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Abstract

Circadian clocks regulate behaviour and physiology of many organisms and keep

them in synchrony with the environment. Drosophila’s circadian clock is mainly

synchronized by natural light-dark cycles and temperature fluctuations, both at

molecular and behavioural levels. The mechanisms underlying temperature en-

trainment are poorly understood, but previous studies have shown that this pro-

cess can be genetically dissected.

In this work, I isolated several mutants which interfere with the temperature

synchronization of Drosophila’s circadian clock. Three variants were isolated

in a chemical EMS-mutagenesis screen monitoring putative second- and third-

chromosomal mutations. The mutants behave normal in light-dark cycles suggest-

ing that they specifically interfere with temperature entrainment. In a different,

RNAi-based screen, a Forkhead-domain transcription factor encoding gene was

isolated, which shows defective circadian activity of per expression and PER ac-

cumulation in temperature-entrainment condition, when down-regulated. Finally,

a candidate approach led me to identify three genes encoding proteins belonging

to the TRP family of ion channels. Mutations in the pyrexia, trpM and trpA1

genes show abnormal temperature synchronization of locomotor behaviour, simi-

lar to our EMS-candidates.

The isolation and analysis of those mutations are described, as well as a be-

havioural analysis of the already-known “temperature-mutant” nocte. In par-

ticular, I discuss the involvement of chordotonal organs as structures required for

temperature entrainment of the clock and the role of nocte for signalling the tem-

perature information from the periphery to the brain.

The rest-activity pattern is a well-studied circadian output behaviour; the pupal

emergence, named eclosion, is another behaviour strictly regulated by the circa-
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dian clock. Here we show that genes important for entrainment of adult locomotor

behaviour to temperature do not play the same role in regulating the synchroniza-

tion of eclosion. To gain insight into the synchronization mechanisms of eclosion,

I studied how different entrainment conditions affect the phase and free-running

period of eclosion.
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There once was a scientist doing an experiment on the reaction of fleas.

He had trained a flea to jump on command. The scientist would command

the flea “Jump Flea!” and the flea would jump. Then the scientist would

proceed to pull off one of the fleas legs with a pair of tweezers and write a

comment in his notebook.

The scientist did this many times until the flea had only one leg left. The

scientist said “Jump Flea!” and the flea made it’s best effort to jump, which

the scientist recorded in his notebook.

After he pulled off its last leg, the scientist commanded the flea to jump,

and after repeating the command many times without the flea responding he

jotted down in his notebook, “After the flea looses all of his legs it becomes

completely deaf.”

“For every behavioural observation, there is an equal and opposite

observation.”

Seymour Benzer 1.

1Quoted in Mealey-Ferrara et al. (2003)
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Chapter 1

Introduction

Time is an illusion. Lunchtime doubly so.

Douglas Adams

1.1 Chronobiology and circadian clocks

The first report of the existence of circadian clock dates back to the eighteen

century, and an observation of a French astronomer, Jean-Jacques d’Ortus de

Mairan (1729). The leaves of the heliotrope Mimosa pudica turn to the sun and

open during the day and close during the night (hence the name, helios=sun,

tropos=movement). De Mairan observed that the leaf movement was not a passive

response to the environment, but persisted when the plant was enclosed in a dark

cabinet and not exposed to the daily oscillation of light and dark. De Mairan

cleverly concluded that there must have been some endogenous mechanism which

was telling the plant the time of the day and he proposed the existence of a

“circadian clock” (although the term circadian has been coined only in the 1950s

by Franz Halberg, as recalled in the publication Halberg et al., 2003).

Two centuries later the origin of this mysterious mechanism has been revealed
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Light,
Temperature

Central oscillator OutputInput

Rhythmic
Behaviour

Figure 1.1: The three-component structure of circadian clocks. The components of
the “input pathway” receive the cycling information from the environment and trans-
mit them to the “central oscillator”. Rhythmic behaviours are then generated via the
“output pathway”.

and the properties described (Dunlap et al., 2004).

Circadian clocks are endogenous oscillators shaped by evolution to make the

organisms able to perceive time and to be synchronized with the cycling environ-

ment in order to anticipate reproducible environmental changes.

Three properties characterize circadian clocks. First, they are endogenous and

self-sustainable. The clocks generate rhythms with a period of about 24 hours

(circa dies) that persist even in absence of any environmental stimulus. Secondly,

the clock can be synchronized (entrained) by cycling environmental conditions

in order to be in-phase with the environment. Last, the clocks are temperature

compensated, which means that the period is almost the same over a wide range

of constant physiological temperatures. This last properties is summarized by the

formula Q10 ≈ 1. Q10 indicates the rate of change of chemical reactions as a

consequence of temperature increase of 10℃ 1. For most biochemical reactions,

the rate is generally between 2 and 3. For biological clocks, the rate is about 1,

which means that circadian systems are temperature compensated (Pittendrigh,

1954).

The simplified structure of a circadian system is based on three components

1Q10 is calculated as Q10 =
(

R2
R1

)10/(T2−T1)

, where R is the rate and T is the temperature
(in Celsius).
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(Figure 1.1). The central oscillator is capable of generating sustained circa 24-

hour cycles of gene expression and protein accumulation. The central oscillator

(or pacemaker) can be entrained by rhythmically changing environmental condi-

tions. The second component that constitutes the circadian clock is the input

pathway, which includes the structures arranged to perceive the cycling stimuli in

the environment and to transmit these information to the central oscillator. The

stimuli able to entrain the circadian clock are called Zeitgeber (German Zeit=time

and Geber=giver). For Drosophila, the main Zeitgebers are daily light-dark cycles

and temperature fluctuations (Pittendrigh et al., 1958; Zimmerman et al., 1968),

although other factors can synchronize the circadian clocks, for instance social

interactions (Levine et al., 2002b). The generation of rhythmic behaviours and

physiological processes is regulated through the third component of the circadian

clock — the output pathway. In Drosophila, many complex behaviours are under

the control of the circadian clock and the most studied ones are adult emergence

(eclosion) and locomotor behaviour (see below).

1.2 The circadian clock of Drosophila melano-

gaster

1.2.1 The central oscillator

The current understanding of circadian systems has achieved great contributions

thanks to studies conducted on Drosophila. After the pioneering works from

Konopka and Benzer (1971) and the isolation of the first clock mutants, the molec-

ular basis of circadian clocks has been established. Now, many “clock genes” are

known to be required for the generation of 24 hour rhythms and the picture is
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quite complex, though not completely clear.

The generation of a rhythm of 24 hours is determined by the presence of

two interlocked feedback loop of gene expression and repression. The basic helix-

loop-helix (bHLH) PAS-domain transcription factors CLOCK (CLK) and CYCLE

(CYC) (Allada et al., 1998; Bae et al., 1998; Rutila et al., 1998) form heterodimers

and bind the E-box sequences (CACGTG) (Kyriacou and Rosato, 2000) in the pro-

moters of the target genes period (per) and timeless (tim) (Konopka and Benzer,

1971; Sehgal et al., 1994). PER and TIM proteins accumulate in the cytoplasm,

dimerize and then migrate to the nucleus (Saez and Young, 1996; Shafer et al.,

2002) where they block the CLK/CYC complex (Lee et al., 1999), inhibiting their

own transcription. Some studies have proposed that PER and TIM dissociate

before entering the nucleus (Shafer et al., 2002), and that PER homodimerization

is important for nuclear entry (Landskron et al., 2009).

The time in which PER and TIM accumulate in the cytoplasm is strictly reg-

ulated by post-transcriptional events and ubiquitin-mediated degradation. Phos-

phorylation of PER is mediated by the kinase DOUBLE TIME (DBT), which is

the homologue of the mammalian casein kinase 1 ε (Kloss et al., 1998; Price et al.,

1998). The F-box protein SLIMB in the ubiquitin-proteasome pathway interacts

with DBT-phosphorylated PER and mediates its degradation (Ko et al., 2002).

The PER/DBT complex can also enter the nucleus regulating the activity of CLK

(Kim and Edery, 2006). TIM is phosphorylated by GLYCOGEN SYNTHASE KI-

NASE 3β/SHAGGY (GSK3β/SGG) (Martinek et al., 2001) and CK2 (Meissner

et al., 2008). The action of PROTEIN PHOSPHATASE 2A (PP2A) and PRO-

TEIN PHOSPHATASE 1 (PP1) (Sathyanarayanan et al., 2004; Fang et al., 2007)

on PER and TIM, respectively, promotes the accumulation and the stability of

the protein in the cytoplasm and the subsequent entry in the nucleus. While PER
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Figure 1.2: The schematic of the circadian clock of Drosophila melanogaster. Two
negative feedbacks loops are interlocked with each other. In the first loop, CLK and
CYC regulate the expression of per and tim by binding the E-box regulatory sequences
on their promoter region. The phosphorylation activity of SGG and DBT determines
the stability of TIM and PER and the time before the proteins enter the nucleus where
they eventually inhibit their own transcription. In the second loop, CLK/CYC activate
the expression of vri and Pdp1 ε. Once the respective proteins have been translated, VRI
and PDP1 repress and activate, respectively, the expression of Clock, competing for the
same V/P box binding site. CRY mediates the light-dependent degradation of TIM,
resetting the clock with the light signal. Figure taken from Collins and Blau (2007).

and TIM repress their own transcription, their concentration gradually decreases.

As a result, CLK and CYC are then free to start activating per and tim again,

and the cycle continues. In wild-type (wt) flies, this feedback loop takes circa 24

hour to repeat itself.

In Drosophila, a second feedback loop is interlocked with the first. In addition

to activating the expression of per and tim, the CLK/CYC complex activates the

transcription of Par domain protein 1 ε (Pdp1 ε), vrille (vri) and clockwork orange

(cwo) (Cyran et al., 2003; Kadener et al., 2007; Lim et al., 2007). The basic zipper

transcription factor PDP1 activates the expression of CLK, whereas VRI represses

it, competing for the binding site on its promoter (V/P site). This results in Clk

mRNA cycling in anti-phase compared to per and tim: the latter phase peak in
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the early night and the former in the morning. CWO belongs to the same feedback

loop and acts as a repressor for CLK/CYC-mediated activation of vri and Pdp1 ε

and for its own transcription (Kadener et al., 2007; Lim et al., 2007). However,

CWO has also been proposed to act also as an activator for CLK targets (Richier

et al., 2008).

1.2.2 The input of the clock: light and temperature

The two-loop model described above explains the first characteristic of the cir-

cadian clocks, such as the ability to generate and self-maintain a circa 24-hour

rhythm. The rhythm is circa 24 hour, but not exactly 24. This means that the

clock has to be continuously reset to be constantly in phase with the 24-h envi-

ronmental cycles. In Drosophila, daily temperature oscillations and the light-dark

cycle are the strongest known signals perceived by the clock as Zeitgeber. Al-

though light is a more potent signal compared to temperature (Wheeler et al.,

1993), the two act together to fine tune and reinforce the fly entrainment in a

synergistic way (Boothroyd et al., 2007; Yoshii et al., 2009a).

Light entrainment

The fly possess several photoreceptors which act in orchestra to sense the light

signal and transmit it to the central pacemaker. The fly’s photoreceptors are the

compound eye, the ocelli and the Hofbauer-Buchner eyelet (HB-eyelet) (Helfrich-

Förster et al., 2001; Helfrich-Förster, 2002; Veleri et al., 2007). However, the main

circadian photoreceptor is the blue-light sensitive protein CRYPTOCHROME

(CRY) expressed within the clock neurons where it mediates the light-dependent

degradation of TIM (Emery et al., 1998, 2000; Stanewsky et al., 1998). In dark-

ness, CRY is kept in an inactive form by an unknown repressor (Rosato et al.,
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2001). When light is on, CRY is activated, and it binds directly to TIM, trigger-

ing its degradation via the proteasome (Ceriani et al., 1999; Busza et al., 2004).

The light-dependent degradation of TIM is mediated by the F-box protein JET-

LAG (Koh et al., 2006; Peschel et al., 2006, 2009), which is part of the SCF E3

ubiquitin ligase complex.

Light-dependent degradation of TIM is a crucial event for resetting the cir-

cadian clock. In fact, when TIM is degraded, the PER/TIM complex cannot be

formed and PER is a target of phosphorylation events by DBT, which leads to

PER degradation (see above). This results in a delay of PER and TIM entry in

the nucleus and a resetting point for their own transcription (Dunlap, 1999).

Exposure to constant light (and constant temperature) induces arrhythmic be-

haviour (Konopka et al., 1989) due to continuous degradation of TIM by CRY.

The cryb mutation, which severely affects CRY function, largely prevents light-

dependent TIM degradation resulting in a severe reduction of circadian light re-

sponses and in rhythmic behaviour under constant light conditions (Stanewsky

et al., 1998; Emery et al., 1998, 2000). These data were recently confirmed by the

generation of the null mutant cry0 (Dolezelova et al., 2007). Over-expression of

CRY, instead, induces hypersensitivity to light (Emery et al., 1998), confirming

the prominent role of CRY in the light entrainment.

CRY mutants are not completely circadian blind, but the circadian light sen-

sitivity is much reduced and light entrainment is slower (Stanewsky et al., 1998;

Emery et al., 1998, 2000). Only the removal of all photoreceptors makes the fly

circadianly blind and unresponsive to the light stimulus (Helfrich-Förster et al.,

2001). However, the input pathways which mediate CRY-independent light en-

trainment are still unclear.
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Temperature entrainment

In addition to LD cycles, temperature cycles (TC) also can entrain the circadian

clock. Temperature robustly synchronizes the eclosion rhythm of Drosophila pseu-

doobscura (Zimmerman et al., 1968), the fly’s locomotor behaviour (Wheeler et al.,

1993) and the molecular oscillations of clock proteins (Stanewsky et al., 1998).

Temperature cycles (TC) can also entrain the circadian clock in LL, both

at behavioural (Tomioka et al., 1998; Yoshii et al., 2002, 2005) and molecular

levels (Glaser and Stanewsky, 2005), a situation that usually induces the fly to be

arrhythmic (Konopka et al., 1989). It is generally believed that LL stops the clock,

since TIM and PER are not cycling under LL and constant temperature. However,

TC in LL restore the circadian oscillation of PER and TIM (Glaser and Stanewsky,

2005). Work from Tomioka et al. (1998) and Yoshii et al. (2002) suggest an even

“better entrainment” to temperature cycles in LL compared to DD, based on the

observation that pers and perL mutants fail to synchronize their locomotor activity

to temperature in DD whereas they do so in LL. Also wild-type flies entrain to

TC faster in LL compared to DD. In addition, Yoshii et al. (2002) showed that

that wild-type flies can entrain to a wide range of thermoperiods in LL but only

to 12:12 hr warm-cold cycles in DD, indicating that temperature is a stronger

Zeitgeber in LL than in DD. The effect of temperature as Zeitgeber on the clock is

further confirmed by experiments involving temperature pulses and temperature

step-up and step-downs, which can change the phase of free-running behaviour

(Sidote et al., 1998; Kaushik et al., 2007; Yoshii et al., 2007). Interestingly, the

phase response induced by heat pulses (37℃) is mediated by the photoreceptor

CRY (Kaushik et al., 2007), since cryb exhibits reduced (or almost zero) heat

phase responses. The model proposes that heat facilitates the interaction between

PER and TIM and facilitate also the interaction of the PER-TIM complex with the

29



CHAPTER 1. INTRODUCTION

active CRY. CRY:TIM-PER interaction leads to TIM degradation, which advance

or delay the the clock (Kaushik et al., 2007).

