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Abstract

The telomere is a DNA/protein structure required to maintain the ends of linear chro-

mosomes. Usually the DNA component comprises a highly conserved tandemly repeated

minisatellite sequence. In most plants the minisatellite sequence is typically present in sev-

eral hundred copies at each chromosome end, and is extended primarily by telomerase, which

adds telomere repeats to the 3’ end. In the plant genus Allium, which contains around 700

species, there is an absence of typical telomeric DNA repeats. It is of great interest to de-

termine what sequence or sequences have replaced the ancestral repeats and how they are

lengthened.

A range of molecular cloning methods were used to isolate candidate telomere sequences

from the genomes of two diverged species, Allium cernuum and Allium cepa. I analyse

several putative telomere sequences, isolated in this work and by others, but no proven

candidate sequence has emerged. Nevertheless, one of those sequences, 35S ribosomal DNA

(rDNA) encoding 35S rRNA, proved to have a structure that is previously not described for

plants. I show that some units have a Ty1/copia retrotransposon fragment in the intergenic

spacer region. Sequence analysis indicates that there was a single insertion followed by

amplification, probably involving homogenisation mechanisms. Furthermore, I show high

levels of rDNA length heterogeneity and rDNA unit divergence both within species and

across the genus, respectively.
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Chapter 1

General Introduction

1.1 The Telomere

All eukaryotes analysed to date have linear chromosomes. Since the ancestral state for

prokaryotes was a circular genome, chromosome linearisation must have taken place at some

point in the lineage that gave rise to the eukaryotes. A transition from circular to linear DNA

presents several difficulties for the cell including: (i) incomplete replication of the lagging

strand leading to progressive end shortening; (ii) inadvertent DNA repair of chromosome

ends, leading to chromosome fusion or circularisation; (iii) recombination induced instability

of DNA ends; (iv) exposure to exonuclease degradation. These problems needed to be

overcome in order to maintain genome integrity in eukaryotes and also independently in

some prokaryotes, organelles and viruses (Lo et al. 2002, Nosek et al. 2006). Telomeres first

cytologically described by Muller (1938) have evolved to address each of these problems.

Telomeres are usually made up of a short repetitive DNA sequence at the chromosome end

complexed with proteins. Proteins found at the telomere of plants and animals include those

required for DNA condensation (histones) (Fajkus et al. 1995, Grunstein 1997), telomere

regulation and structure, which bind directly to telomere DNA (e.g. telomere repeat factor 1

- TRF1) (Bianchi et al. 1997) and those which bind indirectly via protein-protein interactions

(e.g. DNA repair proteins: Ku70 and Ku80) (Fisher and Zakian 2005).

The DNA component of the telomere was discovered in 1978 (Blackburn and Gall 1978),

in the ciliated protozoan Tetrahymena thermophila, by isolating extrachromosomal ribosomal

DNA (rDNA) fragments called minichromosomes, which are present in the macronucleus.

Restriction endonuclease digestion confirmed the presence of a (TTGGGG)20−70 hexamer at

both ends of the minichromosomes, with an orientation of 5’-GGGGTT-3’ / 3’-CCCCAA-
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5’ (Blackburn and Gall 1978). In many eukaryotes telomere DNA consists of a tandemly

repeated minisatellite sequence varying in length between species e.g. 2-8 kb in Arabidopsis

thaliana (Richards and Ausubel 1988, Maillet et al. 2006), 10 kb in Solanum lycopersicum

(tomato) (Ganal et al. 1991), 20-80 kb in S. tuberosum (potato) (Fajkus et al. 2002) and

90-130 kb in Nicotiana tabacum (tobacco). In A. thaliana a minimal functional telomere

length of 300-400 bp has been proposed based on the amount of telomere sequence present

at chromosome fusion sites in mutants that have short telomeres (Heacock et al. 2004).

A common feature present across eukaryotes is a 3’ single-strand overhang of the guanine-

rich (G-rich) DNA strand (Henderson and Blackburn 1989, Henderson et al. 1990, Wright

et al. 1997). This overhang is able to invade the the duplex telomere DNA further back

along the same chromosome creating a displacement-loop (d-loop), which in effect hides

the chromosome end (fig. 1.1 A)(Greider 1999, Wei and Price 2003). This results in the

formation of a terminal-loop (t-loop) ’lasso’ structure, which again has been reported across

a wide range of eukaryotes (fig. 1.1 A) (Griffith et al. 1999, Munoz-Jordan et al. 2001,

Tomaska et al. 2002, Cesare et al. 2003).

Another type of folded structure that telomeres may adopt is the G-quadruplex (G4),

formed between parallel or anti-parallel runs of G-rich DNA via guanine-guanine double

hydrogen bonds (fig. 1.1 B) (Zimmerman et al. 1975, Sen and Gilbert 1988, Shida et al.

1989, Kim et al. 1991). G4 DNA can be formed by four runs of Gn>3 DNA, and may

be formed on a single strand or between up to four separate strands, perhaps between

G-rich sequences at telomeres, in rDNA and immunoglobulin genes (Dempsey et al. 1999,

Hanakahi et al. 1999, Maizels 2006). In the case of immunoglobulin genes the G4 structures

may induce recombination within a specific region allowing switching of the constant region

from IgM to IgA, IgG or IgE types (Yu et al. 2003). The telomere repeat of ciliates of the

genus Oxytricha is TTTTGGGG, oligonucleotides containing multiples of this repeat can

form quadruplexes in vitro between two self-paired oligonucleotides (Smith and Feigon 1992,

Kang et al. 1992, Schultze et al. 1994). However, G4 DNA has only been localised in vivo

in the ciliate Stylonychia lemnae using antibodies that specifically recognise this structure

(Schaffitzel et al. 2001).

The fission yeast Schizosaccharomyces cerevisiae has been genetically engineered to main-

tain mitotically stable circular chromosomes by knocking out two telomere regulating pro-

teins, suggesting that it is possible for linear chromosomes to re-circularise, although meiosis

is severely affected (Naito et al. 1998). The low number of viable haploid spores produced

is likely due to the inherent problem of meiotic crossing-over between circular chromatids.
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Figure 1.1: Telomere and G-Rich DNA structures
(A) A simplified telomere terminal loop structure, two dsDNA telomere binding proteins and
a ssDNA telomere binding protein are indicated, note that unlike mammals, in plants multi-
ple homologues are present for each of these proteins (Kuchar and Fajkus 2004, Schrumpfova
et al. 2004, 2008). (B) G-quadruplex/G4 structures that can be formed by G-rich DNA, ar-
rowheads indicate 5’ ends of DNA strands: (i) parallel G4 structure between two self-paired
DNA strands (Schultze et al. 1994); (ii) antiparallel G4 between two self-paired strands
(modified from Dapic et al. 2003); (iii) parallel/antiparallel G4 structure between G-runs on
the same DNA strand (modified from Dapic et al. 2003).
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An unequal number of crossovers would generate concatenated chromosomes that if pulled

towards opposite poles, would break during segregation. There are reports of chromosome

circularisation occurring in humans, although these chromosomes are very rarely transmit-

ted to the next generation (Jenderny et al. 1993). Having circular chromosomes would be

highly disadvantageous during meiosis, explaining perhaps why circular chromosomes are

so rarely seen in eukaryotes, where gamete production by meiosis is so prevalent (Ishikawa

and Naito 1999). Telomeres are also implicated in the formation of the meiotic bouquet,

this is assembled in many eukaryotes at the leptotene-zygotene transition, with telomeres

clustering together at the nuclear envelope prior to synapsis and bivalent formation (Bass

et al. 2000, Scherthan 2001, Harper et al. 2004).

1.2 Telomerase

Telomerase activity was first identified in Tetrahymena cell extracts (Greider and Blackburn

1985). Telomerase was subsequently found to have both protein and RNA components

(Greider and Blackburn 1987), it is the RNA component that acts as a template dictating

which nucleotides are added (Greider and Blackburn 1989). Mutations in the template

region in the gene encoding the RNA component lead to corresponding mutations in the

telomere repeat synthesised (Yu et al. 1990). The catalytic protein component is related in

structure and activity to the reverse transcriptases from non-long terminal repeat (non-LTR)

retrotransposons (Eickbush 1997, Nakamura and Cech 1998).

In plants active telomerase is normally present in undeveloped seeds, early embryogenesis

and meristematic tissues with little to no activity in differentiated tissues such as leaves,

roots and quiescent seeds (Kilian et al. 1995, Heller et al. 1996, Killan et al. 1998, Riha et al.

1998). Telomere extension is controlled at the transcriptional level (Oguchi et al. 1999) and

through the accessibility of chromosome ends (Fulneckova and Fajkus 2000). Telomerase is

able to extend non-specifically from the 3’ ends of DNA in vitro using the telomeric repeat

amplification protocol (TRAP) assay (Wright et al. 1997, Bednenko et al. 1997) and in vivo

(Melek and Shippen 1996).
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1.3 Evolution of Telomerase and the Telomere

in the Asparagales

Allium is classified within the order Asparagales (Fay et al. 2000). The order is estimated

to be 60-69 million years old (Good-Avila et al. 2006) includes several well known plant

groups such as the orchids (family Orchidaceae), hyacinths (in family Hyacinthaceae) and

Irises (in family Iridaceae) (Angiosperm Phylogeny Group, II 2003). Following the discovery

that some plants lacked the ’plant type’ TTTAGGG telomere repeat (Fuchs et al. 1995), 16

species from across the Asparagales were checked for the presence or absence of the plant

type telomere (Adams et al. 2001). Adams et al. (2001) found that a number of families

forming a monophyletic clade lacked the typical plant telomere. It was subsequently found

that species of the genus Aloe had the TTAGGG minisatellite telomere (Weiss and Scherthan

2002). Later most of the Asparagales species lacking the typical plant telomere repeat were

found to have the TTAGGG repeat, but the exception was Allium where the telomere

remained unknown (fig. 1.3) (Sýkorová et al. 2003, 2006).

No RNA component of any plant telomerase has been isolated to date, but it is possible

that a mutation occurred in the template region giving rise to the TTAGGG repeat (Sýkorová

et al. 2003). Another possibility is that mechanism by which telomerase adds new telomere

repeats to chromosome ends may have altered, leading to the loss of the first thymine

(Sýkorová, Leitch and Fajkus 2006). In the green algae Chlamydomonas reinhardtii the

telomere is made up of TTTTAGGG repeats (Petracek et al. 1990), showing another change

in plant telomeres due to the number of thymidines added by telomerase.

In vitro telomere synthesis using telomerase extracts indicates that the telomerase in

Bulbine glauca (rock lily) and Ornithogalum virens (star-of-Bethlehem), which synthesise

the TTAGGG repeat have a low fidelity, synthesising up to a quarter of repeats erroneously

(Sýkorová et al. 2003). Telomere variants are also seen in the diversity of telomere variants

detected by slot blot hybridisation and fluorescence in situ hybridisation (FISH) to DNA

of species across the Asparagales, i.e. Ornithogalum umbellatum has TTGGGG repeats

detectable at many of its telomeres (Sýkorová et al. 2003). Work addressing the telomere

proteins of Asparagales plants with the derived TTAGGG telomeres indicates that G-rich

single strand DNA (ssDNA) binding proteins are able to bind both the TTTAGGG repeat

and the TTAGGG repeat (Rotkova et al. 2004, 2007). There is a 25 kDa G-rich ssDNA

binding protein in Muscari armeniacum (grape hyacinth) and Scilla peruviana (Portuguese

squill) (both in family Hyacinthaceae (Angiosperm Phylogeny Group II 2003)) which only

19



Figure 1.2: Changes in plant telomere sequences
Cladogram based on published phylogenetic relationships (Angiosperm Phylogeny Group II
2003) summarising the known transition points from the TTTAGGG telomere repeat (solid
branches), to the TTAGGG telomere repeat (hashed branches) or to unknown telomere
repeats (unfilled branches). Reproduced from Sýkorová et al. (2006). Superscript numbers
refer to the following papers: 1, Sýkorová et al. (2006); 2, Sýkorová et al. (2003); 3, Richards
and Ausubel (1988); 4, Sýkorová et al. (2003); 5, Suzuki (2004); 6, Petracek et al. (1990);
7, Higashiyama et al. (1995).

binds to the ancestral TTTAGGG telomere repeat and not the derived TTAGGG repeat

(Rotkova et al. 2004, 2007). From these observations it appears that the low fidelity of

the telomerase synthesising the derived TTAGGG repeat may have permitted a change in

telomere repeat, through availability of at least a few ancestral TTTAGGG binding sites

(Sýkorová et al. 2003) and binding tolerance of telomere proteins (Rotkova et al. 2004,

2007). Other plant groups have been found to have variant repeats within the telomeric

arrays. Pisum sativum (pea) has both TTAGGG and TTTAGG repeats present, but rather

than being dispersed as is probably the case in the Asparagales, sequencing has shown that

several of these variants occur in tandem (Macas et al. 2007). In rice, a thorough analysis

of telomeres has also showed that telomeric repeat variants are often found either adjacent

to each other or close together, particularly towards the centromere end of the telomeres

(Mizuno et al. 2006, 2008a,b). As the distal ends of telomeres have less variant repeats, the

authors of this work favoured the idea that replication slippage or unequal recombination

based processes have been primarily responsible for localised expansion of atypical repeats,

rather than repeated telomerase errors (Mizuno et al. 2008a).

It has been established that a switch from the TTAGGG telomere to an unknown se-

quence must have occurred in an ancestor to the genus Allium (Sýkorová et al. 2006).

Telomerase activity in vitro (TRAP assay) has not been detected using Allium cepa protein
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extracts, suggesting that the active gene is no longer present (Sýkorová et al. 2003). PCR

amplification using Asparagales consensus primers for different parts of telomerase have also

failed to produce any products (E. Sýkorová pers. comm.). It is therefore likely that the

telomerase-based telomere elongation mechanisms may also be missing in Allium. Several

repetitive DNA sequences have been mapped to the terminal regions of A. cepa chromo-

somes. These are: a tandem repeat called Allium cepa satellite (ACSAT) (Barnes et al.

1985, Pich, Fritsch and Schubert 1996), Ty1/copia retrotransposons (Pearce et al. 1996, Cu-

nado et al. 2001), an En/Spm-like transposon (Pich and Schubert 1998) and/or 35S rDNA

(Pich and Schubert 1998, Pich, Fuchs and Schubert 1996). But as yet none of these, nor

any other DNA sequence has been confirmed as the sequence(s) comprising the telomere in

Allium.

An independent loss of the TTTAGGG telomere has been found in a clade of three

genera, Cestrum, Vestia and Sessea (family Solanaceae) (Sýkorová et al. 2003). It is not

known what sequence has replaced the TTTAGGG telomere repeat in this group, although

in Cestrum interstitial telomeric repeats are still present in the genome Sýkorová et al.

(2003).

1.4 Non-Telomerase Maintained Telomeres

In the absence of telomerase, it is possible to elongate the terminal DNA of a chromosome

by using DNA recombination based mechanisms (Wang and Zakian 1990a, Teng and Za-

kian 1999, Dunham et al. 2000, McEachern and Iyer 2001). This has been adopted as a

mechanism for telomere extension in some Anopheles, Chironomus and Drosophila species

probably following the loss of telomerase in an ancestor of the Diptera. Recombination-based

maintenance of telomeres has been termed alternative lengthening of telomeres (ALT) in hu-

mans, where it can arise spontaneously in carcinomas allowing them to become immortalised

(Bryan et al. 1995, 1997, Hakin-Smith et al. 2003, Londono-Vallejo et al. 2004). Recently

there has been evidence for ALT occurring in A. thaliana telomerase null mutants, leading

to the view that ALT may be widespread and could be occuring occur alongside telomerase

activity (Ruckova et al. 2008).

Another mechanism for elongating telomeres is based on repeated transposition to the

terminal regions by retrotransposons (e.g. Drosophila). ALT and retrotransposon-based

telomere maintenance may provide hints towards ancestral mechanisms of telomere main-

tenance and shed light on how telomerase arose in early eukaryotes (Nosek et al. 2006).
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Both ALT and retrotransposon-based mechanisms have been suggested as candidates for

the maintenance of telomeres in Allium (Pich, Fuchs and Schubert 1996, Fajkus et al. 2005).

1.4.1 Alternative Lengthening of Telomeres (ALT)

1.4.1.1 ALT mechanisms

ALT is used to describe lengthening of telomeres via DNA recombination (Bryan et al.

1995). These mechanisms fall into two broad groups (i) reciprocal and (ii) non-reciprocal

DNA recombination (Szostak and Wu 1980, Paques and Haber 1999).

Reciprocal recombination (responsible for meiotic crossovers) leads to no net increase of

telomere repeats but can prolong the replicative lifespan of cells by swapping DNA unequally

between chromosome ends. This has been shown to occur in human and murine cancer cells

(Bailey et al. 2004, Londono-Vallejo et al. 2004, Wang et al. 2005), indeed in human cancer

cells, sister chromatid exchanges (SCEs) have been shown to be particularly concentrated

at the telomeres.

Non-reciprocal DNA recombination or gene conversion may occur in several ways, and

in some cases can lead to net increases in telomere length (Wang and Zakian 1990b). At the

telomere there are two models which could explain telomere extension. Synthesis dependent

strand annealing (SDSA) involves a 3’ ssDNA end invading similar duplex DNA on the same

or another chromatid/chromosome and extension of the 3’ end by DNA polymerase. The

extended strand is eventually displaced from the duplex and lagging strand synthesis can

then occur on the other strand (Nasmyth 1982, Nassif et al. 1994). Telomerase negative

Saccharomyces cerevisiae cells that undergo this type of telomere recombination have much

longer telomeres and greater length heterogeneity (0.3-12 kb) compared to wild type cells

(350 bp ± 75 bp) (Teng and Zakian 1999). Another mechanism is break-induced replica-

tion (BIR) which also involves ssDNA invading another duplex and using it as a template

for DNA synthesis, but this cascade is initiated by a double strand break, with the dis-

tal telomere DNA being lost (McEachern and Haber 2006). It is likely that at least two

types of BIR can occur in Saccharomyces yeasts enabling telomere lengthening indepen-

dently of telomerase (Bosco and Haber 1998, Nakamura et al. 1998). Extrachromosomal

circles (ECCs) of telomeric DNA may provide another template for ALT mechanisms to

elongate from (Natarajan and McEachern 2002, McEachern and Haber 2006), additionally

ECCs may replicate by rolling-circle replication/amplification (RCR) (Nosek et al. 2005).

ECCs may arise by resolution (endonuclease digestion) of homologous recombination inter-
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mediates between chromosome ends (Compton et al. 2007), ECCs can also be released from

chromosome ends by endonuclease digestion of the T-loop (Lin et al. 2005, Groff-Vindman

et al. 2005, Nabetani and Ishikawa 2009).

The widespread occurrence of ALT mechanisms in telomerase knock-out cell lines and

organisms is not surprising considering that proteins responsible are involved in normal DNA

repair, replication and recombination. In insects there is substantial data showing that ALT

has been adopted as a principle mode of telomere extension (Biessmann and Mason 2003).

1.4.1.2 Long-Term ALT in Insects

The likely ancestral telomere sequence for phylum Arthopoda is TTAGG and appears to

be present in the majority of species in this phylum indicating that in many lineages it has

remained unchanged for approximately 545 million years (Vitkova et al. 2005). However

in the class Insecta there hava been several independent losses of the TTAGG repeat in-

cluding in order Coleoptera (beetles), but the replacement telomere sequence is unknown

(Frydrychova and Marec 2002). To date no species in a clade containing three insect orders,

Diptera (true flies), Mecoptera (includes scorpion flies) and Siphonaptera (fleas) (Whiting

et al. 1997) have shown positive hybridisation to TTAGG probes (Frydrychova et al. 2004).

Within Diptera the telomeres have been partly or fully characterised for some species of

Chironomus and a species of Anopheles. In these genera telomeres appear to be made up of

telomeric satellite repeats. Drosophila species (also dipterans) are thought to have telom-

eres consisting of retrotransposons (Traverse and Pardue 1988, Levis et al. 1993, Abad et al.

2004).

The Anopheles gambiae telomere on the long arm of chromosome II (2L) comprises a

unique 820 bp satellite repeat, which is maintained by recombination (Biessmann et al. 1996,

Roth et al. 1997). Several different fragments of middle repetitive sequences, including a

2.3 kb 28S rDNA fragment, were found adjacent to the 820 bp telomere repeat in different

individuals (Biessmann et al. 1998). It is thought that the telomere ’picked up’ these other

sequences via gene conversion events initiated in regions of sequence similarity (Biessmann

et al. 1998). Non-reciprocal transfer of a marker integrated into the end of chromosome

2L supports the idea that this mechanism occurs normally to extend shortened telomeres

(Roth et al. 1997). The amount of replicative loss at the telomere on chromosome arm 2L

was measured over 44 generations, a steady loss of DNA was shown (55 bp per generation)

(Walter et al. 2001). During this time no increases in telomere length were seen in any

individual (Walter et al. 2001), perhaps because the telomeres did not drop below a critical
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threshold to trigger telomere lengthening.

The terminal DNA sequences of several species of Chironomus (chironomid flies) have

been analysed, namely in C. pallidivitatus, C. tentans and C. thummi (Saiga and Edstrom

1985, Nielsen et al. 1990, Zhang et al. 1994, Lopez et al. 1996). Most of the telomeres in these

species consist of ~350 bp repeats, which can be subdivided into subfamilies based on minor

sequence variation (Nielsen and Edstrom 1993). In C. pallidivitatus, repeat subfamilies can

occur in blocks and interdispersed with one another, the latter being explained as a result of

multiple short gene conversion events (Zhang et al. 1994). The 350 bp repeats show G-rich

bias on one strand and are probably derived from smaller subrepeated sequences (including

telomere repeats) that have degenerated (Nielsen and Edstrom 1993). The G-rich strand

as with minisatellite telomeres is orientated in a 5’ to 3’ direction (Kamnert et al. 1997)

with telomeric arrays measuring approximately 50-200 kb in length (Zhang et al. 1994).

Comparative analysis between C. pallidivitatus and C. thummi stocks shows that efficient

gene conversion of telomeric repeats has lead to rapid fixation of different mutations between

species (Kamnert et al. 1998).

1.4.2 Retrotransposons as Telomeres

In the genus Drosophila the telomeres consist of arrays of non-LTR retrotransposons. In

D. melanogaster these are named HeT-A, TART and TAHRE (Traverse and Pardue 1988,

Levis et al. 1993, Abad et al. 2004). These elements are LINEs (long interspersed nuclear

elements), which typically have two ORFs, however in the case of HeT-A the ORF2 is missing

and so the reverse transcriptase, endonuclease and RNase activities which are normally

encoded by this region must be provided by other autonomous elements, if they are to

transpose (Biessmann et al. 1994). The presence of LINEs at the telomere in species across

the genus suggests telomeric LINEs were present in the common ancestor of the genus

(Casacubierta and Pardue 2003a,b). Furthermore, 5’ truncated LINEs, analogous to Het-

A in D. melanogaster with only ORF1 encoding GAG (group specific antigen), have arisen

independently multiple times in different Drosophila lineages (Villasante et al. 2007). Where

chromosomes have been experimentally broken in some stocks of D. melanogaster multiple

Het-A elements have transposed to the chromosome end in a process analogous to de novo

telomerase extension (Biessmann et al. 1990, 1994). Despite the great DNA structural

differences between telomeres composed of minisatellites and those of LINEs, several proteins

show a conservation of function including ATM, Ku70 and Ku80 homologues, which are

important for telomere regulation and function (Oikemus et al. 2004, Melnikova et al. 2005).
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Another distinct group of telomeric LINEs has been characterised in the alga Chlorella

vulgaris, this family is named Zepp and as in the case of Drosophila elements are arranged in

arrays at the chromosome termini (Higashiyama et al. 1997, Noutoshi et al. 1998). Analysis

of different minichromosomes released following cell irradiation shows that Zepp elements

actively transpose to chromosome ends by integrating into other Zepp elements (Yamamoto

et al. 2000, 2003). Unlike in Drosophila, TTTAGGG repeats are also often present at chro-

mosome ends suggesting that telomerase is still active (Higashiyama et al. 1997, Yamamoto

et al. 2000). C. vulgaris telomeres appear to represent a transition point between telom-

erase maintained termini and telomeres maintained solely via targeted LINE transposition

(Higashiyama et al. 1997, Yamamoto et al. 2003).

