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ABSTRACT 
 
Sediment granulometry, microphytobenthos and meiobenthos were investigated 

at five habitats (white and grey sands, backreef border, shallow and deep 

thalassinid ghost shrimp mounds) within the western lagoon at Discovery Bay, 

Jamaica. Habitats were ordinated into discrete stations based on sediment 

granulometry. Microphytobenthic chlorophyll-a ranged between 9.5- and 151.7 

mg m-2 and was consistently highest at the grey sand habitat over three sampling 

occasions, but did not differ between the remaining habitats. It is suggested that 

the high microphytobenthic biomass in grey sands was related to upwelling of 

nutrient rich water from the nearby main bay, and the release and excretion of 

nutrients from sediments and burrowing heart urchins, respectively. Meiofauna 

abundance ranged from 284- to 5344 individuals 10 cm-2 and showed spatial 

differences depending on taxon. Of 22 higher taxa recorded, nematodes 

dominated followed by copepods, together accounting for ~80 % of all 

individuals. Both taxa were most abundant in grey sands, suggesting a response, 

either directly or indirectly, to the high microphyte biomass. Significant within-

habitat spatial variability in both meio- and microphytobenthos was found, 

causes of which are discussed. Nematode feeding groups varied between 

habitats. Fine white sands and both thalassinid mound habitats were dominated 

by non-selective deposit feeders. Slender and plump nematode morphotypes 

were found, yet the plump morphotype was largely absent from coarse sands 

subjected to high wave swash at the backreef border habitat. Here, nematode 

lengths were significantly higher than at other habitats. Nematode biomass 

spectra differed significantly between habitats, with a shift in peak biomass 

values towards larger size classes in the disturbed sediments. It is suggested that 
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longer and larger nematodes represent an adaptation to sediment disturbance, 

helping to prevent being displaced from the benthos by hydrodynamic forces and 

bioturbation. 
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Don’t Quit! 

 

When things go wrong, as they sometimes will, 

When the road you’re trudging seems all uphill, 

When the funds are low and the debts are high, 

And you want to smile, but you have to sigh, 

When care is pressing you down a bit, 

Rest if you must, but don’t you quit. 

 

Success is failure inside out –  

The silver tint of the clouds of doubt, 

And you never can tell how close you are, 

It may be near when it seems afar; 

So stick to the fight when you’re hardest hit, 

It’s when things seem worst that you mustn’t quit! 
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1. INTRODUCTION 
 
1.1. General introduction 

Shallow lagoon and bay ecosystems form extensive areas of coastal habitats 

worldwide. They are highly productive environments and are active sites of 

decomposition and nutrient recycling, relying on sediment biota to effect 

material transformations and exchange processes (Knoppers, 1994; Borum, 1996; 

Alongi, 1998). They provide several essential ecological functions such as 

habitat, food, and breeding grounds for a wide variety of organisms, many of 

which are of economic importance to humans, including fish, crustaceans, and 

molluscs. They are dynamic systems offering many goods and services to 

mankind, including aesthetic and recreational appeal (Costanza et al., 1997). 

However due to their proximity to land they are under increasing risk of 

environmental disturbance due to anthropogenic factors. These factors include 

nutrient enrichment (e.g. Orive et al., 2002; McGlathery et al., 2007), pollution 

(e.g. Siung-Chang, 1997; Bigot et al., 2006), trawling (Jennings et al., 2002; 

Demestre et al., 2008; Olsgard et al., 2008), and aquaculture (Ólafsson et al., 

1995; Duplisea and Hargrave, 1996; Mirto et al., 2000) which, amongst other 

factors, threaten the ecological integrity of shallow water ecosystems. In order to 

conserve and protect these ecosystems, quantification of the patterns in 

populations of animals and plants is necessary. At the same time this is a useful 

biological tool, enabling environmental change and anthropogenic disturbance to 

be monitored (Coull and Chandler, 1992; Chapman and Underwood, 2008; 

Moreno et al., 2008).  
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At Discovery Bay in Jamaica there is a long history of research on the local coral 

reefs, which are regarded as some of the most extensively studied in the  

Caribbean (Liddell and Ohlhorst, 1981; Goreau, 1992; Szmant, 2002). However, 

over the last 30 years many changes have occurred which have severely 

disturbed and altered the ecology of the fringing reef system, including hurricane 

damage (Liddell and Ohlhorst, 1986, 1992; Hughes, 1993) and the Caribbean-

wide die-off of Diadema antillarum Philippi (Echinodermata: Echinoidea) 

(Lessios et al., 1983, 1984; Hughes et al., 1985). Combined with other stressors, 

such as over-fishing (Sary, 2001; Munro et al., 2003), these events have 

contributed to a phase-shift (sensu Done, 1992) from a coral dominated reef 

community to one of macroalgal dominance (Hughes, 1994; Liddell and 

Ohlhorst, 1986) which largely persists today.  

 

Research conducted at Discovery Bay in the last decade has continued to focus 

predominantly on the ecology of the reef (e.g. Solandt and Campbell, 2001; 

Zilderberg and Edmunds, 2001; Macdonald and Perry, 2003; Perry, 1998; Idjadi 

et al., 2006), as well as the distribution and productivity of seagrass beds 

(Bramwell, 2000), bay-wide nutrient chemistry (Greenaway and Gordon-Smith, 

2006), the fishery (Munro, 2000; Sary, 2001; Munro et al., 2003; Watson and 

Munro, 2004), and the influence of a bauxite shipping terminal in the south-west 

corner of the bay on sediment geochemistry and diagenetic processes (Perry and 

Taylor, 2004, 2006; Perry et al., 2006; Taylor et al., 2007). However the soft-

bottom benthos has largely been ignored. Indeed the only published studies on 

the soft-bottom benthic fauna (Aller and Dodge, 1974) and microflora (Bunt et 

al., 1972) were conducted more than 30 years ago. In an attempt to redress this 
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balance this research examines the meiobenthos (i.e. benthic meiofauna) and 

microphytobenthos (i.e. benthic microalgae) in the shallow lagoon at Discovery 

Bay, so as to further our knowledge on the ecology of lagoon benthos in this 

system, and to serve as a baseline for future monitoring, conservation and 

management programs. 

 

Meiofauna (for definitions see section 1.2) are an abundant and ubiquitous 

component of the benthos in soft-sediment marine ecosystems and play an 

important role in their structure and function (see reviews by Higgins and Thiel, 

1988; Giere, 1993). They enhance the decomposition rate of organic material and 

stimulate bacterial production (Tenore et al., 1977; Findlay and Tenore, 1982; 

Alkemade et al., 1992b, amongst others), thus providing recycled nutrients for 

new primary production. They act as vertical conveyors within the sediment, 

increasing the transport of solutes into and out of the benthos due to bioturbation, 

further stimulating microbial mineralisation and enhancing geochemical activity 

(Aller and Aller, 1992; Rysgaard et al., 2000; Murray et al., 2002). They are a 

food source for a wide variety of prey species within the trophic web, spanning 

several different phyla and size-ranges, such as crustaceans (Pihl and Rosenberg, 

1984; Hunter and Feller, 1987; Clark, 2000), fish (St. John et al., 1989; Street et 

al., 1998), and avifauna (Gaston, 1992; Sutherland et al., 2000). Consequently 

knowledge of meiofaunal structural dynamics and the spatial scales over which 

communities change will help in the development of tractable hypotheses about 

patterns in organism distributions, as well as the many processes that they 

influence within soft-sediment habitats. 
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While no attempt has been made to conduct manipulative experiments [this 

thesis is mensurative in origin (sensu Hurlbert, 1984)], as acknowledged by 

Underwood et al. (2000): “[one] can’t make progress on processes without 

understanding the patterns”. In ecology the description of pattern is of primary 

importance as it forms the basis from which models are constructed and 

hypotheses tested (Andrew and Mapstone, 1987). Indeed, observation of patterns 

in organism distributions and abundances are fundamental starting blocks for 

ecological studies, since until they have been described there is no basis for 

investigators to invoke explanatory models about structuring processes 

(Underwood et al., 2000).  

 

In view of the fact that soft-sediment benthic marine organism distributions are 

typically characterised by non-random spatial patterns (Barry and Dayton, 1991; 

Thrush, 1991; Hall et al., 1994), the distribution of meiobenthos being no 

exception (e.g. Findlay, 1981; Phillips and Fleeger, 1985; Fleeger and Decho, 

1987; Sun and Fleeger, 1991), a sampling design is employed to assess variations 

in the benthos within the shallow lagoon over several spatial scales. These range 

from centimetres to hundreds of metres, in five contrasting habitats. The present 

study shows that the Nematoda are the dominant meiofaunal taxon, as is most 

often found in marine sediments (Heip et al., 1985). Their feeding groups, 

morphometry, and biomass size spectra are explored further and compared to 

environmental parameters in order to unravel the causes of biotic variation in this 

environment. In the absence of evidence to suggest that sediment communities in 

the western corner of the bay are directly affected by anthropogenic factors, 
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benthic community dynamics are presumed to be due to natural environmental 

variability and results are discussed with this in mind. 

 

This thesis begins with an overview of what constitutes meiofauna before aims 

and objectives are stated (Chapter 1). Chapter 2 introduces the study habitats and 

describes the overall experimental designs and methods used, and details some of 

the univariate and multivariate statistical procedures employed in the analysis of 

data. The following chapter (Chapter 3) characterises the study environment in 

terms of sediment granulometry and spatial and temporal distribution in 

microphytobenthic biomass. The two ensuing chapters form the bulk of the thesis 

whereby the meiobenthic communities (Chapter 4) and nematode feeding groups, 

morphometry and biomass size spectra (Chapter 5) are described. The last 

chapter is a synthesis of the findings and discusses the results in the wider 

context of current understanding in marine benthic ecology (Chapter 6). 

 

1.2. What are meiofauna? 

Derived from the Greek word “µείος” meaning “smaller”, meiofauna are 

subjectively defined by size range as organisms of intermediate size (Mare, 

1942), and consist of a taxonomically diverse group of metazoans and protozoans 

that are smaller than macrofauna (e.g. <1 mm) yet bigger than the nanofauna 

(e.g. bacteria, microalgae and most protozoans) (Coull and Bell, 1979). For the 

most part the distinction between macrofauna and meiofauna is defined by the 

method used to separate one from another (Higgins and Thiel, 1988). This 

generally involves the passing of sediment through sieves of defined mesh 

aperture size. By convention, organisms retained on a 500 µm mesh sieve are 
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regarded as macrofauna, while those passing through this size mesh yet retained 

on a 63 µm mesh are regarded as meiofauna (Warwick et al., 2006; International 

Association of Meiobenthologists, 2009). Organisms passing the 63 µm mesh are 

commonly deemed the nanobenthos. This fraction may, however, still include the 

smallest of metazoans, especially in deep sea sediments, and hence a lower size 

limit of 32 µm separating meiofauna from the nanofauna seems to be commonly 

accepted (Soltwedel, 2000). 

 

As the most phylogenetically diverse group of organisms currently recognised 

(Baguley et al., 2003), the meiobenthos contains representatives from 24 of the 

34 recognised phyla in the Kingdom Animalia as well as 3 from the Kingdom 

Protista (Giere, 1993) and exhibit diversity comparable to the Insecta (May, 

1988). Although some taxa are endemic to the marine environment, such as the 

Gnathostomulida, Kinoryncha and Loricifera, many occur in both marine and 

freshwaters. Despite the fact that some phyla are far more diverse and abundant 

than others, in general densities are often in the order of 1 x 106 m-2 (Coull, 

1988), which represents a biomass of approximately 0.2 – 2 g C m-2 (Heip et al., 

1985). As such the metazoan members of the meiofauna are the most abundant, 

small-sized metazoans known to science, and it is argued that they were the first 

to appear on earth (Boaden, 1975, 1977, 1989) thus influencing the life traits, 

histories and strategies of other, larger, macrofaunal organisms (Warwick, 1989). 

Indeed, Warwick (1984) argued that meiofauna are actually a distinct 

evolutionary unit consisting of a diverse variety of organisms whose life-histories 

and feeding adaptations set them apart from the larger macrobenthos. However, 

while some taxa never outgrow the meiobenthic size range and are deemed 
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‘permanent meiofauna’, others are juveniles of macrofauna and defined as 

‘temporary meiofauna’ (McIntyre, 1964). The temporary component spend only 

part of their lifecycle within the meiofauna size range, and include species of the 

Echinodermata, Cnidaria, Priapulida as well as the Polychaeta. 

 

1.3. Aims 

The main aim of this thesis is to understand the patterns in the benthos within the 

shallow west lagoon at Discovery Bay. More specifically this thesis aims to: 

 

1. Characterise the sediment granulometry of five characteristic and visibly 

different habitats within the shallow lagoon.  

 

2. Assess the spatial and temporal variation in microphytobenthos within the 

shallow lagoon. 

 

3. Assess the spatial variation in meiobenthos within the shallow lagoon. 

 

4. Examine nematode feeding groups among the five habitats in order to test 

hypotheses that different groups have affinities for certain benthic 

conditions. 

 

5. Examine nematode body size and biomass spectra from communities 

subjected to different sediment conditions and forms of natural 

disturbance. 
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2. STUDY SITES AND GENERAL METHODS 

2.1. Introduction 

Sampling was conducted in the shallow lagoon landward of the west reef crest at 

Discovery Bay, Jamaica, West Indies. Discovery Bay is located at 18°28’00"N, 

77°24’30"W (Figure 2.1) and forms a sharp indentation on the central north coast 

of Jamaica covering an area of approximately 1.4 km2 (UNESCO, 1998). The 

climate is sub-tropical, with an annual air temperature range of 22-32 °C and sea 

temperature range of 26-30 °C (Woodley and Robinson, 1977; Liddell et al., 

1984). North-easterly trade winds dominate the coast of north Jamaica and due to 

a limited tidal range (~ 30 cm), currents within the bay are generally wave-driven 

(Aller and Dodge, 1974; Porter, 1985; Gayle and Woodley, 2004). 

 

The bay can be divided into two bathymetric areas: shallow lagoon shelf regions 

(0-8 m) behind the reef crest in the east and western areas, and a deeper basin (8-

53 m) (Aller and Dodge, 1974) (Figure 2.1). North-west of the main bay is a 

shallow shelf between the Discovery Bay Marine Laboratory and the western 

reef crest (Figure 2.1). The majority of this area is a designated marine reserve. 

Study habitats (Figure 2.2) were located within the marine reserve, which is 

generally less than 10 m deep, apart from a drowned caustic silt-filled sink hole 

known as the ‘Blue Hole’ which reaches 13 m deep (Figure 2.1. & 2.2). Typical 

features of the sediment within the marine reserve include white and grey sand 

areas, seagrass beds, thalassinid (ghost) shrimp mounds, small coral knolls and 

areas of coral rubble (see also Aller and Dodge, 1974). 
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Figure 2.1. Schematic maps showing the position of Discovery Bay on the north 
coast of Jamaica and bathymetry of the bay.  
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2.2. Sample habitats 
 
After intensive snorkelling, five soft-bottom benthic habitats within the study 

area were selected based on visual differences in sediment characteristics (Figure 

2.2). All habitats were approximately 1.5 to 2.0 m deep, apart from habitat 5 

which was approximately 4 m deep.  

 

2.2.1. Habitat descriptions 

2.2.1.1. Habitat 1 

This habitat was situated landward of the eastern end of the west backreef crest, 

and was the nearest habitat to the shipping channel. Sediments were white in 

colour and contained small ripple marks perpendicular to the daily north easterly 

on shore current. The mean grain size of sediments was 217 µm, which 

corresponded to fine sands on the Wentworth scale. During the day there was 

often a gentle flow of water from an easterly direction over this habitat into the 

shallow western portion of the bay. At night, this flow ceased. No signs of 

mounds constructed by thalassinid shrimps were noticed here during field work. 

In this thesis this habitat is also referred to as ‘H1’. 

 

2.2.1.2. Habitat 2 

This habitat bordered the drop-off into the main bay. Sediments here appeared to 

be grey in colour and were noticeably darker than at habitat 1. The mean grain 

size of sediments was 353 µm, which corresponded to medium sands on the 

Wentworth scale. The ripple marks found at habitat 1 were not as obvious here, 

neither were there any signs of mounds constructed by thalassinid shrimps. There 

were, however, characteristic trails made by the Caribbean heart urchin, Meoma 
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ventricosa (Lamarck 1816). This species is a burrowing detritivorous spatangoid 

echinoid and actively bioturbates the upper sediment layers (Chesher, 1969). 

This species was only ever noticed in this habitat. Besides the trails left by this 

species, depressions approximately 10 - 15 cm deep and 1 m wide in diameter 

were regularly noticed around the sampling transect. These pits were presumed 

to be caused by the foraging activities of stingrays but were never noticed within 

the transect on any sampling occasion. In this thesis this habitat is also referred to 

as the ‘H2’.  

 

 
 
 
Figure 2.2. Overhead photograph showing the positions of the five sampling 
habitats within the shallow west lagoon. The numbers (1-5) represent the location 
of the habitats while the black lines represent the position and orientation of the 
30 x 2 m sampling transects.  
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2.2.1.3. Habitat 3 

This habitat ran parallel to the reef crest and is situated among small coral knolls 

bordering the back-reef and shallow lagoon. Being located just behind the reef 

crest this area is periodically subject to intense wave action as water surge flows 

over the reef crest. Sediments here were coarser than at habitats 1 or 2. Mean 

grain size was 534 µm, which corresponded to coarse sands on the Wentworth 

scale. In this thesis this habitat is also referred to as ‘H3’. 

 

2.2.1.4. Habitat 4 

This habitat ran perpendicular to the reef crest and was densely populated by 

ghost shrimps (Decapoda: Order Thalassinidae). These macrofaunal ghost 

shrimps are bioturbators and actively burrow into the benthos forming sediment 

mounds which stand approximately 35 cm proud of the sea floor. Mean grain 

size was 351 µm, which corresponded to medium sands on the Wentworth scale. 

In this thesis this habitat is also referred to as ‘H4’. 

 

2.2.1.5. Habitat 5 

This habitat ran perpendicular to the reef crest and was situated approximately 50 

m away from habitat 5 but at a slightly deeper depth of 4 m. Like habitat 4 it was 

also densely populated by thalassinid shrimps but mean grain size was slightly 

smaller at 255 µm, which corresponded to medium sands on the Wentworth 

scale. In this thesis this habitat is also referred to as the ‘H5’. 
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2.3. Sampling design 
 
In order to assess spatial variation in the benthos a nested hierarchical sampling 

design (see Underwood, 1997) was employed (Figure 2.3).  At each of the five 

underwater habitats four sites were nested at random, and within each site three 

plots were nested at random. Within each plot two replicate samples were 

obtained at random. Hence the three levels were as follows: habitat, sites nested 

within habitats, and plots nested within sites [i.e. H, S(H), P(S(H))]. Habitat was 

deemed a fixed factor since I was specifically concerned with differences 

between habitats. In contrast, site and plot were deemed random factors. Since no 

apriori information was available on the extent of spatial variation in benthos in 

this system, nested site and plot factors were necessary in the design in order to 

prevent results from being spatial confounded due to inadequate spatial 

replication (see Morrisey et al., 1992a). Sampling for sediment granulometry and 

meiofauna was conducted on one occasion (see Chapters 3 and 4). The resulting 

linear model, under the null hypothesis that each variable is homogeneous across 

the considered spatial factors, is: 

 
Xijkl = µµµµ + Hi + Sj(Hi) + Pk(Sj(Hi) + Errorijkl 

 

Where: 
 
Xijkl is each individual value of the dependent variable, µµµµ is the overall mean, Hi 

is the fixed treatment effect of habitat, Sj(Hi) is the effect of Sitej nested within 

Habitati, Pk(Sj(Hi) is the effect of Plotk nested within Sitej nested within Habitati, 

and Errorijkl is the random error term. 
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The assessment of microphytobenthos incorporated an additional “Time” factor 

(random), and sampling was conducted approximately 3 weeks apart (see 

Chapter 3). The resulting linear model, under the null hypothesis that each 

variable is homogeneous across the considered spatial and temporal factors, is:  

 

Xijklm = µµµµ + Ti + Hj + TiHj + Sk(Hj) + TiSk(Hj) + Pl(Sk(Hj)) + TiPl(Sk(Hj)) + eijklm 

 

Where: 
 
Xijklm is each individual value of the dependent variable, µµµµ is the overall mean, Ti 

is the effect of Time, Hj is the fixed treatment effect of habitat, Sk(Hj) is the 

effect of Sitek nested within Habitatj, Pl(Sk(Hj)) is the effect of Plotl nested within 

Sitek nested within Habitatj, and Errorijklm is the random error term. 

 

 
2.4. Sampling layout 
 
A 30 m transect line was attached to the benthos in the middle of each of the five 

habitats (Figure 2.3). The transect was marked at meter intervals allowing a 1 m2 

quadrat to be positioned at a defined place either side along the line. This created 

a potential of sixty discrete 1 m2 sites, with 30 sites situated either side of the 

line.  

 

Each 1 m2 site (i.e. quadrat) was divided into sixteen plots measuring 25 cm by 

25 cm. Each plot was further sub-divided into twenty-five 5- by 5 cm squares. 

Hence a 1 m2 site contained a possible sixteen plots each of which contained 

twenty-five positions from which individual replicates could be obtained from. 

When sampling was undertaken, the exact positions of replicates within plots, 
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plots within sites, and sites within habitats were determined beforehand                                                                                                                                    

by random number tables, and replicate cores for sediment granulometry and 

microphytobenthos (Chapter 3) and meiofauna (Chapter 4 and 5) were obtained 

from the middle of each 5- by 5 cm square as best as possible. 

 

This layout therefore incorporated a range of scales from which samples could be 

obtained, based on approximate nearest and furthest distances, as follows:  

 

a) Between replicates nested within plots: 0.05 to 0.28 m 

b) Between plots nested within sites: from 0.25 to 1.06 m 

c) Between sites nested within habitats: from 1- to 29 m 

d) Between habitats: 60- to 300 m 
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Figure 2.3. Schematic representation of sampling design showing A: one of the five sampling habitats containing four nested sites (in grey); 
B: a single site containing three nested plots (in grey); and C: a single plot from which two random replicate core samples were obtained 
(shown as circles at positions 12 and 24). Note scales.



 34 

2.5. Statistical analysis 

Many statistical procedures were used to analyse the data obtained in this study 

ranging from basic descriptive and univariate statistical techniques, to more 

advanced multivariate methods which will be summarised below. The statistical 

packages used to carry out these procedures include “MINITAB version 14.2”, 

“STATGRAPHICS CENTURION version 15.2.05”, and “PRIMER (Plymouth 

Routines in Multivariate Ecological Research) version 6 beta”. All univariate 

data were tested for normality and homogeneity of variance before analysis  

using the Kolmogrov-Smirnov and Cochran’s C test (Underwood, 1997), 

respectively. If data did not conform to parametric statistical assumptions, 

suitable transformations were made before retesting. If after retesting data still 

did not conform, then non-parametric statistical methods were used. When 

significant ANOVA results were found, they were followed by unplanned 

multiple comparisons using Tukey’s honestly significant difference (Tukey 

HSD) test for comparison of means.  

 

2.5.1. Non-metric Multi-Dimensional Scaling (MDS) 

MDS is an ordination technique that attempts to plot the relationship between  

similarities in a multivariate data set as distances in multidimensional space. An 

ordination map is produced whereby similar samples are plotted at close distance 

to one another and dissimilar samples at further distances from one another. A 

stress value is calculated as a quantitative measure of how good the observed 2 

(or 3) dimensional plot represents the ordination in multidimensional space. 

According to Clarke and Warwick (2001), stress values <0.05 give an excellent 

representation with no prospect of misinterpretation; values <0.1 correspond to a 
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good ordination with no real prospect of a misleading interpretation; values <0.2 

give a potentially useful 2-dimensional picture although should not be solely 

relied upon and values >0.3 indicate that the points are close to being arbitrarily 

placed in 2-dimensional space. 

 

2.5.2. Analysis of Similarities (ANOSIM)  

ANOSIM is a non-parametric multivariate statistical procedure analogous to 

traditional Analysis of Variance. It is a permutation test based on rank 

(dis)similarities between two or more sampling groups. A test statistic, rho (R)  is 

computed reflecting observed differences between groups (i.e. sites, times, 

treatments etc.) in the multivariate data set and is contrasted with differences 

among replicates within groups. R is scaled to lie within the range -1 to +1 with 

zero values representing the null hypothesis, i.e. similarities between and within 

sampling groups are the same. Conversely, values departing from zero reflect 

departure from the null hypothesis, i.e. a value of 1 denotes that all similarities 

within groups are less than any similarity between groups, and provide a 

comparative measure of the degree of separation of groups. Significance levels 

for each factor were calculated by referring the observed value of R to it’s 

permutation distribution, created from 999 simulations. For more details see 

Clarke (1993) and Clarke and Gorley (2006). 

