

• Summary Generation: Production of the summary using techniques such as text- and

sentence-planning. (Section 3.4)

Section 3.5 provides an overview of logic-based retrieval frameworks. This is followed by

section 3.6, where we will look at evaluation methods for automatically generated summaries.

We also show how existing summarisation system allow for user control in section 3.7.
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3.2 Topic Identification

The first stage in any summarisation approach is the topic identification phase, in which individ-

ual components of text (such as words, sentences, or paragraphs) are given a score. Only high

scoring components are used for summary generation.

3.2.1 Feature-based Measures

Luhn in his early work on summarisation proposed to measure the significance of sentences

based on the frequency of the sentence words (Luhn (1958)). A sentence is more significant if

many frequent terms (i.e. terms occurring often in the entire document) occur in close proximity.

Furthermore, Luhn proposes to employ “bracketing” for extraction, extracting only the fraction

of a sentence were frequent terms occur in close proximity, ignoring more distant parts of the

sentence. A number of other researchers have created summarisation methods which include fre-

quency information for sentence scoring. The systems by Hovy and Lin (Hovy and Lin (1998)),

Wei et al.(Wei et al. (2008)), Teufel and Moens (Teufel and Moens (1998b)) and Kupiec et al.

(Kupiec et al. (1995)) all include term frequency information. Furthermore, Witbrock and Mit-

tal describe a generative model of summarisation, where term frequency information is used to

calculate the probability that a word in a text will also appear in its summary, given a number of

features (such as word length, average sentence length, neighbouring words etc.) (Witbrock and

Mittal (1999)).

Baxendale developed a summarisation model which considered the location of sentences in

the document to be important evidence (Baxendale (1958)). Similarly, Edmundson proposed

a method of determining the importance of sentences that included a location feature in the

sentence score (Edmundson (1969)). In addition to using term counts, Edmundson proposed to

include cue words, title and heading words, and sentence location in the score estimation. Cue

words are split into “bonus” and “malus” words, which respectively raise or lower a sentence

score. The score of a sentence is also raised if it contains words present in the document title

and headlines, or if its location is early in the document. The overall score of a sentence is

determined as a weighted linear combination of the individual method scores, a1C+a2F +a3T +

a4L, where a1 to a4 are the weighting parameters. Edmundson does not make it clear where these

weights come from. A main contribution of this research is Edmundson’s identification of key

features to be used for scoring sentences, which have subsequently been used in a large number
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of summarisation systems.

In the research reported so far, features were used directly to assign a score to a sentence.

Going beyond the direct scoring of sentences, researchers also evaluated the use of these surface

level features as input to machine learners.

Kupiec et al. developed a machine learning approach based on features similar to the ones

used by Edmundson (Kupiec et al. (1995)). In their work, technical documents are compared to

given reference abstracts. A Bayesian classifier is used to weight individual features based on

their presence in the reference summaries. Kupiec et al. found that term frequency information

alone resulted in the poorest performance, while positional information alone showed the best

individual performance. However, a combination of different features improved the performance

of their system compared to any individual features. Teufel and Moens recreated the experiment

by Kupiec et al., and confirmed their findings (Teufel and Moens (1998a)).

Teufel and Moens used cue phrases and machine classification as a tool for determining

the rhetorical status of a sentence (Teufel and Moens (1998b)). For their experiments, Teufel

and Moens trained their classified on scientific articles. Sentences were classified according to

whether they conveyed information on the goal of the reported research, background information,

methods used etc. Classified sentences were then used to fill a rhetorical template.

Aone et al. showed that while a combination of features improves the performance of a

summarisation compared to individual features, the ideal combination of features is heavily de-

pendent on genre and the actual documents (Aone et al. (1998)). Experimenting on the TREC

5 corpus, they found that the location feature provided the best individual performance, which

could be improved by adding other features. However, although all test documents were newspa-

per articles, the actual “ideal” combination of features was different for different subcollections

(corresponding to different newspapers).

A variant of these machine learning approaches based on Bayesian classifiers are measures

based on Hidden Markov Models (HMM). Conroy and O’Leary propose a HMM that given a set

of features computes the probability that a specific sentence is a summary sentence (Conroy and

O’Leary (2001)). They claim that preferring HMMs over Bayesian classifiers is advantageous, as

HMMs make fewer assumptions about the independence of sentences in document and summary.

Using the TREC collection as a test corpus, they report a significant improvement over a naive

Bayes classifier.
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Another approach at sentence extraction based on HMMs is proposed by Jing and McKeown

(Jing and McKeown (1999)). They argue that most human abstractors create abstracts by cutting

and pasting parts of sentences in the original document. Using a sufficiently large body of training

data, an HMM could be trained to identify the most important parts of sentences.

Kan and McKeown propose a hybrid approach to summarisation, that combines information

extraction (IE) methods with question answering and summarisation approaches (Kan and McK-

eown (1999)). Their system initially determines the foci of a document using a term-frequency

measure, and assigns a type (such as “person”) to each of them. The system then uses a question

answering approach to find those sentences that most likely answer questions based on the type

of foci.

Carbonell and Goldstein proposed a method of sentence scoring based on the Maximal

Marginal Relevance (MMR) (Carbonell and Goldstein (1998)). In their work, retrieved sentence

are scored according to the similarity to the set of already retrieved sentences, such that sentences

which are very similar to retrieved sentences will be penalised. Carbonell and Goldstein argue

that ranking sentences based on MMR reduces redundancy in the set of retrieved sentences.

Lin and Hovy adopted the location feature to determining the most likely positions of impor-

tant sentences (Lin and Hovy (1997)). Experimenting on the TIPSTER Ziff-Davis corpus, their

approach matched sentences against a set of topical keywords, giving a yield for that sentence.

Sentence positions were then ranked according to their average yield, resulting in a so called

Optimal Position Policy (OPP). Comparing sentences extracted from the text with the provided

abstracts they were able to measure the coverage for specific positions. While their experiments

confirm the usefulness of the location feature, Lin and Hovy also point out that the derived OPP

is genre-specific, and thus does not provide “optimal” positions for all kinds of texts.

3.2.1.1 User-oriented (Query-based) summaries

All the above features are tailored to produce generic summaries, i.e. summaries which are not

geared towards a user query. Additional summarisation methods were devised, which take a user

query into account when calculating a sentence score.

A query based approach by Goldstein et al. is based on a scoring model that combines

statistical and linguistic features using a weighted linear combination similar to Jelink-Mercer

smoothing in language modelling (Goldstein et al. (1999)). A query in their system is represented

as a query vector, and is used to reweight the statistical features of the model.
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Similar to the inclusion of a query as an additional feature by Goldstein et al., Strzalkowski et

al. use query overlap as an additional feature for sentence scoring (Strzalkowski et al. (1998)). A

sentence receives one point for each term with which it overlaps the user query. This total query

score is then used as an additional feature in the weighted combination of features to give a total

sentence score. Tombros and Sanderson report a similar query-overlap feature in their study of

the usefulness of query-based summaries for retrieval tasks (Tombros and Sanderson (1998)).

3.2.2 Lexical Connectedness Measures

All the methods discussed so far calculate a sentence score only based on the sentence and the

document itself. A number of scoring methodologies were devised which additionally include

information about other sentences in the document. These methods commonly try to determine

the “connectedness” of sentences, assuming that sentences with many connections are more im-

portant.

Mitra et al. proposed the use of text relationship maps to measure the connectedness of

paragraphs (Mitra et al. (1997); Salton et al. (1997)). Using a threshold, the resulting graph only

links the most similar paragraphs. Generating a summary is accomplished by traversing a path

in the generated graph, starting from the most connected nodes. Mitra et al. discuss various

heuristics for traversing the graph in order to produce a summary.

Barzilay and Elhadad propose to use lexical chains to model the source text (Barzilay and El-

hadad (1997)). Generated chains are given a weight based on their length and their homogeneity,

and only the highest scoring chains are used for the summary generation. Barzilay and Elhadad

propose several heuristic methods for extracting sentences, based on membership in the selected

chains.

Mani and Bloedorn derive a graph representation of the source document based on lexical

similarity, adjacency, and co-reference (Mani et al. (1999)). Words in the source document form

nodes in the graph, which are connected by one of the previously mentioned relations. Summari-

sation is achieved by removing constituents from the generated graph.

Zha models documents as weighted undirected graphs and bipartite graphs for the purpose of

keyphrase extraction (Zha (2002)). His approach initially creates a bipartite graph of a document,

with edges between terms and sentences, where edges are weighted by the number of occurrences

of a term in a sentence. The algorithm also creates an undirected weighted graph of the document,

where sentences form the vertices of the graph, and have edges between them if they share
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common terms; these edges are weighted by the similarity of their two vertices (sentences). This

undirected graph is used to cluster sentences into topical groups. Zha argues that the generated

clusters form a hierarchy, with finer levels of granularity at lower nodes in the hierarchy. He

proposes that such a hierarchy of nodes could thus be used to generate summaries at different

compression ratios.

A more sophisticated version of the connectedness measures based on the discourse of texts

was proposed by Marcu (Marcu (1997b, 1998)). The central argument, on which Marcu’s work

is based, is that the nuclei of a rhetorical structure tree (RS-Tree) constructed for the source

document constitute an adequate summary. Marcu uses rhetorical structure theory to derive a

discourse structure of the document to be summarised (Marcu (1997a)). This rhetorical structure

is used to derive an importance score for each sentence.

Hu et al. proposed a document-summarisation framework in which the scoring of sentences

is influenced not only by other sentences in the same document, but also by information found in

other documents pertaining to the document to be summarised (Hu et al. (2008)). In their work,

annotations to a document, such as comments on a blog posting, are included in the sentence

scoring function.

3.2.3 Linguistic Measures

A third methodology for detecting the most salient concepts in text is centered around the use

of linguistic analysis. While there is often an overlap with the measures already discussed, the

approaches discussed here still warrant closer inspection.

McKeown et al. discuss the use of linguistic features as input to a machine learning system

for the purpose of multi-document summarisation (McKeown et al. (1999)). Their system breaks

all input documents into paragraph-sized chunks, and compares paragraphs to detect whether

they are similar. Similarity here is a binary decision, and is decided based on whether two para-

graphs report on the same object. This analysis is carried out using WordNet synonymy informa-

tion (Miller et al. (1990)) and semantic verb classes. This similarity information is subsequently

used to cluster paragraphs, resulting in nodes of topics containing the most salient concepts.

Yang et al. propose a similar method in the context of event detection, where sentences are

clustered according to their similarity (Yang et al. (1998)). Most similar sentences are assumed

to be representative of the topics of a document, and are used for summary generation. Wang

et al. discuss a similar approach, where sentences are clustered according to semantic similarity
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(Wang et al. (2008)). Their approach initially calculates sentence similarity scores which are

used to generate clusters of similar documents. The final summary is formed by extracting the

most representative sentences from each cluster.

3.3 Topic Fusion (Interpretation)

All the methods discussed produce a set of most salient textual elements of documents. An ex-

tract-type summary system would directly use these textual elements to generate a summary.

However, abstract-type summarisers will additionally include a topic fusion, or interpretation,

stage, where the given textual components are reformulated, or even enhanced with background

knowledge. This implies that abstract type summaries are domain specific, as background knowl-

edge has to be contextual. Most summarisation systems to date are of extract type, and research

into topic fusion has remained limited.

Ono et al. propose a method of sentence generation for Japanese based on sentences rhetori-

cal status (Ono et al. (1994)). Initially, the system builds a rhetorical relation tree for the source

document. Sentences in the document are weighted by their rhetorical relations, and are cate-

gorised into one of three categories based on the relation. According to the relation, an inner

node’s right or left terminal node are penalised, and the highest penalised nodes are removed

from the tree. The remaining tree forms an abstract of the source document.

Reimer and Hahn developed a highly formalised approach of information condensation based

on operators of terminological logics (Hahn and Reimer (1998)). In their work, knowledge rep-

resentation structures are condensed under operators producing concepts of higher abstraction.

They use the example of summarising information on notebooks by subsuming individual mod-

els under a higher abstract concept of notebooks. However, it remains unclear how the initial

knowledge representation structures could be retrieved from plain text. Reimer and Hahn also do

not elaborate on the production of plain text from the condensed knowledge representations.

Hovy and Lin included a topic fusion stage in their summarisation system SUMMARIST

(Hovy and Lin (1998)). One approach for fusion was based on recognising the concepts behind

individual words using WordNet. Instances of concepts are counted, and the most specific gen-

eralised concept of a set of terms is used as their fuser. A second fusion approach was based on

finding words appropriate as a substitute for a number of other words. To find these signature

words, Hovy and Lin used the 1987 Wall Street Journal corpus, which is split into 32 classes.
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Counting the occurrences of terms in the individual classes, they replaced the highest count terms

with the class name.

Conceptually, it would also be possible to derive generalisations for sets of terms using script

based inference, such that the set of terms drive in, pay, fill tank, close tank generalises to gasoline

fill up (Hovy and Lin (1998); Schank and Abelson (1977)).

One main obstacle for topic fusion and the generation of abstract type summaries is the lack

of domain specific knowledge, and the inability to capture domain knowledge from the document

(or set of documents) to be summarised.

3.4 Summary Generation

The topic identification stage, possibly followed by a topic fusion stage, results in a conceptual

representation of a document’s most important topics, internal to the computer the summariser is

running on. Additional steps are necessary to translate the internal representation into a textual

summary output to a user. This translation may utilise techniques of natural language processing,

such as text planning, sentence planning, and sentence realisation (Hovy (2005)).

A summary generation stage is usually more important for extract type summariser, as the ex-

tracted sentences might exhibit dysfluencies, dangling anaphora, topic shifts, and general gram-

matical inconsistencies (Johnson et al. (1997)).

Hirst et al. developed a summarisation system for medical records (Hirst et al. (1997)). To

generate textual summaries from extracted sentences, their system applies smoothing operators

to surface level sentence features. For example, two sentences in close proximity starting with an

identical noun phrase are assumed to co-reference the same object; to repair the repetitive nature

of the sentences, the noun phrase in the second sentence is pronominalised. The system also ex-

ploits rhetorical relationships between sentences. Sentences marked as evidence and conclusion

will be connected by a cohesive implication, such as therefore.

Mani et al. consider the initial set of extracted sentences as a draft summary, which they

augment with background information from the source document (Mani et al. (1999)). The aug-

mented draft then undergoes revision based on rules involving aggregation and elimination oper-

ations (Dalianis and Hovy (1996)). The system also involves smoothing operations at sentence

level, to arrive at more compact sentences.

The concept of smoothing sentences is similar to the sentence compression operation em-
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ployed by a number of summarisation systems. Barzilay et al. carry out summarisation by

means of manually generated sentence compression rules (Barzilay et al. (1999)).

Knight and Marcu investigate two models of sentence compression, one based on a noisy

channel EM algorithm and a decision-based deterministic model (Knight and Marcu (2000)).

Both models try to compress the syntactical parse tree of a sentence into a more compact one.

The use of machine learning in the form of the EM algorithm would help overcome the problem

of having to manually define compression rules. Experiments showed no statistically significant

difference between the two models.

Banko et al. change the perspective on summary generation from sentence compression

to sentence generation (Banko et al. (2000)). Their systems builds a model of surface realisa-

tion based on a bigram language model. Sentence generation can now be seen as finding the

sequence of words that maximises the probability to have been generated by the document to

be summarised. However, their system only produces short, headline-like sentences, and does

not extend to multi-sentence summaries. Witbrock and Mittal used a similar bigram language

modelling approach to order individual terms extracted from a source document into sentences

(Witbrock and Mittal (1999)).

While Witbrock and Mittal use a very aggressive cut-and-paste approach, extracting and

merging individual words, Jing and McKeown generate summaries by cutting larger sub-sentence

fragments from the source document (Jing and McKeown (1999)). Arguing that human-written

summaries are often generated by applying a cut and paste process to the original document,

they train a HMM to detect the location of summary sentence fragments in the original docu-

ment. Applying similar cut and paste operations to unseen documents can then be used to create

appropriate summaries.

Radev developed an approach for merging information from multiple documents, where for

each document a template was filled by an information extraction approach (Radev (1999)). To

produce actual summaries, the templates are merged under composition operators, that also detect

inconsistent information, and change the output accordingly. However, his approach only works

in specific domains, for which templates have been created.
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3.5 Logical Retrieval

The previous sections covered aspects pertinent to finding the most salient concepts in text, and

to generating actual summaries from the most salient concepts. However, a summarisation logic

like POLIS is also concerned with the creation of an abstraction layer to summarisation, here

achieved by means of a logical layer. We therefore in this section discuss how abstraction logics

have been applied generally in the context of information retrieval, resulting in the general class

of retrieval logics.

Retrieval logics are rooted in terminological logics (or description logics), which originated

from AI research, and the need to build high-level representations of domains of knowledge

(Baader et al. (2003)). Information in the knowledge domain is represented by concepts in the

logic. Reasoning in terminological logics is based on subsumption and concept satisfiability.

Subsumption is the process of determining if a concept is more general than another, while a

concept is satisfiable if it is not subsumed by the empty concept (i.e. a concept description is not

contradictory). While the process of reasoning in terminological logics is vastly more complex

than what was discussed here, this presentation is sufficient for the remainder of this section, and

any further elaboration on reasoning in description logics would be beyond the scope of the work

presented here.

Meghini et al. discuss the use of terminological logics in the context of document retrieval

(Meghini et al. (1993)). In their work, documents are retrieved if they are subsumed by a query,

i.e. if the query is more general and covers the concepts in the document. However, it does not

become clear how a ranking of document would be achieved by their logic, as the subsumption

checking results in a binary decision whether to retrieve a document.

Later research on retrieval logics incorporated probabilistic reasoning into the retrieval pro-

cess, thus allowing a ranking of documents. POLIS is one member of a family of such proba-

bilistic logics (see Figure 3.1), which we will briefly present here.

POOL is an object oriented retrieval logic, which allows the representation of objects in the

logical framework, and makes it possible for the logic to conduct inference and reasoning on

the objects in its knowledge base (Roelleke (1999)). POOL is a general retrieval logic, in the

sense that it was not developed for specific retrieval tasks. The two elements in the top-most

layers in the figure, POLIS and POLAR, are both retrieval logics for specific tasks: POLIS is a

summarisation logic, while POLAR is a logic for annotation-based retrieval (Frommholz (2007)).
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Annotation-based retrieval determines the retrieval status value of a document not only based on

a document’s own representation, but also on information conveyed by other documents referring

to it.

Probabilistic Logic for Annotation

Logic (POOL) (1999)

Four−valued Probabilistic
Datalog (FVPD) (1997)

Probabilistic Relational
Algebra (PRA)

Probabilistic Logic for Information
Summarisation (POLIS) (2009) Retrieval (POLAR) (2008)

Probabilistic Object−Oriented

Figure 3.1: Hierarchy of logical retrieval approaches.

Both POLAR and POLIS can be seen as descendants of POOL, as they share semantic con-

cepts and processes of probabilistic reasoning. The two bottom layers of Figure 3.1 display lower

level languages, which are used to implement higher-abstraction languages such as POOL, PO-

LAR, or POLIS, rather than be directly used as abstraction layers. FVPD extends traditional

Datalog in two ways: propositions can take either of four values (true, false, inconsistent, un-

known) as opposed to the normal two valued (true, false) truth assignments, and all truth value

assignments hold with a certain probability rather than a deterministic absolute truth. We will not

use FVPD in the discussion of POLIS, however, we will occasionally make use of Probabilistic

Datalog (PD, not shown in Figure 3.1), which is a probabilistic extension of deterministic Data-

log. PD only uses two truth values like traditional Datalog, however, truth value assignments are

probabilistic (Fuhr (1995)).

Although Figure 3.1 shows POLIS as a descendant of POOL, performance constraints pro-

hibited an implementation of POLIS in POOL. Instead, the implementation of POLIS relies on

Probabilistic Relational Algebra (PRA, found in the bottom layer of Figure 3.1) for the actual

implementation. PRA is a probabilistic extension of the traditional Relational Algebra found

in database systems, and introduces both tuple probabilities as well as probabilistic relational

operators (Fuhr and Rölleke (1997)). We will discuss this in more detail in section 6.4.
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3.6 Evaluation Methodologies

The summary generation stage of a summarisation produces the final output. However, there is

no indication of whether the summary produced is good. This section will discuss approaches to

evaluate the quality of summaries, and will look at different measures of summary quality.

Jones and Galliers classify evaluation methods for summaries into intrinsic and extrinsic

methods (Galliers and Jones (1995)); a third methodology discussed here is the subjective evalu-

ation:

• intrinsic evaluation: automatically generated summaries are compared with a set of man-

ually written reference summaries.

• extrinsic evaluation: also called task-based measures, where summaries are judged by how

well they support user to carry out a task.

• subjective evaluation: evaluators judge the quality of a summary based on coherence, style,

and user preference.

We will look at methods belonging to these three classes in the following sections.

3.6.1 Intrinsic Evaluation Methods

Edmundson proposed the use of statistical methods to measure the percentage of extract-worthy

sentences (those containing information present in the reference summaries) in the automatically

generated summaries (Edmundson (1969)). Based on the comparison to extract-worthy sen-

tences, Edmundson also details to types of errors a summarisation system can make in picking a

sentence: type 1 errors are those where a system does not extract a worthy sentence, and type 2

errors, where the system picks a sentence not extract-worthy.

Ono et al. compared sentences generated by their system with manually selected key sen-

tences in the source documents (Ono et al. (1994)). Human judges picked the most important key

sentences of articles in the test corpus. The system-generated abstracts were then compared with

the selected key sentences.

Due to insufficient data to split a collection into distinct training and test sets, Kupiec et al.

applied a cross-validation evaluation to their system (Kupiec et al. (1995)). For each journal

of the test corpus, the journal was repeatedly split into one document used for testing, and the

remaining documents used for training. Results were summed over journals.
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One obstacle for using intrinsic methods for summary evaluation is the lack of corpora con-

sisting of documents and their corresponding extracts. However, large corpora exist consisting

of documents and their abstracts (such as scientific publications). Both Goldstein et al. and

Marcu proposed methods to create an extract corresponding to a given <document, abstract>

pair (Goldstein et al. (1999); Marcu (1999)). Goldstein et al. expand every sentence in the

abstract into the smallest subset of sentences in the full text containing all the key concepts (key-

words and noun-phrases) of the abstract sentence. Marcu uses a greedy EM algorithm to generate

an extract from an abstract and a full text. His algorithm initially starts with the complete full text,

and greedily removes sentences that so that after removal the similarity between the abstract and

the residual text is maximised. The process is repeated until removing further sentences from the

original text would decrease similarity. The remaining original text is an extract corresponding

to the given abstract.

MS A/E

J

against

evaluated
S A

generates writes

personal

background

assumptions

judges

Figure 3.2: A human abstractor A writes a summary A/E. A summarisation system S generates a
machine summary MS, which is evaluated against A/E. A human judge J judges the content of
A/E.

Another problem for intrinsic evaluations are variations in the reference summaries. A graph-

ical representation of the problem is shown in Figure 3.2. A human abstractor provides a refer-

ence summary A/E, which is compared to an automatically generated summary S. Evaluation

frameworks typically only compare summaries based on their content. However, this means that

reasonable but contradicting assumptions made by both the human abstractor and the develop-

ers of the summarisation systems which influence the contents of the summaries will lower the

overlap of the two summaries, and thus the performance score of the system. This also holds true

when summaries are evaluated by a human judge: differences in personal background might lead
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to different assumptions in what constitutes a “good” summary.

Teufel and Moens show that the content of human written summaries is influenced by the ab-

stractors personal background and knowledge (Teufel and Moens (1998b)). Intrinsic evaluation

methods make the semiotic connection that “good” summaries are those which largely overlap

with reference summaries. However, since the content of the reference summaries is not bound

by objective criteria, judging a generated summary against a single human written reference sum-

mary does not provide a significant quality evaluation. Donaway et al. show that evaluations of

machine summaries may vary to a large degree given different manual reference summaries (each

of which would ordinarily be considered ideal) (Donaway et al. (2000)).

Similar to the way a human judges content-evaluation of a manual summary is influenced by

his personal background (and the difference in background the abstractor), assumptions made in

the construction of a summarisation system will be different to the assumptions taken by indi-

vidual abstractor when writing a summary. One approach to mitigate the influence of individual

author’s preferences in the evaluation process, taken by the Document Understanding Confer-

ence (DUC), is to provide multiple (in case of DUC four) reference summaries for each topic,

against which the generated summaries are matched using cross-validation (Dang (2006)).

3.6.2 Extrinsic Evaluation Methods

One of the largest evaluation studies involving extrinsic evaluation measures with eighteen par-

ticipant systems was TIPSTER/SUMMAC (Firmin and Chrzanowski (1998)). Summaries of

participant systems were evaluated based on their usefulness as indicative summaries in cate-

gorisation and ad-hoc retrieval tasks. For the categorisation task, judges independently classified

documents and their generated summaries. The quality of a system was measured as the de-

gree of overlap between the two classifications. For the ad-hoc task, judges labelled generated

summaries as relevant or not-relevant for the given query.

Similar ad-hoc retrieval evaluations were also carried out by Jing et al., where users had

to judge the relevance of document based on summaries, by Wolf et al., where the number of

relevant documents correctly identified in a given time span, together with the error rate, was

used to compare different summarisation approaches (Jing et al. (1998); Wolf et al. (2004)), and

in a substantial number of other publications (Tombros and Sanderson (1998); Brandow et al.

(1995); Mani and Bloedorn (1999)).

A third kind of extrinsic evaluation uses reading comprehension as a measure of summary
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quality. Morris et al. based their reading comprehension test on four GMAT (Graduate Man-

agement Admission Test) reading comprehension exercises. Human subjects had to pick one

multiple choice answer for each exercise, were the exercise text could either be the full text,

a machine extract, a manual abstract, or completely blank. The number of correctly answered

exercises was used as a summary quality measure.

Maybury used a similar question answering approach, where participants were shown log

files of a battle simulation, and business news describing joint ventures (Maybury (1995)). Sub-

jects were shown either the full texts, or summaries thereof, and had to fill in key information

presented in the full texts. The amount of correctly filled in data was used as a measure of

summary quality.

Hovy and Marcu measured the informativeness of a summary by the extent to which test

subject were able to recreate the source document from reading the summary (Hovy and Marcu

(1998)). Subjects were given the full text, a summary, or no text. Experimental evidence shows

that the test group given summaries performed closer to the full text group than to the no text

group.

Although extrinsic evaluation methods have been used for evaluating summaries, they are not

without problems. As summaries are evaluated in the context of another retrieval task, the exper-

iments need to be carefully designed to ensure that the evaluation only considers the influence

of summaries, disregarding the influence of the actual retrieval system. For example, a relatively

poor retrieval system might adversely affect the way users perceive the presented summaries.

3.6.3 Subjective Evaluation Methods

Subjective evaluations can be considered a part of the intrinsic evaluation measures, as summaries

are judged in isolation. However, it is possible to split intrinsic methods into two subclasses:

those which compare machine summaries to reference summaries, and those which judge the

quality of the generated summaries in terms of cohesion, grammaticality, style, and fluency. The

following work made use of the latter evaluation method.

Brandow et al. used an acceptability evaluation as part of the overall evaluation of their

system (Brandow et al. (1995)). To judge the quality of their system, experienced news analysts

evaluated the summaries according to established industry readability guidelines, additionally

using the full text to determine the acceptability of the summary content.

Participant systems in the Document Understanding Conference (DUC) were compared to
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four given reference summaries, and also judged along subjective quality dimensions, including

grammaticality, non-redundancy, referential clarity, focus, and structure and coherence (Dang

(2006)).

Although human judgement is valuable for evaluating “non-technical” aspects of summaries

such as fluency and grammaticality, the subjective influence of individual judges means that sub-

jective judgements should not be used as the only criterion by which a system is evaluated. Fur-

thermore, a single system should always be evaluated by several judges, to reduce the influence

of individual personal opinions in the overall evaluation.

3.7 User Interaction with Summarisation Systems

The previous sections discussed how past summarisation approaches generate abstracts or ex-

tracts from source documents, and how the quality of the generated summaries can be evaluated

by comparison with given reference summaries, or by evaluating the usefulness of generated

summaries in real tasks or scenarios.

A third aspect we address now is the user interaction with summarisation systems. There

are several parameters which influence the summary generation, such as the choice of sum-

marisation approach, the length of the summaries, or the use of a summarisation query. In this

section, we will look at ways in which existing summarisation systems allow users to control

these parameters. Controlling summarisation systems is usually performed in one of two ways:

by manipulating the summariser through a Graphical User Interface (GUI), or by setting param-

eters in a configuration file or on the command line. We will present examples of both classes of

interaction, starting with GUI-based systems.

3.7.1 Control through Graphical User Interfaces

The first class of summarisation systems allows user to set those parameters controlling the sum-

marisation process through widgets in a Graphical User Interface. The options available depend

on the underlying summarisation approach, and the degree to which developers of the system

grant users access to relevant controls.

Figure 3.3 shows the GUI of Copernic Summarizer, a summarisation system developed by

Copernic Inc. Users can set the summary length (using the drop-down list in the top right cor-

ner), and can manipulate the summary’s content based on the inclusion or exclusion of specific
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“concepts” (found on the left side of the screen). Although we will not discuss Copernic Sum-

marizer in more detail here, its GUI can be seen as a template for all those GUIs discussed in the

remainder of this subsection.

Figure 3.3: Parameters in the Copernic Summarizer are controlled through a Graphical User
Interface. c©Copernic Inc.

Strzalkowski et al. present a summarisation system that allows a user to control certain

parameters of the summarisation process (Strzalkowski et al. (1998)). A user is able to select

whether a summary should be query-based or generic, and if query-based, specify query terms.

Additionally, the user can set the minimum compression rate. However, there is no control on

the level of granularity at which material is to be extracted.

Aone et al. present a system in which sentences are scored based on NLP features. Their

system also provides a GUI which allows users to turn on or off individual features of the sum-

marisation model (Aone et al. (1998)).

Leuski et al. present the user-interface iNeATS, which controls the summarisation process of

the summarisation system NeATS (Leuski et al. (2003); Lin and Hovy (2001)). iNeATS allows

users to set the compression rate, sentence cut-off length, and redundancy filters.
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3.7.2 Control through Configuration Files

The second class of summarisation systems allows users to control the summarisation process

through configuration files, or via command-line options. Parameters such as choice of models,

compression ratio, or summarisation query are defined using specific syntactic constructs.

The MEAD summarisation system by Radev et al. allows users to fine-tune the summarisa-

tion approach using either command-line options or configuration files. Users can select sum-

marisation features, and specify parameters for these features (Radev et al. (2004)).

MEAD - a platform for multidocument multilingual text summarization

Dragomir Radev , Timothy Allison , Sasha Blair-Goldensohn , John Blitzer , Arda Çelebi ,
Stanko Dimitrov , Elliott Drabek , Ali Hakim , Wai Lam , Danyu Liu , Jahna Otterbacher ,
Hong Qi , Horacio Saggion , Simone Teufel , Michael Topper , AdamWinkel , Zhu Zhang

University of Michigan, Columbia University, University of Pennsylvania, USC/ISI, Johns Hopkins University,

Chinese University of Hong Kong, University of Alabama, University of Sheffield, University of Cambridge

radev@umich.edu

Abstract

This paper describes the functionality of MEAD, a comprehensive, public domain, open source, multidocument multilingual summariza-

tion environment that has been thus far downloaded by more than 500 organizations. MEAD has been used in a variety of summarization

applications ranging from summarization for mobile devices toWeb page summarization within a search engine and to novelty detection.

1. Introduction

MEAD is the most elaborate publicly available platform

for multi-lingual summarization and evaluation. Its source

and documentation can be downloaded from http://

www.summarization.com/mead. The platform im-

plements multiple summarization algorithms (at arbitrary

compression rates) such as position-based, centroid-based,

largest common subsequence, and keywords. The methods

for evaluating the quality of the summaries are both intrin-

sic (such as percent agreement, cosine similarity, and rel-

ative utility) and extrinsic (document rank for information

retrieval).

MEAD implements a battery of summarization algo-

rithms, including baselines (lead-based and random) as

well as centroid-based and query-based methods. Its flexi-

ble architecture makes it possible to implement arbitrary al-

gorithms in a standardized framework. Support is provided

for trainable summarization (using Decision trees, Support

Vector Machines or Maximum Entropy). Finally, MEAD

has been used in numerous applications, ranging from sum-

marization for mobile devices to Web page summarization

within a search engine and to novelty detection.

2. Architecture

MEAD’s architecture consists of four stages. First,

documents in a cluster are converted to MEAD’s inter-

nal (XML-based) format. Second, given a configuration

file (.meadrc) or command-line options, a number of fea-

tures are extracted for each sentence of the cluster. Third,

these features are combined into a composite score for each

sentence. Fourth, these scores can be further refined af-

ter considering possible cross-sentence dependencies (e.g.,

repeated sentences, chronological ordering, source prefer-

ences, etc.) In addition to a number of command-line util-

ities, MEAD provides a Perl API which lets external pro-

grams access its internal libraries. A sample .meadrc file is

shown in Figure 1.

All data in MEAD is stored as XML. The following

DTDs are part of MEAD:

cluster: a description of all related documents that will

be summarized together,

compression_basis sentences

compression_absolute 1

classifier

/clair4/projects/mead307/source/mead/bin/default-classifier.pl

Centroid 3.0 Position 1.0 Length 15 SimWithFirst 2.0

reranker /clair4/projects/mead307/source/mead/bin/default-reranker.pl

MEAD-cosine 0.9 enidf

Figure 1: Sample .meadrc file. Using this configuration file,

MEADwill produce a one-sentence summary using a linear

combination of three features as the scoring function. From

any sentence pair where the IDF-modified cosine similarity

is higher than 0.9, one of the sentences will be dropped.

docjudge: relevance judgements associated with the

document or summary and a particular query and re-

trieval method,

docpos: a part-of-speech annotated version of the doc-

ument,

docsent: a document, split into sentences,

document: the raw document,

extract: alisting of all sentence that should be in the

summary,

mead-config: MEAD’s configuration parameters,

query: a TREC-style query converted to XML,

reranker-info: parameters for the rerankers,

sentalign: a sentence-to-sentence alignment across

languages,

sentfeature: a list of feature values for a given docu-

ment and feature names,

sentjudge: manually annotated sentences for relevance

within a cluster,

sentrel: CST-style sentence-to-sentence relationships.

A few sample files conforming to these DTDs are

shown in the Appendix.

Figure 3.4: MEAD configuration file.

A sample configuration file is shown in Figure 3.4. Given this configuration file, MEAD

weights sentences according to their length, position, similarity with first sentence, and similarity

to centroid of all sentences, and generates a summary which is one sentence long.

While configuration files of this kind provide a more fine-grained access to the parameters of

a summarisation system, they also require users to be familiar with details of the implementation

of the summariser (here: the path to summariser libraries), and to have detailed knowledge of

the features and models implemented by the summariser. There are only limited advantages over

manipulating the summarisation systems directly, e.g. by changing the source code.

Furthermore, although MEAD represents documents internally using an XML-like format,

users cannot specify the granularity at which material for summaries should be collected.

3.7.3 Discussion

In the two previous subsections, we introduced the two main options by which users can ma-

nipulate and control summarisers: Graphical User Interfaces, and configuration files. The main

advantage of GUIs is their ease of use, especially for end users who may not be familiar with

summarisation models or other concepts such as query-based summarisation. However, GUI-

based interaction is always limited to the options provided by the user interface, and as such

does not offer the same level of control provided by a command-line or configuration-file based
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interaction. In comparison to GUIs, configuration-file based control is limited by the number of

options which can be parsed by the summarisation system. These latter approaches allow users

to tweak more aspects of the summarisation process, however, they are also more complicated

to use, and may thus be overwhelming or unusable to end users. The expressive power of a

GUI-based summarisation system is limited by the options available through the GUI, while the

expressiveness of configuration files is restricted by the total set of options available.

Ideally, a summarisation system would provide a GUI for end users, and would also accept

command line options for more advanced users. POLIS tries to integrate both usability and

flexibility in a different way. POLIS allows users to select the element granularity at which data

for summaries is collected, and also allows users to set the summary length, the model to be used,

and – if appropriate – a summarisation query. However, these options are provided through an

XPath-based syntax, which is more intuitive than the configuration files used by e.g. MEAD.

By focusing on a specific user group (i.e. knowledge engineers who have some notions about

summarisers, or ideas how summaries might be beneficially used in their projects, but no in-depth

knowledge of summarisation approaches) POLIS treads a middle ground between the flexibility

and complexity of configuration files, and the ease of use of Graphical User Interfaces.

3.8 Conclusion

This chapter presented an overview over the main stages of a summarisation system, and provided

details of research into each of these stages. Additionally, we looked at evaluation methods for

automatic summarisation, and some of the issued surrounding summary evaluation that make it

a difficult topic. These two points will become important in the next chapters, where we will

develop summarisation models for POLIS, and will evaluate these models on actual test corpora.

The last section concluded the discussion by presenting an short, indicative overview of user

interaction with summarisation systems. While most systems provide interaction via a graphical

user interface, POLIS instead provides an XPath-like syntax, which allows users to specify the

granularity at which extraction in documents takes place, to set query terms by which user se-

lected elements are to be weighted, to define the models by which element extraction is to take

place, and to set the upper summary size limit in terms of either the number of elements, or the

number of words.
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Chapter 4

Summarisation: Parallels to Other Retrieval Tasks

This chapter will develop a parallelism between summarisation and a number of other retrieval

tasks. We believe that highlighting these parallelisms aids the better understanding of some of

the complexities surrounding automatic summarisation, and also forms the foundation for some

of the discussions in the later chapters.

The other retrieval tasks discussed and compared to summarisation in this chapter are anchor-

text retrieval, website partitioning, and structured document retrieval. While these tasks at first

seem remote from summarisation (and, additionally, from each other), we believe that they can

be related from an abstract, conceptual point of view: all of the retrieval tasks at hand rely in

some form on processes of evidence propagation or knowledge augmentation, which is essen-

tial for the summarisation models implemented by POLIS, and the POLIS semantics. While it

would have been possible to find parallels to additional retrieval tasks, the tasks compared here

share a very similar knowledge augmentation process. Especially for the case of structured doc-

ument summarisation and structured document retrieval, the process of knowledge augmentation

is almost identical.