Bombyx mori (silkworm; order Lepidoptera) has two families of LINEs which are asso-

ciated with telomeres. The families are named SART1 and TRAS1 both of which specifi-

cally target and insert within telomere repeats (Okazaki et al. 1995, Takahashi et al. 1997).

SART1 inserts on the 5’-TT*AGG-3’ strand (asterisk indicates insertion site) and TRAS1

inserts on the opposite 3’-AA*CCT-5’ strand (Okazaki et al. 1995, Takahashi et al. 1997).

Within the ORF2 between the endonuclease and reverse transcriptase domains is a region

with similarity to the myb domain which is present in some telomere DNA binding proteins,

suggesting that the protein encoded may allow elements to target telomeres (Kubo et al.

2001).

1.5 Isolation of Telomeric Sequences

The telomere sequence of a wide spectrum of eukaryotic organisms is now known or have

been predicted due to the high conservation of telomere repeats. However in angiosperms

and insects, surprises have emerged which question the predictive power of sparse sampling

repeats across such large radiations of species. In cases where telomeres have been isolated

without a priori knowledge of the repeat, the organisms examined have a relatively small

genome. In Anopheles gambiae a chance integration of a transgenic construct allowed the

telomere on one chromosome arm to be discovered (Biessmann et al. 1996). In A. thaliana

an elegant end-sequence enriched cloning method was used to isolate the telomeric repeats,

even with this enrichment method only 5 of 765 clones contained telomeric DNA (Richards

and Ausubel 1988).

End-cloning based strategies, where adapters are ligated onto chromosome termini, are

highly dependent on genomic DNA being intact, as interstitial breaks compete with chro-
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mosome ends for adaptors. This may have contributed to Biessmann et al. (2000) wrongly

identifing the Drosohphila virilis satellite repeat as telomeric by using this type of an end-

cloning method. Subsequent sequencing showed that this repeat was in fact subtelomeric

and LINEs form the telomeres as in other Drosophila species (Villasante et al. 2007).

1.6 Aims and Overview

This thesis set out to determine the telomere structure in Allium. Whilst a definite conclu-

sion was not found, a potential telomere repeat has been partially characterised for A. cepa.

A considerable effort was focussed on rDNA, which was found to be in the terminal domain

more frequently than expected. During the course of this work a novel relic retrotransposon

was uncovered in the rDNA of A. cernuum. These analyses lead to a greater understanding

of Allium genomic structure, but did not lead to greater insight into telomere biology in the

genus.
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Chapter 2

Materials and Methods

2.1 Plant materials

2.1.1 Living Plant Accessions (QMUL)

Living material was grown from seed in a temperature controlled greenhouse in the School

of Biological and Chemical Sciences, Queen Mary.

Species Supplier Voucher

Allium cernuum Chiltern Seeds, Cumbria, UK Chester 0701 QMUL
Allium cernuum Pottertons Nursery, Nettleton, UK Chester 0702 QMUL
Allium cernuum Rose Cottage Plants, Essex, UK Lim 04-08 QMUL
Allium cepa cv. Ailsa Craig Suttons Seeds, Devon, UK QMUL
Allium cepa cv. Bedfordshire Champion Suttons Seeds, Devon, UK QMUL

Table 2.1: Plant materials

2.1.2 DNA from Living Collections

All other plant material was from either Botanical Garden of Osnabruck University, Os-

nabruck, Germany (provided by Dr. Nikolai Friesen) or the IPK, Gatersleben, Germany,

in each case vouchers are deposited in their respective herbaria. For identification of IPK

accessions, TAX accession numbers are used as in Sýkorová et al. (2006).
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2.2 DNA Extraction and Purification

2.2.1 Genomic DNA Extraction

DNA was extracted following Dellaporta et al. (1983) with minor modifications. Fresh

leaves were collected and washed with distilled water and dried, and 1 g was weighed for

extraction. For each gram of leaf material 5 ml of extraction buffer (100 mM Tris pH 8.0,

50mM EDTA, 500 mM NaCl, 0.1% (v/v) β-mercaptoethanol) was pre-chilled on ice. Using

a pre-chilled pestle and mortar, dry leaf material was ground to a fine powder together

with liquid nitrogen, ensuring the material was maintained in a frozen state. The powder

was mixed thoroughly by vortexing with the extraction buffer, to this 0.5 ml of 20% (w/v)

sodium dodecyl sulphate was added and mixed well to lyse the cells. Falcon tubes containing

the lysed plant cells were left on ice while other extractions were prepared. Samples were

then incubated at 65°C for 30-40 min, gently inverting intermittently. After this 1.7 ml of

high salt solution (3 M potassium acetate, pH 5.5) was added, and the solution was left on

ice for 30 min. The samples were then centrifuged at 12,000 rpm for 14 min, the supernatant

was then transferred to an Erlenmeyer flask, to which an equal volume of isopropanol was

added. The solution was mixed gently and allowed to stand for approximately 10 min, a

glass rod was then used to spool out DNA from the interface and collected; this was repeated

several times to maximise the yield. The harvested DNA was then washed in 70% ethanol

several times before air-drying. Dried DNA was resuspended in 1 ml TE buffer (10 mM Tris

pH 8.0, 1 mM EDTA pH 8.0) and then further purified by removing RNA and protein.

2.2.2 RNA and Protein Digestion

Extracted genomic DNA underwent RNA digestion by adding 110 µl of 10x RNAse buffer

(100 mM Tris pH 8.0, 500 mM NaCl, 10 mM dithiothreitol), 200 µg RNAse (Sigma) and

incubating at 37°C for 6 hrs. The reaction was then terminated by adding 6 µl 1 M EDTA

(pH 8.0). Proteins were then digested by adding 30 µl 20% (w/v) sodium dodecyl sulphate

and 3.5 µl 20 mg/ml proteinase K, this was left at 50°C overnight, the following day the

sample was purified by phenol:chloroform extraction.

2.2.3 Phenol:Chloroform Extraction

DNA in aqueous solution was mixed with an equal volume of phenol:chloroform (Sigma) in a

2 ml eppendorf tube. The solution was then centrifuged at 13,500 rpm in a microcentrifuge
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for 10 min. The upper layer was then transferred to a 2 ml eppendorf and mixed with an

equal volume of -20°C chloroform. The solution was then centrifuged at 13,500 rpm in a

microcentrifuge for 10 min. The upper layer was then transferred to a 2 ml eppendorf tube

and precipitated.

2.2.4 DNA Precipitation

To precipitate DNA from solution it was mixed with 1/10th the original volume of 1 M

sodium acetate (pH 5.2) and 2.5 volumes of -20°C 100% ethanol. Samples were left at -20°C

overnight. The following day these were then centrifuged for 30 minutes at 13,000 rpm in

a microcentrifuge. Following removal of the 100% ethanol the pellet was carefully washed

with -20°C 70% ethanol, the pellet was then air-dried. Alternatively, to avoid the use of

sodium acetate for salt sensitive applications, DNA was precipitated from aqueous solution

with 1 volume of -20°C 100% isopropanol.

2.3 Chromosome Microdissection

Terminal regions of chromosomes, were collected from metaphase squashes prepared as in

section 2.8.1, with the root tip fixation step reduced to 5 minutes. Microscope slides were

defrosted (from -20° C storage) and then rehydrated by adding one drop of sterile distilled

water. The microdissection needle was prepared from a 1.0 mm diameter glass rod that was

initially cut into two by simultaneously pulling each end and heating the middle of the rod

(Bachofer). The newly cut ends were then melted to the correct diameter using an MF-9

Narashige-2 instrument (Greenvale, NY), which consisted of a heating element mounted

below an inverted microscope to allow precise melting of the glass tip. Chromosomes were

dissected/collected using an electronic micromanipulator (Eppendorf 5170) under a 32x

objective. Chromosome tips were transferred and stored together on ice in a sterile 0.5 ml

tube.

2.4 Polymerase Chain Reaction

2.4.1 Standard PCR

For amplifying DNA fragments less than 2 kb in length PCR was carried out with BIOTAQ

Polymerase (Bioline, UK) with supplied 10x NH4 buffer and 50 mM MgCl2 solutions. A

typical PCR for a 1 kb fragment in a 50 µl reaction contained the following: 1.5 mM MgCl2,
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1x NH4 buffer (1x NH4 buffer: 16 mM (NH4)2SO4, 2 mM MgCl2, 67 mM Tris-HCl, 0.01%

Tween-20), 100 nM primer, 100 nM forward primer, 200 µM of each dNTP, 3% DMSO

(v/v), 0.2-1 ng of low complexity DNA template (e.g. plasmid DNA) or 10-200 ng of high

complexity DNA template (e.g. genomic DNA), 2 U BIOTAQ DNA polymerase (Bioline).

2.4.2 PCR Labelling for FISH and EDF-FISH

Biotin or digoxigenin conjugated to dUTP were incorporated into DNA amplicons for gen-

erating FISH and EDF-FISH probes. This method is best used for fragments less than 600

bp in length to avoid non-specific hybridisation to preparations i.e. causing ’background’

clumping of probe DNA. In all cases plasmid DNA was used as a template for PCR labelling

in order to avoid amplifiying and labelling unwanted DNA sequences. The following method

is based on that described by Leitch et al. (1994), it was found to work well for a variety of

cloned sequences.

A 50 µl reaction contained the following: 1.5 mM MgCl2, 1x NH4 buffer (1x NH4 buffer:

16 mM (NH4)2SO4, 2 mM MgCl2, 67 mM Tris-HCl, 0.01% Tween-20), 400 nM primer, 400

nM forward primer, 100 µM of each unmodified dNTP, 50 µM of either digoxigenin-11-

dUTP or biotin-16-dUTP, 3% DMSO (v/v), 0.2-1 ng of plasmid DNA, 2.5 U BIOTAQ DNA

polymerase (Bioline).

2.4.3 Long Range PCR

In order to amplify DNA sequences greater than 2 kb in length a high fidelity DNA poly-

merase was used with proof-reading capability. Either Expand High Fidelity Polymerase

(Roche) or DNA Phusion Polymerase (New England Biolabs) was used. Amplifications

were carried out following the manufacturers instructions using a DYAD DNA Engine (MJ

Research).

2.4.4 DNA Gel Electrophoresis

PCR products were checked on 0.8-2% agarose gels containing 1x TAE (40 mM Tris-acetate,

1 mM EDTA) depending on expected size range and 0.5 µg/ml ethidium bromide. Typically

5 µl of PCR product was combined with 1 µl of 6x loading dye (Fermantas) Agarose gels were

viewed and photographed with UV illumination using a Chemigenius Bioimaging System

(Syngene, UK). PCR products were purified either directly from solution or were cut out,

following separation on an agarose gel, using a scalpel and extracted using a QIAquick©
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PCR Purification Kit (Qiagen).

2.4.5 Degenerate Oligonucleotide Primed-PCR (DOP-PCR)

DOP-PCR was carried out in two stages (primary & secondary) using DOP-PCR kit reagents

(Roche Diagnostics, GmbH., Germany), with minor modifications to the protocols used in

terms of primers used (Telenius et al. 1992). Primary PCR primers were designed and tested

by E. Sýkorová to not amplify 35S ribosomal DNA.

Primary PCRs contained the following: 25 µl of 1x mastermix: 1.25U Taq. DNA poly-

merase (0.005% V/W); 0.2mM dNTPs; 50mM KCl; 1.5mM MgCl2; 10mM Tris-HCl), 2.5µl of

degenerate oligonucleotide primer (0.2 µM) (DOPG1: 5’- CTAATACGACTCACTATAGGG

NNNNNNTTAGG-3’), the final volume was made up to 50 µl with sterile water. Reagents

were added directly to the PCR tube containing the microdissected DNA. Genomic DNA

was diluted to 5 ng for use as a positive control, a negative control containing no template

was included.

Reactions were carried out in sterile 0.5 ml tubes and covered with 2 drops of mineral oil.

The following steps were used in the thermocycler: 94° C for 0.5 min; 57° C for 1.2 min; 72°

C for 1.2 min. This was followed by 25 (higher stringency) cycles at 94° C for 20 sec; 60° C

for 1 min; 72°C for 25 sec followed by a final extension of 72° C for 5 min. Secondary PCRs

were carried out with 25µl of 1x mastermix, 2.5 µl of 0.2 µM degenerate oligonucleotide

primer T7: 5’-TAATACGACTCACTATAGGG-3’, 5 µl of primary PCR product was added

as the template.

2.5 Southern Hybridisation

2.5.1 DNA Restriction Digests

Genomic DNA was digested overnight using restriction endonucleases and supplied buffers

(New England Biolabs) following the manufacturers protocol. The digestion products were

separated on a 0.8% agarose gel.

2.5.2 Southern Transfer

Agarose gels were alkali blotted onto Hybond N+ nylon membrane (Amersham Pharma-

cia Biotech) following the protocol of Sambrook and Russell (2001). Briefly, the gel was

depurinated in 0.25 M HCl for 30 min, drained and rinsed in distilled water. The gel was
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then neutralised in transfer buffer (1M NaCl, 0.4M NaOH) for 30 min. The blotting appa-

ratus was assembled as follows: three layers of Whatman© 3MM paper were cut to act as

a wick between a reservoir of transfer buffer and the blotting platform. The gel was then

placed face down on the wick and covered with a nylon membrane ~3 mm larger than the

gel, ensuring that no air bubbles were trapped between layers. To provide a good contact

between the gel and cellulose wadding three sheets of pre-wetted and then three sheets of

dry Whatman© 3MM paper cut to the same size of the membrane were placed over the

nylon membrane. This arrangement allowed the transfer buffer to flow from the reservoir

through the gel, nylon membrane and Whatman© paper into Cellosene© cellulose wadding

(Thomas and Green Ltd, Hereford, UK), close contact between layers was maintained by

placing a glass plate with weights over the blotting apparatus. Following DNA transfer for

at least 24 hrs, the nylon membrane was placed in neutralisation buffer (1 M NaCl, 0.5 M

Tris pH 7.2) for 15 minutes, the membrane was then dried in a oven for 1 hour.

2.5.3 Radioactive DNA Southern Hybridisation

Specific probes for Southern hybridisation were amplified by PCR from clones using universal

M13 primers, otherwise genomic DNA was used for genomic hybridisations. The probes were

radioactively labelled using DecaLabel™ DNA Labeling Kit (MBI Fermentas) or Ready-To-

Go™ DNA Labelling Beads (Amersham Biosciences).

The procedure for the Ready-To-Go™ DNA labelled beads (Amersham Biosciences, Buck-

inghamshire, UK) is outlined briefly. DNA (50ng) was heated to 100 ˚C for 15 min and

then snap chilled on ice to produce single stranded DNA fragments. The labelling mixture

was made following the manufacturers protocol; 5 µl α-P32-dCTP (50 µCi activity), 50 ng

genomic DNA, double distilled water to a final volume of 50µl and a reaction bead (con-

taining: Klenow Fragment, dATP, dTTP, dGTP and priming oligomers). The reaction was

allowed to proceed for 60 min, the labelling products were then denatured (94 ˚C) for 10

min and then snap chilled on ice.

Hybridisation was carried out overnight in hybridisation buffer (0.25 M sodium phosphate

buffer (pH 7.0), 7% (w/v) SDS) at an appropriate temperature (typically between 55-65°C).

The membranes were washed at high stringency (0.2x SSC, 0.1% SDS) or low stringency

(2x SSC, 0.1% SDS) using the same temperature as used for hybridisation and exposed to

a phosphoimager screen (Amersham Biosciences). Screens were analysed on a Typhoon™

Variable Mode Imager (Amersham Biosciences).
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2.6 Cloning and Colony Screening

2.6.1 Ligation and Transformation

DNA amplicons of interest were generally ligated into A-overhang accepting vectors; either

pCR2.1-TOPO or pCR4-TOPO (Invitrogen) were used according to manufacturer’s pro-

tocol. Blunt-ended DNA fragments were ligated into pZErO-2 (Invitrogen) plasmid that

had been digested with EcoRV (New England Biolabs), for inserts with any other overhang

either pZErO-2 or pBluescript KS+ (Stratagene) was digested with a compatible enzyme.

For vectors with the multiple cloning site embedded within the β-galactosidase gene (e.g.

pCR2.1-TOPO, pBluescript KS+), blue/white selection of colonies was carried out using

40 mg/ml X-gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) substrate which was

added to solidified LB plates prior to spreading E. coli cells.

2.6.2 Minipreparation Plasmid DNA Extraction

Colonies for plasmid extraction were grown overnight in 2-5 ml of liquid Luria-Bertani

(LB) medium (tryptone 10 g, yeast extract 5 g, NaCl 10 g, agar 15 g, made up to 1 litre

with distilled water, pH 7.0) supplemented with either 100 µg/µl ampicillin or 50 µg/µl

kanamycin at 37 ˚C on a orbital shaker at 220 rpm. Following overnight incubation, cells

were harvested by centrifugation in a microcentrifuge for 1 min at 13,200 rpm, discarding

the supernatant. The Mini-Prep Extraction Kit (Qiagen GmbH, Germany) was then used

to extract plasmid DNA from the resulting pellet according to the manufacturer’s protocol.

2.6.3 Glycerol Stocks

In some cases where long term storage of E. coli cells was required, following growth

overnight in LB medium (as above) an equal volume of sterile glycerol was added, vortexed

briefly and frozen in liquid nitrogen before being stored at -70 ˚C.

2.6.4 Plasmid Library Preparation

Plasmid libraries were prepared following the protocols in Sambrook and Russell (2001).

Individual colonies were transferred with sterile cocktail sticks firstly to positively charged

88 mm diameter nylon filters (Electran, BDH Laboratory Supplies, UK), mounted over

solid LB medium plates supplemented with 50 µg/µl ampicillin and secondly to a master

plate of solid LB medium without a nylon filter. The colonies were placed with identical
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arrangements so as to refer between the blotting test plate and the master plate. The test

and master plates were then incubated at 37 ˚C for 10 hours, after this master plates were

stored at 4 ˚C. Nylon filters were removed from test plates and screened as described below.

2.6.5 Plasmid Library Screening

Plasmid libraries were screened following the protocols in Sambrook and Russell (2001).

DNA was released from the E. coli and bound to the filters by placing them sequentially

onto Whatman 3MM paper saturated in the following solutions. (1) 10% (w/v) SDS (sodium

dodecyl sulfate) for 3 min. (2) Denaturing solution (1.5 M NaCl; 0.5 M NaOH) for 5 min.

(3) Neutralising solution (0.5 M Tris-Cl; 1.5 M NaCl pH 7.4) for 5 min. (4) 2x SSPE (20x

saline sodium phosphate EDTA: 3 M sodium chloride, 0.2 M sodium hydrogen phosphate,

0.02 M EDTA, pH 7.4) for 5 min. Filters were then dried and on a sheet of Whatman 3MM

(VWR, UK) paper at room temperature for 30 min.

Cross-linking was done by exposing the filters to UV light for 5 min. DNA Filters were

immersed in 2x SSC until saturated, they were then moved to a dish on a rotating platform

in hybridisation buffer (0.25 M sodium phosphate buffer (pH 7.0), 7% (w/v) SDS) for 30

min at 50 ˚C. Cellular debris still remaining at this stage was completely removed with

Kimwipes soaked in 6x SSPE. Filters were transferred to a hybridisation flask containing

150 ml prehybridisation solution for 2 hours at 68 ˚C. The filters were then used directly

for radioactive DNA Southern hybridisation described in section 2.5.3.

2.7 DNA Sequencing and Analysis

2.7.1 DNA Sequencing

Sequencing was carried out commercially by sending 1 µg of dried plasmid DNA to Cogenics

(UK) or MWG (Germany). Electropherograms were trimmed to remove vector sequences,

assembled and checked for errors in Aligner version 2.0.4 (CodonCode, USA).

2.7.2 DNA Sequence Alignment

Sequences were exported from Aligner in FASTA format and imported into Geneious Pro

version 3.6 (Drummond et al. 2007) in which sequences were aligned by implementing

CUSTALW version 1.83 (Thompson et al. 1994). For putative protein coding regions DNA

sequences were inspected in MacClade version 4.08 (Maddison and Maddison 2000) using
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the translated view in order to establish the boundaries of putative coding regions.

2.7.3 Phylogenetic Analysis

The neighbour-joining (NJ) (Saitou and Nei 1987) method was used for rapidly approximat-

ing phylogenetic relationships between DNA sequences using the HKY substitution model

(Hasegawa et al. 1985) implemented in the program Geneious. Another approach was to

use maximum-likelihood (ML) with the program PHYML (Guindon and Gascuel 2003).

2.7.4 Median Joining Networks

To examine the relationships between DNA sequences showing a low level of divergence the

median joining (MJ) method was used. MJ networks were constructed using the program

Network version 4.5.0 (Fluxus-Engineering.com). Aligned DNA sequences were analysed

using the median-joining (MJ) algorithm which allows for multistate characters (Bandelt

et al. 1999). MJ networks were initially made with default settings for epsilon (value: 0)

and all characters were equally weighted (value: 10).

2.7.5 Basic Local Alignment Search Tool (BLAST)

DNA sequences were checked against similar sequences on the National Center for Biotech-

nology Information (NCBI, http://www.ncbi.nlm.nih.gov/) nucleotide and protein databases

using BLAST (Altschul et al. 1990) via the online interface.

2.7.6 Sequence Randomisation

DNA sequences were randomised using the web-based EMBOSS (Rice et al. 2000) pro-

gram “shuffleseq” hosted on the Pasteur Institute website (http://mobyle.pasteur.fr/cgi-

bin/MobylePortal/portal.py). Sequence randomisation was used to assess the stability of

secondary DNA structures for different arrangements. The program takes a DNA sequence

and randomises the order of the nucleotides, but retains the total length and frequencies

of nucleotides. This program was used to generate 100 randomised sequences for cer129,

cer352, cer330, cer540 and cer703.

2.7.7 Secondary Structure Prediction

In order to predict possible DNA secondary structures, sequences were submitted via the

web-based program mfold on the Rensselaer bioinformatics web server (http://dinamelt.bioin
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fo.rpi.edu/quikfold.php) (Zuker 2003).

2.8 Fluorescent In Situ Hybridisation

2.8.1 Chromosome Preparation

Root tips were collected from plants growing in a temperate controlled greenhouse. Pre-

treatment to accumulate metaphase nuclei was carried out by imbibing in saturated aqueous

solution of hexachlorocyclohexane (Lindane; Sigma-Aldrich) for 3-4 h at room temperature.

Root tips were then fixed in modified Carnoy’s solution (1:3 glacial acetic acid:absolute al-

cohol) for at least 24 hrs, and then stored in 70% ethanol at -20 ˚C. For squashing, root

tips were equilibrated in 1x citric buffer (10x citric buffer: 10 mM citric acid, 60 mM sodium

citrate pH 4.8) three times for 5 min. Root tips were trimmed to around 10 mm in length

and incubated in 500 µl of enzyme solution (0.3% (w/v) driselase (Sigma), 0.3% (w/v) cel-

lulase R-10 (Yakult Hinsha Co. Ltd, Japan), 0.3% (w/v) pectolyase Y-23 (MP Biomedicals,

Solon, Ohio, USA) suspended in 1x enzyme solution) for approximately 25 min. Root tips

were then dissected under a binocular microscope to free the meristematic tissue, this was

pipetted onto a chromic acid washed slide. With the addition of a drop of 45% acetic acid

the tissue was macerated with a fine needle until fully dispersed and then squashed under a

circular glass cover slip. Nuclei were inspected under a phase contrast microscope for cyto-

plasm, which if remaining was removed by the addition of another drop of 45% acetic acid

and re-squashing. Slides were cooled on dry ice or in liquid nitrogen allowing the coverslip

to be flicked off with a scalpel. Slides were then stored at -20 ˚C.