Although CRY seems not to be required for temperature entrainment in a

more physiological range (Stanewsky et al., 1998; Busza et al., 2007), it mediates

the interaction with PER/TIM in a temperature-dependent manner, similarly to

the light-dependent interaction between CRY and TIM/PER (Rosato et al., 2001;

Kaushik et al., 2007).

The ability of the circadian clock to synchronize to temperature cycles, with

an amplitude as little as 3℃ (Wheeler et al., 1993) is of interest if we consider

that the clock is temperature compensated (Pittendrigh, 1954; Konopka et al.,

1989). The chemical reactions underlying the circadian system are buffered to

keep a constant rate at different physiological temperatures. However, the same

system is able to interpret temperature oscillations as a Zeitgeber, in a process

which is still mainly unknown. The protein PER is probably involved in the tem-

perature compensation of the clock, since pers and perL mutant flies, in addition

to having, respectively, a short and long period (Konopka and Benzer, 1971), are

not temperature compensated (Konopka et al., 1989). It has also been proposed

that the polymorphic repeats of Threonine-Glycine (Thr-Gly) residues in the PER

protein mediate the adaptation of various populations of Drosophila melanogaster

living in different latitudes to keep the same period length at different temperature

(Sawyer et al., 1997).

The peak phase of molecular oscillations and behavioural rhythms under tem-

perature entrainment are a few hours advanced compared to LD entrainment

(Glaser and Stanewsky, 2005; Busza et al., 2007; Boothroyd et al., 2007). How-

ever, the natural profile of temperature cycles is delayed by several hours compared

to the one of light (Boothroyd et al., 2007; Yoshii et al., 2009a) and thus the result-
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ing phase of rhythms entrained by the respective Zeitgeber in nature is essentially

the same. In natural condition, light and temperature act probably synergically

to enhance and fine-tune the entrainment (Boothroyd et al., 2007; Yoshii et al.,

2009a).

Although the mechanisms by which TC act on the central clock are still un-

known, several contributions address the effect of temperature itself on the regu-

lation of per and tim expression. Also, the pattern of the fly’s locomotor activity

is modulated by different constant temperatures by a mechanism which involves

temperature-dependent alternative splicing of intron 8 in the 3’-untranslated re-

gion (UTR) of per (Majercak et al., 1999, 2004). At lower temperature (18℃)

and short photoperiods, the spliced version of per mRNA is preferred, which re-

sults in an advanced accumulation of the PER protein, correlated with an early

activity phase. In warm temperatures (29℃) the unspliced version is favoured

correlated with a later activity phase (Majercak et al., 1999). Interestingly, under

these two temperature conditions, difference in tim expression are also observed:

at 29℃ the expression of tim is higher than at 18℃ (Majercak et al., 1999). In

addition, tim is also expressed in two different transcript according the tempera-

ture (Boothroyd et al., 2007). One transcript, named timcold, is more abundant at

18℃ (in LD) while the other (the normal one) is favoured at 25℃. Interestingly,

the timcold transcript generates a truncated TIM protein (Boothroyd et al., 2007)

but its physiological role has not yet been identified. The modulation of the PER

and TIM phase in different temperature and photoperiods thus contributes to the

“seasonal adaptation” of the fly’s behaviour (Collins et al., 2004; Majercak et al.,

1999, 2004). In warmer and longer days, the fly’s behaviour is shifted towards

dawn and dusk, whereas in cold and short days the fly is more active during the

relatively mild hours in the afternoon.
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Temperature variations are interpreted by the clock not only for the purpose of

seasonal adaptation, but also as a Zeitgeber that entrains the clock. However, the

molecular mechanisms by which the temperature entrains the clock are still mainly

unknown. To date, only two genes have been proposed as components required

for the molecular entrainment of the circadian clock to temperature: nocte and

norpA (Glaser and Stanewsky, 2005, 2007; Sehadova et al., 2009).

nocte has been isolated in an EMS chemical mutagenesis screen as a variant

with severe defects on synchronization of the circadian clock to temperature cycles

(Glaser and Stanewsky, 2005). The nocte gene has been cloned and encodes a

large Glutamine-rich protein with no evident homology with any known domains

or proteins (Sehadova et al., 2009). RNAi-mediated down-regulation of the gene

in peripheral tissues, and specifically in the chordotonal (ch) organs, with the F-

gal4 driver (Kim et al., 2003), compromises temperature entrainment, similar to

the nocte mutants. Analysis of several ch organ mutants revealed these structures

to be required for temperature entrainment (Sehadova et al., 2009), although the

molecular mechanisms underlying the entrainment remain unclear. Nevertheless,

it appears that temperature and light entrainment display clear differences in the

way the signal is transmitted to the central clock. Light acts directly on the clock

neurons through the photoreceptor action of CRY (see above). The fly’s brain,

instead, cannot alone interpret the temperature signal, but it requires peripheral

sensory tissues for the entrainment to take place (Sehadova et al., 2009).

Part of this thesis contributed to the publication of the work by Sehadova et al.

(2009), and it will be addressed in the chapter 7.2.

The product of the gene norpA (no receptor potential A) is the enzyme Phos-

pholipase C (PLC). PLC has a prominent role in the visual phototransduction

cascade in the fly’s compound eyes, and norpA mutants are completely blind
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(Bloomquist et al., 1988). Glaser and Stanewsky (2005) showed that norpA mu-

tant flies exhibit defects in entrainment of the circadian clock to temperature,

and the phenotype resembles very much the one of the nocte mutants. Previ-

ous studies have also shown the involvement of PLC in the light input pathway

of the clock, by combining to norpA and cry mutants (Stanewsky et al., 1998;

Emery et al., 1998; Helfrich-Förster et al., 2001). An additional involvement for

the norpA gene has been suggested in the regulation of the temperature-dependent

alternative splicing of the 3’-UTR region of per (see above). norpA mutants favour

the spliced version of the per mRNA in warm temperature and long photoperi-

ods, in a light-independent manner (Collins et al., 2004; Majercak et al., 2004).

This temperature-dependent splicing event of per is not required for temperature

entrainment (Glaser and Stanewsky, 2005; Currie et al., 2009), since the two tran-

scripts are expressed at equal levels during TC in wild-type and nocte mutant flies

(Glaser and Stanewsky, 2007). In contrast, norpA mutants favour the “cold” vari-

ant (the spliced transcript) during the temperature cycles (Glaser and Stanewsky,

2007), confirming the involvement of norpA in the temperature regulation of per

splicing.

PLC has also been proposed to play a role in the themopreference behaviour

mediated by TRP channels (Kwon et al., 2008). Larval norpA mutants lose

the ability to distinguish between 18℃ and 24℃ and the model suggests that

the TRPA1 channel — required for thermopreference behaviour (see below) —

acts downstream of a temperature dependent signalling cascade mediated by PLC

(Kwon et al., 2008). The role played by the TRP channels in temperature sensa-

tion will be addressed in more details in Chapter 5 and Section 1.3.
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Temperature entrainment in different model organisms

Periodic temperature oscillations with period of around 24 hours, even in the

range of 1–2℃ can entrain the circadian clock of all poikilothermic organisms,

beside Drosophila. In homeothermic organism, temperature cycles can also cause

entrainment, although with considerable individual difference, and only of they

are of rather high amplitude (reviewed by Rensing and Ruoff, 2002).

In Neurospora, temperature entrains the circadian clock by changing the level

of the FREQUENCY (FRQ) protein. At higher temperature, FRQ oscillates at

higher level than in low temperature, whereas the level of frq oscillation varies

little between high and low temperature (Liu et al., 1998). Temperature steps-

up and steps-down increase or decrease, respectively, the level of FRQ, causing

phase-shift, similar to those obtained after light pulse. Interestingly, in Neurospora

temperature cycles are even a stronger Zeitgeber than light. Conidiation occurs

mainly during the dark phase of a LD regime, and during the cold-phase in tem-

perature entrainment regime. With conflicting light and temperature cycles (light

and cold temperature to dark and high temperature), the conidiation rhythms

follow the temperature rather than the light (Liu et al., 1998).

The molecular clock of Zebrafish (Danio rerio) can also be synchronized by

temperature cycles. 24-hour oscillations of 4℃ in DD can entrain the expression

of clock genes, and setting the phase of free-running after released to constant

conditions (Lahiri et al., 2005). Temperature steps shift the phase of clock genes

expression and change their expression level: expression of per4 and cry3 are

down- and up-regulated following a temperature increase and decrease, respec-

tively, while the opposite effect is observed for cry2a. Expression of other genes,

like clock1, per2 or β-actin is not affected by temperature steps, indicating a gene-

specific response (Lahiri et al., 2005). In addition, the protein expression level,
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amplitude and phosphorylation of CLOCK, one of the central clock-protein, are

temperature dependent, suggesting that posttranscriptional effects are also under

temperature control.

The effect of periodic temperature changes is a less powerful Zeitgeber on the

circadian clock of endothermic animals respect to ectothermic (poikilothermic)

animals. The reason is probably that a homeostatic regulation of the body tem-

perature should render the organism less sensitive to temperature fluctuations

(Rensing and Ruoff, 2002). However, even for endothermic animals, temperature

cycles can entrain the circadian clock: the locomotor activity of rodents can be

synchronized to temperature changes but entrainment to temperature is much

slower and less strong than light (Refinetti, 2010). Cultured pineal cells of chicks

exhibit rhythmic melatonin production in constant conditions and this rhythm

can be synchronized to temperature cycles (Rensing and Ruoff, 2002). Cultured

rat fibroblast can entrain clock and clock-controlled genes expression to temper-

ature cycles, suggesting the ability of temperature oscillations to autonomously

synchronize cells in vitro (Brown et al., 2002). In an organismic level, it has been

shown that temperature cycles can entrain peripheral clock in mice liver without

affecting the phase of the central clock in the SCN (Brown et al., 2002). In addi-

tion, natural body temperature fluctuations can delay the dampening of cycling

gene expression in peripheral oscillators (Brown et al., 2002).

1.2.3 The neuronal architecture of the circadian clock

The central oscillator of D. melanogaster is located in the central nervous sys-

tem (CNS). Several groups of neurons rhythmically express clock genes, and

were named according to their anatomical position and size (Kaneko and Hall,

2000; Shafer et al., 2006; Helfrich-Förster et al., 2007). In the adult Drosophila

35



CHAPTER 1. INTRODUCTION

brain there are circa 150 clock neurons, which can be divided to six main groups

(Helfrich-Förster et al., 2007). Three groups of lateral neurons are located in the

centro-lateral region of the brain and are named dorsolateral neurons (LNd) and

small and large ventrolateral neurons (s-LNv and l-LNv). The three other groups

are located dorsally and are called dorsal neurons group 1, 2 and 3 (DN1, DN2 and

DN3; Figure 1.3A). All six groups of neurons are required for generating rhythmic-

ity but the LNvs and LNds seem to be more important since they are necessary and

sufficient for maintenance of rhythmic behaviour in the absence of environmental

cues (Grima et al., 2004; Shafer et al., 2006). As shown in Figure 1.3A, four s-LNvs

neurons and five l-LNvs neurons are located in the brain. The s-LNvs project into

the accessory medulla (aME) and to few DN1 and DN3 cells. The l-LNvs project

through the posterior optic tract (POT) onto the surface of both medullae. The

fifth s-LNv cell, which does not express the PIGMENT DISPERSING FACTOR

(PDF), arborizes in the aMe and runs toward the dorsal brain (Helfrich-Förster

et al., 2007). Near the posterior surface of the brain, three to four cells of lateral

posterior neurons (LPNs) are located close to the dorsal projections of the sLNvs

(Shafer et al., 2006). The more dorsally located 5–8 LNd also project into the dor-

sal brain. The dorsal region consists of more than 80 neurons and none of them

express Pdf. The ∼17 DN1 cells are subdivided in two subclasses, the two DN1A

and the DN1P (for “anterior” and “posterior”, Shafer et al., 2006). The two DN2

cells are located in the proximity of the projection from the LNvs and are believed

to play an important role in temperature entrainment (Yoshii et al., 2005; Shafer

et al., 2006). The biggest group of dorsal neurons is the DN3, which is constituted

of ∼40 cells.

The light input pathways from the R1–R6 and R7/R8 photoreceptor cells of the

compound eye terminate in the lamina and in the medulla, respectively, whereas
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A)

B)

Figure 1.3: Anatomy of the clock neurons and their projections in the Drosophila
brain. A) Clock-gene expressing neurons and light input pathways in the adult brain. B)
Neurons expressing clock-genes and eclosion regulating hormones are shown in the larval
brain. aMe: accessory medulla. CCAP: crustacean cardioactive peptide cell. DN: dorsal
neuron. EH: eclosion hormone cells. LNd: dorsolateral neuron. LNv: ventrolateral
neuron. LPN: lateral posterior neuron. OL: optic lobe. PG: prothoracic gland. PI: pars
intercerebralis. PL: pars lateralis. RG: ring gland. See text for details. Drawings are
taken from Helfrich-Förster et al. (2007) and from Helfrich-Förster (2005), respectively.
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the projections from the 4 cells of the Hofbauer-Buchner (HB) eyelet overlap with

dendritic terminals of the s-LNvs in the aME (Helfrich-Förster et al., 2007). The

circadian photoreceptor CRY is expressed in all the LNvs (including the 5th PDF-

negative), in three of the six LNds, in the DN1As and six of the DN1Ps (Yoshii

et al., 2009b).

The pathway by which the temperature signals synchronize the central clock is

still unclear. Indications suggest that the DN2 and the LPN neurons are required

for temperature entrainment (Yoshii et al., 2005; Glaser and Stanewsky, 2007;

Miyasako et al., 2007). Pdf01 mutant flies are still able to entrain to tempera-

ture cycles (Yoshii et al., 2005) suggesting an important role for the Pdf -negative

neurons and the non-requirement of this neuropeptide in the process.

