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Abstract 

Adenoviral gene therapy holds great potential for cancer treatment, but is limited by a 

lack of efficient vectors. dl922-947, an E1A CR2-deleted adenovirus, replicates 

selectively within and lyses cancer cells.  It is believed that its selectivity depends upon 

abnormalities in the cell cycle regulatory Rb pathway and subsequent G1/S checkpoint, 

observed in 90% of human cancers. The cytotoxic efficacy of dl922-947 is greater than 

that of wild-type adenovirus and dl1520 (Onyx-015). Nevertheless, sensitivity to dl922-

947 varies widely among ovarian cancer cell lines, despite similar infectivity. My work 

aimed to identify host cell factors that influence cytotoxicity and which could be 

potential biomarkers in clinical trials. Surprisingly, comparison of ovarian cancer lines 

indicated that cytotoxicity correlated poorly with infectivity, replication and virion 

production. Immunoblotting suggested correlation between sensitivity to dl922-947 and 

overexpression of p21, p27, Cyclin D, cdk4 and p16. Subsequent experiments 

confirmed a role for p21 in dl922-947 cytotoxic activity. In vitro and in vivo, Hct116 

p21+/+ cells were significantly more sensitive to dl922-947 than matched p21-/- cells. 

p21 knock-down by siRNA in TOV21G and IGROV-1 cells reduced dl922-947 

cytotoxicity, whilst re-expression in ACP-WAF1 cells increased activity.  p21 

expression was also greater in sensitive transformed TOSE cells compared to resistant 

normal IOSE25 cells.  Results suggest that p21 promotes dl922-947 activity by 

stabilising Cyclin D thus promoting cell cycle progression. Comparative microarray 

analysis in TOSE1, 4 and IOSE25 cells and in MRC5 and MRC5-VA cells suggested 

determinants of dl922-947 activity beyond the Rb pathway, which may also prove 

valuable biomarkers. Moreover, pathways and processes emerged, correlating with 

sensitivity, and meriting future investigation. Together, my results suggest that a 

cellular environment conducive for dl922-947 function includes mediators of 

proliferative capacity, amongst which p21 plays a role in enhancing activity of the virus. 
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A scientist in his laboratory is not a mere technician:  

He is also a child confronting natural phenomena that impress him  

as though they were fairy tales.  

Marie Curie 
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IC50 Half maximal inhibitory concentration 
IgG Immunoglobulin 
IL Interleukin 
i.p. Intraperitoneal 
IOSE Immortalized ovarian surface epithelial cells 
i.t. Intra-tumoural 
ITR Inverted terminal repeats 
i.v. Intra-venous 
JAM Junctional adhesion molecule 
JNK c-Jun N-terminal kinase 
kana Kanamycin 
kb Kilobases 
kDa Kilo Dalton 
LPS Lipopolysaccharide 
MAPK Mitogen-activated protein kinase 
µ Micro 
m Milli 
MHC Major histocompatibility complex 
MHRA Medicines and Healthcare products Regulatory Agency 
MMP Matrix-metalloproteinase 
MLP Major late promoter 
MLTU Major late transcription unit 
mm Millimetre 
MOI Multiplicity of infection 
mTOR Mammalian target of rapamycin 
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
mRNA Messenger RNA 
n Nano 
NDV Newcastle Disease Virus 
NK Natural Killer 

NF- B Nuclear factor kappa B 

NO Nitric oxide 
OD Optical density 
ORF Open reading frame 
OTC Ornithine transcarbamylase deficiency 
PAK1 p21-activated kinase 1 
PBS Phosphate buffered saline 
PCR Polymerase chain reaction 
PI3K Phosphatidyl-inositol-3’ kinase 
pfu Plaque-forming units 
p.i. Post infection 
PKR dsRNA-activated Protein kinase R 
PSA Prostate-specific antigen 
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qPCR Quantitative PCR 
Rb Retinoblastoma 
RNA Ribonucleic acid 
RNAi RNAi interference 
RU Relative units 
scr Scrambled 
shRNA Short hairpin RNA 
siRNA Small interfering RNA 
SDS Sodium dodecyl sulphate 
SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis 
sec Seconds 
Ser Serine 
ss Single stranded 
SV40 TAg Simian virus 40 large T antigen 
TBS Tris buffered saline 
TCID50 50% Tissue culture infective dose 
TEMED Tetramethylethlenediamine 
TGF-β Transforming growth factor-  
Thr Threonine 
TNF-α Tumour necrosis factor-  
TLR Toll-like receptor 
TOSE Transformed ovarian surface epithelial cells 
TSTA Two-step transcriptional amplification 
UV Ultraviolet 
VLCFA Very long-chain fatty acids 
WT Wild-type 
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Despite decades of research, the majority of women diagnosed with ovarian cancer will 

die of their disease. There is only limited understanding of ovarian cancer 

pathogenesis and progression (Cunningham et al., 2009). Further hampering 

treatment, 75% of patients present with advanced disease, as there is no reliable 

screening method and symptoms are ambiguous (Saga et al., 2001; Stirling et al., 

2005; Yurkovetsky et al., 2006). Less than 25% live more than 5 years (Bankhead, 

2004; Fields et al., 2006). Current treatment comprises aggressive debulking surgery 

followed by platinum-taxane chemotherapy (Morrison et al., 2007). However, even in 

patients highly responsive to chemotherapy, recurrence of the disease is very common 

(McGuire et al., 1998). Overall, compared to treatment development in other cancers, 

survival rates of ovarian cancer patients have improved little over the past three 

decades (Barnholtz-Sloan et al., 2003). Clearly, development of new, more effective 

treatments is imperative, based upon a better understanding of the biology of the 

disease.  

 

1.1 Ovarian Cancer 

Ovarian cancer comprises more than thirty types and sub-types of tumours, differing in 

histopathological features and behaviour (Auersperg et al., 2001).  

 

Different approaches have been tested as a means of diagnosis, as well as to monitor 

progression of the disease and response to treatment. CA-125, found elevated in the 

blood of patients with clinically apparent ovarian cancer, has frequently been 

investigated as a potential diagnostic marker (Bast et al., 1998). However, it is not 

specific to cancer of the ovaries. Furthermore, CA-125 levels can be increased in 

various non-cancerous illnesses, as well as during early pregnancy and menstruation 

(Bast, 2004; Helzlsouer et al., 1993). In an attempt to develop a diagnostic tool 

sensitive enough to process samples from patients’ bodily fluids, aneuploidy of cells in 

peritoneal fluid was compared by flow cytometry. However, specificity and sensitivity of 

the assay were suboptimal. Authors concluded that this assay, unless improved, is 

inappropriate as a sole diagnostic tool for malignant cells (Kehoe et al., 1995).  

 

Prognosis of ovarian cancers is dependent on several factors: disease stage, 

histological grade and type, as well as molecular markers (Begum et al.; Drenberg et 

al.; Lalwani et al.). A first line of histological classification distinguishes between three 

cellular or tissue origins of ovarian malignancies: 
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A) EPITHELIAL ADENOCARCINOMAS 

Approximately 90% of ovarian cancers are derived from the ovarian cell surface  

epithelium (Herbst, 1994). They are further divided into four subtypes: serous, 

endometrioid, mucinous and clear cell carcinomas. 

 

a) Serous carcinomas represent the most widespread form of ovarian malignancies. 

Approximately 50% of serous tumours are of malignant nature, whilst 17% are 

borderline malignant. Serous carcinomas contain cystic and/or fibrous areas and are 

filled with clear serous fluid (Auersperg et al., 2001; Scully, 1995). 

 

b) Endometrioid carcinomas make up one fifth of epithelial adenocarcinomas. 

Generally, 80% are malignant and the remaining 20% tend to show borderline 

malignancy. Endometrioid carcinomas are associated with endometrial carcinoma in 

20% of patients (Auersperg et al., 2001; Jiang et al., 1998). They can contain cystic 

and solid areas and often resemble benign or malignant endometrial tissue (Schueller 

et al., 1966).   

 

c) Mucinous carcinomas are relatively rare, constituting approximately 1% of epithelial 

adenocarcinomas. Mucinous tumours are predominantly benign. They comprise 

numerous cysts, varying in size. They can also form very large cysts filled with viscous 

fluid (Auersperg et al., 2001; Collins et al., 1991). 

 

d) Clear cell carcinomas represent only 6% of epithelial carcinomas. However, nearly 

all of them have been found to be malignant (Auersperg et al., 2001). Tumours contain 

large cytoplasm-rich epithelial cells and may be highly cystic or solid (Ito et al., 1997). 

 

Recently, evidence emerged that many aggressive epithelial ovarian carcinomas may 

in fact be derived from the fimbriae of the Fallopian tubes. Studies on ovaries and 

fallopian tubes removed prophylactically from BRCA-positive women suggested that 

malignant fimbriae-derived cells metastasise onto the ovaries and the peritoneum. 

Consequently, these tumours, when detected on the ovaries, are already aggressive 

late stage tumours (Morgan, 2008). These findings suggest that serous borderline 

tumours may not be the precursors of serous carcinomas.  

 

A further level of histopathological classification of epithelial adenocarcinomas is based 

on their degree of histological differentiation. Well-differentiated tumours with distinct 

glandular features are considered Grade 1. Grade 2 tumours contain glandular areas 
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but also solid sheets of tumour. Tumours classified as Grade 3 are primarily composed 

of solid sheets. There appears to be some correlation between grade and clinical 

aggressiveness of tumours.  

 

B) GERM CELL TUMOURS 

These tumours, derived from primordial germ cells within ovaries, occur predominantly 

in younger women. On average, patients are diagnosed in the early 20s. Despite the 

tendency to be highly aggressive, they are also very responsive to therapy. Germ cell 

tumours are generally associated with marker proteins in the blood, such as β-human 

chorionic gonadotropin (β-HCG) or α-fetoprotein (AFP) (Chobanian et al., 2008).  

 

C) STROMAL TUMOURS 

Stromal tumours originate from the sex cord or mesenchyme within the embryonic 

gonad. They often secrete hormones and contain gonad-related cells and fibroblasts 

(Appetecchia et al., 2004; Chobanian et al., 2008).  

For staging of ovarian cancers, the FIGO (International Federation of Gynaecology and 

Obstetrics) surgical staging system is widely accepted. Surgical staging of ovarian 

cancers is based on removal of both ovaries, Fallopian tubes and the uterus, as well as 

the omentum. In addition, many surgeons also remove pelvic and para-aortic lymph 

nodes and take random biopsies from throughout the peritoneum. Histopathological 

assessment of these samples allows classification into stages as listed in Table 1.1. 

 

The identification of prognostic and predictive markers receives much attention in 

translational research. Prognostic biomarkers provide information about a patient’s 

overall outcome, irrespective of the form of therapy. They are usually based on 

retrospective analysis of patient data, identifying markers expressed across a patient 

subpopulation that responded well or poorly to treatment. Prognostic biomarkers, such 

as age, tumour grade or stage, allow an estimate of a patient’s overall survival 

(Oldenhuis et al., 2008).  
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Stage Characteristics 

I Cancer is restricted to the ovaries. 

IA - cancer is restricted to one ovary  

- outer ovarian capsule is intact not ruptured 

- no tumour on the external surface of the ovary  

- no ascites and/or pelvic washings are negative 

IB - cancer is present in both ovaries 

- outer capsule is not ruptured  

- no tumour on external surface 

- no ascites and pelvic washings are negative 

IC - cancer is either Stage IA or IB level  

- but capsule is ruptured  

- or tumour on the ovarian surface  

- or malignant cells are present in ascites or pelvic washings. 

II Cancer involves one or both ovaries with spread to other pelvic organs 

or surfaces. 

IIA - extension or implants onto uterus and/or fallopian tube  

- no ascites and pelvic washings are negative 

IIB - extension or implants onto other pelvic tissues 

- no ascites and pelvic washings are negative 

IIC - pelvic extension or implants like Stage IIA or IIB  

- but positive pelvic washings 

III Cancer spread beyond the pelvis to the abdominal area, including 

metastases to liver surface. 

IIIA - tumour predominantly confined to the pelvis  

- but microscopic peritoneal metastases beyond pelvis to abdominal   

  peritoneal surfaces or the omentum 

IIIB - same as IIIA  

- but macroscopic peritoneal or omental metastases beyond pelvis <2cm in  

  Size 

IIIC - same as IIIA  

- but peritoneal or omental metastases beyond pelvis >2cm  

- or lymph node metastases to inguinal, pelvic, or para-aortic areas 

IV Metastases or spread to the liver or outside the peritoneal cavity to 

distant areas such as the chest or brain. 

 

Table 1.1 FIGO (International Federation of Gynaecology and Obstetrics) surgical 

staging system. Listed are stages and sub-stages and underlying characteristics, as 

determined by histopathological analyses (adapted from 

http://imaging.ubmmedica.com/cancernetwork). 
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Increasingly, epigenetic alterations, particularly methylation, are studied as prognostic 

biomarkers in cancers (Kim et al.). Comparing methylation status of 71 genes in 

ovarian cancer and normal cells identified methylation of Homeobox A11 (HOXA11) 

gene to correlate with ovarian cancer (Fiegl et al., 2008).  

 

Similarly, post-translational modification patterns may be useful prognostic markers. 

Phosphorylation of p21-activated kinase 1 (PAK1) on threonine 212 (Thr212) has been 

reported to predict for poor overall and disease-free survival of ovarian cancer patients. 

Also, an increase in nuclear PAK1 Thr212 was detected in poorly differentiated ovarian 

cancer (Siu et al., 2009).  

 

Another approach to detect early stage ovarian cancer is based on group biomarkers. 

Each group biomarker comprises a set of single biomarkers, the expression pattern of 

which has found to be the same across ovarian cancers of a specific stage and 

consistently changes to a different pattern in cancers of a different stage. Three such 

group biomarkers have been identified: one comprising genes LCN2, WNT7A and 

ITGB4, the second WFDC2, MUC1 and MSLN, the third KLK8, KLK7, MLSN. All three 

showed promising pre-clinical results detecting early-stage ovarian cancer using blood 

samples (Tchagang et al., 2008). Although a plethora of candidates have been 

described, they have not yet proven sufficiently reliable to establish a staging system, 

similar to that of FIGO.   

 

As in breast cancer, mutations of BRCA1 and BRCA2 have been found to predict 

increased risk of developing ovarian cancer (Miki et al., 1994; Milne et al., 2008), 

although patients with germline BRCA1/2 mutations account for only approximately 5% 

of all ovarian cancers in the UK. However, Ashkenazi Jewish patients with germline 

mutations in either BRCA1 or 2 have a better prognosis stage for stage than patients 

with sporadic ovarian cancer (Chetrit et al., 2008).  

 

Another prognostic marker correlating with ovarian cancer grade is p53. Mutations of 

p53 are very frequent in high-grade serous carcinomas, present in nearly 100% of 

tumours (Ahmed et al., 2010). In low-grade serous carcinomas, p53 mutations are 

detected less frequently and they are very rare in serous borderline tumours (Marks et 

al., 1991; Salani et al., 2008; Teneriello et al., 1993). In contrast, comparative analysis 

of activating KRAS and BRAF mutations in serous borderline tumours and serous 

carcinomas showed such mutations in only 12% of the latter, but in 60% of borderline 

tumours (Singer et al., 2003).  
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Unlike prognostic biomarkers, predictive markers aim to foretell response to a given 

therapeutic agent in a patient expressing that marker (Oldenhuis et al., 2008). 

Identification of predictive markers generally begins in a small model system, where its 

role is validated before expanding the testing of its potential to other systems. A 

bottom-up approach, from the molecular to the systemic level, is applied to elucidate 

and take advantage of the underlying mechanisms (Liu, 2005).  

 

To date, loss of BRCA1 function is the only true predictive marker for chemotherapy in 

ovarian cancer (Quinn et al., 2009). However, as novel therapeutic agents emerge, 

cancer therapy may well be standing on the brink of a new era of patient/treatment 

stratification. Development of new therapeutics, such as oncolytic viruses, is strongly 

based on molecular mechanisms. Many of the cellular targets may be suitable as 

predictive biomarkers (Tchagang et al., 2008). 

 

Members of the E2F family of transcription factors involved in cell cycle regulation have 

recently been described as predictive biomarker candidates. Whilst they may also be 

indicators of prognosis, Reimer et al. found correlations between low expression of 

E2F-7 and platinum resistance. The authors suggest that down-regulation of E2F-7 

may promote such resistance, rendering the transcription factor a valuable predictive 

factor (Reimer et al., 2007).  

 

Establishing predictive biomarkers is a challenging task. Unlike for prognostic markers, 

which can be correlated with response and survival without being directly involved in 

tumourigenic mechanisms, identification and application of predictive markers requires 

understanding of their molecular role.   

 

1.2 Stratified Medicine 

Currently, most therapeutics are being prescribed empirically, based on maximum 

benefit for the largest population of patients found in clinical trials. In contrast, the 

strategy behind “stratified” or “personalised medicine” is the matching of therapies with 

specific patient population characteristics (Trusheim et al., 2007). This approach aims 

at increasing both effectiveness and safety of treatment. Based on biomarkers, a given 

patient can be matched with a similar patient cohort, shown to respond particularly well 

to a certain drug regime (Acharya et al., 2008). In cancer treatment, prioritising of anti-

cancer drugs based on biomarkers is common. The first example of a more 

personalised therapy followed the recognition of the potential of tamoxifen as an anti-
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oestrogen (Jordan, 1976). Tamoxifen is able to bind to oestrogen receptors (ERs) in 

oestrogen-dependent tumours. It competes with and blocks endogenous oestrogen but 

has no activating effects on ERs in the breast, itself (TANAKA et al., 1978). The ER 

status of breast cancer tumours is routinely tested to devise the optimal treatment 

(Jorgensen, 2008). Imatinib (Gleevec), an inhibitor of bcr-abl kinase activity is very 

effective in chronic myeloid leukaemia (CML) (Capdeville et al., 2002). However, 

patients carrying a point mutation in the bcr-abl kinase are resistant to imatinib (Nardi 

et al., 2004). For these patients, two alternative bcr-abl inhibitors have been developed, 

nilotinib (AMN107) and dasatinib (BMS-354825) (Shah et al., 2004; Weisberg et al., 

2006). Over-expressed epidermal growth factor receptor 2 (HER2) is an important 

stratification factor for treatment with monoclonal antibody trastuzumab (Lesko, 2007). 

By binding to the mediator of proliferation, trastuzumab blocks its function, resulting to 

G1 cell cycle arrest (Sumikawa et al., 2008). In HER2 over-expressing breast cancer 

patients, trastuzumab treatment in combination with chemotherapy has proven very 

effective (Burstein, 2005). In contrast, panitumumab and cetuximab, drugs targeting 

the EGFR receptor, were discovered to be of low efficacy in patients with KRAS 

mutations (Amado et al., 2008; Cunningham et al., 2004; Van Cutsem et al., 2007). 

The marker for poor response was found after retrospective re-analysis of clinical trial 

data. Several years later, the FDA has issued the recommendation for genetic testing 

prior to onset of therapy with panitumumab or cetuximab (Hughes, 2009). 

 

Identifying biomarkers earlier, possibly before entering clinical phase trials, could 

speed up and potentiate cohort-specific treatment and expand the clinical application of 

stratified medicine (Hughes, 2009; Trusheim et al., 2007).   

 

1.3 Gene Therapy 

Gene therapy, sometimes specified as somatic gene therapy, is a promising 

therapeutic approach for a wide range of diseases. Originally devised to treat 

hereditary single gene disorders, the underlying idea was to insert genes into patient’s 

cells, to replace a mutant allele with a functional version. 

 

In recent years, there have been a multitude of encouraging pre-clinical and early-

phase clinical trials. Although many clinical trial phase II results have not met 

expectations, several examples demonstrating major therapeutic benefits have 

emerged.  
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Several gene therapy trials have been completed that involved children suffering from 

severe combined immunodeficiency-X1 disease (SCID-X1). The disease is caused by 

a mutant Interleukin-2 receptor gamma chain (IL2RG) gene, blocking differentiation of 

T and Natural Killer cells (Noguchi et al., 1993). Therapy is generally based on ex vivo 

transduction of lymphocytes with a retrovirus-derived vector containing the correct 

version of the mutant gene, before cells were introduced into patients. Major 

therapeutic success was seen in two clinical trials involving very similar retroviral 

vectors (Cavazzana-Calvo et al., 2000; Gaspar et al., 2004; Hacein-Bey-Abina et al., 

2003b). However, 4 out of 9 patients in one, and 1 out of 10 patients in the other trial 

later developed clonal T cell acute lymphoblastic leukaemia (T-ALL) (Hacein-Bey-

Abina et al., 2003a; Howe et al., 2008). Close investigation confirmed anti-sense vector 

integration upstream of the proto-oncogene LIM domain only 2 (LMO2), resulting in its 

over-expression. However, leukaemia may have been caused by the combination of 

insertional mutagenesis and other genetic abnormalities unrelated to vector integration 

(Howe et al., 2008).  

 

A second example of successful gene therapy is the treatment of two children with the 

fatal neurodegenerative disease X-linked adrenoleukodystrophy (ALD). In these 

patients, mutation of ATP-binding cassette, subfamily D, member 1 (ABCD1) gene 

results in the loss of function of a transporter protein responsible for the transfer of fatty 

acids into peroxisomes (Mosser et al., 1993). Instead, saturated very long-chain fatty 

acids (VLCFA) accumulate in the tissues, leading to progressive neuronal 

demyelination and adrenal failure (Moser HW et al., 1989; Moser et al., 1981). 

Ex vivo transduction of haematopoietic cells by a lentiviral vector containing the wild 

type ABCD1 gene and re-introduction into the patient successfully halted progression 

of the disease (Cartier et al., 2009).  

 

Similarly, in patients with progressive vision-deteriorating type 2 Leber congenital 

amaurosis, treatment with an adeno-associated virus-based vector containing wild type 

RPE65 cDNA led to sustained improvement in vision in all patients with nearly 

complete restoration of vision in one 8-year old patient (Maguire et al., 2009). The 

disease is caused by lack of functional  RPE65, a protein required for 

isomerohydrolase activity of retinal pigment epithelium (den Hollander et al., 2008). 

The vector was injected directly into the sub-retinal region of the eye (Maguire et al., 

2009).   
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1.3.1 Oncolytic gene therapy 

The work presented here lies in the field of gene therapy for cancer. A slight adaptation 

of the gene replacement strategy discussed above, this type of gene therapy is aimed 

at inducing cell death and encompasses several potential strategies: molecular 

chemotherapy, replacement of tumour suppressor genes, immunotherapy, inhibition of 

oncogenes and selectively replicating viruses (Raki et al., 2006). In the latter case, the 

oncolytic virus can be equipped with a suicide gene, resulting in increased cell death 

after exposure to and metabolism of a prodrug (Tang et al., 2007). 

 

The use of viruses as oncolytic agents has intrigued scientists for over a century. 

Exactly one hundred years ago, at the International Cancer Congress in Paris, the 

Italian clinician De Pace reported the regression of a large cervical carcinoma after the 

patient had been –accidently- infected with rabies (Sinkovics et al., 2008). Several 

clinical trials with oncolytic viruses were conducted in the mid-20th century: In 1952, 34 

patients with advanced neoplastic disease were treated with Egypt 101 virus (Southam 

et al., 1952). In 1956, 30 cervical carcinoma patients received injections of adenovirus 

adenoidal pharyngeal-conjuctival virus (APC) (Georgiades et al., 1959); and in 1974, 

90 patients with various terminal cancers were intentionally infected with mumps virus 

(Asada, 1974). Many other viruses were screened for efficacy. There was some 

response to these treatments, such as localised necrosis, tumour regression and even 

sporadic cases of complete remission. Yet, success after intentional viral infection was 

too rare and unpredictable to outweigh the often severe side effects (Kelly et al., 2007). 

Thus, viruses could not fulfil the promise of reliable, safe anti-cancer drugs. Lack of 

knowledge of virus molecular structures and mechanisms made it impossible to 

develop this therapeutic approach further (McCormick, 2001). It wasn’t until molecular 

biology reached the stage of recombinant DNA technology that viruses could be 

specifically altered and used as a tool for cancer treatment (Kelly et al., 2007).  

 

Today, several viruses are known to possess natural oncolytic functions (Roberts et al., 

2006). Nevertheless, a large portion of oncolytic virus research is devoted to the 

engineering of viral mutants, specifically tailored to mechanisms and features of 

cancers (Vaha-Koskela et al., 2007). Currently, the most prominent limitation of gene 

therapy is the need for a non-toxic, yet efficient gene delivery system (Matthews et al., 

2009). Furthermore, the route followed in a specific therapeutic approach depends 

highly on the type of disease targeted. Treatment of inherited monogenic disorders, 

such as cystic fibrosis or Duchenne muscular dystrophy, may require a different 



 

 
28 

approach than cardiovascular disease or cancer (Young et al., 2006). However, for the 

sake of brevity, I will limit my discussion to selectively replicating viruses.  

 

1.3.2 Oncolytic viruses in cancer therapy 

Selective replication is achieved by using a virus (a) that is deleted for a gene essential 

for replication in normal cells but expendable in cancer cells, or (b) whose replication 

depends on pathways naturally overactive in human cancers. Such a virus, after 

infection, will replicate selectively in a cancer cell and kill it. Ideally, the viral progeny 

are released and infect neighbouring cells, resulting in self-perpetuating anti-tumour 

effects. This may be accompanied by viral induction of cytokine and tumour antigen 

release, leading to activation of a host immune response against the tumour (Biederer 

et al., 2002).  

 

Several examples exist of viruses that are naturally oncolytic, amongst them measles 

virus, picornavirus, Adeno-associated virus 2, Newcastle disease virus and reovirus.  

Three examples, Adeno-associated virus 2, Newcastle disease virus and reovirus are 

described in more detail below. 

 

1.3.2.1 Adeno-associated virus 2 

Adeno-associated virus 2 (AAV2) is a small, non-pathogenic single-stranded DNA 

(ssDNA) virus, which does not illicit strong immune responses in the host (Coura Rdos 

et al., 2007). For gene expression the virus is dependent on the machinery of a helper 

virus, such as adenovirus or Human Papilloma Virus. But even in the absence of such 

a helper, AAV2 is able to infect cells, where it integrates into host DNA at a specific site 

on 19q and remains latent until secondary infection with a helper virus (Jurvansuu et 

al., 2005; Kotin et al., 1992; Kotin et al., 1990). The potential of AAV2 for cancer 

therapy is based on its inherent ability to disrupt cell cycle progression of the infected 

cell and subsequently, in p53-deficient cells, to mediate cell death. This intrinsic 

oncolytic character is particularly favourable, as more than fifty percent of tumours lack 

p53-function (Bullock et al., 2001). In high grade serous ovarian carcinomas, the 

incidence of p53 mutations is as high as 97% (Ahmed et al., 2010). The mechanism of 

action is based on AAV2 inducing host DNA damage response, which arrests the cell 

in G2, the cell cycle phase following DNA replication. Cells deficient in p53 fail to 

sustain the arrested state and undergo prolonged, incomplete mitosis, resulting in over-

duplication of centromeres and finally succumb to mitotic catastrophe. Promising for 

therapeutic application was the observation that pre-treating cells with UV increased 

ability of AAV2 to induce G2 arrest (Jurvansuu et al., 2005). A multitude of phase I and 
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II clinical trials have been performed with AAV2-based vectors to treat various 

indications. Generally, however, the purpose was gene replacement in chronic disease 

(Carter, 2005; Kaplitt et al., 2007). To my knowledge, there is no clinical trials with AAV 

vectors for cancer therapy completed or recruiting.  

 

1.3.2.2 Newcastle disease virus 

Newcastle disease virus (NDV) is a ssRNA avian virus, potentially harmful to birds, but 

causing mild influenza-like symptoms and conjunctivitis in humans, at most. Its 

negative-sense single stranded RNA genome comprises 6 genes and additional 

products are synthesised after RNA splicing. NDV has been shown successfully to 

infect most human cells (Krishnamurthy et al., 2006; Sinkovics et al., 2000). Similar to 

AAV2, NDV possesses intrinsic oncolytic and immunostimmulatory attributes. These 

properties are based on three fundamental mechanisms:  

(1) oncolytic activity 

(2) supply of danger signals, such as viral mRNA, to trigger innate immune 

responses via Toll-like receptor activation 

(3) further activation of innate and acquired immune response, namely of natural 

killer (NK) cells, monocytes, macrophages and T-cells through induction of 

cytokine release (Janke et al., 2007). 

NDV strains can be classified as lytic or non-lytic. Whilst both types are able to kill 

cancer cells, lytic strains replicate faster and induce cell death more efficiently. 

Following replication, they lyse the plasma membrane of the infected cell without 

induction of apoptotic pathways (Polos et al., 1981). In contrast, non-lytic NDV is 

thought to kill its host cell by inducing apoptosis. Both lytic and non-lytic NDV have 

been used to generate anti-cancer vaccines and as oncolytic agents (Schirrmacher, 

1999). The first application of wild type NDV to treat cancer dates back to 1965, when 

a cervical carcinoma patient received intra-tumoural injections of live virus (Cassel et 

al., 1965). However, in the following decades only anecdotal responses emerged (Kelly 

et al., 2007). More recently, studies with recombinant viruses have been performed. In 

a trial involving live attenuated MTH-68/H, promising effects were reported. Four 

patients with advanced high grade glioblastoma were treated with MTH-68/H. In all 

patients, the treatment highly improved quality of life and extended survival rates of 5-9 

years were achieved (Csatary et al., 2004). Similarly, a Phase I clinical trial of PV701 in 

patients with advanced solid tumours indicated some response after intra-venous 

injections. Resulting progression-free survival varied between 4-31 months (Pecora et 

al., 2002). In 11 glioblastoma patients, variant NDV-HUJ showed some effect, with 

transient complete remission in one patient. However, all patients eventually developed 
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progression (Freeman et al., 2006). Interestingly, investigating molecular mechanisms 

of NDV-HUJ in vitro revealed that the virus is able to overcome apoptotic resistance of 

Livin-over-expressing advanced melanoma primary cultures. Livin is a member of the 

inhibitor of apoptosis (IAP) family. Livin-negative melanoma primary cultures were 

resistant to NDV-HUJ (Lazar et al.). A recombinant form of NDV, encoding 

granulocyte/macrophage colony-stimulating factor (GM-CSF), produced some 

evidence of clinical activity. Tumour cells infected with such modified NDV were 

superior in their ability to induce anti-neoplastic by-stander effects in vivo, as compared 

to wild type NDV. This was accompanied by significantly augmented levels of IFN-γ 

and initiation of immunological response cascades (Janke et al., 2007).  

 

1.3.2.3 Reovirus 

Reovirus is a double-stranded RNA virus, hence it replicates exclusively in the 

cytoplasm. So far, reoviral infection in humans has not been linked to disease (Pandha 

et al., 2009). Replication is believed to be restricted to cells with Ras signalling 

pathway deregulations (Strong et al., 1998). This abnormality is common in human 

cancers (Bos, 1989). Completed and ongoing clinical trials so far demonstrated safety 

of reovirus-based cancer treatment (Comins et al., 2008). Its therapeutic efficacy, 

possibly in combination with chemotherapy, remains to be proven. In vitro and in vivo 

studies indicated synergistic effects of reovirus and several different chemotherapeutic 

agents (Pandha et al., 2009). Phase I clinical trials of reovirus/chemotherapy 

combinations are ongoing (Comins et al., 2008).   

 

1.3.3 Deletion mutants for cancer therapy 

Early viral constructs specifically engineered for cancer gene therapy were based on 

replication-deficient viruses, used to deliver tumour suppressor genes or pro-drug 

activating genes or to induce anti-tumoural immune responses (Gahery-Segard et al., 

1997; Raki et al., 2006; Tang et al., 2007). 

 

Preclinical data on replacement of mutant p53 by the wild-type protein, for example, 

were encouraging. Constructs of non-replicating adenoviruses encoding human wild-

type p53 under CMV-promoter control achieved expression of the tumour suppressor 

and anti-proliferative effects in ovarian cancer cell lines (Mujoo et al., 1996; Santoso et 

al., 1995). Equally, in vivo experiments in xenograft mouse models showed promising 

results after intra-tumoural and intraperitoneal injections of virus (Mujoo et al., 1996). A 

phase I clinical trial was conducted with a replication-deficient adenovirus containing 

human p53 cDNA in patients with ovarian cancer. The virus was delivered via an 
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intraperitoneal catheter. No severe toxicity was observed and one patient showed 

stable disease (Wolf et al., 2004). The phase I/II clinical trial of another p53-encoding 

non-replicating adenovirus, both alone and in combination with platinum-based 

chemotherapy, showed promising results. In fallopian tube, peritoneal or ovarian 

cancer patients with mutant p53-expressing tumours, dose limiting toxicity was not 

reached. The virus was generally well-tolerated, but significant responses were only 

seen in combination with chemotherapy (Buller et al., 2002a). Long-term follow-up 

showed that median survival in patients treated with the adenoviral vector was better 

than in patients treated with chemotherapy, alone (Buller et al., 2002b). However, the 

randomised phase III trial of Ad-p53 given in conjunction with platinum-based 

chemotherapy following initial debulking surgery was abandoned early, due to 

increased toxicity in the Ad-p53 arm and has never been formally reported (Zeimet et 

al., 2003). Other such therapeutic vectors revealed a loss of effect relatively soon after 

transfection, due to host immune reactions, which made re-administration of the same 

virus impossible (Blau et al., 1995; Jooss et al., 1998). 

 

A more potent class of gene-attenuated virus was engineered based on replication-

competent herpes virus and adenovirus. These oncolytic viruses are designed to 

replicate selectively in cancerous cells by specifically deleting a gene required for 

replication in normal, but not in cancer cells (Bischoff et al., 1996; Fueyo et al., 2000; 

Kirn, 2000; Kucharczuk et al., 1997). The unique advantage of this treatment is its self-

perpetuating nature: the virus multiplies in a cancer cell before lysing it and spreading 

to adjacent cancer cells (Heise et al., 2000). Deletion mutants engineered for cancer 

treatment are derived from different virus families.  

 

1.3.3.1 Herpes simplex virus 

G207 is a multi-mutant based on Herpes simplex virus (HSV) with deleted gamma134.5 

(ICP34.5) genes and inactivated ribonucleotide reductase ICP6. In wild type HSV, 

ICP34.5 is a major virulence gene; its deletion significantly reduces neurovirulence 

(Campbell et al., 2007). Tumour selectivity of G207 is also based on the lack ICP6 

activity, which in normal cells leads to virus replication inability. The ICP6 gene 

encodes the large subunit of  HSV ribonucleotide reductase, a key enzyme for 

synthesis of viral DNA in non-dividing cells. In many dividing cells, however, this 

particular enzymatic activity has been found dispensable (Goldstein et al., 1988). 

Cancer cells, for example, can complement this mutation (Fukuhara et al., 2005). 

Preclinical studies conducted with viral mutant G207 were very successful and phase I 

clinical trials brought satisfactory results (Markert et al., 2009; Markert et al., 2000) . 
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Yet, its therapeutic efficiency was not ideal: in a mouse model G207 was less potent 

than its wild type parental virus and another HSV derivative (Markert et al., 2000).  

Another promising phase I clinical trial was conducted to assess safety and biological 

activity of a GM-CSF-encoding HSV, OncoVEXGM-CSF. Expression of GM-CSF has 

been shown to induce differentiation and proliferation of myeloid progenitors, rendering 

them more susceptible to therapy and also enhances activity of dendritic cells (Bennett 

et al., 2001; Welte et al., 2006). In addition to the ICP34.5 deletion of G207, viral 

protein US11 is expressed early, rather than late during infection, further augmenting 

replication advantage and tumour selectivity (Mulvey et al., 1999). Finally, OncoVEXGM-

CSF is derived from a clinical isolate rather than an established strain and carries an 

ICP47 deletion. The viral protein normally prevents antigen presentation on the 

infected cell. Its absence is thought to increase anti-tumoural immune response (Mohr 

et al., 1996). Thirty patients with malignant melanoma, breast, head and neck or 

gastrointestinal cancer received single- or multidose intra-tumoural injections into 

cutaneous or subcutaneous lesions. In general, the virus was well-tolerated, with main 

side effects being fever and skin rashes. Local inflammatory response was dose 

limiting. GM-CSF expression, viral replication and HSV antigen-induced tumour 

necrosis were detected. Overall, OncoVEXGM-CSF had some anti-tumoural effect. Whilst 

almost all injected tumours developed some inflammatory response, tumour necrosis 

or apoptosis occurred in 14 patients. Three patients showed disease stabilisation and 6 

patients had tumour regression of both injected and non-injected sites. Inflammation of 

injected and non-injected lesions was observed in a further 4 patients (Hu et al., 2006). 

 

1.3.3.2 Vaccinia virus 

Almost ten years ago, preliminary clinical trials were conducted with a Vaccinia virus 

mutant, JX-594. Replication selectivity of JX-594 is based on activation of epidermal 

growth factor receptor (EGFR)-Ras pathway in cancer cells. In addition, the virus 

encodes granulocyte-macrophage colony-stimulating factor (GM-CSF). Expression of 

the transgene induces vascular shut-down in tumours and elicits anti-tumoural immune 

responses (Park et al., 2008). In cutaneous melanoma patients, JX-594 produced local 

responses after intra-tumoural injection (Mastrangelo et al., 1999). More recently, 

another phase I clinical trial with the same virus was conducted in patients with primary 

or metastatic liver cancer. Side effects induced by intra-tumoural injection of the virus 

were flu-like symptoms, thrombocytopenia and dose-limiting hyperbilirubinaemia. 

Overall, safety of JX-594 was acceptable. Anti-tumoural effects were observed in both 

injected and non-injected tumours. In most patients either partial response or stable 

disease were observed (Park et al., 2008). 
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1.4 Adenoviridae 

A multitude of cancer gene therapy approaches rely on recombinant adenoviral 

vectors. Their ability to infect dividing and non-dividing cells and exceptional efficiency 

in vivo gene transfer make them more suitable than many other oncolytic viruses 

(Tsutsumi et al., 1999). Also, they are easily manipulated and possess high cloning 

capacity amongst viral vectors (Kozarsky et al., 1993). Also, they can be produced in 

high titres (Rein et al., 2006). In order to provide understanding of how this virus works 

and why it may be a suitable base for development of oncolytic vectors, the following 

section describes basic adenovirus biology, as well as adenoviral structure, genome 

organisation and life cycle. 

 

Adenoviridae are a family of infectious agents typically causing mild infections of the 

upper respiratory tract (Tsutsumi et al., 1999). They have been in the focus of medical 

and microbiological research for many decades, making them one of the best-studied 

families of viruses (Greber et al., 2007). In fact, it was in adenovirus that alternative 

RNA splicing and introns were first discovered (Berget et al., 1977). The family of 

adenoviridae is subdivided into 54 serotypes  and 7 groups (A-G), based on serological 

cross-reactions in haemagglutination assays (see Table 1.2) (Ebner et al., 2005; Martin 

et al., 2007).  

 

 

 

 

 

 

 

 

 

 
 
 
Table 1.2 Classification of human adenoviridae. To date, the adenovirus family 

comprises 7 groups and 54 serotypes. Adapted from (Martin et al., 2007). 

 

Currently, most gene therapy vectors derived from adenovirus are based on serotypes 

2 and 5 (Braithwaite et al., 2001; Lopez-Campos et al., 2007). Correspondingly, the 

characterisation below is based on these two serotypes. 

Groups Serotype 

A 12, 18, 31 

B 3, 7, 11, 14, 16, 21, 34, 35, 50 

C 1, 2, 5, 6 

D 8, 9, 10, 13, 15, 17, 19, 20, 22-30, 32, 33, 36-39, 42-49, 

51, 53, 54 

E 4 

F 40, 41 

G 52 
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1.4.1 Structure and Genome  

Adenovirus consists of a non-enveloped icosahedral capsid formed by hexon and 

penton proteins, to which fibre proteins are attached (see Figure (Fig.) 1.1). The capsid 

encloses a double stranded linear DNA genome, 36 kilobases (kb) in length with 

inverted terminal repeats (ITRs) and a terminal protein at each 5’ end and surrounded 

by core proteins (Braithwaite et al., 2001; Robinson et al., 1979). The ITRs form 

hairpins which act as primers for a primase-independent synthesis of the second DNA 

strand (Bohenzky et al., 1988). This phenomenon, called self-priming, facilitates 

efficient amplification of the viral genome (Davison et al., 2003). Although viral 

replication and transcription of viral genes are highly dependent on the host 

transcription machinery, expression is orchestrated by viral proteins and processes 

(Miller et al., 2007). A wild type adenovirus 5 genome map is shown in Fig. 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Adenovirus particle structure. The non-enveloped icosahedral capsid 

consists of hexon and penton proteins. Fibres mediate adhesion to cellular surface 

receptors. Terminal proteins are associated with 5’ ends of the linear DNA. Core 

proteins are associated with and form a layer around the DNA . Adapted from 

(Glasgow et al., 2006). 
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The eight transcription units on the adenoviral genome are transcribed by cellular RNA 

polymerase II. Gene transcription of the virus follows a strictly regulated temporal 

pattern, allowing distinction of early, intermediate and late genes (Braithwaite et al., 

2001). Alternative RNA splicing leads to synthesis of multiple transcripts from each 

transcription unit and, consequently, of multiple protein products (Muhlemann et al., 

2000). Early genes regulate expression of viral genes and replication. Intermediate and 

late genes encode structural components of the virus particle (Braithwaite et al., 2001). 

 

1.4.2 Early genes 

Expression of the early genes on the adenoviral genome is critical for its propagation 

(Miller et al., 2007).  

 

 

 

 

 

Figure 1.2 Map of wild type adenovirus 5 genome. Early genes are marked as E1-

E4; late, structural genes are marked as IVa2 and L1-L5. ITR=Inverted terminal 

repeats; MLP= major late promoter;   = packaging signal.  

 

Early region 1A: 

Once the virus has successfully infected its target cell, E1A is the first gene to be 

transcribed (Fields et al., 1996). Transcription is activated by the binding of a cellular 

nuclear factor EF-1A  and transcription factor E2F to multiple binding sites within and 

upstream of the E1A enhancer region (Bruder et al., 1991; Bruder et al., 1989). In 

addition, E1A proteins autoregulate their own transcription (Hearing et al., 1985).  

 

From the primary E1A transcript, five mRNAs products are produced by alternative 

splicing (Perricaudet et al., 1979; Stephens et al., 1987; Ulfendahl et al., 1987). Major 

E1A proteins are 243R and 289R, translated from two mRNA transcripts of 12S and 

13S, respectively. Both transcripts are derived from two exons, with the second exon 

being shared by both (Felsani et al., 2006). Within the first 139 amino acids (aa) of 

most E1A proteins lie two highly conserved regions, CR1 (aa 44-72) and CR2 (aa 115-

137) (Avvakumov et al., 2004). By interacting with numerous host cell factors, E1A 

proteins exert a plethora of effects, ranging from induction of quiescent cells to enter 

and progress through the cell cycle, inhibition of differentiation, immortalisation and, 

when paired with another oncogene, transformation (Dyson et al., 1992; Mymryk, 1998; 
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Peeper et al., 1993; Shenk et al., 1991). But E1A has also been described as anti-

oncogenic, inhibiting tumourigenesis, metastasis and inducing apoptosis (Chinnadurai, 

1992; Liu et al., 1996; Mymryk, 1996). The interaction crucial for the work discussed 

here is that between E1A and pRb, a cell cycle regulator discussed in more detail, 

below . Binding and inactivation of pRb proteins by E1A is based on the two highly 

conserved regions (Felsani et al., 2006).  

 

Formation of E1A-pRb complexes, as found in co-immunoprecipitation experiments 

(Whyte et al., 1988), involves a so-called B-domain, or B-box, of the pRb pocket 

region. E1A binds the B-domain through a specific LxCxE motif in its CR2 region (aa 

122-126) (Felsani et al., 2006). In fact, all proteins known to target the pRb B-box, such 

as Cyclin Ds, HDAC-1 or BRG-1, contain the LxCxE motif (Morris et al., 2001; Singh et 

al., 2005).  By displacing regulatory cellular proteins bound to the B-domain, such as 

E2F family members, E1A alters the function of the pocket protein (Felsani et al., 

2006).  

 

However, E1A also binds to pRb via its CR1 region, albeit with a 10-fold lower affinity 

than CR2 (Dyson et al., 1992). CR1 binding of pRb occurs within the same pocket 

region and with a comparable affinity as E2F-binding (Fattaey et al., 1993). Based on 

these observations, a two-step model was developed for E1A-provoked disruption of 

E2F-pRb complexes: 

1. Based on the high affinity of CR2, E1A associates with E2F-pRb to form a 

ternary complex. As a consequence, concentration of CR1 around the pRb-E2F 

interaction site is elevated.  

2. CR1 competes directly with E2F for binding pRb, resulting in dissociation of 

E2F from the complex (Felsani et al., 2006). 

As the cumulative affinity of CR1 and CR2 is higher than that of E2F, it tips the balance 

towards dissociation of E2F from pRb (Fattaey et al., 1993; Ikeda et al., 1993). 

Therefore, E1A-binding of hypo-phosphorylated pRb liberates E2F, permitting E2F-

initiated transcription and subsequent passage into S phase (Ghosh et al., 2003).  

 

E1A function regulates a broad range of processes. It induces transcription of down-

stream viral genes, thus promoting progression of the viral replication cycle (Wong et 

al., 1994). Furthermore, it counteracts cellular senescence caused by stress and 

telomere shortening (Ben-Porath et al., 2005; Ben-Porath et al., 2004). Its regulatory 

role is extended further, as it may also orchestrate pRb protein activity indirectly by 

altering various cellular mediators: E1A binds p300 and CBP, multifunctional proteins 
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known to interact with numerous transcription factors (Arany et al., 1995). Furthermore, 

p300/CBP exert histone acetyltransferase (HAT) activity (Iyer et al., 2004). E1A 

stimulates acetylation of pRb, by recruiting the latter to p300 (Chan et al., 2001). Also, 

by altering p300/CBP activity, E1A influences expression and function of other pocket 

proteins (Frisch et al., 2002; Magenta et al., 2003; Martelli et al., 1994). Also, E1A-

binding of p300/CBP interferes with TGF-β transcription and DNA-damage-induced 

transcription of p21 (Datto et al., 1997; Steegenga et al., 1996). Additionally, E1A has 

been described to interact directly with and inactivate p21 and p27, abrogating 

inhibition of Cyclin E-cdk2 complexes, leading to pRb phosphorylation (Felsani et al., 

2006; Mal et al., 2000; Mal et al., 1996). On the other hand, 13S E1A, but not 12S E1A 

is able to induce p21 expression in cancer cells (Najafi et al., 2003).   

 

Early region 1B: 

Transcripts of E1B are also subject to alternative splicing, giving rise to important 

regulators of induced cell death. One splice variant is E1B-19K, a homologue of Bcl-2. 

It is capable of inhibiting premature cell death induced by E1A or p53 by inhibiting pro-

apoptotic Bax protein (Cuconati et al., 2002; Farrow et al., 1995; Rao et al., 1997). 

E1B-55K, another E1B protein, functions as an inactivator of the p53 pathway (Yew et 

al., 1992). It is able to bind p53 via a transcription-repressing domain. Owing to this 

potent domain, E1B-55K silences expression of p53-regulated genes without 

displacing the transcription factor from its DNA binding site (Yew et al., 1994). As a 

result, growth arrest and apoptosis of the infected host cell are prevented. 