Slides of root tip squashes were placed in a 37 ˚C drying oven overnight. Following

overnight drying 100 µl RNase A [200 µg/ml] was added, covered by a 22 x 22 mm piece of

Parafilm© and left for 1 hr at 37 ˚C in a humid chamber. Slides were then washed in 2x

SSC (20x SSC: 3 M NaCl, 0.3 M sodium citrate) for 5 min, three times ensuring to remove

coverslip. Slides were then incubated in 0.01 M HCl, and then were left on their side to

drain. 100 µl of pepsin [1 µg/ml] was added, slides were covered with Parafilm© and left to

incubate for 6 min at 37 ˚C in a humid chamber. Slides were washed in distilled water for

1 min and then transferred to 2x SSC twice for 5 min. Paraformaldehyde was prepared in a

fume hood by mixing 2 g in 40 ml H2O, heated to 65-70 ˚C and cleared with 10 ml 0.1 M

NaOH. Slides were then left to fix in the paraformaldehyde solution at room temperature

for 10 min. Washing was carried out twice in 2x SSC for 5 min. Dehydration was done by

incubating slides sequentially in 70%, 90% and 100% ethanol, slides were then drained and
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left to air dry.

2.8.2 Probe Preparation

Probes were generated by incorporating modified nucleotides using either a Nick Trans-

lation Kit (Roche) or by PCR (see 2.4.2). Probes were labelled with either digoxigenin-

11-2’-deoxy-uridine-5’-triphosphate (digoxigenin-11-dUTP) or biotin-16-2’-deoxy-uridine-5’-

triphosphate (biotin-16-dUTP).

2.8.3 Hybridisation Solution

The hybridisation solution was made up with the following components: 20 µl 100% for-

mamide, 8 µl 50% dextran sulphate, 4 µl 20x SSC, 0.5 µl 10% sodium dodecyl sulfate, 10-50

ng of each DNA probe and sterile water to make a total volume of 40 µl. The hybridisation

solution was denatured by heating at 75 ˚C for 12 min followed by rapid cooling on ice, to

ensure that the DNA was distributed equally the probe was vortexed and centrifuged briefly.

2.8.4 Hybridisation

The 40 µl hybridisation solution was added to the squashed material and covered using a

Parafilm© coverslip. The slide was placed in a Alpha Unit block assembly mounted in a

DYAD DNA Engine (MJ Research), the following temperatures were used for heating the

slides: 71 ˚C for 3.5 min, 55 ˚C for 2 min, 50 ˚C for 30 sec, 45 ˚C for 1 min, 42 ˚C for 2

min, 40 ˚C for 5 min, 38 ˚C for 5 min; the slides were then incubated in a humid chamber

at 37 ˚C overnight.

2.8.5 Post-Hybridisation Washing

Slides were placed in 2x SSC three times for 5 min at room temperature, ensuring to remove

coverslips. Stringent washes were carried out by incubating the slides at 42 ˚C for 5 min

in 0.1x SSC, 20% formamide (v/v); this was repeated once more. Slides were then washed

in 2x SSC at 42 ˚C for 3 min, this was repeated twice more. Slides were then placed in 4x

SSC/0.2% (v/v) Tween-20 for 5 min and then briefly left to drain.

2.8.6 Detection

Slides were prepared for detection by adding 80 µl bovine serum albumin (BSA) blocking

solution (5% BSA (w/v) in 4x SSC Tween-20) and covered with a Parafilm© coverslip for 5
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min. Biotin labelled DNA probe was detected using Cy3-avidin; digoxigenin labelled DNA

probe was detected using anti-digoxigenin-FITC. After draining the BSA blocking solution

50 µl of detection reagent (for two colour FISH: 3 µl anti-digoxigenin-FITC [200 µg/ml] and

3 µl Cy3-avidin [1 µg/ml] made up to 600µl with BSA block solution) was applied. The

slide was then incubated for 1 hr at 37 ˚C in a humid chamber. Slides were then washed

briefly in 4x SSC/Tween. Following draining, a drop of Vectashield© (Vector laboratories,

California, USA) containing 4’,6-diamidino-2-phenylindole (DAPI) was applied and a 24 x

50 mm glass coverslip was placed over the material.

Images were acquired using a Leica DMRA2 epifluorescence microscope and ORCA-ER

digital camera (Hamamatsu, Japan) with Openlab (Improvision, Coventry, UK). All images

were treated uniformly for colour balance, contrast and brightness. Images were exported

as 72 ppi TIFF files were resized to 150 ppi, cropped and collated on a 300 ppi canvas with

Photoshop CS2 (Adobe Systems Incorporated, USA). A scale bar was imported for scaling,

this was made by photographing a 10 µm graticule with the same objective lens.

For measuring chromosome arm lengths and DNA fibres images, ImageJ version 1.36b

(http://rsb.info.nih.gov/ij/) was used. Images were converted to 8-bit and the scale was set

using the scale bar, the selection tool was then used to trace along the feature, this was

repeated three times and the average measurement was recorded.

2.9 Extended DNA Fibre (EDF) FISH

EDF-FISH was carried out following the protocol by Fransz et al. (1996) where nuclei are

extracted and spread via lysis with some minor modifications carrying out the following

procedure.

2.9.1 Nuclei Extraction

1 g of fresh leaf material was chopped in a Petri dish with 500 µl of freshly prepared nuclear

isolation buffer (NIB: 10 mM Tris-HCl, pH 9.5; 10 mM EDTA; 100 mM KCl; 0.5 M sucrose;

4 mM spermidine; 1 mM spermine; 0.1% (v/v) 2-mercaptoethanol) with a razor blade over

ice. The suspension was filtered through a 120 µm nylon mesh into a 1.5 ml eppendorf tube.

The filtrate was then passed through a 50 µm nylon mesh into a 1.5 ml eppendorf tube,

1/20th the volume of 10% Triton-X100 in NIB was added to remove plastids. The solution

was then centrifuged in a microcentrifuge at 2000 rpm for 3 min at 4 ˚C. The supernatent

was discarded and the white pellet was resuspended with 20 µl NIB. The integrity of nuclei
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could be checked at this stage by adding 2 µl of the filtered nuclei to one drop of Vectashield©

(Vector laboratories, California, USA) containing DAPI and covering with a 24 x 50 mm

glass coverslip. For best results filtered nuclei were extended immediately.

2.9.2 DNA Fibre Extension

1 µl of filtered nuclei suspension was pipetted in two places at one end of a polylysine coated

slide and allowed to dry at room temperature for about 3 minutes. 30 µl of STE buffer

(0.5% (w/v) SDS; 5 mM EDTA; 100 mM Tris, pH 7.0) was then added over the dried spots

to lyse the nuclei for 4 min. The slide was then placed on a slope to allow the chromatin to

extend along the length of the slide. After drying, material was fixed in modified Carnoy’s

solution (3:1 ethanol:glacial) for 2 min and dried. After aging the slides at 60 ˚C for 30

min, slides were stored at 4 ˚C.

2.9.3 Hybridisation Solution

The hybridisation solution was made up as above for standard FISH with the following

components: 20 µl 100% formamide, 8 µl 50% dextran sulphate, 4 µl 20x SSC, 0.5 µl 10%

SDS, 10-50 ng of each DNA probe and sterile water to make a total volume of 40 µl.

2.9.4 Hybridisation

The 40 µl hybridisation solution was added to the extended material and covered using a

Parafilm© coverslip. The slide was placed in a Alpha Unit block assembly mounted in a

DYAD DNA Engine (MJ Research), the following temperatures were used for heating the

slides: 80 ˚C for 2 min, 55 ˚C for 2 min, 50 ˚C for 30 sec, 45 ˚C for 1 min, 42 ˚C for 2

min, 40 ˚C for 5 min, 38 ˚C for 5 min; the slides were then incubated in a humid chamber

at 37 ˚C overnight.

2.9.5 Post-Hybridisation Washing

Slides were placed in 2x SSC three times for 5 min at room temperature, ensuring to remove

coverslips. Stringent washes were carried out by incubating the slides at 42 ˚C for 5 min in

0.1x SSC, 50% formamide (v/v); this was repeated once more. Slides were then washed in

2x SSC at 42 ˚C for 3 min, this was repeated twice more. Slides were then placed in 0.1x

SSC pH 7.0 at 55 ˚C repeating twice more. Slides were then placed in 4x SSC/0.2% (v/v)

Tween-20 for 5 min and then briefly left to drain.
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2.9.6 Detection

Slides were prepared for detection by adding 80 µl BSA blocking solution (5% BSA (w/v)

in 4x SSC/0.2% (v/v) Tween-20) and covered with a Parafilm© coverslip for 5 min. Biotin

labelled DNA probe was detected using Cy3-avidin; digoxigenin labelled DNA probe was

detected using anti-digoxigenin-FITC. After draining the BSA blocking solution 50 µl of

detection reagent (3 µl anti-digoxigenin-FITC [200 µg/ml] and 3 µl Cy3-avidin [1 µg/ml]

made up to 600µl with BSA block solution) was applied. The slide was then incubated

for 1 hr at 37 ˚C in a humid chamber. Slides were then washed briefly in 4x SSC/0.2%

(v/v) Tween-20. Following draining, a drop of Vectashield© (Vector laboratories, California,

USA) containing DAPI was applied and a 24 x 50 mm glass coverslip was placed over the

material.

Images were acquired using a Leica DMRA2 epifluorescence microscope and ORCA-ER

digital camera (Hamamatsu, Japan) with Openlab (Improvision, Coventry, UK). All images

were treated uniformly for colour balance, contrast and brightness. Images were exported

from Openlab as 72 ppi TIFF files, these were converted to 150 ppi, cropped and collated

in Photoshop CS2 (Adobe Systems Incorporated, USA) on a 300 ppi canvas.
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Chapter 3

Allium Tandem Repeats and

Sequences Isolated by DOP-PCR

3.1 Introduction

This chapter collates data from DOP-PCR cloning techniques designed to isolate terminal

DNA sequences, and some DNA sequences previously proposed to be telomeric in Allium.

The chapter discusses structure and genomic organisation of tandem repeats found in A.

cepa and discusses their potential role in telomere biology.

3.1.1 Repetitive DNA

Repetitive DNA is a major constituent of eukaryote genomes with the proportion increas-

ing as genomes size increases (Bennett and Leitch 2005, Bennetzen et al. 2005). A large

proportion of repetitive DNA is dispersed and comprises active and inactive mobile genetic

elements; in plants they can account for more than 50% of the total genome size (Kumar

and Bennetzen 1999, Kidwell and Lisch 2000, Vitte and Panaud 2005, Hawkins et al. 2006).

Mobile genetic elements are divided into 2 main classes, retrotransposons (class I) and trans-

posons (class II) (Finnegan 1989, Wicker et al. 2007). Retrotransposons move around the

genome via an RNA copy produced by reverse transcriptase (Kumar and Bennetzen 1999).

Transposons move either directly or indirectly from a DNA intermediate (Feschotte and

Pritham 2007).

Repetitive DNA can also occur in arrays as simple repeats with monomers of various

sizes, as microsatellites (c. 1 - 5 bp), minisatellites (c. 5 - 25 bp) and satellite repeats (c.
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>25 bp) (Franck et al. 1991, Ramel 1997). Satellite repeats are typically heterochromatic

and can be located at centromeres, pericentromeres, interstitial sites and at subtelomeres,

they can show rapid evolutionary rates and copy number variation (Guerra 2000, Heslop-

Harrison 2000, Lamb et al. 2007, Davison et al. 2007). Heterochromatic regions containing

repetitive sequences such as tandem repeats, retrotransposons and transposable elements are

thought to be a major cause of changes in chromosome structure (Shapiro and von Sternberg

2005, Raskina et al. 2008).

3.1.1.1 Tandem Satellite Repeats

A combined analysis of 152 plant satellite repeat families revealed that although repeats

have been identified with lengths up to 4 kb, most repeats fall into size ranges of 135-195 bp

and 315-375 bp (Macas et al. 2002). These sizes correspond to the DNA folding periodicity

of chromatin where approximately 146 bp of DNA wraps around the core histone (the

octamer has two subunits of H2A, H2B, H3, H4) and another 15-100 bp of DNA is bound

by a linker histone (histone H1 variants) (Kornberg 1977, Noll and Kornberg 1977, Vignali

and Workman 1998, McGhee and Felsenfeld 1980), this DNA/protein structure is called

a nucleosome (Van Holde et al. 1974). In a review of satellite repeats Sharma and Raina

(2005) take the view that DNA repair/recombination processes are important factors leading

to selection for mono- and dinucleosome sized repeat lengths. In addition to monomer length,

within a repeat there are often features that influence nucleosome positioning, such as certain

regularly spaced dinucleotides or larger sequence motifs influencing DNA curvature (Trifonov

and Sussman 1980, Trifonov 1985) and bendability (Gabrielian and Pongor 1996, Vinogradov

2003).

Certain satellite repeats have been found to show sequence similarity to other tandem

or dispersed repetitive DNA families. In Anemone hortensis a 743 bp subtelomeric satel-

lite repeat family (AhTR2) contains the telomeric minisatellite motif (TTTAGGG) and

degenerate variants (e.g. TTTAGTG, TTTTGGG) (Mlinarec et al. 2009). A family of

mammalian centromere repeats contain a motif similar to part of the terminal inverted re-

peat of a transposable element (Kipling and Warburton 1997). Observations such as these

support the idea that satellite repeats undergo a cyclical mode of evolution where new

repeats arise through recombination of existing sequences and over time are lost through

mutation/deletion/recombination (Flavell 1980).
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3.1.2 Characterisation of Repetitive DNA

A number of methods exist to amplify repetitive DNA including genomic DNA digestion

and ligation (Hemleben et al. 1982, Kato et al. 1984, Gazdova et al. 1995) and self-primed

PCR (Buntjer and Lenstra 1998, Macas et al. 2000). Another technique called degenerate

oligonucleotide primed PCR (DOP-PCR) has been developed to isolate repeated sequences,

and has proved effective for a variety of repeat types ranging from low to high copy num-

ber. The technique can be applied to total genomic DNA (Telenius et al. 1992) as well as

from flow sorted chromosomes, microdissected chromosome fragments or entire chromosomes

(Langford et al. 1992, Viersbach et al. 1994, Jamilena et al. 1995, Houben et al. 1996, Macas

et al. 1996, Buzek et al. 1997). To date the DOP-PCR technique has not been used to isolate

telomere sequences de novo. A technique which has isolated telomere repeats successfully

is 454-sequencing (Margulies et al. 2005) of pea total genomic DNA, albeit in low numbers

(14 reads out of a total 319,402) (Macas et al. 2007). This technique also identified blocks

of variant telomere TTAGG and TTTAGG minisatellites (Macas et al. 2007). FISH using

concatamers of these variant telomere motifs confirmed that these do indeed occur at the

chromosome ends(Macas et al. 2007).

3.1.3 Allium Genome Organisation

Full-scale genome sequencing has not until recently been practical in Allium because of

the large genome sizes which are approximately two orders larger than that of A. thaliana

(fig. 3.1.3). So far only a partial BAC genomic DNA library of Allium cepa has been

made and one BAC sequence characterised in detail (Suzuki et al. 2001, Do et al. 2004).

Prior to the development of DNA sequencing, genome content was inferred from denatura-

tion/reassociation studies. From these analyses it was estimated from A. cepa that 83.3%

of DNA can be placed in one of three fractions: (I) 41% highly repetitive DNA (average

of 21,600 copies), (II) 36.4% medium repetitive fraction (average of 225 copies), (III) 5.9%

single copy (non-repeated) DNA (Stack and Comings 1979). Annealing of different repeti-

tive DNA fractions to each other indicated that much of the single copy and repetitive DNA

sequences are interdispersed between each other (Stack and Comings 1979).

Although initial attempts were unsuccessful at isolating satellite DNA by CsCl density

centrifugation (Ingle et al. 1973, Stack and Comings 1979), a modification by using the AT-

binding Hoechst 33258 to bind DNA instead of actinomycin D, which binds methyl-CpG,

enabled the separation of several satellite bands (Barnes et al. 1985). The authors then
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Species 1C value (pg) 1C value (Mb) Reference
Arabidopsis thaliana 0.16 156 1

Oryza sativa 0.50 489 2
Pisum sativum 4.88 4773 2

Triticum aestivum 17.33 16949 3
Allium cernuum 17.10 16724 4

Allium cepa 16.75 16381 5
Allium genus (average) 19.61 19179 6

Table 3.1: Haploid genome sizes of Allium species and other plants
Published genome sizes for some plant species and an average based on available measure-
ments for 157 different Allium species. The genome size in Mb was calculated using 1 pg
= 978,000 bases. References: 1, Bennett et al. (2003); 2, Bennett and Smith (1991); 3,
Bennett and Smith (1976); 4, Jones and Rees (1968); 5, Van’t Hof (1965); 6, Bennett and
Leitch (2004).

used a restriction enzyme to release a c. 375 bp satellite, later designated A. cepa satellite

(ACSAT) (Pich, Fritsch and Schubert 1996). Homologous subtelomeric sequences are present

in all members of subgenus Cepa (Pich, Fritsch and Schubert 1996). This repeat accounts

for 4.4% of the A. cepa genome with an average pairwise heterogeneity of 8.5%, and was

found on all subtelomeres apart from the NOR bearing arm of chromosome VI (Barnes et al.

1985). The subtelomeric position of ACSAT and A. fistulosum satellite (AFISAT) agrees

with the position of heterochromatic Giemsa C-bands in the respective species (El-Gadi and

Elkington 1975, Vosa 1976, Barnes et al. 1985, Irifune et al. 1995).

3.1.4 Allium Genome Evolution

Recently, physical mapping and EST libraries have been assembled for some Allium species.

Both of these methods reveal that considerable genome turnover has occurred within the

genus Allium, and in the Asparagales as a whole (by comparisons to asparagus (Asparagus

officinalis). Genome turnover is used to describe the divergence in genomic sequences fol-

lowing speciation, due to changes such as sequence shuffling, transposition, amplification,

mutation and deletion (Murray et al. 1981, Rose and Doolittle 1983, Lim et al. 2007, Leitch

2007). RFLP and AFLP mapping studies have shown that the genomes of the cultivated

A. sativum (garlic) (subgenus Allium), A. cepa and A. fistulosum (bunching onion) (both

subgenus Cepa) contain substantial amounts of duplicated loci that are unlinked (King et al.

1998, van Heusden et al. 2000, Ipek et al. 2005). In A. cepa, from duplicated AFLP mark-

ers there was evidence for this occurring between chromosomes II and IV; and III and VI

(van Heusden et al. 2000). When a sample of coding DNA sequences derived from A. cepa,

A. sativum and asparagus ESTs were compared to rice (order Poales) there was an aver-
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age similarity of 78% (Kuhl et al. 2004). However, when comparisons of A. cepa and rice

genomic sequences were made, there was at best only minimal evidence for microsynteny

within genic regions, albeit based on limited gene sampling (Martin et al. 2005). Further

work selecting different sets of highly similar coding sequences, which are tightly linked in

asparagus, showed a complete absence of synteny, when compared to rice and even to A.

cepa (Jakse et al. 2006). This comparative data suggests that whilst coding DNA may be

generally conserved, extensive genome turnover has occurred within the Asparagales lineage

since it diverged from its sister lineage the Poales (Martin et al. 2005, Jakse et al. 2006).

3.2 Evolution of Repetitive DNA Families

In some repeated DNA families such as 5S and 35S rRNA, genes diverge between species,

yet show high levels of homogeneity within species (Brown et al. 1972, Coen, Strachan and

Dover 1982, Nei 1987, Hillis and Dixon 1991, Kellogg and Appels 1995, Elder and Turner

1995). If each unit were evolving independently, the divergence from the common ancestor

within a species would be expected to be comparable to that between the two species. This

is not the pattern observed, hence the homogeneity indicates that they are not diverging

independently; this pattern is described as ’concerted evolution’. However, this term is also

used in some of the literature to describe the molecular processes responsible for the ho-

mogeneity which has led to considerable confusion. The view that DNA homogenisation

mechanisms are often responsible for the concerted evolution has been supported by em-

pirical sequencing studies on Drosophila and fungi 35S rRNA, plant 5S rRNA and also for

non-coding tandem repetitive DNA such as centromere repeats (Ganley and Kobayashi 2007,

Stage and Eickbush 2007, Kellogg and Appels 1995, Hall et al. 2003, 2005). Nei and Hughes

(1991) put forward an alternative model to explain low sequence divergence of multigene

families within species named birth-and-death evolution. This process is thought occur in

genes including the mammalian major histocompatability complex (Hughes and Nei 1989),

eukaryote histone H1 (Eirin-Lopez et al. 2004), vertebrate immunoglobulin (Nei et al. 1997)

and plant MADs-box (Nam et al. 2004) gene families. When evolving through birth-and-

death, genes are thought to be ’born’ through duplication events with selection on individual

genes being the predominant force resulting in homogeneity, gene ’death’ may occur through

gene pseudogenisation and/or deletion (Nei and Rooney 2005). However, gene duplication is

a DNA homogenisation mechanism that results in concerted evolution. Therefore, it is not

clear if there is any qualitative distinction between the pattern of homogenisation caused by
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gene duplication under the birth-and-death model from the other homogenisation processes

that result in concerted evolution.

3.2.1 Concerted Evolution of 35S rDNA

35S rDNA is a multicopy nuclear gene encoding 18S-5.8S-26S ribosomal RNA (rRNA) which

is a structural, non-coding RNA (ncRNA), which together with 5S rRNA form the RNA

components of ribosomes. The DNA sequences which encode it are organised as one or sev-

eral arrays of tandem repeats within the nucleolar organising region(s) (NOR) (Reviewed

by: Pikaard 2002). During interphase, one or several NORs form a nucleolus (or nucleoli),

where rDNA is transcribed by RNA polymerase I (Pol I) in the dense fibrillar component

(DFC) producing precursor RNA (pre-RNA) (Gonzalez-Melendi et al. 2001), in plants ribo-

some assembly probably takes place outside the DFC in the surrounding granular component

(GC) (Olmedilla et al. 1993, Shaw and Doonan 2005). The pre-RNA then undergoes cleav-

age by endonucleases, chemical modifications (e.g. methylation, pseudouridylation) some

of which are directed by small nucleolar RNAs (snoRNAs), before mature rRNAs assemble

with ribosomal proteins to form ribosomes (Brown and Shaw 1998).

rDNA is highly transcribed and if rDNA units are deleted in Drosophila melanogaster

and drop below a lower limit (c. 150 units per genome), they are rapidly amplified (Tartof

1971, 1974). A large number of inter-/intramolecular interactions are required for the pro-

cessing and assembly of the different components of ribosomes, it may be for this reason

that transcribed rDNA undergoes concerted evolution, so as to produce a homogenous ’pop-

ulation’ of rDNA units (Long and Dawid 1980). The molecular drive hypothesis is used to

explain the spread of variants such as those in a multi-gene family, as long as recombination

events are more frequent than the mutation rate (Dover 1982, Dover et al. 1982, Dover 1984,

Ohta and Dover 1984).