We start by discussing the idea behind knowledge augmentation and evidence propagation

conceptually in section 4.1. Sections 4.2 to 4.5 discuss how knowledge augmentation and evi-

dence propagation relate to the mentioned retrieval tasks, and relates them to each other. Section

4.6 concludes the discussion.
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Figure 4.1: Parallelism of retrieval tasks by the common concepts of evidence propagation and
knowledge augmentation.

4.1 Evidence Propagation and Knowledge Augmentation

Both evidence propagation and knowledge augmentation attempt to address the same problem:

given an item of interest (such as a document, a website, or – for the case of structured document

retrieval – subelements of documents), how can the representation of this item be improved such

that it incorporates information not intrinsic to the item. This definition might at first seem vague

and complex, but formalises a fairly intuitive notion.

Suppose a retrieval system works on a collection of documents, which are either books, or

book reviews. Normally, all these documents would be processed in isolation, however, for the

given domain, there is a dependency between documents: reviews are about books. Here, reviews

add additional information to the representation of a book in isolation, such as comparisons

to other books, or a reviewers comments on a book. A searcher looking for a specific book

would normally only retrieve that book itself, however, exploiting the information provided by

the associated review, he might also retrieve other books which are related to the on he was

looking for. The evidence provided by the review is propagated to the representation of the book.

While the given example shows the propagation of evidence between individual documents, it

works at any level in the hierarchy of information items. At the one end of the spectrum, a whole

indexed collection of documents might be augmented by another indexed collection, while at

the other end, a section in a structured document is augmented by knowledge of its sentences.

Irrespective of the scale, evidence propagation and knowledge augmentation occur between an

evidence source, and an evidence destination, where the destination is augmented by knowledge

of the source.

While the flow of evidence from source to destination is identical for any evidence propaga-



4.1. Evidence Propagation and Knowledge Augmentation 61

tion or knowledge augmentation strategy, there are two types of evidence which can be propa-

gated: term-frequency evidence, and term-probability evidence.

4.1.1 Term-Probability Propagation

Evidence Destin.

0.3 term3

0.5 term1
0.1 term2

0.2 term1
0.3 term2
0.1 term3

Evidence Source

Figure 4.2: Term-probability propagation: probability evidence is pushed from the source to the
destination.

The first type of evidence propagation is the term-probability propagation, which augments

the source representation by incorporating term probabilities provided by the evidence source.

The term probabilities (or, more generally, term weights) in both representations would have

been generated by common indexers as discussed in Chapter 2. Augmentation of probabilities in

the augmented document could be achieved by deriving a simple mean of the term probabilities

in both propagation destination and propagation source. For the example in Figure 4.2, the term

probabilities in the augmented destination document dAD could thus be given by the estimate

P(t|dAD) :=
1
2

P(t|dD)+
1
2

P(t|dS) (4.1)

where dD is the evidence destination document, and dS is the evidence source document. For

a larger number of evidence sources, the augmentation of document term probabilities could be

modelled as a weighted sum over the evidence source probabilities. For a document d, which is

augmented by n evidence sources, the augmented probabilities could be estimated as:

P(t|dAD) :=
1

n+1
P(t|dD)+ ∑

1···n

1
n+1

P(t|ei) (4.2)

Figure 4.3 shows how such evidence propagation schemes could be implemented in Proba-

bilistic Datalog.

While such a naive probabilistic evidence propagation is conceptually simple and easy to

implement, it suffers from two problems. Firstly, the reliability of evidence is not accounted for.

Every source of evidence is treated equal, such that unreliable sources of evidence contribute
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aug term(T,D) :− term(T,D) | (D).
aug term(T,D) :− link (D,D2) & term(T,D2) | (D2).

w aug term INDEPENDENT(T,D) :− aug term(T,D).

Figure 4.3: Probabilistic Datalog expression to perform probabilistic term augmentation.

as much to the augmented probability as very trustworthy ones. However, this problem can

be mitigated easily, by not applying a linear weight across all sources of evidence, but instead

weighting evidence sources by some reliability criterion.

The second problem concerns the stability of evidence probabilities. A probability could be

considered stable if minor changes to the document representation from which the probabilities

were derived does not lead to major changes in the probabilities. Suppose the occurrence prob-

ability of a term t in a collection c of documents is estimated by the quotient of locations of t,

nL(t,c), and the total number of locations in c, NL(c): P(t|c) = nL(t,c)
NL(c) . If t occurs 1,000 times in a

collection of 100,000 locations, the probability P(t|c) would be 0.01. Suppose we are adding an-

other document to the collection, which consists of 100 locations, eight of which would contain

t. In this case, the probability P(t|c) would change to 0.01006993. For all intents and purposes,

the probability P(t|c) remains unchanged, and can thus be considered stable.

As a second example, suppose that t occurs 10 times in a collection of 1,000 locations.

The Probability of observing t in c would again be 0.01. Again, we are adding a document

to the collection, which consists of 100 locations, and where t again occurs eight times. Here,

the probability P(t|c) changes to 0.0163634. This change of P(t|c) could make a difference at

retrieval time; we would therefore not consider the probability stable.

While it would be possible to counter the instability of probability estimates by adjusting the

weights, this cannot be done as easily as for the reliability of evidence. Where the reliability

of evidence is a measure which could be aggregated by a system over time, or could be derived

from aggregating the reliability scores of a number of systems, the stability of a probabilities

would have to be reported by the sources of evidence themselves. Highly reliable evidence

sources would thus receive a discounted weight, whereas less reliable sources might receive a

boosted weight for more stable statistics. However, this leads to the question of how reliable

a reported stable statistic from an unreliable source is. The complexities arising from these

problems would warrant a much closer investigation, which is out of scope for this dissertation.
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The problems mentioned suggest that term probability augmentation should only be carried out

where a) sources of evidence are reliable, or reliability does not matter, and b) probabilities are

stable, or stability does not matter.

4.1.2 Term-Frequency Propagation

Total: 900 Loc.

31 term3

52 term1
17 term2

23 term1
32 term2
10 term3

Evidence Destin. Evidence Source

Total: 1500 Loc.

Figure 4.4: Term-frequency propagation: frequency evidence is pushed from the source to the
destination.

The second type of evidence propagation, the term frequency propagation, overcomes some

of the problems mentioned for propagating term probabilities. Here, instead of propagating the

probabilities of terms as derived from the frequencies, the actual frequencies serve as evidence

to augment probabilities at the evidence propagation destination. An example of this is shown in

Figure 4.4.

Suppose that we are again interested in the linear occurrence probability P(t|dAD), which is

estimated as the number of locations nL(t,d) of term t divided by the total number of locations

NL(d) . For the given example, we can estimate the probability as

P(t|dAD) :=
nL(dD, t)+nL(dS, t)

NL(dD)+NL(dS)
(4.3)

or, following the discussion of probability propagation, can estimate the general probability

P(t|dAD) for n sources of evidence as

P(t|dAD) :=
nL(t,dD)+ ∑

1···n
nL(t,ei)

NL(dD)+ ∑
1···n

NL(ei)
(4.4)

Figure 4.5 shows the implementation of a frequency-based term augmentation strategy in

Probabilistic Datalog.
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aug term(T,D) :− freq term (T,D).
aug term(T,D) :− link (D,D2) & freq term(T,D2).
freq aug term DISJOINT(T,D) :− aug term(T,D).

aug loc (D) :− locations (D).
aug loc (D) :− link (D,D2) & locations (D2).
freq aug loc DISJOINT(D) :− aug log(D).

w aug term(T,D) :− freq aug term (T,D) & aug loc(D) | (D).

Figure 4.5: Probabilistic Datalog expression to perform frequency-based term augmentation.

Augmenting term probabilities based on frequencies in this way overcomes the problem of

assessing the stability of probabilities: since the final, augmented estimate is derived directly

from the total observed term occurrences, sparse evidence – for which probabilistic augmenta-

tion would have provided an unstable estimate – has only a small impact on the overall term

probabilities.

The problem of unreliable evidence sources is still present in the frequency propagation

scheme, however, it can still be mitigated by weighting frequencies according to a source’s reli-

ability.

In retrieval tasks where evidence propagation is used, both augmentation strategies can usu-

ally be used interchangeably. For the remainder of this chapter, we will only refer to the more

general concept of knowledge augmentation and evidence propagation, without providing details

as to which specific strategy is used.

With the actual evidence propagation operations laid out, we can now turn to information

retrieval tasks which use evidence propagation and knowledge augmentation to rank elements.

4.2 Summarisation

We will start the discussion of augmentation in summarisation by taking a high abstraction point

of view of summarisation. For the purpose of summarisation, a document is a concatenation of

subelements, a subset of which would provide a good summary of the document. For example,

Figure 4.6 depicts a document which is a concatenation of sentences (labelled 1 to n). The set

of all sentences forms the entire document, while a specific subset (or specific subsets, as there

might be more than one) form good summaries of the document.

Here, evidence and knowledge is pushed from the sentences to the entire document. More
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Sentence−n

Document

Sentence−2Sentence−1

Figure 4.6: Summarisation: evidence provided by the sentences is propagated to the entire doc-
ument. Summarisation restricts the document tree to the most highly contributing sentences.

generally, we might say that evidence and knowledge is pushed from the potentially summary-

forming elements to the context to be summarised (a point we will discuss in greater detail in later

chapters). The task of automatic summarisation is then to identify the most important concepts

(i.e. items of evidence / knowledge), and to select those sentences which most highly contribute

to them.

To illustrate, we will discuss one way to achieve these two goals. To identify the most impor-

tant concepts discussed in a document, one could count the number of evidence sources which

contribute to the item of knowledge in the evidence destination. For the example shown in Figure

4.6, this would reduce to counting the number of sentences which contribute to knowledge items

in the document. Those items which are contributed to by the most sentences would regarded as

the most salient concepts discussed in the document.

As a second step, the set of sentences to form the summary needs to be found. Again, we

will provide one exemplary way of achieving this. Suppose that we have identified the most

salient concepts in a document, in the way outlined above. To select the set of sentences to form

the summary, we could prune the evidence propagation tree, by removing all nodes which do

not contribute evidence or knowledge to the most salient concepts, or only provide very sparse

evidence. The summary would then consist of those sentences which are the most significant

sources of evidence for the most salient concepts.

We argue that document summarisation is similar to other retrieval tasks from a conceptual

point of view, in that they all share evidence propagation and knowledge augmentation schemes

(as shown in Figure 4.1). In all the retrieval task discussed in this chapter, the retrieval models

incorporate outside evidence (i.e. evidence not found in the document or other retrieval element

to be processed itself) into processes such as probability estimation or modelling retrieval mod-

els. To show this similarity, we now compare the abstract view of summarisation developed
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previously to high abstraction views of three other retrieval tasks: anchor-text retrieval, website

partitioning, and structured document retrieval.

4.3 Anchor-text Retrieval

Anchor-text retrieval is a link-based ranking method, where evidence from hyperlinks is prop-

agated to documents (Craswell et al. (2001a)). A hyperlink is a relationship between two doc-

uments, such that the link is placed at the evidence source, and provides a description of the

evidence destination. This destination description is called anchor text. For example, a web page

linking to the main Queen Mary, University of London web page would contain in its HTML

code a hyperlink of the following form:

<A HREF="http://www.qmul.ac.uk">Queen Mary, University of London</A>

Here, http://www.qmul.ac.uk is the location of the link destination, and Queen

Mary, University of London is the anchor text. Only the anchor text is displayed in the

source document. When a user clicks on the anchor, the destination page is displayed. Anchor-

text retrieval attempts to exploit the information provided by the anchor-text, by incorporating

this evidence into link destinations when ranking documents.

Anchor Description

www.a.comwww.b.com

0.2 term1
0.5 term2
0.1 term30.3 term3

0.1 term1
0.4 term2

Figure 4.7: Anchor-text retrieval: evidence provided by the anchor-text is propagated to the
evidence destination “www.b.com”.

For example, Figure 4.7 depicts the situation were a page www.a.com links to a page

www.b.com, using the anchor-text “Anchor Description”. The link destination “www.b.com”

does not contain either of the two terms, so normally it would not be retrieved in response to a

query with those terms. However, via the mechanism of evidence propagation, both terms are

added to the representation of “www.b.com”, such that it would be retrieved for a corresponding

query.

Anchor-text retrieval is a more specific form of general link-based retrieval methods, and as

such only makes use of the anchor description assumption (ignoring both the recommendation
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assumption (Brin and Page (1998); Kleinberg (1999)) and the topic locality assumption (Davison

(2000)) used by general link-based retrieval methods). The anchor description assumption states

that the anchor-text of a link describes its target. Using the earlier example, the text “Queen

Mary, University of London” is a description of the destination www.qmul.ac.uk. Assuming

correctness of the anchor description assumption, it is reasonable to treat terms in the anchor-text

as belonging to the link destination, rather than (or in addition to) the link source (Brin and Page

(1998); McBryan (1994)).

Although link-based retrieval methods and the propagation of anchor-text evidence seem

reasonable to improve the quality of retrieval, results of experimental evaluations have been

mixed. Experiments on the TREC web-track (Hawking et al. (1999)) have found that link-based

retrieval methods performed not better than non link-based methods for search tasks. However,

Craswell et al. report significant effectiveness improvements for the task of website finding when

comparing an anchor-text retrieval method to a non link-based method (Craswell et al. (2001a)).

Recently, research on anchor-text retrieval has expanded into non web-IR retrieval scenarios.

Wu et al. report on the application of link-based retrieval in the context of book-search, where

the task is to find best entry points in books for specific queries (Craswell et al. (2001a); Wu et al.

(2008)). In their work, Wu et al. attempt to improve book search by propagating back-of-book-

index (BOBI) information to the pages linked by the index. However, they argue that a “naive”

propagation of term information would not result in significant changes in term probabilities, as

the BOBI would provide very sparse information. Instead, they develop a more advanced “voter”

model. Unfortunately, no actual performance figures are reported.

4.4 Website Partitioning

The field of website partitioning is concerned with detecting the constituent blocks of a webpage

(such as text spans, or a group of input boxes), and to determine which blocks best describe

the website, or are most relevant to a given user query. Website partitioning could thus also be

considered to be a subclass of structured document retrieval, where the structure is not explicitly

available via element tags, but is instead hidden and only conveyed visually.

While the actual process of determining the best decomposition of a web page is beyond the

scope of this dissertation, Fersini et al. propose a term-weighting scheme for terms in visual

blocks where the weight of a term in one block is determined by the occurrence of the term in
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Figure 4.8: Web partitioning: Term weights in block 5 are influenced by term frequencies in
other blocks.

other blocks (Fersini et al. (2008); Cai et al. (2003)). This, again, can be considered an instance

of evidence propagation. In their work, Fersini et al. propose to retrieve visual blocks based on

a modified TF-IDF retrieval approach, where the TF component takes into account not only the

occurrence of terms in the block at hand, but reweights the terms according to their presence in

other, important, visual blocks. This so called Image Weighted Term Frequency IWTF is substi-

tuted for the traditional TF in the retrieval approach. The IWTF is a combination of the traditional

TF weight, and a term importance score TI, which is computed as the inverse of occurrences of a

term in other blocks, ITI: if a term occurs frequently in other blocks, it is considered important,

whereas a term which only occurs in one block is considered less important. The ITI of a term t

in visual block k of document j is defined as

IT Iik j :=
σ̄ik j

γ̄i j− σ̄ik j
(4.5)

where σ̄ik j is the number of occurrences of t in k, and γ̄i j is the number of occurrences of t in the

entire document j1.

1A somewhat problematic formulation: a term which only occurs in one block would have an undefined
ITI, as a division by zero would occur.
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The TI of a term ti in a document d j is then given as

T I(ti,d j) := max
k
{IT I−1

ik j } (4.6)

Here, evidence in the form of term frequencies is propagated between visual blocks. Figure

4.8 depicts the propagation of evidence for the case of five blocks, where blocks one to four

influence the term weights in block five.

4.5 Structured Document Retrieval

Structured document retrieval (SDR) is a comparatively recent addition to the family of informa-

tion retrieval tasks, and was largely motivated by the specification of the XML markup language

(Malik et al. (2006)). SDR differs from traditional IR ad-hoc retrieval in that retrieval does not

always retrieve entire documents, but also smaller document elements. This retrieval task – also

known as focused retrieval, is not only concerned with retrieving relevant elements, but also ele-

ments which are most specific for a given query, i.e. elements which contain as little information

not pertaining to the user query as possible.

Knowledge augmentation and evidence propagation are of central concern in SDR. We will

illustrate this with a sample document structure, depicted in Figure 4.9.

Sentence

Document

Section Section

ParagraphParagraph

Sentence

Figure 4.9: Structured Document Retrieval: Knowledge of subelements is pushed up the docu-
ment tree, and augments the knowledge of parent nodes.

In a well formed and well balanced structured document, the actual textual content will only

be present at the leaf nodes. In Figure 4.9, text would thus only be present in the sentences.

However, sentences in isolation might no be judged relevant for a given user query, whereas a

composition of sentences, such as a paragraph, might be both relevant and specific. However,

paragraphs do not have knowledge of their own (i.e. do not contain textual content), as it would
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violate the well-formedness of the document. Knowledge of paragraphs can thus only be acquired

by a process of knowledge augmentation, by pushing evidence from child-nodes up the document

hierarchy.

The knowledge of any non-leaf node is thus a composition of the knowledge of its childnodes.

SDR is very similar to anchor-text retrieval in this respect, where childnodes correspond to link-

sources, parentnodes correspond to link destinations, and the textual content of nodes (their

knowledge) corresponds to the anchor text.

The evidence propagation carried out for structured document retrieval similarly applies to

the summarisation of structured documents, and is therefore carried out for POLIS as well. We

will discuss these aspects in greater detail in Chapters 5 and 6.3.

4.6 Conclusion

This chapter highlights the parallelisms between summarisation and other information retrieval

tasks, based on the two related concepts of knowledge augmentation and evidence propaga-

tion. From the perspective of knowledge augmentation and evidence propagation, summarisation

sits alongside structured document retrieval (which pertains to the use of structure by POLIS),

Anchor-text retrieval, and website-partitioning.

All four retrieval tasks incorporate information from other items in the domain of interest

into the retrieval process, beyond the derivation of simple collection statistics as found in ad-hoc

retrieval. However, the tasks differently restrict the sources of additional knowledge to be in-

cluded in the retrieval process. Both summarisation and structured document retrieval consider

a tree-like hierarchy of items, in which knowledge is only propagated amongst nodes on the

same branch. There is thus a strict subpart-superpart relationship between the knowledge source

and the knowledge destination, and knowledge will usually propagate from subpart to superpart

(however, this is not a strict requirement). Websites, as processed by website-partitioning ap-

proaches, could be considered to be a subclass of structured documents, however, since content

of a website could be linked-in from another website, a set of websites is more similar to a graph

than a set of trees. This also holds certainly true for the case of anchor-text retrieval, where

hyperlinks between documents form a directed graph.

The purpose of comparing summarisation and the other retrieval tasks discussed in this chap-

ter is twofold. The summarisation models implemented by POLIS are derived from traditional
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retrieval tasks used in ad-hoc retrieval. By showing the similarity between summarisation and

tasks such as structured document retrieval, we provide a rationale for developing these sum-

marisation models.

Secondly, the parallels developed in this chapter all rely on the process of knowledge aug-

mentation and evidence propagation. The same process is also found in both the POLIS sum-

marisation models and the semantics we develop for POLIS in Chapter 6.3. This chapter thus

motivates the summarisation models developed in Chapter 5, and lays the foundations for the

POLIS semantics.
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Chapter 5

Summarisation Models

5.1 Introduction

The overall aim of the work discussed in this dissertation is the development of a summarisation

logic, which provides an abstraction layer to the task of document summarisation. We will start

the discussion on how to develop such a logic in this chapter, by looking at probabilistic models

for summarisation.

Document summarisation, both singe- and multi-document summarisation, is concerned with

identifying the most salient concepts (e.g. sentences) in the set of concepts to be summarised. To

postulate the existence of most salient concepts implies that there are also less salient concepts,

such that it becomes possible to order concepts by salience. In such an ordering, the highest

ranking concepts would be most salient (or most important), and should be included in a sum-

mary, while lower ranking concepts are not as important, and can therefore be disregarded when

generating a summary.

To arrive at this ordering, we first need to define a function who’s domain is a set of concepts

(namely those to be summarised), and who’s range is a set of concepts together with a numerical

value assigned to each individual concept. This numerical value is an indication of the importance

of a concept, and can be used to arrange concepts by importance. We will call this function the

summarisation model.

The purpose of the summarisation model is to assign numerical scores to individual concepts

for the task of arranging them by importance only; it is not supposed to “judge” concepts, as-
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signing numerical “grades” based on how informative or important they are in absolute terms.

To give a more concrete example, suppose a concept c1 is assigned a score of 1, and a second

concept c2 is given a score 1,000. This does not mean that c2 is 1,000 times as informative as c1,

but merely that it is more informative (or important) than c1, and would be given a higher rank in

a linear ordering of concepts.

In this chapter, we will develop several probabilistic summarisation models. Probabilistic

models have a long history in information retrieval to model numerous retrieval tasks. For the

most common information retrieval task, the ad-hoc document retrieval, probabilistic models

have been used to retrieve the most relevant documents, by measuring the probability P(d → q)

of a document implying a query.

In addition to ad-hoc retrieval, probabilistic models have been used as part of summarisation

systems at various stages of the summarisation process, for example as a probabilistic Bayesian

classifier (see Kupiec et al. (1995)) trained on selecting the most salient concepts , or to model

anaphora resolution (see Ge et al. (1998)).

Here, we will use the aforementioned ad-hoc retrieval models as a basis for developing our

own summarisation models. We will start the discussion by investigating the meaning of the

probability P(d → q), and how it has been implemented by a number of ad-hoc retrieval models.

We then investigate how these retrieval models can be modified to be applicable to document

summarisation.

Section 5.2 opens the discussion by introducing traditional ad-hoc retrieval models, and

shows how these retrieval models can be classified into disjunctive and conjunctive models.

Section 5.3 discusses how sentences (or elements at any other granularity) can be ranked for

summarisation according to the retrieval implication d → q. This is followed by section 5.4,

where we discuss both query-based and non query-based summarisation models implemented by

POLIS. Section 5.5 concludes the discussion.

5.2 Retrieval Models

The purpose of any ad-hoc retrieval model is to rank a set of documents according to their rele-

vance for a given query. In his seminal 1986 paper, Van Rijsbergen detailed that an estimation of

the relevance of a document d for a given query q should aim to measure “the extent to which q

might be inferred from d”, expressed as d → q (van Rijsbergen (1986)). To reflect the uncertainty
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Figure 5.1: Disjunctive and conjunctive probabilistic models.

of the retrieval process, the implication from d to q does not provide a simple true or false as it

would in a propositional logic, but instead yields a probability of implication, P(d → q), which

measures the extent to which d is relevant to q.

Following Van Rijsbergen, the probability P(d → q) can be rewritten as the conditional prob-

ability P(q|d). This conditional probability is the foundation for almost all probabilistic ad-hoc

retrieval models, and is estimated based on the occurrence of terms in documents and queries.

While the number of retrieval models based on this conditional probability is fairly large, all of

them are based on one of two assumptions for estimating the probability of observing a term

in a document: a disjunctive interpretation, or a conjunctive interpretation. We will use the re-

trieval models developed here as the basis of our summarisation models (see Figure 5.1), and will

successively fill the four cells in the figure in this chapter.

5.2.1 Disjunctive Combination of Terms

The first family of retrieval models treats terms in the term-space as disjunctive events. Members

of this family of models are characterised by retrieval functions which combine evidence with

respect to the query terms in a disjunctive fashion.

The most prominent members of this family are the retrieval models belonging to the family

of TF-IDF ad-hoc retrieval models (Salton and Buckley (1988)). Although TF-IDF retrieval

models in the traditional sense do not probabilistically model the term-space and the retrieval

function, it is possible to interpret TF-IDF as a probabilistic retrieval function (Hiemstra (2000));

we will follow this interpretation here.

TF-IDF is a combination of two weights: the term-frequency TF, and the inverse document
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frequency IDF, which measures the informativeness of a term. The informativeness of a term is

inversely proportional to the number of documents it occurs in: the fewer documents it occurs in,

the more informative it is (Jones (1972)). The IDF value of a term t with respect to a collection

c can therefore be estimated as (Robertson (2004)):

idf(t,c) := − log
nD(t,c)
ND(c)

=− logPD(t|c) (5.1)

where nD(t,c) is the number of documents in c which contain t, and ND(c) is the total number

of documents in c. Estimating IDF as a fraction of nD(t,c) and ND(c) is equivalent to the inverse

log of PD(t|c). In addition to measuring the informativeness of a term, IDF can also be seen as a

measure of term discriminativeness, i.e. a measure of how well a term can discriminate between

documents.

In this formulation, both TF and IDF are heuristically defined, and can take arbitrary values.

However, it is also possible to derive a probabilistic formulation of TF-IDF from this heuris-

tic one. In this probabilistic formulation, the term-frequency TF of a term t in document d is

modelled by the probability of observing the term t in document d; TF is thus modelled as the

conditional probability P(t|d). There are several ways in which this conditional probability can

be estimated, which we will discuss later in this chapter.

A probabilistic formulation if IDF is not as immediate as the formulation of TF. The formu-

lation of idf(t,c) shows that IDF can be modelled via the inverse logarithm − logPD(t|c). The

retrieval probability P(d → q), however, does not refer to the document collection c (this also

holds for the rewritten formulation P(q|d)). However, rewriting this conditional probability can

lead to a probabilistic IDF estimate using the collection c. It is possible to rewrite the conditional

probability P(q|d), assuming that terms are disjoint, as the two partial probabilities P(t|d) and

P(t|q):

P(q|d) = ∑
t

P(t|d)P(q|t) (5.2)

Here, P(t|d) follows the estimation shown for TF. The second probability P(q|t) measures

the probability of observing the query q (the event q) given the term t. If t only occurs in this

query q, the probability P(q|t) will be 1.0. However, with increasing occurrences of t in members

of the set of all possible queries, the probability P(q|t) decreases; P(q|t) thus exhibits a measure

of discriminativeness of terms also found in IDF. The same line of reasoning would also hold
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for a (hypothetical) probability P(d|t), which would estimate the discriminativeness of a term t

with respect to the set of all documents. More general, it would thus be possible to say that any

probability P(c|t) estimates the discriminativeness of a term t with respect to the collection c. In

the TF-IDF model, P(t|d) and P(c|t) are combined conjunctively, over a disjunctive set of terms.

The canonical version of TF-IDF is given as

RSV(d,q) := ∑
t∈q

TF(t,d)· IDF(t,c) (5.3)

⇓
P(q|d) := ∑

t∈q
P(t|d)·P(c|t) (5.4)

The disjunction of independent terms is modelled as the sum over all query terms, whereas

the per-term evidence is the conjunction of P(t|d) and P(c|t). Variations of the TF-IDF model

differ in their maximum likelihood estimate of the evidence probabilities. While the IDF com-

ponent remains largely fixed, there are several ways in which the document based probability

P(t|d) can be estimated.

5.2.1.1 Linear Occurrence-based Estimates

The linear occurrence-based estimate of P(t|d) is one of the simplest, and directly models the

notion that P(t|d) is based on the frequency with which a term occurs in a document. The linear

estimate can be modelled by several strategies, common ones being the maximum likelihood

estimate of observing a term, and an estimate based on the maximum term frequency.

The maximum likelihood probability of observing t in d can be estimated as the fraction of

occurrences of t given the total number of locations in d. Formally,

PML(t|d) :=
nL(t,d)
NL(d)

(5.5)

where nL(t,d) is the number of occurrences of t in d, and NL(d) is the total number of loca-

tions in d. However, estimating the probability P(t|d) using this maximum likelihood estimate

leads to a bias in favour of short documents: irrespective of the actual query, the probability for a

short document to be ranked high is larger than the probability of a long document to be ranked

high. One way to compensate for this bias is to include a document length normalisation into the

estimation of the TF. This can either be done by including information about the actual length of

the document (as is the case with the BM25 TF estimate, discussed below), or by normalising

the per-term TF by the highest scoring term.
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This latter TF estimate works by modelling the probability P(t|d) as the frequency of t with

respect to the most frequent term tmax. Whereas in the maximum likelihood estimate the proba-

bility of a rare term (such as a term occurring only once) would decrease for longer documents,

its probability remains fixed with respect to the maximum frequency term in the maximum fre-

quency estimate, assuming that longer document introduce a larger set of distinct terms, not just

more occurrences of the same terms (e.g. Robertson and Walker (1994)). The actual estimate of

Pmax(t|d) can be formalised as

Pmax(t|d) :=
nL(t,d)

nL(tmax,d)
(5.6)

where nL(t,d) is the number of occurrences of term t in document d, and nL(tmax,d) is the

number of occurrences of the most frequent term in d. Performance evaluations indicate that esti-

mating P(t|d) using the maximum frequency works better than the maximum likelihood estimate

(Singhal et al. (1996)).

5.2.1.2 Non-linear BM25-like Estimates

All estimates for the probability of observing a term in a document outlined in the previous

section were based on linear estimates. In this section, we will look at non-linear estimates.

Non-linear estimates are associated with the concept of “boosting” the probability of observing

rare terms in documents, thus narrowing the range of observed probabilities.

The use of non-linear TF estimates was popularised by the Okapi BM25 weighting function,

which included a boosting function based on the fraction of a document’s length with respect

to the average document length (Robertson et al. (1992)). Robertson et al. motivate the use of

such a non-linear term-probability estimates with the amount of information gained from ob-

serving a term: observing a term for the first time yields greater information than any subsequent

observations (Robertson et al. (2004)). In BM25, the probability PBM25(t|d) is estimated as

PBM25(t|d) :=
nL(t,d)

nL(t,d)+K
(5.7)

where nL(t,d) is the number of occurrences of t in d, and K is the boosting function. The

value of K is set such that it is proportional to the fraction of the length of d and the average

document length
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K ∝ NL(d)
avgdl(c)

, (5.8)

and can be formally given as

K := k1×
(

(1−b)+b× NL(d)
avgdl(c)

)
. (5.9)

Here, NL(d) is the length of document d, and avgdl(c) is the average length of documents in

the collection c; k1 and b are free parameters, and are commonly reported to be set to 2.0 and

0.75, respectively. One advantage of modelling P(t|d) using this approach is the inclusion of a

document-length normalisation directly into the probability estimation process. A disadvantage

of modelling P(t|d) in this way is that it is necessary to obtain collection statistics before the

probability can be estimated. To overcome this problem, it is possible to combine the non-linear

estimate of BM25 with a within-document term statistic only, not using collection statistics. In

this approach, the K of BM25 is replaced with the average frequency with which terms occur

in a document. Using this estimate, it is possible to relate the TF-IDF retrieval model to the

Poisson retrieval model (Roelleke and Wang (2006)); we therefore refer to the resulting estimate

as PPoisson(t|d). The estimate can formally be given as:

PPoisson(t|d) :=
nL(t,d)

nL(t,d)+nL(tavg,d)
(5.10)

where nL(t,d) is the number of occurrences of t in d, and nL(tavg,d) is the average number

of occurrences of a term in d.

5.2.2 Conjunctive Combination of Terms

The second family of retrieval models is characterised by treating terms in the term-space as con-

junctive events. We will focus on the most prominent of these models, the Language Modelling

ad-hoc retrieval model (Ponte and Croft (1998); Croft and Lafferty (2003)). The Language Mod-

elling retrieval model is inspired by research in the field of natural language processing, such as

speech recognition. Where retrieval models such as TF-IDF or BIR attempt to predict the prob-

ability that a document is relevant for a given query, LM tries to predict how likely a document

generated the given query. For a query q and a document d, the canonical model of Language

Modelling can be formulated as
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P(q|d) := ∏
t∈q

P(t|d) (5.11)

where P(q|d) is the probability that d generates q, and P(t|d) is the likelihood of observing t

in d. The model thus combines individual term probabilities in a conjunctive fashion.

Language Modelling assumes that for every document, a document model exists, which pro-

duces terms with a certain probability. The actual document itself is generated by repeatedly

sampling the document model. The probability P(q|d) is approximated by estimating the like-

lihood that the document model generated the query q. However, the document model itself is

inaccessible, and the likelihood that a model will generate a specific term has to be estimated

from the given document (which is an incomplete sample of the document model). To counter

zero probabilities for terms not observed in the document (which might have been produced by

the document model, if the sample – the document – would have been longer), Language Mod-

elling incorporates a background model into the estimation of P(q|d), which is the likelihood of

observing the term when sampling any random document model in the collection.

The ranking probability P(q|d) is thus estimated using two sources of evidence: the term-

document probability P(t|d), and the term-collection probability P(t|c). Both P(t|d) and P(t|c)

are ordinarily estimated as linear, occurrence-based measures. To combine the two sources of

evidence, LM disjunctively combines both probabilities using a smoothing method. Several such

smoothing methods exists (see (Zhai and Lafferty (2001)) for an overview and a performance

evaluation); here, we will only focus on the Jelinek-Mercer smoother, which estimates P(q|d)

as a weighted linear combination of P(t|d) and P(t|c), using a weighting parameter λ . The

Language Modelling retrieval function using the Jelinek-Mercer smoother can be formally stated

as:

P(q|d) := ∏
t∈q

(1−λ )·P(t|d)+λ ·P(t|c) (5.12)

While Language Modelling estimates the probability P(q|d) via a conjunction of independent

terms, the evidence is combined disjunctively. This is evident for the Jelinek-Mercer smoother,

but also holds for other smoothing operations, such as Dirichlet, or Absolute Discounting.
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5.3 Summary-Element Weighting by P(d → q)

In the previous section we looked at ways in which traditional ad-hoc retrieval models estimate

the probability P(q|d), and thus ultimately the probability P(d → q). Before we can start do

derive summarisation models from these ad-hoc retrieval models, we need to look at the way

in which the implication probability P(d → q) can be interpreted in the context of document

summarisation.

While it is possible to reformulate P(d → q) as P(q|d) to ease the implementation of models

estimating it, it is more “intuitive” to reason about the retrieval process in terms of an implication

from a document d to a query q, than to consider the conditional probability of a query q given

a document d. A document should be ranked high if it strongly implies the query; it should be

ranked high if it is “about” the query. We can extend this intuitive notion of the relevance based

ranking of documents to a relevance based ranking of summary elements, by saying that such

elements should be as much “about” the source as possible. For example, when summarising

a single document by extracting sentences from the document, the extracted sentences should

be as much “about” the document as possible. However, this definition of “aboutness” should

not be limited to single documents. The example would be equally valid for multi document

summarisation, where sentences should be as much “about” the set of documents as possible.

We therefore need to find more generalised expressions for such concepts as “sentence” or

“document”. The purpose of a summarisation logic such as POLIS is to provide an abstraction

layer to the task of summarisation, and to allow for more flexible strategies for the summary

generation. Summaries will therefore not necessarily be build from sentences, but from textual

material at any possible level of granularity. To accommodate this flexibility in our discussion of

summarisation models, we will refer to these text-extracts as elements. A sentence is an element,

however, an element could also be a paragraph, or – suitable document markup permitting –

sub-sentence fragments.

Similarly, a summarisation logic should be able to perform both single- and multi-document

summarisation. For our discussion, we thus need a suitable term to address both a single docu-

ment in single-document summarisation, and a set of documents in multi-document summarisa-

tion. We will use the term context in our discussion of summarisation models to refer to the “data”

to be summarised; in single-document summarisation, the context would be the single document,

while in multi-document summarisation, it would be the set of documents to be summarised.
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With this terminology, we can now give a conceptual definition as to how a summariser

should rank elements. While ad-hoc retrieval models should rank documents according to their

“aboutness” for a given query, summarisation models should rank elements according to their

“aboutness” with respect to their context. Following the idea that documents should be ranked

according to the degree to which they imply a query, elements should be ranked according to

the degree to which they imply their context: P(e→ c). Under this interpretation, elements take

the role of documents for the purpose of ranking, while the context takes the role of the query.

Following Van Rijsbergen, the probability P(e → c) can thus be rewritten as the conditional

probability P(c|e).

However, in addition to the distinction between single- and multi-document summarisation,

automatic summariser can also be classified as either generic or query-based, where in the latter

case the weighting of elements should additionally based on a given query. Again using a condi-

tional probability as an importance measure, we could incorporate a query q into the formulation

either as a source of evidence, resulting in the conditional probability P(c|e,q), or as an addi-

tional event conditioned on an element, resulting in the conditional probability P(c,q|e). In the

next section, we will look at ways in which the conceptual summarisation model P(c|e) and its

query-based variant can be implemented by reformulating the outlined ad-hoc retrieval models.

5.4 Summarisation Models

To develop our summarisation models, we will again distinguish between a disjunctive and a

conjunctive collection of evidence in the form of term probabilities. We will also discuss the

shortcomings of the traditional retrieval models for application to summarisation, and present

possible solutions, leading to new, ad-hoc retrieval inspired summarisation models.

5.4.1 Non Query-based Models

The first class of summarisation models we look at are the so called non query-based or generic

models. These models do not consider any external evidence (such as a query) for estimating the

salience of an element, and instead rely entirely on the context and element evidence.

5.4.1.1 Disjunctive Models

We mentioned in the background section on disjunctive TF-IDF models that the canonical form

of such models is
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P(q|d) := ∑
t∈q

P(t|d)·P(q|t) (5.13)

where P(q|t) is an informativeness probability rather than an occurrence based probability.

