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Abstract 
 
 
A novel Fpr2-/- mouse colony was used to explore the biology of Fpr2, a GPCR 

related to the human FPR2/ALX receptor that recognises lipoxin A4 (LXA4) 

annexin A1 (AnxA1) and serum amyloid A (SAA). Southern blotting, PCR and 

radio-ligand binding confirmed receptor deletion in the mouse Fpr2-/- colony.  

 

A GFP target/reporter strategy was employed in generating this novel transgenic 

to monitor promoter activity in living cells. This study revealed a propensity of 

Fpr2 for granulocytes, as well as a distinct role in macrophage (Mφ) maturation.  

Characterisation of Fpr2-/- Mφ revealed selective ERK phosphorylation triggered 

by the AnxA1-derived peptide Ac2-26, W peptide and Compound 43 (C43). 

Despite this Fpr-dependent signalling cascade via ERK, it was not a functional 

prognostic for cell migration in vitro or in vivo. Formyl peptide (fMLP) and serum 

amyloid A (SAA) chemotactic action was attenuated in Fpr2-/- Mφ, as well as the 

pro-phagocytic effects of Ac2-26 and LXA4. 

  

There was no observable naïve phenotype associated with Fpr2 depletion. To 

investigate the patho-physiology of Fpr2, acute and chronic inflammatory models 

were investigated in vivo to dissect different aspects of the receptor during 

disease progression. Notably Fpr2-/- mice exhibited stimulus specific 

discrepancies in inflammatory response. An acute IL-1β-induced air pouch model 
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revealed predominantly anti-migratory pharmacology of Fpr2 ligands, with a 

notable exception of SAA, discovered to be anti-migratory in the absence of Fpr2. 

Analysis of the full time-course of the zymosan peritonitis pointed to a subtle role 

for Fpr2 in neutrophil and monocyte migration as well as Mφ maturation. Of 

interest, exudate levels of SAA were augmented in Fpr2-/- mice revealing complex 

regulatory receptor/ligand circuits active during on-going inflammatory reactions. 

Finally, Fpr2-/- mice displayed pronounced arthritic responses upon treatment with 

the K/BxN arthrogenic serum, in comparison to their wild type controls. We 

conclude that Fpr2 can serve varied regulatory functions during the host response 

to inflammatory insult.  
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1.1 Inflammation 

 

To introduce such a complex and wide-ranging subject I will begin this thesis 

with a contemporary definition of inflammation: 

 

inflammation n. Acute inflammation is the immediate defensive reaction of 

tissue to any injury, which may be caused by infection, chemicals, or physical 

agents. It involves pain, heat, redness, swelling, and loss of function of the 

affected part. Blood vessels near the site of injury are dilated, so that blood 

flow is locally increased. White blood cells enter the tissue and begin to engulf 

bacteria and other foreign particles. Similar cells from the tissues remove and 

consume the dead cells, sometimes with the production of pus, enabling the 

process of healing to commence. In certain circumstances healing does not 

occur and chronic inflammation ensues. Concise Medical Dictionary. Oxford 

University Press, 2007 

 

1.1.1 A brief history of inflammation 

 

The first recorded observation of the inflammatory process in human 

pathology was first categorised by Greek philosophers, such as Aristotle, who 

suggested that disease was an imbalance of the four humours; earth, fire, wet 

and cold. This theory was further expanded by Cornelius Celsus, a medical 

writer of first century A.D., who suggested cardinal signs of inflammation 

designated heat, redness, swelling and pain succinctly summarised by its 
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strict translation from latin, inflammare; to set fire (Scott et al., 2004). A 19th 

century pathologist Rudolf Virchow added a fifth and final attribute termed loss 

of function, anthropomorphised below by five roman characters (Figure 1.1).  

 

 

 

 

 

 

 

 

  

 

Figure. 1.1. Cartoon illustrating the five well characterised symptoms of the 
inflammatory process. This depiction was originally commissioned by Professor D 
Willoughby and Professor W Spector at the Medical illustration department, St. 
Bartholomew’s Medical College.  
 

This rudimentary appreciation for the complex processes of inflammation was 

revolutionised by William Harvey (1578-1657) who first described the 

circulatory system in accurate detail (Singer, 1928). This huge leap in 

anatomical understanding became the foundation of modern physiology and 

medical rational, subsequently leading to considerable scientific progression, 

which closely paralleled technological advances in microscopy. Pragmatists 

such as Rudolph Virchow (1821-1902) and Julius Cohnheim (1839-1884) 

applied these analytical techniques to investigate the constituents of blood 
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and pus identifying both the presence leukocytes and the roles they might 

play in shaping inflammatory processes. 

 

1.2 Immunological processes of inflammation 

 

The biology of mammalian inflammation is composed of two distinct 

mechanisms termed innate and acquired or adaptive immunity. The 

prevalence of each arm of immunity is dependent on disease pathology, 

genetics and environmental stimuli. Therefore for practicality and simplicity I 

will describe immune responses attributed to a spontaneously resolving 

pathology used experimentally throughout my thesis (Figure 1.2). 

 

The overall inflammatory process can be compartmentalised into three 

phases; onset, transition and resolution. The initial response in the onset 

phase is orchestrated by the release of inflammatory mediators from both 

local tissue and resident cells. This induces leukocyte migration to the site of 

inflammation, which peaks during the transition phase. Finally the balance of 

pro-resolution mediators outweighs the pro-inflammatory, resulting in 

clearance of apoptotic cells and pathogens by phagocytosis. This tightly 

regulated sequence of events acts to re-establishing tissue homeostasis, 

however dys-regulation of any given phase can lead to chronic inflammation 

and potentially result in disease pathologies (Figure 1.2).  
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Figure 1.2 A schematic of a classical acute inflammatory time-course. The inflammatory 
process follows some very generic mechanistic profiles consisting of three discernable 
phases. The ‘onset phase’ characterised by release of inflammatory mediators and rapid 
influx of granulocytes (PMN). The ‘transition’ from pro- to anti-inflammatory is orchestrated by 
the infiltration of monocytes and subsequent differentiation towards macrophages. Clearance 
of apoptotic leukocytes and inflamogens by phagocytic cells are the main hallmarks of the 
‘resolution phase’. The disregulation of either the onset/acute phase or an inability to actively 
clear inflamogens can lead to chronic inflammation and potentially disease pathologies. 
Adapted from (Serhan et al., 2007).      

 

1.2.1 Innate Immunity 

 

The innate immune system is an ancient evolutionary trait that is present in 

the majority of multi-cellular organisms. The acute response can be provoked 

by a myriad of stimuli including physical injury, infection, ischemia, auto-

antibodies and thermal exposure. Each stimulus evokes a characteristic 

pattern of responses, for example bacterial or viral pathogens are recognised 

by pathogen-associated molecular patterns (PAMPs) to provoke the ‘classical’ 

inflammatory cascade described. 
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1.2.1.1 Inflammatory mediators 
 

There is a multitude of inflammatory mediators involved in the initiation of any 

given inflammatory cascade, many beyond the scope of this thesis. Among 

the most documented are kinins, lipid-derived eicosanoids (prostaglandins 

and leukotrienes), cytokines, acute phase proteins and complement pathway.  

 

The inflammation cartoon (Figure 1.1) illustrates symptomatic characteristics 

of distinct aspect of inflammation that can be attributed to a particular process 

in this cascade. The onset phase begins within seconds with pain and 

swelling, often the most immediate reaction, to inflammatory insult (Figure 

1.2). Pre-stored mediators such as histamine, tumor necrosis factor-α (TNF-α) 

and rapidly synthesised platelet-activating factor (PAF), are released by 

damaged tissue and resident leukocytes, particularly mast cells, initiating a 

broad cascade of local and systemic responses.   

 

Pain is predominantly mediated by kinins, e.g bradykinin, rapidly cleaved from 

precursor protein in the plasma and act on the BK receptor (Cortright et al., 

2004). The resultant local release of neuropeptides, e.g. substance P and 

calcitonin gene-related peptide, from small diameter sensory neurons are 

prominent mediators linking nociception and neurogenic inflammation 

(Richardson et al., 2002). This pathway is extenuated in a cumulative manner 

by synthesis of prostaglandins (PG) inducing potent hyperalgesia (Higgs, 

1980). The complex roles of pain, both nociceptive and more recently 

neuropathic pathways, in acute and chronic pathologies are still to be fully 

elucidated (Couture et al., 2001).  
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This initial unpleasant reaction is quickly followed by vasodilatation, induced 

largely by histamine, PG and PAF, resulting in heat and redness as blood flow 

to the site of inflammation and cell metabolism increase. Vasodilation and 

activation of vascular endothelium encourage vascular permeability, allowing 

the tissue to become permissive to vascular fluid (oedema; swelling) and 

infiltrating leukocytes. There are complex interplay between cellular activation 

by inflammatory mediators and more specific cytokines and chemokines that 

allow homing of circulating leukocytes to the site of inflammation (Okayama et 

al., 2006).  

 

1.2.1.2 Leukocyte Migration 
 

The migration of leukocytes is an exquisitely regulated process, which despite 

extensive study is still not fully characterised. In this hypothetic model of 

transmigration, there are three protagonists; resident/tissue specific cells, 

endothelial cells (EC), and circulating cells. Each population orchestrate the 

overall process in sequentially fashion culminating in leukocyte influx.    

 

Resident cells, both leukocytes and lymphocytes, respond to locally released 

chemical mediators by secreting a number of chemoattractant factors 

(Ajuebor et al., 1999) crucial for the homing of circulating leukocytes from 

peripheral blood.  Inflammatory mediators, such as PG and PAF, are potent 

activators of the vascular endothelium inducing selective up-regulation of 

selectins, integrins and junctional adhesion molecules (JAMs). Each 
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molecular plays a distinct role during leukocyte migration being prevalent 

mediators of leukocyte rolling, adhesion, and diapedesis respectively (Figure 

1.3). 

 

Leukocyte rolling is regulated by selectin expression on both circulating 

leukocytes, termed L-selectin, and inflamed vascular EC, E- and P-selectin. 

During non-inflammatory condition leukocytes instigate frequent and transient 

interactions with the endothelium, predominantly via L-selectin, with very high 

on-/off- rates allowing the leukocyte to survey the vasculature for further 

activation markers, such as chemokines and integrins. Selectins preferentially 

bind glycosylated ligands; during inflammation P-selectin glycoprotein ligand-1 

(PSGL-1) plays a dominant role in capture and rolling as a ligand for all three 

selectins (Ley et al., 2007).  
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Figure 1.3 Leukocyte migration cascade. Following an inflammatory stimulus there is a 
well-characterised sequential response by both EC and circulating leukocytes. Rolling is 
largely mediated by L-selectin, expressed by leukocytes, and E- and P-selectin, expressed on 
inflamed EC, which bind corresponding glycoproteins. The activation of leukocytes, 
particularly via inside-out signalling of chemokines, results in integrin expression and 
activation inducing firm adhesion to the EC. Finally conformational changes of the leukocyte 
and interactions of JAMs and CAMs permit diapedesis of leukocytes. Adapted from Walzog et 
al. (2000).  

      
Chemokines, a name derived from chemo(tactic cyto)kines e.g IL-8, are 

involved in both recruiting leukocytes from the periphery and local activation 

of migrating leukocytes. This secondary process of activation ‘fine-tune’ the 

positioning of a rolling leukocyte on the endothelium by inducing inside-out 

signalling (Abram et al., 2009), resulting in rapid modulation of integrin affinity 

such as lymphocyte function-associated antigen 1 (LFA1) and very-late 

antigen 4 (VLA4) (Figure 1.3). These integrins recognise cell adhesion 

molecules (CAMs) on the EC surface to induce firm adhesion to a particular 

site on the endothelium. 
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Diapedesis of the activated leukocyte across the endothelium is the final step 

in the cascade prior to reaching the site of inflammatory insult. This is a 

relatively young field of great interest and complexity. It has been revealed 

that a number of conformational changes by both the migrating leukocyte and 

EC are required for diapedesis to occur. Although the specific processes are 

under debate integrins and an emerging family of JAMs play considerable 

roles in mediating this fnal step of egression (Ley et al., 2007). 

 

In this hypothetical model (Figure 1.2) circulating polymorphonuclear (PMN) 

cells, neutrophils, basophils and eosinophils, are the first leukocytes to 

respond to the cascade of inflammatory mediators. Neutrophils, the most 

abundant of the PMN, are matured within bone marrow prior to being released 

into the circulation. They have a short lifespan, from 7 h up to 2 days during 

disease pathology, can be rapidly mobilised during stress, accumulating at the 

site of inflammation within the first hours of insult (Smith, 1994). 

 

Neutrophils contain numerous cytosolic granules containing proteases, 

cathepsin and elastase (Witko-Sarsat et al., 2000). PMN infiltrate therefore 

has gained a notorious reputation for mediating a non-specific and over-

zealous response, thought to be potentially detrimental to resolution. This 

notion is mistaken with PMN shown, by depletion (Smith, 1994), to play an 

essential role in stemming systemic inflammation, infection and chronic 

disease (Nathan, 2006a). Neutrophils are capable of phagocytosis and 

processing antigen by multiple receptors, which both direct the cell towards 
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apoptosis for engulfment by phagocytes (Haslett et al., 1994; Section 1.2.1.3), 

and also shape the release of cytokines and chemokines to regulate the 

inflammatory response (Kantari et al., 2008).   

 
Following the initial neutrophil influx, described above, mononuclear cells, 

monocytes and lymphocytes, begin to migrate to the site of inflammation, 

resulting in a peak of infiltrating cell numbers through the transition phase 

(Figure 1.2).  

 

Monocytes act to strengthen the host inflammatory response and as an 

inflammatory ‘checkpoint’ determining the magnitude and duration of the 

response (Serhan et al., 2007). This immunological switch from PMN to 

mononuclear cells bridge the initial pro-inflammatory host response with the 

initiation of pro-resolution mediators and leukocyte phenotypes, contributing to 

clearance, tissue remodelling and repair. Infiltrating monocytes are particularly 

important through their ability to differentiate to professional antigen 

presenting cells (APC), such as macrophage (Mφ) or dendritic cell (DC) 

phenotypes (Gordon et al., 2005).  

 

1.2.1.3 Clearance and phagocytosis 
 

The implication of the resolution phase as an active process is an emerging 

concept that will be one of the themes of my thesis. Recent studies have 

revealed that numerous endogenous mediators instigate a wide range of 

processes, from preventing leukocyte migration to inducing apoptosis and 
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phagocytosis. In this particular model the predominant process to re-establish 

tissue homeostasis is via the apopto-phagocytosis system (Majai et al., 2006).  

 

There are two characteristic pathways for cell death termed apoptosis and 

necrosis. Necrosis occurs as a response to extreme environmental changes, 

such as hypoxia or as a result of membrane damage. Subsequently the cells 

lose membrane integrity and release their cellular contents leading to the 

initiation of inflammatory machinery (Haslett et al., 1994). 

 

Programmed cell death, apoptosis, occurs under normal physiological 

conditions with underling roles in cellular turnover and tissue homeostasis. It 

is therefore a key feature of inflammation to promote apoptosis of activated 

leukocytes to prevent excessive tissue damage (Majai et al., 2006). During 

the transition phase, PMN undergo programmed cell death following ingestion 

of pathogen, up-regulation of pro-apoptotic signals e.g Fas-L (Kantari et al., 

2008) or the lack of pro-survival signalling such as ERK-1/2 (Sawatzky et al., 

2006). This leads to the exposure of ‘eat-me’ markers on the apoptotic cell 

surface, notably phosphatidylserine (PS), which facilitate recognition by Mφ.  

  

Phagocytosis is triggered by simultaneous interaction of multiple receptors, 

including Fcγ, complement, scavenger and pattern-recognition receptors 

(Section 1.3) to recognise pathogens and apoptotic cells. To counter-regulate 

these processes ‘don’t eat me’ markers have also been identified, notably 

CD31 and CD47, that prevent the engulfment of viable cells by Mφ (Kantari et 

al., 2008). Phagocytic Mφ not only ingest inflammogens and apoptic 
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leukocytes but are also capable of producing cytokines, such as IL-6, IL-10, 

TGF-β (Scannell et al., 2007). IL-6 is a particularly important immunological 

switch integrating the innate and adaptive immunology (Jones, 2005), a notion 

that has lead to the definition of pro-resolving mediators (Serhan et al., 2008). 

The concept of pro-resolving mediators is a contemporary term largely 

prescribed to the pharmacology of a potent family of lipid mediators derived 

from arachidonic acid (Flower et al., 2005). Lipoxins (Section 1.5.2.1) and 

PGD2 are among the current members to be characterised in their ability to 

regulate leukocyte recruitment, stimulate apoptosis of PMN and increase 

phagocytic capacity of Mφ (Schwab et al., 2006). 

 

Both Mφ reprogramming and the derivation of regulatory DC produce an anti-

inflammatory environment prominent in the final stages of resolution. They are 

an important link between innate and adaptive immunity with Mφ shown to 

migrate to draining lymph nodes (dLN) to instigate antigen (Ag) presentation 

and the priming of the adaptive immune response (Bellingan et al., 1996). 

 

Poignantly, the dys-regulation of any of these phases or ‘checkpoints’ can 

lead to more chronic pathologies, responsible for the fifth and final 

characteristic of inflammation, loss of function, where persistent inflammation 

and remodelling of the affected tissue renders it incompetent (e.g chronic 

obstructive pulmonary disorder (COPD) (Rennard, 1999). 
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1.2.2 Adaptive Immunity 

 

The importance of adaptive immunity was first characterised by Edward 

Jenner (1749-1826) who detailed the ability of cowpox to protect milkmaids 

form the more virulent and deadly smallpox virus. The idea of vaccination has 

since been arguably the single most successful improvement in medical care, 

and to the credit and testament of Jenner, smallpox was eradicated in 1980 

(Akira, 2009).  

 

The ability of the human body to recognise and effectively clear repeated 

insult by antigens on demand is an evolutionary trait that has become integral 

to mammalian biology. Very briefly, a foreign antigen is presented to T-

lymphocytes by APC such as DC or Mφ, inducing both the proliferation of 

effector T-cells, acting immediately at the site of insult, and developing T-

memory cells which have the ability to rapidly respond to a secondary insult of 

a given antigen. Although adaptive immunity is an intricate part of any disease 

pathogenesis I will not dwell on the multitude of mechanisms involved, as the 

adaptive arm involved in this hypothetical inflammatory scenario investigated 

is fairly restricted.   

 

In a resolving model of inflammation resident adaptive immune cells, T/B 

cells, act to modulate the influx of PMN to the site of insult by the production 

of cytokines. As alluded to in the case of resident Mφ, T/B cells migrate to dLN 

before the repopulation of the inflammatory site by natural killer cells (NK), γ/δ 

T-cells and memory (CD4+/CD25+) T-cells during the resolution phase 
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(Rajakariar et al., 2008). Notably, the inflammatory process in not 

autonomous, in lymphocyte-deficient (RAG-/-) mice there is disregulation of 

the onset phase although no significant influence on the development on the 

resolution phase (Rajakariar et al., 2008). 

 

Both aspects of the inflammatory process are clearly entwined and therefore 

the ability of innate and adaptive immunity to induce a coordinated and 

integrated response is the key to the pathogenesis and resolution of complex 

disease pathology.    

 

1.3 Pharmacology of acute inflammation; Pattern Recognition 

 

As mentioned in Section 1.2.1 the processes of inflammation are stimulus 

specific, with a wide variety of environmental stress factors inducing ancient, 

pre-determined pharmacological cascades. Over the last two decades 

considerable research has been invested in the distinct pharmacology 

associated with PAMPs.  

 

These highly conserved sequences, ranging from bacteria and viral 

pathogens to nucleic acids of foreign origin, are recognised by pattern 

recognition receptors (PRR). There are two major classes of PRR termed 

signalling and endocytic (Jeannin et al., 2008). 
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1.3.1 Endocytic pattern recognition receptors 

 

Endocytic PRRs are so called for their shared characteristics, promoting 

attachment, engulfment and destruction of pathogens. As the name would 

suggest they are found predominantly on the surface of phagocytes and 

largely consist of scavenger receptors and mannose-binding receptors, which 

bind carbohydrates expressed on the surface of pathogens and infected cells.  

 

1.3.2 Signalling pattern recognition receptors 

 

A signalling PRR is classified as transducing an innate or adaptive immune 

response by the production of inflammatory mediators such as cytokines. 

There are three receptor families that have been identified termed nucleotide-

binding oligomerization domain (NOD)-like receptors (NLR), Toll-like 

receptors (TLR) and formyl-peptide receptors (FPR).  

 

The NLR are a family of cytoplasmic proteins that are able to form oligomers, 

as there nomenclature suggests, which activate capases, for example 

caspase-1 which is important in the formation of the inflammasone, and 

nuclear domains such as NF-κB (Mathews et al., 2008). 

 

The TLR family was famously first discovered in Drosophila before being 

identified in mammals in 1997 by Medzhitov (Akira, 2009). Our understanding 

of the pharmacology of inflammation has significantly benefited from this 

discovery of TLR signalling, notably their ability to form either homo- (TLR4) 
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or hetro- (TLR2/TLR6) dimers in order to produce functional receptors. The 

TLR family is currently thought to consist of up to 15 membrane-bound 

receptors, which have a wide, but distinct expression pattern and are capable 

of recognising an ever increasing array of ligands.   

 

Finally the FPR seven transmembrane G-protein coupled receptor family is an 

emerging class of PRR. It was initially termed an endocytic PRR, however 

extensive investigation in vitro and in vivo (Le et al., 2001b), including within 

my thesis, have revealed significant roles for FPR family signalling in shaping 

the immune response. Possibly the most convincing observation that FPR1-/- 

mice were more susceptible to Listeria monocytogenes infection than WT 

mice in vivo (Gao et al., 1999), underlines FPRs role in host defence through 

pattern recognition. Recently, N-formyl-peptides from Listeria monocytogenes 

and Staphylococcus aureus were also shown to signal via the FPR family 

(Southgate et al., 2008). Furthermore both NOD2 and TLR-2 have been 

shown to up-regulate the expression of Fpr2 in murine microglial cells 

reinforcing the inclusion of FPR as a PRR (Chen et al., 2008). 

 

1.4 Formyl-Peptide Receptor Family (FPRs) 

 

The FPR receptor family was extensively characterised throughout the 1980’s 

as G-protein coupled receptors (GPCR) via pertussis toxin sensitivity; 

specifically attributed to Gi protein coupling (Lavigne et al., 2002). The human 

family was successfully cloned in the in 1990 (Boulay et al., 1990) with three 

genes encoding FPR1, FPR2/ALX and FPR3 clustered on chromosome 
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19q13.3. The FPR has significant evolutionary divergence across mammalian 

species with differential gene expansion particularly notable in the mouse 

(Gao et al., 1998). The murine Fpr gene family is located on chromosome 17 

and consists of seven members. There are two direct orthologs between 

human and mouse with FPR1 and FPR2/ALX represented by fpr1 and fpr2 

respectively (Figure 1.4). Despite close homology between the human and 

murine receptors, sharing almost identical intracellular domains, murine Fpr1 

has approximately a 100-fold reduction in affinity for the prototype formyl 

peptide fMLF (Gao et al., 1993). 

 

FPR1 and FPR2/ALX have been shown to have very similar cellular 

distribution with expression on PMN and mononuclear cells (both myeloid and 

lymphocytes). This profile is mirrored by the murine orthologs, suggesting 

they may share physiological roles across species (Fu et al., 2006). 

Interestingly there is evidence suggest divergent evolution has occurred 

between FPR1 and FPR2/ALX. To date seven common FPR1 

polymorphisms, two associated with juvenile periodontitis, have been 

identified whereas only one FPR2/ALX haplotype could be found (Sahagun-

Ruiz et al., 2001).  

 

The third human receptor, FPR3, is the least characterised of the family and 

has no current ortholog in the mouse. This receptor is not expressed by 

neutrophils but is found on monocytes and DC. Interestingly FPR1 and FPR3 

are expressed by immature DC, however only FPR3 is retained on mature DC 

(Devosse et al., 2009). FPR3 is unusual as it is unable to respond to 
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formylated peptides and currently only has one high affinity endogenous 

ligand, a peptide termed F2L, derived from a heme-binding protein. In the 

human and mouse there is a degree of functional cross-over between FPR3, 

FPR2/ALX and Fpr2 respectively (Gao et al., 2007).  

 

The further five members of the mouse Fpr family are found in a third distinct 

cluster (Figure 1.4) and remain orphan receptors. Like FPR3 they do not 

respond to formylated peptide and have unusual expression patterns e.g fpr-

rs3 on skeletal muscle, for putative chemotractant receptors. Their distinctive 

distribution may implicate tissue-specific roles or denote a degree of 

redundancy within the murine family (Gao et al., 1998).  

 

Notably FPRs are not restricted to binding formylated peptides but have been 

shown to be a highly promiscuous receptor family interacting with structural 

disperate ligands (Migeotte et al., 2006). 
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Figure 1.4 Schematic comparison representation of the FPR receptor family in the 
human and mouse. By sequence homology human and mouse families share two gene 
clusters. hFPR1 and mfpr1 share ~77% homology while hFPR2/ALX and mfpr2 genes, ~76% 
homology, also share similarities with hFPR3. Structure homology can be compared by 
percentage within certain gene clusters. There are a number of disparities in the gene 
expansion between the two species with the further member of the murine fpr  family. 
Adapted from (Ye et al., 2009).  