 

2.5.3. Similarity Percentages (SIMPER) 

SIMPER is a non-parametric procedure which decomposes average Bray-Curtis 

dissimilarities or Euclidean distances into percentage contributions in order to 

identify the species or variables primarily responsible for group-wise separation. 
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In other words, SIMPER can highlight species, taxa, or variables which can 

discriminate between groups of samples responsible for differences in the 

ANOSIM test. For more details see Clarke and Warwick (2001). 

 

2.5.4. Principle Components Analysis (PCA) 

PCA is an ordination technique used to reduce many variables in a multivariate 

dataset to a smaller number of new derived variables called principle scores (or 

components) which are uncorrelated. These scores can be plotted such that the 

first principle component axis accounts for as much of the variability in the 

dataset as possible, with the second axis accounting for as much of the remaining 

variability as possible. One of the main advantages of this technique is that it 

helps to reduce the dimensionality of a multidimensional data set to a more 

meaningful ordination enabling the major trends in the underlying variables to be 

easily seen.  
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3. MICROPHYTOBENTHOS AND SEDIMENT 
GRANULOMETRY 

 

3.1. Introduction 

Coral reef ecosystems (CREs) are among the most productive in the marine 

environment exhibiting high gross production in the order of 700 x 1012 g C per 

year (Crossland et al., 1991). Due to their extensive areal coverage [~284,300 

km2 (Spalding et al., 2001)] and high productivity rates, hermatypic corals and 

epilithic and macroalgal communities are generally regarded as the major 

primary producers within CREs (Larkum, 1983; Carpenter et al., 1991; Hatcher, 

1998). However, it is now firmly established that the microphytobenthos 

inhabiting coral reef sediments is ubiquitous, abundant and also highly 

productive (e.g. Clavier and Garrigue, 1999; Heil et al., 2004; Rasheed et al., 

2004). Microphytobenthos refers to the photosynthetic unicellular eukaryotic 

algae, such as diatoms and dinoflagellates, as well as prokaryotic cyanobacteria 

that inhabit the surface layers of illuminated soft-bottom sediments (MacIntyre et 

al., 1996). Since CREs contain large expanses of unconsolidated soft-bottom 

sediments (Furnas et al., 1995; Clavier and Garrigue, 1999; Cochran et al., 

2007), which are extensively inhabited by microphytobenthos (e.g. Heil et al., 

2004), a significant contribution is made by these autotrophs towards total reef 

primary production (Sorokin, 1993; Clavier et al., 2008; Werner et al., 2008). On 

the Great Barrier Reef, for example, Uthicke and Klumpp (1998) estimated an 

annual net microphytobenthic production of 168 g C m-2 contributing up to 37% 

towards the total autotrophic production in the reef system. At the whole reef 

ecosystem scale, production by sediment-inhabiting microphytobenthos is even 
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considered equivalent to that of corals (Clavier and Garrigue, 1999), or at least 

within the same order of magnitude (Werner et al., 2008).  

 

For a number of reasons microphytobenthos is important to the dynamics of 

shallow water systems. As a significant and palatable primary producer, 

microphytobenthos is a readily available food resource consumed in large 

quantities by a wide variety of deposit-, epistrate- and filter-feeding organisms. 

These range in size from microscopic foraminifera (Austin et al., 2005) and 

meiofauna (Montagna, 1984; Moens and Vincx, 1997; Buffan-Dubau and 

Carman, 2000) to larger macrofauna (Currin et al., 1995; Stocks and Grassle, 

2001; Yokoyama and Ishihi, 2003) and demersal fish (Mallin et al., 1992; Takai 

et al., 2002). Microphytobenthos therefore plays a central role in supporting 

secondary production. This is particularly so in unvegetated sediments devoid of 

macroalgae and/or seagrasses and in shallow water systems where the relative 

importance of phytoplanktonic production is decreased due to the shallow water 

column (McGlathery et al., 2004). The secretion of carbohydrate-rich mucilages, 

by diatoms and cyanobacteria in particular (de Winder et al., 1999; Smith and 

Underwood, 2000; Staats et al., 2000), increases both the cohesive nature and 

erosion threshold of sediments thus limiting resuspension caused by water scour 

and tidal currents (Decho, 1990; Miller et al., 1996; Lundkvist et al., 2007). This 

helps to enhance sediment stability and prevent against coastal erosion (Austen et 

al., 1999; Le Hir et al., 2007; Lundkvist et al., 2007).  

 

Nutrient fluxes through the sediment-water interface are partly regulated by the 

photosynthetic activities of microphytobenthos. Production of oxygen and the 
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uptake of nutrients by benthic microalgae influences the rates and magnitude of 

sediment decomposition processes, as well as the regeneration of nutrients from 

sediment porewater to the water column (Rizzo et al., 1992; Sundbäck et al., 

2000; Cibic et al., 2007). This is particularly important within CREs, which exist 

within oligotrophic conditions, and therefore need efficient mechanisms for 

recycling within the system. 

 

In shallow water systems the assessment of microphytobenthic biomass is a 

fundamental precursor to the many processes driven by benthic microalgal 

photosynthesis (Light and Beardall, 1998). Over the last decade and a half, the 

ecological significance of microphytobenthos from many different marine 

environments has received much attention (for example see reviews by 

MacIntyre et al., 1996; Miller et al., 1996; Cahoon, 1999; Underwood and 

Kromkamp, 1999). Studies have shown that the distribution of 

microphytobenthos is patchy over a range of spatial and temporal scales 

(Sundbäck, 1984; Plante et al., 1986; Saburova et al., 1995; Light and Beardall, 

1998; Sandulli and Pinckney, 1999), due to many interacting and controlling 

factors (e.g. light, water motion, nutrients, grazing, bioturbation). While some 

studies report a negative relationship between microphytobenthic biomass and 

the proportion of fine grained sediments (Cahoon et al., 1999), others have found 

that fine cohesive sediments support significantly higher concentrations of 

microphytobenthos than sites with sandy silts and sands (see review by 

Underwood and Kromkamp, 1999). Assessment of spatio-temporal variation in 

microphytobenthos across a range of differing scales, encompassing varied 

habitat types within a coral reef lagoon has, however, received limited attention 
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(for example see Hansen et al., 1987, 1992; Boucher and Clavier, 1990; 

Garrigue, 1998; Clavier and Garrigue, 1999). Likewise, there is also a paucity of 

information on the distribution and ecology of microphytobenthos from tropical 

habitats (Underwood, 2002). What is apparent, however, is that 

microphytobenthos is highly variable within tropical lagoons. On the Great 

Barrier Reef, for example, values range from 8 to 1153 mg Chl a m-2, upper 

values of which are some of the highest values ever recorded from marine 

sediments (see Roelfsema et al., 2002; Heil et al., 2004). 

 

In the shallow lagoon at Discovery Bay the only study to have examined the 

abundance of microphytobenthos is by Bunt et al. (1972). Unfortunately this 

study did not detail where samples were obtained from (i.e. forereef, backreef, 

lagoon), although it was noted that they were taken at 16-, 30-, and 60 m depth. 

Therefore they were not taken within the shallow lagoon. There is also only one 

published study on the granulometry of sediments within the shallow west 

lagoon, and this study does not detail how many samples were obtained or 

exactly how they were taken (Aller and Dodge, 1974). Since variation in 

microphytobenthic biomass has important implications for both descriptive and 

experimental studies (Light and Beardall, 1998), and grain size statistical 

characteristics form the basis of schemes for classifying sedimentary 

environments (Alsharhan and El-Sammak, 2004), this research focuses on the 

distribution of microphytobenthos among five characteristic habitats within the 

shallow lagoon. In particular, the primary aim of this research is to document the 

sedimentary environment and to examine spatial and temporal variation in 

microphytobenthic biomass (as chlorophyll a) within the shallow west lagoon 
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using an experimental design which quantifies patchiness over a range of spatial 

scales.  

 

3.2. Methods 

3.2.1. Sample collection 

120 samples for sediment granulometry and 360 samples for microphytobenthos 

were obtained according to the sampling design in Chapter 2. Sediment 

granulometry samples were obtained on the 14th of June 1999. Sampling for 

microphytobenthos took place on three occasions (26th to the 27th of May, 16th to 

the 17th of June, and the 9th to the 10th of July 1999) and was spread over two 

days per occasion due to logistical and processing constraints. In order to limit 

any bias occurring due to the need to sample over two days, microphytobenthic 

sampling was undertaken as follows: prior to sampling four random sites out of a 

possible sixty were determined for each habitat via computerised random 

numbers generation. The first two numbers generated were sampled on the first 

day and the second two on the second day. Sampling took place between 11am 

and 2pm each day. All samples were obtained whilst free diving. 

 

3.2.1.1. Sediment granulometry 

Sediment cores were obtained to a depth of 5 cm using a 2.6 cm inner diameter 

syringe with the Luer end cut off and a rubber bung cap. In the laboratory, cores 

were transferred to clean pre-weighed scintillation vials, and immediately re-

weighed before being dried at 80 °C for 48 hours to a constant weight. Once dry, 

they were again weighed in order to calculate porosity before being sieved for 15 

minutes using a mechanical shaker stacked with sieves ranging from 2 mm to 
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0.063 mm. GRADISTAT v5 (Blott and Pye, 2001) was subsequently used to 

compute sediment granulometry characteristic (SGC) statistics: mean sediment 

grain size, gravel (%), sand (%), silt/clay (%),  sorting (σI), skewness (SK1) and 

kurtosis (KG) following Folk and Ward (1957). Classification of sediment type 

followed Blott and Pye (2001) modified from Udden (1914) and Wentworth 

(1922). Sediment porosity was calculated as the difference between dry- and wet 

weight and expressed as a percentage. A derived measure of sediment 

heterogeneity was calculated according to Ward (1975), according to the 

following equation: 

silt
Md

QD
h %×=

φ
φ

 

where QDØ is the sorting coefficient and MdØ is the median particle diameter 

[phi]. 

 

3.2.1.2. Microphytobenthos 

Sediment cores for the analysis of microphytobenthos (as chlorophyll a) were 

obtained to a depth of 5 cm using a 1.4 cm inner diameter syringe with the Luer 

end cut off and a rubber bung cap. After samples had been cored and capped, 

they were immediately taken up to the surface and placed on ice in a sealed cool 

box on a moored boat. This cool box was kept out of the sunlight within a larger 

cool box in order to prevent any pigment degradation due to the high air 

temperatures. In the laboratory, samples were placed into 30 ml centrifuge tubes 

to which 16 ml of 100% acetone was added, making a final concentration of 80% 

with the interstitial water being taken into account (analysis of interstitial water 

content showed a mean of ~4 ml per sample core). Samples were then mixed 
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thoroughly on a vortex mixer, and extracted in the dark at 4 °C for 24 hours. 

After extraction samples were centrifuged at the highest setting (number 7) for 

15 minutes in an International Clinical Centrifuge (Model CL, International 

Equipment Company, Needham, Massachusetts) before the supernatant was 

decanted and analysed in a Milton Roy Spectronic ‘Genesys 2’ 

spectrophotometer using the equations of Lorenzen (1967).  

 

3.2.2. Statistical analysis 

3.2.2.1. Sediment granulometry 

Even after appropriate data transformations and subsequent retesting data did not 

conform to the assumptions of ANOVA. Consequently the Kruskal-Wallis non-

parametric test was employed to test the null hypothesis that there was no 

difference in sediment granulometry characteristics (SGC: e.g. mean grain size; 

% gravel, % sand, % silt/clay; sorting coefficient; skewness; kurtosis; % 

porosity; sediment heterogeneity) between the five habitats. Significant results 

were further examined via the nonparametric ‘Tukey-type’ Nemenyi multiple 

comparison test according to Zar (1999). 

 

Principal Components Analysis (PCA) was used to examine the relationships 

between the study habitats and the sediment particle size distribution (SPSD) and 

the sediment granulometry characteristics (SGC). Before analysis data were 

checked for multivariate normality by looking at draftmans plots. Gravel % was 

right skewed and sand % was left skewed and therefore log10(V+1) and a 

log10(100-V) transformations applied, respectively, according to Clarke and 

Gorley (2006). Formal significance tests examining the null hypothesis that there 
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were no differences in SPSD and SGC were performed using the Analysis of 

Similarities (ANOSIM) test (Clarke, 1993) on Euclidean dissimilarity matrices. 

SPSD data were standardised and then cumulated, while SGC data were 

normalised (Clarke and Gorley, 2006). Two-way nested ANOSIM tests were 

initially run on each habitat individually to assess whether there were differences 

at the plot and site scales in SPSD and SGC. Since no significant differences 

were found at the plot scale in any of the tests, it was justifiable to perform two-

way nested ANOSIM over all habitats using site groups as samples (Clarke and 

Gorley, 2006). 

 

3.2.2.2. Microphytobenthos 

Hypotheses about the spatial and temporal variability in the biomass of 

microphytobenthos (as chlorophyll a) were tested by mixed-model nested 

ANOVA with four spatial scales (habitat, site[habitat], plot[site[habitat]], 

replicates) orthogonally sampled at three dates. Habitat was a fixed factor while 

date, site and plot were random factors. Normality of data and homogeneity of 

variances were checked using the Kolmogorov-Smirnov and Cochran’s C test 

(Underwood, 1997), respectively. In order to meet the assumptions of ANOVA 

data were log10 transformed and retested, confirming assumptions before 

analysis. Significant results were followed by unplanned multiple comparisons 

using Tukey’s honestly significant difference (Tukey HSD) test for comparison 

of means. Furthermore, spatial variability in microphytobenthos was tested for 

each individual date using nested three-factor ANOVA. 
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To quantify spatial variability among dates in the biomass of microphytobenthos 

coefficient of variation (CV = standard deviation / mean) was used (see Palmer et 

al., 1997). For each habitat on each sampling occasion the CV was calculated 

firstly for plots (since there were N = 2 samples per plot, the “plot CVs” were 

calculated using 2 measurements) and then for each of the sites (N = 6 samples 

per site). Mean CV for each habitat was then calculated for the within plot scale 

based on 12 within plot CV’s (since there were 12 plots per habitat) and for the 

within site scale based on 4 within site CV’s (since there were 4 sites per habitat). 

At the habitat scale CV was calculated for each individual habitat from all 24 

replicates and hence there is no mean value. As an additional graphical 

representation data have also been pooled by Date and Habitat in order to show 

the overall trend. Variance components derived from individual three-factor 

ANOVAs were also calculated as a second method by which to compare 

variation at the respective scales. However due to habitat being a fixed factor in 

the mixed ANOVA model, the results are only relative to the five habitats (Sokal 

and Rohlf, 1995) and are not respective of natural variation in the western lagoon 

as a whole. 
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3.3. Results 

3.3.1. Sediment granulometry overview 

A summary of the descriptive statistics of the different sediment granulometric 

characteristics is presented in Table 3.1. Relative grain size fractions are 

presented in Figure 3.1. Sediments ranged from fine to coarse sands, and were 

moderately to poorly sorted (Figure 3.2). Significant differences (Kruskal-Wallis 

test, p<0.001, df=4) in all individual sediment granulometry characteristics were 

found between the 5 study habitats (Figure 3.2, Table 3.2). Nemenyi multiple 

comparison tests comparing differences in the various characteristics between 

habitats did not reveal any clear-cut groups. However, out of the 9 measured 

sediment characteristics, only 3 of them were significantly different when 

habitats 1 and 2 were compared, and 4 of them significantly different when 

habitats 4 and 5 were compared. 

 

3.3.1.1. Habitat 1 

Habitat 1 sediments had the lowest average mean grain size of 217 µm (n=24, 

± 18 SD) and all samples were classified as fine sand. This habitat had the 

highest mean percentage of sand and a low mean percentage of gravel. 

Sediments were in the main moderately sorted, coarse skewed and leptokurtic, 

and out of all the habitats exhibited the lowest index of sediment heterogeneity 

with the smallest range indicative of relatively homogeneous sediments. 

 

3.3.1.2. Habitat 2 

Habitat 2 sediments had a average mean grain size of 353 µm (n=24, ± 82 SD). 

Overall this habitat was considered a ‘medium sand habitat’; however 21 
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samples were classified as medium sand, 2 samples as coarse sand, and 1 sample 

as fine sand. Relative grain size fractions were similar to habitat 1, albeit an 

increase in the percentage gravel and silt/clay and a decrease in the percentage of 

sand was evident. Sediments were mostly symmetrically skewed but varied 

between moderately and poorly sorted, and between meso- and leptokurtic. 

Sediments were reasonably homogeneous albeit less so than at habitat 1. 

 

3.3.1.3. Habitat 3 

Habitat 3 sediments had the highest average mean grain size of 534 µm (n=24, 

± 104 SD). Overall this habitat was considered a ‘coarse sand habitat’; however 

16 samples were classified as coarse sand and 8 samples as medium sand. 

Sediments were all poorly sorted, predominantly symmetrically skewed, and 

almost exclusively mesokurtic. This habitat had the highest percentage of gravel 

and the lowest percentage of sand and silt/clay, evidence of a high energy 

environment. Sediment heterogeneity was slightly higher than habitat 2. 

 

3.3.1.4. Habitat 4 

Habitat 4 sediments had a average mean grain size of 351 µm (n=24, ± 76 SD). 

Overall this habitat was considered a ‘medium sand habitat’; however 22 

samples were classified as medium sand, 1 sample as fine sand and 1 sample as 

coarse sand. The proportion of gravel was slightly raised compared to habitat 1, 2 

and 5. Sediment samples were all poorly sorted, predominantly symmetrical, 

with kurtosis varying between meso- and platykurtic. 
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3.3.1.5. Habitat 5 

Habitat 5 sediments had a average mean grain size of 255 µm (n=24, ± 24 SD) . 

Overall this habitat was considered a ‘medium sand habitat’; however 16 

samples were classified as medium sand and 8 as fine sand. This habitat had the 

highest percentage of silt/clay and the lowest percentage of gravel. Sediments 

were all poorly sorted, predominantly coarse skewed, with kurtosis varying 

between predominantly meso- and platykurtic. Sediment heterogeneity was 

slightly lower than at habitat 4 and exhibited a slight decrease in range. 
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Table 3.1 Summary of granulometry statistics at each Habitat. Data are mean 
values with standard deviation in parentheses. (n=24). 
 

Habitat 1 2 3 4 5 

Sand 
Classification 

fine medium  coarse  medium medium  

Mean particle size (µm) 217 (18) 353 (82) 534 (104) 351 (76) 255 (24) 

Median particle size (µm) 210 (17) 344 (78) 531 (113) 340 (90) 230 (26) 

Percentage of gravel 0.9 (1.0) 1.2 (1.4) 5.9 (3.9) 2.0 (1.7) 0.4 (0.4) 

Percentage of sand 97.1 (1.3) 96.7 (1.5) 92.9 (3.8) 94.9 (1.9) 95.6 (0.9) 

Percentage of silt/clay 2.0 (0.8) 2.1 (0.8) 1.2 (0.5) 3.1 (1.3) 4.0 (0.8) 

Sorting 0.8 (0.08) 1.0 (0.09) 1.2 (0.07) 1.3 (0.11) 1.3 (0.06) 

Skewness -0.14 (0.05) -0.04 (0.06) 0.05 (0.10) -0.04 (0.07) -0.15 (0.042) 

Kurtosis 1.28 (0.15) 1.12 (0.09) 0.93 (0.10) 0.92 (0.05) 0.95 (0.08) 

Percentage porosity 34.3 (2.2) 33.2 (2.3) 36.5 (5.1) 34.8 (2.4) 37.0 (2.4) 

Sediment heterogeneity 0.75 (0.3) 1.45 (0.7) 1.62 (0.7) 2.59 (0.9) 2.33 (0.5) 
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Figure 3.1. Relative grain size fractions at each habitat. Black bar = sand; light 
grey bar = gravel; dark grey bar = silt/clay. Note Y axis scale. (n=24). 
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Figure 3.2. Box plots of sediment granulometry characteristics at the five lagoon 
habitats. Sed = Sediment. (n=24). 
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Table 3.2. Results of Kruskal-Wallis tests evaluating differences in the median of 
sediment granulometry characteristics between the five lagoon habitats. 
Differences between individual habitats were determined by post-hoc multiple 
comparisons using the Nemenyi test. (n=24). 
 
Sediment Granulometry 
Characteristics H df p Comparisons 

     

Mean particle size (µm) 94.12 4 <0.001 1=5, 4=2, 3 

% Gravel 57.74 4 <0.001 
1=2=4, 1=2=5, 

3 

% Sand 43.06 4 <0.001 
1=2, 2=5, 

3=4=5 

% Silt / Clay 67.40 4 <0.001 
1=2=3, 4=5, 

2=4 

Sorting (σI) 93.51 4 <0.001 1=2, 3=5, 4=5 

Skewness (SK1) 71.57 4 <0.001 2=3=4, 1=5 

Kurtosis (KG) 83.29 4 <0.001 1=2, 3=4=5 

% Porosity 23.36 4 <0.001 
1=2, 1=3=4, 

3=5 

Sediment heterogeneity 68.82 4 <0.001 1, 2=3, 4=5 

 

 

 

 

 



 52 

3.3.2. Ordination of sediment granulometry characteristics and particle size 

distributions 

The principle component analysis on the abiotic sediment granulometry 

parameter data showed that the first two principal components explained 73.9 % 

of the total variance (Figure 3.3). The first PC was positively correlated with 

mean grain size (r = 0.42) and sand % (r = 0.42) and negatively correlated with 

kurtosis (r = -0.35). The second PC was positively correlated with silt / clay %  (r 

= 0.62 and sediment heterogeneity (r = 0.45) and negatively correlated with 

skewness (r = -0.32). The ordination revealed that the degree of variability 

between replicate samples was least at habitat 1, where samples were grouped 

quite close together. At the other habitats variability was much greater, as 

revealed by the increase in distance between replicates on the ordination. 

 

The principle component analysis on the sediment particle size data showed that 

the first two principal components explained 91.8% of the total variance (Figure 

3.4). PC1 was positively correlated with particle size classes 0.710 to 0.500 µm 

(r = 0.341) and negatively correlated with particle sizes 0.180 to 0.125 µm (r = -

0.551) and PC2 was positively correlated with particle sizes 0.355 to 0.250 µm (r 

= 0.654) and 0.125 to 0.090 mm (r = 0.320) and negatively correlated with 

particle sizes 1.000 to 0.710 mm (r = -0.380). A large degree of variability in 

particle size distributions occurred between replicate samples within each habitat, 

although compared to the SGC data, particle size is most homogeneous at habitat 

5.  
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Results of the global ANOSIM tests (Table 3.3) confirmed that both sediment 

particle size distributions and sediment granulometry characteristics differed 

significantly among habitats (Global R = 0.801 and 0.756, respectively, P = 

0.001 for both tests; Table 3.3). A significant site effect was also found,  however 

R was low suggesting that the differences were between only a few sites (Global 

R = 0.273 and 0.256, respectively, P = 0.001 for both tests; Table 3.3). Results of 

pairwise tests showed that particle size distributions at all habitats were 

significantly different from each other. Sediment granulometry characteristics 

were also significantly different between all habitats except H2 and H4. 
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Figure 3.3. Principal component ordination of sediment granulometry 
characteristics from the five habitats in the shallow lagoon at Discovery Bay.  
 
 

 
 
 
Figure 3.4. Principal component ordination of sediment particle size data from 
the five habitats in the shallow lagoon at Discovery Bay.  
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Table 3.3. R-statistic values and significance of pairwise two-way nested 
ANOSIM tests for differences in sediment conditions between the 5 lagoon 
habitats. All results are derived from Euclidean dissimilarity matrices. Before 
analysis sediment particle size distribution (SPSD) data were standardised to % 
fraction and then cumulated; sediment granulometry parameter (SGC) data were 
normalised (i.e. values for each variable have their mean subtracted and are then 
divided by their standard deviation).  
 
 

Global Test Habitat Sites within Habitats 

 R P R P 

Sediment Particle Size Distribution 0.801 0.001 0.273 0.001 

Sediment Granulometry 
Characteristics 

0.756 0.001 0.256 0.001 

          

Comparison SPSD SGC 

   

Habitats R P R P 

1 vs. 2 0.76 0.029 0.711 0.029 

1 vs. 3 1 0.029 0.992 0.029 

1 vs. 4 1 0.029 0.880 0.029 

1 vs. 5 0.99 0.029 0.860 0.029 

2 vs. 3 0.573 0.029 0.490 0.029 

2 vs. 4 0.531 0.029 0.290 0.057 

2 vs. 5 0.698 0.029 0.628 0.029 

3 vs. 4 0.833 0.029 0.531 0.029 

3 vs. 5 1 0.029 0.952 0.029 

4 vs. 5 0.771 0.029 0.468 0.029 
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3.3.3. Microphytobenthos 

3.3.3.1. Spatio-temporal distribution 

A total of 360 sediment cores from 3 dates and 5 hierarchically nested subtidal 

sampling habitats were analysed for microphytobenthos as benthic chlorophyll a. The 

biomass of microphytobenthos ranged more than fifteen-fold from 9- to 152 mg chl a 

m-2 (N = 360; mean = 41 mg m-2; SE = 1.0; CV = 46.9%) over the 3 dates studied 

(Table 3.4; Figure 3.5, 1-3). No significant difference in biomass among dates or plots 

over all dates was detected, and no significant interaction between dates and habitats 

or between dates and sites nested within habitats was found (Table 3.5).  There was, 

however, a highly significant date by plot(site(habitat)) interaction (Table 3.5), 

implying that at the smallest spatial scale (i.e. within plots / between replicates), 

variability in the spatial distribution of microphytobenthos changed among times of 

sampling.  