The larval brain of Drosophila melanogaster is much simpler than the adult

one and consists of only three groups of clock neurons: five LNs (four of which

express PDF), and two pairs of dorsal neurons (DN1 and DN2) (Kaneko et al., 1997;

Helfrich-Förster, 2005 and Figure 1.3B). The photoreceptor CRY is expressed only

in the PDF-positive LNs and in the DN1 (Klarsfeld et al., 2004). Interestingly,

the DN2 cells express PER in anti-phase compared to the other groups of neurons

(Kaneko et al., 1997; Klarsfeld et al., 2004; Picot et al., 2009) and the phase of

PER expression is reversed during metamorphosis (Kaneko et al., 1997). The DN2

cells seem to be required for temperature entrainment of the larval clock (Picot

et al., 2009), whereas the LNs are required for light entrainment through the larval

visual system, the Bolwig’s Organ (BO) (Kaneko et al., 1997; Malpel et al., 2002).

The contribution of each clock neuronal group to circadian rhythmicity is still

object of debate. In 1976 Pittendrigh and Daan proposed the existence of two

independent oscillators which govern the morning and evening activity. Their

idea was based on studies of free-running activity in rodents and the observation
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of the “splitting” phenomenon. Activity sometimes “splits” in two independent

components with different free-running periods under certain light or darkness

conditions, suggesting the existence of (at least) two oscillators.

In Drosophila several studies support the idea of two oscillators. Mosaic anal-

ysis revealed that the morning anticipatory activity under light-dark cycles is

driven by PDF-positive LNvs (M, morning cells). The cells which contribute to

the evening (E) activity are the 5th-LNv, the LNd and some DN1 and are called

E cells (Grima et al., 2004; Stoleru et al., 2005). However, the situation is not

completely clear and the original Pittendrigh and Daan’s model may not fit to

Drosophila.

The s-LNvs (M-cells) seem also to contribute to the evening bout of activity, at

least in LL. This observation is based on experiments of cryb mutants analysed in

LL conditions: the free-running evening peak “split” in a long and a short compo-

nent (Rieger et al., 2006). This split behaviour is observed also in wild-type flies

released in low light intensity. Analysis of PER cycling in specific groups of neu-

rons revealed that the short component is driven by the s-LNv, which are therefore

proposed to be “main cells”, rather then “morning cells” (Rieger et al., 2006). A

recent work by Zhang et al. (2010) showed that the DN1 neurons, in addition to

contribute to the evening bout of activity, control also the morning activity under

high intensity light. However, their contribution is under environmental control:

at high light intensity and high temperature, the DN1s are unable to generate

the evening activity, whereas at low temperature, the morning bout of activity is

inhibited (Zhang et al., 2010).

Therefore, the regulation of the activity does not depend only on specific groups

of neurons, but by the interaction with the environment. Such complexity of or-

ganization is probably required to deal with an environment in which multiple
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variables can changes, predictably in many cases, but also erratically (Dubruille

and Emery, 2008) and the separation between E and M cells is probably a simpli-

fication.

1.2.4 The output: locomotor behaviour and eclosion

Many behavioural and physiological processes are under control of the circadian

clocks, ranging from sleep (Shaw et al., 2000), to memory (Lyons and Roman,

2009), feeding (Xu et al., 2008), egg-laying (S. Hari Dass and Sharma, 2008),

chemosensation (Chatterjee et al., 2010), courtship and mating (Sakai and Ishida,

2001) and immunity (Lee and Edery, 2008). However, the most studied output

behaviours are the locomotor behaviour (activity) and the eclosion rhythm, prob-

ably because of the automated nature of the Drosophila Activity Monitor System

(DAMS).

The first output of the circadian clock that was studied in detail has been

the emergence from the pupal case (eclosion). Although the adult emergence

occurs only once in the fly’s lifetime, it is considered to be a circadian rhythm.

This is because a population of pupae manifests an eclosion rhythm if they are

not necessarily synchronous developmentally, but are fully synchronous in their

circadian oscillations (Skopik and Pittendrigh, 1967).

Eclosion occurs at the early (and wettest) hours of the day because emerging

flies lose water at high rate compared to mature flies and they fail to expand their

wings at low humidity (Pittendrigh, 1954) — hence Drosophila got its name, from

the Greek drosos, “dew” and philos, “lover”. The event of eclosion is controlled

by a cascade of peptide hormones produced in the prothoracic gland (PG) and in

the CNS. Ecdysis, the shedding of cuticle at defined stages of development and

growth (Nässel, 2000), initiates with a decreasing titer of 20-hydroexdysone (20E,
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EHETH CCAP

ECLOSION20E

LNv DN2

PG1 2

3

3

Figure 1.4: A model for eclo-
sion control by the circadian
clock based on neural con-
nection (Helfrich-Förster, 2005).
Black arrows indicate endocrine
signalling cascade that leads to
eclosion (see text for details).
Red arrows and numbers 1, 2
and 3 indicate the three puta-
tive pathways of eclosion timing
control by the circadian clock.

produced in the PG), which leads to the titer increase of the eclosion hormone (EH)

and the ecdysis-trigger hormone (ETH) — produced, respectively, by the neurose-

cretory EH-cells and crustacean cardioactive petide (CCAP)-cells (Figure 1.3B

and reviewed by Helfrich-Förster, 2005). The increase of EH and ETH triggers a

rhythmic release of CCAP, which eventually leads to eclosion (Figure 1.4). The

regulation of the EH by the PG is under control of the prothoracicotropic hormone

(PTTH), which is produced by secretory cells in the pars intercerebralis/lateralis

(PI, PL). The circadian clock controls the timing of the eclosion event through

three pathways: (i) Projections of the larval LNvs overlap with the ones of the

EH cells (see arrow heads in Figure 1.3B); (ii) DN2 projections overlap dendritic

fibres of the CCAP cells (see arrows); (iii) the third pathway connects the LNvs

to the PTTH cells (via the DN2) and then to the PG (Siegmund and Korge, 2001;

Helfrich-Förster, 2005 and Figure 1.4).

Although the anatomy of the circadian clock neurons is well characterized,

little is known about the neurotransmitters implied in the generation of rhythmic

behaviour. Only few neurotransmitters are known to be expressed in the clock
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neurons. The pigment dispersing factor (PDF) is expressed in the small (except

the 5th) and large LNvs and it is required for maintenance of circadian rhythm

under constant conditions and normal locomotor activity under LD (Renn et al.,

1999). IPNamide (IPNa) is expressed only in the DN1A (Shafer et al., 2006), and

its requirement is still unclear. Recently, other three neuropeptides have been

found in a subsets of lateral neurons (Johard et al., 2009). The ion transport

peptide (IPT) is expressed in one CRY-positive LNd and in the 5th PDF-negative

s-LNv. The long neuropeptide F (NPF) is expressed only in 3 LNds of male but

not female flies, whereas the small neuropeptide F (sNPF) is found in the four

PDF-positive LNvs and in two NPF-negative LNds (Johard et al., 2009), but the

functional role of those neuropeptides remains uncertain.

1.3 TRP channels and thermosensation

The ability to perceive environmental stimuli is of fundamental importance for the

survival of organisms. For poikilothermic organisms such us Drosophila, abrupt

changes of temperature can have lethal consequences. Temperature is not only a

noxious stimulus, though: perceiving environmental changes (e.g. daily temper-

ature fluctuations) can have selective advantages, for instance it allows synchro-

nization of the circadian clock.

Members of the transient receptor potential (TRP) family of ion channels play

important roles in sensory physiology and are primary sensors for both physical

(heat, light, mechanical stress) and chemical (pH, pheromones, capsaicin) external

stimuli (reviewed by Voets and Nilius, 2003; Montell, 2005).

Sensory organs in Drosophila fall in two categories. Type I are multicellular

organs, consisting of one to four neurons and specialized support cells. Type I
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organs are further classified into two subgroups: external sensory (es) organs and

chordotonal (ch) organs (see below). Type II are single, non-ciliated, multiden-

dritic neurons (Kernan, 2007). TRP channels are found in both type I and type

II sensory organs (see Table 1.1).

identity of the physiologically relevant PUFA is not
known.

Molecular anchoring function for TRP

In addition to functioning as a cation channel, the TRP
channel is also required to retain multiple proteins in the
microvillar portion of the fly photoreceptor cells, the
rhabdomeres [40, 78]. The rhabdomeres contain most of
the proteins required for phototransduction and are the
functional equivalent of the outer segments in mam-
malian rods and cones. TRP binds directly to a scaffold
protein, ‘‘inactivation no after-potential D’’ (INAD),
which consist of five protein interaction modules
referred to as postsynaptic density/discs-large/zonula

occludens (PDZ) domains [28, 69]. In addition to TRP,
two other proteins, phospholipase C (PLC) [12, 28] and
protein kinase C (PKC) [28, 91], appear to be constitu-
tively bound to INAD and these four proteins (INAD,
TRP, PLC and PKC) form the ‘‘core complex’’ [40] of a
very large macromolecular assembly referred to as the
signalplex (Fig. 3). At least four other signaling proteins
associate directly with INAD. These include the ‘‘neither
inactivation nor afterpotential-C’’ (NINAC) myosin III
[88], the major rhodopsin (Rh1), TRPL and calmodulin
[12, 91]. However, these latter proteins do not appear to
be bound constitutively to INAD and may associate
dynamically with the signalplex.

One role for the signalplex is to localize the core
components in the rhabdomeres. TRP and the other
core binding proteins, PLC and PKC, depend on inter-
actions with INAD for proper localization in the rhab-
domeres [12, 77]. Interestingly, there is a reciprocal
requirement for INAD and TRP for rhabdomere
localization [40, 78]. Deletion of the C-terminal INAD
binding site in TRP disrupts the spatial distribution of
INAD, which in turn results in a defect in the rhabdo-
mere localization of PLC and PKC. INAD and TRP
depend on each other for retention rather than for tar-
geting into the rhabdomeres. Thus, in addition to
functioning as a cation channel, TRP is also a molecular
anchor. Consistent with this latter role, TRP is present
at a very high concentration in the rhabdomeres and at
levels similar to INAD [28].

Light-dependent translocation of TRPL

TRPL is one of the members of the signalplex that does
not appear to be bound at all times to INAD. In fact, the
spatial distribution of TRPL changes in a light-depen-
dent manner [3], while INAD does not. In dark-adapted
flies, the vast majority of TRPL is situated in the

Fig. 2 Electroretinogram recordings obtained from wild-type and
trp mutant flies. The event marker below the traces indicates the
initiation and cessation of the light stimuli

Fig. 3 The Drosophila
signalplex (TRP transient
receptor potential channel,
CaM calmodulin, PKC protein
kinase C, PLC phospholipase
C, INAD inactivation no after-
potential D, PDZ postsynaptic
density/discs-large/zonula
occludens domain, NINAC
neither inactivation nor
afterpotential-C)

22

Figure 1.5: Electroretinogram (ERG)
recordings from wild-type and trp mu-
tant flies. trp mutants exhibit a “tran-
sient” response instead of a “sustained”
response to a 10 sec stimulus (from
Montell, 2005).

The TRP channels get their name from

a Drosophila mutant (trp) that showed a

“transient” instead of a “sustained” re-

sponse to bright light in an electroretino-

gram (ERG) recording (Figure 1.5 and

Montell, 2005). After that, many related

channels have been isolated, and have been

found in diverse organisms, from C. ele-

gans, to humans (Hardie, 2007). In Dro-

sophila there are 13 members belonging to

the TRP family, which are divided into 7

classes based on sequence comparison (Fig-

ure 1.6 and Table 1.1). The common structure of TRP channels is based on

six transmembrane domains with the pore loop permeable to cations situated be-

tween the fifth and the sixth transmembrane segments. Channels belonging to the

TRPC, TRPV, TRPA and TRPN class have ankyrin repeats at the N-terminus,

and their basic structure is conserved between organisms (Venkatachalam and

Montell, 2007).

The TRPC class is primarily involved in the visual system via the photo-

transduction cascade mediated by the PLC, although it is not completely clear

by which mechanisms the channels are opened after activation of PLC (Montell,

2005). Many members of the TRP family are activated through mechanical stim-
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Figure 1.6: Dendrogram of
the 13 TRP channel proteins
in Drosophila and their classi-
fication into 7 classes based on
sequence comparison. Figure
modified from Montell (2005).

ulation (reviewed by Damann et al., 2008). Those include the products of the

genes no mechanoreceptor potential C (nompC, TRPN), painless (pain, TRPA),

nanchung (nan) and inactive (iav, TRPV). NOMPC is required for the mechan-

otransduction current in the sensory bristle and mechanosensory organs, whereas

NAN and IAV are required in the fly’s hearing system, mediated by the John-

ston’s Organ (JO) (see below). PAIN has been identified as a component required

for nociception (Tracey et al., 2003). When wild-type larvae are touched with a

heated probe (∼40℃) they vigorously roll sideways to escape the stimulus. pain

mutants fail to exhibit this behaviour (Tracey et al., 2003). PYREXIA (PYX) and

TRPA1 are needed to properly distribute in a thermal gradient, and are specif-

ically required to avoid high temperatures (Lee et al., 2005; Rosenzweig et al.,

2005). Recently, a role for TRPA1 in chemical nociception has been indicated:

Kang et al. (2010) proposed that the avoiding response to reactive electrophiles

(noxious tissue-damaging agents, such as allyl isothiocyanate, N -methylmaleimide
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or cinnamaldehyde) is entirely TRPA1-dependent and TrpA1 mutants lack this

response. NAN and WATER WITCH (WTRW) have been implicated in hygrosen-

sation and the channels can sense dry and most air, respectively (Liu et al., 2007).

IAV, PAIN and PYX seem to be required also for the geotaxis behaviour mediated

by the fly’s antennae (Sun et al., 2009). TRP and TRPL, in addition to playing a

role in the visual signal trunsduction cascade, seem to be implied in cold avoidance

(Rosenzweig et al., 2008). TRPML has been implicated in lysosome-mediated

autophagy by clearance of toxic macromolecules and of apoptotic cells. trpml

mutants exhibit impaired autophagy which lead to neurodegenerative processes

(Venkatachalam et al., 2008). Recently, the TRPM channels has been proposed to

regulate the intake of extracellular magnesium (Mg2+) from the hemolymph. High

concentration of Mg2+ in fly diet increases lethality of trpm mutants and reduces

the size of fat bodies and of the whole larva (Hofmann et al., 2010). TRPM is

expressed in Malpighian tubules, the fly counterpart of the mammalian kidneys.

In flies, the organ required to sense the temperature is believed to be located in

the antennae. Wild-type flies strongly prefer 24℃ if are let to distribute in a ther-

mal gradient within the physiological range (Sayeed and Benzer, 1996). Genetic

or surgical removal of the third antennal segment inhibits this thermopreference

behaviour, and flies distribute randomly all over the temperature gradient (Sayeed

and Benzer, 1996). Mutants for pyrexia and TrpA1 show similar phenotypes, and

mutant larvae as well as adult flies have defects in thermotaxis behaviour (Lee

et al., 2005; Rosenzweig et al., 2005, 2008). Expression analysis of the PYX chan-

nels revealed that they are expressed in the third antennal segment (Lee et al.,

2005), confirming the requirement of that organ in thermotaxis. However, ther-

motaxis behaviour (the ability to chose a preferred temperature in a gradient) and

temperature sensation (the perception of temperature as hot or cold noxious stim-
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Figure 1.7: Schematic of the fly’s
head, antenna, and a single scolopid-
ium of the Johnston’s Organ. Num-
bers 1, 2 and 3 represent the three
antennal segments. Modified from
Sun et al. (2009)

ulus), although mediated by overlapping players, are not the same mechanisms.