 

1.4.1 FPR1 

 
FPR1, the first receptor of the family to be discovered, was identified for its 

ability to transduce the chemotactic effect of a synthetic E.coli-derived N-

formyl-methionyl-leucyl-phenylalanine peptide (fMLF) (Schiffmann et al., 

1975). fMLF is a highly lipophilic  compound with a flexible backbone which is 

important for establishing conformation to interact with FPRs (Dalpiaz et al., 

2003). Since this discovery fMLF has become the principal chemotractant 

agonist extensively characterised in vitro. Due to the popularity of fMLP its 

signalling cascade, via FPR1, is the best characterised among any neutrophil 

receptor, notably sharing many traits with both human family members and 

mouse orthologues. 
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Following ligation by their agonists, FPRs undergo conformation changes 

allowing functionally interactions with Giα1, Giα2 and Giα3 as well as putative 

association with G0, Gz and Gα16 (Migeotte et al., 2006). Downstream of G-

protein interaction there are a number of signalling pathways including 

calcium (Ca2+) flux, phospholipase A, C and D (PLA, PLC and PLD 

respectively), phosphoinositide 3-kinase (PI3K) and mitogen-activated protein 

kinase (MAPK) pathways (Selvatici et al., 2006; Figure 1.5).      

 

PLC is initial is an essential upstream mediator of both PI3K and MAPK 

pathways via protein kinase C (PKC). It has been shown that receptor 

desensitisation and internalisation is reliant on PKC following both 

homologous and heterologous activation of FPR or other GPCRs respectively 

(Le et al., 2001b). PLA2 is also well characterised for mediating PLC activation 

(Section 1.2.1.1) central to the biosynthesis of eicosanoids. The activation of 

PI3K following fMLF has been shown to selectively regulate oxidative burst 

and actin relocalisation, essential for cell polarisation, in neutrophils. The 

MAPK pathway, in particular ERK-1/2, selectively regulates chemokinesis as 

well as a multitude of signal transducers and activators of transcription (STAT) 

proteins and adaptor proteins (Wenzel-Seifert et al., 1998).  
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Figure.1.5. Schematic of the generic downstream signalling cascade of FPR family. 
FPR receptors are coupled to Gi-protein activating PI3K, MAPK pathways and transient Ca2+ 
flux to influence pro- and anti-inflammatory mediators. 
 

 

Signalling via FPRs is regulated by two processes, receptor desensitisation 

and agonist-induced internalisation. Desensitisation is the result of uncoupling 

of G-protein from the receptor, and can occur either by direct ligation or 

following activation of a similar GPCRs. After initial activation of FPR1 with 

fMLF, the receptor rapidly reduces its responses to secondary stimulation with 

the same agonist; this is termed homologous desensitisation. FPR1 is also 

susceptible to heterologous desensitisation via ligation of a GPCR receptor, 
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C5aR or IL-8R, in a concentration-dependent manner (Ali et al., 1999). These 

processes complement the classical idea of concentration-gradient dependent 

migration by peripheral cells to a site of inflammation.   

 

The FPR family is known to internalise in a ligand-specific manner however 

the exact processes involved are unclear (Gilbert et al., 2001). It may be 

reasonable to assume that conformational differences in ligand-FPR 

complexes are responsible for the distinct pharmacology attributed to each 

agonist. 

 

Apart from the ability of FPR1 to mediate chemotaxis it was also noted that 

fMLF induced a rapid Ca2+ mobilisation (Andersson et al., 1986). Although 

Ca2+ has been a robust functional response to fMLF, its functions are unclear. 

Ca2+ is certainly required for cytoskeleton reorganisation however 

phagocytosis and chemotaxis can occur in Ca2+-depleted cells (Fu et al., 

2006). The necessity or otherwise of this secondary functional parameter, and 

the identification of the two further FPR family members, revealed that 

activation of a given signal transduction pathway was not only concentration 

dependent but also ligand specific. 

 

FPR1 is most notably associated with host defence, with fMLF noted to elicit 

shape change, adhesion, phagocytosis, cytokine production, superoxide 

production and degranulation in both granulocytes and phagocytes (Selvatici 

et al., 2006). The importance of FPR1 in preventing bacterial infection is 

particularly evident within human periodontitis. Moreover, the connection 
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between cancer progression and inflammation has become an emerging area 

and indeed FPR1 has been associated with mechanistic pathogenesis 

(Huang et al., 2009). Furthermore human immunodeficiency virus-1 (HIV-1) 

peptide derivatives have been shown to activate FPR1 (Su et al., 1999) 

(Table 1.1). This leads to two plausible conclusions that FPR1 plays an 

important role in immune surveillance by responding directly to foreign antigen 

or that HIV-1 has evolved to desensitise the important classical chemotactic 

and effector functions attributed to FPR1 (Le et al., 2001b). If either 

hypothesis is correct there is considerable scope for the development of 

FPR1 specific therapeutics within this area of research. 

 

To determine the potential roles of FPR1, pharmacological tools and Fpr1-/- 

transgenic mice have been developed. The replacement of the formyl group 

of fMLF with tertiary butyloxycarbonyl group (t-BOC) produced the first FPR1 

antagonists (Freer et al., 1980). However the most successful approach to 

specific inhibition of this multi-faceted receptor has been the development of 

an Fpr1-/- transgenic mice (Gao et al., 1999; Section 1.6). 

  

1.4.2 FPR2/ALX 

 

Originally characterised as the low-affinity fMLF receptor (efficacy ~1000 fold 

lower than FPR1; Gao et al., 1993), FPR2/ALX has a short but complicated 

history.  
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The human receptor was initially reclassified as the receptor for the lipid-

derivative lipoxin A4 (LXA4), termed ALX (Fiore et al., 1994). However it soon 

became apparent that this was not the only competitive agonist capable of 

binding this receptor with reports describing HIV peptides and serum amyloid 

A (SAA; Su et al., 1999), Annexin A1 (AnxA1; Perretti et al., 2001b; Perretti et 

al., 2002), as well as synthetic peptide (W-peptide; Le et al., 1999) and 

chemical compounds (C43; Burli et al., 2006). There are currently ~30 ligands 

that have been shown to bind the FPR family and although many are 

peptides, they are structurally unrelated. Most intriguingly, I believe, this is the 

first receptor family to be shown to interact with ligands spanning lipids, 

proteins and peptides (Table. 1.1). Furthermore although there is 

considerable promiscuity across the FPR receptors, ligands can transduce 

either pro- or anti-inflammatory actions in vitro and, in some cases, in vivo 

(shown in my thesis). 

 

The paradigm surrounding FPR2/ALX pharmacology is further complicated by 

the differential expansion of the FPR family in the mouse. Indeed when the 

gene families were first assessed it was thought FPR2/ALX was represented 

by two related murine genes, noted as fpr-rs1 and fpr-rs2. Notably, fpr-rs1 

showed closer sequence homology with ALX, but fpr-rs2 was shown to 

represent more   functional characteristics of the receptor (Gao et al., 1998). 

My thesis, and work performed in other laboratories, has revealed that these 

genes are formed by alternate transcription and therefore can be considered 

cumulatively as Fpr2. This is reflected by the nomenclature used in this thesis, 
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which follows the very recent recommended guidelines from IUPHAR (Ye et 

al., 2009). 

 

The signal transduction of FPR2/ALX is therefore a difficult topic, however it is 

reasonable to assume it shares similar intracellular machinery with FPR1 as 

they have similar intracellular domains. A comprehensive study of the FPR1 

and FPR2/ALX signalling was conducted by creating chimaeric receptors with 

segments of FPR2/ALX replaced by FPR1 revealed numerous specific 

binding sites. Notably fMLF recognised the same extracellular loops on both 

FPR1 and FPR2/ALX but with different affinity. Furthermore, this analysis it 

revealed that N-glycosylation is required for peptide binding (again not 

necessarily at the same domain) to FPR2/ALX but not for the lipid agonist 

LXA4 (Le et al., 2005).  

 

FPR2/ALX, as with FPR1, is strongly associated with host defence. However 

the novel ability of FPR2/ALX to convey both pro- and anti-inflammatory 

signalling makes it an intriguing GPCR.  

 

Interaction of FPR2/ALX with fMLF and the acute phase protein SAA leads to 

NF-κB activation and secretion of IL-8 by human neutrophils (He et al., 2003). 

The reduced affinity for formylated peptides, such as fMLF, was initially 

thought to reflect receptor redundancy, whereby the desensitisation of one 

receptor, FPR1, may result in the prevalence of a second lower affinity 
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counterpart, FPR2/ALX (Hartt et al., 1999b).  Although this hypothesis may be 

true in vitro it is slightly simplistic when considering the role of heterologous 

densensitisation (Section 1.4.1) in vivo. Indeed FPR2/ALX is proposed to play 

an integrated role with FPR1 in attenuating CCR5 signalling when exposed to 

HIV-1 peptides. 

 

SAA, its peptide-derivative amyloid-Aβ42 (Aβ42) (Section 1.5.3.1) and Prion 

peptide PrP106-126 are potent amyloidogenic ligands for FPR2/ALX in the 

periphery and central nervous system (CNS) respectively. The formation of 

amyloid plaques in atherosclerotic legions (Wilson et al., 2008) and 

Alzheimer’s disease (Cui et al., 2002b) are important pathological processes 

attributed to FPR2/ALX. 

 

However unlike FPR1, FPR2/ALX can transduce anti-inflammatory responses 

including deactivation and detachment of leukocytes, apoptosis, phagocytosis 

and regulation of COX-2. The most striking attribute of this receptor 

pharmacology is mediated by endogenous ligands; glucocorticoid-induced 

protein annexin-A1 (AnxA1), lipid-derived lipoxin A4
 (LXA4), neuroprotective 

protein humanin and heme-binding protein-deriving peptide F2L (Table 1.1). 

 

The dual roles of FPR2/ALX make association with disease pathogenesis 

difficult to ascertain. FPR2/ALX expression is induced by both pro-

inflammatory stimuli, e.g TNF-α (Cui et al., 2002b) and pattern recognition 
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receptors (Chen et al., 2009) as well as anti-inflammatory signalling, such as 

through the glucocorticoid receptor (Hashimoto et al., 2007; Sawmynaden et 

al., 2006). The strongest mechanistic links are with autoimmune diseases 

including airway allergy (Bonnans et al., 2007) and synovial fibroblasts in 

arthritic joints (Fiore et al., 2005). Clinical studies have noted the receptor is 

up-regulated on circulating mononuclear cells following acute ischemic stroke 

(Grond-Ginsbach et al., 2008).  

 

The therapeutic potential of this receptor has not gone unnoticed by academia 

or industry with a ever increasing number of synthetic agonists being 

developed. The first specific peptide described was Trp-Lys-Tyr-Val-D-Met  

(also termed WKYMVm or W-peptide), a hexapeptide identified by high-

throughput peptide library screening (Baek et al., 1996). Despite potent 

activity in vitro, inducing Ca2+ flux, chemotaxis, superoxide production (Le et 

al., 1999), W-peptide has shown little promise in vivo (Gavins et al., 2005).  

Although the majority of agonists identified are peptides, a number of non-

peptidic compounds are also currently in development. Amgen were able to 

identify a number of pyrazolone compounds, in particular Compound 43 

(C43), by high-throughput screening. C43 was shown to have potent anti-

inflammatory pharmacology by inhibiting fMLF and IL-8 mediated chemotaxis 

in vitro, as well as a pronounced reduction oedema in vivo (Burli et al., 2006). 

Amgen continue to pursue this avenue of research with studies assessing 

further modifications of a benzimidazole core to generate other small 
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molecules specific for Fpr2/ALX noting both pro- and anti-inflammatory 

responses in vitro (Frohn et al., 2007).  

 

As alluded to with FPR1, the use of current antagonists is controversial due to 

concentration dependent effects. As with synthetic agonist development, both 

peptide and non-peptide approaches are available. Ryu’s group who 

developed W-peptide subsequently, used the same peptide library to 

generate the WRW4 peptide (Bae et al., 2004). More recently, high-

throughput screening of a series of quinazolinone derivative identified both 

agonistic, Quin-C1, and antagonistic, Quin-C7, molecules (Zhou et al., 2007). 

The area of FPR2/ALX pharmacology has however struggled with the lack of 

specificity of many of the agonists and antagonists, for this reason we chose a 

transgenic route to determine specific Fpr2 pharmacology (Section 1.6).  
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Receptor Natural Agonists Synthetic Agonists Antagonists Promoter 
Activity 

FPR Formylated-
mitochondrial 
peptides 
Capthepsin G 
 
AnxA1 
 

fMLF (≥1nM) 
 
Ac2-26 
Ac2-12 
Ac9-25 
 
T20/DP107 
gG-2p20 
AG-14 
WKYMVM 
WKYMVm 
MMWLL 

BOC 
derivatives 
Cyclosporin A 
Cyclosporin H 
Bile Acids 
Spinorphin 
LDLLDL 
CHIPS 
CDCA 
DCA 
 

TNF-γ  
IL-10 
TLR4 
 

FPR2/ALX/ 
ALX 

Formylated-peptides 
Serum amyloid A 
β-amyloid peptide 42 
Urokinase-receptor-
derived peptide 
CRAMP 
 
AnxA1 
Humanin 
LXA4 
F2L 
 
NADH-
dehydogenase 
subunit 1 
PACAP27 
Prion protein 
Hp (2-20) 
SHAAGtide 
sCKβ8-1 

fMLF (≥10µM) 
HIV-derived peptides 
 
Ac2-26 
Ac2-12 
Anti-flammin-2 
Compound 43 
Formylated humanin 
 
Quin-C1 
MMK-1 
WKYMVM 
WKYMVm 
LL-37 
Temporin 
D2D3 
uPAR 

BOC 
derivatives 
(≥10µM) 
WRW4 peptide 
FLIPr 
Quin-C7 

GC 
TNF-γ  
TLR2 
TLR4 
NOD2 

FPR3 Formylated-peptides 
 
F2L 
Humanin 
 
Hp (2-20) 
 

Ac2-26 
 
fMLF (>10µM) 
 
WKYMVM 
WKYMVm 

WRW4 peptide 
 

Currently 
unknown 

Table 1.1 Non-exhaustive table of human formyl peptide receptor family ligands. 
Agonists are listed as pro-inflammatory,anti-inflammatory or currently unspecificed. There are 
numerous ligands, both agonists and antagonists that bind across two or more FPR 
receptors. Adapted from Migeotte et al., 2006 
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1.5 Therapeutics and the FPR pathway 

 
As demonstrated (Table 1.1) there is broad scope for development of 

therapeutically active synthetic compounds targeting both FPR1 and 

FPR2/ALX. However, it is important to first investigate and characterise the 

roles and regulation of both the receptor and its endogenous ligands during 

homeostasis, inflammation and following current therapeutic intervention.  

 

Three of the endogenous agonists specific for FPR2/ALX are strongly linked 

with current, globally available treatments; glucocorticoid-regulated AnxA1, 

aspirin-triggered lipoxin A4, statin-modulated/cholesterol-linked serum amyloid 

A.  

 

1.5.1 Glucocorticoids 

 
Ever since the first observation by Dr Philip Hench (subsequent Nobel 

laureate) that steroids extracted from adrenal gland cortex could exert potent 

anti-inflammatory effects (Hench et al., 1949) glucocorticoids (GC) have 

become the front-line anti-inflammatory therapy. Over the last half century 

their ability to suppress the inflammatory response and indeed their specific 

modes of action have been under continued investigation. Therapeutic GC 

have shown widespread efficacy in a number of auto-immune diseases 

however clinicians have become acutely aware that persistent elevation of GC 

levels can cause a plethora of side effects with therapeutic regimes often 

based on assessing risk against benefit in individual patients. For this reason 

chronic GC treatment is often referred to as a ‘double-edged sword’.  
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Endogenous GC are essential to a variety of processes that underpin 

mammalian development, homeostasis, behaviour and host defence. Their 

actions, largely attributed to cortisol in humans and corticosterone in rodents, 

are tightly regulated by the hypothalamo-pituitary-adrenocortical (HPA) axis 

following well-documented circadian patterns (Dickmeis, 2009). During 

physical or emotional stress GC are rapidly secreted to prepare the body to 

react and adapt to a given situation. The body’s ability to regulate GC 

secretion is particularly important in inflammatory micro-environments where 

GC act in a negative feedback loop to prevent over-activation of the immune 

system (Yeager et al., 2004). 

 

GC are highly lipophilic, readily crossing the plasma membrane to interact 

with their cytoplasmic receptors. There are two receptors responsible for 

mediating the actions of endogenous GC pharmacology termed the 

mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The MR 

shows a high affinity (Kd ~0.5-2nM) for cortisol, corticosterone and 

aldosterone and has a distinct expression profile within the gut, kidney and 

some areas of the CNS. GR however has a wide expression profile but has a 

lower affinity (Kd ~10-20nM) for GC, but it does not readily bind 

mineralocorticoids. Therefore in ‘stress’, when GC levels can exceed 300nM, 

GR is largely responsible for their local and systemic pharmacology 

(Buckingham, 2006). There are two known GR receptor isoforms, termed α 

and β, however GRβ is thought to be non-functional as it lacks the GR binding 

domain (Oakley et al., 1996). The GR transduces its wide-ranging functions 
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by two prominent intra-cellular mechanisms; the genomic and non-genomic 

pathways.  

 

The ‘classical’ genomic pathway is the result of GC binding cytoplasmic GR, 

leading to activation and dissociation of chaperone proteins and transcription 

factors normally associated with the receptor. Subsequent homodimerisation 

of receptor-ligand complex translocate to the nucleus. The GC-GR complex 

will bind specific DNA sequences, termed GC response elements (GREs), 

thus governing the transcription of target genes. Indeed so broad are the 

genomic actions of GC that they are thought to influence the transcription of 

approximately 10% of human genes (Buckingham, 2006). Notably this 

pathway inhibits the generation and release of inflammatory mediators (e.g. 

IL-1, TNF-α, cPLA2) while inducing anti-inflammatory proteins such as IL-10, 

IL-1RA and IL-13. However these ‘classical’ responses are relatively slow 

(occurring within hours) because de novo synthesis is required.  

 

Our research base is strongly focused on the ability of GC to induce rapid, 

non-genomic regulation of cellular processes through direct protein-protein 

interactions (Croxtall et al., 2000). This machinery involves the release of pre-

formed intracellular mediators to convey immediate anti-inflammatory actions. 

A clear example is the direct modulation of platelet function (which are non-

nucleated) within 5 min of prednisolone treatment (Moraes et al., 2005).  

 

One established example of an anti-inflammatory GC-induced protein is 

AnxA1, which was first described in the late 1970’s.   
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1.5.1.1 Annexin A1 (AnxA1) 

 
Simultaneous investigation by three laboratories discovered that 

glucocorticoid-induced inhibition of PLA2 was mediated by a ‘second 

messenger’ terming the protein renocortin, macrocortin and lipomodulin 

(Flower et al., 1979). These proteins were subsequently shown to be 

indentical and renamed as lipocortin 1 (Pepinsky et al., 1986; Wallner et al., 

1986) before genetic, proteomic and biochemical analysis categorised it as a 

member of a superfamily of related proteins termed annexins (Crumpton et 

al., 1990; Pepinsky et al., 1986; Wallner et al., 1986). 

 

The term annexin, from the Greek annex “hold together” describes their 

common characteristic of binding negatively charged phospholipids in a 

calcium dependent manner. The annexin superfamily has grown steadily in 

the 1990s with over 160 unique annexin proteins observed across 65 different 

species ranging from fungi and protists to plants and higher vertebrates. There 

are currently 13 member of the annexin family in mammalian biology, involved 

in a wide variety of physiological processes (Gerke et al., 2002).  

 

Annexins have common structural characteristics comprising of highly 

homologous core domain consisting of 4-8 repeats of a 70-75 amino acid 

sequence and an amino-acid tail (N-terminal) unique to each family member 

(Wells et al., 2004). The formation of their three-dimensional structure has 

reveal that annexins form α-helical disks with slight curvature to form novel 

Ca2+ binding sites (Rosengarth et al., 2003). Indeed AnxA1 consists of an N-
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terminal of 40 residues, and 4-conserved core domain repeats. In the 

absence of Ca2+ the protein N-terminal binding site (yellow; Figure 1.6 B) is 

‘folded’ within the protein structure. However upon Ca2+-dependent 

membrane binding the protein conformation changes to allow association of 

AnxA1 binding sites with cell surface proteins (Figure 1.6 A).  The N-terminal 

domain has phosphorylation sites for tyrosine and serine-kinases as well as 

glycosylation and transglutamination sites, with several proteolytic motifs 

spanning the N-terminal capable of significantly modifying its physical and 

biological properties. Interestingly tyrosine phosphorylated AnxA1 is more 

susceptible to proteolysis. The formation of small pharmacologically active 

peptides by synthetically targeting these different proteolytic sites has been 

exploited (Section 1.4.2). The first acetylated polypeptide described in the 

early 1990s, represented the entire N-terminus (residues 2-26, termed Ac2-

26), and conserved the anti-migratory effects of the full-length protein (Cirino 

et al., 1993). It is important to note that although Ac2-26 is functional it shows 

considerable reduction in potency with ~200 fold reduction by molar ratio 

compared to the full length parent protein (Perretti et al., 1993b). 



Chapter 1  Introduction                                                                                   
 

 53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Ribbon diagram of full-length human annexin A1.  AnxA1 protein structure 
consists of 4 conserved repeats and a N-terminal domain. (A) in the presence of Ca2+ 
(orange) the protein externalises the N-terminal domain allowing functional binding to occur. 
(B) If no Ca2+ is absent the N-terminal (yellow) is folded within repeat 3 to regulate its activity. 
Adapted from (Rosengarth et al., 2003). 
 

The AnxA1 promoter activity is strongly regulated by endogenous and 

exogenous GC (Wallner et al., 1986) it is clear that a multitude of other 

transcription factors, including AP-1 and GATA, induced by inflammation play 

a significant regulatory role. The acute phase cytokine, IL-6 (Solito et al., 

1998), thought to play a key role in linking innate and adaptive immunity, is a 

notable addition to the regulation of AnxA1 and a strong tie to its involvement 

in acute inflammation. 

 

N-terminal domain 

A 

B 
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AnxA1 is presented in high abundance in granulocytes and particularly 

neutrophils, where the protein is packaged within gelatinase granules (Perretti 

et al., 2000). AnxA1 is also an abundant cytoplasmic protein in monocytes, 

Mφ, lymphocytes, vascular endothelial cells and synoviocytes. Indeed its 

widespread distribution across immune cells and tissues suggest links with 

multiple functions and pathologies. Within the context of the spontaneously 

resolving model of inflammation discussed within this thesis I will focus on the 

biological roles of AnxA1 within the innate immune system. 

 

AnxA1 constitutes between 2-4% of total cytosolic protein within human 

neutrophils (Ernst et al., 1990) and is therefore integral to their overall 

functional biology. Notably 50-70% of total AnxA1 can be externalised onto 

the outer leaflet of neutrophil membrane upon adhesion to an endothelial cell 

monolayer (Perretti, 1997). The presence of AnxA1 on the neutrophil surface 

instigates deactivation pathways including, detachment from vascular 

endothelium, apoptosis, phagocytosis and ultimately improved resolution 

(Perretti et al., 2009). Interestingly the surface of an activated neutrophil is a 

hostile environment for AnxA1, readily degraded by proteinase 3 (PR3) and 

elastase, limiting its activity (Vong et al., 2007). These processes can 

therefore undermine the activity of AnxA1 during active inflammatory with 

leukocytes preventing binding of AnxA1 to the cell surface (Perretti et al., 

1993e).  

 

Several studies have linked the inhibition of inflammatory mediators by GC 

with AnxA1-dependent pathways in both monocyte and Mφ cells (Kamal et al., 
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2005). Intriguingly the maturation of peripheral monocytes cells to tissue Mφ 

increases GC-sensitivity and AnxA1 synthesis (Ambrose et al., 1992). The 

role of membrane-bound AnxA1 in Mφ has largely been studied in the context 

of PMN phagocytosis. Externalisation of AnxA1 plays an important role in the 

recognition of apoptotic bodies, binding PS to cross-link cell membranes and 

facilitate engulfment (Fan et al., 2004). 

 

In acute and chronic inflammatory pathologies within rodent and man, the 

anti-inflammatory actions of AnxA1 have been well established, by our 

laboratory and others. However AnxA1 has many other actions both intra- and 

extracellular in nature. The first study to associate AnxA1 peptides with a 

specific receptor is now a seminal work within the field with Gerke’s group 

identifing FPR1 as a putative receptor (Walther et al., 2000). Following this 

discovery it was soon revealed that AnxA1 was co-localised with FPR2/ALX 

on the surface of activated human neutrophils (Perretti et al., 2002). 

Furthermore competitive binding studies using AnxA1 and its peptide 

derivatives together with LXA4 (Hayhoe et al., 2006) as well as functional 

activity measured by calcium flux using transfected cell lines (Babbin et al., 

2006) underlined the preference of full-length AnxA1 for FPR2/ALX over 

FPR1. To ascertain whether these binding properties were equally true in 

mice our group investigated AnxA1 and Ac2-26 in ischemic models of 

leukocyte recruitment in transgenic Fpr1-/- mice (Gavins et al., 2005). It was 

apparent from this study that AnxA1 retained significant efficacy suggesting 

that although Fpr1 was capable of mediating some pharmacology it was not 

the prominent Fpr receptor in mouse. To address this question a further 
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transgenic strategy was implemented (Section 1.6) forming the basis of this 

thesis.  

 

Despite the specific associations of AnxA1 with the FPR2/ALX receptor being 

relatively recent many of its signalling characteristics have already been 

identified. AnxA1 and Ac2-26 are both capable of inducing transient changes 

in intracellular Ca2+ and L-selectin shedding by neutrophils (Solito et al., 

2003). Both are predominantly associated with a MAPK signalling cascade 

inducing rapid phosphoryation of ERK1/2 in a dose dependent manner 

(Hayhoe et al., 2006). AnxA1 has also been shown to induce phosphorylation 

of Akt during ligation to T lymphocytes (D'Acquisto et al., 2007). Indeed it has 

been shown that AnxA1 augments T-cell receptor (TCR) signalling initiating 

an effector phenotype suggesting that distinct signalling pathways may be 

cell-specific. 