We discussed on page 76 that the informativeness probability P(q|t) can also be captured by the

more general notation P(c|t), by which we can express the TF-IDF models as

P(q|d) := ∑
t∈q

P(t|d)·P(c|t) (5.14)

By substituting e for d, and c for q, we would arrive at the first summarisation model:

P(c|e) := ∑
t∈c

P(t|e)·P(X |t) (5.15)

However, this formulation is problematic with respect to the second probabilistic estimate,

the informativeness based probability P(X |t). For classical ad-hoc retrieval, the X in the second

conditional probability would be the collection c, so that the probability provides a collection

statistic of the form P(c|t).

The probability P(c|t) is a discriminativeness measure to give higher weights to documents

(here: elements) containing informative terms, and relies on a well defined term-space to be

meaningful. A typical document collection for ad-hoc retrieval will fulfil these requirements by

providing a heterogeneous document collection with varying topics, and a sample space large

enough to acquire meaningful probabilities. These two properties typically do not hold in the

context of summarisation.

Firstly, the context to be summarised will either consist of a single document (which by def-

inition is not heterogeneous), or will be made up of documents concerned with a common topic,

so that divergence between documents is smaller than for a collection of documents covering

multiple topics. Secondly, the size of the context to be summarised will be smaller than a typical

document collection by several orders of magnitude, so that informativeness or discriminative-

ness statistics will be sparse and not as reliable as they are for full collections.

Another problem with using the traditional IDF in the context summarisation lies in the

independence of elements and collections. In a collection for ad-hoc retrieval, documents are

truly independent from each other, and collection is a construct that only comes into existence by

the definition that a set of documents is a collection. However, for summarisation, all elements
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are actual subparts of the context to be summarised, not merely information carriers contained

in a random grouping. This dependence between elements and contexts alone puts the strong

discriminativeness of IDF in question.

To overcome these shortcomings associated with strong discriminativeness of the IDF, we

propose to rank elements by a ranking model that uses a “soft” discriminativeness, which is less

dependent on the assumptions outlined for the IDF. We model this “soft” discriminativeness with

a sublinear mixture of the element term frequency P(t|e), and the context term frequency P(t|c).

This sublinear mixture is modelled on the TF component of the BM25 retrieval model (Robertson

et al. (1992)), where the probability of a term in a document is estimated using a document length

normalisation based on a sublinear mixture of the form

P(t|d) :=
nL(t,d)

nL(t,d)+K
(5.16)

where K is a normalisation factor proportional to the fraction of document length and average

document length (i.e. K ∝ NL(D)
avgdl(c) ).

To estimate our “soft” discriminativeness, we combine P(t|e) and P(t|c) in a similar mixture,

where the context probability P(t|c) is inserted in position of the normalisation parameter K. We

start by observing that the probability P(c|e) can be estimated as a combination over all terms in

both e and c:

P(c|e) = ∑
t

P(t|e,c) (5.17)

However, we now need to estimate the probability P(t|e,c). To do so, we propose to combine

P(t|e) and P(t|c) in the nonlinear mixture found in the BM25 model. We thus arrive at the final

estimate for P(c|e):

P(c|e) := ∑
t∈e

P(t|e)
P(t|e)+P(t|c)

(5.18)

Here, the collection probability P(t|c) acts as a boost for term probabilities, such that terms

with a low element probability and a low context probability receive a strong boost, whereas the

boost levels off for terms which are prominent among many elements. The collection probability

P(t|c) thus acts like an informativeness measure, by giving a higher probability to terms which

are rare among all elements of a context.
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This ranking model will be our base ranking model, which we will also use as a basis for one

of the query-based models in the next section.

5.4.1.2 Conjunctive Models

Similarly to the disjunctive models, we can translate the conjunctive Language Modelling ap-

proach to be applicable to summarisation. Again starting from the canonical model, we can

derive a conjunctive summarisation model:

P(c|e) := ∏
t∈c

P(t|e) (5.19)

Including a background model to account for the case of zero probabilities, and using a

Jelinek-Mercer smoother, a summarisation model based on the Language Modelling retrieval

model can be given as:

P(c|e) := ∏
t∈c

(1−λ )·P(t|e)+λ ·P(t|X) (5.20)

However, here the lack of a proper collection statistic is even more pronounced than for the

disjunctive models. The ad-hoc retrieval model distinguished between three sources of evidence:

the query, the documents, and the collection. If we assume that contexts take the role of a query

for summarisation, it would be highly problematic to also use context statistics as a background

model. Completely disregarding the background model, however, would lead to a zero probabil-

ity problem in cases where an element does not contain a term present in the context. Since it is

highly unlikely that every element contains all terms present in the larger context, this would be

the case for almost any element.

Additionally, the problems with respect to the heterogeneity and size of the sample space

mentioned for the disjunctive models also hold here. We therefore did not try to derive a non

query-based summarisation model from the conjunctive ad-hoc retrieval models.

5.4.2 Query-based Models

As a second class of summarisation models, we will now investigate the inclusion of queries

into the summarisation process. The terminology for these models varies (commonly used are

“query-based”, “query-biased”, “user-centered”), we will call them query-based summarisation

models here. The generic, non query-based models discussed in the previous section estimate

the importance of an element e by modelling the conditional probability P(c|e). The query-
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based models developed here additionally include a query q into the estimation process, such

that an element is not only “about” its context, but also “about” the given query.

5.4.2.1 P(c|q,e) or P(c,q|e)?

The non query-based models estimate the importance of an element e by modelling the condi-

tional probability of observing the context c given e: P(c|e). To include a query bias, the query

q needs to be included in the estimation process. However, this can be done in (at least) two

ways: q could be either included as evidence, such that elements are ranked by the probability

P(c|q,e), or q could be modelled as an event conditioned on e, such that the ranking probability

is P(c,q|e).

Following our approach of modelling summarisation on ad-hoc retrieval, it seems more rea-

sonable to assume that q should be conditioned on observing e: ad-hoc retrieval ranks documents

by the conditional probability P(q|d), so summarisation should rank elements by the probability

P(q|e). Query-biased summaries are thus the non query-based “aboutness” probability P(c|e)

in conjunction with the query probability P(q|e). On the other hand, an estimate of the form

P(c|q,e) would indicate a ranking of the query with respect to the context.

The query-based summarisation models discussed in the remainder of this section therefore

estimate the importance of an element by modelling the probability P(c,q|e). We will develop

two query-based models: a macro-averaging model, which estimates P(c|e) and P(q|e) inde-

pendently and combines both probabilities to estimate P(c,q|e), and a micro-averaging model,

which estimates P(c,q|e) in an integrated fashion.

5.4.2.2 Macroaveraging Model

The macroaveraging model is an additive model, where the ranking probability P(c,q|e) is mod-

elled by estimating the two probabilities P(c|e) and P(q|e) independently, and combining them

in a suitable way. The partial probability P(c|e) is identical to the base model we presented in

the previous section, and can therefore be estimated using the base model.

The second partial probability, P(q|e), is an instance of ad-hoc retrieval, where elements

take the role of documents. Again, the small size of the sample space limits the accuracy of

informativeness probabilities, however, here there is no overlap in the definition of query and

context, as was the case for the conjunctive non query-based model. The probability P(q|e) can

therefore be estimated by any ad-hoc retrieval algorithm seen fit.

Both probabilities are combined to give an overall estimate of the ranking probability P(c,q|e).
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The canonical form of the macroaveraging model can thus be given as

P(c,q|e) := P(c|e)⊕P(q|e) (5.21)

where P(c|e) is estimated using the summarisation base model, P(q|e) is estimated using

any suitable ad-hoc retrieval model, such as TF-IDF or Language Modelling, and ⊕ is a suitable

function to combine P(c|e) and P(q|e). The combination function ⊕ could be modelled using a

weighted linear addition, or, interpreting both P(c|e) and P(q|e) as independent events, could be

based on a probabilistic OR, using the inclusion-exclusion principle.

We call this model the macroaveraging model, as both P(c|e) and P(q|e) are estimated inde-

pendently, and are combined only on the level of individual elements. Information about individ-

ual term probabilities is lost in the process. We will therefore now investigate a second model,

where individual term probabilities are retained.

5.4.2.3 Microaveraging Model

Our second query-based summarisation model, the microaveraging model, does not rely on the

non query-based base model for estimating P(c|e). Instead, the query-based probability P(c,q|e)

is estimated using an integrated model, based on individual term probabilities. This estimate

relies on the theorem of total probability. Using the Total Probability Theorem, we interpret a

context c as an event, the probability of which can be estimated by a series of partial conditional

probabilities, conditioned on the individual terms in the term space.

An initial decomposition on the term space, using the theorem of total probability, thus allows

us to rewrite P(c,q|e) as

P(c,q|e) = ∑
t∈e

P(c,q|t)·P(t|e) (5.22)

This decomposition requires an estimation of the (unknown) probability P(c,q|t), which

could be based on a weighted linear combination of the two probabilities P(c|t) and P(q|t),

such that the overall formulation for P(c,q|e) could be defined as

P(c,q|e) = ∑
t∈e

λ ·(P(c|t)+(1−λ )·P(q|t))·P(t|e) (5.23)

This decomposition, however, is problematic for the aim of ranking elements with respect

to a query and the context. Here, both P(c|t) and P(q|t) – which could be interpreted as a
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linear occurrence probability, or an informativeness probability – are static for all elements with

respect to the context and a given query, such that a ranking of elements would only be based

on the within-element probability P(t|e). Instead, it would be more suitable to have a static

informativeness probability derived from the context, and a ranking of elements according to

similarity with the query.

We therefore propose to estimate the ranking probability P(c,q|e) using two partial, con-

ditional probabilities, P(c|t) and P(t|e,q), which range over all terms in an element e. The

probability P(c,q|e) is thus estimated as

P(c,q|e) := ∑
t∈e

P(c|t)·P(t|e,q). (5.24)

However, there are two problems with this formulation. Firstly, the probability P(c|t) could

be interpreted as either an occurrence probability, or as an informativeness probability. If P(c|t)

is estimated as a linear occurrence probability, its value will always be 1.0, as summarisation in

POLIS is based on a single context to be summarised. While this seems like a major defect in

the formulation, it has a surprisingly limited effect on the performance of the model (see Chapter

7). It would also be possible to interpret P(c|t) as an informativeness probability, with the char-

acteristics of the traditional IDF formulation. The resulting model would be a microaveraging

model with an added IDF weight (i.e. a “microaveraging-IDF”), where the IDF weight of a term

with respect to the context is determined by the number of elements the term occurs in: a term

occurring in many elements receives a low score, while a rare term is given a higher weight.

Secondly, information about the probability P(t|e,q) is not directly observable, and needs to

be estimate in an appropriate way. The problem of estimating the joint conditional probability of

two events given the individual conditional events is fairly common in the context of Bayesian

Inference Networks. One possibility to estimate the joint probability is to combine the partial

probabilities in a suitable way. The joint conditional probability P(t|e,q) can thus be estimated

as

P(t|e,q) := P(t|e)⊕P(t|q) (5.25)

where P(t|e) and P(t|q) are the two partial probabilities of observing a term t in an element e

or the query q, respectively, and ⊕ is a suitable combination function, such as a weighted linear

combination, or, viewing terms as events, a combination using the inclusion-exclusion principle.
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POLIS-Base model:

N/A

P(c|e) := ∑
t∈e

P(t|e)
P(t|e)+P(t|c)

POLIS-macroaveraging model:
P(c,q|e) := P(c|e)⊕P(q|e)
POLIS-macroaveraging model:
P(c,q|e) := ∑

t∈c
P(c|t)·P(t|e,q)

Figure 5.2: Disjunctive and conjunctive models for retrieval and summarisation.

We call this model the microaveraging model, as here the element- and query-evidence is

combined on the term-probability level, as opposed to the macroaveraging model, where a com-

bination of evidence takes place at the element level only.

5.5 Conclusion

In this chapter, we investigated the ranking of elements with respect to the context to be sum-

marised. We looked at ways in which suitable summarisation models could be derived from

traditional ad-hoc information retrieval models, such as TF-IDF or Language Modelling, and

how such models can be classified depending on the way in which they combine term evidence.

In addition to the generic summarisation models, we developed three query-based summarisation

models: a macroaveraging model, where element- and query-probabilities are mixed at element

level, and two microaveraging models, which mix element- and query-probabilities at the term

level, and which differ in the interpretation of probabilities. Figure 5.2 follows the matrix spanned

by Figure 5.1, and presents the summarisation models developed in this chapter.

In the next chapter we will develop the summarisation logic POLIS. Part of the definition of

POLIS includes its implementation based on Probabilistic Relational Algebra (PRA), where we

will also discuss how the summarisation models developed in this chapter can be implemented in

PRA. Finally, in Chapter 7 we evaluate the performance of the summarisation models developed

in this chapter.
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Chapter 6

POLIS

6.1 Introduction

The previous chapters introduced some main building blocks of a summarisation logic: a com-

parison with other abstraction logics, and the benefits of such logics in building information

systems, provide the motivation for using abstraction logics with summarisation as a retrieval

task. The parallels between summarisation and –amongst other tasks– structured document re-

trieval provided the rationale for developing probabilistic summarisation models derived from

ad-hoc retrieval approaches. Additionally, the parallels between said retrieval tasks under the

concept of knowledge augmentation lays the foundation of the semantics of POLIS. However,

we so far have not made clear why a specialised logic for summarisation is necessary: as the

summarisation models discussed in the previous chapter are derived from retrieval models, it

would be conceivable to implement summarisation in a retrieval logic, such as POOL. We will

now show that such an approach suffers from serious drawbacks, which are sufficient to motivate

the development of a dedicated summarisation logic.

6.1.1 Summarisation in POOL

POOL was developed as an abstraction for hypermedia retrieval, i.e. the retrieval of structured

documents, with added support for concepts such as object classification, and relationships be-

tween objects. Retrieval strategies in POOL are expressed in a syntax which bears resemblance

to Probabilistic Datalog, such that those objects to be retrieved are specified as a target, for which

the system tries to find objects in its knowledge-base that satisfy the specification. An expression
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to retrieve a document about “sailing” could thus look as follows:

?− document(D) & D[sailing]

Similarly, it would be possible to translate summarisation needs into POOL statements. The

need for a summary about “doping in sport”, built from sentences within a document, could be

expressed as

?− document(D) & D[ sentence(S) & S[doping in sport ]]

Modelling summarisation in POOL in this way would weight sentences according to the

retrieval models built into POOL, not the probabilistic models developed in chapter 5. The

summarisation models we developed weight sentences according to the degree of implication

between summary-forming elements and the context to be summarised. POOL supports a form

of implication, denoted by →, so it would be conceivable to implement a refined summarisation

strategy in POOL as:

?− document(D) & D[

sentence (S) &

S[doping in sport ] &

S → D

]

However, there are still several limitations to this approach. Firstly, it would not be possible

to quantify the retrieval process, to allow summary-size limitations. The restriction to a specific

summary size would therefore need to be externalised. Furthermore, while it might be possible

to express the summarisation models developed in chapter 5 in POOL, they would need to be

specified explicitly. A knowledge engineer thus would not only need to posses knowledge of

summarisation models in general, but would additionally need to be able to express them in

POOL, rendering the abstraction which motivated the use of abstraction logics obsolete.

A dedicated summarisation logic overcomes both problems: POLIS expressions allow for

size quantifiers, and implicitly use probabilistic summarisation models.

6.1.2 Chapter Outline

The remainder of this chapter provides a detailed specification of POLIS. Section 6.2 will in-

troduce the POLIS syntax, which is derived from the established XPath notation. Section 6.3
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introduces the semantics of POLIS, which is a variant of possible-worlds semantics. This is

followed by section 6.4, which discusses the implementation of POLIS using Probabilistic Rela-

tional Algebra (PRA).
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6.2 POLIS Syntax

In this section, we will introduce the syntax of POLIS.

POLIS is a summarisation logic for structured documents. Structured documents not only

contain the actual textual content, but additionally provide markup (“tags”) to annotate the con-

tent. Such markup will usually provide information regarding the structure of documents (struc-

tural markup), outlining chapters, sections, paragraphs, and sentences. At a level below this

structural markup (e.g. within sentences), tags might also provide layout information, such as

enclosing italicised words in appropriate tags (e.g. <it>italicise< /it>), or providing additional

information regarding references used in the text.

POLIS expressions exploit the availability of this this structural markup, by including the path

to the level at which users want material to be extracted into the summarisation logic expression.

As mentioned in previous chapters, POLIS makes use of a syntax which is modelled on XPath to

achieve this (Clark and DeRose (1999)).

XPath is a language which was developed for selecting nodes from an XML document. Based

on a tree representation of XML documents, an XPath expression provides a path for traversing

the tree. An XPath expression consists of an axis, a node test, and a predicate. An axis in an

XPath expression denotes a number of individual elements in the XML document, which can be

found by traversing the document tree according to the path.

  </section>
</document>

  </paragraph>
  </sentence>

<document>
  <section>
  <paragraph>

A single sentence in a paragraph,
  <sentence>

in a section, in a document.

Figure 6.1: A sample XML document, showing a single sentence within a paragraph, embedded
in a section.

For example, considering the sample XML document shown in Figure 6.1, the path expres-

sion necessary to find all sentence-elements in the document would look like

/document/section/paragraph/sentence

(note that the sample document only has one such element).
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For POLIS, we only make use of the definition of an axis. Node test and predicates do not

form part of the POLIS syntax. Instead, POLIS contains additional constructs for specifying

query terms in an element, choosing models for the summarisation process, and limiting the

maximum size of summaries. Furthermore, POLIS does not fully exploit the complexity of-

fered by structured documents in general; for example, attributes and attribute values, as well

as references between nodes, are not interpreted by POLIS. Generally, the focus of POLIS is on

document-centric structured documents, rather than data-centric documents.

6.2.1 Syntax Definition

We will now properly specify the syntax of POLIS. We will follow the convention of using

BNF production trees to show how POLIS expressions are constructed. The syntax tree can

be split into three separate groups: one group providing information on the path of elements to

be extracted, a group showing the specification of query terms, and a group detailing auxiliary

definitions.

The first part of any POLIS expression starts with a definition of the elements at which

the extraction of material for the summary generation will take place. We say that a POLIS-

expression starts with a root-definition, followed by a specification of the axis of the elements to

form the summary:

The BNF rules in Table 6.1 exhibit the influence of XPath on POLIS; an axis is used to

define the components to be extracted. The actual path in the document tree is given by an

axis-definition. An axis-definition can be either a path-element (called axis-element here), or

a summary-definition, restricting the number of elements (or words) to appear in the summary.

Axis-elements can be followed by either a node-definition followed by a summary definition, or

a node-definition followed by an axis definition. This path expression is followed by a summary

definition.

A summary definition is either a summary restriction, or a query-definition followed by a

summary restriction. A query definition consist of a specification of the summarisation model

to be used, and the query terms. There are currently three models implemented in POLIS, two

microaveraging query-based models (signified by “MICRO” and “MICRO-IDF”, respectively),

and a macroaveraging model (denoted by “MACRO”). The specification and development of

these models were shown in chapter 5. If no query terms are specified (i.e. a summary definition

is resolved as a summary restriction) the standard, non query-based summarisation model will
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expression ::= root-element axis-definition
root-element ::= ’/’
axis-definition ::= axis-element

| summary-definition
axis-element ::= node-definition summary-definition

| node-definition ’/’ axis-definition
node-definition ::= ’*’

| ’*’ ’{’ node-restriction ’}’
| NAME
| NAME ’{’ node-restriction ’}’

node-restriction ::= context-identifier
context-identifier ::= NUMBER

summary-definition ::= ’:’ ’{’ summary-restriction ’}’
| query-definition ’:’ ’{’ summary-restriction ’}’

query-definition ::= { model ’”’query-term’”’ }
summary-restriction ::= range-restriction

| element-restriction
range-restriction ::= ’at most’ NUMBER ’terms’

| ’at most’ NUMBER
element-restriction ::= NUMBER

| NUMBER ’,’ element-restriction
model ::= ’MACRO’

| ’MICRO’
| ’MICRO-IDF’

query-term ::= NAME
| NAME query-term

Table 6.1: POLIS syntax: production of a path to summary-forming elements; production of
query terms and query biased summaries, and summary size limitations.
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be used.

A summary restriction is used to indicate the maximum size of the summary, and can be

either a range restriction, or an element restriction. An element restriction simply specifies that

a particular element, or a series of elements, should make up the summary. A range restriction

limits the actual size of the summary, either in terms of the number of elements in the summary

(e.g. a maximum of five sentences in the summary), or by limiting the size of the summary in

terms of the number of words in it.

NAME ::= [a− z][a− z A−Z0−9]∗

NUMBER ::= [0−9]+

Table 6.2: POLIS syntax: lexical syntax for names and numbers.

The last of the three BNF trees making up the POLIS syntax provides auxiliary definitions

used in the other two trees, specifying the definition of a name, and a number (Table 6.2).

6.2.2 Example

 the Olympics for a positive test of methandienone. </p>
<p> Chen became the first athlete to be expelled from
 and woman triple jumper Iva Prandzhave of Bulgaria </p>
<p> The cheaters were strongman Chen Po−pu of Chinese Taipei,

</doc>

</text>
</body>

<p> Two positive doping tests were announced on Wednesday. </p>
<text>

<body>
<doc>

 strongman Chen Po−pu of Chinese

</doc>
</body>
</text>
 Iva Prandzhave of Bulgaria </p>
 Taipei and woman triple jumper

<p> The cheaters were 
<text>

<body>
<doc>

/doc/body/text/p:{at_most 1}

Figure 6.2: A sample document, its one-paragraph summary, and the POLIS expression to gen-
erate it.

Let us now take a look at how the above POLIS syntax could be used to express summary

definitions in actual information systems. We will use a web information retrieval system as a

sample application.

Consider a system where the set of retrieved web pages should be presented in such a way as

to allow users to immediately judge a document’s relevance to their information needs. This is a

realistic scenario, as users will normally not look at all web pages retrieved by a search engine,

but will instead try to judge a page’s relevance by whatever information is presented (such as a

pages title, its URL, a text snippet taken from the web page etc.). Summaries of retrieved web

pages would have to be indicative of the content, but would have to be short enough to allow a

relatively large number of pages to be displayed on a single page. One could argue that a good
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compromise between the summary size and its content is reached by letting the summaries be up

to one paragraph long.

A very simple expression to fulfil this request could look like:

/paragraph:<=1.

This, however, is not supported by POLIS at the moment, as the path expression has to match

the actual structure of documents, which would normally be more complex than just paragraph

markup. The actual POLIS expression to carry out this operation for a document that has para-

graphs, which are children of ’section’ elements inside ’body’ elements would be:

/*/body/sec/p:{at most 1},

A graphical representation of this process is depicted in Figure 6.2, exhibiting the summari-

sation of a (truncated) DUC1 document.

For a second example, we will modify the above POLIS expression to include a query, and

will limit the maximum size to 250 words. We will pick up the topic of the shown sample DUC

document, doping at the olympic games. A POLIS expression for a 250 word, query based

summary on “doping olympic games” might thus look like:

/*/body/sec/p{MICRO “doping olympic games”}:{at most 250 terms},

assuming that the microaveraging query-based model was used for summarisation.

6.2.3 Summary

In this section, we developed the syntax for the summarisation logic POLIS. We have shown

how POLIS statements are related to XPath expressions, and how the need for specific sum-

maries could be expressed and realised in POLIS. More specifically, we showed how a POLIS

expression consists of two main components: a path expression component pointing to the user

selected elements which should be considered for inclusion in the summary, and a numbered

quantification component which imposes limits on the size of the summary. This concludes our

discussion of the POLIS syntax.

This section did not include a discussion of the semantics of POLIS expressions. While it

would have been possible to provide static semantics for the XPath-like POLIS expressions (e.g.

1Document Understanding Conference, see chapter 7
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using ordered-attribute grammars), we do not believe that it is necessary to provide such seman-

tics for POLIS. Firstly, the POLIS syntax is constrained such that it is not possible to formulate

expressions which would be syntactically correct, but could not be interpreted by POLIS. All

possible expression (i.e. allowed by the syntax definitions) constitute correct expressions, which

can be interpreted by POLIS. Furthermore, POLIS is not defined by its syntax. It would be

possible to conceive a completely different syntax for POLIS, without changing the logic itself.

Defining a proper semantics for the syntax would imply an importance for the syntax which is

not justified.

Instead, we will provide a “meaning” of POLIS via possible-worlds semantics in the next

section.
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6.3 POLIS Semantics

In the last section we introduced the XPath-like syntax of POLIS. Here, we will continue to

provide a formal specification of POLIS, by introducing the POLIS semantics. While formally

specifying the syntax allows us to validate the correctness of a POLIS expression, a formal se-

mantics allows us to reason about the meaning of POLIS expressions. To have a rigid definition

of this meaning is necessary for two aspects of reasoning about POLIS: to check the equivalence

of two POLIS expressions, and, more importantly, to validate that a specific implementation of

POLIS is correct. The semantics outlined in this chapter is based on the notion of a possible

worlds interpretation, similar to the denotational semantics commonly employed by Description

Logics.

We will start with a discussion of possible worlds, which we will subsequently use to define

the semantics of POLIS expressions. The semantics of POLIS is directly related to the inter-

pretation of the knowledge in structured documents, which will be outlined subsequently. We

will close the discussion with some examples for the interpretation of POLIS expressions and

structured documents.

6.3.1 Possible Worlds

6.3.1.1 Introduction

The semantics of POLIS is based on the notion of possible worlds, as discussed by Fagin et al.

in (Fagin and Halpern (1994); Fagin et al. (1995)). The notion of a set of possible worlds is

built around an agent, which reasons about the world it is in, and by this process of reasoning

eliminates all but those worlds it considers possible.

Each world contains a set of propositions, each of which has a certain truth value. For clas-

sical two valued logics, this truth value is either true or false. However, larger sets of attainable

values are possible (e.g. four-valued logics (Roelleke (1999))). We will restrict the discussion to

the classical case of a two-valued logic for now. A proposition in the context of possible worlds

semantics can be considered a ground atom; in the context of information retrieval, these ground

atoms are usually called terms, however, for this chapter we will mainly refer to them by the

more general proposition.

To show how sets of possible worlds emerge from propositions and their possible truth values,

consider two propositions, ϕ1 and ϕ2, which can have the truth values true and false. This yields
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a total of 22 possible worlds (two propositions, two truth values): w1 = {ϕ1,ϕ2}, w2 = {ϕ1},

w3 = {ϕ2}, and w4 = {}. In w1 both ϕ1 and ϕ2 are true, in w2 and w3 only one of the two

propositions is true, and in w4 both propositions are false. The truth values of propositions in

worlds also show that by default a Closed-World Assumption (CWA) is taken – any proposition

for which no truth value is given is assumed to be false.

An agent reasoning about the set of possible worlds can form a belief about the truth value

of propositions. The belief of an agent is derived from the truth valuations of propositions in

all worlds the agent considers possible; an agent A believes a proposition ϕ is true if ϕ is true

in all worlds A considers possible from its current world. For example, given the set of worlds

{w1 · · ·w4} outlined above, consider an arbitrary world w0. If an agent A in w0 considers w1 and

w2 possible worlds, it knows ϕ1 is true, and has conflicting information about the truth value of

ϕ2 (reasoning with conflicting information will be discussed in a later section).

The knowledge of an agent is determined by the worlds it considers possible. Instead of

reasoning about possibilities, we can rephrase this statement by saying that an agent can access

other worlds from the world it is in. The belief of an agent in the truth value of a proposition

is then determined by the truth values of the proposition in those worlds the agent can access.

Information about which worlds are accessible from any one world by an agent are stored in the

worlds accessibility relation.

Following the example of an agent in w0, which can access w1 and w2, the accessibility

relation of w0 would be as follows:

Rw0 = { (w1,w2) }

6.3.1.2 Relation to Information Retrieval

The previous discussion of possible worlds and agents covered all relevant aspects of denotational

semantics in general terms, to provide an overview over the concepts used for defining seman-

tics in terms of possible worlds. We now take those definitions, and relate them to concepts

commonly found in Information Retrieval. This allows us to formally represent the information

contained in documents, as well as give meaning to POLIS expressions.

With a view of IR in general, and structured document retrieval in particular, it would be

possible to view elements in structured documents (the document contexts) as possible worlds.

However, this intuitive approach to relating possible worlds semantics to IR leads to several prob-

lems. First, it is not clear which concept in the context of IR would fill the role of an agent. An
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agent has to access the possible worlds, however, if the contexts of documents are those worlds,

what are they accessed by? A second, more severe, problem comes with the probabilistic index-

ing process commonly used in IR. When indexing a document, terms in documents are usually

given a weight to reflect their importance for the document, measured by some weighting func-

tion seen fit. However, in the context of possible worlds semantics, terms in documents would

become propositions in those worlds; it is unclear how the weights (or probabilities) assigned by

the indexing process could be reflected in this interpretation.

To overcome these problems, we adopt a slightly different association of denotational seman-

tics and IR. We assume that elements in documents (the contexts) are the agents. These agents

then access sets of possible worlds, which contain varying subsets of the terms (propositions)

found in the respective document elements. This interpretation of structured document elements

as agents also allows us to incorporate the probabilities assigned by an indexer into the seman-

tics in a meaningful way: the probability of a term in a document-context is the fraction of all

possible worlds the context-agent can access, in which the term (the proposition) is true. We will

discuss these points in more detail in the following sections.

This interpretation of possible worlds also affects the terminology we adopt for the remainder

of this chapter. We will interchangeably refer to “agent” and “context”, where “context” will

take the precedent for the remainder of the discussion. To visually highlight the correspondence

between agents in denotational semantics and contexts in structured documents, we will use a

notation related to XML to express the knowledge of a context. We will use statements of the

form < ci ϕ > to state that context ci has knowledge of the proposition ϕ . A precise meaning of

this will be given over the next sections.

An additional complication arises from the Closed World Assumption (CWA) commonly

adopted in logics and denotational semantics. The CWA states that any proposition for which a

truth value is not explicitly given is assumed false. This is problematic in IR, where the index-

ing process which assigns terms and term-weights to documents is assumed incomplete (either

historically, where an indexer used to only pick a handful of terms per document due to memory

storage limitations, or intrinsically, as in Language Modelling, where the document itself is as-

sumed to be only a sparse random sample). IR therefore adopted the Open World Assumption

(OWA): any proposition for which no explicit truth value is given is assumed to have the truth

value unknown. To accommodate the OWA into our semantics, we extend the traditional two-
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valued logic to a three-valued one, where the possible truth values are true, false and unknown.

However, it is important to point out that these truth values are only needed for truthfully

representing the knowledge of documents, and reasoning about it. It is not possible in either

POLIS expressions, or traditional structured document, to say that a document is not about a

specific term. An indexer will therefore never derive a proposition with a truth value false.

Similarly, it would be impossible for an indexer to arrive at the conclusion that a proposition is

unknown: neither POLIS nor traditional structured documents allow the explicit inclusion of this

information, and the set of potentially unknown proposition with respect to a document would

be infinite.

6.3.2 Interpretation Structure and Interpretation Function

To make the informal discussion of possible worlds in the previous section useful, we have to

specify them formally. For specifying the semantics formally, we will make use of a Kripke

structure (Fagin et al. (1995)). This formal specification consists of an Interpretation Structure

M, which contains a finite set of possible worlds, a truth value function that assigns truth values

to propositions, the accessibility relation for its set of possible worlds, and the Interpretation

Function |=, which assigns truth values to propositions with respect to contexts.

Both Interpretation Structure and Interpretation Function will be developed in stages, starting

first with a non-probabilistic interpretation structure, which we will extended to a probabilistic

variant. This will be followed by a definition of the interpretation function, again in a non-

probabilistic and probabilistic variant.

6.3.2.1 Non-probabilistic Interpretation Structure

We start the discussion with the non-probabilistic version of the interpretation structure M. For a

set of propositions Φ, and a set of contexts of size n, M is a tuple

M = (W , π , R), such that

• W is a finite set of possible worlds

• π is a function that assigns truth values to propositions in a world w, such that π assigns a

truth value to each proposition

π(w):Φ → {true, false, unknown}
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• R is the set {R1 · · ·Rn } of binary accessibility relations on W , such that all tuples {w,w’}

∈ Rc denote those worlds w’ which context c accesses from world w

In addition to the basic interpretation structure, we define a function which allows us to reason

about all those worlds a context can access from the world it is currently in. We thus define

Rc(w) := { w’ | {w, w’} ∈ Rc}

as the function whose range are all worlds accessible for context c from world w.

This concludes the definition of the non-probabilistic interpretation structure, which we can

now extend to a probabilistic variant more suitable for IR purposes.

6.3.2.2 Probabilistic Interpretation Structure

Section 6.3.1.2 outlined the need to include probabilities into the interpretation of documents, and

into the representation of document knowledge. In this section, we extend the non-probabilistic

interpretation structure by a probabilistic framework that allows us to reason about probabilities.

In order to include probabilities into the interpretation structure, we need to define what probabil-

ities are, and introduce the notion of a probability space. This definition will follow that outlined

in (Fagin and Halpern (1994)). The definition of a probability function outlined by Fagin and

Halpern coincides with the probabilistic extension to propositional logics proposed by Nielsson

(Nilsson (1986)); it thus provides a connection between probabilistic logics, and a semantics

about probabilities.

The basic construct for defining a probability space is an event. In our semantics, truth

valuations of propositions form the events; events are statements of the form ϕ is true. These

events are atomic, i.e. not composed by union or complement of other events. The probability

of a truth value (or valuation) of a proposition is defined as the probability of the set of worlds

where the proposition has the corresponding truth value. We will call the set of all sets of possible

worlds H. With these preliminaries in place, we can give a formal definition of a probability

space.

A probability space is a tuple (Ω,H, µ), where Ω is the set of atomic events,H is a σ -algebra

of Ω, and µ:Ω→ [0,1] is a probability mass function, such that ∀e ∈Ω: µ(e)≥ 0

and ∑
e∈Ω

µ(e) = 1. Here, µ can also be called the basic probability function.

Given this definition of a probability space, we can define a more generalised probability

function over the σ -algebra of Ω, H. Given a probability space P, the probability function

P :H→ [0,1] is defined as
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∀w ∈H : P(w) := ∑
e∈w

µ(e)

The elements in Ω are the basic events, the elements in H are the possible worlds. Each

possible world is a combination of basic events.

With this definition of a generalised probability function P, it is possible to extend the in-

terpretation structure M to allow reasoning about the probability of events. The probabilistic

interpretation structure M is defined as a tuple

M = W,π,R,P, such that

• W,π, and R are identical to those defined for non-probabilistic interpretation structures,

and

• P is a function which assigns a probability space (Wc,w,Hc,w,µc,w) to each context c and

world w.

This concludes the definition of both the non-probabilistic and the probabilistic interpretation

structures. We will now develop a non-probabilistic and a probabilistic interpretation function,

to allow reasoning on the interpretation structures.

6.3.2.3 Non-probabilistic Interpretation Function

Reasoning about the knowledge of documents, and the meaning of POLIS expressions, requires

a way to represent the knowledge of document, and some means to determine the truth value

of propositions with respect to possible worlds. While the interpretation structure M represents

information about the set of possible worlds, and thus about the knowledge of a document, we

need an additional component to determine the truth value of propositions. To allow this, we now

develop the interpretation function |= (”models”). An expression of the form (M,w) |= ϕ states

that the proposition ϕ is true with respect to the interpretation structure M and the world w. This

notation is already a shorthand for (M,w) |=t ϕ , saying that the interpretation structure M with

respect to world w holds that proposition ϕ has a truth value of true. Similarly, the interpretation

function can assign the truth values false and unknown to a proposition, modelled by |= f and

|=u, respectively. Using this informal notion of the interpretation function, we can now provide

a formal definition for the interpretation of propositions. Using the truth value function provided

as part of the interpretation structure, the interpretation of propositions is formally defined as:
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(M,w) |=t ϕ ⇐⇒ π(w)(ϕ) = true

(M,w) |= f ϕ ⇐⇒ π(w)(ϕ) = false

(M,w) |=u ϕ ⇐⇒ π(w)(ϕ) = unknown

A proposition ϕ is true with respect to an interpretation M and a world w if and only if the

truth value function assigns the truth value true. This definition similarly extends to the truth

value assignments of false and unknown.

6.3.2.4 Probabilistic Interpretation Function

Given the definition of the non-probabilistic interpretation function, we can now provide a defini-

tion for the probabilistic extension to the interpretation function. The probabilistic interpretation

function not only assigns a truth value to proposition, but also a probability of this truth value.

Informally, these probabilities can be interpreted as the probability of a possible world in the set

of worlds reachable by a context: a context c can reach a set of worlds Rc(w) from world w. For

any world w′ ∈ Rc(w), a proposition in w′ is assigned a truth value (i.e. true, false or unknown).

For example, (M,w′) |=t ϕ means proposition ϕ has a truth value true in w′. With the probabilis-

tic interpretation, each possible world w′ is assigned a probability µc,w(w′). The probability of

any truth value of ϕ in w is then the sum over the probabilities of the possible worlds in which

the truth value holds.

For example, a statement of the form (M,w) |=t 0.4ϕ means that ϕ has a truth value of true

with a probability of 0.4, by summing over the probabilities of all possible worlds in which

ϕ is true. Similarly, probabilities are assigned to the truth values false and unknown. We can

generalise the assignment of probabilities by saying that every truth valuation holds with some

probability ρ . Based on this generalisation, we can formally define the probability of a truth

valuation as

(M,w) |= ρ tϕ ⇐⇒ ρ t = µc,w({w′ | w′ ∈Rc(w)∧ (M,w′) |=t ϕ})

(M,w) |= ρ f ϕ ⇐⇒ ρ f = µc,w({w′ | w′ ∈Rc(w)∧ (M,w′) |= f ϕ})

(M,w) |= ρuϕ ⇐⇒ ρu = µc,w({w′ | w′ ∈Rc(w)∧ (M,w′) |=u ϕ})

Each probability (ρ t , ρ f , ρu) is defined as the sum over the probabilities of accessible worlds

where the corresponding truth value holds. Before we continue with the definition of the POLIS

semantics, we will now show the application of these interpretation structures and interpretation

functions to a sample document.
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6.3.2.5 Examples

To show how the possible worlds interpretation is applied to a structured document, we will

refer to the sample document in Figure 6.3. The document is a text snippet taken from a docu-

ment in the Document Understanding Conference 2005 corpus. The document consists of three

paragraphs, which are part of one common “text” tag, embedded in the wider document context.