The effects of concerted evolution in rDNA were first studied by Brown et al. (1972) in

Xenopus laevis and X. [borealis] mulleri ; where they identified an apparently paradoxical

occurence of intraspecific homogeneity between units as well as interspecific divergence in

the spacer regions. Work on primate and mouse rDNA showed that homogenisation can

occur between rDNA arrays on non-homologous chromosomes (Arnheim et al. 1980, 1982).

Although it may be that homogenisation occurs more efficiently between homologous than

non-homologous arrays (Saghai-Maroof et al. 1984, Ellis et al. 1984, Seperack et al. 1988,

Schlotterer and Tautz 1994). There are a number of likely homogenisation mechanisms that

result in concerted evolution:
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• unequal crossing-over (between sister, non-sister chromatids and non-homologous chro-

mosomes) (Smith 1976, Szostak and Wu 1980, Arnheim et al. 1980, Rogers and Bendich

1987)

• gene conversion (Klein and Petes 1981, Coen, Thoday and Dover 1982, Linares et al.

1994, Gangloff et al. 1996, Ganley and Scott 1998)

• intra-array recombination leading to copy number expansion/contraction (Tartof 1974,

Petes 1980, Kobayashi and Ganley 2005, Davison et al. 2007)

Homogenisation mechanisms can act to both maintain uniformity (e.g. 5.8S gene) within

a family, as well as to rapidly spread new mutations/variants (e.g. intergenic spacer (IGS)

region). This may occur because recombination does not act on a cistron in a uniform

manner, but rather, there are “modules” or “segments” within a cistron that can evolve semi-

independently due to recombination hotspots; as shown for D. melanogaster IGS (Polanco

et al. 1998, 2000) and the microalga Prototheca wickerhamii 18S gene (Ueno et al. 2007).

This type of data is still sparse due to the necessity for long tracts (10-15kb) of sequence

and sufficient polymorphisms for detecting conflicting phylogenetic signals.

An important factor affecting the efficiency of concerted evolution is rDNA unit copy

number. rDNA sequences from several eukaryotic genome sequences have been compiled

separately to estimate intragenomic variation. From the five yeast species (Ganley and

Kobayashi 2007) and the 12 Drosophila species (Stage and Eickbush 2007) analysed there

appears to be a marked difference in the degree of intragenomic homogeneity between the

groups. Yeast species show very low levels of sequence heterogeneity throughout the locus

(Ganley and Kobayashi 2007). In contrast, Drosophila species tend to show more polymor-

phisms, particularly in the intergenic regions, where polymorphisms can occur in more than

5% of units (Stage and Eickbush 2007). Polymorphisms present in less than 5% of units are

distributed evenly throughout the rDNA unit, it is thought that these infrequent mutations

may be below the level of selection (Stage and Eickbush 2007). Whereas the fungi species

studied have on average from 45 units (Aspergillus nidulans) up to 150 units (Saccharomyces

cerevisiae) per haploid genome, Drosophila have several hundred units per genome, but a

similar proportion are transcribed in both groups. The increased copy number redundancy

in Drosophila species may be one important factor for increased rDNA variability (Long

and Dawid 1980, Stage and Eickbush 2007). Considering that there is a positive correlation

between rDNA copy number and genome size in both plants and animals (Prokopowich et al.

2003), one might expect organisms that have relatively large genomes (e.g. Allium cepa) to
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harbour higher numbers of rDNA variants.

3.2.2 35S rDNA Position Variability in Allium

The chromosome number for A. cepa is 2n = 2x = 16 (Stack and Comings 1979), with one

to four NORs reported on the short arms of chromosomes VI and VIII (Stack and Comings

1979, Sato 1981). Later, Panzera et al. (1996) reconfirmed by FISH with a 35S rDNA probe

(pTA71; Gerlach and Bedbrook 1979) the position of NORs on chromosomes VI and VIII;

additionally a fifth minor 35S rDNA site was also found on the long arm of chromosome

VIII. There are two homologous pairs of 5S rDNA loci on chromosome VII, with each locus

bearing a distinct 5S rDNA family (Shibata and Hizume 2002).

Within genus Allium a number of species have been reported to exhibit variation in the

position of rDNA loci. In A. cepa, rDNA has been detected at either two, three or four sites

on the short arms of chromosomes VI and VIII, varying both between and within individ-

ual plants (Schubert and Wobus 1985). This variation in the numbers of rDNA sites gave

the appearance that the NORs were “jumping” between chromosomes. In F1 “top onion”

pseudodiploid hybrids between A. cepa and A. fistulosum rDNA position varied amongst

the NOR bearing arms and probably other distal sites (Schubert 1984, Schubert and Wobus

1985, Pich, Fuchs and Schubert 1996). In Allium sphaerocephalon rDNA loci were also

found to vary between and within individuals (Garrido-Ramos et al. 1992). While in Al-

lium schoenoprasum Garrido et al. (1994) observed rDNA locus variability in plants from

different populations. These data collectively reveal that Allium species exhibit unusually

high levels of rDNA position variability, even within individual plants. In other plant groups

the transposition of rDNA loci (which may involve array expansion) has been inferred from

comparing the linkage maps and/or karyotypes of closely related species (Dubcovsky and

Dvorak 1995, Shishido et al. 2000, Adams et al. 2000, Datson and Murray 2006, Cai et al.

2006). Studies of synthetic tobacco polyploids (Nicotiana sylvestris x Nicotiana tomentosi-

formis) have shown that new arrays can appear within a few generations (Skalická et al.

2003).

3.2.3 Candida albicans Telomere Repeat Sequence

The telomere sequence from Candida albicans was found to weakly hybridise, by Southern

hybridisation, to genomic DNA of Allium species from subgenus Cepa (Eva Sýkorová, un-

published). C. albicans belongs to the group of yeast-like fungi (phylum Ascomycota) (Liu
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Species Monomer sequence Reference
Saccharomyces cerevisiae TGGTGTGTGGGTG 1
Saccharomyces exiguus TGGTGTGTGGGTG 2
Saccharomyces kluyveri GACATGCGTACTGTGAGGTCTGGGTG 2
Kluyveromyces lactis TGATTAGGTATGTGGTGTACGGATT 4
Candida glabrata CTGTGGGGTCTGGGTG 4
Candida tropicalis TCACGATCATTGGTGTAMGGATG 4
Candida albicans TCTAACTTCTTGGTGTACGGATG 3

Table 3.2: Telomere repeats of fungi (phylum Ascomycota)
Selection of published telomere monomer sequences of yeasts from across the phylum As-
comycota. Nucleotides matching the conserved core region determined by Cohn et al. (1998)
are indicated in bold. Data from the sources as indicated: 1, Szostak and Blackburn (1982);
2, Cohn et al. (1998); 3, McEachern and Hicks (1993); 4, McEachern and Blackburn (1994).

et al. 1999), which exhibit an extraordinary amount of telomere sequence variation between

species and have some of the longest telomere repeat monomers known. The telomere re-

peat of C. albicans is 23 bp with the sequence (TCTAACTTCTTGGTGTACGGATG)n

(McEachern and Hicks 1993). The sequence contains a conserved core region, shown in bold,

which is well conserved in other fungi of the class Hemiascomycetes (phylum Ascomycota)

(see 3.2.3). This conserved region corresponds to a sequence which is bound by Saccha-

romyces cerevisiae RAP1 telomere regulating protein (Larson et al. 1994, Cohn et al. 1998).

3.3 Materials and Methods

3.3.1 Microdissection, DOP-PCR and Colony Blotting

Allium cernuum root tip squashes were microdissected following section 2.3, 30 metaphase

chromosome ends (estimated to be less than 2-4 µm in length) were collected with the

exception of the two pairs that have NORs. These were pooled and used for degenerate

oligonucleotide-PCR following 2.4.5.

5 µl of primary and secondary DOP-PCR products were ran on 1.2% agarose gel with

a size marker. The DNA was then alkaline transferred onto a nylon membrane and probed

with Allium fistulosum genomic DNA by Southern hybridisation as in section 2.5.3. As A.

fistulosum (subgenus Cepa) is not closely related to A. cernuum, this was used to crudely

identify whether highly conserved DNA sequences were present among secondary DOP-PCR

products.

In order to isolate repetitive sequences that are present in medium to high copy number

in the A. cernuum genome the secondary DOP-PCR products were cloned into pCR4-TOPO
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plasmid (Invitrogen) (following section 2.6.1). The ninety individual colonies produced were

screened by colony blotting, using A. cernuum genomic DNA as a probe (following 2.6.4

and 2.6.5). Seventeen colonies with signals ranging from relatively weak to strong (i.e. low

to high copy) were selected for replication in liquid LB and plasmid extraction (following

2.6.2). The plasmids were then sequenced using universal M13 primers (see 2.7.1), sequences

were compared against each other and checked for similar sequences on GenBank (see 2.7.5).

3.3.2 FISH

DNA templates for making FISH probes were isolated and labelled as follows: (1) The

ACSAT probe was isolated by PCR from A. cepa genomic DNA using the forward primer

X02572F: 5’-CCACGTGACGAAAAAACGAAGGGT-3’ and reverse primer X02572R: 5’-

CGGGATCCCCGTGGCCGGTCTATG-3’ described by Pich, Fritsch and Schubert (1996).

Products of monomer and dimer repeat size were then cloned as described in section 2.6.1,

plasmid DNA was used as a template for PCR labelling with biotin-16-dUTP. (2) For

the 35S rDNA probe a plasmid, pTA71, containing an entire 35S rDNA cistron from

Triticum aestivum (wheat) (Gerlach and Bedbrook 1979) was labelled by nick translation

with digoxigenin-11-dUTP. (3) For the 5S rDNA probe a plasmid, pTZ19-R, containing a

5S rDNA unit from Nicotiana rustica (Venkateswarlu et al. 1991) was labelled with biotin-

16-dUTP. (4) The 18S rDNA probe was isolated by PCR from A. cepa genomic DNA

using the forward primer A.18S2F: 5’-CGGAGAATTAGGGTTCGATTC-3’ and the reverse

primer 17_rev_SE: 5’-ACGAATTCATGGTCCGGTGAAGTGTTCG-3’, which is derived

from the reverse complement of primer 17SE from Sun et al. (1994). A plasmid containing

a 1321 bp 18S rDNA fragment was then used as a template for nick translation labelling

with digoxigenin-11-dUTP. (5) The C. albicans telomere sequence was in a plasmid pSK-

BSA, provided by J. Nosek (Commenius Univ., Bratislava, Slovakia), it contains a c. 635

bp ClaI/SmaI insert containing around 25 TCTAACTTCTTGGTGTACGGATG telomere

repeats and 60 bp of subtelomere DNA cloned in pBluescript SK-, originally cloned by M.

McEachern (McEachern and Hicks 1993, McEachern and Blackburn 1994). The C. albicans

telomere sequence was used as a template for nick translation labelling with biotin-16-dUTP.

FISH was carried out according to section 2.8.
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Primer name Primer sequence (5’-3’)
ca1_for TCTAACTTCTTGGTGTACGGATG
ca1_rev CATCCGTACACCAAGAAGTTAGA
ca2_for ACTTCTTGGTGTACGGATGTCTA
ca2_rev TAGACATCCGTACACCAAGAAGT
ca3_for GTACGGATGTCTAACTTCTTGGT
ca3_rev ACCAAGAAGTTAGACATCCGTAC
ca4_for GGATGTCTAACTTCTTGGTGTAC
ca4_rev GTACACCAAGAAGTTAGACATCC

Table 3.3: C. albicans PCR amplification primers

3.3.3 EDF-FISH

DNA fibres were prepared and used for in situ following section 2.9, the following DNA

templates were used. (1) A plasmid containing 1321 bp of 18S rDNA from A. cepa (see

previous section: 3.3.2) was as a template for PCR labelling with digoxigenin-11-dUTP. (2)

The plasmid pSK-BSA was used as a template for nick-translation labelling with biotin-16-

dUTP.

3.3.4 Tandem Repeat Isolation

In order to isolate tandemly repeated DNA sequences genomic DNA from A. cernuum was di-

gested with 22 different restriction enzymes (BsrDI, EcoRI, BamHI, EcoRV, XbaI, Tsp509I,

HindIII, XhoI, TaqI, BstNI, MboI, DraI, PstI, MspI, RsaI, NdeI, MseI, AluI, AseI, BclI,

BamHI, PvuII) following section 2.5.1.

3.3.5 C. albicans Repeat Isolation - PCR

Oligonucleotides were designed to PCR amplify a putative C. albicans telomere-like repeat

sequence (TCTAACTTCTTGGTGTACGGATGn) from the genome of A. cepa (see table

3.3.5). All primers were made up of a single repeat unit but with a different start and end

point in the repeat unit. This was done to vary the point at which the 3’ end of the primer

terminated as mismatches are least tolerated in this region for polymerase extension. A

range of PCRs were carried out with either a single primer or a primer pair following a

standard PCR protocol (2.4.1).

3.3.6 C. albicans Repeat Isolation - DNA Capture

To isolate A. cepa genomic sequences that were similar to the C. albicans telomere sequence

a magnetic bead based capture protocol was carried out according to St John and Quinn
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Figure 3.1: Karyotype of Allium cernuum
FISH karyotype with 18S rDNA (green) and 5S rDNA (red). Chromosomes are arranged
by size as in Friebe (1989). Scale bar indicates 5 µm.

(2008). Briefly, this protocol requires genomic DNA to be digested and linkers ligated to

both ends. This ssDNA pool is then mixed with a biotinylated ssDNA probe (a single C.

albicans repeat unit), DNA molecules which form duplexes with the probe can be retained

using streptavidin coated magnetic beads. This fraction is then used for cloning by digesting

the adapters and ligating into a digested pZErO-2 plasmid vector ((2.6.1)).

3.4 Results

3.4.1 rDNA Localisation

The chromosome number for A. cernuum is 2n = 2x = 14 (Chinnappa and Basappa 1986),

with two pairs of major 35S rDNA loci and two pairs of 5S rDNA loci (fig. 3.4.1). The

major 35S rDNA loci correspond to NORs previously detected as Giemsa positive/silver

staining secondary constrictions (Friebe 1989). Any additional rDNA sites were referred to

as minor rDNA sites, there were detected predominantly at, or near the ends of metaphase

chromosome arms (fig. 3.4.1). The number of detectable minor rDNA sites varied as they

were often so small that they were at the threshold of detection. It is estimated that at least

one third of A. cernuum chromosome arms carry distal minor rDNA sites.

For A. cepa cv. Ailsa Craig there are two pairs of major 35S rDNA loci, within the

range that has been detected previously for this species (Stack and Comings 1979, Sato

1981, Ricroch et al. 1992). But, as in A. cernuum, there were also several minor 35S rDNA

sites detected in the distal regions of metaphase chromosome arms (fig. 3.4.1). On interphase

spreads 35S minor rDNA sites are frequently detectable close to blocks of ACSAT repeats

(fig. 3.4.1C). On metaphase chromosomes when 35S rDNA is localised simultaneously with

ACSAT, 35S minor rDNA sitesappear to be in a more distal position relative to ACSAT

(fig. 3.4.1).
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Figure 3.2: 35S rDNA minor sites in Allium cernuum
Metaphase chromosomes probed with pTA71 (green) 35S rDNA with prolonged exposure
and counterstained with DAPI (blue). Arrowheads indicate 8 minor rDNA sites in addition
to the 4 major rDNA sites, inset - 2x magnification and enhancement of a chromosome end
(asterisk) with a minor site. Scale bar indicates 5 µm.

3.4.2 Tandem Repeat Isolation

None of 22 individual genomic DNA digestions produced any prominent bands below 3 kb,

where satellite repeats would be expected. In the majority of cases digestions generated a

broad range of restriction fragments visible as a smear. In the case of PstI, MspI, PvuII and

BclI the genomic DNA showed little to no digestion. This was probably due to the presence

of at least one cytosine residue in each of the recognition sequences, methylation of these

cytosines may have inhibited digestion.

3.4.3 Microdissection / DOP-PCR Isolated Sequences

3.4.3.1 Sequencing and FISH

The results from the sequencing of cloned microdissection sequences are summarised in table

3.4.3.1. Several sequences were found to be represented more than once, namely: cer540

(four times), cer703 (four times), cer330 (two times), cer352 (two times), cer129 was found

repeated head to tail five times in a single clone. These clones were found to correspond

to strongly amplified products of the same size generated in the DOP-PCR. None of the

sequences retrieved showed any significant matches against the NCBI GenBank nucleotide

and protein databases.

Sequences cer540 and cer703 were used as FISH probes against A. cernuum chromosomes,
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Figure 3.3: 35S rDNA and ACSAT localisation in Allium cepa
A. cepa root tip cell spreads. (A-C) Interphase spread. (A) DAPI (blue); (B) 18S rDNA,
used to detect 35S sites (green); (C) ACSAT (red), 18S rDNA (green) and DAPI (blue),
arrowheads indicate colocalised signals. (D-E) Metaphase spread. (D) 18S rDNA (green)
and DAPI (blue); (E) ACSAT (red), 18S rDNA (green) and DAPI (blue). (F) 2.5x magni-
fication of chromosomes from (D) and (E) highlighting the differences in minor 35S rDNA
site position (indicated by arrowheads), a pair of homologous chromosomes are shown on
the left and a single chromosome is shown on the right, note that each chromosome is shown
twice with different probes, as described for D and E. Scale bar indicates 5 µm except for
in (F) where it indicates 2 µm.
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Sequence Number Sequence Type
1 cer540
2 cer703
3 cer540
4 unique
5 cer352
6 unique
7 cer540
8 cer330
9 cer540
10 cer352
11 cer330
12 cer129
13 cer703
14 unique
15 cer703
16 cer703

Table 3.4: DOP-PCR microdissection sequences
Sequence number indicates the DOP-PCR clone. Sequence types are categorised by their
insert fragment length with the exception of cer129, which was a 648 bp fragment containing
5 tandem repeat units of 129 bp.

shown in fig. 3.4.3.1 and fig. 3.4.3.1, respectively. Both sequences are widely dispersed

throughout the genome of A. cernuum. However, whereas cer703 has a uniform distribution,

cer540 has an increased concentration in the pericentromeric regions of some chromosomes.

cer330 and cer352 showed dispersed ditributions to interphase nuclei (data not shown).

Primers were designed to amplify the cer129 repeat from genomic DNA, however attempts

to PCR amplify the repeat were unsuccessful.

3.4.3.2 Secondary Structure

Although no high scoring matches were obtained against public databases with the DOP-

PCR isolated sequences, there is still a possibilty that the sequences obtained were derived

from mobile elements. In the absence of any evidence for these sequences being part of

mobile elements, other possibilities were explored to explain the abundance and dispersal

throughout the genome of A. cernuum. Foreach of the A. cernuum repeats isolated by

microdissection and for 100 randomisations of each sequence, secondary structure was pre-

dicted computationally. This was done to determine whether the computed thermodynamic

stability was higher than would be expected by chance, given the same number of nucleotides

but with a different order. Fig. 3.4.3.2 shows the lowest calculated Gibbs free energy (∆G)

values for the 100 randomised sequences and the position of the original isolated repeat.
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Figure 3.4: FISH localisation of cer540 sequence to Allium cernuum
A. cernuum root tip cell spreads. (A-D) Metaphase spread. (A) 35S rDNA (green) - long
exposure; (B) cer540 (red), 35S rDNA (green) - long exposure and DAPI (blue); (C) 35S
rDNA (green) - long exposure and DAPI (blue); (D) cer540 (red), 35S rDNA (green) and
DAPI (blue). (E-H) Interphase spread. (E) 35S rDNA (green) - long exposure; (F) 35S
rDNA (green) - long exposure and DAPI (blue); (G) cer540 (red); (H) cer540 (red), 35S
rDNA (green) - long exposure and DAPI (blue). Scale bars indicate 5 µm.
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Figure 3.5: FISH localisation of cer703 sequence to Allium cernuum
A. cernuum root tip cell spreads. (A-B) Interphase spread. (A) cer703 (red); (B) cer703
(red), 35S rDNA (green) and DAPI (blue); (C-F) prophase spread. (C) cer703 (red) and
35S rDNA (green); (D) cer703 (red), 35S rDNA (green) and DAPI (blue); (E) cer703 (red);
(F) cer703 (red), 35S rDNA (green) - long exposure and DAPI (blue). Scale bars indicate 5
µm.
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Figure 3.6: Calculated Gibbs free energy values for predicted secondary structures of A.
cernuum DOP-PCR repeats and 100 randomisations
Graph shows Gibbs free energy (∆G) values ordered from highest (left) to lowest (right).
In each series the ∆G value corresponding to the original repeat (prior to randomisations)
is indicated by an arrow.

3.4.4 Telomere Sequence from Candida albicans

FISH revealed colocalisation between the C. albicans telomere and 35S major and minor

sites in A. cepa. The signal intensity varied between nuclei but tended to be strongest in in-

terphase spreads, one of these is shown in fig. 3.4.4. Earlier FISHs have already shown that

rDNA is found close to chromosome termini in A. cepa thus confirming, even at interphase,

the localisation of the C. albicans telomere-like sequence in the distal chromosome region.

Furthermore, the rDNA and C. albicans telomere repeat in most cases were colocalised, usu-

ally with similar signal strengths. To further examine the organisation at a higher resolution,

EDF-FISH was used.

DNA fibres showing C. albicans telomere signal were infrequently found on slides, the ma-

jority of 18S rDNA probe did not colocalise with C. albicans telomere probe, but localised to

long tracts of rDNA. Where colocalisation was found, the transition into colocalised regions

was in some cases immediate (fig. 3.4.4), and the probes were found closely interspersed in

an alternating pattern (fig. 3.4.4 and fig. 3.4.4). In most cases the C. albicans telomere

probe was found at the ends of fibres, it is not clear if these ends correspond to chromosome

termini or to broken fibres. As a consequence of this, fibres were stretched to a lesser degree

than is typically seen (fig. 3.4.4 and fig. 3.4.4), making length estimation unreliable.

Two molecular methods were used to try to isolate the C. albicans-like sequence residing
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Figure 3.7: FISH of Allium cepa var. Zweibel with rDNA (pTA71) and the Candida albicans
telomere repeat
Allium cepa var. Zweibel root tip cell spreads. (A-F) Interphase spread. (A) DAPI (blue);
(B) C. albicans telomere repeat (red); (C) 35S rDNA (green); (D) 35S rDNA (green) and
DAPI (blue) merged; (E) C. albicans telomere repeat (red) and DAPI merged; (F) C.
albicans telomere repeat (red), 35S rDNA (green) and DAPI merged, arrowheads indicate
colocalised signals. Scale bar indicates 5 µm.
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Figure 3.8: EDF-FISH of Allium cepa var. Bedfordshire Champion with 18S rDNA and the
Candida albicans telomere repeat
Allium cepa var. Bedfordshire Champion leaf DNA fibres. (A) DAPI (blue); (B) 18S rDNA
(green); (C) C. albicans telomere repeat (red); (D) 18S rDNA (green) and C. albicans
telomere repeat (red) merged. Scale bar indicates 5 µm.

in the genome of A. cepa, namely PCR and magnetic bead DNA capture by DNA-DNA

hybridisation. Due to the Allium sequence probably not having 100% complimentarity with

the C. albicans telomere, PCRs were carried out using primers against the repeat that were

in different phases in order to find a primer pair that could prime successfully at the 3’

end. However no products were obtained from PCRs other than weak primer concatenation

products. Magnetic bead DNA capture was also unsuccessful at producing sufficient PCR

product for cloning.