 

1.5.2 Non-steroidal anti-inflammatory drugs (NSAIDs)  

 

The NSAIDs are among the most popular therapeutics used with over 50 

NSAIDs on the global market since their discovery in 19th Century. Aspirin, 

acetylsalicylic acid, is arguably the best known of the NSAIDs, and therefore I 

will describe some of the generic characterises of this drug. Notably NSAIDs 

share three common actions, namely anti-inflammatory, analgesic and 

antipyretic effects. 
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Aspirin was introduced as an anti-inflammatory medication in 1899 by Bayer, 

however it was not until the 1970’s that the mechanisms of action was 

elucidated by J R Vane’s laboratory (Vane, 2000). The role of PG (Section 

1.2.1.1) and thromboxane A2 (TXA2) production by the cyclooxygenase (COX) 

pathway is now well established within inflammation. The potent anti-

inflammatory actions of aspirin are attributed to non-selective inhibition of the 

COX pathway, also resulting in gastrointestinal toxicity, a common trait of 

NSAIDs. It is now clear that there are three isoforms of COX enzyme, 

constitutively expressed COX-1, inducible COX-2, and centrally distributed 

COX-3, a splice variant of COX-1. The anti-inflammatory role of aspirin is 

mediated through inhibition of COX-2, but non-specific blockade also 

diminishes the gastroprotective and platelet aggregation functions of 

eicosinoids derived from COX-1. To address this issue of toxicity by blockade 

of COX-1, selective COX-2 inhibitors were developed, however controversially 

adverse cardiovascular events has lead to withdrawal of many of the COX-2 

inhibitors from the global market (Rao et al., 2008).  

 

Interesting some NSAIDs, such as paracetamol, do not share the anti-

inflammatory actions within the periphery are though to be centrally active, 

although the mechanisms are still unclear. NSAIDs are often classed as mild 

analgesics, are thought to be as effective in reducing inflammatory pain, 

particularly postoperative pain in comparison to opioid-based therapeutics. 

Their action is again reliant on inhibition of PG synthesis to reduce the 

hyperalgesic effects of PG, which lower the activation threshold of C fibers.  
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Finally NSAIDs act to reduce body temperature during fever. Elevated 

systemic PGE2 triggers an increase in cAMP in the hypothalamus to elevate 

body temperature. Systemic fever is often the result of increased cytokine 

production (e.g IL-1), which in turn induces PG synthesis.  

 

Aspirin’s action is mediated by the irreversible blockade of COX-1 and COX2. 

Interestingly to complement inhibition of pro-inflammatory mediators, aspirin-

acetylated COX-2 catalyses the production of anti-inflammatory 15-epimeric 

lipoxins (Fiorucci et al., 2003).  

 

1.5.2.1 Aspirin-triggered lipoxins (ATLs) 

 
Lipoxins, a condensed term for lipoxygenase (LO) interaction products 

(Serhan et al., 1984), are novel eicosanoids generated from arachidonic acid 

(AA). The most notable of the native lipoxins are LXA4, LXB4 and their 

epitopes, which consist of a unique trihydroxytetraene structure. There are 

two endogenous pathways of biosynthesis via 5-, 12- and 15-LO as well as 

aspirin-acetylated COX-2 (Figure 1.7).  

 

The “classic” pathways involves two-stage metabolism of AA following the 

interaction of leukocytes with platelets or epithelial cells. Leukocytes express 

5-LO capable of converting AA to an epoxide, leukotriene A4 (LTA4). Although 

platelets are unable to produce lipoxins alone, they express 12-LO, which can 

metabolise LTA4 to either LXA4 or its structural isomer LXB4. A second 

pathway involves 15-LO within epithelial cells which oxygenates AA to 15S-



Chapter 1  Introduction                                                                                   
 

 59 

hydroxyleicosatetraenoic acid (15S-H(p)ETE), this metabolite is readily taken 

up by leukocytes and converted by 5-LO to active lipoxins  (Chiang et al., 

2006). Thirdly, as alluded to in the previous section aspirin acetylates COX-2 

resulting in the production of 15-epi-lipoxins by the metabolism of 15R-HETE 

by 5-LO. Despite both ATLs being produced as stereo-isomers they retain 

many of the characteristic of the endogenous epitopes inducing 

vasorelaxation, prostacyclin synthesis and nictric oxide synthesis (Morris et 

al., 2006). Recent studies have also noted that GC can promote 5-LO activity 

in circulating leukocytes suggesting an intriguing common anti-inflammatory 

pathway shared by both GC and aspirin (Hashimoto et al., 2007).     

 

As previously mentioned, LXA4 was the first endogenous FPR2/ALX ligand to 

be identified (Section 1.4.2), and has sometimes been refered to as the lipoxin 

A4 receptor (ALX; (Fiore et al., 1994). Superficially the actions of LXA4 have 

been shown to parallel the anti-inflammatory properties of AnxA1, mediating 

reduced PMN activity (Pouliot et al., 2000), promoting detachment of adherent 

leukocytes from mesenteric microcirculation (Gavins et al., 2003) pro-

apoptotic and pro-phagocytic (Mitchell et al., 2002). The most notable 

divergence is observed within the specific pharmacology of LXA4. Firstly LXA4 

interacts with a distinct binding domain different to that of peptide ligands 

(Chiang et al., 2006; Le et al., 2005), furthermore unlike other ligands it has 

been shown to impair MAPK signalling (El Kebir et al., 2009). Secondly there 

is some controversy over the ability of LXA4 to induce Ca2+ mobilisation, with 

Ca2+ flux shown in a monocytic cell line (Romano et al., 1996) but not 

apparent in neutrophils. Finally LXA4 acts as a potent chemoattractant for 
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human monocytes (Maddox et al., 1996). Importantly FPR2/ALX is not alone 

in mediating the actions of LXA4,, which also binds the nuclear aryl 

hydrocarbon receptor (AhR) (Schaldach et al., 1999).  However the role of this 

receptor pathway has currently not been delineated. 

 

Lipoxins are unstable, rapidly inactivated by dehydrogenation, therefore their 

evanescent nature make exogenous lipoxins a complicated therapeutic 

concept.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Schematic of lipoxin generation and structures. In humans lipoxins can be 
induced using lipoxygenase (LO) activity, either in a classical or inducible fashion such as up-
regulation and acetylation of COX2 by aspirin. (Chiang et al., 2006) 
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1.5.3 Statins 

 
Statins, first identified as inhibitors of cholesterol biosynthesis in the mid-

1970’s (Endo et al., 1976), are currently the gold–standard class of 

therapeutics for combating dyslipidemia. They mediate their effects by 

inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, 

which catalyses the conversion of HMG-CoA to mevalonic acid, subsequently 

modulating low density lipoprotein (LDL) levels to regulate cholesterol 

deposition.  

 

LDL is one of many lipoproteins which sequesters and transports cholesterol 

from the liver to muscle and adipose tissue in the periphery. Elevated 

cholesterogenesis leads to increased circulating LDL-cholesterol complexes 

strongly associated with cardiovascular risk factors. Furthermore this reduces 

formation of high-density lipoprotein (HDL)-cholesterol complexes responsible 

for mobilising peripheral cholesterol back to the liver for clearance. Statins 

redress this balance by reducing cholesterol biosynthesis and upregulating 

LDL receptor gene expression to enhance clearance of LDL-cholesterol 

{Dergunov, 2008 #425}. In 1987 lovastatin became the first statin approved by 

the food and drug administration (FDA) in the USA it rapidly became a 

worldwide therapeutic due to prominent efficacy and tolerance (Endo, 1992). 

 

Dyslipidemia can be either primary, via dietary or genetic factors, or 

secondary, the result of systemic disease pathogenesis such as auto-immune 

diseases, alcholism, renal and liver failure to name but a few. The complex 
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pathogensis of this disease suggests a strong role of inflammation, 

particularly in cardiovascular disease where cholesterol plays a prominent role 

in plaque formation and ischemic events. Indeed during the pathogenesis of 

acute tissue injury local cell death generates large quantities of cell 

membrane fractions rich in cholesterol (Tam et al., 2005).  

 

Statins themselves have been increasingly linked with direct anti-inflammatory 

actions particularly with respect to atheromatous disease (Rossen, 1997). Of 

the multiple diagnostic tools currently applied to clinical risk factors acute 

phase proteins, particularly C-reactive protein (CRP), fibrinogen and serum 

amyloids, are the most common systemic inflammatory markers. Interestingly 

although CRP is well characterised as a marker of inflammation it has not 

been functionally linked to disease pathology, this is in contrast to serum 

amyloid A (SAA) which is a potent pro-atherogen (Wilson et al., 2008). The 

deleterious role of SAA and its peptide Aβ42 have long been associated with 

Alzheimer’s disease (AD) however its pro-inflammatory pharmacology, and 

specificity for FPR2/ALX, is a recent discovery (Su et al., 1999). The link 

between cholesterol biosyntheisis, inflammation and serum amyloid A has 

only come to light in the last couple of years with lovastatin shown to 

significantly the reduce SAA activity, but not CRP, and therefore inhibit 

amyloidosis and plaque formation in atherosclerosis (van der Hilst et al., 

2008).  
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1.5.3.1 Serum amyloid A and amyloidosis 

Serum amyloid A is a highly inducible component of the acute phase 

response particularly prevalent in chronic diseases, notably it is currently used 

as a disease marker for clinical diagnosis and prognosis in Crohn’s disease, 

atherosclerosis and rheumatoid arthritis (Cunnane et al., 2000). In common 

with other acute phase mediators SAA is secreted in large quantities from the 

liver during inflammation, with serum levels increasing up to 1000-fold within 

hours of an inflammatory stimulus (Kushner, 1982). Notably SAA is unique 

among the acute phase proteins as it is also generated at local sites of 

inflammatory insult (Vreugdenhil et al., 1999).  

  

There are currently three members of the human SAA gene family located on 

chromosome 11 (11p.15.1), comprising SAA1, SAA2 and SAA4, as well as 

the pseudogene SAA3. SAA1 and SAA2 have a major part in the acute phase 

response, capable of amyloid formation, whereas SAA4 is constitutively 

expressed in a variety of tissues (Sellar et al., 1994); all three are amphipathic 

proteins. Gene transcription of both acute phase proteins is markedly up-

regulated by pro-inflammatory mediators including IL-1, IL-6 and TNF-α 

(Westermark et al., 2009), a response that can be significantly enhanced in 

the presence of GC (Jensen et al., 1998). The multiple actions of SAA1 and 

SAA2 are further complicated by the identification of numerous isoforms 

(Raynes et al., 1991) further more their exact structure has remained elusive 

as they are insoluble at neutral pH (Munishkina et al., 2007).  
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SAA is primarily associated with the amyloidosis, involving the deposition of 

amyloid peptides to form fibrils particularly within mononuclear cells 

(Munishkina et al., 2007). The mechanisms that underlie the formation of 

amyloid plaques are currently poorly understood. During non-inflamed 

conditions SAA is predominantly (~90%) bound to HDL (Benditt et al., 1977) 

however it dissociates at high concentration. The SAA/HDL complex has a 

significant influence on lecithin cholesterol acyltransferase (LCAT) activity to 

induce reverse cholesterol transport from the site of inflammation utilising high 

affinity macrophage scavenger receptors (Lindhorst et al., 1997). These 

observations have lead to interest in delineating the link between chronic 

degenerative diseases, such as Alzheimer’s or RA, and secondary 

amyloidosis in the formation of atherosclerotic plaques and vice versa (Schulz 

et al., 2007). Sequestrating acute phase SAA by elevating HDL, notably in the 

case of statins, maybe a useful anti-inflammatory strategy. 

 

In vitro studies have shown that unbound SAA can increase the production of 

pro-inflammatory cytokines such as TNFα, IL-8, IL-1β (He et al., 2003) and G-

CSF (He et al., 2008). SAA and its metabolite amyloid β42 are potent 

chemotractants in vitro using transfected HEK293/ALX (Le et al., 2001a), 

human PMN (Liang et al., 2000) and murine microglial cells (Cui et al., 

2002b). Functional roles of SAA In vivo are less well characterised, despite its 

elevated levels it retains its chemokinetic effects, as well as binding and 

opsonization of gram-negative bacteria, by recognition of outer membrane 

protein A (OmpA) (Shah et al., 2006). This could represent a pathogen-



Chapter 1  Introduction                                                                                   
 

 65 

associated molecule pattern (PAMP) recognition pathway that strengthens the 

parallels between the FPR family and TLRs.  

 

To further complicate its roles within inflammation SAA has been associated 

with multiple receptors including FPR2/ALX (Liang et al., 2000), CD36/LIMPII 

Analogous-1 (CLA-1; Baranova et al., 2005), TLR2 (Cheng et al., 2008) and 

TLR4 (Sandri et al., 2008). Each receptor has been shown to mediate distinct 

pharmacological actions of SAA however the inter-relationship between these 

responses are undetermined in a physiological environment. 

 

SAA signalling attributed to FPR2/ALX was first noted to mediate a 

chemotactic response in human phagocytes (Su 1999). Unlike the other two 

endogenous ligands, SAA also induces respiratory burst (Bjorkman et al., 

2008), inflammatory cytokine production (He et al., 2003) and is a pro-survival 

factor (Christenson et al., 2008). The association with Alzhemier’s disease is 

also prominent with parallel functions of SAA derivative βA42 peptide on 

microglial acting through FPR2/ALX (Cui et al., 2002b) (Figure 1.8).  
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Figure 1.8 3-D Structure of beta-amyloid 1-42. The starting point (N-terminal) is at the left. 
Change in conformation from α-helical to β form of the peptide is thought to be key in 
conveying its neurotoxic properties (Tomaselli et al., 2006). 

 

CLA-1 (human) or scavenger receptor B-1 (rodent) play an important role in 

lipid metabolism, and is widely expressed in liver, adrenal gland, monocytes 

and macrophages (Rigotti et al., 1995). Both receptors show high affinity for 

HDL and are strongly expressed on mononuclear cells, hepatocytes, adrenal 

glands and atherosclerotic legions. These receptors recognise the presence 

of common amphipathic helices apparent on many apolipoproteins and also 

found on unbound SAA, to induce MAPK signalling (Baranova et al., 2005).  

 

Within the last two years research by two groups have suggested SAA can 

mediate some of its pro-inflammatory pharmacology via either TLR2 or TLR4. 

The use of anti-TLR2 Ab and tlr2-/- mice have shown reduced ability of SAA to 

induce cytokine production, MAPK activation and NF-κB activity in vitro 

(Cheng et al., 2008). Furthermore in vivo tlr2-/- mice were shown to have a 
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significantly reduced neutrophil infiltration and G-CSF production when 

stimulated with exogenous SAA (He et al., 2008). A slightly less convincing 

study using tlr4-/- mice suggested a TLR4 dependent pathway induced NO 

release by macrophages following SAA stimulation (Sandri et al., 2008).  

 

Taken together, it can be summarised that SAA plays a wide variety of roles 

via multiple receptors to convey its role in cholesterol transportation (Banka et 

al., 1995), bacterial recognition (potential via protein-protein interaction and 

receptor signalling) and cytokine-like pro-inflammatory signalling via 

FPR2/ALX. 

 

1.6 Transgenic animals  

 

The accessibility of transgenic technology has revolutionised the entire field of 

pharmacology providing invaluable insight and almost boundless detail by 

exploiting gene manipulation on a physiological scale. Our laboratory is an 

eager exponent of this technique both importing and generating transgenic 

colonies to investigate multiple biological functions.  

 

There have been a number of transgenic mice directly relevant the 

determination of AnxA1 biology. The first was the development of the Fpr1-/- 

mouse (Gao et al., 1999), which was subsequently identified as the putative 

AnxA1 receptor. The efficacy of exogenous AnxA1 was significantly reduced 

in Fpr1-/- mice but not completely abolished (Perretti et al., 2001b). In parallel 

with these studies we successfully generated a novel AnxA1-/- mouse colony, 
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uncovering a distinctive phenotype with AnxA1-/- mice exhibiting exaggerated 

inflammatory response and resistance to the effects of GC, suggesting AnxA1 

is an important ‘secondary messenger’ (Roviezzo et al., 2002). This 

transgenic has been an invaluable to tool revealing a multitude of cellular 

functions orchestrated via AnxA1 (D'Acquisto et al., 2008). This novel 

transgenic was imbued with the reporter technology, a powerful technique to 

specifically label the silenced gene and therefore monitor specific promoter 

activity (Maggi et al., 2005). Robert Hannon incorporated β-galactosidase 

(LacZ) to monitor gene expression in a wide variety of tissues (Hannon et al., 

2003). The implication of that Fpr1 was not the specific AnxA1 receptor in 

human and mouse assays lead to Robert Hannon to embark on a second 

transgenic assessed in this thesis, the Fpr2-/- colony. To distinguish promoter 

activity a second, green fluorescent protein (GFP), reporter strategy was 

chosen in line with previous studies (Chiocchetti et al., 1997). 

 

The Fpr2-/- colony is unique, however other attempts of over-expressing 

human FPR2/ALX or silencing Fpr2 in mice have been reported. Serhan’s 

group selectively expressed human FPR2/ALX in a myeloid-specific manner. 

This study revealed that FPR2/ALX could orchestrate neutrophil recruitment 

and diminish eicosanoid production following inflammatory stimuli (Devchand 

et al., 2003). Unconventionally, the Fpr2 gene has been reported to be 

silenced in a study conducted with the FPR3 agonist F2L (Gao et al., 2007). 

The paper however did not contain details or validation of the molecular 

approach used and no such study has since been published. 
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The culmination of these experiments will hopefully provide key input in 

delineating the roles of both agonists and receptors in GPCR pharmacology. 

Intriguingly the most powerful tool maybe a combination of two or more 

transgenic animals. 

 

1.7 Scope of the thesis 

 

This PhD project has endeavoured to characterise some of the complex 

pharmacological roles of murine Fpr2. Over the last decade an intriguing 

novel field of ‘ligand-biased’ pharmacology has emerged around the FPR 

family, which recognise structurally disperate ligands spanning protein, 

peptides, lipids and synthetic molecules. This project utilised both known 

human pharmacological tools and a novel transgenic mouse nullified for Fpr2. 

This approach was derived to both validate the anti-inflammatory roles 

previously attributed to Fpr2 in vitro and in vivo as well as to make distinct 

comparisons between the functional similarities of murine Fpr2 its human 

orthologue FPR2/ALX. 
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1.7.1 Aims  

 

1. Confirm the generation of a functional transgenic Fpr2-/- mouse colony. 

2. Validate and assess the distribution of fpr2 promoter activity by 

monitoring a target/reporter construct. 

3. Elucidate phenotypic difference between wild type and Fpr2-/- mice 

within naïve and inflammatory environments in vivo.  

4. Investigate the role of Fpr2 pathways in mediating the pharmacology of 

putative human agonists in murine cells ex vivo and in vivo. 

5. Validate the potential of endogenous Fpr2 ligands for therapeutic 

intervention during a variety of inflammatory models.  

 

1.7.2 Hypothesis 
 
My hypothesis is that the human FPR2/ALX is the receptor that transduces 

the biological effects of ANXA1. The murine Fpr2 receptor is a direct 

orthologue of the human FPR2/ALX receptor allowing comparable analysis of 

human ligands under physiological conditions. The experiments described in 

this thesis are designed to test this hypothesis. 
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In Vitro Protocols 
 

2.1 Chemicals and reagents 

 
LPS serotype E.coli 0111:B4, fMLF, Zymosan A, dexamethasone 21-

phosphate disodium salt (Sigma-Aldrich, Poole, UK, Dorset, UK); recombinant 

human apo-SAA, murine IL-1β (PeproTech, Rocky Hill, NJ), Lipoxin A4 (LXA4) 

(Calbiochem, San Diego, CA), W-Peptide and peptide Ac2-26 (acetyl-

AMVSEFLKQAWIENEEQEYVVQTVK; Mr 3050) were synthesised by 

Cambridge Bioscience (Cambridge, UK); F1, B11 and GB4 primers (Thermo 

Electron, Waltham, MA); rat IgG2a isotype control PE, anti-mouse Ly6G (GR-

1) PE, anti-mouse CD2 (LFA-2) PE, anti-mouse F4/80 PE-Cy5 (eBioscience, 

San Diego, CA); phospho-p44/42 MAP kinase (Thr202/Tyr204) antibody, 

phospho-ezrin (Thr567)/radixin (Thr564)/moesin (Thr558) antibody, 

ezrin/radixin/moesin antibody (Cell Signalling Technology, Danvers, MA). 

 

Human recombinant annexin A1 (hrAnxA1) was produced by purifying GST-

tagged protein by sepharose column purification using GSTrap (GE 

Healthcare, Little Chalfont, UK, Little Chalfont, UK). 

 

Compound 43 (C43) was a generous gift from Amgen (Thousands Oaks, CA). 
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2.2 Generation of murine Fpr2-/- colony 

 
The transgenic Fpr2-/- animals were generated by Dr. Robert Hannon in a 

similar manner to the previously generated AnxA1 null mice (Hannon et al., 

2003) using homologous recombination in embryonic stem (ES) cells with a 

dual-purpose targeting/reporter vector. Genomic clones containing Fpr 

sequences were isolated from a bacteriophage lambda library (129/SvJ; 

Stratagene, La Jolla, CA) by plaque hybridisation. Inserts from positive 

plaques were subcloned into pZero (Invitrogen, San Diego, CA), end-

sequenced and then aligned with the FP locus on Chromosome 17. A pgk-

neo cassette was inserted into one of these clones (p2.1) just downstream of 

the ATG start codon for Fpr2, using the technique of site-specific 

recombination in bacteria. The sequences of the primers used to achieve this 

step are forward 5’ 

tcagaaggagccaaatatctgagaaatggttgtttttgaaaactttcaggtgcagacaaaATGgctagccc

ttctgcttaatttgtgcctgg and reverse 5’ 

tgctgtgaaagaaaagtcagccaatgctagattcagataccagatagtggtgacagtgtgtggcgtagagg

atctgctcatgtttgac. Using the plasmid pPGK-neo-FRT as a template for PCR, 

these primers amplify a fragment of 2.2 kb containing the pgk-neo cassette in 

reverse orientation, flanked by 63 bp arms showing homology to Fpr2. This 

fragment was electroporated along with plasmid p2.1 into E.coli strain HS996 

using the RED-ET subcloning kit (Gene Bridges, Dresden, DE). The novel 

Nhe I site (gctagc) located immediately after the ATG start codon in the 

forward primer was used for the subsequent in-frame insertion of GFP 
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(Qbiogene, California, USA) and also to facilitate Southern blot screening. All 

steps were confirmed by sequencing.  

 

The targeting vector was linearised by digestion with SnaBI and 

electroporated into ES cells (strain 129SvEv). Neomycin resistant colonies 

were picked and screened for correct insertion by Southern blotting using 

probes located beyond both the 5’ and 3’ ends of the vector arms, and also a 

probe for GFP. Clones showing homologous recombination into the Fpr2 

locus were expanded, karyotyped by G-banding, and then injected into the 

blastocysts of C57/Bl6 females (Caliper Life Sciences, Cambridge, MS). 

 

Male chimaeras showing greater than 95% agouti coat colour were paired 

with C57Bl6 females. F1 offspring were screened by PCR of tail clip DNA for 

germline transmission of the targeted allele using the Extract-N-Amp system 

(Sigma-Aldrich, Poole, UK). The primers used for genotyping are F1 

(tgagtgtcatgtcagaaggagcc), B11 (cggaatccagctacccaaatc) and GB4 

(ataaccttcgggcatggcactc). The F1/B11 pair produces a band of 233 bp from 

the wild-type allele, whereas F1 and GB4 produce a band of 351bp if the 

targeted allele is present. Cycling conditions were 92°C for 30s/54°C for 15 s/ 

72°C for 15 s x 33 cycles. Heterozygotes were mated together to produce F2 

homozygotes. Genotyping was performed by PCR and confirmed by Southern 

blotting. 
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2.3 Detection of ‘in frame’ GFP construct within target/report 

vector 

 
Flow cytometry analysis was used to assess the fluorescent properties of the 

GFP insertion within Fpr2-/- animals. The GFP construct, introduced in section 

2.2, was specifically targeted ‘in frame’ within the promoter region of fpr2 

(Figure 2.1 A). This strategy was developed to assess constitutive and 

induced promoter activity by FACS (Section. 2.19). This methodology was 

capable of confirming the genotype further validating successful germline 

transmission. 

 

The consistent but subtle modulation of this fluorescent signal was further 

amplified by using GFP specific antibodies. Detection of conjugated GFP was 

only apparent in Fpr2-/- cells following permeabilisation of the cell membrane 

with saponin to allow intracellular staining (Figure 2.1 B).   

 

Cells were resuspended in round-bottom 96-well plate with 100µl PBS 

containing 0.2% bovine serum albumin (BSA) and 1.3mM CaCl2 (PBC). Cells 

were washed (400g, 30s) before non-specific binding was blocked with 

16mg/ml human immunoglobulin G (IgG) for 5 min at 4oC.  Cells were washed 

prior to fixation with 4% paraformyladehyde (PFA) (10 min; 4oC). The GFP 

construct was not expressed on the cell surface, therefore PBC containing 

0.1% saponin was used to permeabilise the cell membrane and allow 

intracellular-GFP to be targeted with a goat-anti-GFP antibody (1:200 dilution; 

30 min at 4oC; Serotec, Oxford, UK). Anti-GFP binding was subsequently 
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detected with a conjugated chicken-anti-goat Alexa 488 (1:200; 20 min at 4oC; 

eBioscience, San Diego, CA). Cells were washed with PBC/0.1% saponin 

between each staining step following fixation. Finally cells were washed twice 

in PBC/0.1% saponin before being resuspended in 200µl PBC for analysis. 

     

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Schematic of GFP insertion strategy. (A) The development of a dual-purpose 
targeting vector by inserting a gene silencing sequence into a pQBI 25 vector. The vector was 
linearised by digestion with SnBI so it could be inserted into mouse embryonic stem cells for 
cloning. (B) GFP signal was enhanced by using a conjugated anti-GFP antibody. The 
histogram is representative of 3 experiments comparing non-specific binding of the anti-GFP 
antibody with specific intracellular staining in Fpr2-/- cells (Green), intracellular staining with an 
Isotype control (Purple), WT (intracellular; Blue) and Fpr2-/- (cell surface; Red).  