Furthermore, E1B-55K binds viral E4orf6 protein and cellular proteins to form an E3 

ubiquitin ligase complex, which induces proteasomal degradation of p53 (Harada et al., 

2002; Querido et al., 1997; Querido et al., 2001b). E1B-55K is also responsible for 

shutting off of host protein synthesis (Babiss et al., 1984). In addition E1B-55K/E4orf6 

complexes hinder DNA damage response by degrading cellular DNA repair proteins 

(Carson et al., 2003). Finally, mRNA transport and late protein synthesis during 

infection depend on E1B-55K/E4orf6 (Dobner et al., 2001; Flint et al., 2003).  

 

Early region 4: 

E4 is situated at the right end of the adenoviral genome. Unlike the previously 

described early genes, it is transcribed leftwards. It contains several open reading 

frames (ORFs) which, in combination with alternative splicing, lead to synthesis of a 

multitude of proteins (Virtanen et al., 1984). E4 proteins regulate a wide range of 

processes:  
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ORF 4 product: regulates phosphorylation states of various transcription factors, by 

mediating protein phosphatase 2A activity (Muller et al., 1992) 

ORF 6/7 product: associates with E2F and drives accumulation of E2F mRNA in the 

cell.  

ORF 6 product: binds p53 and inhibits transcription activation function of the tumour 

suppressor (Dobner et al., 1996; Querido et al., 1997). 

ORF 3 product: responsible for retargeting of cellular factors into viral replication 

domains within the nucleus (Doucas et al., 1996).  

Knowledge of E4orf1 and E4orf2 protein functions remains limited. 

ORF 1 product: interacts with a group of scaffolding proteins involved in assembly of 

cell signalling complexes (Tauber et al., 2001). It has been described to signal via the 

phosphatidylinositol 3’-kinase (PI3K) pathway to activate serine-threonine kinase Akt, 

mammalian target of rapamycin (mTOR) and S6 ribosomal protein kinase (p70 S6K), 

which regulate protein synthesis and cell survival (Frese et al., 2003). Interestingly, 

deletion of E4orf1 enhanced oncolytic effects of E1B55K-deleted ONYX-015, 

suggesting that presence of E4orf1 limits therapeutic efficacy of oncolytic virus with 

such a deletion (Thomas et al., 2009). This includes H101, which is being used for 

cancer therapy in China (Garber, 2006; Yu et al., 2007).  

ORF 2 product: has never been observed in complex with any cellular protein. It 

appears to be a soluble cytoplasmic component in infected cells (Dix et al., 1995). As 

deletion has no visible effect it may exert late lytic functions (Tauber et al., 2001).  

 

Early region 3: 

E3 region encodes for approximately nine overlapping mRNAs produced from pre-

mRNA by alternative splicing (Bhat et al., 1985; Craig et al., 1977). The E3 region 

constitutes 10% of the entire viral genome, suggesting an important role of its protein 

products. Surprisingly, deletion of the gene does not abort viral replication (Toth et al., 

2003). However, mice infected with an E3-deleted adenoviral mutant mounted a 

significantly increased inflammatory response. This indicates a role for E3 in 

modulating the host immunological response (Braithwaite et al., 2001; Ginsberg et al., 

1989). E3gp-19K protein is known to reduce expression of class I major 

histocompatibility complex (MHC I) antigens on the surface of infected cells (Toth et al., 

2005). Two other important E3 proteins, E3-10.4K (also known as RID ) and E3-14.5K 

(RID ) proteins, have anti-apoptotic function. They modulate expression of Fas, a 

member of the tumour necrosis factor (TNF) receptor family, and down-regulate 

epidermal growth factor receptor (EGF-R) expression (Shisler et al., 1997; Toth et al., 
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2002). Similarly, the 6.7K protein is involved in down-regulation of two death receptors 

for tumour necrosis factor-related apoptosis inducing ligand (TRAIL). As a 

consequence, infected cells are less susceptible to TRAIL-mediated apoptosis 

(Benedict et al., 2001). Furthermore, E3-14.7K protein has been shown to inhibit 

ligand-mediated internalisation of TNF-receptor 1 (TNFR1). This prevents formation of 

the death-inducing signalling complex (DISC), a crucial step in the TNF-induced pro-

apoptotic cascade (Schneider-Brachert et al., 2006). Another product of the E3 region 

is 11.6K, the adenovirus death protein (E3/ADP), which may be required for efficient 

killing of infected cells. During early infection stages, only small amounts of E3/ADP 

are synthesised. In contrast, large amounts are produced at late stages of infection. 

E3/ADP is thought to mediate release of viral progeny (Tollefson et al., 1996). 

Interestingly, however, absence of E3-11.6K in the adenoviral genome appears not to 

alter mode or extent of cell death in cancer cells (Baird et al., 2008).  

 

Early region 2: 

Protein products of the E2 gene control viral DNA synthesis (Braithwaite et al., 2001). 

Once their concentration reaches a critical threshold, synthesis of viral DNA 

commences. This marks progression into the late stage of infection and results in 

activation of the late transcriptional program (Miller et al., 2007).  

 

Late proteins are encoded by the major late transcription unit (MLTU) regions L1 to L5. 

Their expression from the major late promoter (MLP), followed by differential splicing 

and polyadenylation, produces structural proteins (Akusjarvi, 2008). Despite its name, 

however, the MLP is active early after infection and some proteins from MLTU regions 

are already expressed concomitantly with early region proteins, as are intermediate 

gene products IVa2 and IX, responsible for enhancing MLTU expression during the 

transition from early to late phases. During early post infection phases, levels of late 

proteins are low. Although understanding of the role of late proteins throughout the viral 

life cycle is far from complete, they have been linked to regulation of the host cell 

splicing machinery, orchestration of structural and non-structural late and intermediate 

gene expression (Akusjarvi, 2008; Morris et al., 2009). Highest levels of MLTU 

expression are reached during late stages of infection, allowing production of the full 

array of structural proteins (Morris et al., 2009).   

 

1.4.3 Life cycle of Adenovirus 

Adenovirus gains entry into its target cell by interacting with specific receptors on the 

cell surface. For all groups of adenovirus other than group B, the knob of the 
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adenovirus fibre protein first binds the Coxsackievirus and adenovirus receptor (CAR). 

Recent evidence suggests that CAR is dispensable for adenovirus infection (Nicklin et 

al., 2005; Waddington et al., 2007). However, internalisation requires a second 

interaction of the adenovirus penton base with integrins, such as v 3 or v 5, on the 

cell surface (Hidaka et al., 1999). Bound adenovirus is then quickly endocytosed into a 

clathrin-coated vesicle. Subsequently, the virus particle can escape into the cytosol, 

where it uses microtubules and microtubule-dependent motors for transport to the 

nuclear membrane. After docking at nuclear pore complexes, it enters the host nucleus 

(Martin-Fernandez et al., 2002).  

 

According to Greber, et al., successful infection is dependent on an orchestrated 

disassembly programme of the viral protein capsid, which takes place during 

endocytosis. It is believed that the first disassembly step, shedding of fibre proteins, 

occurs immediately after cell adsorption (Greber et al., 1993). This event is probably 

promoted by penton base - v 3/ 5 receptor contact. This particular interaction has also 

been shown to regulate adenovirus-mediated cell signalling, virus endocytosis and 

endosomal transport (Greber, 2002; Rauma et al., 1999). The second disassembly 

step is penton base dissociation, which occurs simultaneously with escape of the virus 

from the endocytotic vesicle (Blumenthal et al., 1986). Once in the cytosol, interaction 

between microtubule motor cytoplasmic dynein and hexon facilitates translocation of 

the partially disassembled adenovirus to the nuclear pore complex, along microtubules 

(Bremner et al., 2009). In the meantime, protein IX, another structural protein that 

adheres hexon proteins, is removed (Martin-Fernandez et al., 2002). When the 

adenoviral particle reaches the nucleus and binds to the nuclear pore complex, the 

final step of disassembly occurs: loss of the hexon component. The viral genome is 

released and it is now small enough to enter the host nucleus, where it can initiate viral 

replication (Greber et al., 1997; Martin-Fernandez et al., 2002). 

 

Once adenovirus has manipulated the host cell to produce vast amounts of viral DNA 

and viral protein, its propagation requires correct assembly of the new infectious 

particles. Exactly how packaging of adenoviral particles is controlled is yet unclear. 

Ostapchuk and Hearing proposed the following model: viral assembly begins with the 

formation of a procapsid from structural and scaffolding proteins, competent for 

packaging of viral DNA. They hypothesize that recognition of this preliminary capsid 

structure by viral genome is mediated by binding of proteins to a packaging domain on 

adenovirus DNA. Ensuing internalisation of the genome through a so-called “portal” in 
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the procapsid is driven by an ATP-dependent motor. Following encapsidation, the 

portal is sealed and final maturation of the viral particle occurs (Ostapchuk et al., 

2005). An illustration of the proposed model can be seen below, in Fig. 1.3. 

 

Another enigma in the viral life cycle is the manner of cytolysis and subsequent release 

of adenoviral progeny. Until recently, the predominant opinion has been that 

adenovirus-induced cell death resembles classical apoptosis (Hall et al., 1998). This 

presumption was based on findings of E1A inducing apoptosis in many cell systems 

and of E4orf4-prompted caspase-dependent cell death (Rao et al., 1992; Robert et al., 

2002a). However, more recent studies have aimed to monitor the entirety of 

interactions and factors involved in virus-induced cell lysis, rather than assessing 

function of single genes (Baird et al., 2008). This approach bore surprising results: El 

Hassan et al. described the character of virus-induced cell death as “necrosis-like 

programmed cell death” (Abou El Hassan et al., 2004). In another study, autophagy 

also appeared to play a crucial role (Ito et al., 2006). 

 

A study conducted by our group found replicating adenoviruses not to cause cell death 

via classical apoptosis. Pure necrosis or autophagy were equally excluded as 

cytopathic pathways. Although there was some indication of autophagy induction, this 

appeared to be a survival mechanism of the cell. Morphology did show certain signs for 

apoptosis, but mitochondria –mediators of classical apoptosis and some forms of 

necrosis – did not contribute to cell death. The conclusion drawn from our group is that 

replicating adenoviruses kill host cells by a virus-regulated non-classical cell death. 

Elucidation of the exact lytic pathway requires further investigation (Baird et al., 2008). 

Release of viral progeny has been shown to be enabled by break down of the 

intermediate filament network. Cellular filaments, particularly cytokeratins, are 

proteolysed by adenoviral proteinase L3. This destruction appears to be promoted by 

viral shutoff of host cell translation. Indeed, preventing viral inhibition of host translation 

resulted in a several-hundredfold decrease of viral release (Zhang et al., 1994).   
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Figure 1.3 Model for packaging/assembly of adenovirus. Step 1: Formation of a 

procapsid from structural and scaffolding proteins, competent for packaging of viral 

DNA. Step 2: Recognition of the procapsid capsid by the viral genome (mediated by 

binding to an adenovirus DNA packaging domain). Step 3: ATP-driven internalisation of 

the genome through a “portal” in the procapsid. Step 4: Sealing of  the portal and final 

maturation of the viral particle (Ostapchuk et al., 2005).  
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1.5 Oncolytic adenoviruses  

Among adenovirus-based anti-tumoural agents, dl1520, also called ONYX-015, was 

the first to be submitted to clinical trials (Kirn, 2001). Similar to previous gene therapy 

strategies, the targeted mutation in cancer cells was thought to be p53 (Zeimet et al., 

2003). But, rather than restoring p53 wild type activity, as attempted earlier, a new 

strategy exploited the lack of functional p53 (Heise et al., 1997). As described earlier, 

adenoviral E1B-55kD gene encodes a p53-inhibitory protein and is involved in viral 

mRNA transport and shut-off of host cell protein synthesis (Heise et al., 2000). Lack of 

region E1B-55kD in the dl1520 genome was thought to restrict replication of the virus 

to cells that lack p53 activity (Kirn, 2001). According to Heise et al., epithelial and 

endothelial cells with normal p53 function showed a high degree of resistance to 

replication and cytotoxicity (Heise et al., 1997). The subsequent clinical trials, however, 

brought deflating results. Auspiciously, the virus could infect most types of tumours 

included in the clinical trial – colorectal, head-and-neck and pancreatic cancer, 

although not ovarian – irrespective of the route of administration. But although some 

tumour-selective replication was detected, results were transient at best, such as in 

head-and-neck cancer (Harada et al., 2002; Heise et al., 2000). In other tumours, no 

responses were detectable (Mulvihill et al., 2001; Vasey et al., 2002). In general, 

replication of dl1520 in tumours was profoundly attentuated, whilst the virus was able 

to replicate in p53-positive cells (Kirn, 2001). Although no further clinical trials with 

dl1520 followed, data from these trials were very helpful. Most importantly, toxicity 

profiles collected from more than 200 patients were very promising and an 

encouragement to develop more efficiently replicating adenoviral vectors (Kirn, 2001; 

Lockley et al., 2006). Secondly, observations on host immune responses and side 

effects are likely to be expandable to other adenoviruses, thus providing valuable 

background knowledge for virus-based therapy. Another interesting finding of these 

studies was a synergistic anti-tumour activity of a combination of dl1520 in combination 

with cisplatin or 5-fluorouracil. Some insight to the lack of clinical response to dl1520 

was gained from subsequent in vitro studies. These revealed incomplete correlation 

between mutant p53 and replication efficiency. Investigating this observation led to two 

major findings: first, loss of p14arf in tumours can mediate replication of dl1520, even in 

cells with wild type p53 (Ries et al., 2000). In a normal cell, p14 negatively regulates 

Mdm2, itself an inhibitor of p53. Therefore, a lack of p14 in a cell disrupts the p53 

pathway (Fang et al., 2000; Momand et al., 1992). More importantly, it has been shown 

that the likely true mechanism determining dl1520 selective replication in tumours is 

not loss of functional p53. Instead, it is based on a loss of late viral RNA export, 
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another function of E1B55K (Dobbelstein et al., 1997; O'Shea et al., 2004; O'Shea et 

al., 2005).   

 

After purchasing the patent for ONYX-015, the Chinese company Shanghai Sunway 

Biotech Co., Ltd produced a nearly identical virus under the name H101. The latter 

contains a slightly larger deletion in E3 than ONYX-015 (Garber, 2006). In 2005, the 

Chinese State Food and Drug Administration was the first to approve a replicating 

adenoviral oncolytic vector, H101, in combination with chemotherapy, to treat head and 

neck cancer (Garber, 2006).  

 

1.5.1 Second Generation Adenoviral Vectors 

To overcome the limited efficiency in clinical results of first generation replicating 

therapeutic viruses, new strategies were developed to target lytic viruses to cancer 

cells.  

 

1.5.1.1 E1A constant region mutations 

A mutation in constant region 1 of E1A (E1A-CR1) in dl1101 renders the adenovirus 

unable to bind p300, a transcriptional co-activator deregulated in many types of 

tumours. In cancer cells, virus replication occurs despite the lack of E1A-p300 

interaction. However, dl1101 showed disappointing results, as it was attenuated in both 

normal and tumour cells. Heise et al. described a 10 to 100-fold lower potency 

compared to dl922-947, the E1A-CR2-deleted oncolytic virus my work focuses on and 

which will be discussed in more detail in the next section (Heise et al., 2000). More 

promising data were obtained with another E1A-CR2 mutant, pm928. pm928 carries a 

single point mutation within the pRb binding site of CR2 (Kraus et al., 1992). The 

inability of CR2 to bind pRb prevents viral replication in normal cells, while in cancer 

cells this regulatory step is bypassed. The phenotype mediated by pm928 is very 

similar to dl922-947. Nevertheless, dl922-947 is the more potent oncolytic virus of the 

two (Heise et al., 2000).  

 

An example for another E1A-mutation based virus is CRAd5- 24RGD, which carries a 

24bp-deletion within its E1A-CR2 region. This deletion conveys replication selectivity 

as described for dl1101. In addition, CRAd5- 24RGD expresses an arginine-glycine-

aspartate (RGD) sequence motif in its fibre knob. In vitro, this motif directs the virus to 

target v  cell surface integrins, broadly expressed on most cancer cells, resulting in 

increased infectivity (Abou El Hassan et al., 2004). This upgrade of the viral properties 
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of CRAd5- 24RGD was expected to add to the advantages of dl922-947, proven in 

pre-clinical models of ovarian carcinoma (Heise et al., 2000). Nevertheless, side effects 

could not be eliminated. Injection of Ad5- 24RGD in rats caused mild peritonitis. 

Toxicity was tolerable, but elevation of liver function and hepatic toxicity were detected 

(Page et al., 2007). Thus, bio-distribution and toxicity were generally not better than 

with dl922-947. 

 

1.5.1.2 Transcriptional control 

CV706 and CG7870 are two adenoviral constructs in which E1A expression is initiated 

via prostate-specific antigen (PSA) promoter/enhancer elements. In clinical trials for 

treatment of hormone-refractory prostate cancer, which is characterised by high levels 

of PSA transcription, toxicity profiles were satisfactory and some response was 

detected  (DeWeese et al., 2001; Small et al., 2006). Similarly, AdPSAE1 is a 

replication-competent adenovirus construct in which the E1 region is expressed under 

the control of a PSA promoter. Oncolytic activity of AdPSAE1 was highly efficient in 

prostate cancer cell lines, but undetectable in other human cancer cell lines. In 

xenograft murine models with prostate tumours, intra-tumoural injection of the virus 

reduced tumour size, whilst it had no effect on bladder cancer xenografts in mice 

(Chang et al., 2004). A more complex construct is the prostate-targeted two-step 

transcriptional amplification (TSTA) oncolytic adenovirus, described by Sato et al.. In 

this virus, enhanced expression of viral genes under strict prostate-specific control was 

achieved by combining two regulatory instances: expression of E1A and E1B under the 

control of strong activator Gal4VP16 and a PSA promoter controlling activity of 

Gal4VP16, itself. The resulting prostate-specific oncolytic adenovirus was able to 

replicate in prostate cancer cells, but not in non-prostate cancer cell lines, such as 

HeLa or A549 (Sato et al., 2006). 

 

1.5.1.3 E2F1 promoter control 

ONYX-411 is an oncolytic adenovirus in which E1A and E4 expression is controlled by 

the E2F1 promoter. The latter is pRb responsive and contains four autoregulatory E2F 

binding sites. Its oncolytic potential is similar to that of wild-type adenovirus, both in 

colon, lung, pancreatic, cervical, bone and head-and-neck cancer cell lines and after 

systemic administration in vivo (Johnson et al., 2002). ONYX-411 was also efficient in 

killing multiple anaplastic thyroid carcinoma (ATC) cell lines in vitro. ATCs are very 

aggressive and highly resistant to radio- and chemotherapy (Chiacchio et al., 2008). 
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Similarly, in xenograft mouse models of ATC, ONYX-411 treatment led to reduced 

tumour growth (Reddi et al., 2008).  

 

1.5.2 dl922-947 

One of the major limitations of cancer therapy with some oncolytic viruses is their 

reduced potency due to gene deletions (Heise et al., 2000). Clinical trials of many 

therapeutic viruses concluded that replication of genetically attenuated mutants is less 

efficient than of respective wild type counterparts (Bischoff et al., 1996; Kirn, 2000; 

Kucharczuk et al., 1997; Martuza et al., 1991; Mineta et al., 1995). Comparison of 

therapeutic efficiencies revealed a small list of vectors outperforming the general bulk 

of oncolytic virus constructs. Among them was dl922-947, the adenoviral mutant at the 

centre of this study (Heise et al., 2000).  

 

dl922-947 is an adenovirus serotype 5 (Ad5) mutant. E1A constant regions CR1 

(amino acids 30-60) and CR2 (amino acids 120-127) are vital for binding pRb (Kim et 

al., 2007). dl922-947 carries a 24bp-deletion within E1A-CR2 (Heise et al., 2000). This 

alteration confers selectivity to the virus, based on induction of viral replication 

specifically in cells with abnormalities in the retinoblastoma protein pathway (Rb 

pathway) (Fueyo et al., 2000). 

 

1.5.3 dl922-947 in cancer cells    

In most cancers, including ovarian carcinomas, the Rb pathway is disrupted; the cells 

contain constant pools of free E2F (Sherr et al., 2002). These free levels of E2F make 

E1A-CR2 activity redundant for dl922-947. The viral mutant can replicate efficiently and 

initiate cell death (Heise et al., 2000). In cells with intact G1/S-phase checkpoint viral 

replication is disabled, as in quiescent cells, there is no free E2F. An illustration of 

these processes in normal and cancer cells is shown below (Fig. 1.4). 

 

A previous study by our group showed that in ovarian cancer cells, dl922-947 induces 

S phase entry more rapidly and replicates more efficiently than ONYX-015 and wild 

type adenovirus. In all tested ovarian cancer cells, dl922-947 was also more efficient in 

lysis induction than wild type adenovirus and ONYX-015. Cytopathic effects in normal 

cells, on the other hand, were very low. In murine xenograft models, dl922-947, again, 

was superior to ONYX-015 in terms of response and survival rates, causing a 4-fold 

increase in median survival. However, hepatotoxic effects were observed in some mice 

(Heise et al., 2000; Lockley et al., 2006).  
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Figure 1.4 Mechanisms of selective replication of dl922-947. Interactions between 

wild type and dl922-947-derived E1A in normal and cancer cells are shown. A. In 

normal cells, wild type E1A binds pRb and forces release of E2F. B. In normal cells, 

dl922-947-derived mutant E1A (deleted in CR2) is unable to associate with pRb. E2F 

remains bound to pRb and cell cycle entry is inhibited. C. In cancer cells, Rb pathway 

dysfunction is accompanied by high levels of free E2F, making E1A-pRb binding 

redundant for cell cycle progression.  

 

Another group constructed an E1A-CR2 deleted mutant, 24, which is almost identical 

to dl922-947. In most human glioma cells infected with 24 at a multiplicity of infection 

(MOI) of 10 plaque-forming units per cell (pfu/cell), lysis occurred within two weeks 

following infection. Again, normal fibroblasts, as well as cancer cells with restored Rb 

pathway remained resistant to the oncolytic virus (Fueyo et al., 2000).  

 

1.5.4 Immunogenicity of Adenoviral vectors 

Immunogenicity of adenoviruses is considered a serious impediment to the 

efficacy of oncolytic viral therapy (Chen et al., 2000). Not only does the majority 

of the adult population possess neutralising antibodies against adenoviruses 

(Chirmule et al., 1999). Also, the inflammatory response can be a dose limiting 

factor in the clinic (Engler et al., 2004). Systemic administration of adenoviral 

vectors is met by innate and adaptive immune responses of the host, elicited by 

interactions of the virus with host factors, such as integrins or CAR (Di Paolo et 

al., 2009a; Shayakhmetov et al., 2004). This has been shown to lead to 

chemokine and cytokine induction, resulting in inflammatory effects via MAPK, 

PI3K or NFkB signalling pathways (Vorisek et al., 1976). 

Surprisingly, pre-existing immunity against adenovirus 5 in syrian hamsters has 

been shown to have no detrimental effects on efficacy of an oncolytic 
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adenovirus INGN007. In contrast, the presence of Ad5-specific neutralising 

antibodies prevented liver toxicity and vector leakage (Dhar et al., 2009). This 

suggests that, should a similar phenomenon be seen in humans, the 

apprehension towards immunogenic effects of oncolytic adenoviruses may be 

less justified than originally believed. 

 

1.5.5 Further limitations of dl922-947 and other adenoviruses 

So far, as there are no data from clinical trials, it is difficult to estimate the safety of 

therapeutic application of dl922-947 and other novel oncolytic adenoviruses. In murine 

ovarian cancer models, signs of hepatotoxicity were observed after intraperitoneal 

injection of the virus. Mouse livers appeared necrotic and showed eosinophilic 

degeneration, albeit to a lesser degree than after injection with the wild type equivalent 

(Lockley et al., 2006).  

 

Another possible risk factor is infection of normal haematopoietic stem cells. As they 

are highly replication-active cells, it was feared dl922-947 might be able to replicate 

within them, subsequently causing lysis. However, a study conducted in hematopoietic 

stem cells showed high resistance of these cells to adenovirus infection. Replication 

and infection was only detected at MOI 100pfu/cell (Medina et al., 1999). This dose 

exceeds MOIs applied in vivo (Heise et al., 2000). Further attributes of viral gene 

therapy potentially dangerous to the host are immune responses to and systemic 

distribution of dl922-947. Wild type adenoviruses often cause strong inflammatory 

effects in humans. On the one hand, this can be a dangerous side effect to oncolytic 

virus therapy, as happened in the case of Jesse Gelsinger (Hollon, 2000). Gelsinger 

suffered from an X-linked defect of the urea cycle, ornithine transcarbamylase 

deficiency (OTC). At the age of 18, he took part in a clinical trial during which he was 

given a dose of approximately 3.8x1013 particles of an E1A-deleted OTC-encoding 

adenovirus. After four days, Gelsinger died of multiple organ failure, most likely due to 

a systemic inflammatory response (Hollon, 2000). However, the host immune response 

is not necessary a limitation to viral therapy. In fact, it could be an important 

contribution to the anti-cancer effect of the oncolytic virus. Thus, understanding host 

response mechanisms through in vivo and clinical studies may allow us to exploit 

rather than prevent immune reactions (Kasuya et al., 2007). 

 

As described earlier, the classical model of adenovirus 5 infection is based on 

CAR/fibre knob binding and interactions between penton base RGD-motif and avβ3/5 
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integrins (Kirby et al., 2000; Wickham et al., 1993). This poses another challenge for 

the application of oncolytic adenoviruses. On the one hand, CAR is expressed in a 

relatively ubiquitous manner across tissues and cells in the human body (Carlisle et al., 

2009; Lamba et al., 2004). This may result in the undesired uptake of oncolytic virus 

into non-target cells, when applied systemically. On the other hand, downregulation of 

CAR has been frequently described in tumours and primary cancer cell lines (Anders et 

al., 2009; Jee et al., 2002; Matsumoto et al., 2005; Mikami et al., 2001; Rauen et al., 

2002). Loss of CAR receptor can severely impede infection efficacy of cancer cells 

(Rein et al., 2006). However, an increasing number of reports identifies alternative cell 

surface receptors facilitating binding and entry of adenovirus 5 into target cells, such as 

cell adhesion molecule 1 or heparan sulfate proteoglycans (Chu et al., 2001; 

Dechecchi et al., 2001). Equally, integrin interaction of adenovirus 5 does not seem to 

be restricted to αvβ3/5. It has been shown that for internalisation, the virus can also use 

α5β1, αvβ1, αMβ2 or α3β1 (Davison et al., 1997; Huang et al., 1996; Li et al., 2001; Salone 

et al., 2003).   

 

Intensive research of the hepatotoxicity accompanying adenovirus infection has 

revealed that liver uptake of the virus is mediated by coagulation factors, amongst 

which FX appears to play the principal role (Shayakhmetov et al., 2005; Waddington et 

al., 2008). The difficulty in ameliorating this side effect is that recent evidence suggests 

FX is not only facilitating entry into hepatocytes, but may also mediate tumour 

transduction (Gimenez-Alejandre et al., 2008). Therefore, ablating the underlying 

FX/hexon interaction may have detrimental effects on therapeutic effects of oncolytic 

adenoviruses (Waddington et al., 2008).  

 

1.5.6 Future of virus-based therapy in cancer 

Clinical data obtained during clinical trials and after approval of oncolytic deletion virus 

H101 in head and neck cancer indicated the potential of gene therapy with oncolytic 

adenoviruses (Lu et al., 2004). Intra-tumoural administration of virus was well-tolerated, 

dose limiting toxicity or serious adverse effects were not observed. Mild side effects 

and no apparent leakage from intra-tumoural injections into other body compartments 

suggested high levels of safety in application (Yuan et al., 2003). These data are also 

promising for future virotherapy in other cancer types and with other vectors (Crompton 

et al., 2007). 

 

Nevertheless, for adenoviruses to be broadly applied in cancer therapy, there remain 

some crucial hurdles to be overcome. Firstly, it is fundamental to maximise infectivity 
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and selective efficacy of oncolytic viruses (Kirn, 2001). Extensive research has been 

invested into by-passing the limiting effects of CAR receptor downregulation and liver 

tropism described above. Infectivity can be increased by altering the viral coat 

(Romanczuk et al., 1999). Introduction of modified receptors, for example, can retarget 

virus binding to host cell surface receptors other than CAR. Specifically retargeted 

oncolytic virus may also improve intra-tumoural spread and -where required- systemic 

delivery, particularly, if coupled with host immuno-suppression (Kirn, 2001). Very 

promising results were obtained with a recombinant adenovirus in which an αvβ6-

binding motif was introduced into the fiber knob domain. αvβ6 is commonly over-

expressed on cancer cells, but not in normal human tissues (Ahmed et al., 2002; 

Bates, 2005; Elayadi et al., 2007). This virus showed increased CAR-independent 

infectivity of αvβ6 expressing cell lines, compared to control virus with wild-type fiber 

knob. Interestingly, reduced liver uptake was observed in vivo (Coughlan et al., 2009). 

Other recombinant adenoviruses, expressing RGD-4C nonapeptide or polylysine in 

their fibers, indicated augmented αvβ5/6-mediated infectivity of CAR-negative cells 

(Dmitriev et al., 1998; Nagel et al., 2003). The protein transduction protein (PTD) of 

HIV is a small peptide mediating protein transfer across cell membranes (Nagahara et 

al., 1998). Incorporation of PTD into the adenoviral fiber knob has been shown to 

enhance infectivity in cell lines expressing both, low and high levels of CAR. Similar 

effects were seen in xenograft mouse models in vivo (Han et al., 2007). 

 

To better predict efficacy and safety of oncolytic adenoviruses, development of 

immuno-competent cancer models is indispensable. So far, data published on 

adenoviral therapy effects in animal tumour models are derived almost exclusively from 

immuno-compromised mouse human xenograft models (Kirn, 2001). Although, in 2003, 

Wang et al. described an interesting approach to investigate effects of E3 deletions on 

immuno-competent host responses to selectively replicating adenoviruses. Immuno-

competent tumour mouse models were generated, using murine carcinoma cell lines 

permissive for viral activity of wild-type human adenovirus 5, as well as E3B-deleted 

dl309 and E3gp-19K-deleted dl704. Intra-tumoural injection of dl309 elicited stronger 

immune responses than wild-type adenovirus or dl704, highlighting the importance of 

the E3B region for prevention of premature clearance and strong toxicity of oncolytic 

adenoviruses. The model provided valuable information on host responses to such 

viral vectors and for the design of novel, more potent oncolytic adenoviruses (Wang et 

al., 2003b). However, replication of wild-type human adenovirus and many oncolytic 

adenoviral vectors is strongly attenuated or completely blocked in murine cells 

(Eggerding et al., 1986; Ginsberg et al., 1991; Silverstein et al., 1986). Therefore, the 
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higher degree of viral replication in more permissive tumours may elicit more profound 

effects.   

 

Alternative, immuno-competent animal models exist, such as the Syrian hamster or the 

cotton rat, and have provided valuable insights into adenoviral effects on the immuno-

competent organism (Thomas et al., 2008; Toth et al., 2005). However, as they are 

less widely applied in research, molecular tools available are far more limited than for 

murine models (Robinson et al., 2009). 

 

1.6 The Rb pathway and cell cycle control  

Imperative for the application of oncolytic adenoviruses is also a more precise 

understanding of which cancer cell genes promote and predict for viral efficacy, which 

is the aim of my study. As dl922-947 function is believed to be largely dependent on 

the Rb pathway status of the infected cell, a major part of my work focuses on this 

pathway.   

 

Rb pathway abnormalities are almost universal in human cancers, making the Rb 

pathway a very important target for treatment. This section explains the pathway and 

its components in normal cells, then describes their implications in cancer and how 

they relate to the activity of dl922-947.      

 

1.6.1 Rb pathway and cell cycle regulation 

The mammalian cell cycle is divided into different phases: G1, S, G2, and M phase, as 

well as the G0 phase. The latter comprises cells in their quiescent or senescent stage. 

A normal quiescent cell cannot re-enter the cell cycle unless it receives a stimulating 

mitogenic signal. Upon stimulation, the cell proceeds to the G1 phase (Vaillant et al., 

1995). During this phase, a crucial decision is made: will the cell continue DNA 

replication and division, or will it (re-)enter the quiescent state? This so-called 

restriction point is the checkpoint beyond which a cell becomes committed to advance 

through the entire cycle, a process that is self-regulated and not dependent on any 

further stimulating signals (Sherr, 1996). If, however, DNA damage or defects are 

detected, downstream checkpoints are activated and the cell cycle is delayed or halted 

(Stevens et al., 2003).  
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The importance of the G1 restriction point is mirrored by the strict and complex 

regulatory network it is subjected to. This network, the so-called retinoblastoma 

pathway, comprises several components:  

- Rb family: pRb, p107 and p130, 

- Cyclin D and Cyclin E,    

- Cyclin-dependent kinase cdk4, cdk6 and cdk2,   

- E2F family of transcription factors, 

- the INK4 and CIP/KIP families of cdk inhibitors (CKIs), including p15, p16, p18, p19,  

  p21 and p27 and p57 (Genovese et al., 2006). 

 

Among these components, pRb acts as a “molecular guard”. It prevents progression 

past the restriction point, after which the cell is irreversibly committed to enter and 

complete the cell cycle (Lomazzi et al., 2002). The main steps of the Rb pathway are 

pictured in Fig. 1.5. Upon induction by mitogenic growth factors -or stimulation by 

adenovirus and other DNA viruses, Cyclin D and cdk4 or cdk6 form complexes with 

kinase activity, which phosphorylate pRb. As the cell passes through G1, Cyclin E-

encoding genes are activated. Subsequently, Cyclin E-cdk2 complexes further 

phosphorylate pRb. Hyper-phosphorylation of pRb leads to dissociation of the pRb-

repressor complex. Released, active E2F is able to induce transcription of S-phase 

genes, allowing progression from G1 to S-phase (Tonini et al., 2002; Viallard et al., 

2001). Simultaneously, transcription of genes required for DNA replication begins. 

 

However, pRb regulates cell cycle entry not only by inhibiting E2F. Specific binding 

sites on the pRb protein allow the hypophosphorylated protein to recruit chromatin 

modifying and remodelling enzymes, such as histone deacetylase-1 (HDAC-1) and -2, 

BRG-1 and BRM, which render DNA inaccessible for transcription activators (Kadam et 

al., 2003; Sherr et al., 2002). Furthermore, it has been found that pRb is also involved 

in DNA repair. By regulating transcription factors of DNA repair pathways, pRb protects 

cells from double-strand breaks (Genovese et al., 2006). 
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Figure 1.5 Rb pathway. Shown are main cell cycle regulatory steps. (1) + (2) 

Sequential phosphorylation by Cyclin-cdk complexes forces pRb to release E2F. (3) 

E2F binds its target promoters facilitating replication. (4) Non-phosphorylated pRb 

inhibits transcription by binding E2F and recruitment of HDAC-1. (5) INK4 family 

inhibits cdk4/6. (6) Cip/Kip family inhibits or promotes Cyclin-cdk complex activity and 

in turn, is inhibited or stabilised by cdk4/6-CycD. 

 

1.6.1.1 Rb family 

This protein family of transcription repressors and tumour suppressors has three 

members: pRb (p150), p130 (pRb2) and p107 (Paggi et al., 1996). The three proteins, 

also referred to as “pocket proteins”, due to the structure of their functional domain, are 

able to bind and inhibit E2F. Such prevention of E2F activity interferes with gene 

transcription, cell cycle progression, and also inhibition of apoptosis and DNA damage 

repair (Genovese et al., 2006). 
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Generally, pRb, p107 and p130 are involved in controlling events of the cell cycle, such 

as clonal expansion, terminal exit from the cell cycle and maintenance of the post-

mitotic state. They also induce transcription of tissue-specific genes and play a 

regulatory role in programmed cell death (Classon et al., 2001). Although pRb, p107 

and p130 share a strong homology, particularly within their “pocket region”, and their 

activities are very similar, sometimes even overlapping, they are by no means identical 

(Wang, 1997). Expression studies revealed that each Rb family member shows a 

distinct profile of expression depending on cell status:  

 

p130 expression is highest in G0 phase, thus in quiescent and differentiated cells. As 

soon as a quiescent cell is stimulated to enter the cell cycle, p130-levels drop rapidly.  

p107 is present at low levels at a stage of terminal differentiation. Expression levels 

rise upon growth factor stimulation (Classon et al., 2001). Interestingly, both p107 and 

p130 are able to interact with Cyclin A/cdk2 and Cyclin E/cdk2 complexes, inhibiting 

their kinase activity, thus preventing phosphorylation of cdk-inhibitor p27. As a 

consequence, p27 is not marked for proteasomal degradation but accumulates in the 

cell (Genovese et al., 2006). 

pRb, in contrast, is moderately expressed in both quiescent and cycling cells (Classon 

et al., 2001). 

 

Findings from in vitro studies support the functional discrimination of pocket proteins. It 

was shown that T98G human glioblastoma cells were insensitive to pRb and p107. 

Exposure to p130, on the other hand, resulted in suppression of proliferation (Claudio 

et al., 1996; Claudio et al., 1994).  Unlike pRb and its role in inhibiting cell cycle entry, 

p107 and p130 were shown to be involved in governing cell growth and maintenance of 

the extracellular matrix (Black et al., 2003). 

 

Furthermore, all three pocket proteins have been found to interact with members of the 

E2F family of transcription factors. Again, binding partners differ, depending on cell 

cycle stage and particular pocket protein. p130 binds to E2F-4 and -5 during G0. In G1, 

it is mainly p107 that binds E2F-4. In S phase E2F-4 is bound by pRb. Such 

fluctuations of protein associations throughout the cell cycle suggest a sequential 

activity of the Rb family to prevent S phase progression (Ginsberg et al., 1994; Sardet 

et al., 1995). On the whole pRb binds to E2F proteins involved in activation of cell cycle 

genes, while p107 and p130 interact with E2Fs which repress transcription (Black et 

al., 2003).  
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Distinctive roles of pRb, p130 and p107 were also observed in a study by Classon et 

al. Therefore, cells lacking pRb and/or either of the other two pocket proteins showed 

truncated G1, but elongated S phase, compared to wild type cells or those lacking only 

p107 or p130. The conclusion drawn from this study was that derepressing E2F target 

genes drives cells to enter S phase earlier. But, as other factors needed to synthesise 

DNA are still sparse, synthesis is slowed down (Classon et al., 2000). 

 

Although all members of the Rb family are in some way involved in the cell cycle, the 

Rb gene is the only one of the three frequently found to be mutated in tumours 

(Weinberg, 1995). This is particularly unexpected in light of the high degree of 

sequence homology between them (Wang, 1997). 

 

1.6.1.2 E2F 

E2F proteins constitute a family of transcription factors regulating expression of a wide 

range of genes, many of them vital for regulation of cell cycle progression (Attwooll et 

al., 2004; Dimova et al., 2005). The E2F family comprises eight members. Five E2F 

proteins, E2F3b, E2F4, E2F5, E2F6 and E2F7 have repressor function. Three 

members, E2F1, E2F2 and E2F3a, are activators of gene expression during late G1 

phase (Dyson, 1998). They are preferentially bound and inhibited by pRb (Cobrinik, 

2005).  

 

E2F target genes encode, for example, Cyclins E, A and D1, cell division cycle 2 

(Cdc2) (also called cdk1), cdc25A, enzymes required for DNA synthesis, proteins 

involved in replication, but also apoptotic proteins, including apoptotic protease 

activating factor-1 (Apaf-1) and p73. E2F-1, E2F-2 and E2F-3 are able to activate S 

phase entry (Dyson, 1998; Moroni et al., 2001). In addition, E2F-3 is able to induce 

apoptosis in a p53-dependent and -independent manner (Ziebold et al., 2003). Its 

activity was detected in response to DNA damaging agents as well as T-cell 

development (Nip et al., 2000). Regulation of E2F is carried out in a cell cycle-

dependent fashion, via temporal binding of pRb, p107 and p130. Pocket protein 

function, in turn, is controlled via phosphorylation by cdks (Stevens et al., 2003). 

 

Unlike E1A and other pRb-binding proteins, E2F proteins do not contain an LxCxE 

sequence motif. Instead, they bind pocket proteins with a specific 18 aa-motif within 

their transactivation domain, close to the C-terminus (Helin et al., 1992; Shan et al., 

1996). Although this binding motif is also located within the pRb pocket region, it is 
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distinct from the LxCxE-binding groove (Kirn, 2001). In fact, the two functionally 

significant binding grooves face one another within the pRb pocket. 

 

1.6.1.3 New findings on pRb-E2F interactions 

It has been known for some time that by binding E2F, pRb is able to regulate 

negatively both cell cycle entry and apoptosis. A recent study by Julian et al. showed 

that, even when the apoptosis-blocking domain of pRb is lost, the protein can still block 

cell cycle progression. Further experiments revealed a novel manner of regulation: dual 

pRb function appears to be based on two distinctive types of contact between the 

same types of molecules. According to Julian and colleagues, control of E2F-induced 

S-phase entry and apoptosis are not only based on timing of pRb-E2F binding, but also 

on the physical nature of interaction. This stands in contrast to past publications, 

according to which interaction between proteins, per se, is sufficient for a positive or 

negative functional outcome. Julian et al., on the other hand, have been able to identify 

separate E2F docking sites on pRb: one binding all members of the E2F family. The 

other is an E2F-1-specific site, responsible for regulation of apoptosis (see Fig. 1.6). 

The latter interaction involves a domain of E2F-1 not found in other E2F proteins 

(Dyson, 1998; Julian et al., 2008). 

 

 

 

                

 

 

 

 

 

 

 

 

Figure 1.6 Diagrams of the pRb and E2F ORFs. Shown are domains that mediate 

the 'specific' pRb–E2F1 interaction as well as the 'general' interaction between pRb 

and all E2F members (Julian et al., 2008). 
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1.6.1.4 Cyclins and cyclin-dependent kinases 

Cyclin-dependent kinases are serine and threonine phosphorylating entities, which, in 

their enzymatic activity, depend on another group of molecules: cyclins, whose levels 

within a cell are regulated via protein synthesis and degradation (Sherr et al., 1999). 

 

In mammalian cells, each cdk is subject to control by multiple cyclins. This is partially 

based on overlap of cyclin function (Fisher et al., 1996). However, activity of a given 

cyclin is ultimately unique, providing the regulatory system with a refined control 

mechanism. Various regulatory routes confer specificity of cyclin-cdk interactions. 

Cyclin expression and maintenance of stable levels occur in a cell cycle-dependent 

manner, based on differentially induced transcription and proteolysis. Cyclin activity is 

also sensitive to inhibitory phosphorylation. In fact, it is phosphorylation that initiates 

DNA synthesis and at the same time ensures DNA replication is limited to one round 

per cycle. Furthermore, cyclin proteins possess regulative domains, such as nuclear 

localisation sequences, destruction boxes mediating degradation or hydrophobic 

patches facilitating substrate interactions (Barral et al., 1995). In general, cyclin 

specificity follows a common scheme: a late-functioning cyclin is kept inactive by its 

inhibitor. An early-functioning cyclin inactivates this particular inhibitor, thus abrogating 

repression of the late cyclin (Bloom et al., 2007). 

 

1.6.1.5 Cyclin D1/D2/D3 and cdk4/6 

Different cyclins are involved in regulation of different stages of the cell cycle. In the 

context of this study, the focus lies on Cyclins D and E, with regard to their crucial role 

in G1 entry and G1/S transition (Takaki et al., 2005; Viallard et al., 2001). Firstly, 

Cyclins D1/D2/D3 associate with cdk4 or cdk6. The kinase function of the active 

complex partially phosphorylates and inactivates pRb (Sherr et al., 1999). Cdk4 and 

cdk6 have been found virtually identical in their biochemical properties. Their specific 

roles are believed to be regulated by differential expression (Malumbres et al., 2004). 

Although their activity may be redundant in cell cycle control, cdk4 and cdk6 have been 

shown to have unique roles. In vitro studies for E2F-pRb interaction proved it irrelevant 

whether pRb phosphorylation was cdk4- or cdk6-derived. In contrast, in murine 

astrocytes, ectopic expression of cdk6 led to morphological changes, whilst ectopic 

expression of cdk4 caused no alterations (Ericson et al., 2003). Another study involving 

cdk4 and cdk6 knock-out mice revealed phenotypical differences between the two 

(Kozar et al., 2004). Interestingly, if pRb lacks its functional region, it cannot be 

phosphorylated by cdk6, while ckd4-mediated phosphorylation still occurs (Takaki et 

al., 2005).  
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1.6.1.6 Cyclin E and cdk2 

G1/S transition is regulated by two parallel, cooperating cascades: the Rb and the Myc 

pathway. The point of convergance of this interaction lies in the regulation of Cyclin E-

cdk2 activity, mirroring its crucial role in S phase entry (Bartek et al., 2001). Cyclin E-

cdk2 was found preferentially to phosphorylate a different pRb serine than Cyclin D-

cdk4/6 (Kitagawa et al., 1996; Smartt et al., 2007). Cyclin E-cdk2 is thought to initiate 

chromosome and centromere duplication. The complex is also believed to play an 

essential role in S phase entry. Inhibitors of cdk2, such as p21 and TGF-β, were found 

to block G1/S progression (Roberts et al., 2003). Similar conclusions were drawn from 

a Drosophila study: Cyclin E-cdk2 was required to form the replication initiation 

complex, and was thus indispensable for a cell to proceed into S phase (Brehm et al., 

1998). Surprisingly, neither Cyclin E nor cdk2 are essential for S phase entry in 

humans. Similarly, cdk2-deleted mice were viable and developed normally (Sherr et al., 

1999).   

 

1.6.1.7 New findings on cdk function 

In the mammalian genome, at least 12 loci encode cdks (Malumbres et al., 2005). 

According to a majority of publications, a minimum of four cdks must be activated to 

allow a mammalian cell to enter and proceed through the first stages of the cell cycle: 

cdk2, 4 and 6. A fourth mammalian cyclin-dependent kinase, cdk1, drives the cell 

through mitosis. In recent years, more and more evidence has been found indicating 

that, in many murine cells, proliferation can occur despite multiple deletions of cdk2, 4 

and/or 6 (Malumbres et al., 2004). Santamaria et al., observed that loss of up to three 

cdks did not prevent organogenesis and embryos developed to the mid-gestation 

stage. Closer examination revealed ability of cdk1 to bind all members of the Cyclin 

family. Such interaction resulted in pRb phosphorylation and transcription of E2F-

regulated genes, albeit less efficiently than in wild type cells. Slower life cycles of cells 

derived from these embryos were ascribed to imperfect inactivation of pRb. These 

findings suggest that cdk1 may be the only essential cell cycle cdk and that its kinase 

activity is sufficient for all events vital for proliferation. Indeed, upon serum-stimulation, 

mouse cdk2-/-cdk4-/-cdk6-/- cells entered the cell cycle and accomplished all steps 

necessary for S phase transition. In contrast, knock-down of cdk1 prevented S-phase 

entry. Accordingly, in vivo analysis of cdk1-/- mice revealed impaired cell division during 

embryogenesis (Santamaria et al., 2007). These data challenge the general perception 

of cdk1 as a mitosis-specific kinase (Fourest-Lieuvin et al., 2006; Stumpff et al., 2004).  
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1.6.1.8 Inhibitors of cyclin-dependent kinases 

Cyclin-dependent kinase inhibitors (CKIs) execute negative regulation of Cyclin-cdk 

activity (Sherr et al., 1999). They comprise two families:  

(1) INK4 proteins: p16, p15, p18, which inhibit cdk4 and cdk6 catalytic subunits   

(2) Cip/Kip family: p21, p27 and p57. Their action is more general, regulating 

function of kinases dependent on Cyclin D, Cyclin E and Cyclin A (Bartek et al., 

2001; Polyak, 2006; Sherr et al., 1999). 