3.5 Discussion

3.5.1 DOP-PCR Isolated Repetitive DNA

DOP-PCR successfully amplified repetitive DNA from the genome of A. cernuum, however

the microdissection process was not suffciently effective to enrich terminal sequences, due

to the limits on the minimum size that can be dissected. The repeated sequences that were

localised using FISH were dispersed throughout the genome, it is likely that these sequences

were in high enough copy number within the microdissected chromosome ends to be amplified
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Figure 3.9: EDF-FISH of Allium cepa var. Ailsa Craig with 18S rDNA and the Candida
albicans telomere repeat
Allium cepa var. Ailsa Craig leaf DNA fibres. (A) 18S rDNA (green); (B) 35S rDNA (green)
and C. albicans telomere repeat (red) merged; (C) C. albicans telomere repeat (red); (D)
DAPI (blue). Scale bar indicates 5 µm.
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by the degenerate oligonucleotide primers. When considering that microdissected fragments

were approximately two to four microns in length, based on genome size I estimate that up

to 500 Mb of DNA were present in each microdissected chromosome fragment. Furthermore

medium to highly repetitive sequences in A. cepa, which has a similar genome size to A.

cernuum, account for almost 80% of the genome (Stack and Comings 1979).

3.5.2 Possible Roles of DNA Secondary Structures

Some of the repeats (cer129, cer540, cer703) isolated from A. cernuum by microdissection

have the potential to form stable secondary structures given their sequence composition.

Secondary structure in a DNA molecule occurs when hydrogen bonds form between adenine-

thymine and guanine-cytosine bases, leading to the formation of right-handed helices, paired

stems and unpaired loops (Gillespie 2004). DNA secondary structure formation may be

the result of selection on its transcript to form secondary structures by forming hydrogen

bonds between adenine-thymine, guanine-cytosine and guanine-uracil (RNA) bases. These

structures guide the splicing machinery and/or alter mRNA splicing efficiency (Meyer and

Miklos 2005). In non-transcribed DNA, secondary structures may be present as they could

form aberrant structures when duplex DNA is separated, e.g. during DNA replication

(Muller et al. 1999). In bacteria, trinucleotide repeats have been shown to stall replication,

requiring processing by the DNA repair machinery, which can lead to repeat expansion and

greater instability (Samadashwily et al. 1997).

Secondary structure may have a potential role in recombination based on observations

of repeats DNA of rye (Secale cereale). In rye there are two major subtelomere repeat

families, pSc200 (379 bp) and pSc250 (571 bp), these are found at the subtelomeres of

most chromosomes (Vershinin et al. 1995). Molecular analyses revealed that the repeats

can be found in uninterrupted blocks of several kb in length and as mixed arrays containing

both types of repeats; where blocks of different repeats meet at transition zones they can

also be interspersed (Vershinin et al. 1995, Alkhimova et al. 2004). Sequencing of cloned

pSc200 and pSc250 spacer regions identified various mobile elements and in one case a spacer

sequence which contained several imperfect direct repeats up to 25 bp in length (Alkhimova

et al. 2004). Computations of secondary structure of this repetitive spacer and flanking pSc

repeats indicate that pSc200 and pSc250 DNA have some complementarity, forming a stem,

with most of the spacer itself forming an unpaired loop (Alkhimova et al. 2004). It is thought

that a combination of the stem/loop structure and the short subrepeated region within the

loop may induce recombination (Alkhimova et al. 2004). The putative secondary structures
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in the cer540 and cer703 repeats may perhaps have contributed to their abundance and

dispersed distribution around the genome of A. cernuum.

3.5.3 Minor 35S rDNA Sites

Using FISH to A. cepa chromosomes reconfirmed the presence of four major rDNA sites

reported previously (Stack and Comings 1979, Sato 1981, Ricroch et al. 1992). However

many additional minor sites were detected at distal positions (fig. 3.4.1). Minor 35S rDNA

sites are not unusual and have been reported widely in plants (Pedersen and Linde-Laursen

1994, Dubcovsky and Dvorak 1995, Ali et al. 2005, Vaio et al. 2005, Chung et al. 2008).

The A. cepa cultivar analysed here has the ACSAT repeat at a subtelomeric location on all

chromosome ends, with the exceptions of the NOR bearing short arms of chromosomes VI

and VIII, ACSAT was subtelomeric with respect to the minor rDNA loci (fig. 3.4.1). Pich,

Fuchs and Schubert (1996) found that in some individuals of A. cepa x A. fistulosum pseu-

dodiploid hybrids (strain 413) the satellite repeat can occur on the short arm of chromosome

VIII both distal and subtelomeric with respect to the NOR position. It is possible that this

distal satellite repeat arose through homeologous or non-homologous recombination with a

A. fistulosum chromsome in the F1 hybrid line. In light of the observations reported here

and previously (Pich and Schubert 1998), it seems likely that ACSAT is a subtelomeric

repeat especially as it shows properties common to other satellite repeats including typi-

cal nucleosome positioning signals and more compaction relative to bulk chromatin (Fajkus

et al. 2005). Accordingly, the minor rDNA sites were more distal than ACSAT, making 35S

rDNA a useful marker for chromosome ends and potentially useful for isolating telomeric

sequences.

3.5.4 35S rDNA Mobility

It was shown that within and between individual A. cepa plants that the NORs/major

35S rDNA loci can show apparent position variability amongst these four chromosomes

and probably several other chromosomes that do not normally bear NORs (Schubert et al.

1983, Schubert 1984, Schubert and Wobus 1985). This condition was also found within

individual pseudodiploid A. cepa x A. fistulosum hybrids (Schubert and Wobus 1985, Schu-

bert et al. 1983, Schubert 1984). At the time, the authors speculated that this was due

to homologous/non-homologous exchange induced by either transposable elements or re-

combination hotspots. Another possibility considered was that new rDNA loci can arise
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from single copy rDNA loci through rapid amplification (Schubert and Wobus 1985). The

multiple minor rDNA sites present in A. cepa, which were not previously known to exist,

give support for either rapid amplification or to homologous/non-homologous chromosomal

recombination between rDNA sequences. In both cases new loci could appear or disappear

rapidly, giving rise to the rDNA variation observed previously.

In A. cepa, total rDNA copy number variation occurs normally during root development

(Avanzi et al. 1973, Durante et al. 1977, 1990), therefore both the observed position vari-

ability and copy number variation may not require meiotic recombination. Similarily data

in studies on asexually reproducing Daphnia and triploid Heteronotia lizards show that

concerted evolution takes place, even between rDNA loci on non-homologous chromosomes

(Crease and Lynch 1991, Hillis et al. 1991, Shufran et al. 1997). Within plant cell lineages,

intra-array recombination is one process that could result in net rDNA copy number vari-

ation between cells. Another possibility is unequal sister chromatid exchange, resulting in

differing amounts of rDNA segregating into daughter nuclei. rDNA copy number varia-

tion has been shown to occur in many different tissues in Vicia faba, varying up to 12-fold

within some individuals (Rogers and Bendich 1987). In the case of V. faba, there is only

one pair of homologous 35S rDNA loci (Knälmann and Burger 1977), so in this species only

recombination within or between homologous rDNA loci is possible (Rogers and Bendich

1987).

In species of the tribe Triticeae (order Poales), NORs show position variability between

species whilst neighbouring genes show a conservation of synteny. From this data Dubcov-

sky and Dvorak (1995) suggested that rDNA loci could be translocated or amplified from

minor rDNA loci, in processes that do not affect the overall chromosome structure. Con-

sidering that other studies have also shown mobility in rDNA loci (Shishido et al. 2000,

Adams et al. 2000, Datson and Murray 2006, Cai et al. 2006) whilst the overall chromosome

structure remains unchanged, it is feasible that the intraindividual (Schubert and Wobus

1985, Dubcovsky and Dvorak 1995) and interindividual variation (Schubert and Wobus 1985,

Garrido-Ramos et al. 1992, Garrido et al. 1994) are the result of similar processes.

Allium somatic cells are known to exhibit the Rabl configuration (Rabl 1885), where

telomeres and centromeres are polarised at opposite hemispheres of the nucleus (Fussell 1975,

Roy and Ghosh 1977). Furthermore, the somatic chromosome organisation is maintained

by attachment of telomeric heterochromatin to the nuclear envelope (Roy and Ghosh 1977,

Fussell 1992). It is easy to envisage how this could facilitate mitotic homologous/non-

homologous rDNA recombination, if termini are brought into proximity with each other
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at the nuclear periphery. In the replicated interphase nucleus shown in fig. 3.4.1, some

chromosome ends can be seen in close association. Another structure that brings together

active rDNA loci is the nucleolus. Nucleoli have also been suggested as sites of somatic rDNA

recombination, possibly as DNA is decondensed and undermethylated (Lim et al. 2000). The

apparent end-to-end fusion of different chromosomes at the NORs, at metaphase, has been

observed previously in Allium species (Stack and Clarke 1973, Schubert 1984, Fussell 1977)

and may also be due to events in the nucleolus (Maggini et al. 1978), since resolution of

nucleolar recombination events may result in ligated chromosome termini.

In summary: (1) the observed rDNA position variability reported previously could be due

either genuine NOR mobility through unequal exchange or it may simply appear as mobility,

due to rapid rDNA array expansion and contraction, both models require the presence of

minor rDNA sites reported here; (2) the NOR “jumping” is occurring in somatic root tip

cells (Schubert and Wobus 1985), so meiotic recombination is not strictly required.

Frequent recombination occurring at distal chromosome positions leading to rDNA vari-

ability in Allium may affect processes that maintain telomeres (Pich, Fuchs and Schubert

1996, Pich and Schubert 1998, Fajkus et al. 2007), this is discussed in the following section.

3.5.5 Links between Telomeres and rDNA

It has not been possible to determine how close the minor rDNA sites are to the chromosome

ends. However, in the case of A. cepa, minor rDNA sites are distal to the subtelomere repeat,

ACSAT (fig. 3.4.1), and appear to be interdispersed with a sequence, which is similar to

the telomere of C. albicans (fig. 3.4.4 and fig. 3.4.4). There are various examples where 35S

rDNA appears to exert effects on adjacent sequences and chromosome stability in general,

these are reviewed below.

Sequences which flank the NORs distally on the five human acrocentric chromosomes are

very similar, indicating that homogenisation between non-homologous chromosomes also

takes place in the regions flanking the rDNA arrays (Arnheim et al. 1980, Worton et al.

1988, Gonzalez and Sylvester 2001). Similar sequences are also found in other primates

(Gonzalez and Sylvester 1997a). An unrelated sequence containing dispersed and low-copy

DNA sequences is located proximal to all NORs, as well as some other non-rDNA sites

(Bodega et al. 2006). These findings suggest that gene conversion may potentially run-

on into homologous sequences flanking the NORs. It is thought that these sequences were

initially dispersed by “duplicative transposition events” along with the rDNA during primate

divergence (Samonte and Eichler 2002, Bodega et al. 2006). The remains of the NOR
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proximal sequence on other chromosomes is thought to mark sites where NORs existed

previously, based on ancestral karyotype construction, interestingly these occur mostly at

centromeric locations implicating NORs in chromosome fusion events (Bodega et al. 2006).

3.5.5.1 rDNA as a Recombination Hot Spot

rDNA could be harnessed for telomere maintenance as gene conversion mechanisms may

affect neighbouring sequences such as the telomere. In some organisms rDNA is known to

be closely associated with some or all of the telomeres, as e.g. in Guillardia theta (Zauner

et al. 2000), Dictyostelium discoideum (Emery and Weiner 1981), Encephalitozoon cuniculi

(Brugere et al. 2000) and Giardia lamblia (Adam et al. 1991). In Guillardia theta the

terminal 13 kb region that includes an rDNA cistron, is identical between chromosome ends,

suggesting that these regions are maintained by homogenisation mechanisms (Zauner et al.

2000). Similarly in Dictyostelium discoideum, the single rDNA units that are adjacent to a

terminal AG1−8 repeat at each chromosome end are highly similar or identical, indicating

frequent exchange between homologous and non-homologous loci (Eichinger et al. 2005).

In Giardia lamblia the chromosome ends that have subtelomeric rDNA undergo frequent

meiotic recombination, leading to variability in cistron copy number (Le Blancq et al. 1991,

Adam 1992). The presence of rDNA adjacent to the telomere may be more important in cases

where telomerase is not available to lengthen chromosome termini. This may well be the

case in Dictyostelium discoideum where the variable terminal AG(1−8) repeat is unlikely to

be synthesised from an RNA template and furthermore the gene resembling TERT appears

non-functional based on its putative amino acid sequence (Fajkus et al. 2007).

3.5.5.2 Interstitial NORs

In organisms with more than a single pair of homologous NORs it may be beneficial to have

35S rDNA at subterminal sites. This is because translocations between non-homologous

chromosomes may arise if an odd number of crossovers occur within interstitial NORs be-

tween non-homologous chromosomes. However, if NORs are positioned adjacent to the

telomere (subterminally), an odd number of crossovers between NORs on non-homologous

chromosomes would limit the exchange of DNA to only 35S rDNA and telomeric sequences.

Where NOR position has been finely mapped in plants, minimal amounts of DNA separates

the rDNA array from the telomere. In the genome of A. thaliana, the telomere on the short

arm of chromosome IV joins the rDNA in the IGS downstream of the transcription initiation

site of the first rDNA unit (Copenhaver and Pikaard 1996). The junction is made up of two
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13 bp head to tail repeats (Copenhaver and Pikaard 1996). In rice, the NOR on the short

arm of chromosome IX is separated by only 53 bp of DNA (consisting mostly of inverted

telomere repeats) before adjoining the telomere (Fujisawa et al. 2006).

Molecular data of this sort on the size of rDNA-telomere junctions in other plants is not

available, but it has been noted that 35S rDNA is often found at terminal or subterminal

chromosome positions (Zhdanova, Rubtsov and Minina 2007, Raskina et al. 2008). A recent

review of the Brassicaceae family by Ali et al. (2005) revealed that out of 45 species examined

only eight species had interstitial 35S rDNA. In one of these eight species, Brassica oleracea,

there are three rDNA loci, with two loci being distal and the third locus being interstitial. In

different accessions the third locus size is either small, minor or undetectable (Maluszynska

and Heslop-Harrison 1993, Snowdon et al. 1997, Armstrong et al. 1998, Hasterok et al.

2005). Another three species of the eight with interstitial sites are recently derived species

(Yang et al. 2002), with Brassica juncea (AABB, 2n = 36) and Brassica napus (AACC,

2n = 38) being allopolyploids derived in part from Brassica rapa [syn. campestris] (AA,

2n = 20) (Maluszynska and Heslop-Harrison 1993, Snowdon et al. 1997, Armstrong et al.

1998, Hasterok et al. 2005). In the case of Thlaspi arvense there is only a single pair of

homologous rDNA loci (Ali et al. 2005), so rDNA recombination between non-homologous

chromsomes cannot occur. With the remaining three species it is not known how old they

are, but I would predict that interstitial 35S rDNA loci in these species (Conringia orientalis,

Raphanus sativus and Arabis alpina (Ali et al. 2005)) have been recently acquired.

3.5.5.3 rDNA Involvement in Chromosome Fission and Fusion

In a few cases there are tentative links between 35S rDNA amplification and chromosome

fission, and it is possible that rDNA expansion aided chromosome end stabilisation. In

Hypochoeris radicata, the chromosome number is normally 2n = 8, however in a single

plant, a spontaneous centromeric fission of one homologue of chromosome I resulted in a 2n

= 9 complement (Hall and Parker 1995). Interestingly, NORs were found at the fission ends

on both the resulting acrocentric chromosomes, but no rDNA was detected on the intact

chromosome I. The authors suggested three possible scenarios for its occurrence: (1) rDNA

transfer into the centromere caused the fission; (2) rDNA transfer occurred after the fission;

(3) rDNA already present at the centromere in low copy number underwent expansion

following fission. A similar situation has been reported in the sawfly, Neodiprion abietis

(Hymenoptera: Diprioninae), and it is likely that this species (n = 8) is derived from a (n =

7) ancestor (Rousselet et al. 2000). A centric fission of an acrocentric ancestral chromosome
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bearing an rDNA site close to the centromere gave rise to two smaller chromosomes, one of

which has an rDNA locus at the fission site (Rousselet et al. 2000).

In a group of shrews (genus Sorex ), repeated metacentric fission and acrocentric fusion

events are thought to have a major role in the karyotype evolution of this group (Wojcik and

Searle 1988, Ratkiewicz et al. 2002, Wójcik et al. 2002). The karyotype of Sorex granarius

is as follows: (2n = 36/37, females/males), consisting of 16 acrocentric autosome pairs

(designated a-c, f -r), one metacentric autosome pair (tu), in females this is accompanied

by a pair of X chromsomes (de) and in males this is accompanied by an X (de) and two

Y chromosomes, Y1 (s) and Y2 (d) (Zhdanova et al. 2005). Interestingly, distal NORs are

found on all short arms of acrocentric chromsomes, sometimes also at the presumed fusion

sites on de and tu chromsomes (Zhadnova et al. 2007). Zhadnova (2007) investigated why

all the short arms of acrocentric chromosomes have unusually long telomeres. EDF-FISH

showed that these regions contained long (c. 200 kb) interdispersed tracts of rDNA and

telomere repeats. Also, it is likely that chromsomes a, b, c and f are derived from ancestral

metacentrics (bc and af ), with rDNA amplifying at the site of the fission (Fumagalli et al.

1999, Zhadnova et al. 2007). This situation in Sorex provides another case of rDNA being

involved in telomere amplification and chromosome stability (Zhadnova et al. 2007). The

interdispersed distribution of rDNA and telomere repeat is reminiscent of the results shown

here in A. cepa, of C. albicans-like telomeric repeat interdispersed with rDNA (figs. 3.4.4,

3.4.4 and 3.4.4).

3.5.5.4 rDNA behaviour in Telomerase Knock-Out Plants

In A. thaliana eighth generation telomerase null mutants, most plants exhibit developmen-

tal problems due to insufficient telomere length resulting in chromosome instability (Riha

et al. 2001). In mutant plants that did produce infloresences, pistil cells were squashed and

analysed by FISH (Siroky et al. 2003). Screening of mitotic anaphases showed that rDNA

to rDNA and rDNA to non-rDNA bridges were significantly over represented in anaphase

bridges compared to the other DNA sequences (Siroky et al. 2003). The high frequency of

fusions involving rDNA could have been due to its abundance and subtelomeric location

on chromsomes II and IV and/or some other unknown property that makes it prone to

involvement in breakage-fusion-bridge events (Siroky et al. 2003).
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3.5.5.5 rDNA and Telomere G-Quadruplexes

A feature shared by rDNA and telomeres is the presence of G-rich DNA that in both se-

quences may form quartet/quadruplex structures (Zimmerman et al. 1975, Williamson et al.

1989, Sundquist and Klug 1989, Hanakahi et al. 1999). This may be significant as these

structures can be formed from one to four DNA strands, and their formation may bring

chromosomes into close proximity. Indeed, it has been postulated that this association initi-

ates immunoglobulin gene recombination, through recognition by G quartet binding proteins

(Dempsey et al. 1999). One of the proteins implicated in binding G4 DNA is nucleolin, this

conserved protein is predominantly localised in the plant nucleolus, as in other eukaryotes

(Tong et al. 1997, Petricka and Nelson 2007). In A. cepa, nucleolin has been localised by

TEM within the DFC (where rDNA transcription is carried out) and at the periphery of

the fribrillar center (FC), where it meets the surrounding DFC (Minguez and Moreno Diaz

de la Espina 1996). In vitro, human nucleolin is able to bind strongly to G-quartet DNA,

several runs of three or more G residues are present in the IGS, and are more frequent on

the non-transcribed strand than the transcribed DNA strand (Hanakahi et al. 1999). The

authors suggested that nucleolin could bind to G-quartet rDNA and have specific functions

during strand separation at transcription, replication or recombination (Hanakahi et al.

1999). Many functions have been attributed to nucleolin (reviewed by: Ginisty et al. 1999,

Mongelard and Bouvet 2007), including roles in rDNA transcription (Roger et al. 2003,

Rickards et al. 2007) and processing (Ginisty et al. 1998); studies in humans have shown

nucleolin binding to telomere DNA (Ishikawa et al. 1993, Pollice et al. 2000), telomerase

(Khurts et al. 2004) and to topoisomerase I (Bharti et al. 1996). Thus G-quartet formation

and associated proteins may link telomere and rDNA biology.

3.5.5.6 rDNA and Telomere DNA Unwinding

Another protein family linking telomere and rDNA biology in yeast (Sun et al. 1999) and

humans (Schawalder et al. 2003) are the recQ DNA helicases. The helicase domain is con-

served across a wide range of organisms including; Escherichia coli (recQ) (Umezu et al.

1990), Saccharomyces cerevisiae (SRS2, SGS1) (Rong and Klein 1993, Gangloff et al. 1994)

and human (RECQ1, BLM, WRN, RECQ4, RECQ5β) (Ellis et al. 1995, Yu et al. 1996,

Kitao et al. 1998, Garcia et al. 2004, Hu et al. 2007). Human premature aging disorders

have been attributed to mutations in BLM, WRN and RECQ4 causing Bloom syndrome,

Werner syndrome and Rothmund-Thompson syndrome respectively (Epstein and Motul-
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sky 1996, Yamagata et al. 1998, Sharma et al. 2006). The recQ helicase domain encodes

DNA unwinding activity, typically in a 3’ to 5’ direction, liberating the 3’ end of the op-

posite strands (Umezu et al. 1990). The loss of RecQ proteins leads to genome instability,

due to impaired DNA metabolism and hyper-recombination (Gordienko and Rupp 1997,

Hanada et al. 1997, Yamagata et al. 1998, Hanada et al. 2000). Reduced lifespan pheno-

types have been reported in budding yeast and human RecQ knock-out cell lines (Martin

et al. 1970, Sinclair et al. 1997). Activities attributed to RecQ helicases that may have a

role in replication/repair/recombination include unwinding duplex, triplex or quadruplex

DNA (Shen et al. 1998, Brosh et al. 2001, Wu and Maizels 2001, Huber et al. 2002, 2006).

Recombination specific activities include suppressing illegitimate recombination, perhaps by

unwinding newly formed Holliday junctions (Bennett et al. 1999) or by separating short

paired non-homologous DNA strands (Hanada et al. 2000, Janscak et al. 2003) and assist-

ing branch migration, where DNA strands are swapped between duplexes during Holliday

junction movement (Cheok et al. 2005). RecQ helicase SRS2 in budding yeast has been

shown to strongly bias the outcome of mitotic homologous recombination events towards

gene conversion, rather than crossing over (Ira et al. 2003).

RecQ proteins have a number of activities specific for telomere maintenance including:

the removal of G-quartet structures during DNA replication (Azam et al. 2006); resolving

recombination intermediates that arise during the replication of telomeric DNA (Lee et al.

2006); and removing illegitimate d-loops, formed by strand invasion by free 3’ telomere

ends (Orren et al. 2002, Opresko et al. 2004, Bachrati et al. 2006). RecQ helicases are also

important in the maintenance of rDNA sequences and have been shown to have specific

roles including: aiding the progression of Pol I during transcription (Shiratori et al. 2002),

and ensuring proper DNA replication (Kaliraman and Brill 2002). Interestingly, if the RecQ

homologue (RQH1 ) in fission yeast is knocked out, this leads to impaired DNA replication

and mitotic anaphase bridges, with rDNA being frequently involved (Win et al. 2005).

Human BLM protein localises predominantly within the IGS (Schawalder et al. 2003), and

budding yeast SGS1 protein preferentially unwinds G-quartet rDNA Sun et al. (1999).