A 

B 

GFP-Alexa 488 



Chapter 2  Materials and Methods                                                                                   

 77 

2.4 Genotyping: Polymerase-chain reaction (PCR) 

 
F1 offspring were screened by PCR of tail clip DNA for germline transmission 

of the targeted allele using the Extract-N-Amp system (Sigma-Aldrich, Poole, 

UK). To prepare genomic DNA Extraction Solution was mixed in a ratio of 4:1 

with Tissue Preparation Solution and a 100µl was added to each tail clip. 

Samples were incubated at 370C for 15 min, 940C for 3 min and finally on ice 

for 3 min.  

 

The primers used for genotyping were F1 (tgagtgtcatgtcagaaggagcc), B11 

(cggaatccagctacccaaatc) and GB4 (ataaccttcgggcatggcactc) were stored at 

100 µM (-200C), these primers were diluted for a 10µM working concentration. 

A master mix was made up containing 10µl Reddy mix™ (Sigma-Aldrich, 

Poole, UK), 3µl of F1/B11 primer pair, 3µl of F1/GB4 primer pair. 4µl of each 

sample was added to 16 µl of the master mix a placed in a Primus 96 plus™ 

thermocycler (Aviso, Salisbury, UK); cycling conditions were, 92oC for 30s 

(denaturation); 54oC for 15s (annealing); 72oC for 15 s (extension), x 33 

cycles. 

 

High melting point agarose (Invitrogen, San Diego, CA, San Diego, CA) was 

integrated into boiling TAE buffer (40mM Tris base and 1mM EDTA; Sigma-

Aldrich, Poole, UK). As the solution cooled, ethidium bromide (Invitrogen, San 

Diego, CA) was added (2µl per 100ml agrose gel). 10µl of each sample was 

separated by electrophoresis and calibrated with molecular weight markers 

(New England Biolabs, Ipswich, MA). DNA was visualised by exposure to ultra 
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violet light. The F1/B11 pair produced a band of 233 bp for the wild-type 

allele, whereas F1/GB4 produce a band of 351 bp when the targeted allele is 

present. Heterozygotes were mated together to produce F2 homozygotes.    

 

2.5 Reverse-transcprition polymerase-chain reaction (RT-

PCR) 

 
Quantitative real-time PCR assays were performed as described previously in 

Sawmynaden et al. 2006. Inflammatory cell pellets were washed and 

resuspended in Tri-reagent (Ambion, Austin, TX), following manufacturers 

instructions. Total RNA was used to synthesis cDNA with dNTP mix 

RetroScript, Oligo (dT) primer and SuperScript III reverse transcriptase 

(Invitrogen, San Diego, CA). fpr1/anxa1 Quantitech Primers (Qiagen, West 

Sussex, UK) in Power SYBR green PCR mix (Applied Biosystems, Foster 

City, CA) were detected by an ABI prism 7900 real time PCR system (Applied 

Biosystems, Foster City, CA). Expression was normalised compared to 

corresponding GAPDH mRNA expression. 
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2.6 Human recombinant Annexin-A1 

 
BL21 competent cells were maintained in aliquots at –80oC, upon thawing 

cells were transfected with GST-tagged (GE Healthcare, Little Chalfont, UK) 

human recombinant Annexin 1 (hrAnxA1) construct with an ampicillin (AMP) 

resistant region. Viable cells were allowed to grow on agar/ampicillin plates 

over night to select positively transfected colonies. Three or four discreet 

surviving colonies were selected and grown in 5-10ml Lennox L broth base 

(LB )AMP
 broth (Invitrogen, San Diego, CA) for 2 h at 37oC in a shaker before 

500ml (LB) AMP
 broth was added for 4-6 h in an incubator. To induce hrAnxA1 

fusion protein expression Isopropyl β-D-1-thiogalactopyranoside (IPTG; 

Sigma-Aldrich, Poole, UK) was added (final concentration 0.1mM) to the 

flasks and incubated on a shaker for 12-16 h at room temperature. The 

bacterial broth was centrifuged (1500g, 20 min, 4oC). The supernatant was 

discarded and the cell pellet resuspended in ice-cold lysis buffer. To ensure 

cells were fully lysed the cell suspensions were sonicated on ice. Finally a 

detergent, 1% IGEPAL (Sigma-Aldrich, Poole, UK), was added to solublise 

any remaining cytoplasmic membrane. The samples were mixed thoroughly 

before being centrifuged (1500g, 20 min, 4oC). The supernatants were 

collected for Sepharose column purification using GSTrap (GE Healthcare, 

Little Chalfont, UK).  
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2.7 Primary macrophages (Mφ) 

 
Bone marrow derived cells were used interchangeably with polyacrylamide 

gel-elicited peritoneal cells with no difference in results. Both preparations 

were therefore termed primary macrophages Mφ. 

 

2.7.1 Bone marrow macrophages 

 

WT and Fpr2-/- mice (4–6 wk old) were killed by exposure to carbon dioxide 

(CO2). The hind legs were exposed and cleaned with 70% ethanol prior to the 

extraction of the femur and tibia in a sterile flow cabinet. The bones were 

washed and cleaned, to remove all attached muscle, before removing the 

epiphyses. Bone marrow was flushed with 5ml Dulbecco's Modified Eagle 

Medium with GlutaMAX  (37oC; DMEM; Invitrogen, San Diego, CA) through a 

25-gauge needle before mechanically disruption of marrow plugs and 

centrifugation (400g; 10 min). Cells were then resuspended, 2x106 cells/ml in 

DMEM supplemented with L-glutamine, penicillin-streptomycin, 20% FCS, 

and 30% L929 conditioned medium, and maintained in 100mm x 20mm cell 

culture dishes (Corning, Schiphol-Rijk, NL) at 37°C.  

 

L929 fibroblasts were cultured as a source of the Macrophage-Colony 

Stimulating Factor (M-CSF) required to direction bone marrow pre-cursor cells 

towards a mature macrophage phenotype.  L929 fibroblasts were resurrected 

from FCS-rich, 10% DMSO, aliquots stored in liquid nitrogen. The aliquot was 

gently warmed and washed twice in 20ml DMEM supplemented with L-
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glutamine, penicillin-streptomycin, 10% FCS, to remove DMSO. Finally cells 

were seeded into T175 cm2 flasks (Corning, Schiphol-Rijk, NL) containing 

50ml media. Once the cells became confluent fresh media (25ml) was added 

to the flask and fibroblasts were incubated for 2 d releasing M-CSF. The L929 

condition media was gently removed and filtered through 0.22µm sterile 

syringe filters (Corning, Schiphol-Rijk, NL) ready for use or stored at -20oC.  

 

Fresh culture medium was added on day 3. The differentiation of Mφ was 

confirmed by morphology using FACS at day 5 (Figure 2.2). 
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Figure 2.2. Schematic of macrophage differentiation from precursor bone marrow cells. 
Cells are eluted from the tibia and femur of 4-6 week old mice. Supernatant harvested from 
L929 fibroblast cells supplies a source of M-CSF enabling bone marrow cells to be 
differentiated over a 5 day period. A change in cell morphology, assessed by FACS, is 
notable between day 0 (top) and day 5 (bottom).   
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2.7.2 Polyacrylamide gel-elicited macrophages 

 

45µm-90µm polyacrylamide gel beads can be used to elicit mature 

macrophages following injection into the peritoneal cavity. The Bio-Gel beads 

are too large to be ingested by resident macrophages potentiating the 

migration and maturation of monocytes within the peritoneum. This produces 

a homogeneous population of mature macrophages that peaks at 4 d post 

injection (Davies et al., 2005). 

 

Sterile beads were washed with distilled water by centrifugation at 400g for 5 

min. Gel beads were reconstituted to a suspension of 2% w/v sterile 0.9% 

saline. 1ml of the 2% w/v Bio-Gel (Bio-Rad, Hemel Hempstead, UK) was 

injected i.p. and macrophages were recovered by peritoneal lavage (3ml PBS, 

25u heparin, 0.3mM EDTA) 4 d  post injection. Cell suspensions were passed 

through 40µm cell strainers (BD Bioscience, Oxford, UK) before being washed 

and seeded.  

 

Cells were counted by Neubauer haemocytometer (Section 2.18) and 

resuspended at 2x106 cells/ml in serum-free DMEM (Invitrogen, San Diego, 

CA), supplemented with 50µg/ml gentamicin (Sigma-Aldrich, Poole, UK). 

Macrophages were transferred to 6-well cell culture plates (Corning, Schiphol-

Rijk, NL) 2x106 cells/well and allowed adhere for 1 h. Non-adherent cells were 

removed by washing twice with sterile PBS and fresh media is re-applied.   
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2.8 Chemotaxis  
 

The commercially available Neuroprobe ChemoTxplateTM 96-well plate 

(Receptor Technologies Ltd, Leamington Spa, UK) with polycarbonate 

membrane filters and 5µm membrane pores was utilised as described before 

(Lim et al., 2000).  Mφ were obtained as above, and resuspended at 4x106 

c/ml in Roswell Park Memorial Institute (RPMI; Lonza, Slough, UK) medium 

containing 0.1% BSA. The chemotaxis assay was performed using known 

FPR family agonists (fMLF, Ac2-26, SAA, AnxA1) added to the bottom wells 

as chemotactic stimuli (27µl), the filter was placed on top and 25µl of the Mφ 

cell suspension placed above the membrane.  Plates were incubated for 180 

min in a humidified incubator at 37°C with 5% CO2.   

 

Cells remaining on top of the filter were removed and the surface was 

washed. The plate was centrifuged (312g, 1 min), the filter removed and cell 

pellet re-suspended.  An aliquot (20µl) was removed and mixed with 30 µl of 

AlamarBlue (pre-diluted 1:10 in PBS; Serotec, Oxford, UK) in a 96-well plate 

and incubated (37°C, 5% CO2) for 4 h (Figure 2.3). A standard curve was 

constructed using known cell concentrations between 0 - 4x106 Mφ, 20µl with 

AlamarBlue. Plates were read at 530-560nm excitation wavelength and 

590nm emission wavelength for fluorescence values.  Unknown values were 

converted using the standard curve constructed with known Mφ numbers. 

 

 

 



Chapter 2  Materials and Methods                                                                                   

 85 

 

 

 

Figure 2.3. Schematic of 96-well plate chemotaxis assay using Neuroprobe 
chemoTxplateTM 96-well plate (Receptor Technologies Ltd). 
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2.9 In vitro PMN phagocytosis 

 
Human PMNs were isolated from peripheral venous blood drawn from healthy 

volunteers, after informed written consent, as previously described (Godson et 

al., 2000). Briefly, mononuclear cells were separated by centrifugation on 

Ficoll-Paque (Sigma-Aldrich, Poole, UK) and PMN plated at 2 x 106 cells/ml in 

RPMI 1640 (Lonza, Slough, UK) supplemented with 10% autologous serum, 

2mmol/L glutamine, 100U/ml penicillin, and 100µg/ml streptomycin 

(Invitrogen, San Diego, CA).  

 

Mφ were treated with the appropriate stimuli as indicated for 15 min at 37°C. 

The treated cells were washed with RPMI 1640 before co-incubation with 

apoptotic PMNs (4 x 106 PMNs/well) at 37°C for 30 min. Mφ were exposed to 

human apoptotic PMNs at 37°C for 30 min. Non-ingested cells were removed 

by three washes with cold PBS. Phagocytosis was assayed by 

myeloperoxidase staining (Section. 2.23) of cocultures fixed with 2.5% 

glutaraldehyde. For each experiment, the number of Mφ containing one or 

more PMN in at least five fields (minimum of 400 cells) was expressed as a 

percentage of the total number of Mφ and an average between duplicate wells 

was calculated. 

 

This work was undertaken at both the William Harvey Institute and the 

Conway Institute, UCD, Dublin where I spent a week learning the technique 

with Paola Maderna.  



Chapter 2  Materials and Methods                                                                                   

 87 

2.10 Western blotting by sodium dodecylsulphate-

polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Both cell pellet-derived and supernatant proteins were analysed using the 

SDS-PAGE technique. Proteins are negatively charged and denatured before 

being subjecte to polyacrylamide gel electrophoresis, which separates protein 

primarily by size with the smallest protein moving the furthest down the gel. 

 

The SDS acts to disrupt to hydrogen bonds and confers a uniform negative 

charge across the protein. This negates the charge across the proteins in 

each sample and therefore allows proteins to be separated according to size. 

DTT is a reducing agent that cleaves disulphide bonds to completely unfold 

the protein structure. Bromophenol blue is a dye used to identify the protein 

front as it moves through the polyacrylamide gel.  

 

The density of the polyacrylamide gel can be altered to facilitate the 

separation of the protein of interest. For the purposes of this my thesis I used 

10% polyacrylamide gels to monitor proteins ranging from 17-75kDa.  

 

The gels were cast using a Mighty Small casting cassette (Hoefer Scientific 

Instruments, Holliston, MA) containing a plastic separator sheet, a ceramic 

end plate with two 1.5 mm spacers on either side, and a glass plate front. The 

space between the ceramic end plate and glass front provides the space for 

the gel to set. Protogel Resolving Buffer (National Diagnostics, Atlanta, GA) 
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and distilled water mixture is polymerised using ammonium persulfate (APS; 

Sigma-Aldrich, Poole, UK) and N,N,N’,N’-Tetramethyethylene (TEMED; 

Sigma-Aldrich, Poole, UK) as catalysts, added immediately prior to pouring 

the gel into the cassette. A gap ~ 2 cm from the top allows space for the 

stacking gel, and any air bubbles are removed by adding a small amount of 

iso-propanol, which acts as a surfactant. The resolving gel is given 15 -20 min 

to polymerise, any excess water/iso-propanol is drained, before the stacking 

gel (National Diagnostics, Atlanta, GA) is mixed and added on top. To form 

wells within the stacking gel 10-well combs were placed at the top of the 

cassette and again the gel was left to set.   

 

Samples were separated for 60-90 min by electrophoresis at 110V and 

calibrated using a High Range Molecular Rainbow™ (GE Healthcare, Little 

Chalfont, UK) molecular weight markers. The separate proteins were 

subsequently transferred from the polyacrylamide gel to an Immobilon-P 

polyvinylidene difluoride (PVDF; Millipore, Watford, UK) membrane at 40C for 

75 min using 100V (Figure 2.4).  
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Figure 2.4. A Schematic of the three step technique to probe for specific protein by 
immunoblot. Negatively charged proteins are separated by electrophoresis through a 
polyacrylamide gel. These samples are then transferred by to a PVDF membrane before 
being probed with specific primary antibodies (blue). Secondary HRP-conjugated antibodies 
(red) can be used to visualise protein by luminescence, which can be detected on 
photographic film. A molecular weight marker is used to calculate protein size.  
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2.11 Protein Assay 

 
Protein content was determined using BCA protein assay (Pierce, Rockford, 

IL) and calculated by comparison with known concentrations of BSA. This is a 

colorimetric assay utilising the ability of protein to reduce Cu3+ to Cu2+. 

Bicinchoninic acid reacts with Cu2+ to produce a purple colour complex, which 

is generated in a robust linear relationship to protein concentration.  

 

10 µl of sample or standard was added to a 96-well plate in duplicate. 200 µl 

of working reagent was added and incubated for 30 min at 370C. Absorbance 

was measured at 570 nm using a Multiskan plate reader (Labsystems, 

Waltham, MA). Optical density was compared to a known standard curve (0.1-

1mg/ml) to calculate unknown protein concentrations. 
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2.12 Sample preparation for phosphorylated proteins 
 
 
Purified primary macrophages were plated at on 6-well plates at 1x106 

cells/well. Cells were treated with a variety of ALX ligands for 10 min and 

incubated at 37oC. Cells were immediately lysed following treatment with 

boiling hot 20mM Tris-HCL (pH 6.8) and then placed on ice. Cell lysates were 

mechanically dissociated by passage five times through a 21-gage needle. 

Homogenates were centrifuged at 4500g for 2 min to remove cell debris; 

supernatants were then transferred to fresh tubes. Lysates were finally 

denatured with using a 6 x  volume of sample buffer (12% sodium 

dodecylsulphate (SDS), 600mM dithiothreitol (DTT) and 0.6% bromophenol 

blue in 120 mM Tris-HCL (pH 6.8) and 60% glycerol; Sigma-Aldrich, Poole, 

UK). 

  

Following SDS-PAGE the PVDF membranes were blocked with 3 % BSA in 

Tris-Tween Buffered Saline (TTBS) for 2 h. Either rabbit anti-phospho-p44/42 

MAP Kinase (P-ERK) or Rabbit Anti-Phospho-Ezrin/Radixin/Moesin 

antibodies (Cell Signalling) was diluted 1:1000 in 0.3% BSA/TTBS and 

incubated with the membrane overnight. Membranes were washed 3 times for 

15 min with TTBS before a secondary HRP-conjugated anti-rabbit antibody 

(Dako, Cambridge, UK) was added 1:10000 dilution and incubated for 1 h. 

Membranes were washed 3 times before target protein luminescence was 

identified using Enhanced chemiluminescence (ECL) to amplify the HRP 
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signal. Luminescence was detected by a 10 min exposure on Hyperfilm (GE 

Healthcare, Little Chalfont, UK).  

 

Each western blot was repeated at least 3 times with and results were 

collated using ImageJ to determine opitical density of each band. Total MAP 

Kinase (Cell Signalling Technology, Danvers, MA) was used as a measure of 

total protein to calculate a ratio of phosphorylation and therefore correct for 

loading errors.  

 

2.13 Radio-ligand binding 

 
Radio-ligand binding assays were conducted as described previously in 

Hayhoe et al. (2006). Briefly, primary macrophages (Mφ) were resuspended at 

10x106 cells/ml in PBS containing Ca2+ and Mg2+ and placed on ice. The 

tracer (Iodine125 W-peptide) custom made by Phoenix Pharmaceuticals 

(Burlingame, CA) was prepared following the manufacturer’s instructions. An 

aliquot was resuspended on the day of the experiment in 1 ml of distilled 

water. The concentration was calculated using the specific activity (1507.17 

Ci/mmol), quantity provided (10µCi) and the relative molecular mass of the 

peptide (856.11) and was determined to be of 7 ng/ml (82pM).  

 

Unlabelled W-peptide was also prepared by resuspension in distilled water to 

a final concentration of 500µM. Subsequently a 1µM working stock was 

prepared, this was then employed to determine the extent of Non Specific 
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Binding (NSB) by the radio labeled tracer. Together with total binding (TB) of 

the tracer; specific binding can be estimated by TB – NSB.   

 

The reaction mixture was then incubated for 1 h on ice after which it was 

transferred on to a vacuum filtration unit equipped with 25mm GF/C filter 

membranes on to which any cells and bound tracer would be retained. The 

filters were then washed 3 times using 4ml aliquots of 10mM ice cold Tris-

HCL, to remove any unbound tracer. Following the wash step the filter paper 

was transferred into recipient tubes and the amount of bound tracer was 

determined using a gamma−counter.  
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In Vivo Protocols 
 

2.14 Animals 

 
Fpr2-/- mice and wild type (WT) littermate controls were bred in-house. All 

animals were fed on a standard chow pellet diet with free access to water and 

maintained on a 12 h light–dark cycle. Animal work was performed in 

accordance with the U.K. Home Office regulations Animals (Scientific 

Procedures) Act 1986. 

 

2.15 Zymosan-induced peritonitis 

 
Zymosan A (Sigma-Aldrich, Poole, UK) is an extract prepared from yeast 

(Saccharomyces cerevisae) cell wall capable of triggering ‘classical’ 

inflammatory machinery. Experimental peritonitis is widely used as an 

inflammatory model for drug screening with cell infiltration and inflammatory 

components widely characterised (Rao et al., 1994). More recently, this self-

resolving model of inflammation has been used to study the mechanisms and 

molecules that contribute for the resolution of inflammation (Serhan, 2007). 

 

2.15.1 Acute Peritonitis 
 

The Zymosan-induced peritonitis model was has previously been applied to 

both FPR null (Perretti et al., 2001b) and AnxA1 null (Chatterjee et al., 2005) 

mice to pre- assess the pharmacology of AnxA1 and therefore was the initial 

model assess in my thesis. 
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Peritonitis was induced in 6-8 week old mice by injecting 1mg Zymosan A in 

0.5ml phosphate-buffered saline (PBS) intraperitonally (i.p.). 4 h post injection 

WT and Fpr2-/- mice were killed and peritoneal cavities were lavaged with 3ml 

PBS, 25u heparin, 0.3mM EDTA. Cell suspensions were stained with Turk’s 

Solution (1:10 dilution; Section 2.18) and total, PMN and PBMC cell counts 

were assessed by light microscopy. Specific cell populations were identified 

and quantified by FACS analysis (Section. 2.19). 

 

2.15.2 Spontaneously Resolving Peritonitis 
 
 
The effects of endogenous and exogenous AnxA1 was first characterised in a 

resolving model of Zymosan-induced peritonitis (Getting et al., 1997) which 

revealed a role for AnxA1 in both acute phase inflammation and active 

resolution throughout the time course.  The AnxA1 null mouse was also 

assessed across a 96 h time course to investigate the AnxA1 gene 

expression throughout this resolving model (Damazo et al., 2006). 

 

To assess the profile of Fpr2 endogenous ligands peritonitis was again 

induced with 1mg Zymosan A in 0.5ml PBS (i.p) across a range of time-points 

spanning 4-120 h. Cells were counted and leukocytes identified and quantified 

by FACS  (Section 2.18 and 2.19). 

 

Cell pellets and cell-free exudates were separated by centrifugation (4500g, 5 

min) and stored at -80oC for gene (Section. 2.5) and protein (Section. 2.20–

2.24) based analysis, respectively. 
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2.16 IL-1β-induced air pouch 

 
The air-pouch was originally developed in rat as an in vivo model 

representative of an inflamed synovium (Edwards et al., 1981). Subcutaneous 

injection of air (day 0 and day 3) leads to the formation of a lining tissue, a 

very thin layer of 2-3 cells where a combination of macrophage- and 

fibroblast-like resident cells coexist. These features offer both a simplistic and 

robust microenvironment that allows great flexibility for experimental design. 

 

The role of IL-1β in leukocyte emigration was first noted for its induction in an 

endotoxin-induced air pouch (Ribeiro et al., 1991) but not fully characterised 

as a dependent stimuli until the early 90’s (Perretti et al., 1993c).  

 

The air pouch procedure was carried out as described previously (Perretti et 

al., 1994). WT and Fpr2-/- mice (6-8 weeks old) were injected with 2.5ml sterile 

air intra-dermally (i.d.) in the dorsal inter-scapula region with a 23-gauge 

needle on day 0 and again on day 3 (Figure 2.5). 

 

Animals were prophylactically treated with either FPR family agonists or saline 

(control) intra-venous (i.v.) on day 6 or 7. To induce cell infiltration air pouches 

were injected with 0.5% carboxymethyl cellulose (CMC; Sigma-Aldrich, Poole, 

UK) containing 20ng IL-1β per mouse for 4 h.  

 

The cell infiltrate was subsequently harvested by gentle lavage of the air 

pouch using PBS supplemented with 0.3mM EDTA and 25u heparin. As 
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described with the peritoneal lavage (Section. 2.15) cell suspensions were 

differentially counted by Turk’s staining and prepared for FACS analysis. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5. Schematic air pouch formation and picture of membrane structure. 
Sampaio, Dufton and Perretti 2009. 
 

 

 

Day 0 and 3 inject 2.5 ml of air by 
intra-dermal (i.d) injection into the 
dorsal inter-scapula region 

By day 6 the air pouch lining shows 
features similar to synovium. These 
features can be reinforced with repeated 
injections of air and extended time 
courses of up to 30 days 

Characteristic macroscopic view of a 6 d 
air pouch membrane displaying the 
developed microvasculature 
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2.17 K/BxN Arthritis 

 
The K/BxN T cell receptor (TCR) transgenic mouse line is susceptible to a 

spontaneous joint disorder bearing many of the pathogenic hallmarks of 

human RA (Matsumoto et al., 1999). K/BxN serum, containing atherogenic 

immunoglobulins, produces disease pathogenesis when injected into healthy 

animals. The transfer of induced arthritis model has become a popular 

technique for investigating the effector phase of inflammatory arthritis. 

 

Mice received 150µl of pooled sera (i.p.) from K/BxN arthritic mice at a single 

time-point (day 0). The development of disease was monitored by assessing 

the clinical index: one point was given for each tarsal or wrist joint which 

presented with erythema plus swelling; A maximum of 22 points could be 

scored per animal.  

 

Cumulative disease incidence was determined by the number of mice that 

presented a minimum of two paws with a clinical score (≥ 3) and was 

quantified as a percentage of the total group. 
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2.18 Differential cell counting with Turk’s solution 

 
To determine the number of cells within a given population the samples were 

diluted in Turk’s solution. 10µl of the cell suspension is counted by a 

Neubauer haemocytometer. The cells can be identified and characterised as 

either PMN or PBMC by their nuclear morphology, stained violet by the highly 

permeable Turk’s solution (Figure 2.6).   

 

Figure 2.6. Illustration of a Neubauer haemocytometer and differential cell counts by 
nuclear morphology. Cells are counted in the four numbered sections (1-4) and so a more 
accurate average can be obtained. Turk’s solution allows the identification on PMN (e.g. 
neutrophils) and PBMC (e.g Lymphocyte, monocyte and macrophages) and therefore 
counted differentially. 
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2.19 Measurement of specific cell populations within 

inflammatory infiltrate by flow cytometry (FACS) 

 
Cell infiltrates were analysed using a 96-well plate staining protocol previously 

described (Yona et al., 2004). Briefly, cell pellets were resuspended in PBS 

containing 0.2% bovine serum albumin (BSA) 1.3mM CaCl2 (PBC). Cells were 

washed (400g, 30s) before non-specific binding was blocked with 16mg/ml 

human immunoglobulin G (IgG). Cells were subsequently stained with specific 

conjugated antibodies, anti-mouse Ly6G (GR-1; Granulocytes) PE, anti-

mouse CD2 (LFA-2; Lymphocytes) PE, anti-mouse F4/80 (F4/80low 

monocytes; F4/80high macrophages) PE-Cy5 (eBioscience, San Diego, CA), 

(45 min, 4oC) or corresponding isotype control (final concentrations 5µg/ml). 