The magnitude of inhibition by these proteins was demonstrated by infecting cells with 

normal pRb function, such as MT1A2, with adenoviral vectors carrying CKI genes. 

Ectopic expression of p16, p18, p21 or p27 resulted in arrested cell growth, aborted 

DNA synthesis and failure of pRb phosphorylation. Infection of pRb-deficient cells with 

the same adenoviral vectors, on the other hand, did not halt replication or induce cell 

growth. In vitro application of the CKI encoding adenoviruses resulted in delayed 

tumour formation in a mouse breast cancer model, the effect being strongest upon 

ectopic p27 expression. This was in accordance with previously described maximal 

occurrence of both p27 expression and cyclin-cdk complex activity (Schreiber et al., 

1999).  

 

1.6.1.9 p21  

The 165 aa protein p21, also referred to as WAF1/CIP1 and encoded by CDKN1A, is 

generally perceived as a regulator of proliferative effects. It was first described as a 

mediator of p53-induced cell cycle arrest (el-Deiry et al., 1993). In the meantime, a 

plethora of functions has been ascribed to p21, both p53-dependent and -independent 

(Brugarolas et al., 1995; Deng et al., 1995; Gartel et al., 2000). The primary pathway of 

p21-mediated growth inhibition is based on inhibition of cdk1 and cdk2, by disrupting 

their direct interaction with proteins that bind to cyclin/cdk complexes, such as 

members of the pRb family or cdc25C (Abbas et al., 2007; Mandal et al., 1998; Saha et 

al., 1997; Shiyanov et al., 1996; Smits et al., 2000; Zhu et al., 1995; Zhu et al., 2005). 

The latter, a phosphatase, de-phosphorylates cdk1 bound to Cyclin B, thus allowing 

entry into mitosis (Saha et al., 1997). Furthermore, it has recently been shown that 

cdk1/2-Cyclin A and cdk1-Cyclin B are both de-phosphorylated and activated by 

cdc25A. Cdc25B, on the other hand, can only activate cdk1-Cyclin B (Ray et al., 2008).  

 

p21 also exerts cell cycle-arresting function in a cdk-independent manner by inhibition 

of PCNA. By this mechanism, p21 interferes with PCNA-dependent DNA polymerase 

activity, preventing DNA replication and modulating PCNA-regulated DNA repair 

(Moldovan et al., 2007; Mortusewicz et al., 2005).  However, the regulatory activity of 
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p21 goes beyond protein-protein interactions. Gene array studies conducted by Chang 

et al. indicated that high levels of p21 correlate with the suppression of cell cycle 

regulatory and senescence-associated genes (Chang et al., 2000). Although, to some 

extent, this will be a consequence of cdk inhibition, p21 also acts more directly as 

transcription regulator. It is able to bind and inhibit transcription factors E2F, STAT3 

and Myc (Coqueret et al., 2000; Delavaine et al., 1999; Kitaura et al., 2000). Equally, it 

mediates p53-dependent repression of cdc25C, cdk1, chk1, Cyclin B1, TERT and 

survivin expression (Lohr et al., 2003; Shats et al., 2004).   

 

On the other hand, p21 functions as an activator of transcription by inducing 

transcriptional co-activators p300/CBP (Snowden et al., 2000). This mechanism is also 

the basis of a positive feedback loop, by which p21 perpetuates its own expression 

(Ait-Si-Ali et al., 1998). Furthermore, p21 has both positive and negative effects on 

DNA repair. Inhibiting cell cycle progression allows more time for repair processes. On 

the other hand, by binding PCNA, p21 prevents the association of other PCNA-binding 

proteins involved in DNA repair (Moldovan et al., 2007; Mortusewicz et al., 2005; 

Walsh et al., 2006). Also, direct interaction of p21 with PCNA has been show to inhibit 

PCNA-dependent mismatch repair and base excision (Tom et al., 2001; Umar et al., 

1996).  

   

Apoptosis is another process partially modulated by p21. However, the roles attributed 

to the CKI are conflicting. Various publications conclude that p21 acts as an inhibitor of 

apoptosis. In some cancer cell lines, downregulation of p21 sensitised them to 

apoptosis after exposure to genotoxic stress (Detjen et al., 2003; Mahyar-Roemer et 

al., 2001; Tian et al., 2000). This observation may be based on senescence-preventing 

effects of p21 loss, as in cell cycle-arrested cells, apoptosis is not induced(Han et al., 

2002). Moreover, p21 binds and inhibits apoptotic pathway members, such as pro-

caspase 3, caspases 8 and 10, stress-activated protein kinases (SAPKs) and mitogen-

activated protein kinase kinase kinase 5 (MAP3K5) (Dotto, 2000; Roninson, 2002; 

Suzuki et al., 2000). On a transcriptional level, p21 suppresses expression of several 

pro-apoptotic genes by inhibiting their transcription factors Myc and E2F, and it induces 

upregulation of anti-apoptotic genes (Dotto, 2000; Roninson, 2002).  

 

In contrast, Qin et al. have reported enhanced cisplatin-induced apoptosis in various 

cancer cell lines when over-expressing p21 (Qin et al., 2001). Whilst Gartel et al. 

conclude that p21 may promote apoptosis in a p53-dependent and –independent 

manner by upregulating pro-apoptotic BAX and activating TNF-death receptor family 
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members. Also, p21 effects on DNA damage repair may enhance apoptosis (Gartel, 

2005). Yet, the underlying mechanisms remain unclear. 

 

Effects of p21 are mediated by its N-terminal domain, which is necessary and sufficient 

for interaction with and inhibition of Cyclin/cdk activity. This domain is common to all 

three members of the Cip/Kip family (Watanabe et al., 1998). Furthermore, p21 

possesses a unique C-terminal domain, facilitating PCNA-binding and consequences 

thereof (Sherr et al., 1999).  

 

Activity of p21 is regulated on transcriptional and post-translational level. A multitude of 

stimuli induce p21 upregulation via transcription factors like SP1, SP3 or STATs 

(Bellido et al., 1998; Chin et al., 1996; Matsumura et al., 1997; Xiao et al., 1999). 

Expression of CDKN1A can be controlled in a p53-dependent and –independent 

fashion. In response to cellular stress, the primary line of p21 regulation is via p53 

(O'Reilly, 2005). CDKN1A possesses two highly conserved p53-specific binding sites in 

its promoter region (el-Deiry et al., 1995). Cellular stress, comprising not only DNA 

damage, but also hypoxia or nutrient depletion, induces p53 activity (Hammond et al., 

2002; Nelson et al., 1994; Zhan et al., 1993): Stress-activated ataxia telangiectasia 

mutated (ATM) kinase phosphorylates p53 and enhances its transcriptional potential 

further by promoting the association of p300, a known co-activator of CDKN1A 

expression (Banin et al., 1998; Canman et al., 1998; Helt et al., 2001). In normal, non-

immortalised cells, p53-independent activation of p21 expression by Ras is mediated 

by E2F and via the HRAS-RAF-MAPK pathway (Gartel et al., 2000; Gartel et al., 1999; 

Woods et al., 1997). As described earlier, co-activator p300/CBP induces transcription 

of CDKN1A downstream of various stimuli, amongst which is p21 itself (Ait-Si-Ali et al., 

1998; Gartel et al., 1999).   

 

Post-translational control of p21 is equally important as transcriptional regulation 

(Abbas et al., 2009). In cycling cells p21 is very unstable, with a half life between 20-60 

minutes. Newly synthesised protein is protected from the proteasome by binding of 

heat shock protein 90 (HSP90) (Jascur et al., 2005). At specific stages during the 

normal cell cycle, proteolysis of p21 is mediated by E3 ubiquitin ligase complexes 

(Bornstein et al., 2003; Sarmento et al., 2005; Wang et al., 2005; Yu et al., 1998). 

However, these complexes mark p21 for proteasomal degradation only if it is bound to 

PCNA, Cyclin E/cdk2, Cyclin A /cdk2, Cyclin A/cdk1 or Cyclin B/cdk1 (Abbas et al., 

2008; Amador et al., 2007; Kim et al., 2008; Nishitani et al., 2008). Unbound p21, at 

least in some cell lines, is targeted for ubiquitin-independent degradation by direct 
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binding to a subunit of the proteasome, other than the ubiquitin-binding subunit (Chen 

et al., 2007; Li et al., 2007b; Sheaff et al., 2000; Touitou et al., 2001). Stabilisation of 

p21 can be conferred by binding of Cyclin D/cdk4 or cdk6 complexes (Coleman et al., 

2003). Ubiquitination of p21 is inhibited by signalling molecules such as TGF-β, BMP2 

or JNK1 (Beck et al., 2007; Fan et al., 2007; Gong et al., 2003). It has been shown 

that, in order to reach the high p21 protein levels required for DNA damage-induced 

cell cycle arrest, stabilisation of the protein is required. Transcriptional upregulation 

alone is not sufficient (Jascur et al., 2005).  

 

Stabilisation, as well as cellular localisation, of p21 is controlled by phosphorylation 

through various kinases (Child et al., 2006). A table correlating the phosphorylation 

sites on p21 with the kinases targeting them and the consequences of phosphorylation 

is shown below (Table 1.3). 

 

Phosphorylation 

site 

Kinase Effects Ref. 

Thr57 GSK3-β in serum-stimulated endothelial 

cells: degradation of p21 

(Rossig et al., 

2002) 

Thr145 AKT1 disruption of PCNA binding; 

cytoplasmic accumulation 

(Li et al., 

2002; Rossig 

et al., 2001; 

Zhou et al., 

2001) 

Ser130 Cyclin E 

/cdk2 

marking for ubiquitination and 

proteolysis 

(Bornstein et 

al., 2003) 

Ser146 AKT1 stabilisation of p21 and cell survival (Li et al., 

2002) 

Ser146 PKC stabilisation of p21 

or: degradation of p21  

(probably dependent on cellular 

context) 

(Oh et al., 

2007; Scott et 

al., 2002) 

 

Table 1.3 Phosphorylation sites on p21. Along with the phosphorylation site, the 

table shows the kinases targeting it and the consequences of phosphorylation at this 

specific site. 
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Localisation of p21 is crucial for its functions. Whilst growth-inhibitory activities require 

nuclear localisation, anti-apoptotic and proliferative functions, for example, are 

commonly linked to cytoplasmic accumulation (Child et al., 2006). In the cytoplasm, 

p21 binds and inhibits apoptotic proteins and promotes proliferation by stabilising 

Cyclin D/cdk4 complexes and alleviating cdk2 and PCNA inhibition in the nucleus 

(Dotto, 2000; LaBaer et al., 1997; Roninson, 2002; Suzuki et al., 2000). 

 

In this context, cytoplasmic p21 is frequently found in human cancers and correlates 

with aggressiveness and poor prognosis (Abbas et al., 2009).   

 

1.6.1.10 Viruses and p21 

Interestingly, viruses commonly modulate p21 stability and activity in order to regulate 

progression of the cell cycle and apoptosis. Human papilloma virus (HPV) E6 protein 

and SV40 TAg from simian virus 40 downregulate p21 in a p53-dependent manner to 

enhance apoptosis (Lane et al., 1979; Werness et al., 1990). This may be by targeting 

transcriptional co-activators p300/CBP for degradation (Zimmermann et al., 1999).  

Similarly, adeno-associated virus 2 (AAV2) promotes p21 down-modulation in HPV-

infected cells. However, AAV2 prevents further progression through S phase to 

maximise its own replication (Alam et al., 2006). Hepatitis C virus (HCV) is also able to 

inhibit p21. Surprisingly, the virus did not alter mRNA levels or degradation patterns of 

p21. This suggests that inhibition takes place on a post-transcriptional level (Yoshida et 

al., 2001). 

 

Regulation of p21 expression by adenovirus can be both promotive and repressive. By 

binding p300/CBP, E1A prevents TGF-β expression and, subsequently, DNA damage-

activated p21 expression (Datto et al., 1997; Steegenga et al., 1996). In cancer cells, 

however, p21 expression is known to be induced by the 13S isoform of adenovirus 

E1A (Najafi et al., 2003).   

 

1.6.1.11 Role of p27 in the Rb pathway 

p27 may be a means to fine-tune events during cell cycle progression (Smartt et al., 

2007). As with pRb, p27 exerts tumour suppressor function by impeding S phase entry. 

It does so by binding to Cyclin D/cdk4/6 and Cyclin E/cdk2 complexes, thereby 

inhibiting cdk kinase activity (Aleem et al., 2005). Various findings imply a close link 

between pRb and p27. A phenotypical study of p27-deficient mice described 

development of tumours in the pituitary gland, thus bearing resemblance to pRb-

deficient mice (Polyak, 2006). Polyack et al. interpreted this as an indication of 
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negative regulatory effect of p27 over pRb. However, in a more recent publication, Park 

et al. suggest that cell cycle control through pRb and p27 may be of mutual nature. 

Double knock-out mice, lacking pRb and p27, suffer from earlier and more aggressive 

pituitary tumours than animals lacking either one of the tumour suppressors. The same 

phenomenon was observed in thyroid c cell carcinomas. It is possible that pRb and p27 

prevent cell cycle progression via a partially overlapping, albeit not identical, pathway 

(Park et al., 1999). p27 shares functions, pathways, structural features and regulators 

with p21 (Coqueret, 2003; Lacy et al., 2005; Sharma et al., 2005). Like its fellow 

Cip/Kip family member, p27 is induced in a p53-dependent manner by cellular stress 

but also other signals, such as progesterone (Green et al., 2001; Hsu et al., 2008). 

Both p21 and p27 stabilise Cyclin D/cdk4 complexes at low levels (Cheng et al., 1999; 

LaBaer et al., 1997). Both are targeted for degradation by the same ligases (Sarmento 

et al., 2005). 12S E1A binds and inhibits p21 and p27 (Chattopadhyay et al., 2001; 

Mal et al., 1996). They have been described as mutual negative prognostic markers in 

rectal cancer (Schwandner et al., 2002). Yet, there are examples of differential 

regulation of the two CKIs. In hepatocyte and keratinocyte differentiation, p27, unlike 

p21, has been shown to have no effects on differentiation (Di Cunto et al., 1998; Ilyin et 

al., 2003). In contrast to p21, mitogenic stimulation resulted in down-modulation of p27 

in several cell types, whilst levels increased after anti-mitogenic signalling (Agrawal et 

al., 1995; Nourse et al., 1994). Moreover, although all three Cip/Kip family members 

have some functional structures, such as the N-terminal domain, the ability to bind pRb 

described for p21 and p57 is absent p27 (Nakanishi et al., 1999; Polyak et al., 

1994a; Poon et al., 1995).   

 

1.6.2 Rb pathway and cancer 

Considering the strong regulatory impact of each protein associated with the Rb 

pathway on cell cycle progression, there is reason to expect that deregulation of any 

such factor could lead to tumourigenesis  (Viallard et al., 2001; Yamasaki, 2003).  

Indeed, as listed below, altered function of most Rb pathway components has been 

found associated with cancer: 

 

1.6.2.1 pRb 

pRb is the ultimate guard of S phase entry and DNA replication. It was the first tumour 

suppressor to be cloned (Weinberg, 1995) and was the model system for Knudson’s 

“Two-Hit Hypothesis”, where in the case of tumour suppressors two mutational events 

are required for tumourigenesis to occur (Knudson, 1971). In keeping with this 
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hypothesis, it has been shown that hereditary mutations in one pRb allele predispose 

an individual to the development of different types of cancer (Kleinerman et al., 2005). 

Indeed, disruption of pRb function has been found in nearly all tumours (Malumbres et 

al., 2008). In most cases, disruption is caused by malfunctioning of the protein, rather 

than a loss of the wild type gene, per se (Bosco et al., 2007). Interestingly, low-level 

pRb expression was found to increase proliferation only during early ovarian 

tumourigenesis. At later stages carcinomas seemed to have become independent of 

pRb expression (D'Andrilli et al., 2004). 

 

1.6.2.2 Cyclins, cdks and their inhibitors 

Deregulation of cyclins and cdks is very common in human cancers (Deshpande et al., 

2005).Their overexpression induces non-scheduled proliferation and division, 

eventually resulting in further genomic instability (Malumbres et al., 2008). Gene 

mutations often cause structural modifications on the protein-level, eliminating 

interactions with inhibitors, and thus leading to permanent activation of kinase function 

(Stevens et al., 2003). In many solid tumours, Cyclin D1 overexpression emerged as a 

marker for poor prognosis (Viallard et al., 2001). Overexpression of Cyclin D is 

believed to play a critical role in ovarian tumourigenesis, alongside that of cdk4 

(D'Andrilli et al., 2004). Abnormally high levels of cdk4, as well as activating mutations 

of the protein, are frequently found in melanomas and malignant gliomas and 

approximately 15% of ovarian cancers (Bartkova et al., 1996; Muthusamy et al., 2006). 

While overexpressed Cyclin E is commonly found in malignancies, particularly in 

ovarian and breast tumours, its functional partner, cdk2, is dysregulated in only 6% of 

ovarian carcinomas (D'Andrilli et al., 2004). Among CKIs, p16, p21 and p27 are most 

frequently altered kinase inhibitors in cancers.  Solid tumours and leukaemias often 

feature p16 gene deletions. p21 overexpression has been regularly identified in various 

types of tumours, such as ovarian, gastric, tonsillar, pancreatic or bladder cancers 

(Hafkamp et al., 2009; Kim et al., 2003a; Koff, 2006; Korkolopoulou et al., 2000; 

Ralhan et al., 2000). Equally, p21 down-modulation has been frequently detected in 

cancers (Bukholm et al., 2000; Edmonston et al., 2000; Ogino et al., 2006; Polyak et 

al., 1996). Furthermore, p21 can be a marker of both good and poor prognosis. The 

difference is likely to arise from the heterogeneity in intracellular localisation of p21, 

tumour cell type and expression of other oncogenes. 

 

Altered p27 expression occurs in many tumours (Koff, 2006; Ozkara et al., 2004; 

Yamamoto et al., 2009). Although somatic mutations of the cdk inhibitor are rare, 

hemizygous or post-transcriptional loss are driving factors in tumourigenesis (D'Andrilli 
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et al., 2004). Usually, during tumour development, mRNA levels of p27 are low, yet not 

fully ablated (Koff, 2006; Malumbres et al., 2008). In colon carcinomas reduced protein 

levels of p27 are known to predict poor patient clinical outcome (Smartt et al., 2007). In 

contrast, in rectal cancer, expression of p27, alongside p21, has been described as a 

prognostic marker of late clinical stage and high incidence of distant metastases 

(Schwandner et al., 2002). Again, the specific role of the CKI may be context-

dependent. 

 

The vast range of mutations in the multitude of cell cycle regulatory components 

complicate treatment with current technologies. It is therefore crucial to clarify 

mechanisms involved in normal and abnormal cell proliferation, in order to turn these 

hurdles into points of attack for novel therapeutic approaches.  

 

1.6.3 E2F and the Rb pathway in ovarian cancer 

Cell cycle deregulation is a major contributor to cancer development (Hanahan et al., 

2000). A microarray-based study in high-grade serous ovarian carcinomas and lower-

grade serous borderline tumours indicated over-expression of E2F and its target 

genes. The authors suggested this was a result of global cell cycle deregulation in 

high-grade serous carcinomas (De Meyer et al., 2009).  

 

Many studies have been conducted, investigating prognostic potential of Rb pathway 

members in ovarian cancer. In many cases, there are conflicting reports on the 

prognostic nature of these cell cycle regulators. In one study, abnormalities in pRb 

were described as rare, whilst loss of p16 protein was found to occur in 20% of 

tumours. In this case, the loss of p16 appeared to be based on methylation, as gene 

mutations and deletions were not commonly detected (Hashiguchi et al., 2001). In 

contrast, another study in late-stage epithelial ovarian carcinomas suggested low p16 

and pRb levels to be independent markers of poor prognosis (Kommoss et al., 2007). 

Dong et al., on the other hand, claimed that in early stage ovarian tumours, low p16 

levels correlate with high pRb abundance, whilst most advanced tumours express both 

proteins at low levels (Dong et al., 1997). Comparison of 165 patients with ovarian 

cancer indicated a correlation between high levels of p21 expression and early tumour 

stages (Schmider-Ross et al., 2006). Interestingly, another study found p21 to be an 

independent poor prognostic marker in p53-negative ovarian carcinomas. At the same 

time, p21 appeared to predict survival advantage in ovarian tumours with wild-type 

p53. The authors suggest such dual identity may be dependent on p21 expression 

levels (Rose et al., 2003). In keeping with their findings, in stage 1-2 endometrioid 
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ovarian cancer, a combination of increased survivin and p53 and low p21 levels 

appeared to be a poor prognostic marker (Steinbakk et al., 2009). Comparison of clear 

cell and serous carcinomas of the ovary shows that the prognostic nature of p21 is also 

dependent on the ovarian cancer subtype. In the latter, low p21 expression is 

perceived as a poor prognostic marker (Buchynska et al., 2007). In contrast, clear cell 

carcinomas, known to be more resistant to chemotherapy than other ovarian 

carcinomas, and generally associated with poorer prognosis, express high levels of 

p21 . 

 

Schmider-Ross, et al., described p27 as a positive marker of disease-free and overall 

survival (Schmider-Ross et al., 2006). However, another report suggests that the 

intracellular localisation of p27 may be crucial. Therefore, predominantly cytoplasmic 

localisation of p27 predicts poorer prognosis, particularly in late-stage ovarian cancer 

(Rosen et al., 2005). In epithelial ovarian carcinomas, over-expressed Cyclin E and 

cdk2, combined with the loss of p27 function, has been found to correlate significantly 

with malignancy, as compared to borderline or benign tumours (Sui et al., 2001). 

Aberrant expression of another Cyclin D1, was also significantly related to 

aggressiveness and predicted poor prognosis in epithelial ovarian cancer (Bali et al., 

2004). In addition, a combination of low levels of p21 and p27 with high p53 and Cyclin 

D1 expression predicted poor clinical outcome in serous carcinomas (Bali et al., 2004).    

 

Overall, it may be necessary to consider cell cycle regulators in combination, rather 

than as single markers. Also, in view of post-translational regulation, functionality of 

factors should be studied on mRNA and protein level.  
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1.7 Aims of this study 

 

● Identification of biomarkers in ovarian cancer that predict cytotoxic efficacy of   

   oncolytic adenovirus dl922-947. 

 

● Evaluation of the Rb pathway, as a whole, as well as of individual Rb pathway   

   members, as potential predictive biomarker candidates for response to the oncolytic   

   adenovirus dl922-947.  

 

● Identification of further biomarkers of response to dl922-947 beyond the Rb pathway   

   and cell cycle control. 
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2.1 Cell lines 

2.1.1 Human ovarian cancer cell lines  

A2780 and A2780CP were kindly provided by Dr Aris Eliopoulos (University of 

Birmingham, UK) and IGROV-1 by Dr M Ford (Glaxo Wellcome Research and 

Development, Stevenage UK). CAOV3 and OVCAR5 were obtained from the American 

Type Culture Collection (ATCC). OVCAR4 were obtained from Dr R. Camalier (NCI-

Frederick, MD, USA). SKOV3ip1 were kindly provided by Dr Janet Price (University of 

Texas-MD Anderson Cancer Center, Texas). SKOV3 cells were obtained from Cancer 

Research UK Cell Services (Clare Hall, South Mimms, Hertfordshire, UK). TOV21G 

cells came from Prof Fran Balkwill (Centre for Cancer and Inflammation, Institute of 

Cancer, Barts and The London School of Medicine and Dentistry, London, UK). 

Ovarian cancer cell lines were maintained in Dulbecco’s modified Eagle medium plus 

10% heat-inactivated foetal calf serum and 100μg/ml penicillin/streptomycin (10% FCS 

E4).  

 

2.1.2 Other human cell lines 

JH293, 293, MRC5 and MRC5-VA cells were obtained from the Cancer Research UK 

Central Cell Services (Clare Hall, Hertfordshire, UK) and were maintained in 10% FCS 

E4. hTERT-immortalised human ovarian surface epithelial cells IOSE20, IOSE21 and 

IOSE25, as well as pre-transformed TOSE1 and TOSE4, were also kindly provided by 

Prof F Balkwill and were maintained in NOSE-CM medium, supplemented with human 

epidermal growth factor (10ng/ml), hydrocortisone (0.5μg/ml), insulin (5μg/ml), bovine 

pituitary extract (4μl/ml), and 15% FCS (Li et al., 2004).  

 

2.2 Adenoviral mutants 

dl922-947 was provided by Dr. D. Kirn (Kirn Oncolytic Consulting, Mill Valley, USA) 

and is deleted in the region encoding amino acids 122-129 of the E1A CR2 domain, as 

well as in E3 (Heise et al., 2000). Wild type adenovirus 5 (Ad5 WT) was kindly provided 

by Dr. W.S. Wold (St. Louis University, St. Louis, MO, USA). In dl922-947, the 745bp 

deletion in E3 lies between base pairs 30,005 and 30,750 and is substituted for by a 

642bp non-coding DNA fragment. Ad-CMV-GFP (Ad-GFP) was kindly provided by V. 

Stoll (Cancer Research UK, Charterhouse Square, London, UK) and is deleted in E1 

and E3B with green fluorescent protein (GFP) in the E1 position under the control of 

the cytomegalovirus (CMV) immediate early promoter.  
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2.3 Virus amplification  

For virus amplification, 293 cells, grown in 10% FCS E4 on a 15cm-plate, were infected 

with 150µl concentrated virus stock. When clear cytopathic effect was observed 48-72 

hours (hrs) later, cells were harvested in their own medium after pipetting up and down 

to ensure detachment of all cells and then subjected to three rounds of freeze/thawing 

(liquid nitrogen/37˚C). After centrifugation at 1500xg to remove cell debris, this viral 

seed stock was used to infect 293 cells in 10% FCS E4 in 20 15cm-plates. To each 

plate, 1ml viral seed stock was added once 293 cells were 80% confluent. The virus 

infection was maintained in 5% FCS E4 until cytopathic effect emerged 48-72 hrs later. 

Cells were harvested as above and centrifuged for 10 minutes (min) at 2000xg after 

which the supernatant was discarded and the pellet resuspended in 2ml ice-cold 0.1M 

Tris pH 8.0 per 15cm plate. After three cycles of snap freezing in liquid nitrogen, 

followed by immediate thawing at 37°C, the virus suspension was centrifuged for 

10min at 6000xg prior to separation on caesium chloride (CsCl) gradients. 

 

CsCl gradients were prepared by placing 11.4ml of a 1.25g/ml CsCl solution into an 

ultra-clear, 25 x 89mm centrifuge tube (Beckman Coulter Ltd, Bucks, UK) and carefully 

under-layering 7.6ml of a 1.4g/ml CsCl solution. The virus solution was then layered 

onto the gradient and centrifuged at 25,000rpm for 2hrs at 15°C using a Beckman 

SW28 swing-out rotor in an Optima LE-80K ultracentrifuge (Beckman Coulter Ltd, 

Bucks, UK). After the ultracentrifugation, 3 bands were visible; an upper band of 

cellular debris, a central band of empty virus particles and a lower band of successfully 

packaged viable adenoviral particles. The ultracentrifuge tube was placed in a clamp 

and pierced using a 19-gauge needle fitted to a 5ml syringe. The lower virus band was 

aspirated and layered onto 3ml of a 1.35g/ml CsCl solution in a 31 x 51mm ultra-clear 

centrifuge tube (Beckman Coulter Ltd, Bucks, UK). The tubes were centrifuged at 

40,000rpm for 15hrs at 15°C using a Beckman SW55 swing out rotor in an Optima LE-

80K ultracentrifuge (Beckman Coulter Ltd, Bucks, UK). The virus band was then 

removed with a 19-gauge needle as described above, made up to a total volume of 5ml 

with TSG (90ml Solution A [150mM NaCl, 1mM Na2HPO4, 5mM KCl, 30mM Tris Base], 

450µl Solution B [200mM MgCl2, 180mM CaCl2] and 38.5ml Glycerol) and then injected 

into a 3-12ml Slide-a-Lyzer cassette (molecular weight cut off 3500Da [Pierce 

Biotechnology Inc., Il., USA]). This cassette was then placed in the float provided and 

placed in a 5l beaker containing 2l of dialysis solution (10mM Tris pH 7.4, 1mM MgCl2, 

150mM NaCl, 10% Glycerol in distilled water). The beaker was then placed on a 



 

 
72 

magnetic stirrer in a cold room and the virus left to dialyse for 24hrs. Following dialysis, 

the virus was removed using a syringe, aliquotted and stored at –80°C. 

 

2.4 Viral particle count 

For viral particle count determination, viral lysis buffer (0.1% SDS, 10mM Tris pH 7.4 

and 1mM EDTA in distilled water) was used. 100µl of virus stock was added to lysis 

buffer to make a total volume of 200µl. The samples were incubated at 55°C for 10min 

and then 300µl of distilled water was added. Absorbance of the sample was read at 

260nm after a mixture of 200µl lysis buffer and 300µl of distilled water was used to 

blank the machine. The number of viral particles was then calculated using the 

following formula: 

 

 

    Particles/ml = OD260 x dilution factor (in this case 5)        

     9.09x10-13  

 

The coefficient factor 9.09 x 10-13 was calculated from measurements of virion total 

protein and OD260  (assuming a molecular mass of adenovirus (Ad5)  DNA of 2.3x107 D 

and also that 87% of the dry weight of Ad5 is protein) (Mittereder et al., 1996). 

 

2.5 Viral titration by TCID50 assay 

Infectious virions were quantified by the limiting dilution titration assay, TCID50 (tissue 

culture inhibitory dose, 50%). JH293 cells were seeded in 96-well plates, at least three 

plates for each sample, at 1x104 cells per well in 200µl medium per well. 24hrs after 

plating the cells, adenovirus test samples were diluted in DMEM and 22µl was added 

to each well of the second row of each plate. Serial dilutions within the same plate 

were made, by taking 10% of the volume from each well of the second row (22µl) and 

adding it to the third row and so on until the final row. The top row of each plate was 

left uninfected. The JH293 cells were then scored for cytopathic effect (CPE) 11 days 

post infection. The observed number of wells displaying CPE at each dilution were 

counted and the TCID50 calculated with an established formula (O'Reilly et al., 1994). 

 

    

  TCID50  = 101- d (S - 0.5) 

 

where   d= Log 10 of the dilution at which CPE is first seen  
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             S= the ratio of the number of wells per row with CPE : number without   

                  CPE  

This gives a value for 22µl of virus and is divided by 0.022 to give TCID50/ml.  

Since TCID50 overestimates viral titre by 0.7 log compared to plaque assay, TCID50/ml 

is converted to pfu/ml using the following formula: 

 

 

Pfu/ml = 10n-0.7 

 

where                                  n=logTCID50/ml 

The titration is only valid if the lowest dilution gives greater than 50% CPE, the highest 

dilution gives less than 50% CPE and the negative controls show none. 

 

2.6 Virion detection in serum samples by TCID50 

In order to quantify infectious virion titres in murine plasma samples, JH293 cells were 

seeded onto 96-well plates at 104 cells per well in 10%FCS E4 medium. The following 

day. Serum samples were diluted 1:10 in 0.1M Tris, pH8.0, prior to use for limiting 

dilutions on JH293 cells and average viral titres/ml assessed as above.  

 

2.7 Sensitivity of cells to adenoviral cytotoxicity  

Survival of human cell lines following viral infection was estimated with an MTT (3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. When MTT (Sigma 

Chemicals Co., Dorset, UK) is dissolved, its tetrazolium ring can be cleaved to form an 

insoluble purple formazan by dehydrogenase enzymes such as those found in the 

mitochondria of living cells (Mosmann, 1983). This converted formazan dye can be 

solubilised with DMSO (dimethyl sulfoxide; Fisher Scientific, Loughborough, UK) and 

the absorbance of the purple solution measured at 560nm on a plate reader gives an 

estimate of cell number. 

 

Cell lines were plated on 24-well plates at 1 x 104 cells per well. 24hrs later, cells were 

infected in triplicate with dl922-947 at a range of MOIs in 500µl serum-free medium. 

Three hours later, cells were refed by adding 500µl of 10% FCS -containing medium. 

Up to 144hrs post transfection, 100µl of a 5mg/ml solution of MTT in PBS was added to 

each well. After 3hrs incubation at 37°C the medium was discarded and the crystals 

dissolved in 0.5 - 1ml DMSO per well. Absorbance at 560nm was measured on a 

Victor3 Wallac 1420 multilabel counter (PerkinElmer LAS (UK) Ltd., UK) or 
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alternatively, 100µl per well of the crystal solution from each well were transferred to a 

well on a 96-well plate and the absorbance measured at 560nm with an Opsys MR 

microplate reader (Dynex Technologies Ltd, West Sussex, UK). The IC50 (inhibitory 

concentration, 50%), or concentration at which 50% of cells survived, was calculated 

using GraphPad Prism version 3 (GraphPad Software, San Diego, CA, USA). 

 

2.8 Infectability with adenoviral vectors 

2.8.1 Flow cytometry  

Flow cytometric analysis was used to evaluate infectability of cells. 5x105 cells were 

plated on 6cm-plates. 24hrs later, cells were infected with Ad-GFP, an E1 deleted 

adenovirus type 5 containing the green fluorescent protein gene driven by the 

cytomegalovirus (CMV) immediate early promoter at a multiplicity of infection (MOI) of 

either 5 or 50 pfu/cell. 24hrs post infection the cells were trypsinised, re-suspended in 

medium containing 10% FCS to inactivate the trypsin. Cell suspensions were 

centrifuged for 5min in an ALC multispeed PK121 centrifuge (ThermoScientific, 

Waltham, MA, USA) at 2000 rpm. After removal of the supernatant, the cell pellet was 

re-suspended in phosphate buffered saline (PBS) and then centrifuged for a further 

5min at 2000 rpm. The cells were washed once more with PBS and re-suspended in 

500µl PBS per sample. Samples were processed in a BD FACSCaliburTM cytometer 

(BD Biosciences, San Jose, CA, USA) using CellQuest software (Becton Dickinson, 

Oxford, UK) or FlowJo software 8.8.4 (Tree Star, Ashland, OR, USA) and GraphPad 

Prism version 3 (GraphPad Software, San Diego, CA, USA). Infectivity was determined 

after 10,000 total events were recorded. The percentage of GFP-positive cells was 

determined from the total event count. All experiments were carried out in triplicate.  

 

2.8.2 Quantitative PCR 

For quantitative PCR (qPCR) of viral DNA for assessment of infectability with dl922-

947, 5x105 cells were plated on 6cm-plates. 24hrs later, cells were infected with dl922-

947 at MOI 10pfu/cell in serum-free medium. Two hours later, cells were scraped into 

500μl cold PBS and frozen at -70°C. DNA was extracted from the collected cell 

samples using a QIAamp DNA Blood Mini Kit (Qiagen, Crawley, West Sussex, UK). To 

create a standard curve, the concentration of DNA from undiluted wild type adenovirus 

(provided by Dr Michelle Lockley, Centre of Molecular Oncology and Imaging, Institute 

of Cancer, Barts and The London, UK) was measured with a NanoDrop® ND-1000 

spectrophotometer (Wilmington, DE, USA). The standard curve for genomic DNA was 

created using wild type adenoviral DNA, according to instructions provided by Applied 
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Biosystems (Cheshire, UK). Briefly, the mass of DNA per haploid genome was 

calculated using the following formula: 

 

m = n x 1.096e-21 

 

where:   m= mass of haploid DNA 

   n= genome size in base pairs 

 

The concentration of genomic DNA needed to achieve the copy number of interest was 

calculated as follows: 

 

                                         copy number of interest x mass of haploid DNA 

concentration required =  

           (C2)                                  volume to be used per sample 

 

 

From the initial, measured (C1) and required (C2) DNA concentrations, and assuming 

a final volume (V2) of 100µl, the volume of stock DNA (V1) needed to obtain the 

highest concentration of DNA for the standard curve was calculated according to the 

following formula: 

 

    

 

 

Serial dilutions of this stock were prepared by 1:10 dilutions in nuclease free water 

(Ambion, Cambridgeshire, UK) as shown in Fig. 2.1. 

 

C1 x V1 = C2 x V2 
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Figure 2.1 Serial dilution of qPCR standard curve template DNA stocks. 

 
The DNA samples from infected cells were quantified using the NanoDrop® ND-1000 

spectrophotometer and diluted to a concentration of 100ng/µl in nuclease free water 

(Ambion, Cambridgeshire, UK). Primers and probes were purchased from Applied 

Biosystems (Cheshire, UK) and are listed in Table 2.1 below. Probes bind DNA 

between the two primers. Each probe is labelled with a reporter fluorophore at its 5’ 

end, as well as a quencher fluorophore at the 3’ end. The proximity of the two 

fluorophores quenches emitted fluorescence. During the PCR, polymerase extends 

DNA from the primers, fluorophores are cleaved off and the quencher effect is lost. 

Hence, a fluorescence signal is emitted, which can be detected by the PCR equipment. 

 

Variability due to pipetting errors were kept at a minimum  by quantifying E1A and 

hexon DNA simultaneously in each sample. 2µl template (viral DNA or DNA standard) 

and non-template control were mixed with 2X reaction buffer (TaqMan Universal PCR 

Master Mix, Applied Biosystems, Cheshire, UK) and 5µM each of forward primers, 

reverse primers and probes for both E1A and hexon. Samples were plated in triplicate 

on a 96-well-plate (Applied Biosystems, Cheshire, UK). The plate was then covered 

with an optical adhesive lid and the samples centrifuged briefly to remove air bubbles. 
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       A. 

 

 

 

 

 

 

            

 

 

      B. 

 

 

 

 

Table 2.1 Primers (A.) and probes (B.) used for quantitative PCR. 
 

The PCR reaction was carried out on a 7500 Real Time System (Applied Biosystems, 

Cheshire, UK) using the following program: 

 

  50°C for 2 min 

  95°C for 10 min  followed by: 

  95°C for 15 seconds 

  60°C for 60 seconds  for 40 cycles. 

 

Light emission from the relevant probe was detected by the 7500 System SDS 

Software (Applied Biosystems, Cheshire, UK). This is quantified as the cycle threshold 

(CT), or the number of PCR cycles needed for emission to reach a pre-determined 

level. The software then constructs a curve for the DNA standards in which CT is 

plotted against log DNA copy number. A slope of -3.3 indicates 100% PCR efficiency, 

in which there is a tenfold increase in PCR product every three cycles. Slopes within 

the range -3.1 to -3.6, representing PCR efficiency of greater than 90%, are acceptable 

according to publications in the field (http://www.dorak.info/ genetics/glosrt.html). From 

this standard curve, the software quantified DNA copy number for each sample.  

 

 5’ Primer sequence 

E1A 5’-CCACCTACCCTTCACGAACTG-3’ 

Hexon 5’-AGCGCGCGAATAAACTGCT-3’ 

 3’ Primer sequence 

E1A 5’-GCCTCCTCGTTGGGATCTTC-3’ 

Hexon 5’-AGGAGACCACTGCCATGTTGT-3 

Dye Probe Sequence 

VIC 5’-ATGATTTAGACGTGACGGCC-3’ 

6-FAM 5’-CCGCCGCTCCGTCCTGCA-3’ 
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2.9 Protein expression 

5x105 cells were seeded onto 6cm-plates. For viral protein, cells were either mock-

infected or infected at MOI 10pfu/cell with the relevant virus after 24hrs. Up to 144hrs 

later, cells were washed twice with cold PBS and then scraped into 200µl per plate of 

Western lysis buffer (150mM NaCl, 50mM Tris Base, 0.05% SDS, and 1% Triton X 

100). Samples were sonicated, incubated on ice for one hour, then centrifuged at 

6000rpm for 5min and the supernatants stored at –20°C.  

 

2.9.1 Protein concentration evaluation 

The protein concentration of cell lysates was measured using the DC protein assay 

(Bio-Rad, CA, USA). Dilutions of protein ranging from 0.1mg/ml to 1.0 mg/ml were 

made using bovine serum albumin (BSA, Sigma Chemicals Co., Dorset, UK) as 

positive protein standard controls. Protein lysates were first diluted 1:5 with Western 

lysis buffer. Reagent A’ was prepared by adding 20µl Bio-Rad reagent S to 1ml Bio-

Rad reagent A. To each 5µl of protein standard or cell lysate, 25µl A’ and 200µl Bio-

Rad reagent S was added. A total of 230µl of this mixture was added per well of a 96-

well plate, with protein standards being measured in duplicate and protein lysates in 

triplicate. The plate was incubated at room temperature for 10 min and then the 

absorbance measured at 630nm with an Opsys MR microplate reader (Dynex 

Technologies Ltd, West Sussex, UK). The absorbance of the protein standards was 

used to construct a standard curve and the equation for this line was used to calculate 

the protein concentrations of the cell lysates. 

 

2.9.2 Western blot analysis (Immunoblotting) 

10% to 15% denaturating SDS polyacrylamide gel electrophoresis (SDS PAGE) gels 

were poured as shown in Table 2.2. Once set, a stacking gel was poured on top (Table 

2.2). In separate 1ml tubes, up to 30µg/lane of the protein lysates were mixed with 

dH2O and 2x loading buffer (50mM Tris, 4% SDS, 10% Glycerol, 5% Mercaptoethanol 

and 0.01% Bromophenol Blue) to a total volume of 20-30µl/lane. Samples were boiled 

on a heating block at 100°C for 5 min, then transferred to ice and centrifuged briefly 

before loading. Gels were prepared with a Hoefer SE-245 Western blot system 

(FisherScientific, Pittsburgh, PA). Electrophoresis took place at 110 -120V for 90 – 120 

min in 1X running buffer diluted from a 10X stock (30.2g Tris Base, 94g Glycine and 

100ml 10% SDS in dH2O at total volume of 1 litre). Molecular weight rainbow markers 

(Amersham Biosciences, Bucks, UK) were loaded alongside the protein samples to 

allow size comparison of bands. Proteins were transferred onto nitrocellulose 
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membranes (Amersham Biosciences, Bucks, UK) using a semi-dry transfer system 

(Trans-Blot, Bio-Rad, CA, USA), set at 20V for 45 -60 min, in the presence of transfer 

buffer (39mM Glycine, 48mM Tris Base and 20% Methanol in dH2O at total volume of 1 

litre). 

 

Membranes were blocked with a 4% solution of non-fat milk protein in a solution of 

0.1% Tween 20 (Sigma Chemicals Co., Dorset, UK) in PBS (0.1% Tween/PBS) for at 

least one hour at room temperature (RT) or over night (o/n) at 4°C. The primary 

antibody was diluted between 1:1000 and 1:2000 in a 1.5% solution of BSA (Sigma 

Chemicals Co., Dorset, UK) in 0.1% Tween/PBS and incubated with the membrane at 

least 2hrs at RT or at 4°C overnight. Primary antibody was removed by three 

sequential washes with 0.1% Tween/PBS for 5, 10 and 15 min. Horseradish 

peroxidase-conjugated secondary antibody was diluted 1:2000 with a 1.5% solution of 

BSA (Sigma Chemicals Co., Dorset, UK) in 0.1% Tween/PBS and incubated with the 

membrane for one hour at RT. The three wash steps were repeated after removal of 

the secondary antibody. Details of the antibodies used are listed in Table 2.3, below. 

 

Reagent 10% 15% Stacking 

gel 

Water 4.0ml 2.3ml 3.4ml 

30% Proto-Gel 

(Kimberley Research Hull UK) 

3.3ml 5.0ml 0.83ml 

1.5M Tris (pH 8.8) 

(Cancer Research UK, Clare Hall, UK) 

2.5ml 2.5ml - 

1M Tris (pH 6.8) 

(Cancer Research UK, Clare Hall, UK) 

- - 0.63ml 

10% SDS 

(Bio-Rad, CA, USA) 

0.1ml 0.1ml 0.05ml 

10% Ammonium persulphate 

(Sigma Chemicals Co., Dorset, UK) 

0.1ml 0.1ml 0.05ml 

TEMED 

(N,N,N’,N’- Tetramethylethylenediamine) 

(Sigma Chemicals Co., Dorset, UK) 

 

0.004ml 

 

0.004ml 

 

0.005ml 

 

Table 2.2 Components of SDS PAGE resolving (10%, 15%) and stacking gels. 

Reagent, suppliers and volumes are listed. 
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The chemiluminescent detection of horseradish peroxidase-conjugated secondary 

antibodies was performed by ECL Plus Detection reagent (Amersham Biosciences, 

Bucks, UK) according to the manufacturer’s instructions. Visualisation of signal was 

achieved with BioMaxMR film (Kodak, UK).  

 

Antibody Primary/ 

Secondary 

Species Supplier 

E1A Primary Mouse 

 

Oncogene Research Products, 

CA, USA 

Penton Primary Rabbit Kindly provided by Dr P Freimuth, 

Brookhaven National Laboratory 

Upton, NY, USA 

Hexon Primary Goat Accurate Chemical and Scientific 

Corp., New York, USA 

Ad5 structural 

proteins 

Primary Goat Abcam, Cambridge, UK 

Actin Primary Goat DakoCytomation, Denmark 

Anti-mouse HRP Secondary Rabbit DakoCytomation, Denmark 

Anti-rabbit HRP Secondary Goat DakoCytomation, Denmark 

Anti-goat HRP Secondary Rabbit DakoCytomation, Denmark 

Retinoblastoma 

Protein (pRb) 

Primary Mouse BD PharMingen, Oxford, UK 

p16 Primary Mouse BD PharMingen, Oxford, UK 

Cdk4 Primary Mouse BD PharMingen, Oxford, UK 

Cyclin D1/D2/D3 Primary Mouse BD PharMingen, Oxford, UK 

Cdk2 Primary Mouse BD PharMingen, Oxford, UK 

Cyclin E Primary Mouse BD PharMingen, Oxford, UK 

p27 Primary Mouse BD PharMingen, Oxford, UK 

p21 Primary Mouse BD PharMingen, Oxford, UK 

Actin Primary Goat DakoCytomation, Denmark 

phospho - pRb  Primary Mouse BD PharMingen, Oxford, UK 

  

Table 2.3 Antibodies used to detect viral and cellular proteins. Antibodies, species 

and  suppliers. Antibodies were diluted 1:1000–1:3000 in a 1.5% solution of BSA in 

0.1% Tween/PBS. All murine antibodies were monoclonal, and the others were 

polyclonal. 

  

2.9.3 Densitometric analysis 

Densitometric analysis of band intensity in Western blot experiments was performed on 

scanned films using ImageJ software (Collins, 2007) and GraphPad Prism version 3 

(GraphPad Software, San Diego, CA, USA). Ratios were calculated using loading 
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controls (actin, Ku70, GAPDH), in order to correct for any variation in the loading, and 

are shown as relative units (RU) in bar graphs.  

 

 

2.10 Viral replication 

2.10.1 TCID50 assays 

To quantify intracellular production of infectious viral particles, 1x105 cells were seeded 

in 6-well plates in appropriate medium. Cells were infected 24hrs later with dl922-947 

at MOI 10 pfu/cell in serum-free medium and re-fed 2hrs later with serum-containing 

medium. Up to 72 hours post infection, cells were washed twice with PBS and then 

scraped into 0.5ml 0.1M Tris pH 8.0. The collected samples were freeze/thawed three 

times and replicating virus titre (expressed as plaque forming unit (pfu)/ml) determined 

11 days later by limiting dilution TCID50 assay as described above. Viral titre in pfu/ml 

can be converted to pfu/cell as below: 

 

pfu/cell =   pfu/ml x volume harvested  

                 initial number of cells infected 

 

In this case the volume harvested was 0.5ml and the initial cell number was 2x105, 

assuming that the 1x105 cells had doubled over night. 