Human WRN protein and its likely orthologue in Xenopus leavis (FFA-1) (Yan and

Newport 1995, Yan et al. 1998, Chen et al. 2001) are unusual as in addition to the helicase

domain, they also have a 3’ to 5’ DNA exonuclease domain, further increasing functionality

(Huang et al. 2000). In A. thaliana six RecQ helicase proteins and one homologous WRN-like

exonuclease protein are encoded (Hartung et al. 2000).
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3.5.5.7 Telomeres and the Nucleolus

The nucleolus itself as well as being the site of rDNA transcription and ribosome production

may also harbour molecules associated with telomere biology. Within the nucleolus the

following have been found: telomerase RNA component (vertebrates) (Lukowiak et al. 2001,

Tomlinson et al. 2006), telomerase protein (TERT) (Plasmodium falciparum, human and

A. thaliana) (Figueiredo et al. 2005, Tomlinson et al. 2006, Kannan et al. 2008), telomeric

repeat binding factor 2 (TRF2) (humans) (Zhang et al. 2004). In Chironomus thummi and

C. pallidivitatus, which do not have telomerase maintained minisatellite telomere repeats

(Zhang et al. 1994, Lopez et al. 1996, Martinez et al. 2001), a reverse transcriptase protein

associated with telomere synthesis in this group has been localised in the nucleolus (Díez

et al. 2006). The importance of nucleolar localisation is still not understood, in the case of

human TERT, it was shown that deletion of the nucleolar targeting signal does not abolish

telomerase function in transformed fibroblast cells (Lin et al. 2008).

3.5.5.8 Summary of Links between rDNA and Telomeres:

It is clear that there are many links between rDNA and telomere biology. Possible reasons

for their close physical association are briefly summarised below. The finding that A. cepa

distal minor rDNA sites are closely associated with a sequence similar to the telomere of C.

albicans may be a highly significant finding.

• 35S rDNA may be located close to telomeres as a result of the frequent recombina-

tion events that are necessary to maintain rDNA homogeneity. It therefore may be

advantageous to have NORs located adjacent to telomeres as crossing-over initiated

in the rDNA may lead to the translocation of flanking DNA between non-homologous

chromosomes.

• 35S rDNA recombination may also have an affect on flanking DNA such as telom-

eres, allowing sequence homogenisation (e.g. via gene conversion) and/or extension of

telomere DNA (e.g. via strand invasion and extension).

• 35S rDNA may also be found close to telomeres as a result of similarities in chromatin

structure and proteins required for replication, transcription or repair. If chromosome

breakage occurs in rDNA, it may perhaps be more readily stabilised by telomerase

due to the localisation of telomere proteins (e.g. telomerase, TRF2, nucleolin) in the

nucleolus, where active 35S rDNA is localised.
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Chapter 4

Organisation of the Ribosomal

DNA Intergenic Spacer in Allium

cernuum and Allium cepa

4.1 Introduction

A consequence of finding the 35S rDNA in many distal chromosome regions of two diverged

species of Allium and this likely physical association and potentially functional association

led to further studies of this gene. With this work I aimed to address two main questions:

(1) does rDNA show any unusual features that could support its involvement in telomere

function (e.g. the presence of telomere-like repeats within the IGS), (2) does rDNA show

variability within the genome of an individual. The latter question could provide a way

of isolating distal rDNA units, and a potential means to walk out to telomeric sequences.

Within the 35S rDNA cistron, the IGS is the most likely region for harbouring telomere-like

repeats and to show intraspecific variability. This region was PCR amplified and cloned

from A. cepa and A. cernuum, although no telomere-like repeats were found in the IGS,

there are marked differences in the sequence organisation between species.

4.1.1 IGS Organisation

Within the IGS are a number of features which are required for transcription by RNA-

polymerase I (Pol I) into precursor rRNA and its subsequent processing. The transcription
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initiation site (TIS), which may be present several times per IGS (Gruendler et al. 1991,

Doelling et al. 1993), can be found several hundred to several thousand bases upstream of

the 18S coding region (reviewed in: Bena et al. 1998). The TIS consensus TATA(G)TA (the

final A usually being the first transcribed base), (Doelling and Pikaard 1995, 1996) appears

to be the only part of the promoter that is conserved across plants (Cordesse et al. 1993,

Bena et al. 1998, Piller et al. 1990). The minimal promoter sequence has been mapped in

A. thaliana between positions -55 and -33 to +6 (Doelling and Pikaard 1995). Outside this

motif, sequence conservation is low, even when comparing species of the same genus such as

Vicia (Nickrent and Patrick 1998). Upstream of the TIS there is no evidence in plants for

an upstream promoter/control element as has been shown in yeasts, mammals and insects

(Doelling et al. 1993, Pikaard 2002).

In fungi and animals, repetitive sequences upstream of the TIS have been demonstrated

to act as transcriptional enhancers (reviewed in: Moss and Stefanovsky 1995). In plants,

arrays of subrepeats within the IGS are commonly found but in A. thaliana subrepeats

were shown to only weakly enhance transcription transiently in protoplasts (Doelling et al.

1993) and in vivo the absence of subrepeats made no difference to transcriptional activity

(Wanzenbock et al. 1997). The IGS subrepeats often vary in number between cistrons of

a single genome (Rogers and Bendich 1987, Gruendler et al. 1991, Cordesse et al. 1993,

Lakshmikumaran and Negi 1994) and between individuals of a species (Ellis et al. 1984,

Flavell et al. 1986, Rogers and Bendich 1987, Lakshmikumaran and Negi 1994, Fukunaga

et al. 2005). The transcription termination site (TTS), which can be present several times in

an IGS may also act as an enhancer (Zentgraf and Hemleben 1992, Echeverria et al. 1992).

One or several TTSs can be found several tens to hundreds of bases downstream of

the 26S coding region, in plants this is probably bound by a protein, to halt RNA Pol

I (Zentgraf and Hemleben 1992). There is often an AT-rich region upstream of the TIS

(Delcasso-Tremousaygue et al. 1988, Gruendler et al. 1991, Echeverria et al. 1992, Borisjuk

and Hemleben 1993, Borisjuk et al. 1997) that may contain both terminators and enhancers

(Zentgraf and Hemleben 1992, Echeverria et al. 1992). In pea, upstream of the TIS there

is an AT-rich region containing sequences that are similar to the autonomously replicat-

ing sequence (ARS) (Hernandez et al. 1993), which in Saccharomyces cerevisiae has been

demonstrated to be an essential part of the origin of replication (Van Houten and Newlon

1990, Campbell and Newton 1991). In pea there are four sequences, in each of which 9-10 bp

match the 11 bp ARS core consensus sequence (ACS) (A/T)TTTAT(A/G)TTT(A/T) of S.

cerevisiae (Hernandez et al. 1993). A similar 440 bp AT-rich region in the IGS of Nicotiana
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tabacum contains nine sequences, each of which match 9-11 bp of the ACS (Borisjuk et al.

2000). When this 440 bp region was included in a transformation cassette it was found

to induce transgene copy number amplification and transcription in tobacco, thought to

be due partly to the presence of several DNA bending motifs and scaffold-attached regions

(Borisjuk et al. 2000).

Another feature of the IGS found across eukaryotes is the presence of a replication

fork barrier (RFB), leading to rDNA mostly being replicated unidirectionally, in the same

orientation as transcription (Brewer and Fangman 1988, Linskens and Huberman 1988, Little

et al. 1993, Rothstein et al. 2000). In pea a RFB is found 156 bp downstream of the 26S gene

and contains three or nine imperfect 27 bp repeats, depending on the IGS length class (Lopez-

Estrano et al. 1999, Hernandez et al. 1993). This sequence frequently stops replication forks

moving into the 26S gene, by acting as a binding site for blocking protein(s) (Lopez-Estrano

et al. 1999). An interesting model for copy number amplification in genes that are highly

transcribed, has been proposed for the yeast rDNA cistron (Kobayashi et al. 1998). This

was demonstrated in a fob1 mutant, where the fork blocking protein which normally binds

the RFB was rendered non-functional; the resulting collisions between transcription and

replication machinery initiated recombination resulting in copy number variation (Kobayashi

et al. 1998, Takeuchi et al. 2003, Kobayashi 2003).

4.1.2 IGS Evolution

When IGS sequences from related species from the same genus have been compared, such

as from Nicotiana (Borisjuk et al. 1997) and Brassicaceae (Da Rocha and Bertrand 1995),

subrepeats in the NTS part of the IGS show the most rapid change, whereas the TIS and the

region adjoining the 18S region (i.e. 5’ ETS) are more conserved (Appels and Dvořák 1982).

These interspecific differences in IGS subrepeats highlight the recombinogenic nature of the

IGS subrepeats. This can result in both heterogeneity i.e. in species such as A. thaliana

and rice where some recombinant NTS subrepeat variants have been generated (Gruendler

et al. 1991, Cordesse et al. 1993). In other plants, recombination has resulted in subrepeats

upstream of the TIS that are very similar, suggesting that repeat homogenisation acts within

cistrons (intracistronic) as well as between cistrons (intercistronic) (Dvorak et al. 1987). An

analysis of rDNA sequences cloned from species of Mitella (Saxifragaceae), showed that

polymorphisms arising through introgression were homogenised more rapidly in the ETS

than the ITS (Okuyama et al. 2005).

Several phylogenetic analyses of ETS and ITS1/ITS2 sequences from plants show phylo-
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genetic concordance, suggesting that at least these regions are evolving as a single unit, albeit

with the ETS typically showing greater divergence between species (Baldwin and Markos

1998, Bena et al. 1998, Clevinger and Panero 2000, Linder et al. 2000, Vander Stappen et al.

2003, Okuyama et al. 2005). This may be because transcribed regions of the rDNA cistron

could undergo localised recombination and homogenisation separately from non-transcribed

regions, due to the displacement of DNA strands during transcription (Appels and Dvořák

1982). Where deeper analyses of an individual’s rDNA population have been made, in-

cluding pseudogenes, there is evidence for recombination in ITS1 and ITS2 between variant

rDNA units, generating chimeric/mosaic units (Suh et al. 1993, Wendel et al. 1995, Buckler

and Holtsford 1996, Buckler et al. 1997).

Different parts of the IGS region can occur outside the 35S rDNA loci as independent

tandem repeats, including IGS subrepeats (Unfried et al. 1991, Nouzova et al. 2001, Macas

et al. 2003, Lim et al. 2004), partial subrepeats together with the AT-rich region containing

ACS, SAR and DNA bending motifs (Stupar et al. 2002), or the AT-rich region within the

TIS (Raina et al. 2005). There are many possible scenarios in which IGS sequences could

become liberated from rDNA loci including: by reverse transcription of rRNA transcripts

and integration back into the genome, direct translocation by non-homologous recombina-

tion from an rDNA array, indirect translocation by integration of an rDNA recombination

intermediate or partial deletion(s) of a disjunct ’orphan’ rDNA unit (Lohe and Roberts 1990,

Maggini et al. 1991, Gonzalez and Sylvester 1997b, Lim et al. 2004, Kovarik et al. 2004).

These scenarios would all result in a low number or perhaps a single copy of a sequence

inserted into a single homologue of a chromosome (i.e. it is in a hemizygous state), and as a

result sister chromatid recombination would not be possible for copy number amplification

(Stupar et al. 2002). Therefore recombination with a homologous sequence at a different

location in the genome or an extrachromosomal process, such as rolling circle amplifica-

tion/replication (RCR), would be required for copy number amplification (Stark et al. 1989,

Stupar et al. 2002).

To date, in plants, there is only evidence for 5S rDNA, telomere DNA and satellite

DNA being found as extrachromosomal circles (ECCs) (Cohen et al. 2008, Navratilova et al.

2008). In Drosophila melanogaster DNA circles corresponding to the IGS “240 subrepeat”

exist, probably resulting from intracistron recombination (looping-out) (Pont et al. 1987,

1988, Cohen et al. 2003). Also, in D. melanogaster, 35S rDNA circles greater than 10 kb

have been detected, probably resulting from intercistron recombination (Cohen et al. 2003,

2005). In Xenopus leavis whole cistrons are amplified by RCR in early development (Brown
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and Dawid 1968, Hourcade et al. 1973, Rochaix et al. 1974), but there is no evidence for

rDNA circles being able to replicate autonomously in other organisms. All these processes

of rDNA translocation, RCR from ECCs and homologous recombination could potentially

be involved in telomere biology.

4.2 Materials and Methods

4.2.1 IGS Amplification and Sequencing

The IGSs were amplified from A. cepa cv. Ailsa Craig and A. cernuum (0701 QMUL) ge-

nomic DNA using the Expand High Fidelity PCR System (Roche) or BIO-X-ACT long DNA

polymerase (Bioline, London, UK) respectively with primers, 26S: 5’-GGGAACGTGAGCTG

GGTTTAGACCGTC-3’ and 18S: 5’-GCCTGCTGCCTTCCTTGGATGTGG-3’ as published

by Bena et al. (1998). Reactions were performed in 50 µl volumes and were supplemented

with 3% (v/v) dimethyl sulphoxide (DMSO) (Sigma-Aldrich). The thermocycler parameters

were based on the parameters suggested by Roche: initial denaturation of 94°C for 2 minutes

followed by 10 cycles of 94°C for 15 seconds, 56.5°C for 45 seconds, 68°C for 4 minutes this

was followed by 18 cycles of 94°C for 15 sec, 56.5°C for 30 sec, 68°C for 4 min and a final

extension of 72°C for 7 min.

PCR products were cleaned using PCR purification columns (Qiagen) and cloned into the

pCR2.1-TOPO vector (Invitrogen). Colonies were screened by blue-white selection on plates

supplemented with ampicillin and X-Gal. Colonies selected for sequencing were cultured

overnight in liquid LB medium following section 2.6.2 on page 33. A. cernuum IGSs were

sequenced commercially by primer walking service (Macrogen, South Korea), some repeat

regions were checked by resequencing. A. cepa was sequenced by several rounds of primer

synthesis and sequencing (MWG Biotech, Germany) using the program Primer3 to design

suitable primers (Rozen and Skaletsky 2000). A list of effective primers used to sequence

the IGSs of A. cepa and A. cernuum are listed in tables 4.2.1 and 4.2.1, respectively.

4.2.2 DNA Restriction Digests and Southern Hybridisation

DNA Restriction digests and Southern transfer was carried out following section 2.5.1 on

page 31, 2.5.2.

Probes for detection were made as follows: (1) The 26S probe was made by PCR using

the IGS clone cerD8 from A. cernuum as a template with the following primers: “26S” from
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Primer name Primer sequence (5’-3’)
ACIGS1F TTCATGAGTCGTCCAATCCA
ACIGS2F AGGTAGGAGCGCAACTTCAA
ACIGS2bF GGTCATGGAGTAAGCCGAAA
ACIGS3F TAGAAAACTCGGAACTGGCTTC
ACIGS4F CCGAGTGTCGGGTCTAGAAAT
ACIGS5F TGGCAATAAATAGGTCCTCCA
ACIGS6F GAGAATGATATTTGCCCGGAT
ACIGS1R AGAATCGAACAATTCCCTCTCA
ACIGS3R ATCCGGGCAAATATCATTCTC

Table 4.1: Allium cepa specific IGS sequencing primers

Primer name Primer sequence (5’-3’)
Acer1F CTGAGATCCAGCCCTTTGTC
5’Rep_AAA CGTCTGACCAACCAAGATACAAAA
IGS_3’Rep1 ATACCGTTGTGCCCTTGAAC

Table 4.2: Allium cernuum specific IGS resequencing primers

Bena et al. (1998) and 440_26S_rev: 5’-GCGTATTTAAGTCGTCTGCAAAG-3’. (2) The

A. cepa HindIII probe was isolated by HindIII digestion of a BAC (S1B1) from A. cepa

cv. Cheonjudaego, provided by G. Suzuki (c.f. Suzuki et al. 2001), which has a 105kb

insert containing several copies of the complete 35S rDNA unit. The insert was cloned into

pBluescript KS+. Sequencing confirmed that the 1932 bp fragment referred to hereafter as

“AcH1932” was identical in sequence to the other IGS sequence amplified from A. cepa cv.

Ailsa Craig.

The temperatures used for the Southern hybridisation were as follows: AcH1932 probe

62°C, 26S probe 65°C. The membranes were washed at high stringency (0.2x SSC, 0.1%

SDS) using the same temperature as used for hybridisation (section 2.5.3).

4.2.3 Nucleotide Sequence Analysis

Gene/spacer boundaries were predicted on the basis of existing rDNA sequences for Zea

mays (GenBank: X03990.1) and Citrus limon (GenBank: X05910.1). IGS sequences were

checked for coding and non-coding repeats using RepeatMasker (http://www.repeatmasker

.org/). Sequences were checked on GenBank (http://www.ncbi.nlm.nih.gov/blast/) non-

redundant nucleotide, non-redundant protein or EST databases using BLASTN, TBLASTX

and BLASTP (Altschul et al. 1997, 1990). Repetitive sequences within the IGS were found

using the dotplot and BLAST output from PipMaker (Schwartz et al. 2000) and confirmed

by aligning subrepeats.
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Figure 4.1: Allium cepa IGS structure
rDNA IGS structure in A. cepa:the two major subrepeat families are indicated with black
arrows (A-subrepeats) or grey arrows (B-subrepeats). HindIII restriction sites are indicated
(H), this fragment corresponds to the AcH1932 probe.

4.3 Results

4.3.1 IGS Structure of Allium cepa

DNA sequence analysis indicated that subrepeats are located in one contiguous cluster

towards the middle of the IGS. Two types of imperfect repeats were found, A and B, with

the B subrepeats embedded within the A-subrepeats (fig. 4.3.1).

An alignment of the six A-subrepeat monomers indicated the presence of internal and 3’

deletions relative to the longest monomer A2 (fig. 6.1.2). A large 3’ deletion was found in

monomer A1, where there is an abrupt transition to the B-subrepeats, another 3’ deletion

was found in monomer A6, the final A-subrepeat. There are three B-subrepeats downstream

of monomer A1. An alignment of those three B-subrepeats revealed a large deletion in the

final B-monomer where there is an abrupt transition back to the A-subrepeats (fig. 6.1.2).

4.3.2 IGS Structure of Allium cernuum

High fidelity PCR amplification of the IGS generated PCR products ranging from 0.7 kb to 6

kb in length. The complete mixture of amplification products was cloned and 5 variants were

sequenced to see whether particular regions were prone to length variability. A diagrammatic

summary of four IGS sequences (sizes: 0.7, 1.9, 4.1, 4.1 kb) is shown (4.3.2), the two clones

of 0.7 kb had identical sequences. IGSs are divided into class I and II subfamilies based

on the absence or presence, respectively, of a 363 bp region similar to part of a Ty1/copia

element.

Two domains of repeated sequence are present in the IGS. The first domain contains

257 bp A-subrepeats arranged head to tail in tandem (alignment in appendix 6.1.2), the

second complex repeated domain contains three subrepeats in various organisations. The

average pairwise similarity is above 99% between clones within the sequenced 26S and 18S
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Figure 4.2: Allium cernuum IGS structure
Diagram of four IGS sequences from A. cernuum with regions of high similarity aligned, gaps
are shown as dotted lines (clones: cerD1, cerD3, cerD5, cerD8). Two sequences contain a
partial putative Ty1/copia ORF; this is represented as a hashed box downstream of the 26S
gene. Two repetitive domains are present; the 457 bp A-subrepeat domain (black arrows,
where partial arrows represent different sized 5’ truncations) and the complex repeated
domain (vertical lines (12 bp), grey boxes (9-160 bp) and black boxes (23 bp)). EcoRI and
BsrDI restriction sites are represented by sites marked E and B.

coding regions. Within the IGS, clones have low levels of sequence divergence due to base

substitutions, although there are differences in length due to insertions/deletions (indels)

involving regions with both repeated and unique sequences.

4.3.3 Overview of the Allium IGS

The 26S and 18S coding regions of the A. cepa IGS and longest A. cernuum IGS (cerD8)

sequenced showed 89% and 95% similarity respectively. The only alignable part of the IGS

between species was in the region directly upstream of the 18S gene between the A. cepa

clone and the three longest A. cernuum clones (cerD3, cerD5, cerD8) showing 72% similarity.

The length was 554 bp in A. cepa and 563 bp in the three A. cernuum IGSs, it is likely

that much of this conserved 3’ IGS region corresponds to the ETS, previous reports from

plants have found the length to be between c. 0.5-5 kb (reviewed by Bena et al. 1998).

Within this conserved 3’ IGS region we searched for the TATA(G)TA motif of the TIS that

is thought to be the conserved in plants (Cordesse et al. 1993, Bena et al. 1998, Piller et al.

1990), however in both species it is absent. When the search is widened to include the whole

IGS region, in A. cernuum there are two TATATA motifs in each complete A-subrepeat and

one motif in the truncated A-subrepeats. An additional TATATA motif was found within

the Ty1/copia sequence. Typically, a run of four to six guanines are present immediately

downstream of the TIS consensus (Doelling and Pikaard 1995, Bena et al. 1998), these were

79



not found next to any of the TATATA motifs. In A. cepa the closest match to the TIS

consensus when including the subrepeats and the non-repeated sequence downstream, was

a TATATC motif, with the cytosine located 623 bp from the start of the 18S coding region.

There is a sequence conserved in the IGS between the two Allium species, with the

consensus TGAGTGGT(C/T), of which the first 8 residues match a conserved 9 bp ETS

element reported previously for several plants (TGAGT(G/T)GTA) (Bena et al. 1998).

4.3.4 Southern Hybridisation of Allium species

A 1932 bp partial IGS probe (called AcH1932) was made by digesting A. cepa BAC S1B1

with HindIII, the restriction sites are shown in fig. 4.3.1. A 1.9 kb band corresponding

to this part of the A. cepa IGS can be seen in fig. 4.3.4, this fragment could be detected

with both the S1B1 probe containing several entire 35S rDNA units and with the HindIII

fragment itself. When the HindIII fragment was used as a probe (AcH1932), a higher

molecular weight band probably corresponding to entire units was detected. As the upper

band is about 2 kb longer than the main 10 kb fragment, this is probably due to units only

being cut once in the IGS, perhaps due to point mutations in the HindIII sites.

A. cernuum genomic DNA digested with HindIII produced a slightly diffuse band when

probed with the 26S probe, there was also a weaker smear between approximately five and

12 kb (fig. 4.3.4). This result indicates that A. cernuum rDNA is cut once per rDNA unit

based on the S1B1 probe showing only one band. It is unlikely that small fragments of

the spacer regions were liberated, as sequencing of the IGS and ITS (not shown) revealed

no HindIII sites in A. cernuum. If fragments of genic regions had been cut out this would

have been detectable with the S1B1 probe. The 26S probe labels a prominent fragment size

of approximately 12 kb (arrowed fig.4.3.4) indicating that the most rDNA units exhibit a

small amount of length variation. A weaker background smear in the size range of 5-13 kb

(indicated by a ’bar’ in fig. 4.3.4) indicates a small proportion of rDNA units show a large

amount of length variation.

The 1932 bp HindIII IGS fragment from A. cepa was used as a probe (AcH1932) to

examine the conservation of the IGS across Allium (fig. 4.3.4; for more distantly related

species, data not shown). The HindIII fragment contained 1280 bp of non-repetitive DNA

upstream of the subrepeats and 652 bp of the subrepeat region itself (containing the sub-

repeats A1, B1, B2, B3 and part of A2). Genomic DNAs from 33 species from across the

genus Allium were probed with AcH1932 from A. cepa and gave the following results based

on a recent classification of the genus by Friesen et al. (2006): (i) strong signal was revealed
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Figure 4.3: Southern hybridisations of S1B1 BAC, AcH1932 probe and 26S rDNA to A.
cepa and A. cernuum
Ethidium bromide stained agarose gel (left most set) and Southern hybridisations (three
remaining sets) of HindIII digested genomic DNA of A. cepa (1) and A. cernuum (2). The
nylon membrane was successively re-probed with the following from left to right: the S1B1
BAC (contains several entire 35S rDNA units from A. cepa) (high stringency); AcH1932
probe from A. cepa (low stringency wash) and the 26S genic probe (high stringency wash).
m-marker, with sizes shown in kbp. Arrow indicates the main rDNA unit size in A. cernuum,
bar indicates the extent of rDNA unit length variation above and below the main rDNA
unit size in A. cernuum. (Southern hybridisation carried out by E. Sýkorová.)

at high stringency for all investigated species from subgenus Cepa and including A. roylei

(ii) A. schoenoprasum, A. chinense from subgenus Cepa and A. splendens from subgenus

Reticulatobulbosa gave a weak signal in low stringency conditions; (iii) 24 other species gave

no signal (see table 6.1.2 on page 106 for a summary).