 

Table 3.4. Summary of microphytobenthic biomass values (mg m-2) at each habitat. 
SD = standard deviation. (n=72). 
 

Habitat Mean SD Minimum Maximum 

     

1 37.4  13.5 9.5 78.4 

2 63.0  24.4 31.1 151.7 

3 37.2 12.2 13.3 76.1 

4 31.8 10.1 12.2 64.5 

5 32.9 11.2 11.1 80.0 

 

 

Due to the significant effect of habitat, three-factor nested ANOVAs were computed 

in order to more fully understand microphytobenthic spatial variability on individual 
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dates. Significant differences in mean microphytobenthic biomass between habitats 

were found on each date (Tables 3.6 – 3.8), with habitat 2 consistently having 

elevated levels of microphytobenthos relative to all other habitats (Figure 3.5). These 

differences were most significant for dates 1 (ANOVA F4,15 = 10.55, P<0.001) and  3 

(ANOVA F4,15 = 9.52, P<0.001), although less so for date 2 (ANOVA F4,15 = 3.52, P 

= 0.032). Post-hoc Tukey HSD tests revealed that on dates 1 and 3 the mean biomass 

of microphytobenthos at habitat 2 was significantly higher than that occurring within 

any of the other habitats (Tukey HSD, p<0.05, Figure 3.5), whilst no significant 

differences in microphytobenthic biomass was detected between habitats 1, 3, 4 and 5 

(Tukey HSD, p>0.05, Figure 3.5). On date 2 higher values of microphytobenthic 

biomass were again recorded at habitat 2; however on this occasion the only 

significant difference was between habitat 2 and 4 (Tukey HSD, p<0.05, Figure 3.5). 

Non significant variability among plots and sites was found on dates 2 and 3, 

respectively (Tables 3.6 – 3.8). 
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Table 3.5. Results of ANOVA used to investigate the spatial and temporal distribution 
of biomass of microphytobenthos. 
 

Source of Variation df MS F p Sig. Error terms 

     
  

Date 2 0.216 3.00 0.107 ns Date x Hab. 

Habitat* 4 1.007 8.37 0.002 ** 
[Date x Hab.+ Site(Hab.)] – Date x 

Site(Hab.) 

Date x Habitat 8 0.072 2.11 0.066 ns Date x Site(Hab) 

Site (Hab)* 15 0.082 2.18 0.043 * 
[Date x Site(Hab.) + Plot(Site(Hab))] - 

Date x Plot(Site(Hab)) 

Date x Site(Hab) 30 0.034 1.58 0.054 ns Date x Plot(Site(Hab)) 

Plot(Site(Hab)) 40 0.025 1.17 0.270 ns Date x Plot(Site(Hab)) 

Date x Plot(Site(Hab)) 80 0.021 1.70 0.002 ** Error 

Error 180 0.013     
 

1 Data transformed to Log10 (x)  
ns = not significant; * p<0.05; ** p<0.01; *** p<0.001 
* This was an approximate F-test due to the inability to assign exact error terms for the factor of 
interest. 
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Figure 3.5. Mean (+/- 1SE) microphytobenthic biomass in each Plot for the 3 
sampling dates, 1, 2, and 3. (n=2 replicate cores). Habitats with the same letter are not 
significantly different (Tukey’s HSD test, α=0.05).  
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Table 3.6. Results of the three-factor nested ANOVA in the distribution of biomass of 
microphytobenthos at Date 1. 
 

Source of Variation df MS F p Sig. Error terms 

Habitat 4 0.658 10.55 0.000 *** Site (Hab) 

Site (Hab) 15 0.062 3.15 0.002 ** Plot(Hab(Site)) 

Plot(Site(Hab)) 40 0.020 1.87 0.014 * Error 

Error 60 0.011     
 

Data transformed to Log10 (x) 
ns = not significant; * p<0.05; ** p<0.01; *** p<0.001 
 
 
 
 
Table 3.7. Results of the three-factor nested ANOVA in the distribution of biomass of 
microphytobenthos at Date 2. 

 

Source of Variation df MS F p Sig. Error terms 

Habitat 4 0.203 3.52 0.032 * Site (Hab) 

Site (Hab) 15 0.058 2.17 0.026 * Plot(Hab(Site)) 

Plot(Site(Hab)) 40 0.027 1.58 0.053 ns Error 

Error 60 0.017     
 

Data transformed to Log10 (x) 
ns = not significant; * p<0.05 
 

 

 

Table 3.8. Results of the three-factor nested ANOVA in the distribution of biomass of 
microphytobenthos at Date 3. 

 

Source of Variation df MS F p Sig. Error terms 

Habitat 4 0.291 9.52 0.000 *** Site (Hab) 

Site (Hab) 15 0.031 1.40 0.194 ns Plot(Hab(Site)) 

Plot(Site(Hab)) 40 0.022 2.08 0.005 ** Error 

Error 60 0.010     
 

Data transformed to Log10 (x) 
ns = not significant; * p<0.05; ** p<0.01; *** p<0.001 
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3.3.3.2. Spatio-temporal variation 

Considerable spatial variation in the distribution of microphytobenthos was apparent 

at all spatial scales studied (Figures 3.5 to 3.7). To compare spatial variability in 

microphytobenthic biomass at the different scales both coefficients of variation (CV: 

Figures 3.6 & 3.7) and variance components (Table 3.9) were used. CV among 

replicate cores within plots over the three dates studied averaged 19.8% (n=180; SE = 

1.14) suggesting that at the smallest spatial scale, i.e. within plots, the biomass of 

microphytobenthos tended towards a homogeneous distribution. However within plot 

CV ranged from 0 to 72.5% indicating that microphytobenthos exhibited homogenous 

distributions within some plots while in others the distribution was markedly patchy. 

Overall the CV was 47.0% (n=360), indicating a high degree of variability within the 

5 habitats.  

 

To establish the degree of variation in microphytobenthos at the different scales, the 

CV was plotted for each scale in each habitat for each date (Figure 3.6 a-c). In general 

CV increased with increasing spatial scale across all habitats, although at different 

degrees depending on habitat and sampling time. Most often the proportion of 

variation attributed to the plot scale was more than half of the total variation found 

within each habitat, as determined by the difference between the CV for the two 

respective scales. Moreover, it is apparent that the relative importance of each scale 

changes between habitats and dates. For example on date 1 variability at the plot and 

site scales at H4 are reasonably similar. However on date 3 a decrease in both the 

overall variability as well as small scale plot variability is apparent, although site scale 

variability remained relatively constant. 
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Figure 3.6. Mean coefficient of variation (+SE) in the biomass of microphytobenthos 
vs. scale for each habitat for the 3 sampling dates. P = plot; S = site; H = habitat. For 
each date and habitat mean CV is calculated from n=12 plots, n=4 sites, and n=1 
habitat with 2, 6 and 24 replicates per scale, respectively.  
 
 
 
To envisage the overall picture, CV was also plotted for each spatial scale pooled by 

date, and also by date itself for all replicates within the 3 sampling periods (Figure 

3.7). A similar pattern appears with the plot scale contributing most of the variability 

(19.8%) towards microphytobenthic spatial variation in the five habitats. Further 

small increases in variability are apparent at the larger spatial scales, with 

contributions of 6.7- and 12.0% due to site and habitat scales, respectively. The role 

of temporal variability is however apparent, and contributed 23.7% more towards the 

overall variation in microalgal abundance than that found at the plot scale. 
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Figure 3.7. Overall pattern of variation in the biomass of microphytobenthos versus 
scale. Bars are mean coefficient of variation (+SE). Mean CV calculated from 180 
plots (n=2 per plot); 60 sites (n=6 per site); 15 habitats (n=24 per habitat) and 3 dates 
(n=120 per Date). 
 

 

Separate analysis of each date allows the variance components associated with the 

spatial scales site, plot and replicate to be partitioned. This permitted the 

determination of the percentage contribution of each scale to overall variation. 

Comparing the variance components for the 5 habitats revealed different patterns 

between the 3 dates (Table 3.9). Variation was highest for the smallest spatial scale, 

i.e. between replicates within plots, on all 3 dates. On dates 2 and 3 similar values and 

patterns were found and, as the spatial scale increased, the relative proportion of 

variation decreased. In contrast, a different pattern was found for date 1; on this date 

the importance of the site scale increased at the expense of the residual scale.  
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Table 3.9 Variance components estimates (%) of microphytobenthos. Data are derived 
from the mixed model nested analysis of variance using untransformed data (see 
Underwood, 1997).  
 
 

 Date 
 1 2 3 

Site 33.7 15.7 11.5 
Plot 27.5 27.2 33.4 

Residual 38.8 57.1 55.2 
 

 
 
 
3.3.3.3. Relationship between microphytobenthos and sediment granulometry 

A flaw of this research is that samples for sediment granulometry were not paired 

with samples for microphytobenthos. Consequently individual sediment 

characteristics cannot be correlated with the biomass of microphytobenthos, since 

beside the ‘habitat’ factor individual samples have nothing in common. As an 

alternative way of showing the relationship mean biomass of microphytobenthos was 

plotted against mean sediment grain size and the percentage of fines less than 125 µm 

for each habitat (Figure 3.8 and 3.9, respectively). These two sediment variables were 

chosen since they have previously been deemed to influence the distribution and 

biomass of microphytobenthos (Cahoon et al., 1999). Nevertheless, the plots do not 

seem to reveal any specific relationships between these variables (Figure 3.9 and 

3.10) and all correlations between the mean biomass of microphytobenthos and the 

mean of all sediment granulometry parameters at each habitat were insignificant 

(Pearson correlation coefficient, p>0.05, n=5). 
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Figure 3.8. Relationship between mean biomass of microphytobenthos (n=72) and the 
proportion of sediments < 125 µm in grain size (n=24) at the 5 habitats. 
 

Mean grain size (µm)

100 200 300 400 500 600

M
P

B
 B

io
m

as
s 

(m
g 

m
-2

)

20

30

40

50

60

70

1

2

3

4
5

 
 
Figure 3.9. Relationship between mean biomass of microphytobenthos (n=72) and 
average mean grain size (n=24) at the 5 habitats. 
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3.4. Discussion 

This study provides the first detailed description of the sediment granulometry and 

microphytobenthos within the shallow west lagoon at Discovery Bay and will enable 

comparison with other shallow tropical lagoon habitats.  

 

3.4.1. Sediment granulometry 

The results of this study confirmed that there were significant differences in sediment 

properties between the five visually discernible habitats within the shallow west 

lagoon. These habitats, which were chosen to represent contrasting bottom-types, 

were effectively separated into discrete habitats by the abiotic multivariate sediment 

plots. A considerable degree of variability in sediment properties within and between 

each habitat was confirmed by both uni- and multivariate plots, reflecting the many 

factors which govern the types and characteristics of deposits found, such as wave 

action, current velocity, roughness of the sediment, bioturbation and prevalence of 

conditions suitable for sedimentation (Gray, 1981). 

 

As in most shallow water ecosystems, the sediments within coral reef lagoons are 

dynamic, heterogeneous habitats characterised by physicochemical conditions which 

vary over many spatial and temporal scales (Dudley, 2003). Based on the 

granulometry statistics, it is apparent that the habitats surveyed differ with respect to 

hydrodynamical conditions. While habitat 1 is shielded from wave exposure and 

exhibits moderately sorted fine sediments with low heterogeneity characteristic of a 

homogeneous and relatively stable environment, habitat 2 experiences an increase in 

current velocity reflected in a significant increase in mean particle size. The further 

increase in particle size and percentage of gravel at habitat 3 likely reflects both the 
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turbulent conditions and current surge that this habitat often experiences on a regular 

basis, due to swells from the offshore sea that pass over the reef crest into this area. 

This habitat is also located nearest the spur and groove forereef formations, where 

shallow thickets of the corals Acropora cervicornis and A. palmata once 

predominated. The effects of historical storm damage and consequent breakages and 

disintegration of detached forereef coral branches have undoubtedly left a 

sedimentary footprint here. When coring it was apparent that a shallow layer of coarse 

sand overlay a layer of larger coral fragments at deeper sediment depths. Compared to 

habitats 1, 2 and 3, the thalassinid habitats 4 and 5 which are situated in the more 

quiescent and depositional regions of the shallow western lagoon, exhibit an increase 

in the proportion of silt and clay, and generally have smaller particle sizes. 

 

3.4.2. Distribution and biomass of microphytobenthos 

The measured values of microphytobenthos found in this study ranged from 9- to 152 

mg Chl a m-2. These values are similar to the values recorded by Bunt et al. (1972) in 

the only other study conducted on the microphytobenthos at Discovery Bay (17- to 75 

mg Chl a m-2). This study was, however, conducted at deeper depths presumably 

around the main bay. The higher values recorded in the present study may partly be 

explained by the shallower habitat depths than in the study by Bunt et al. (1972), 

presumably resulting in an increase in light intensity at the benthos. Values reported 

here correspond well with the range of values recorded from many other similar 

tropical lagoon environments (e.g. Hansen et al., 1987; Boucher and Clavier, 1990; 

Dizon et al., 1994; Garrigue, 1998; Clavier et al., 2008; Werner et al., 2008). 

Maximum values were higher, however, than those recorded at Suva Lagoon in Fiji 

which ranged from 15 to 36 mg Chl a m-2 (Underwood, 2002), yet an order of 



 68 

magnitude lower than the maximal values reported from the Great Barrier Reef which 

ranged between 23- and 1153 mg Chl a m-2 and are some of the highest values ever 

recorded from marine sediments (Roelfsema et al., 2002).  

 

In the present study highest values of microphytobenthos were consistently recorded 

in grey sands at habitat 2 over all three dates studied. This is consistent with the study 

by Boucher and Clavier (1990) which assessed microalgal biomass in white, grey and 

muddy sediments in the New-Caledonia lagoon and found grey and muddy sediments 

to support significantly higher biomasses of microphytobenthos than white sediments. 

In contrast, Clavier and Garrigue (1999) found no significant difference between grey 

and white sand bottoms in the south-west lagoon at New Caledonia, albeit grey sand 

bottoms were approximately 6 m deeper than white sand bottoms and presumably less 

illuminated which may partially explain the discrepancy since increases in water 

depth generally result in a decreased light intensity at the benthos (Light and Beardall, 

1998). At Heron Reef in Australia Werner et al. (2008) found that sediment 

chlorophyll a content was lower at a deeper (5 m) station than at two nearby shallow 

(0.5 – 1 m) stations, although in the present study no significant differences were 

detected between the deeper H5 and the shallower H4 habitat. 

 

In an attempt to explain the observed biomass of microphytobenthos among habitats 

one must consider possible factors that might have an influencing effect. As noted by 

Cahoon and Safi (2002) several factors interact to cause observed patterns in 

microphytobenthic biomass, including substrate characteristics, light intensity, 

physical disturbance, grazing and nutrient availability. Although some studies have 

found that coarse sands within CREs generally support higher microphytobenthic 
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biomasses (e.g. Johnstone et al., 1990; Garrigue, 1998; Jones et al., 1999), others 

have found the opposite (Underwood, 2002). With four out of the five habitats 

situated at the same water depth (i.e. habitats 1 to 4) it was assumed that light 

intensity at the benthos among these habitats would be roughly equal. Since habitat 5 

was almost twice the depth of the other habitats it was hypothesised apriori that the 

biomass of microphytobenthos here would be lower than that found at habitat 4 

located in close proximity. Surprisingly no significant difference was detected 

between habitats 4 and 5 suggesting the influence of other interacting factors. For 

example, the presence of subterranean freshwater springs and seeps in the vicinity of 

habitat 5, which supply nitrogen-rich groundwater to the system (D'Elia et al., 1981; 

Greenaway and Gordon-Smith, 2006) may partly explain this discrepancy. While light 

availability is a key factor influencing microalgal production and biomass, it may not 

be the limiting factor in tropical clear-water sediment systems (Dizon and Yap, 2003) 

where nutrient supply is probably more important (Sorokin, 1981). Experiments by 

Dizon and Yap (1999) showed that coral reef sediments exposed to elevated levels of 

nitrate exhibited a rapid increase in chlorophyll a content, consistent with 

observations by Uthicke and Klumpp (1997) and Heil et al. (2004) which suggest that 

benthic microalgal biomass in tropical environments is nutrient limited. Thus the 

supply of nutrients in the vicinity of H5 may have positively enhanced biomass values 

of microphytobenthos, negating a possible decrease in biomass due to the lowered 

light levels at this deeper habitat. Hence the inability to detect a significant difference 

in microphytobenthic biomass between the shallow H4 habitat and the deeper nearby 

H5 habitat. 
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At Discovery Bay, nutrient concentrations away from ground water sources are 

generally low (0.2 to 1 µM nitrate, 0.02 to 0.04 µM phosphorous, and 0.02 to 0.04 

µM ammonium (Greenaway and Gordon-Smith, 2006). In contrast, in shallow-water 

tropical marine sediments, pore water nutrient concentrations (50-100 µM DIN) can 

be over two orders of magnitude higher than in overlying seawater (Stimson and 

Larned, 2000). Microphytobenthos therefore obtain a large proportion of their 

nutrients from sediment sources rather than from the water column (Miyajima et al., 

2001). However in certain areas of the bay integrated water column nitrate values are 

enhanced (~1.4 to 1.9 µM, stations 7 to 10 in Webber et al., 2005).  

 

In order to account for the consistently elevated levels of microphytobenthos at 

habitat 2, some theories are presented. Firstly, the biomass of microphytobenthos at 

H2 is enhanced due to periodic upwelling of nutrient rich water which subsequently 

passes over this habitat. During the daytime water flow was almost exclusively in a 

north westerly direction perpendicular to the H2 transect. This is due to the summer 

north easterly trade winds creating a slow clockwise surface current within the bay 

(pers. obs., Gayle and Woodley, 2004). Water then travels towards the north west area 

of the shallow lagoon before finally exiting over the western reef crest (pers. obs., 

Gayle and Woodley, 2004). My own observations whilst diving suggest that the deep 

main bay acts as a sink for the deposition of detritus. On the forereefs communities 

have shifted from being coral-dominated to being dominated by macroalgae. In times 

of stormy weather a significant amount of macroalgal fragments and whole fronds are 

detached from the reef and transported into the bay (J. Woodley, former Director, 

D.B.M.L, pers. comm., and own observations). Much of this detritus settles out on to 

the benthos in the deeper main bay. Subsequent decomposition would release 
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nutrients into a body of water whose direction of travel would initially be over the 

shallow sediments at H2, due to the daily prevailing current direction. Integrated 

water column nutrient values determined by Webber et al. (2005) suggest that stations 

in the deeper westerly portion of the bay are richer in nitrate than stations in the 

eastern half of the bay or seaward of the shipping channel. These authors suggest that 

nutrient sources possibly arise from a lack of proper sewage treatment systems and 

the wide-spread use of soak-away pits by the local community and workers at a 

nearby bauxite loading port. However Webber et al. (2005) did not mention the 

possible influence of internal nutrient loading arising from in situ decomposition 

within the deeper bay. The findings of Webber et al. (2005) would tend to support the 

theory that the deep bay acts as a source of nutrients. It therefore seems feasible that 

the increase in biomass of microphytobenthos at H2 could be caused by the passage of 

nutrient rich water over this habitat, since H2 is located close to the drop-off into the 

main bay. 

 

The second possible theory, is that the release of nutrients from sediments disturbed 

by the spatangoid heart urchin, Meoma ventricosa (Lamarck), supports enhanced 

production and biomass of microphytobenthos. M. ventricosa is a large surface-

burrowing grazer / deposit feeder and was found in abundance only at habitat 2 (pers. 

obs.). Spatangoid echinoids are key bioturbators in unconsolidated marine sediments, 

and due to their burrowing activities increase the seawater-sediment exchange area, 

the transport of oxygen into sediments, and alter nutrient fluxes thereby improving 

conditions for production by microphytobenthos (Lohrer et al., 2004, 2005; Vopel et 

al., 2007). In experiments by Lohrer et al. (2004), which examined the effects of 

spatangoid urchins on sediment biogeochemistry in in situ chambers and at different 
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densities, there was a significant positive relationship between urchin density and 

primary production. Although no increase in chlorophyll a content in the surface 

sediments was found, these authors remark that grazing and bioturbation would tend 

to remove and subduct microphytobenthos from surficial sediment, thus negating any 

increase in microphytes driven by the increase in nutrient availability/quality. 

Excretion of ammonium by M. ventricosa would also supply microphytobenthos with 

a source of nutrients. Ammonium is an animal excretory by-product, and studies have 

shown that the productivity and biomass of microphytobenthos inhabiting coral reef 

sediments is enhanced by the release of ammonium from holothurians (Uthicke and 

Klumpp, 1997, 1998; Uthicke, 2001). It is possible, therefore, that excretion of 

ammonium by heart urchins would have a similar effect on the microphytobenthic 

community. 

 

Within coral reef sediments excretion rates by meiofauna may be as high as 17.3 mg 

N m-2 h-1 (Gray, 1985). As the proceeding chapter in this thesis has shown, the highest 

abundances of meiofauna were found in sediments at habitat 2. An important 

characteristic of CREs is the close coupling between benthic producers and 

consumers, with nutrients being tightly recycled within the benthos (Uthicke and 

Klumpp, 1998; Uthicke, 2001), due to being situated in oligotrophic waters. While 

meiofaunal grazing can control microalgal biomass under certain conditions (e.g. 

Sundbäck et al., 1996; Carman et al., 2000), the high biomass of microphytobenthos 

at habitat 2 could also be partly sustained by the close coupling between meiofauna 

and their food resources. Consumption of microphytobenthos by meiofauna, in 

particular by copepods and other crustacean herbivores, will lead to the production of 
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faeces and excretory by-products which, if retained within the sediments, could help 

to support production of new microphyte biomass. 

 

Excluding habitat 2, no difference in microphytobenthic biomass was detected among 

the remaining habitats on any of the three dates, even though many sediment 

properties were found to differ between habitats. While several studies have found 

relationships, both positive and negative, between sediment grain size and benthic 

microalgal biomass (see Cahoon, 1999; Cahoon et al., 1999; Underwood and 

Kromkamp, 1999), in this study, which encompassed habitats with sediments ranging 

from fine to coarse sands, no relationships were detected. Unfortunately, since 

replicates were not paired with one another, which was a flaw in the design of this 

study,  correlations cannot be made between the full set of 120 abiotic sediment and 

the biotic microphytobenthic samples (see Chapman and Tolhurst, 2004). Therefore 

correlations of mean values for each habitat were made, yet none of the results were 

significant. Likewise, visual analysis of plots of mean grain size and proportion of 

fines against the complete set of microphytobenthos samples from all 3 dates did not 

reveal any relationships. 

 

3.4.3. Spatial and temporal variation in microphytobenthos 

In recent years the study of spatial and temporal variability in marine benthic 

populations and assemblages has received increasing amounts of attention (Ellis and 

Schneider, 2008, and references therein). It is now widely acknowledged that 

variability in soft-sediment communities is scale-dependent (Thrush, 1991; Azovsky, 

2000), and therefore the change in abundance and/or composition of benthic 

assemblages may vary among times of sampling and/or from one place to another 
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(e.g. Norén and Lindegarth, 2005; Chapman and Underwood, 2008; Smale, 2008). In 

soft-sediments the biomass of microphytobenthos is well known to be patchy at a 

range of spatial and temporal scales (MacIntyre et al., 1996), ranging from 

centimetres to kilometres, and from minutes to years, respectively (Azovsky et al., 

2004; Jesus et al., 2005; Koh et al., 2007; Pinckney and Lee, 2008). The causes of 

patchiness are many-fold. At small spatial scales biotic interactions may promote 

benthic microalgal patchiness. Grazing by copepods, for example, may deplete the 

biomass of microphytobenthos (Sundbäck et al., 1996), while bioturbation can 

transport microalgae to deeper sediment layers. At larger spatial scales abiotic factors 

such as nutrient concentrations may be more important, although the release of 

nutrients from disturbed sediment by bioturbation (e.g. Lohrer et al., 2004) may 

enhance microalgal production increasing variability at small spatial (and temporal) 

scales. 