 

2.10.2 Quantitative PCR 

To quantify viral DNA replication in infected cells, 1x105 cells were infected with dl922-

947 at MOI 10pfu/cell. 24, 48 and 72hrs later, cells were harvested, DNA was extracted 

using a QIAamp DNA Blood Mini Kit (Qiagen, Crawley, West Sussex, UK) and the 

DNA concentration measured with a NanoDrop® ND-1000 spectrophotometer 

(Wilmington, DE, USA). Samples were diluted to 100ng/µl prior to analysis by qPCR. 

 

2.11 Transient knock-down of p21, p16 and Cyclin D1, D2 and  D3 using 

small interfering RNA 

For transient knock-down of p21, p16 and Cyclin D1, D2 and D3, IGROV-1 and 

TOV21G cells were treated with Dharmacon SMARTpool siRNA (ThermoFisher 

Scientific, Lafayette, CO, USA) targeting the gene of interest or Scrambled (scr) 

Control Non-Targeting siRNA pool as a control (ThermoFisher Scientific, Lafayette, 

CO, USA). DharmaFECT_1 was used as transfection reagent (ThermoFisher 

Scientific, Lafayette, CO, USA).   
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2.11.1 Optimisation of siRNA doses 

To determine the optimal dose of siRNA for knock-down, cell were transfected with 

20pmol, 60pmol or 200pmol of  siRNA. First, 3x105 cells/well were plated on 6-well 

plates. 24 hours later, transfection reactions were prepared as described in Table 2.4. 

 

 A B 

siRNA 

dose 

siRNA stock 

(2µM) 

Serum-free 

medium 

DharmaFECT_1 Serum-free 

medium 

  20pmol   10µl   10µl 0.6µl 19.4µl 

  60pmol   30µl   30µl    2µl    28µl 

200pmol 100µl 100µl    6µl  194µl 

 

Table 2.4 Transfection reactions for siRNA knock-down. Components of 

transfection reactions for siRNA as well as amounts used are listed. Components in 

column pairs A and B were mixed in a first step, then combined in a second step.  

 

First, for each dose of siRNA, siRNA stock or DharmaFECT_1 were mixed with serum-

free medium in separate tubes (column pairs A and B). After 5min incubation at RT, 

contents from mix A were combined with respective mix B, followed by incubation at 

RT for 20min. Next, the volume of each tube of reaction mix was increased to a total of 

1ml by adding complete medium (penicillin/streptomycin-free 10% FCS E4). Contents 

of each tube were added dropwise to cells whilst swirling the plate, before adding a 

further 1ml of complete medium to each well. The optimum dose of siRNA, i.e. the 

lowest dose effectively knocking down the protein of interest, was identified by 

immunoblotting, and was used for subsequent experiments. 

 

2.12 Transfection of cells with pEGFP-p21 and control vector 

For transfection of SKOV3ip1 and A2780CP cells to increase intracellular p21 levels, 

plasmid pEGFP-p21 was used. pEGFP-p21 was a kind gift from Dr Sally Wheatley, 

University of Sussex, UK.  It had been constructed by inserting wild type p21 cDNA into 

the EGFP-N1 vector (Clontech), as described in (Cazzalini et al., 2003). The resulting 

p21-eGFP fusion protein is expressed under the control of the human CMV promoter. 

 

SKOV3ip1 and A2780CP cells were seeded onto 6-well plates at a density of 5x106 

cells/well. The following day, transfection mixes were prepared from FuGENE 6 and 

DNA at FuGENE 6:DNA ratios of 3:1 using pEGFP-p21 or pCMV-GFP. One mix per 
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cell line was prepared without DNA for mock-transfections. Cells were transfected as 

described above and cultured in selective growth medium containing 1mg/ml G-418 in 

10%FCS E4.  

 

2.13 Generation of p21 over-expression cells using pCEP-WAF1  

SKOV3ip1 and A2780CP cells were transfected with a p21-encoding plasmid to 

increase intracellular levels of the protein. For controls, both cell lines were also 

transfected with a plasmid expressing GFP under the control of a CMV promoter. 

Plasmid pCEP-WAF1 (Addgene, Cambridge, MA, USA) encodes p21 under 

transcriptional control of a human cytomegalovirus (CMV) immediate early  promoter. It 

also confers resistance to hygromycin in eukaryotic cells.  

 

The plasmid used to create control cell lines was pCMV-GFP (Stratagene, La Jolla, 

CA, USA). The plasmid contains a neo-cassette, which imparts resistance to the 

antibiotic G-418 in eukaryotic cells. SKOV3ip1 and A2780CP cells were seeded onto 6-

well plates at a density of 5x 105 cells/well. The following day, transfection mixes were 

prepared from plasmid DNA and FuGENE 6 according to the manufacturer’s protocol 

and at FuGENE 6:DNA ratios 3:1 and 3:2.  After the final incubation step, each 

transfection mix was added dropwise cells whilst swirling the plate. One well per cell 

line was mock-transfected with FuGENE 6 alone. After 48 hours, cells from each well 

were transferred to two T25 flasks and grown in10% FCS E4 medium containing 

500µg/ml or 1mg/ml G-418 to determine the minimum required antibiotic concentration 

for selective growth of transfected cells. Subsequently cells were cultured in medium 

containing the higher concentration of antibiotic, which was lethal to mock-transfected 

but not to plasmid-transfected cells.  

 

2.14 Inhibition of proteasomal degradation after infection 

Six hours prior to harvest, cells on 6cm-plates were refed with medium containing 

50µM proteasome inhibitor MG132. Cell lysates for total protein samples were 

harvested 24 and 48hrs p.i.. In parallel, cell lysates from infected but non-treated cells 

were harvested at the point of re-feeding (0h), as well as 24 and 48 hours p.i. 

 

2.15 Induction of genotoxic stress by X-irradiation  

To assess effects of genotoxic stress on cellular p21 levels, 106 cells were seeded per 

6cm-plate. After allowing 2 hrs for attachment, cells were exposed to 5 Gray (Gy) X-
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irradiation, using the Hs-X-Ray System (A.G.O. Installations Ltd., Reading, UK). 

Protein samples for Western blotting were harvested 6 hrs post irradiation.   

 

2.16 In Vivo studies 

Six-week-old female CD1 or BALC/c nu/nu mice were purchased from Harlan 

(Blackthorn, Bicester, UK) or Charles River Laboratories, Inc. (Margate, UK). All animal 

studies were conducted under suitable UK Home Office Personal and Project Licence 

authority. 

 

2.16.1 Efficacy study with Hct116 xenografts 

Female CD1 nu/nu mice received subcutaneous injections of 5x106 Hct116 p21+/+ or 

p21-/- cells were. The animals were left until tumours reached approximately 150mm3, 

then treated with intra-tumoural injections of 1010 particles of dl922-947 or control virus 

Ad-CMV-GFP in 50µl PBS on three occasions. Tumours were measured twice weekly 

with callipers. Tumour volumes were calculated with the following formula: 

 

                                                      (L x L x W)   

                                  Volume =                            x π 

                                                              6 

 

where  L  = largest length 

           W  = perpendicular width 

 

Mice were killed once Home Office limits were reached. Studies were ended 42 or 84 

days after first treatment, killing all remaining animals. 

 

2.16.2 Efficacy study with ACP-WAF1 and –GFP xenografts 

Female BALB/c nu/nu mice received intraperitoneal (i.p.) injections of ACP-WAF1 or 

ACP-GFP cells. Injections were given into both sides of the peritoneum, with a total 

inoculum of 5x106 in 200µl PBS per animal. Preparation of cells for injections was 

performed as follows: cells were trypsinised and rescued into 10%FCS E4 medium. 

After counting, cells were centrifuged for 5 min at 1500rpm in an ALC multispeed 

PK121 centrifuge (ThermoScientific , Waltham, MA, USA) and pellets resuspended in 

40ml PBS. Cells were washed twice in PBS by centrifugation. Final pellets were 

resuspended in PBS to obtain 2.5x107 cells/ml. For injections, 1ml syringes and 25-

gauge needles were used. Starting either day 2 or day 6 after injections of cells, mice 
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received i.p. injections of virus on 5 consecutive days. Ten mice from the ACP-WAF1 

and the ACP-GFP group were treated with 5x109 viral particles of dl922-947 in 400µl 

20% icodextrin (Innovata plc, Nottingham, UK). The remaining ten animals from each 

group were treated with 5x109 particles of non-replicating control virus Ad-GFP in 400µl 

20% icodextrin. Each animal was injected with 200µl into each flank using 1ml syringes 

and 25-gauge needles. Animals were monitored daily and killed when reaching Home 

Office limits.  

 

2.16.3 Replication study 

To detect viral activity in BALB/c nu/nu mice bearing ACP-WAF1 or ACP-GFP 

xenografts, 10 female animals were injected IP with either 5x106 ACP-WAF1 or ACP-

GFP as before on day 1. Mice were left for 10 days to allow tumours to establish. On 

days 11-13, mice were injected with 1010 viral particles of dl922-947 in 400µl icodextrin 

as described above. 24 and 48hrs after the last virus treatment, blood samples were 

taken from each mouse via the tail-vein or by terminal cardiac puncture.  Blood 

samples were left to coagulate on ice, centrifuged in an Eppendorf PK121 benchtop 

centrifuge (Eppendorf UK  Limited, Cambridge, UK) at 1500xg for 5min to separate 

serum and cellular fraction. Serum was transferred to fresh eppendorf tubes and stored 

at -70ºC until further use. 48hrs after the last treatment, animals were killed and livers 

and tumours harvested into 10% neutral phosphate buffered formalin (Fisher Scientific, 

Pittsburgh, PA) or snap frozen on dry ice and ethanol, then stored at -70ºC until further 

use.  

 

2.16.4 Isolation of viral DNA from blood and organs for qPCR 

After diluting 50µl of serum from each sample in PBS to yield a total volume of 200µl 

and centrifugation for 15 min at 1500xg in an eppendorf PK121 benchtop centrifuge 

(Eppendorf UK Limited, Cambridge, UK ), supernatants were transferred to fresh tubes 

and volumes adjusted to 200µl with PBS. Viral DNA was extracted using a Qiagen 

QIAmp DNA minikit  (Qiagen UK, Crawley, West Sussex, UK) according to 

manufacturer’s protocol. As carrier DNA, 5µg of sheared denaturated salmon sperm 

DNA were added. Finally, extracted DNA was eluted in 100µl elution buffer (10µM Tris 

pH8.0) and stored at -20ºC until analysis by qPCR. 
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2.16.5 Virion detection in plasma samples by qPCR 

To quantify virus genome copy number in murine plasma samples, qPCR analysis was 

performed as described above. 5µl from each sample of extracted DNA were added to 

the reaction mix/well.  

 

2.16.6 Visualisation of viral gene expression in tissue samples by 

immunohistochemistry  

Tumours and livers harvested from mice bearing ACP-WAF1- and ACP-GFP-derived 

tumours, stored in 10% neutral phosphate buffered formalin (Fisher Scientific, 

Pittsburgh, PA), were processed in the Molecular Pathology Lab (Centre for Molecular 

Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine 

and Dentistry, London, UK). Tissues were embedded in paraffin, 4µm slides prepared 

from each tissue sample and stained for E1A and counterstained with haematoxylin. In 

addition, slides from tumours were stained for p21 using a mouse-on-mouse kit 

(Millipore, Billerica, MA, USA). For antibodies used, see Table 2.5. Images were 

acquired with a Nikon DXM1200 digital camera (Nikon, Tokyo, Japan) mounted on a 

Zeiss Axiophot microscope (Carl Zeiss, Inc., USA). 

  

Antibody Primary/ 

Secondary 

Species Supplier 

E1A 13S-5 Primary Rabbit Santa Cruz Biotechnology, CA, 

USA 

p21 Primary Mouse BD PharMingen, Oxford, UK 

Anti-mouse HRP Secondary Rabbit GeneTex, Irvine, CA, USA 

Anti-rabbit HRP Secondary Rabbit GeneTex, Irvine, CA, USA 

 

Table 2.5 Antibodies used in immunohistochemistry staining. Antibody, species 

and supplier.  

 

2.17 Cell Cycle Flow Cytometric analysis 

Cells were seeded onto 6-well plates with 5x106 cells in 5ml medium per well. The 

following day, cells were infected with dl922-947 at MOI10 pfu/cell in 3ml serum-free 

medium or mock-infected with serum-free medium, alone. Cells were refed after 3hrs 

by adding 3ml 10% FCS E4 to each well. Cells were harvested 48hrs post-infection by 

trypsinising and rescue with complete medium. Cells were centrifuged 5min at 

1200rpm in an ALC multispeed PK121 centrifuge (ThermoScientific, Waltham, MA, 
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USA). Pellets were washed twice in cold PBS and ultimately fixed by resuspending in 

1ml ice-cold 70% EtOH whilst vortexing. Prior to staining, cells were spun 5min at 

2000rpm in an ALC multispeed PK121 centrifuge (ThermoScientific, Waltham, MA, 

USA), supernatants were discarded and cell pellets resuspended in 5ml PBS, followed 

by another centrifugation step for 5min at 1500rpm. After aspirating supernatants, 

250µl of RNase solution (200µg/ml in PBS) and 250µl propidium iodide (PI, Invitrogen, 

Paisley, UK) solution (100µg/ml in PBS) were used to resuspend each cell pellet. Cell 

suspensions were incubated in the dark at RT for 30 min. Cell cycle analysis was 

carried out on a BD FACSCaliburTM cytometer (BD Biosciences, San Jose, CA, USA) 

using CellQuest software (Becton Dickinson, Franklin Falls, NJ, USA) and FlowJo 

software 8.8.4 (Tree Star, Ashland, OR, USA). 

 

2.18 Microarray analysis of gene expression  

2.18.1 Microsatellite genotyping of MRC5 and MRC5-VA cells 

To confirm the isogenic character of the MRC5 and MRC5-VA cell line pair, 

microsatellite genotyping was carried out by the Genome Centre (William Harvey 

Research Institute, Barts and The London School of Medicine and Dentistry, London, 

UK). Microsatellites are short tandem repeats of approximately 3-6 nucleotides, 

generally found within non-coding regions of the genome (Hamada et al., 1982; 

Stringer, 1985). As their length and sequence vary between genomes of different 

individuals, but should be highly similar between two copies of the same genome, they 

can serve as molecular markers to test for isogenicity between cells (Choudhary et al., 

1993). The microsatellite genomic fingerprint of MRC5-VA cells, which are transformed 

MRC5 cells, was expected to overlap well with that of parental MRC5 cells. Analysis 

was performed on DNA extracted from both cell lines by the phenol-chloroform 

method: Cells were grown on 15cm-plates until approximately 80% confluent, washed 

twice with cold Tris-buffered saline (TBS) and scraped into 1ml digestion buffer (1% 

SDS, 0.5mg/ml proteinase K, 50mM Tris-Cl pH9.0, 200mM NaCl). For all subsequent 

steps an eppendorf 5417R centrifuge was used. After incubation at 55ºC for 15hrs, 

lysates were transferred to 15ml-tubes and left to cool to room temperature. 1ml of 

phenol was added to each tube prior to incubation at RT for 3hrs, which was followed 

by centrifugation for 20min at 6000xg and RT. The top (aqueous) phase was 

transferred to a fresh 15ml tube and 1ml phenol/chloroform/isoamyl alcohol was added. 

Suspensions were vortexed and centrifuge in the same centrifuge as before for 10min 

at 12000xg at RT. Again, the aqueous layer was transferred to a fresh tube and 1ml 

chloroform added, followed by vortexing and centrifuging at 1700xg for 2min. After 
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transferring the top (aqueous) layer to a new tube and adding, first, 500µl 3M sodium 

acetate, then 1.5ml ice-cold isopropanol, a centrifugation step was carried out at 

1700xg for 2min. Pellets were left to dry at RT, before DNA was dissolved in up to 1ml 

100mM Tris-Cl pH8.0, 5mM EDTA, 100mM NaCl (T100E5N100) plus 1µg/ml RNase A 

(34mg/ml, Sigma Chemicals Co., Dorset, UK). Next, the volume in the tubes was 

doubled by adding equal amounts of phenol/chloroform/isoamyl alcohol, suspensions 

were vortexed and centrifuged for 10min at 12000xg. The chloroform extraction step 

was repeated as above. Then, the top (aqueous) layer was transferred to a new tube, 

before adding 2ml of 100% EtOH and centrifuging for 2min at 12000xg. After air-drying, 

the DNA pellet was dissolved in dH2O.  

 

For the analysis, three separate panels of fluorescently labelled oligonucleotide primers 

(ABI) were used in the amplification of 14 of loci on 6 chromosomes before 

electrophoresis and detection using the Applied Biosystems 3700 DNA analyzer 

(Applied Biosystems Inc., Foster City, CA, USA).   

 

2.18.2 Extraction and preparation of RNA from cultured cells 

Cells were grown on 10cm-plates until 80-90% confluent, when they were trypsinised, 

transferred to 15ml falcon tubes and washed twice in PBS. RNA was extracted by the 

phenol-chloroform method. Each cell pellet suspended in 1ml TRIzol (Invitrogen, 

Paisley, UK) and incubated at RT for 5 min. Addition of 200µl chloroform and vigorous 

shaking for 15 seconds was followed by another incubation at RT for 2-3 min. For 

adequate phase separation, tubes were centrifuged 10 min at 12000xg and 4ºC. The 

aqueous upper phases were transferred to fresh tubes. To precipitate the RNA, 500µl 

isopropanol were added to each tube, before incubating at RT for 10min. Then the 

RNA was pelleted by centrifugation for 10 min at 12000xg and 4ºC. RNA was washed 

by removing supernatant, vortexing pellets in 1ml 75% EtOH and centrifuging 5 min at 

7500xg and 4ºC. Finally, RNA pellets were briefly air-dried, re-dissolved in 100µl 

RNase-free H2O and incubated for 10 min at 55-60ºC. A clean-up step to remove 

contaminating DNA was performed using a QIAamp RNeasy Mini Kit (Qiagen, 

Crawley, West Sussex, UK). First, 350µl of RLT buffer were added to each RNA 

suspension, followed by 250µl 100% ethanol. Samples were transferred onto RNeasy 

Mini spin columns and centrifuged at 8500xg for 15 seconds. Flow-through was 

discarded and the columns washed with 350µl Buffer RW1 by repeating the 

centrifugation steps. Again, flow-through was discarded. To ensure removal of all 

contaminating DNA, 10µl RNase-free DNase I (2.7 units/µl) in 70µl Buffer RDD were 

pipetted onto each membrane. Incubation at RT for 15min was followed by a wash step 
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with 350µl Buffer RW1 and repeating the centrifugation as above. Next, columns were 

washed with 500µl Buffer RPE and centrifugation at 8500xg for 15 seconds. This 

washing step was repeated, centrifuging for 2min. After discarding the flow-through, 

membranes were dried further by centrifuging for an additional minute at maximum 

speed. Elution of RNA was achieved by pippetting 30µl RNase-free water onto each 

membrane and centrifuging at 8500xg for 1min.  

 

2.18.3 Microarray analysis 

Microarray analysis was carried out using GeneChip Affymetrix System (Qiagen, 

Crawley, West Sussex, UK). The Chip format was U133 Plus 2.0. Unless stated 

otherwise, buffers and compounds used were part of the GeneChip kit. The thermal 

cycler used for all PCR steps was a BioRad/MJ Research DYAD (PTC-0220) (Bio-Rad, 

Hertfordshire, UK). As the starting amount of total RNA was 7µg, serial dilutions of 

Poly-A RNA Control stock were prepared as shown below (Fig. 2.2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Dilution steps for Poly-A Controls spike-in solution. To obtain the final 

dilution of 1:5000, a three-step serial dilution was performed.  

 

For the first-strand cDNA synthesis, 7µg of total RNA were mixed with 2µl diluted Poly-

A controls and 7µl T7-oligo(dT) primer (50µM) in a 0.5ml PCR reaction tube. The 

volume of each reaction mix was adjusted to 11µl with RNase-free water. Tubes were 

placed in the thermal cycler and the following programme was used for first-strand 

cDNA synthesis:  

 

 

 

Poly-A control dilution buffer 

2 µl 

         
4 µl  

       
2 µl Poly-A 
control 
stock  

 
38 µl 

 
16 µl 

 
98 µl 
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                  70ºC - 10min 

                    4ºC -   5min 

                  42ºC -   2min 

                  42ºC -   1h 

                    4ºC - hold 

 

After 10 min at 70ºC and 2 min at 4ºC 7µl of master-mix (MM) were added to each 

tube. The MM contained 4µl 5x 1st Strand Reaction Mix, 2µl DTT (0.1M) and 1µl dNTP 

(10mM) per reaction tube. After incubation for 2 min at 42ºC, 1µl SuperScript II 

(reverse transcriptase enzyme) were pipetted into each PCR tube. Once the end of the 

programme was reached, second-strand cDNA synthesis was set up. The thermal 

cycler programme used for this step was:   

 

                  16ºC -   2hrs 

                    4ºC -   5min 

                  16ºC -   5min 

                    4ºC -   hold 

 

A second-strand MM was prepared from 91µl RNase-free H2O, 30µl 5X 2nd Strand 

Reaction Mix, 3µl dNTP (10mM), 1µl E.coli DNA Ligase, 4µl E.coli DNA Polymerase I 

and 1µl RNase H per reaction. Upon mixing the MM with the solutions of cDNA from 

the previous step, the total volume was divided into two 0.5ml PCR reaction tubes, so 

as not to exceed the maximum volumes permitted for this particular thermal cycler. 

During the first 4ºC-step of the reaction, 1µl T4 DNA Polymerase were pipetted into 

each tube. Once this second synthesis step was finished, corresponding sample pairs 

were pooled and mixed with 10µl 0.5M EDTA to inactivate enzymatic activity. For 

clean-up of the synthesised double-stranded cDNA, each sample was transferred to a 

fresh 1.5ml eppendorf tube. After adding 600µl cDNA Binding Buffer and vortexing, 

500µl of each suspension were pipetted onto a cDNA Cleanup Spin column. Columns 

were centrifuged for 1min at 8000xg, the flow-through was discarded and the 

remaining suspension added to the respective column. Upon centrifugation for 1min 

at 8000xg and discarding of flow-through, 750µl cDNA Washing Buffer were added. 

Centrifugation was repeated 1min at 8000xg, again discarding flow-through. Finally, 

membranes were dried by spinning for 5min at maximum speed with open column 

lids. Elution was achieved by adding 14µl cDNA Elution Buffer, leaving for 1 min to 

incubate at RT, then centrifugation for 1 min at maximum speed.  
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For synthesis of biotin-labelled cRNA, a mastermix was prepared of the following 

components per sample: 8µl RNase-free H2O, 4µl 10X IVT Labelling Buffer, 12µl IVT 

Labelling NTP Mix and 4µl IVT Enzyme Mix. To 28µl MM, 12µl template cDNA 

obtained in the previous step were added. The reactions mixes were incubated in the 

thermal cycler at 37ºC for 17-20hrs.  Clean-up of the resulting biotin-labelled cRNA 

was carried out in a similar fashion as before. Firstly, 60µl RNase-free H2O and 350µl 

IVT cRNA Binding Buffer were added to each tube, vortexing after each step. Next, 

250µl 100% EtOH was mixed in by pipetting. Each suspension was loaded into a 

cRNA Cleanup Spin Column and centrifuged 15sec at 8000xg. After washing with 

500µl IVT cRNA Wash Buffer, columns were centrifuged for another 15sec at 8000xg, 

followed by 500µl 80% EtOH and repeating the spinning step. To dry the membranes, 

columns were centrifuged 5 min at maximum speed with open lids. For elution, 11µl 

RNase-free H2O were loaded onto the membranes before centrifuging for 1min at 

maximum speed. This was followed by another elution step with 10µl RNase-free H2O 

and centrifugation. Before continuing with the fragmentation of the labelled cRNA, the 

adjusted cRNA yield had to be calculated. This is required when using total RNA as 

starting material for microarray analysis, in order to take into account the carry-over of 

unlabelled total RNA in the samples. To this end, each sample underwent 

spectrophotometric analysis using was measured with a NanoDrop® ND-1000 

spectrophotometer (Wilmington, DE, USA). To determine adjusted cRNA yields the 

following formula was applied:  

 

                  Adj. cRNA yield = RNAm - (total RNAi) x y 

 

where  

 

               RNAm         = amount of cRNA after IVT (µg) 

               total RNAi  = starting amount of total RNA (µg) 

               y                 = fraction of cDNA used in IVT. 

 

Based on these calculations, a fragmentation mix was prepared for each sample: 20µg 

adjusted cRNA were combined with 5x Fragmentation Buffer and volumes adjusted 

with RNase-free H2O to a total of 40µl. These mixes were placed in the thermocycler 

and incubated at 95ºC for 35min. To confirm successful fragmentation, electrophoresis 

was performed with 2µl of each fragmented cRNA sample in 8µl loading buffer (1mM 

EDTA pH8.0, 50% glycerol (Fisher Scientific, Pittsburgh, PA, USA) 0.25% 

bromophenol blue (Sigma Chemicals Co., Dorset, UK), 0.25% xylene cyanol (Sigma 
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Chemicals Co., Dorset, UK) in H2O) and 1µl non-fragmented cRNA in 9µl loading 

buffer as a negative control. The 1% agarose gel was prepared by dissolving 1g 

agarose (Invitrogen, Paisley, UK), in 100ml 1x Tris/Borate/EDTA (TBE) buffer and 

adding 5µl GelRedTM Nucleic Acid Gel Stain (Biotium, Hayward, CA, USA) once it was 

hand-warm. Electrophoresis was performed in 1X TBE buffer at 100V for 90 min. 

Bands were visualised under UV light. 

 

Remaining samples of fragmented cRNA were used to prepare the eukaryotic target 

hybridisation cocktail to be mounted onto the probe array (gene chip).  Per array, 30µl 

(equivalent to 15µg) fragmented cRNA were mixed with 5µl Control Oligonucleotide B2 

(3nM), 15µl 20X Eukaryotic Hybridisation Controls (bioB, bioC, bioD, cre), 3µl BSA 

(50mg/ml), 30µl DMSO, 64µl RNase-free H2O and 150µl 2X Hybridization Buffer. 

Hybridization (16h) and scanning of the arrays were performed by Tracy Chaplin 

(Centre for Medical Oncology, Institute of Cancer, Barts and The London School of 

Medicine and Dentistry, London, UK). Data analysis was carried out by Dr Claude 

Chelala (Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and 

The London School of Medicine and Dentistry, London, UK) using Bioconductor 

libraries within the freely available R statistical environment (http://www.r-project.org).  

After generating log-transformed images from the *.CEL. files, hybridization quality was 

checked. Array chips were independently normalized by the quantiles method (Bolstad 

et al., 2003). For background correction robust multi-array analysis (RMA) was used 

(Irizarry et al., 2003). Probe level data were summarised by median polishing, resulting 

in log2 scale transformed data. Subsequently, the data quality was assessed using 

boxplots, histograms and quantile plots to ensure a Gaussian-like distribution. 

Differentially expressed genes were identified by the Welch two sample t-test, with p 

value correction using the false discovery rate (FDR) method (Capurso et al., 2006). 

Lists were generated of differential genes with an FDR corrected p value <0.05.  

 

In addition, TOSE cell data were subjected to a more comprehensive analysis of gene 

expression. This analysis was performed by Dr Probir Chakravarty (Bioinformatics & 

Biostatistics, Lincoln's Inn Fields, London, UK.)  Statistically enriched pathways or 

processes were identified by applying the adjusted p value as a statistical filter. 

Metacore pathway analysis tool (GeneGo Inc., St. Joseph, MI, USA) (Ekins et al., 

2006; Ekins et al., 2007) was used for hypergeometric testing with a p value =0.05.  
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2.19 In silico comparative analysis of NCI-60 microarray data 

To identify differentially expressed genes correlated with sensitivity in ovarian cancer 

cell lines, analysis of published NCI-60 ovarian cancer data (GEO accession numbers: 

GSM35955 (IGROV-1), GSM35956 (OVCAR3), GSM35957 (OVCAR4), GSM35958 

(OVCAR5), GSM35960 (SKOV3)) (Blower et al., 2007; Shankavaram et al., 2007) was 

performed using Bioconductor (BioConductor) packages within the open source R 

statistical environment (Blower et al., 2007). Following intra-array loess normalization, 

Limma (Smyth GK, 2004) was employed for differential expression analysis. Genes 

differentially regulated in the most sensitive line (GSM35955 IGROV-1) compared to 

the others were identified. P-values were obtained from the distribution of the 

moderated t-statistic (the-lower-the-better). B-values are the empirical Bayes logg-odds 

of differential expression (the-higher-the-better).   

 

2.20 Cloning of SV40 large T antigen expression vector. 

An SV40 TAg expression plasmid, pCMV-SV40, was to be generated. For this 

purpose, SV40 TAg was digested out of the pX8 plasmid (a kind gift from Prof George 

Tsao, Hong Kong University) by EcoRI digest and inserted into the EcoRI site of the 

pCMV-Script vector backbone (Stratagene, La Jolla, CA, USA), which contains a neo-

cassette and imparts resistance to antibiotic G-418. Digestion mixes (see Table 2.6 

below) were incubated for 2h at 37ºC. After 1h the second dose of enzyme was added. 

 

 DNA Buffer H2O Enzyme 

pX8 10µg 
EcoRI buffer 5µl 

 
ad 50µl 

EcoRI 

3µl 

+ 2µl after 1h 

pCMV 5µg EcoRI buffer 5µl ad 50µl 

EcoRI 

3µl 

+ 1µl after 1h 

pX8 – 

undigested ctrl. 
5µg 

EcoRI buffer 5µl 

 
ad 50µl 

 

- 

pCMV - 

undigested ctrl. 
5µg 

EcoRI buffer 5µl 

 
ad 50µl 

 

- 

 

Table 2.6 Digestion mixes to obtain components of pCMV-SV40 as well as 

control digests are shown. Buffers and enzymes are from New England Biolabs (UK) 

Ltd., Hertfordshire, UK.  
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Prior to ligation of vectors and inserts, in order to prevent religation of linearised 

plasmid DNA, vector DNA was de-phosphorylated by adding 5 units/µg of calf intestinal 

alkaline phosphatase (CIP, New England Biolabs (UK) Ltd., Hertfordshire, UK) in CIP 

buffer (also New England Biolabs (UK) Ltd.) and incubating at 37°C for 45min. 

Electrophoresis of vector and insert DNA followed on 0.8% TAE agarose gel. Bands 

containing fragments of interest were detected by ethidium bromide (Sigma Chemicals 

Co., Dorset, UK) staining. After excision of the relevant areas of the gel, fragments 

were eluted using the QIAquick Gel Elution Kit (Qiagen, Crawley, West Sussex, UK). 

Concentrations of plasmid DNA were measured using a NanoDrop® ND-1000 

spectrophotometer (Wilmington, DE, USA). Ligation reactions were set up with 50ng 

vector DNA at an insert:vector ratio of 3:1. For this purpose, the molarity of ends was 

calculated for each fragment, where  

 

 

               Molarity of ends (nM) = [(C)/ (base pairs x 650 daltons)] x 2 ends 

 

and C = concentration of plasmid DNA sample in µg/µl. 

Once volumes of samples for the 3:1 ratio had been determined, ligation reactions (see 

Table 2.7) were prepared and fragments ligated at 25ºC overnight.  

 

 DNA 10X Ligase buffer H2O  T4 DNA ligase 

Insert alone 121ng 2µl ad 20µl 1µl 

Vector alone 
(phosphorylated) 

50ng 2µl ad 20µl 1µl 

Vector alone 
(de-
phosphorylated) 

50ng 2µl ad 20µl 1µl 

SV40-pCMV 
(de-
phosphorylated) 
3:1 

insert: 121ng 
vector: 50ng 

2µl ad 20µl 1µl 

SV40-pCMV 
(de-
phosphorylated) 
3:1 

insert: 242ng 
vector: 50ng 

2µl ad 20µl 1µl 

 

Table 2.7 Ligation reactions for cloning of pCMV-SV40. Components of reaction 

mixes to ligate vector and insert as well as control reactions are shown. Ligase buffer 

and enzyme are from New England Biolabs (UK) Ltd., Hertfordshire, UK.   
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For amplification of newly synthesised plasmids, ligation products were transformed 

into chemocompetent TOP10 E.coli cells (Stratagene, La Jolla, CA, USA) as follows: 

To each tube of bacterial cells, 10µl of ligation reaction were added, followed by 30min 

of incubation on ice. After a heat shock step of 30sec at 42ºC, tubes were again left on 

ice for 5-10min. 250µl SOC medium (0.5% Yeast extract, 2.0% tryptone, 10mM NaCl, 

2.5mM KCl, 10mM MgCl2 , 20mM MgSO4, 20mM glucose) were pipetted into each tube 

prior to incubation in a New Brunswick Innova 4000 Incubator Shaker (New Brunswick 

Scientific, Edison, NJ, USA) at 37ºC for 1h whilst shaking at 250rpm. Finally, 50µl 

transformed E.coli were streaked onto kanamycin-containing (40µg/ml) agarose plates 

and grown in an incubator overnight at 37ºC. 

 

The following day, five clones from each plate were picked, grown as pre-cultures and 

miniprepped using a Qiagen Plasmid Mini Kit (Qiagen, Crawley, West Sussex, UK), 

according to the manufacturer’s protocol. Concentrations of plasmid DNA in samples 

were measured with a NanoDrop® ND-1000 spectrophotometer (Wilmington, DE, 

USA). Test digests using 500ng plasmid DNA, enzymes EcoRI, XhoI and BamHI, and 

gel electrophoresis were performed as described above to confirm successful ligation 

of vector and insert as well as to determine the orientation of the insert in each 

miniprep sample. Two samples, pCMV-SV40-F (containing insert in forward 

orientation) and pCMV-SV40-R (insert in reverse orientation), were further amplified 

and purified using a Qiagen Plasmid Maxi Kit (Qiagen, Crawley, West Sussex, UK). 

The test digest described above was repeated to confirm that plasmids contained 

inserts of the right size and in the correct orientation.   

 

2.20.1 Generation of new SV40-transformed and control cells lines 

Plasmids pCMV-SV40-F and pCMV-SV40-R were transfected into IOSE20 and 

IOSE25 cells using FuGene6 transfection reagent (Roche). In parallel, cells from both 

cell lines were transfected with empty pCMV vector as a control. For that purpose, 105 

cells were seeded per well on 6-well plates in antibiotic-free complete medium. The 

following day, cells were transfected as described earlier, at FuGENE 6:DNA ratios 3:1 

and 3:2. One well per cell line was mock-transfected with FuGENE 6 without plasmid 

DNA. The maximum tolerable antibiotic concentration for selective growth of 

transfected cells was determined as 1mg/ml G-418 in NOSE medium. 
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2.20.2 Transfection of cells with pSV3neo 

In a second attempt to create SV40 TAg expressing IOSE20 and IOSE21 cells, 

plasmid pSV3neo was used for transfection. The plasmid was a kind gift from Prof Guy 

Whitley (St Andrew’s University, London, UK), originally created by Southern and Berg 

(Southern et al., 1982). pSV3neo contains the SV40 TAg gene a neomycin (G-418) 

resistance gene for selective growth in eukaryotic cells. Following amplification of the 

received plasmid and purification using a Qiagen Plasmid Maxi Prep Kit (Qiagen, 

Crawley, West Sussex, UK), samples of maxiprepped DNA and of the original plasmid 

were test-digested with NcoI. After separation on a 0.8% agarose gel, all lanes 

contained identical triplicates of bands (Fig. 2.3), suggesting that the amplified DNA 

corresponded to the original plasmid.  

 

                                  

 

Figure 2.3 Gel electrophoresis of test-digested pSV3neo plasmid. Original 

pSV3neo plasmid (lane 2), as well as maxiprepped DNA (lanes 3 and 4) were run on a 

0.8% agarose gel following digestion with restriction enzyme NcoI. 

 

Transfections of IOSE20 and IOSE21 cells were conducted using FuGENE 6 as 

described above. The maximum tolerable antibiotic concentration for selective growth 

of transfected cells was determined to be 1mg/ml G-418 in NOSE medium. 
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2.21 shRNA-mediated knock down 

2.21.1 RNAi library 

With the aim to create a readily accessible small-scale RNAi library containing shRNAs 

targeting 42 transcripts, we used a Human RNAi (Hannon) library to “copy” (duplicate) 

constructs of interest onto a 96-well-plate format. Access to the full-size Human RNAi 

(Hannon) library (Babraham Bioincubator, MRC geneservice, Cambridge, UK) was 

kindly granted by Professor Ian Hart, Centre for Tumour Biology, Institute of Cancer, 

Barts and The London School of Medicine and Dentistry, London, UK). The library had 

been created by Dr Gregory Hannon (Paddison et al., 2004), and copies for distribution 

produced by Dr Troy Moore (Open Biosystems, Huntsville, USA). The Human RNAi 

(Hannon) library consists of 18,825 shRNA constructs based on human miR30 

microRNA incorporated into pSHAG-MAGIC 2 (pSM2) expression vectors (Silva et al., 

2005). The latter are based on mouse stem cell virus (MSCV), a retrovirus. However, in 

the work presented here, they were used as non-packaged plasmids. The vectors 

convey chloramphenicol and kanamycin resistance in bacteria and allow selection for 

transfection stability in eukaryotic cells via resistance to puromycin. Expression of 

hairpins lies under the control of the human U6 promoter. Plasmids are amplified using 

PIR1 E.coli. Pools of the bacterial cells containing shRNA expression plasmids for 

specific genes are stored in kanamycin-containing (50µg/ml) 8% glycerol (Fisher 

Scientific, Pittsburgh, PA, USA) Luria Bertani (LB) broth (1% bacto-trypone, 0.5% yeast 

extract, 1% NaCl in H2O, pH 7.5) on 96-well plates at  -80°C.  

 

2.21.2 Creation of mini-RNAi library 

The following steps were performed in collaboration with the services of the Genome 

Centre (William Harvey Research Institute, Barts and The London School of Medicine 

and Dentistry, London, UK). Using the Biomek FX (Beckman) robotic liquid handler, 

wells of a deep-well 96-well sterile growth plate were filled with 1.2ml LB broth 

containing 50µg/ml kanamycin. Bacterial glycerol stocks were thawed. The Biomek FX 

mixed each stock by pipetting and transferred 5µl into a well on the deep-well growth 

plate. After inoculation with all desired construct-containing bacterial clones, the growth 

plate was covered with gas-permeable seals and incubated in a New Brunswick Innova 

4000 Incubator Shaker (New Brunswick Scientific, Edison, NJ, USA) at 37°C, shaking 

at 300rpm for 17hrs. Following incubation, the Biomek FX liquid handler prefilled wells 

on two round-bottom 96-well plates with 40µl autoclaved 15% glycerol (Fisher 

Scientific, Pittsburgh, PA, USA). Next, 80µl of each bacterial culture from the growth 

plate were transferred by the robot into the destination well on the round-bottom 96-
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well plate. This step was repeated with the second destination plate. Both plates were 

covered with an air-tight seal tolerant for freezing and stored at -80°C. A table of 

contents of the newly created mini-RNAi library is shown in Table 2.8. 
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Well ID 
Gene targeted by shRNA 
 

A1 Homo sapiens v-akt murine thymoma viral oncogene homolog 3  

A2 Homo sapiens v-akt murine thymoma viral oncogene homolog 3  

A3 Homo sapiens MAGE family testis and tumor-specific protein (MAGEB5) 

A4 Homo sapiens phosphoinositide-3-kinase, catalytic, beta polypeptide 

A5 Homo sapiens phosphoinositide-3-kinase, catalytic, alpha polypeptide 

A5 Homo sapiens phosphoinositide-3-kinase, catalytic, beta polypeptide 

A7 Homo sapiens APR-1 protein (MAGEH1) 

A8 Homo sapiens cyclin-dependent kinase inhibitor 1B (p27, Kip1) 

A9 Human retinoblastoma related protein (p107)  

A10 Homo sapiens cyclin E2 (CCNE2), transcript variant 3 

A11 Homo sapiens melanoma antigen, family A, 11 (MAGEA11) 

A12 Homo sapiens melanoma antigen, family A, 9 (MAGEA9) 

B1 Homo sapiens cyclin E2 (CCNE2), transcript variant 3 

B2 Homo sapiens melanoma antigen, family A, 2 (MAGEA2) 

B3 Homo sapiens melanoma antigen, family A, 9 (MAGEA9) 

B4 Homo sapiens cyclin E2 (CCNE2), transcript variant 3 

B5 Homo sapiens cyclin E1 (CCNE1), transcript variant 1 

B6 Homo sapiens melanoma antigen, family D, 1 (MAGED1) 

B7 Homo sapiens melanoma antigen, family A, 4 (MAGEA4) 

B8 Homo sapiens melanoma antigen, family B, 1 (MAGEB1) 

B9 Homo sapiens melanoma antigen, family A, 4 (MAGEA4) 

B10 Homo sapiens AKT1 substrate 1 (proline-rich) (AKT1S1) 

B11 Homo sapiens melanoma antigen, family B, 3 (MAGEB3) 

B12 Homo sapiens melanoma antigen, family B, 1 (MAGEB1) 

C1 Homo sapiens AKT1 substrate 1 (proline-rich) (AKT1S1) 

C2 Homo sapiens melanoma antigen, family B, 3 (MAGEB3) 

C3 Homo sapiens similar to Melanoma-associated antigen E1 (MAGE-E1) 

C4 Homo sapiens v-akt viral oncogene homolog1 (AKT1), 

C5 Homo sapiens phosphoinositide-3-kinase, regulatory subunit, 

C6 Homo sapiens phosphoinositide-3-kinase, catalytic, delta 

C7 Homo sapiens beclin1(coiled-coil, myosin-like BCL2 interacting protein) 

C8 Homo sapiens melanoma antigen, family E, 1, cancer/testis specific 

C9 Homo sapiens CyclinD1(PRAD1:parathyroid adenomatosis1) (CCND1) 

C10 Homo sapiens CyclinD1(PRAD1:parathyroid adenomatosis1)(CCND1) 

C11 Homo sapiens cyclin-dependent kinase inhibitor 1C (p57s Kip2) 

C12 Homo sapiens cyclin-dependent kinase 4 (CDK4) 

D1 Homo sapiens cyclin-dependent kinase inhibitor 1C (p57s Kip2) 

D2 Homo sapiens phosphoinositide-3-kinases class 2, alpha polypeptide 

D3 Homo sapiens phosphoinositide-3-kinases class 2, beta polypeptide 

D4 Homo sapiens cyclin D2 pseudogene (CCND2P) on chromosome 11. 

D5 Homo sapiens phosphoinositide-3-kinases class 3 (PIK3C3), mRNA. 

D6 Homo sapiens similar to Melanoma-associated antigen E1 (MAGE-E1) 

 
Table 2.8 Contents of mini-RNAi library. Listed are genes targeted by shRNA 

encoded by the respective plasmid and the position of the clone on the library 96-well-

plate (Well ID). 
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2.21.3 Miniprep and verification of hairpin-containing pSM2 plasmids 

Selected of the remaining bacterial cultures on deep-well plate were used to inoculate 

10ml kanamycin-containing LB broth (50µg/ml). A list and their position on the plate are 

shown in Table 2.9. Bacterial cultures were incubated in a New Brunswick Innova 4000 

Incubator Shaker (New Brunswick Scientific, Edison, NJ, USA) o/n at 37°C, shaking at 

250rpm. The following day, miniprep of plasmid DNA was carried out using a Qiagen 

Plasmid Mini Kit (Qiagen, Crawley, West Sussex, UK). At the final step, plasmid DNA 

was resuspended in TE buffer (10mM Tris-Cl, pH8.0; 1mM EDTA). No plasmid was 

obtained of hairpins targeting p107, p57, Cyclin D2, Cyclin E1 and one of the two 

Cyclin E2-specific constructs, as overnight cultures had not grown 

 

Clone with shRNA 

targeting... 

    

Position on 96-well plate 

 

Successfully purified 

p27 A10 Yes 

p57 C11 No 

p107 A9 No 

Cyclin D1 C9 Yes 

Cyclin D1 C10 Yes 

Cyclin D2 D4 No 

Cyclin E1 B5 No 

Cyclin E2 A10 No 

Cyclin E2 B4 Yes 

cdk4 C12 Yes 

 

Table 2.9 Bacterial clones used to purify shRNA encoding pSM2 plasmids. Listed 

in column on the right are clones used to inoculate o/n cultures for purification of 

plasmids encoding shRNA annotated for specific genes for test digests. Middle column 

shows their position on the 96-well mini-RNAi library plate. Column on the right 

indicates whether plasmids could be successfully purified (Yes) or not (No). 

Presence of the correct inserts in plasmids in library clones was verified by test-

digesting mini-prepped constructs as described earlier using enzymes XbaI and HindIII 

(New England Biolabs (UK) Ltd., Hertfordshire, UK).  

 



 

 
101 

2.22 Stable knock-down of Rb pathway components  

For stable knock-down of p27, Cyclin D1, Cyclin E2 and cdk4 expression, plasmids 

amplified and purified from the mini-RNAi library were transfected into TOV21G and 

IGROV-1 cells.  

 

2.22.1 Amplification and purification of RNAi library plasmids 

10ml of kanamycin (50µg/ml) and chloramphenicol (25µg/ml) containing LB broth were 

inoculated with glycerol stock of RNAi bacterial clones specific for p27, Cyclin E1, 

Cyclin E2, Cyclin D1,Cyclin D2, or cdk4. These pre-cultures were incubated in a New 

Brunswick Innova 4000 Incubator Shaker (New Brunswick Scientific, Edison, NJ, USA) 

at 37°C, shaking at 250rpm for 8hrs. Of each bacterial culture 100µl were used to 

inoculate 400ml of kanamycin and chloramphenicol containing LB broth (see above), 

followed by incubation in a New Brunswick Innova 4000 Incubator Shaker (New 

Brunswick Scientific, Edison, NJ, USA) at 37°C, shaking at 250rpm overnight. The 

following day, plasmids were purified using a Qiagen Plasmid Maxi Prep Kit (Qiagen, 

Crawley, West Sussex, UK) according to manufacturer’s protocol. Recovered DNA was 

resuspended in TE buffer (10mM Tris-Cl, pH8.0; 1mM EDTA).  

 

2.22.2 Transfection of TOV21G and IGROV-1 cells with RNAi library plasmids 

Purified plasmids were transfected into TOV21G and IGROV-1 cells as described 

earlier, at a FuGENE 6:DNA ratio of 3:1. In some cases, two plasmids are annotated to 

target the same gene, thus were used for transfection in combination. Table 2.10 

shows genes, which constructs used were targeting and amounts used for transfection. 

Per well, a total of 10µg plasmid DNA was used. Selection of successfully transfected 

cells was carried out by culture of cells in 10%FCS E4 with 100µg/ml puromycin.  
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shRNA-pSM2 construct targeting:  Amount of DNA (µg) per well 

p27 10µg 

cdk4 10µg 

Cyclin D1  5µg+ 5µg 

Cyclin D2 10µg 

Cyclin E1 10µg 

Cyclin E2 5µg + 5µg 

  

Table 2.10 Genes targeted for knockdown by transfection with respective 

shRNA-pSM2 plasmids. Listed are target genes of mini-RNAi library plasmids and 

amounts of DNA used per well. If two plasmids targeting the same gene were used in 

combination, equal amounts of respective DNA were transfected.  