4.4 Discussion

Within the sequenced IGSs of A. cepa and A. cernuum there are no motifs similar to

known minisatellite telomere sequences. Such sequences might have provided evidence of

direct binding site for telomere proteins. There are several findings in terms of intraspecific

variability that have not been previously reported in plants.
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Figure 4.4: Southern hybridisation of AcH1932 probe and 26S rDNA to Allium species
Southern hybridisation of HindIII digested Allium genomic DNA probed with AcH1932 with
low stringency washing (left) and re-probed with the 26S genic probe with high stringency
washing (right). 1, A. galanthum (subgenus Cepa); 2, A. altaicum (subgenus Cepa); 3, A.
roylei (subgenus Cepa); 4, A. mairei (subgenus Cyathophora); 5, A. tuberosum (subgenus
Butomissa); 6, A. cernuum (subgenus Amerallium); 7, A. neapolitanum (subgenus Amer-
allium); m, marker with sizes shown in kbp. (Southern hybridisation carried out by E.
Sýkorová.)
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4.4.1 Allium 35S rDNA IGS

The sequencing data shows that although A. cernuum and A. cepa diverged early on in the

radiation of Allium (Friesen et al. 2006), as expected they still retain extensive homology in

the 18S and 26S coding regions. This conservation is lost within a few bases at the beginning

of the IGS and no similarity is detectable until c. 0.5 kb upstream of the 18S region. The

extensive molecular divergence generally agrees with the high divergence reported for the

ITS regions, where pairwise genetic distances (Kimura 1980) between Allium species are as

high as 53% compared to a typical value of 10% for species of other plant genera (Klaas and

Friesen 2002). One possible reason for this unusually high divergence is the age of the genus

(Dubouzet and Shinoda 1999, Klaas and Friesen 2002).

In terms of intragenomic variability the two species analysed show striking differences.

In A. cepa a single IGS type is present in the majority of rDNA cistrons, this was confirmed

by the low variation in fragments generated by restriction digestion and probing with the

HindIII fragment (fig. 4.3.4). The larger smear generated by probing with the S1B1 probe

may be due to some cross-hybridisation to similar sequences in the genome, although these

were not detected by FISH. In contrast, within the genome of A. cernuum rDNA units show

length variation based on southern hybridisation data (fig.4.3.4). Specifically, heterogene-

ity was observed at three levels in the IGSs sequenced: (1) IGS subrepeat copy number

variability, (2) the absence or presence of a truncated retroelement and (3) the presence or

absence of indels. Extensive IGS subrepeat variability has been found in a variety of plants

most notably in Oryza sativa (Cordesse et al. 1993), Avena sativa (Polanco and Perez de la

Vega 1997), A. thaliana (Copenhaver and Pikaard 1996) and Setaria italica (Fukunaga et al.

2005). Previous studies on three Allium species have shown that pairs of rDNA IGS length

variants can exist within individuals (Friesen et al. 1997). This is the first case of a Ty1/copia

related sequence being amplified within eukaryote rDNA, this sequence is analysed in detail

in chapter 5.

Most of the short rDNA units released by HindIII digestion, visible as a smear in fig.

4.3.4, can be attributed to units with short IGSs as was found in the sequencing data (fig.

4.3.2). However, the region spanning from the 18S through to the 26S coding region in rice

is 5.8 kb long (Takaiwa et al. 1984, 1985, 1990), this region is likely to be of a similar size in

A. cernuum. Therefore any fragments that are shorter than c. 5.8 kb in length, are likely

to be from rDNA units that are some missing parts of the coding regions as well as the IGS.

Importantly, A. cernuum rDNA units with longer (6-7 kb) IGSs account for the majority
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of rDNA units visible as the prominent c. 13 kb fragment hybridised by the 26S probe

(arrowed in fig. 4.3.4). Shorter IGS sequences were probably preferentially amplified by

polymerase enzymes in vitro as they are shorter, and may perhaps lack certain GC-rich

tracts and/or regions forming highly stable secondary structures. It is likely that these

longer IGSs have the full complement of rDNA subrepeats of which different parts were

identified in different IGS clones. Based on the shortfall between the maximum lengths of

IGS sequenced (3.4 kb IGS in clone cerD8 or 4.1 kb of non-overlapping sequence in the IGS

alignment fig. 4.3.2) and the length of the typical IGS based on restriction digestion (6-7

kb), some parts of the IGS remain unsequenced.

In A. cepa although the A-subrepeats show internal and 3’ deletions, and are interrupted

by B-subrepeats, these are perhaps the result of unequal recombination events between

units. However this structure arose, it is clear that efficient homogenisation processes have

led to this IGS type being spread close to fixation with the genome. It is possible that

the onion domestication process has contributed to the observed homogeneity in the rDNA,

as less defined bands were revealed by hybridisation in other species analysed (fig. 4.3.4).

This result is interesting in light of the unusual organisation at many chromosome ends in

A. cepa, where there appears to be inter dispersion of 35S rDNA units and telomere-like

sequences resembling the C. albicans telomere (see 3.4.4). This would suggest that either

35S rDNA can be kept homogenous even when not in a contiguous tandem arrangement,

or that the interspersion has occurred recently and so mutations have not accumulated.

Another posssibility is that rDNA units present on minor sites are in a low copy number

and so may not been detected by Southern hybridisation.

84



Chapter 5

Amplification of a

Retrotransposon Fragment within

the rDNA of Allium cernuum

5.1 Introduction

The rDNA of A. cernuum shows unusually high levels of length variability in the IGS

region, which is in part due to the presence of a partial retrotransposon coding sequence.

As this phenomenon has never been shown before in plants, the rDNA of A. cernuum was

studied in detail with the aim of understanding how this IGS sequence became integrated

and subsequently evolved. In another species, A. cepa, it has been shown previously using

FISH that some Ty1/copia retrotransposons are concentrated at the chromosome termini,

suggesting that they may be involved in Allium telomere biology.

5.1.1 rDNA Homogeneity

Typically rDNA units show low levels of genetic variation within and between individuals of

the same species (Hillis and Dixon 1991, Ganley and Kobayashi 2007, Stage and Eickbush

2007) but there are usually fixed differences between species (Brown et al. 1972). This is

due to rDNA units evolve by concerted evolution, where homogenisation mechanisms act

to reduce levels of genetic variation, giving the appearance of all units evolving in a unified

manner (Arnheim 1983). These mechanisms can include: unequal crossing-over (Smith
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1976, Szostak and Wu 1980), gene conversion (Gangloff et al. 1996, Ganley and Scott 1998),

and copy number expansion/contraction (Tartof 1974, Petes 1980, Dover and Coen 1981,

Kobayashi and Ganley 2005). In organisms that have more than one rDNA locus, these

processes must occur between both homologous and non-homologous NOR loci, in order

to homogenise all members of the genome’s rDNA population (Arnheim et al. 1980). In

some recently formed allopolyploid plants, it has been observed that only a few generations

generate a homogenous pool of several thousand rDNA units (Skalická et al. 2003, Kovarik

et al. 2005). In other cases rDNA homogenisation is not so apparent and divergent rDNA

paralogues persist (Brownell et al. 1983, Buckler et al. 1997, Gonzalez and Sylvester 2001,

Keller et al. 2006, Zheng et al. 2008). The efficiency of concerted evolution in eukaryotes

may be affected by factors including: NOR position on the chromosome (Zhang and Sang

1999), generation time (Sang et al. 1995, Richardson et al. 2001), genome size (Keller et al.

2006), frequency of hybridisation (Keller et al. 2008), epigenetic state (Lim et al. 2000)

and corresponding transcriptional activity (Jupe and Zimmer 1993, Koukalova et al. 2005,

Dadejova et al. 2007).

5.1.2 Targeted Insertion of Non-LTR Retroelements into the

26S/28S rDNA Unit

Large variation between rDNA units can be brought about by the insertion of mobile genetic

elements. The best documented are non-long terminal repeat (non-LTR) retrotransposons

called R elements that are an ancient group found in many animal lineages (Jakubczak

et al. 1991, Kojima and Fujiwara 2005, Kojima et al. 2006). Mobile elements that insert

into coding regions will render the rDNA unit non-functional, so there is a necessity to

continually remove these variants from the rDNA population as they arise (Zhang et al.

2008).

5.2 Materials and Methods

5.2.1 26S-IGS Sequencing

To sample intragenomic diversity within A. cernuum (0701 QMUL) in a 1117-1118 bp re-

gion containing the final c. 454 bp of the 26S gene and the adjacent 3’ IGS region con-

taining the Ty1/copia-like sequence. A PCR was carried out using the forward primer

26S: 5’-GGGAACGTGAGCTGGGTTTAGACCGTC-3’ from Bena et al. (1998) and a re-

86



verse primer, designed from sequenced A. cernuum IGS clones, at the 5’ boundary of the

A-subrepeats 26Scop3R: 5’-TTTTTGGATTAGACTTTTGTATCTTGG-3’. The amplifica-

tion was carried out in a 25 µl reaction using A. cernuum (0701 QMUL) genomic DNA as a

template, using BIOTAQ polymerase (Bioline), including 3% (v/v) DMSO (Sigma-Aldrich)

(2.4.1). The thermocycling parameters were as follows: initial denaturation step 94°C for 3

minutes followed by 30 cycles of 94°C for 40 seconds, 55°C for 30 seconds, 72°C for 1 minute;

this was followed by a final extension step of 72°C for 7 min.

PCR products were cleaned using a QIAquick PCR Purification Kit (Qiagen GmbH,

Germany) and cloned into the pCR2.1-TOPO vector (Invitrogen) (following 2.6.1). Colonies

were screened by blue-white selection on ampicillin and X-Gal supplemented LB plates.

Following selection, cells were cultured overnight in liquid LB medium and plasmids were

isolated using a QIAprep Spin Miniprep Kit (Qiagen) (following 2.6.2).

5.2.2 DNA Sequence Analysis

The 363 bp sequence identified as similar to a Ty1/copia element was checked for similar se-

quences in the NCBI non-redundant protein database (http://www.ncbi.nlm.nih.gov/blast/)

using BLASTX (Altschul et al. 1997). DNA sequences of retrotransposons were aligned man-

ually using the nucleotide with translated amino acid view in MacClade 4.08 (Maddison and

Maddison 2000).

An alignment of 37 intragenomic rDNA sequences was made after removing vector se-

quences and priming sites, leaving sequences of 1064-1065 bp. Due to the high similarity,

an alignment was made by eye. This was used to find the shortest maximum parsimony

tree using PAUP version 4.10b (Swofford 2002). A heuristic search was carried out with

1000 replicates of random sequence addition and the tree bisection-reconnection branch-

swapping algorithm. The same alignment was used to make a median joining network using

the program Network version 4.50.1 (Bandelt et al. 1999) (www.fluxus-engineering.com),

using an equal weighting on all characters and an epsilon value of 30. The average pairwise

nucleotide diversity, π, (Nei 1987) along the intragenomic rDNA alignment was calculated

with the program DnaSP version 4.50.2 (Rozas et al. 2003), with a sliding window of size of

25 bp and step size of 10 bp.
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5.2.3 Southern Hybridisation Analysis

DNA Restriction digests, Southern transfer and DNA hybridisation was carried out following

methods in section 2.5.1 and 2.5.2.

Probes for detection were made as follows: (1) The 26S probe was made by PCR using

the IGS clone cerD8 from A. cernuum as a template with the following primers, 26S: 5’-

GGGAACGTGAGCTGGGTTTAGACCGTC-3’ from Bena et al. (1998) and 440_26S_rev:

5’-GCGTATTTAAGTCGTCTGCAAAG-3’. (2) A probe containing 338 bp of the Ty1/copia-

like sequence was made by PCR from a diluted plasmid (clone cerD8) of an A. cernuum

IGS sequence using the forward primer 26Scop1F: 5’-TAGATTTCCTGGTGGCCTTG-3’

and the reverse primer 26Scop2R: 5’-GGACTTCAAACGATGGGAGA-3’.

The temperatures used for the Southern hybridisation were as follows: 26S probe at

65°C, Ty1/copia probe at 55°C. The membranes were washed at high stringency (0.2x SSC,

0.1% SDS) for the 26S probe or low stringency (2x SSC, 0.1% SDS) for the Ty1/copia probe,

using the same temperature as used for hybridisation.

5.2.4 FISH

DNA templates for making FISH probes were isolated and labelled as follows:

(1) The 18S rDNA probe was isolated by PCR from A. cernuum genomic DNA using the

forward primer A.18S2F: 5’-CGGAGAATTAGGGTTCGATTC-3’ and the reverse primer

17_rev_SE: 5’-ACGAATTCATGGTCCGGTGAAGTGTTCG-3’, which is derived from the

reverse complement of primer 17SE from Sun et al. (1994). A plasmid containing a 1321

bp 18S rDNA fragment was then used as a template for nick translation labelling with

digoxigenin-11-dUTP.

(2) As above for the Southern hybridisation (section: 5.2.3), a probe containing 338 bp of

the Ty1/copia-like sequence was made by PCR from a diluted plasmid (clone cerD8) of an A.

cernuum IGS sequence using the forward primer 26Scop1F: 5’-TAGATTTCCTGGTGGCCT

TG-3’ and the reverse primer 26Scop2R: 5’-GGACTTCAAACGATGGGAGA-3’. The re-

sulting Ty1/copia sequence was purified and used for PCR labelling with biotin-11-dUTP.

(3) The A. cernuum IGS A-subrepeat probe was made from a 1.6 kb clone isolated

by PCR from a diluted plasmid (clone cerD8) using the forward primer 5’Rep_AAA: 5’-

CGTCTAACCAACCAAGATACAAAA-3’ and reverse primer IGS_3’Rep1: 5’-ATACCGTT

GTGCCCTTGAAC-3’, which was labelled by nick translation with biotin-16-dUTP. FISH

was carried out according to section 2.8.
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5.2.5 EDF-FISH

DNA fibres were prepared following the method in section 2.9 on page 38. The probes

were made as follows: (1) The 18S rDNA probe was made from the clone described above

(section 5.2.4 on the preceding page), the labelling method used was PCR incorporation of

digoxigenin-11-dUTP. (2) The Ty1/copia probe was made using the clone described above

(section: 5.2.4 on the previous page) by PCR labelling with biotin-16-dUTP.

5.3 Results

5.3.1 Allium cernuum IGS Sequence Variability

Details of rDNA unit variation are described previously in chapter 4, and a summary of

several A. cernuum IGS sequences is shown in fig. 4.3.2 on page 79.

5.3.2 Ty1/copia-like Sequence within the IGS of Allium cernuum

IGSs are divided into class I and II subfamilies based on the absence or presence, respec-

tively, of a 363 bp region similar to part of a Ty1/copia-like elements. Using the program

RepeatMasker, this to region was found to be similar to a retrotransposon sequence from

Solanum lycopersicum (Tont1; GenBank: AF220603). The reading frame occurs in reverse

orientation relative to the rDNA coding regions.

A search amongst protein sequences on GenBank (NCBI) using BLASTX identified 22

similar plant sequences (E value: < 1x10−10) including five that were annotated as be-

ing possible retrotransposon polyproteins. The sequence with most significant similarity (E

value: 4 x 10−34) was a hypothetical 1316 peptide sequence from Vitis vinifera (Protein/CDS

GenBank: CAN66637/AM424683) (Velasco et al. 2007). This protein shows regions corre-

sponding to the protease, integrase and reverse transcriptase core domains. The region of

similarity between the sequences from A. cernuum and V. vinifera is upstream of these

domains and so may be responsible for the GAG protein, but as this has a much shorter

conserved core sequence it is difficult to confirm if this is the case.

A putative ORF containing the Ty1/copia-like sequence in the class II IGSs was 414

bp in length. This putative peptide sequence is shown aligned to other similar putative

Ty1/copia sequences from plants in fig. 5.3.2. The stop codon that terminates this ORF is

precisely at the transition point where the class I and II IGSs become unalignable (see fig.

4.3.2).
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Figure 5.1: Alignment of Ty1/copia-like polypeptide sequences
Alignment of partial polypeptides derived from genomic or EST sequences to the translated
Ty1/copia-like ORF in A. cernuum type II IGSs. GenBank accession numbers in order
from top to bottom: EU256498, AM431335, AM489208, BM411626, AF220603, EL450546,
AM424683 and AF220603. 90



Figure 5.2: Southern hybridisation showing colocalisation of the Ty1/copia sequence in some
rDNA units of A. cernuum
Southern hybridisation of two A. cernuum accessions (2812 IPK and 0701 QMUL) digested
with BsrDI (B lanes) and EcoRI (E lanes). Shown on the left is a low stringency hybridi-
sation with the Ty1/copia probe. The same membrane is shown on the right after being
stripped and reprobed with the 26S probe using high stringency conditions. An arrow in-
dicates a 1.8 kb fragment corresponding to the rDNA fragment sequenced in class II IGS
clones (cerD5/cerD8). An asterisk indicates a 0.5 kb fragment expected from sequenced
type I IGS clones; an arrowhead indicates a 2.9 kb fragment expected from the longest class
II IGS sequenced (cerD8). See fig. 4.3.2 for restriction site positions and probe annealing
sites. (Southern hybridisation carried out by E. Sýkorová.)

5.3.3 Southern Analysis of Ty1/copia rDNA Insertions

To confirm the findings from high fidelity PCR that some A. cernuum 35S rDNA units

harbour partial Ty1/copia-like elements, we carried out Southern hybridisation on digested

genomic DNA of A. cernuum, two accessions were analysed to assess intraspecific variation.

EcoRI was chosen to release fragments containing the 3’ end of the 26S gene, the Ty1/copia-

like sequence and the A-subrepeats from class II IGSs. BsrDI was chosen as there is a

conserved cut site 1.2 kb from the 3’ end of the 26S rDNA gene, as a result class II IGSs

would be expected to release a 1.8 kb fragment without the A-subrepeats (see fig. 4.3.2).

Digestion of A. cernuum (0701 QMUL) with EcoRI produced discrete fragments between

2.5-5 kb that were hybridised by the Ty1/copia probe, this included one of 2.9 kb that was

expected based on the longest class II IGS sequenced (cerD8) (indicated by an arrowhead

in fig. 5.3.3). Reprobing with the 26S probe hybridised a 0.5 kb fragment most strongly,

this corresponds to the fragment expected from type I IGSs (indicated by an asterisk in fig.
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5.3.3). Additionally several longer fragments were hybridised including a 2.9 kb fragment

corresponding to that expected from the longest class II IGS clone (cerD8) (indicated in fig.

4.3.2). The hybridisation of the 2.9 kb fragment with both the Ty1/copia probe and the

26S probe confirms that both sequences are adjacent to each other in some rDNA units.

Digestion of A. cernuum (0701 QMUL) with BsrDI released a 1.8 kb fragment (indicated

by an arrow in fig. 5.3.3), as predicted from the class II IGS clone, cerD8. Also, weaker

fragments of approximately 4.2 kb and 5 kb that were hybridised by the Ty1/copia probe,

the sequence giving rise to these fragments is unknown. Reprobing with the 26S probe

confirmed that these three fragments also contained the 3’ end of the 26S gene as expected.

However, the majority of 26S probe signal was from larger fragments of 7-13 kb that are

not associated with the Ty1/copia sequence. From the BsrDI digestion of accession 0701

QMUL the 26S probe signal from Ty1/copia-associated fragments (1.8 kb size) and non-

Ty1/copia-associated fragments (7-13 kb size range) was quantified. From these two values

I estimate that approximately 16% of rDNA units contain the Ty1/copia-like sequence in

the individual analysed.

Southern hybridisation of the other A. cernuum accession (2812 IPK) revealed few frag-

ments to be preserved between species, making interpretation difficult. In the BsrDI di-

gestion the Ty1/copia probe hybridised mainly to two BsrDI fragments, approximately 1.8

kb and 2.3 kb long (fig. 5.3.3), confirming that a similar sequence is present. The 1.8 kb

fragment probably corresponds to the fragment of the same size identified in the class II

IGSs of sequenced A. cernuum accession (0701 QMUL).

To see if the Ty1/copia fragment was present in species other than A. cernuum, 17 other

Allium species were tested by low stringency Southern hybridisation, some of which are

shown in fig. 5.3.3 and summarised in table 6.1.2 on page 106. In all cases the Ty1/copia

probe failed to hybridise to the genomic DNA of other Allium species, including species of

the same subgenus, Amerallium.

5.3.4 FISH of Retroelement, rDNA and A-Subrepeats

The Ty1/copia probe showed weak colocalisation through both major rDNA loci, with the

signal showing an unevenly dispersed distribution (fig. 5.3.4 A-C). Outside of the NORs, a

weaker signal could also be detected across most of the metaphase chromosomes (fig. 5.3.4

B-C) and throughout interphase euchromatin (fig. 5.3.4 E-F). This signal is similar to what

has been seen with retrotransposon sequences that have dispersed genomic distributions e.g.

Ty1/copia elements in Hypochaeris species (family Asteraceae) (Ruas et al. 2008). However,
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Figure 5.3: Southern hybridisation of the Ty1/copia-like sequence to different Allium species
High stringency Southern hybridisation of the Ty1/copia-like sequence from A. cernuum to
different Allium species. EcoRI digested genomic DNA (left) and BsrDI digested DNA
(right). 1-Leucojum aestivum, 2-Tulbaghia fragrans, 3-Ipheion uniflorum, 4-A. neapoli-
tanum*, 5-A. triquetrum*, 6-A. cernuum*, 7-A. ursinum*, 8-A. bulgaricum, 9-A. hook-
eri, 10-A. schuberti, 11-A. christophii. Asterisk indicates species in subgenus Amerallium
following Friesen et al. (2006). (Southern hybridisation carried out by E. Sýkorová.)

in both metaphase (fig. 5.3.4 B) and interphase nuclei (fig. 5.3.4 E), at several subtelomeric

positions the Ty1/copia sequence was not detected (arrowed in fig. 5.3.4 B). As this may

be due to subtelomeric tandem arrays in these regions, we attempted to isolate repeats by

restriction digestion of genomic DNA, however no frequently occurring restriction fragments

were produced with 22 different enzymes (details in section 3.3.4).

EDF-FISH was used to examine the fine scale association of the retrotransposon sequence

within rDNA units. A variation in Ty1/copia sequence frequency was observed across dif-

ferent rDNA fibres within an individual, samples of the most densely arranged rDNA arrays

are shown in fig. 5.3.4. There appears to be a variable spacing between successive 18S rDNA

units, perhaps the result of length variability within IGSs, although varibility in fibre exten-

sion may also account for this heterogeneity. In some cases the Ty1/copia sequence was not

detected between 18S genes indicative of its partial or complete absence in the respective

rDNA unit, in agreement with sequenced clones.

The location of the IGS A-subrepeats was confirmed by FISH, this was done to test

whether there was any evidence for IGS sequences located outside rDNA loci as found

with the Ty1/copia probe. Only hybridisation to rDNA loci was detected (fig. 5.3.4 A),

indicating that the Ty1/copia probe was not detecting extra-rDNA copies of the IGS (fig.