The pain mutant larvae do not respond to heat stimulation (Tracey et al., 2003)

but mutant adult flies have normal thermotaxis behaviour (Rosenzweig et al.,

2008). pyrexia and TrpA1 mutants instead compromise both warm avoidance

and thermotaxis (Lee et al., 2005; Rosenzweig et al., 2008).

The diverse spatial distribution of TRP channels throughout the fly body and

organs emphasizes the requirement of the TRP channels in the many physiological

roles and functions they play. At the same time, the different expression pattern

of channels implicated in related processes (e.g. thermosensation) exemplifies the

complex nature of the sensory physiology and the requirement of many players to

fine tune and regulate temperature sensation.

1.4 Chordotonal organs

As mentioned above, type I sensory organs are classified into external sensory

(es) organs and chordotonal (ch) organs (Kernan, 2007). Es organs are formed by

external mechanosensory bristles, innervated by a single neuron. In contrast, ch

organs lack any external part and are attached to the inside of the cuticle. The
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basic unit of a ch organ is called scolopidium, and each ch organ may be formed

by hundreds of scolopidia. Each scolopidium contains a liquid-filled capsule called

scolopale, which encloses the sensory cilia of one to three ch neurons (Figure 1.7).

Chordotonal organs are found at nearly all exoskeletal joints and between joints

within limbs and body segments in insects (Field and Matheson, 1998). The

known function of ch organs in limbs is proprioception, but a role in vibration

detection and graviception is also possible, though unclear (Kernan, 2007). The

most prominent ch organ in flies is the Johnston’s Organ (JO), the fly’s ear (Figure

1.7). It is located in the second antennal segment and it is constituted of almost

480 neurons located in more than 200 scolopidial units specialized in sensing near-

field acoustic signals of courtship songs (Eberl and Boekhoff-Falk, 2007). Although

the main function of the JO is hearing, it is also required to sense gravity and

the JO neurons can be classified into subgroups according to their different role

(Kamikouchi et al., 2009).

1.5 Aim of this work

Since the 1970s, with the pioneering research of Seymour Benzer and colleagues

— a fascinating account of his work is well depicted by Jonathan Weiner in Time,

Love, Memory (1999) — the investigation of the fly’s behaviour moved down to

the scale of single genes and their interactions.

After the truly groundbreaking work of Konopka and Benzer (1971), in which

they isolated the first clock mutant period, many other components of the circa-

dian clock of D. melanogaster have been isolated using genetic screens (reviewed

by Stanewsky, 2003; Hall, 2005). Today, the central mechanisms generating cir-

cadian rhythmicity are quite well understood. Nevertheless, much remains to be
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clarified. In particular, the mechanisms by which temperature cycles synchronize

the circadian clock are poorly known. At present, only 2 genes have been reported

to be required for temperature entrainment, nocte and norpA. nocte has been

isolated in a EMS mutagenesis screen performed by a former Ph.D. student in

our group, aimed at the isolation of novel components required for temperature

synchronization of the circadian clock (Glaser and Stanewsky, 2005; Glaser, 2006).

Similarly to nocte, norpA also has been reported to be required for temperature

synchronization of the clock. However, the exact role of these two genes is not

known yet and many questions are still to be answered. Which are the other

components that mediate temperature synchronization? Where are the circadian

temperature sensors and what is the molecular nature? How does the nocte gene

play its role in this process? Which structures are necessary to mediate tempera-

ture entrainment?

This work tries to answer some of these open questions. In order to address

these issues, the main aim of my Ph.D. was to identify new players and novel

components that play a role in the circadian temperature entrainment. By iso-

lating new factors and trying to understand their role in the process of circadian

rhythmicity we aimed on providing new insight in the mechanisms of tempera-

ture entrainment. Following the long path of research conducted in Drosophila,

we made use of forward and reverse genetic screens to isolate new components.

The power of the RNAi technique has been combined with a bioluminescence as-

say able to monitor real-time expression of one of the central components of the

circadian clock as read out for our screens.
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Materials and Methods

2.1 Materials

2.1.1 Fly stock

Drosophila melanogaster were kept and raised in 25℃ or 18℃ in plastic vials

containing fly food and dry yeast. The ambient was set to 12:12 hr light-dark

cycles and 65% relative humidity.

The fly food was prepared as follow:

Water 1 litre
Agar 10 g
Sucrose 15 g
Glucose 33g
Yeast 35g
Maize meal 15g

Wheat germ 10g
Treacle 30g
Soya flour 1 table spoon
Nipagin 10 ml
Propionic Acid 5 ml

Fly strain Reference/source

Control
Canton S Konopka et al. (1989)
Df(1) y w Lindsley and Zimm (1992)

50



CHAPTER 2. MATERIALS AND METHODS

period-luciferase
y w ; ; BG-luc Stanewsky et al. (1997b)
y w ; plo ; (LT21) Stanewsky et al. (1997b)
y w ; ; XLG-luc (line 1.1) Veleri et al. (2003)

Balancers
y w ; Bl/CyO ; Lindsley and Zimm (1992)
y w ; ; Dr/TM3 Lindsley and Zimm (1992)

GAL4 driver
y w ; tim-gal4/CyO ; (line 27) Kaneko and Hall (2000)
y w ; ; tim-gal4 ; (line 16) Kaneko and Hall (2000)
y w ; tim-gal4 ; (line 62) Kaneko and Hall (2000)
y w ; ; tim-gal4 ; (line 67) Kaneko and Hall (2000)
y w ; ; cry-gal4BN Emery et al. (2000)
y w ; ; pdf-gal4 Park et al. (2000)
elav-gal4 ; ; Luo et al. (1994)
y w ; F-gal4 ; Kim et al. (2003)
y w ; ; F-gal4 (line 33-5) Kim et al. (2003)
y w ; nocte-gal4 (line B3) ; Sehadova et al. (2009)
y w ; repo-gal4 Sepp et al. (2001)

UAS lines
y w ; UAS-cry ; (line 24.5) Emery et al. (2000)

Mutant
y per01 w ; ; Konopka and Benzer (1971)
y w ; ; Pdf01 Renn et al. (1999)
norpAP41 ; ; Pearn et al. (1996)
y w nocte1 ; ; Sehadova et al. (2009)

RNAi lines were obtained from the Vienna Drosophila RNAi Center (VDRC,

Dietzl et al., 2007) and the National Institute of Genetics - Fly Stock Center

(Japan, http://www.shigen.nig.ac.jp/fly/nigfly/), as indicated in the text

(see Table 5.1).

Mutants for the trp channels encoding genes used in this study and relative

references are listed in Table 5.1.
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2.2 Methods

2.2.1 EMS mutagenesis

Ethyl Methane-sulfonate (EMS) induces point mutations by ethylation of the O-6

position of guanine (G) and the O-4 position of thymine, which allows mispairing

during DNA duplication (Roberts, 1998). EMS mutagenesis has been performed

as described by T.A. Grigliatti (Roberts, 1998). Three-day old male flies were

collected in group of 30, placed in a plastic vials containing a piece of filter paper

soaked with water and let them to starve for 5–6 hours. The flies were then

transferred in a second plastic vial containing a filter paper soaked with 200 µl of

EMS-sucrose solution (5% sucrose, 25 mM EMS 1 in water coloured by blue food

dye). Flies were let to feed EMS-sucrose solution for 12 to 16 hours, then were

transferred to a new vial with fresh food where they were allowed to recover for

about 24 h prior to mating.

EMS fed males were then crossed to virgin females according the crossing

scheme depicted in Figure 3.2.

2.2.2 Bioluminescence assay

per-luc constructs

In vivo real-time monitoring of gene expression has been performed by the use of

fusion constructs in which the central clock component period was fused to the

sequence of the luciferase gene from the firefly Photinus pyralis. Analysis of per-

luc expression in living organisms is possible thanks to the short half-life of the

luciferase (Brandes et al., 1996).

1The EMS concentration has been increased to 30 mM in the second half of the mutagenesis
screen in order to increase the mutagenesis rate.
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Figure 2.1: Structure of the period locus and of the period-luciferase constructs used
in this study. Modified from Stanewsky et al. (1997b).

In this work we used three different constructs (Figure 2.1). plo (for promoter

luciferase only) carries only the promoter region of per fused to the luciferase gene

(Stanewsky et al., 1997b). BG-luc in addition to plo expresses two-third of the

PER protein (Stanewsky et al., 1997b) and XLG-luc expresses the whole PER

except the last 10 aa (Veleri et al., 2003). The presence of the 5’-UTR region of

per allows the expression of the three constructs in the same spatial and temporal

distribution of the endogenous per gene. Given that per is expressed in almost

every tissue, per-luc expression was monitored in the whole adult fly and in isolated

body parts (namely legs) kept in insect culture medium (Plautz et al., 1997).

Cultures preparation

For monitoring adult flies, alternated-skipped wells of a 96-well Microplate (Packard

OptiPlate, Perkin-Elmer) were filled with 100 µl of luciferin-medium (1% Bacto-
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agar, 5% sucrose and 15mM Biosynth luciferin). 2–6 day old per-luc flies were

anaesthetized with diethyl ether, placed in the luciferin-filled well and covered

with plastic caps (PCR tube lid with air holes) to keep the flies during the mea-

surement in the correct position relative to the Z-axis. The plate was sealed with

an adhesive sealing film (TopSeal, Perkin-Elmer), which was pierced to allow flies

to breath.

For tissue cultures preparation, the 96-well Microplate was filled with 100 µl

of sterile tissue culture medium (85.9% M3-insect culture medium, 12% heat-

inactivated fetal bovine serum, 1% penicillin-streptomycin mixture, 1% Biosynth-

luciferin, 0.5% Insulin; all reagents except luciferin from Sigma-Aldrich). Dissec-

tion of legs form diethyl ether-anaesthetized flies was carried out on 2% Bacto-agar

dissection plates using sharp forceps. The 6 legs of individual flies were placed in

a single well. The plate was then covered by an adhesive sealing film (TopSeal,

Perkin-Elmer).

Data analysis

period-luciferase expression was monitored in the TopCount automated biolumi-

nescence counter (Perkin-Elmer, TopCount NXT), in 65% relative humidity and

in the light and temperature conditions as indicated in each experiments. Temper-

ature cycles conditions were achieved by oscillating the temperature of the room

where the TopCount counter was located. This resulted in a gradual ramping of

temperature, which lasted for about 2 hours from cold to warm and about 4–6

hours from warm to cold.

Raw data were collected and analysed with the Brass analysis software (An-

drew Millar lab) operating in Excel. Data were plotted as bioluminescence read-

ings (counts per second, cps) as a function of time (Zeitgeber Time, h). Only
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cultures that showed robust and uniform expression within the approximately 1

week of monitoring were included in data analyses.

Rhythmicity analysis has been performed as described (Plautz et al., 1997;

Stanewsky et al., 1997b; Glaser and Stanewsky, 2005) via a Fast-Fourier transform-

non-linear least square (FFT-NLLS) multicomponent cosine analysis to determine

period, phase, and a metric called relative-amplitude error (rel-amp error).

The statistical significance of each derived rhythmic component is assessed by

way of the relative amplitude error, defined as the ratio of, in the numerator, the

amplitude error (one-half the difference between the upper minus the lower 95%

amplitude confidence limits) to, in the denominator, the most probable derived

amplitude magnitude. Theoretically, this metric will range from 0.0 to 1.0; 0.0

indicating a rhythmic component known to infinite precision (i.e. zero error),

1.0 (or greater) indicating a rhythm that is not statistically significant (i.e. error

equal to (or exceeding) the most probable amplitude magnitude), and intermediate

values indicative of varying degrees of rhythmic determination. In this study, all

flies and cultures that had a period value within the range of 24 ± 1.5 hr and rel-

amp error < 0.7 were considered rhythmic (as in Plautz et al., 1997; Stanewsky

et al., 1997b).

2.2.3 Locomotor behaviour

Analysis of locomotor activity was performed using the Drosophila Activity Mon-

itor System (Trikinetics Inc., Massachusetts). 2–6 day old flies were placed inside

a small glass tube (5 mm diameter × 65 mm length), in which at one side fly

food (2% Bacto-agar, 4% sucrose) was placed to sustain the fly over the course of

the experiment. The food end of each tube was then sealed with paraffin wax to

prevent desiccation and the tube was plugged with cotton. The DAM locomotor
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monitor measures the simultaneous individual activity of 32 flies. As a fly walks

back and forth from one end of its tube to the other, its passage is detected by an

infra-red beam which bisects the tube, and counted. The data are sampled every

30 min.

The DAM monitors were located inside a light- and temperature-controlled

incubator where the fly’s activity was monitored for up to three weeks.

The raw data were then collected and analysed using a signal-processing tool-

box (Levine et al., 2002a,c) implemented in Matlab (MathWorks), which generated

the graphical representation of the activity and analysis of rhythmicity.

Actogram: Graphical double-plotted representation of activity versus time. A

given row shows two consecutive days of activity; the second such day is

re-plotted in the left half of the next row down (thus, consecutive days of

locomotion can be viewed both horizontally and vertically); heights of bars

within a given actogram row reflect varying amounts of locomotion per half-

hour data-collection bin. Shaded areas represent dark phase (or cold phase

during temperature cycles conditions) (Figure 2.2A).

Histogram: Daily average activity of several individual flies during entrainment

conditions. Every bar indicates average activity during 30 min bin. Dots

indicate SEM. Grey bars indicate average activity during lights-off (or cold)

and white bars during lights-on (or warm) (Figure 2.2B).

Filtered histogram: Filtered version of the daily average activity to which a 4-h

low-pass Butterworth filter has been applied. In addition, the peaks of activ-

ity are automated calculated, and the relative intensity values (normalized

to the highest peak) are shown in percentage. Pink and blue areas represent

lights-on and lights-off (or warm and cold), respectively (Figure 2.2C).
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Autocorrelation: Correlogram has been used to determine periodicity and whether

the rhythms were statistically significant. The asterisk above the third peak

indicates the point used to assess the Rhythms Index (RI), a measure of

rhythm strength. If RI is equal to or greater than the numerical height of

the confidence line, then the rhythm is significant (by definition, the height

of the peak is ≥ the height of the confidence interval used to determine

statistical significance). The Rhythmicity Statistic (RS) is obtained from

the ratio of the RI value to the 95% confidence line. Thus, RS provides a

numerical accounting of significance for an individual specimen or an aver-

age signal. When RS is ≥ 1, the rhythm is statistically significant. In this

study we considered the rhythmicity significant when the RS value was ≥

1.5 (Figure 2.2D).