 

2.23 Statistical analysis 

Statistical analysis was conducted using GraphPad Prism version 3 (GraphPad 

Software, San Diego, CA, USA). Unless otherwise stated, all results are presented as 

mean +/- standard deviation, n=3 and all statistical analyses are unpaired, two-tailed 

Student’s t test, where p<0.05 is considered statistically significant. 
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3 Results: Determinants of oncolytic virus 

efficacy 
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3.1 Introduction 

Various publications have demonstrated the efficacy of dl922-947 in selectively lysing 

cancer cells (Heise et al., 2000; Lockley et al., 2006). Although it has been shown that 

cancer cells are significantly more susceptible to its oncolytic effects than normal cells 

(Heise et al., 2000), differences exist between sensitivities of cancer cell lines. This 

chapter describes the efforts taken to identify factors of the infected cell that contribute 

to maximum oncolytic efficiency of dl922-947. In the immediate future, such biomarkers 

would be a valuable asset to stratify patients taking part in phase I clinical trials of 

dl922-947 in ovarian cancer, allowing identification of patients who are more likely to 

respond to treatment. Already, cancer treatment is moving more and more into the field 

of stratified medicine (Hughes, 2009; Kantarjian et al., 2007; Ueno et al., 2007). In the 

future, patients may routinely be pre-screened to devise the most appropriate therapy 

(Mullenders et al., 2009; Nemunaitis et al., 2007). In this light, knowledge of biomarkers 

enhancing dl922-947 efficacy could identify those patients who would benefit from such 

treatment, once it has been licensed by the regulatory agencies (Medicines and 

Healthcare products Regulatory Agency (MHRA)). 

 

3.2 Methods 

The study presented here was set up to compare host cell factors in sensitive and 

more resistant cell lines to reveal those influencing oncolytic efficacy of dl922-947. To 

this end, the major steps of the adenoviral life cycle were scrutinised, first: 

              ▪ infectivity of the host cell, 

              ▪ viral protein expression, and 

              ▪ replication. 

Furthermore, selectivity of dl922-947 is believed to rely upon a dysregulated Rb 

pathway (Heise et al., 2000). As was learnt from the early-generation oncolytic 

adenovirus ONYX-015 (dl1520), this belief may be incorrect. ONYX-015 was designed 

to selectively replicate in and lyse p53-deficient cells by deleting E1B-55K in the virus. 

However, subsequent investigation revealed that not only was its function independent 

from the p53 status (Rothmann et al., 1998). Rather, the deletion it contained led to 

loss of late RNA export. Only those tumour cells with altered RNA export mechanisms 

allow ONYX-015 to overcome this deficiency (O'Shea et al., 2004). To test whether 

selectivity of dl922-947 is indeed based on an abnormal Rb pathway, experiments with 

the virus were carried out in an isogenic cell pair with a normal or a dysregulated Rb 
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pathway. Finally, a much closer look was taken at individual components of the Rb 

pathway in cell lines with different sensitivities to dl922-947. 

 

3.3 Sensitivity of Cancer Cells to dl922-947 

In order to compare sensitivity of different cell lines to dl922-947, I infected the ovarian 

cancer cell lines IGROV-1, OVCAR-4, TOV21G, CAOV3, SKOV3ip1, A2780 and 

A2780CP with dl922-947, as well as hTERT-immortalised ovarian surface epithelial 

cells IOSE20, IOSE21 and IOSE25, as non-cancerous controls. Survival was 

determined 120 hours later by MTT assay. Dose response curves and half maximal 

inhibitory concentration (IC50) values for each cell line were obtained using Graph-Pad 

Prism software (Fig. 3.1). 

 

Of the cancer cell lines studied, two cell lines were highly sensitive: TOV21G 

(IC50=0.038pfu/cell) and IGROV-1 (IC50=0.33pfu/cell). SKOV3, OVCAR4 and OVCAR5 

cells were less sensitive to oncolysis by dl922-947, with IC50 values of 2.4, 2.5 and 

4.6pfu/cell, respectively. Three cell lines were more resistant: OVCAR3 (14pfu/cell), 

A2780CP (18pfu/cell) and SKOV3ip1 (51pfu/cell). Two lines were defined as non-

sensitive: A2780 (IC50= 250pfu/cell) and CAOV3 (IC50>10,000pfu/cell). Compared to 

the ovarian cancer cells, the three hTERT-immortalised cells had IC50 as follows: 

IOSE20: 33pfu/cell, IOSE25: 32pfu/cell IOSE21: 173pfu/cell. 
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 OVCAR3 A2780CP SKOV3ip1 A2780 CAOV3 

IC50  14 18 51 250 >10,000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Cytotoxicity of dl922-947. Dose response curves of A. cancer cells and B. 

control cells IOSE20, IOSE21 and IOSE25 graphed relative to log MOI pfu/cell of 

dl922-947. Points represent mean +/- standard deviation. A table below each graph 

shows IC50 values (pfu/cell).  

 TOV21G IGROV-1 SKOV3 OVCAR4 OVCAR5 

IC50  0.038 0.33 2.4 2.5 4.6 

 IOSE20 IOSE21 IOSE25 

IC50  33 170 32 

A. 

B. 
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3.4 Infectivity of cell lines 

Infectivity of the host cell will have a major influence on lytic success of dl922-947. 

Quantitative PCR (qPCR) and flow cytometric analyses were used in parallel to 

evaluate and compare infectivity of ovarian cancer and control cell lines. For the flow 

cytometry-based approach, cells were infected with non-replicating adenoviral vector 

encoding enhanced green fluorescent protein (Ad-GFP) at multiplicity of infection (MOI) 

5pfu/cell. Twenty-four hours later, flow cytometric analysis was performed, 

Percentages of GFP-expressing, that is infected, cells are shown in Fig. 3.2. qPCR 

analysis probing for adenoviral DNA in the E1A and hexon regions allowed 

quantification of viral genomes present in a host cell two hours after infection with 

dl922-947 at MOI 10pfu/cell. At this timepoint at least 50% of maximal uptake of virus 

particles should have occurred (Yotnda et al., 2001), while it is too early for viral 

replication to have begun. Thus, only internalised genomes are detected. Log copy 

numbers of viral genomes are shown in Fig. 3.2. This experiment was performed in a 

selection of representative cancer cells: the highly sensitive TOV21G and IGROV-1 

cells, as well as the less sensitive SKOV3ip1 and A2780CP cells. 

 

Flow cytometric analysis indicated that TOV21G cells were the most infectable of all 

assayed cancer cell lines; OVCAR-4 and A2780CP cells were also very infectable. 

IGROV-1 and SKOV3ip1 showed lower rates of infectivity. A2780 were very difficult to 

infect, while CAOV3 could generally not be infected at all with MOI 5pfu/cell. 

Percentage of GFP-positive cells in control cell lines IOSE20, IOSE21 and IOSE25 

cells was far lower.  

 

qPCR analysis confirmed TOV21G to be the most infectable cancer cell line. Viral 

genome copy numbers in SKOV3ip1 cells were higher than in A2780CP cells, 

indicating they can be more easily infected. This contrasted with GFP-flow cytometry 

results. A similar discrepancy was found in the control cell group. IOSE21 cells showed 

considerably lower levels of GFP-expression, while viral genome copy numbers were 

higher than in SKOV3ip1 and A2780CP cells. Comparatively lower GFP-expression 

and copy numbers in the other control cell lines were consistent. 

 

In general, both methods proved that, apart from CAOV3 cells, all investigated cell 

lines could be infected. The divergence can be explained by the different factors each 

method measures. Flow cytometry results quantify the number of cells expressing GFP 
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above a pre-determined threshold, whilst qPCR results show the pure number of viral 

genome copies per infected cell.  

 

 

 

   

    

 

 

 

 

 

          

           

           

 

 

 

 

 

 

 

 

Figure 3.2 Infectivity of cell lines with adenovirus 5 mutants. Percentages of 

cancer and control cells expressing GFP after infection with Ad-GFP at MOI 5pfu/cell 

and measured by flow cytometry (top). Log copy number of viral genomes in host cells 

2 hours after infection with dl922-947 quantified by qPCR (bottom). Error bars indicate 

mean +/- standard deviation.  N/A = not assessed. 
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3.5 Expression of viral protein 

The difference in viral cytotoxic efficacy between cells could be also based on the 

inability of a host cell to synthesise all viral components required for assembly of a 

functional virus or complete shut-down of host and viral protein translation due to anti-

viral IFN response  (Naik et al., 2009; Reichel et al., 1985; Samuel, 1993; Thomis et 

al., 1993). To assess expression of both early and late viral proteins, IGROV-1, 

TOV21G, SKOV3ip1, A2780CP, A2780, CAOV3 and OVCAR-4 cells were infected 

with dl922-947 at MOI 10pfu/cell. Protein extracted up to 72 hours after infection was 

separated via SDS-PAGE gel electrophoresis, then immunoblotted expression of E1A, 

as well as late structural proteins. Protein expression was visualised using enhanced 

chemiluminescence (Fig. 3.3). 

 

All investigated cancer cells synthesised early protein E1A as well as later expressed, 

structural proteins hexon, penton and fiber. There was a difference in the onset of E1A 

expression. It appeared earliest in TOV21G cells, followed by IGROV-1 cells. In 

A2780CP and SKOV3ip1 cells, E1A was detected at later timepoints after infection.  

 

 

 

 

 

 

 

 

 

Figure 3.3.a Viral protein expression. Expression profiles of viral protein E1A, and 

structural adenovirus proteins (hexon, penton, fiber) over time in TOV21G and IGROV-

1 infected with dl922-947 analysed by Western Blotting. Ku70 served as a loading 

control.  
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Figure 3.3.b Viral protein expression. Expression profiles of viral protein E1A, and 

structural adenovirus proteins (hexon, penton, fiber) over time in A2780CP, SKOV3ip1, 

A2780, CAOV3, OVCAR4 and OVCAR5 cells infected with dl922-947 analysed by 

Western Blotting. Ku70 served as a loading control.  
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3.6 Replication 

The rate at which a virus replicates within a host cell would be expected to have a 

major impact on its cytotoxicity. I compared replication of dl922-947 in a representative 

panel of cell lines via tissue culture infective dose 50% (TCID50) assays, commonly 

used to measure viral replication. In addition, samples were analysed for genome copy 

number by quantitative PCR technology (qPCR).  

 

For TCID50 assays, cancer cells TOV21G, IGROV-1, A2780CP and SKOV3ip1, as well 

as control cells IOSE20, IOSE21 and IOSE25, were infected with dl922-947 at MOI 

10pfu/cell. Cell samples were collected 24, 48 and 72 hours after infection. Eleven 

days after titrating the lysates onto JH293 cells on 96-well plates, cytopathic effect 

(CPE) was assessed and titres of virus were calculated. The number of plaque forming 

units per cell produced by each cell line over time are plotted in Fig. 3.4. Overall, no 

conclusive correlation across all cell lines was found between measured pfu/cell and 

sensitivity to dl922-947. Seventy-two hours post-infection, TOV21G and SKOV3ip1 

cells had produced the highest number of plaque forming units per cell, closely 

followed by IGROV-1 cells. A2780CP and IOSE20 control cells had produced fewest 

plaque forming units. Interestingly, levels of pfu/cell increased quickly between 24 and 

48 hours and more or less plateaued after 48hours, with the exception of SKOV3ip1 

and IOSE20.  

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 
Figure 3.4 Virus replication assessed by TCID50. Infectious virions produced in 

cancer and control cells 24, 48 and 72 hours after infection with dl922-947 at MOI 

10pfu/cell. Error bars indicate mean +/- standard deviation.  
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For qPCR analysis, I infected IGROV-1, TOV21G, SKOV3ip1, A2780CP, IOSE20, 

IOSE21 and IOSE25 with dl922-947 at MOI 10pfu/cell; in addition, one sample per cell 

line was mock-infected. Again, cell samples were harvested 24, 48 and 72 hours post 

infection. DNA extracted from these samples was used to quantify the copy number of 

viral genomes per µg of total DNA loaded at a given time after infection, using primers 

and probes for E1A and hexon regions. After subtracting the background inferred from 

mock-control samples, replication profiles of dl922-947 were determined and are 

shown below (Fig. 3.5). Curves for hexon copy numbers were identical to E1A and not 

shown.  
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Figure 3.5 Virus replication assessed by qPCR. Copy number of viral genomes per 

µg DNA 24, 48 and 72 hours after infection with dl922-947 at MOI 10pfu/cell recorded 

in A. cancer cell lines and B. control cell lines. Error bars indicate mean +/- standard 

deviation.  
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Twenty-four hours following infection, TOV21G, the most sensitive cell lines, contained 

the greatest number of viral genomes, but there was no real increase over the next 48 

hours. Surprisingly, both 48 and 72 hours after infection, the cell line with the highest 

number of virus genomes was SKOV3ip1, with A2780CP second. IGROV-1 and 

TOV21G cells contained more or less identical amounts of viral genome at this point. 

These results back up the data from TCID50 experiments and suggest that there was 

no complete correlation between viral genome replication and viral cytotoxicity.  

 

3.7 Rb pathway and sensitivity 

Results earlier in this chapter suggested that, although ovarian cancer cells that were 

more sensitive to dl922-947 were generally more infectable, the differences in 

infectivity cannot explain the large range in sensitivity. Determining factors and events 

must therefore lie beyond the infection step. Furthermore, the oncolytic selectivity of 

dl922-947 is believed to be based on an aberrant Rb pathway (Heise et al., 2000). To 

examine whether the latter is the case, experiments were performed using MRC5 and 

MRC5-VA cells. As described earlier, MRC5-VA cells are derived from cell line MRC5, 

but have been transformed by  SV40 large T antigen (SV40 TAg). In addition to 

interfering with p53 function, SV40 TAg disrupts the normal Rb pathway by binding to 

pRb and forcing it to release transcription factor E2F, resulting in entry into the cell 

cycle (DeCaprio et al., 1988; Linzer et al., 1979; Nevins, 1992). Any difference in viral 

efficacy between the cell pair is likely to be due to Rb pathway status as dl922-947 

encodes wild-type E1B-55K, which inactivates p53 (Yew et al., 1992). Furthermore, 

TOV21G cells possess wild-type p53 genes, yet are highly susceptible to dl922-947, 

implying functional p53 does not impede dl922-947 activity (Bunz et al., 1998; Mizuarai 

et al., 2009).  
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3.8 Sensitivity of MRC5 and MRC5-VA cells to dl922-947 

Cell viability assays were performed to compare sensitivity of MRC5 and MRC5-VA 

cells to dl922-947. Survival curves are shown in Fig. 3.6., below. Whilst MRC5-VA cells 

were very sensitive to dl922-947, with an IC50 of 9.9pfu/cell, the majority of MRC5 cells 

could not be lysed even with the highest MOI.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.6 Sensitivity of MRC5 and MRC5-VA cells to dl922-947. Dose response 

curves of MRC5 and MRC5-VA cells graphed relative to log MOI pfu/cell of dl922-947. 

Points represent mean +/- standard deviation. A table below each graph shows IC50 

values (pfu/cell). 
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3.9 Infectivity of MRC5 and MRC5-VA cells 

Infectivity of the cell pair was measured by two methods, flow cytometry and qPCR, as 

described above. Based on flow cytometric analysis (Fig. 3.7), MRC5-VA cells were 

more infectable than MRC5 cells. Surprisingly, results obtained by qPCR suggested 

that levels of infection were more similar than suggested by the flow cytometry results, 

(Fig.3.7). Again, this discrepancy is due to the different entities each method measures 

and is discussed below. 
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Figure 3.7 Infectivity of MRC5 and MRC5-VA cells with adenovirus 5 mutants. A. 

Ratios of GFP-expressing MRC5 and MRC5-VA  cells after infection with Ad-GFP at 

MOI 5pfu/cell and measured by flow cytometry. B. Copy number of viral genomes in 

host cells 2 hours after infection with dl922-947 quantified by qPCR. Error bars indicate 

mean +/- standard deviation.   
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3.10 Replication of dl922-947 in MRC5 and MRC5-VA cells 

To assess replication of dl922-947 in MRC5 and MRC5-VA cells, the qPCR method 

was applied for quantification of virus genome copy number per microgram DNA. 

MRC5 and MRC5-VA cells were infected with dl922-947 at MOI 10pfu/cell. Cells were 

harvested 24, 48 and 72 hours post infection. DNA from the cells was used for qPCR 

using primers and probes for E1A and hexon. After normalising for background copy 

number, replication profiles of dl922-947 were generated and are shown in Fig. 3.8. 

Curves for hexon copy numbers were identical to E1A (data not shown). At every 

timepoint assessed, viral copy numbers in MRC5-VA cells were higher than in MRC5 

cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Virus replication assessed by qPCR. Copy number of viral genomes per 

µg DNA measured in MRC5 and MRC5-VA cells 24, 48 and 72 hours after infection 

with dl922-947 at MOI 10pfu/cell. Error bars indicate mean +/- standard deviation. 
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3.11 Rb pathway 

The Rb pathway plays a major role in cell cycle control (Genovese et al., 2006). Also, 

its functionality is believed to be the determinant for selective replication and oncolysis 

mediated by dl922-947 (Heise et al., 2000). Furthermore, experiments in MRC5 and 

MRC5-VA cells supported a role for Rb pathway dysregulation in high dl922-947 

efficiency. Therefore features of the host cell that affect sensitivity at the post-infection 

stage were to be investigated more closely, and in particular the Rb pathway. 

Experiments were performed using the four representative ovarian cancer cell lines 

IGROV-1, TOV21G, SKOV3ip1 and A2780CP, as they can all be infected with dl922-

947 but their sensitivity varies from 0.038 to 51pfu/cell. Furthermore, I employed three 

control cell lines IOSE20, IOSE21 and IOSE25.  

 

To investigate whether altered expression of one or more components of the Rb 

pathway correlated with host cell sensitivity, Western blot assays of the four ovarian 

cancer cell lines and three control cell lines were performed, immunoblotting for pRb, 

p16, p21, p27, Cyclin D1/D2/D3, Cdk4, Cyclin E and cdk2. Patterns of protein levels 

are shown in Fig. 3.9. 

 

For pRb, Cyclin E and cdk2, no correlation could be established between their 

expression levels in a cancer cell line and cell sensitivity to dl922-947. However, 

results did suggest possible correlation between sensitivity and expression of p21, p16, 

p27, Cyclin D1/D2/D3 and to some extent cdk4. The first four proteins showed highest 

levels in TOV21G cells, the most sensitive cell line, somewhat lower levels in IGROV-1 

cells, which are slightly less sensitive to dl922-947. Amounts of protein were lowest in 

A2780CP and SKOV3ip1 cells, which have been shown to be the least sensitive to the 

virus. The profile for cdk4 differed slightly, as levels in IGROV-1 cells appeared slightly 

higher than in TOV21G cells. However, the correlation between expression of these 

proteins and sensitivity to dl922-947 did not emerge for hTERT-immortalised control 

cells. 
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Figure 3.9 Expression of Rb pathway components. Profiles of Rb pathway 

component expression in cancer cell lines and control cell lines analysed by Western 

Blotting. Actin served as a loading control.   

 

3.12 Expression analysis of cells in NCI-60 panel 

In silico analysis was performed comparing gene expression in the sensitive ovarian 

cancer cell line IGROV-1 and four less sensitive ovarian cancer cell lines OVCAR3, 

OVCAR4, OVCAR5 and SKOV3. The study was carried out by Dr Claude Chelala 

(Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The 

London School of Medicine and Dentistry, London, UK). To identify potential host cell 

genes associated with sensitivity to dl922-947, published NCI-60 ovarian cancer data 

(GEO accession numbers: GSM35955 (IGROV-1), GSM35956 (OVCAR3), GSM35957 

(OVCAR4), GSM35958 (OVCAR5), GSM35960 (SKOV3)) (Blower et al., 2007; 

Shankavaram et al., 2007) were analysed using BioConductor (BioConductor) 

packages within the open source R statistical environment (Blower et al., 2007). After 

intra-array lowess normalization, Limma (Smyth GK, 2004) was used for differential 

expression analysis. Genes differentially regulated in the most sensitive line 

(GSM35955 IGROV-1) versus the others were identified. A list of the top 100 

differentially expressed genes found is shown in the appendix (Appendix Table 1). The 

two most up-regulated cell cycle-related genes were p21 and Cyclin D2 (Table 3.1).  
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  ID 
reference 

Name Log2-fold change P-value B-value Rank 

3580 CDKN1A  
(p21) 

2.42 0.0002 1.06 67 

5994 CCDND2  
(Cyclin D2) 

3.56 0.0005 0.253 97 

 
Table 3.1 Comparative in silico analysis of the NCI-60 cell panel. Shown are the 

two cell cycle regulatory genes most differentially expressed in IGROV-1 versus 

OVCAR3, OVCAR4, OVCAR5 and SKOV3 cells. Also listed are gene ID reference 

numbers, their Log2-fold change in expression,as well as the rank in the top 100 list of 

differentially regulated genes. P-value is obtained from the distribution of the 

moderated t-statistic (the-lower-the-better). B-value is the empirical Bayes log-odds of 

differential expression (the-higher-the-better).   

 

3.13 Discussion 

Comparison of a number of ovarian cancer and hTERT-immortalised ovarian surface 

epithelial cell lines revealed great variation between sensitivities to dl922-947. Among 

cancer cells, IC50 values ranged from 0.038pfu/cell to 250pfu/cell in A2780 cells. 

CAOV3 cells appeared even more resistant to the virus; however, these cells are very 

difficult to infect and do not express CAR (Lockley, 2007). As expected, hTERT-

immortalised IOSE cells were less susceptible to the virus, with IC50 values in the same 

range as in non-sensitive cancer cells, SKOV3ip1 and A2780.  

 

It is undisputable that infectivity is an important determinant of sensitivity. In primary 

ovarian and other tumours, low expression of CAR has frequently been described as a 

limiting factor for oncolytic adenoviral therapy (Cripe et al., 2001; Vanderkwaak et al., 

1999). Comparison of ovarian cancer cell lines and primary ovarian carcinoma cells 

from 3 patients indicated relatively moderate to low levels of CAR in the latter. Also, 

primary cells expressed high levels of αvβ3, but little αvβ5 (Kelly et al., 2000).  However, 

the largest series of primary ovarian cancer studied indicated that 97% (36 of 37) 

expressed CAR, with the majority on the cell surface. In addition, 62% (23 of 39) 

expressed αvβ3 and 67% (24 of 37) αvβ5 (Zeimet et al., 2002). This implies that loss of 

adenovirus receptors may not be as significant a problem in ovarian cancer as some 

have suggested. Corroborating this, ongoing GFP flourescence assays in our lab, 

involving primary ascitic cells from 6 ovarian cancer patients, indicated that cells from 4 

patients were readily infectable.  
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Clearly, high infectability of TOV21G cells will render them more susceptible to lysis by 

adenovirus than the largely non-infectable CAOV3 cells. Nevertheless, my results 

imply infectivity cannot account for the full extent of variation in dl922-947 oncolytic 

efficacy. For instance, IGROV-1 and A2780CP cells are very similar in their 

infectability, measured by qPCR and GFP-flow cytometry, respectively. Nonetheless, 

IC50 of A2780CP cells is almost 16 times higher than that of IGROV-1 cells. In addition, 

TOV21G cells are 1300 times more sensitive than SKOV3ip1 cells, yet are only 20%  

more infectable, based on GFP-flow cytometry results.   

 

The discrepancy found between the two methods assaying for infectivity itself merits 

discussion: interestingly, whilst both assays identified TOV21G cells as most 

infectable, SKOV3ip1 cells were more infectable than A2780CP cells by qPCR, but 

GFP-FACS suggested the opposite. However, these two methods measure different 

events. Flow cytometric analysis detects cells which express GFP after series of steps 

has occurred: binding of the adenovirus vector to the cell surface, internalisation, 

nuclear transport and expression from a CMV promoter. Meanwhile, the qPCR-based 

assay measures only the outcome of the first two steps: binding and internalisation. 

This is particularly important in light of a recent publication by Wang et al. In pancreatic 

cell lines, over-expression of a member of the immunoglobulin superfamily, 

carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) had no effect 

on binding and endocytosis of adenovirus. However, it was found to hamper 

adenovirus trafficking to the nucleus by inhibiting the Src signalling pathway and 

downregulating proteins of the cancer cell cytoskeleton. CEACAM6 knock-down led to 

significant increase in oncolytic effect of dl309 (Wang et al., 2009). That binding and 

endocytosis of adenovirus is required but not sufficient for delivery of viral genes has 

been reported several years ago (Xia et al., 2000). 

 
Human cells have developed a range of anti-viral mechanisms (Castelli et al., 1997; 

Lecellier et al., 2005; Sanders et al., 1998). One example is induction of protein kinase 

R (PKR) by interferon-γ (IFN-γ). Activated PKR phosphorylates and inhibits the -

subunit of translation initiation factor eIF-2, resulting in shut-down of protein translation 

in the cell (Naik et al., 2009; Reichel et al., 1985; Samuel, 1993; Thomis et al., 1993). 

Adenovirus encodes two mRNAs, VAI and VAII, which are able to interfere with PKR 

activation and counteract this anti-viral mechanism (Kaufman, 1985; Kaufman et al., 

1987; Kitajewski et al., 1986; Mori et al., 1996). Obviously, should the VAI and VAII 

response of dl922-947 fail, total protein translation shut-down in the host cell would 

also prevent production of functional virus particles. However, Western blot analyses 
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provided evidence that all cell lines supported expression of viral proteins. Clearly, 

probing for a subset of viral proteins is not representative for expression of the entire 

genome. Yet, as both early and late gene products were found, it suggests that a lack 

of sensitivity is not caused by a general block in viral protein expression. The 

immunoblots suggested a correlation between onset of E1A expression and sensitivity, 

with earliest expression detected in TOV21G cells. E1A is the first viral gene to be 

expressed after infection and its transcription is entirely induced by transcriptional 

activators of the host cell (Bruder et al., 1991; Bruder et al., 1989). This implies that 

any host cell factor that promotes E1A expression will profoundly affect overall virus 

function.  

 

At present, definitive knowledge of the mechanism of virus-induced cell death is 

limited. For a long time, it was generally assumed that death occurred upon lysis 

caused by the viral load within the cell (Fields et al., 1985). To assess viral replication, 

two approaches were taken: numbers of genome copies were assessed by qPCR and 

of functional virus particles by TCID50 assay. There was some link between sensitivity 

and TCID50, especially early after infection. However, there were exceptions, especially 

SKOV3ip1 cells, which produced 2nd highest amounts of pfu/cell, despite being the 

least sensitive of the cancer cell lines. A very different picture emerged from qPCR 

analysis: 48 and 72 hours p.i., highest genome copy numbers were found in the two 

least sensitive cancer cell lines, SKOV3ip1 and A2780CP cells. This implies that these 

cells are able to generate high levels of viral DNA that is not packaged into functional 

virions and which does not trigger a death response. Overall, while some correlation 

may exist between E1A expression, viral replication and sensitivity to dl922-947-

induced cytotoxicity, the relationship is far from complete. Moreover, my results 

strongly suggest that cells do not simply die once a threshold level of intracellular virus 

or viral DNA is reached. Thus, there must be other factors intrinsic to the host cell that 

define how readily that cell will die.  

 

Western blot analysis of G1/S phase checkpoint components suggested that a number 

of Rb pathway members were associated with increased sensitivity, among them 

Cyclin D and cdk4, promoters of G1/S phase progression (Albrecht et al., 1999; 

Depoortere et al., 1998). A link between their over-expression and sensitisation in 

cancer cell lines is conceivable, as it could increase viral DNA replication. Other 

candidates found, however, where surprising: p21, p27 and p16 are generally 

perceived as inhibitors of entry into the cell cycle (Harper et al., 1993; Serrano et al., 

1993; Wang et al., 1996). Therefore, their over-expression would be expected to 
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prevent efficient viral replication. The outcome of this immunoblot assay was 

confirmed, in part, by in silico comparison of published expression array data, where 

p21 and Cyclin D emerged as the cell cycle genes most differentially expressed 

between sensitive and non-sensitive ovarian cancer cell lines of the NCI-60 panel 

(Blower et al., 2007; Shankavaram et al., 2007). In contrast, the pattern of protein 

expression in ovarian cancer cells could not be confirmed in hTERT-immortalised IOSE 

cells, which have normal Rb pathway function (Chapman et al., 2006; Li et al., 2007a). 

This suggests that the profile seen in sensitive TOV21G and IGROV-1 cells (high p21, 

high Cyclin D) is specific for malignant cells.  

 

The isogenic MRC5/-VA cell line pair provides a very useful model to compare dl922-

947 function in cells with a normal versus abnormal G1/S phase check-point. Yet, 

MRC5-VA cells are SV40 TAg-transformed and alterations of the cell cycle checkpoint 

mediated by SV40 TAg may be different to those present in ovarian cancers. Although 

there is growing evidence that many cancers are virus-induced (McBride, 2008), 

ovarian cancer is not one of them. Furthermore, MRC5 cells are derived from male 

foetal lung fibroblasts (Jacobs et al., 1970). Biomarker candidates found in ovarian 

cancer cells may be very different to those in MRC5-VA cells, in particular within the 

context of the Rb pathway. The complexity of G1/S checkpoint control suggests that 

there are likely to be several mechanisms by which cells can be rendered sensitive to 

the effects of dl922-947. Experiments in the MRC5/-VA model may provide insight into 

such alternative pathways. For the stepwise dissection of the mechanisms underlying 

dl922-947 efficacy in ovarian cancer, however, normal and cancerous ovarian cell lines 

are the most suitable models.   

 

In conclusion, the data presented in this chapter indicate that, although infectivity and 

viral replication do have some impact on cytotoxic efficacy of dl922-947, they are not 

the sole determinants. Equally, experiments in MRC5/-VA cells strongly support the 

hypothesis that Rb pathway dysregulation plays a role in enhancing sensititvity to the 

virus. Surprisingly, loss of this cell cycle checkpoint appears to go hand in hand with an 

upregulation of both cell cycle inhibitors (p21, p16, p27) as well as promoters (Cyclin D 

and E, cdk4). This phenomenon has previously been described by Black et al.: gene 

expression arrays in pRb- and p130/p107-knockout mice revealed that loss of the 

checkpoint proteins concurred with upregulation for example of Cyclins A and B, cdk2 

and PCNA, but also CKIs p57 and p18 (Black et al., 2003). From these observations, 

two questions arose: is the expression pattern of Rb pathway members found in 

sensitive ovarian cancer cells no more than a prognostic marker, a pattern that 
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happens to coincide with sensitivity to dl922-947? Or are these Rb pathway 

components genuine predictive markers that directly influence dl922-947 activity? 

Experiments in the following chapter were designed to address these questions.   
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4 Results: The role of p21 and other Rb pathway 

components in dl922-947 virus function 
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4.1 Introduction 

Results discussed in the previous chapter suggested several potential biomarkers for 

dl922-947 cytotoxicity: p21, Cyclin D, p27, p16 and cdk4. This chapter describes the 

evaluation of these host cell factors.  

 

4.1.1 p21 

Upregulated p21 is a known marker of poor prognosis in various cancers, amongst 

them ovarian cancer (Gimenez et al., 2009; Hu et al., 2008; Werness et al., 1999; 

Winters et al., 2003).  

 

The idea that p21 could be a promoter of dl922-947 oncolytic function is counter-

intuitive. It is generally perceived as a cell cycle inhibitor by suppressing Cyclin/cdk 

activity and thus mediating cell cycle arrest (Brugarolas et al., 1999; Bunz et al., 1998). 

Also, p21 has been shown to prevent PCNA-mediated replication (Mattock et al., 

2001). Both effects would appear detrimental to viral propagation. However, there is 

increasing evidence for another dimension of p21 regulatory function. Various reports 

indicate that a profound distinction has to be made: cell cycle inhibitory effects of p21 

result from high intracellular levels of the protein. In contrast, at basal levels, it has the 

opposite effect: early on in the cell cycle, p21 enhances kinase activity of Cyclin D/cdk4 

complexes by binding to them and stabilising their interaction. This also sequesters 

p21 away from Cyclin E/cdk2 complexes. Moreover, p21 mediates nuclear targeting of 

cdk4 and Cyclin D and inhibits export of the latter (Alt et al., 2002; LaBaer et al., 1997). 

In turn, association with Cyclin D has been found to have stabilising effects on p21, 

itself (Coleman et al., 2003). Later, transiently phosphorylated p21 facilitates Cyclin 

B/cdk1 complex formation (Dash et al., 2005). These results define p21 as a promoter  

of both G1/S and G2/M phase progression. In addition, by complexing with co-

activators CREB binding protein (CBP) and p300, p21 has been implicated in 

enhancing their function. The result is increased activation of target transcription 

factors, such as E2F, activator protein-1 (AP-1) and nuclear factor κB (NFκB) (Horvai 

et al., 1997; Perkins et al., 1997; Snowden et al., 2000). 

 

Finally, p21 has been reported to modulate apoptosis although published data are 

contradictory. On one hand, a decrease in p21 in various types of cancer cell lines has 

been described to sensitise them to apoptosis after exposure to cytotoxic drugs, γ-

irradiation and IFN-γ (Detjen et al., 2003; Mahyar-Roemer et al., 2001; Tian et al., 

2000). Also, p21 was found to complex with pro-caspase 3, inhibiting Fas-mediated 
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apoptosis (Suzuki et al., 2000), whilst in apoptotic cells caspase 3 cleaved p21 (Jin et 

al., 2000). Other findings, however, imply that over-expressing p21 in glioma, liver and 

ovarian cancer cell lines leads to enhanced apoptosis after treatment with cisplatin (Qin 

et al., 2001). A study on sodium butyrate (NaB)-induced apoptosis suggested that p21 

may be expendable for cell cycle arrest but strictly required for induction of apoptosis 

(Chopin et al., 2004).  

 

In view of the effects of p21 in promoting cell cycle progression and potentially 

augmenting cell death, an enhancing effect of p21 on dl922-947 function appears less 

abstruse.  

 

4.1.2 p27, Cyclin D, cdk4, Cyclin E and p16 

Amongst the other candidates for dl922-947-enhancing roles, p27 appears to be the 

most similar to p21, with regards to structure, function and involved pathways (Sherr et 

al., 1995). The prevailing conception of p27 is that of a cdk inhibitor (Polyak et al., 

1994b). By binding to cdk4/6 p27 can inhibit Cyclin D/cdk4/6 complex formation (Ray et 

al., 2009). Both p21 and p27 are marked for degradation through phosphorylation by 

Cyclin E/cdk2 kinase activity. More importantly, like p21, p27 has been reported to 

promote Cyclin D/cdk4 complex formation (Cheng et al., 1999). The switch from 

inhibitor to promoter function of p27 may be based on a specific phosphorylation (Ray 

et al., 2009). Cheng et al. used a knock-out model in mouse embryonic fibroblasts 

(MEFs) to investigate effects of p21 and p27 loss on Cyclin D/cdk4 complex formation 

and cellular localisation. They found that loss of p21 or p27 led to reduction of total 

Cyclin D protein and Cyclin D/cdk4 complexes. In cells lacking both p21 and p27 even 

less Cyclin D was detected and Cyclin D/cdk4 complexes appeared completely lost. In 

the latter case, the effect superseded that of mere reduction of Cyclin D protein. 

Finally, just like p21, by associating with Cyclin D/cdk4 complexes, p27 targets them to 

the nucleus. Although neither CKI is required for Cyclin D nuclear import, their 

presence strongly increases Cyclin D levels in the nucleus. In view of the similarities 

between p21 and p27, it would be interesting to see not only whether they are true 

determinants of dl922-947 cytotoxic function, but also if they have additive or 

synergistic effects (Cheng et al., 1999).  

 

A dl922-947 enhancing role for Cyclin D, cdk4 and, in view of its functional proximity, 

also Cyclin E, is easily conceivable. All three facilitate cell cycle progression, 

proliferation and, ultimately, replication of host and viral DNA (Akli et al., 2003; Grana 

et al., 1995; Reed, 1997). In the presence of mitogenic signals, Cyclin D and cdk4 
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accumulate and form complexes in the cytoplasm. Next, they translocate to the 

nucleus, where they undergo phosphorylation (Ensslen et al., 1976). In turn, the now 

active holoenzymes phosphorylate pRb (Kato et al., 1993). Among the target genes 

repressed by pRb inactivation is Cyclin E, whose activity is necessary for S phase 

entry (Geng et al., 1996; Matsumoto et al., 2004).  

 

Cyclin levels are known to fluctuate throughout the cell cycle, constituting a limiting 

factor in Cyclin/cdk kinase activity. In contrast, levels of cdks remain more stable 

(Hengstschlager et al., 1999). In that context, higher levels of cdk4 may not predict 

higher dl922-947 cytotoxicity. The ability of cdk4 to complex with Cyclin D is dependent 

on the proteins associated with that particular cdk4. Cdk4 bound to Hsp90/Cdc37 and 

p16, although stable, does not bind Cyclin D. However, cdk4 is enzymatically active 

only when in complex with Cyclin D (Cheng et al., 1999). Although an increase in cdk4 

alone may not promote dl922-947 function, it might if coupled to higher levels of Cyclin 

D. 

 

In contrast, a role for p16 in promoting oncolytic effects of dl922-947 seems more 

difficult to perceive. As explained in Chapter 1, p16 was originally identified as an 

inhibitor of cdk4 and cdk6, and consequently, of pRb phosphorylation and G1/S phase 

progression (Serrano et al., 1993). Unlike p21 and p27, no additional, cell cycle 

promoting functions for p16 have been reported to date. Mice with complete knock-out 

for p16 are viable and normal, except for increased tendency to develop cancer 

(Krimpenfort et al., 2001; Sharpless et al., 2001). It is possible that correlations 

between levels of p16 and sensitivity may be a consequence of the upregulation of the 

other cell cycle promoters. 

 

4.2 Methods 

To validate or discard a role for p21 in cytotoxic effect of dl922-947, I evaluated 

isogenic matched p21 +/+ and -/- cells.  In addition, siRNA was used to knock down 

p21 protein in TOV21G and IGROV-1 cells. To obtain a pair of ovarian cancer cells 

with high and low p21 expression, A2780CP cells were transfected with a vector 

encoding p21. Cells were tested for alterations in sensitivity to virus, infectivity, 

production of viral progeny and viral protein expression.  To validate in vitro results, 

xenograft mouse models were established. Subcutaneous Hct116 p21+/+ or p21-/- 

tumours and intraperitoneal (i.p.) A2780CP tumours with high and low p21 expression 

were treated with dl922-947 to compare responses to treatment.  
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The potential role of Cyclin D1/D2/D3, p27, cdk4, Cyclin E and p16 was tested by RNAi 

knock-down and assessing changes in sensitivity to and production of dl922-947. To 

this end, a small-scale RNAi library, containing shRNA-encoding vectors, was 

generated. Subsequently, TOV21G cells were transfected with plasmids from the 

library to stably knock down p27, Cyclin D1, cdk4 or Cyclin E. 

 

4.3 Hct116 p21+/+ and p21-/- cells 

Hct116 is a human colorectal carcinoma cell line. In recent years, several knock-out 

cell pairs have been generated. On such pair, consisting of the wild-type p21 

expressing (Hct116 p21+/+) and the p21 knock-out cell line, was kindly provided by Dr. 

Bert Vogelstein. The cell pair constitutes a pure system of two nearly isogenic cell 

lines, differing only in the expression of p21. It therefore allowed a comparison of 

effects of p21 on dl922-947 in a system with very little background noise.  

 

As a preliminary step, to confirm basal levels of p21 in one and absence thereof in the 

other cell line, Western blot analysis on total protein samples was performed by Katrina 

Pirlo (Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The 

London School of Medicine and Dentistry, London, UK). Hct116 p21+/+ samples 

provided a strong specific band for p21 protein. In contrast, in Hct116 p21-/- cells the 

stable knock-out resulted in complete abrogation of p21 protein, as can be seen in the 

immunoblot in Fig. 4.1.  

 

 

 

 

 

 

 

 

 

 

Figure 4.1 p21 protein in Hct116 p21+/+ and p21-/- cells. Western blot analysis was 

performed on cell lysates probing for p21. Actin levels served as a loading control.    
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4.4 Sensitivity of Hct116 cells to dl922-947 

Cell viability assays were carried out to compare sensitivity  to adenoviruses dl922-

947, wild-type adenovirus 5 (Ad WT) and dl309 in p21 expressing and non-expressing 

Hct116 cells. Cell survival was assessed up to 120 hours post infection.  

 

At 72 hours p.i. with dl922-947 or Ad WT, there was no difference in sensitivity 

between Hct116 p21+/+ and p21-/- cells (Fig. 4.2 ). There was, however, a notable 

difference regarding cytotoxicity between the two viruses.   

 

 

 dl922-947 Ad WT 

Hct116 p21+/+ p21-/- p21+/+ p21-/- 

IC50 0.79 1.4 17 26 

     

Figure 4.2 Sensitivity of p21+/+ and p21-/- cells to dl922-947 and Ad WT. Dose 

response curves of Hct116 p21+/+ and p21-/- cells 72 hours p.i. with dl922-947 or Ad 

WT graphed relative to MOI pfu/cell of dl922-947. Points represent mean +/- standard 

deviation. 

 

At 120 hours p.i., Hct116 p21-/- cells were strikingly less senstitive to dl922-947 than 

their p21-positive counterparts. A similar phenomenon was seen with Ad WT and dl309 

(Fig. 4.3). 
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Figure 4.3 Sensitivity of p21+/+ and p21-/- cells to different adenoviruses. Dose 

response curves of Hct116 p21+/+ and p21-/- cells 120 hours p.i. graphed relative to 

MOI pfu/cell of A. dl922-947, B. Ad WT and C. dl309. Points represent mean +/- 

standard deviation. 
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4.5 In Vivo: Efficacy of dl922-947 in p21 expressing and non-expressing 

tumours in mice 

In a pilot study, 5x106 Hct116 p21+/+ or p21-/- cells were injected subcutaneously into 

CD1 nu/nu mice female mice. Once tumours reached approximately 150mm3 (p21+/+ 

tumours: 196mm3; p21-/- tumours: 161mm3), mice were treated, in groups of four, with 

intra-tumoural injections of 1010 dl922-947 particles in 50µl PBS on days 18, 22 and 26. 

Tumours were measured twice weekly with callipers.  

 

The study was ended 42 days after the initial virus injection and remaining animals 

killed. Tumour sizes in the two groups are shown in Fig. 4.4. Whilst Hct116 p21+/+ 

tumours responded well to treatment with dl922-947, Hct116 p21-/- tumours increased 

in volume at a higher rate. However, the differences did not reach statistical 

significance.   

  

    

Figure 4.4 In vivo response of mice bearing p21 expressing and non-expressing 

xenograft tumours to dl922-947. Mice with Hct116 p21+/+ or p21-/- -derived sub-

cutaneous tumours were treated with 3 intra-tumoural injections of 1010 particles dl922-

944. Points represent mean tumour volumes  +/- standard error. 

 

 

 

 

 

 



 

 
132 

The study was repeated, however, using 20 CD1 nu/nu mice. Five mice per each 

group were treated with three injections of dl922-947 and the other five mice with non-

replicating control virus Ad-CMV-GFP. As before, tumour volumes were recorded twice 

weekly and mice killed once Home Office limits were reached. 84 days after first 

treatment the study was ended. Fig. 4.5 shows tumour sizes over time in the four 

groups. Overall, tumours treated with control virus showed continuous and rapid 

growth and mice had to be killed approximately 30 days after the first virus injection In 

contrast, dl922-947 treated p21+/+ tumours responded well, with only 1 mouse with 

visible tumour at the end of the experiment. p21-/- tumours treated with dl922-947 

initially decreased in size. Later, however, tumours grew steadily until the study was 

terminated. p21+/+ tumours were significantly smaller than p21-/- tumours at late 

timepoints following dl922-947 injection. 

 

 

 

Figure 4.5 In vivo response of mice bearing p21 expressing and non-expressing 

xenograft tumours to dl922-947. Mice with Hct116 p21+/+ or p21-/-  -derived sub-

cutaneous tumours were treated with dl922-947 or control virus Ad-GFP. Points  

represent mean tumour volumes +/- standard error. *p<0.05, one-tailed unpaired 

student’s t-test.  
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4.6 Knock-down of p21 in IGROV-1 and TOV21G cells 

To examine whether a loss of p21 in TOV21G and IGROV-1 cells would bring about a 

decrease in dl922-947 cytotoxic efficacy, p21 was knocked down by siRNA. As is 

evident from Western blot analysis and densitometry shown in Fig. 4.6, using 

Dharmacon SMARTpool siRNA specific for p21, efficient knock-down of p21 protein 

levels in IGROV-1 and TOV21G cells was achieved. The effect persisted for at least 96 

hours post transfection. 

A.                        TOV21G                       

 

 

   

 

 

 

 

 

B.                         IGROV-1 

 

 

 

 

 

 

 

 

Figure 4.6 Knock-down efficiency of p21 siRNA in IGROV-1 and TOV21G cells. 

Western blot analysis of p21 protein levels in A. TOV21G cells (left) with 

corresponding densitometric analysis (right) and B. IGROV-1 cells (left) with 

corresponding densitometric analysis (right). Actin was used as a loading control and 

for normalisation in densitometry. RU=relative units. 

 

4.7 Loss of p21 and sensitivity to dl922-947           

To investigate further whether p21 expression played a role in cell sensitivity to dl922-

947, cell survival experiments were performed on the two cell lines after transient 

knock-down of p21. Eight hours post transfection with p21 siRNA or control scrambled 
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(scr) siRNA, cells were infected with dl922-947 at MOIs between 100 and 0.01pfu/cell. 

Cell viability was quantified 96 hours later by MTT assay (Fig. 4.7). siRNA-mediated 

loss of p21 in TOV21G cells resulted in a significant decrease in sensitivity to dl922-

947 (p  0.05 – 0.001) at all three MOIs applied, as compared to cells transfected with 

scrambled control. Similarly, sensitivity of IGROV-1 cells was affected by the loss of 

p21. However, the decrease in sensitivity was statistically significant only at MOI 1 and 

100pfu/cell.  

A. 

                        

B. 

                        

Figure 4.7 Cytotoxicity of dl922-947 after k.d. of p21. Dose response curves of   A. 

TOV21G and B. IGROV-1 cells transfected with p21 or scrambled control siRNA 

graphed relative to MOI pfu/cell of dl922-947. Points represent mean +/- standard 

deviation. * p=0.05, *** p = 0.001 
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4.8 p21 and viral gene expression 

Results in Chapter 3 suggested that cells sensitive to dl922-947 supported earlier 

expression of adenoviral proteins, especially E1A, the first viral gene to be expressed, 

and imperative to adenoviral replication (Bruder et al., 1991; Bruder et al., 1989). To 

assess the effects of altering intracellular p21 levels on viral gene expression, two 

approaches were taken. Firstly, reduction of the protein was achieved by siRNA-

mediated knock-down in TOV21G cells before comparing E1A expression levels by 

Western blot. Secondly, expression levels were compared in p21 over-expressing 

cells, ACP-WAF1, and their low-p21 counterpart, ACP-GFP.  

 

4.9 E1A expression after p21 knock-down in TOV21G cells 

TOV21G cells on 6-well plates were transfected with siRNA targeting p21 or non-

targeting scrambled siRNA. 24 hours later, cells were infected with dl922-947 at MOI 

10pfu/cell. 12 and 24 hours later, protein was collected and Western blots performed 

probing for p21 and E1A. An image of the results is shown in Fig. 4.8. Immunoblots for 

E1A revealed a weak but specific band at 12 hours p.i. and a strong band at 24 hours 

p.i. in scrambled controls. In contrast, in p21 knock-down cells, no band was detectable 

at 12 hours p.i. A signal was visible at 24 hours p.i., but it was weaker than in 

scrambled controls.      
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A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. 

                                          

Figure 4.8 Expression of p21 and Cyclin D in TOV21G cells after p21 knock-

down. A. Image of the immunoblots for p21 and E1A in TOV21G cells treated with 

p21-specific or scrambled (Scr) siRNA. Staining for Ku70 served as a loading control. 

B. Quantification of results by densitometric analysis. Values of p21 or E1A signal are 

normalised against the respective Ku70 control and shown in relative units (RU). 