Cells were washed (400g, 30s) three times before being resuspended and run 

on a FACScalibur analyser (Becton Dickinson, Oxford, UK). 

 

For quantitative analysis a given leukocyte population could be identified by 

various parameters including Forward Scatter (FSC; size), Side Scatter (SSC; 

internal complexity) and specificity of a given conjugated-antibody. For 

example Figure 2.7 depicts GR-1+ cells gated predominantly for strong PE 

fluorescence in the FL-2 channel. The proportion of these GR-1+ events could 

be compared with the total events (10000) to determine the percentage GR-1+ 

population (Figure 2.7). Together with the total cell count a specific cell 

infiltrate per cavity or pouch can be approximated. 
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Figure 2.7. Identification of specific leukocyte subsets by FACS. (A) Depicts a schematic 
of a FACS assessing three parameters following excitation with an Argon 488 laser. (B)  An 
example of conjugated anti-mouse GR-1 antibody used to identify a specific, GR-1+ high 
population of granulocytes within an cells harvested from a 4h IL-1β-induced air pouch. A 
conjugated anti-rat IgG2 antibody is used as a negative control to identify non-specific 
antibody binding by measurement of fluorescence. Neutrophils are characterised by high GR-
1 binding (red). A percentage of the total population can be derived and compared with total 
cell counts to derive total GR-1+ high cells within a given cell suspension.   

A 

B 
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Peripheral blood was prepared as described previously (Chatterjee et al., 

2005). Briefly, blood was collected by cardiac puncture from both WT and 

Fpr2-/- mice under anaesthesia (3% halothane). I routinely collected 0.5-1ml of 

blood by cardiac puncture of 22-25g mice. Cells were washed (4ml PBS, 

400g, 5 min), blocked and stained, as above, in 15ml tubes. Following 

staining the cell pellets were washed twice and lysed using Whole Blood 

Immuno-LyseTM (Coulter, Luton, UK). Cells were washed twice and 

resuspended and data acquired on the FACScalibur analyser. 

 

For each sample a minimum of 10,000 events were acquired for analysis by 

CellQuestTM software (Becton Dickinson, Oxford, UK) on a Power Macintosh 

G3 computer.   
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Optical Density endpoint and ELISA Assays 
 
All assay endpoints were assessed using a Multiskan plate reader 
(Labsystems). 
 

2.20 Mouse TNF-α /IL-6 ELISA 

 
TNF-α and IL-6 production was measured by murine Ready-Set-Go!TM ELISA 

kit  according to manufacturers instructions (eBioscience, San Diego, CA). 

Briefly, samples were allowed to defrost on ice prior to plating on to the pre-

coated NUNC Maxisorp 96 well ELISA plates with comparable standard. 

Plates were assessed after avidin-HRP conjugation and visualised with 

3,3’,5,5’-tetramethylbenzidine (TMB) (R&D Systems, Abingdon, UK). Optical 

density was assessed at 450nm.  

 

2.21 Lipoxin A4 Extraction and ELISA 

 
Samples were initially purified to minimise background following an extraction 

method derived from Romano et al. (2002)  using C18 Sep-Pak colums 

(Waters Corporation, Milford, MA). Lavage fluid from zymosan peritonitis 

samples were centrifuged at 400g for 5 min and supernatant was removed 

and stored at -20oC. 100µl of each sample was mixed with 800µl 20% 

methanol v/v in distilled water (pH 3.5) immediately prior to extraction.  

 

The C18 Sep-Pak columns were preconditioned with 4ml methanol followed by 

4ml distilled water. 1ml of sample was placed on top of each column which 

was situated on a manifold, Vac Elute SPS 24 (Varian, Palo Alto, CA), 
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connected to a vacuum pump generating ~ 5 in Hg suction. Columns are 

washed with 4ml water followed by 4ml hexane to remove any non-polar 

molecules. Lipoxin A4 could then be eluted with 2ml ethyl ethanoate, a highly 

polar solution. Samples were dried within a vacuum centrifuge for 2 h and 

residues were reconstituted with extraction buffer provided within the Lipoxin 

A4 ELISA kit (Neogen, Lexington, KY). 

 

Subsequently 50µl of the extracted samples were applied to a pre-coated 96-

well plate and incubated with an enzyme conjugate for 1 h at room 

temperature. The plate was washed by submersion in wash buffer three times 

and a 150µl of secondary HRP-substrate was applied for 15-20 min. The 

reaction wash was stopped with 1M HCl and read at 450nm, values were 

derived by comparison to a standard curve ranging from 0.02-2ng/ml.  

 

2.22 Keratinocyte-derived Cytokine (KC) ELISA 

 
KC production was measured by a Mouse CXCL1/KC DuoSet ELISA kit 

according to manufacturers instructions (R&D Systems). Briefly, NUNC 

Maxisorp 96-well ELISA plates were pre-coated overnight with a capture 

antibody, diluted to 2µg/ml in PBS. The plates were washed and blocked with 

300µl of PBS containing 1% BSA for 1 h at room temperature. The plate was 

repeatedly washed and 100µl of a 1:10 dilution of each sample or known 

dilution of standards added for 2 h at room temperature. The plate was 

washed again and 50µl HRP-conjugated detection antibody (200ng/ml) was 

added for 1 h. Streptavidin-HRP was added for 20 min followed by TMB to 
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visualise protein, the reaction was stopped with 1M HCl. Optical density was 

assessed at 450nm.  

 

2.23 Mouse Serum Amyloid A (SAA) ELISA 

 
Levels of SAA within exudate samples were measured using a mouse SAA 

ELISA kit (Immunological Consultants Laboratory, Newburg, OR). The assay 

was performed in a pre-coated 96-well plate. Samples were diluted 1:200 for 

air pouch exudates and 1:400 for Zymosan-induced peritonitis exudates 

before 100µl of each sample was added to each well. Samples were 

incubated at room temperature for 1 h and then washed by submersion in 

wash buffer provided. A secondary HRP-conjugated substrate was added for 

30 min and again unbound substrate was removed by washing. Finally TMB 

solution was used to bind the HRP-conjugated protein, this reaction was 

stopped with 1M HCL and plates were read at 450nm.    

 

2.24 Myeloperoxidase (MPO) Assay 

 
MPO enzyme activity was assayed by measuring hydrogen peroxide (H2O2) 

(Sigma-Aldrich, Poole, UK) dependent oxidation of TMB as previously 

described (Cuzzocrea et al., 1997).  

 

20µl exudate samples or known concentrations of MPO were mixed with 

160µl of TMB and 20µl H2O2 (30% w/w) in a 96-well plate. Contents were 
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incubated for 5 min at room temperature before optical density was read at 

620nm.  

 

2.25 Statistics 

 
Data are expressed as mean ± SEM of n experiments performed in duplicate, 

triplicate or quadruplicate where stated. All data were initially assessed for 

normal distribution GraphPad Prism 4.0 software (GraphPad, San Diego, CA) 

prior to further statistical analysis. 

 

Student’s t-test was used to compare two groups with parametric data 

distribution.  Mann-Whitney U-test was used for non-parametric data (ERK 

phosphorylation). Comparison of clinical scores and paw volumes between 

groups was made using ANOVA. All analysis was performed using GraphPad 

Prism 4.0 software (GraphPad, San Diego, CA). In all cases, a P value  <0.05 

was taken as significant. 
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Results 



In Vitro Characterisation of Fpr2 signalling in primary 

cells 

 

3.1 Confirmation of generation of Fpr2-/- transgenic colony 

 
The targeting vector underwent homologous recombination in 8 out of 96 ES 

cell clones (Figure 3.1 A). The alignment of the 14.12 kb lambda insert p2.1 is 

shown, along with the locations of the Nhe I restriction sites used for Southern 

blot screening. Germline transmissions was primarily confirmed by Southern 

blot screening (Figure 3.1 B top) of tail clip DNA, the enzyme Nhe I. Probe 5b 

generates bands of 21.9 kb for WT and 15.7 kb and Fpr2-/- targeted alleles, 

respectively.  

 

A multiplex PCR was subsequently optimised to target the in-frame green 

fluorescent protein (GFP) target/reporter construct as a method of 

discriminating between WT and Fpr2-/- alleles. The f1/b11 primer pair 

produces a band of 233 bp using WT DNA, whereas the f1/Gb4 pair gives a 

band of 351 bp if the targeted allele is present (Figure 3.1 B bottom). 

 

To ensure the specificity of the transgenic strategy Multiplex PCR was used to 

compare the expression of fpr1 and fpr2 in WT (+/+) and Fpr2-/- (-/-) mice. 

Primers were compared to the internal control (IC) house-keeping gene (18s)  

(Figure 3.1 C). 

15.7 

0.35 
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The transgenic strategy and confirmation of germline transmission was 

performed by Dr Robert Hannon. I oversaw the maintenance, including 

genotyping, breeding and subsequent backcrossing of the Fpr2-/- colony and 

littermate controls during my PhD.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1. Confirmation of the generation of the Fpr2-/- mouse (A) Schematic 
representation of a region of ~ 30 kb of mouse genomic DNA spanning the fpr1 and fpr2 
genes. (B) top panel; Southern blot screening using a Nhe I. Probe 5b producing bands of 
21.9 kb (WT) and 15.7 kb (Fpr2-/-). (B) bottom panel; PCR was used to genotype 
heterozygote offspring, f1/b11 primer pair produced a band of 233 bp (WT), whereas the 
f1/Gb4 pair gives a band of 351 bp if the targeted allele is present. (C) PCR was used to 
compare fpr gene family expression in WT (+/+) and Fpr2-/- (-/-) animals. The arrow denotes a 
housekeeping gene (18S) to confirm the comparable presence of cDNA.  
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3.2 Induction of fpr2 promoter activity 
 

The transgenic strategy utilised an insertion of a GFP target/reporter construct 

located in frame of the promoter region. Expression of GFP could therefore be 

monitored as a measure of promoter activity.  

 

3.2.1 fpr2 promoter activity during macrophage (Mφ) 

differentiation 

 
Mφ were chosen for their previously established phenotype in AnxA1-/- mice 

(Yona et al., 2005) within our laboratory, complementing data pertaining to Mφ 

expression of Fpr2 by another group (Hartt et al., 1999b). The presence of 

fpr2 was confirmed in my thesis with the initial observation of fpr2 promoter 

activity in a variety of leukocyte populations by FACS ex vivo (Figure 3.12 B).  

 

Promoter activity, assessed as GFP Median Fluorescence Intensity (MFI), 

was monitored by FACS over 5 d bone marrow progenitor cell maturation to 

Mφ by incubation with M-CSF. Bone marrow cells increased promoter activity 

throughout the Mφ differentiation time course (Figure 3.2 A), expressed as a 

percentage increase in GFP MFI compared naïve bone marrow cells. 

Promoter activity was significantly (P<0.01) induced at 3 d and remained at a 

consistent plateau until 5 d.    

 

To compensate for the unavailability of antibodies targeting Fpr2 in WT cells, 

activity of WT and Fpr2-/- Mφ were compared by monitoring production of a 
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potent inflammatory cytokine, TNF-α. Inflammatory cytokines are known to 

play a key role in the regulation of the FPR family (Mandal et al., 2005) and 

(Cui et al., 2002b). TNF-α release into the supernatant was significantly 

(P<0.001; 4-5d) increased during Mφ maturation, measured by ELISA and 

revealed a close correlation with the modulation of GFP expression in Fpr2-/- 

macrophages (Figure 3.2 B). There were no notable (NS) differences between 

the genotypes suggesting similar Mφ activity within each culture. 
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Figure 3.2. fpr2 promoter activity during bone marrow Mφ  differentiation. Mφ are 
differentiated from bone marrow progenitor cells by 5 d culture in media enriched with L929 
condition media (M-CSF). (A) fpr2 promoter activity is expressed as a percentage increase in 
the median fluorescence intensity (MFI) of GFP fluorescence compared to 0 d Fpr2-/- cells. (B) 
TNF-α secretion into the culture supernatant was assessed by ELISA across the time course. 
All data are mean ± SEM of n=3. *P<0.05, **P<0.01, ***P<0.001 compared to 0 d by one-way 
ANOVA and Dunnett’s post-hoc test compared to day 0 control. 
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3.2.2 Modulation of fpr2 promoter activity in macrophages 

(Mφ) with pro- and anti-inflammatory stimuli 

 
Differentiated Fpr2-/- Mφ were stimulated with pro-inflammatory or anti-

inflammatory treatments in vitro to modulate promoter activity. 

Lipopolysaccharide (LPS; 100ng/ml) significantly (P<0.05) increased GFP 

expression at 8 h post treatment compared to 5 d. However, prednisolone 

alone had the opposite effect on promoter activity in GFP expression noted at 

both 4 and 24 h had levels below day 5 Mφ (Figure 3.3 A). 

 

TNF-α release by Mφ was again monitored in Fpr2-/- cells and revealed an 

acute secretion profile peaking at 4 h (P<0.01) following stimulation with 

100ng/ml LPS, however prednisolone reduced TNF-α production at both 4 

and 24 h (Figure 3.3 B). It is interesting to note that TNF-α secretion profile of 

LPS treated Mφ pre-emptively match the peak of promoter activity. This would 

suggest de novo synthesis is important when monitoring promoter activity via 

the GFP reporter construct. Equally prednisolone reduced TNF-α secretion 

below levels measured on day 5 Mφ paralleling the sub-basal promoter 

activity observed (Figure 3.3 A). 
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Figure 3.3. In vitro modulation of fpr2 promoter activity in Fpr2-/- Mφ . BM differentiated 
Mφ were  stimulated with either 100ng/ml LPS or 1µM prednisolone over a 24 h time course. 
(A) Percentage increase in GFP MFI was calculated compared to untreated control MFI value 
from  5 d Mφ represented as 0 h treatment. (B) The TNF-α secretion from Mφ into the culture 
supernatant was measured by ELISA. All data is mean ± SEM of n=3. *P<0.05, **P<0.01 
compared to 0 h by one-way ANOVA and Dunnett’s post-hoc test. 
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3.3 Radio-ligand binding on primary macrophages (Mφ) 

 

To validate our transgenic strategy employed to generate the Fpr2-/- mouse it 

was important to confirm absence of a surface receptor by assessing the 

binding capability of a specific Fpr2 ligand. 125Iodine-labelled W-peptide 

(tracer), a synthetic hexapeptide, was used as a known high-affinity ligand for 

murine Fpr2 (Le et al., 1999). Specific binding was assessed in WT Mφ by the 

addition of increasing amounts of tracer (0.1 - 820 pmoles) in the presence of 

a constant concentration of cold peptide (10µM; Figure 3.4 A). Specific 

binding (pmoles/mg) was used to generate a Scatchard plot (see Figure 3.4 A 

insert) revealing an apparent high and low-affinity binding site for W-peptide in 

line with a human receptor binding study (Strouse et al., 2009). The high-

affinity had a Kd of ~44 pM and the Bmax ~12 pmol. There was no specific 

binding of the 125Iodine-labelled W-peptide to Fpr2-/- Mφ.     

 
 
A displacement assay confirmed the deletion of the receptor in the Fpr2-/- Mφ 

as the tracer was unable to bind the cell surface. WT Mφ showed a 

concentration-dependent displacement of tracer by increasing concentrations 

of cold peptide (30 – 3000nM; Figure 3.4 B).   
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Figure 3.4. Radio-ligand binding assay. (A) Specific binding of 125I-labelled W-peptide is 
represented as number of molecules bound compared to the gamma-counts. This data 
allowed the calculation of a Scatchard plot inset. (B) Fpr2 specific binding to WT and Fpr2-/- 
Mφ was assessed by measuring the competitive displacement of 125I-W-peptide trace by cold 
peptide. All data are mean ± SEM of n=3. 

WT 

Fpr2-/- 

A 

B 



Chapter 3  Results 
 

 117 

3.4 ERK phosphorylation signalling cascade in ALX ligand 

stimulated primary macrophages 

 

To test the specificity of Fpr2 for functional ligation of reported ligands we 

chose to monitor ERK phosphorylation as a readout for receptor activation. 

This system has been reported to be robust in several studies both in-house 

(Hayhoe et al., 2006) and elsewhere (He et al., 2003). Phosphorylation was 

monitored at a selected time-point, that is 10 min post addition of each ligand. 

 

W peptide, which shows high specificity for Fpr2, confirmed in radio-ligand 

binding assays (Section 3.3), produced a rapid phosphorylation of ERK in WT 

Mφ across a concentration range (Figure 3.5 A). The inability of W peptide to 

transduce a functional response in the absence of Fpr2 would suggest a 

specificity for this receptor, at least within the given dose range applied.  

 

C43, a non-peptidic molecule developed using a cell-based assay high-

throughput screen of a compound library by Amgen (Burli et al., 2006), also 

produced a notable concentration-dependent response in WT Mφ (Figure 3.5 

B). Previously no signalling cascade has been attributed to this molecule. The 

marked reduction (P<0.01) in ERK phosphorylation, suggests a significant 

role for the MAPK pathway in C43 pharmacology via Fpr2.  

 

I then tested the AnxA1 N-terminal peptide, Ac2-26. This peptide, shown to 

activate all FPRs under in vitro experimental settings (Ernst et al., 2004), 
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produced a reproducible concentration-dependent response in WT Mφ that 

was significantly (P<0.01) reduced in Fpr2-/- Mφ (Figure 3.5 C).  

 

Finally we tested the response of SAA, an acute phase protein, that has been 

associated with activation of the ERK pathway following ligation of CLA-1 

(Baranova et al., 2005), TLR-2 (Cheng et al., 2008), TLR-4 (Sandri et al., 

2008) and, most pertinently for my study, human FPR2/ALX (He et al., 2003). 

The response of WT Mφ revealed a concentration-dependent pattern of ERK 

phosphorylation that was retained in the Fpr2-/- Mφ (Figure 3.5 D).  
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Figure 3.5. Intracellular signalling induced by Fpr2 ligation. Phosphorylation of ERK was 
monitored by western blotting, with Mφ exposed to a dose range of W peptide, C43, peptide 
Ac2-26, and SAA (panel A to D, respectively) for 10 min at 37°C. Representative blots are 
shown with respective bar histograms showing cumulative data. Closed bars denote WT Mφ 
and open bars Fpr2-/- Mφ . Data, expressed as ratio P-ERK/total ERK, are mean ± SEM of 
three experiments. *P<0.05, **P<0.01 compared to respective WT Mφ  by Mann-Whitney U-
test. 
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Fpr2-/- 



Chapter 3  Results 
 

 120 

3.5 In vitro primary macrophage transmigration assay 
 
 
The FPR family of receptors was initially characterised by their chemotactic 

properties, indeed Fpr2 was originally termed the low-affinity fMLF receptor 

(Ye et al., 1992). To investigate the functional role played by Fpr2, the ability 

of FPR family ligands to transduce the chemokinetic effects was assessed in 

WT and Fpr2-/- Mφ. 

 

 WT and Fpr2-/- Mφ cells were capable of responding to 1µM concentrations of 

fMLF with similar efficacy. Notably, as the concentration range increased, the 

ability of the Fpr2-/- Mφ to migrate was significantly attenuated compared to 

the response of WT Mφ (Figure 3.6 A). This is in line with previous studies 

noting that HEK-293 cells transfected with mouse Fpr2 were responsive at 

high concentrations of fMLF (Hartt et al., 1999b). 

 

SAA has also been characterised for FPR2/ALX specificity to transduce a 

chemotactic response in HEK-293 transfected cells (Liang et al., 2000). I was 

able to confirm this observation with a significant (P<0.05-P<0.01) reduction in 

Fpr2-/- Mφ to transmigrate in response to a concentration range capable of 

mobilising WT Mφ (Figure 3.6 B).  

 

AnxA1 and its functionally active peptide derivative, Ac2-26, produced a mild 

concentration-dependent chemotactic response in both WT and Fpr2-/-. 

Interestingly AnxA1 was capable of significantly (P<0.01) inducing a 

chemotactic response at 1µM, absent at the same concentration of Ac2-26. 
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Notably there was no specificity shown for Fpr2 with both WT and Fpr2-/- Mφ 

revealing identical profiles (Figure 3.6 C and D).  

 

From the chemotactic profiles of the four FPR ligands, Ac2-26 was noted to 

be the least chemokinetic. Indeed Ac2-26 was first characterised as a potent 

anti-migratory agent in vivo (Perretti et al., 1993b) with the distinct effects on 

both neutrophil and monocyte recruitment in a model of peritonitis (Getting et 

al., 1997). The notable ability of Ac2-26 to phophorylate ERK1/2 in Mφ via 

Fpr2 (Figure 3.5 C) made it an ideal candidate to investigate the anti-

migratory signalling attributed to Fpr2.  
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Figure 3.6. In vitro Mφ  locomotion in response to Fpr family ligands. Chemotactic 
response of WT (black) and Fpr2-/- (white) Mφ towards different concentrations of (A) fMLF, 
(B) SAA and Ac2-26 or (C) AnxA1 was determined using Alamar blue staining. Mφ 
chemotaxis occurred for 90 min at 37°C across 5µm pore membranes. Data are M ± SEM of 
3 experiments in quadruplicate, with different Mφ cultures; *P<0.05, **P<0.01 compared to 
WT Mφ (one-way ANOVA and Student’s t-test).  
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To test my hypothesis WT Mφ, pre-treated with 1µM Ac2-26 10 min prior to 

migration to SAA (1µM, 90 min) was shown to have striking selectivity for Fpr2 

mediated chemotaxis. When Mφ were pre-treated with media, SAA was 

capable of significantly (P<0.05) inducing a migratory response compared to 

vehicle alone, confirming our previous data (Figure 3.6 B). This response was 

significantly (P<0.01) inhibited following pre-treatment of Mφ with Ac2-26 

(Figure 3.7).  This result strongly suggests that both SAA and Ac2-26 mediate 

their converse effects on Mφ migration via the Fpr2 receptor. 

 

 

 

 

 

 

 

Figure 3.7. Inhibtion of SAA-mediated Mφ  chemotaxis by Ac2-26. Mφ were incubated with 
vehicle or peptide Ac2-26 (1µM) 10 min prior to addition to the top well of the chemotaxis 
chamber, using 1µM SAA as a chemotactic stimulus. Vehicle alone had no effect on SAA-
induced chemotaxis. However pre-incubation with Ac2-26 blocked chemotaxis. All data is 
mean ± SEM of n=4 analysis by Student’s t-test +P<0.05 compared to vehicle alone; 
**P<0.01 compared to vehicle + SAA.  
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3.6 Phagocytosis of apoptotic neutrophils by primary 

macrophages (Mφ) 

 
An important property of the anti-inflammatory and pro-resolving profile of 

AnxA1, Ac2-26 and LXA4 pharmacology is their ability to induce phagocytosis 

of apoptotic PMN by Mφ. I therefore investigated the role of Fpr2 in the pro-

phagocytic effect of Ac2-26 and LXA4 by measuring the capacity of Mφ to 

phagocytose human apoptotic neutrophils. Mφ were isolated from both WT 

and Fpr2-/- animals and pre-treated with either Ac2-26 and LXA4, used at 

previously published concentrations (Maderna et al., 2005) shown to increase 

phagocytic capacity of WT Mφ.  

 

Ac2-26 significantly (P<0.05) increased ingestion of apoptotic neutrophils in a 

concentration dependent manner in WT, notably Fpr2-/- Mφ did not increase 

their phagocytic capacity compared to vehicle treated cells (Figure 3.8). The 

treatment of WT Mφ with 30µM Ac2-26 led to a significant (P<0.05) increase 

as calculated with respect to vehicle and Fpr2-/- Mφ. 

 

LXA4 was observed to be a potent pro-phagocytic agent (P<0.01) with 

increased efficacy in WT Mφ (>10,000 fold) compared to Ac2-26. The inability 

of LXA4
 to mediate pro-phagocytic signalling in Fpr2-/- Mφ (Figure 3.8) would 

suggest that Ac2-26 and LXA4 share common pharmacology through their 

interaction with Fpr2, in respect to this experimental model.   
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Figure 3.8. Fpr2-mediated Mφ phagocytosis of human apoptotic neutrophils. Mφ  were 
treated with vehicle, Ac2-26 or LXA4 15 min prior to the addition of human apoptotic 
neutrophils for 30 min. Ingested neutrophils were identified by MPO staining permeabilised 
Mφ . Five fields (~150 Mφ /field) of view were counted by light microscopy and an average 
percentage ascertained. All data is mean ± SEM of n=4-7 analysis by Student’s t-test 
**P<0.01, *P<0.05 compared to WT vehicle; #P<0.05 compared to WT 30µM Ac2-26 treated.   

 

 

 WT 

 Fpr2-/- 



Chapter 3  Results 
 

 126 

In Vivo characterisation of Fpr2 physiology 
 

3.7 Comparison of phenotype 
 

To ensure that Fpr2 deletion had no detrimental effects during the 

developmental stage of life a number of WT and Fpr2-/- litters were observed 

and documented until ~6 weeks of age. 

 

Data pertaining to litter size and Mendelian ratios was collected from 16 litters 

comprising approximately 100 animals. The insertion of the transgene did not 

provoke any abnormality in breeding or variation to expected Mendelian ratio 

(Table. 3.1). The Fpr2-/- mice were viable, fertile and showed no obvious 

developmental or behavioural abnormalities.  