</doc>

 and woman triple jumper Iva Prandzhave of Bulgaria </p>
<p> Chen became the first athlete to be expelled from
 the Olympics for a positive test of methandienone. </p>

<doc>
<body>
<text>
<p> Two positive doping tests were announced on Wednesday. </p>

</body>
</text>

<p> The cheaters were strongman Chen Po−pu of Chinese Taipei,

Figure 6.3: Sample document to detail the valuation of proposition “Bulgaria”.

We will start with a non-probabilistic interpretation of the document, without any probabili-

ties which might have been provided by an indexing process. The sample document in Figure 6.3

contains a number of contexts / agents: there are three “paragraph” contexts (marked <p> in the

document) which we will refer to as p1, p2, and p3, a “text” context text, a “body” context body,

and a “document” context doc. Additionally, there is a set of worlds pertaining to an unnamed

global context }. This global context is necessary to provide a world from which context doc

can access its set of worlds.

For context p2, the context in which the term Bulgaria appears in the sample document,

“Bulgaria” has a truth value true. For all other context, there was no indication in the document

for “Bulgaria” to have a truth value of either true or false, and no augmentation of knowledge

between contexts has taken place (knowledge augmentation will be discussed in 6.3.3). In those

contexts “Bulgaria” therefore has a truth value of unknown. The truth values of the proposition

“Bulgaria” with respect to the different contexts are shown in Table 6.3.

The accessibility relation for the sample document contains tuples for every context in the

document. For example, for contexts doc, p1 and p2, the accessibility relations could be:

Rdoc = {(w},wdoc)}

Rp1 = {(wtext ,wp1)}

Rp2 = {(wtext ,wp2)}
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world w′ proposition ϕ truth value π(w′)(ϕ)
w} Bulgaria unknown
wdoc Bulgaria unknown
wbody Bulgaria unknown
wtext Bulgaria unknown
wp1 Bulgaria unknown
wp2 Bulgaria true
wp3 Bulgaria unknown

Table 6.3: Truth values for proposition “Bulgaria” from an interpretation of the sample document
with respect to the different contexts.

The truth valuation of “Bulgaria” can thus also be explained via the accessibility relations:

“Bulgaria” is true in those worlds context p2 can reach from wtext , but is unknown in those worlds

doc can reach from w}, or p1 can reach from wtext .

We now further this example to show the probabilistic extension of the possible worlds se-

mantics. Suppose the document in Figure 6.3 has been processed by some indexing function,

which yields an assignment of term weights, or term probabilities. Suppose that the term Bul-

garia by way of an indexing process has been assigned a probability of 0.4, i.e. the proposition

“Bulgaria” has a truth value assignment of true in its respective context with a probability of

0.4. Figure 6.4 displays how the probabilities assigned by an indexer might conceptually be em-

bedded together with the term they apply to in a context. The figure shows a simplified version

of the sample document, with p2 as the only “paragraph” context, and “Bulgaria” as the only

proposition.

<doc>
<body>
<text>

<p>
[...] 0.4 Bulgaria [...]

</p>
</text>

</body>
</doc >

Figure 6.4: The sample document in Figure 6.3 with a probability of 0.4 for proposition “Bul-
garia”.

The knowledge that “Bulgaria” is true with a probability of 0.4 also affects the set of possible

worlds. To account for this probability, there now need to be at least two possible worlds with

respect to context p2: one in which “Bulgaria ” is true, and one in which it is unknown. These two
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worlds are accessed by p2, to derive at the conclusion that “Bulgaria” is true with a probability

of 0.4, and is unknown with a probability of 0.6. Based on this simplest set of possible worlds,

we arrive at the following set of truth value assignments:

world w′ µp2,wtext (w′) proposition ϕ π(w′)(ϕ)
wp2,1 0.4 Bulgaria true
wp2,2 0.6 Bulgaria unknown

Table 6.4: Probabilities of possible worlds for probabilistic truth value assignment of proposition
“Bulgaria”.

In world wp2,1 “Bulgaria” is true, and in world wp2,2 “Bulgaria” is unknown. It is also un-

known in all other possible worlds, reachable by context agents other than p2. The accessibility

relation for p2 for the probabilistic sample document is thus:

Rp2 = {(wtext ,wp2,1), (wtext ,wp2,2)}

Combining the truth value assignments and accessibility relations with the probability as-

signments, the interpretation structure contains for proposition “Bulgaria” with respect to those

worlds accessible by p2 the following statements:

(M,wp2,1) |=t Bulgaria ⇐⇒ π(w)(Bulgaria) = true

(M,wp2,2) |=u Bulgaria ⇐⇒ π(w)(Bulgaria) = unknown

Following the formal definition of the probability of a truth valuation, we can show that the

probabilistic interpretation of “Bulgaria” is:

(M,wp2) |= 0.4 Bulgaria ⇐⇒

0.4 = µp2,wtext ({w′ | w′ ∈ Rp2(wtext)∧ (M,w′) |=t Bulgaria}) and

0.6 = µp2,wtext ({w′ | w′ ∈ Rp2(wtext)∧ (M,w′) |=u Bulgaria})

This concludes the discussion of the outlined examples. An important concept we briefly

mentioned is that of knowledge augmentation. Knowledge of one agent is propagated to other

agents. For the examples given above, a proposition such as “Bulgaria” would not only be true

in p2, but would also be true to a certain degree in other context. We will formally discuss the

process of knowledge augmentation in the next subsection.

6.3.3 Augmentation of Knowledge

The process of knowledge augmentation is concerned with making the knowledge restricted to

single contexts available to other contexts. In the case of a hierarchical decomposition of con-



6.3. POLIS Semantics 108

texts, as in structured documents discussed here, it would be reasonable to augment the knowl-

edge of higher levels in the hierarchy with knowledge of its sublevels. For example, given the

sample document in Figure 6.3, it would be reasonable to say that if context p2 knows that the

proposition “Bulgaria” is true, then so should context text, since in the hierarchical decomposi-

tion of the sample document, p2 is a subcomponent of text. We will now formally define how the

knowledge of contexts can be augmented, by incorporating the knowledge of other contexts. The

discussion of knowledge augmentation presented here is based on the outline given in (Roelleke

(1999)). We will again start with a non-probabilistic version of knowledge augmentation, and

extend it to a probabilistic version later.

6.3.3.1 Non-probabilistic Knowledge Augmentation

doping Bulgaria

body

text

p1 p2

wbody

wp2wp1

wtext

Figure 6.5: Possible World Tree generated from sample document in Figure 6.3.

Consider the simplified tree-representation of contexts in the sample document (Figure 6.5).

The tree represents a possible set of accessibility relations amongst the contexts in Figure 6.3. We

can use such a tree representation of contexts to define the spreading of knowledge up the hierar-

chy. To draw a formal definition of knowledge augmentation, we will make use of the concepts

of common and distributed knowledge, discussed by Fagin et al. in (Fagin et al. (1995)). Both

common and distributed knowledge reason about the knowledge of groups of agents / contexts,

rather than individual contexts in isolation. Both concepts will be defined as modal operators for

combining knowledge.
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Suppose that G is a group of contexts, and every context in G knows that ϕ is true. We

can thus say that everyone in G knows ϕ . We will express this group knowledge as < EG ϕ >.

Common knowledge can be interpreted as a transitive closure of this group knowledge: every

context in G knows ϕ , every context in G knows that every context in G knows ϕ , etc. We will

use the shorthand < CG ϕ > to denote that ϕ is common knowledge. To formally define the

meaning of < CG ϕ >, we will refer to the set of accessibility relations for a group G of contexts.

We say that a world wn is group-reachable from another world w0, if there exists a path in the

set of accessibility relations that links w0 to wn. This path can be visually derived from tree

representations of the kind shown in Figure 6.5, or can be defined explicitly formally as follows.

Suppose G is a group of contexts. We can say a world wn is group-reachable from w0, if for all

worlds w0, · · · ,wn, such that 1≤ j ≤ n, there exists a context c ∈ G for which (w j−1,w j) ∈ Rc.

We can thus say that < CG ϕ > is true with respect to a world w if and only if ϕ is true in all

worlds group-reachable from w:

(M,w) |= < CG ϕ > ⇐⇒ ∀w′group-reachable from w:(M,w′) |= ϕ

Where common knowledge makes explicit that every context has knowledge of a proposition,

it would also be reasonable to augment the knowledge of a context with propositions only present

in some subcontexts.

As a second modal operator for combining knowledge of contexts, we will introduce the

distributed knowledge operator. The common knowledge operator explicitly states what is known

by every context. On the other hand, the distributed knowledge operator starts from the premise

that different contexts have differing knowledge, however, this knowledge can be shared and

combined if the different contexts can reach the same possible worlds. Suppose a context agent

c1 can access the possible worlds wi and w j from a world w, and knows that in w proposition ϕ1

is true. Another context, c2 can access the worlds wi and wk from w, and knows that ϕ2 is true.

Since the accessibility relations of c1 and c2 overlap wi, both ϕ1 and ϕ2 must be true in wi. It

would thus be reasonable to assume that c1, too, should know that ϕ2 is true in w. We will use

the shorthand < DG ϕ > to say that ϕ is distributed knowledge among a group G of contexts. A

formal definition of distributed knowledge would be as follows:

(M,w) |= < DG ϕ > ⇐⇒ ∀ w’: (w,w’) ∈
⋂

c∈G
Rc → (M,w′) |= ϕ
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However, this interpretation of distributed knowledge is too strict to be useful for the combi-

nation of context knowledge, since it requires a non-empty intersection of accessibility relations

of contexts to arrive at distributed knowledge. Furthermore, it does not consider the case of con-

flicting information, where a context c1 knows that ϕ is true, and another context c2 knows ϕ is

false, since all contexts have to model the same truth value. Roelleke proposes the introduction of

a united knowledge operator, which can handle incomplete or inconsistent knowledge between

contexts. We follow this definition here, amending the operator to handle three-valued truth

assignments. The united knowledge operator UG defines the truth value of a proposition with

respect to a context by uniting the knowledge of contexts. We will use the shorthand < UG ϕ >

to denote that ϕ is united knowledge of a group G of contexts. A formal definition of the united

knowledge operator can be given as follows:

(M,w) |=t < UG ϕ > ⇐⇒ ∃c ∈ G : (M,w) |=t < c ϕ > ∧

∀c ∈ G : ((M,w) |=t) < c ϕ > )∨ (M,w) |=u < c ϕ >)

(M,w) |= f < UG ϕ > ⇐⇒ ∃c ∈ G : (M,w) |= f < c ϕ > and

∀c ∈ G : ((M,w) |= f ) < c ϕ > )∨ (M,w) |=u < c ϕ >)

(M,w) |=u < UG ϕ > ⇐⇒ ∀c ∈ G : (M,w) |=u < c ϕ > ∨

∃c1 ∈ G : (M,w) |=t < c1 ϕ > ∧

∃c2 ∈ G : (M,w) |= f < c2 ϕ >

A group of context has united knowledge to the truth of a proposition if one of the contexts

knows it is true, and all other contexts either have knowledge of its truth, or the proposition has

a truth value unknown. A proposition is known to have a truth value false if a context knows it

is false, and all other contexts either know it is false, or have a truth value unknown. For these

two truth value assignments, true and false, it is relatively easy to derive the united knowledge

of a group of contexts. Slightly more complex is the problem of uniting the knowledge of agents

where one or more agents have evidence that a proposition is true, while at the some time one

or more other agents have evidence that it is false. Roelleke (Roelleke (1999)) derives the truth

value inconsistent for these cases, however, the semantics discussed here only allows for three

truth values. Instead, we therefore say that if contexts provide conflicting information about the

truth value of a proposition, its “proper” truth value is not known, and it should be considered

unknown with respect to the united knowledge of a group of contexts. We will now define the

augmentation of a context with the united knowledge of a group of contexts. In this definition,
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we will use < (c1 · · ·cn) ϕ > instead of “< UG ϕ >, where c1 · · ·cn ∈ G”.

We can thus say that a context ca is augmented with the united knowledge of (c1 · · ·cn), or

ca(c1 · · ·cn). Before we give a formal definition of the augmentation operator, we will discuss the

process of augmentation with respect to the sample document shown in Figure 6.3. Say we want

to augment context text with knowledge of the three subcontexts p1,p2 and p3. A proposition

like “Bulgaria” should be true in text, if either text knows the truth-value is true, and the united

context (p1, p2, p3) gives evidence for true or unknown, or “Bulgaria” is unknown in text, and

(p1,p2,p3) gives evidence for true. We will use the notation Aca(c1···cn) to denote the augmentation

operator applied to augment ca with the united knowledge of c1 · · ·cn. The augmentation operator

can be formally defined as:

(M,w) |=t < Aca(c1···cn) ϕ > ⇐⇒ ((M,w) |=t < ca ϕ > ∧

∀w′ ∈ Rca(w) : ((M,w′) |=t < (c1 · · ·cn) ϕ > ∨

(M,w′) |=u < (c1 · · ·cn) ϕ >))∨

(((M,w) |=t < ca ϕ > ∨(M,w) |=u < ca ϕ > )∧

∀w′ ∈ Rca(w) : (M,w′) |=t < (c1 · · ·cn) ϕ > )

The interpretations for false and unknown follow analogously.

For the sample document used throughout this discussion, we can therefore say that the

augmented context texta(p1, p2, p3) knows proposition “Bulgaria” is true, although it is unknown

in those worlds text can reach in Figure 6.5, or formally:

(M,wbody) |=t < texta(p1, p2, p3) Bulgaria >

6.3.3.2 United and Augmented Truth Value Functions

Following the definition of the united knowledge operator, and the augmented knowledge oper-

ator, we can define the united truth value πU , and the augmented truth value πA. The definitions

of the truth values depends on the concepts of world-paths and world-trees, which in turn are

defined in terms of the group-reachability discussed on page 109 (Roelleke (1999)).

Using the concept of group-reachability, we can define a group-world-path as that sequence

of worlds, which make a world wi group-reachable from w0. The group-world-path (w0 · · ·wi)

thus consists of those worlds w0 · · ·wi such that there exist contexts c ∈ G, where 1 ≤ c ≤ i∧

(wc−1,wc) ∈ Rc.

A group-world-tree is the set of all such group-world-paths for an augmented context. For

an augmented context ca(c1 · · ·cn) there is a group-world-tree (w,S) if w ∈ Rca(w0) and (w,S)
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is a group-world-tree of w and the group of contexts (c1 · · ·cn), where S is the set of subtrees

of w. Similarly (w,S) is a group-world-tree for world w and group (c1 · · ·cn+1) if there is a set

Sn such that (w,Sn) is a group-world-tree of (c1 · · ·cn) and there exists a tree t such that t is a

group-world-tree of w and cn+1, and S = Sn∪{t}.

Based on this definition of a group-world-tree, we can define a function trees, which produces

group-world-trees as sets of trees for a context ca and a group (c1 · · ·cn), as:

trees(w0,ca(c1 · · ·cn)) := { (w,S) | w ∈ Rca(w0)∧ (wS) ∈ trees(w,(c1 · · ·cn))}

trees(w,(c1 · · ·cn+1)) := { (w,S) | ∃Sn, t : (w,Sn) ∈ trees(w,(c1 · · ·cn))

∧t ∈ trees(w,cn+1)∧S = Sn∪{t}}

We can now define the united truth value in terms of a group-world-tree, and the augmented

truth value in terms of united truth values. Suppose (w,S) is a group-world-tree of a world w and

a group (c1 · · ·cn). The united truth value πU can be defined as the union of the truth values π(w′)

where all w′ are the roots of subtrees (w′,{}) in S:

πU((w,S)) :=
⋃

(w′,{})∈S
π(w′)

The truth value πU is unknown for an empty set S.

We can now define the augmented truth value πA by referring to the united truth value πU .

Suppose (w,S) is a group-world-tree of a world w0 and an augmented context ca(c1 · · ·cn). The

augmented truth value πA((w,S)) of a group-world-tree (w,S) is defined as the union of the truth

value of world w, π(w), and the united truth value πU of the group-world-tree (w,S), πU((w,S)):

πA((w,S)) := π(w)∪πU((w,S))

This concludes our discussion of the non-probabilistic knowledge augmentation. We will

now extend this discussion to include probabilities.

6.3.3.3 Probabilistic Knowledge Augmentation

Where the non-probabilistic augmentation of knowledge concerns only the truth of a proposition

in an augmented context, the probabilistic augmentation operation needs to consider the proba-

bility with which propositional truth values hold in those contexts uniting their knowledge. For

example, in the previous examples we showed that the augmented context texta has knowledge

of the proposition “Bulgaria”. However, in the case of probabilistic propositions, what should

the probability of “Bulgaria” being true be, given its probabilities in the contexts uniting their

knowledge?
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Roelleke (Roelleke (1999)) outlines three possible ways in which augmented probabilities

might arise in POOL, his proposed logic for hypermedia retrieval:

• non-probabilistic access and probabilistic content: the knowledge of which worlds a con-

text accesses is certain; only the content of possible worlds is uncertain. This is the case

considered here for structured documents and POLIS expressions

• probabilistic access and non-probabilistic content: the knowledge of propositions in con-

texts is certain, and only the access is uncertain

• probabilistic access and probabilistic content: both the knowledge of contexts and the

worlds accessible are uncertain

We will only consider the first case here, since neither structured documents (specifically

XML documents) nor POLIS expressions offer the option of uncertain access to contexts. Before

we will provide formal definitions of the probabilistic knowledge augmentation operator, we need

to provide a sample document which we can use to highlight the augmentation process.

<doc>
<body>
<text>

<p>
[...] 0.4 Bulgaria [...]

</p>
<p>

[...] 0.7 Bulgaria [...]
</p>

</text>
</body>
</doc >

Figure 6.6: The sample document in Figure 6.4 amended for discussing probabilistic knowledge
augmentation.

This sample document is shown in Figure 6.6. It is an extension of the document displayed in

Figure 6.4; here, a second paragraph has been added. This second paragraph also has knowledge

of the proposition “Bulgaria”, with a probability of 0.7. Table 6.5 shows the probabilities we

obtain with respect to the possible worlds.

We furthermore know that in the unaugmented context text the proposition “Bulgaria” is

unknown with a probability of 1.0. Additionally, for the contexts text, p1 and p2, we can derive

the following accessibility relations:
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world w′ µp2,wtext (w′) proposition ϕ π(w′)(ϕ)
wp1,1 0.4 Bulgaria true
wp1,2 0.6 Bulgaria unknown
wp2,1 0.7 Bulgaria true
wp2,2 0.3 Bulgaria unknown

Table 6.5: Probabilities of possible worlds for probabilistic truth value assignment of proposition
“Bulgaria” in two paragraphs.

Rtext = {(wbody, wtext)}

Rp1 = {(wtext , wp1,1), (wtext , wp1,2)}

Rp2 = {(wtext , wp2,1), (wtext , wp2,2)}

To define the probabilistic united and augmented truth values, we first extend the notion of a

group-world-tree to that of a group-context-world-tree. The inclusion of a context into the tree is

necessary, as probability assignments are only defined for a world in conjunction with a context.

A group-context-world-tree is a group-world-tree where the single world w is replaced by the

tuple (c,w), where c is a context accessing w. A group-context-world-tree is thus of the form

((c,w),S). We can now define the united probability assignment with respect to a group-context-

world-tree, following the definition of the united truth value provided on page 112.

Suppose ((c,w),S) is a group-context-world-tree of world w and the group (c1 · · ·cn). We

define the united probability µU(((c,w),S)) of the tree ((c,w),S) as the product of all probabilities

µc,w(w′) where (c,w′) are the roots of subtrees ((c,w’),{}) in S:

µU(((c,w),S)) := ∏
((c.w′),{})∈S

µc,w(w′)

The united probability for an empty set S is defined as 1.0.

Following the definition of the united probability assignment, we can define the augmented

probability assignment with respect to group-context-world trees, and the definition of the united

probability assignment. The augment probability assignment follows the definition of the aug-

mented truth value assignment.

Suppose ((c,w),S) is a group-context-world-tree of a world w0 an an augmented context

ca(c1 · · ·cn). The augmented probability µA,w0(((c,w),S)) for a tree ((c,w),S) is defined as the

product of the supercontext probability µc,w0(w) and the united probability µU(((c,w),S)) of the

group-context-world-tree ((c,w),S):

µA,w0(((c,w),S)) := µc,w0(w)×µU(((c,w),S))
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6.3.3.4 Example

To show show the probabilistic augmentation process working when applied to a document, we

will now discuss the augmented reasoning when applied to the sample document in Figure 6.6.

We will discuss the augmentation of knowledge with respect to the context text. We will start the

discussion by outlining all the possible world trees which can be derived for sample document.

For the augmentation of text, we can derive four possible world trees: one in which p1 enters

a world where “Bulgaria” is known to be true, one where it is unknown, one where p2 enters a

world where “Bulgaria” is known to be true, and one where it is unknown. Figure 6.7 displays

all possible trees.

body

text

body

text

body

text

body

text

BulgariaBulgariaBulgariaBulgaria
true unknown true unknown

p1 p1 p2 p2

0.4 0.6 0.7 0.3

wbody

wp2,2wp2,1wp1,2wp1,1

wtext wtext wtext wtext

wbody wbody wbody

Figure 6.7: Probabilistic World Trees generated from sample document in Figure 6.6.

Now consider four worlds w1,w2,w3,w4, which correspond to the possible world trees. For

these worlds, we can derive the following probabilities for the proposition “Bulgaria”:

w’ µtext(p1,p2),wbody(w
′) ϕ π(w′)(ϕ)

w1 0.4×0.7 Bulgaria true ∪ true = true

w2 0.4×0.3 Bulgaria true ∪ unknown = true

w3 0.6×0.7 Bulgaria unknown ∪ true = true

w4 0.6×0.3 Bulgaria unknown ∪ unknown = unknown

For the augmented context texta(p1, p2) and the proposition “Bulgaria”, we thus yield the
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following interpretation:

(M,wbody) |=t < texta(p1, p2) 0.82 Bulgaria > ⇐⇒ 0.82 =

µtexta(p1,p2),wbody
({w′ | w′ ∈ Rtexta(p1,p2)(wbody)

∧(M,w′) |=t Bulgaria})

Similarly, “Bulgaria” is unknown in the augmented context text with a probability of 0.18.

6.3.3.5 Derivation of augmented probabilities via event spaces

Instead of obtaining the probabilities we saw by traversing the possible world trees, it would also

be possible to consider probabilistic terms in contexts as events. To assign a probability to an

event in an augmented context, it would be necessary to combine events in those subcontexts

forming the group which unites its knowledge. The presence or absence of terms in contexts,

and also the probability of observing such an event, would be independent. The presence of a

term in a context, and the probability of observing the term in the context, does not influence

the probability of observing the term in another context. To derive the probability of observing

an event in the augmented context, we need to unite the associated event probabilities under an

independence assumption. We can achieve this by applying the inclusion-exclusion principle (or

sieve principle) to the set of events.

The general definition of the inclusion-exclusion principle for two events A and B states that

the probability of observing A or B is defined as the sum of the event probabilities, minus the

product of the event probabilities:

P(A∨B) = P(A)+P(B)−P(A)×P(B)

For the sample document in Figure 6.6, we have two events: observing “Bulgaria” in p1

with a probability of 0.4, and observing “Bulgaria” in p2 with a probability of 0.7. Applying the

inclusion-exclusion principle, we can derive the probability of observing “Bulgaria” in text as:

P(Bulgaria) = P(Bulgaria, p1)+P(Bulgaria, p2)−P(Bulgaria, p1)×P((Bulgaria, p2)

0.82 = 0.4+0.7− (0.4×0.7)

However, deriving the augmented probabilities of propositions using events is not sound with

respect to the definition of false or unknown: the augmented probabilities in text do not form a

probability mass function. While we derive the correct probability for the assignment of true to

the proposition “Bulgaria” in text, we would also derive a probability of 0.72 for unknown:
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0.72 = 0.6+0.3− (0.6×0.3)

We will not make use of this derivation of augmented probabilities in terms of event spaces

for the remainder of this chapter, however, it will become more important in chapter 6.4, where

we discuss the implementation of POLIS. There, it is acceptable to derive augmented probabili-

ties via the inclusion-exclusion principle, as neither false nor unknown can be explicitly assigned

to terms. Instead, we will define the probability of unknown as the counterprobability of true,

which yields a probability assignment equivalent to the possible worlds derivation outlined above.

This concludes our discussion of the interpretation propositions in structured documents,

and the augmentation of context knowledge in document hierarchies. We will now turn to the

interpretation of POLIS expressions.

6.3.4 Semantics of POLIS expressions

The previous sections discussed how knowledge and probabilities in structured documents arise,

and how it is possible to reason about this knowledge, to carry out processes such as knowledge

augmentation. This discussion directly relates to the interpretation of POLIS expressions, as

propositions in POLIS expressions (in the form of query terms) can be interpreted in the same

way as in structured documents.

The main difference between interpreting a POLIS expression and interpreting a structured

document is the extent to which structure is considered. In structured documents, reasoning

is carried out largely context local, where the validity of a proposition is only considered with

respect to the context to which it is local. The only exception to this is the process of knowledge

augmentation, where the knowledge of some context influence the knowledge of other contexts,

such that when considering the hierarchical nature of structured document, knowledge is pushed

up the document tree. Structural requirements are not enforced otherwise. However, POLIS

expressions are modelled on XPath in such a way that the individual contexts which form an

axis in the POLIS expression are nested. So for any two contexts separated by a forward-slash

(”/”) in the POLIS expression, it is assumed that the latter context is a subcontext of the former

one. We need to formalise this notion of structure within the possible worlds framework outlined

previously.

Additionally, we need to look at the interpretation of knowledge of the last context given in

a POLIS expression. This last context denotes those structural elements which are supposed to
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form the summary, however, in the case that these contexts have subcontexts of their own, and do

no contain any propositions, all propositions would be unknown; it would thus not be possible to

apply the retrieval models discussed in a later chapter. Instead, we define that the knowledge of

the last context denoted in a POLIS expression is always augmented by the knowledge of all its

subcontexts. We will formalise this notion of “all subcontexts”.

6.3.4.1 Context Nesting

The syntax of POLIS is modelled on the XML retrieval language XPath, in which the path ex-

pression denotes all those elements which should be retrieved. Polis follows this structural path

interpretation as a denotation of all those elements which should form the summary.

The path expression can be derived from two simple definitions: a path is a node, or a node

followed by a path. A node here is any structural element, such as the “text” elements seen in the

previous examples. Syntactically, a path can be defined by:

path := node | path

path := node

Informally, the meaning of a path expression can be interpreted such that every node n1,

which is preceded by a node n0, is a subcontext of n0. We will now formally define this informal

interpretation, using the possible worlds framework. We will use the accessible relations of

context to define the seriality of contexts, which corresponds to the nesting of contexts in XPath

expressions.

We define the seriality of contexts as the property that for any world w′, which is accessible

to a context c from a world w, every subcontext sc of c has a world w′′ in its accessibility relation,

which it can reach from w′. Such a subcontext sc is context-serial with respect to c. We will use

the notation CS(sc,c) to denote that sc is context-serial with respect to c. This can be defined

formally as:

CS(sc,c) ⇐⇒ ∀w ∈W : ∀w′inRc(w) : ∃w′′ : w′′ ∈ Rsc(w′)

A POLIS expression is valid, if every node n in the path-expression is context serial with

respect to its predecessor node in the path. The path expression also serves to identify elements

in the context to be summarised. An element in the context to be summarised is considered for

forming the summary if there is a path from the root the element in the context’s world tree,

which corresponds to the path given in the POLIS expression. We can define this more formally,
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saying an element e is summary forming if its name occurs in the POLIS expression and in the

world tree, and if it is context serial with respect to an element e′ in the POLIS expression, it is

context-serial with respect to e′ in the world tree, and there are no elements es which are context

serial with respect to e in the POLIS expression. We can formalise this notion as:

e is summary-forming ⇐⇒ e ∈ POLIS exp.→ e ∈ world-tree ∧

∃e′ : CS(e,e′) in POLIS exp.→

CS(e,e′) in world-tree ∧

¬∃es : CS(es,e) in POLIS exp.

6.3.4.2 Summary Element Augmentation

The interpretation of nested contexts in the POLIS path expression points to those elements in

a structured context which will form the summary. However, it is possible that these elements

do not have any textual content, but a mere structural elements with nested subcomponents. For

example, a generic document might be broken down by subelements such as section, paragraph,

or sentence. Assuming this schema, it would be unusual the observe text content at any but the

sentence level, however, it would be perfectly acceptable for users to provide a POLIS expression,

such that the summary should be generated from paragraphs. To allow this, we make the implicit

assumption that the summary forming elements specified by a POLIS expression are augmented

with the knowledge of all their subelements.

The augmentation process thus transitively closes the world-tree for the augmentation pro-

cess; a summary-forming element is augmented with the knowledge of its subelements, as well

as its subelements’ subelements, etc.

6.3.5 Summary

In this section, we have developed a possible worlds semantics for POLIS. Having a well defined

semantics is important for a logic, in order to verify translations of logical expressions into other

logical languages, or to show the correctness of systems implementing the logic. The semantics

developed here allows us to reason about the knowledge of structured documents, in order to

carry out processes such as the augmentation of a context’s knowledge. We have extended this

possible worlds semantics to include probabilities, to allow for uncertain reasoning, which is an

integral part of information retrieval.

Furthermore, we looked at how the nested structure of contexts represented in a POLIS ex-
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pression can be reflected in the accessibility relations the possible worlds framework, and how a

path in a POLIS expression corresponds to a path in the world-tree, pointing to all those elements

which should be considered for inclusion in the summary. Additionally, we looked at the knowl-

edge augmentation of these summary elements with knowledge of their subparts. This concludes

our discussion of the POLIS semantics.
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6.4 Implementation of POLIS

In the previous two sections we discussed the syntax of POLIS, and presented a formal seman-

tics for the summarisation logic. In this section, we will continue the specification of POLIS, by

showing how POLIS, and the summarisation models we developed in chapter 5, can be imple-

mented.

The implementation of POLIS further emphasises the flexibility and adaptability of a sum-

marisation logic; POLIS expressions are not evaluated (read: processed) by a closed-source,

single-platform application, but are instead translated into a further intermediate language, which

can then be processed on any suitable target retrieval platforms. Implementing POLIS by trans-

lating it into another target language is a lightweight, elegant implementation approach, which al-

lows quick and easy modification of the implementation if changes to POLIS are necessary. This

implementation approach also more closely follows the methodology of POLIS as a lightweight

intermediate abstraction layer, as opposed to a closed-box implementation of POLIS in Java or C.

Furthermore, any benefits of the lower layers (such as performance improvements of the PRA

execution layer) will be directly available to POLIS

The intermediate language we chose for POLIS is Probabilistic Relational Algebra (PRA)

(Fuhr and Rölleke (1997)). PRA is a probabilistic extension to the traditional relational algebra

(RA) employed by Database Management Systems (DBMS). Like traditional RA, PRA uses

relations as a data representation to store knowledge. However, unlike in traditional RA, tuples

in PRA are given a probability, and relational operators manipulate not only the contents of

relations, but also derive probabilities for tuples in the resulting relations. In PRA, the probability

of a tuple denotes the likelihood that the tuple is part of its relation. In the traditional deterministic

RA, a tuple is always either part of its relation (in which case its probability is 1.0), or it is not

(in which case its probability is 0.0). The probabilities introduced in PRA can be used to express

a degree of uncertainty about the represented knowledge. Fuhr, Roelleke et al. have shown how

it is possible to exploit this uncertainty-modelling to implement IR retrieval models in PRA, and

thus to achieve an integration of information retrieval and database systems (Fuhr and Rölleke

(1997); Roelleke et al. (2008)).

We will use this integration of DB and IR for implementing POLIS, by translating POLIS

expressions into equivalent PRA statements. This ensures that POLIS is based on solid prob-

abilistic and information retrieval foundations, and additionally allows a close integration with
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existing DBIR systems. The close integration with DBMS additionally allows POLIS to make

use of the efficiency of such systems. However, before we can investigate how our summari-

sation models can be implemented in PRA, we need to provide additional details of the data

representation used. As we pointed out, probabilistic relational algebra uses relations as a means

of representing data. We therefore need a relational schema that allows us to capture both the

structure as well as the content of structured documents in a set of relations. We will therefore

start by providing some background on relational data representations, and the process of data

retrieval from relations. We then discuss how structured documents can be fully represented by

a specific set of relations.

6.4.1 Foundations of DB Systems and Relational Data

Knowledge in PRA is represented by relations. A relation can be thought of as a table, where

individual rows in the tables, the tuples, are the primary information carriers. Each tuple con-

sists of a set of attributes, which are the most atomic units of information. In higher-level data

representation languages, such as SQL, attributes can be assigned names, and the information

contained in an attribute can be accessed via the attribute’s name. However, for both RA and

PRA, attributes are simply identified by a numerical index, denoting their position within a tuple.

All tuples in one specific relation consist of the same number of attributes, known as the schema.

A relation can thus be defined as an n×m matrix of n tuples and m attributes.

A DBMS implementing RA will carry out retrieval on the relational data using a basic set

of atomic relational operations: SELECT, PROJECT, JOIN, UNITE, and SUBTRACT (Elmasri

and Navathe (1999)). While these operations are deterministic for RA, PRA-variants of these

operations need to include probabilities as well. The actual probability estimations carried out

by the PRA operators depend on probabilistic assumptions, which we will discuss in more detail

later on. Additionally, PRA introduces an entirely new operator, the relational BAYES, to derive

probabilities from a given (deterministic) relation (Roelleke et al. (2008)).

We mentioned in the previous section that one advantage of modelling POLIS in PRA is

the benefit of using the efficiency of a typical DBMS. Efficiency gains associated with database

systems can usually be attributed to the use of an index. An index is created for specific attributes

(i.e. columns) of a relation, and provides information about the positions of specific attribute-

values in the entire relation. The actual performance improvements gained from using an index

depend on the type of atomic operation carried out; while a projection on a relation can be



6.4. Implementation of POLIS 123

implemented efficiently without an index (assuming that no DISTINCT criterion is specified),

operations such as a SELECT or JOIN will greatly benefit from locational information about

tuples meeting specific attribute values (Connolly and Begg (2001)). For the implementation of

POLIS discussed here, and for the efficiency and effectiveness figures reported in the later chapter

on evaluation, we assume that indices are present for all attributes used in JOIN, PROJECT, or

SELECT operations.

6.4.2 Relational Representation of Structured Documents

In order to be able to make use of the benefits of a relational data representation, we first need to

define a relational schema which completely captures all the properties of structured documents:

content, structure, and information about attributes and element-types. This relational schema

follows the probabilistic object-oriented content representation (POOCR) proposed in (Roelleke

(1999)).

Although POLIS is a summarisation logic for structured documents, we do not make any

assumptions about the structural complexity or the contents of the documents to be summarised.

A document could be a flat, unstructured file (i.e. the document consists of a single context only)

with plain text, it could feature structured context with plain text only, make use of structure

and attributes (such as XML documents), or feature a full set of structured contexts, attributes,

classifications and relations between objects (such as POOL documents).

The relational schema used to represent documents should be flexible enough to accommo-

date all these different complexity classes equivalently. However, this requirement can be easily

satisfied, as lower document complexity classes are entirely subsumed by the higher classes: un-

structured documents can be thought of as structured documents with a singular context, struc-

tured documents are POOL documents without classifications and relations etc. A relational

schema sufficient to represent highly complex structured documents is thus also able to capture

less complex documents. The most complex structured documents we will consider here are

POOL documents, which can represent structure and content like standard XML documents,

and additionally support concepts found in object oriented domains, such as classifications, and

relationships between objects (Roelleke (1999)).

A relational schema for storing structured documents would thus need to provide facilities

to accommodate all of these concepts. Representing all the information contained in structured

documents can be achieved by a set of four relations: term, instance of, part of, and attribute.
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The most important – and also most simple – of these relations is term, which is used to represent

the textual content of contexts. term consists of two attributes: term, and context, where the

former attribute holds individual words (terms), while the latter holds their respective context. A

tuple in this relation represents a term occurring in a context, e.g. a word occurring in a document

section, such that a set of tuples holds the entire textual content of specific contexts. Terms in the

term relation correspond to propositions in the semantics.

The second relation, instance of, represents classifications of objects. With respect to struc-

tured documents, it assigns meaning to subcontexts that appear in structured documents. For

example, the instance of relation could provide information that the subcontext “introduction” is

of type introduction in the structured document “doc1”. To do so, the relation consists of three

attributes: object, which is the object to be classified, class, providing the class an object belongs

to, and context, which is the context in which the classification information is valid. Classifica-

tions are propositions, similar to terms. Therefore, the truth value of a classification might differ

in different contexts. This is reflected by the context attribute.

The part of relation is used to represent the structure of documents, i.e. the hierarchical

layout of documents. It uses three attributes to represent this information: subpart, superpart and

context. A tuple in the part of relation is again a proposition, although it will not be interpreted

as such by the semantics. Any proposition in the relation states that the object denoted in the

attribute subpart is a part of the object denoted in the attribute superpart, and is valid in the

context provided in attribute context.

Finally, the last feature of structured documents to be represented in the relational schema

are attributes. An attribute can be an actual attribute inside a tag, as found in XML or XHTML

documents, or can be a more complex object, such as a named relation between objects. For

representing the value of attributes, the attribute relation makes use of four columns: type, object,

value and context. The type attribute specifies the type of an attribute, which for XML documents

corresponds to the attribute name. The object attribute defines the object to which the attribute

is attached, which in the domain of structured documents is a context. The value of a specific

attribute attached to an object is given by value. Again, the assignment of values to attributes is

valid only in a specific context, given by the context attribute.