 

4.10 Loss of p21 and virion production 

To gain a deeper understanding as to how p21 loss may affect cytotoxic potential of 

dl922-947, I examined whether transient knock-down of the protein might have 

repercussions on production of functional virions. Again, 8 hours after transfecting 

IGROV-1 and TOV21G cells with p21 or scrambled control siRNA, cells were infected 
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with dl922-947 (MOI 10pfu/cell). Cells were harvested 48 hours p.i. and analysed by 

TCID50 assay. Infectious virion titres per cell in TOV21G cells after p21 knock-down 

were significantly (p=0.02) lower than in their scrambled control-treated counterparts 

(Fig. 4.9.A). Similarly, loss of p21 in IGROV-1 cells resulted in lower, albeit not 

significantly, numbers of infectious virions produced per cell compared to scrambled 

control cells (Fig. 4.9.B).   

A. 

                  

B.  

                    

Figure 4.9 Virus replication upon transfection with p21 siRNA. Infectious virions 

produced in A. TOV21G and B. IGROV-1 cells after transfection with p21 or scrambled 

control siRNA and 48 hours p.i. with dl922-947 quantified by TCID50 assay. Bars 

represent mean +/- standard deviation. *p=0.02 

* 
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4.11 Overexpression of p21 in A2780CP and SKOV3ip1 cells 

To investigate further the effects of p21, I attempted to generate A2780CP and 

SKOV3ip1 cells stably expressing increased levels of p21. 

 

4.11.1 Transfection of SKOV3ip1 and A2780CP cells 

SKOV3ip1 and A2780CP cells were transfected with pEGFP-p21 and selected in G-

418. As control, both cell lines were transfected with pCMV-GFP.  Approximately 80% 

of transfected A2780CP cells grown in selective media were positive for green 

fluorescence, as assessed by microscopy. After several passages, cells were FACS-

sorted to enrich the cell pools for GFP-positive cells. These cell pools, referred to as 

ACP-p21 and ACP-GFP cells, were used for subsequent experiments. In contrast, 

although some transfected SKOV3ip1 cells were able to grow in antibiotic-containing 

medium, they failed to emit a green fluorescence signal under UV light, as assessed by 

microscopy.  

 

4.11.2 Expression of EGFP-p21 in transfected cells 

Transgene expression was assessed by Western blot. The expected GFP band 

(30kDa) was detected in ACP-GFP cells, as well as a faint band corresponding to low 

level endogenous p21 (Fig. 4.10). The latter was also found in A2780CP and ACP-p21 

cells. However, there was no 50kDa band corresponding to the GFP-p21 fusion protein 

in the ACP-p21 cells. Instead, there was a strong double band of approximately 30kDa 

on GFP staining and no detecateble band on p21 staining. Experiments using ACP-

p21 cells were discontinued.  
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Figure 4.10 Detection of GFP-p21 and GFP and p21 expression in A2780CP, ACP-

p21 and ACP-GFP cells. Western blot analysis was performed on cell lysates to 

assess transgene expression. Membranes were blotted for GFP (α-GFP), p21 (α-p21) 

or actin (α-actin). Actin levels served as a loading control.    
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4.11.3 Transfection of A2780CP and SKOV3ip1 cells with pCEP-WAF1 

In a second attempt to increase levels of p21 in A2780CP and SKOV3ip1 cells,  

plasmid pCEP-WAF1 was used, which encodes human p21 under the control of the 

CMV promoter, as well as a hygromycin resistance gene for selection. Transfected 

SKOV3ip1 cells were not viable in antibiotic-containing medium. However, four pools of 

pCEP-WAF1-transfected A2780CP cells were generated, which are referred to as 

ACP-WAF1. After two passages, p21 protein expression in the four pools was 

assessed by Western blot analysis (Fig. 4.11). 

 

A. 

 

 

 

 

 

 

 

B.  

            

 

 

 

 

 

 

 

 

Figure 4.11 Expression of p21 protein in transfected A2780CP cells. A. Image of 

the immunoblot for p21 protein in pools 1-4 of ACP-WAF1 cells as well as control cells 

ACP-GFP. Staining for Ku70 served as loading control. Staining for Ku70 served as 

loading control. B. Quantification of results by densitometric analysis. Values of p21 

signal are normalised against the respective Ku70 control and shown in relative units 

(RU). 

 

Of the four ACP-WAF1 pools, only pool 1 expressed detectable p21 and these cells 

were used in all subsequent experiments.  
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4.12 Proliferation rates of ACP-WAF1 and ACP-GFP cells 

Over-expression of a cell cycle inhibitor, such as p21, in a cell line may result in a 

lowering of the growth rate. Were that the case in ACP-WAF1 cells, any increase in 

sensitivity and virion production could be due to fewer cells being exposed to virus, as 

compared to ACP-GFP cells. This could lead to false positive results. To compare 

growth rates of the cell line pair, a proliferation assay was set up. Fig. 4.12. shows that 

expression of p21 has no effect on cell growth over 96 hours.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Growth curve of ACP-WAF1 and ACP-GFP cells. Increase of cell 

numbers per well over a period of 96 hours is shown. Curves have been normalised 

against absorption at 24h. Points represent mean +/- standard deviation.  

 

4.13 Over-expression of p21 and sensitivity to dl922-947 

ACP-WAF1 and ACP-GFP cells were infected with dl922-947 (MOI 0.01-1000pfu/cell) 

or mock-infected. Cell survival was quantified 144 hours p.i. Experiments were 

repeated three times. Fig. 4.13 shows representative curves and IC50 values. ACP-

WAF1 cells had an IC50 of 5pfu/cell compared to 26pfu/cell in ACP-GFP controls.  
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Figure 4.13 Sensitivity of ACP-WAF1 and ACP-GFP to dl922-947. Dose response 

curves of ACP-WAF1 and ACP-GFP cells 144 hours p.i., graphed relative to MOI 

pfu/cell of dl922-947. Points represent mean +/- standard deviation. The table below 

shows IC50 values (pfu/cell). 

 

4.14 Infectivity of ACP-WAF1 and ACP-GFP cells 

In order to investigate whether the increase in sensitivity to dl922-947 in ACP-WAF1 

cells was based on increased virus uptake, their infectivity was compared to that of 

parental A2780CP cells using the GFP fluorescence assay (Fig. 4.14). Interestingly, 

particularly after infection with the lower MOI, p21 over-expressing cells were 

significantly less infectable than their parental counterpart. 
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Figure 4.14 Infectivity of ACP-WAF1 and A2780CP cells. Percentages of GFP-

expressing ACP-WAF1 and A2780CP cells compared to non-infected cells after 

infection with Ad-GFP at MOI 5pfu/cell and 50 pfu/cell measured by flow cytometry. 

Bars represent mean +/- standard deviation. **<0.007. 

 

4.15 E1A expression in p21 over-expressing cells 

ACP-WAF1 and ACP-GFP cells were infected with dl922-947 (MOI 10pfu/cell). Protein 

was harvested up to 48h p.i.. Fig. 4.15. shows images of immunoblots for E1A. 

Although both cell lines supported E1A expression, this expression was evident earlier 

in the ACP-WAF1 cells.    

 

 

 

 

 

 

 

 

     

Figure 4.15 Expression of E1A in ACP-WAF1 and ACP-GFP cells after infection. 

A. Image of the immunoblots for E1A in ACP-WAF1 and ACP-GFP cells 3-48 hours 

after infection with dl922-947 at MOI 10pfu/cell. Staining for Ku70 served as a loading 

control.  
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4.16 Virion production in p21 over-expressing cells 

To explore effects of p21 on virion production in A2780CP cells, TCID50 assays were 

performed in dl922-947-infected ACP-WAF1 and ACP-GFP cells. Both supernatants 

and cell lysates were harvested 48 and 72 hours p.i. (Fig. 4.16). At both timepoints, 

higher amounts of functional virus were produced and released from ACP-WAF1 cells 

than control cells. These differences reached statistical significance in supernatants at 

48 hours (p=0.02) and in intracellular samples at 72 hours (p=0.001) p.i..  

                 

 

           

         

 

 

 

 

 

                          

                 

 

 

 

            

 

 

 

 

        

 

 

 

Figure 4.16 Virion production after p21 over-expression. Infectious virions detected 

by TCID50 assay in cell lysates or supernatants from ACP-WAF1 and ACP-GFP cells 

48 and 72 hours post infection with dl922-947. Bars represent mean +/- standard 

deviation. *p=0.04, **p=0.002. 
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4.17 In vivo I: Replication study of dl922-947 

In an attempt to reproduce in vivo the beneficial effects of p21 over-expression on 

dl922-947 oncolytic activity seen in vitro, 10 female BALB/c nu/nu mice were injected 

i.p. with 5x106 ACP-WAF1 or ACP-GFP cells. Each animal received injections of 5x109 

particles of dl922-947 on three successive days starting from day 8. Blood samples 

were taken and serum isolated from the animals 24 and 48 hours after the last 

treatment. The mice were killed 48 hours after last treatments and livers and tumours 

were harvested and fixed for further analysis, as described below.  

 

4.17.1 Viral titres in serum  

Virus titers in serum were assessed by TCID50 assay (Fig. 4.17). Titres of infectious 

virions in serum of mice with ACP-WAF1 tumours rose from 24 to 48 hours post 

treatment and, at both timepoints, were higher than in serum from ACP-GFP mice. In 

the latter group, there was no increase in viral titres between  24 and 48 hours post 

treatment. However, the differences between ACP-WAF1 and ACP-GFP did not reach 

statistical significance (24 hrs: p=0.16, 48 hrs: p=0.17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Viral titres in serum from mice bearing high- and low-p21 xenograft 

tumours. Serum taken 24 and 48 hours after last treatment from mice with ACP-WAF1 

or ACP-GFP i.p. tumours and treated with dl922-947 was titred onto JH293 cells. 

Points represent mean +/- standard deviation.  
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4.17.2 Immunohistochemistry for E1A and p21 in tissues 

Tumours derived from ACP-WAF1 and ACP-GFP cells and harvested from mice after 

treatment with dl922-947 were fixed in 10% buffered formalin, then embedded in 

paraffin and slides cut. Staining was carried out with anti-E1A primary antibody, 

followed by anti-rabbit secondary antibody. Images of stained sections are shown in 

Fig. 4.18. 

 

     

     

     

Figure 4.18 Immunohistochemistry in ACP-WAF1 and ACP-GFP tumours. Staining 

for E1A in sections of ACP-GFP tumours (left) and ACP-WAF1 tumours (right). 

Arrows point to positive foci in GFP tumours. T= tumour, I= intestine, L= liver. 

 

Slides show tumour deposits (T) on murine small intestines (I) and livers (L). In the 

case of E1A, no staining was found in normal intestinal or liver tissues. Some spots of 

E1A-positive staining were present in ACP-GFP tumours (arrows) suggesting 

expression of early viral genes. However, levels of E1A staining were far more 

prominent in tumours from ACP-WAF1 mice. Staining for p21 on consecutive slides of 

the same tissues showed high degrees of non-specific background staining (data not 

shown) and requires further optimisation.  
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4.18 In Vivo II: Efficacy of dl922-947 in p21 over-expressing tumours in 

mice 

5x106 ACP-WAF1 or ACP-GFP cells were injected intraperitoneally (i.p.) into 40 female 

BALB/c nu/nu mice on day 1. On days 5 to 9 inclusive, 10 mice per group were injected 

with either dl922-947 or non-replicating control virus Ad-GFP (5 x 109 particles/day in 

400 µl 20% icodextrin i.p.). Mice were monitored daily and killed once Home Office 

limits were reached. ACP-WAF1 and ACP-GFP derived tumours were of such 

aggressive nature, that all mice had to be killed within less than 30 days after 

injections. There was no significant difference in survival between the 4 groups (not 

shown). The experiment was repeated with virus injections commencing on day 2. As 

before, animals were monitored daily and killed upon reaching Home Office limits. 

Kaplan-Meier curves tracing survival of the four groups were generated and are shown 

in Fig. 4.19. Again, no difference in median survival was found. 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 In vivo response of mice bearing high- and low-p21 xenograft 

tumours to dl922-947. Mice with ACP-WAF-1 or ACP-GFP-derived i.p. tumours were 

treated with dl922-947 or control virus Ad-GFP. Kaplan-Meier survival curves are 

presented. 

 

4.19 dl922-947 and the cell cycle post infection 

Adenoviruses manipulate the cell cycle of the infected cell to promote their own 

replication and propagation. To investigate the effect of dl922-947 on cell cycle 

progression and a potential role for p21 in afftecting this, in cells with high and low 

basal levels of p21 were infected with dl922-947 (MOI 10pfu/cell) and harvested 48 

hours later, fixed in 70%  EtOH, stained with propidium iodide (PI) and analysed by 
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flow cytometry. The experiment was performed in triplicates. One representative from 

each triplicate of cell cycle profiles is shown in Fig. 4.20.a and 4.20.b.  
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Figure 4.20.a Cell cycle profiles of mock- or virus-infected ovarian cancer  

cell lines. Flow cytometric analysis was performed on A. TOV21G and B. IGROV-1 

cells that had been mock-infected (upper) or infected with dl922-947 at MOI 10pfu/cell 

(lower) followed by fixation and PI-staining after 48 hours. Experiments were 

performed in triplicates. Representative profiles are shown.  
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Figure 4.19.b. Cell cycle profiles of mock- or virus-infected ovarian cancer  

cell lines. Flow cytometric analysis was performed on C. A2780CP and  D. SKOV3ip1 

cells that had been mock-infected (upper) or infected with dl922-9497 at MOI 

10pfu/cell (lower) followed by fixation and PI-staining after 48 hours. Experiments were 

performed in triplicates. Representative profiles are shown.  
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Comparing cell cycle fractions (Fig. 4.21), sensitive TOV21G and IGROV-1 cells had a 

significantly higher resting S phase fraction (16 and 13%) than non-sensitive A2780CP 

cells (9%) (A2780CP versus TOV21G: p=0.006, A2780CP versus IGROV-1: p=0.01). 

In SKOV3ip1 cells, 12% cells resided in S phase. Following infection, all cells 

progressed through the cell cycle. All changes in cell cycle fractions were statistically 

significant. However, the degree of change was greater in sensitive cells, 

approximately 80% of which had >2n DNA by 48 hours p.i. The >2n population in 

A2780CP and SKOV3ip1 was much lower, adding up to 40-50%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 Virus infection-induced changes in cell cycle populations. 

Percentages of mock (0h)-  and virus-infected (48h) TOV21G, IGROV-1, A2780CP and 

SKOV3ip1 cells residing in G1 phase, S phase, G2/M phase and post M phase, are 

compared. Bars represent mean +/- standard deviation.  ***p<0.0004, +++p=0.001, 

p=0.002, **p=0.004, ++p=0.01, p=0.02, *p=0.01, +p=0.05 

 

4.20 dl922-947 and the cell cycle in ACP-WAF1 and –GFP cells 

The experiment was repeated in ACP-WAF1 and ACP-GFP cells, to investigate 

whether a similar change in cell cycle profiles occurs in the model. Each experiment 

was carried out in triplicate. Fig. 4.22 shows representative cell cycle profiles, whilst 

percentages of cells in respective phases are compared in separate graphs in Fig. 

4.23. In the latter case, numbers represent the mean of three samples.  
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Graphing proportion of cells per cell cycle phase after infection with dl922-947 or mock-

infection showed far less prominent changes between the two treatment groups.  

 

A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 Cell cycle profiles of mock- or virus-infected ACP-GFP and ACP-

WAF1 cells. Flow cytometric analysis was performed on A. ACP-GFP, and B. ACP-

WAF1 cells that had been mock-infected (upper) or infected with dl922-947 at MOI 10 

pfu/cell (lower) followed by fixation and PI-staining after 48 hours.  
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As Figure 4.23 shows, expression of p21 significantly increased the basal S phase 

fraction in ACP-WAF1, compared to ACP-GFP cells (p=0.002). However, following 

infection, apart from in the post M fractions (p=0.02), there was no significant change in 

profile in ACP-WAF1 cells. Nevertheless, still more of them contained >2n DNA than 

ACP-GFP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23 Virus infection-induced changes in cell cycle populations. 

Percentages of mock (0h)- and virus-infected (48h) ACP-WAF1 and ACP-GFP cells 

residing in G1 phase, S phase, G2/M phase and post M phase, are compared. Bars 

represent mean +/- standard error. **p=0.01 
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4.21 p21 protein levels over time post infection 

Intracellular levels of p21 in ovarian cancer cells were monitored over time after 

infection with dl922-947 (Fig. 4.24). In the two sensitive lines, p21 expression 

diminished and was no longer detectable by 72 hrs (TOV21G) and 96 hours (IGROV-1) 

post-infection. In the A2780CP and SKOV3ip1 cells, p21 expression appeared to 

increase over time, especially in the more resistant SKOV3ip1 cells. 
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Figure 4.24.a Expression of p21 over time in ovarian cancer cells p.i. with dl922-

947. A. Images of immunoblots for p21 protein of samples harvested from IGROV-1, 

TOV21G, SKOV3ip1 and A2780CP cells over a period of up to 144 hours after 

infection with dl922-947. Staining for actin served as loading control. 
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B. 

 

 

                                                                      

Figure 4.24.b Expression of p21 over time in ovarian cancer cells p.i. with dl922-

947. B. Quantification of results by densitometric analysis. Only lanes containing actin 

are shown. Values of p21 signal are normalised against the respective actin control 

and shown in relative units (RU).  

 

To asses wether changes in p21 expression were also seen in transfected cells, ACP-

WAF1 cells were infected with dl922-947 (MOI 10pfu/cell) and harvested up to 48 

hours later. Western blot analysis of these samples resulted in the patterns shown in 

Fig. 4.25. p21 expression appeared to diminish 3 hours post infection but rose abruptly 

at 24 hours  
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Figure 4.25 Expression of p21 over time in ACP-WAF1 cells p.i. with dl922-947. A. 

Immunoblot for p21 protein on samples harvested from ACP-WAF1 cells over a period 

of 120h hours after infection with dl922-947. IGROV-1 cells were used as a positive 

control (pos.) B. Quantification of results by densitometric analysis. Values of p21 

signal were normalised against the respective Ku70 control and are shown in relative 

units (RU). 

 

4.22 Mechanism of p21 downregulation by dl922-947 

In order to investigate the mechanism of p21 loss following infection, Hct116 p21+/+ 

cells were infected with dl922-947 (MOI 10pfu/cell) and treated with the proteasome 

inhibitor MG132 (50µM) 6 hours prior to harvest. Lysates from inhibitor-treated cells 

were collected at 24 and 48 hours. This experiment was performed by Claire Connell 

(Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The 

London School of Medicine and Dentistry, London, UK). Results of Western blot 

analysis for p21 are shown in Fig. 4.26, below. As seen in TOV21G cells, above, p21 

levels decreased 24 and 48 hours post infection with the virus. However, inhibition of 

the proteasome prevented this loss, suggesting that p21 is targeted for proteasomal 

degradation following adenovirus infection.                   
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Figure 4.26 Levels of p21 protein post infection and proteasome inhibition.  

Western blot analysis of p21 protein levels in Hct116 p21+/+ cells after infection with 

dl922-947. Lanes 3 and 5 contain samples from cells treated MG132. Actin was used 

as a  loading control (left). Quantification of results by densitometric analysis. Values of 

p21 signal are normalised against the respective actin control and shown in relative 

units (RU) (right).  

 

4.23 Effects of genotoxic stress on p21 

Adenovirus infection is known to induce a DNA damage response. To test if Hct116 

p21+/+ cells are able to mount such a DNA damage response, normally accompanied 

by p21 induction, they were exposed to 5Gy X-irradiation and harvested 6 hours later. 

These experiments were performed at the University of Sussex Genome Damage and 

Stability Centre by Claire Connell. Western blotting (Fig. 4.27) indicated that irradiation 

cause a marked increase in p21 expression, suggesting that Hct116 cells respond 

differently to different forms of genotoxic stress.  

                                                                 

Figure 4.27 Levels of p21 protein post infection or X-irradiation. Western blot 

analysis of p21 protein levels in non-treated Hct116 p21+/+ cells (Ctrl), after infection 

with dl922-947 at MOI 5pfu/cell or exposure to 5 Gy X-irradiation (X-IR). Actin was 

used as a  loading control (left). Quantification of results by densitometric analysis. 

Values of p21 signal are normalised against the respective actin control and shown in 

relative units (RU). An artefact in the MOI 5-actin band skews the p21/actin ratio 

(right). 
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4.24 Interplay between p21 and Cyclin D  

Because p21 can function to stabilise Cyclin D, Western blot analysis was performed 

after knock-down of p21 in TOV21G cells showed that not only was there a reduction in 

p21 protein, but also in Cyclin D protein. An image of the immunoblot is shown in Fig. 

4.28, along with densitometric analysis of the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

Figure 4.28 Expression of p21 and Cyclin D in TOV21G cells after p21 knock-

down. A. Image of the immunoblots for p21 and Cyclin D in TOV21G cells treated with 

p21-specific or scrambled siRNA. Staining for actin served as a loading control. B. 

Quantification of results by densitometric analysis in ACP-WAF1. Values of p21 and 

Cyclin D signal are normalised against the respective actin control and shown as 

relative units (RU). 
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In addition, Cyclin D levels were compared in ACP-WAF1 and ACP-GFP cells (Fig. 

4.29). In keeping with the previous experiment, in p21 over-expressing ACP-WAF1 

cells Cyclin D levels were increased, compared to controls.  

 

 

 

                                                                                    

 

Figure 4.29 Expression of p21 and Cyclin D in ACP-WAF1 and ACP-GFP cells. 

Image of the immunoblots for p21 and Cyclin D in ACP-WAF1 and ACP-GFP cells. 

Staining for Ku70 served as a loading control (left). Quantification of results by 

densitometric analysis in ACP-WAF1. Values of p21 and Cyclin D signal are 

normalised against the respective Ku70 control and shown as relative units (RU) 

(right). 

 

4.25 Effects of Cyclin D knock-down on dl922-947 function 

To investigate the link between p21 and Cyclin D further, the effects on Cyclin D knock-

down were assessed. In an initial experiment, optimal amounts of siRNA specific for 

Cyclin D1, D2 and D3 were determined. TOV21G cells were transfected with siRNA 

pools directed against all three isoforms individually or together. Protein expression 

was assessed 48 hours later (Fig. 4.30). When applied separately, only siRNA 

targeting Cyclin D1 (CycD1) appeared to have any knock-down effect. Profound knock-

down was only achieved by transfecting cells with a combination of 20pmol of each 

siRNA SMARTpool.  
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Figure 4.30 Knock-down efficiency of Cyclin D siRNAs in TOV21G cells. A. 

Western blot analysis of Cyclin D protein levels in TOV21G cells. Ku70 was used as a  

loading control. B. Densitometric analysis of results normalised for Ku70 protein and 

shown in relative units (RU).  

 

4.26 Sensitivity of TOV21G cells to dl922-947 after Cyclin D knock-down 

The effects of Cyclin D knock-down on dl922-947 cytoxicity were then assessed. 

TOV21G cells were transfected with all three siRNA SMARTpools or scrambled siRNA. 

24 hours later, cells were infected in triplicate with dl922-947 (MOI 0.01 – 100pfu/cell). 

Cell survival was quantified 96 and 120 hours later (Fig. 4.31.A). In parallel, cells on 6-

cm plates were treated with the same siRNA combination or scrambled siRNA per 

plate. Protein samples were harvested at 24 hours p.i. to confirm efficiency of Cyclin D 
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knock-down by Western blotting (see Fig. 4.31.B). Knock-down of Cyclin D resulted in 

a significant de-sensitisation of TOV21G cells with significantly greater survivial at all 

three MOIs. 
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Figure 4.31 Sensitivity of TOV21G cells to dl922-947 after k.d. of Cyclin D1/D2/D3. 

A. Percentages of live TOV21G cells transfected with Cyclin D-targeting (CycD) or 

scrambled control (scr) siRNA 96 hours p.i. with dl922-947 graphed relative to MOI 

pfu/cell of the virus. Points represent mean +/- standard deviation. *p=0.05, ***p=0.001 

B. Western blot (left) and densitometric analysis (right) of Cyclin D protein levels in 

TOV21G cells after transfection with Cyclin D-targeting (CycD) or scrambled control 

(scr) siRNA. Ku70 served as a loading control and for normalisation. RU= relative 

units.  
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4.27 Other Rb pathway members as potential biomarkers 

Limited analysis of Rb pathway members described in Chapter 3 had suggested p21 

and Cyclin D as candidate host cell factors to influence dl922-947 function. However, 

these were not the only Rb pathway components showing a different expression in 

sensitive and non-sensitive cell lines. Other candidates were p27, cdk4 and p16. I 

attempted to assess these candidates by shRNA- or siRNA-mediated knock-down.  

 

4.27.1 shRNA-mediated knock down of Rb pathway members 

To create a readily accessible small-scale RNAi library, I used the Human RNAi 

(Hannon) library as a starting point (Babraham Bioincubator, MRC Geneservice, 

Cambridge, UK). Access to the full-size library was granted by Prof Ian Hart (Centre for 

Tumour Biology, Institute of Cancer, Barts and The London School of Medicine and 

Dentistry, London, UK). The mini-RNAi library contained shRNAs to 44 target genes of 

interest to our group. The process of copying bacterial clones containing the hairpin-

encoding pSM2 plasmids of choice onto 96-well plates is described in detail in Chapter 

2, as well as a table of contents of the new mini-RNAi library. Plasmids to be used 

immediately for transfection were test-digested with restriction enzymes XbaI and 

HindIII, followed by gel electrophoresis. Bands obtained suggested that plasmids 

contained inserts of the appropriate size. As we have no records of the shRNA 

sequences, themselves, verification by sequencing was not possible. pSM2-shRNA 

plasmids targeting members of the Rb pathway (p27, cdk4, Cyclin D1, Cyclin E1 and 

E2) were amplified. TOV21G cells were transfected with each pSM2-shRNA followed 

by selection in puromycin. None of the cells transfected with pSM2-shRNA targeting 

Cyclin E1 and E2 survived even lowest concentrations of the antibiotic. Pools of the 

other cells were grown to confluence. Immunoblotting was performed to assess degree 

of knockdown (Fig. 4.32). However, staining with the relevant antibodies revealed no 

apparent knock-down.  

 

 

 

 

 

 

 

 

 



 

 
162 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32 Expression of RNAi-targeted proteins. Western blot analysis was 

performed on cell lysates from cells transfected with RNAi library plasmids and non-

treated controls to assess knock-down efficiency in TOV21G cells. Actin levels served 

as a loading control. 

 

4.27.2 Effects of p16 knock-down on dl922-947 efficacy 

As described in Chapter 3, expression p16 was increased in sensitive cells and thus 

might also act as a marker for cell sensitivity. siRNA was used to knock down p16 

expression in IGROV-1 and TOV21G cells.  

 

IGROV-1 and TOV21G cells were transfected with an siRNA SMARTpool targeting 

p16, with equal quantities of scrambled siRNA as control. Efficacy of p16 knock-down 

by this method was evaluated by immunoblotting (Fig. 4.33). In TOV21G cells, 

noticeable knock-down occurred only 48 hours after transfection. In IGROV-1 cells, 

p16 protein levels were reduced 24 and 48 hours after transfection. At 72 hours, p16 

levels appeared strongly increased. In contrast, p16 protein was also very low at 96 

hours post transfection. It is possible that transfection was ineffective in the well 

containing the 72h-sample. 
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Figure 4.33 Efficiency of siRNA-mediated p16 knock-down. Shown are images of 

Western blot analyses of p16 protein levels over 96hrs post transfection in A. TOV21G 

and B. IGROV-1 cells transfected with p16 siRNA or scrambled control siRNA (scr). 

Actin served as a loading control. Densitometric analyses are shown below each 

immunoblot after normalisation for actin. RU= relative units. 

 

IGROV-1 and TOV21G cells were then infected with dl922-947. 24 hours after 

transfection with p16 siRNA. Cells were harvested 48 hours post-infection and 

intracellular virus titred by TCID50 assay (Fig. 4.34). In IGROV-1 cells, there was no 

change in virion production after p16 knockdown. In TOV21G cells, there was a small 

reduction in virion production in p16 knock-down cells (p16 siRNA: 970 pfu/cell; Scr 

siRNA. 1300 pfu/cell), but this did not reach statistical significance. 
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A. 

           

 

B. 

            

Figure 4.34 Virion production after k.d. of p16 assessed by TCID50. Infectious 

virions produced in A. IGROV-1 and B. TOV21G cells transfected with p16 siRNA 48 

hours after infection with dl922-947 at MOI 10pfu/cell. Bars indicate mean +/- standard 

deviation. 
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Finally, both TOV21G and IGROV-1 cells were transfected with p16 siRNA, followed 

24 hours later by infection with dl922-947 at two MOIs: 0.1 and 10pfu/cell for TOV21G; 

1 and 10pfu/cell for IGROV-1. Cell survival was assessed up to 96 hours later by MTT 

assay. No significant decrease in sensitivity to dl922-947 was detected after p16 

knock-down in TOV21G (Fig. 4.35) or IGROV-1 (not shown). 

 

 

 

                              

                   

Figure 4.35 Cytotoxicity of dl922-947 after p16 knockdown. Shown are 

percentages of p16- or scr siRNA-treated cells alive 96 hrs p.i. with dl922-947 (MOI 0.1 

and 1.0pfu/cell). Bars represent mean +/- standard deviation. 
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4.28 Discussion 

Manipulation of p21 protein levels in sensitive and non-sensitive cell lines confirmed a 

role for this cell cycle regulator in the efficiency of dl922-947. Loss of p21 in cancer cell 

lines, either by knock-out, as in Hct116, or by siRNA, as in TOV21G, resulted in 

significant loss of sensitivity to dl922-947. Equally, p21 knock-down caused a reduction 

in functional viral particles produced per cell. The decrease was statistically significant 

in TOV21G, although did not reach significance in IGROV-1 cells. This may be due to 

the difference in basal p21 levels between the two cell lines. As untreated TOV21G 

cells contain more of the protein than IGROV-1 cells, siRNA knock-down may cause a 

greater relative change in p21 expression, mirrored by higher inhibition of virus 

production. It was noticable that, although correlation between sensitivity and 

replication of functional virions was not complete when comparing a panel of different 

ovarian cancer cell lines, it does appear to exist when comparing within the same cell 

line.  

 

Generating ACP-WAF1, a cell line in which p21 levels were increased compared to 

parental A2780CP and control ACP-GFP cells, allowed me to assess further the role of 

p21. The initial attempt to over-express p21 in A2780CP and SKOV3ip1 cells was not 

successful. Immunoblotting of ACP-p21 protein failed to show a band of the expected 

p21-GFP fusion protein (Cazzalini et al., 2003). Instead, a double band emerged at the 

same height as from GFP in ACP-GFP cells, but even higher in intensity. This explains 

why ACP-p21 cells did emit a green signal under the fluorescence microscope, but not 

the lack of the fusion protein. A reason could be inappropriate post-transcriptional 

alterations, such as mRNA processing (Yarus et al., 1997). However, transfection with 

pCEP-WAF1 was successful in A2780CP cells, although only one of five cell pools 

expressed meaningful levels of p21 protein. In contrast, no SKOV3ip1 cells over-

expressing p21 could be generated. It is possible, that SKOV3ip1 cells cannot tolerate 

higher levels of p21 without undergoing cell cycle arrest. Increased expression of p21 

in A2780CP resulted in increased sensitivity to dl922-947 as well as production and 

release of functional virus particles. Interestingly, higher levels of p21 in ACP-WAF1 

cells made them less infectable than their parental cell line, as assessed by GFP-flow 

cytometric analysis.  

 

At first, these findings seem counter-intuitive, in view of the cell cycle inhibitory function 

of p21. However, they may be explained by p21’s additional roles: high levels of p21 

prevent G1/S phase progression, whilst low/basal levels have the opposite effect. They 
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enhance Cyclin D/cdk4 and Cyclin B/cdk1 complex formation and stability. My data are 

consistent with this function of p21 as a stabiliser of Cyclin D and promoter of cell cycle 

progression. In TOV21G, IGROV-1 and ACP-WAF1 cells p21 levels appear to promote 

cell cycle progression, but levels are evidently not high enough to induce cell cycle 

arrest. Ultimately, enhanced progression appears to increase cytotoxic function of 

dl922-947. Results from experiments on Cyclin D strengthen this hypothesis. Knock-

down of p21 in TOV21G cells led to reduction in Cyclin D protein levels, whereas 

Cyclin D levels were increased in ACP-WAF1 cells. In turn, siRNA-mediated knock-

down of Cyclin D reduced TOV21G cells sensitivity to dl922-947 oncolysis. 

 

A role of p21 for dl922-947 was partially verified in vivo. In a subcutaneous Hct116 

p21+/+ and p21-/- tumour model in CD1 nude mice, p21-/- tumours responded less 

well to direct tumoural dl922-947 than p21+/+ tumours in two experiments. These 

results were very encouraging. In Balb C nude mice bearing ACP-WAF1 i.p. 

xenografts, greater serum virus levels were seen following i.p. dl922-947 than in ACP-

GFP bearing animals, along with greater E1A expression within tumours. However, 

neither efficacy study could reproduce the shift in sensitivity to dl922-947 seen in vitro 

and the Hct116-tumour in vivo study. This lack of efficacy may simply reflect the highly 

aggressive nature of A2780CP xenografts, such that the increase in virus replication 

may not have been strong enough to impact overall toxicity. Certainly, other members 

of our group have failed to demonstrate any anti-tumour efficacy with dl922-947 when 

using A2780CP-derived tumours. 

 

Sensitive TOV21G and IGROV-1 cells had in addition to demonstrable p21 expression, 

a higher fraction of cells in S phase in asynchronous populations and also supported 

earlier and greater E1A expression following dl922-947 infection. Similarly, more ACP-

WAF1 cells resided in S phase, compared to ACP-GFP controls, whilst low-p21 

A2870CP cells showed lower S phase fractions than TOV21G and IGROV1 cells. This 

stands in line with the hypothesis that in these cells p21 is a facilitator of G1/S phase 

progression (LaBaer et al., 1997). However, in asynchronous SKOV3ip1 cells, the S 

phase fraction was similar in size to IGROV-1 cells. Also, E1A protein appeared from 

24 hours post infection. Despite these parallels, SKOV3ip1 cells are resistant to dl922-

947. This implies that in SKOV3ip1 cells, induction of cell death, as seen in sensitive 

cell lines, is blocked. Whether the lack of p21 or another mechanism is responsible, 

remains unclear. The failure to generate p21-expressing SKOV3ip1 clones made 

further investigation difficult. 
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Following infection, dl922-947 drives cells the cell cycle. This phenomenon was greater 

in sensitive, but was also detectable in non-sensitive cells. However, it was not 

observed in ACP-WAF1 cells. Compared to ACP-GFP cells and parental A2780CP, 

exogenous expression of p21 seems to already have induced such progression in non-

infected cells. The underlying mechanism is unclear. However, a comparison of ACP-

WAF1 and ACP-GFP cell cycle profiles with those of A2780CP cells may not be 

possible. Correlation between two sets of flow cytometric experiments is difficult, due to 

variability in set-up and gating (Maecker et al., 2006). This may also explain the 

discrepancy between profiles of A2780CP and ACP-GFP cells.    

 

In all p21-expressing cells, levels of the protein fell following infection. Adenovirus 

infection is associated with production of host cell genomic DNA double strand breaks 

(Cuconati et al., 2003; Nichols et al., 2009), a form of DNA damage normally 

associated with increased p21 expression and cell cycle arrest.  This was confirmed in 

Hct116 p21+/+ cells, which showed a marked increase in p21 expression following X-

irradiation, a potent inducer of DNA double strand breaks. A cell cycle arrest would act 

to block productive adenovirus activity, which relies upon host cell cycle progression. 

Proteasome inhibition prevented loss of p21 protein in Hct116 p21+/+ cells, suggesting 

that the virus targets p21 for destruction either directly or indirectly. It has been shown 

that adenoviral E1B-55K and E4orf6 form part of an E3 ubiquitin ligase complex 

targeting various host cell proteins for destruction. It is possible that p21 is also 

targeted for proteasomal degradation by the complex (Querido et al., 2001a). Several 

publications describe an increase in apoptosis induced by cytotoxic drugs or γ-

irradiation of cells after downregulation of p21 (Detjen et al., 2003; Han et al., 2002; 

Mahyar-Roemer et al., 2001; Tian et al., 2000). It is possible that the downregulation of 

p21 seen in TOV21G, IGROV-1 and Hct116 p21+/+ cells promotes cytotoxic effects of 

dl922-947, whilst in A2780CP and SKOV3ip1 cells rising p21 levels inhibit virus-

induced death. The absence of a definitive mode or mechanism of adenovirus-induced 

cell death makes further investigation of this difficult.   

 

I was unable to confirm a role for p27, cdk4 and Cyclin E in promoting dl922-947 

oncolytic efficacy, as shRNA-mediated knock-down was not achieved. In the case of 

Cyclin E, none of the cells was resistant to antibiotics, suggesting failure of 

transfection. For vectors encoding p27 and cdk4 shRNAs, a number of explanations 

are possible. Generally, knock-down effects mediated by shRNA tend to be less 

efficient as those achieved by siRNA. One possibility is a faulty plasmid. RNAi libraries 

are known to expel their hairpins of interest, as vectors are inherently prone to 
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spontaneous recombination of LTR regions (Chakiath et al., 2007). However, test 

digests of amplified plasmid DNA prior to transfection (data not shown) suggested that 

hairpin-containing vectors were still intact. However, no direct sequencing of plasmids 

was performed. Another possible cause would be dysfunctional RNAi machinery in the 

transfected cell. siRNA-mediated transient knock-down of p21, Cyclin D and p16 in 

TOV21G cells was successful. However, siRNA needs no further processing before it 

can mediate degradation of target mRNA (Ahlquist, 2002). RNA hairpins, on the other 

hand, require Dicer enzymatic activity (Bernstein et al., 2001). Reduced Dicer and 

Drosha function in ovarian cancer has recently been reported. Comparison of Drosha 

and Dicer mRNA in invasive epithelial ovarian cancer specimens indicated that 50% of 

tumours expressed reduced levels of Drosha. Expression of Dicer was downregulated 

in 60% patients. In 40% of cases, mRNA levels of both enzymes were decreased 

(Merritt et al., 2008). However, there have been previous reports of successful shRNA-

mediated expression knock-down in TOV21G cells has been reported (Bartz et al., 

2006).  

 

p16 could not be validated as a predictive marker. siRNA-mediated knock-down, albeit 

less pronounced than p21-knock-down, was efficient. Yet, no significant change in viral 

replication or sensitivity to dl922-947 was detected. This implies that p16 has no 

regulatory effect  on dl922-947 activity. In cervical cancer, p16 is used as a marker of 

HPV positivity (Queiroz et al., 2006). Western blots of Rb pathway members in Chapter 

3 suggested a correlation between sensitivity and p16 expression. It would be 

interesting to see, by analysing past or future clinical trial data, whether p16 could be 

used as a prognostic marker in ovarian cancer.  

 

In summary, data presented in this chapter suggest that p21 may promote an 

intracellular environment favourable for adenoviral E1A expression and ultimately, 

dl922-947 efficacy. The mechanism by which this is achieved may be through 

stabilisation of Cyclin D and enhanced S phase activity in cells at the time of infection.  
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5 Results: The Quest for Further Candidates 
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5.1 Introduction 

Results in Chapters 3 and 4 suggested a number of candidates which may promote 

oncolytic effects of dl922-947. This chapter describes the approaches taken to identify 

further host cell factors influencing the cytotoxic efficacy of dl922-947 outside the 

obvious Rb pathway, utilising large scale techniques: whole genome expression 

screening by microarray on established cell lines as well as attempts to generate new 

cell lines for such screening. 

 

5.1.1 Methods 

The first approach was to return to the matched cell pair of MRC5 and MRC5-VA cells. 

From these cells, total RNA was isolated and used for Affymetrix Microarray analysis. 

With the aim to confirm the candidates that had emerged from MRC5/-VA cells, I 

attempted to generate paired cell lines consisting of IOSE20 or IOSE21 cells and their 

SV40 TAg-transformed counterparts. Furthermore, I obtained TOSE1 and TOSE4 cells 

from Professor Fran Balkwill (Centre for Cancer and Inflammation, Institute of Cancer, 

Barts and The London School of Medicine and Dentistry, London, UK). These two cell 

lines emerged, when Kyra Archibald in the Balkwill lab attempted to transform IOSE25 

cells by treating them with TNF-α. The cytokine has been shown to induce DNA 

damage (Babbar et al., 2007). Surprisingly, some of the non-treated control cells, later 

named TOSE, acquired the ablilty to grow as colonies in soft agar, but do not form 

tumours in nude mice, and will be referred to as pre-transformed. Microsatellite 

sequencing confirmed that TOSE originated from IOSE25 cells (oral communication 

with Kyra Archibald, Centre for Cancer and Inflammation, Institute of Cancer, London, 

UK). After characterisation of TOSE cells with regards to their behaviour when infected 

with dl922-947, basal gene expression in cycling non-infected cells was compared 

between the three cell lines by microarray analysis. As these cells represent a very 

interesting and highly suitable model for my quest for biomarker candidates, they will 

be described first. 
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5.2 Infectivity of TOSE cells 

Infectability of IOSE25, TOSE1 and TOSE4 cells was assessed by GFP flow 

cytometry, as before (Fig. 5.1). The least infectable cell line was IOSE25. At MOI 

5pfu/cell, 10% of these cells were positive for green fluorescence, increasing to 47% at 

MOI 50pfu/cell. TOSE4 cells appeared the most infectable. After infection at MOI 

5pfu/cell, 36% of cells were GFP-positive and 85% at MOI 50pfu/cell. Infectivity of 

TOSE1 cells lay in-between with 18% cells expressing GFP after infection at MOI 

5pfu/cell and 83% at MOI 50pfu/cell.  

 

 

 

 

 

                          

 

 

  

                                                                            

             

 

 

 

 

                                              

 

Figure 5.1 Infectivity of TOSE1, TOSE4 and IOSE25 cells. Mean percentages of 

GFP-positive cells after infection with Ad-GFP at MOIs 5pfu/cell (top) or 50pfu/cell 

(bottom). Bars represent mean +/- standard deviation. *p≤0.01 
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5.3 Sensitivity of TOSE cells to dl922-947 

Sensitivity to dl922-947-mediated cytotoxicity was next assessed (Fig. 5.2). Control 

cells IOSE25 were the least sensitive (IC50 21.4pfu/cell). TOSE4 cells were more 

sensitive (IC50s 3.9pfu/cell), whilst TOSE1 were the most sensitive, with an IC50 of 

0.14pfu/cell.  

 

        

 

 

  

 

 
Figure 5.2 Sensitivity of IOSE25 and TOSE cells to dl922-947. Dose response 

curves of IOSE25, TOSE1 and TOSE4 cells 144 hours p.i. graphed relative to MOI 

pfu/cell of dl922-947. Points represent mean +/- standard deviation. Table shows IC50 

values (pfu/cell). 

 

 

 

 

 

 

 

 

 

 IOSE25 TOSE1 TOSE4 

IC50 21 0.14 3.9 
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5.4 Expression of p21 in TOSE cells 

Expression of p21 was assessed in TOSE1, TOSE4 and IOSE25 cells by Western blot. 

As Fig. 5.3 shows, p21 protein levels were markedly increased in TOSE cells, as 

compared to IOSE25 controls, with slightly more p21 in TOSE1 than TOSE4 cells, 

confirming the data from ovarian cancer cells.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Western blot analysis in TOSE cells. Protein levels of  p21 in cell lysates 

of TOSE1, TOSE4 and IOSE25 cells are shown with respective densitometric values in 

relative units (RU) (below). Actin was used as a loading control and for normalisation.  

 

5.5 Gene expression profiling in TOSE cells 

Unlike MRC5-VA cells, TOSE1 and TOSE4 cells have acquired their sensitising 

genetic changes very recently, which implies that the number of additional alterations 

should be limited. Equally importantly, TOSE cells have not been SV40 large T antigen 

(SV40 TAg) -transformed, so should be more relevant to primary ovarian cancer. Thus 

they represent a very suitable model for whole genome expression analysis. 

Microarray-based gene expression profiling was undertaken to compare basal gene 

expression profiles in proliferating TOSE1, TOSE4 and IOSE25 cells. Raw results from 

this analysis were analysed by Dr Claude Chelala (Centre for Molecular Oncology and 

Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, 

London, UK) and Dr Probir Chakravarty (Bioinformatics & Biostatistics, Cancer 

Research UK London Research Institute, London). 
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5.5.1 Microarray analysis in IOSE25, TOSE1 and TOSE4 

Total RNA was extracted from 80% confluent cells growing in triplicate on 6-cm plates. 

Next, RNA was reverse-transcribed into double-stranded cDNA, then into biotin-

labelled cRNA. This was followed by fragmentation into cRNA pieces 35-200 bases in 

length. To verify successful fragmentation, a fraction of the fragmented samples was 

run on a 0.8% agarose gel alongside a non-fragmented control. An image of the 

electropherogram is shown in Fig. 5.4, below.  

 

Whilst the lane containing the non-fragmented sample shows a relatively compact 

band of a large size, the other lanes lack distinct bands. This absence of bands in 

fragmented samples is due to the smaller size and heterogeneity of cRNA  fragments. 

As a consequence, the GelRed signal emitted lies under the threshold detectable by 

UV imaging.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Fragmented biotin-labelled cRNA. Shown is a 0.8% agarose gel after 

electrophoretic fractionation of fragmented biotin-labelled cRNA from IOSE25, TOSE1 

and TOSE4 cells. Lanes 1-3  contain non-fragmented cRNA from IOSE25, TOSE1 and 

TOSE4 cells, as a control. Nucleic acid was visualised by adding GelRed to the 

agarose gel prior to setting, and UV radiation.  

 

Next, hybridisation cocktails were prepared from fragmented RNA. These were passed 

on to Tracy Chaplin (Centre for Medical Oncology, Institute of Cancer, Barts and The 

London School of Medicine and Dentistry, London, UK) alongside Human Genome 

U133 Plus 2.0 chips. Hybridisation, scanning of the arrays and preliminary quality 
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control were carried out by Tracy Chaplin. As the latter was highly satisfactory, raw 

data gained from the array were processed and analysed by Dr Claude Chelala.  

 

5.6 Gene expression profiling in IOSE25, TOSE1 and TOSE4 

A list of genes significantly up- or downregulated in TOSE1 and TOSE4, as compared 

to IOSE25 cells, was generated. The cut-off threshold of fold-change was set at 2 log. 