 

In this study, analysis of each individual date revealed significant variability in the 

biomass of microphytobenthos at the plot and site scales, and differences in mean 

biomass between habitats (see Bennington and Thayne, 1994). Considerable spatial 

variability among replicate samples within 0.25 m2 plots was found, with CVs ranging 

from 0 to 72 %. This confirmed the patchy distribution of microphytobenthos within 

the study habitats, consistent with the findings of Garrigue (1998) for the tropical 

lagoon at New Caledonia, where CVs ranged from 8 to 92%. Nevertheless, average 

variability at the plot scale was generally low (19.8%), similar to the values recorded 

in a temperate sandy bay in Sweden of 12 to 13% by Sundbäck (1984) at the same 

spatial scale.  
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Comparing CV between spatial scales revealed a trend of increasing variability with 

increasing spatial scale, as has previously been noted by other authors (for example 

Sundbäck, 1984; Light and Beardall, 1998; Ni Longphuirt et al., 2007). Yet on each 

date the CV at the plot scale was usually at least half of the total variability measured 

at the habitat scale, if not more, highlighting the predominance of small scale 

variation within the surveyed habitats. When comparing CV at specific scales across 

the different habitats and dates, it is apparent that variability is both spatially and 

temporally variable, thus changes in the biomass of microphytobenthos biomass differ 

among places from one time to another and at different magnitudes depending on 

scale. This interactive variability is a feature of soft-sediment habitats (Norén and 

Lindegarth, 2005), and was prevalent in this study as evidenced by the significant 

interaction between dates and plots. Considering the many factors that influence the 

abundance of benthic microalgae are themselves spatially and temporally variable, 

this result is not surprising.  

 

At the scales of site and habitat, no significant temporal effect on microphytobenthic 

biomass was detected. However the coefficient of variation for each date ranged from 

38 to 54 % indicating a reasonably high degree of temporal variability. It is of course 

possible that significant temporal variation in biomass occurred between the sampling 

dates approximately 3 weeks apart, yet was masked due to the lack of temporal 

replication at shorter time scales (e.g. Morrisey et al., 1992b). Any future studies to 

assess temporal variations in the microphytobenthos in this system should therefore 

bear this in mind, and use a suitable sampling design to detect the scales of temporal 

variability. 
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3.5. Summary 

This is the most comprehensive study on the microphytobenthos ever conducted at 

Discovery Bay. The data presented here show that while the characteristics of 

unconsolidated sediments differed markedly between the five separate habitats, the 

biomass of microphytobenthos was relatively homogeneous at this scale. 

Nevertheless, significant variability was observed within habitats, underling the need 

to use sampling designs that account for small scale variation. At habitat 2 

consistently elevated levels of microphytobenthos were found, and it is hypothesised 

that this is due to upwelling of nutrient rich water from the deeper bay near to H2, as 

well as release of nutrients due to sediment disturbances by burrowing heart urchins. 

Furthermore, excretion of ammonium by these deposit feeders would also tend to 

increase the productivity and/or biomass of benthic microalgae.  
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4. DISTRIBUTION AND ABUNDANCE OF 
MEIOBENTHOS 
 

4.1. Introduction 

On average, marine soft-sediments contain 106 meiofauna per m-2 (Coull, 1988; Coull, 

1999). Like the microphytobenthos (Chapter 3), the occurrence and abundance of 

meiofauna in marine soft-sediments is patchy (see reviews by Hicks and Coull, 1983; 

Heip et al., 1985; Higgins and Thiel, 1988; Giere, 1993). Patchiness in meiofaunal 

populations and communities, i.e. the deviation in space from randomness in the 

direction of aggregation rather than regularity (see Diggle, 1983), exists at a range of 

spatial and temporal scales (Findlay, 1982; Phillips and Fleeger, 1985; Li et al., 1997) 

and is caused by abiotic and biotic variables and interactions between them. Abiotic 

variables, such as salinity (Horn, 1978; Warwick, 1971), water motion (Palmer and 

Malloy, 1986; Gamenick and Giere, 1994), and sediment characteristics (Alongi, 

1986; Ndaro and Ólafsson, 1999), as well as biotic variables including food quality 

and quantity (Decho and Castenholz, 1986; Decho and Fleeger, 1988; Blanchard, 

1990; Pinckney and Sandulli, 1990), predation (Aarnio et al., 1998; Danovaro et al., 

2007), dispersal (Bell and Sherman, 1980; Palmer, 1988; Armonies, 1994), biogenic 

structures (Warwick et al., 1986; De Troch et al., 2001; Gheerardyn et al., 2008) and 

bioturbation (Branch and Pringle, 1987; Dittmann, 1996) are thought to regulate the 

distribution and abundance of benthic meiofauna.  

 

Marine soft-sediment habitats are, however, complex systems. They exhibit several 

scales of temporal, spatial, and interactive variability in fauna, flora and sediment 

physico-chemical properties (Snelgrove and Butman, 1994; Norén and Lindegarth, 

2005; Chapman and Tolhurst, 2007). At the microscopic level, benthic microalgae 
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and meiofaunal communities vary at short time scales and over small distances 

(Sandulli and Pinckney, 1999; Azovsky et al., 2004). At the macroscopic level, 

seagrass beds and thalassinid shrimp ranges are generally more persistent in time and 

space unless subject to disturbance (Aller and Dodge, 1974; Hemminga and Duarte, 

2000). Within a relatively small area (<0.25 km2) in the shallow western lagoon at 

Discovery Bay several different habitats were observed, between which sediment 

granulometry and the degree of bioturbation varied (Chapter 3 this thesis; Aller and 

Dodge, 1974). While the distribution of macrofauna in this area has previously been 

documented (Aller and Dodge, 1974), there have been no studies on the infauna in 

for over 30 years and next to nothing is known about the meiofauna in this system 

(c.f. Gamenick and Giere, 1994).  

 

Although macrofauna have most often been used to assess environmental change in 

marine benthos, it is widely acknowledged that the use of meiofauna has a number of 

distinct advantages (e.g. Moore and Bett, 1989; Kennedy and Jacoby, 1999; 

Somerfield et al., 1995; Schratzberger et al., 2001). Unlike the majority of 

macrofaunal species which have a planktonic life-stage, meiofauna are intrinsically 

tied to the sediment, exhibit direct benthic recruitment, have short generation times, 

are small in size, high in abundance, and exhibit asynchronous development (Higgins 

and Thiel, 1988; Coull and Chandler, 1992). This makes them suitable indicators of 

environmental change and benthic disturbance (Kennedy and Jacoby, 1999).  

 

In recent decades the human population at Discovery Bay in Jamaica has increased 

several-fold (STATIN, cited by Greenaway and Gordon-Smith, 2006) and fish 

populations have been severely affected. During this time the local coral reefs have 
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undergone a phase-shift from coral- to algal-dominated communities, in part due to 

the release from grazing by herbivorous fish, but also due to the mass-mortality of D. 

antillarum as mentioned in Chapter 1. There has also been much debate on the 

relative importance of nutrient enrichment to the bay, and its effects on macroalgal 

growth and contribution to the phase-shift (e.g. Lapointe, 1997, 1999; Hughes et al., 

1999; Szmant, 2002). While there is no active terrigeneous sediment input into the 

bay from fluvial sources (Perry et al., 2006), certain parts of the bay have been subject 

to inputs of iron-rich bauxite sediment from a local mining and shipping terminal for 

over 40 years (Perry et al., 2006; Taylor et al., 2007). Bauxite levels in the sediments 

within the marine reserve in the north west corner of the bay where this study took 

place are, however, below those reported to be toxic for biota (see Perry and Taylor, 

2004).  

 

As a first step to understanding the ecology of soft-sediment systems, knowledge of 

the patterns in the abundance and distribution of meiofauna is a valuable biological 

tool enabling environmental change to be detected and monitored (Gray, 1981; Coull 

and Chandler, 1992). Quantitative descriptions of patterns in organism distributions 

consequently help to identify processes structuring assemblages, while sampling 

designs which account for patchiness over a range of spatial scales, such as nested 

hierarchical sampling designs, enable unconfounded comparisons to be made among 

sampling sites (Morrisey et al., 1992a; Underwood, 1997). Unfortunately, however, it 

is common for investigators comparing meiofaunal populations and communities 

between one place and another to take only a few samples at each sampling site (for 

example Guzmán et al., 1987; Gomez Noguera and Hendrickx, 1997), and 
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appropriate experimental designs are not always employed (Li et al., 1997; Fraschetti 

et al., 2006).  

 

The aim of this research is to examine, compare and contrast the meiofauna 

communities from the five selected habitats within the shallow western lagoon, using 

a sampling design which accounts for patchiness at a range of spatial scales. 

 

4.2. Methods 

4.2.1. Sample collection 

One hundred and twenty sediment cores for the analysis of meiofauna were obtained 

on the 15th of June 1999, according to the nested hierarchical sampling design detailed 

in Chapter 2. Cores were taken to a depth of 5 cm using a 2.6 cm inner diameter 

syringe with the Luer end cut off and a rubber bung cap. In the laboratory, samples 

were transferred into plastic containers and a few drops of 4% formalin-buffered 

seawater were added whilst gently shaking the container. This step was taken in order 

to narcotize the meiofauna as slowly as possible in order to minimise any body shape 

distortion. Over a period of a few hours more drops were added until the containers 

were finally full. The 4% formalin solution was made from seawater which had been 

filtered through Whatman GF-F filter paper to exclude phytoplankton or any other 

microscopic pelagic organisms, and subsequently buffered with sodium tetraborate to 

a pH of 8.2. To help distinguish meiofauna during the sorting process a small amount 

of Rose Bengal was added to the fixative solution. 
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4.2.2. Sample processing 

Sediment samples were washed through 500 and 63 µm mesh sieves. Organisms 

residing in the mixture retained on the 63 µm mesh sieve were then extracted from the 

sediment using the Ludox centrifugation method described by Burgess (2001). This is 

an isopycnic density separation method which relies on the difference in density 

between meiofauna and sediment to effect separation using Ludox, a colloidal silica 

gel, and has been shown to have an average extraction efficiency of 96.8 +/- 3.9 % 

over a range of sediment sizes from sand to silt-clay (Burgess, 2001). After extraction 

meiofaunal organisms were transferred to 70 % ethanol for storage before being 

counted and sorted to major taxa under a Nikon SMZ 1000 stereo microscope.  

 

4.2.3. Statistical analysis 

Three-way mixed model nested ANOVA was used to examine the null hypotheses 

that there was a) no significant difference in mean total meiofaunal density between 

habitats; b) no significant difference in mean density of individual taxa between 

habitats; c) no variability in the density of individual taxa between sites nested within 

habitats; and d), no variability in the density of individual taxa between plots nested 

within sites (see Bennington and Thayne, 1994). Data were either Log (x +1) or (x + 

1)0.5 transformed to satisfy parametric statistical assumptions. Meiofaunal 

communities were also analysed by multivariate methods using fourth root 

transformed data since certain taxa (such as nematodes) were consistently more 

abundant than others (Clarke and Warwick, 2001). This transformation reduces the 

effect of extremely abundant taxa whilst increasing the influence of less abundant taxa 

on the MDS ordination. 
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4.3. Results 

4.3.1. Meiofaunal taxa 

A total of 22 meiobenthic higher taxa were identified comprising 101,167 specimens. 

Of these, 7 taxa (nematodes, copepods, turbellarians, copepod nauplii, polychaetes, 

oligochaetes and ostracods) contributed more than 1% towards the total number of 

individuals and collectively accounted for 93% of all specimens (Figure 4.1; Table 

4.1). In this research these taxa will be collectively referred to as ‘common taxa’. 

Nematodes and copepods accounted for 81% of total meiofauna. Nematodes 

dominated all samples in all habitats with relative densities ranging from 52% at H3 

to 69% at H2 (Figure 4.1).  Copepods were the second most dominant taxon with 

relative densities ranging between 13% at H5 to 23% at H3 (Figure 4.1). Total 

meiofauna abundance ranged from 327.7 to 5518.9 individuals 10 cm-2 (Figures 4.2 – 

4.4). Other taxa included, with total numbers found in the complete set of samples in 

parentheses: nemerteans (622), kinorynchs (387), gastropods (195), acari (155), 

bivalves (121), cumaceans (94), chironomids (77),  priapulids (77), tanaids (62), 

cnidarians (37), amphipods (19), echinoderms (19), tardigrades (9), isopods (5), 

gnathostomulids (4) and sipunculids (3). 

 

Excluding the oligochaetes, mean total abundance and mean abundance of individual 

common taxonomic groups varied significantly between habitats (Figures 4.2 to 4.4; 

Table 4.2 & 4.3). Mean total abundance and mean nematode abundance were both 

highest at H2,  in the grey-coloured medium sands which contained the highest 

biomass of microphytobenthos (see Chapter 3), and lowest at H3 in the coarse sands 

behind the reef-crest subject to wave disturbance. Mean copepod and nauplii 

abundance were also highest at H2 but lowest in the medium-fine sands at H5, the 
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deep thalassinid habitat subject to intense bioturbation. The mean abundance of 

turbellarians was highest in the relatively undisturbed fine sands at H1, whereas 

lowest abundance also occurred in the coarse sands at H3. Mean polychaete 

abundance was lowest at H1 than at any of the other habitats. Mean ostracod 

abundance was highest at H3, and lowest in the medium-fine sands at H5.  
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Figure 4.1. Relative abundance of meiofaunal taxa contributing more than 1% (i.e. 
common taxa) towards total abundance from the five habitats. Taxa contributing less 
than 1% to total abundance have been pooled into ‘Others’. 
 

Table 4.1 Mean density (individuals 10 cm-2) and standard deviation (in parenthesis;  
n=24) of meiofaunal taxa from the five habitats, ranked in order of percentage of total 
meiofauna. 
 
Taxa H1 H2 H3 H4 H5 % 
       
Total 1734 (718) 2333 (1043) 1056 (386) 1506 (523) 1311 (521)  
       
Nematoda 1146 (541) 1610 (883) 552 (237) 897 (351) 886 (366) 64.1 
Copepoda 285 (84) 391 (172) 238 (121) 223 (106) 173 (75) 16.5 
Turbellaria 166 (96) 88 (59) 30 (43) 83 (50) 52 (30) 5.3 
Nauplii 49 (35) 123 (64) 87 (44) 89 (55) 50 (37) 5.0 
Polychaeta 19 (14) 65 (49) 67 (47) 84 (52) 87 (79) 4.1 
Oligochaeta 24 (20) 13 (18) 38 (69) 56 (58) 26 (32) 2.0 
Ostracoda 19 (18) 13 (8) 37 (26) 21 (17) 8 (6) 1.2 
Others 27 (22) 30 (27) 7 (6) 53 (38) 30 (15) 1.9 
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Figure 4.2. Mean density of (a) total meiofauna; (b) nematoda; and (c) copepoda. 
(n=2, +1SE). Habitats with the same number above the bars are not significantly 
different from one another (Tukey HSD, α=0.05, after data transformations as per 
Table 4.2).
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Figure 4.3. Mean density of (a) copepoda nauplii; (b) turbellaria; and (c) polychaeta. 
(n=2, +1SE). Habitats with the same number above the bars are not significantly 
different from one another (Tukey HSD, α=0.05, after data transformations as per 
Table 4.2). 
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Figure 4.4. Mean density of (a); oligochaeta and (b) ostracoda (n=2, +1SE). 
Habitats with the same number above the bars are not significantly different from 
one another (Tukey HSD, α=0.05, data transformations as per Table 4.2). Note 
Tukey post-hoc test not carried out for the oligochaeta since ANOVA result not 
significant at Habitat level.
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Table 4.2. Results of the three-factor nested ANOVAs examining the total 
number of individuals and selected taxa contributing more than 1% to total 
abundance.  
 

 Total Abundance1  Nematodes1 

Source of 
Variation df 

Mean 
Sq. F P  df 

Mean 
Sq. F P 

Habitat H 4 0.335 7.150 0.002 **  4 0.646 10.84 0.000 *** 
Site S(H) 15 0.047 1.150 0.350 ns  15 0.060 1.05 0.426 ns 
Plot (S(H)) 40 0.041 1.650 0.039 *  40 0.057 1.77 0.022 * 
Residual 60 0.025    60    
          

 Copepods2  Copepod Nauplii2 

Source of 
Variation df 

Mean 
Sq. F P  df 

Mean 
Sq. F P 

Habitat H 4 148.885 5.99 0.004 **  4 77.974 4.97 0.009 ** 
Site S(H) 15 24.853 2.06 0.035 *  15 15.688 1.85 0.062 ns 
Plot (S(H)) 40 12.090 1.15 0.304 ns  40 8.492 1.57 0.055 ns 
Residual 60 10.485    60 5.404   
          

 Turbellarians2  Polychaetes1 

Source of 
Variation df 

Mean 
Sq. F P  df 

Mean 
Sq. F P 

Habitat H 4 192.541 15.09 0.000 ***  4 1.556 4.02 0.021 * 
Site S(H) 15 12.756 1.43 0.181 ns  15 0.387 3.85 0.000 *** 
Plot (S(H)) 40 8.929 1.22 0.245 ns  40 0.101 1.13 0.327 ns 
Residual 60 7.327    60 0.089   

          

 Oligochaetes1  Ostracods1 

Source of 
Variation df 

Mean 
Sq. F P  df 

Mean 
Sq. F P 

Habitat H 4 1.067 2.270 0.110 ns  4 1.050 6.050 0.004 ** 
Site S(H) 15 0.470 1.970 0.044 *  15 0.174 1.000 0.470 ns 
Plot (S(H)) 40 0.239 1.270 0.199 ns  40 0.173 1.300 0.174 ns 
Residual 60 0.188    60 0.133   

 
1 Data transformed to Log (x +1) before analysis 
2 Data transformed to (x + 1)0.5 before analysis 
ns = not significant; * p<0.05; ** p<0.01; *** p<0.001
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Table 4.3. Summary of mixed model 3-factor nested analysis of variance results 
for difference in mean density at the Habitat scale or significant variability at Site 
and Plots scales (see Bennington and Thayne, 1994). Dashed line = no significant 
difference; *p<0.05; **p<0.01; ***p<0.001. 

 

Taxon Spatial Scale 
 Habitat Site Plot 

Total Abundance ** - * 
Nematodes *** - * 
Copepods ** * - 
Copepod Nauplii ** - - 
Turbellarians *** - - 
Polychaetes * *** - 
Oligochaetes - * - 
Ostracods ** - - 
 

 

4.3.2. Spatial patterns 

The results of the mixed model nested analysis of variance show that significant 

variability in the density of copepods, polychaetes and oligochaetes was detected 

at the site scale, i.e. variability within some sites nested within habitats was 

significantly different from others. Significant variability in the absolute density 

of meiofauna as well as the density of nematodes was also observed at the plot 

scale (Table 4.2 & 4.3). No significant variability in the density of copepods, 

copepod nauplii, turbellarians, polychaetes, oligochaetes or ostracods was 

detected at the plot spatial scale.  

 

The contribution of site, plot and residual spatial scales towards the total 

variation within the 5 habitats was calculated for the total abundance of 

meiofauna as well as the 7 most common taxa (Table 4.4). The percentage of 

variation at each spatial scale was calculated as the component of variation at 

that scale divided by the total and multiplied by 100. Variance components were 
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only calculated for random factors and not for the habitat scale since it was a 

fixed factor (Sokal and Rohlf, 1995). The five habitats therefore represent the full 

population of sampling units at this spatial scale, rather than a random selection 

from all possible habitats within the shallow lagoon (see Underwood, 1997, for 

details). For total abundance and all common taxa, the proportion of variation 

was highest at the residual (i.e. within-plot) scale and varied between 60- and 

82%. This indicates that there was large variation among replicates within plots, 

suggesting that patchiness exists at smaller spatial scales. As the sampling scale 

increased, the proportion of variation tended to decrease, indicating that the total 

density and density of individual taxa was more homogeneous at the plot and site 

scales (Table 4.4). 

 
 
 
Table 4.4. Estimates of variance components of total numbers of individuals and 
selected taxa contributing more than 1% to total abundance. Data are derived 
from the mixed model nested analysis of variance using untransformed data (see 
Underwood, 1997). Total Abund. = total abundance; Nema = nematodes; Cope = 
copepods; Nauplii = copepod nauplii; Polych. = polychaetes; Turb. = 
turbellarians; Oligo. = oligochaetes; Ostra. = Ostracods; -: negative estimates. 
 
Source 
of 
Variation 

Total  
Abund. Nema. Cope. Nauplii Polych. Turb. Oligo. Ostra. 

Site 16.1 18.1 10.2 8.4 33.6 - 2.1 - 
Plot 24.6 21.5 7.5 15.5 23.5 17.6 18.0 25.2 
Residual 59.3 60.5 82.2 76.1 42.9 76.1 42.9 74.8 
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4.3.3. Multivariate taxonomic assemblage structure 

The MDS ordination plot constructed from fourth-root transformed abundance 

data for all taxa reveals a slight clumping of samples by habitat, although it is 

difficult to discern any trends when all replicates are plotted (Figure 4.5). For this 

reason a second MDS plot is presented in which abundances from each site have 

been averaged. This enables community trend between habitats to be more easily 

distinguished (Figure 4.6). While it is important to obtain information on 

replicate variability in order to establish unequivocally that there are community 

differences between survey stations, by averaging samples the signal-to-noise 

ratio is increased and variability at each station reduced (Somerfield et al., 1995). 

With the removal of within-site variability, the MDS plot shows a clearer pattern 

of variation; taxonomic community structure at H3 was evidently different from 

all other habitats, habitats 4 and 5 overlapped in community structure, whereas 

habitats 1 and 2 had only a small amount in common.  

 
 
Figure 4.5. Multidimensional scaling (MDS) ordination of meiofaunal samples 
from the five lagoon habitats based on Bray-Curtis similarities calculated from 
fourth-root transformed data. 



 91 

 
 
Figure 4.6. Multidimensional scaling (MDS) ordination of meiofaunal samples 
from the five lagoon habitats based on Bray-Curtis similarities calculated from 
fourth-root transformed data. Data have been averaged by site with 6 replicates 
per site for visual clarity. 
 
 
Two-way nested ANOSIM tests of taxonomic assemblage structure (without 

averaging) on fourth root transformed data for each individual habitat revealed 

that there were no significant small scale differences between plots nested within 

sites. Therefore a two-way nested ANOSIM test using site groups as samples 

with 6 replicates per site was formulated for the full 5 habitat similarity matrix. 

Significant differences in meiofaunal taxonomic structure among sites within 

habitats and among habitats was detected (Table 4.5). Pair-wise tests revealed 

that meiofaunal taxonomic structure differed between every habitat combination, 

except between H4 and H5 (Table 4.5), statistically confirming the patterns 

observed in the MDS ordinations.          
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Table 4.5. R-statistic values and significance of two-way nested ANOSIM tests 
for differences in meiofaunal taxonomic structure between habitats and sites 
(using site groups as samples after checking for no significant area effect at the 
plot spatial scale). All results are derived from Bray-Curtis similarity matrices 
using fourth-root transformed data. 
 
 

Global Test R P 

Habitats 0.758 0.001 
Sites within Habitats 0.151 0.001 
    

Comparison   

  
Habitats R P 
1 vs. 2 0.74 0.029 
1 vs. 3 1 0.029 
1 vs. 4 0.906 0.029 
1 vs. 5 0.979 0.029 
2 vs. 3 0.927 0.029 
2 vs. 4 0.719 0.029 
2 vs. 5 0.542 0.029 
3 vs. 4 0.875 0.029 
3 vs. 5 0.875 0.029 
4 vs. 5 0.198 0.086 

 
 
 
In order to determine the contribution of individual taxa towards the Bray-Curtis 

similarities within habitats, as well as dissimilarities between habitats, the 

Similarity Percentages (SIMPER) routine using fourth-root transformed data was 

utilised. Similarity between replicates within individual habitats ranged from 

78.3 to 81.5 %. Nematodes and copepods were the most typical taxa within all 

habitats contributing between 36.6 to 42.1 % towards within habitat similarity. 

Between habitat dissimilarity ranged from 22.8% between H4 and H5, to 26.6 % 

between H1 and H3. The SIMPER analysis showed that the significant 

differences in taxonomic community structure between habitats, which was 

demonstrated by the ANOSIM tests, were due to changes in the relative 

abundance of many taxa, rather than differences in just a few. For each habitat 

comparison, no particular taxa dominated the dissimilarity. Cumulative 
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contributions from 4 taxa were needed before a 30% contribution towards 

average dissimilarity was reached, with no individual taxon contributing more 

than 13%.  

 
 
4.3.4. Relationship between meiofauna, microphytobenthos and sediment 

properties 

As mentioned in Chapter 3, samples for meiofauna, microphytobenthos and 

sediment properties were not paired with one another. This made it impossible to 

correlate individual taxonomic abundance to microphytobenthos or specific 

abiotic variables via univariate methods using the full data matrix of 120 samples 

per variable. Similarly, multivariate assemblage structure could not be linked to 

the environmental data via the BIOENV routine in PRIMER, since this routine 

explicitly requires that “The two matrices must unambiguously refer to a 

common set of samples otherwise no matching is possible” (see page 121, 

PRIMER User Manual / Tutorial in Clarke and Gorley, 2006)   

 

Nevertheless, mean microphyte biomass has been plotted against mean 

meiofauna density at each habitat to envisage the relationship (Figure 4.7). This 

plot  suggests that there could have been a possible positive relationship between 

these variables using all the data, although there is considerable variation around 

the relationship. Likewise, it appears there may have been a possible negative 

relationship between grain size and abundance, although again there is 

considerable variation around the relationship (Figure 4.8). Correlations between 

means of total abundance and individual common taxa groups with mean 

microphytobenthic biomass and the sediment granulometry variables for each 
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habitat were, however, not significant (Pearsons correlation coefficient, p>0.05, 

n=5). 
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Figure 4.7. Relationship between mean density of meiofauna and mean biomass 
of microphytobenthos (date 2) at habitats 1 to 5 (n=24; +/- SE).  