 
Phenotypic Data WT littermates Fpr2-/- P 

Litter size 7.15 ± 0.56 8.682 ± 0.58 NS 

Male Births 3.62 ± 0.51 4.18 ± 0.36 NS 

Female Births 3.54 ± 0.47 4.50 ± 0.45 NS 

M/F ratio 1.02 0.93 NS 

Weight (g)  

(4-6 weeks) 

21.78 ± 0.51 23.22 ± 0.62 NS 

Table 3.1. Phenotypic data of Fpr2-/- and WT littermates. Data was obtained from 16 litters, 
n>100 animals in WT or Fpr2-/- for the litter size and Mendelian analysis.  The weight of 
animals was assessed in 26 male mice of same age. All data is mean ± SEM. 
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3.8 In Vivo characterisation of naïve cell populations 
 
 

To understand the role of Fpr2-/- in inflammatory physiology it is important to 

clarify if resident cell populations would vary between genotypes. Two distinct 

cell populations, peripheral blood and peritoneal cavity, were assessed by 

flow cytometry to investigate cell activation and proportions of prominent 

phenotypic markers. 

 

The total cell populations were characterised using Turk’s stain to differentiate 

between leukocytes sub-populations, polymorphonuclear (PMN) and 

peripheral blood mononuclear cells (PBMC). Peripheral blood was seen to 

consist of approximately ~20% PMN of the total population (NS, ~2.5x106 

cells/ml; Figure 3.9 A). The naïve peritoneal cavity consisted predominantly of 

PMBCs (Figure 3.10 A) 

 

To confirm these observations three conjugated antibodies were used to 

characterised to each cell population. GR-1 is an antigen (Ag) marker of 

myeloid lineage, retained on circulating granulocytes and monocytes, 

particularly prominent on mature neutrophils. Monocytes and Mφ were 

identified by F4/80 Ag marker with higher expression attributed to mature Mφ 

phenotype (Austyn et al., 1981). Both markers were used routinely throughout 

in vivo experiments discussed in my thesis. Finally CD2 (also termed LFA-2) 

molecule expression is common to all mouse lymphocytes. I was therefore 

able to assess, for each marker, the extent of Ag expression at the single cell 

level.  
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Strong GR-1+ staining, measured by MFI units, in peripheral blood suggests a 

mature granulocyte component, as compared to more naïve phenotypes of 

F4/80+ cells, probably denoting monocytes, or CD2+ lymphocytes (Table 3.2). 

Resident cell derived from the peritoneum contained few granulocytes with 

markedly (P<0.0001; ~23 fold) lower expression profile of GR-1. Contrary to 

peripheral blood there was a strong increase in the expression of F4/80 

(P<0.01; 20 fold), in line with the differentiation of monocytes to tissue 

macrophages. Finally CD2+ cells showed almost twice (P<0.05) the 

expression of their circulating counterparts. 

 

There were no genotypic noted (Table 3.2) in the this broad comparison of 

immune cells, however this should not deter further examination of subtle 

differences that may yet become apparent.  



Chapter 3  Results 
 

 129 

 

 

Blood GR-1 F4/80 CD2 

WT 1551 ± 55.5 15.7 ± 1.7 173 ± 16.2 

Fpr2-/-
 1386 ± 85.7 17.8± 1.9 138± 3.2 

Peritoneal Lavage    

WT 57± 6.5 *** 314± 17.8 ** 255± 3.2 

Fpr2-/- 77± 22.9 *** 325± 20.4 ** 246± 4.1 * 

 

Table 3.2. Median Fluorescence Intensity (MFI) of constituent cells within peripheral 
blood and peritoneum. Mixed cell populations were obtained from naïve WT and Fpr2-/- 
mice by cardiac puncture and peritoneal lavage. Cell populations were stained for GR-1, 
granulocytes, F4/80, myeloid cells, and CD2, lymphocytes. All data is mean ± SEM of n=4-6 
mice analysed by Student’s t-test ***P<0.0001, **P<0.01, *P<0.05 compared to respective 
blood groups. 
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Figure 3.9. Characterisation of naïve peripheral blood cell populations by (A) differential 
cell counts using Turk’s staining, (B) FACS was used to identify specific cell populations using 
GR-1 (PMN), F4/80 (monocytes/macrophages) and CD2 (lymphocytes). All data is mean ± 
SEM n=7. 
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Figure 3.10. Characterisation of resident cell populations from peritoneal cavity (A) 
differential cell counts using Turk’s staining, (B) FACS to identify specific cell populations 
using GR-1 (PMN), F4/80 (monocytes/macrophages) and CD2 (lymphocytes). All data is 
mean ± SEM n=6. 
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3.9 Gene transcription in naïve and acute inflammatory 

peritoneum  

 

Reverse transcription PCR (RT-PCR) was undertaken to assess whether 

there were subsequent transcriptional discrepancies with anxa1 (Figure 3.11 

A) or fpr1 (Figure 3.11 B) within the Fpr2-/- colony.  

 
Peritoneal cells were harvested from naïve and 4 h zymosan (1mg; i.p) 

treated WT and Fpr2-/- animals. Gene transcription was investigated by 

quantitative PCR incorporating SYBRgreen (Ambion).  

 

No notable differences in the expression of either anxa1 or fpr1 mRNA were 

observed between naïve or inflamed peritoneal cells for either genotype 

(Figure 3.11). These data do not reveal the presence of compensatory gene 

expression as both regulation of an endogenous ligand, AnxA1, and that of 

the close relative, fpr1, originally the putative receptor for AnxA1, remain 

unchanged in the absence of Fpr2. 
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Figure 3.11. Reverse transcriptase PCR. The mRNA expression profile of the progenitor 
receptor fpr1 and the Fpr2 ligand, anxa1, were compared to a housekeeping gene (GAPDH) 
in both naïve peritoneal cell (-) and cells harvested 4 h post zymosan peritonitis (+).All data is 
mean ± SEM n=6. 
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3.10 Fpr2 promoter activity in vivo 
 

The incorporation of an in-frame GFP target/reporter construct into the 

promoter region of Fpr2-/- not only offered a novel method identifying genotype 

by FACS but also allowed promoter activity to be monitored in live cells in 

vitro (Section 3.2), this technique was therefore broadened to monitor a 

variety of in vivo cell populations. 

 

3.10.1 Fpr2 promoter activity in naïve and inflammatory 

environments  

   

Promoter activity, observed as GFP fluorescence (MFI units), was observed 

by FACS analysis in both naïve cell populations, peripheral blood (Figure 3.12 

A) and bone marrow-derived Mφ (Figure 3.12 B) used as a positive control. 

Furthermore I also measured inflammatory cell infiltrates from zymosan-

induced peritonitis (Figure 3.12 C) and IL-1β-induced air pouch (Figure 3.12 

D), indicating constitutive promoter activity of fpr2. 
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Figure 3.12. Histograms representing the promoter activity within in vivo cell 
populations in Fpr2-/- mice (green) compared to WT (purple) leukocytes for (A) peripheral 
blood (B) bone marrow-derived Mφ (C) peritoneal cells 4 h post zymosan (i.p) (D) air pouch 
cells 4 h post IL-1β (s.c). Histograms are representative of 5 WT and Fpr2-/- mice. 
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3.10.2 Cellular distribution of Fpr2 promoter activity during 

acute inflammation    

 
To assess the role of Fpr2 in an acute model of inflammation a variety of cell 

types were assessed for promoter activity following zymosan-induced 

peritonitis. To observe any subtle changes in GFP expression, leukocytes 

were permeabilised facilitating intracellular staining for GFP prior to FACS 

analysis.  

 

Promoter activity was observed in both PBS- and zymosan-treated animals in 

peripheral blood, bone marrow and peritoneal cells. Specific leukocyte 

populations were determined by cell surface antigen staining and compared to 

total cell counts (Figure 3.13 A) to gauge proportionate cell numbers.  

 

As later described (Section 3.13), acute zymosan-induced peritonitis is a 

granulocyte driven pathology with a large proportion of infiltrating cells 

expressing the granulocyte marker GR-1+ (P<0.01; Figure 3.13 A and B). 

Interestingly GFP, hence fpr2 promoter activity, was proportional increased 

(P<0.05) in the peritoneum in parallel to granulocyte migration. These results 

complement the data from the cellular compartments observed in previous 

histogram data (Figure 3.12).   

 

Strong GR-1 staining is also seen within bone marrow cells denoting an 

immature population of myeloid cells with expression of GR-1 lost by 

circulating monocyte cells. Monocytes and Mφ were identified using F4/80 
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staining, with a significant (P<0.05) reduction in F4/80high Mφ cells 4 h post 

zymosan injection (Figure 3.13 C).  There was no apparent modulation of 

promoter activity in the mononuclear population between PBS- or zymosan-

treated groups (Table 3.3).  

 

 

Table 3.3. Median fluorescent intensity (MFI units) representing the fpr2 promoter 
activity within in vivo cell populations in Fpr2-/- mice. Mice were either treated with 1mg 
zymosan or sterile PBS (i.p) for 4 h. Peritoneal lavage, bone marrow and peripheral blood 
were assessed for GFP expression by specific staining using α-GFP antibody. Granulocyte 
and mononuclear populations were distinguished by morphology. All data is mean ± SEM of 
n=3. 
 

Treatment Peritoneal lavage Bone marrow Blood 

 Granulocyte Mononuclear Granulocyte Mononuclear Granulocyte Mononuclear 

PBS 49.6±3.1 32.6±2.2 36.3±2.6 35.3±0.3 61.6±1.6 40.3±1.8 

Zymosan 53.6±1.2 34.0±2.6 33.6±0.6 
 

33.6±1.2 78.0±2.3 33.0±1.5 
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Figure 3.13. Phenotypic distribution of fpr2 promoter activity during zymosan-induced 
peritonitis model. Peritoneal, bone marrow, and peripheral blood cells were assessed for 
promoter activity by FACS compared to WT controls. Leukocyte phenotype was assessed by 
(A) total cell counts, (B) granulocyte staining (GR-1+), (C) F4/80 staining (D) GFP staining. All 
data is mean ± SEM of n=3 analysis by Student’s t-test **P<0.01, *P<0.05 compared to PBS 
treated controls by Student’s t-test. 
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3.11 Functional role of Fpr2 in IL-1β-induced acute air pouch  

 
To investigate the functional consequences of Fpr2-/- deletion on the 

pharmacology of anti-inflammatory compounds I employed an acute, FPR-

independent, leukocyte transmigration model in vivo.  

 

An IL-1β-induced air pouch is a well-characterised model of acute granulocyte 

cell infiltrate (>80%) 4 h post induction, previously applied to both AnxA1-/- 

(Chatterjee et al., 2005) and Fpr1-/- (Perretti et al., 2001b) mice. WT and Fpr2-

/- animals exhibited similar responses towards IL-1β in saline treated positive 

controls, with ~2-7x106 GR-1+ c/ml harvested per pouch (Table 3.4).  

 

When assessing multiple experiments it is important to qualify the variation 

between data sets. To ascertain whether data obtained from individual 

experiments could be compared using the cell counts. I assessed variation in 

vehicle treated IL-1-induced air pouches, using the control GR1+ values of 

three experiments used to test 1µg/mouse AnxA1 (Table 3.4). 

 

Although there was no variation (NS) between genotypes within a given 

experiment, I noted significant (P<0.05) variation across experiments when 

analysing each control group by one-way ANOVA (Table 3.4). I subsequently 

normalised data by calculating the percentage response compared to the 

control values obtained in each experiment.  

 

 



Chapter 3  Results 
 

 140 

 

Table 3.4. Variation of GR-1+ cell infiltrate to IL-1β-induce air pouch. The control 
response of WT and Fpr2-/- mice to mobilise GR-1+ cells (x105/air pouch) towards IL-1β (20ng; 
4 h time point) was compared in three separate experiments. All data is mean ± SEM n=3-4. 
*P<0.05, compared to WT experiment 1, *P<0.05, compared to Fpr2-/- experiment 1, by one-
way ANOVA and Bonferroni multiple comparison test. 
 

 

Genotype Experiment 1 
(n=4) 

Experiment 2 
(n=4) 

Experiment 3 
(n=3) 

WT 72±20.1 23.48±3.3  37±1.0 

Fpr2-/- 62±11.7 22.99±0.8 + 26±4.2 + 
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3.11.1 Anti-migratory action of AnxA1/Fpr2 interaction 
 
 

Prophylactic treatment with hrAnxA1 (i.v), 10 min prior to 20ng IL-1β per 

pouch, was used to assess the concentration dependent pharmacology of 

AnxA1 biology. 

 

Accumulation of GR-1+ cells was significantly inhibited (0.5µg; P<0.05 – 10µg; 

P<0.01) across the dose range in WT mice, with a maximal response (88.5% 

inhibition) observed at 10µg hrAnxA1 (Figure 3.14).  

 

There was a highly significantly (***P<0.0001) reduction of the effect of 

hrAnxA1 in Fpr2-/- mice by comparison of fit when dose-response curves were 

assessed using non-linear regression using the F test and global fit (Figure 

3.14). Despite this, high doses of hrAnxA1, 3µg and 10µg still significantly 

(P<0.01) impaired GR-1+ infiltrate by ~50% in both groups.  

 

This may suggest the involvement of other receptors to mediate high dose 

AnxA1 pharmacology. Fpr1 was initially thought to be a putative receptor for 

mediating AnxA1 actions (Walther et al., 2000) and would therefore be a 

candidate to convey this residual anti-migratory response in the absence of 

Fpr2. 
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Figure 3.14. hrAnxA1 dose response curve of WT and Fpr2-/- PMN (GR-1+) cell infiltrate 
towards an IL-1β-induced air pouch. The percentage inhibitory action of prophylactic 
hrAnxA1 was assessed in WT (black) and Fpr2-/- (white) mice by comparison with positive 
control, saline treated, mice. Saline and dose range of hrAnxA1 were administrated (i.v) 
10min prior to IL-1β (s.c). All data is mean ± SEM n≥4 WT and Fpr2-/- responses were 
significant across the dose range summarised by P<0.0001 comparison of fit following non-
linear regression using F test and global fit.  
 

0.01 0.1 1 10 100

0

10

20

30

40

50

60

70

80

90

100
WT
KO

hrANXA1 (µg)

%
 In

hib
itio

n ***  
P<0.0001 

WT 

Fpr2-/- 

hrAnxa1 (µg) 

Pe
rc

en
ta

ge
 in

hi
bi

tio
n 

(%
) 



Chapter 3  Results 
 

 143 

3.11.2 Prostaglandin E2 (PGE2) release into air pouch 

exudates following hrAnxA1 treatment 

 
The release of the pro-inflammatory mediator PGE2 was assessed in the air-

pouch exudates following 4 h IL-1β-induced leukocyte migration using an 

ELISA. Local production of PGE2 showed no significant change in either 

genotype (Figure 3.15).    

 

 

 

 

 

 

 

 

Figure 3.15. PGE2 release into IL-1β-induced air pouch exudates. PGE2 levels were 
measured by ELISA in WT (black) and Fpr2-/- (white) mice treated with a given dose of 
hrAnxA1 (i.v), 10 min prior to IL-1β (s.c). All data is mean ± SEM n=3-4. 
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3.11.3 Cytokine production in air pouch exudates following 

hrAnxA1 treatment 

 
 
The production of chemotactic cytokines, keratinocyte-derived cytokine (KC; 

murine Gro-α) and Monocyte Chemoattractant Protein-1 (MCP-1) were 

measured by ELISA in inflammatory exudates from IL-1β-induced air-pouch. 

 

Exudate levels of KC were significantly increased in both WT and Fpr2-/- 

following 1µg AnxA1 i.v. (P<0.01 and P<0.05 respectively; Figure 3.16 A). 

This trend was reduced at the highest dose of hrAnxA1 administered 

(10µg/animal) in both genotypes, however counter-intuitively KC levels were 

significantly more pronounced in the WT across the dose range (Figure 3.16 

A). 

 

There was only moderate fluctuation of MCP-1 production within the IL-1β-

induced air pouch with no significant changes observed across the dose 

range or between genotypes (Figure 3.16 B). 
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Figure 3.16. Chemokine profile following AnxA1 treatment in IL-1β-induced air-pouch. 
(A) KC and (B) MCP-1 levels were measured by ELISA in inflammatory exudates from air-
pouches. All data is mean ± SEM n=3-4. **P,0.01, *P<0.05, compared to respective vehicle 
treated controls by one-way ANOVA and Dunnett’s post-hoc test.  
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3.12 The role of Fpr2 in acute leukocyte migration 
 

To investigate Fpr2 pharmacology in acute inflammation and particularly in 

the context of the leukocyte transmigration a variety of pro- and anti-

inflammatory ligands were assessed in both WT and Fpr2-/- mice. 

 

3.12.1 Comparison of hrAnxA1 and dexamethasone in IL-1β-

induced air pouch granulocyte cell infiltrate 

 
The non-genomic anti-inflammatory effects of dexamethasone have been 

associated, at least partly, with rapid translocation of endogenous AnxA1 to 

the cell surface of neutrophil (Perretti et al., 1996). Therefore it was used to 

compare the endogenous AnxA1 production with the direct pharmacological 

effects of exogenous hrAnxA1 administration.  

 

This experiment was conducted in isolation and therefore groups are directly 

comparable by GR-1+ cell infiltration into the air pouch. As previously 

established hrAnxA1 (0.5-1 µg) exhibited potent anti-migratory effects 

(P<0.01) in WT animals in a dose dependent manner. Dexamethasone 

(0.5mg/kg, s.c), administered 1 h prior to IL-1β-induced air-pouch, significantly 

(P<0.05) reduced PMN migration in WT mice (Figure 3.17).  

 

GR-1+ cells were not significantly affected by either hrAnxA1 or 

dexamethasone treatment in Fpr2-/- mice. This would suggest that the acute 

anti-inflammatory response of dexamethasone is reliant, at least in part, on 
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Fpr2 signalling. Altogether, these preliminary data would be in line with 

previous studies conducted in AnxA1-/- mice (Hannon et al., 2003). 

 

 

 

 

 

 

 

 

 

Figure 3.17. Comparative anti-migratory effects of dexamethasone and hrAnxA1 in IL-
1β-induce air pouch. AnxA1 (given -10 min i.v) or dexamethasone (0.5 mg/kg, given -1h s.c) 
were administered prior to IL-1β (20ng) injection into the air pouch in WT (closed bars) and 
Fpr2-/- mice (open bars). All data is mean ± SEM n=5, **P,0.01, *P<0.05, compared to WT 
untreated control by Student’s t-test.  
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3.12.2 Comparison of Fpr2 ligands as modulator of IL-1β-

induced air pouch cell infiltrate. 

 

Similarly to my handling of the AnxA1 dose-response curve, multiple 

experiments are depicted here as percentage inhibition of GR-1+ cell infiltrate. 

No direct comparison is drawn between experiments, with each data set 

analysed against individual experimental controls. 

 

As observed with hrAnxA1 (1µg/mouse; P<0.01, 70.3%), the N-terminal 

peptide derivative Ac2-26 was efficacious in a dose-dependent manner when 

WT animals were treated with 16nmol (3µg/mouse; P<0.01, 52.6%) or 8nmol 

(1.5µg/mouse; P<0.05, 27.4%) when given prophylactically (Figure 3.18). 

Peptide Ac2-26 anti-migratory effects were not observed in Fpr2-/- mice at 

either dose tested. 

 

LXA4, previously found to be active in this air-pouch model (Pouliot et al., 

2000), was confirmed as a potent anti-inflammatory lipid, conveying significant 

(1µg/mouse; P<0.01, 52.4%) effects in WT. Again, this effect was lost in Fpr2-

/- mice (Figure 3.18)..  

 

C43 was originally characterised for its effects on reducing a prostaglandin E2 

and leukotriene B4 induced-ear swelling model both via topical and systemic 

dosing regimes (Burli et al., 2006). In the current study C43 was able to 

significantly inhibit leukocyte migration when a high dose was administered 



Chapter 3  Results 
 

 149 

p.o. (500µg/mouse; P<0.05, 42.6%) and, with increased efficacy, when 

delivered i.v. (250µg/mouse; P<0.001, 75.0%; Figure 3.18). This set of 

experiment also demonstrated that C43 did not affect leukocyte response in 

Fpr2-/- mice.   

 

W-peptide, dosed at 12 nmols (10µg/mouse; NS, 15.0%), previously shown to 

be cardio-protective (Gavins et al., 2005), was unable to induce a significant 

anti-migratory profile when in WT mice or Fpr2-/-. W-peptide is a potent 

stimulator of human (Christophe et al., 2001) and murine (Itou et al., 2006) 

neutrophils in vitro; these actions are brought about by interaction with all 

members of the Fpr family including Fpr2 as reinforced by binding studies 

(Section 3.3). The interplay between the distinct receptors of the Fpr family in 

vivo is currently unclear.  

 

The overall anti-migratory pharmacology of Fpr2 was contrary to the actions 

of SAA. The ability of SAA to instigate human and mouse neutrophil 

chemotaxis in vitro is well documented (Badolato et al., 1994; Liang et al., 

2000). Administration of SAA (i.v). increased PMN recruitment in WT mice, 

complementing the pro-migratory profile of this ligand observed in vitro 

(Figure 3.6 B).  

 

At the higher dose of 1nmol (15µg/mouse), SAA erratically increased PMN 

recruitment in WT mice. A more robust, and significant (P<0.01, -52.0%), 

response was observed in PMN recruitment was observed at the lower dose 

of 0.2nmol (3µg/mouse) in WT mice. 
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In Fpr2-/- mice, SAA administration at the top dose of 1nmol was able to 

significantly (P<0.01, 62.5%) inhibit leukocyte migration. This trend (NS) of an 

anti-migratory effect in Fpr2-/- mice was also apparent at the lower dose 

tested. This result may betray the highly promiscuous pharmacology of SAA, 

known to interact with a variety of receptors, however I should note there is 

limited literature describing anti-inflammatory properties for SAA (Renckens et 

al., 2006; Lee et al., 2006). Therefore SAA migratory properties are subverted 

in the absence of Fpr2, suggesting counter-regulatory mechanisms might be 

involved. 

 

The cumulative experiments presented in Figure 3.18 and described above, 

represent a major finding of my work. 
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Figure 3.18. AnxA1 and other Fpr2 ligands in the air pouch model. Fpr2 ligands were 
given i.v. at the reported doses (nmol) with data being reported as a percentage inhibition 
from vehicle treated mice. The IL-1β was similar in WT and Fpr2-/- mice (~3 x106 cells per 
pouch). In all cases, data are mean ± SEM of 6-12 mice per group. *P<0.05, **P<0.01, 
***P<0.001 compared to respective WT control values (original numbers), ++P<0.01 
compared to respective KO control values (original numbers) by Student’s t-test. 
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3.13 Acute zymosan-induced peritonitis 

 

Zymosan-induced peritonitis is a well-characterised model resembling the 

inflammatory mechanisms involved in opportunistic infection of the peritoneal 

cavity produced by micro-organisms in immuno-compromised patients. Acute 

zymosan-induced peritonitis instigates a ‘classical’ inflammatory cascade 

leading to a large increase in granulocyte cell infiltration at a 4 h time point.  

 

3.13.1 Phenotypic response in Fpr2-/- mice 
 
 
The role of Fpr2 pharmacology in orchestrating a complex inflammatory 

response was initially investigated by comparing differences between 

genotype following an inflammatory stimulus (1mg zymosan, i.p.)  The 

inflammatory response observed across a number of experiments revealed a 

subtle but significant (32%; P<0.05) reduction in the ability of Fpr2-/- 

granulocyte to migrate towards zymosan at the early, 4 h, time point (Figure 

3.19). 
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Figure 3.19. GR-1+ infiltrate following 4 h zymosan-induced peritonitis. GR-1+ cells 
counts were collated from 1mg zymosan (i.p) groups across 5 experiments (n≥26 animals). 
P<0.05 mean distrbution assessed by Student’s t-test.  
 
 
 

3.13.2 Anti-inflammatory action of AnxA1/Fpr2 interaction 
 

To determine whether AnxA1 could modulate cellular influx to the peritoneal 

cavity animals were given a prophylactic dose of hrAnxA1 (1µg, i.v.) 

 

Exogenous hrAnxA1 reduced total cells infiltrate to the peritoneum (Figure 

3.20 A) with a significant (46%, P<0.05) reduction in GR-1+ (granulocyte) cell 

infiltrate compared to saline-treated control animals (Figure 3.20 B). However, 

neither total cell infiltrate or GR-1+ cell infiltrate was significantly inhibited in 

Fpr2-/- mice following hrAnxA1 treatment in respect to corresponding 

untreated controls (Figure 3.20 A and B). 

 

WT 
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As assessed in section 3.13 the ability of both total and GR-1+ leukocytes to 

transmigrate in vehicle treated Fpr2-/- animals was diminished compared to 

vehicle treated WT counterparts (Figure 3.19).  
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Figure 3.20. PMN (GR-1+) cell infiltrate following 4 h zymosan-induced peritonitis. WT 
(black) and Fpr2-/- (white) mice were prophylactically dosed 10 min prior to zymosan with 
saline  (-) or 1µg hrAnxA1 (+) i.v. All data is mean ± SEM n=7, *P<0.05, compared to WT 
untreated control by Student’s t-test.  
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3.14 Profile of Fpr2-/- in spontaneously resolving zymosan-

induced peritonitis 

 

Zymosan-induced peritonitis is equally well characterised when permitted to 

progress to later time points (broadly described in Section 1.2). In my thesis I 

have followed the progression and resolution of this model through to 120 h 

allowing investigation of multiple leukocyte populations in a sequential fashion 

to give a broader appreciation of Fpr2 pharmacology. 