This relational schema of four relations is sufficient to represent all complex, structured docu-

ments in a coherent relational framework. Without any further changes to the relational schema,
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documents of varying complexity and structure can uniformly be mapped onto the set of rela-

tions. To help make this brief and abstract description of mapping structured documents into a

relational schema more concrete, we will now give an example of how a structured document is

translated into the given set of relations.

6.4.2.1 Example

To show how an actual document can be represented using the set of relations outlined above,

we will now detail the translation of a sample structured document into its corresponding rela-

tions. The sample structured document we use is a simple XML document consisting of three

subcontexts, shown in Figure 6.8.

<doc id=1>
  <sec id=1.1> some text </sec>
  <sec id=1.2> boats greece </sec>
  <sec id=1.3> sailing east coast </sec>
</doc>

Figure 6.8: A sample XML document.

The sample document has a root-context of type “doc”, which consists of three subcontexts

of type “sec”. Each of the contexts has an attribute called “id”, which has a numerical value

specifying a unique identifier for all contexts of the same type. Additionally, the document holds

some textual content: each of the three “sec” contexts contains some text. The first “sec” context

contains the terms “some text”, the second “sec” context consists of the terms “boats greece”,

and the last “sec” context contains the terms “sailing east coast”.

A relational representation of this sample document needs to reflect the structural layout of

the document, the textual content of the contexts, and the types and values of its attributes. Figure

6.9 depicts the relational representation of the sample document shown in Figure 6.8.

Figure 6.9 shows that the relational representation reflects both the structure and content of

the sample document in the way outlined in the previous subsection. Additionally, the attribute-

relation contains an additional attribute, ”serialID”. This attribute is not present in the original

document, and is an artifact introduced by the indexing process. The attribute assigns a unique

identifier to contexts belonging to the same type – irrespective of whether such an ID is present

in the original structured document or not – and is necessary for some of the querying facilities

provided by POLIS. This will be discussed in more detail in the next section, where we show the

translation of POLIS expressions into equivalent sets of PRA expressions. Additionally, we also
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Figure 6.9: Relational representation of the document in Figure 6.8.

provide corresponding Probabilistic Datalog (PD) expressions, to aid understanding of the PRA

statements.

6.4.3 Translation of POLIS into equivalent PRA expressions

Using the detailed description of how structured documents can be represented by a specific

set of four relations, we can now discuss the translation of a POLIS expression into a series of

equivalent PRA statements. To show the equivalence of the generated set of PRA expressions

with the original POLIS expression, we compare the semantics of POLIS, and the probabilistic

summarisation models discussed in Chapter 5, with the semantics of the PRA operators. The

semantics of PRA expressions are discussed in detail in (Roelleke (2009)). We will only repeat

the most important definitions here, to aid readability of the following section.

All PRA expressions produce probabilistic relations. A probabilistic relation is a pair (T,P),

where T is a set of tuples, and P is a function that assigns a probability to tuples: T → [0;1]. An

individual tuple in T is denoted by the letter τ , and attributes in a tuple are addressed by their

respective position. The first attribute in τ is thus addressed as τ(1).

The meaning of PRA operators can be expressed as the changes the operators perform on sets

of tuples; we will therefore use a set-theoretic notion to present the semantics of PRA operators.

The semantics of an entire PRA expression is given by the chain of PRA operators from which
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it is built up, working from the innermost PRA operator to the outermost. The output of inner

PRA operators is fed as input to outer operators. Using these definitions, we can now detail the

semantics of POLIS-generated PRA expressions.

6.4.3.1 Path to Summary-forming Elements

We will start the translation by first extracting the user specified summary forming elements.

POLIS steps sequentially through a given logical expression to define an intensional relation that

contains all those elements at the user specified granularity. If possible, intermediate relations

created to perform this operation will have names based on the element types they are referring

to. Additionally, a sequence number is used to give relations unique names. The translation

process will also introduce variables, which are selected in alphabetical order. These variables

follow the convention of capitalising variable names.

The first element in a POLIS expression is always a “/”, followed by either a “*” (where the

type of element is not specified, and is thus matched by any element), or by a specific element

type. There are thus two cases to be considered for the first translation step.

The sequence “/*”, for any element types, can be expressed in PRA by the statement

p0 = Project INDEPENDENT[$1](Select[$3=”/”](instance of));

The relation p0 thus holds all those elements which are subparts of “/”. Note that the selection

is performed via the instance of relation here, although it would have been possible to carry out

the selection equally well on the part of relation.

We start with the semantics of the inner SELECT statement, the result of which is input to

the outer PROJECT expression. The semantics of the SELECT are:

(T,P) = ’SELECT’ ’[’ condition ’]’ ’(’ relation ’)’

T := {τ|τ ∈ Trelation∧ τ(3) = ”/”}
P(τ) := Prelation(τ)

where “condition” is “$3=”/””, and “relation” is set to instance of. The SELECT returns

a relation of three attribute tuples, where the third attribute contains the value ”/”. The tuple

probabilities in the resulting relation are equal to the probabilities in the input relation. This

relation resulting from applying the SELECT to the instance of relation is used as input to the

Project INDEPENDENT. The “independent” keyword indicates that the project operator makes
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an independence assumption with respect to the tuples in its input relation, and that the output

is going to be a distinct relation. All tuples in the input relation which are non-distinct for the

given attribute target-list are combined into a single tuple in the output relation. The probabilistic

assumption affects the way in which probabilities in the input relation are aggregated for tuples

in the resulting relation.

The semantics of the Project INDEPENDENT can be given as

(T,P) = ’PROJECT INDEPENDENT’ ’[’ targetlist ’]’ ’(’ relation ’)’

T := {τ|τ ′ ∈ Trelation∧ τ = τ
′[targetlist]}

P(τ) := 1− ∏
τa∈Ta∧τa[targetlist]=τ[targetlist]

(1−Pa(τa))

where “relation” is the output of the inner SELECT, and “targetlist” consists of a single attribute,

here 1. Both the instance of and the part of relations are deterministic, so that the given assump-

tion INDEPENDENT for the projection reduces to a traditional DISTINCT projection, where all

tuple probabilities are 1. The result of the entire PRA expression is thus a distinct relation con-

sisting of all those tuples in instance of where the third attribute has the value “/”.

A corresponding expression in PD would be:

p0(A) :− instance of (A,X,”/”) ;

where the second variable “X” of instance of is only necessary due to the limited expressiveness

of PD, and simply signifies that the second attribute of instance of can take any value.

Similarly, the translation for a POLIS expression starting with “/element-type” can be trans-

lated into the PRA expression

element-type0 = Project INDEPENDENT[$1]

( Select [$2=”element-type”, $3=”/”]( instance of ) ) ;

The only difference between the two PRA expressions is the additional condition in the inner

SELECT operator, such that the overall output of the expression is a distinct relation of all tuples

in instance of where the third attribute has a value of “/”, and the second attribute has the value

element-type.

The corresponding PD expression to the above PRA statement is

element-type0(A) :− instance of (A,element-type,”/”)
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which is similar to the Datalog expression for the unspecified element type, where here the “don’t

care” variable “X” of the previous expression has been replaced by the given element-type.

The remaining path expression in a POLIS statement is translated into PRA by iteratively

creating new relations for each element in the path, which refer to previously created element-

relations via the part of relation. Again, an element in the path can be either a “*”, or a specific

element-type. For the “*”-expression, the according PRA statement is

p1 = Project INDEPENDENT[$2](Join[$1=$2](p0,part of));

where we assume the above expression was generated for the second element in a path (in-

dicated by the element sequence number 1), and where p0 is given exemplary and is generally

the path-element relation created for the previous path element. The semantics for the JOIN

operation are defined as

(T,P) = JOIN ’[’ condition ’]’ ’(’ rela, relb ’)’

T := {(τa[i1 · · · in],τb[ j1 · · · jn])|τa ∈ rela∧ τb ∈ relb∧∀[i1 · · · in], [ j1 · · · jn] : i∗ = j∗}
∀τ ∈ T : P(τ) := Pa(τ[i1 · · · in]) ·Pb(τ[ j1 · · · jn])

The semantics for the PROJECT operation are identical to the above example. The PRA

expression thus produces a distinct relation such that it consists of all those elements which are

subelements of those path-elements in the previously generated relation (here p0). The corre-

sponding PD expression follows the PRA statement, and joins the previously generated relation

with the part of relation:

p1(A) :− p0(B) & part of (A,B).

The expression for a named element type is very similar, however, additionally makes use of

the instance of relation, such that only elements of the given element-type are included in the

resulting relation:

element-type1 = Project INDEPENDENT[$2](Join[$2=$1]

(Join[$1=$2](p0, part of ) , Select [$2=”element-type”]( instance of ) ) ) ;

Here we assume this is the second step in the processing (visible by the relation sequence

counter “1”), and also assume that the first step in the path was “*”, so that the JOIN via the
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“part of” relation is performed with “p0”.

Accordingly, the corresponding PD expression makes use of the previously generated named

relation

element-type1(A) :− p0(B) & part of (A,B) & instance of (A, element-type ,X).

Iteratively applying this process to the POLIS expression until a summary definition is en-

countered will result in a relation which contains all the elements at the user-specified level of

granularity, which could potentially form the summary and need to be processed by the weight-

ing models. We will call this final relation elements in the sequel. The nesting of contexts, seen

here by the inclusion of previously generated relations into the definition of later relations, cor-

responds to the context-nesting and context-seriality requirements discussed in Section 6.3.4.1.

The main processing step in the generation of summaries is the ranking of elements according

to the weighting models. Before this can take place, it is necessary to include terms in subparts of

those elements into the set of terms for elements themselves. For example, if summarisation were

to take place at sentence level, the sentences should contain all its own terms, but additionally also

knowledge about terms in sub-elements, such as layout tags (e.g. italicised text). This process is

called knowledge augmentation, and will be covered in the next section.

6.4.3.2 Knowledge Augmentation

In chapter 5, we noted that the weighting of terms in contexts is augmented by the presence of

terms in those contexts’ subparts. More generally, the knowledge of contexts is augmented with

the knowledge of subcontexts. The knowledge augmentation of elements was discussed in Chap-

ter 4, and is traditionally modelled via a “link” relation, such that a certain context is “about” a

term if either that term occurs in the context, or it occurs in a context linked to the current one

(shown here with an example in Probabilistic Datalog):

about(T,D) :− term(T,D);

about(T,D) :− link (D,D’), about(T,D’);

We follow this idea of modelling context augmentation via a link relation, however, since

dealing with structured documents, replace the “link” relation with the “part of” relation denoting

the structural layout of documents. Since subcomponents of an element could themselves contain

additional subcomponents, we need to traverse the part of relation transitively. To make this
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more efficient, we assume that the transitive closure of part of has been materialised, and is

available to the system as a relation called part of trans. However, as we discussed in Chapter 4,

the process of knowledge augmentation can be performed in two ways: as an aggregation of term

probabilities, or an aggregation of term frequencies, from which the probabilities are derived.

To augment the term frequencies (i.e. the number of occurrences of a term) in a context, it is

necessary to collect term frequencies of all subcontexts, and make them local to the augmented

context. We can define this knowledge augmentation of a context as:

element about = PROJECT ALL[$4,$1](JOIN[$2=$2](JOIN[$1=$2]

(elements , part of trans ) , term)) ;

The semantics of the JOIN operations have been discussed previously. The PROJECT oper-

ation with the assumption ALL is a non-distinct projection, and has the following semantics:

(T,P) = ’PROJECT ALL’ ’[’ targetlist ’]’ ’(’ relation ’)’

T := {τ|τ ′ ∈ Trelation∧ τ = τ
′[targetlist]}

∀τ ∈ T : P(τ) := Prelation(τ)

The projection thus does not affect tuple probabilities, but only limits the number of attributes

present in tuples. This resulting relation of the entire PRA expression is thus a collection of all

terms which occur in a context, or in any subcomponent of this context. To weight the terms in

such an augmented context, the now augmented term frequencies would be used as a basis for es-

timating term probabilities. This term-frequency augmentation can be expressed in Probabilistic

Datalog as:

element about (T,E) :− elements(E) & part of trans (A,E) & term(T,A).

A second option for augmenting the knowledge is to first weight terms in all the subcontexts

of the context to be augmented, and then to aggregate the probabilities to form term weights in

the augmented context.

element terms = Project[$2,$3](JOIN[$1=$2](elements, term)) ;

p t d = Project DISJOINT(Bayes[$2](element terms));

weighted element about = PROJECT INDEPENDENT[$4,$1](JOIN[$2=$2](JOIN[$1=$2]

(elements , part of trans ) , p t d ) ) ;
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The second augmentation method makes use of a new relational operator, the relational

BAYES, introduced in (Roelleke et al. (2008)). The semantics of the BAYES can be given as

P(τ) :=
P(τ)

∑({P(τ ′)|τ ′[i1 · · · in] = τ[ii · · · in]})

The Bayes thus weights tuples by their fraction of the overall relation. For a distinct relation

such as term, the weight of a tuple is 1
LR

, where LR is the length of the relation. The weighted

relation produced by the Bayes is given as input to the outer PROJECT, which makes a DISJOINT

assumption. The semantics for the DISJOINT are

(T,P) = ’PROJECT DISJOINT’ ’[’ targetlist ’]’ ’(’ relation ’)’

P(τ) := ∑
τrelation∈Trelation∧τrelation[i1···in]=τ[i1···in]

Prelation(τrelation)

The entire PRA expression thus produces a distinct relation P t d, where individual tuples are

weighted by the sum of their Bayes probabilities. As the name indicates, these weights are

linear occurrence probabilities, implement nL(t,d)
NL(d) , where nL(t,d) is the number of occurrences

of term t in document d, and NL(d) is the total number of terms in d, which correspond to the

traditional formulation of the TF-weight (Rölleke et al. (2006)). These TF-weights are aggregated

for the probability aggregation in the augmented context, where the aggregation is carried out

by the INDEPENDENT projection, which, as the semantics in the previous section indicate, is

an implementation of the inclusion-exclusion principle based knowledge augmentation scheme

discussed in 6.3.3.5.

Note that although the augmented relation is named “about”, it is not supposed to be an

indication of the degree of “aboutness” between an element and a context, which forms the basis

for the summarisation models developed in Chapter 5. The corresponding PD expression to

arrive at a probability-based augmentation is:

element terms(T,E) :− elements(E) & term(T,E).

p t d DISJOINT(T,E) :− element terms(T,E) | (E).

weighted element about INDEPENDENT(T,E) :− elements(E) & part of trans(X,E) & p t d(

T,X).
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6.4.3.3 Summary Definition

Following the collection of all potentially summary-forming elements in the relation elements,

and the knowledge augmentation of these elements, we can now define the PRA expressions

which will carry out the weighting of elements. We will discuss the weighting process first for

the POLIS-base and POLIS-macroaveraging models, followed by the POLIS-microaveraging

model.

6.4.3.3.1 POLIS-Base and -Macroaveraging Models For the POLIS-base and

POLIS-macroaveraging models outline in chapter 5, two probabilities are combined in the re-

trieval function: the document term probability P(t|d), and the collection term frequency P(t|c).

For the base- and the macroaveraging-model, P(t|d) is given by the augmented context weights,

as outlined in the previous section. The collection term frequency P(t|c) for the base- and

macroaveraging-models is estimated as the linear term frequency, rather than the inverse doc-

ument frequency found in traditional retrieval models. To model this probability, we again

use the relational “Bayes” operator, followed by a Project DISJOINT, which provides the lin-

ear occurrence-based probability of observing a term in the context

p t c = Project SUM[$1](Bayes(term));

where the semantics of the Bayes can be given as

P(τ) :=
P(τ)

∑({P(τ ′)|τ ′[i1 · · · in] = τ[ii · · · in]})

arriving at a occurrence probability per term location, which is summed per distinct term by the

Project DISJOINT:

(T,P) = ’PROJECT DISJOINT’ ’[’ targetlist ’]’ ’(’ relation ’)’

P(τ) := ∑
τrelation∈Trelation∧τrelation[i1···in]=τ[i1···in]

Prelation(τrelation)

The above PRA statement can be expressed in PD as:

p t c (T) :− term(T,D) | (T).

For the POLIS-base model, we combine these the two probabilities using a BM25-like frac-

tional combination. This can be achieved in PRA using the Join FRACTIONAL operation:



6.4. Implementation of POLIS 134

element score = Project INDEPENDENT[$2](Join FRACTIONAL[$1=$1](

weighted element about, p t c));

The semantics of the JOIN fractional are

(T,P) = JOIN FRACTIONAL ’[’ condition ’]’ ’(’ rela, relb ’)’

T := {(τa[i1 · · · in],τb[ j1 · · · jn])|τa ∈ rela∧ τb ∈ relb∧∀[i1 · · · in], [ j1 · · · jn] : i∗ = j∗}

P(τ) :=
Prela(τ)

Prela(τ)+Prelb(τ)

The JOIN using a FRACTIONAL assumption thus implements a non-linear combination of

weights, similar to the combination found in the BM25 term-weighting function. Combining both

P(t|d) and P(t|c) in this way thus implements the summarisation model developed in 5.4.1.1. The

aggregation of individual term probabilities into the overall element weight P(c|e) is achieved by

the outer projection, using an INDEPENDENT assumption, which results in a distinct relation

consisting of all potentially summary-forming elements, where all elements are weighted by the

base summarisation model.

The Probabilistic Datalog statement “&” is equivalent to an ordinary Join in PRA. To model

the Fractional Join, PD uses a special version of “&”, the “FRAC &”. The corresponding PRA

statement in PD is thus:

element score (E) :− weighted element about (T,E) FRAC & p t c(T).

For the macroaveraging model, we combine two weights: the element score as defined above

for the POLIS-base model, and an ad-hoc retrieval based element weight, derived from the given

query terms. We will not go into details about the implementation of ad-hoc retrieval models

in PRA, however, the PRA expressions for implementing Language Modelling and TF-IDF are

given in Appendices A.1 and A.2 for the sake of completeness.

To arrive at a ranking of summary elements, we first need to unite the query indepen-

dent element weight we calculated using the POLIS-base model with the query-based element

weight provided by the ad-hoc model. We will assume that the latter is provided by a relation

ad hoc retrieve. The two element weights in these relations are combined into a single relation,

called query element score
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query element score = Unite DISJOINT(element score, ad hoc retrieve ) ;

The Unite DISJOINT combines two relations in a distinct way, adding tuple probabilities.

The semantics of the distinct UNITE operator can be given as

(T,P) = ’UNITE DISJOINT’ ’(’ relationa, relationb’)’

T := {τ|τ ∈ Trelationa ∨ τ ∈ Trelationb}
P(τ) := Prelationa(τ)+Prelationb(τ)

The aggregation function ⊕ for the macroaveraging model is thus implemented as a linear

sum of both the base element weight and the ad-hoc retrieval weight. This can also be expressed

in Probabilistic Datalog in the following form:

query element score DISJOINT(E) :− element score(E) & ad hoc retrieve (E).

To get the final additive element score, we need to project on the elements:

final element score = Project ALL[$1](query element score);

which can alternatively be given in PD as:

final element score ALL(E) :− query element score(E).

This concludes the implementation discussion for the POLIS-base and the POLIS-macroaveraging

models. We will now turn to the POLIS-microaveraging model.

6.4.3.3.2 POLIS-Microaveraging Model The POLIS-microaveraging model does not make

use of the element score provided by the POLIS-base model to rank elements. Instead, it provides

an integrated query- and element-based score.

We will start by defining the basic probabilities P(t|e), P(t|q), and P(c|t). Note that we

also define a relation qterm stemmed; this is only a helper relation, which provides a stemmed

representation of the original query terms:

p t e = Project DISJOINT(Bayes[$2](element about));

The semantics of both the relational Bayes and the disjoint projection have been discussed in

the preceding section. The result of the entire PRA expression is a relation that gives the term
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probabilities in the knowledge-augmented summary forming elements. Instead of using the ag-

gregated probabilities for augmentation, the term probabilities are derived from augmented term

frequencies. An equivalent PD expression can be given as:

p t e DISJOINT(T,E) :− element about(T,E) | (E).

Like the element-term probability P(t|e), we also create a relation for the query-term proba-

bility P(t|q). Assume that the query is represented by its terms in the relation qterm. We create

an intermediate relation qterm stemmed, which contains a stemmed representation of the original

query-terms. Term probabilities for the query are then derived for each query topic using the

stemmed representation.

qterm stemmed = Project ALL[$4,$2](Join[$1=$1](qterm, stem)) ;

p t q = Project DISJOINT(Bayes[$2](Select[$2=”topicID”](qterm stemmed)));

Both relations can also be defined in Probabilistic Datalog:

qterm stemmed(S,topicID) :− qterm(T,topicID) & stem(T,S) .

p t q DISJOINT(T,topicID) :− qterm stemmed(T,topicID) | (topicID) .

As we pointed out in Chapter 5, there are two ways how to estimate the probability P(c|t):

as a linear probability of occurrence, and as an informativeness probability based on the inverse

element frequency.

To model the occurrence based estimate of P(c|t), we use a frequency augmented context (i.e.

term knowledge of all elements is pushed up to the context level). The probability is estimated

using a combination of a Bayes and a disjoint projection:

p c t = Project DISJOINT(Bayes[$1](context about));

As there is only one context to be summarised at any one time, the probability of all terms in

this estimate will be 1.0. This occurrence-based linear probability can similarly be expressed in

PD as:

p c t DISJOINT(T) :− context about(T) | (T).

To estimate P(c|t) as an informativeness probability, we model it using the traditional IDF

on frequency augmented elements:

p c t = Bayes MAX IDF[] (PROJECT[$1](element about))
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The semantics of the IDF Bayes follow those of the normal Bayes, with an additional loga-

rithm applied to the the tuple probabilities:

P(τa) := log(Pa(τ)/ log(Pe(τ))

Here, terms are given a higher weight if they are less frequent across all augmented elements.

The corresponding PD expression follows that given for the linear estimate, however, here the

assumption max ivf is provided:

p c t DISJOINT(T,C) :− context about(T) | max ivf T.

To calculate a score for elements, we first estimate the probability P(t|e,q), by joining P(t|e),

and P(t|q):

p t e q = Project INDEPENDENT[$1,$2](Join[$1=$1](p t e, p t q));

The aggregation of the two probabilities is performed by means of the INDEPENDENT pro-

jection. Here, the ⊕ operation detailed in Chapter 5 is implemented via the inclusion-exclusion

principle, as provided by the semantics of the project operator.

The final overall element score is provided by the probability P(c|e,q), which we can derive

by combining P(t|e,q), and P(c|t):

p c e q = Project INDEPENDENT[$4](Join[$1=$1](p c t,p t e q));

This combination is again performed by a Join operation followed by an INDEPENDENT

projection, resulting in a distinct relation holding all the elements, with their corresponding

weight.

The two relations weighting elements can similarly be expressed in PD, using the following

statements:

p t e q INDEPENDENT(T,E) :− p t e(T,E) & p t q(T,Q).

p c e q INDEPENDENT(T) :− p c t(T,C) & p t e q(T,E).

This concludes our discussion for the implementation of the POLIS-microaveraging model.

6.4.3.4 Summary Size Limitation

The final step in the summary generation is a limitation of the size of the summary. POLIS

provides two ways in which the summary size can be limited: the number of elements in the
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summary, and the number of terms in the summary. For both limitations, we will make use of a

so-called top-K operator, which, when applied to a probabilistic relation, considers only the top

K tuples, when ordering a relation by tuple probabilities.

To provide an implementation for both limitations, we assume that the scored elements, pro-

vided by any of the previously discussed models, will be contained in a relation

summary element score. To limit the number of elements used for building the summary, we can

directly apply the top-K operator to this relation. A summary-size limitation of the form {at most

n} is translated into the PRA statement

summary = summary element score:n;

where the tuples in the resulting relation summary are the n highest scoring tuples in the input

relation summary element score. This can similarly be expressed in PD, by also applying the

top-k operator to the goal statement:

summary(S):n :− summary element score(S).

For implementing a size limitation based on the number of terms, we first need to join the

scored elements in the relation summary element score with the term relation, resulting in a

relation providing both element scores and the terms which occur in those elements. We then

apply the top-K operator to this resulting relation, such that the top-K operates on the terms,

rather than on the elements directly.

A summary-size limitation of the form at most n} terms is thus translated into the PRA

statement

summary = Join[$1=$2](summary element score,term):n;

and can be implemented in PD by amending the previously defined PD statement for limiting the

number of elements, such that it also first joins summary element score with the relation term:

summary(T):n :− summary element score(S) & term(T,S).

6.4.4 Summary

In this section, we have provided an overview of the implementation of POLIS using the proba-

bilistic relational algebra (PRA). Using the semantics of the PRA expressions, we were able to

show that the generated PRA expressions correspond to the semantics of the respective POLIS
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expressions, and that concepts discussed in the context of the semantics, such as the augmenta-

tion of knowledge, can be truthfully implemented in PRA. The implementation, together with

the syntax and semantics, completes the formal specification of POLIS.
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6.5 Conclusion

In chapter 5 we investigated the application of well-known information retrieval models, such as

TF-IDF, Language Modelling, and BM25, to the task of document summarisation. Furthermore,

we developed new probabilistic summarisation models, to address some of the problems we

discovered when we applied retrieval models to summarisation.

This chapter forms the second main contribution of this dissertation: the development of a

summarisation logic. The benefit of such a logic is to provide an abstraction layer to the task of

summarisation: users of the logic – such as knowledge engineers – do not need to have intimate

knowledge of the summarisation models used, or the methadology of summarisation in general,

to be able to apply the logic in their work.

In this chapter, we formally specified our summarisation logic – POLIS – in three steps: by

providing a syntax, based on the established XPath language,

by giving the logic a well formalised meaning, using denotational “possible worlds” semantics,

and by providing details of an implementation of POLIS, using the probabilistic relational algebra

(PRA).

In the next chapter, we will evaluate the summarisation models we developed in chapter 5,

relying on actual POLIS expressions to show how the summarisation logic can be used in the test

scenarios.

Furthermore, in chapter 8, we will thoroughly investigate how a summarisation logic can be

used in the context of enterprise search, by applying POLIS to the problem of expert finding.
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Chapter 7

Evaluation

7.1 Introduction

The previous chapters provided a detailed specification of POLIS; specifically, Chapter 5 dis-

cussed the derivation of summarisation models from existing ad-hoc retrieval models, and showed

the development of an additional, non retrieval based, summarisation model, while Chapter 6

provides details of the syntax, semantics, and implementation of POLIS. Both chapters together

provide a full specification of POLIS, however, they independently cover the primary constituents

of the summarisation logic: a probabilistic model based on the underlying retrieval task, and the

traditional specification of a logic, respectively.

Before we can begin to evaluate POLIS, we first need to define what constitutes an evaluation

of a summarisation logic. Any abstraction logic can be evaluated on at least two levels: firstly,

by evaluating how well the retrieval models implemented by the logic perform. In the case of

POLIS, such an evaluation would focus on how well the summarisation models implemented by

POLIS perform on summarising documents.

However, an abstraction logic can additionally be evaluated as a standalone entity, in terms

of how easy it can be applied by users to its intended retrieval task. A retrieval logic like POOL

would thus be evaluated in a user study, in an attempt to measure how easy it is for users to express

their information need. Actual end-users of an information system are usually not available

during development, however, they could be emulated by members of a more readily available

student population.
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Such a user-study could also be performed on POLIS, however, a further complication here is

that the intended user population of POLIS consists of knowledge engineers, whose knowledge

and expertise would not be present in a more general group of test persons. An emulated user

population recruited from students would not be a representative sample of intended POLIS users.

POLIS would thus need to be evaluated by actual knowledge engineers, ideally in the context of

a real software engineering project, in which a summarisation capability is needed.

While it would have been beneficial to conduct such a user study, we had no access to the

required user population. Instead, we focus in this chapter on an evaluation of the summarisation

models implemented by POLIS in isolation, and provide examples of how POLIS can be applied

to real-world retrieval problems in the next chapter.

In section 7.2 we introduce the evaluation methodology used for evaluating the POLIS sum-

marisation models. This includes a discussion of the used test corpora and the evaluation frame-

work, as well as a short introduction of the significance test applied to all results. Section 7.3

discusses the performance evaluations conducted on the test corpora. Section 7.4 concludes the

evaluation of the summarisation models.

7.2 Evaluation Methodology

7.2.1 ROUGE evaluation measure

The evaluation of automatically generated summaries is a non-trivial problem, as we pointed out

in Chapter 3. Of the three possible evaluation approaches (i.e. intrinsic, extrinsic, and subjec-

tive), the intrinsic evaluation method seems best suited to the task of evaluating the generated

summaries in isolation, as it does not rely on a sufficiently large population of human judges to

smoothen out a personal bias, which would be needed for a subjective evaluation, and also does

not need to be embedded in a carefully designed retrieval experiment, which again would have

required access to a user group (which here could have consisted of students, as no knowledge

of POLIS would have been required).

By using the intrinsic evaluation methods, we are comparing the generated summaries to

“golden standard” reference summaries. The idea is that automatically generated summaries

which are very similar to the reference summaries are of higher quality.

To carry out this form of evaluation, we used the ROUGE evaluation framework developed by

Lin and Hovy (Lin and Hovy (2003); Lin (2004)). ROUGE is an evaluation framework inspired
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by the co-occurrence measures employed for machine-translation evaluations, and calculates the

overlap between generated summaries and the provided reference summaries. From this calcu-

lated overlap, it derives a “ROUGE score” indicative of the quality of the generated summaries.

There are several different ways in which ROUGE can calculate the overlap between to docu-

ments, differing in certain variables such as the size of fragments compared, which can vary from

individual words to multi-word snippets (called ROUGE-1, ROUGE-2, etc.), or the amount of

additional words which might appear between overlapping words, which will be skipped for the

purpose of calculating the overlap (called ROUGE-SUx, where “x” is the skip-distance). The

ROUGE scores are given as both a “recall” and a “precision” value. The recall value is the more

meaningful of the two retrieval scores, and measures the extent to which machine summaries cap-

ture the content of the reference summaries. The precision score becomes useful in evaluation

situations where the automatic summaries are significantly longer than the reference summaries,

such that they have an increased chance of achieving a high recall score. In all experiments

here we created summaries at the same length (or close to the original length) as the reference

summaries, such that the recall score is the more significant measure for the evaluations reported

here. Furthermore, for the evaluation discussed here, we only report the ROUGE-1 figures, as

they are the commonly used evaluation criterion in summarisation research (see Dang (2006)).

It should also be mentioned that the calculated ROUGE score is somewhat arbitrary, and

should not be interpreted as a percentile.

7.2.2 Statistical Significance Testing

When we compare the automatically generated summaries with the manually written reference

summaries, the ROUGE score achieved for a specific machine summary / reference summary

pair indicates how well the summariser performed. To evaluate a specific summarisation strategy,

and to compare its performance to another strategy, we would consider the set of all comparisons,

and the average score achieved, and judge the higher scoring strategy the “better” one. Suppose

a summarisation approach s1 would achieve a higher average score than a summariser s2, one

would assume that s1 is better than s2.

However, we do not have any information on the validity of this assumption. Since we are

only comparing average performance figures, it would be possible that the higher average score

for s1 was only achieved by a few extreme cases which were very much higher than the scores

for s2, while across the whole set of evaluations s2 performed consistently better than s1. For
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any future evaluations, s1 might be consistently outperformed by s2, although it was the “better”

approach.

Statistical significance testing allows us to evaluate the validity of effectiveness measures,

by proving the hypothesis that one summarisation strategy outperforms another summarisation

strategy. To do this, significance testing employs a reverse argument: if we can refute the null

hypothesis that no difference exists between two strategies, then a significant difference must

exist. Suppose we want to show that s1 performs significantly better than s2. The null hypothesis

H0 would be that s2 performs at least as good as s1. To show that our original hypothesis H1 –

that s1 is significantly better than s2 – is correct, we need to show that the probability of H0 is so

small that it should be refuted. To test the probability of a hypothesis, we consider the difference

in performance between the two strategies, expressed as the mean difference µ of performance

figures across the entire set of comparisons. The two hypotheses can then be expressed as:

H0 := µ ≤ 0

H1 := µ > 0

The purpose of statistical significance testing is thus to calculate the probability of H0, and

to show that it can be refuted. To arrive at these probabilities, statistical inference techniques

are applied to the performance figures, such as the well-known paired t-test (Student’s t-test).

However, many statistical inference techniques, such as the t-test, χ2, or Kolmogorov-Smirnov,

assume that the underlying data is normally distributed, an assumption which has been questioned

in the context of IR evaluation (van Rijsbergen (1980)).

For this reason, significance testing of IR evaluations has made use of weaker, non-parametric

significance tests, such as the Wilcoxon Signed Rank Test, or the Sign test, which do not consider

actual performance figures, but instead estimate the significance of performance tests based on

rankings (Wilcoxon), or binary judgements of the form “s1 performed better than s2 in test case

t1” (Sign test). However, while these tests overcome the problematic assumptions regarding the

distribution of the performance data, Smucker et al. showed that significance figures reported by

the Wilcoxon and Sign-test were not consistent with each other, and were also inconsistent with

significance figures reported by parametric tests, such as the t-test (Smucker et al. (2007)).

Due to the problems with all of these significance tests, we will instead use the bootstrapping

test (Efron and Tibshirani (1993)). The bootstrap is a non-parametric resampling inference test,
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and does not make assumptions regarding the distribution of the underlying data. Instead, it

only requires the sample to be representative of the whole population. Smucker et al. showed

that the bootstrapping test performs similar to the t-test, so that both tests agree on the statistical

significance of results.

Bootstrapping simulates the underlying distribution by randomly drawing with replacement

a large number of samples from the original observations. For each of these bootstrap samples a

mean is calculated. For the set of means, the standard error is approximated, and both the mean

and the standard error of the bootstrap samples allows us to compute confidence intervals. For

our tests, we used confidence intervals based on percentiles of the bootstrap samples. To reject

the null hypothesis H0, we calculate 99% and 95% confidence intervals between the 1st or 5th

and the 100th percentiles, respectively. A left limit of either confidence interval greater than zero

allows us to reject the null hypothesis, and instead accept H1 with 99% or 95% confidence. The

two confidence intervals correspond to p-scores of 0.01 and 0.05 respectively. When reporting

significance levels, we will report the value of the corresponding quantiles.

Figure 7.1: Resample histogram and quantile-quantile plot (Q-Q plot) of resampling test.

For each of the significance tests, we also provide the histogram of the resamples, and a

quantile-quantile plot (Q-Q plot) of the resample quantiles versus quantiles drawn from a normal

distribution. The histogram of the resamples highlights the mean of the resampled distribution,

whereas the Q-Q plot indicates how far the resample distribution deviates from a normal distri-

bution (Figure 7.1). Ideally, the resample distribution closely follows the normal distribution, so

that all points in the Q-Q plot fall on the center diagonal.

To carry out the actual calculation of the bootstrap significance test we used the R envi-
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ronment1, and the associated package boot, where we set the number of bootstrap samples to

10,000.

7.2.3 Test Collections

The purpose of a test collection is to aid the evaluation of a specific retrieval model, or any

new methodology to improve the quality of retrieval. We discussed the main components of a

test collection (documents, queries, and relevance judgements) in Chapter 2, and also presented

statistics for a number of test collections.

Test collections for the evaluation of summarisers differ from traditional ad-hoc retrieval test

collections, as the focus lies on the generation of “good” summaries, rather than the retrieval of

relevant documents. A summarisation test collection therefore consists of a collection of doc-

uments, a set of summaries, and –optionally – a set of queries which can be used to generate

the summaries. Test collections can be used to specifically evaluate single document summarisa-

tion, where a reference summary is provided for every test document, or can be used to evaluate

multi-document summarisation approaches, where several documents are covered by a single

document.

However, there is no “ideal” test collection for evaluating the summarisation models devel-

oped in Chapter 5. As POLIS is a summarisation logic for structured documents, we would need

a collection of structured documents, together with (possibly structured) reference summaries.

To our knowledge, no such collection exists. Instead, we will use two test collections, which

partially cover both aspects of structured summarisation: a test collection for summarisation, and

a collection for evaluating structured document retrieval.

7.2.3.1 Document Understanding Conference

The first test collection we use is the Document Understanding Conference AQUAINT corpus, a

collection developed for evaluating multi-document summarisation approaches.

The DUC AQUAINT collection consists of newswire texts from three sources: the Xinhua

News Service, the New York Times, and the Associated Press. These documents are split into

50 subcollections (called topics), each of which contains 25 documents. A title and a narrative

in TREC format are provided for each of the 50 topics. The title can be interpreted as a query,

and can be used to guide the summarisation process for query based summarisation models. A

1www.r-project.org
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<topic>
<num> D0606F </num>
<title> impacts of global climate change </title>

<narr>
What are the most significant impacts said to result from global climate change?
</narr>
</topic>

Figure 7.2: Sample DUC topic in TREC format.

sample topic can be found in Figure 7.2.

The task of DUC is to generate a 250 word summary for each of the 50 topics. Four human

written reference summaries are provided for each topic, to which the generated summaries are

compared using the ROUGE evaluation framework.

While the DUC collection is not explicitly intended to be used for evaluating structured

document summarisation approaches, its documents use shallow markup, with tags denoting

structure up to paragraph level. To allow a more fine-grained extraction of material, we used a

sentence splitter to create markup at sentence level, allowing POLIS to extract individual sen-

tences. The sentence splitter we used was developed by Piao at the National Center for Text

Mining (NaCTeM2), and achieves a reported precision of 0.997352 and recall of 0.995093 on the

Genia test corpus (Piao (2008)).

7.2.3.2 INEX

The second collection we used for evaluation is the INEX collection. The INEX IEEE collec-

tion was developed by the INitiative for the Evaluation of XML Retrieval3 (INEX) to evaluate

retrieval methods for structured documents. It consists of 12,107 scientific articles of the IEEE

Computer Society’s publications from 12 magazines and 6 transactions, covering years 1995 to

2001 / 2002. To simplify referencing subcollections in the IEEE collection, they can be referred

to by either a shortened name, or a combination of shortened name and year. For example, all

articles published in the IEEE Annals of the History of Computing are referred to by an, and all

articles published in an in 1995 are referred to by the abbreviation an/1995. Table 7.1 shows the

short and full titles of all IEEE subcollections, and the years covered.