Mean grain size (µm)

100 200 300 400 500 600

M
ei

of
au

na
 in

di
vi

du
al

s 
pe

r 
10

 c
m

2

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

 
 
Figure 4.8. Relationship between mean grain size and mean density of meiofauna 
at habitats 1 to 5 (n=24; +/- SE).  
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In light of the data being un-paired, in order to show the extent of variation in the 

sediments and the structure of meiofaunal assemblages with increasing spatial 

scales, the average Euclidean distances (sediment) and Bray-Curtis 

dissimilarities (meiofauna) were calculated for all pairwise comparisons among 

replicates within plots, all plots within sites, and among all sites within each 

habitat (Figure 4.9). Since values are not independent (i.e. variation within plot 

includes variation among replicates, and variation within sites includes variation 

among plots) they were not formally analysed and thus do not have associated 

error bars (see Chapman and Tolhurst, 2007). Nevertheless, all habitats exhibited 

an increase in variability with increasing spatial scale for the sediments. Looking 

at the magnitude of change in Euclidean Distance between individual scales for 

the sediments, at H1 to H4 the greatest changes occurred from site to site within 

habitats. In contrast at H5 most of the change occurred from plot to plot within a 

site, with the site scale adding little additional variation (i.e. Euclidean Distance) 

to the overall pattern.  

 

Comparing the patterns of changes in the magnitude of variation between scales 

in the sediments and in the benthos, a similar pattern is observed only at H2. At 

H2 there is a degree of matching between the scales at which the benthos and 

environment varied. For H1 and H3, variation in meiofaunal community 

structure among plots within sites exceeds that of variation among sites and does 

not match the pattern of change in the sediments. Similarly, at H4 variation in 

meiofaunal structure between replicates within plots is greater than among plots 

within sites, and there is also little matching in the pattern of variation at the 

different scales between sediment and benthos. At H5 the patterns are variable; 
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there was more change in the meiofauna among sites than there was for the 

sediment granulometry. 
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Figure 4.9. Mean Euclidian distances from normalised sediment granulometry 
parameter data (a) and Bray-Curtis dissimilarities from untransformed meiofauna 
data (b) for habitats 1-5 for all pairwise comparisons among replicates within 
plots (R, white bar), among plots within sites (P, grey bar), and among sites (S, 
black bar).  
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4.4. Discussion 
 
This study is the first to extensively document the meiofauna from the west 

lagoon at Discovery Bay, and provides a general description of the spatial 

variability within five contrasting shallow habitats. These habitats were chosen 

on the basis of contrasting visual characteristics, in order to maximise the 

probability of detecting significant differences in biotic structure between 

habitats. 

 

Meiofaunal abundance in the five habitats varied between 284 and 5344 

individuals 10 cm-2. These values correspond well with the ranges recorded from 

other tropical calcareous soft-bottom habitats, such as in the Gulf of Aqaba in the 

Red Sea (181 – 5007 ind. 10cm-2 Grelet, 1985), Cebu in the Philippines (744 – 

8769 ind. 10cm-2 Faubel, 1984), the central Great Barrier Reef  (220 – 1010 ind. 

10cm-2 Hansen et al., 1987), Rocas Atoll in north-east Brazil (278 – 4165 ind. 

10cm-2 Netto et al., 2003), Tuamotu in Polynesia (390 – 1293 ind. 10cm-2 

Renaud-Morant et al., 1971) and Zanzibar on the east African coast (219 – 3422 

ind. 10cm-2 Ndaro and Ólafsson, 1999). Upper values found in this research, 

however, are roughly an order of magnitude higher than those from Massawa in 

the Red Sea (126 – 439 ind. 10cm-2 Arlt, 1995), southern Costa Rica (99 – 575 

ind. 10cm-2 Guzmán et al., 1987), and Moorea Island in French Polynesia (24 – 

961 ind. 10cm-2 Thomassin et al., 1982). 

  

The dominant taxa in all samples from the five habitats at Discovery Bay were 

nematodes, followed by copepods, as has often been observed in soft-sediments 

of coral reef ecosystems (e.g. McIntyre, 1968; Coull, 1970; Renaud-Morant et 
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al., 1971; Rao and Misra, 1983; Villiers, 1988: Netto et al., 1999). However this 

is not always the case. At Cebu in the Philippines (Faubel, 1984) as well as at 

Moorea Island in French Polynesia (Thomassin et al., 1982) polychaetes 

dominated, whereas off the coast of Costa Rica foraminiferans were the main 

taxa (Guzmán et al., 1987). 

 

Although the distribution of meiofauna is controlled by many interacting abiotic 

and biotic factors, several studies have shown that spatial distributions are often 

related to sediment granulometry (see Fleeger and Decho, 1987; Giere, 1993; 

Coull, 1999). However numerous factors covary with sediment granulometry, 

which has been termed a ‘community-controlling variable’, due to the 

concomitant effects that sediment grain size has on many other biologically-

meaningful variables (Gray, 1974). For example, while copepods are often 

reported to dominate exposed zones consisting of coarse sediments (Gourbault et 

al., 1998), coarse sediments generally exhibit larger pore spaces, have higher 

advective pore water flow rates, higher oxygen concentrations and contain lower 

concentrations of organic matter. Conversely, nematodes often dominate 

sheltered zones where fine sediments prevail (Coull, 1970; Hicks and Coull, 

1983; Heip et al., 1985). However in finer sediments the concentration of organic 

matter is generally increased, pore space and advective pore water flow reduced 

and oxygen concentrations lowered (Gray, 1974). Indeed in their review on 

animal-sediment relations Snelgrove and Butman (1994) argue that the real 

reasons for observed sediment-species associations are most likely due to 

interactions between physical environmental properties which create a particular 
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sediment environment, rather than the sediment characteristics per se (i.e. grain 

size, organic content, porosity etc.).  

 

In the present study there were clear differences in meiofaunal abundances 

between habitats, and the pattern of difference was taxon-specific. While the 

abundance of nematodes and turbellarians differed between habitats 1 and 3, the 

abundance of copepods, copepod nauplii and ostracods did not. Interestingly, 

both nematodes and copepods had highest densities in medium sands at habitat 2, 

which contained the highest biomass of microphytobenthos. In contrast, total 

meiofauna and nematode abundance was lowest in coarse sands subjected to 

wave disturbance at habitat 3, whereas at habitat 5, consisting of medium fine 

sands with an increase in silt content, copepod abundance declined. These results 

are probably partly due to intolerances of small nematodes (see Chapter 5) and 

other meiofauna to high pore water flow and sediment disturbance, and copepods 

to reduced oxygen supply (Giere, 1993) and are in general agreement with many 

other studies. For example, in an intertidal lagoon in Zanzibar the abundance of 

nematodes was significantly positively correlated with chlorophyll a and 

sediment granulometry (Ndaro and Ólafsson, 1999). In a transect across Davies 

Reef on the Great Barrier Reef, lowest nematode densities occurred in a habitat 

associated with intense wave action situated just behind the reef crest (Alongi, 

1986). Kotta and Boucher (2001), comparing meiobenthic taxa from Miyako, 

New Caledonia and Moorea in the Pacific Ocean found that mean grain size and 

silt content of the sediment were important in explaining the structure of 

meiobenthic assemblages; nematode abundances were negatively correlated with 

mean grain size whereas the opposite held true for copepods. Thomassin et al. 
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(1982) and Rao and Misra (1983) also observed similar patterns whereby 

nematodes were most abundant in fine sands in sheltered zones and copepods 

dominated more exposed, coarser, cleaner sands. At a site in Bermuda, Coull 

(1970) showed that seasonal changes from fine to coarse sediments were 

accompanied by a change in dominance from nematodes to copepods. 

 

The distribution and diversity of macrobenthos in the shallow lagoon at 

Discovery Bay has been related to gradients in sediment stability (Aller and 

Dodge, 1974). At H2 the high biomass of microphytobenthos would have tended 

to increase the cohesive nature of the sediments due to production of 

extracellular polymeric substances (EPS) thereby providing a more stable 

environment for interstitial organisms. Furthermore meiofauna, and nematodes in 

particular, produce EPS and pelletise sediment (Riemann and Schrage, 1978) 

promoting stability, although meiofaunal bioturbation and grazing on 

microphytobenthos can also act as a destabiliser (Admirral, 1984; Reichelt, 

1991). Nevertheless, the important influence of microphytobenthos as a food 

resource for meiofaunal organisms (Pace and Carman, 1996; Moens and Vincx, 

1997; Middleburg et al., 2000; Nascimento et al., 2008), either directly or 

indirectly, most likely played a large structuring role. Copepod abundance has 

been found to be highly correlated with microalgal abundance (Decho and 

Fleeger, 1988; Blanchard, 1990), and EPS produced by benthic microalgae can 

trap detritus and support high levels of bacteria, both of which are consumed by 

meiofauna (Hobbie and Lee, 1980; Meyer-Reil and Faubel, 1980; Montagna, 

1984). In this study phaeopigment content was also measured at the same time as 

chlorophyll a using the method of Lorenzen (1967), and values were found to be 
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significantly higher at H2 than at other habitats (Kruskal-Wallis test, H=73.74, 

p<0.001, n=72). However Lorenzens’s method, although accurate for the 

determination of chlorophyll a, has been shown to be inaccurate for the 

determination of phaeopigment (Louda and Monghkonsri, 2009) and hence 

values are not reported in Chapter 3. Nevertheless, the colouration of the 

sediments at habitat 2 were noticeably darker than those occurring in the other 

habitats, suggesting that they had higher concentrations of organic material / 

detritus and / or other pigments besides chlorophyll a.  

 

In studying the nutrition of the echinoid M. ventricosa at Discovery Bay, 

Hammond (1983) concluded that half of the carbon assimilated was of detrital 

origin, whereas meiofauna were ingested only in small numbers and passed 

through the gut unassimilated and undigested. Out of hundreds of hours spent 

free-diving within the lagoon,  M. ventricosa was only observed in the vicinity of 

habitat 2. It therefore appears that H2 was a detritally-enriched habitat, with 

enhanced biomass of microphytobenthos and breakdown products. This in turn 

seemed to positively influence the abundance of nematodes and copepods, which 

may have been a response to the diversity in the quality and quantity of suitable 

food resources, such as diatoms, detritus and/or bacteria, as well as an increase in 

sediment stability. Future studies on the meiofauna in relation to these potential 

factors would help to clarify the nature of the interaction between the 

meiobenthos, sediment stability, and food resources at habitat 2, and should be 

conducted. 
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In the shallow lagoon the density of total meiofauna, nematodes, copepods, 

nauplii and oligochaetes did not differ between habitats 1, 4, and 5, even though 

sediments at H1 were relatively undisturbed while those at H4 and H5 were 

densely occupied by thalassinid shrimps and subject to a high degree of 

bioturbation. In tropical lagoons burrowing thalassinid ghost shrimps actively 

bioturbate the sediment during burrow construction and feeding, causing changes 

in sediment properties and influencing the distribution and abundance of 

sediment infauna (Branch and Pringle, 1987; Murphy and Kremer, 1992). 

However the effects of bioturbation by thalassinid shrimps on meiofauna can be 

both positive or negative. At Davies Reef on the Great Barrier Reef, bioturbation 

and feeding activities of thalassinid shrimps negatively influenced meiofaunal 

communities (Alongi, 1986; Hansen et al., 1987). In contrast, on a tropical tidal 

flat on the north east coast of Australia meiofauna densities were significantly 

higher in sediments with Trypaea australiensis than in sediments where shrimps 

had been experimentally excluded (Dittmann, 1996). This was explained by the 

positive effect of an extension in sediment oxygenation due to bioturbation, the 

trophic influence of shrimp fecal pellets on bacterial numbers, and the increase in 

chlorophyll a in deeper sediment layers due to sediment mixing. Similar results 

were also obtained in a separate Callianassa spp. exclusion study in South Africa 

(Branch and Pringle, 1987).  

 

In the study by Hansen et al. (1987), although nematodes, copepods, polychaetes 

and ostracods exhibited lowered densities in shrimp burrow ranges at Davies 

Reef compared to other lagoon sites, the density of turbellaria did not seem to be 

affected. Similarly, in Dittmann’s (1996) exclusion study the abundance of 
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nematodes and copepods declined significantly in caged areas without ghost 

shrimp, whereas differences in turbellarian densities were much less pronounced. 

In the present study turbellaria were heterogeneous across habitats with 

significantly higher densities in the undisturbed fine sands in H1 with limited 

bioturbation. In contrast, the density of meiofaunal polychaetes was lowest at H1, 

which could be due to predatory interactions between these two taxa. In an 

experimental manipulation study where the density of turbellarians was 

increased, Watzin (1983) found that the density of total macrofauna, spionid 

polychaetes and various other deposit feeders decreased and attributed the effect 

to predation pressure. In a study by Danovaro et al. (1993), the collapse of 

macrobenthic polychaete recruits coincided with an increase in abundance of 

predatory nematodes and turbellarians, suggesting that meiofauna may partly 

structure macrofaunal communities. It is therefore possible that the increased 

densities of turbellarians at H1 may have prevented the recruitment of temporary 

polychaetes to the benthos, or preyed upon them after recruitment. 

 

Multivariate analyses revealed that taxonomic community structure was 

significantly different between all habitats except H4 and H5, situated within the 

thalassinid shrimp burrow-ranges. Similarly, univariate analyses were also 

unable to detect significant differences in the abundance of common taxa 

between H4 and H5. Nonetheless, sediment particle size distributions and 

sediment granulometry characteristics were significantly different between these 

habitats (see Chapter 3). This suggests that the biota were responding to other 

aspects of the environment which were perhaps similar between H4 and H5, 

rather than simply the physical characteristics of the sediment per se. Of course it 
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is feasibly possible that these habitats shared no common species; however this 

could only be inferred by identification of individuals to the species level of 

taxonomic resolution, rather than to higher taxa. 

 

A main aim of this study was to examine meiofaunal communities between 

different habitats, using a sampling design that quantified organism patchiness 

and enabled variation at different spatial scales to be assessed. Calculation of 

components of variation for the random factors in the analysis of variance thus 

enabled the proportion of variability occurring between sites, plots, and replicates 

to be detected. For total meiofauna and all common taxa, most of the variability 

occurred at the smallest spatial scale, i.e. between replicates within plots. As the 

sampling scale increased, the proportion of variability subsequently decreased. 

This is a common feature of marine soft-sediments (Morrisey et al., 1992a; 

Azovsky et al., 2004; Chapman and Underwood, 2008), particularly for small 

organisms such as meiofauna which have rapid rates of reproduction and are 

intrinsically tied to the sediment. Patchy distributions of food resources (Decho 

and Fleeger, 1988; Blanchard, 1990; Pinckney and Sandulli, 1990), microscale 

gradients in sediment chemistry (Meyers et al., 1987) and other interactions with 

the sediment microhabitat cause small scale patchiness. In contrast, physical 

factors which vary over large scales (e.g. current speed, salinity, anthropogenic 

disturbance) may be more important at generating large scale heterogeneity (Li et 

al., 1997; Armenteros et al., 2008).  

 

Unfortunately it was not possible to directly relate the benthos to the sediment 

properties due to samples not being paired with one another. This is a major 
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critique of the way in which samples were collected. If attempts are to be made 

to match biological and environmental data, studies should do their best to make 

sure that data are collected from the same samples where possible, or at least 

immediately adjacent to one another if destructive sampling is planned (for 

example see Chapman and Tolhurst, 2007). Nonetheless, if the biota is 

responding to spatial variations in sediment granulometry then it should be 

expected that patterns in the variation of meiobenthos over the range of scales 

surveyed would be similar to those of the sediments. Yet patterns in mean 

Euclidean distance and Bray-Curtis dissimilarities for both sediments and 

meiobenthos appeared to match at habitat 2 only. For all other habitats spatial 

variation in the meiofaunal community was weakly matched to the spatial 

variation in the suite of sediment granulometry parameters, suggesting that the 

biota were not responding to the variation in the properties of the sediments 

alone. 

 

4.5. Summary 

This study has shown that the distribution of meiobenthos is heterogeneous 

within the shallow west lagoon at Discovery Bay. Although fauna were only 

examined at the higher taxon level, differences in the distribution of several taxa 

showed preferences for specific habitats. The high abundance of nematodes and 

copepods at habitat 2 attests to the role of microphytobenthos in structuring soft-

sediment communities. Variance components attributed the bulk of spatial 

variation to the residual spatial scale, confirming the patchy nature of 

meiobenthos. Unfortunately since abiotic and biotic samples were not paired, it 

was difficult to establish correlative relationships, and attempts to match 
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community structure to the structure of the benthos suggested weak links. 

Nevertheless, this study has laid the ground work for further mensurative and 

manipulative studies on the meiofauna at Discovery Bay. These studies are 

urgently needed in order to increase our knowledge on the ecology of meiofauna 

from tropical marine systems, as well as to monitor and conserve near shore 

marine habitats.  
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5. NEMATODE FUNCTIONAL GROUPS, 
MORPHOMETRY, AND BIOMASS SIZE-SPECTRA  
 

5.1. Introduction 

Nematodes are the most abundant metazoans on the planet comprising four out 

of every five multicellular animals (Bongers and Ferris, 1999). In the marine 

environment, which covers 70% of the earth’s surface, free-living nematodes 

exhibit high diversity, are ubiquitous in distribution, and are consistently found 

to be the dominant meiofaunal taxon (see review by Heip et al., 1985). Although 

many studies have investigated the macrofauna inhabiting the soft-sediments of 

coral reef ecosystems, there have been far fewer studies on the smaller 

meiofauna component. Further still, only a few studies have specifically 

examined the meiofaunal nematodes (Grelet, 1985; Alongi, 1986; Boucher, 

1997; Kotta and Boucher, 2001; Raes et al., 2007; De Troch et al., 2008). 

 

Within coral reef sediments nematodes can be extremely abundant particularly in 

shallow lagoon habitats (Alongi, 1986; Gourbault and Renaud-Mornant, 1990; 

Ndaro and Ólafsson, 1999). They stimulate decomposition (Findlay and Tenore, 

1982; Rieper-Kirchner, 1990; Alkemade et al., 1992ab; but see De Mesel et al., 

2003, 2006), and increase sediment solute transport and pore water exchange 

(Reichelt, 1991; Aller and Aller, 1992;). They also channel energy from the 

microbial/detrital compartment up the food web to higher trophic levels 

including many species of macrofaunal invertebrates and fish (Colombini et al., 

1996; Danovaro et al., 2007). Consequently, due to their enormous numbers and 

the varied roles that they play, nematodes are extremely important in marine 

ecosystem functioning. 
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While traditional methods in marine benthic ecological research generally rely on 

the collection of species abundance data to assess community structure and 

diversity, for a phylum as diverse and abundant as the Nematoda, the 

identification of animals to species can require considerable taxonomic expertise 

and time. Moreover, for the Caribbean region, there is a lack of identification 

keys to the species of major meiofaunal taxa (such as the nematodes). Therefore 

many species in the region are likely to be undescribed making their 

identification problematical (Richard Warwick, personal communication). In 

contrast, the classification of nematode communities by functional groups, 

morphometry, and size-based approaches simplifies the ecological analysis 

whilst offering additional insight into the structure of benthic communities 

beyond that of traditional species-based approaches (e.g. Tita et al., 1999; 

Vanaverbeke et al., 2003; Schratzberger et al., 2007; Schratzberger et al., 2008). 

 

The functional group approach works by dividing communities into groups of 

taxa which share similar functional attributes. Organisms which are placed in the 

same group are believed or known to process the same resources and possess 

similarity in ecosystem function (Blondel, 2003). For marine nematodes, Wieser 

(1953) proposed a scheme containing four functional groups linking feeding 

ecology to the size of the buccal cavity. While many researchers have used 

Wieser’s scheme (e.g. Netto et al., 1999; Vanaverbeke et al., 2007a; Liu et al., 

2008; Moreno et al., 2008; Schratzberger et al., 2008; Yodnarasri et al., 2008), 

others have revised it depending on their own qualitative observations or to 

include additional trophic groups (Jensen, 1987; Romeyn and Bouwman, 1983; 

Moens and Vincx, 1997). However, since it is an impossible task to directly 
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study the feeding habits of the vast numbers of nematode species, Wieser’s 

scheme was used in this study since Schratzberger et al. (2008) state that it 

remains the most feasible trophic classification of free-living marine nematodes 

from a variety of marine habitats. 

 

The morphometric approach compares communities by analysis of their shape, 

which can be quantitatively assessed by non-destructive measurements of length 

and width (Vanaverbeke et al., 2004). Typically most nematodes are long and 

slender and have a high length to maximal width (L/W) ratio. However some 

species, particularly those in the order Desmoscolecida (Soetaert et al., 2002), 

are short and plump with a low L/W ratio. The prevalence of a plump 

morphotype has been recognised in a number of habitats, ranging from subtidal 

sediments in the English Channel (Ratsimbazafy et al., 1994) and North Sea 

(Vanaverbeke et al., 2004) to the hadal depths of the South Sandwich Trench in 

the Antarctic (Vanhove et al., 2004).  

 

The ecological advantages and disadvantages that affords either morphology 

have elicited several hypotheses. For example Tita et al. (1999) proposed a food-

related hypothesis suggesting that nematode length [and therefore gut length (see 

Romeyn and Bouwman, 1983)] reflects adaptations to the quality of exploited 

food. Nematodes with long guts are suggested to have higher digestive efficiency 

making them better adapted to exploit lower quality foods, while in contrast 

those with short guts are adapted to feed on higher quality food. Soetaert et al. 

(2002) subsequently hypothesised that the different morphotypes represent 

ecological adaptations towards increased mobility (slender) or reduction in 
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predation (plump). Furthermore, it is suggested that the different morphotypes 

represent adaptations towards constraints posed by available oxygen levels 

(Soetaert et al., 2002). However the costs and benefits of either morphotype are 

not well understood, and comparisons of morphotype and L/W ratios between 

different habitats within a coral reef environment have not been assessed before. 

 

Lastly, the sized-based approach plots organism biomass distribution over a 

sequence of logarithmically equal body size intervals as a biomass size-spectrum. 

Originally coined the Sheldon spectrum, after work on the size distribution of 

oceanic particles by Sheldon et al. (1972), biomass size spectra are useful 

ecological tools enabling communities to be compared by size (Schwinghamer, 

1981). Given that body size influences many aspects of an organisms life, 

including metabolism, energy requirements, life history, production rate, 

physiological and behavioural functions as well as abiotic and biotic interactions, 

it is an important index of ecosystem organisation (Peters, 1983; Calder, 1984; 

Kerr and Dickie, 2001).  

 

Initially Schwinghamer (1981) was the first to analyse the benthic biomass size 

spectra. He found that benthic organisms from a variety of intertidal habitats 

displayed trimodal biomass size spectra, the three modal biomass peaks (0.5 – 1 

µm, 64 – 125 µm, and > 2 mm equivalent spherical diameter) corresponding to 

the sizes of micro-, meio-, and macrobenthos, respectively. Schwinghamer 

reasoned that pore space and grain size likely determine the upper and lower size 

limits for interstitial fauna, causing the characteristic biomass minima troughs 

that he found in the Sheldon spectrum. Further studies by Schwinghamer (1983, 



 111 

1985) found similar trimodal spectra from habitats ranging from the upper 

intertidal to the abyssal plain, causing him to conclude that the trimodal 

distribution of biomass was a conservative and repeatable feature of marine soft-

sediment benthos. Warwick (1984) however, looking at species size distributions 

of metazoans from 8 temperate sites of contrasting granulometry, salinity and 

depth, found that the shape of the spectrum was remarkably similar to the 

metazoan part of Schwinghamer’s biomass size spectrum. He noticed that a 

species trough occurred at 45 µg, a size at which many life-history traits switch 

more or less abruptly (see table 4 Warwick, 1984), including type of 

development, mode of dispersal, generation time, reproduction, feeding mode, 

resource partitioning, growth cycle and mobility. This led Warwick to invoke 

evolutionary explanations (which do not contradict Schwinghamer’s (1981) 

theory), that meiofaunal and macrofaunal life-history and feeding traits are 

optimised at particular body sizes and that departures from these optima limit the 

co-existence of similar sized species (Warwick, 1984). 