Maximum entropy spectral analysis (MESA): Spectral density analysis calculates

the period of the rhythm. Asterisks are placed over the highest peak shown.

Autocorrelation and MESA provide numerical estimates of periodicity using

different statistical approaches, but in this study autocorrelation was used

to determine rhythmicity (Figure 2.2E).

X-Y activity plot: Activity data are plotted as counts (in 30 min) vs. time. This

representation was mainly used for plotting eclosion activity (Figure 2.2G).

X-Y filtered activity plot: Filtered version of the X-Y activity plot to which a

4-h low-pass Butterworth filter has been applied to “smooth” the activity

profile (Figure 2.2H)

Circular phase: An average estimate of peak phase, obtained for each specimen,

is plotted as a point on a unit circle. A mean vector, extending from the

centre of the unit circle towards the diameter is calculated for each group
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of points; the direction of the vector indicates mean peak phase for the

group and the length of the vector represents the variability or dispersion

between the points (phase estimates for each specimen). The internal black

circumference represents 100% coherence between individuals of the same

group. The closer the vector is to the black line, the more coherent the group

is. The Watson-Williams-Stevens test returns an F-statistic that is used to

evaluate whether the mean (M) phase vectors are significantly different from

one another and whether the dispersion (D) within the groups is statistically

significant (Figure 2.2F).

Statistical analysis: Daily-average activity of individual flies was imported in the

GraphPad PRISM 4 software (GraphPad Software, San Diego California,

United States). A Two-way analysis of variance (ANOVA) was performed

in order to determine statistical interaction of a given genotype with the

wild-type control. A Bonferroni Post-test was then performed to determine

the time points that showed significant difference of activity compared to

control (P<0.05).

Statistical analysis was performed with the aid of GraphPad PRISM 4 software

(GraphPad Software, San Diego California, United States).

2.2.4 Uncoordination behaviour

Uncoordination behaviour has been performed as described in Sehadova et al.

(2009), see Chapter 7.
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Figure 2.2: Graphical output of the signal-processing toolbox software used to analyse
rhythmic behaviour and periodicity. See text and (Levine et al., 2002a,c) for details.

2.2.5 Eclosion monitoring

Four to eight bottles of the desired genotype were raised in 12:12 hr LD conditions

at 25℃ or 18℃ or as stated in each specific experiment. Pupae of various ages

were then harvested by fluctuation method in a plastic tub filled with 20–22℃

water: A given bottle was submerged in the tub and vigorously shaken in order

to release the pupae from the bottle walls. With the use of a brush, all the pupae

were removed from the bottles. Pupae were collected by fluctuation with a metal

59



CHAPTER 2. MATERIALS AND METHODS

sieve and positioned on a dry paper towel to dry. Larvae were separated from the

pupae, and the former discarded. Once the pupae were dry, they were glued (with

standard glue stick) over the surface of the eclosion disc (Trikinetics Inc.) and

let dry for 5–10 min. The disc was inverted and placed on top of a glass funnel,

whose inside surface had been siliconized by a non-toxic sigmacote (Jersey-Cote,

Lab Scientific) to prevent newly hatched flies to stick to the funnel. The funnel

plus disc were inserted into an eclosion monitor (Trikinetics Inc.) and placed into

a light- and temperature-controlled incubator. The eclosion monitor included a

solenoid device that “taps down” on top of the disc 3 times every 15 minutes to

help the eclosed flies to pass through the funnel stem, where an infrared detector

was automated recording every eclosion event. Eclosion was usually monitored for

6–7 days.

The data were then acquired as eclosion events per 30 min intervals by the

Drosophila Activity Monitor System (Trikinetics Inc.) similarly to that used to

register locomotor activity. Data were analysed by the signal-processing toolbox

(Levine et al., 2002a,c) implemented in Matlab (MathWorks). Data were plotted

as number of eclosed flies as a function of time (per 0.5 hr bin, “raw activity”)

and also after smoothing them by application of a 4-h low-pass Butterworth filter

(“filtered activity”). Rhythmicity analysis has been performed as for locomotor

activity (see above and Levine et al., 2002a,c).

2.2.6 Western Blot

For analysis of PER protein oscillation, 20–25 flies per time points were collected in

liquid nitrogen and stored at -80℃. Heads were removed by vortex and counted on

dry ice. The proteins were extracted in 40 µl of extraction buffer (20 mM HEPES

pH 7.5, 100 mM KCl, 5% glycerol, 10 mM EDTA, 0.1% Triton X-100, 20mM β-
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glycerophosphate, 100 µM Na3VO4 pH 10–12, 0.5 mM PMSF, 20 µg/ml aprotinin,

1 mM DTT, 5 µg/ml Leupeptin, 5 µg/ml pepstatin) to which protease inhibitor

was added. After discarding the cell residues, the SDS loading buffer (0.3M TRIS,

10% SDS, 50% glycerol, 25% β-mercapto-ethanol, 0.01% Bromophenol blue) was

added, the sample was boiled for 5 min and load on the 4.5% SDS stacking gel and

6% resolving gel. The protein separation was carried out at 70 V, 400 mA and

5W for 16 hours. The separated proteins were transferred into a nitrocellulose

membrane (Protran, Whatman) by a “semi-dry blotter” for 1 h at 25 V, 400

mA and 150 W. Ponceau staining was used to control the proteins transfer. The

membrane was then blocked for 2 h in 2% BSA in TBST (8.18 g NaCl, 5 ml

2M Tris-HCl pH 7.5, 0.05% Tween-20 for 1 L water) at room temperature. The

membrane was incubated with the primary antibody (Rabbit anti-PER, 1:10000,

Stanewsky et al., 1997a) at 4℃ overnight and with the HRP secondary antibodies

(Goat anti-Rabbit, 1:166000) for 2 h at room temperature. The blot was incubated

for 5 min with the Pierce SuperSignal HRP kit and developed on X-ray film.

Quantification of the bands was performed with the ImageJ software, by sub-

tracting the background signal and normalizing to the maximum value.

2.2.7 Mechanical stimulation

The effect of mechanical stimulation of the fly’s daily pattern of locomotor be-

haviour was investigate by mounting a DAMS monitor (Trikinetics Inc.) on top

of a loudspeaker (ProSound, Power Amp 1600). A ∼5 cm thick polystyrene sepa-

rator was placed between loudspeaker and DAMS monitor to insulate the monitor

from possible temperature oscillations generated by the loudspeaker. The stim-

ulus sequence, which was played continuously for 12 hours, consisted of a 40 Hz

tone (duration: 0.5 sec; root mean square (RMS) amplitude: 1 V; acceleration:
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Figure 2.3: Recording of the vibration stimulus sequence applied to flies. 0.5 sec of 40
Hz tone (RMS amplitude of 1 V and acceleration of 63 m/s2) was followed by 0.5 sec of
200 Hz (RMS amplitude 2.5 V and acceleration of 158 m/s2) and 0.5 sec of silence. The
sequence was repeated for 12 hour followed by 12 hours of silence (background noise).

63 m/s2) followed by a 200 Hz tone (0.5 sec, 2.5 V and 158 m/s2) and 0.5 sec of

silence (Figure 2.3). The 12-hour stimulus was followed by 12 hours without any

stimulation (“silence”). The resulting vibration of the fly vials were measured with

an accelerometer (Brüel & Kjær, Charge Amplifier type 2635) that was coupled

to the behaviour monitor. “Silence” is defined as background noise in the room,

with an intensity of the order of a ten thousandth lower compared to the stimulus

applied.

The vibration stimulus was sampled for 3 sec every 30 min together with the

temperature. The temperature was measured with a thermosensor located inside

one of the behaviour tubes where flies were placed. Data acquired using the Spike2

software coupled with the Power 1401 mkII (CED, Science Products).

Experiments were conducted in darkness at 21℃.

For the antennae ablated experiments, flies were anaesthetized under CO2 and

the antennae were manually ablated using sharp forceps. All the three antennal

segments were removed. Wild-type flies with and without antennae were moni-

tored at the same time.
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Results

Mutagenesis Screen

3.1 EMS mutagenesis screen

To isolate novel genes which play a role in temperature synchronization of the

circadian clock of Drosophila melanogaster , we performed a screen of chemically-

induced mutants. Ethyl Methane-sulfonate (EMS) induces point mutations by

ethylation of the O-6 position of guanine (G) and the O-4 position of thymine,

which allows mispairing during DNA duplication (Roberts, 1998). The concen-

tration of 25 to 30 mM EMS used for the mutagenesis (see Materials and Meth-

ods) is expected to generate 50–80% lethal recessive mutations on each autosome

(Roberts, 1998). An average of 47.3% of lines generated following our EMS treat-

ment were recessive lethal (see Table 3.1), suggesting an effective ratio of inducing

mutations in essential genes along the two autosomes. Although, we noticed a

large variability between different treatments (from 15 to 85% lethality). If 47.3%

of lines generated were recessive lethal, we can estimate that a similar number of
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Total (n) Homozygous viable (n) Homozygous lethal (%)

Lines generated 3044 1637 47.3
Chromosome 2 1738 962 45.7
Chromosome 3 1306 675 51.1

Table 3.1: Summary of the EMS mutagenesis screen. The total number of mutant lines
generated is indicated. All the homozygous viable lines have been tested in temperature
entraining conditions.

non-essential genes (and hypomorphic — non lethal — alleles of essential genes)

have been induced.

We generated 3044 EMS mutant lines, 1738 for chromosome 2 and 1306 for

chromosome 3. A total of 1637 lines were homozygous viable and have been tested

in an automated bioluminescence assay monitoring real-time expression of period-

luciferase (per-luc) in living flies, as previously described (Plautz et al., 1997;

Stanewsky et al., 1997b; Glaser and Stanewsky, 2005). The flies were raised in

a 12:12 hr light-dark (LD) cycles and then analysed in constant light (LL) and

12:12 hr 25℃:16℃ temperature cycles (TC).

Initially, for the first quarter of the screen, the temperature cycles were applied

in-phase compared to the previous LD entrainment (warm-phase corresponded

to the light-phase and the cold-phase corresponded to the dark-phase). In the

subsequent part of the screen the phase of the TC was opposite compared to

the LD entrainment (cold-phase corresponded to the previous light-phase and

the warm-phase corresponded to the dark-phase). The temperature entrainment

regime was changed, because given the low rate of mutants isolated during the

first part of the screen, we decided for a more stringent paradigm to discriminate

between flies able to re-synchronize to the new temperature entrainment and those

who were not (potential temperature entrainment mutants), rather than keeping

the previous LD-cycle phase.

We utilized three different per-luc transgenic types (Figure 3.1), each of them
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Figure 3.1: Structure of the period locus and period-luciferase transgenes used in this
study. The structure of the 13.2 kb genomic DNA fragment containing the per gene
is shown in the upper part (from Stanewsky et al., 1997a). White bars: coding exon.
Black bars: non-coding exon. Line: regulatory and intronic sequences. Note that the
plo construct contains only the promoter region of per fused with the luciferase cDNA
sequence (modified from Stanewsky et al., 1997a).

containing genomic DNA of the period gene, fused with the coding sequence of

the firefly luciferase gene (Brandes et al., 1996). One line, called plo (promoter

luciferase only) carries only the promoter region of period directly fused with the

luciferase cDNA. The plo construct is inserted on chromosome 2 and it was used

in the EMS mutagenesis screen for testing putative mutants on chromosome 3.

Another line (called BG-luc) carries the promoter of per, the N-terminal two-third

of the coding sequence of the PER protein and the luc gene (Stanewsky et al.,

1997b). This line carries the BG-luc transgene on the chromosome 3 and therefore

was used as background for isolating putative mutations on chromosome 2. The

third line used, XLG-luc, contains the same per and luc sequence as plo, but in

addition carries the DNA encoding the entire PER protein, with the exception of

the last 10 amino acids (Veleri et al., 2003). For practical reasons this line was

used as read-out during the RNAi screen (see chapter 4).

Given the different nature of the two per-luc lines utilized in the mutagenesis
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A. Generation of putative mutations on chromosome 2
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Figure 3.2: Crossing scheme applied to screen for novel mutation affecting temperature
entraining of the circadian clock on (A) chromosome 2 and (B) chromosome 3. Stars
indicate chromosomes with potential EMS-induced mutations. Bl/CyO and Dr/TM3
are balancer chromosome for autosome 2 and 3, respectively (Lindsley and Zimm, 1992).
': virgin female flies, ♂: male flies .

screen, we wanted to trace both the effect of mutations on the transcriptional

and post-translational level of period, by exposing plo and BG-luc to mutagen-

esis, respectively. plo, in fact, is lacking the translated region of PER, thus the

bioluminescence readings correlates with the expression of per mRNA. The BG-

luc line, instead, expresses also PER protein, therefore it gives indications of the

post-transcriptional regulation of PER-LUC protein.

Figure 3.2 shows the crossing scheme we applied to generate autosomal vari-

ants specific for chromosome 2 and chromosome 3. As visible from the crossing

scheme, the line analysed in our bioluminescence assay carried only one specific

autosome with homozygous EMS-induced mutations. However, also the other au-

66



CHAPTER 3. MUTAGENESIS SCREEN

tosome could have carried EMS-induced mutations. Let’s consider for instance the

crossing scheme regarding isolation of mutants for chromosome 2 (Figure 3.2A).

The lines we tested in our bioluminescence assay were y w
Y

; +∗

+∗ ; BG−luc∗
+/BG−luc∗ , which

potentially load mutations on chromosome 3. Anyway, almost all of the lines we

tested carried only one EMS-treated chromosome 3 (with orange eyes — indi-

cating the presence of the BG-luc transgene) and the homologue was non-treated

(BG−luc
∗

+
). This because for practical reason we selected in the F2 only one parent

with orange eyes. This reduced the possibility to isolate mutants on the third

chromosome. In addition, eventual mutations on chromosome 3 were not bal-

anced and would have been lost by recombination. Therefore the eventual mutant

phenotype would not be seen in the following generations and the line not taken

into further investigations. Analogue approach applied for chromosome 2 (Figure

3.2B).

3.2 Isolation of mutant lines

It has been shown that temperature cycles can also synchronize per-luc expression

in isolated organs and body parts, such as legs, wings, abdomen and head (Glaser

and Stanewsky, 2005). Interestingly, isolated body parts, particularly legs, exhibit

a less erratic and “smoother” bioluminescence expression of per-luc compared to

that of the intact fly, in which luminescence rhythms are relatively noisy (e.g.