All articles have a complex XML structure, suitable for demonstrating the application of

2www.nactem.ac.uk
3inex.is.informatik.uni-duisburg.de
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Short Title Full Title Years
an IEEE Annals of the History of Computing 1995 – 2001
cg IEEE Computer Graphics and Applications 1995 – 2001
co Computer 1995 – 2001
cs IEEE Computational Science and Engineering 1995 – 2001
dt IEEE Design & Test of Computers 1995 – 2001
ex IEEE Expert 1995 – 2001
ic IEEE Internet Computing 1997 – 2001
it IT Professional 1999 – 2001
mi IEEE Micro 1995 – 2001
mu IEEE MultiMedia 1995 – 2001
pd IEEE Parallel & Distributed Technology 1995 – 2000
so IEEE Software 1995 – 2001
tc IEEE Transactions on Computers 1995 – 2002
td IEEE Transactions on Parallel and Distributed Systems 1995 – 2002
tg IEEE Transactions on Visualization and Computer Graphics 1995 – 2002
tk IEEE Transactions on Knowledge and Data Engineering 1995 – 2002
tp IEEE Transactions on Pattern Analysis and Machine Intelligence 1995 – 2002
ts IEEE Transactions on Software Engineering 1995 – 2002

Table 7.1: Short and Full Titles of the INEX IEEE subcollections.

POLIS to structured documents. In addition to the structural markup provided by the INEX

collection, we also applied the sentence splitter used with the DUC collection to gain markup for

individual sentences.

To use the INEX collection for summarisation experiments, it is necessary to create reference

summaries for the documents. Due to the large collection size, it is not feasible to have human

abstractors create such summaries. Instead, we restricted use of the collection to those documents

which already contain an abstract.

However, the abstracts provided by the collection cannot easily be compared to the extracts

generated by POLIS. Abstracts are a condensed representation of the sentences found in the full

document, as authors of abstracts will fuse information found in several of the original sentences

to arrive at one more compact sentence to be included in the abstract. As POLIS produces

extract-type summaries, it will need to extract all those original sentences used for the fused

abstract-sentence to cover the same amount of information. To evaluate extract-type summaries

to abstracts, the extracts would have to be allowed to grow longer than the abstracts. However, it

is not clear how much additional space should be granted to extracts for this purpose.

To overcome this problem, we created two sets of reference summaries. The first set consists

of the original abstracts, which were not modified in any way. With this reference set, we created

summaries at the same length as the original abstracts (e.g. if an original abstract was 150
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words long, the POLIS summary was generated at that length). Figure 7.3 shows the minimum,

maximum, and average length of abstracts per subcollection. For example, the smallest abstract

in subcollection mu has a length of 35 terms, the longest abstract has a length of 93 terms, and

the average length of all abstracts in mu is 53 terms.
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Figure 7.3: Length of original abstracts: minimum-average-maximum length.

Figure 7.4 displays the length of the abstracts as a fraction of the document length. Trans-

actions generally have longer abstracts compared to the other subcollections, while the longest

abstracts can be found in an, with a summary-to-document fraction of 0.022.
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As a second set of reference summaries, we created an extract based on the provided ab-

stract using an algorithm proposed by Marcu (Marcu (1999)), where sentences are successively

removed from the original document, until the remainder reaches maximal overlap with the pro-

vided abstract. The algorithm we used was implemented by Amini et al., and was also used in

their INEX summarisation experiments Amini et al. (2007). For this second set of reference sum-

maries, the size of the POLIS generated summaries was restricted to the average size of extracts

for a particular journal and year. For example, if the average length of extracts for a specific jour-

nal and year (e.g. an/1995) was 500 words, all POLIS summaries for that journal and year were

created with a 500 word limit. Figure 7.5 shows the minimum, maximum, and average length of

the generated (Marcu) extracts per subcollection. The generated extracts are much longer than

the original abstracts. For example, the average size of extracts in subcollection tk is 1,045 terms,

while the longest extraxt is 8,683 terms long.
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Figure 7.5: Length of Marcu’s extracts: minimum-average-maximum length.

This increase in the length of reference summaries can also be observed in the summary-to-

document fraction, which is between 0.09 and 0.177 for Marcu’s extracts (Figure 7.6)

As POLIS summaries are generated at the same length as the reference summaries, this means

that for the evaluation of summarisation models with respect to the generated extracts, the au-

tomatic summaries produced by POLIS will also be very large, resulting in a higher chance of

achieving a high recall score. We therefore consider the performance evaluation with respect to

the original summaries more accurate, although this implies comparing extracts to abstracts.
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Figure 7.6: Marcu’s extracts: Original Abstracts: Summary to Document Fraction

7.3 Results

We will now discuss the performance of the POLIS summarisation models on the test collections

outlined previously. For both collections, we start with a short overview of the experiment carried

out, followed by a discussion of the ROUGE scores achieved by the different models. For each

collection, we conclude with a discussion of the performance figures reported.

7.3.1 Document Understanding Conference AQUAINT corpus

7.3.1.1 Experiment

The DUC corpus was intended to be used with query-based summarisation approaches, and most

participant systems at DUC make use of the provided topic descriptions to guide the summari-

sation process. While the POLIS-base model is a non query-based summarisation approach, we

will still compare it to both query-based POLIS models, as well as to the average performance of

the DUC participant systems (denoted as “DUC avg.” in the remainder of this section).

The documents in the DUC collection have limited markup, consisting of elements to denote

documents (“doc”), the document body (“body”), the actual document text (“text”), and individ-

ual paragraphs within this text (“p”). We additionally introduced markup to denote sentence level

(“sent”). For the non-query-based POLIS-base approach, the following expression was used to

generate the summaries:

/doc/body/text/p/sent:{at most 250 terms}
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stating that the summary should be constructed from sentences (“sents”) as parts of para-

graphs, with up to 250 terms (words).

For the query-based models, we additionally used the topic title as a query to guide the sum-

marisation process. For example, for topic D0601A, the title is “Native American Reservation

System - pros and cons”. The resulting POLIS expression for topic D0601A, using the POLIS-

macroaveraging model, was:

/doc/body/text/p/sent{MACRO “native american reservation system pros and

cons”}:{at most 250 terms}

similar to the non query-based case, with the additional constraint that the summary should focus

on “Native American Reservation System”.

7.3.1.2 Analysis

For the DUC collection, all POLIS summaries strictly adhered to the limitations set; we therefore

only show plots of the ROUGE recall. Figure 7.7 shows a plot of the per-topic performance of the

POLIS-base model compared to the average performance of DUC summarisers (Note that DUC

average performance figures were available for topics 1 – 35 only). The plot shows that the DUC

summarisers outperform the POLIS-base model, with notable exceptions for topics 9,11,14, and

26. The average performance across all topics is shown in Table 7.2, and confirms the better

performance of the the DUC summarisers.

Figure 7.8 shows the performance of POLIS-base in relation to the first 35 DUC AQUAINT

topics, sorted ascending by DUC average performance. The plot shows that there is no clear

correlation between DUC average performance and performance of the POLIS-base model.

The difference between the POLIS-base model and the DUC average is significant: the DUC

summarisers significantly outperform the POLIS-base approach at 5 % significance level for

recall, and at 1 % significance level for precision.

non QB ROUGE-1-R ROUGE-1-P
POLIS-base 0.35472 (-0.01669) † 0.35883 (-0.02701) ‡
DUC avg. 0.37141 0.38584

Table 7.2: Comparison of non query-based POLIS model to DUC average († significant at 5%
significance level, ‡ significant at 1% significance level).

The results for the POLIS query-based approaches show a marked improvement over the non-

query-based approach (Figure 7.9). The query-based macroaveraging model achieves a recall-
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Figure 7.7: DUC collection: Comparison of recall for POLIS-base vs DUC average.

level similar to the DUC average, with no statistically significant difference between the two (the

DUC average significantly outperforms POLIS-macro. at 1% significance level for precision).

Similarly, there is no significant performance difference between the DUC summarisers and the

POLIS-microIDF model for recall (The DUC summarisers significantly outperform the POLIS-

microIDF model for precision at 1% significance level). The DUC summarisers significantly

outperform the POLIS-micro. approach for both recall and precision at 1 % significance level.

The POLIS-macro. approach significantly outperforms the POLIS-micro. approach for both re-

call and precision at 1% significance level, and significantly outperforms the POLIS-microIDF

model for precision at 1% significance level. The POLIS-microIDF model significantly out-

performs the POLIS-microaveraging model for recall (at 1% significance level). There is no

significant difference for precision between the POLIS-microaveraging model and the POLIS-

microIDF model.

There is no statistically significant difference between the POLIS query-based models and

the POLIS-base model for both recall and precision. The numerical scores of the significance

test for both precision and recall are shown in Tables 7.3 and 7.4.

Figure 7.10 compares the performance of the query-based models with the DUC average

performance on the first 35 DUC AQUAINT topics, again sorted by ascending DUC average

performance. Again, there is no clear correlation between the POLIS models and the average



7.3. Results 154

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

11 1 26 35 17 21 34 18 30 9 16 25 20 7 29 19 14 4 22 32 3 13 6 2 27 8 15 5 31 28 33 10 23 12 24

R
ec

al
l

Topics 1 - 35

Recall values for the first 35 AQUAINT topics

POLIS-base
DUC avg.

Figure 7.8: DUC collection: Comparison of POLIS-base and DUC average, sorted by DUC
average.

Recall DUC Base Macro Micro MicroIDF
DUC – 0.000710† � 0.000861‡ �
Base – � � �

Macro – 0.007733‡ �
Micro – 0.011284‡

MicroIDF –

Table 7.3: DUC: Numerical significance test results: Recall.(� no significance, † significant at
5% significance level, ‡ significant at 1% significance level).

DUC performance.

7.3.1.3 Discussion

The non query-based POLIS-base model is significantly outperformed by the query-based DUC

summarisers.

The query-based approaches show a clear improvement over the non-query-based models for

the DUC collection (Table 7.5). The performance of both the macroaveraging model and the

microaveraging-IDF model is only marginally below the DUC average, while the microaverag-

ing model performs worse. Although abstract summarisation approaches like POLIS cannot be

tailored as closely to the data compared to more traditional summarisation techniques, the results

of the macroaveraging model are reasonably close to the other, more dedicated summarisation

systems which participated in DUC.
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Precision DUC Base Macro Micro MicroIDF
DUC – 0.007393‡ 0.005699‡ 0.023553‡ 0.009628‡
Base – � � �

Macro – 0.007885‡ 0.009271‡
Micro – �

MicroIDF –

Table 7.4: DUC: Numerical significance test results: Precision.(� no significance, † significant at
5% significance level, ‡ significant at 1% significance level).
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Figure 7.9: DUC collection: Comparison of recall for POLIS-macroaveraging and POLIS-
microaveraging models vs DUC average.

A comparison of ROUGE scores for the DUC average to the POLIS models shows that DUC

scores are more uniform across topics, while the POLIS models exhibit a higher variance of

ROUGE scores across topics (exhibited in the plots in Figures 7.7 and 7.9) . We believe that the

uniformity of the DUC average scores across the different topics can be attributed to a smoothing

of DUC average values, due to a large number of individual values forming the average: some of

the DUC participant systems will perform very well on topics for which other systems achieve a

low ROUGE score, such that the average score remains constant. As different systems will excel

at different topics, the overall average across all topics remains fairly constant.

Table 7.6 shows the resampling histograms and QQ-plots for the DUC significance tests.

Most points in the QQ-plots fall on the center diagonal, showing that the resamples follow a

normal distribution. The significance figures reported are thus valid.
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Figure 7.10: DUC collection: Comparison of recall for POLIS-macroaveraging and POLIS-
microaveraging models vs DUC average, sorted by DUC average performance.

query based ROUGE-1-R ROUGE-1-P
POLIS-macroaveraging 0.3628 (-0.00861) 0.3669 (-0.01894)‡
POLIS-microaveraging 0.34065 (-0.03076)‡ 0.34453 (-0.04131)‡
POLIS-microaveraging IDF 0.36071 (-0.0107) 0.34153 (-0.04431)‡
DUC avg. 0.37141 0.38584

Table 7.5: Comparison of query-based POLIS models to DUC average († significant at 5% sig-
nificance level, ‡ significant at 1% significance level).

7.3.2 INEX IEEE collection

7.3.2.1 Experiment

The INEX collections was developed to evaluate the performance of Structured Document Re-

trieval (SDR) systems; the documents in the collection thus provide a much finer level of markup

compared to the documents in the DUC collection. Articles in the INEX collection are denoted

by an “article” element, and contain a body (“bdy”), sections (“sec”), and paragraphs (“p”). We

additionally introduced markup at sentence level (“sent”).

For the non query-based POLIS-base model, the following expression was used to generate

the summaries:

/article/bdy/sec/p/sent:{at most 500 terms}

stating that sentences as part pf paragraphs need to be extracted, up to a total summary size of
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Table 7.6: DUC: QQ-plots and Histograms of bootsamples for summarisation models. Recall.
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500 words.

For the query-based models, we used an article’s title as the query. For example, for a doc-

ument with title “Building Dynamic Agent Organizations in Cyberspace”, the resulting POLIS

expression (assuming use of the macroaveraging model) would be

/article/bdy/sec/p/sent{MACRO “building dynamic agent organizations in

cyberspace”}:{at most 500 terms}

similar to the non query-based expression.

We motivate the use of titles for queries as follows: an article is a written representation of

an author’s idea. Where an abstract provided as part of an article is a condensed representation

of the remaining text, the purpose of the title is to get the attention of a reader, and provide an

indication of the content. It will thus be pertinent to the content of the article. Elements in the

article that contain many title-terms will thus likely also be indicative of the remaining article.

We therefore believe that using titles as a guidance for the summarisation process is reasonable.

In addition to the POLIS summarisation models, we also applied a traditional feature-based

summariser to the documents in the INEX collection, to be used as a baseline with which the

performance of the POLIS models can be compared. The summariser uses the term frequency

(key), title, and location features; we will therefore refer to it by the abbreviation KTL. As

the document titles are used as summary queries, KTL produces query-based summaries. All

features were given equal weights. A more exhaustive discussion of the implementation of the

summariser would be beyond the scope of this dissertation, and can be found in Appendix D.

To evaluate the performance of the summariser, we applied it to the DUC collection, and

compared it to the ROUGE-1 recall average of the DUC participant systems. Across topics 1 –

35, the averaged ROUGE-1 recall scores of the DUC average was 0.371, while the average of

KTL was 0.379. There is no significant performance difference between the DUC average and

the feature based summariser, indicating that it is reasonable to use it as a baseline for the INEX

IEEE experiments.

7.3.2.2 Analysis

We start the analysis of the INEX experiments with the comparison of POLIS summaries to the

generated Marcu extracts. ROUGE-1 recall and precision scores for the POLIS-base model and

the two query-based models – POLIS-macroaveraging and POLIS-microaveraging – are shown

in Table 7.7, together with the performance figures for the KTL summariser.
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Figure 7.11: INEX collection: Comparison of recall for POLIS summarisation models; compar-
ison with generated extracts.

The recall plot in Figure 7.11 shows that POLIS-base achieves the highest recall scores ac-

cross all topics. POLIS-macro. and KTL exhibit a similar performance, while the scores achieved

by POLIS-micro. are visibly lower. This is confirmed by the performance figures for the entire

collection shown in Table 7.7.

Extracts ROUGE-1-R ROUGE-1-P
KTL 0.53693 (-0.12246)‡ 0.46522
POLIS-base 0.65939 0.31101 (-0.15421)‡
POLIS-macroaveraging 0.54246 (-0.11693)‡ 0.25352 (-0.2117)‡
POLIS-microaveraging 0.47268 (-0.18671)‡ 0.28272 (-0.1825)‡
POLIS-microaveraging IDF 0.38274 (-0.27665)‡ 0.40696 (-0.05826)‡

Table 7.7: Comparison of QB and non-QB POLIS models for INEX collection († significant at
5% significance level, ‡ significant at 1% significance level).

The INEX collection is less commonly used for testing summarisation approaches; to facili-

tate an interpretation of the results we therefore also provide plots of the precision achieved per

journal. The precision plot in Figure 7.12 shows that the KTL summariser achieves by far the

highest precision, with a visibly lower POLIS-base in the second position. POLIS-micro exhibits

a precision similar to POLIS-base, while POLIS-macro. performs worst. This is confirmed by

the collection performance figures in Table 7.7

The significance tests underline the performance characteristics shown in the precision and

recall plots. POLIS-base significantly outperforms POLIS-macro for recall at 1% significance

level, significantly outperforms KTL at 1 % significance level, significantly outperforms POLIS-
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Figure 7.12: INEX collection: Comparison of precision for POLIS summarisation models; com-
parison with generated extracts.

micro at 1% significance level, and significantly outperforms POLIS-microIDF at 1% signif-

icance level. POLIS-macro does not significantly outperform KTL, however, it significantly

outperforms POLIS-micro at 1% significance level, and POLIS-microIDF at 1% significance

level. KTL significantly outperforms POLIS-micro at 1% significance level, and significantly

outperforms POLIS-microIDF at 1% significance level. Finally, POLIS-micro significantly out-

performs POLIS-microIDF at 1% significance level.

The significance tests for precision largely follow those for recall, with the exception of

POLIS-microIDF, which receives a higher precision than recall score: KTL significantly out-

performs POLIS-microIDF at 1% significance level, significantly outperforms POLIS-base at

1% significance level, significantly outperforms POLIS-micro at 1% significance level, and sig-

nificantly outperforms POLIS-macro at 1% significance level. POLIS-microIDF significantly

outperforms POLIS-base at 1% significance level, significantly outperform POLIS-micro at 1%

significance level, and significantly outperforms POLIS-macro at 1% significance level. POLIS-

base significantly outperforms POLIS-micro at 1% significance level, and significantly outper-

forms POLIS-macro at 1% significance level. POLIS-micro significantly outperforms POLIS-

macro at 1% significance level.

The numerical values of the significance tests for both precision and recall are reported in

Tables 7.8 and 7.9.

As a second experiment, we compared the POLIS- and KTL- generated summaries with the

original abstracts provided by documents in the INEX collection. Table 7.7 shows the ROUGE-1
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Recall KTL Base Macro Micro MicroIDF
KTL – 0.115956‡ � 0.052162‡ 0.271591‡
Base – 0.1099981‡ 0.174693‡ 0.016183‡

Macro – 0.061637‡ 0.08721‡
Micro – 0.040112‡

MicroIDF –

Table 7.8: INEX, Marcu’s extracts: Numerical significance test results: Recall.(� no significance,
† significant at 5% significance level, ‡ significant at 1% significance level).

Precision KTL Base Macro Micro MicroIDF
KTL – 0.146417‡ 0.208155‡ 0.177959‡ 0.180699‡
Base – 0.05354766‡ 0.023325‡ 0.051371‡

Macro – 0.026302‡ 0.102755‡
Micro – 0.085691‡

MicroIDF –

Table 7.9: INEX, Marcu’s extracts: Numerical significance test results: Precision.(� no signifi-
cance, † significant at 5% significance level, ‡ significant at 1% significance level).

recall and precision scores for all POLIS summarisation models, and for the KTL summariser.

The recall plot in Figure 7.13 shows that KTL performs best for the first journals (an – pd),

but is outperformed by the POLIS-base approach for the later journals (tc – ts). As the majority

of test documents is contained in these last journals, the overall performance of POLIS-base is

better than KTL (see Table 7.10). We believe that the pronounced jump in performance for the

later journals is caused by the nature of the journals. All journals starting with t denote transac-

tions, which due to their scientific nature might have more informative summaries. Informative

summaries, as opposed to indicative summaries, inform on the content of an article, rather than

try to arouse a reader’s interest. To do so, they try to provide the most salient concepts of a

text in a very condensed form, and thus resemble the type of summary produced by POLIS (and

summarisation systems in general).

The recall scores of both POLIS-macro. and POLIS-micro. are below those of POLIS-base

and KTL.

The precision plot in Figure 7.14 shows a similar jump in performance for the “transac-

tions”, with KTL clearly outperforming the POLIS models. POLIS-base performs better than

both POLIS-macro. and POLIS-micro., however, the performance difference between POLIS-

base and POLIS-micro. is very small. The overall collection performance figures in Table 7.10

confirm these results.

Significance tests for the second INEX experiments confirm the results exhibited in the preci-
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Figure 7.13: INEX collection: Comparison of recall for POLIS summarisation models; compar-
ison with original abstracts.

orig. Abstracts ROUGE-1-R ROUGE-1-P
KTL 0.38636 (-0.17507) 0.34625
POLIS-base 0.38663 (-0.1748) ‡ 0.16384 (-0.18241)‡
POLIS-macroaveraging 0.32280 (-0.23863)‡ 0.13787 (-0.20838)‡
POLIS-microaveraging 0.35196 (-0.20947)‡ 0.16171 (-0.18454)‡
POLIS-microaveraging IDF 0.56143 0.13091 (-0.21534)‡

Table 7.10: Comparison of QB and non-QB POLIS models for INEX collection († significant at
5% significance level, ‡ significant at 1% significance level).

sion and recall plots. POLIS-microIDF significantly outperforms POLIS-base at 1% significance

level, however, it does not significantly outperform KTL. It significantly outperforms POLIS-

micro at 1% significance level, and significantly outperforms POLIS-macro at 1% significance

level. There is no significant performance difference between POLIS-base and KTL. However,

POLIS-base significantly outperforms POLIS-macro at 1% significance level, and significantly

outperforms POLIS-micro at 1% significance level. The KLT summariser significantly outper-

forms POLIS-micro at 1% significance level, and significantly outperforms POLIS-macro at 1%

significance level. Finally. POLIS-micro significantly outperforms POLIS-macro at 1% signifi-

cance level.

The significance tests on the precision values follow those for recall, and confirm our findings

for the precision plot: the KTL summariser outperforms POLIS-base significantly at 1% signif-

icance level, significantly outperforms POLIS-micro at 1% significance level, significantly out-

performs POLIS-macro at 1% significance level, and significantly outperforms POLIS-microIDF

at 1% significance level. POLIS-base significantly outperforms POLIS-macro at 1% signifi-
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Figure 7.14: INEX collection: Comparison of precision for POLIS summarisation models; com-
parison with original abstracts.

cance level, significantly outperforms POLIS-microIDF at 5% significance level, but does not

significantly outperform POLIS-micro. POLIS-micro significantly outperforms POLIS-macro at

1% significance level, and significantly outperforms POLIS-microIDF at 1% significance level.

POLIS-macro does not significantly outperform POLIS-microIDF.

The numerical values of the significance tests for both precision and recall are reported in

Tables 7.11 and 7.12.

Recall KTL Base Macro Micro MicroIDF
KTL – � 0.05924‡ 0.027544‡ �
Base – 0.055563‡ 0.022266‡ 0.133497‡

Macro – 0.017525‡ 0.171151‡
Micro – 0.144758‡

MicroIDF –

Table 7.11: INEX, original abstracts: Significance test results: Recall.(� no significance, † sig-
nificant at 5% significance level, ‡ significant at 1% significance level).

Precision KTL Base Macro Micro MicroIDF
KTL – 0.148523‡ 0.172952‡ 0.150515‡ 0.218659‡
Base – 0.021279‡ � 0.002177†

Macro – 0.018838‡ �
Micro – 0.00713‡

MicroIDF –

Table 7.12: INEX, original abstracts: Significance test results: Precision.(� no significance, †
significant at 5% significance level, ‡ significant at 1% significance level).
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7.3.2.3 Discussion

The recall figures for the Marcu extracts shows that the POLIS-base model does not perform

worse than a dedicated feature-based summariser, while the query-based POLIS-models per-

form worse. It is possible that the choice of titles as queries is counterproductive for the INEX

collection, as the query-based POLIS-models performed better than POLIS-base on the DUC

collection. However, the models exhibit a distinctly different behaviour in the evaluation with

the original abstracts. Here, the microaveraging-IDF model performs best, and significantly

outperforms the base model. Similarly, the precision scores for the microaveraging-IDF model

exhibit very different behaviours for the two different evaluation approaches: while the precision

score for the extended extracts is very high, the microaveraging-IDF model achieves the lowest

precision score of all models on the original abstracts.

The recall plot for the original abstracts shows that all summarisation approaches perform

similar, with a distinct performance increase for the transactions. In comparison, the recall

plot for the Marcu extracts exhibits bigger differences between the different summarisation ap-

proaches, and no difference between the transactions and the other journals. We believe that

the larger size of the Marcu-generated extracts acts as a kind of “catch-all” for sentences in the

original documents, equalising any performance differences which otherwise might have been

observed between the various approaches.

Finally, the Q-Q plots for the significance tests largely follow the ideal normal distribution,

with notable exceptions for the comparison of POLIS-micro. and POLIS-macro., and POLIS-

base and POLIS-micro., for the original abstracts. However, the divergence from the center

diagonal is not big enough to invalidate the significance tests.
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Table 7.13: INEX, original abstracts: QQ-plots and Histograms of bootsamples for summarisa-
tion models. Recall.
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Table 7.14: INEX, Marcu’s Extracts: QQ-plots and Histograms of bootsamples for summarisa-
tion models. Recall.

7.3.3 Validity Threats to Evaluation

Before concluding the evaluation of the summarisation models implemented by POLIS, we will

provide a brief discussion of the threats to the validity of our experimental approaches. This

discussion is inspired by similar considerations found in the context of software engineering ex-

periments (c.f. Wohlin et al. (1999)). An evaluation of experimental validity pertains to four main

types of validity: conclusion validity, internal validity, construct validity, and external validity.

7.3.3.1 Conclusion Validity

The conclusion validity is concerned with validation of observed causalities, i.e. verifying that

experimental observations imply causality, and do not originate from random coincidence. We
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used statistical significance tests in our experiments to validate that all conclusions drawn are

based on statistically significant observations.

7.3.3.2 Internal Validity

Experimental observations need to be causally connected to the experimental setting. Internal

validity evaluation tries to ascertain that no factors which are not explicitly controlled in the ex-

perimental setting influence the outcome. For our evaluation we selected an established method-

ology for evaluating summarisation approaches. Any internal validity threats to the evaluation

setting would similarly apply to other systems which are used in our comparisons. Consequently,

internal threats do not invalidate our comparisons to other summarisation approaches.

7.3.3.3 Construct Validity

The experimental setting has to be chosen such that it is sufficient to evaluate the factors under

consideration. For the DUC evaluation, construct validity should be guaranteed by default, as

both the test collection and the evaluation strategy were explicitly constructed for the purpose of

evaluating summarisation approaches.

However, there are construct validity threats for the INEX collection, as it was not conceived

as a collection for evaluating summarisers. We made two assumptions for the INEX experiments

which potentially invalidate the conclusions. Firstly, we assumed that the given abstracts could

be considered as reference summaries. Should the provided abstracts however not pertain to

the main text, a comparison of generated summaries with the given abstracts would be invalid.

Secondly, we chose document titles as summarisation queries, assuming that a document title

would be indicative of salient concepts in documents. However, it is possible that titles do not

provide an indication for a good summary generation strategy.

7.3.3.4 External Validity

The final threat to experimental evaluations is the external validity of experimental results, i.e.

whether experimental results obtained from a controlled setting can be generalised to the “real

world”. The main problem with both the DUC and the INEX collections is the limited set of

reference summaries. It is possible that the reference summaries used in the validation of the

summarisation approaches differ vastly from the “ideal” summary sought by a general user pop-

ulation. A summariser which would perform very well on the given test collections might thus be

considered not useful by general users. However, our experiments attempt to measure the perfor-

mance of the POLIS summarisation models in comparison to other summarisation approaches;
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our conclusion are thus not threatened .

7.4 Conclusion

In this chapter we evaluated the POLIS summarisation models developed in chapter 5. We ap-

plied the non query-based POLIS-base model, and the three query-based models to two test col-

lections: the DUC AQUAINT corpus, developed for evaluating multi-document summarisation

systems, and the INEX IEEE collection, developed for evaluating structured document retrieval

approaches.

The comparison of the POLIS models to both the DUC summarisers and a traditional feature-

based summariser show that POLIS performs as good as other, dedicated summarisation ap-

proaches. Despite the higher abstraction nature that comes with the logic based approach to

summarisation, there is no significant performance penalty associated with POLIS. This under-

lines the usefulness of POLIS, as it can be applied to real world scenarios without incurring

penalties beyond possible problems stemming from the use of summaries as such.

We will elaborate on this in the next chapter, where we apply POLIS to the problem of expert-

finding and expert-profiling, and show how POLIS can be used to generate document previews

found in the results pages of search engines.
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Chapter 8

Application Scenarios of POLIS

As we mentioned in the introduction of the last chapter, the evaluation of any abstraction logic

could be concerned with either evaluating the retrieval models implemented by the logic, or

evaluating the logic itself in its context of use. We mentioned that the latter was difficult for

POLIS, as it would require access to a qualified user group, to evaluate the benefits of POLIS

as a summarisation logic in the context of a real knowledge engineering project. The previous

chapter therefore evaluated only the summarisation models implemented by POLIS in isolation.

In this chapter, we try to show how POLIS can be used beneficially in real world retrieval tasks.

While this is not a substitute for an actual user study, it allows us to show that POLIS can be used

for solving real problems.

In this chapter, we address two situations in which summaries can provide a solution to an

information retrieval problem, and show how POLIS can be applied to provide these summaries.

In Section 8.1 we discuss the related problems of expert-finding and expert-profiling, and show

how summaries (and specifically POLIS-generated summaries) can be used as expert-profiles. In

Section 8.2.2 we show the application of POLIS to documents in the Wikipedia collection, as an

example of how POLIS can be used to generate summaries to be displayed in the results page of

search engines.

8.1 Expert-finding and Expert-profiling

The first part of this chapter evaluated the probabilistic summarisation models implemented by

POLIS on appropriate test collections. In this second part of the POLIS evaluation, we look at
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how POLIS as a whole can be applied to real world information-seeking problems; specifically,

we investigate the possible application of POLIS to the tasks expert-profiling and expert-finding.

In today’s competitive corporate environment, employees’ expertise is regarded as an im-

portant asset on par with capital or goods. However, while stock-keeping and financial record

systems allow easy access to information regarding the latter two, it is much more difficult to

inventory an organisation workforce’s knowledge. Expert-finding and expert-profiling are two

strategies proposed to tackle this problem, and can be seen as two sides of the same coin: while

expert-finding seeks to answer questions of the form ”Who is an expert on topic X?”, expert-

profiling provides information of the form ”Person X is an expert on topic Y.”. Both can also be

combined in a hybrid-approach, where a set of expert profiles is queried in order to determine

who is a possible expert on a specific topic.

We will first discuss prior research into expert-finding, and specifically the very successful

multi-stage retrieval approach to expert-finding. This will be followed by a discussion of how

POLIS could conceptually be used to conduct expert-profiling, where we also show that perfor-

mance problems are prohibitive to conducting these experiments at the moment. We overcome

these problems by combining the multi-stage retrieval approach with the summarisation-like pro-

filing approach, and conduct an evaluation of the strategy using the Enterprise TREC W3C col-

lection.

8.1.1 Background

A good overview over the specialities and problems encountered in conducting information re-

trieval in an enterprise environment is given by Hawking (Hawking (2004)). Among the chal-

lenges mentioned are the need to handle heterogeneous data sources such as databases, web-

servers, email repositories and content management systems, to allow for fine-grained access-

control rights for different users, to support multiple document formats and to integrate all the

results in a seamless fashion.

To solve the problem of expert-finding, Hawking et al. developed the expert finding sys-

tem P@NOPTIC Expert (Craswell et al. (2001b)), which builds fairly simple expert profiles by

concatenating all documents published by a person into one long document. Then, in order to

retrieve a ranked list of experts for a specific topic, classical document retrieval on all those

candidate documents is performed for that topic-query.

Expert finding approaches based on clustering were developed by Foner, and Reichling et al..
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In Foner’s Yenta system (Foner (1997)), users, and their interest, are represented by agents.

Agents representing users with similar interest form clusters in the system, which can be used to

identify user groups with common interests, or to find an expert for a given problem.

Similarly, Reichling et al. use expert profiles to match users in their system (Reichling et al.

(2004)). Their architecture is based on a learning platform; user profiles were built from infor-

mation directly entered by the users (such as education, current occupation, past experience), and

information derived from the browsing activities of users, i.e. documents viewed by users on the

learning platform.

Yimam-Seid and Kobsa present an architecture, DEMOIR, which covers several aspects of

the process of generating and querying expert profiles (Yimam and Kobsa (2000)). Their sys-

tem covers the three initial stages of building and representing expert-profiles, namely evidence

source recognition - using either explicit sources, such as the experts themselves, or implicit

sources (e.g. documents authored by expert-candidates), expertise indicator extraction - tech-

niques to extract the salient information from the evidence sources, and expertise models - rep-

resentations of extracted salient features.

Apart from research and experimentation in academia, some commercial systems have de-

veloped expert profiles from implicit data sources. Autonomy1 has included in its IDOL Server

the ability to derive user profiles based on the documents that users access and submit on the

company intranet. Both KnowledgeMail by Tacit2 and Discovery Server by Lotus3 build user

profiles by scanning employees’ emails.

8.1.1.1 Expert Finding as Multi-stage Retrieval

The expert finding strategies outlined in the previous section rely on the presence of some form

of expert-profile to be queried in order to find the set of most likely experts. Balog and de

Rijke proposed an expert finding approach, which tries to determine expertise directly from a

knowledge-base of documents, without first generating expert-profiles (Balog et al. (2006b)).

Balog et al. model expert finding along the lines of probabilistic document retrieval ap-

proaches, such that their retrieval model tries to estimate the probability that a candidate ca is

an expert given the topic query q. Instead of directly modelling this probability P(ca|q), Balog

et al. reformulate the estimate using Bayes’ theorem, and thus arrive at

1www.autonomy.com
2www.tacit.com
3following the acquisition of Lotus by IBM, Discovery Server was discontinued.

www.autonomy.com
www.tacit.com
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P(ca|q) =
P(q|ca) ·P(ca)

P(q)
, (8.1)

where P(ca) is the probability of a candidate, and P(q) is the probability of a query, both

of which are constant for a set of queries and candidates, such that the ranking of candidates is

proportional to P(q|ca). Balog et al. propose to model this probability P(q|ca) by a combination

of two conditional probabilities, which are defined on the set of documents, such that

P(q|ca) ∝ ∑
d

P(q|d) ·P(ca|d), (8.2)

where P(q|d) is the traditional ad-hoc document retrieval probability, and P(ca|d) is the

probability of a candidate given a document (Balog et al. (2006a)). This candidate probability

models an association between collection documents and candidates, by associating candidates

and documents based on a set of features such as a candidates name, e-mail address, or any

other identifying information. This set of identifying information can be regarded as a candidate

query, in which case the probability P(ca|d) also reduces to a traditional retrieval probability.

Both P(q|d) and P(ca|d) can then be estimated using ad-hoc retrieval models, such as TF-IDF

or Language Modelling; expert-finding thus reduces to a multi-stage retrieval tasks, without the

need for prior profile generation. Instead, documents are ranked by both their relevance to a topic

and their relevance to a candidate, such that a ranking of a candidate for a topic can be derived

by integrating the retrieval status values of all documents pertaining to both the candidate and the

topic.

8.1.2 Expert Finding via Expert Profiling

We mentioned in the opening section that in addition to the multi-stage retrieval expert-finding

approach, it is also possible to model expert-finding via a hybrid approach, where first expert-

profiles are derived from the document collection, and where these generated profiles are then

queried in order to find experts on a given topic.

8.1.2.1 Summaries as Profiles

The expert-profiling approaches outlined in Section 8.1.1 were either based on the simple con-

catenation of all documents authored by an expert-candidate, or relied on information provided

by the experts themselves. Here, we take the view that expert-profiles are summaries, generated
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from some form of knowledge-base. Assuming that the knowledge-base consists of documents

only, the task of expert-profiling would reduce to a form of multi-document summarisation.

Where the multi-staged retrieval approach used a document-candidate association to deter-

mine the importance of specific documents for a candidate, and modelled this association based

on a candidate’s identifying features, we instead propose to use these identifying features as the

query-terms for any of the query-based summarisation approaches.

For example, to generate a 5,000 word profile for Jean-Jacques Moreau (one of the expert

candidates in the Enterprise TREC W3C collection, see below), using the POLIS-microIDF ap-

proach, the following POLIS-expression would be used to generate an expert profile:

/collection/doc/p/s{MICRO-IDF “Jean-Jacques Moreau

jean-jacques.moreau@crf.canon.fr”}:{at most 5000 terms}.

This process would be repeated for all possible expert candidates, resulting in a collection of

candidate profiles, which could be queried to determine expertise. However, the size of the W3C

collection, and the computational complexity of the retrieval models, make a profile generation of

this form prohibitively expensive. Instead, we adopted a hybrid approach, which combines some

features of the multi-staged retrieval approach with the summarisation-based profiling approach

outlined here.

8.1.2.2 Hybrid expert-profiling approach

One strategy to overcome the performance problems encountered in the original summaries-as-

profiles approach is to reduce the number of documents which are summarised to form the profile.

This can be accomplished by using the candidate-document association stage of the multi-stage

expert-finding approach. When sorting all documents according to their retrieval status value

with respect to a candidate’s identifying features, only a top-ranking fraction of documents are

considered in the summarisation stage.

However, using such a hybrid approach also influences the choice of summarisation model.

In the pure summaries-as-profiles approach we used a candidate’s identifying features as the

query terms. Here, however, these features were already used to form the document-candidate

association. Furthermore, since only the top-ranking documents of this association are consid-

ered, those candidate features will be particularly prevalent in this set of documents, exhibiting a

strong bias towards the summarisation query.
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A modification of the pure profiling strategy could consist of modifying the query to not any

longer contain a candidate’s features, but instead represent a topic’s query. For example, topic 57

in the 2006 Enterprise TREC expert finding task is “OWL Lite Specification”; the corresponding

POLIS expression would therefore be

/collection/doc/p/s{MICRO-IDF “OWL Lite Specification”}:{at most 5000 terms}.