 

3.14.1  Zymosan-induced peritonitis time course 
 
 
 Minor alterations in cell recruitment were revealed, with a significant (P<0.05) 

increase in total cell and monocyte (F4/80low) numbers at the 72 h time-point 

in absence of Fpr2 (Figure 3.21 A and C). Interestingly the increase in Fpr2-/- 

monocyte numbers was counterbalanced by the reciprocal reduction (NS) in 

the macrophage (F4/80high) population at 72 h (Figure 3.21 D). There was no 

significant difference in the GR-1+ population between the genotypes (Figure 

3.21 B), however the trend of a reduced acute (4 h) response in the Fpr2-/- 

animals was again apparent (section 3.13.1).  

 

Histogram Insets (Figure 3.21 B and D) depict the specific regions assessed 

when calculating specific cell populations by FACS.   
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Figure 3.21. Kinetics of inflammation in the zymosan peritonitis model. WT (closed 
squares) and Fpr2-/- (open square) mice were treated with 1mg zymosan A at time 0 h.  At 
different time-points, peritoneal lavages were analysed for cell content. Profiles of total 
leukocytes, Gr-1+ (neutrophils), F4/80low (monocytes) and F4/80high (macrophages) (panels A 
to D, respectively) are shown. Inset: representative histograms of WT (red) and Fpr2-/- (green) 
showing cell type identification of (B) GR-1+ staining at 4 h, (D) F4/80 staining at 72 h 
compared to an isotype control (open) and 0 h stained cell population (purple). Data are mean 
± SEM of 4-8 mice per group. *P<0.05 compared to respective WT values. 

 
 
 

WT 
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3.14.2 Profile of inflammatory markers in spontaneously 

resolving zymosan-induced peritonitis 

 
To further investigate subtle genotypic differences between WT and Fpr2-/- 

animals, the release of inflammatory markers into the inflammatory exudates 

were measured. 

 

Myeloperoxidase (MPO) enzyme activity in exudates was assessed as a 

measure of neutrophil activity and accumulation. MPO activity peaked at 4 h 

in WT animals, but was delayed until 24 h in Fpr2-/- and was maintained at a 

higher level across the time course compared to the WT profile (NS; Figure 

3.22 A). This profile reflects the reduced cellular infiltrate observed in Fpr2-/- 

mice at 4 h (Figure 3.19) suggesting a delay in the onset of inflammation. 

Furthermore the extended activity of neutrophils in the peritoneum of Fpr2-/- 

mice may contribute the persistence of both total infiltrating leukocytes and an 

increase magnitude in recruitment of monocytes by zymosan (Figure 3.21).    

 

To assess whether absence of Fpr2 could modulate the local micro-

environment to mediate increased cellular infiltrate, the levels of two 

inflammatory cytokines, KC and IL-6, were measured by ELISA.  

 

KC, murine orthologue of Gro-α, is a potent neutrophil chemoattractant (Bozic 

et al., 1995) that is produced acutely with levels peaking at the 4 h time point. 

Similar secretion profiles were established for both WT and Fpr2-/- mice at 4 h, 

with no secretion observed at any other time point during the inflammatory 
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response. This would suggest that there is no direct effect of Fpr2 in the 

production or regulation of KC following zymosan-induced peritonitis by 

resident cells or activated PMN. 

 

IL-6 is traditionally considered an activator of acute phase response (Jones, 

2005) and therefore a interesting candidate cytokine for conveying some of 

the Fpr2 mediated cell signalling. As noted with KC, IL-6 followed a very acute 

profile with levels rapidly increasing to peak at 4 h. Both genotypes adhered to 

similar profiles with marked reduction in IL-6 levels at 24 h until the 

experiment was terminated at 72 h (Figure 3.22).  

 

The rapid induction and metabolism of both KC and IL-6 strongly correlate 

with acute neutrophilia to the peritoneal cavity and therefore suggest a distinct 

role for activated neutrophils in regulating cytokine production in this model of 

inflammatory peritonitis. 
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Figure 3.22. Inflammatory markers zymosan time course. Inflammatory exudates obtained 
from WT (black) and Fpr2-/- (white) animals were assessed for (A) MPO by enzyme activity 
assay (B) KC and (C) IL-6 by ELISA. Data are mean ± SEM of 4-8 mice per group. 
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3.14.3 Profile of endogenous Fpr2 ligands in spontaneously 

resolving zymosan peritonitis 

 
Expression of endogenous Fpr2 ligands, SAA, LXA4 and AnxA1, within 

peritoneal exudates was assessed throughout zymosan-induced peritonitis 

time course.  

 

Exudate LXA4 levels changed mildly peaking at 4 h before gradually subsiding 

to basal levels at 72 h. Although the level of LXA4 are very low compared to 

the presences of other Fpr2 ligands measured, namely AnxA1 and SAA, they 

are in accordance with previously described levels in a peritonitis model 

(Serhan et al 2000). There were no significant differences between the 

genotypes during peritonitis, however naïve levels of LXA4 in Fpr2-/- mice 

were significantly lower   (-45%; P<0.05) than those measured in WT mice 

(Figure 3.23 A). 

 

SAA was present in considerable quantities at 4 h (~7µg/cavity), and peaked 

at 24 h post-zymosan (Figure 3.23 B). The absence of Fpr2 led to a significant 

(P<0.01) ≥3-fold increase in SAA levels in the 24 h exudates (Figure 3.23 B).  

Whereas changes in plasma SAA levels have been shown to increase >1000 

fold reaching as high as 1mg/ml (He et al., 2008), making it an ideal 

diagnostic tool in the clinic, local modulation of this acute phase protein is 

poorly characterised.    
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Unfortunately there is no ELISA available for quantitative measurement of 

murine AnxA1 so levels of production by each genotype were monitored 

comparatively using western blotting. Secretion of AnxA1 into inflammatory 

exudate was present in large amounts at both 4 and 24 h post-zymosan in 

both WT and Fpr2-/- mice. Interestingly AnxA1 secretion appeared slightly 

elevated (NS) in Fpr2-/- exudate, which might suggest a subtle modulation in 

AnxA1 release through Fpr2. As with inflammatory cytokine production 

(Figure 3.22), AnxA1 secretion closely mapped the infiltration and clearance 

of leukocytes to the peritoneum  (Figure 3.23C).  

 



Chapter 3  Results 
 

 163 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23. Evidence for subtle Fpr2-related circuits in peritoneal inflammation. 
Exudate LXA4, SAA, and AnxA1 were detected by ELISA, EIA and western blotting with 
densitometric analysis, respectively (panels A to C). Data are mean ± SEM of 4-8 mice per 
group. **P<0.01, *P<0.05 by student’s t-test compared to respective WT group. 
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3.14.4 Modulation of Fpr2 circuitry in inflammation 

 
The presence of SAA within the peritoneal exudate, augmented by Fpr2 

deficiency, led us to hypothesise that local SAA expression could be 

modulated via Fpr2 regulated feedback.   

 

SAA, administered to WT animals (1µg; i.p) 10 h post zymosan, resulted in a 

significant (P<0.01) increase in endogenous SAA measured in the peritoneal 

lavage at 24 h (Table. 3.5), attaining similar levels to those observed in Fpr2-/- 

mice (Figure 3.23 B). Following the increase in endogenous SAA, there was a 

significant increase in both total cell (P<0.01) and macrophage (F4/80high; 

P<0.05) numbers at 72 h post zymosan (Table 3.5).  

 

To assess whether this could be attributed to a direct or indirect effect of SAA 

I monitored IL-6 levels, since this cytokine has been proposed to afford the 

switch between PMN and Monocyte/Macrophages in acute inflammation 

(Romano et al., 1997). Exudate IL-6 levels were measured by ELISA following 

pharmacological intervention with Fpr2 ligands, as a potential way to impact 

on the resolution phase of zymosan-induced peritonitis.  

 

At the time of local SAA or C43 treatment (10 h; 1µg i.p.) IL-6 levels had 

diminished from its peak at 4 h (Figure 3.22) and further declined in both WT 

and Fpr2-/- animals in a time-dependent fashion. WT IL-6 showed a trend (NS) 

to be reduced following C43 treatment, with SAA mediating a mild increase 
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(NS) in IL-6 levels compared to control (Figure 3.24). Fpr2-/- exhibited no 

notable fluctuation in IL-6 production following either treatment. 

 

     

Treatment Exudate SAA 

(24 h; µg/ml) 

Leukocyte Number (x105; 72 h) 

   Total          GR-1+       F4/80low       F4/80high 

Vehicle 8.5 ± 1.7 39.0±1.7 11.3±0.9 17.3±1.7 2.3±0.5 

SAA 20.2 ± 2.70** 74±13** 7.3±0.7 29.5 ± 5.6 7.3±1.9* 

 

Table 3.5. Effects of exogenous SAA on delayed cell recruitment in the zymosan 
peritonitis model. Animals were injected with either vehicle (100 µl) or SAA (1µg i.p) 10 h 
post-zymosan (1 mg at time 0). Inflammatory exudates were harvested from vehicle- and 
SAA-treated groups at 24 h (to assess local SAA levels by EIA) and at 72 h (to monitor 
recruitment of leukocyte populations). Data are mean ± SEM of 4 mice per group. *P<0.05, 
**P<0.01 compared to respective vehicle values. 
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Figure 3.24. Effect of Fpr2 ligands on IL-6 production within zymosan-induced 
inflammatory exudates. IL-6 levels were assessed by ELISA prior (10 h) or subsequent to 
local (i.p) administration of vehicle, 1µg C43 or 1µg SAA (72 h). Data are mean ± SEM of 4 
mice per group. 

 

 

WT 

Fpr2-/- 



Chapter 3  Results 
 

 167 

3.15 K/BxN-induced arthritis in Fpr2-/- mice 

 
To Investigate the role of Fpr2 pharmacology in a more chronic model of 

inflammation, arthritis was induced by administration of K/BxN serum, which 

provokes a rapid arthrogenic response highly reliant on innate immunity cells 

(Ji et al., 2002). This model induced disease within the first five days of 

treatment, with a peak of disease occurring at day 7 (Figure 3.25A). The 

pathology steadily begins to resolve over the subsequent ~15 d and 

experimental measurements were ended after 30 days.   

 

Neutrophils and myeloid cells have been shown to be integral to the disease 

pathogenesis, with selective neutrophil (Wipke et al., 2001) or Mφ depletion 

(Solomon et al., 2005) making mice resistant to arthritis. This model was 

therefore a logical progression from having noted a disregulation in both acute 

neutrophil infiltration and monocyte/Mφ activation during resolving peritonitis.  

 

Fpr2 animals were significantly (P<0.05) more susceptible to arthritic disease 

following administration of K/BxN serum (Figure 3.25B). Although the disease 

profiles of WT and Fpr2-/- genotypes showed similarities, Fpr2-/- mice 

developed significantly (P<0.05) exacerbated symptoms and prolonged 

disease (Figure 3.25 A). The inflammatory response in WT animals subsided 

by 18 d, but remained high in Fpr2-/- mice until termination of the experiment 

at 30 d (Figure 3.25B).  
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Figure 3.25. Passive serum induced arthritis: exacerbation in Fpr2-/- mice. Mice received 
200 µl i.p. of arthrogenic K/BxN serum. (A) Time-course of the clinical arthritic score in wild 
type (n=6) and Fpr2-/- (n=6) mice; mean ± SEM; *P <0.05, 2-way ANOVA; (B) Cumulative 
disease incidence (cut off score ≥3); *P<0.05, Log rank test. 
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The formyl peptide receptor family is emerging as a group of key regulators in 

both host defence and tissue homeostasis. The novel characteristic of 

multiple ligand interactions has pushed the field forward, prompting the 

generation of pharmacological tools and transgenic strategies, both partly 

exploited in this thesis. Primarily I have focused on the initial characterisation 

of a novel colony of Fpr2 null mice, validated in both cell based assays as well 

as acute and chronic patho-physiology to decipher the pharmacology of this 

receptor.  

 

In line with the aims of my thesis I have described modulation of fpr2 promoter 

activity in vitro and in vivo, which corroborates appearance of an inflammatory 

phenotype in Fpr2-/- mice. Furthermore I have tested the multifaceted actions 

of both endogenous and synthetic ligands, with functional crossover between 

human FPR2/ALX and murine Fpr2. This is an important initial 

characterisation of a unique transgenic tool that could represent a significant 

advance for screening Fpr2-selective therapeutics.  

 

4.1 Naïve Fpr2-/- phenotype 

 
To validate our novel transgenic we confirmed incorporation of the vector and 

specificity for silencing fpr2 by southern blot and PCR. To determine any 

compensatory mechanisms in the Fpr2-/-, the closely homologous fpr1 

expression was compared between genotypes. Both initial characterisation 

and subsequent comparisons of fpr1 and anxa1 mRNA expression in naïve 
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and inflamed WT and Fpr2-/- mice revealed no palpable compensatory 

mechanisms within the AnxA1/FPR pathway in our transgenic.  

 

The absence of Fpr2 had little observable effect on the phenotype under 

naïve conditions. Healthy litters were produced with expected Mendelian ratio, 

mice grew normally with no adverse effects on spontaneous infection, size or 

weight gain. The assessment of generic antigen markers and proportions of 

circulating immune cells were unaffected, with observations matching those in 

the Fpr1-/- colony (Gao et al., 1999). Furthermore in a more mature tissue-

specific cell population from the peritoneum there was no difference between 

genotype. Although detailed studies on gene expression have not been 

undertaken on either of these transgenic colonies this preliminary evidence 

would imply that the fpr gene family is not crucial to healthy development 

within a pathogen-free environment. A comparable assessment undertaken in 

the AnxA1-/- transgenic mouse revealed a similar conclusion (Hannon et al., 

2003); however a stringent examination revealed increased expression of pro-

inflammatory enzymes COX-2, cPLA2 and iNOS in lung and thymus (Wells et 

al., 2004). Future studies may address the potential subtle impact of Fpr2 

deletion on the naïve phenotype.  

 

4.1.1 fpr2 promoter activity 
 
 

A number of question marks still surround the functional similarities between 

the human FPR and murine Fpr family. Initial studies of FPR2/ALX noted a 

similar expression profile to FPR1, potentially attributable to cross reactivity of 
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the human antibody used (Becker et al., 1998). Although there is considerable 

homology between human (FPR1 and FPR2/ALX) and mouse receptors (Fpr1 

and Fpr2, respectively) currently there are no murine antibodies commercially 

available. Tissue and cellular expression is therefore restricted to the 

investigation of mRNA extraction by RT-PCR, cellular expression profiles are 

largely restricted to human.  

 

In the mouse, the fpr gene cluster (on chromosome 17) has undergone 

differential expansion, so that currently seven genes have been identified (Le 

et al., 2002). Many of the additional murine members remain orphan receptors 

with little currently know about their expression or function. To address the 

question of Fpr2 promoter activity in mouse the colony was developed using a 

target/reporter strategy following the successful development of the AnxA1-/- 

mouse containing a LacZ reporter construct (Hannon et al., 2003). For the 

Fpr2-/- mouse a target vector was generated incorporating a GFP construct 

‘in-frame’ within the promoter region. This fluorescent approach has two 

distinct advantages over the more common LacZ constructed applied in the 

AnxA1-/- mouse. Primarily fluorescence can be monitored within living cells 

using sensitive flow cytometry technique, therefore not requiring time 

consuming histological analysis. Furthermore it offers the potential to develop 

AnxA1/Fpr2 null double transgenic colony without compromising the 

specificity of either tool. 

 

With our novel target/reporter transgenic I was able to further confirm the 

presence of Fpr2 promoter activity in both naïve, inflamed and ex vivo 
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proliferation of Mφ. It was striking to note that within peripheral blood the 

predominant population of GFP+ cells were granulocytes. An observation 

underlined by promoter activity increasing proportionately to granulocyte 

infiltration to the peritoneum following zymosan stimulation. Interestingly, 

despite the apparent increase in proportion of leukocytes with fpr2 promoter 

activity, there was no significant change in the intensity of promoter activity 

during acute inflammation. There are a number of possible scenarios that 

could contribute to this outcome. Firstly there is constitutive fpr2 promoter 

activity in vivo in mature granulocytes, as both naïve peripheral blood and 

activated infiltrating PMN had similar GFP expression. Fpr2 shares traits with 

classical chemotactic receptors, such as its relative Fpr1, and therefore is 

prone to heterologous and homologous desensitisation (Tiffany et al., 2001). It 

may be reasonable to speculate that translocation, internalisation and 

recycling of Fpr2 may play a more dramatic role in functional regulation of 

Fpr2 by PMN than the contribution of nuclear transcription.  

 

Secondly there is the possibility that fpr2 regulates its own expression. 

Therefore I decided to investigate fpr2 promoter activity in a naïve myeloid cell 

population of bone marrow to ascertain whether we could synthetically 

modulate promoter activity during maturation towards mature Mφ. This 

population was chosen as a robust model of cell maturation as well as 

containing a high proportion of pre-granulocyte cells that could address pre-

disposition for a given phenotype. Promoter activity was shown to gradually 

increase across the maturation time-course within the Mφ population. This 

data revealed that promoter activity could indeed be modulated within a 



Chapter 4  Discussion                                                                                   

 174 

discrete cell population, identifying myeloid cell differentiation as an important 

aspect of Fpr2.  

 

Mφ fpr2 promoter activity could be induced or reduced by LPS or prednisolone 

respectively. Both LPS and GC have previously been shown to directly 

modulate TNF-α by regulating NFκB signalling, with a noted augmentation of 

TNF-α release from AnxA1-/- Mφ, suggesting a regulatory role for AnxA1 

(Yang et al., 2009). Both LPS and TNF-α have been shown to up-regulate 

fpr1 mRNA expression in murine peritoneal Mφ, an action not shared with IL-

1β or IL-6 (Mandal et al., 2005). Furthermore LPS and TNF-α have been 

demonstrated to up-regulate fpr2 mRNA in microglia (Cui et al., 2002a) and 

fibroblast-like synoviocytes (O'Hara et al., 2004). The data obtained would 

corroborate the underling themes that murine Mφ are sensitive to LPS and 

TNF-α-induced NFκB activation to influence fpr2 gene transcription. However 

we did not note a disproportionate production of TNF-α in the absence of 

Fpr2. Overall these observations would implicate the presence of Fpr2-

independent regulation of promoter activity within this cell type. 

 

The action of prednisolone in this assay is contrary to a previous study using 

the human peripheral blood mononuclear cells, which revealed a ~2 fold 

increase in FPR2/ALX mRNA expression 4 h post treatment (Sawmynaden et 

al., 2006). This discrepancy may imply differential species or cell-specific 

regulation, which could underlie the physiological complexity of Fpr2. Despite 

this anomaly, collectively these data technically validated our approach in 

vitro. 
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Thirdly it has been noted by other groups that although GFP is a stable 

fluorescent protein it emits at a relatively weak intensity particularly if the 

promoter of interest is not ubiquitous within the cell (Ikawa et al., 1998). The 

weak signal detected in granulocytes could therefore be masked by auto-

fluorescence often attributed to intracellular vesicles, prominent in granulocyte 

morphology. Furthermore fluorescence intensity of GFP is strongly reliant on 

protein conformation (Tanudji et al., 2002), which could not be guaranteed 

within our model. To confront the possibility that one or all of these processes 

may interfere with the detection of subtle changes in GFP fluorescence I used 

an antibody-based approach to specifically stain total cellular GFP by 

permeabilistion of the cell membrane. Staining using an anti-GFP antibody 

increased the sensitivity of our FACS data again revealing preferential fpr2 

promoter activity in granulocytes. However, even with this protocol, I could not 

show a significant change in induction within naïve or inflammatory leukocyte 

populations.  

 

The culmination of this data would imply a key role for fpr2 in granulocyte 

homeostasis as well as within the development of immature myeloid cells to a 

mature Mφ phenotype.  

 

4.1.2 Fpr2 expression and Fpr family compensation 
 
 
Having assessed the expression profile and naïve phenotype associated with 

silencing fpr2 gene transcription I also wanted to demonstrate the presence of 
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cell surface Fpr2 on Mφ. My primary aim, in this section, was to establish the 

absence of a functional Fpr2 receptor in Fpr2-/- cells and mice; subsequently, I 

investigated possible compensatory mechanisms associated with 

disregulation of the Fpr family.  

 

The loss of cell surface Fpr2 expression was demonstrated by radio-ligand 

binding assays. The 125Iodine-labelled W-peptide (WKYMVm), a synthetic 

peptide in the dextro-conformation, has previously been shown to bind all 

three human receptors expressed on transfected cell lines (Christophe et al., 

2001). This commercially available radio-ligand not only revealed a 

predilection for Fpr2 binding on Mφ, but also a secondary low affinity binding 

sites on WT Mφ, conceivably Fpr1 (Strouse et al., 2009). The absence of 

binding in Fpr2-/- Mφ at high concentrations reflected the specificity of our 

transgenic technique and addressed a lack of functional compensation by 

Fpr1 binding. This observation, together with minimal modulation of Fpr1 

mRNA in both naïve and inflammatory environments, suggest that the 

absence of Fpr2 has little effect on the expression and functionality of Fpr1.   

 

4.2 Inflammatory Fpr2 phenotype 

 
The notable promoter activity of fpr2 in granulocytes led us to assess the 

potential role of Fpr2 in acute, neutrophil-driven pathologies. PMN recruitment 

is a hallmark of the inflammatory response (Nathan, 2006b; Nathan, 2002), 

exquisitely susceptible to inhibition by endogenous Fpr2 ligands including 

LXA4 (Chiang et al., 2006) and AnxA1 (Perretti et al., 2009). 
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The air pouch model is a simple and highly effective method of inducing 

stimulus-specific leukocyte chemotaxis in vivo. IL-1β was a chosen as both a 

robust activator of immune cells eliciting acute PMN chemotaxis (Perretti et 

al., 1993d). Studies have suggested the activation of endothelium, release of 

IL-8 (Bittleman et al., 1995)  and involvement of kinins, such as substance P 

(Perretti et al., 1993a) and bradykinin (Ahluwalia et al., 1996), are integral 

mediators of IL-1β-induced neutrophil migration in vivo. Apart from some 

variation between experiments there was no difference in neutrophil migration 

in the absence of Fpr2, when compared to values of WT mice. Therefore, 

endogenous Fpr2 does not control the leukocyte influx promoted by IL-1β. 

 

Contrary to the similarities in neutrophil numbers in the air pouch of either 

genotype, there was a mild reduction in the ability of neutrophils to migrate to 

the peritoneum following zymosan treatment. Zymosan is a non-specific 

inflammogen able to instigate a classical, PRR-mediated, response. As with 

the air pouch, the majority of PMN recruitment occurs in the acute phase 

peaking around 4 h post challenge. The ability of Fpr2-/- PMN to infiltrate the 

peritoneum at this early time point was consistently impaired compared to the 

response in WT mice. Regulation of fpr2 expression is known to be directly 

influenced by PRRs, TLR2 and NOD2 (Chen et al., 2008), therefore it would 

be reasonable to assume that Fpr2 is involved in their counter-regulation. 

These interactions are particularly important in priming resident cells to shape 

the inflammatory environment. Notably zymosan-induced neutrophil migration 

is strongly modulated by TNF-α (Volman et al., 2002) and LTB4 (Petersen et 
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al., 1990). Consequently the lack of Fpr2 expression may interfere with the 

ability of resident cells to respond to pathogen efficiently further cementing its 

status as a pattern recognition receptor.  

 

Systemic loss of Fpr2, initially identified as a chemotactic receptor by its high 

homology (81%) to Fpr1 (Su et al., 1999), may also contribute to the inability 

of circulating granulocytes to rapidly migrate in the early phase of 

inflammation. It is interesting to note that human FPR2/ALX can form hetero-

dimers with the leukotriene B4 receptor, at least in artificial cellular system 

(Damian et al., 2008). The proposition that Fpr2 can complex with different 

receptors is a fascinating possibility of GCPR pharmacology with wide-ranging 

cogitations for ligand recognition and intracellular signalling.  

 

The role of receptor desensitisation is an unanswered subject, however it 

should be noted that unlike Fpr1, Fpr2 internalisation is dependent on β-

arrestin (Gripentrog et al., 2008). It has also been shown that dysregulation of 

β-arrestins inhibits chemotaxis in a mouse model of allergic allergy (Walker et 

al., 2003). The functional impact of Fpr desensitisation will be revisited later in 

the chapter (Section 4.3). 

 

Numerous related transgenic mice have been investigated using an acute 

model of zymosan-induced peritonitis making the reduction of acute 

granulocyte migration an intriguing consequence of Fpr2 deletion. An 

FPR2/ALX over-expressing myeloid transgenic, assessed under similar 

conditions, revealed a reduction in PMN migration profile (Devchand et al., 
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2003). Additionally, the AnxA1-/- mouse had an exacerbated inflammatory 

phenotype with a significant increase in PMN recruitment (Chatterjee et al., 

2005). Perhaps most importantly no modulation of PMN recruitment was 

observed in the Fpr1-/- (Perretti et al., 2001a). Together these data imply a 

distinct role of Fpr2 in the homeostasis of PMN activation and migration in 

vivo that is not shared within Fpr family as a whole. 

 

In my experiments I allowed this model to progress over a 120 h time course:  

Fpr2-/- revealed an exacerbated leukocyte infiltration at a later stage of 

inflammation. This delayed onset was mirrored in neutrophil activation 

measured by MPO, but not chemokine or cytokine secretion. When assessing 

the potential regulatory roles of Fpr2 on endogenous ligands it was striking to 

note a considerable dysregulation of SAA, but only subtle changes in the 

more selective ligands AnxA1 and LXA4. The roles of each of these ligands, 

notably the pro-resolving effects of both AnxA1 and LXA4 in the removal of 

apoptotic leukocytes by Mφ (Scannell et al., 2007), and the multiple receptor 

interactions of SAA will be addressed later in this chapter (Section 4.3). 

 

The prominence of monocytes in this late phase response and reduction in 

mature Mφ population in the absence of Fpr2 creates an interesting paradigm. 

The initiation of fpr2 promoter activity observed in vitro Mφ maturation may 

reflect an inability for peripheral monocytes to mature to tissue-specific Mφ. 