Glaser and Stanewsky, 2005). The small variability between isolated legs of dif-

ferent individuals of the same genotype, does not require the need to test a large

number of flies of the same genotype to distinguish a potential mutant from a

wild-type. This can be important in a big screen for mutants, since it reduces the

costs of the screen, in terms of time and money.
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Recordings of isolated legs during LL and 25:16℃ TC
A)

B)

C)

Figure 3.3: Average bioluminescence recordings from legs of EMS mutant and control
flies (BG-luc) during LL and 12:12 hr 25:16℃ TC. The phase of the previous LD entrain-
ment was opposite compared to the TC applied here and this explains why control flies
take up to 2 days to synchronize to the TC. Red/blue bars at bottom indicate warm-
phase (25℃) and cold-phase (16℃), respectively. Error bars indicate SEM. Number of
individuals is indicated.
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For those reasons, we monitored the expression of per-luc in isolated legs,

maintained in luciferin-enriched insect tissue-culture media and subjected to con-

stant light and 12:12 hr 25℃:16℃ temperature cycle conditions (see Materials and

Methods for details). We isolated 3 lines labelled 2T-30, 2T-38 and 2P-42 that ex-

hibited mutant phenotype, i.e. reduced rhythmicity during LL and TC conditions

(Figure 3.3). In all the three lines, per-luc expression in isolated legs is drastically

reduced compared to untreated control (BG-luc) and other EMS-treated lines (see

Figure 3.3 and Table 3.2). There is drastic reduction of per-luc level of expression,

together with a lower amplitude of oscillation. For line 2P-42, the remaining per-

luc rhythm exhibits an earlier phase (see below). The two lines 2T were isolated

in a batch originating from a single EMS treatment, which produced 82% of ho-

mozygous lethal mutant flies, suggesting a very effective mutagenesis. The origin

of the two lines from the same treatment includes also the possibility that the

two lines are clones, i.e. they carry the same mutation (see below). The treatment

which generated the line 2P-42, instead, produced 46% homozygous lethal mutant

lines.

For unknown reasons, the BG-luc control did not exhibit a consistent rhythmic-

ity between the different independent experiments. Therefore, we compared the

EMS-treated lines among themselves, since almost all showed a clear and robust

rhythmicity in LL and TC conditions, such as the line 2X-8 exemplified in Table

3.2, which is an EMS-treated line that shows a wild-type phenotype. We consid-

ered a line to be mutant in those conditions if it exhibited a mutant phenotype

in at least three independent experiments. The three lines isolated have been the

only ones to fulfil this criteria and therefore selected for further characterization.

The mutagenesis screen has been performed analysing per-luc expression in

dissected legs. We then monitored bioluminescence expression in the whole fly
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Genotype Rhythmic (%) n τ (hr) ± SEM Rel-Amp ± SEM Phase ± SEM

LL and temperature cycle entrainment

Isolated legs
2T-30 26.7 15 24.7 ± 0.27 0.20 ± 1.13 20.2 ± 1.13
2T-38 37.9 29 25.1 ± 0.31 0.30 ± 1.13 20.6 ± 0.43
2P-42 47.2 36 25.1 ± 0.17 0.28 ± 0.68 21.8 ± 0.40
BG-luc 58.3 12 25.3 ± 0.37 0.19 ± 0.01 17.5 ± 1.02
2X-8 100 4 24.9 ± 0.10 0.23 ± 0.05 23.2 ± 0.34

Whole fly
2T-30 26.9 26 24.5 ± 0.67 0.61 ± 0.02 18.6 ± 1.21
2T-38 25.0 8 23.9 ± n.c. 0.53 ± n.c. 20.7 ± n.c.
2P-42 22.2 9 23.1 ± n.c. 0.54 ± n.c. 20.0 ± n.c.
BG-luc 66.7 21 23.7 ± 0.73 0.54 ± 0.03 18.2 ± 0.97

LD entrainment and constant temperature (25℃)

Isolated legs
2T-30 100 12 23.9 ± 0.07 0.25 ± 0.04 23.4 ± 0.17
2T-38 100 8 24.0 ± 0.21 0.30 ± 0.04 23.1 ± 0.31
2P-42 93.3 15 23.9 ± 0.06 0.19 ± 0.02 23.2 ± 0.10
BG-luc 100 15 23.8 ± 0.05 0.24 ± 0.03 23.1 ± 0.13

DD and temperature cycle entrainment

Isolated legs
2T-30 100 23 24.3 ± 0.06 0.12 ± 0.01 19.6 ± 0.23
2T-38 100 22 24.2 ± 0.04 0.13 ± 0.01 18.7 ± 0.27
2P-42 95.6 23 24.2 ± 0.06 0.14 ± 0.01 19.9 ± 0.29
BG-luc 100 24 24.3 ± 0.07 0.16 ± 0.01 19.7 ± 0.30

Whole fly
2T-30 54.5 22 24.1 ± 0.39 0.55 ± 0.03 19.2 ± 0.89
2T-38 78.5 14 24.5 ± 0.17 0.46 ± 0.03 20.0 ± 0.91
2P-42 62.5 24 24.4 ± 0.21 0.59 ± 0.04 17.8 ± 0.98
BG-luc 63.2 19 25.0 ± 0.41 0.51 ± 0.04 19.5 ± 1.12

Table 3.2: FFT-NLLS analysis of bioluminescence oscillation of EMS mutants and
control (BG-luc). Whole adult flies or isolated legs were entrained in LL and 12:12 hr
25:16℃ temperature cycles, in 12:12 hr LD and constant temperature (25℃) or in DD
and 12:12 hr 25:16℃ TC, as indicated. EMS mutant flies are weakly rhythmic compared
to non-treated control (BG-luc) and a treated non-mutant line (2X-8 ). See text for more
details. FFT-NLLS analysis was applied to calculates “period” (τ), “relative amplitude
error” (Rel-Amp) and “phase” only of rhythmic flies. Flies were considered rhythmic
if rel-amp error was60.7 and the period valued was in the range of 24±1.5 hr. SEM
indicates Standard Error of the Mean.

70



CHAPTER 3. MUTAGENESIS SCREEN

(Figure 3.4 and Table 3.2). Line 2T-30 and 2T-38 show strongly reduced rhyth-

micity compared to control (Figure 3.4A–B). Analysis of plots of individual-fly

recordings of 2T-30 and 2T-38 (Figure 3.5) reveals that per-luc expression of the

different individuals is weakly (if at all) rhythmic and out of phase each other,

explaining the overall flat bioluminescence reading when the average is plotted.

Line 2P-42 (Figure 3.4C), instead, seems to cycle with an opposite phase com-

pared to control, although with a minor amplitude. Noticeably, we observed a

steep increase of LUC activity just after temperature rising and a fast decrease

after temperature dropping, suggesting more a temperature response rather than

synchronization to TC with an opposite phase. This is also suggested by inspec-

tion of recording from individual flies (Figure 3.5) which also shows that not all the

flies exhibit the same phase. This phenotype is reminiscent of per-luc expression

in isolated brains, which do not entrain to temperature: if a brain of a wild-type

per-luc fly is dissected from the body, it cannot synchronize per expression to

TC, but rather reacts to temperature step-up with an steep increase of per-luc

expression (Sehadova et al., 2009).

Isolated legs of the three EMS mutant lines synchronize normally to LD cycles,

in terms of period, phase and expression level compared to control, as shown in

Figure 3.6, with a peak of per expression towards the end of the night (ZT 23, see

Table 3.2), indicating a specific defect on temperature entrainment.

We then investigated whether the mutant phenotype was manifested also dur-

ing DD and TC. Figures 3.3 and 3.8 show bioluminescence expression of BG-luc

and the three EMS mutant lines, in DD and temperature cycles. Interestingly,

isolated legs of mutants could entrain to TC with a comparable period, phase and

amplitude to the control (Figure 3.3 and Table 3.2), but with a subtle reduced

per expression level (and no differences between the different mutated lines). Note
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Average recordings of adult flies during LL and 25:16℃ TC
A)

B)

C)

Figure 3.4: Average bioluminescence recordings of whole adult flies of control (BG-
luc) and EMS mutants during LL and 12:12 hr 25:16℃ TC. Conditions and coloured
bars are as described in Figure 3.3. Grey error bars indicate SEM.
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Individual recordings of adult flies during LL and 25:16℃ TC
A) B)

C) D)

Figure 3.5: Individual bioluminescence recordings of whole adult flies of control (BG-
luc) and EMS mutants during LL and 12:12 hr 25:16℃ TC. Average recordings and
conditions are shown in Figure 3.4.
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Bioluminescence recordings of isolated legs during LD and 25℃
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Figure 3.6: Bioluminescence expression of EMS mutant lines and controls in LD con-
ditions. A) Control flies (BG-luc) entrain normally to LD cycles (at constant 25℃) with
a peak of per expression towards the end of the night (ZT23). B–D) EMS mutant lines
show no significant difference of per-luc expression during light-dark cycles compared to
controls. White bars at the bottom of the plot indicate light-on. Black bars indicate
light-off.

that during temperature entrainment (LL or DD) the peak of per-luc expression

occurs 2–3 hours earlier then during LD entrainment. This observation differs

slightly compared to previous reports, for instance Glaser et al (2005). The diver-

gence can be related to different technical experimental conditions in which the

flies were monitored (10:14 hr 25:18℃ vs 12:12 hr 25:16℃). However, my data

correlates also with an advance evening peak of locomotor activity during TC en-

trainment compared to LD (see below and Discussion). An explanation could be a

difference in light and temperature cycles as they occur in natural environmental
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conditions: light arises earlier in the morning than temperature, and the latter

increases more gradually during the day and peaks later than light, generating a

gap between temperature and light profile (Boothroyd et al., 2007; Currie et al.,

2009; Yoshii et al., 2009a and Discussion).

PER-LUC luminescence in the whole fly revealed distinct phenotypes among

the 3 mutant lines during DD and TC. Average per expression in line 2T-30

is flat (Figure 3.8). FFT-NLLS analysis shows that only half of the flies are

weakly rhythmic (Table 3.2), and inspection of individual recordings (Figure 3.9)

shows that the remaining rhythmic ones are out of phase with each other during

temperature entrainment. This explains the overall flat per-luc reading when the

average of all flies is plotted.

Line 2T-38 synchronizes to temperature cycles in DD, even if the level of per-

luc expression is reduced (similarly as for isolated legs of the same genotype).

Although not all the flies are strongly in phase with each other as visible form

recordings of individual flies (Figure 3.9) and large standard error in the FFT-

NLLS analysis, they appear to be in phase with the BG-luc control (Figure 3.8

and 3.9).

Adult 2P-42 flies exhibit the same phenotype in LL and DD and temperature

cycles: flies seem synchronized with an opposite phase compared to control (Figure

3.8). Also, inspection of individual recordings (Figure 3.9) shows that most of

the flies exhibit the same phase. However, the steep increase of LUC activity just

after the temperature goes up, and the steep decrease after temperature goes down

suggests more temperature reaction (masking effect) rather than entrainment.

The fact that isolated body parts during DD and temperature cycles entrain,

while the whole fly does not, is very interesting. In fact, this is similar to the phe-

notype of other already described “temperature mutants”, e.g. nocte1 or norpAP41,
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Average recordings of legs during DD and 25:16℃ TC
A)
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Figure 3.7: Average bioluminescence recordings of isolated legs of control (BG-luc)
and EMS mutants during DD and 12:12 hr 25:16℃ TC. Conditions and coloured bars
are as described in Figure 3.3.
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Recordings of adult flies during DD and 25:16℃ TC
A)

B)

C)

Figure 3.8: Average bioluminescence recordings of whole adult flies of control (BG-
luc) and EMS mutants during DD and 12:12 hr 25:16℃ TC. Conditions and coloured
bars are as described in Figure 3.3.
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Individual recordings of adult flies during DD and 25:16℃ TC
A B

C D

Figure 3.9: Individual bioluminescence recordings of whole adult flies of control (BG-
luc) and EMS mutants during DD and 12:12 hr 25:16℃ TC. Mean recordings and
conditions are plotted in Figure 3.8.

in which per-luc expression in isolated body parts synchronise to TC, but it does

not when the whole animal is considered (Gentile C., Simoni A., Stanewsky R.,

in preparation and see Discussion).

Because the line 2T-30 and 2T-38 were isolated from a batch of lines generated

by the same EMS treatment, we performed a complementation test to rule out

the possibility that they affected the same gene or that the different phenotypes

observed were due to the generation of allelic variants of the same gene. This case

is rare but indeed possible. In the EMS screen which led to the isolation of the

first clock gene, three different mutants were isolated with different phenotypes.

All mapped to the very same locus period (Konopka and Benzer, 1971).

We crossed the 3 mutants to each other and then tested the progeny for their
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Complementation test:

Recordings of isolated legs during LL and 25:16℃ TC
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Figure 3.10: Complementa-
tion test of EMS mutants.
Recording of PER-LUC in iso-
lated legs from lines (A) 2T-
30/2T-38, (B) 2T-30/2P-42
and (C) 2P-42/2T-38 during
LL and 12:12 hr 16:25℃ tem-
perature cycles. All the mutants
complemented each other, indi-
cating that each EMS mutant
line affects a different gene. Red
and blue bars indicate warm and
cold, respectively. Note that the
phase of TC is opposite to that
of the previous LD (in which
the flies have been raised, not
shown). Legs take up to two
days to synchronize to temper-
ature.
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ability to entrain per-luc expression to TC in constant light. Figure 3.10 shows

that all the mutants complement and the wild-type phenotype is restored. This

suggests that the 3 EMS lines affect different genes and this may explain the

variety of phenotypes observed in different light/temperature conditions between

the lines.

3.3 Behavioural analysis of the EMS mutants

3.3.1 Entrainment in constant light and temperature cy-

cles

In the previous section we described that our three candidate temperature-entrain-

ment mutants affect synchronization of per-luc expression to temperature cycles

during constant light. Next, we addressed whether the observed molecular pheno-

type was also reflected at the behavioural level.

The rest-activity pattern of the fly is one of the best studied behavioural out-

puts of the circadian clock. The locomotor behaviour of a wild-type male under

light-dark cycles displays a bimodal pattern of activity (as shown in Figure 3.11B,

left column). The fly is very active in the morning, anticipating the transition

from dark to light, then displays an afternoon siesta of very low activity before

becoming again very active in the evening, again anticipating the transition from

light to dark.

During constant light and temperature cycles (Figure 3.11C) locomotor activ-

ity is unimodal: the morning peak of activity disappears, flies are mainly active

towards the end of the warm phase, anticipating the transition from warm to cold.