Lists of top 100 most differentially expressed genes are shown in the appendix 

(Appendix Tables 2-5). Tables 5.1-5.6, below, show the 20 genes most significantly up- 

or downregulated in TOSE1 and TOSE4 compared to IOSE25 cells. Ranking is based 

on fold-change in TOSE1 cells. Furthermore, genes from these lists were clustered into 

pathways and processes based on their functions. Table 5.7 shows the number of 

these 20 up- or downregulated genes involved in a given pathway or process.   
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Gene 
 

Fold change 

Function 
TOSE1 
compared 
to IOSE25 

TOSE4 
compared 
to IOSE25 

chitinase 3-like 1 
(cartilage 
glycoprotein-39) 
x2 

9.01 
7.87 

5.40 
4.15 

promoter of proliferation in 
synovial, foetal lung 
fibroblast and skin cells; at 
low levels, has synergistic 
effects with Insulin-like 
growth factor-1 (Kawada et 
al., 2007); induces activation 
of AKT and other signalling 
pathways (Recklies et al., 
2002)  

selenoprotein P, 
plasma, 1 

8.13 6.01 extracellular glycoprotein 
involved in oxidant defence 
and selenium transport 
(Olson et al., 2007) 

amylase, alpha 1A 
(salivary) 

7.48 1.47 catalyser of starch/glycogen 
breakdown (Robert et al., 
2002b) and inhibitor of 
cAMP-dependent protein 
kinase (Furusawa et al., 
2002)  

melanoma antigen 
family A, 12 

7.14 7.46 normal function: probably in 
cell cycle regulation, 
particularly during germ line 
differentiation,  (Ohman 
Forslund et al., 2001), , 
MAGE-A12 normally 
expressed in testis 
(Mollaoglu et al., 2008) 

sodium channel, 
nonvoltage-gated 1 
alpha 

7.12 6.35 epithelial sodium ion channel 
(Meisler et al., 1994), 
interacts with NEDD4, 
NEDD4L and ubiquitin C 
(Farr et al., 2000) 

major 
histocompatibility 
complex, class II, 
DP alpha 1 

6.87 4.76 antigen-presenting cell 
surface molecule, adaptive 
immune system (Monaco, 
1993; Ramachandra et al., 
1999) 

Table 5.1 Twenty most significantly upregulated genes in TOSE cells as 

compared to IOSE25 cells. Fold change in mRNA levels as detected by Affymetrix 

microarray. x2 / x3 = Appeared twice / three times on the top 20 list. 
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Gene 
 

Fold change 

Function 
TOSE1 
compared 
to IOSE25 

TOSE4 
compared 
to IOSE25 

melanoma antigen 
family A, 11 

6.79 6.26 normal function: probably in 
cell cycle regulation, 
particularly during germ line 
differentiation (Ohman 
Forslund et al., 2001), 
MAGE-A11 normally 
expressed in testis & 
placenta(Mollaoglu et al., 
2008) 

haemoglobin, 
epsilon 1 

6.68 4.85 oxygen transporter 
(Southworth et al., 1926) 

melanoma antigen 
family A, 3 

6.49 6.76 MAGE genes: almost 
exclusively expressed in 
tumours; normal function: 
probably in cell cycle 
regulation, during germ line 
differentiation (Ohman 
Forslund et al., 2001), 

melanoma antigen 
family A, 6 

6.41 6.75 normal function: probably in 
cell cycle regulation, 
particularly during germ line 
differentiation, {Ohman 
Forslund, 2001 #90, MAGE-
A6 normally expressed in 
Testis 

major 
histocompatibility 
complex, class II, 
DR alpha 

6.28 1.87 antigen-presenting cell 
surface molecule, adaptive 
immune system (Monaco, 
1993; Ramachandra et al., 
1999) 

melanoma antigen 
family B, 2 
 
 

6.07, 5.72 5.06, 6.97 normal function: probably in 
cell cycle regulation, 
particularly during germ line 
differentiation (Ohman 
Forslund et al., 
2001),MAGE-B2 normally 
expressed in testis, placenta 

TIMP 
metallopeptidase 
inhibitor 3 

6.07 5.44 inhibitor of MMP(Woessner, 
2001); its overexpression 
results in apoptosis in lung 
cancer cells (Finan et al., 
2006), upregulated in virus-
transformed fibroblasts, acts 
as a growth factor and can 
alter cell adhesion (Yang et 
al., 1992) 

Table 5.2 Twenty most significantly upregulated genes in TOSE cells as 

compared to IOSE25 cells. Fold change in mRNA levels as detected by Affymetrix 

microarray. x2 / x3 = Appeared twice / three times on the top 20 list. 
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Gene 
 

Fold change 

Function 
TOSE1 
compared 
to IOSE25 

TOSE4 
compared 
to IOSE25 

haemoglobin, 
gamma G 

6.03 3.86 oxygen transporter 
(Southworth et al., 1926) 

G1 to S phase 
transition 2 

5.96 5.64 GTP-binding protein 
involved in G1 to S phase 
progression (Le Goff et al., 
2002) 

major 
histocompatibility 
complex, class II, 
DR beta 1 
x2 

5.84 
5.84 

1.54 
1.74 

antigen-presenting cell 
surface molecule, adaptive 
immune system (Monaco, 
1993; Ramachandra et al., 
1999) 

secretory 
leukocyte 
peptidase inhibitor 

5.84 4.48 inhibitor of serine proteases 
in epithelial cells; broad 
spectrum of antibiotic 
effects; repressed by IL-1 
and TNFa (King et al., 2002) 

alpha-2-
glycoprotein 1, 
zinc-binding 

5.81 1.99 inducer of lipolysis (Russell 
et al., 2004) 

lipopolysaccharide-
induced TNF factor 

5.80 5.70 promoter/activator of TNF-α 
expression (Myokai et al., 
1999) 

placenta-specific 8 5.71 6.99 Marker of plasmacytoid 
dendritic cells(Colonna et al., 
2004); 
enhances proliferation (Li et 
al., 2006); confers resistance 
to apoptosis and loss of 
G2/M checkpoint; 
Inhibitor of differentiation 
(Rogulski et al., 2005, 
Huang, 2006 #345); 
viral clearance in primates 
(Lanford et al., 2007) 

Table 5.3 Twenty most significantly upregulated genes in TOSE cells as 

compared to IOSE25 cells. Fold change in mRNA levels as detected by Affymetrix 

microarray. x2 / x3 = Appeared twice / three times on the top 20 list. 
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Gene 
 

Fold change 

 
Function 

TOSE1 
compared 
to IOSE25  

TOSE4 
compared 
to IOSE25 

collagen, type I, 
alpha 2 
x2 

-8.96 
-7.60 

-8.86 
-7.36 

required for osteogenesis 
(Byers et al., 1991); role in 
proliferation and migration of 
bladder cancer (Mori et al., 
2009) 

chemokine (C-X-C 
motif) ligand 6 
(granulocyte 
chemotactic 
protein 2) 

-8.96 -8.97 Neuronal migration 
(chemoattractant); 
embryogenesis/olfactory 
development, (Edman et al., 
2008) 

microsomal 
glutathione S-
transferase 1 
x3 

-7.52 
-6.64 
-6.06 

-8.31 
-8.09 
-7.69 

protect against anti-oxidative 
stress (Maeda et al., 2005)  

pregnancy-
associated plasma 
protein A, 
pappalysin 1 
x4 

-7.50 
-7.28 
-7.12 
-6.68 

-7.53 
-7.36 
-7.24 
-6.81 

matrix metalloproteinase, 
cleaves insulin-like growth 
factor binding proteins 
(Laursen et al., 2001); role in 
proliferation and bone 
remodelling (Kumar et al., 
2005; Tanner et al., 2008) 

chemokine (C-X-C 
motif) ligand 12 
(stromal cell-
derived factor 1) 

-7.19 -7.35 Neuronal migration; 
embryogenesis/olfactory 
development, acts together 
with CXCR4 (Schwarting et 
al., 2006) 

CD9 molecule -6.73 -6.73 transmembrane proteins on 
stromal cells; crucial for 
osteoclast development 
(Tanio et al., 1999) 

leucine rich repeat 
containing 17 

-6.46 -6.34 negative regulator of 
osteoclast-differentiation 
induced by receptor activator 

NF- B -ligand (RANKL)(Kim 
et al., 2009) 

periostin, 
osteoblast specific 
factor 

-6.44 -8.66 osteoblast differentiation 
(Litvin et al., 2004), cardiac 
development, repair and 
remodelling; cell adhesion 
(Blanchard et al., 2008), 
induces proliferation (Kuhn 
et al., 2007); ligand for 
various αvβ3/5 integrins 
(Gillan et al., 2002) 

Table 5.4 Twenty most significantly downregulated genes in TOSE cells, 

compared to IOSE25 cells. Fold change in mRNA levels detected by Affymetrix 

microarray  (“-”= downregulation). x2 / x3 = Appeared twice / three times on the top 20 

list. 
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Gene 
 

Fold change 

 
Function 

TOSE1 
compared 
to IOSE25  

TOSE4 
compared 
to IOSE25 

prostaglandin-
endoperoxide 
synthase 2 
(prostaglandin 
G/H synthase and 
cyclooxygenase) 

-6.28 -7.28 also called Cox-2; promoter  
of prostaglandins, which are 
involved in cell growth (Chen 
et al., 2008), role in 
differentiation and expansion 
of bone cells (Xie et al., 
2008) 

versican 
x2 

-6.23 
-5.72 

-8.04 
-6.49 

extracellular matrix 
proteoglycan; involved in 
adhesion (Zimmermann et 
al., 1989) 

regulator of G-
protein signalling 4 
x2 

-6.20 
-6.07 

-5.38 
-5.17 

inhibitor of G-protein via its 
GTPase-accelerating protein 
activity (Chasse et al., 2003; 
De Vries et al., 2000) 

EGF-like repeats 
and discoidin I-like 
domains 3 

-6.18 -6.76 mediator of angiogenesis, 
possibly vessel remodelling 
& development (Rezaee et 
al., 2002); ligand for αvβ3 
(Hidai et al., 1998) 

CD200 molecule -6.13 -6.04 membrane glycoprotein, 
member of immunoglobulin 
family; negatively regulates 
macrophage and myeloid 
lineage ; induced by IFN-γ & 
TNF-α , induces IL-6 release 
and cell death (Chen et al., 
2009), inhibitor of osteoclast 
differentiation (Cui et al., 
2007) 

Neurotrimin -5.93 -5.85 adhesion molecule (Struyk et 
al., 1995); role in 
development of neuronal 
projections (Gil et al., 1998); 
restricted to post-mitotic 
neurons; expression peaks 
in during first post-natal 
week (Struyk et al., 1995) 

gamma-
aminobutyric acid 
(GABA) B 
receptor, 2 

-5.82 -6.05 inhibitory nervous system 
transmembrane receptor 
(Bowery, 2006); promoter of 
development (Dzitoyeva et 
al., 2005); associated with G 
protein for intracellular 
signalling (Bowery, 2006)  

Table 5.5 Twenty most significantly downregulated genes in TOSE cells as 

compared to IOSE25 cells. Fold change in mRNA levels detected by Affymetrix 

microarray  (“-”= downregulation). x2 / x3 = Appeared twice / three times on the top 20 

list. 
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Gene 
 

Fold change 

 
Function 

TOSE1 
compared 
to IOSE25  

TOSE4 
compared 
to IOSE25 

ceramide kinase-
like 

-5.79 -5.90 lipid kinase; prevents ROS-
induced apoptosis (Tuson et 
al., 2009) 

ATPase, class I, 
type 8B, member 
1 

-5.72 -4.01 activator of the farnesoid X 
receptor (Frankenberg et al., 
2008), which has tumour 
suppressor functions 
(Chiang et al., 2000; Modica 
et al., 2008) 

neuronal cell 
adhesion molecule 

-5.67 -5.85 cell-cell adhesion; induces 
neuronal outgrowth (Doherty 
et al., 1996), reduction of the 
receptor increased 
metastasis in pancreatic 
cancer (Perl et al., 1999) 

Myocardin -5.65 -5.80 transcriptional co-activator of 
serum response factor (SRF) 
(Wang et al., 2003c); 
promotes differentiation of 
fibroblasts; frequently 
downregulated  during 
malignant transformation, 
resulting in increased 
proliferation (Milyavsky et al., 
2007) 

SAM domain, SH3 
domain and 
nuclear 
localization signals 
1 

-5.64 -7.41 signal adapter protein 
(Uchida et al., 2001); 
downregulated in malignant 
cells (Rimkus et al., 2006) 

Table 5.6 Twenty most significantly downregulated genes in TOSE cells as 

compared to IOSE25 cells. Fold change in mRNA levels detected by Affymetrix 

microarray  (“-”= downregulation). x2 / x3 = Appeared twice / three times on the top 20 

list. 
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Function / Process / Pathway 
TOSE 

Up Down 

Differentiation & Development                                     P 

                                                                                     I 

0/20 

5/20 

9/20 

2/20 

Cytoskeletal regulation                 0/20 0/20 

Adhesion/Cell surface molecules & signalling /          P 

Extracellular matrix                                                       I  

5/20 

2/20 

8/20 

0/20 

Anti-viral & Stress-induced mechanisms 7/20 1/20 

Cell cycle promotion / Proliferation / Tumour growth   P 

                                                                                     I 

8/20 

0/20 

4/20 

3/20 

Cell death/survival                                                       P 

                                                                                     I 

1/20 

0/20 

1/20 

1/20 

Transcription (other*) 0/20 0/20 

Translation 0/20 0/20 

 

Table 5.7 Clustering of most significantly deregulated genes according to 

function, pathway and process.  Shown are ratios of upregulated (Up) or 

downregulated (Down) genes to total of genes included in the clustering. ;  * = involved 

in other pathways/processes than those listed. P=promoting effects, I=inhibiting effects. 

 
In addition, raw data were subjected to a more comprehensive analysis of gene 

expression. This analysis was performed by Dr Probir Chakravarty (Bioinformatics & 

Biostatistics, Lincoln's Inn Fields, London, UK.)  Lists of top 30 statistically enriched 

pathways or processes were generated by applying the adjusted p value as a statistical 

filter. Metacore pathway analysis tool (GeneGo Inc., St. Joseph, MI, USA) (Ekins et al., 

2006; Ekins et al., 2007) was used for hypergeometric testing with a p value of 0.05. 

The resulting list was separated into up- and down regulated lists (see Tables 5.8-

5.14). In this context, the term ”pathway” represents a uni-directional flow of 

information, normally from the exterior of the cell to the nucleus of the cell. A “process” 

is a set of genes or proteins that act together, such that the end result is a recognised 

biological event or a series of events. 

 

A multitude of pathways and processes was found to be enriched in TOSE cells. Their 

relevance is reviewed in the discussion at the end of this chapter. 

 

 

 



 

 
184 

Pathway enrichment – genes upregulated in TOSE1 

1 Cytoskeleton remodeling_Cytoskeleton remodelling 7.05E-10 56/96 

2 Cell adhesion_Chemokines and adhesion 2.19E-08 52/93 

3 
Cytoskeleton remodeling_TGF, WNT and cytoskeletal 
remodelling 1.40E-07 56/107 

4 Cell cycle_The metaphase checkpoint 2.16E-06 24/36 

5 
Cell adhesion_Integrin-mediated cell adhesion and 
migration 2.43E-06 28/45 

6 
Cytoskeleton remodeling_Role Activin A in 
cytoskeleton remodelling 2.61E-06 16/20 

7 
Cell cycle_Chromosome condensation in 
prometaphase 2.61E-06 16/20 

8 Transcription_CREB pathway 5.15E-06 23/35 

9 
Cytoskeleton remodeling_Role of PKA in cytoskeleton 
reorganisation 6.51E-06 21/31 

10 
Cytoskeleton remodeling_Regulation of actin 
cytoskeleton by Rho GTPases 8.26E-06 17/23 

11 
Cytoskeleton remodeling_Fibronectin-binding integrins 
in cell motility 1.76E-05 19/28 

12 Development_TGF-beta induced EMT via SMADs  2.38E-05 22/35 

13 Cytoskeleton remodeling_Integrin outside-in signalling 6.18E-05 26/46 

14 Normal wtCFTR traffic / ER-to-Golgi 6.68E-05 23/39 

15 Development_TGF-beta induced EMT via MAPK  7.62E-05 25/44 

16 Regulation of CFTR activity (norm and CF) 1.15E-04 23/40 

17 
Immune response_MIF - the neuroendocrine-
macrophage connector 1.42E-04 19/31 

18 Development_EGFR signaling via small GTPases 1.70E-04 18/29 

19 
Muscle contraction_ GPCRs in the regulation of 
smooth muscle tone 2.46E-04 28/54 

20 
Cell cycle_Spindle assembly and chromosome 
separation 2.57E-04 19/32 

21 Apoptosis and survival_BAD phosphorylation 3.62E-04 20/35 

22 
Cell adhesion_Endothelial cell contacts by non-
junctional mechanisms 5.42E-04 15/24 

23 
Cardiac Hypertrophy_NF-AT signaling in Cardiac 
Hypertrophy 6.15E-04 29/59 

24 Cell cycle_Role of Nek in cell cycle regulation 6.71E-04 17/29 

25 

Development_WNT signaling pathway. Part 1. 
Degradation of beta-catenin in the absence WNT 
signalling 7.54E-04 13/20 

26 Cytoskeleton remodeling_FAK signalling 9.02E-04 24/47 

27 DNA damage_ATM/ATR regulation of G1/S checkpoint 9.20E-04 18/32 

28 Signal transduction_Calcium signalling 9.20E-04 18/32 

29 Cell cycle_ESR1 regulation of G1/S transition 9.20E-04 18/32 

30 
Cell adhesion_Histamine H1 receptor signaling in the 
interruption of cell barrier integrity 9.55E-04 20/37 

 

Table 5.8 Pathway and process enrichment analysis of differentially expressed 

genes. Shown are enriched upregulated pathways, their fold-upregulation and ratios of 

proteins/genes differentially expressed in a given pathway versus total amount of 

proteins/genes involved in that pathway. 
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Process enrichment – genes upregulated in TOSE1 

1 Cell cycle_Mitosis 1.84E-13 93/177 

2 Cell adhesion_Integrin-mediated cell-matrix adhesion 1.81E-12 103/209 

3 Cell cycle_G2-M 1.44E-10 96/202 

4 Cytoskeleton_Actin filaments 1.26E-09 85/178 

5 Cytoskeleton_Spindle microtubules 2.43E-09 58/108 

6 
Cytoskeleton_Regulation of cytoskeleton 
rearrangement 2.71E-09 86/183 

7 Development_Regulation of angiogenesis 4.87E-07 81/186 

8 Cell adhesion_Cell junctions 1.21E-06 67/149 

9 Signal transduction_WNT signalling 1.56E-06 74/170 

10 Cell cycle_Core 1.88E-06 54/114 

11 DNA damage_Checkpoint 3.23E-06 57/124 

12 Cell cycle_S phase 3.54E-06 65/147 

13 Cell cycle_G1-S 5.35E-06 70/163 

14 Cell adhesion_Amyloid proteins 9.06E-06 71/168 

15 Cell cycle_G1-S Growth factor regulation 1.51E-05 74/179 

16 DNA damage_DBS repair 2.43E-05 49/108 

17 
Signal Transduction_TGF-beta, GDF and Activin 
signalling 4.53E-05 61/145 

18 Cell cycle_Meiosis 5.15E-05 46/102 

19 Inflammation_Amphoterin signalling 7.97E-05 50/115 

20 Cell adhesion_Integrin priming 8.49E-05 44/98 

21 Cell adhesion_Cadherins 9.01E-05 70/175 

22 Cytoskeleton_Cytoplasmic microtubules 1.72E-04 49/115 

23 
Cardiac development_Wnt_beta-catenin, Notch, 
VEGF, IP3 and integrin signalling 2.30E-04 55/134 

24 Inflammation_Protein C signalling 2.39E-04 41/93 

25 Cell adhesion_Attractive and repulsive receptors 2.64E-04 66/168 

26 
Signal transduction_Androgen receptor signaling 
cross-talk 3.82E-04 28/58 

27 Development_Hemopoiesis, Erythropoietin pathway 4.56E-04 51/125 

28 Cytoskeleton_Intermediate filaments 4.65E-04 36/81 

29 Signal transduction_ERBB-family signalling 5.18E-04 32/70 

30 Signal transduction_NOTCH signalling 6.32E-04 82/223 

 

Table 5.9 Pathway and process enrichment analysis of differentially expressed 

genes. Shown are enriched upregulated processes, their fold-upregulation and ratios 

of proteins/genes differentially expressed involved a given process versus total amount 

of proteins/genes involved in that process. 
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According to enrichment analysis, no pathway was significantly downregulated in 

TOSE1 cells. 

 

Process enrichment – genes downregulated in TOSE1 

1 Translation_Translation initiation 4.14E-14 102/163 

2 Translation_Elongation-Termination 2.52E-12 91/147 

 

Table 5.10 Pathway and process enrichment analysis of differentially expressed 

genes. Shown are enriched downregulated processes, their fold-downregulation and 

ratios of proteins/genes differentially expressed involved a given process versus total 

amount of proteins/genes involved in that process. 
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Pathway enrichment – genes upregulated in TOSE4 

1 Cytoskeleton remodeling_Cytoskeleton remodelling 3.17E-13 54/96 

2 Cell adhesion_Chemokines and adhesion 5.60E-12 51/93 

3 Cytoskeleton remodeling_Integrin outside-in signalling 3.00E-09 29/46 

4 Development_TGF-beta induced EMT via SMADs  5.99E-09 24/35 

5 
Cytoskeleton remodeling_TGF, WNT and cytoskeletal 
remodelling 1.41E-08 50/107 

6 Development_TGF-beta induced EMT via MAPK  1.35E-07 26/44 

7 
Cytoskeleton remodeling:Role of PKA in cytoskeleton 
reorganisation 5.33E-07 20/31 

8 
Cell adhesion_Integrin-mediated cell adhesion and 
migration 1.20E-06 25/45 

9 
Cytoskeleton remodeling_Regulation of actin 
cytoskeleton by Rho GTPases 1.70E-06 16/23 

10 Transcription_CREB pathway 8.05E-06 20/35 

11 Cytoskeleton remodeling_Slit-Robo signalling 9.04E-06 18/30 

12 
Cytoskeleton remodeling_Fibronectin-binding 
integrins in cell motility 1.30E-05 17/28 

13 
Cardiac Hypertrophy_NF-AT signaling in Cardiac 
Hypertrophy 1.62E-05 28/59 

14 
Cell adhesion_Role of tetraspanins in the integrin-
mediated cell adhesion 2.48E-05 20/37 

15 Transcription_Androgen Receptor nuclear signalling 4.54E-05 21/41 

16 
Muscle contraction_ GPCRs in the regulation of 
smooth muscle tone 7.71E-05 25/54 

17 
Cell adhesion_Histamine H1 receptor signaling in the 
interruption of cell barrier integrity 1.00E-04 19/37 

18 
Cell adhesion_Endothelial cell contacts by non-
junctional mechanisms 1.43E-04 14/24 

19 Apoptosis and survival_BAD phosphorylation 1.49E-04 18/35 

20 Transcription_PPAR Pathway 1.59E-04 19/38 

21 Cytoskeleton remodeling:Reverse signaling by ephrin  2.01E-04 16/30 

22 Normal wtCFTR traffic / ER-to-Golgi 2.46E-04 19/39 

23 
Regulation of lipid metabolism_ACM stimulation of 
Arachidonic acid production 2.48E-04 22/48 

24 
Cytoskeleton remodeling_Role Activin A in 
cytoskeleton remodelling 3.03E-04 

Dec-
20 

25 Development_WNT signaling pathway. Part 2 3.57E-04 22/49 

26 
Cardiac Hypertrophy_Ca(2+)-dependent NF-AT 
signaling in Cardiac Hypertrophy 3.66E-04 18/37 

27 Regulation of CFTR activity (norm and CF) 3.72E-04 19/40 

28 
wtCFTR and delta508-CFTR traffic / Generic schema 
(norm and CF) 3.72E-04 19/40 

29 Delta508-CFTR traffic / ER-to-Golgi in CF 4.00E-04 
Sep-
13 

30 Signal transduction_PTEN pathway 7.98E-04 19/42 

 

Table 5.11 Pathway and process enrichment analysis of differentially expressed 

genes. Shown are enriched upregulated pathways, their fold-upregulation and ratios of 

proteins/genes differentially expressed in a given pathway versus total amount of 

proteins/genes involved in that pathway. 
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Process enrichment – genes upregulated in TOSE4 

1 Cell adhesion_Integrin-mediated cell-matrix adhesion 3.85E-17 97/209 

2 Cytoskeleton_Actin filaments 2.27E-13 80/178 

3 Development_Regulation of angiogenesis 3.42E-11 78/186 

4 
Cytoskeleton_Regulation of cytoskeleton 
rearrangement 3.77E-11 77/183 

5 Cell adhesion_Amyloid proteins 1.76E-10 71/168 

6 Cell adhesion_Cadherins 5.65E-10 72/175 

7 Development_Blood vessel morphogenesis 4.01E-08 77/208 

8 Cell adhesion_Cell junctions 1.09E-07 59/149 

9 
Cardiac development_Wnt_beta-catenin, Notch, 
VEGF, IP3 and integrin signalling 1.92E-07 54/134 

10 
Signal Transduction_TGF-beta, GDF and Activin 
signalling 2.40E-07 57/145 

11 Signal transduction_WNT signalling 2.85E-07 64/170 

12 Development_Neurogenesis:Axonal guidance 1.63E-06 65/181 

13 Cell adhesion_Attractive and repulsive receptors 2.25E-06 61/168 

14 Development_Skeletal muscle development 2.81E-06 54/144 

15 Cell adhesion_Cell-matrix interactions 5.26E-06 70/205 

16 Cell adhesion_Platelet aggregation 9.53E-06 52/142 

17 Signal transduction_NOTCH signalling 1.80E-05 73/223 

18 Cardiac development_FGF_ErbB signalling 2.41E-05 45/121 

19 
Signal transduction_Androgen receptor signaling 
cross-talk 3.39E-05 26/58 

20 
Cardiac development_Role of NADPH oxidase and 
ROS 3.87E-05 45/123 

21 Development_Ossification and bone remodeling 5.42E-05 52/150 

22 Cell adhesion_Integrin priming 8.68E-05 37/98 

23 Reproduction_FSH-beta signaling pathway 9.80E-05 52/153 

24 Signal transduction_Leptin signalig 1.44E-04 33/86 

25 
Reproduction_Feeding and Neurohormones 
signaling 1.76E-04 65/206 

26 Inflammation_Amphoterin signaling 3.55E-04 40/115 

27 
Cell adhesion_Platelet-endothelium-leucocyte 
interactions 3.77E-04 55/172 

28 Cytoskeleton_Cytoplasmic microtubules 7.42E-04 39/115 

29 Inflammation_TREM1 signaling 1.39E-03 41/126 

30 Inflammation_Neutrophil activation 2.21E-03 57/192 

 

Table 5.12 Pathway and process enrichment analysis of differentially expressed 

genes. Shown are enriched upregulated processes, their fold-upregulation and ratios 

of proteins/genes differentially expressed involved a given process versus total amount 

of proteins/genes involved in that process. 
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Pathway enrichment – genes downregulated in TOSE4 

1 Oxidative phosphorylation 5.31E-08 48/95 

2 

Development_WNT signaling pathway. Part 1. 
Degradation of beta-catenin in the absence WNT 
signaling 1.77E-04 13/20 

 

Table 5.13 Pathway and process enrichment analysis of differentially expressed 

genes. Shown are enriched downregulated pathways, their fold-downregulation and 

ratios of proteins/genes differentially expressed in a given pathway versus total amount 

of proteins/genes involved in that pathway. 

 

 

Process enrichment – genes downregulated in TOSE4 

 

 

 

    

 

 

 

 

Table 5.14 Pathway and process enrichment analysis of differentially expressed 

genes. Shown are enriched downregulated processes, their fold-downregulation and 

ratios of proteins/genes differentially expressed involved a given process versus total 

amount of proteins/genes involved in that process. 

 

 

 

 

 

 

 

 

 

 

1 Translation_Translation initiation 2.37E-21 95/163 

2 Translation_Elongation-Termination 1.41E-14 78/147 

3 Translation_Translation in mitochondria 1.15E-09 53/103 

4 Translation_Regulation of initiation 9.80E-08 52/111 

5 
Transcription_Nuclear receptors transcriptional 
regulation 1.13E-06 74/187 

6 Transcription_mRNA processing 4.54E-04 57/159 

7 Transcription_Transcription by RNA polymerase II 7.01E-04 56/158 

8 Transcription_Chromatin modification 2.93E-03 44/125 

9 Proteolysis_Ubiquitin-proteasomal proteolysis 3.02E-03 56/167 
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5.7 Microarray analysis in MRC5 and MRC5-VA cells 

In a previous chapter, experiments on MRC5 and MRC5-VA cells had confirmed that a 

dysregulated Rb pathway increases cell sensitivity to dl922-947. MRC5-VA cells 

showed a large increase in sensitivity to dl922-947 compared to the parental non-

transformed MRC5 cells. Given their genetic proximity, this cell pair represents another 

suitable system for comparative gene expression profiling to identify host cell genes 

responsible for sensitisation to dl922-947. Furthermore, comparing array results of 

TOSE and MRC5-VA cells could highlight the most potent general determinants of 

dl922-947 efficacy. Overlap of certain differentially expressed genes and pathways 

between the two models would emphasise their influence on cell sensitisation to dl922-

947. 

 

5.7.1 Microsatellite sequencing of MRC5 and MRC5-VA cells 

Prior to microarray analysis, genomes of MRC5 and MRC5-VA cells underwent 

microsatellite sequencing to assess their proximity in genetic background (Choudhary 

et al., 1993). Microsatellite sequencing was performed by the Genome Centre (William 

Harvey Research Institute, Barts and The London School of Medicine and Dentistry, 

London, UK) using 100ng genomic DNA from each cell line. A panel of 14 

microsatellites on 6 chromosomes was compared in both cell lines. A table of 

chromosomes and ratios of consistent or inconsistent markers is shown in Table 5.15. 

Most markers assessed emerged as inconsistent. It is thus possible that MRC5 and 

MRC5-VA are unrelated cells lines. On the other hand, according to oral 

communication with Charles Mein (Genome Centre, William Harvey Research Institute, 

Barts and The London School of Medicine and Dentistry, London, UK) , a tendency of 

multiple alleles per locus was detected in the microsatellite sequencing. This is likely to 

be due to multiple copies of different lengths per cell (Fu et al., 1991; Vogelstein et al., 

1988). Another possibility is that alleles are different between the cells within a pool. 

Either could indicate microsatellite instability (Wolman et al., 1992). The cell pair was 

established in 1983 (Huschtscha et al., 1983). Thus, passaging of the cells has 

undoubtedly introduced genomic changes in the two cell lines, in particular, as SV40 

TAg-transformation renders cells more prone to genomic instability (Barbanti-Brodano 

et al., 2004).  
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Chromosome Ratio  of consistency 

Chr 03  1/3 markers consistent, 2/3 inconsistent 

Chr 04  1/1 markers inconsistent 

Chr 05  3/3 markers inconsistent 

Chr 06  1/1 markers inconsistent 

Chr 17  1/1 markers inconsistent 

Chr 18  2/2 markers inconsistent 

 

Table 5.15 Microsatellite sequencing in MRC5 and MRC5-VA cells. Shown are 

ratios of consistent or inconsistent markers between MRC5 and MRC5-VA cells. Chr = 

chromosome. 

 

5.8 Gene expression profiling in MRC5 and MRC5-VA cells 

For whole genome basal expression analysis in MRC5 and MRC5-VA cells total RNA 

was processed the same way as for TOSE cells. Again, biotin-labelled cRNA was 

compared using the Affymetrix Human Genome U133 Plus 2.0 microarray platform. 

Below, Tables 5.16-5.20 show the 20 genes most significantly up- or downregulated in 

MRC5-VA compared to MRC5 cells. A list of the top 100 differentially expressed genes 

is shown in the appendix (Appendix Table 6 and 7). In addition, genes from the top 20 

lists were clustered into pathways and processes. Table 5.21 shows how many of 

these 20 up- or downregulated genes were involved in a given pathway or process. 

Clustering was based on functions attributed to each gene. It was to serve as a starting 

point to identify further biomarkers for sensitivity to dl922-947. 
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Gene 
Fold change 
compared to 
MRC5 cells 

Function 

placenta-specific 8 7.82 marker of plasmacytoid dendritic 
cells(Colonna et al., 2004); 
enhances proliferation (Li et al., 
2006); confers resistance to 
apoptosis and loss of G2/M 
checkpoint; 
Inhibitor of differentiation 
(Rogulski et al., 2005, Huang, 
2006 #345); 
viral clearance in primates 
(Lanford et al., 2007) 

brain expressed, X-linked 
1 

7.38 promoter of proliferation and 
inhibitor of differentiation by 
interacting with p75 
(Vilar et al., 2006)  

protein phosphatase 2 
(formerly 2A), regulatory 
subunit B, beta isoform 
(PP2, also known as 
PP2A) 

6.71 Ser/Thr phosphatase, involved in 
broad range of cellular functions; 
target proteins include Raf, MEK, 
AKT (Dworakowska et al., 2009); 
suppression of PP2  results in 
inhibition of Akt by 
phosphorylation and increased 
cell death (Mao et al., 2005; Ory et 
al., 2003; Yin et al., 2006) 

death-associated protein 
kinase 1 

6.54 mediator of apoptosis, induced by 
IFN-γ (Deiss et al., 1995) 

ELOVL family member 7, 
elongation of long chain 
fatty acids (yeast) 

6.48 promoter of cancer growth and 
cell survival (Tamura et al., 2009) 

nuclear factor I/B 
x2 

6.42 
6.23 

Binds promoters of cellular and 
viral promoters and origin of 
replication of Ad2; activator of 
cellular and viral transcription and 
replication; involved in 
development and tumourigenesis 
(Gronostajski, 2000; Nagata et al., 
1982) 

hypothetical protein 6.36 N/A 

F11 receptor 6.14 also called junctional adhesion 
molecule (JAM)) (Ong et al., 
2009); 
adhesion protein for reovirus 
(Stehle et al., 2004); structural 
similarities to CAR (Goosney et 
al., 2003; Walters et al., 2002) 

 

Table 5.16 Twenty most significantly upregulated genes in MRC5-VA cells as 

compared to MRC5 cells. Fold change in mRNA levels as detected by Affymetrix 

microarray. x2 / x3 = Appeared twice / three times on the top 20 list. 
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Gene 
Fold change 
compared to 
MRC5 cells 

Function 

transcription factor AP-2 
alpha (activating 
enhancer binding protein 
2 alpha) 

6.10 cell-type-specific stimulation of 
proliferation and the suppression 
of terminal differentiation during 
embryonic development   
(Eckert et al., 2005); 
growth inhibitory effects in 
tumours, when cytoplasmic 
(Eckert et al., 2005); the p21-
promoter possesses an AP-2 
binding site (Anttila et al., 2000) 

radical S-adenosyl 
methionine domain 
containing 2 

5.95 endoplasmic reticulum-associated, 
IFN-induced antiviral protein, 
induced by CMV (Chin et al., 
2001) 

carboxypeptidase A3 
(mast cell) 

5.88 up-regulation in prostate cancer 
leads to differentiation and 
apoptosis, induced by histone 
deacetylase inhibitors; p21 
transactivation is required for 
CBA3 induction (Huang et al., 
1999) 

odz, odd Oz/ten-m 
homolog 2 (Drosophila) 

5.82 cell surface and transmembrane 
receptor, promotes cell-cell 
adhesion (Tucker et al., 2006), 
translocates to PMLs (Bagutti et 
al., 2003) 

zinc finger protein 236 5.77 target for tumour growth inhibition; 
transcription factor activity; 
glucose-induced expression 
(Holmes et al., 1999) 

ELAV (embryonic lethal, 
abnormal vision, 
Drosophila)-like 2 (Hu 
antigen B) 

5.74 binds to poly-A tails of mRNA; 
required for cellular differentiation 
(Akamatsu et al., 1999); regulates 
poly-adenylation, mRNA 
stabilisation and translation 
(Yannoni et al., 1999) 

leucine rich repeat 
neuronal 1 

5.68 transmembrane protein; 
expression restricted to early 
development of central nervous 
system, later downregulated 
(Carim-Todd et al., 2003) 

plakophilin 2 5.67 scaffold for adhesion and 
signalling (Bass-Zubek et al., 
2009) 

 

Table 5.17 Twenty most significantly upregulated genes in MRC5-VA cells as 

compared to MRC5 cells. Fold change in mRNA levels as detected by Affymetrix 

microarray. x2 / x3 = Appeared twice / three times on the top 20 list. 
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Gene 
Fold change 
compared to 
MRC5 cells 

Function 

ISL1 transcription factor, 
LIM/homeodomain, (islet-
1) 

5.57 transcription factor in neuronal 
differentiation and cardiac and 
pancreatic cell lineage 
development (Cai et al., 2003; 
Sun et al., 2007), marker of self-
renewal capacity/pluripotency (Bu 
et al., 2009; Lin et al., 2007; 
Moretti et al., 2006) 

pleckstrin homology 
domain containing, family 
A member 7 

5.57 promotes E-cadherin, α- and β-
catenin in zona adherens;  
involved in tethering microtubules 
to zona adherens in epithelial cells 
(Meng et al., 2008) 

neurexin 3 5.43 cell adhesion and receptor 
molecule in nervous system (Kelai 
et al., 2008) 

radical S-adenosyl 
methionine domain 
containing 2 

5.25 

cytomegalovirus-induced gene 5 
protein; virus inhibitory protein, 
interferon-inducible (Chin et al., 
2001; Hinson et al., 2009) 

 
Table 5.18 Twenty most significantly upregulated genes in MRC5-VA cells as 

compared to MRC5 cells. Fold change in mRNA levels as detected by Affymetrix 

microarray. x2 / x3 = Appeared twice / three times on the top 20 list. 
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Gene 
 

Fold change 
compared to 
MRC5 cells 

 
Function 

matrix metallopeptidase 
1 (interstitial 
collagenase) 

-7.84 breaks down collagen (Seltzer et 
al., 1989) 

collagen, type VI, alpha 3 -7.15 extracellular matrix protein, cell 
growth (Miner et al., 1994) 

peroxiredoxin 2 -7.02 antioxidant enzyme; implications 
with anti-viral mechanism in T-
cells (Geiben-Lynn et al., 2003); 
promoting cell death (Fang et al., 
2007) 

collagen triple helix 
repeat containing 1 

-7.00 inhibitor of collagen expression, 
promoter of cell migration (Pyagay 
et al., 2005) 

heat shock 70kDa 
protein 1A 

-6.78 stress-inducible protein (Daugaard 
et al., 2007); induced by E1A and 
large tumour antigen genes 
(Milarski et al., 1986); under 
normal conditions promotes G1 to 
S phase progression (Milarski et 
al., 1986) 

cadherin 11, type 2, OB-
cadherin (osteoblast) 

-6.36 downregulation decreases 
adhesion to other cadherin 11 
proteins (Chu et al., 2008) 

Decorin 
x3 

-6.29 
-6.06 
-5.90 

proteoglycan involved in assembly 
of extracellular matrices and 
regulation of proliferation (Krusius 
et al., 1986); 
downregulation of decorin may be 
due to loss of Rb function, as re-
introducing pRb into knock-out 
cells upregulated decorin levels 
(Rohde et al., 1996)  

adipose differentiation-
related protein 

-6.28 marker for adipocyte 
differentiation (Jiang et al., 1992) 

forkhead box F2 -6.08 transcription activator involved in 
development of epithelia (Wang et 
al., 2003a) 

prostaglandin-
endoperoxide synthase 1 
(prostaglandin G/H 
synthase and 
cyclooxygenase) 

-6.06 enzyme promoting production of 
prostaglandins, which in turn are 
involved in cell growth; inhibition 
of cox-1 results in cell cycle arrest 
in tumour cells (Robertson et al., 
1998); pro-inflammatory role 
(Garcia-Bueno et al., 2009) 

 

Table 5.19 Twenty most significantly downregulated genes in MRC5-VA cells as 

compared to MRC5 cells. Fold change in mRNA levels as detected by Affymetrix 

microarray (minus before values indicates downregulation). x2 / x3 = Appeared twice / 

three times on the top 20 list. 
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Gene 
 

Fold change 
compared to 
MRC5 cells 

 
Function 

thyrotropin-releasing 
hormone degrading 
enzyme 

-5.99 induce growth-hormone secretion 
(Schally, 1978) 

microtubule-associated 
protein 1A 

-5.93 in non-differentiated neurons 
associated with mitotic spindle; 
protein levels increase during 
differentiation (Vaillant et al., 
1995) 

G protein-coupled 
receptor 37 (endothelin 
receptor type B-like) 

-5.78 associated with differentiation of 
tumour cells (Hoshi et al., 2009), 
loss of the protein disrupts 
differentiation of cell lineages in 
nervous system (Nataf et al., 
1996) 

insulin-like growth factor 
binding protein 4 

-5.74 inhibitor of insulin-like growth 
factor, thus preventing 
proliferation and differentiation 
(Durai et al., 2007) 

spondin 2, extracellular 
matrix protein 

-5.69 required for T cell priming by 
dendritic cells and for normal 
morphogenesis of respiratory tract 
and limbs; involved in Wnt-
signalling (Blaydon et al., 2006) 

heat shock protein, 
alpha-crystallin-related, 
B6 

-5.64 role in muscle function (Dreiza et 
al.), indirectly affects actin 
cytoskeleton (Seit-Nebi et al., 
2009) 

HIV-1 Tat interactive 
protein 2, 30kDa 

-5.60 transcriptional co-factor for Tat-
mediated transcription from HIV 
promoter (Xiao et al., 1998) 

eukaryotic translation 
initiation factor 1A, Y-
linked 

-5.58 important translation initiation 
factor, required for stabilisation 
and binding of ribosomal 43S 
complex to the 5’ end of capped 
mRNA (Chaudhuri et al., 1997; 
Pestova et al., 1998) 

transient receptor 
potential cation channel, 
subfamily A, member 1 

-5.53 stress sensor (Bang et al., 2009; 
Garcia-Anoveros et al., 2007); role 
in keratinocyte differentiation and 
mediating acute inflammatory pain 
(Atoyan et al., 2009) 

CUG triplet repeat, RNA 
binding protein 2 -5.49 

inhibits translation of COX-2 
mRNA (Sureban et al., 2007)  

 
Table 5.20 Twenty most significantly downregulated genes in MRC5-VA cells as 

compared to MRC5 cells. Fold change in mRNA levels as detected by Affymetrix 

microarray (minus before values indicates downregulation). x2 / x3 = Appeared twice / 

three times on the top 20 list. 
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Function / Process / Pathway 
MRC5-VA 

Up Down 

Differentiation & Development                                      P 

                                                                                      I 

2/20 

5/20 

6/20 

2/20 

Cytoskeletal regulation                 1/20 1/20 

Adhesion / Cell surface molecules & signalling /          P 

Extracellular matrix                                                       I  

4/20 

0/20 

3/20 

2/20 

Anti-viral & Stress-induced mechanisms 3/20 4/20 

Cell cycle promotion / Proliferation / Tumour growth    P 

                                                                                      I 

5/20 

1/20 

4/20 

2/20 

Cell death / survival                                                      P 

                                                                                     I 

2/20 

2/20 

1/20 

0/20 

Transcription (other*) 2/20 1/20 

Translation 1/20 1/20 

 

Table 5.21 Clustering of most significantly deregulated genes according to 

function, pathway and process. Shown are ratios of upregulated (Up) or 

downregulated (Down) genes to total of genes included in the clustering. ;  * = involved 

in other pathways/processes than those listed. P=promoting effects, I=inhibitory 

effects. 
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5.9 Generation of ovarian cell lines with Rb pathway abnormalities 

Microsatellite sequencing indicated many inconsistencies in microsatellites between  

MRC5 and MRC5-VA cells. To obtain a more relevant model system for my work, I 

wanted to establish matched cell pairs of ovarian cells, comprising one cell line with a 

normal Rb pathway and an isogenic cell line in which the pathway is deregulated. 

IOSE20 and IOSE21 cells are human normal ovarian surface epithelial (OSE) cells 

induced to overexpress human telomerase reverse transcriptase (hTERT) by retroviral 

transduction. This results in their immortalisation without disrupting normal Rb pathway 

function (Li et al., 2007a). I attempted to transform both cell lines by transfection with a 

plasmid encoding SV40 TAg. As explained earlier, SV40 TAg is able to bind and inhibit 

both p53 and pRb, leading to a loss of function of the cell cycle checkpoint. Ovarian-

specific Cre/Lox-mediated excision of both genes in a murine model was observed to 

result is a phenotype very similar to that of high grade serous ovarian cancer (Flesken-

Nikitin et al., 2003). Thus, SV40 TAg- transformed cells could represent an ideal model 

to study in more detail the implications of Rb pathway deregulations for cytotoxic 

function of dl922-947 in ovarian cells.  Furthermore, I planned to carry out comparative 

microarray analysis in these cell line pairs, taking advantage of their isogenic nature.   

 

5.9.1 Cloning of plasmid pCMV-SV40 

The first step towards generating SV40-transformed cells was the cloning of a suitable 

plasmid encoding SV40 TAg. I had access to a plasmid containing the SV40 TAg gene, 

pX8 (kindly received from Prof George Tsao, University of Hong Kong, China) (Tsao et 

al., 2002). However this vector did not contain a selectable marker. The latter is not 

necessary for transformation of normal cells, as only transfected cells will continue to 

proliferate. To transfect IOSE cells, on the other hand, an additional tool for growth 

selection in required, as these cells already are immortalised. Thus, the SV40 TAg 

gene was subcloned from pX8 into a vector containing an antibiotic resistance gene. 

Cloning steps were performed by or under close supervision of Dr Carin 

Ingemarsdotter in our group as described in Material and Methods. In brief, the SV40 

TAg-encoding sequence was excised from pX8 by EcoRI digestion. After gel 

purification, the EcoRI fragment was ligated into pCMV-Script (Stratagene, La Jolla, 

CA, USA) which contains a neomycin-resistance gene.  

 

Test digests were performed to distinguish between plasmids containing the insert in 

forward and reverse orientation, the latter representing an insert-containing control. 

Subsequently, two plasmids, one containing the insert in forward orientation (pCMV-
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SV40-F) and one with the insert in reverse orientation (pCMV-SV40-R), were further 

amplified and purified before transfection into IOSE cells. 

 

5.9.2 Transfection of IOSE cells with pCMV-SV40 

IOSE20 and IOSE21 cells were each transfected with plasmids pCMV-SV40-F, pCMV-

SV40-R and, to obtain further control cell lines, empty vector pCMV-Script. The 

transfection reagent used was FuGENE 6 (Roche). Transfected cells were selected in 

G-418 (1mg/ml). A list of the newly generated cell pools as well as the plasmids they 

contain is shown in Table 5.22. After several passages, protein was extracted from all 

cell pools and protein levels of intracellular SV40 TAg assessed by Western blot.   

 

Cell pool Parental cell line Transfected plasmid 

I20-SV40-F1 IOSE20 pCMV-SV40-F 

I20-SV40-F2 IOSE20 pCMV-SV40-F 

I20-SV40-R1 IOSE20 pCMV-SV40-R 

I20-SV40-R2 IOSE20 pCMV-SV40-R 

I20-CMV IOSE20 pCMV-Script 

I21-SV40-F1 IOSE21 pCMV-SV40-F 

I21-SV40-F2 IOSE21 pCMV-SV40-F 

I21-SV40-R1 IOSE21 pCMV-SV40-R 

I21-SV40-R2 IOSE21 pCMV-SV40-R 

I21-CMV IOSE21 pCMV-Script 

 

Table 5.22 Transfected cell pools. Listed are newly generated pools, their parental 

cell lines and the plasmid transfected into them.   
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5.9.3 SV40 TAg expression in transfected cells  

Western blot analysis was performed to assess levels of SV40 TAg in transformed 

cells. As a positive control, total protein harvested from MRC5-VA cells was also run. 

The experiment was repeated three times. Representative images of the Western blots 

are shown in Fig. 5.5. I could not detect SV40 TAg protein in any of the samples from 

pCMV-SV40 transfected cells. Although the GAPDH control is over-exposed and 

loading may not be fully equal, this does not alter the overall conclusion.  

 

                     

 

 

 

 

 

 

 

 

 

  

Figure 5.5 Expression of SV40 TAg in transfected cells. Western blot of protein 

samples from transfected I20/I21-SV40 cells probed for SV40 TAg. As a loading 

control GAPDH was used. 