 

Following these initial investigations a number of others have analysed the 

biomass size-spectra of metazoan benthic communities (e.g. Gerlach et al., 1985; 

Drgas et al., 1998; Duplisea and Drgas, 1999) and it has been shown that, 

unsurprisingly, nematodes generally dominate the meiofaunal fraction. Drgas et 

al. (1998), for example, showed that nematodes contributed from 46.2 to 96.4% 

of total biomass in the weight class 501 ng C to 1 µg C, yet in all other weight 

classes up to 500 ng the contribution was almost 100%. A similar pattern was 

also observed (Duplisea and Hargrave, 1996). Therefore, the construction of 

nematode biomass spectra (NBS) is suggested to reveal a similar pattern as if all 
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meiobenthic animals were measured (Vanhove et al., 2004). Moreover, since 

meiofauna are suitable indicators of benthic disturbance (Kennedy and Jacoby, 

1999), and nematodes are the dominant meiofaunal taxon, the use of NBS is 

potentially a very valuable and relatively easy tool to use in the assessment of 

environmental perturbation and natural changes. In particular, nematode biomass 

spectra have recently been used to understand the effects on the benthos of sand 

extraction at the Belgian continental shelf (Vanaverbeke et al., 2007a; 

Vanaverbeke and Vincx, 2008), planktonic production cycles (Vanaverbeke et 

al., 2003; Vanaverbeke et al., 2004; Schratzberger et al., 2008) and the impact of 

beam trawling (Schratzberger et al., 2002) in the North Sea, as well as sea floor 

dredging on benthic colonisation of different types of sediment in an estuary in 

SE England (Schratzberger et al., 2004). However, studies on nematode biomass 

and biomass spectra from tropical marine environments are lacking (although see 

Grelet, 1985). This study therefore intends to advance the general understanding 

of nematode communities in a coral reef ecosystem.  

 

In the absence of taxonomic feasibility, the aim of this research is to examine 

nematode feeding groups, morphometry, and biomass size-spectra among 

habitats within the shallow lagoon at Discovery Bay. More specifically, this 

research aims to test hypotheses that a) different nematode feeding groups have 

affinities for particular benthic conditions, and b) that different nematode L/W 

relationships and biomass spectra will be found in habitats with contrasting 

sediment granulometry and subject to varying levels of natural benthic 

disturbance, such as wave swash and bioturbation. 
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5.2. Methods 

5.2.1. Nematode sample processing 

All nematodes from the meiofauna samples (Chapter 4) were evaporated to pure 

glycerol in a cavity block over a period of a few days before being mounted on to 

large wax-ringed slides able to contain a complete, whole sample (Darwin 

Initiative Marine Nematode Project, 2009). Each slide was then examined using 

a Zeiss Photomicroscope III compound microscope fitted with a combination of 

Plan and Planapochromatic optics and capable of oil immersion and Normarski 

Differential Interference Contrast image enhancement. This microscope was 

coupled to a JVC digital CCTV camera and linked to a computer allowing 

images of nematodes to be measured using the SigmaScan Pro (version 5) image 

analysis software package.  

 

5.2.2. Nematode functional groups 

From each sample, 50 nematodes were analysed for functional group according 

to Wieser’s (1953) feeding group classification. These groups consist of (1A) 

selective deposit feeders with a small buccal cavity without armature which 

consume bacteria and small-sized organic particles; (1B) non-selective deposit 

feeders with large buccal cavities without armature feeding on organic deposits 

but targeting larger sized particles; (2A) epigrowth feeders with small buccal 

cavities and armature scraping food off surfaces or feeding on diatoms and 

microalgae; and (2B) predators feeding on nematodes and other small 

invertebrates with large buccal cavities with armature.  
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An index of trophic diversity (ITD) was also calculated following Heip et al., 

(1985). This index is based on the relative proportions of each feeding type, and 

ranges from 0.25 (highest trophic diversity where the relative proportion of each 

feeding type is equal) to 1.0 (lowest trophic diversity consisting of only a single 

feeding type).  ITD is calculated as: 

ITD = ∑ θ2 

where θ is the relative proportion of feeding types after Wieser (1953). 

 

5.2.3. Nematode morphometry 

Each of the 50 nematodes analysed for feeding group were also measured for 

length (excluding filiform tails, if present) and mid-body widths. 

 

5.2.4. Nematode biomass 

Nematode biovolume was calculated from length and width measurements 

according to the formula by Andrassy (1956): 

 

V = L x W2 / 1.6 x 106 

 

where V equals the biovolume, in nL; L and W equals nematode total length 

(excluding filiform tails, if present) and mid-body width, respectively, both in 

µm. Biovolume was then converted to wet mass assuming a specific gravity of 

1.13 (Andrassy, 1956), and wet mass was converted to dry mass assuming a wet 

to dry ratio of 25% (Wieser, 1960; Feller and Warwick, 1988). Carbon content 
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was considered to be 40% of dry weight (Feller and Warwick, 1988). This is 

equivalent to 10% of wet weight according to Heip et al. (1985). 

 

5.2.5. Data processing and analysis 

5.2.5.1. Nematode functional groups 

Differences in the relative abundance of nematode feeding groups within 

individual habitats were analysed via one-way ANOVA. Significant results were 

followed by Tukey’s HSD test. The structure of nematode feeding groups among 

habitats was explored by MDS ordinations derived from Bray-Curtis matrices 

using untransformed relative abundance data. Formal significance tests 

examining the null hypothesis that there were no differences in feeding group 

structure between sites nested within habitats and between habitats using site 

groups as samples were performed using two-way nested ANOSIM on Bray-

Curtis similarity matrices. Before analysis data were standardised to % 

contribution and analyses were performed on untransformed abundances so that 

no weighting was added to either feeding group. When significant differences 

were found, SIMPER analysis was undertaken to determine the contribution of 

specific feeding groups to the dissimilarity between habitats. 

 

5.2.5.2. Nematode morphometry 

Nematode lengths and maximum widths were analysed via nested ANOVA 

followed by Tukey HSD post-hoc multiple comparisons. Scatterplots of width 

versus length, as well as L/W frequency distributions were also plotted as per 

Soetaert et al. (2002). Differences in L/W frequency distributions were analysed 

using the Kolmogorov-Smirnov two-sample test. In addition, interquartile range 
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boxplots were constructed to allow easy visual depiction of the distribution of 

nematode lengths at each habitat. 

 

5.2.5.3. Nematode biomass spectra 

Regular nematode biomass spectra (RNBS) were constructed according to 

Vanaverbeke et al. (2003) using log2 groupings of nematode dry weight (µg) on 

the x-axis and total biomass per size class (dry weight, µg) on the y-axis. In other 

words, the dry weight (µg) of each nematode was assigned to a weight class on a 

log2 scale, and the magnitude of the class on the y-axis represented the sum of all 

organisms within that weight class. In this study, nematode biomass ranged from 

0.0049- to 6.95 µg dry weight (dwt). Therefore log2 weight classes on the x-axis 

ranged from -8 (i.e. ≥ 2−8 to < 2-7 [equal to ≥ 0.0039 to < 0.0078 µg dwt]) to 2 

(i.e. ≥ 22 to <23 [equal to ≥ 4 to < 8 µg dwt]). RNBS allows the magnitude of 

biomass per size class to easily be determined.  

 

Cumulative nematode biomass spectra (CNBS) were also constructed as an 

alternative means of interpreting biomass spectra (Vanaverbeke et al., 2003). 

CNBS plot the biomass as a running total and are helpful to visualise 

contributions of particular size classes to the complete spectrum. Cumulative size 

spectra were examined by ANOSIM. Formal significance tests examining the 

null hypothesis that there were no differences in size-spectra distributions 

between sites nested within habitats and between habitats (using site groups as 

samples) were performed on Euclidean distance matrices. Biomass data from 

each size class were first standardised to % contribution and then cumulated 

(Bob Clarke, Plymouth Marine Laboratory and PRIMER-E Ltd., personal 
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communication 2009). When significant differences were found, SIMPER 

analysis was undertaken to determine the contribution of specific size-classes to 

the dissimilarity between slopes. 

 

5.3. Results 

5.3.1. Nematode functional groups 

The relative abundance of nematode functional (i.e. feeding) groups from the 

five different habitats in the shallow lagoon at Discovery Bay is shown in Figure 

5.1. The proportion of selective deposit feeders was similar between habitats 1 to 

4, but declined at habitat 5. Non-selective deposit feeders dominated habitats 1, 4 

and 5, and their relative abundance was significantly higher than all other groups 

(Tukey’s HSD; Table 5.1). A similar pattern of relative abundance occurred at 

habitats 1, 2 and 4, whereby non-selective deposit feeders had the highest relative 

abundance, followed by selective deposit feeders, then epigrowth browsers, and 

finally predators/omnivores; however these differences were not always 

significant (see Tukey post-hoc comparisons, Table 5.1). At habitat 3, 

proportions of non-selective deposit feeders were lowest. Proportions of 

epigrowth feeders were highest at habitat 3, and lowest at habitats 4 and 5. 

Highest proportions of predators/omnivores were recorded at habitats 3 and 5, 

but were lowest at habitats 1 and 4. Significant differences in relative abundance 

of feeding groups within habitats 1, 2, 4 and 5 occurred but no significant 

difference between feeding groups at H3 could be detected (Table 5.1). Trophic 

diversity (ITD) ranged from 0.286 at habitat 3 to 0.304 at habitat 4, however 

differences between habitats were not significant (One Way ANOVA, F4,115 = 

0.67, P = 0.615). 
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Figure 5.1. Mean (±SE) relative abundance (%) of nematode feeding groups 
from the 5 lagoon habitats at Discovery Bay (n=24, 1200 nematodes analysed per 
habitat). 
 
 
 
Table 5.1. Results of One Way ANOVA and Tukey post-hoc comparisons 
(α=0.05) examining differences in the relative abundance (%) of nematode 
feeding groups within each of the 5 lagoon habitats at Discovery Bay. 
 

Relative Abundance  

Source of Variation df MS F P Tukey HSD 

H11 Feeding Group 3 0.235 33.82 0.000 
 Residual 92 0.007   

1B>1A>2B, 1A=2A, 
2A=2B 

H21 Feeding Group 3 0.033 2.74 0.048 
 Residual 92 0.012   

1B>2B, 1B=1A=2A, 
1A=2A=2B 

H3 Feeding Group 3 74.8 0.81 0.490 No significant difference 
 Residual 92 91.9    
H4 Feeding Group 3 1917.3 24.83 0.000 
 Residual 92 77.2   

1B>1A>2A=2B 

H51 Feeding Group 3 0.129 14.17 0.000 
 Residual 92 0.009   

1B>2B>1A, 2B=2A, 
2A=1A 

1 Data arcsine transformed before analysis 
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MDS ordinations (Figure 5.2), based on the site-averaged proportions of 

nematode feeding groups for visual clarity, separated the trophic structure at 

habitats 1 and 4 from habitat 5. Habitats 2 and 3 revealed a large degree of 

variability in feeding group structure as evidenced by the distance between sites. 

Feeding group structure between sites within habitats 1, 4 and 5 was more similar 

than between sites within habitats 2 and 3. Global ANOSIM formal significance 

tests revealed significant site and habitat effects (Table 5.2); however R values, 

which are an absolute measure of the differences between groups (Clarke, 1993; 

Clarke and Gorley, 2006), were very low indicating that differences were limited. 

ANOSIM pairwise comparisons, on unaveraged Bray Curtis similarity data, 

showed that in 5 out of the 9 tests no significant differences in feeding group 

structure between habitats could be detected (Table 5.2). Pair-wise comparisons 

between habitats 1 and 4, as well as habitats 2 and 3 revealed negative R values, 

indicating that slightly more variability existed within habitats than between 

them. 
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Figure 5.2. MDS ordinations of nematode feeding group relative abundance from 
the 5 lagoon habitats at Discovery Bay. Each point represents a single site. 
 

Table 5.2. R-statistic values and significance of pairwise ANOSIM tests for 
differences in nematode feeding group structure between the 5 lagoon habitats at 
Discovery Bay.  
 
Global Test R P 
Difference between nested Sites across all Habitats 0.125 0.001 
Difference between Habitats using Sites as samples 0.26 0.002 
   
Habitat Comparisons R P 
1 vs. 2 0.135 0.229 
1 vs. 3 0.615 0.029 
1 vs. 4 -0.146 1 
1 vs. 5 0.438 0.029 
2 vs. 3 -0.104 0.657 
2 vs. 4 0.208 0.2 
2 vs. 5 0.052 0.371 
3 vs. 4 0.719 0.029 
3 vs. 5 0.292 0.086 
4 vs. 5 0.594 0.029 
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5.3.2. Nematode morphometry 

In this study a total of 6000 nematodes were measured - 1200 from 24 samples 

taken from each of the five 30 x 2 m transects (i.e. habitats). A summary of 

nematode lengths, widths, individual and population biomasses are shown in 

Table 5.3. Nematode length spanned 3 orders of magnitude; the shortest 

nematode measured 88 µm and was found at habitat 2 while the longest 

nematode measured 4699 µm and occurred at habitat 3. Widths ranged between 

9- and 120 µm, with the thinnest nematode found at habitat 1 and the fattest at 

habitat 3. Length and width frequency distributions were both positively skewed 

(not shown). Median lengths and widths from all measurements were 721- and 

33 µm, respectively. Mean lengths and widths were 881- and 38 µm, 

respectively.  

 

Mean nematode lengths and widths were significantly variable at the (small) plot 

scale but not at the (meso) site scale (Figures 5.3 and 5.4; Tables 5.5 and 5.6). 

Significant differences in mean lengths and widths were found between habitats 

(Tables 5.5 and 5.6). Mean nematode lengths at habitats 1 and 2 were 

significantly lower than at habitats 4 and 5 which were significantly lower than at 

habitat 3 (Tukey’s HSD test; Figure 5.3; Table 5.5). Mean nematode width was 

significantly lower at habitat 2 than at habitat 3, however no significant 

differences were detected between the remaining habitats (Tukey’s HSD test; 

Figure 5.4; Table 5.6). 

 

Individual nematode biomass was highest at habitat 3 and lowest at habitat 1 

(Table 5.3). Mean nematode population biomass, estimated from the product of 
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average abundance and mean individual biomass per habitat ranged from 237- 

398 µg dwt 10 cm-2, equivalent to 95 to 159 µg C 10 cm-2 (Table 5.3). 

Considering all 6000 measurements, a rough figure for nematode biomass in the 

west lagoon is calculated at 113 µg C 10 cm-2 (0.113 g C m-2). This figure is 

based on the average of five values from the five different habitats.
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Table 5.3. Length, width and biomass characteristics of nematode assemblages from the 5 lagoon habitats at Discovery Bay.  
Numbers in brackets indicate 1 standard deviation (n=1200). Pop. Biomass = Population Biomass, estimated from the product of mean 
abundance and mean individual biomass per habitat. Dwt = dry weight. C = carbon. 
 
 

 Length (µm) Width (µm) Ind. Biomass (µg dwt) 
Pop. Biomass  
(µg 10 cm-2). 

Hab. Min. Max. Mean Median Min. Max. Mean Median Min. Max. Mean Median dwt C 

1 144 3723 728 (482) 616 9 112 38 (20.4) 32 0.004 5.571 0.210 (0.325) 0.125 241 96.4 

2 88 4377 760 (594) 599 121 117 37 (17.8) 30 0.010 5.731 0.247 (0.455) 0.111 398 159.2 

3 173 4699 1144 (635) 970 5 120 39 (15.3) 35 0.017 6.949 0.447 (0.672) 0.211 247 98.8 

4 157 4584 946 (561) 767 14 9 38 (15.8) 34 0.013 4.036 0.319 (0.425) 0.168 286 114.4 

5 141 3778 829 (491) 704 10 105 37 (15.8) 33 0.005 3.651 0.267 (0.400) 0.138 237 94.8 
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Table 5.4. Pearson correlation matrix between mean nematode abundance, mean 
length, mean width, mean L/W ratio, mean individual biomass, and nematode 
population biomass with mean chlorophyll a biomass, mean grain size, mean % 
porosity and mean % silt/clay for the 5 lagoon habitats at Discovery Bay.  
 

 Chl a biomass Grain size Porosity Silt/clay 

Abundance 0.819 -0.461 -0.850 0.025 

Length -0.378 0.886* 0.571 -0.349 

Width -0.559 0.459 0.232 -0.537 

L/W ratio -0.504 0.803 0.596 -0.400 

Mean ind. Biomass -0.280 0.927* 0.540 -0.408 

Population biomass 0.906* 0.106 -0.759 -0.146 

 
* Indicates significant correlation, p <0.05 
 
 
 

Pearson correlation analyses between selected environmental variables and 

nematode abundance, lengths, widths, L/W ratios, individual biomass and 

population biomass and environmental parameters for the 5 habitats in the lagoon 

are shown in Table 5.4. Mean nematode length and mean individual biomass 

both exhibited significant positive correlations (p < 0.05) with mean grain size. 

Positive correlations between population biomass and mean chlorophyll a 

biomass were also significant (p < 0.05). Correlations for the remaining variables 

were not significant (p > 0.05). 
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Figure 5.3. Mean lengths of nematodes from the 5 lagoon habitats at Discovery 
Bay (n=2, ±1SE). Habitats with the same letter are not significantly different 
from one another (Tukey’s HSD test, α=0.05). 

 
 
 
 

Table 5.5. Results of the three-factor nested ANOVA examining differences in 
mean nematode length from the 5 habitats within the shallow lagoon at 
Discovery Bay. 
 

Source of Variation df MS F p Sig. Error terms 

Habitat 4 9.99 53.81 0.000 *** Site (Hab) 

Site (Hab) 15 0.186 1.06 0.423 ns Plot(Hab(Site)) 

Plot(Site(Hab)) 40 0.175 2.90 0.000 *** Error 

Error 5940 0.060     
1 Data transformed to Log10 (x) 
ns = not significant; * p<0.05; ** p<0.01; *** p<0.001 
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Figure 5.4. Mean widths of nematodes from the 5 lagoon habitats at Discovery 
Bay (n=2, ±1SE). Habitats with the same letter are not significantly different 
from one another (Tukey’s HSD test, α=0.05). 
 

 
 
Table 5.6. Results of the three-factor nested ANOVA examining differences in 
mean nematode width from the 5 habitats within the shallow lagoon at Discovery 
Bay. 
 

Source of Variation df MS F p Sig. Error terms 

Habitat 4 0.324 4.17 0.018 * Site (Hab) 

Site (Hab) 15 0.078 1.02 0.458 ns Plot(Hab(Site)) 

Plot(Site(Hab)) 40 0.076 2.53 0.000 *** Error 

Error 5940 0.030     
1 Data transformed to Log10 (x) 
ns = not significant; * p<0.05; ** p<0.01; *** p<0.001 
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Figure 5.5. Boxplots of nematode length for each feeding group from each of the 
5 lagoon habitats. Note that box width is proportional to the number of 
nematodes measured, which varied from 188 to 453 per habitat-group 
combination. The connecting line represents the mean of each feeding group. 

 

Comparisons of nematode length for each feeding group across habitats revealed 

that the median length, first and third quartiles, upper whisker as well as mean 

length were all highest at habitat 3 (Figure 5.5).  

 

Figures 5.6 and 5.7 show scatterplots of nematode body width versus length, and 

corresponding L/W frequency distributions for each habitat. Scatterplots and 

frequency distributions for all habitats pooled together are also shown. Body 

width versus length scatterplots confirm the presence of two morphotypes 

inhabiting habitats 1, 2, 4 and 5. These morphotypes show up in the scatterplots 

as two distinct clusters of points and in the frequency distributions as two distinct 

peaks, the first peak corresponding to the plump nematode morphotype at around 

a L/W ratio of 4, and the second peak corresponding to the typical slender 

morphotype at a L/W ratio of 22. In between these two peaks is a trough at a 

minimum L/W ratio of 10 to 12. However the actual position of the peaks and 
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troughs appears to vary slightly depending on habitat. At habitats 1 and 2 the 

plump nematode peak occurs at a L/W ratio of 4, whereas at habitats 4 and 5 the 

peak occurs at a higher L/W ratio of 8. These peaks are separated by troughs at a 

L/W ratio of 9 at habitats 1, 7 at habitat 2, and at 11 at habitats 4 and 5. At 

habitat 3, although a few plump nematodes exist, their numbers are vastly 

reduced with very few individuals having a L/W ratio less than 10. If the 

demarcation between plump and slender nematode morphotypes is set at a L/W 

ratio of 9, then 10.7- and 89.3 % of nematodes were of plump and slender 

morphotypes, respectively. Although nematodes were not identified, many of the 

plump nematodes (Figure 5.8) were of the genus Richtersia Steiner, 1916 (Pastor 

de Ward and Lo Russo, 2007). Richtersia spp. have large buccal cavities without 

armature and are non-selective deposit feeders (feeding type 1b). Desmoscolex 

spp. were also found in the plump nematode assemblage; these individuals are 

selective deposit feeders (feeding type 1a). 

 

Frequency distributions of nematode L/W ratio were all right skewed and 

differed significantly between habitats (Kolmogorov-Smirnov Test, p<0.05). 

Only 28 nematodes had L/W ratios greater than 80. These were composed of all 

feeding groups, including 11 selective deposit feeders, 6 non-selective deposit 

feeders, 5 epigrowth browsers and 7 predators. The relationship between 

nematode body width and length and feeding group revealed two main clumps 

and many outliers (Figure 5.9). The main clump contains most of the nematodes 

and is composed of all feeding groups in the middle of the triangular area. 

Towards the line at the top edge there is a second clump consisting of plump 

nematodes which were predominantly non-selective deposit feeders.
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Figure 5.6. Scatterplots of body width versus length of nematodes from lagoon 
habitats 1 to 3 at Discovery Bay (left side), and corresponding frequency 
distributions of length/width ratios (right side). 1200 nematodes were measured 
per scatterplot / frequency distribution.
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Figure 5.7. Scatterplots of body width versus length of nematodes from lagoon 
habitats 4, 5 and all habitats grouped together at Discovery Bay (left side), and 
corresponding frequency distributions of length/width ratios (right side). 1200 
nematodes per scatterplot or frequency distribution were measured for individual 
habitats, and 6000 nematodes for all habitats grouped together. 
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  Figure 5.8. Plump nematode: Richtersia sp. 

 
 
 

 

Length (um)

W
id

th
 (

u
m

)

500040003000200010000

120

100

80

60

40

20

0

1A
1B

2A
2B

FGPlump

Slender

 
 
 
Figure 5.9. Relationship between nematode body width and length and feeding 
group. Plump nematodes are found nearer the top edge of the triangular area 
whereas slender nematodes are found nearer the bottom edge.
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Figure 5.10. Relationship between nematode dry weight (dwt, µg) and length 
(µm). Scales are Log10. 
 
 
 
5.3.3. Nematode biomass and biomass spectra 
 
Nematode biomass was significantly correlated with nematode length (Figure 

5.10; Pearson’s correlation coefficient, r = 0.703, p < 0.001, n = 6000 ). Individual 

nematode biomass was highest at habitat 3 and lowest at habitat 1 (Table 5.3). 

Mean nematode population biomass, calculated as the product of average densities 

at each habitat and average individual biomass ranged from 237 to 398 µg dwt 10 

cm-2 (Table 5.3) equivalent to 95 to 159 µg C 10 cm-2. Considering all the data, a 

crude mean figure of 113 µg C 10 cm-2 (0.113 g C m-2) is calculated for the 

biomass of nematodes in the sediments in the west lagoon at Discovery Bay. 

 

5.3.3.1. Regular biomass spectra 
 
Regular nematode biomass spectra are shown in Figure 5.11. In general, spectra 

increased with increasing body size up to size classes -2 or -1 before decreasing in 

the larger size classes. For habitats 1 and 2, biomass peaked at size class -2 (0.25 – 
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to 0.5 µg dwt, equivalent to 0.1 to 0.2 µg C), whereas for habitats 3, 4 and 5, 

biomass peaked at size class -1 (0.5 to 1.0 µg dwt, equivalent to 0.2 – 0.4 µg C). 

Of note is that at H2 a second mode at size class 1 occurred due to a high predator 

and non-selective deposit feeder biomass. Visual inspections of the spectra show 

that total biomass at the peak size class differed between the habitats. At habitats 

1, 2 and 5, total biomass at the peak size class varied between 70 and 80 µg dwt. 

At the coarse sand habitat H3 and the shallow thalassinid habitat H4 this value 

was much higher at ~130 and 100 µg dwt, respectively. While there was a rapid 

drop in biomass after the peak at size class 1 at habitat 4, this decrease is far less 

pronounced at habitat 3 and at size class 0 biomass is still above 110 µg dwt. Of 

note is that no nematodes within the smallest size classes 8 or 7 were found at 

habitat 3, or in size class 8 at habitat 2 or 4. Similarly no nematodes were found in 

the largest size class at habitat 5, even though the biomass at size class 1 for this 

habitat  was still relatively high (38 µg dwt). While biomass was relatively low at 

the largest size class for habitats 1 and 4, at habitat 2 and 3 it was approximately 

15- and 41 µg dwt, respectively. 

 

5.3.3.2. Cumulative biomass spectra 

Cumulative nematode biomass spectra are shown in Figure 5.12. These spectra 

show biomass per size class as a running total. All spectra appear relatively 

similar up to size class -3. At size class -2 spectra begin to depart from one 

another with differences in the rate of increase in biomass at larger size classes 

depending on habitat. The rate of increase in biomass at size classes larger than -2 

is greatest for H3 and least for H1. Cumulative total biomass at H3 is more than 

twice the biomass at H1; other habitats were intermediate these two extremes. In 
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increasing order, cumulative total biomass for the remaining habitats was found at 

H2, H5, and H4, respectively. It should be pointed out that these biomass totals 

are based on the measurements of 1200 nematodes from each habitat.  