In the three mutant lines we isolated the morning anticipation during LD is only

weakly present (if at all, see Figure 3.11B). The reason for this can be the differ-
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Figure 3.11: Rest-activity pattern of EMS mutant lines and control during LD cycles
and LL & TC. A) Double-plot average actogram of wild-type (Canton S), 2T-30, 2T-38
and 2P-42. Flies were first exposed to 12:12 hr LD cycle at constant temperature for 7
days and then to constant light (LL) and 12:12 hr 25:16℃ temperature cycles (arrows)
for the following 7 days, in which the phase of temperature was opposite compared to the
previous LD (warm corresponding to dark phase and cold corresponding to the previous
light phase). B) Average histograms showing daily average activity of flies during the LD
entrainment days. C) Daily average activity of flies during the subsequent entrainment
to LL and TC. Shaded areas in the background correspond to the dark-phase (during
LD entrainment) or the cold-phase (during TC entrainment). Dots above bars in the
histograms represent SEM. Number of individuals analysed is indicated in brackets.

ent genetic background of the EMS-treated lines. BG-luc flies lack the morning

anticipatory activity (see Figure 5 in Glaser and Stanewsky, 2005).

The mutant flies have a less pronounced siesta but show a robust anticipation
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2T-30: F(22,506)=6.75, P< 0.0001 2T-30: F(11,252)=3.90, P< 0.0001
2T-38: F(22,391)=8.36, P< 0.0001 2T-38: ns
2P-42: F(22,506)=7.23, P< 0.0001 2P-42: ns

Figure 3.12: Daily average activity of controls (red line) and EMS mutants (green, blue
and black, as indicated) during the warm-phase only of LL and TC of the histograms
depicted in Figure 3.11C. Activity of the different genotypes is overlapped to see the
effect of the mutation pattern and on the activity level. Two-way Anova was performed
to determine overall statistical interaction between Canton S and EMS mutants for the
range ZT 0–12 (left) and ZT 6–12 (right). Coloured bars underneath represent the time
points in which each mutant shows significant difference compared to Canton S control
(Bonferroni posttest P< 0.05). Error bars indicate SEM.

of the lights-off transition in the evening. In contrast, the mutants behaviour looks

drastically different during temperature entrainment (Figure 3.11C and 3.12).

Analysis of behaviour was performed first by inspection of actograms and his-

tograms of daily average activity (Figure 3.11) and then by determining statisti-

cal interactions between activity of each mutant lines with the wild-type control

(Figure 3.12). Anova was performed on the warm-phase only of temperature en-

trainment. We considered both the whole warm phase (ZT 0–12, left plot) and

the second half of the warm phase (ZT 6–12, right plot), independently. In this

way, we could monitor both the effects of the mutations on the overall activity

(included the startle response induced by the steep increase of temperature) and

the effect specifically on the peak of activity which anticipates the transition from

warm to cold.

Unlike Canton S, all three mutant lines show a sharp increase of activity after
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temperature rise and they remain active for the whole warm phase (Figure 3.12).

Line 2T-30 does not show any anticipation of the transition warm-cold, with highly

significant interaction with control (F(11,252)=3.90, P< 0.0001, Two-way Anova).

Interestingly, when we consider only the second half of the warm phase (ZT6–12),

mutant 2T-38 and 2P-42 do not differ from control (interaction not significant,

Anova) in term of activity level and pattern. However, the three mutants interact

with Canton S (in the range ZT 0–12), indicating an overall effect on the activity

pattern.

The temperature cycles applied in this study to elicit entrainment were 25:16℃.

We wondered if mutant flies were responding in a different way at different tem-

perature intervals. This was also done in the light of the poor, but visible, ability

of 2T-38 ad 2P-42 to entrain to 25:16℃. It is known that a temperature cycle as

little as 2–3℃ is enough to synchronize behaviour in wild-type flies (Wheeler et al.,

1993). We monitored the behaviour of flies at three different temperature inter-

vals (in LL) to try to understand if distinct mutant lines were able to synchronize

specifically to a certain temperature range, but fail to entrain when a wide tem-

perature range was applied. Figure 3.13 shows the behaviour of the EMS mutant

Figure 3.13 (preceding page): Behaviour activity of EMS mutant lines and control in
LL and different temperature intervals.
A) Average actogram of wild-type control (Canton S), 2T-30, 2T-38 and 2P-42 putative
mutant lines. Flies were first entrained in LD cycles at 25℃ (not shown) followed by 5
days of LL and 12:12 hr – 29:25℃ temperature cycles which was 6 hr delayed compared
to the previous LD (warm phase delayed compared to the previous light phase). This
was followed by 6 days of LL and 12:12 hr – 25:20℃ temperature cycles again delayed
by 6 hr compared to the previous TC. Finally, the flies were exposed to 6 days of LL
and 12:12 hr – 20:16℃ temperature cycles, delayed 6 hr compared to the previous TC.
B) Activity peak phase of control and mutant flies. Conditions are the same as in (A).
C–E) Daily activity plot of control and mutant lines during LL and 29:25℃ (C), 25:20℃
(D) and 20:16℃ (E). Grey shadows (A, B) and grey bars (C–E) represent cold-phase (in
any different temperature intervals) while white areas/bars indicate warm phase. Error
bars in (B) indicate SEM. Number of individuals is indicated in brackets.
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Daily average activity at 29:25℃ TC

2T-30: F(23,432)=4.60, P< 0.0001 2T-30: F(11,216)=2.26, P< 0.05

2T-38: F(23,480)=1.71, P< 0.05 2T-38: ns

2P-42: F(23,432)=1.65, P< 0.05 2P-42: ns

Daily average activity at 25:20℃ TC

2T-30: F(23,432)=4.96, P< 0.0001 2T-30: ns

2T-38: F(23,480)=2.87, P< 0.0001 2T-38: ns

2P-42: F(23,432)=4.41, P< 0.0001 2P-42: ns

Daily average activity at 20:16℃ TC

2T-30: F(23,432)=3.27, P< 0.0001 2T-30: ns

2T-38: F(23,480)=1.71, P< 0.0001 2T-38: ns

2P-42: F(23,432)=3.89, P< 0.0001 2P-42: ns
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lines and controls at constant light and 29:25℃, 25:20℃ and 20:16℃ temperature

intervals. As before, activity was plotted in form of actograms and histograms

of the individual genotypes (Figure 3.13) and by overlapping the activity of the

all genotypes for each condition in single plots, where statistical analysis was per-

formed (Figure 3.14). Wild-type flies strongly entrain to all three temperature

intervals. Note also the effect of “seasonal adaptation” of the clock (Majercak

et al., 1999; Collins et al., 2004; Stoleru et al., 2007): The phase of evening ac-

tivity is moving towards the centre of the day (i.e. warm phase in a temperature

entrainment regime) during a cold interval (20:16℃), the equivalent of an autumn

day. In a warm range (29:25℃), like a summer day, the fly’s activity is shifted

more to the end of the day (see Figure 3.13B, first column). The advantage of this

behaviour pattern could be to avoid the hottest part of the day during summer,

preventing excessive dehydration, while in colder seasons activity mainly occurs

during mildest hours before dusk.

The overall pattern of activity of the three mutants is significant different form

Canton S control in any temperature intervals (Figure 3.14). All the mutants,

in contrast to Canton S, exhibit a strong peak of activity after the transition

from cold to warm (morning) and a less pronounced anticipation of the transition

from warm to cold (evening), indicating defective entrainment to temperature.

However, when a Two-way Anova is restricted to the second half of the warm phase

(ZT 6–12, i.e. the evening anticipation peak), we found statistical difference from

Figure 3.14 (preceding page): Daily average activity of controls (red line) and EMS
mutants (green, blue and black, as indicated) during the warm-phase only of LL and
different temperature intervals of the histograms depicted in Figure 3.13C–E. Two-way
Anova was performed to determine statistical interaction between Canton S (CS) control
and each EMS mutant lines in the range ZT 0–12 (left) and ZT 6–12 (right). Coloured
bars underneath indicate the time points in which each mutant shows significant differ-
ence compared to Canton S (Bonferroni posttest P< 0.05).

86



CHAPTER 3. MUTAGENESIS SCREEN

control only for the mutant line 2T-30 during LL and 29:25℃ TC (F(11,216)=2.26,

P< 0.05, Figure 3.14). Therefore, the lines 2T-38 and 2P-42, although exhibiting

a stronger reaction peak in response to the temperature increase, are able to

entrain to the different temperature intervals, in terms of exhibiting a clear evening

anticipation peak of activity comparable to control (Two-way Anova interaction

not significant). In addition, from overlapped daily activity plots in Figure 3.14

it is visible that at 29:25℃ the activity level of the mutants is higher compared to

control, whereas at 20:16℃ the activity level is lower (with statistical significance,

Anova, data not shown), suggesting again that the passive response to temperature

is more pronounced in the mutant than in control flies.

We thus observed a clear difference of activity at different temperature intervals

in LL. The clearest effect is observed for 2T-30 at 29:25℃ TC. Interestingly, all the

lines which exhibit a mutant phenotype at 25:16℃ entrain (weakly) at 25:20℃ and

20:16℃ (which are “part” of 25:16℃). This indicates, surprisingly, that mutants

fail to synchronize to higher temperature cycles than to lower ones.

3.3.2 Entrainment in constant darkness and temperature

cycles

It is known that temperature cycles can entrain locomotor activity in constant

darkness (Wheeler et al., 1993). We first entrained flies to LD cycles and then

applied 12:12 hr 25:16℃ TC in constant darkness in phase with the previous LD.

Subsequently, a new temperature regime was applied, which was 6 hour delayed

compared to the previous and then flies were released to DD and 25℃ where free

run activity was monitored. In addition to plot the activity in form of average

actograms and daily activity histograms (Figure 3.15), the behaviour analysis soft-

ware calculates also the average peak phase of activity, which have been reported
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in Table 3.3. Then, Two-way Anova was performed to determine statistical in-

teraction between the mutants and control. During the first temperature regime,

Canton S flies move the evening activity earlier during the warm phase, compared

to the previous LD, stabilizing to ZT7.8 (Figure 3.15B and Table 3.3 “pre-shift”).

A minor peak of activity occurs just after temperature-up (ZT0.3), probably in-

duced by the steep increase of temperature. A similar “temperature response”

was observed in the same conditions also in per01 flies (Tomioka et al., 1998),

suggesting that it is clock-independent. After a 6-hr temperature shift, the main

peak of activity in wild-type flies stabilizes at ZT3.6, much earlier compared to

LL (compare Figures 3.15 to 3.11). The activity take 3–4 days to reach a stable

phase, indicating that in DD flies synchronize their behaviour to TC more slowly

compared to LL (in which they take 2–3 days). A burst of activity still occurs

just after the temperature increase (Figure 3.15C), but it is not considered by the

phase analysis, which apply a 4-hr low-pass filter to the data (Table 3.3). When

flies are released in DD (and 25℃) the phase of free-running activity follows the

previous temperature entrainment, indicating that the flies are fully synchronized

(Figure 3.15D and Table 3.3).

The mutant line 2T-30 is unable to synchronize its behaviour to TC in DD

(Figure 3.15). As soon as the flies are subjected to TC, their activity is charac-

terized by a strong reaction to temperature just after the cold to warm transition

(ZT0.8) and an overall low activity during the warm phase. Although the “re-

action” peak of mutants and control is comparable, both before and after the

temperature shift (Figure 3.16), in case of the mutants a second “entrainment”

peak exhibited by control flies does not follow. Before the temperature shift, the

analysis of variance revealed not significant difference compared to control in term

of statistical interaction when the second half of the warm phase only is consid-
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ered, but a clear difference of activity level is visible (Figure 3.14). After the

temperature shift (Figure 3.15C) the “temperature mutant” phenotype is even

clearer (and highly significant). Subsequent free-running activity of 2T-30 flies in

DD is mainly arrhythmic (Figure 3.15D, Table 3.4 and see below).

2T-38 exhibits a main peak of activity just after the cold to warm transition,

before and after the shift (Figure 3.15 and Table 3.3), suggesting a reaction to

temperature, rather than synchronization. The peak of entrained activity which

characterize Canton S flies, is barely visible, but not significant (Figure 3.16).

Mutant flies subsequently released to constant conditions free-run with a phase at

CT0.8 (Figure 3.15D and Table 3.4), 3 hours earlier than Canton S, and a second

peak of free-running activity occurs in the same position as in controls.

Activity of line 2P-42 is comparable to controls, in terms of activity pattern

and number of days required to reach a stable phase (Figure 3.15 and Table 3.3).

Before the temperature shift, the activity is synchronized to temperature cycles,

it peaks two hour later than control (ZT9.8 vs 7.8) and although the activity level

of the “entrainment” peak is lower than Canton S it is not statistically different

Figure 3.15 (preceding page): Rest-activity pattern of EMS mutant lines and controls
during DD and TC. A) Double-plot average actogram of wild-type (Canton S), 2T-30,
2T-38 and 2P-42. Flies were first entrained to 12:12 hr LD cycle at constant temperature
(25℃) for 4 days and then exposed to DD and 12:12 hr 25:16℃ TC (arrows) for the
following 4 days in which the phase of temperature was the same as the previous LD
(warm corresponding to previous light phase and cold corresponding to the dark phase).
Subsequently, a new temperature regime was applied 6 hr delayed compared to the
previous TC, followed by release to DD and 25℃ (arrowheads), where free-running
activity was analysed. Note that the evening activity during TC is advanced compared
to LD. B) Histogram showing daily average activity of flies during the first DD and
TC entrainment (4 days). C) Daily average activity of flies during the subsequent
entrainment to DD and TC (13 days). D) Average free-running activity during the first 3
days of DD and 25℃. Shaded areas in the background correspond to the dark/cold phase
and white areas to light/warm phase. In (D) light- and dark-grey shadings represent
subjective day (warm) and night (cold), respectively. Dots above bars in the histograms
represent SEM. Number of individuals analysed is indicated in brackets.
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Daily activity at DD and 25:16℃ TC

2T-30: F(23,648)=2.44, P< 0.0005 2T-30: ns

2T-38: F(23,648)=3.45, P< 0.0001 2T-38: ns

2P-42: ns 2P-42: ns

Daily activity after 6 hour temperature shift

2T-30: F(23,648)=5.58, P< 0.0001 2T-30: F(19,540)=7.24, P< 0.0001

2T-38: F(23,648)=9.02, P< 0.0001 2T-38: F(19,540)=11.8, P< 0.0001

2P-42: F(23,672)=3.64, P< 0.0001 2P-42: F(19,560)=3.76, P< 0.0001

Figure 3.16: Daily average activity of controls (red line) and EMS mutants (green,
blue and black, as indicated) during the warm-phase only of DD and TC histograms
depicted in Figure 3.15B–C. Two-way Anova was performed to determine statistical
interaction between Canton S (CS) control and each EMS mutant lines in the range ZT
0–12 (left) and ZT 2–12 or ZT 6–12 (right), as indicated. Coloured bars underneath
represent the time points in which the respective mutants show significant difference
compared to Canton S (Bonferroni posttest P< 0.05).
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Peak phase (ZT)a

Genotype LD DD + TC pre-shift DD + TC post-shift DD

Canton S 12.3 7.8b 0.3 (77)c 3.6 – 3.8
2T-30 11.8 0.8 10.3 (82) 1.3 6.8 (72) 1.3
2T-38 12.3 0.3 10.8 (54) 0.8 5.8 (51) 0.8
2P-42 11.8 9.8 0.8 (89) 0.8 4.8 (84) 4.3

Table 3.3: Peak phase analysis of EMS mutants and controls during DD and TC
entrainment. Peak phase (in hr) are calculated from 4-hr lowpass filtered versions of
the histograms depicted in Figure 3.15. During LD entrainment, only the evening peak
is considered, which occurs at the transition between light and dark (around ZT12).
During temperature entrainment, before and after the temperature shift (pre- and post-
shift, respectively), two main activity peaks are present and the respective values are
reported. The phase of the major peak (relative amplitude of 100%) is displayed in the
first column. The phase of a minor, secondary peak, is displayed in the second column
(and relative peak amplitude is shown in brackets). Note that Canton S flies display
only one activity peak after the temperature shift.
a Phase relative to the entrainment regime: 0 = lights-on or temperature-up. 12 = lights-off or
temperature-down. For DD conditions, CT values relative to the previous temperature regime
are considered. Phase calculated only for rhythmic flies.
b Major peak. Relative peak intensity 100%
c Minor peak. Relative peak intensity is indicated in brackets (%)

(Figure 3.16). After the temperature shift (Figure 3.15C) the peak of activity

is even lower than control and occurs 1.2 hr later, determining a statistically

significant difference from Canton S (Figure 3.16). However, analysis of actogram

and histogram reveals that a synchronized activity peak is indeed visible, and

free-running activity phase after temperature entrainment follows the previous

TC (Table 3.3 and Figure 3.15D), suggesting that 2P-42 flies are synchronized to

temperature in DD.