 

5.9.4 Sensitivity of I20/I21-SV40 cells to dl922-947 

In parallel to processing I20-SV40-F, I20-SV40-R, I21-SV40-F and I21-SV40-R for 

Western blot analysis, cell survival assays were set up to compare sensitivity of these 

cells to dl922-947 120 hours p.i.. Representative survival curves and IC50 values in I21-

SV40-F, I21-SV40-R and I21-pCMV cells are shown in Fig. 5.6. In keeping with the 

Western blot results, there was no difference in IC50 values between the three cell 

pools. 

 

SV40

GAPDH

I2
0

-S
V

4
0

-F
1

I2
0

-S
V

4
0

-F
2

I2
1

-S
V

4
0

-F
1

I2
1

-S
V

4
0

-F
2

I2
0

-S
V

4
0

-R
1

I2
0

-S
V

4
0

-R
1

I2
1

-S
V

4
0

-R
2

I2
1

-S
V

4
0

-R
1

M
R

C
5

-V
A

SV40

GAPDH

I2
0

-S
V

4
0

-F
1

I2
0

-S
V

4
0

-F
2

I2
1

-S
V

4
0

-F
1

I2
1

-S
V

4
0

-F
2

I2
0

-S
V

4
0

-R
1

I2
0

-S
V

4
0

-R
1

I2
1

-S
V

4
0

-R
2

I2
1

-S
V

4
0

-R
1

M
R

C
5

-V
A



 

 
201 

             

 

 

 
 

Figure 5.6 Sensitivity of pCMV-SV40 transfected cells to dl922-947. Dose 

response curves of I21-CMV, I21-SV40-F2 and I21-SV40-R2 120hrs p.i.. Percentage 

of cell survival is graphed relative to log MOI pfu/cell of dl922-947. Points represent 

mean +/- standard deviation. Table shows IC50 values (pfu/cell). 

 

Considering the lack of detectable SV40 Tag protein in any of the relevant cell lines, 

further experiments on these cells were discontinued. 

 

5.9.5 Transfection of IOSE20 and IOSE21 cells with pSV3neo 

As transfection of IOSE20 and IOSE21 cells neither with pCMV-SV40-F nor with 

pCMV-SV40-R resulted in detectable expression of SV40 TAg, I wanted to repeat the 

transfection using a published plasmid encoding SV40 TAg, pSV3neo. The plasmid 

was generated by Peter J Southern and Peter Berg (Southern et al., 1982) and kindly 

donated  by Prof Guy Whitley (University of St Andrews, UK). Apart from the sequence 

for SV40 TAg, pSV3neo also contains the neomycin resistance gene to allow positive 

selection of transfected cells. IOSE20 and IOSE21 cells were transfected with 

pSV3neo plasmid using FuGENE 6 and cultured in selective G-418 containing medium 

as described earlier.  

 

 IOSE21 I21-SV40-F2 I21-SV40-R2 

IC50  110 78 120 
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5.9.6 Detection of SV40 TAg protein in pSV3neo-transfected cells 

Western blot analysis was performed in order to assess SV40 TAg expression in the 

transfected IOSE20 and IOSE21 cells (Fig. 5.7). Total protein from cell clones I20-

pSV3neo 1, I20-pSV3neo 2, I21-pSV3neo 1 and I21-pSV3neo 2 was harvested after 

several passages in G-418 (1mg/ml) in NOSE medium. Protein samples were also 

obtained from control cells I20-pCMV and I21-pCMV. Whilst a strong signal could be 

detected in the positive control, no bands of the correct size (approximately 82kDa) 

emerged in any of the other lanes.   

 

 

 

 

Figure 5.7 SV40 TAg expression in pSV3neo-transfected cells. Western blot 

analysis was performed on lysates from I20-pSV3neo 1, I20-pSV3neo 2, I20-pCMV, 

I21-pSV3neo 1, I21-pSV3neo 2, I21-pCMV and positive control MRC5-VA using an 

antibody against SV40 TAg. Actin levels serve as a loading control.    

  

As, again, no SV40 TAg expression was induced and, consequently, there was no 

difference in sensitivity to dl922-947 (data not shown), experiments were discontinued. 
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5.10 Discussion  

Experiments in pre-transformed TOSE cells produced interesting results. Compared to 

IOSE25 parental cells, TOSE1 and TOSE4 were much more sensitive to dl922-947-

induced cytotoxicity and also expressed markedly more p21. This is in keeping with 

previous results of high basal p21 levels in TOV21G, IGROV-1, Hct116 p21+/+ and 

ACP-WAF1 cells correlating with higher sensitivity. In TOSE1 cells the IC50 was at least 

150-fold and in TOSE4 5-fold lower than in parental cells. In TOSE4 cells, this 

enhanced sensitivity may be partially due to the small increase in infectivity compared 

to IOSE25 cells. However, in TOSE1, increase in sensitivity is greater than 2 logscales, 

which is far greater than the increase in infectivity. This confirms that infectivity is not 

the sole determinant of viral efficacy, a point raised in Chapter 3. In view of these 

results, TOSE cells represented a suitable system to search for new biomarker 

candidates by microarray analysis. In addition, the matched pair of MRC5 and MRC5-

VA cells underwent the same analysis. 

 

Comparing broad gene expression by microarray produced a list of genes differentially 

transcribed in TOSE versus IOSE25 cells. Firstly, the twenty most up- and 

downregulated genes were clustered into common pathways and processes. In 

agreement with previous results, this small scale strategy for comparison showed that 

many of the differentially expressed genes are involved in cell cycle progression, 

proliferation and tumour growth. Although some of the genes that promote these 

processes were downregulated, the majority were over-expressed. In addition, none of 

the inhibitors of cell cycle, proliferation or growth was upregulated, whilst expression of 

three inhibitors was reduced. This pattern of cell cycle and proliferation enhancing 

gene expression is typical for cancer cells, underlining the pre-transformed character 

attributed to TOSE cells. Furthermore, as shown and discussed in previous chapters, 

enhanced S phase entry and proliferation can promote dl922-947 cytotoxic function, 

including in TOSE cells.  

 

Despite higher p21 protein levels in TOSE cells, transcription of its gene CDKN1A was 

not upregulated. As shown in Chapter 4, p21 protein levels are dependent on protein 

stability rather than gene expression alone (Abbas et al., 2009). Thus, high basal p21 

levels in TOSE cells may result from enhanced stabilisation, which could be assessed 

using cycloheximide treatment. Furthermore, certain post-translational modifications of 

p21 and complex formation with other proteins regulate stability and degradation (Chen 

et al., 2007; Li et al., 2007b; Sheaff et al., 2000; Touitou et al., 2001). Assessing the 
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extent of such modifications by Western blot analysis or association with other proteins 

by pulldown experiments could reveal differences in the post-translational fate between 

cell lines.  

 

Cytotoxic efficacy of dl922-947 may also be further promoted by increased expression 

of cell death promoting gene TIMP-3 (Finan et al., 2006) and decreased expression of 

an anti-apoptotic gene ceramide kinase-like (Tuson et al., 2009). On the other hand, 

these effects may be counteracted by downregulation of another pro-cell death gene, 

CD200 (Chen et al., 2009). TOSE cells also showed increased transcription of a high 

number of genes involved in mechanisms usually induced by stress, in response to 

virus-infection or in pro-inflammatory pathways (King et al., 2002; Lindqvist et al., 2005; 

Oliva et al., 2001; Papi et al., 2000). This stands in accordance with the well-

established correlation between cancer and inflammation (Balkwill et al., 2001; 

Coussens et al., 2002).  

 

Interestingly, the highest numbers of genes deregulated in TOSE cells, as compared to 

parental IOSE25 cells, are of those involved in differentiation and development. 

Amongst the top 20 genes down-regulated in TOSE cells, nine were promoters of 

differentiation. This suggests that, compared to IOSE25 cells, expression patterns in 

TOSE cells may promote a status of de-differentiation. A similar phenomenon was 

found in MRC5-VA cells after clustering the 20 genes most up- and downregulated, 

compared to parental MRC5 cells. Again, a considerable fraction of over-expressed 

genes had anti-differentiation function. This was coupled with reduced transcription of a 

series of differentiation-promoting genes.  

 

Many of the most differentially expressed genes are those implicated in regulation of 

cell cycle, proliferation and tumour growth. Although four genes promoting these 

processes were downregulated, alongside one inhibitor being over-expressed, they are 

out-numbered by over-expressed cell cycle promoters and downregulated inhibitors. 

Taken together, the gene expression profile in MRC5-VA cells appears to be promoting 

cell cycling and proliferation.  

 

Similar to TOSE cells, in MRC5-VA cells there was both up-and downregulation of 

genes promoting and inhibiting cell surface molecules and signalling, adhesion and 

extracellular matrix. And, as shown in Chapter 3, MRC5-VA cells are more infectable 

than their parental cell line. Like TOSE cells, MRC5-VA cells are able to grow in soft 

agar (Huschtscha et al., 1983).  
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Microarray data obtained from TOSE1, TOSE4 and IOSE25 cells were subjected to 

comprehensive pathway and process enrichment analysis. As described earlier, in the 

context of this study, a pathway is a uni-directional flow of information, from the cell 

exterior to its nucleus. A process is a set of genes or proteins acting together, resulting 

in a certain biological event. The meta-analysis revealed some surprising results. 

Compared to IOSE25 cells, in both TOSE1 and TOSE4 cells most of the 30 most 

highly upregulated pathways are involved in cytoskeleton remodelling. In TOSE1 cells, 

this category is also represented several times among the top 30 upregulated 

processes, but less often in TOSE4 cells. In the small scale clustering analysis 

described above, two genes involved in cytoskeletal regulation were found deregulated 

in TOSE1 cells. Transcription of one of them was reduced, the other was over-

expressed. In TOSE4 cells, none of the 20 most differentially expressed genes was 

implicated with the cytoskeleton. However, the term cytoskeleton remodelling is broad 

and networks and pathways involved may be far too extensive to be encompassed 

entirely by the limited scope of the first clustering analysis.   

 

In TOSE1 cells, the second largest group of upregulated pathways was that of cell 

cycle regulation. This was also the most prominent group of upregulated processes 

and confirms the importance of this upregulation found in the previous, small-scale 

analysis. Equally, several pathways regulating cell adhesion were represented in the 

top 30 list of upregulated genes in TOSE1 cells and were, in fact, the second largest 

group among over-active processes. 

 

In the initial cluster analysis of TOSE cells, many genes implicated in differentiation 

and development were deregulated. On the list of upregulated pathways of the meta-

analysis, they appear four times, whilst among the 30 most downregulated pathways, 

none regulates differentiation and development. This result apparently stands in 

contrast to the previous analysis. The list of the 30 most upregulated processes in 

TOSE1 cells contained none labelled “development”. However, in this list, two of the 

processes assigned to “signal transduction” are known to be involved in differentiation 

and development: WNT signalling and Notch signalling (Hayward et al., 2008; Sekiya 

et al., 2007). This is an example of the disparities between the initial small-scale and 

the meta-analyses. Clearly, differences in clustering parameters can produce highly 

varied results. This also emphasises the value in performing different types of analyses 

on the same microarray data set.  
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Surprisingly, according to enrichment analysis, no pathway was significantly 

downregulated in TOSE1 cells, and only two processes. Both of them have very broad 

functions: translation initiation and elongation termination. In view of the number of 

down-modulated genes expressed in TOSE1 cells, the lack of downregulated 

pathways and processes was unexpected. It is possible that downregulated genes are 

so varied in function, that enrichment does not meet the cut-off levels of statistical 

significance.   

 

The number of significantly downregulated pathways was also very low in TOSE4 cells: 

oxidative phosphorylation and, interestingly, development. The latter was specifically 

regulating degradation of beta-catenin in the absence of Wnt signalling. This finding 

implies that, in TOSE4 cells, beta-catenin is stabilised. The resulting prolonged activity 

is a well-described cancer-promoting feature (Chang et al., 2009; Morin et al., 1997; 

Taipale et al., 2001). 

 

In this cell line, more than 30 processes were significantly downregulated. Among the 

top 30, the most frequent processes are implicated in translation and transcription. 

These results are too general to predict mechanisms of enhancement of dl922-947 

function. Furthermore, inflammation and immune response were also large groups of 

downregulated processes. This stands in disagreement with the previous, small-scale 

analysis, where anti-viral, pro-inflammatory and stress-induced mechanisms were 

frequently over-expressed. Three processes involved in development are 

downregulated in TOSE4 cells. But in addition, another process, under the term signal 

transduction, may be involved in development and differentiation, further specified at 

“WNT signalling”. However, its effects may be neutralised by the abovementioned 

downregulation of beta-catenin degradation. Despite the loss of Wnt signalling, beta-

catenin would not be degraded. Western blot analysis of WNT and beta-catenin in 

TOSE4 and IOSE25 cells could elucidate, whether this is the case.  

 

Meta-analysis in TOSE4 cells confirmed upregulation of cell adhesion, as seen in the 

initial clustering. Similarly, deregulation of  cytoskeleton remodelling, again, appeared 

in form of several pathways and processes. Several upregulated pathways involved in 

CFTR signalling. This is a transmembrane ion channel (Mansoura et al., 1998). How it 

may be correlated to tumourigenesis or efficacy of dl922-947 is unclear. Surprisingly, 

no pathway or process involved in cell cycle regulation appeared on the lists for 

upregulated expression.  
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It is important to consider the limitations of gene expression arrays: probe sets on the 

array are known to provide a certain number of false-negative and false-positive results 

(Pounds et al., 2003; Slonim, 2002). Several transcripts can bind to the same probe 

(Harbig et al., 2005). High background noise can obscure detection of genuine signals 

(Robinson et al., 2007). Validation of gene array results by other methods such as 

qRT-PCR or Northern blotting commonly shows that it is difficult to reproduce findings 

(Maxwell et al., 2003; Mitchell et al., 2009; Vawter et al., 2006). Using published 

microarray data can lead to misleading results. Datasets published by different labs are 

based on a broad range of procedures and varying quality of starting material 

(Huttenhower et al., 2006). Addressing this problem, the Minimum Information About a 

Microarray Experiment (MIAME) standard was established to standardise published 

gene array data (Brazma et al., 2001). Reporting microarray data according to the 

MIAME standard is expected to increase their reproducibility and their usefulness 

beyond the studies they originate from (Quackenbush, 2009). As discussed above, in 

my experiments heterogeneity of samples was kept at a minimum by using isogenic 

cell lines, identical storage conditions and processing of samples. Therefore the 

absence of cell cycle regulators in lists of differentially expressed genes may be due to 

altered protein translation, stability or post-translational modification (Cham et al., 

2003; Garavelli et al., 2001; Jensen et al., 2002).  

 

Nevertheless, data from these gene expression arrays are far from meaningless. The 

deregulated genes, pathways and processes provide a starting point to identify further 

determinants of dl922-947 efficacy, beyond the Rb pathway. The first step would be 

validating differential expression of potential candidates by qRT-PCR. Then, knock-

down of upregulated and over-expression of down-regulated candidates could further 

validate their role in dl922-947 efficacy. In the case of MRC5-VA cells, meta-analysis, 

as performed on TOSE data, will provide a broader view on deregulated pathways and 

processes. 

 

Among the 20 most upregulated genes in TOSE cells, a family of antigens was 

represented by several members: five genes encoding different melanoma antigen 

(MAGE) proteins were highly over-expressed in TOSE cells. In fact, albeit not strongly 

enough to rank within the top 20 list, another 8-10 MAGE genes were detected to be 

overexpressed among the top 100 upregulated genes (see Appendix Tables 8 and 9). 

Interestingly, MRC5-VA cells also over-express at least three different MAGE genes, 

compared to parental MRC5 cells. Again, the difference in expression is not large 

enough for the top 20 list (see Appendix Table 10). Although the family of MAGE 
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proteins has received increasing attention over the past years, knowledge about its 

functions remains limited. They appear to play a role in proliferation by inhibiting p53 

and apoptosis inhibitory proteins XIAP and ITA (Jordan et al., 2001; Jungbluth et al., 

2005). MAGE genes were first isolated from melanomas (van der Bruggen et al., 

1991). In the meantime, they have been described in many different cancers. Apart 

from cancer cells, MAGE genes have only been found expressed in the germ line. In all 

other normal cells, expression of MAGE genes is completely switched off. They are 

thus considered tumour-specific and are very promising targets in cancer treatment. In 

humans, the MAGE family comprises several classes of antigens. Of those, members 

of the MAGE-A class have been found most highly represented among upregulated 

genes in TOSE and MRC5-VA cells. Although some MAGE genes are expressed in the 

female germ line, after birth MAGE-A members are limited to male germ cells (Barker 

et al., 2002; Gjerstorff et al., 2007). This class is also implicated in regulation of 

development and differentiation in germ and cancer cells (Ohman Forslund et al., 

2001). MAGE-A1 mRNA was detected in low to moderately differentiated, but 

downregulated in moderately to highly differentiated cell lines of hepatocarcinoma 

(Xiao et al., 2005). Similarly, in normal germ cells, MAGE-A1 was detected immediately 

after induction of sexual differentiation. From then on, expression levels decreased 

continuously and terminated at the time of birth (Gjerstorff et al., 2007). However, none 

of the microarray analyses detected upregulation of MAGE-A1, the most extensively 

characterised gene of the MAGE-A class. However, it is possible that members of the 

same gene family or even class may have similar functions.  

 

This pattern of high expression during early differentiation stages followed by 

downregulation as cells proceed to later stages, has been reported for other genes 

strongly up-regulated in my small scale array analysis. “ISL1 transcription factor” is 

involved in regulation of early differentiation of neuronal, pancreatic and cardiac cell 

lineages. The marker of pluripotency is downregulated in later developmental stages. 

“Leucine rich repeat neuronal 1 (LERN1)”, over-expressed in MRC5-VA cells, is a 

transmembrane protein. Its expression is restricted to early development of the central 

nervous system (Carim-Todd et al., 2003). Intriguingly, both LERN1 and two members 

of the MAGE family, neurotrophin-receptor-interacting MAGE homologue (NRAGE) 

and necdin, interact with p75, a receptor for neurotrophins. p75 is a promoter of 

differentiation, cell cycle arrest and mediates apoptosis. A third gene highly over-

expressed in MRC5-VA cells and interacting with p75 is “brain expressed, X-linked 1”, 

an inhibitor of differentiation and promoter of proliferation.  
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The only gene present in the top 20 most differentially expressed genes in both TOSE 

and MRC5-VA cells is overexpressed “placenta-specific 8 (PLAC8)”. The marker of 

plasmacytoid dendritic cells, also called onzin, is highly expressed in various organs 

involved in immune responses (Colonna et al., 2004; de Heer et al., 2004; Reeves et 

al., 2008; Rogulski et al., 2005). Increased expression has been detected after 

infection with HBV in primates, as an adaptive immune response for viral clearance 

(Lanford et al., 2007). Roles for PLAC8 have been reported in apoptotic resistance and 

proliferation (Li et al., 2006; Rogulski et al., 2005). Also, it appears to act as an inhibitor 

of differentiation (Huang et al., 2006). Moreover, overexpression of PLAC8 has been 

implicated in overriding G2/M checkpoint control and in tumourigenic transformation 

(Rogulski et al., 2005).  

 

Several other differentially expressed genes can be functionally linked to results of 

previous chapters and represent promising biomarker candidates. Protein phosphatase 

2 (PP2), overexpressed in MRC5-VA cells, is a promoter of Raf and MEK, in turn, 

promoters of cell cycle progression. Acute activation of Raf/MEK/Erk increases p21 

expression. Furthermore, the Ras pathway has been shown to promote p21/Cyclin D 

complex formation (Coleman et al., 2003). Whether this is relevant to dl922-947 

function is doubtful, as SV40 TAg mediates p21 degradation. In fact, upregulation of 

PP2 may be an attempt of MRC5-VA cells to counteract this SV40 TAg effect.  

 

A very direct enhancing effect on dl922-947 oncolytic function could be attributed to 

NFI/B.  In MRC5-VA cells, overexpressing this transcription factor of cellular but also 

viral genes, could increase expression and activity of important dl922-947 genes. F11 

receptor, also referred to as JAM-1, is structurally similar to CAR and is the attachment 

protein for reovirus (Goosney et al., 2003; Stehle et al., 2004). It may also allow binding 

of adenovirus, thus its upregulation in MRC5-VA cells might enhance adenoviral 

infection and possibly spread to neighbouring cells (Walters et al., 2002).  

 

SV40 TAg transformation is frequently linked to microsatellite instability, as DNA 

damage-induced checkpoints are inactivated (Barbanti-Brodano et al., 2004). More 

importantly, although microsatellites are generally found within non-coding sequences, 

their amplification could be indicative of gene amplification in MRC5-VA cells. Also, 

chromosome aberrations could disrupt genes. The resulting upregulation or loss of wild 

type transcripts from affected genes could contribute to sensitisation to dl922-947. 

Identification of amplified regions and genes, for instance with whole genome SNP 

arrays, could provide further biomarker candidates.  
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Although genomic instability might contribute to dl922-947 efficacy, it makes detection 

of genes relevant for its oncolytic function more difficult. Disappointingly, attempts to 

generate another model system for gene expression arrays, based on IOSE20 and 

IOSE21 cells, were not successful. Cells transfected with pCMV-SV40 did not express 

any SV40 TAg. Most likely, the exogenous protein was toxic to the cells and either was 

immediately degraded, or cells were not viable. Equally, transfection of IOSE20 and 

IOSE21 cells with pSV3neo did not increase sensitivity to dl922-947 either, as once 

again, none of the cell pools expressed SV40 TAg. Transformation of cells by 

exogenous SV40 TAg expression is commonly difficult to achieve. Various publications 

state low transfection efficiencies (Haas et al., 1997; Novak et al., 1992; Risser et al., 

1974). In view of the model systems described above, I did not further pursue the 

attempt to generate such a model.  

 

In summary, experiments described in this chapter provide a valuable starting point to 

identify further biomarkers of dl922-947 efficacy. Some of the top 20 most significantly 

up- or downregulated genes appear to be very promising candidates. Trends that 

emerged from pathway and process enrichment were changes in gene expression 

affecting cell cycle control and proliferation, cytoskeleton remodelling, cell surface, 

immunomodulation and cell death and several pathways involved in differentiation. 

Small-scale clustering of most differentially expressed genes in TOSE and MRC5-VA 

cells recaptured most of these trends. A microarray-based study of wild-type 

adenovirus-induced changes of host gene expression in human foreskin fibroblasts 

revealed that more than 2000 genes were deregulated. The authors described the 

transcriptional alterations as “unexpectedly complex”. Most prominent changes were 

linked to cell proliferation and reversal of quiescence (Miller et al., 2007). The results in 

this chapter confirm that deregulation of these pathways in transformed cells leads to 

an environment conducive to the activity of dl922-947.  

 

 

 

 

 

 

 

 

 



 

 
211 

 
 
 
 

6 Final Discussion 
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The present standard treatment of ovarian cancer, surgical de-bulking followed by 

platinum-based chemotherapy, is of limited success, at best (Morrison et al., 2007). 

There remains an chronic need for novel treatment strategies (Matthews et al., 2009). 

The oncolytic virus dl922-947 has high therapeutic potential for the treatment of 

ovarian cancer (Lockley et al., 2006). However, variability exists between its oncolytic 

efficacy across different ovarian cancer cell lines. This phenomenon is likely to 

translate into the clinic. The main objective of my work was to identify host cell factors 

which influence the oncolytic efficacy of dl922-947 in ovarian cancer. Such factors 

could serve as biomarkers in clinical trials of dl922-947, and potentially other oncolytic 

adenoviruses, in patients with relapsed ovarian cancer.  

 

6.1 Infectivity and dl922-947 activity 

Various steps of the viral life cycle may limit its success. Clearly, initial infection of any 

cell with dl922-947 is necessary for all subsequent steps. Cells that are non-infectable 

even at high MOIs, such as CAOV3 cells, are resistant to the virus. Low infectivity 

owing to downregulation of CAR expression is a major obstacle, for instance in 

hypoxic tumours (Kuster et al.; Legendre et al., 2009; Rein et al., 2006). Lack of this 

important cellular receptor of adenovirus has been reported in many human cancers 

and considerably hampers effective infection with oncolytic adenoviral vectors 

(Douglas et al., 2001; Li et al., 1999; Miller et al., 1998; Okegawa et al., 2000; Rauen 

et al., 2002; Rein et al., 2006). Similarly, loss of avβ3/5 integrins would hinder virus 

uptake into cancer cells (Bruning et al., 2001; Turturro et al., 2000; Wickham et al., 

1993). A growing body of evidence suggests that adenoviruses can use alternative cell 

surface proteins for infection (Davison et al., 1997; Huang et al., 1996; Li et al., 2001; 

Nicklin et al., 2005; Salone et al., 2003; Waddington et al., 2007). Recent work in our 

lab on primary ascitic cells demonstrated that ovarian cancer cells from 4 out of 6 

patients were readily infectable with dl922-947 at MOI 50pfu/cell (data not shown). 

This is an encouraging finding, suggesting good infection potential of the oncolytic 

virus in patients with advanced ovarian cancer. Yet my results indicate that infectivity 

alone cannot account for the full extent of variation in cytotoxicity. For instance, 

TOSE4 cells were more infectable, yet less susceptible to dl922-947 than TOSE1 

cells. This stands in line with Wang et al. recently reporting that binding and 

endocytosis of adenoviruses is required but not sufficient for delivery of viral genes 

(Wang et al., 2009).  
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6.2 E1A expression and S phase fraction are markers of sensitivity 

Comparison of sensitive and non-sensitive cell lines established that a large S phase 

fraction and early onset of E1A expression were conducive to dl922-947 activity. E1A 

is the only adenoviral gene entirely dependent on host cell factors for its expression 

(Bruder et al., 1991; Bruder et al., 1989), containing EF-1A and E2F binding sites in its 

promoter region. Transcription of all other viral genes requires viral factors (Bruder et 

al., 1991; Bruder et al., 1989; Nevins, 1990). Therefore, it is the host cell environment 

at the time of infection that will dictate initial levels of E1A expression. The size of the 

S phase fraction may reflect the degree of G1/S checkpoint deregulation and could be 

a marker of a cellular environment enhancing E1A expression and possibly 

subsequent viral replication.   

 

6.3 Viral replication and cell death 

My experiments indicated that rates of viral replication, both at the level of DNA as well 

as functional virion particles, cannot fully predict for cytotoxic efficacy, when comparing 

different cell lines. It would be wrong to completely separate the processes of 

replication and death. As seen in ACP-WAF1 cells, within a given cell line, any 

increase in virion production is accompanied by increased cytotoxicity. But comparing 

replication across different cell lines points to a partial separation of the two. Virion 

production in SKOV3ip1 is nearly as high as in TOV21G cells, even surpassing the 

latter at 72 hours post infection. Yet, SKOV3ip1 cells are resistant to dl922-947, 

indicating that a larger viral load does not necessarily increase lysis. Interestingly, 

TOV21G cells support early virus production at a high level, but then production 

plateaus. This could be a result of onset of cell death. Alternatively, in TOV21G cells 

viral replication may rapidly reach the maximum capacity of the host cell. At this high 

level, all available host cell machinery may occupied and production cannot be further 

increased. That the mode of cell death following infection by dl922-947 is actively 

regulated by the virus has already been described by our group. We reported that 

viruses not only activate multiple survival mechanisms, the actual cause of death is 

based on a novel programmed cell death mode that is also significantly controlled by 

the virus itself (Baird et al., 2008). Therefore, dl922-947 oncolytic function must 

depend on more than merely high degree of replication. Cell cycle analyses show that 

dl922-947-infected cells are driven to proceed beyond G1 phase. Our group also 

reported that cells that proceed into irregular mitoses, reconstitute an interphase 

nucleus and re-initiate replication. This results in increased viral replication, production 
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of functional viral particles and oncolytic effects (Connell et al., 2008). Cell lines in 

which dl922-947 is particularly efficient at doing so would therefore be more sensitive, 

such as is seen in TOV21G and IGROV-1 cells. 

 

According to another publication, by Varmark et al., Hct116 cells continuing 

progression through G2/M after DNA damage, succumbed to cell death three days 

after exiting mitosis. In fact, proceeding through mitosis enhanced cell death after DNA 

damage, which was independent from caspase and p53 activity. It was, however, 

accompanied by chromatin de-condensation and phosphorylation of H2AX (Varmark et 

al., 2009). Could dl922-947 kill its host cells by a similar mechanism? Wild type 

adenovirus is known to elicit a DNA damage response (Hart et al., 2007). Expression 

of E1A induces H2AX phosphorylation even when apoptosis is inhibited (Cuconati et 

al., 2003). Therefore, dl922-947 could induce DNA damage response, then drive the 

cell through the cell cycle, including G2/M. Based on the Varmark paper, this should 

lead to enhanced cell death. 

 

6.4 p21 enhances dl922-947 efficacy 

The work presented here established that p21 is at least a marker of an environment 

favourable for the activity of dl922-947, as well as wild type adenovirus and, 

potentially, other adenoviral vectors. However, my results suggest that p21 is more 

than a simple marker of deranged cell cycle control – rather, p21 itself appears 

capable of promoting virus activity. The multiple functions of p21 could promote 

oncolytic virus effects by different pathways. It possesses cell cycle promoting activity 

at basal levels via stabilisation of Cyclin/cdk complexes (LaBaer et al., 1997). 

Underpinning this, Cyclin D emerged as another potential biomarker for dl922-947 

activity. Taken together, high basal levels of p21 and stabilised Cyclin D/cdk4 

complexes should result in increased pRb phosphorylation on S780 (LaBaer et al., 

1997; Mohamedali et al., 2003). Surprisingly, I did not find this to be the case, 

suggesting that in the ovarian cancer cells investigated, free E2F levels are 

independent from the phosphorylation status of pRb. One explanation may be that 

several other regulatory proteins are capable of binding pRb (Ewen et al., 1993; 

Nakanishi et al., 1995). p21 itself, for example, associates with pRb in the same A/B 

pocket region as E2F, and with a higher affinity. Co-expression of p21 in cells 

containing E2F, pRb and Cyclin D1 has been found to displace and free E2F from pRb 

(Nakanishi et al., 1999). In this case hyper-phosphorylation of the latter would become 

unnecessary. SV40 TAg associates with pRb in the same region as E2F and, 
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consequently, as p21 (Hu et al., 1990; Kaelin et al., 1990). The function of p21 and 

SV40 TAg in freeing E2F is therefore potentially interchangeable. Hence, MRC5-VA 

cells do not require high levels of p21 to increase dl922-947 efficacy, as indeed seen 

in Western blot analysis. Fig. 6.1 illustrates effects of pRb association with p21 or 

SV40 TAg. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 De-repression of E2F by p21 or SV40 TAg binding. When A. p21 or B. 

SV40 TAg (TAg) associate with pRb via its A/B pocket, E2F is released. Inability of 

CR2-deletion-bearing E1A is overcome.    

 
Furthermore, Nakanishi et al. observed that co-expressing p21 with pRb and Cyclin 

D/cdk4 complexes prevented hyper-phosphorylation of pRb by Cyclin D/cdk4 

(Nakanishi et al., 1999). This may explain the pRb phosphorylation profile found in the 

four representative ovarian cancer cell lines. In SKOV3ip1 cells, which express barely 

detectable levels of p21, pRb was phosphorylated on S780 (Knudsen et al., 1997). 

This was not the case in TOV21G, IGROV-1 or A2780CP cells, suggesting that even 

the low levels of p21 generated in A2780CP cells were enough to prevent hyper-

phosphorylation. Nakanishi et al. also found that excess levels of Cyclin D/cdk4 

prevented p21 binding to pRb and resulted in hyperphosphorylation of the latter 

(Nakanishi et al., 1999). Thus, a fine balance must be maintained between levels of 

p21 and Cyclin D/cdk4 to prevent pRb hyperphosphorylation and increase free E2F 

levels.    
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6.5 Relationship between p21 and E1A 

A correlation between p21 and E1A became evident as knock-down of p21 in infected 

TOV21G cells led to a decrease in E1A. In ACP-WAF1, higher levels of p21 were 

accompanied by more E1A expression post infection than in ACP-GFP cells. These 

data are consistent with the observed differences in virion production and cytotoxic 

efficacy. As discussed above, p21 may contribute to E1A expression by increasing 

levels of free E2F, which, in turn acts as a transcription factor for E1A expression 

(Bruder et al., 1991; Bruder et al., 1989). 

 

In a recent publication (Shiina et al., 2009), authors argue that expression of p21 has 

negative effects on Delta-24, a virus carrying the same deletion in the E1A CR2 

domain as dl922-947 (Fueyo et al., 2000). However, there seem to be several caveats 

in these data: dose response experiments to measure cytotoxicity were performed at 

72 hours post infection, only. In contrast, in our hands, meaningful differences in cell 

survival do not emerge until 120 to 144 hours post infection. Furthermore, Shiina et al., 

used MOIs of 1.0pfu/cell or more to infect cells. TOV21G and Hct116 p21+/+ cells 

have IC50 values lower than 0.1pfu/cell and that of IGROV-1 is lower than 0.5pfu/cell. 

To obtain a meaningful dose response curve, cell have to be infected with lower viral 

doses. During RNAi experiments, cells were replated after transfection with siRNA 

targeting p21. This is likely to alter cell cycle-related gene expression, irrespective of 

siRNA-mediated knock-down. Also, sensitivity of cells to the virus after siRNA-

transfection was assessed using a single dose of virus, rather than a range. This is not 

the method generally accepted in the field. Finally, results were not followed up in vivo. 

 

6.6 p21 regulates differentiation 

A growing body of evidence indicates an additional role for p21 in the regulation of 

differentiation (Devgan et al., 2006). The notion that a progenitor-like state may 

constitute an optimal environment for dl922-947 cytotoxic function emerged from 

microarray analyses in TOSE and MRC5-VA cells. In addition to the roles already 

described above, it has been found that in keratinocytes, p21 expression promotes 

initial commitment of stem cells to differentiate (Topley et al., 1999). It has also been 

observed to contribute to differentiation-associated growth arrest (Missero et al., 

1996). However, in normal developing keratinocytes, following an incipient increase in 

p21, protein levels are down-regulated. Devgan et al. showed that if p21 levels are 

sustained in keratinocyte progenitors, cells fail to proceed through terminal 
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differentiation (Devgan et al., 2006). The same downregulation of p21 during later 

differentiation was noted in other tissues. Equally, over-expression of p21 repressed 

terminal differentiation in them (Bellosta et al., 2003). These findings suggest that p21 

must be switched off in order for differentiation to proceed (Di Cunto et al., 1998). It 

may also explain the aggressive nature of clear cell carcinoma of the ovaries (Shimizu 

et al., 1999). These tumours produce large amounts of the cell cycle inhibitor. 

However, rather than inducing growth arrest, p21 perpetuates a semi-differentiated, 

highly proliferative state (Devgan et al., 2006).  

 

6.7 Virus-mediated downregulation of p21 enhances cell death 

After infection of sensitive cell lines TOV21G and IGROV-1, downregulation of p21 

occurred. In fact, this may be an important step in augmenting cell death, as described 

in publications on increased drug- and irradiation-induced apoptosis after p21 down-

modulation (Detjen et al., 2003; Han et al., 2002; Mahyar-Roemer et al., 2001; Tian et 

al., 2000). In ACP-WAF1 cells, p21 is also downregulated. In fact, as seen in 

proteasome inhibitor-treated Hct116 cells, infection can induce further p21 expression, 

but the p21 is targeted for destruction. Adenovirus infection can induce host cell DNA 

damage response via phosphorylation of histone H2AX (Nichols et al., 2009). 

Upregulation of p21 may be part of this response, normally leading to cell cycle arrest. 

To prevent arrest and for cell cycle progression to continue, the virus must 

downregulate p21 levels.  

  

In addition, dl922-947-induced down-modulation of p21 protein levels, may drive cells 

into terminal differentiation and maximise death. Whether and how driving a cell into 

differentiation increases cytotoxicity of dl922-947 remains unclear. There is indication 

that progenitor cells are less susceptible to induced cell death, thus induction of 

differentiation may sensitise them (Bhatt et al., 2003; Fan et al., 2006; Haraguchi et al., 

2006; Szotek et al., 2006; Woodward et al., 2007). According to Devgan et al., the 

mechanism by which p21 regulates differentiation in keratinocytes is cell cycle-

independent. Instead, it involves activation of insulin-like growth factor-1 (IGF-1) 

(Devgan et al., 2006). Interestingly, one of the genes found highly upregulated by 

microarray analysis was chitinase 3-like 1 (Chi3L1). In lung fibroblasts and skin cells, 

Chi3L1 acts in synergy with IGF-1 (Kawada et al., 2007). The latter is a potent inhibitor 

of programmed cell death (Geier et al., 1995; Geier et al., 1992). Therefore, 

downregulation of p21 and, consequently, IGF-1 activity would render a cell more 

susceptible to death.  
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6.8 Beyond the Rb pathway 

Microarray results point at pathways and processes affecting dl922-947 efficacy other 

than the Rb pathway. Many differentially expressed genes in sensitive cells are part of 

other cell cycle regulating pathways. Other aspects that are worthy of further 

investigation are cell death and anti-viral mechanisms, changes in the cytoskeleton 

and cell surface and in collagen synthesis. These alterations could affect dl922-947 

activity by enhancing infectivity, intra-cellular trafficking, entry into and possibly exit 

from the cell or virus-induced cell death (Li et al., 1998; Smith et al., 2002). As 

mentioned above, there is some indication that a semi-differentiated, progenitor-like 

state may constitute an environment conducive for dl922-947 activity. In most cases, it 

will be necessary to untangle these pathways down to single genes, in order to identify 

potential biomarkers. Some interesting candidates were among the most deregulated 

genes, such as PLAC8, MAGE, F11 receptor or NFI/B.  

 

The emergence of PLAC8 and MAGE genes underscores the notion of a progenitor-

like state representing an optimal environment for dl922-947 cytotoxic function. 

PLAC8, the only gene present in the top 20 list of over-expressed genes in both 

MRC5-VA and TOSE cells, is a facilitator of tumourigenic transformation and a known 

inhibitor of differentiation (Rogulski et al., 2005, Huang, 2006 #345). 

 

Expression of a number of genes from the MAGE family is required during early stages 

of differentiation. However, for terminal differentiation to proceed, their expression 

must be down-modulated (Xiao et al., 2005). Over-expression of MAGE genes may 

therefore keep cells in a semi-differentiated state. Remodelling of the cell surface 

frequently accompanies transformation and can be used to define specific grades of 

tumour development (Harsha et al., 2009; Houghton et al., 1988; Kaul-Ghanekar et al., 

2009; Morrison et al., 1993; Nelson et al., 2006). However, it has also been commonly 

described in the context of de-differentiation of tumours (Aust et al., 1997; Zalik et al., 

1972). Equally, pronounced changes in cytoskeletal architecture have been observed 

in connection with de-differentiation (Kim et al., 2003b; Timmers et al., 1998). How 

would dl922-947 benefit from such a poorly differentiated cellular environment? Unlike 

stem cells and differentiated cells, which are generally slowly cycling or quiescent, 

progenitor cells are highly proliferative (Hoffmann et al., 2008; Radtke et al., 2005). 

De-differentiation “rewinds” differentiated cells to a progenitor-like status, with rapid 

cell cycling (Grafi et al., 2004). Such reversed differentiation has been observed in 

various cancers as they progress and, in fact poorly differentiated tumours are 
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generally more aggressive than the well-differentiated (Draisma et al., 2006; Gabbert, 

1985; Oku et al., 2008; Rufini et al., 2006; Sell et al., 1994; Soper et al., 1984; Sutton 

et al., 1986). Rapid cell cycling is accompanied by high rates of replication, both of 

cellular and viral genes and may increase dl922-947 virion production.   

 

6.9 Conclusion 

The quest for host cell factors influencing dl922-947 efficacy in ovarian cancer has 

brought some interesting insight into the mechanisms underlying dl922-947 function. I 

have been able to establish p21 and Cyclin D as potential biomarkers for efficient 

oncolytic activity. My work suggests that the virus is at least partially dependent on 

high basal levels of p21, resulting in large S phase populations, early onset of E1A 

expression and, to some extent virion production. These levels of p21 may be 

indicative of a progenitor-like state of sensitive cells. I have shown that dl922-947 

down-regulates p21. This may prevent cell cycle arrest in response to the presence of 

virus and host cell DNA damage.  

 

Microarray analysis has produced a large amount of data which will need to be 

validated. The single genes and pathways that emerged from these experiments 

represent a valuable starting-point for the identification of further biomarkers for dl922-

947 efficacy in treating ovarian cancer.   

 

6.10 Immediate future experiments 

Among the most immediate steps to be taken is the optimisation of 

immunohistochemical p21 staining of tumours. Generation of a Tet-on or Tet-off 

system for conditional p21 expression may prove useful in the future, to study in 

greater detail implications of p21 presence or absence at specific points before and 

after the time of infection. Efficient knock-down of p27, cdk4 and Cyclin E by RNAi 

could confirm or disprove their role as enhancers of dl922-947 activity. Validation of 

biomarker candidates found by microarray analysis is a necessary step before 

investigating their role more closely. It would be interesting to see whether sensitive 

ovarian cancer cells possess progenitor-like status and whether dl922-947 can induce 

their differentiation. The ability to test dl922-947 behaviour in an immunocompetent 

animal model would be invaluable for predicting its effects in humans. Finally, 

verification of p21 as a predictor for response to dl922-947 in clinical trials would be an 

exciting step for its establishment as a genuine biomarker in the future. 
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6.11 Future of adenoviral gene therapy 

Adenovirus-based vectors in gene therapy are particularly useful a tool when the 

ultimate aim is cell death. Whilst normal infection is usually mild, they are able to infect 

dividing and non-dividing cells very efficiently (Tsutsumi et al., 1999). Their efficient 

replication in in vitro systems facilitates the large-scale production required for 

pharmaceutical purposes, and their exceptional cloning capacity allows insertion of 

large sequences of interest (Rein et al., 2006). Encouraging results of pre-clinical 

studies suggest high levels of safety and therapeutic potential of most current 

generation oncolytic adenoviruses (Matthews et al., 2009). Yet, two major obstacles 

remain for application in humans: poor efficacy and potential toxicity. Many of the 

promising oncolytic adenoviruses show only limited success in human trials (Matthews 

et al., 2009). H101 is very potent in combination with cisplatin, but is not efficient as a 

monotherapy (Garber, 2006; Yu et al., 2007). A similar pattern was seen with prostate 

cancer-specific adenovirus CV787, which, on its own, showed limited oncolytic activity. 

Combination with docetaxel or paclitaxel resulted in synergistic effects (Yu et al., 

2001). Many trials report poor vertical spread of the virus and its progeny throughout 

solid tumours (Sauthoff et al., 2003). Yet, there is hope in clinical trials with novel 

adenoviral vectors soon to begin or already underway. In vitro, dl922-947 has been 

shown to be more efficient in killing cancer cells than dl1520, the original version of 

H101 (Heise et al., 2000; Lockley et al., 2006). Oncolytic effects may be augmented 

further by arming the virus. One example is AdsiSurvivin. In addition to its intrinsic 

cytotoxic nature, it has been converted to deliver siRNA targeting anti-apoptotic 

survivin (Yang et al.). Oncolytic viruses in combination therapy have frequently been 

proven highly potent, synergising with the chemotherapeutic agent by sensitising even 

resistant cells (Takakura et al.). However, monotherapy would be ideal, reducing 

unnecessary exposure to chemotherapy and the burden of side effects for the patient. 

The ability to stratify patients based on biomarkers, prior to onset of therapy may limit 

superfluous treatment of resistant patients. The growing understanding of cancer 

development and intra-tumoural processes provides novel characteristics to be 

considered, and creates new targets for intervention. In addition to the genomic 

heterogeneity between patients, it may be necessary to distinguish between different 

fractions of tumours within one patient. The importance of killing tumour-associated 

fibroblasts has been discussed for many years (Francia et al., 2009; Schuler et al., 

2003). It is well-established that tumours can feature complex architecture: a hypoxic 

core, accompanied by low CAR expression, surrounded by outer layers expressing 

different sets of markers (Gabril et al., 2005; Kocher et al., 1995; Takahashi et al., 
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2007; Williamson et al., 2009). Metastases can exhibit other characteristics than the 

primary tumour (Gomez-Roca et al., 2009). Different grades of differentiation within 

one patient can complicate treatment (Elsasser et al., 1992). Taken together, this 

implies that, stratification may be called for within the patient, to devise a therapy of a 

combination of highly specific drugs. This emphasises the need for complex biomarker 

identification. 

 

Cancer stem cells are an obstacle recognised only relatively recently. As they are slow 

cycling and resistant to many common anti-cancer treatments, their eradication, 

though crucial, remains difficult (O'Brien et al., 2009). Excitingly, adenoviral deletion 

vectors have been shown to be effectively infecting cancer stem cells, replicating 

within them and inducing their death (Short et al., 2009). Clearly, these considerations 

are secondary to the most urgent need: Any highly efficient oncolytic virus that can be 

used for cancer therapy without causing profound side effects. The latter refers to 

toxicity expected from administration of oncolytic adenovirus. In mice, intravenous 

injection of adenoviral vectors is followed by rapid uptake into spleen and liver, causing 

severe liver toxicity (Lieber et al., 1997). Intensive efforts have revealed that 

adenovirus is taken up into Kupffer cells, with profound contribution from coagulation 

factor X (Parker et al., 2006; Wolff et al., 1997). Apart from the detrimental renal 

complications, this process also sequesters oncolytic adenoviruses away from their 

tumour target (Shashkova et al., 2009). In recent years, major advances have been 

made, not only in understanding the underlying mechanisms, but also in devising 

strategies to re-target oncolytic adenoviruses away from the liver and towards the 

tumour (Di Paolo et al., 2009b). A further potential obstacle of adenoviral gene therapy 

is the host immune response, particularly in immuno-competent patients. Apart from 

the risk of sepsis and complications induced by exposure to high doses of virus, 

neutralising antibodies may restrict repetitive administration of adenovirus-based 

vectors (Parker et al., 2009; Zaiss et al., 2009). The vast majority of the population 

have been exposed to and have developed antibodies against adenoviruses, at some 

point in their life (Chirmule et al., 1999; Harvey et al., 1999; Tsai et al., 2004). 

Predictions, how the host immune system will affect oncolytic activity of adenoviruses 

are largely speculative (Chen et al., 2000; Tsai et al., 2004). To date, there are few 

good immuno-competent mouse models for oncolytic human adenoviral vectors 

(Bischoff et al., 1996; Dhar et al., 2009; Heise et al., 1997; Robinson et al., 2009). 

Human adenovirus is unable to replicate efficiently in murine cells (Eggerding et al., 

1986; Ginsberg et al., 1991; Silverstein et al., 1986). Xenograft models with human 

tumours are based on immuno-compromised mice (Heise et al., 2000; Johnson et al., 
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2002; Ramesh et al., 2006). Alternative, immuno-competent animal models include the 

Syrian hamster and the cotton rat (Thomas et al., 2008; Toth et al., 2005). However, 

being less well established model systems, they lack most of the molecular tools 

available for mouse models (Robinson et al., 2009). This is a clear deficiency in our 

ability to evaluate pre-clinically evaluate novel adenoviruses for gene therapy, and will 

hopefully be eradicated, soon. Even then, murine models cannot fully predict effects of 

a therapeutic agent in humans (Bolton, 2007), and work is ongoing to generate better 

models, such as tissue and organ cultures, computer simulation (Geschwind et al., 

2009; Lutolf et al., 2009; Varani et al., 1998). 

 

Overall, after severe set-backs in the development of adenoviral vectors for cancer 

gene therapy, recent years have brought about some long-sought achievements and a 

plethora of promising novel strategies for the future. 
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