Unfortunately, this approach again suffers from serious drawbacks. Firstly, this approach

would require the generation of an expert-profile for each candidate for every topic, which would

be counter-intuitive to the required performance increase, the main motivation for the hybrid

approach. More seriously, this strategy also exhibits a bias, in this case towards the topic queries.

To find relevant experts for a topic, the set of candidate profiles is queried using the given topic

query. However, this very query was already used to generate the profiles.

Consequently, the only valid summarisation approach in such a hybrid setting is to use non

query-based summarisation models on the restricted set of candidate documents. The only pa-

rameters which can be modified in the experimental setting are therefore the fraction of document

to be considered in the document-candidate association, and the size of the summary generate

from this restricted document set.

For every candidate, the restricted set of associated documents is therefore summarised using

the non query-based POLIS-base summarisation approach, using the POLIS expression

/collection/doc/p/s:{at most 5000 terms},

where the summary size of 5,000 terms is one of the parameters to be set in the experimental

setting.

8.1.3 Evaluation

In the previous section we established that a hybrid expert-finding approach, which combines

the candidate-document association of the multi-stage retrieval approach with a summaries-as-

profiles strategy, has to rely on a non query-based summarisation method. In this section we

will evaluate this hybrid approach on an appropriate test collection, the Enterprise TREC W3C

(World Wide Web Consortium) collection.
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8.1.3.1 Collection

A test-collection for the evaluation of enterprise-search strategies, such as expert-finding, needs

to recreate the problems and difficulties as outlined by Hawking (Hawking (2004)). One such

collection is the Enterprise TREC W3C collection.

The W3C collection consists of a crawl of the internal documentation of the World Wide Web

Consortium, which was conducted in 2004. The collection consists of a heterogeneous document

repository, containing emails, personal web pages, CVS repositories, etc. An overview of the

collection is presented in Table 8.1 (from (Balog (2008))).

Subcollection Description no. of docs size (in GB) avg. doc. length (in terms)
lists e-mails 198,394 1.855 376
dev code documentation 62,509 2.578 593
www web 45,975 1.043 1128
esw wiki 19,605 0.181 1.5
other misc. 3,538 0.047 335
people personal webpages 1,016 0.003 82

Table 8.1: Statistics of W3C subcollections.

For our experiments, we only used the lists subcollection, which consists of emails sent

through W3C mailing lists.

The documents in the collections are formatted using XHTML, where the finest level of

granularity for textual elements was at paragraph level, however, this was not provided for all

elements. In order to gain a more homogeneous structural layout, and to allow the extraction of

material at sentence level, like for the INEX and DUC experiments, we applied a sentence-splitter

to introduce markup for both paragraphs and sentences.

In addition to the documents in the W3C collection, the Enterprise TREC also provides 55

topics (queries), a set of expert-candidates (i.e. potential experts for the topics), and relevance

judgements (i.e. sets of actual experts for the topics). The topics in the Enterprise TREC collec-

tion are provided in TREC formatting, similar to DUC (a sample topic can be found in Figure

8.1).

8.1.3.2 Experiments

To evaluate the hybrid expert-profiling approach, we first generated expert-profiles from the doc-

uments in the test collection. We then ran the topic queries provided with the Enterprise TREC

collection on the set of expert-profiles, to retrieve the most likely expert-candidates for each topic.

The output of the expert-profiling stage is a collection of expert profiles, while the output of the
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<top>
<num> Number: EX54
<title> xml digital signature </title>
<desc> Description:
Find experts on XML digital signatures.
</desc>
<narr> Narrative:
The very features that make XML so powerful for business transactions
(e.g., semantically rich and structured data, text-based, and
Web-ready nature) provide both challenges and opportunities for the
application of encryption and digital signature operations to
XML-encoded data. XML Signature is a joint effort between the World
Wide Web Consortium (W3C) and Internet Engineering Task Force (IETF).
In this query, we are looking for people related to research and
projects on XML digital signature within W3C.
</narr>
</top>

Figure 8.1: Sample Enterprise TREC topic in TREC format.

retrieval on the expert-profiles is a list of topics and the most likely experts for that topic.

We mentioned in the previous discussion that performance problems render our initial idea,

to apply a query-based multi-document summarisation – with a candidate’s identifying features

as query terms – to the entire collection of documents to create expert-profiles, unfeasible. To

overcome these performance problems, the hybrid approach proposed in section 8.1.2.2 uses the

candidate-document association found in the multi-staged retrieval approach to rank the collec-

tion of document with respect to the candidate first, and then apply the actual summariser only

to a fraction of the document ranking.

Following the multi-staged retrieval approach, the association between candidates and doc-

uments is modelled using a traditional ad-hoc retrieval approach, where the query terms are a

candidate’s identifying features. For our experiment, we implemented the candidate-document

association using a Language Modelling (LM) approach, which in an earlier experiment had ex-

hibited the best performance in a comparison of various ad-hoc retrieval models (Roelleke et al.

(2009)).

As we pointed out, the summarisation stage in the hybrid expert-profiling approach cannot

make use of queries, to avoid a bias towards either topics or candidates. Consequently, we do

not have to consider the choice of what query to use for summarisation. However, there are two

further parameters which affect the summary to be generated as an expert-profile: the fraction of
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documents to be summarised, and the actual summary size.

Finding a value for the first of these parameters, the fraction of documents to be summarised,

is difficult. Prior research into expert-profiling uses all documents associated with a candidate,

thus setting the fraction of documents to be used to 1.0. However, we were unable to summarise

a document collection of this size, as the memory requirements of POLIS and system limitations

lead to unacceptable processing times.

Instead, we applied a very limiting restriction on the actual fraction ranked documents to be

used, setting the parameter to values between 0.001 and 0.008 (i.e. summarising between 0.1%

and 0.8% of the ranked documents). While these settings are very restrictive, they are supported

by the retrieval status values (RSVs) of documents in the ranking: a few top-ranking documents

exhibit high RSVs, while the majority of documents has low RSVs. Inspecting the lower ranking

documents reveals the most likely explanation for this behaviour: common query terms (such

as common first- or surnames) retrieve documents which are not relevant for the candidate at

hand, and thus appear at low ranks in the document ranking. The upper limit of 0.008 was again

determined by system constraints, as larger document fractions caused the summarisation models

to use excessive amounts of memory, and thus could not be processed.

To set the summary size, we considered the typical size of generated summaries reported in

the literature on summarisation research. Common sizes for summaries reported are in the region

of 10% to 20% of the original document size (e.g. Tombros and Sanderson (1998)). We chose

the lower boundary of this size range, setting the summary-size to 10% of the documents to be

summarised, measured as the number of terms. Given the large number of expert-candidates

(1,092), smaller summaries help keep the overall amount of data manageable.

8.1.3.3 Results

Following the guidelines for the Enterprise TREC track, we retrieved the 100 most likely expert-

candidates for each of the given topics, by running the respective topic queries on the set of

profiles. To evaluate the quality of the retrieved expert-candidates, we compared the retrieved

candidates with the provided reference experts using the official TREC-eval script.

TREC-eval takes as input a set of reference experts per topic (the so called qrels), and the

ranked set of experts delivered by an expert-finding system, and outputs performance figures,

such as –among others– mean average precision (MAP), precision at 10 (P@10), precision, and

recall.
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In addition to the hybrid expert-profiling approach we also applied a multi-staged retrieval

approach to the Enterprise TREC collection, where both the candidate-document association and

the document-topic association are implemented using a Language Modelling retrieval approach

(Table 8.2).

Approach MAP P@10 P@5 Total Size of Profiles
Hybrid, 0.01 Document Fraction 0.0641 0.1867 0.1867 195 MB
Hybrid, 0.05 Document Fraction 0.0496 0.1739 0.1826 848 MB
Hybrid, 0.08 Document Fraction 0.0536 0.1630 0.1913 1.3 GB
LM-based Multi-staged retrieval 0.1079 0.3327 0.2857 N/A

Table 8.2: E-TREC: Mean Average Precision (MAP), Precision at 10 (P@10), and Precision at
5 (P@5) for the Hybrid-approach and a Language Modelling-based multi-staged retrieval ap-
proach.

The results show that the multi-stage retrieval approach clearly outperforms the hybrid ap-

proach. However, given the small size of the expert profiles, the retrieval quality for the hybrid

approach is surprisingly good. An indication of this can be found in the Precision at 5 metric

(P@5): despite the small size of expert profiles, the hybrid approach will on average retrieve two

relevant experts in the top five ranked expert-candidates.

8.1.4 Expert-finding: Summary

In the first part of this chapter we used POLIS to generate expert-profiles from a collection of

evidence documents. Although the purpose of this chapter is to show how POLIS can be applied

in the context of real-world problems, and not to evaluate the effectiveness of the implemented

summarisation models, the application of POLIS to the Enterprise TREC collection showed that

the POLIS-generated expert-profiles achieve a decent performance. In the next section we will

explore another possible usage scenario, where POLIS is used to summarise documents retrieved

by an ad-hoc search engine.

8.2 Summaries as Text Snippets

In the first section we discussed the application of POLIS to the related problems of expert-

finding and expert-profiling, and showed that summaries generated by POLIS can be used as

profiles to find possible experts for given topics. In this section we will look at another application

scenario for POLIS: the generation of text snippets.

Text snippets are short fragments of a longer text, e.g. individual sentences, or sub-sentence
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fragments, which can be presented to a user to convey an idea of the content of a longer document.

As such, they are similar to indicative summaries. Text snippets are commonly found on the result

pages of web search engines, where they display portions of returned pages which contain the

query terms. Figure 8.2 shows how the Google search engine displays occurrences of the query

terms in returned documents using text snippets, where the query “text snippet generation” was

used.

Figure 8.2: The Google search engine uses text snippets to highlight occurrences of query terms
in returned documents.

Research into efficient text snippet generation algorithms has been influenced by other sum-

marisation approaches, such that snippet generation can be seen as a more specialised form of

summary generation. Here, we propose to use POLIS – a more general summarisation approach

– to generate one- or two-sentence query-based summaries of documents, which could be dis-

played by search engines instead of the more specialised text snippets. However, instead of

embedding POLIS in an actual search engine, we will discuss the application of POLIS on se-

lected documents, and show how the generated summaries convey information similar to text

snippets.

In the remainder of this section, we will first discuss traditional text snippet generation algo-

rithms, and how they differ from traditional summarisation approaches. We will then show the

application of POLIS to sample documents, which we extracted from the Wikipedia collection.
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8.2.1 Background

Snippet generation algorithms have been derived or inspired by traditional summarisation ap-

proaches. Summarisation approaches, such as the feature-based weighting of text elements, can

similarly be used in the generation of text snippets.

Turpin et al. observe that, assuming the minimal unit of information to be extracted is a

sentence, snippet generation reduces to ranking sentences with respect to a given query (Turpin

et al. (2007)). Consequently, they focus more on the efficiency of snippet generation algorithms,

rather than on finding more effective methods, and analyses the benefits of various compression

and caching strategies with respect to generating snippets.

Ko et al. propose a snippet generation algorithm based on pseudo-relevance feedback (Ko

et al. (2007)). Sentences containing query terms are considered to be relevant, and all their terms

become candidates for a query-expansion strategy. Snippets are generated from the top-ranking

sentences with respect to this expanded query. Initial experimental results indicate that snippets

generated in this way are beneficial in identifying relevant documents, however, long execution

times make the approach impractical.

Huang et al. address the issue of snippet generation with respect to XML data, and argue

that text snippets should satisfy a number of criteria in order to be useful (Huang et al. (2008)).

Snippets should be self-contained, distinguishable from each other, representative of the returned

document, and should be small. Their snippet generation approach tries to satisfy these goals,

by first identifying and extracting the most significant information in the query results, followed

by the generation of a snippet which is maximally informative with respect to the extracted

information.

While snippet generation strategies are derived from summarisation approaches, there are

differences between general summaries and snippets. Firstly, snippets are much shorter than

summaries, usually being only a few words to a few sentences long (e.g. the snippets in Figure 8.2

are less than one sentence long). Secondly, snippets are indicative of the contents of documents,

with a specific focus on the occurrences of query terms, to the point where query terms are

explicitly highlighted. However, we believe that a general summarisation approach like POLIS

can nonetheless be used to create snippet-like summaries, by applying query-based algorithms to

the source documents, and setting the target size to one or two sentences.
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8.2.2 Wikipedia

To demonstrate how POLIS-generated short summaries could be used in place of traditional

snippets, we extracted two sample documents from Wikipedia. Wikipedia is a free, collaborative

online encyclopaedia, which is written and maintained by volunteers. Due to the exhaustive top-

ics covered by articles in the Wikipedia, and the prominence of the website4, Wikipedia articles

often occupy high ranks on result pages of web searches; we therefore believe that Wikipedia

articles are suitable for demonstrating the application of POLIS in the context of a web search

engine.

We selected two general interest Wikipedia articles to demonstrate the application of POLIS:

the article on U.S. president Barack Obama (Wikipedia (2008a)), and an article about sailing

(Wikipedia (2008b)). Both articles were selected randomly, and are not meant to convey a deeper

agenda.

In order to generate snippet-like summaries, both documents first had to be preprocessed.

Embedded data, such as images and audio-files, were removed from the documents. Addition-

ally, textual content not related to the documents, such as banners or navigation menus, was

removed, resulting in an unstructured “core” document. Like in the previous DUC and INEX

experiments we applied Piao’s sentence splitter (Piao (2008)), to arrive at a structural markup

denoting individual sentences. We will apply the POLIS query-based summarisation models to

each of the documents, and compare the summaries generated in this way to the text snippets

displayed by Google.

8.2.2.1 Barack Obama

We will start our discussion with the Wikipedia article on U.S. president Barack Obama.

As a query, we considered an information need concerning a piece of biographical data,

Obama’s place of birth. Obama claims to have been born on Hawaii. However, during the

2008 presidential election campaign, commentators were questioning Obama’s eligibility to be

nominated as a presidential candidate, as it was not clear whether Obama was a natural-born

citizen of the United States.

A web-searcher trying to find more information on this topic might try to find more informa-

tion regarding the claim that Obama was born on Hawaii. We therefore used the query “Barack

Obama Hawaii” in our demonstration. For this query, Google returns the Wikipedia article on

4According to an ArsTechnica interview given in December 2008, Jimmy Wales, Chair of the Wiki-
media Foundation, claims Wikipedia is the 4th most popular site on the web.
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Barack Obama in the top rank. Figure 8.3 shows the text snippet presented by Google for this

document.

Figure 8.3: Text snippet presented by Google for the Wikipedia article on Barack Obama.

To generate a similar summary with POLIS, we applied the POLIS-macro., POLIS-micro.,

and POLIS-microIDF models to the structure document generated using the sentence splitter,

allowing summaries to be up to three sentences long. We used the same query as for the Google

search. The resulting POLIS expression for the macroaveraging model thus was

/doc/sent{MACRO ”Barack Obama Hawaii”}:{at most 3}

The expressions for the microaveraging and microaveraging-IDF model follow analogously.

All three summarisation models produced the same three-sentence summary, shown in Figure

8.4. A direct comparison with the Google text-snippet shows that the POLIS summaries are

much longer. Furthermore, the Google snippet and the POLIS summaries do not overlap in

content (Comparing the Google snippet to the actual Wikipedia article shows that the snippet

was generated from an image caption, which was removed in our preprocessing stage).

Barack Obama was born at the Kapi’olani Medical Center for Women and Children in Honolulu,
Hawaii, to Ann Dunham, a White American from Wichita, Kansas of English and Irish descent.
Obama’s mother returned to Hawaii in 1972 for several years, and then in 1977 went back to
Indonesia, where she worked as an anthropological field worker.
Obama’s father was Barack Obama, Sr., a Luo from Nyangoma Kogelo, Nyanza Province, Kenya.

Figure 8.4: POLIS-generated three-sentence summary of Wikipedia article on Barack Obama.

However, the POLIS summary is informative with respect to the stated information need, as

it provides information about Barack Obama’s place of birth.

8.2.2.2 Sailing

The second Wikipedia article used for demonstrating the generation of snippet-like summaries

with POLIS is about sailing. For this article, we assume that a searcher wants to find out more

about the history of sailing. Consequently, the query used is “Sailing History”. For this query,
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Google produces a ranking which contains the Wikipedia article on sailing on third rank. The

text snippet accompanying the article is shown in Figure 8.5.

Figure 8.5: Text snippet presented by Google for the Wikipedia article on Sailing.

Again, the same query was used with POLIS to generate a three-sentence summary of the

article. The resulting POLIS expression for the macroaveraging model was

/doc/sent{MACRO ”Sailing History”}:{at most 3}

with analogous expressions for the two microaveraging models. While the three query-based

POLIS models produced the same summary for the article on Barack Obama, the summaries for

the article on sailing differed. The summary generated by the macroaveraging approach can be

seen in Figure 8.6, and seems to favour longer sentences. There is no overlap with the Google

snippet, and the summary focuses more on sailing in general rather than on the historical aspect

of sailing (the term “history” does not at all appear in the generated summary).

Sailing is the art of controlling a sailing vessel.
By changing the rigging, rudder and dagger or centre board, a sailor manages the force of the
wind on the sails in order to change the direction and speed of a boat.
Mastery of the skill requires experience in varying wind and sea conditions, as well as knowledge
concerning sailboats.

Figure 8.6: POLIS-macro. three-sentence summary of Wikipedia article on Sailing.

There are several possible explanations for this behaviour. Firstly, the term “sailing” is much

more prevalent in the article than the term “history”: “sailing” occurs 64 times (ignoring similar

terms with the same stem, such as “sail”, “sailor” etc.), whereas “history” only occurs four times.

Furthermore, the Wikipedia article on sailing is longer than the article on Barack Obama (6,000

terms vs 5,000 terms), which might influence term probabilities in the macroaveraging model to

favour the term “sailing”. Finally, “sailing” occurs twice in the first summary sentence, giving it

a high probability of importance with respect to other sentences.

Both microaveraging models produced the same summary, shown in Figure 8.7. Both sum-

maries seem to favour short sentences, with the first sentence in both microaveraging models
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overlapping with the Google snippet, while the two remaining sentences do not focus on the

history of sailing, and seem to originate from section headings.

Throughout history sailing has been instrumental in the development of civilization.
Points of sail
Sailing terminology

Figure 8.7: POLIS-micro. and POLIS-microIDF three-sentence summary of Wikipedia article
on Sailing.

For this second Wikipedia article, the microaveraging models produced the more suitable

summaries, better capturing and catering for the intended information need. Additionally, the

first sentence in the summaries produced by the microaveraging models was also occurring in

the Google snippet for the Wikipedia article.

8.2.3 Snippet Generation: Summary

The second application scenario for POLIS we looked at in this chapter was the generation of

text snippets, which can be found in search engine result pages. We argued that, instead of using

special generation algorithms to produce these snippets, POLIS could be used to create short

summaries based on the query used to retrieve documents. To demonstrate this, we picked two

articles from the Wikipedia, and demonstrated that short, query-based summaries generated by

POLIS could be used as snippets on search engine results pages, as the generated summaries

either overlapped with the actual snippets found in search engines, or were more informative

than the original snippets.

8.3 Conclusion

We pointed out in the introduction of Chapter 7 that an abstraction logic like POLIS could be

evaluated on several levels: on the one hand, it would be possible to evaluate the models imple-

mented by POLIS in isolation, but furthermore, it would also be possible to evaluate POLIS as a

whole (e.g. by evaluating its usefulness in user studies). While Chapter 7 focused on performing

the isolated model evaluation, evaluating POLIS as a whole is more difficult, as it requires access

to a suitable software engineering project, in which to perform user studies.

We did not have access to such an engineering project, so this chapter instead focuses on two

possible application scenarios in which POLIS could be used, and demonstrates the usefulness of
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POLIS. For the case of expert-finding and expert-profiling, we showed how POLIS can be used

to produce summaries which act as expert-profiles. Although the summaries-as-profiles did not

perform as well as a traditional expert-finding approach, the profiles were successful in finding

relevant experts for given topics. Similarly, for the application scenario of text snippet generation,

we demonstrated how POLIS could successfully be used to generate summaries which could

be included in the results pages of search engines. This concludes our discussion of possible

application scenarios for POLIS. The next chapter will summarises this thesis’ contributions,

and outlines possible future research directions.
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Chapter 9

Contributions and Future Work

This thesis has outlined the development of a probabilistic logic for structured document sum-

marisation called POLIS. In this chapter, we discuss the contributions made by this thesis, and

outline possible directions for future research originating from the work presented here.

9.1 Contributions

Past research has established the usefulness of summaries for various retrieval tasks. The abstrac-

tion logic POLIS developed in this thesis provides a high level point of view of summarisation,

which allows users with an intermediate level of knowledge of summarisation approaches (such

as knowledge engineers) to easily integrate summarisation facilities into new or existing retrieval

systems. The development and specification of POLIS was carried out in several stages; we

will follow these stages in the discussion of the contributions made by this thesis. Section 9.1.1

details the parallelisms between summarisation and ad-hoc retrieval tasks, which motivates the

summarisation models discussed in Section 9.1.2. Section 9.1.3 summarises the main contribu-

tions of the actual specification and implementation of POLIS.

9.1.1 Parallels between Summarisation and Retrieval Models

We started our discussion of POLIS by showing that summarisation can be parallelled to various

ad-hoc retrieval tasks. Using the related concepts of knowledge augmentation and knowledge

propagation, we showed that retrieval tasks such as structured document retrieval and anchor-text

retrieval are instances of the same class of concepts as the non-retrieval task of summarisation,
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namely instances of the concept of knowledge augmentation.

9.1.2 Probabilistic Summarisation Models

Exploiting the parallels between summarisation and ad-hoc retrieval, we started the development

of the probabilistic summarisation models provided by POLIS by showing how summarisation

is another instance of the implication-probability P(d → q), which is the basis for ad-hoc re-

trieval models. However, we also showed that a direct application of ad-hoc retrieval models to

summarisation yields problems with respect to the estimation of collection statistics.

Instead, we developed new probabilistic summarisation models, based on the conjunctive and

disjunctive decomposition of the term-space of the documents to be summarised. These models

follow the ad-hoc retrieval models derived from such a decomposition of the term-space, how-

ever, they use a new estimate for collection statistics, derived from the sublinear TF-component

found in the BM25 retrieval model.

9.1.3 POLIS

Following the development of the probabilistic summarisation models accessible through POLIS,

we provided a formal definition of the summarisation logic. Specifically, this formal definition

consists of a syntax, the semantics, and a possible implementation.

9.1.3.1 Syntax

The POLIS syntax should allow developers and knowledge engineers to quickly and easily define

the element-granularity at which summaries should be generated, to specify a query for query-

based summarisation, and to limit the size of the generated summaries. We derived the POLIS

syntax from the established XPath language, which provides access to elements in structured doc-

uments based on paths in the document trees. To accommodate the additional features required

by POLIS, i.e. query-based summarisation and summary-size limitation, we modified the XPath

syntax to include specifications for summarisation models and queries, and a size quantification

as an upper restriction on the size of summaries.

9.1.3.2 Semantics

The second main component of the POLIS specification is the semantics. While the syntax

only provides a means of interacting with the logic, and could take various possible forms, the

semantics defines the “meaning” of logical expressions, and is the core of the logic.
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For POLIS we used a possible worlds semantics. Contexts in structured documents are inter-

preted as agents, which reason about possible states of the world they are in. Using this possible

worlds approach, we defined a framework which allows term-probabilities in contexts to emerge.

Additionally, the possible worlds semantics provides a framework in which to formally define

the concepts of evidence-propagation and knowledge-augmentation, on which the parallelism

between summarisation and ad-hoc retrieval is based.

9.1.3.3 Implementation

The final element of the formal specification of POLIS provided by this thesis is one possible

implementation. Syntax and semantics completely specify a language, however, we believe that

a language implementation should be considered part of the formal specification, as the usability

of a language relies on a stable and efficient implementation.

For a given combination of syntax and semantics, several possible implementations are pos-

sible, based on different usage scenarios and techniques. Here, we provide an implementation of

POLIS based on the Probabilistic Relational Algebra (PRA). PRA, like POLIS, has well defined

syntax and semantics, which allows us to demonstrate the equivalence of POLIS statements and

their respective PRA implementation. Furthermore, PRA can be executed efficiently by existing

retrieval frameworks, allowing for an efficient implementation of POLIS.

9.1.4 Evaluation

We contributed in this thesis two ways in which we evaluated POLIS: firstly, we evaluated the

effectiveness of the summarisation models provided by POLIS in isolation; secondly, we demon-

strated the usage of POLIS in two possible application scenarios.

To demonstrate the effectiveness of the POLIS summarisation models, we applied the mod-

els to two test collections: the Document Understanding Conference (DUC) AQUAINT corpus,

and the INEX IEEE corpus. The evaluation based on these two corpora demonstrates that de-

spite the difficulty in tailoring summarisation approaches to actual data which comes with higher

abstraction, the performance of the POLIS summarisation models is similar to other, dedicated

summarisation systems.

In addition to the purely effectiveness-based evaluation of the summarisation models, we

demonstrated the applicability of POLIS in two usage scenarios. We showed how it is possible

to use POLIS to generate expert-profiles for the task of expert-finding, by creating summaries
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of all documents associated with a particular expert-candidate. As a second usage scenario, we

explained how POLIS could be included in a search engine, to generate short text snippets of

retrieved documents based on the entered search queries.

9.2 Future Work

In this section we discuss how the work presented in this dissertation could be extended in the

future. We will focus on two main aspects: the inclusion of additional summarisation models, and

the support for heterogeneous document collections as well as the inclusion of vague predicates.

9.2.1 Models

In chapter 5, we developed probabilistic summarisation models derived from existing retrieval

models, and additionally presented an entirely new summarisation model not based on existing

retrieval models. However, all the summarisation models developed as part of our research differ

significantly from other, more established summarisation approaches, which rely on linear com-

binations of weighting features, the linguistic classification of sentences, or the rhetorical analysis

of documents. One possible direction for future research would be to investigate how these more

traditional summarisation approaches could be modelled in a probabilistic framework.

Modelling feature-based summarisation in a probabilistic framework is a direct extension of

the models developed here. The summarisation models developed in this dissertation are based

on the frequency of terms in elements and in the context to be summarised, and thus bear a

resemblance to the term-frequency feature found in the early work on summarisation by Luhn

(Luhn (1958)). Similarly, features such as the location of elements in the context, or the presence

of title terms in the elements (which could be considered an additional query) could be integrated

reasonably easy.

However, integrating linguistically motivated summarisation approaches, or approaches based

on the rhetoric structure of documents, into the logic would be more challenging. While it would

be possible to model the weights derived from these approaches in a probabilistic framework, it

would be very challenging to integrate such approaches with the document structure information

provided by both structured documents and the POLIS expression.
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9.2.2 Heterogeneous Collections and Vague Elements

POLIS, the summarisation logic developed in this thesis, uses XPath-like expressions to guide

the summarisation process, such that elements pointed at by the path are those considered for

inclusion in the summary. While such POLIS expressions are easy to formulate and understand,

they rely on two premises: a homogeneous collection, in which all documents follow the same

structure, and a POLIS-user who has knowledge of the structure of those documents to be sum-

marised. Both premises could be weakened using vague element paths and vague element names.

9.2.2.1 Vague Paths

In a homogeneous collection, all documents follow a common structural layout. However, in

large collections, or collections that were built over longer periods of time, documents will most

likely use heterogeneous structural markup, either because new markup was introduced after doc-

uments were already included in the collection, or because documents in the collection originate

from different data sources.

Such heterogeneous collections, however, require caution by users wishing to summarise

documents in the collection. A user wanting to create sentence level summaries, knowing that

sentences are always embedded in paragraphs, might issue a POLIS expression of the form:

/doc/p/sent{MICRO ”former president carters international activities”}:{at most 2000}.

Such an expression might not match actual sentences in a heterogeneous collection, however, as

additional markup might be present (e.g. “section” markup). While it would be possible to still

find sentences, using a POLIS expression of the form

//sent{MICRO ”former president carters international activities”}:{at most 2000},

this would require attention by the user. Ideally, the logic should automatically match path

expressions in the POLIS statement to the actual structure of documents, and should return ele-

ments even if there is no exact match. This could be achieved by introducing an additional prob-

ability, such that path expressions matching completely would receive a “matching probability”

of 1.0, while other elements would receive a probability based on the edit-distance necessary to

match the given path expression.

9.2.2.2 Vague Elements

Similarly to the vague path expressions, it would also be possible to probabilistically model the

matching of element names in the POLIS-expression to the actual element names found in the
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collection. Starting again with the example expression

/doc/p/sent{MICRO ”former president carters international activities”}:{at most 2000},

such an approach should model the given element name “sent” to the actual element name

“sentence”. Again, this could be modelled probabilistically based on the edit-distance necessary

to match given element names to the actual names found in documents. An element named “sen-

tence” in the user-specified POLIS expression would thus be matched with a higher probability

on the actual element “sent” than the actual element “s”.

9.2.3 Efficiency and Scalability

We briefly touched on the issue of performance and scalability in section 6.4, mentioning that the

use of indexes and other database technologies would afford a highly efficient implementation of

POLIS. While we did not mention any retrieval times for the experiments conducted in chapter 7,

this assertion held true for the work reported there: summarising the documents in the DUC and

INEX collection was almost instantaneous. However, summarising the documents collected for

a candidate in the E-TREC expert-finding experiments to generate a candidate profile did take

significant amounts of time. While traditional single- or multi-document summarisers would

not normally be used to summarise those documents associated with a candidate in the context

of expert-finding, it is conceivable that a summarisation logic like POLIS could be applied in

retrieval scenarios where such documents need to be processed.

Another possible direction of future research would be concerned with finding more efficient

implementations of the outlined retrieval models. It could also be possible to derive new, more

efficient summarisation models from the ones developed here.

9.2.4 Ideal Summary Size

The abstraction provided by POLIS makes it easy to adapt the size of generated summaries to

their application-specific context. Furthermore, it is possible to easily adjust the size should this

be requested by a user, or be necessitated by changing requirements. However, these adjustments

require a POLIS user to manually set the summary size in the POLIS expressions, either as the

number of elements included in the summary, or as the maximal number of terms in the summary.

Ideally, the logic should be able to automatically determine the ideal size of a summary.

While no one summary will ever be ideal in any given situation, there are probably ways to
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determine the “ideal” size given a specific upper boundary. For example, a utility function could

be used to determine the benefit of including an element in a summary (measured as the increase

of informativeness of the overall summary, or as the novelty introduced by that element), opposed

to the cost of including the element.

9.3 Conclusion

While ad-hoc retrieval functionalities have pushed into numerous applications and electronic

devices, automatic text summarisation has not yet seen the same level of exposure. Abstraction

layers for the task of summarisation, such as the summarisation logic POLIS developed in this

thesis, are beneficial, as they allow developers not familiar with either the mathematical models

or the methodologies of summarisation approaches to include summarisation functionalities in

their products.

Effective and efficient retrieval with abstraction logics is difficult, as the higher abstraction

approaches cannot be tailored as closely to specific collections as traditional approaches. De-

spite the challenge in performance that comes with higher abstraction approaches, our evaluation

results for both the DUC AQUAINT corpus and the INEX IEEE corpus have shown that the

models implemented in POLIS perform at least as good as traditional “low-level” summarisation

approaches. However, the abstract summarisation layer provided by POLIS additionally con-

tributes a new, flexible approach through which summarisation methodologies can be accessed.
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Appendix A

Implementation of Ad-hoc retrieval models in PRA

A.1 Language Modelling (LM) Implementation in PRA

Language Modelling in PRA:

# docModel(Term, DocId):

docModel =

Project DISJOINT(

Bayes[$2](term)) ;

# collModel(Term):

collModel =

Project DISJOINT[$1](

Bayes[](term)) ;

0.8 mixture(docModel);

0.2 mixture(collModel) ;

lambda doc =

Project [](

Select [$1=docModel](mixture));
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lambda coll =

Project [](

Select [$1=collModel](mixture) ) ;

# lambda coll = Project COMPLEMENT(lambda doc);

# retrieved (DocId):

retrieved =

Project DISTINCT[$4](

Join[$1=$1](qterm, term)) ;

lambda docModel =

Join []( lambda\ doc, docModel);

lambda collModel =

Join []( lambda coll , collModel) ;

# lambda collModel retrieved (Term, DocId):

lambda collModel retrieved =

Join []( lambda collModel, retrieved ) ;

# lm1 term weight(Term, DocId):

lm1 term weight =

Project DISJOINT(

Unite ALL(lambda docModel,

lambda collModel retrieved ) ) ;

# lm1 retrieve (DocId, QueryId):

lm1 retrieve =

Project PROD[$4,$2](

Join[$1=$1](qterm,

lm1 term weight)) ;
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A.2 TF-IDF Implementation in PRA

TF-IDF in PRA:

# TF−IDF Retrieval

# TFIDF/main.pra

# tf sum (Term, DocId):

tf sum =

Project DISJOINT(

Bayes[$2](term)) ;

# tf max(Term, DocId):

tf max =

Bayes SUBSUMED[$2](tf sum);

# tf frac (Term, DocId): see text .

# idf (Term):

idf =

Bayes MAX IDF[](

Project[$1](term)) ;

# Query term weighting:

# qterm idf (Term, QueryId):

qterm idf =

Project[$1,$2](

Join[$1=$1](qterm, idf ) ) ;

# Normalisation:

qterm norm idf =

Bayes[$2]( qterm idf ) ;
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# Customisable setting of tf :

tf = tf frac ;

# tfidf retrieve (DocId, QueryId):

tfidf retrieve =

Project DISJOINT[$4,$2](

Join[$1=$1](qterm norm idf,

tf ) ) ;
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Appendix B

DUC: ROUGE-1 Scores for Topics 1 – 50

The following tables contains the ROUGE-1 recall scores for the different summarisation models

on the DUC collection. The first table provides the average ROUGE-1 scores achieved by DUC

summarisers. The remaining tables show performance figures for the POLIS summarisation

models, where the first column holds the topic number, the third column the measure (here:

recall), the fourth column the average score, and the fifth column the 95% confidence interval for

the reported score.
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Topic ROUGE score
1 0.30217
2 0.38594
3 0.38265
4 0.38033
5 0.39862
6 0.38511
7 0.37201
8 0.38807
9 0.36429
10 0.40361
11 0.22340
12 0.40488
13 0.38462
14 0.37947
15 0.38991
16 0.36681
17 0.33595
18 0.36062
19 0.37838
20 0.36921
21 0.35286
22 0.38047
23 0.40440
24 0.40980
25 0.36765
26 0.33071
27 0.38751
28 0.39922
29 0.37398
30 0.36105
31 0.39908
32 0.38196
33 0.40206
34 0.35973
35 0.33305

Table B.1: DUC average ROUGE-1 recall scores.
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Topic ROUGE test Measure ROUGE score Confidence Interval
1 ROUGE-1 Average R: 0.37353 (95%-conf.int. 0.35963 - 0.38299)
2 ROUGE-1 Average R: 0.31924 (95%-conf.int. 0.31118 - 0.32651)
3 ROUGE-1 Average R: 0.34940 (95%-conf.int. 0.33901 - 0.35977)
4 ROUGE-1 Average R: 0.35513 (95%-conf.int. 0.34887 - 0.36601)
5 ROUGE-1 Average R: 0.32621 (95%-conf.int. 0.31522 - 0.33724)
6 ROUGE-1 Average R: 0.32201 (95%-conf.int. 0.30974 - 0.33548)
7 ROUGE-1 Average R: 0.30179 (95%-conf.int. 0.29721 - 0.30636)
8 ROUGE-1 Average R: 0.31975 (95%-conf.int. 0.30048 - 0.33514)
9 ROUGE-1 Average R: 0.43494 (95%-conf.int. 0.43055 - 0.44015)

10 ROUGE-1 Average R: 0.34678 (95%-conf.int. 0.34216 - 0.35113)
11 ROUGE-1 Average R: 0.31900 (95%-conf.int. 0.31134 - 0.32789)
12 ROUGE-1 Average R: 0.33835 (95%-conf.int. 0.33132 - 0.34594)
13 ROUGE-1 Average R: 0.27498 (95%-conf.int. 0.26440 - 0.28552)
14 ROUGE-1 Average R: 0.44880 (95%-conf.int. 0.43349 - 0.46190)
15 ROUGE-1 Average R: 0.33935 (95%-conf.int. 0.33401 - 0.34469)
16 ROUGE-1 Average R: 0.41509 (95%-conf.int. 0.40860 - 0.42150)
17 ROUGE-1 Average R: 0.33627 (95%-conf.int. 0.33355 - 0.33903)
18 ROUGE-1 Average R: 0.35484 (95%-conf.int. 0.34273 - 0.37284)
19 ROUGE-1 Average R: 0.39001 (95%-conf.int. 0.38160 - 0.39844)
20 ROUGE-1 Average R: 0.36685 (95%-conf.int. 0.35310 - 0.37867)
21 ROUGE-1 Average R: 0.35060 (95%-conf.int. 0.34281 - 0.35842)
22 ROUGE-1 Average R: 0.44210 (95%-conf.int. 0.43732 - 0.44511)
23 ROUGE-1 Average R: 0.32995 (95%-conf.int. 0.32473 - 0.33509)
24 ROUGE-1 Average R: 0.35584 (95%-conf.int. 0.34806 - 0.36364)
25 ROUGE-1 Average R: 0.35657 (95%-conf.int. 0.34765 - 0.36673)
26 ROUGE-1 Average R: 0.41113 (95%-conf.int. 0.38670 - 0.43701)
27 ROUGE-1 Average R: 0.36674 (95%-conf.int. 0.35720 - 0.37324)
28 ROUGE-1 Average R: 0.33570 (95%-conf.int. 0.32963 - 0.34661)
29 ROUGE-1 Average R: 0.29984 (95%-conf.int. 0.29502 - 0.30466)
30 ROUGE-1 Average R: 0.34156 (95%-conf.int. 0.33008 - 0.35767)
31 ROUGE-1 Average R: 0.41560 (95%-conf.int. 0.40514 - 0.42608)
32 ROUGE-1 Average R: 0.37647 (95%-conf.int. 0.36176 - 0.39037)
33 ROUGE-1 Average R: 0.26148 (95%-conf.int. 0.23508 - 0.29131)
34 ROUGE-1 Average R: 0.38855 (95%-conf.int. 0.37516 - 0.41103)
35 ROUGE-1 Average R: 0.35823 (95%-conf.int. 0.35571 - 0.36074)
36 ROUGE-1 Average R: 0.37706 (95%-conf.int. 0.37124 - 0.38619)
37 ROUGE-1 Average R: 0.35809 (95%-conf.int. 0.35085 - 0.36469)
38 ROUGE-1 Average R: 0.29596 (95%-conf.int. 0.28287 - 0.30511)
39 ROUGE-1 Average R: 0.36992 (95%-conf.int. 0.36104 - 0.38385)
40 ROUGE-1 Average R: 0.35313 (95%-conf.int. 0.34276 - 0.35950)
41 ROUGE-1 Average R: 0.32699 (95%-conf.int. 0.31507 - 0.33643)
42 ROUGE-1 Average R: 0.38511 (95%-conf.int. 0.37773 - 0.39248)
43 ROUGE-1 Average R: 0.39586 (95%-conf.int. 0.38120 - 0.41183)
44 ROUGE-1 Average R: 0.34792 (95%-conf.int. 0.34054 - 0.35354)
45 ROUGE-1 Average R: 0.36856 (95%-conf.int. 0.35721 - 0.37661)
46 ROUGE-1 Average R: 0.27244 (95%-conf.int. 0.26189 - 0.28121)
47 ROUGE-1 Average R: 0.41865 (95%-conf.int. 0.40219 - 0.43507)
48 ROUGE-1 Average R: 0.34968 (95%-conf.int. 0.33510 - 0.36331)
49 ROUGE-1 Average R: 0.35477 (95%-conf.int. 0.34925 - 0.35978)
50 ROUGE-1 Average R: 0.33903 (95%-conf.int. 0.33245 - 0.34552)