 

Nested ANOSIM revealed that there were no significant differences in cumulative 

biomass spectra between sites nested within habitats, however significant 

differences between habitats were apparent (Table 5.7). Size spectra from the 

following habitats were significantly different from one another: 1 and 3, 1 and 4, 

2 and 3, 3 and 4, and 3 and 5, with respective R values ranging from 0.427 to 1 

(Table 5.7). Similarity percentages analysis (SIMPER) of total biomass per size 

class was used to determine the contribution of individual size classes to 

Euclidean dissimilarities between habitats. Information from SIMPER revealed 

that size classes -2 and -1, and to a lesser extent size class 0 contributed most to 

the dissimilarity between habitats. This is most easily seen in the regular 

nematode biomass spectra (Figure 5.11). 
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Figure 5.11. Regular nematode biomass spectra from each of the 5 lagoon habitats 
at Discovery Bay. Individual spectra represent data from 1200 nematodes. 
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Figure 5.12. Cumulative nematode biomass spectra from each of the 5 lagoon 
habitats at Discovery Bay. Individual spectra represent data from 1200 nematodes. 
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Table 5.7. R-statistic values and significance of pairwise ANOSIM tests for 
differences in cumulative biomass spectra between the 5 lagoon habitats at 
Discovery Bay.  
 
Global Test R P 
Difference between nested Sites across all Habitats 0.05 0.07 
Difference between Habitats using Sites as samples 0.458 0.001 
Comparisons between  Habitats R P 
1 vs. 2 0.135 0.171 

1 vs. 3 1 0.029 

1 vs. 4 0.854 0.029 

1 vs. 5 0.281 0.086 

2 vs. 3 0.677 0.029 

2 vs. 4 0.318 0.086 

2 vs. 5 -0.01 0.40 

3 vs. 4 0.427 0.029 

3 vs. 5 0.573 0.029 

4 vs. 5 -0.031 0.543 
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5.3.3.3. Abundance spectra 

Nematode abundance spectra are shown in Figure 5.13. Peak abundance occurred 

at different size classes depending on habitat. Peak abundance occurred at size 

class -5 for habitat 2, at size class -4 for habitat 1, and at size class -3 for the 

remaining habitats. At habitats 1 and 2 abundances were higher in the smaller size 

classes (-8 to -6).  At habitats 3 and 4 abundances were higher in the larger size 

classes (-2 to 0). 
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Figure 5.13. Nematode abundance spectra from each of the 5 lagoon habitats at 
Discovery Bay. Individual spectra represent data from 1200 nematodes. 
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5.4. Discussion 

5.4.1. Nematode feeding groups 

The study by Alongi (1986) was one of the first to examine the structure of 

nematode feeding groups within a coral reef environment. He found that different 

groups were associated with different functional zones of Davies Reef, on the 

Great Barrier Reef. At the reef crest and across the reef flat coarse to medium 

sands were inhabited primarily by predators/omnivores and epigrowth-feeding 

nematodes, while in fine to very fine sands in the lagoon non-selective and 

selective deposit feeders dominated. Gourbault and Renaud-Mornant (1990) also 

found that proportions of feeding groups differed between habitats in a Polynesian 

atoll,  with non-selective deposit feeders dominating fine to medium clean sands 

and epigrowth browsers found in fine sands with a high silt content. 

 

Like most lagoons, Discovery Bay is a heterogeneous environment, containing 

habitats which vary in sediment granulometry, biomass of microphytobenthos, 

extent of bioturbation and hydrodynamics. To a large extent the hydrography of 

any lagoon determines the characteristics of the sediments, with coarser particles 

dominating areas of wave swash and increased water motion, while finer particles 

are found in the more quiescent regions. Since nematodes are highly selective 

with regards to size, shape and quality of food offered (Wieser, 1953; Jensen, 

1987), differences in the distribution of feeding types can give insight into the 

prevailing trophic conditions and food sources within a specific area. Although it 

is established that sediment organic content influences nematode distributions, 

rates of deposition of organic material exhibit high spatial and temporal 

heterogeneity within coral reef lagoons, as do sediment organic matter 
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concentrations (Sorokin, 1993; Alongi, 1998). While it is often expected that 

organic matter deposition should be higher in more quiescent areas, in coarse 

sediment reef zones deposition is not necessarily lower than in areas where finer 

sediments prevail. For example Koop and Larkum (1987) found highest 

deposition rates in the backreef area along a transect from the forereef to the 

lagoon. In contrast, due to large temporal variability Hansen et al. (1992) were 

unable to find any difference between a shallow site situated behind the reef crest 

and a deeper site in the main lagoon. Westrum and Meyers (1978), working at 

Discovery Bay measured carbon content of reef water in a transect running from 

the west forereef to the lagoon and detected an increase in TOC at a station 

situated just behind the reef crest. These authors concluded that “organic matter 

contributed at the crest is available as a resource to only a limited portion of the 

backreef community – that part located directly behind the reef crest”. However 

this conclusion appears to be too simplistic. In times of adverse weather 

macroalgal detritus and organic particles, presumably sloughed off reefs on the 

seaward side of the reef crest and at the crest itself, are often observed wafting 

towards land within the water column. Furthermore, during algal blooms 

filamentous species such as Chaetomorpha linum are often deposited in the 

vicinity of habitats 4 and 5 (Pers. Com. Dr Jeremy Woodley, former Director of 

DBML, and own observations).   

 

In the present study it was hypothesised that feeding groups would display 

particular affinities for certain habitats. In particular it was hypothesised that 

epigrowth-feeders, which use their teeth to scrape the surface of sand grains 

thereby grazing upon attached microalgae and bacterial mucilages (Wieser, 1953; 
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Giere, 1993) would dominate at habitat 2 where the biomass of 

microphytobenthos was highest. In contrast, non-selective deposit feeders were 

hypothesized to dominate the medium/fine sediments at habitats 4 and 5 (Aller 

and Dodge, 1974), situated in the quiescent region of the lagoon occupied by 

thalassinid shrimps, where the deposition and entrapment of particulate organic 

material between mounds was regularly observed.  

 

While the data presented here indicate that nematode feeding group structure 

varied between habitats, some results were unexpected. Feeding group structure at 

habitat 2 was not dominated by epigrowth feeders, and therefore this hypothesis 

was rejected. In fact no particular group dominated at H2, although deposit 

feeders were most numerous. This may be because many selective and non-

selective deposit feeders exhibit trophic plasticity and will consume diatoms and 

cyanophytes (Heip et al., 1985; Moens and Vincx, 1997). Indeed Perkins (1958), 

who studied nematode feeding habits off the coast of Kent, concluded that 

Wieser’s 1b group feed on diatoms and bacteria in equal measure. While 

microphytobenthos may be consumed, the formation of detritus from dead 

microalgae and leaching of extra polymeric substances can also enrich the 

sediment stimulating the microbial loop and providing a further food resource for 

deposit feeders (Uthicke and Klumpp, 1998). A number of studies have, however, 

shown that the relative abundance of epigrowth feeders can be highest in coarse 

grained coral reef sediments (Alongi, 1986; Boucher, 1997; Ndaro and Ólafsson, 

1999; Netto et al., 1999; Raes et al., 2007). This is consistent with the results of 

the present study, although the difference in relative abundance between feeding 

groups in coarse sediments at H3 was not significant. Evidence that the biomass 
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of microphytobenthos in reef sediments is often highest in coarse grained sands 

(Johnstone et al., 1990; Garrigue, 1998; Jones et al., 1999) may nonetheless partly 

explain why epigrowth feeders have been found to dominate reef habitats of 

similar granulometry. In comparison, in muddy sediments in the North Sea, non-

selective deposit feeders and epigrowth feeders dominated nematode trophic 

structure, which was largely explained by grain size and the total organic carbon 

content of the sediment (Schratzberger et al., 2008). 

 

Compared to temperate marine sediments, coral reef sands generally contain less 

organic material. Besides being highly permeable allowing for efficient advective 

exchange of particulate and dissolved materials with overlying waters, filtered 

organic material in coarse reef sands is rapidly mineralised by the microbial 

community (Rasheed et al., 2003; Wild et al., 2005; Sørensen et al., 2007). The 

lower proportion of non-selective deposit feeders at H3 therefore likely reflects 

the oligotrophic nature of coarse reef sediments (Sorokin, 1993) and the removal 

of phytodetritus from the sediment surface due to strong hydrodynamic stress 

(Raes et al., 2007). This results in the higher proportions of epigrowth-feeders and 

predators/omnivores, although nematode predation and top-down control of 

deposit feeders cannot be ruled out (Moens et al., 2000). In addition physical 

disturbance may partly regulate nematode feeding group structure, since some 

diatom-feeding nematodes are more active than slow-moving bacterial feeders and 

are therefore less prone to physical disturbances (Schratzberger and Warwick, 

1998). As will be discussed later, the length of nematodes at H3 was significantly 

greater than at other habitats, reflecting both the larger size of predators (and 

therefore the increased ability to consume smaller individuals), as well as a 
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possible adaptation to lower quality food resources resulting in species with 

longer gut lengths (Tita et al., 1999).  

 

At habitats 4 and 5 non-selective deposit feeders dominated the shrimp burrow 

habitats as hypothesized. This is probably because of an increase in the deposition 

of particulate detritus and associated bacteria in this part of the lagoon. On many 

occasions, particularly after adverse weather, both macroalgal and seagrass 

detritus were often seen accumulating within the dips between ghost shrimp 

mounds which appear to act as a catchment area for transient detritus. This matter 

would sometimes take from a few days to a week or more to fully decompose and 

would often be observed becoming overlaid with sediment.  

 

Surprisingly feeding group structure was similar between habitats 1 and 4, an 

observation which was unexpected considering respective differences in 

sedimentary characteristics, although the biomass of microphytobenthos did not 

differ between the two habitats (Chapter 3). Ghost shrimps are deposit feeders and 

tend to be found in areas where there is increased deposition of detritus, resulting 

in sediments richer in organic matter which they feed on by removing it from 

around their mounds. This is suggested to slow bacterial growth rates (Hansen et 

al., 1987). Although neither nematode densities nor feeding type are reported to 

differ depending on the top, side or bottom of the mound, Alongi (1986) found 

that nematode communities among ghost shrimp burrow ranges are almost 

exclusively dominated by non-selective deposit feeders. In contrast, in the 

Adriatic Sea, Koller et al. (2006) found that epistrate browsers dominated surface 
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sediments situated around mounds. The distribution of the macrobenthos within 

the Discovery Bay Lagoon has previously been related to a gradient in sediment 

stability; sediments in the western side of the lagoon, in the vicinity of habitat 4, 

were shown to be less stable due to high levels of biogenic reworking by ghost 

shrimps and contained a lowered diversity of macroinfauna compared to those on 

the eastern side (Aller and Dodge, 1974). Although these factors do not explain 

the similarity in nematode feeding group structure between such diverse habitats, 

they may offer further insight into the ecology of habitat 4 allowing future 

hypotheses about nematode feeding group structure between habitats 1 and 4 to be 

constructed.  

 

5.4.2. Nematode morphometrics – lengths and widths 

Nematode size-frequency distributions are typically right skewed with a long tail 

due to the high abundance of juveniles, a decrease in growth and increase in 

mortality with age (Soetaert et al., 2002). In the lagoon at Discovery Bay the L/W 

size frequency distributions confirmed this generality of pattern. To my 

knowledge, the study by Grelet (1985) appears to be the only published study on 

the morphometry of nematodes from within a coral reef environment. Conducted 

along the coast of Jordan in the Red Sea, Grelet (1985) found that there was no 

difference in length between different habitats although he didn’t offer any 

explanations for his findings.  

 

In the present study nematode length was greatest in coarse sands, the L/W 

distribution shifting towards larger individuals at habitat 3. Longer nematodes, 
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besides having longer guts, are more mobile than smaller individuals providing 

them with a greater ability to seek accessible food (Soetaert et al., 2002). As 

previously mentioned, the proportion of non-selective deposit feeders was much 

reduced at H3, possibly suggesting that the sediments had lower quantities of 

suitable food resources and/or that the quality of food was lower. Consequently, 

by having a longer gut the transit time of food within the body may be increased, 

resulting in a potential increase in absorption efficiency (Soetaert et al., 2002). In 

a temporal study in the North Sea during and after a spring bloom event, decreases 

in the chlorophyll a concentration in bottom water after the bloom coincided with 

a decrease in small and corpulent species, and an increase in the abundance of 

larger adults (Vanaverbeke et al., 2004). The findings of this temporal study seem 

synonymous with the differences between habitats in the present spatial 

investigation. In the more quiescent regions of the lagoon L/W histograms show 

an abundance of smaller, as well as plumper individuals. Yet at habitat 3 where 

deposition is limited and the substrate regularly disturbed by wave action, the 

histogram mode moves towards longer individuals. According to Tita et al. 

(1999), long guts are characteristic of animals exploiting low energy food. In their 

study, looking at nematode morphometry in the St Lawrence Estuary in Canada, 

they found that nematodes with small width-to-length ratios were characteristic of 

microvores, whereas greater ratios were typical of epigrowth-feeders and 

predators. Intermediate w/l ratios were found in ciliate-feeders, deposit-feeders 

and facultative predators. Tita et al. (1999) subsequently proposed a morphotype 

food-related hypothesis, whereby species morphotype reflects the quality of 

exploited food: nematodes with long guts such as microvores (i.e. small w/l ratio) 
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favour digestive efficiency, while those with short guts (i.e. larger w/l ratio), such 

as epigrowth-feeders and predators are adapted to high quality food.  

 

Besides increased digestive efficiency, length may also convey advantages related 

to stability within the sediment, and hence the ability to prevent passive 

displacement into the water column, i.e. invertebrate drift (Palmer, 1988). At 

increased water velocities nematodes are more susceptible to being dislodged 

from sediments (Gamenick and Giere, 1994). Marine nematodes move through 

sediment interstices via a sinusoidal undulation of their longitudinal body 

musculature. Consequently, the minimum pore space through which they can 

move is primarily related to the length of the nematode, since the amplitude of 

undulation is proportional to body length (Kirchner et al., 1980). Larger, longer 

nematodes, particularly those with long setae, are thought to be better adapted to 

hanging on to sediments in high energy environments (Warwick, 1971; Tietjen, 

1976). Plus due to their length and wider girth they should also be better able to 

bridge sediment grains subjected to high advective pore water flow. Compared to 

finer sands and silts, coarse calcareous sands within reef systems are highly 

permeable and less cohesive, resulting in higher advective pore water flow rates 

(Rasheed et al., 2003). Therefore, nematodes in coarse calcareous sands are 

potentially more likely to be subjected to higher erosive forces, than individuals of 

similar size in finer grained sediments where advective pore water flow rates are 

lower. 
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In a study on nematode morphometry from the shelf to the deep sea in European 

marine waters, longest average nematode lengths were found in sandbanks 

subjected to strong currents where food availability was extremely low 

(Vanaverbeke et al., 2007b). As in this study, these authors hypothesised that the 

increased length probably prevents nematodes from being eroded. Increased 

nematode length may therefore be an ecological advantage helping to maintain 

occupancy within the sediment in habitats subjected to high levels of advective 

pore water flow or disturbance resulting in the suspension of individuals into the 

water column. This hypothesis is further backed by observations that the increased 

length of nematodes at H3 is independent of feeding group, i.e. the increased 

length is not simply due to the longer average length of predators/omnivores. 

Minimum and median nematode lengths were also highest at habitat 3. 

 

It is nevertheless possible that shorter nematodes burrowed deeper into the 

sediment to avoid being swept away and were not adequately sampled in this 

study by the 5 cm deep sediment core. However in situ experiments conducted in 

sands of similar granulometry on the forereef seaward of H3 showed that 

nematodes did not increase in deeper sediment layers as current speed increased, 

to the point at which there was visible sediment disturbance (Gamenick and Giere, 

1994). Furthermore, laboratory flume experiments found that as the speed of the 

water over the sediment increased, nematodes were entrained into the water 

column and their abundance in deeper sediment layers decreased (Gamenick and 

Giere, 1994). These observations therefore suggest that the larger lengths of 

nematodes at habitat 3 were not due to sampling artefacts. Lowest abundances of 

nematodes at habitat 3 (Chapter 4) further suggest that this habitat is less 
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hospitable to nematodes compared to the others surveyed within the lagoon. 

While nematodes were not identified to species, future studies should attempt to 

assess whether the increase in size at H3 is due to the community being composed 

of larger individuals of similar species as found in the rest of the lagoon, or 

alternatively whether there is a community shift towards different species that are 

longer and better adapted to the localised hydrodynamical disturbance.   

 

5.4.3. Nematode morphometrics – plump and slender assemblages 

Ratsimbazafy et al. (1994) were the first to confirm the existence of two distinct 

nematode morphotypes, consisting of a plump assemblage with low L/W ratios, 

and a slender assemblage with much higher L/W ratios. Further studies by other 

researchers have found these findings to be widespread (e.g. Soetaert et al., 2002; 

Vanaverbeke et al., 2004; Vanhove et al., 2004). The results of the present study 

confirmed the existence of both plump and slender nematode morphotypes in the 

sediments of the coral reef lagoon at Discovery Bay.  To my knowledge, this is 

the first time that both morphotypes have been documented from a coral reef 

environment. However, what is particularly interesting is that the plump 

morphotype was virtually absent in coarse sediments at habitat 3. In order to 

explain this finding, it is pertinent to discuss the theories that have been put 

forward regarding the adaptive advantages conveyed by being small and plump.  

 

While slender nematodes comprise a large variety of nematode taxa, plump 

assemblages are typically composed of just a few, such as the desmoscolecids 

Tricoma spp., Desmoscolex spp., and Richtersia spp., as well as members of the 
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epsilonematids (Soetaert et al., 2002; Vanaverbeke et al., 2004). Since both 

morphotype groups include members from distantly related taxa, the duality in 

nematode design was hypothesized by Soetaert et al. (2002) to be an ecological 

adaptation conveying either greater mobility (i.e. slender/longer morphotype) or 

reduced vulnerability to predation (i.e. plump morphotype). This hypothesis was 

based on the fact that longer nematodes are more mobile and able to penetrate 

deeper into the sediment than shorter plump nematodes, whereas plump 

nematodes are heavily cuticularised with protective protrusions suggesting that 

these adaptations may be a defense mechanism against predation. Soetaert et al. 

(2002) further suggested that thin slender nematodes have a higher tolerance to 

lower oxygen levels than plump nematodes with increased body widths. Smaller 

nematode species likely have higher growth rates (e.g. Peters, 1983) and therefore 

the age at first breeding is reduced, since they reach adulthood faster than species 

that grow to a larger size. Consequently plump nematodes may be opportunists 

which take advantage of food supplies, but also quickly diminish in numbers 

when there are food shortages (see Vanaverbeke et al., 2004).  

 

So why were plump nematodes absent from habitat 3? At H3 sediment porosity 

was generally higher than at most other habitats (Chapter 3). Although porosity is 

of limited biological significance since it doesn’t necessarily correspond to the 

pore volume available to animals (Giere, 1993), higher porosities and a low 

silt/clay fraction suggest larger interstitial spaces would be found at H3, thus not 

physically precluding fat plump nematodes. Moreover, minimum, maximum and 

mean nematode widths were all highest at H3, confirming that the size of the 

interstices were not a limiting factor for most individuals. It is possible that low 
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oxygen levels prevented plump nematodes from colonising sediments at H3, since 

compared to fine carbonate sediments oxygen consumption rates are greater in 

coarse carbonate sands (Rasheed et al., 2003). This may partly explain why longer 

individuals and individuals with higher L/W ratios predominated, since they are 

better adapted to bridge gaps between oxic and anoxic layers in the sediment. If 

plump nematodes are more susceptible to low oxygen levels they would have 

been expected to reside within the top layers of the sediment, rather than being 

almost completely absent. This again rules out methodological artefacts caused by 

cores not being taken to a deep enough depth. Since plump nematodes were 

predominantly non-selective deposit feeders, perhaps their abundance was limited 

at H3 by the availability of suitable food resources? In sediments of the same 

median grain size but with different proportions of silt, Tita et al. (1999) found 

that nematodes with smaller L/W ratios were more abundant in sediments with 

increased organic matter, supporting their morphotype-food related hypothesis. 

Also, since plump nematodes are less mobile than the slender morphotype 

(Soetaert et al., 2002), it is possible they are less adapted to hydrodynamic 

sediment disturbance and hence were unable to maintain contact with the benthos 

at higher friction velocities (a measure of shear stress or erosive force imparted by 

flowing water on bottom sediments and meiofauna (see Palmer, 1988)). It is 

therefore suggested that a combination of factors may be responsible for the 

absence of plump nematodes at H3. These include availability of oxygen, 

suitability of food resources, and the inability of individuals to resist dislodgement 

and erosion from sediments. In order to test this theory, as a first step laboratory 

flume experiments similar to those conducted by Gamenick and Giere (1994), but 

comparing nematode morphometry both in the water column and benthos 
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concurrently over a range of sediment particle sizes with different oxygen 

consumption rates should be conducted. 

 

5.4.4. Nematode biomass and abundance / biomass spectra 

The population biomass of nematodes varied between habitats within the lagoon 

but was highest at H2 which contained the highest biomass of microphytobenthos 

and abundance of nematodes (Chapters 3 and 4). A highly significant correlation 

between population biomass and microphytobenthos was found underlining the 

importance of this food resource, either directly via consumption or indirectly due 

to it’s effect on sediment stability and the microbial web (Miller et al., 1996; 

Moens et al., 2002; van Oevelen et al., 2006).  

 

Average individual nematode biomass was highest at habitat 3 and was 

significantly positively correlated with grain size, corroborating the findings of 

Grelet (1985) for reef sediments in the Red Sea. In a study examining the 

relationship between nematode size and water depth from 120 locations around 

the world, mean nematode size was strongly correlated with median grain size 

over all depth ranges (Udalov et al., 2005). Yet in contrast to the present study, 

when depth was removed from the model, the correlation between nematode size 

and grain size within the 0 to 10 m depth range became insignificant. However in 

the North Sea, average individual body size increased with decreasing grain size 

(Schratzberger et al., 2008). Likewise, in the St Lawrence Estuary in Canada, 

mean individual nematode biomass was highest in muddy sediments compared to 

sandy sediments of similar median grain size (Tita et al., 1999). This was because 

muddy sediments were mostly inhabited by large burrowing species. Above a 
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critical median grain size of about 200 µm most meiofauna are interstitial species 

(Wieser, 1959). For nematodes, however, the critical grain size is suggested to be 

even smaller (120- to 125 µm) due to their distinct slender morphology and 

sliding mode of transport which enables them to move through the slightest of 

spaces between sediment grains (Wieser, 1959; Coull, 1988). Since all sediment 

samples in the present study had median grain sizes > 182 µm, the majority of 

nematodes were presumed to be interstitial rather than burrowing species, hence 

the much higher abundance of the slender morphotype. 

 

The range of nematode biomass (0.02- to 28 µg wet weight) found in this study is 

similar to the values found in other studies (e.g. Wieser, 1960; Gerlach et al., 

1985; Duplisea and Hargrave, 1996). Average nematode biomass figures of 0.3 g 

m-2 dwt and 0.113 g C m-2 for the west lagoon at Discovery Bay are calculated 

based on the product of average density and average biomass from all samples. 

These figures compare favourably to values found in the southern zone of the 

North Sea (0.5 g dwt m-2 Heip et al., 1985) and lagoon sands in French Polynesia 

(~0.095 g C m-2, calculated from Table 4 of Villiers, 1988), but are lower than in 

Helgoland Bight (0.6 g C m-2 Gerlach et al., 1985) and tropical sediments in Gulf 

of Aqaba (1.06 g dwt m-2 Grelet et al., 1987). Of course biomasses vary both 

spatially and temporally. Nevertheless these average values are the first obtained 

for this lagoon and should hopefully be of use in other studies, in particular 

trophic balance models such as ECOPATH (e.g. Polovina, 1984; Arias-Gonzalez, 

1994; Rosado-Solorzano and Guzman Del Proo, 1998). 
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The present study is the first to examine nematode biomass spectra from a coral 

reef ecosystem. The results of the ANOSIM test demonstrated clearly that CNBS 

differed between habitats in the lagoon containing sediments ranging from fine to 

coarse sands. Consequently, the null hypothesis that there is no difference in 

nematode biomass spectra between habitats with contrasting sediment 

granulometry in the lagoon at Discovery Bay can be rejected. In coarse sands at 

H3 a shift towards higher biomasses in larger size classes (-1) was observed, 

while individuals were absent in the two smallest size classes (-8, -7). NBS from 

the remaining habitats were intermediate between H1 and H3, but shifted towards 

higher biomasses at larger size classes in the highly bioturbated medium to 

medium/fine sands at H4 and H5, respectively. Furthermore, average individual 

biomass in coarse sands at H3, where nematode abundance was lowest (Chapter 

4), was more than double the amount found in undisturbed fine sands at H1.  

 

While a number of studies have examined the entire biomass spectra of metazoan 

benthic organisms, Vanaverbeke et al. (2003) quoting (Edgar, 1990) mentioned 

that using different sampling gear and sieves with different mesh sizes (e.g. 