Therefore Fpr2 is not only an important mediator of acute phase host-defence 

but also might act as a regulatory receptor throughout the evolution of an 

acute/resolving pathology influencing both cell migration and differentiation.  
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To exemplify the role of infiltrating leukocytes in disease pathology I decided 

to test the effect of Fpr2 deletion in a longer-lasting resolving model of 

inflammation using K/BxN serum. Injection of this serum promotes a rapid 

arthritic response that lasts up to 28 days; the etiology of the disease is reliant 

on neutrophils (Kim 2006) and resident Mφ (Solomon et al., 2005). 

Furthermore it amalgamates common traits of both acute models employed, 

being IL-1-dependent as well as relying on a strong contribution by TNF-α (Ji 

et al., 2002). Interestingly TNF-α stimulates a marked early phase (first 5 h) 

secretion AnxA1 from RA patient synovial fibroblasts but IL-1β peaked 24 h 

post stimulation (Tagoe et al., 2008), this may have a significant bearing on 

the pathology observed in all three models. 

 

Increased susceptibility and prolonged clinical arthritis was perceived in Fpr2-/- 

mice, corroborating data from the extended model of zymosan-induced 

peritonitis. It is notable that intra-articular injection of methylated BSA in 

AnxA1-/- mouse induced an increased histological score at day 28 compared 

to WT (Yang et al., 2004). Overall the moderate difference between models 

and indeed slight divergence with previously characterised transgenic mice 

emphasises some of the inherent subtlies associated with gene manipulation.  

 

Taken together these data would suggest that Fpr2-/- mice have a distinct pro-

inflammatory phenotype compared to WT mice. Hypothetically I would 

propose the reduced ability of granulocytes to migrate to Fpr2-dependent 

stimuli, such as zymosan, is due to the absence of a classical chemotactic 
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pathway, but also impairment of resident cells to be fully primed. The 

subsequent delay in inflammation sparks a cascade that lacks Fpr2-mediated 

regulation resulting in the unchecked increase of pro-inflammatory mediators 

such as SAA. Therefore culminating in the inability of Fpr2-/- mice to 

completely resolve in extended models of inflammation.  

 

4.3 Ligand biased Fpr2 pharmacology 

 

The promiscuity of Fpr2 for structurally diverse ligands is now well established 

(Migeotte et al., 2006), however the pharmacology responsible for mediating 

the myriad of contradictory pathways is far from understood. Throughout this 

thesis I have employed a number of synthetic and endogenous agonists to 

decipher common modes of action. 

 

I employed principally peptides as pharmacological tools throughout my thesis 

for a variety of reasons. Firstly they represent the majority of agonists that 

recognise Fpr2 (Le et al., 2007). Secondly they are often robust agonists, less 

susceptible to degradation and easier to handle than their parent compounds. 

Third, and perhaps most crucially, these peptides are commercially available 

and therefore are comparable across a range of studies and techniques. I 

also assessed the action of three non-peptidic ligands, the lipid, LXA4, protein, 

hrAnxA1, and the pyrazolone derivative, C43.  

 

To evaluate the role of Fpr2 in mediating a specific intracellular signalling 

cascade, I assessed four ligands for their capacity to elicit phosphorylation of 
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ERK1/2 in Mφ. Three of the four, W-peptide, C43 and Ac2-26 all induced a 

concentration-dependent Fpr2-specific ERK phosphorylation response 

however SAA was capable of activating ERK in the both the presence and 

absence of Fpr2. Of the four ligands only Ac2-26 and C43 transduced anti-

migratory effects in WT mice whereas W-peptide was inactive in the IL-1β-

induced air pouch. Furthermore SAA induced a pro-migratory response which 

is in line with its strong pro-inflammatory profile (Song et al., 2009). 

 

The actions of W-peptide have almost exclusively been characterised in vitro 

studying chemotaxis, Ca2+ flux and NADPH activation with human purified 

leukocytes or transfected cell lines (Karlsson et al., 2006). However its 

physiological actions have rarely been assessed in vivo with one isolated 

study describing cardioprotection (Gavins et al., 2005). The signalling 

cascade induced by W-peptide ligation has been investigated in the context of 

human monocyte survival, revealing a PKC-dependent Akt pathway, but not 

ERK pathway, was responsible for monocyte survival (Bae et al., 2002). 

Further studies have noted that ERK1/2 phosphorylation is directly mediated 

by G-protein and is not dependent on internalisation of the receptor 

(Gripentrog et al., 2005).  

 

A second high-throughput agonist C43, developed by Amgen, was the only 

synthetic chemical compound assessed within this study. Data generated with 

Fpr2-/- mice confirmed the initial characterisation of C43 as an Fpr2 specific 

potent anti-migratory compound (Burli et al., 2006). The differential 

pharmacology of these two highly selective Fpr2 ligands suggests an 
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underlying difference in intracellular signalling cascades. It is also possible 

that W peptide may have unfavourable PK in my experimental conditions. 

Together these data suggests that ERK phophorylation is clearly a readout for 

G-protein activation following Fpr2/ligand interaction, but it may be unreliable 

as for functional prognostic for Fpr2-mediated in vivo physiology. 

 

To determine the chemotactic profile of Fpr2 signalling I utilised both Fpr1 and 

Fpr2 ligands. Human FPR1 is classed as a classical chemotactic receptor 

(Campbell et al., 1996), therefore activation of this receptor via fMLF 

interaction was used as a ‘gold standard’ in this assay. WT Mφ showed a 

distinct chemotactic response to fMLF stimulation, within a previously defined 

range of concentrations (Hartt et al., 1999a), with approximately 100-fold 

lower affinity than human FPR1. The reduced affinity of fMLF in mouse may 

reflect the different pathogens presented to each species during evolution 

(Gao et al., 1993). Fpr2 was shown to be responsible for imparting some of 

the chemotactic response at higher concentrations of fMLF confirming the 

notion of a hierarchical action of fMLF in the activation of Fpr receptors 

(Herrmann et al., 2007). The desensitisation of FPR1 is largely regulated by 

G-protein uncoupling, a process mediated by receptor phosphorylation 

(Maestes et al., 1999). Therefore the activation of a member of the FPR 

family, and possibly its murine couterpart, may be enough to evoke 

considerable changes in non-specific FPR ligand signalling.  

 

The ability of SAA to rapidly stimulate the phosphorylation of ERK1/2 in both 

genotypes confirms contemporary studies associating SAA with a multitude of 
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receptors to regulation MAPK pathways (Baranova et al., 2005; Cheng et al., 

2008; He et al., 2003). This promiscuity was not reflected in the exclusive role 

for Fpr2 in mediating its chemotactic response in Mφ. Furthermore I noted in 

the IL-1-induced air pouch model, that SAA was able to inhibit leukocyte 

migration in Fpr2-/- mice. An isolated study describes the ability of exogenous 

SAA to diminish the migratory response of neutrophils to gram-negative 

bacterial infection (Renckens et al., 2006). Interestingly SAA has been shown 

to opsonise gram-negative bacteria resulting in increased phagocytosis and 

production of pro-resolving mediators such as IL-10, however this biological 

effects could be distal from Fpr2 (Shah et al., 2006). During acute 

inflammation in our transgenic model, which could be extrapolated as an 

artificial model of Fpr2 receptor desensitisation following infection, SAA 

transduces anti-migratory actions via an as yet undefined receptor. This may 

represent the extent to which the Fpr family rely on activation and 

desensitisation in a hierarchical manner to regulate ligand functionality. 

 

Having assessed two known pro-inflammatory FPR family ligands, I undertook 

comparative studies for the chemotactic profile of AnxA1 and Ac2-26, both 

well-established anti-migratory mediators in vivo (Perretti et al., 1993b; 

Perretti et al., 2001b). Full-length hrAnxA1 was shown to induce a mild 

locomotive response in both genotypes, whereas its peptide derivative was 

unable to provoke Mφ locomotion in vitro. Additionally I observed some 

residual efficacy of hrAnxA1 in an in vivo chemotaxis model using the IL-1β-

induced air pouch in the absence of Fpr2, which was not apparent with Ac2-

26. However the action of exogenous hrAnxA1 was exclusively Fpr2-mediated 
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in an acute model of zymosan-induced peritonitis, which would support 

stimulus-specific effects noted when assessing the inflammatory phenotype of 

Fpr2-/- mice (Section 4.2).  

 

Many studies have reviewed the action of Ac2-26 and full length AnxA1 as 

interchangeable, however it is important to note that Ac2-26 has two orders of 

magnitude lower potency than its parent protein (Perretti et al., 1993d). The 

hrAnxA1 utilised in my thesis may have a number of caveats relating to its 

specificity and action. Primarily the full-length human sequence of the protein, 

comprising of 346 amino acids, is liable to impose spatial and conformational 

constraints on the protein (Hu et al., 2008). Classically the convex side of the 

molecule binds the surface membrane prior to inducing conformational 

changes to enable the membrane-bound protein to interact with cellular 

protein or in the case of aggregation a second cell membrane (Gerke et al., 

2002). Furthermore the active cleavage of AnxA1 by proteases, e.g PR3 

(Vong et al., 2007), may give rise to numerous active N-terminal peptides with 

a range of specificities for the Fpr family (Walther et al., 2000). Finally I cannot 

exclude the possibility that the C-terminal tail also has the potential to initiate 

multiple facets of the host defence pathway.  

 

Despite the residual effects of hrAnxA1 to diminish leukocyte migration in 

Fpr2-/- mice following IL-1β stimulation, hrAnxA1 was not able to reduce PGE2 

production in these mice. Inhibition of PGE2 is a common trait of AnxA1 action 

and may underpin the efficacy of dexamethasone in this model. The rapid 

translocation of endogenous AnxA1 to the cell membrane is an integral 
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mechanism of action of GC, particularly dexamethasone (Perretti et al., 2009). 

Importantly, when an intermediate dose of dexamethasone was used, the 

steroid was ineffective in preventing leukocyte migration in Fpr2-/- mice. 

Although the anti-inflammatory properties of GC are not exclusively reliant on 

AnxA1 (Clark, 2007), it is compelling evidence that reduced efficacy in AnxA1 

deficient mice (Damazo et al., 2006; Hannon et al., 2003) can be functionally 

linked with a specific receptor. This observation also supports the logical 

hypothesis that endogenous AnxA1 has a greater specificity than its human 

counterpart in the murine experimental setting.  

 

In spite of the discrepancies in efficacy the anti-migratory actions of 

endogenous AnxA1, hrAnxA1 and its peptido-mimetics share their ability of 

provoking the “leukocyte detachment phenomenon”. This idea was first 

postulated to explain the ability of exogenous AnxA1 to provoke the 

detachment of adherent neutrophils from inflamed post-capillary venules (Lim 

et al., 1998). This working hypothesis is supported by increased emigration of 

leukocytes in cremaster model of transmigration in AnxA1-/- animals 

(Chatterjee et al., 2005) as well as data obtained using ischemia reperfusion 

of the mesentery in Fpr2-/- mice (Brancaleone V, personal communication).   

 

As an addition to this established mechanism of action, Ac2-26 directly inhibit 

Mφ in a Fpr2-dependent manner: pre-treatment of these cells with Ac2-26 

markedly inhibited SAA-mediated chemotaxis. Many studies have detailed the 

ability of different FPR ligands to compete for receptor binding (Perretti et al., 

2002), receptor internalisation or desensitisation of secondary ligand 
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interactions. In the latter case, high dose fMLF treatment of monocytes has 

been shown to completely abolish secondary Ca2+ mobilisation with 

subsequent SAA stimulation (Su et al., 1999). A close peptide analogue, Ac1-

25, has also been shown to have similar effect on fMLF and W-peptide 

mediated Ca2+ flux (Ernst et al., 2004), whether Ac2-26 instigates a common 

desensitisation pathway as fMLF is currently uncertain.  

 

This novel observation that two Fpr2-specific agonists can transduce counter-

regulatory pathways adds weight to a new field of ligand-biased 

pharmacology. A recent study investigating the signalling cascade of the β1-

adrenergic receptor revealed changes conformation rearrangements of the 

receptor/G-protein complex when receptor bound full, partial or inverse 

agonists (Galandrin et al., 2008). The capability of Fpr2 to undergo 

conformation changes during ligand interaction would corroborate the 

identification of multiple binding domains within human FPR2/ALX (Le et al., 

2005).  

 

As inflammation progresses beyond the acute phase the influence of 

leukocyte migration gives way to active resolution of inflammatory and cellular 

debris. Two endogenous Fpr2 ligands, AnxA1 and LXA4, are strongly linked 

with inducing pro-resolution pathways (Scannell et al., 2006). Both are 

associated with modulating gene transcription, for example promoting IL-10 

(Souza et al., 2007), and suppressing pro-inflammatory gene expression 

(Jozsef et al., 2002). 
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During this phase, Mφ engulf apoptotic PMN (Serhan et al., 2005) facilitating 

their final egress from the site of inflammation via the lymphatic system 

(Schwab et al., 2007). Phagocytosis, and therefore efficient clearance, of 

apoptotic neutrophils can be a directly measured as an indication of a pro-

resolution phenotype (Scannell et al., 2006). Pre-treatment of Mφ with either 

Ac2-26 or LXA4 was able to significantly enhance phagocytic capacity for 

apoptotic neutrophils in an Fpr2-dependent manner. This data confirmed a 

distinct role for AnxA1/Fpr2 interaction, supporting previous experiments 

utilising the AnxA1-/- transgenic (Yona et al., 2006).  

 

LXA4 portrays similar functional effects as AnxA1, both with high affinity for 

Fpr2, inducing a potent anti-migratory affects in the WT mice using the air 

pouch model. Equally its ability to increase phagocytosis of apoptotic 

neutrophils would suggest correlation between ligand pharmacology; this is 

not the case. LXA4 has been shown to interact with a distinct domain, distal 

from both peptide and protein binding sites (Le et al., 2005). Its action is 

unique as does not induce Ca2+ mobilisation (Bae et al., 2003) and can inhibit 

ERK phosphorylation mediated by secondary cell activation (El Kebir et al., 

2007). These characteristics imply that despite LXA4 high affinity for Fpr2, 

LXA4 lacks full agonistic activity (Ye et al., 2009).  

 

Lipoxins are also known to share affinity for a ligand-activated transcription 

factor nuclear receptor, AhR (Nebert et al., 2008). The physiological actions of 

this interaction are currently uncertain; in this study we did not demonstrate 
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any potential LXA4/AhR action within either phagocytosis or regulation of Fpr2 

dependent leukocyte migration. 

 

During the extended peritonitis time course AnxA1 and LXA4 secretion 

followed similar profiles, with rapid induction within the first 4 h and 

subsequent catabolism until the experiment was terminated. This data would 

suggest Fpr2 is not necessary in regulating the production of either of these 

endogenous ligands, both strongly reliant on leukocyte/endothelium 

interaction (Chiang et al., 2005). The exacerbation of cellular infiltrate in 

zymosan-induced peritonitis and K/BxN-induced arthritis would implicate Fpr2 

as an important mediator of phagocytosis during the resolution of 

inflammation, potential via both AnxA1 and LXA4-dependent mechanisms. 

 

In contrast to the pro-resolving actions of AnxA1 and LXA4, the acute phase 

protein SAA is a pro-inflammatory Fpr2 ligand. The mechanisms ascribed to 

specific biological actions of SAA are complex, and the precise receptors 

uncertain (Shah et al., 2006), however our data indicate conclusively that in 

vitro and in vivo stimulation of cell locomotion by SAA occurs through Fpr2.  

 

SAA is an atypical acute phase protein, produced both locally and by 

hepatocytes, with levels reaching 80mM during overt inflammation (He et al., 

2009). I observed a significant elevation of local SAA in WT mice, peaking at 

24 h post zymosan-induced peritonitis. The induction of SAA was 

exaggerated (~3-fold) in the absence of Fpr2 providing evidence for a novel 

regulatory circuit. To further assess the modulation of SAA production during 
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inflammation I injected SAA 10 h post zymosan in WT animals. The influence 

of an systemic increase of SAA lead to a positive feedback in the mouse with 

SAA levels mimicking those seen in the Fpr2-/- mouse at 24 h. This is the first 

study to identify an autonomous feedback loop for SAA as well as highlighting 

a clear role of SAA/Fpr2 interaction in self-regulation.  

 

The consequence of high levels of SAA in this model show correlation with 

increased mononuclear cellular infiltrate at this later time point. In light of the 

concentrations reached by SAA at 24 h it is unlike to be continuing to function 

as a chemotractant. Studies have demonstrated that SAA is a potent 

stimulator of granulocyte-colony stimulating factor (G-CSF) and peripheral 

blood neutrophilia via TLR2 (He et al., 2008). Furthermore it is also notable 

that SAA can convey an apoptosis-delaying action in human neutrophils (El 

Kebir et al., 2007), which could be extrapolated to the delayed profile of 

neutrophil activity, measured by MPO, in Fpr2-/- mice.  

 

The hallmark of the exacerbated inflammatory Fpr2-/- phenotype was an 

increase in infiltration of F4/80low monocytes. This was counterbalanced by a 

reduction in the number of F4/80high Mφ at 72 h post zymosan. Despite the 

subtlety of these changes, they were reproducibly obtained in separate 

experiments suggesting that this represents a meaningful pathway. This 

phenomenon was mirrored by an increase in both populations following 

exogenous SAA administration in WT animals. Furthermore this response 

was independent of IL-6, a well-documented proponent of immunological 

switching (Jones, 2005), previously shown to be a potential pathogenesis in 
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RA synoviocytes (Koga et al., 2008). Studies have also noted that SAA 

induces differential IL-12 and IL-23 release from human monocytes (He et al., 

2006). The cascade of IL-23 to produce IL-17 secretion would concur with 

contemporary studies noting the ability of IL-17 to prolong inflammation 

(Maione et al., 2009). Together this data suggests a subtle Fpr2-specific role 

in shaping the resolution phase response by controlling maturation of 

monocytes to Mφ, which may underpin many of the physiological processes 

investigated in this thesis.         

 

4.4 Limitations of experimental models 
 
 
Animal models are essential for studying patho-physiological processes of 

disease particularly with respect to complex inflammatory responses. 

However no animal model can unequivocally reproduce human disease 

pathology, although all respond to clinically effective anti-inflammatory drugs. 

This thesis describes three models used as representatives of fundamental 

aspects of the inflammatory process.  

 

The air pouch model was initially characterised as a model of the synovial 

cavity. This has been modified to function as a model of transmigration in 

vivo. There are a number of caveats to this model in transgenic mice 

particularly in the assumption that the structure of the air pouch would be 

identical between genotypes. I was unable to perform histology of the lining 

tissue within my thesis relying on similar control responses as a guide of 

comparative pathologies. FPR2/ALX has been identified as potential mediator 
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of angiogenesis in vitro (Lee et al., 2006), which could an impact on the ability 

of cells to infiltrate in vivo. 

 

Zymosan peritonitis was investigated to deduce the involvement of Fpr2 as a 

pattern recognition receptor. Zymosan has conserved motifs that have some 

similar characteristics to infectious pathogens, which would be more 

applicable to the pathology of human peritonitis. 

 

The final model assessed in this thesis was the K/BxN serum-induced 

arthritis. This model is potentially the in vivo model most relevant to human 

disease, auto-antibodies are key players in the development of rheumatoid 

arthritis. The serum transferred to initiate the disease contains antibodies that 

recognise the self-antigen glucose-6-phosphate isomerase, the formation of 

antigen-antibody complexes trigger joint specific inflammation. This model of 

arthritis would represent an ideal extension of the more acute models, since 

highly reliant on cells of innate immunity (response driven by neutrophils, 

mast cells and macrophages).  

 

Since the completion of my thesis I have continued to investigate alternative 

models of inflammation, which have re-inforced my overall conclusions that 

Fpr2 is an anti-inflammatory receptor. Two models, carrageenan-induced paw 

oedema and ischemia reperfusion injury have subsequently been included in 

a publication Dufton et al., (Journal of Immunology in press; Figure 4.1).   
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Figure 4.1. Figures from subsequent publication Dufton et al. (A) Carrageenan-induced 
paw oedema: exacerbation in Fpr2-/- mice. Mice paws were injected with 50µl of 1% 
carrageenan solution. Time course of the paw swelling in wild type and Fpr2-/- mice. Data are 
shown as mean ± SEM of n=15 animals; * P<0.05, ** P<0.01, ***P<0.001, Student T-test. (B) 
Mesenteric ischemia reperfusion injury of WT and Fpr2-/- mice. Mesenteric circulation was 
subjected to 30 min ischemia followed by 90 min perfusion. Cells were counted within the 
vessel spanning 100µm in length and surrounding 50µm of tissue either side of the vessel 
wall. Data are mean ± SEM of three fields per mouse n=5 mice per group; **P<0.01, *P<0.05 
compared to WT by student T-test.  

 

4.5 Conclusion 
 

This study describes, for the first time, the functions of Fpr2 in murine 

development, cell maturation, mobility and finally experimental models of 

inflammation. Collectively these data highlight anti-inflammatory effects 

conveyed by Fpr2 mediated ligation, exemplified by the inability of 

dexamethasone to be efficacious in Fpr2-/- mice. The Fpr family plays a 

significant role in modulating both the acute and resolution phase of 

inflammation. In my thesis I have confirmed a specific function of Fpr2 in host-

defence including a previously unreported action in monocyte/macrophage 

recruitment and differentiation.  

 

A B 
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In the acute phase of inflammation (≤8 h) Fpr2 regulates the activation and 

transmigration of PMN to home towards an inflammatory stimuli. The actions 

of endogenous anti-inflammatory ligands, AnxA1 and LXA4, are probably most 

notable during the interaction of leukocytes with inflamed endothelium. Each 

ligand competes for Fpr2 to counterbalance pro-migratory actions of locally 

secreted SAA. Throughout in vivo inflammation I would propose SAA acts 

largely as a chemokinectic factor, although it certainly has influence as a 

chemotractant (Figure 4.1 A).  

 

During the later phase of inflammation and resolution (≥48 h) the actions of 

Fpr2 are integrated within the site of inflammation. Again AnxA1 and LXA4 are 

produced by leukocyte interactions promoting the apopto-phagocytosis 

response. At variance with this action, SAA prolongs survival of inflammatory 

infiltrate at well as promoting Mφ maturation. This could identify a stepping-

stone action of SAA retaining a required inflammatory response prior to the 

priming monocytes and Mφ to influence the resolution phase (Figure 4.1 B). 

The deletion of a functional receptor disrupts the regulation of this integrated 

pharmacology leading to an exaggerated inflammatory phenotype in the Fpr2-

/- mouse.  

 

As yet no common structural motif of peptide, protein and lipid ligands has 

been identified, the multiple ligand recognition domains identified on human 

FPR2/ALX may be responsible for dictating the novel ‘ligand-biased’ actions 

of this receptor (Chiang et al., 2000). The versatility GPCR functions within 

the body is truly astonishing, the Fpr family is no different. Unrelated to host 
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defence, the Fpr2 receptor has been documented in hair follicles, protecting 

mice from experimental alopecia (Tsuruki et al., 2007), and as a candidate 

chemosensory receptor in the vomeronasal organ (Liberles et al., 2009). The 

current momentum of research to explain this physiological diversity 

implicates shape recognition (Kortagere et al., 2009) and conformational 

changes (Galandrin et al., 2008). It would be conceivable that conformational 

changes in ligand/Fpr2 complexes could dictate specific intracellular 

signalling, e.g PKC, PI3K and Akt. This study has only begun to scratch the 

surface of the complex pharmacology of this unique receptor, substantiating 

the idea that ERK1/2 is a common feature of agonist/Fpr2 interaction but not a 

determinant of Fpr2-mediated cell function. 

 

The capability of FPR2/ALX to influence other receptor signalling cascades is 

also an intriguing aspect of FPR-family biology. Both FPR1 and FPR2/ALX 

are functionally regulated by homologous and heterologous desensitisation. 

Here I identify dual roles of SAA in the presence and absence of Fpr2 that 

could have wide ranging implications on its perceived biological actions. 

 

One plausible explanation for these opposite actions could lie with the 

capability of GPCRs to heterodimerise with receptors at the cell surface 

(Terrillon et al., 2004). Indeed FPR2/ALX has been shown to form hetero-

dimers with the leukotriene B4 receptor (Damian et al., 2008). Therefore our 

transgenic could be an ideal comparative tool to assess the possibilities of 

ligand-specific homo- and/or hetero-dimerization processes (Bosier et al., 

2007). 
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In conclusion this thesis has been able to validated sufficient functional 

crossover of ligand interactions with murine Fpr2 receptors. This represents a 

significant milestone in investigating the pharmacology of promiscuous 

receptor in physiological conditions and disease models. Our research, lead 

strongly via annexin A1, has identified a number of patentable peptide 

sequences termed Ac2-26 with ongoing collaborations with both Unigene and 

Compugen (Hecht et al., 2008). Furthermore evidence provided in my thesis 

describes successfully screening of Fpr2-selective anti-inflammatory actions 

of C43 in vivo, a compound developed for its affinity to the human receptor. 

These data therefore provide a compelling rationale for developing novel anti-

inflammatory therapeutics depicted on agonists to Fpr2 and its human 

counterpart FPR2/ALX (Burli et al., 2006; Hecht et al., 2009), offering 

considerable scope to assess future therapeutic compounds. 
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Figure 4.2. Hypothetically Fpr2-mediated mechanisms of action in inflammation. The 
roles of Fpr2 are both complex and varied throughout (A) acute and (B) chronic inflammation. 
Fpr2 was initially characterised as a chemotactic receptor, cell migration can be mediated on 
interaction with SAA as well as exquiste regulation of diapedisis on interaction with the 
endothelium. Once leukocytes have infiltrated the site of inflammation Fpr2 instigates a 
second ‘ligand-bias’ profile. Pro-resolution mediators AnxA1 and LXA4 induce PMN 
apopotosis and clearance by phagocytosis. Contraty to this SAA  is a pro-survival factor 
important in full maturation of Mφ. Therefore SAA may also participate in priming the 
resolution response.   
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