5.3.4). However, along the length of the rDNA array the signal intensity of the A-subrepeat
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Figure 5.4: FISH of rDNA derived Ty1/copia retroelement sequence
FISH to Allium cernuum root tip cells. (A-C) Metaphase spread. (A) 18S rDNA probe
(green); (B) 18S rDNA probe (green) and the Ty1/copia probe (red), arrowheads indicate
subterminal regions with low/absent Ty1/copia probe signal; and (C) the Ty1/copia probe
(red). Inset - 2x magnification and enhancement of a chromosome end (asterisk) with an
absence of hybridisation in the subtelomere region. (D-F) Interphase nucleus. (D) 18S
rDNA probe (green); (E) DAPI (blue), 18S rDNA probe (green) and the Ty1/copia probe
(red); and (F) the Ty1/copia probe (red). Scale bar indicates 5 µm.
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Figure 5.5: EDF-FISH of rDNA and Ty1/copia IGS sequence
EDF-FISH to leaf nuclei of Allium cernuum, showing the fine-scale arrangement of rDNA
repeats in regions where the Ty1/copia sequence is in highest abundance. (A-C) Three
images showing fibres probed with 18S rDNA (green), the Ty1/copia sequence (red) and a
merged image of both probes. Scale bar indicates 5 µm.
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Figure 5.6: FISH of IGS A-repeats
FISH to Allium cernuum root tip cells. (A-B) Anaphase and interphase spreads, probed
with (A) the IGS A-subrepeat (red) and 18S rDNA (green); (B) 2x magnification of three
NORs from the anaphase in (A), shown from top to bottom: DAPI, 18S rDNA probe, IGS
A-subrepeat probe and a merged image of both 18S rDNA probe and IGS A-subrepeat
probe. Scale bar indicates 5 µm.

probe was not equal to that of the 18S rDNA probe (fig. 5.3.4 B). This is probably due to

localised variations in the copy number of A-subrepeats, which was observed with sequencing

and Southern hybridisation of class II IGSs.

5.3.5 Relationships and Diversity of the 26S-IGS Sequences

On the basis that rRNA genes typically show low levels of divergence, we were interested in

looking at variation between rDNA units with a class II IGS. Primers were used to amplify

a 1.1 kb sequence comprising the 3’ end of the 26S gene (estimated to be 427 bp) and

the adjacent 3’ IGS region containing the Ty1/copia-like sequence. In total 36 clones were

sequenced, one sequence (CR7) was found to be highly divergent from all others, as this

was suspected to be a potential artifact of the PCR amplification it was excluded from

further analysis. The intragenomic rDNA data set consisted of the remaining 35 clones and

the equivalent region from the two class II IGSs sequenced (cerD5, cerD8), providing 37

sequences in total. In 4 cases the same sequence was sampled more than once, producing 32

distinct IGS-types.

When comparing the 37 sequences, the average number of polymorphic sites present

between paired sequences varied three-fold along the sequence as calculated using π, to
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Figure 5.7: Pairwise nucleotide diversity (π) plot for the 26S-IGS region of class II IGSs
Graph showing nucleotide diversity (π) on the y-axis plotted against sliding window midpoint
in base pairs on the x-axis. The calculation was based on an alignment of 37 sequenced
rDNA sequences with a class II IGS. Above the graph is a diagrammatic representation of
key features: the 26S gene and the IGS region (black line) that includes the putative ORF
with similarity to Ty1/copia elements (shaded rectangle).

measure nucleotide diversity (Nei 1987) (fig. 5.3.5). The average nucleotide diversity across

the whole 26S-IGS region was 0.0068 (standard deviation (SD) = 0.0005). When calculated

separately for the 26S gene and IGS region, the average diversity was 0.0031 (SD = 0.0007)

and 0.0093 (SD = 0.0007) respectively. The highest nucleotide diversity with sliding window

sampling was at the beginning of the IGS (nucleotide window: 431-455) (fig. 5.3.5). This

peak is associated with the presence of three linked mutations found in a short stretch in 24

of the 35 sequences, shown here in bold: TTTATTTTAAG. In its reverse complement the

underlined part of the latter mentioned sequence contains a AATAAA polyadenylation signal

(Krishnan 1995, Shen et al. 2008). Despite being in the correct orientation and downstream

of the Ty1/copia-like ORF, sequenced class I IGSs also have this motif despite lacking the

element.

A maximum parsimony (MP) tree was constructed to determine relationships between

sequences, a single shortest tree was generated on which several IGS-types had a terminal

branch length of zero. Due to this and the low levels of nucleotide variability found (aver-

age pairwise similarity overall was 99%), a median joining network was constructed. The

topology was essentially the same as the MP tree, with all IGS-types that were on a zero

branch length on the MP tree placed on interior nodes (fig. 5.3.5). Only in the cases where
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Figure 5.8: Median joining network of intraspecific 26S-IGS sequences
Median joining network showing the relationships amongst 37 intragenomic rDNA sequences
(with a class II IGS) based on a 1.1 kb region containing part of the 26S gene and adjacent
IGS region. Nodes represent sampled IGS-types (yellow), where the same IGS-types were
sampled 2 or 3 times these nodes are shown proportionally larger. Labelled nodes correspond
to full-length IGS clones (cerD5, cerD8) and clone CR31 (see results). Unsampled nodes at
multifurcating branch points are indicated (red circles). Bars on branches indicate single
nucleotide changes in the 26S rDNA gene (green) or the IGS (black).

IGS-types were sampled from interior nodes were they recovered more than once, indicating

that these ancestral IGS-types are likely to be present at a higher frequency in the rDNA

population. The data show only one homoplasious mutation in two IGS-types (cerD5 and

CR31). There are no nucleotide differences in the 26S region between 14 of the 32 IGS-types,

including all those placed on internal nodes (fig. 5.3.5).

5.4 Discussion

5.4.1 Integration of a Ty1/copia-like Element into 35S rDNA

It seems likely that all the class II IGSs sequenced here are derived from the same progenitor

rDNA unit containing a Ty1/copia related sequence, this is based on the clones having

the same length ORF and the common origin indicated by sequence similarity and the

median joining network. The majority of this putative ORF is probably derived from a
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retrotransposon based on the significant similarity with several plant Ty1/copia polyprotein

sequences. The dispersed FISH signal across the chromosomes indicates that sequences

similar to the Ty1/copia element in the IGS, are spread throughout the genome of A.

cernuum, the only exception being some of the subtelomeres where the signal is very weak

or absent.

It is not clear how the original retrotransposon copy became integrated into the rDNA,

but retrotransposition or recombination are both plausible. In rice, retrotransposons are

prevalent in the region that is proximal to the rDNA array on chromosome IX (Fujisawa

et al. 2006). In the grape genome three different sized retroelements (2870, 2950, and 5800

bp) were found inserted into 35S rDNA units, it is not known how frequently the inserted

units occur or where they are located, namely in the NOR locus or as disjunct orphan copies

(Velasco et al. 2007). It may be that a longer Ty1/copia element became integrated into

an rDNA unit and deletions were responsible for the loss of typical retrotransposon features

such as the LTRs, the GAG ORF and the conserved domains of the polyprotein gene (e.g.

reverse transcriptase) (Kumar et al. 1997), which were not found in any IGS sequenced from

A. cernuum. It may be that the longer, lower copy 4.2 kb and 5 kb restriction fragments

produced by the BsrDI digestion in both accessions originate from IGSs with more of the

retrotransposon remaining.

Other reports of retrotransposons found in rDNA include, Hideaway, an element with

similarity to LTR retrotransposons found within the IGS of a fungus, Ascobolus immersus

(Kempken 2001). The only case reported for plants is a Ty3/gypsy LTR retrotransposon

named monkey, of which most copies reside at unknown locations within the rDNA loci of

some Musa (banana) species (Balint-Kurti et al. 2000). During the evolution of primates,

multiple non-LTR Alu retroelements have inserted into the non-transcribed part of the IGS

and become fixed in the rDNA population (Brownell et al. 1983, Gonzalez et al. 1992, 1993).

In addition a DNA transposable element, Pokey, which targets the large rDNA subunit gene

has been found in several Daphnia species (Sullender and Crease 2001, Penton et al. 2002,

Penton and Crease 2004).

Within the other rDNA gene which encodes 5S rRNA, there are also reports of asso-

ciations with transposable elements. A family of non-autonomous terminal repeat retro-

transposon in miniature (TRIM), named Cassandra elements have a 5S-like coding region

within each LTR, they have been detected across a wide range of plants (Kalendar et al.

2008). Cassandra elements as with other TRIMs are reduced retroelements that lack a cod-

ing region (Yang et al. 2007, Kwon et al. 2007), it is thought that the retention of 5S rDNA
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provides a way of ensuring transcription of the element, as there is sequence and folding

conservation of the internal RNA polymerase III promoter region (Kalendar et al. 2008). In

Allium cepa and some other related Allium species, there are two 5S rDNA families with

either short or long spacers, which are arranged in separate arrays (Shibata and Hizume

2002). The 5S units with the longer spacer are thought to be sequences derived from mo-

bile elements (Shibata and Hizume 2002), although in this case it is not known whether

Cassandra elements are responsible. In the genus Artemisia (in family Asteraceae) plants

have 35S rDNA loci with a functional 5S rDNA unit inserted downstream of the 26S coding

region in an inverted orientation with respect to the rDNA genes (Garcia et al. 2009). It is

possible that Cassandra elements were responsible for the transposition of 5S rDNA gene

into the 26S-18S IGS as there are c. 30 bp flanking sequences that resemble LTR reverse

transcriptase primer binding sites (Garcia et al. 2009).

5.4.2 Evolution of the class II IGS Region

Following intergration of the Ty1/copia element into a single IGS there must have been an

increase in copy number of the class II IGS perhaps coinciding with its dispersal through the

rDNA arrays. Perhaps a similar mechanism was responsible for the spread and amplification

of a novel IGS type in a Nicotiana tabacum x Atropa belladonna somatic hybrid line (Borisjuk

et al. 1988). A mode of dispersal based on homogenisation mechanism(s) seems much more

likely than repeated integration events, as the Ty1/copia ORF was the same length in all

IGS-types. There is evidence that homogenisation acts more efficiently between homologous

rDNA arrays than between non-homologous arrays e.g. between sister chromatids at meiosis

(Saghai-Maroof et al. 1984, Ellis et al. 1984, Seperack et al. 1988, Schlotterer and Tautz

1994). However, the Ty1/copia-like sequence was dispersed throughout both pairs of NORs,

despite only accounting for approximately 16% of rDNA units.

More class II IGS-types would inevitably be recovered with a deeper sampling, but if

those sampled here are representative, there is no IGS-type that is in a vast excess over the

others. The sequence diversity and lack of reticulation (fig. 5.3.5) suggests that concerted

evolution is not maintaining homogeneity of class II IGS sequences, although homogeni-

sation mechanisms have probably been responsible for dispersing the Ty1/copia sequence

though the rDNA arrays. The situation seen here contrasts that seen in Drosophila where

R retroelements repeatedly insert into 26S rDNA genes (Zhang et al. 2008). In contrast, the

evolution of primate rDNA is much more reminiscent of the situation in A. cernuum, in this

case several non-LTR Alu retroelements have become incorporated in the non-transcribed
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part of the IGS and have become fixed across all units (Brownell et al. 1983, Gonzalez et al.

1992, 1993). The presence of fragmented and even some full-length Alu retroelements (Dick-

son et al. 1989, Gonzalez et al. 1993) demonstrates that concerted evolution is able to act

efficiently upon such inserted elements (Gonzalez et al. 1989, 1993).

One finding that remains unresolved is whether the Ty1/copia sequence has spread

through the existing rDNA units via modification of class I IGSs (e.g. by gene conversion)

or by repeated exchanges and/or amplifications of whole rDNA units with class II IGSs.

Due to the low numbers of polymorphic sites present in the 26S gene, it was not possible to

determine if the genic region is evolving independently of the IGS. Putative topoisomerase

I sites have been proposed to drive recombination in the 3’ IGS of Drosophila melanogaster,

enabling parts of the same rDNA unit to take “different evolutionary trajectories” due to

repeated localised recombination events (Polanco et al. 1998, 2000). If it is the case that

the 26S gene is being homogenised more frequently, the lower nucleotide diversity found in

the 26S gene (fig. 5.3.5) could be explained by localised gene conversion in the gene (Hibner

et al. 1991).

To better understand how rDNA has evolved in A. cernuum, it would be insightful to

pinpoint when the putative retrotransposon became integrated into the rDNA. The closest

related species of A. cernuum, A. stellatum (Nguyen et al. 2008), was not analysed here.

However, none of the species sampled from the subgenus Amerallium have a related sequence,

suggesting that the Ty1/copia element integration was relatively recent. FISH indicates that

sequences similar to the retrotransposon appear to be distributed throughout most of the

genome, but there is no evidence for it being telomeric, in fact FISH hybridisation signals

appear to be absent from some distal regions. This contrasts the report in A. cepa that some

Ty1/copia elements are enriched at the chromosome termini (Pearce et al. 1996, Cunado

et al. 2001).
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Chapter 6

General Discussion

Since the discovery that the telomeres of Allium species are unusual (Fuchs et al. 1995)

they have been the subject of research to determine how the DNA component is organised.

Whilst a range of different distal repetitive sequences have been described for A. cepa, none

has been unequivocally demonstrated to be telomeric. One sequence which is a satellite

repeat called ACSAT (Pich, Fritsch and Schubert 1996) in A. cepa was previously proposed

to be telomeric (Pich and Schubert 1998), it is likely that this is a subtelomeric sequence

as minor 35S rDNA sites were found here to be more distal in A. cepa. Distal minor rDNA

sites are also detectable in A. cernuum which is distantly related to A. cepa, suggesting that

these may be a common feature of Allium genomes. As the minor rDNA sites are located

at, or close to telomeric regions they are potentially useful markers for isolating terminal

sequences.

During this work a sequence similar to the Candida albicans telomere repeat was iden-

tified by E. Sýkorová as being present in the A. cepa genome. Using FISH this sequence

was found to colocalise with rDNA minor sites and parts of the major rDNA sites at inter-

phase and metaphase. EDF-FISH indicates that where these two sequences were detected

on the same DNA fibre they generally occur interspersed with each another in an alternating

fashion. However, work to isolate the C. albicans-like repeat from A. cepa was unsuccess-

ful. Nonetheless, the fact that a G-rich sequence was found associated with rDNA which is

known to occur close to chromosome termini is a significant finding.
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6.0.3 35S rDNA Evolution

Due to the possible inclusion of 35S rDNA in Allium telomeres this multicopy family was

characterised for A. cepa and A. cernuum. A. cepa 35S rDNA is highly homogenous and

has a small proportion of rDNA IGS sequence variants present. A. cernuum in contrast

has a large proportion of IGS length and sequence variants, these were divided into two

classes (I/II) based on the absence/presence of a relic Ty1/copia-like element, respectively.

In one individual analysed the class II IGS types account for around 16% of the A. cernuum

genome and are physically dispersed throughout the major rDNA arrays. The median

joining network of class II IGS sequences indicates that this fraction is derived from a single

sequence, which has spread and amplified, but may not been maintained by homogenisation

mechanisms allowing mutations to accumulate in the process.

6.1 Future Work

During this study two important findings have been made that would benefit from further

work. These are the identification of a C. albicans-like telomere sequence from A. cepa and

understanding how the relic Ty1/copia sequence was incorported into the 35S rDNA IGS of

A. cernuum.

6.1.1 A New Approach to Isolating the Telomere of A. cepa

A method that has recently become available for sequencing repetitive DNA is 454-sequencing.

This approach could be used to recover the C. albicans-like sequence of A. cepa. When con-

sidering that a single run generates 500 Mb of sequence, with A. cepa having a haploid

genome size of 16381 Mb, assuming random sampling, a run would produce the equivalent

of 1/33 of the genome. Therefore if a sequence is repeated 330 times it should be sampled

approximately 10 times, assuming the sampling size (sequence length) is the same as the

repeat length. This method has been shown to be effective for isolating repeats such as

the 35S rDNA unit and highly repeated retrotransposon families even when sampling only

1/129 of the genome (Macas et al. 2007). The drawback to using this type of whole genome

sequencing is that pyrosequencing is limited to only several hundred bases read length and

genomic DNA must be sonicated into corresponding lengths (Margulies et al. 2005). As a

result repetitive regions can be difficult to assemble, but consensus reads can be constructed

which summarise these repetitive DNA regions.
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Discovering the telomere of Allium is important as it would open up a new research field

in which new questions could then be asked. These include addressing how the telomere

DNA is replicated, how recombination is involved in length regulation (e.g. ALT) and how

telomere proteins have responded to the change in telomere sequence. Completion of this

work will also reveal the extent to which rDNA is involved in telomere biology and allow

the phenomenon of rDNA mobility in Allium to be resolved.

6.1.2 Obtaining an Overview of Total rDNA Variation

and its Evolution

The 35S rDNA of A. cernuum is unusually complex with a range of sequence and length

variants being present. A complete characterisation of full length IGSs in this species and its

closest relatives would allow the evolution of this gene to be better understood. Cloning of

rDNA into high capacity vectors such as phage vectors would enable the longest of IGSs to

be sequenced by walking. Obtaining longer IGSs with and without the Ty1/copia insertion

should also be informative on pinpointing the retroelement insertion site. This would make

an interesting comparison to an analogous situation in primates where Alu elements have

become incorporated into the rDNA IGS at different points in their radiation.

Another line of study that the variability in A.cernuum opens up is based on there being

a relatively high number of single nucleotide polymorphisms (SNPs) between rDNA units.

These SNPs could allow recombination breakpoints to be mapped and linkage disequilibrium

to be assessed, collectively these would help to shed light if concerted evolution acts within

different parts of the rDNA unit. To date this approach has not been done across the whole

rDNA unit, partly because sequencing over multiple full length rDNA units still requires

extensive sequencing effort, but also because the low levels of mutations normally present

do not provide sufficient resolution or sensitivity.
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Appendix A

Southern Hybridisation
Summary Table
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Accession Species Subgenus HindIII probe Ty1/copia probe

3 QMUL A. cepa cv. Ailsa Craig Cepa Strong Absent

0500 A. proliferum Cepa Strong* n.a.

5010 A. galanthum Cepa Strong* n.a.

1667 A. altaicum Cepa Strong* n.a.

1854 A. schoenoprasum Cepa Absent Absent

QMUL A. schoenoprasum Cepa Weak* Absent

0988 A. chinense Cepa Weak* n.a.

5661 A. splendens Reticulatobulbosa Weak* n.a.

5152 A. roylei Polyprason Strong* Absent

3179 A. obliquum Polyprason Absent n.a.

2909 A. carolinianum Polyprason Absent n.a.

QMUL A. flavum Allium Absent* Absent

1797 A. sativum Allium Absent Absent

2373 A. mongolicum Rhizirideum Absent n.a.

1853 A. angulosum Rhizirideum Absent n.a.

5895 A. mairei Cyathophora Absent n.a.

4247 A. cyathophorum Cyathophora Absent n.a.

4246 A. tuberosum Butomissa Absent* Absent

OSBG 01-17-0128-10 A. oreoprasum Butomissa Absent n.a.

2 2800 A. hollandicum Melanocrommyum Absent Absent

2552 A. rosenorum Melanocrommyum Absent n.a.

0515 A. nigrum Melanocrommyum Absent n.a.

QMUL A. schubertii Melanocrommyum Absent Absent

1388 A. christophii Melanocrommyum n.a. Absent

0465 A. macleanii Melanocrommyum Absent n.a.

2264 A. stipitatum Melanocrommyum Absent n.a.

5942 A. giganteum Melanocrommyum Absent n.a.

2732 A. oreophilum Porphyroprason Absent n.a.

0773 A. victorialis Anguinum Absent Absent

2797 A. neriniflorum Caloscordum Absent Absent

1 2812 A. cernuum Amerallium Absent strong

Chester 0701 QMUL A. cernuum Amerallium Absent strong

0914 A. ursinum Amerallium Absent Absent

QMUL A. neapolitanum Amerallium Absent n.a.

QMUL A. triquetrum Amerallium n.a. Absent

3220 A. bulgaricum Nectaroscordum Absent Absent

QMUL Tulbaghia fragrans outgroup Absent Absent

QMUL Ipheion sp. outgroup Absent Absent

Table A.1: Summary of 35S rDNA Southern hybridisation results
Hybridisation intensity is listed for two probes to the genomic DNA of Allium species and
species from closely related genera. The IPK TAX accession code is shown for species unless
they are from OSBG or QMUL, subgenus name is included following Friesen et al. (2006).
An asterisk indicates that low stringency washing was used, if absent high stringency washing
was used, n.a. = not analysed).
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Appendix B

GenBank Accession Numbers

107



Species Voucher Code Region GenBank

A. cepa Ailsa Craig QMUL ACIGS4 26S-IGS-18S EU256494

A. cernuum Chester 0701 QMUL CerDI 26S-IGS-18S EU256495

A. cernuum Chester 0701 QMUL CerD3 26S-IGS-18S EU256496

A. cernuum Chester 0701 QMUL CerD5 26S-IGS-18S EU256497

A. cernuum Chester 0701 QMUL CerD8 26S-IGS-18S EU256498

A. cernuum Chester 0701 QMUL 2Cer26S partial 26S EU256499

A. cernuum Chester 0701 QMUL CR1 26S-IGS EU980328

A. cernuum Chester 0701 QMUL CR2 26S-IGS EU980329

A. cernuum Chester 0701 QMUL CR3 26S-IGS EU980330

A. cernuum Chester 0701 QMUL CR4 26S-IGS EU980331

A. cernuum Chester 0701 QMUL CR5 26S-IGS EU980332

A. cernuum Chester 0701 QMUL CR6 26S-IGS EU980333

A. cernuum Chester 0701 QMUL CR8 26S-IGS EU980334

A. cernuum Chester 0701 QMUL CR9 26S-IGS EU980335

A. cernuum Chester 0701 QMUL CR10 26S-IGS EU980336

A. cernuum Chester 0701 QMUL CR11 26S-IGS EU980337

A. cernuum Chester 0701 QMUL CR12 26S-IGS EU980338

A. cernuum Chester 0701 QMUL CR13 26S-IGS EU980339

A. cernuum Chester 0701 QMUL CR14 26S-IGS EU980340

A. cernuum Chester 0701 QMUL CR15 26S-IGS EU980341

A. cernuum Chester 0701 QMUL CR16 26S-IGS EU980342

A. cernuum Chester 0701 QMUL CR17 26S-IGS EU980343

A. cernuum Chester 0701 QMUL CR18 26S-IGS EU980344

A. cernuum Chester 0701 QMUL CR19 26S-IGS EU980345

A. cernuum Chester 0701 QMUL CR20 26S-IGS EU980346

A. cernuum Chester 0701 QMUL CR21 26S-IGS EU980347

A. cernuum Chester 0701 QMUL CR22 26S-IGS EU980348

A. cernuum Chester 0701 QMUL CR23 26S-IGS EU980349

A. cernuum Chester 0701 QMUL CR24 26S-IGS EU980350

A. cernuum Chester 0701 QMUL CR25 26S-IGS EU980351

A. cernuum Chester 0701 QMUL CR26 26S-IGS EU980352

A. cernuum Chester 0701 QMUL CR27 26S-IGS EU980353

A. cernuum Chester 0701 QMUL CR28 26S-IGS EU980354

A. cernuum Chester 0701 QMUL CR29 26S-IGS EU980355

A. cernuum Chester 0701 QMUL CR30 26S-IGS EU980356

A. cernuum Chester 0701 QMUL CR31 26S-IGS EU980357

A. cernuum Chester 0701 QMUL CR32 26S-IGS EU980358

A. cernuum Chester 0701 QMUL CR33 26S-IGS EU980359

A. cernuum Chester 0701 QMUL CR34 26S-IGS EU980360

A. cernuum Chester 0701 QMUL CR35 26S-IGS EU980361

A. cernuum Chester 0701 QMUL CR36 26S-IGS EU980362

Table B.1: GenBank accession numbers
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Appendix C

DNA Sequence Alignments
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Figure C.1: A. cepa IGS A-subrepeat alignment

Figure C.2: A. cepa IGS B-subrepeat alignment

Figure C.3: A. cernuum IGS A-subrepeat alignment
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