Table B.2: ROUGE-1 recall scores on DUC collection for the POLIS-base summarisation model.
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Topic ROUGE test Measure ROUGE score Confidence Interval
1 ROUGE-1 Average R: 0.29820 (95%-conf.int. 0.29078 - 0.30511)
2 ROUGE-1 Average R: 0.30831 (95%-conf.int. 0.30529 - 0.31090)
3 ROUGE-1 Average R: 0.36309 (95%-conf.int. 0.35859 - 0.36763)
4 ROUGE-1 Average R: 0.25782 (95%-conf.int. 0.24919 - 0.26641)
5 ROUGE-1 Average R: 0.29124 (95%-conf.int. 0.28219 - 0.30034)
6 ROUGE-1 Average R: 0.29518 (95%-conf.int. 0.28402 - 0.31209)
7 ROUGE-1 Average R: 0.31375 (95%-conf.int. 0.30871 - 0.31691)
8 ROUGE-1 Average R: 0.25758 (95%-conf.int. 0.24768 - 0.26750)
9 ROUGE-1 Average R: 0.39224 (95%-conf.int. 0.38278 - 0.40172)

10 ROUGE-1 Average R: 0.34195 (95%-conf.int. 0.33386 - 0.34949)
11 ROUGE-1 Average R: 0.33234 (95%-conf.int. 0.32993 - 0.33534)
12 ROUGE-1 Average R: 0.35333 (95%-conf.int. 0.33796 - 0.36769)
13 ROUGE-1 Average R: 0.29790 (95%-conf.int. 0.28938 - 0.30667)
14 ROUGE-1 Average R: 0.36549 (95%-conf.int. 0.35290 - 0.37809)
15 ROUGE-1 Average R: 0.33331 (95%-conf.int. 0.32666 - 0.34046)
16 ROUGE-1 Average R: 0.34574 (95%-conf.int. 0.33637 - 0.35589)
17 ROUGE-1 Average R: 0.32740 (95%-conf.int. 0.32258 - 0.33224)
18 ROUGE-1 Average R: 0.39799 (95%-conf.int. 0.39019 - 0.40803)
19 ROUGE-1 Average R: 0.31926 (95%-conf.int. 0.31678 - 0.32173)
20 ROUGE-1 Average R: 0.30806 (95%-conf.int. 0.29493 - 0.32120)
21 ROUGE-1 Average R: 0.35879 (95%-conf.int. 0.34884 - 0.36830)
22 ROUGE-1 Average R: 0.33931 (95%-conf.int. 0.32269 - 0.35596)
23 ROUGE-1 Average R: 0.37447 (95%-conf.int. 0.36666 - 0.38129)
24 ROUGE-1 Average R: 0.37739 (95%-conf.int. 0.36268 - 0.38940)
25 ROUGE-1 Average R: 0.41821 (95%-conf.int. 0.41661 - 0.42012)
26 ROUGE-1 Average R: 0.41718 (95%-conf.int. 0.39267 - 0.44244)
27 ROUGE-1 Average R: 0.38474 (95%-conf.int. 0.37433 - 0.39236)
28 ROUGE-1 Average R: 0.35263 (95%-conf.int. 0.33984 - 0.36260)
29 ROUGE-1 Average R: 0.30081 (95%-conf.int. 0.29046 - 0.31216)
30 ROUGE-1 Average R: 0.33078 (95%-conf.int. 0.32036 - 0.34286)
31 ROUGE-1 Average R: 0.37420 (95%-conf.int. 0.36803 - 0.38129)
32 ROUGE-1 Average R: 0.42845 (95%-conf.int. 0.41748 - 0.43726)
33 ROUGE-1 Average R: 0.25081 (95%-conf.int. 0.23220 - 0.27612)
34 ROUGE-1 Average R: 0.36604 (95%-conf.int. 0.35140 - 0.38336)
35 ROUGE-1 Average R: 0.32093 (95%-conf.int. 0.31389 - 0.32861)
36 ROUGE-1 Average R: 0.33790 (95%-conf.int. 0.32846 - 0.34432)
37 ROUGE-1 Average R: 0.36692 (95%-conf.int. 0.35559 - 0.38236)
38 ROUGE-1 Average R: 0.30559 (95%-conf.int. 0.30161 - 0.31194)
39 ROUGE-1 Average R: 0.36207 (95%-conf.int. 0.35304 - 0.37396)
40 ROUGE-1 Average R: 0.33336 (95%-conf.int. 0.32311 - 0.34235)
41 ROUGE-1 Average R: 0.35574 (95%-conf.int. 0.34274 - 0.37308)
42 ROUGE-1 Average R: 0.33370 (95%-conf.int. 0.32561 - 0.34181)
43 ROUGE-1 Average R: 0.33010 (95%-conf.int. 0.31266 - 0.34845)
44 ROUGE-1 Average R: 0.34176 (95%-conf.int. 0.33024 - 0.35436)
45 ROUGE-1 Average R: 0.35591 (95%-conf.int. 0.34786 - 0.36425)
46 ROUGE-1 Average R: 0.36185 (95%-conf.int. 0.35601 - 0.36770)
47 ROUGE-1 Average R: 0.38217 (95%-conf.int. 0.37518 - 0.38976)
48 ROUGE-1 Average R: 0.36993 (95%-conf.int. 0.36106 - 0.38000)
49 ROUGE-1 Average R: 0.30930 (95%-conf.int. 0.30653 - 0.31261)
50 ROUGE-1 Average R: 0.29129 (95%-conf.int. 0.28543 - 0.29538)

Table B.3: ROUGE-1 recall scores on DUC collection for the POLIS-microaveraging summari-
sation model.
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Topic ROUGE test Measure ROUGE score Confidence Interval
1 ROUGE-1 Average R: 0.29721 (95%-conf.int. 0.28955 - 0.30128)
2 ROUGE-1 Average R: 0.29939 (95%-conf.int. 0.29682 - 0.30263)
3 ROUGE-1 Average R: 0.38370 (95%-conf.int. 0.37752 - 0.39012)
4 ROUGE-1 Average R: 0.25202 (95%-conf.int. 0.24296 - 0.26361)
5 ROUGE-1 Average R: 0.29512 (95%-conf.int. 0.28478 - 0.30552)
6 ROUGE-1 Average R: 0.29222 (95%-conf.int. 0.28160 - 0.30580)
7 ROUGE-1 Average R: 0.29781 (95%-conf.int. 0.29466 - 0.30104)
8 ROUGE-1 Average R: 0.32097 (95%-conf.int. 0.31107 - 0.33086)
9 ROUGE-1 Average R: 0.42107 (95%-conf.int. 0.41417 - 0.42639)

10 ROUGE-1 Average R: 0.40633 (95%-conf.int. 0.40561 - 0.40752)
11 ROUGE-1 Average R: 0.27130 (95%-conf.int. 0.26317 - 0.27866)
12 ROUGE-1 Average R: 0.35636 (95%-conf.int. 0.34298 - 0.37170)
13 ROUGE-1 Average R: 0.32080 (95%-conf.int. 0.31244 - 0.32755)
14 ROUGE-1 Average R: 0.35356 (95%-conf.int. 0.34785 - 0.35787)
15 ROUGE-1 Average R: 0.33332 (95%-conf.int. 0.32988 - 0.33738)
16 ROUGE-1 Average R: 0.40531 (95%-conf.int. 0.39214 - 0.42168)
17 ROUGE-1 Average R: 0.35993 (95%-conf.int. 0.35562 - 0.36399)
18 ROUGE-1 Average R: 0.39410 (95%-conf.int. 0.38446 - 0.40380)
19 ROUGE-1 Average R: 0.41357 (95%-conf.int. 0.40835 - 0.41880)
20 ROUGE-1 Average R: 0.35392 (95%-conf.int. 0.34287 - 0.36496)
21 ROUGE-1 Average R: 0.41038 (95%-conf.int. 0.40553 - 0.41456)
22 ROUGE-1 Average R: 0.36525 (95%-conf.int. 0.34730 - 0.38323)
23 ROUGE-1 Average R: 0.41388 (95%-conf.int. 0.40155 - 0.42718)
24 ROUGE-1 Average R: 0.44286 (95%-conf.int. 0.43575 - 0.44988)
25 ROUGE-1 Average R: 0.44954 (95%-conf.int. 0.44467 - 0.45571)
26 ROUGE-1 Average R: 0.43327 (95%-conf.int. 0.40920 - 0.46075)
27 ROUGE-1 Average R: 0.40776 (95%-conf.int. 0.39389 - 0.41851)
28 ROUGE-1 Average R: 0.38516 (95%-conf.int. 0.37555 - 0.39307)
29 ROUGE-1 Average R: 0.32808 (95%-conf.int. 0.32286 - 0.33336)
30 ROUGE-1 Average R: 0.36515 (95%-conf.int. 0.35278 - 0.37756)
31 ROUGE-1 Average R: 0.38205 (95%-conf.int. 0.37666 - 0.38569)
32 ROUGE-1 Average R: 0.44621 (95%-conf.int. 0.42988 - 0.46236)
33 ROUGE-1 Average R: 0.28969 (95%-conf.int. 0.27196 - 0.31172)
34 ROUGE-1 Average R: 0.35529 (95%-conf.int. 0.33973 - 0.37447)
35 ROUGE-1 Average R: 0.34488 (95%-conf.int. 0.33897 - 0.34970)
36 ROUGE-1 Average R: 0.33275 (95%-conf.int. 0.32370 - 0.34169)
37 ROUGE-1 Average R: 0.37280 (95%-conf.int. 0.36504 - 0.38069)
38 ROUGE-1 Average R: 0.34331 (95%-conf.int. 0.33439 - 0.35424)
39 ROUGE-1 Average R: 0.40220 (95%-conf.int. 0.38767 - 0.41740)
40 ROUGE-1 Average R: 0.37095 (95%-conf.int. 0.35981 - 0.37997)
41 ROUGE-1 Average R: 0.39140 (95%-conf.int. 0.37559 - 0.40741)
42 ROUGE-1 Average R: 0.35987 (95%-conf.int. 0.35390 - 0.36581)
43 ROUGE-1 Average R: 0.33991 (95%-conf.int. 0.32572 - 0.35468)
44 ROUGE-1 Average R: 0.36616 (95%-conf.int. 0.35382 - 0.38001)
45 ROUGE-1 Average R: 0.35496 (95%-conf.int. 0.33868 - 0.36684)
46 ROUGE-1 Average R: 0.38463 (95%-conf.int. 0.37554 - 0.39168)
47 ROUGE-1 Average R: 0.39657 (95%-conf.int. 0.39160 - 0.39975)
48 ROUGE-1 Average R: 0.36592 (95%-conf.int. 0.35671 - 0.37627)
49 ROUGE-1 Average R: 0.29550 (95%-conf.int. 0.28967 - 0.30125)
50 ROUGE-1 Average R: 0.31114 (95%-conf.int. 0.30790 - 0.31454)

Table B.4: ROUGE-1 recall scores on DUC collection for the POLIS-microaveragingIDF sum-
marisation model.
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Topic ROUGE test Measure ROUGE score Confidence Interval
1 ROUGE-1 Average R: 0.36952 (95%-conf.int. 0.35367 - 0.38165)
2 ROUGE-1 Average R: 0.33002 (95%-conf.int. 0.32716 - 0.33289)
3 ROUGE-1 Average R: 0.38569 (95%-conf.int. 0.37652 - 0.39443)
4 ROUGE-1 Average R: 0.28310 (95%-conf.int. 0.27508 - 0.29111)
5 ROUGE-1 Average R: 0.34368 (95%-conf.int. 0.33592 - 0.35414)
6 ROUGE-1 Average R: 0.29917 (95%-conf.int. 0.28536 - 0.31409)
7 ROUGE-1 Average R: 0.31573 (95%-conf.int. 0.31051 - 0.32176)
8 ROUGE-1 Average R: 0.31697 (95%-conf.int. 0.30430 - 0.32671)
9 ROUGE-1 Average R: 0.39126 (95%-conf.int. 0.38278 - 0.39975)

10 ROUGE-1 Average R: 0.33427 (95%-conf.int. 0.32733 - 0.34120)
11 ROUGE-1 Average R: 0.30128 (95%-conf.int. 0.29980 - 0.30330)
12 ROUGE-1 Average R: 0.36631 (95%-conf.int. 0.35130 - 0.37872)
13 ROUGE-1 Average R: 0.30985 (95%-conf.int. 0.30124 - 0.31867)
14 ROUGE-1 Average R: 0.43102 (95%-conf.int. 0.41461 - 0.44616)
15 ROUGE-1 Average R: 0.35929 (95%-conf.int. 0.35535 - 0.36166)
16 ROUGE-1 Average R: 0.36722 (95%-conf.int. 0.35258 - 0.37785)
17 ROUGE-1 Average R: 0.32152 (95%-conf.int. 0.31393 - 0.32709)
18 ROUGE-1 Average R: 0.40290 (95%-conf.int. 0.39100 - 0.41866)
19 ROUGE-1 Average R: 0.39291 (95%-conf.int. 0.38638 - 0.39778)
20 ROUGE-1 Average R: 0.33201 (95%-conf.int. 0.31321 - 0.34612)
21 ROUGE-1 Average R: 0.41570 (95%-conf.int. 0.40465 - 0.42662)
22 ROUGE-1 Average R: 0.35926 (95%-conf.int. 0.34198 - 0.37659)
23 ROUGE-1 Average R: 0.43596 (95%-conf.int. 0.42753 - 0.44439)
24 ROUGE-1 Average R: 0.39691 (95%-conf.int. 0.38831 - 0.40687)
25 ROUGE-1 Average R: 0.40153 (95%-conf.int. 0.39553 - 0.40756)
26 ROUGE-1 Average R: 0.44538 (95%-conf.int. 0.42016 - 0.46920)
27 ROUGE-1 Average R: 0.37476 (95%-conf.int. 0.36347 - 0.38162)
28 ROUGE-1 Average R: 0.36639 (95%-conf.int. 0.35769 - 0.37918)
29 ROUGE-1 Average R: 0.33793 (95%-conf.int. 0.32597 - 0.34997)
30 ROUGE-1 Average R: 0.37692 (95%-conf.int. 0.36706 - 0.38680)
31 ROUGE-1 Average R: 0.35541 (95%-conf.int. 0.35178 - 0.36085)
32 ROUGE-1 Average R: 0.42653 (95%-conf.int. 0.40856 - 0.44052)
33 ROUGE-1 Average R: 0.29054 (95%-conf.int. 0.26724 - 0.31933)
34 ROUGE-1 Average R: 0.39052 (95%-conf.int. 0.37256 - 0.40635)
35 ROUGE-1 Average R: 0.35243 (95%-conf.int. 0.33952 - 0.36584)
36 ROUGE-1 Average R: 0.38825 (95%-conf.int. 0.38134 - 0.39488)
37 ROUGE-1 Average R: 0.35519 (95%-conf.int. 0.34483 - 0.36760)
38 ROUGE-1 Average R: 0.34036 (95%-conf.int. 0.33171 - 0.35639)
39 ROUGE-1 Average R: 0.35327 (95%-conf.int. 0.34675 - 0.36509)
40 ROUGE-1 Average R: 0.33632 (95%-conf.int. 0.32583 - 0.34301)
41 ROUGE-1 Average R: 0.34485 (95%-conf.int. 0.33222 - 0.36023)
42 ROUGE-1 Average R: 0.33952 (95%-conf.int. 0.33131 - 0.35406)
43 ROUGE-1 Average R: 0.33501 (95%-conf.int. 0.31919 - 0.35206)
44 ROUGE-1 Average R: 0.38044 (95%-conf.int. 0.37408 - 0.38744)
45 ROUGE-1 Average R: 0.40342 (95%-conf.int. 0.38931 - 0.41943)
46 ROUGE-1 Average R: 0.33900 (95%-conf.int. 0.33520 - 0.34425)
47 ROUGE-1 Average R: 0.43214 (95%-conf.int. 0.42471 - 0.43955)
48 ROUGE-1 Average R: 0.38493 (95%-conf.int. 0.38010 - 0.39202)
49 ROUGE-1 Average R: 0.35572 (95%-conf.int. 0.35088 - 0.36008)
50 ROUGE-1 Average R: 0.37182 (95%-conf.int. 0.36506 - 0.37798)

Table B.5: ROUGE-1 recall scores on DUC collection for the POLIS-macroaveraging summari-
sation model.
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Appendix C

INEX: ROUGE-1 Scores; Average per Journal

Journal ROUGE-1
an 0.34389207547169814
cg 0.2488990196078432
co 0.25854114285714286
cs 0.298127614213198
dt 0.28833311787072236
ex 0.2997072881355932
ic 0.230067
it 0.1948703124999999

mi 0.25363199999999997
mu 0.31956434210526313
pd 0.30013701492537304
so 0.2950734120171676
tc 0.48195892259414297
td 0.49054788331071814
tg 0.45947553299492366
tk 0.48975546816479404
tp 0.47534956256358096
ts 0.48979393442622937

Journal ROUGE-1
an 0.6377633962264151
cg 0.695362450980393
co 0.6701058345864659
cs 0.6426657360406088
dt 0.712043954372623
ex 0.683579423288131
ic 0.522959
it 0.5996228125
mi 0.6869784333333337
mu 0.6950623684210528
pd 0.6734108208955223
so 0.6722167381974251
tc 0.6526951778242678
td 0.6704279647218461
tg 0.6441375634517764
tk 0.6583094943820226
tp 0.6427836419125124
ts 0.669254774590164

Table C.1: INEX-Collection. Recall: POLIS-base vs original abstracts; POLIS-base vs Marcu’s
extracts
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Journal ROUGE-1
an 0.14147976415094352
cg 0.08096624183006536
co 0.08710593984962399
cs 0.10513898477157359
dt 0.10604216730038032
ex 0.1064160338983051
ic 0.08052409090909092
it 0.05469487500000001

mi 0.09007793333333337
mu 0.12241322368421056
pd 0.1042164925373134
so 0.09876989270386266
tc 0.2215873221757326
td 0.23041687924016302
tg 0.21274923857868025
tk 0.22697220973782783
tp 0.21536057985757878
ts 0.2232866393442624

Journal ROUGE-1
an 0.2699928773584907
cg 0.29851885620915064
co 0.3063960601503761
cs 0.30898492385786785
dt 0.3341155133079847
ex 0.3130567796610171
ic 0.28393122727272724
it 0.27040587500000013

mi 0.3135486000000002
mu 0.32006230263157887
pd 0.3359692537313434
so 0.3056566523605151
tc 0.3022665690376569
td 0.31179972862957944
tg 0.32972035532994926
tk 0.3135327153558057
tp 0.31993610376398784
ts 0.3358795286885247

Table C.2: INEX-Collection. Precision: POLIS-base vs original abstracts; POLIS-base vs
Marcu’s extracts

Journal ROUGE-1
an 0.1890062264150943
cg 0.25207297385620914
co 0.2247172781954888
cs 0.24366700507614206
dt 0.2809469201520916
ex 0.24940308474576242
ic 0.17301518181818173
it 0.17744725

mi 0.22578513333333328
mu 0.30903460526315785
pd 0.22390962686567173
so 0.2308838626609441
tc 0.4734808263598333
td 0.47236377204884666
tg 0.4611667005076139
tk 0.43905187265917617
tp 0.44619381485249215
ts 0.43427559426229495

Journal ROUGE-1
an 0.2343016509433961
cg 0.509615980392157
co 0.4034913984962399
cs 0.3814208629441624
dt 0.519719391634981
ex 0.43190793220338974
ic 0.24706186363636365
it 0.36558337500000004

mi 0.4471382333333334
mu 0.4889377631578946
pd 0.3884671641791046
so 0.4046725536480685
tc 0.5585637866108791
td 0.5572870420624153
tg 0.5108751269035533
tk 0.5014790262172281
tp 0.5101416683621567
ts 0.5011666393442625

Table C.3: INEX-Collection. Recall: POLIS-micro vs original abstracts; POLIS-micro vs
Marcu’s extracts
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Journal ROUGE-1
an 0.09225495283018864
cg 0.09896767973856217
co 0.08782407518796997
cs 0.09773527918781727
dt 0.11864771863117869
ex 0.10443454237288138
ic 0.06620436363636364
it 0.0627249375

mi 0.09258313333333332
mu 0.1319455921052631
pd 0.09053902985074629
so 0.09404532188841208
tc 0.22865742677824255
td 0.2333963500678429
tg 0.2235339593908629
tk 0.21121739700374537
tp 0.21230906408952185
ts 0.2071182377049181

Journal ROUGE-1
an 0.1720137735849056
cg 0.26481307189542475
co 0.2654888270676693
cs 0.2611629441624365
dt 0.30091741444866915
ex 0.2734905084745763
ic 0.20970954545454545
it 0.2282473125000001

mi 0.2762057333333333
mu 0.2927291447368422
pd 0.244105223880597
so 0.2577259442060086
tc 0.30490086820083645
td 0.30132396200814116
tg 0.3388368020304567
tk 0.2899071348314607
tp 0.3095150152594094
ts 0.30024489754098377

Table C.4: INEX-Collection. Precision: POLIS-micro vs original abstracts; POLIS-micro vs
Marcu’s extracts

Journal ROUGE-1
an 0.17231463836477978
cg 0.3930914705882351
co 0.30663950375939897
cs 0.28905825719120165
dt 0.3801755133079846
ex 0.3428977288135599
ic 0.2247700454545456
it 0.2502495

mi 0.3204727777777772
mu 0.371696951754386
pd 0.30043373134328377
so 0.26499386981402007
tc 0.4091903242677829
td 0.4136996426956134
tg 0.3915023519458547
tk 0.38627681647940054
tp 0.3844730077992542
ts 0.3862930942622952

Journal ROUGE-1
an 0.24050433962264148
cg 0.3974744771241828
co 0.3791332180451128
cs 0.3722195939086296
dt 0.4427400380228133
ex 0.3922057288135594
ic 0.2841429090909091
it 0.33610875000000007

mi 0.40171316666666673
mu 0.4179426315789473
pd 0.3478614925373135
so 0.3706750214592277
tc 0.4479087133891213
td 0.4372163636363634
tg 0.4723798477157362
tk 0.41322146067415755
tp 0.44268483214649024
ts 0.4248040368852459

Table C.5: INEX-Collection. Recall: POLIS-microIDF vs original abstracts; POLIS-microIDF
vs Marcu’s extracts
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Journal ROUGE-1
an 0.035738836477987396
cg 0.025174564270152484
co 0.027094952380952393
cs 0.028318206429780026
dt 0.03522645120405578
ex 0.03096744632768365
ic 0.020299121212121206
it 0.021334812500000015

mi 0.027306888888888905
mu 0.043781228070175426
pd 0.025070547263681606
so 0.03004911301859798
tc 0.13663715829846554
td 0.13819085481682497
tg 0.11458314720812186
tk 0.11712127340823955
tp 0.11982093591047822
ts 0.10313979508196736

Journal ROUGE-1
an 0.17364547169811326
cg 0.3640929084967318
co 0.2999345263157899
cs 0.29781203045685267
dt 0.3858223574144486
ex 0.32370952542372883
ic 0.1988307272727272
it 0.2719899999999999

mi 0.3392816
mu 0.3518180263157894
pd 0.2916663432835821
so 0.2967220815450645
tc 0.4032701255230121
td 0.3945467842605157
tg 0.38013477157360404
tk 0.3574511235955054
tp 0.3758466531027467
ts 0.36017233606557403

Table C.6: INEX-Collection. Precision: POLIS-microIDF vs original abstracts; POLIS-
microIDF vs Marcu’s extracts

Journal ROUGE-1
an 0.21509943396226422
cg 0.20456816993464041
co 0.19208445112781974
cs 0.20841213197969546
dt 0.24622505703422068
ex 0.22450911864406778
ic 0.1474709545454545
it 0.1639028749999999

mi 0.1957546333333334
mu 0.2616644736842104
pd 0.19134462686567164
so 0.22882757510729615
tc 0.44138849372385003
td 0.44000465400271327
tg 0.4097475126903551
tk 0.4071582022471908
tp 0.4158732756866733
ts 0.399394569672131

Journal ROUGE-1
an 0.4428047169811323
cg 0.5800016339869287
co 0.49638139849624047
cs 0.4541225380710658
dt 0.6017020152091255
ex 0.5043637288135594
ic 0.3195923636363636
it 0.4580986875

mi 0.5496283666666667
mu 0.559822697368421
pd 0.45113380597014935
so 0.5125700643776827
tc 0.603080711297071
td 0.6067400135685218
tg 0.5690524365482231
tk 0.5427543445692877
tp 0.5670457070193284
ts 0.5484321311475407

Table C.7: INEX-Collection. Recall: POLIS-macro vs original abstracts; POLIS-macro vs
Marcu’s extracts
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Journal ROUGE-1
an 0.09263613207547168
cg 0.06750957516339869
co 0.0641466165413534
cs 0.07515411167512688
dt 0.08974889733840312
ex 0.0799206779661017
ic 0.05124572727272728
it 0.045331437499999995

mi 0.06958696666666667
mu 0.09846993421052634
pd 0.06453671641791045
so 0.07523347639484979
tc 0.20364007322175764
td 0.20613540027137045
tg 0.18873472081218282
tk 0.18754029962546803
tp 0.18878784333672433
ts 0.1830691393442624

Journal ROUGE-1
an 0.15634547169811322
cg 0.2403576797385622
co 0.23010827067669176
cs 0.23229167512690344
dt 0.27004836501901136
ex 0.242178813559322
ic 0.18187663636363638
it 0.2036113125

mi 0.24393363333333326
mu 0.2549630921052631
pd 0.20938119402985075
so 0.23172128755364813
tc 0.2784496129707114
td 0.2784205970149256
tg 0.29608395939086285
tk 0.2630443632958803
tp 0.27589408952187183
ts 0.27035704918032805

Table C.8: INEX-Collection. Precision: POLIS-macro vs original abstracts; POLIS-macro vs
Marcu’s extracts

Journal ROUGE-1
an 0.32295853773584915
cg 0.33076225490196065
co 0.29104230075187976
cs 0.3070127918781725
dt 0.32370923954372616
ex 0.32576128813559313
ic 0.264137818181818
it 0.2322894374999999

mi 0.2822254333333334
mu 0.34226407894736843
pd 0.33536246268656705
so 0.28423023605150255
tc 0.46272995815899565
td 0.46850862957937556
tg 0.445160456852792
tk 0.46918249063670403
tp 0.4516266632756866
ts 0.4555679713114755

Journal ROUGE-1
an 0.5321981603773586
cg 0.5791096405228755
co 0.5484226917293228
cs 0.5114591878172591
dt 0.5623119391634983
ex 0.5531133898305085
ic 0.4163977272727273
it 0.5019038750000001
mi 0.5399204666666666
mu 0.5723775
pd 0.547249626865672
so 0.5452550214592274
tc 0.534902029288703
td 0.5472337042062421
tg 0.522197157360406
tk 0.5393693820224716
tp 0.52527022380468
ts 0.5411078073770493

Table C.9: INEX-Collection. Recall: KTL vs original abstracts; KTL vs Marcu’s extracts
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Journal ROUGE-1
an 0.2885173584905659
cg 0.2516337581699345
co 0.22263790977443576
cs 0.2509069543147208
dt 0.2714074144486694
ex 0.2616018644067796
ic 0.20128431818181822
it 0.15563962499999995

mi 0.22808170000000005
mu 0.2984611842105263
pd 0.2755928358208955
so 0.2230779613733908
tc 0.44088719665271875
td 0.45554339213025763
tg 0.4256608629441621
tk 0.44612395131086136
tp 0.423412472024415
ts 0.43376342213114755

Journal ROUGE-1
an 0.39821580188679234
cg 0.4573753921568628
co 0.4608189624060147
cs 0.4631294923857869
dt 0.5002965019011408
ex 0.473315254237288
ic 0.4092153636363638
it 0.41307343750000014

mi 0.46864409999999973
mu 0.4748613815789476
pd 0.4955298507462687
so 0.457082103004292
tc 0.4627897384937239
td 0.46714099050203545
tg 0.4866605076142133
tk 0.46674979400749034
tp 0.475222797558494
ts 0.4886447950819669

Table C.10: INEX-Collection. Precision: KTL vs original abstracts; KTL vs Marcu’s extracts
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Appendix D

KTL Feature-based Summariser

To evaluate the POLIS summarisation models on the INEX collection, we additionally applied

a feature based summariser to the documents in the collection, so that the performance of the

POLIS models could be judged against a traditional summarisation approach. The feature based

summariser makes use of the term frequency (key method), title, and location features, which

are combined in a linear fashion, such that all features are given equal weights. The score of a

sentence S is thus given by a linear combination of the sentence’s feature scores:

RSV (S) := K(S)+T (S)+L(S) (D.1)

We discuss the individual features in the remainder of this chapter.

D.1 Key Method

The Key feature was first introduced by Luhn in his seminal paper on summarisation, and has

– in some form – been used in almost all feature-based summarisation systems since. The idea

behind this feature is that important sentences contain a larger number of important terms. For

our system, we define the importance of a term as its term-weight given by the traditional IR TF

weighting function. For the Key method, we modelled TF in the traditional BM25 approach. We

define the key-weight of a sentence S as the sum of its term-weights, divided by the number of

terms:
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KW (S) :=
∑

t∈S
(PL(t,d))

|S|
(D.2)

where PL(t,s) is the TF-weight of a term t in sentence s.

D.2 Title Method

The Title features makes use of the fact that the topic of a document is either hinted at or is

explicitly stated in its title. Sentences which largely overlap with the title can thus be assumed to

be more important. To measure this overlap, we divide the number of terms co-occurring in both

sentence and title by the total number of terms in a sentence:

TW (S) :=
|t ∈ S∧ t ∈ T |

|S|
(D.3)

where T is the title, |t ∈ S∧ t ∈ T | is the number of terms overlapping in T and S, and |S| is

the number of terms in S.

D.3 Location Method

The Location feature takes advantage of the notion that the position of a sentence in a document

conveys information about its importance. However, there is no general consensus on which

locations are most useful. Tombros and Sanderson report that in their experiments, the leading

paragraph of articles conveys much of the content, in agreement with results by Brandow et al.

(Tombros and Sanderson (1998); Brandow et al. (1995)). On the other hand, Edmundson reports

that the most salient locations are found at the beginning and the end of documents (Edmundson

(1969)), however, without providing details of where the beginning ends and the end begins. We

therefore take an agnostic approach to the location feature, assuming that it is not a sharp cut-off,

but rather a continuous “importance function” over the entire document.

We model this using an inverse Gaussian distribution. Consider the sentences of a document

placed along the x-axis of a graph. The Gaussian distribution then measures the “level of unim-

portance”, peaking at the center of the document, and sloping off towards the beginning and end

of the document. For a sentence S at position Ps, the location weight is defined as:

LW (S) := 1− 1
σ
√

2π
e−

((Ps−
|S|
2 )−µ)2

2σ2 (D.4)
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where |S| is the total number of sentences, σ is the standard deviation, and µ is the expected

value. To realise a smooth transition over all sentences in the document, we set σ to 5.0, µ to

0.0.
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Appendix E

Manipulation of a Document-summary by

varying POLIS expressions

E.1 Introduction

The discussion of this appendix follows closely the applicability scenario outlined in Section 8.2;

here, we will give a more detailed example of how different POLIS expressions applied to the

same input document will result in different summaries.

We will use the Wikipedia article on “Information Retrieval” as our sample document (Wikipedia

(2009)). As a preliminary step, we again apply Piao’s sentence splitter to the document, resulting

in structural markup at sentence level.

Our discussion will be limited to the effects of varying the summarisation model used; as

manipulating the summary-size quantifier (and the changes to the summary effected) is self-

explanatory, it will remain fixed to “at most 5” during our trials (i.e. up to five sentences can be

extracted to form the summary).
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E.2 Models

We will in turn apply all summarisation models provided by POLIS to the sample document,

and discuss the summary produced. Where a summary query could be specified (i.e. for all the

query-based summarisation models), we used “information retrieval” as our query.

E.2.1 POLIS-base model

To produce a non-query-biased summary of the sample document, we applied the following

POLIS expression:

/doc/sent:{at most 5}

The resulting summary is shown in Figure E.1.

Information retrieval (IR) is the science of searching for documents, for information within doc-
uments and for metadata about documents, as well as that of searching relational databases and
the World Wide Web.
First implementations of information retrieval systems were introduced in the 1950s and 1960s.
Automated information retrieval systems are used to reduce what has been called ”information
overload”.
There is overlap in the usage of the terms data retrieval, document retrieval, information retrieval,
and text retrieval, but each also has its own body of literature, theory, praxis and technologies.
IR is interdisciplinary, based on computer science, mathematics, library science, information sci-
ence, information architecture, cognitive psychology, linguistics, statistics and physics.

Figure E.1: Five sentence summary of the Wikipedia article on “Information Retrieval” produced
using the POLIS-base model.

Although there was no query-bias in the creation of this summary, all sentences in the sum-

mary focus on either “information” or “retrieval”.

E.2.2 POLIS-microaveraging model

The first of the query-based summarisation approaches is the POLIS-microaveraging model. To

apply this model to the sample document, we used the following POLIS expression:

/doc/sent{MICRO ”Information Retrieval”}:{at most 5}

The resulting summary is shown in Figure E.2.

The summary indicates that the microaveraging approach favours shorter sentences over

longer ones, compared to the (non query-based) POLIS-base model. Furthermore, the query-
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* Information need
* Adversarial information retrieval
* Relevance (Information Retrieval)
* Information Retrieval Facility
o Fuzzy retrieval

Figure E.2: Five sentence summary of the Wikipedia article on “Information Retrieval” produced
using the POLIS-microaveraging model.

term “information” is given a higher importance compared to “retrieval”, as “retrieval” is not

featured in the top-ranking first sentence.

E.2.3 POLIS-microaveragingIDF model

Similarly to the POLIS-microaveraging model, the following expression results in a summary

using the POLIS-microaveraging-IDF model:

/doc/sent{MICRO-IDF ”Information Retrieval”}:{at most 5}

The resulting summary is shown in Figure E.3.

* Information need
* Adversarial information retrieval
* Relevance (Information Retrieval)
* Information Retrieval Facility
o Fuzzy retrieval

Figure E.3: Five sentence summary of the Wikipedia article on “Information Retrieval” produced
using the POLIS-microaveragingIDF model.

The summary produced by the microaveraging-IDF approach is identical to the summary

generated by the POLIS-microaveraging model. The same discussion thus applies.

E.2.4 POLIS-macroaveraging model

The query we used for the macroaveraging model was:

/doc/sent{MACRO ”Information Retrieval”}:{at most 5}

Applying this query to the sample document resulted in the five sentence summary shown in

Figure E.4.

Similar to the POLIS-base model, the POLIS-macroaveraging model favours longer sen-

tences over shorter ones.
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First implementations of information retrieval systems were introduced in the 1950s and 1960s.
1950: The term ”information retrieval” may have been coined by Calvin Mooers.
1959: Hans Peter Luhn published ”Auto-encoding of documents for information retrieval.”
In information retrieval a query does not uniquely identify a single object in the collection.
The idea of using computers to search for relevant pieces of information was popularized in an
article As We May Think by Vannevar Bush in 1945.

Figure E.4: Five sentence summary of the Wikipedia article on “Information Retrieval” produced
using the POLIS-macroaveraging model.
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Generation, 180
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234

Stemming, 27

in PRA, 136

Query, 136

Stopword Removal, 28

Structured Document Retrieval, 69

Summarisation

Feature-based, 41

Lexical Connectedness, 44

Linguistic, 45

Summarisation Model, 72

Conjunctive, 84

Disjunctive, 81

Query-based, 84

Macroaveraging, 85

Microaveraging, 86

Summarisation Need, 38

Term Assumption, see Term Combination

Term Combination

Conjunctive, 78

Disjunctive, 74

Topic Fusion, 46

TREC Enterprise Track, 175

Visual Layout Analysis, 67

Website Partitioning, 67

Wikipedia, 181
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