Gerlach et al., 1985) can lead to the overestimation of biomass in the lower size 

classes. Vanaverbeke et al. (2003) further remarked that the use of different 

sampling gear could also introduce bias since a single type of gear is designed to 

effectively sample organisms within a specific size range. Hence these authors 

suggested that using a single type of sampling equipment and a single sieve mesh 

size to sample a single taxon such as the dominant meiofaunal taxon, i.e. the 

nematodes, could overcome some of these problems. 
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Unfortunately literature on nematode biomass spectra from sites of similar depth 

is not available; moreover there are no reports in the literature of benthic biomass 

spectra from tropical marine habitats. Nevertheless differences in biomass spectra 

have been suggested to be due to numerous factors, including sediment 

disturbance and food supply, For example, on the Belgian Continental Shelf the 

temporal effects of a phytoplankton bloom (food pulse) on NBS were examined 

(Vanaverbeke et al., 2003). Concomitant with an increase in chlorophyll a in 

bottom waters, nematode biomass increased in the middle part of the regular 

nematode biomass spectra, due to an increase in the abundance of juveniles. This 

was attributed to the higher food availability in the months proceeding the bloom. 

In the present study a similar yet spatial effect was found. While it is only just 

evident in the regular biomass size spectra, the abundance size spectra clearly 

shows an increase in the number of individuals at habitat 2 in size classes -6 and -

5. These nematodes were most likely juveniles and/or small opportunistic species 

possibly responding to the increased availability of microphytobenthos, 

breakdown products, or other related factors (i.e. extrapolymeric substances, 

bacteria, detritus, sediment stability). In organically enriched sediments, Duplisea 

and Hargrave (1996) showed that small meiofauna compose a larger fraction of 

the meiobenthos. Nonetheless, the slope of the upper half of the CNBS at habitat 2 

was less steep than habitats 3, 4 and 5, suggesting that the increased biomass of 

microphytobenthos and relative increase in the number of individuals in smaller 

size classes had limited influence on the total cumulative biomass. Thus the 

consistent elevated levels of microphytobenthos at H2 over the study period did 

not seem to produce the same sort of effect on the biomass spectra as documented 

by Vanaverbeke et al. (2003). Of note though is the small second peak in the 
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RNBS at H2 at size class 1 which was due to a few large non-selective deposit 

feeders and predators/omnivores. The predators were possibly responding to the 

increase in abundance of smaller prey nematodes. Yet as noted by Schratzberger 

et al. (2008), community metrics can obscure strong responses of individual 

species, since increases in body size in response to food availability is highly 

species-specific (e.g. dos Santos et al., 2008). 

 

In the North Sea the effects of an annual phytoplankton production cycle on 

nematode community dynamics were followed (Schratzberger et al., 2008). While 

most nematode species bred continuously throughout the sampling period, the 

epigrowth-feeding species Spilophorella paradoxa had increased growth 

following the deposition of the spring phytoplankton bloom. Body size 

distributions of this species varied spatially and temporally but were clearly 

related to differences in food resources in the sediment. High levels of both fresh 

and refractory material coincided with equal proportions of juveniles and adults in 

the population. However as carbon resources diminished over the winter months, 

smaller individuals increased and larger nematodes declined. Although the present 

study did not attempt to assess biomass spectra of individual species, it is 

interesting that the abundance spectra at H2, the most productive habitat, was 

dominated by smaller individuals yet with low biomass in the larger adult size 

classes. At several stations in the Bay of Fundy in Canada, causal analysis 

suggested meiofaunal biomass spectra were a function of fine sand and the 

abundance of microalgal biomass (Schwinghamer, 1983). Duplisea and Hargrave 

(1996), also working in the Bay of Fundy, were unable to detect differences 

between meiobenthic biomass spectra along a gradient of sediment organic 



 

 155 

enrichment in the vicinity of a salmon aquaculture farm, suggesting that the 

additional organic material had limited effect. However in the deep sea, although 

nematode body size tends to decline with depth according to the body size 

miniaturisation hypothesis (Thiel, 1975), sites with increased food resources tend 

to have larger nematodes and higher biomasses in larger size classes than 

oligotrophic sites (Vanreusel et al., 1995; Sommer and Pfannkuche, 2000; Udalov 

et al., 2005; Kaariainen and Bett, 2006). 

 

Besides the availability of food, nematode biomass spectra may also be affected 

by sediment disturbance caused by sand extraction and trawling. On the 

Kwintebank off the coast of Belgium, at a high sand extraction station biomass 

peaked earlier in the spectra relative to unexploited sandbanks and areas with low 

sand extraction, although differences in spectra between stations were not 

significant (Vanaverbeke et al., 2003). These authors suggested the peak could be 

due to smaller species being more resilient to disturbances caused by sediment 

removal, resuspension and changes in overlying water currents, since smaller 

species show rapid growth and early reproduction and are often deemed 

‘colonisers’. Vanaverbeke et al. (2003) also found that biomass peaked at higher 

size classes at their Kwintebank gully station with limited extraction, and 

attributed this to the station having fine sediments with a median grain size of 171 

µm. This is in contrast to the present study which found biomass peaked at lower 

size classes in fine sands at habitat 1, and higher size classes in disturbed sands at 

3, 4 and 5. In the Baltic Sea, Duplisea and Drgas (1999) examined the complete 

metazoan size spectra across sites ranging from coarse sand to mud; however 

significant differences in spectra were found only over the smallest metazoan size 
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ranges corresponding to the meiofauna. In fine sediments biomass peaked at lower 

size classes than in the coarser sediments, in agreement with the results of the 

present study.  

 

Where biomass spectra have been utilised to examine the effects of trawling 

disturbance on meiofauna communities, and nematodes in particular, 

Schratzberger et al. (2002) showed that there were no short- to medium term (1 – 

392 days after trawling) impacts on nematode biomass or diversity, although 

community structure was slightly affected. These authors reasoned that 

nematodes, due to their small size, were likely resuspended by the benthic trawls 

and therefore suffered limited mortality; high turnover rates and short life cycles 

compensating for any short term negative effects. In contrast in the Aegean Sea, 

Lampadariou et al. (2005) found that 30 days after trawling most of the large 

nematodes were absent due to the disturbance at most sites studied. However this 

was not the case at their coarsest sediment site (median diameter 127 µm), a fact 

they could only relate to the size of the sediments.  

 

Interestingly, when the magnitude of difference in average median grain size (µm) 

between any two habitats is less than 130 µm, the respective spectra are not 

significantly different (apart from habitat combination 1 vs. 4: 340 – 210 = 130 

µm; see Chapter 3). This suggests that spectra from habitats with large differences 

in median grain size are more different to one another, whereas those with similar 

grain size are more similar. Nonetheless, while this study has shown that 

nematode biomass spectra from habitats of contrasting granulometry differed, the 

granulometry characteristics largely reflect the degree of exposure to currents and 
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waves. Despite the fact that grain size varied between habitats in this study, 

sediment disturbance caused by wave swash and bioturbation also varied. 

Although sediment disturbance was not quantified, sediment resuspension and 

bioturbation at a number of sites located close to the habitats in the present study 

have previously been evaluated by Aller and Dodge (1974). At their A5 station 

located in the vicinity of habitats 4 and 5, sediments were highly unstable due to 

intense bioturbation by Callianassa spp. and easily dispersed and resuspended by 

wave action (average 19 mg sediment cm-2 per day). In contrast, sediment 

resuspension was much lower at their B5 station (average 6 mg sediment cm-2 per 

day), which was located in close proximity to habitat 2. Furthermore, sediments at 

B5 were bound with benthic algae (supporting observations in Chapter 3), which 

helped to stabilise the sediments (Aller and Dodge, 1974; Miller et al., 1996). 

According to Gray (1981), sediments composed largely of particles around 180 

µm in size are the most stable of all, and occur where wave and current action are 

minimal. At habitat 1, average median grain size was 210 µm and there was 

limited bioturbation by epifauna and little sediment disturbance due to wave 

action. Therefore habitat 1 was deemed the most stable out of all habitats 

surveyed in the present study. Although it is acknowledged that grazing by 

spatangoid urchins and bioturbation by the abundant meiofauna community would 

tend to destabilise sediments at habitat 2, the high biomass of microphytobenthos 

would have an opposite, stabilising effect (Chapter 3 and Aller and Dodge, 1974; 

Miller  et al., 1996). Hence sediments at habitat 2 were also deemed relatively 

stable. Considering that habitat 3 was subject to intense wave swash, and that 

habitats 4 and 5 were intensely bioturbated, the differences in biomass spectra 
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could also possibly be explained by variations in natural disturbance at the various 

habitats.  

 

In the marine environment disturbances due to wave motion and bioturbation are 

key factors which influence the structure and dynamics of soft-sediment benthic 

communities (see reviews by Hall et al., 1994; Sousa, 2001). However NBS have 

not been specifically compared between habitats subjected to differing amounts of 

wave motion and bioturbation before. Yet since nematode biomass is significantly 

positively correlated with length, larger heavier (albeit only fractionally so) 

nematodes may be better adapted to withstand sediment instability in two ways: 

firstly they may be less delicate than smaller individuals and thus more able to 

withstand increased sediment movement, and secondly, due to their weight, it 

would take more energy to suspend them into the water column than lighter 

individuals. Obviously a key factor which small light benthic organisms have to 

contend with is living in sediments subjected to movement, resuspension and 

advective porewater flow. These factors would all tend to increase the passive 

incorporation of surface dwelling nematodes into the water column (see Palmer, 

1988; Boeckner et al., 2009). 

 

As mentioned above, Vanaverbeke et al. (2007b) recently reported finding longest 

average nematode lengths in sandbanks subjected to strong currents and suggested 

that the increased length probably prevents them from being eroded. In highly 

dynamic sediments, large body size and long cephalic setae are also suggested to 

help provide anchorage (see Warwick, 1971). Therefore, while food availability 

and sediment disturbance influence nematode abundance and biomass size 
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spectra, it is also suggested that spectra in the shallow lagoon at Discovery Bay 

are also influenced by localised hydrodynamics. Moreover, it is hypothesized that 

water flow over and through the benthos selectively removes smaller individuals. 

Furthermore, it is suggested that this effect is greatest in sediments subjected to 

disturbances caused by high wave swash and bioturbation, which result in high 

advective porewater flow due to high pressure gradients (Precht and Huettel, 

2003) and sediment resuspension (Aller and Dodge, 1974), respectively. 

Therefore, in order to more fully understand the causes of variation in nematode 

biomass spectra, the effect of hydrodynamics, bioturbation and sediment 

disturbance on nematode communities should be further studied. 

 

5.5. Summary 

Nematodes are increasingly being used to monitor the influence of natural and 

man-made disturbances on the marine environment. This study, conducted in a 

relatively pristine environment, revealed that different methodological approaches 

offer diverse insights into the relationships between the nematodes and the 

benthos. Differences in feeding groups, morphometry, and biomass spectra were 

found within the lagoon, however relationships with sediment characteristics and 

food resources were complex. Community metrics appeared to shift towards 

larger nematode lengths and higher biomasses at larger size classes as sediments 

shift from fine to coarse sand. While localised hydrodynamics largely cause 

observed grain size distributions, sediment stability and the potential for erosion 

of smaller individuals from sediments appears to be a plausible theory partly 

explaining the observed variations in morphometrics and size spectra within the 

lagoon. The observations in this study should therefore further enhance our 
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knowledge of the most abundant metazoan in the marine environment, while also 

allowing specific hypotheses to be constructed. The results presented can also 

provide baseline data from which to monitor natural change in nematode 

communities, as well as the effects of man-made disturbance on the benthos in the 

lagoon in the future. 
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6. SYNTHESIS AND CONCLUSIONS 

The overall aim of this thesis is to understand the spatio-temporal patterns in the 

benthos within the shallow west lagoon at Discovery Bay, in order to gain further 

insight into the ecology of meiofauna and microphytobenthos. As one of the best 

studied coral reef ecosystems in the world, it is surprising that so few 

investigations have been conducted on the soft-sediment lagoon benthos. Since 

meiofauna are imperative to the structure and functioning of marine ecosystems, 

and microphytobenthos are at the base of soft-sediment food chains, this 

mensurative thesis aimed to investigate patterns in meiofauna and 

microphytobenthos in characteristic habitats within the shallow lagoon. 

 

6.1. Aim 1: To characterise the sediment granulometry of five characteristic 

and visibly different habitats within the shallow lagoon 

 

As a prerequisite to any benthic sampling campaign, the sediment characteristics 

of the study areas were assessed. These included sediment particle size 

distributions and derived granulometric statistics. Although sediments within 

seagrass beds were not examined, the habitats selected encompassed a range that 

were typical for the shallow lagoon. These included flat white fine sands in a 

sheltered area to coarse sands at a site bordering the backreef subject to wave 

break. Grey enriched medium sands of increased productivity midway between 

the reef crest and land were also surveyed, as were two topographically-complex 

thalassinid shrimp mound habitats, one shallow and the other slightly deeper both 

with increased proportions of fine particles. 
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Among the study sites there was a large degree of variation in the univariate 

physical characteristics of the benthos, yet the multivariate analyses effectively 

separated the stations into discrete habitats, confirming initial visual observations. 

Hence the first aim of this study was successfully completed.  

 

6.2. Aim 2: To assess the spatial and temporal variation in 

microphytobenthos within the shallow lagoon 

 

In soft-sediment habitats microphytobenthos is at the base of the food chain, 

stabilises sediments, and plays a large role in nutrient cycles. Assessment of 

microphytobenthos is therefore a fundamental precursor to the many processes 

driven by microphytobenthic primary production. However until the present study 

was conducted, microphytobenthos in the west lagoon had never been assessed 

before.  

 

The biomass of microphytobenthos within the 5 habitats compared favourably 

with other tropical lagoon systems. In agreement with the literature, biomass was 

extremely patchy over small spatial distances, with most of the variation attributed 

to the plot scale. While average biomass was similar between most habitats, 

elevated levels were consistently found at habitat 2 over 3 sampling events during 

the study period. Between 1995 and 1996, surveys conducted within the main bay 

showed that sites in deeper waters and those situated around the south west of the 

bay were richer in nitrate, possibly due to a lack of proper sewage treatment 

systems and the wide-spread use of soak-away pits in the local vicinity (Webber et 

al., 2005). While the influence of in situ decomposition was not mentioned, the 
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deep main bay acts as a sink for particulate detritus wafting in from reefs situated 

north east of the lagoon. It is therefore plausible that this area is also a source of 

recycled nutrients. Consequently, the elevated biomass at H2 was explained by the 

large body of water that travels over that habitat, supplying nutrients derived from 

both anthropogenic sources as well as the mineralisation of detritus deposited in 

the main bay.  

 

Considering the abundance of meiofauna at H2, the elevated biomass of 

microphytobenthos almost certainly had an effect on the sediment communities. 

Furthermore, deposit feeding heart urchins were attracted to the area and 

consumed the rich sediment deposits. As heart urchins burrow they release 

trapped nutrients, enhance the flux of oxygen into the sediments further 

stimulating microbial decomposition and remineralisation, and provide a source of 

excretory ammonium (Lohrer et al., 2004; Lohrer et al., 2005; Vopel et al., 2007). 

These factors combined further enhance microalgal production. High numbers of 

deposit- and epigrowth feeding nematodes, as well as presumably many grazing 

and bacteria-consuming copepods, were most likely sustained both directly by the 

microphytobenthos itself, and indirectly due to breakdown products, exudates and 

it’s effect on the microbial web. Like the heart urchins, nitrogenous excretion by 

the high density of meiofauna (Gray, 1985) also enhances benthic primary 

production helping to maintain the high levels of benthic microphyte biomass 

over time at habitat 2. 
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6.3. Aim 3: Assess the spatial variation in meiobenthos within the shallow 

lagoon 

 

Total meiofaunal abundance was in line with many other studies from similar 

habitats. Accordingly, nematodes dominated the meiofauna with copepods 

coming second. A total of 22 higher taxa were recorded, of which 6 (nematodes, 

copepods, turbellarians, polychaetes, oligochaetes and ostracods) contributed 

more than 1% to total abundance. 

 

The distribution of common taxa was heterogeneous within the lagoon, and the 

structure of the communities clearly differed between habitats. As mentioned 

already, the high biomass of microphytobenthos at habitat 2 appeared to have a 

positive effect, either directly or indirectly, on the abundance of nematodes and 

copepods whose abundances were highest there. Variance components revealed 

that the proportion of variation was greatest at the smallest spatial scales, 

confirming the patchy nature of meiofauna communities. 

 

Unfortunately biotic and abotic samples were not paired with one another at the 

time of sampling. Therefore attempts to correlate or match the patterns in faunal 

distributions to the benthos using the complete data matrix were prevented. 

Efforts were therefore made to indirectly match the variation in spatial patterns by 

plotting average Euclidean distances (sediment) and Bray-Curtis dissimilarities 

(meiofauna) for each spatial scale against one another. This was done to see if the 

fauna varied at similar spatial scales to that of the sediment granulometry 

parameters. However only habitat 2 showed a similar pattern of change in the 
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magnitude of the two indices at the different spatial scales. This suggests that, for 

the most part, the meiofauna were not responding directly to the variation in the 

measured sediment characteristics, and implies that other factors were most likely 

interacting to cause observed spatial distributions. This is not surprising 

considering the whole host of other factors besides sediment granulometry which 

influence patterns in the distribution of benthic organisms, such as predation, 

competition and sediment biogeochemical properties. 

 

6.4. Aim 4: Examine nematode feeding groups among habitats in order to test 

hypotheses that different groups have affinities for certain benthic conditions 

 

Based on visual observations of accumulated macroalgal and seagrass detritus at 

H4 and H5, as well as the fact that sediments in lagoons colonised by thalassinid 

shrimps are usually enriched with detritus and organic matter, it was hypothesized 

that non-selective deposit feeding nematodes would dominate at habitats 4 and 5. 

This was indeed correct and the relative abundance of this group was significantly 

higher than the rest. Non-selective deposit feeders also dominated at H1 in the 

fine clean sands perhaps due to it being a stable environment with high microbial 

resources. Additionally, epigrowth feeders were hypothesized to dominate where 

the biomass of microphytobenthos was highest. However this hypothesis was 

rejected since no particular group dominated at habitat 2. Deposit feeders, 

however, were most numerous, probably because of the varied range of sizes and 

types of food items that these two groups can consume. While it was apparent that 

different groups had affinities for particular habitats, the minimum relative 

proportion of any feeding group was ~ 15%, thus to some degree all groups were 
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represented at each habitat. This was confirmed by the high index of trophic 

diversity at each habitat. 

 

6.5. Aim 5: Examine nematode body size and biomass spectra from 

communities subjected to different sediment conditions and forms of natural 

disturbance. 

 

Differences in nematode lengths were found between habitats although widths 

were more homogeneous. Nematode lengths were shortest in the more stable 

habitats H1 and H2, longer in the bioturbated habitats H4 and H5, and longest at 

H3 in coarse sediments subject to wave swash. While these differences could have 

been due to variations in the age structure and species composition of the 

communities, it is argued that length conveys advantages towards stability within 

the sediment and erosion from it regardless. Frequency distributions of L/W ratios 

documented the shift in nematode size among the habitats, and revealed the 

disappearance of the plump morphotype group of nematodes at the wave disturbed 

habitat 3. Due to the high wave swash at H3, deposition of detritus is decreased 

there and high advective pore water flow likely removes much of the particulate 

organic matter and also many of the smaller nematode individuals from the 

sediments. Hence the longer size is possibly a two-fold response to erosive 

hydrodynamic forces and lowered food quantity and/or quality; nematodes from 

food poor environments being hypothesized to have increased L/W ratios in order 

to maximise assimilation efficiency of available food resources (Soetaert et al., 

2002; Tita et al., 1999).  
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For the first time nematode abundance and biomass spectra were constructed for a 

coral reef environment, and significant differences in biomass spectra between 

habitats of contrasting sediment grain sizes were found. In disturbed sediments 

spectra shifted towards larger size classes and spectra peaks were recorded at 

higher biomasses. These results were in contrast to several published reports of 

disturbance due to trawling and sand extraction. The reasons for this are not 

entirely clear, but may suggest a differential response of nematode morphometrics 

to levels of natural compared to anthropogenically induced disturbances. 

Nevertheless, it is hypothesized that larger nematodes, which are also longer 

individuals, are better adapted to natural disturbance caused by waves and 

bioturbation. This may be due to being physically stronger, more able to resist 

erosion, or simply since they are heavier (although marginally so) and therefore 

not as likely to be entrained into the water column. 

 

6.6. Discussion of methodology 

Although this study showed that there were no temporal differences in the 

biomass of microphytobenthos between dates, variability in microphytobenthos 

over small times scales in the order of days is known. In order to show that there 

were indeed no significant differences (or significant differences, for that matter) 

between dates a few weeks apart, replication of the sampling unit, i.e. time, is 

needed (Underwood, 1997). Without this extra level of sampling the findings are, 

in effect, spatial ones since there is no temporal replication to unconfound 

variability at the 3 weekly time scale from that which could, and most likely, 

occurred at faster intervals (Underwood, 1997). In the present study replication of 

the temporal sampling unit was not undertaken due to the massive additional 
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amount of sampling effort that would have been needed, considering the high 

resolution of the spatial sampling design. This a possible criticism of the temporal 

sampling design used in this study. 

 

Regarding the spatially nested sampling design, it should also be mentioned that 

the possibility arose for sites nested within habitats, as well as for plots within a 

site to be adjacent to one another. Although the positioning of sites within a 

habitat were never contiguous, it cannot be remembered if plots within a site ever 

were. If they had been, the assumption of independence of sampling units would 

have been violated. If so, it is recognised that variation at the residual scale would 

not have been able to be separated from variation at the plot scale in the 

proceeding nested Analysis of Variance (Underwood, 1997). In hindsight, 

replicates at all nested scales should have been assigned to positions within the 

relative habitat under the constraint that replicate units could not be contiguous. 

This would have alleviated the possibility of lack of independence in sampling 

units if plot samples had been contiguous to one another. Nevertheless, it is not 

possible to correct for this after the event and therefore the analysis was run as 

planned. The consequence of this is that, if plots had been assigned to contiguous 

positions depending on the random number generation sequence, residual 

variation would be confounded by variation at the scale of plots. 

 

As discussed by Udalov et al. (2005), there are a number of sources of error, 

including preservation effects, weight calculations determined by different 

gravimetric and volumetric methodology, as well as conversion factors which one 

should be cautious of when making comparisons between biomasses of 
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meiofauna. In the present study a 40% conversion factor of dry weight to carbon 

biomass has been used in line with the majority of studies in the literature. 

Nonetheless, empirical determinations have suggested a dry mass to carbon 

conversion factor of 51.4% is more appropriate (Baguley et al., 2004). This would 

tend to increase the figure  calculated for carbon biomass of nematodes within the 

lagoon. Likewise, the 63 µm mesh aperture used for the separation of meiofauna 

from sediments would undoubtedly allow some of the smallest metazoans to pass 

through, thus underestimating the densities reported herein.  

 

The number of measurements on nematodes from each habitat was equal (50 per 

sample, n=24, 1200 nematodes measured per habitat), yet absolute abundance 

among habitats varied. In order to obtain more accurate biomass spectra data, 

either all nematodes should be measured, or if this is not possible the number 

measured should be stratified so that the same proportion from each habitat is 

assessed. 

 

6.7. Suggestions for further work 

i) Meoma ventricosa are easily collected in the field, due to their size, tracks and 

surface burrowing lifestyle. In situ enclosure experiments could be conducted at 

habitat 2 to assess the effects of different densities of M. ventricosa on the 

biomass and production of microphytobenthos, the abundance and diversity of the 

meiofaunal community, and nematode feeding groups, morphometry and biomass 

spectra. 
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ii) Stable isotope analysis of flora, fauna and sediments would help to unravel the 

complicated interactions and trophic relationships between the different benthic 

compartments. In particular, the δ13C and δ15N isotopic compositions of selective 

nematode and copepod species could be used to assess the relative importance of 

different food sources. 

 

iii) In order to test whether nematode length helps prevent against erosion from 

sediments, laboratory flume experiments could be conducted at different flow 

speeds and with natural sediments of varying median grain sizes (e.g. Gamenick 

and Giere, 1994). Morphometric analysis of organisms in sediments and the water 

column over a range of flow speeds would help to confirm the hypothesis that 

longer nematodes are better adapted to resist erosion from sediments. In situ 

experiments using suitable baffles to limit current speed and advective pore water 

flow, and cages to exclude thalassinid shrimps, would also help to understand the 

relationship between hydrodynamics, bioturbation and nematode morphometrics. 

 

6.8. Concluding remarks 

It is believed that this mensurative thesis has laid the groundwork for future 

studies on the benthic meiofauna and microphytobenthos in the shallow west 

lagoon at Discovery Bay. In light of the fact that shallow lagoon and bay 

ecosystems are currently under threat due to the effects of man, the observations 

and results contained within this thesis will surely be of help in the design of 

future monitoring protocols and ecological experiments.  
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