3.3.3 Free-run rhythmicity of EMS mutants

Wild-type flies strongly entrain to LD, as well as to TC. After any entrainment

condition, be it light or temperature, the rhythm persists in constant conditions.

We proceed by monitoring the free-running activity of the EMS mutants compared
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Genotype n % rhythmic τ (h) ± SEM RI ± SEM RS ± SEM

After LD entrainment

Canton S 42 97.6% 24.4 ± 0.1 0.38 ± 0.02 3.2 ± 0.2
2T-30 59 42.4% 24.0 ± 0.8 0.26 ± 0.02 2.2 ± 0.2
2T-38 47 51.1% 24.8 ± 0.2 0.29 ± 0.02 2.0 ± 0.2
2P-42 37 81.1% 24.3 ± 0.2 0.28 ± 0.02 2.4 ± 0.2

After LL + 25:16℃ temperature entrainment

Canton S 23 82.6% 24.7 ± 0.2 0.25 ± 0.01 2.2 ± 0.2
2T-30 22 36.4% 24.0 ± 0.3 0.24 ± 0.02 1.8 ± 0.2
2T-38 15 66.7% 24.1 ± 0.5 0.16 ± 0.02 1.8 ± 0.1
2P-42 16 43.8% 23.7 ± 0.8 0.21 ± 0.03 1.6 ± 0.2

After DD + 25:16℃ temperature entrainment

Canton S 36 91.7% 24.2 ± 0.21 0.29 ± 0.02 2.30 ± 0.18
2T-30 31 16.1% 24.0 ± 1.19 0.21 ± 0.03 1.62 ± 0.23
2T-38 33 69.7% 24.4 ± 0.24 0.28 ± 0.02 2.27 ± 0.18
2P-42 40 87.5% 23.7 ± 0.20 0.27 ± 0.02 2.20 ± 0.15

Table 3.4: Free-running locomotor activity of EMS mutant and wild-type control. Flies
were entrained in light or temperature conditions (as indicated) and then released in DD
and constant temperature (25℃). Free-running period (τ) of rhythmic flies is calculated
and autocorrelation values are shown. RI (Rhythmicity Index) and RS (Rhythmicity
Statistic) determines the statistical significance and strength of the rhythm. RI and RS
> 0.1 and 1.0 respectively, indicate statistical significance (based on autocorrelation).
See Materials & Methods for details. SEM: Standard Error of the Mean.

to wild-type control, after light and temperature entrainment. The phase of the

clock can be reset by the LL to DD transition and we did not address this pos-

sibility for our EMS mutants. However, we calculated free-running rhythmicity

after LD, LL and TC and DD and TC conditions.

Line 2T-30 exhibits a very low rhythmicity in DD after any entrainment con-

ditions. After LD cycles, 42% of flies are still rhythmic; after LL and TC, only

36% shows rhythmicity and the percentage drop to 16% after DD and TC (Table

3.4).

50% of 2T-38 mutant flies are not rhythmic after LD entrainment, while more

than 65% free-run after temperature entrainment (both in LL or DD). In contrast

to 2T-30 this allows determination of the phase of the free-running activity peak
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after TC. Although the flies do not look synchronized during temperature cycles,

the free-running phase follows that of the previous warm phase, suggesting that the

clock is actually entrained and it free-runs in phase with the previous temperature

cycle (see Figure 3.15A and Table 3.3).

Mutant line 2P-42 is weakly rhythmic (44%) after LL and TC, while it free-

runs after LD and DD & TC (more than 80% of flies are rhythmic). The free-

running phase is synchronized to the previous regime, and the rest-activity pattern

during TC resembles that of wild-type (Figure 3.15), indicating that 2P-42 can

entrain to temperature only in DD and not in LL.

Free-running period is slightly longer than 24 hours for all the genotypes (after

any entrainment conditions), with no significant difference among control and

mutants. The only exception is 2P-42 after LL and TC, which free-runs with a

23.7 hr period. Note, though, a low rhythmicity and a large SEM (Table 3.4).

Circadian clocks are temperature compensated. This means that free-running

period is almost invariant over a wide range of physiological temperatures and the

“temperature factor” (Q10) is about 1 (see Introduction and Pittendrigh, 1954).

The mechanism underlying temperature compensation is not known. However,

mutations in the period gene compromise temperature compensation: perL, for

instance, in addition to exhibiting a very long free-running period (27–30 hr) also

has impaired temperature compensation (Konopka et al., 1989 and Figure 3.17).

We investigated whether the EMS mutants exhibited a different free-running

behaviour at different constant temperatures. We first entrained mutant and con-

trol flies to LD and then released them in DD, at three different temperatures:

18℃, 25℃ and 29℃. All EMS-mutants tested show similar period length compared

to the wild-type control (Figure 3.17) and they are all temperature compensated.

Line 2T-30 has a slightly longer period at 29℃ but this is probably reflecting
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Figure 3.17: Average free-running period length of controls and EMS mutants at
different constant temperatures. EMS mutant and wild-type (Canton S) flies are tem-
perature compensated. perL in addition to exhibiting a long free-running period also
lacks temperature compensation (27.2 hr at 18℃, 28.4 hr at 25℃ and 29.5 hr at 29℃).
White columns indicate free-running period of rhythmic flies at 18℃, grey columns at
25℃ and black columns indicate period at 29℃. Error bars indicate SEM. Number of
individuals tested and of rhythmic flies are shown in the table underneath the graph.

the lower number of rhythmic flies at that temperature. Interestingly, the 2T-30

mutant decreases DD rhythmicity with an increase of temperature, while mutant

2T-38 shows the opposite effect (aperiodic behaviour at 18℃). perL mutants, in-

stead, consistently free-run with a long period, which increases with temperature

(27.2 hr at 18℃, 28.4 hr at 25℃ and 29.5 hr at 29℃), i.e. it is not temperature

compensated (Konopka et al., 1989).

3.4 2T-30 is a locomotor output mutant

Given that line 2T-30 is largely arrhythmic in DD after any entrainment condition

(Table 3.4 and Figure 3.18B), we wondered if this mutation affects the central clock

mechanism.

Together with locomotor activity, a different behavioural output of the clock
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Figure 3.18: Locomotor activity of 2T-30 and controls. Average actogram (n=16),
single-fly actogram, autocorrelation, MESA and χ2-periodogram of (A) Canton S and
(B) the 2T-30 mutant. Flies were entrained in 5 LD cycles and then released to DD
(25℃). Autocorrelation, MESA and periodogram are calculated during the DD part of
the experiment only. Data of one representative fly are shown.

is the eclosion rhythm, i.e. the adults emergence from the pupal case. Eclosion

exemplifies a population rhythm that is equally affected by clock mutants (perL,
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Figure 3.19: Eclosion profile of (A) Canton S and (B) 2T-30 during 3 days of a
LD cycle, followed by 4 days in DD (20℃). The ordinates of the two upper plots depict
number of emerging adults per 30 min bin. The total number of eclosed flies is indicated
next to the genotype. Left-hand panel (raw activity) displays the actual number of
eclosed flies, and the right-hand panel displays 4-hr low-pass filtered version of the left
plot (filtered activity). The lower plots show analysis of eclosion rhythms performed in
the same way as that for locomotor activity (see Figure 3.18).
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pers and per01) as locomotor rhythms (Konopka and Benzer, 1971). Figures 3.18

and 3.19 shows a comparison of locomotor and eclosion behaviour of 2T-30 and

wild-type control in a LD to DD experiment. As described above, locomotor be-

haviour of adult 2T-30 flies is largely arrhythmic in DD. The left-hand panel (in

3.18B) shows an average actogram in which the typical locomotor activity during

LD to DD is visible; the activity becomes arrhythmic as soon as the mutant flies

are released to DD. The right-hand panel shows an actogram of a single represen-

tative fly (compare to wild-type control in A). We then investigated free-running

adult-emergence profiles of 2T-30 in the same condition. In a LD cycle, wild-

type flies mainly eclose in the morning, before the dark-to-light transition (Figure

3.19). This rhythm persists in constant conditions, with a period of circa 24 hours

(Pittendrigh, 1954). Both Canton S and 2T-30 exhibited eclosion rhythmicity

(Figure 3.19A–B), and interestingly, 2T-30 exhibited a even “sharper” emergence

peak than Canton S (probably due to different genetic backgrounds. See Chap-

ter 6 for more details about eclosion). The eclosion rhythm of 2T-30 is strong

and persists for several days in DD, with a period of 23.8 hours. The eclosion

rhythm is generated by the central clock located in the brain and in the protho-

racic gland (PG), and particularly the LN neurons and the PG are required to

maintain rhythmicity in DD (Blanchardon et al., 2001; Myers et al., 2003 and

Introduction). The 2T-30 mutation also does not alter rest-activity pattern in

LD. Taken together, these data indicate that the mutation, which characterizes

line 2T-30, does not affect central oscillator genes. The gene mutated reveals a

new component of the locomotor output pathway, in addition to being defective

in temperature entrainment.
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3.5 Uncoordination phenotype

A previous genetic screen led to the isolation of a temperature mutant, named

nocte, affecting temperature entrainment (Glaser and Stanewsky, 2005, 2007). It

has been recently shown by our group that chordotonal (ch) organs are involved in

synchronization of the circadian clock of Drosophila melanogaster to temperature

cycles (Sehadova et al., 2009). In this paper we reported that nocte mutants

exhibit an “uncoordinated” phenotype when exposed at 37℃ for 90 minutes (for

more details see Chapter 7 and Cook et al., 2008), likely caused by fluid loss from

ch organs due to structural defects.

We questioned whether the 2T-30 mutants exhibit a similar phenotype. Fig-

ure 3.20 shows that 2T-30 flies lose the ability to walk properly if exposed to 37℃

for 90 minutes and exhibit an “uncoordinated” phenotype. After increasing en-

vironmental humidity in parallel to temperature (37℃) — by introducing a filter

paper soaked with water in the chamber where the flies were monitored — we

were able to rescue completely their uncoordinated phenotype. Given that the

same phenotype is observed in nocte (Sehadova et al., 2009) and spam mutants

(Cook et al., 2008), and that both genes are affecting the structural function of the

chordotonal organs, it is possible that 2T-30 also has an effect at the structural

level of the ch organs. Further studies investigating morphological and structural

alterations of ch organs will shed light on a possible ch role of this mutant to the

temperature signalling pathway.
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Figure 3.20: Uncoordination phenotype of EMS mutant 2T-30 and control (Canton
S). Flies were raised at 25℃ and then transferred to 37℃ where they were monitored
every 15 minutes for their ability to walk. The percentage of normal walking flies
compared to the uncoordinated ones is shown. A) Mutant flies exposed to heat and low
relative humidity became quickly uncoordinated. B) The uncoordination phenotype can
be completely rescued by exposing the flies to high temperature with high humidity. At
least 3 independent experiments (of 10 flies per genotype each) have been performed.
Error bars indicate SEM. In (B), Canton S and 2T-30 data overlap.
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3.6 Mapping of mutant line 2T-30

3.6.1 Complementation test

The EMS mutagenesis screen led to the isolation of three mutants with impaired

per-luc synchronization to temperature cycles and defects on entrainment of the

locomotor activity to TC. To reveal which genes are affected and elucidate the

molecular basis of temperature entrainment it is crucial to map the mutations.

Given that the chemical-induced mutant line 2T-30 exhibited the strongest

phenotype among the three lines isolated in term of aperiodic per-luc expression,

arrhythmicity of locomotor behaviour in constant conditions and inability to en-

train rest-activity pattern to TC, we decided to initiate our mapping experiments

with this mutation.

The mutagenesis and crossing scheme applied have been performed in order

to isolate putative mutations linked to chromosome 2 and 3 (see Figure 3.2).

According to this scheme, 2T-30 is located on chromosome 2. We first investigated

whether the mutation complemented the other 2nd-chromosome mutants, known

to affect circadian clock. tim01 and vrille1 are central clock mutants (Sehgal et al.,

1994; Blau and Young, 1999) and were our first candidates.

Homozygous 2T-30 flies were crossed with homozygous tim01 and vrille1 flies.

The heterozygous progeny for 2T-30 and tim (or vri) mutations were tested for

their ability to entrain to TC. If 2T-30 affected the same gene as, for instance,

tim01, the progeny would not possess a normal copy of the gene and therefore

would exhibit the mutant phenotype as the parental lines. In contrast, if the gene

affected in line 2T-30 is different from tim (or vri), complementation would occur

resulting in a wild-type phenotype. We also tested a range of 2nd chromosome

transient receptor potential (trp) channel mutants, because they are candidates
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for mediating temperature entrainment (see Chapter 5).

Figure 3.21A–H shows complementation test between 2T-30 with two clock

genes (tim and vri), a TRP channel mutant (trpM) which exhibits temperature

entrainment defects (see Section 5 for more details) and three more TRP channel

mutants which do not show temperature entrainment defects (painless, nompC

and double mutant trp trpl). The wild-type phenotype of the transheterozygous

tim01/2T-30 was only partially restored in this condition (LL and TC). We then

repeated the complementation test and assayed the progeny 2T-30/tim01 in a LD

to DD experiment (Figure 3.21I–K), since tim01 and most of the 2T-30 mutants are

arrhythmic in DD (Sehgal et al., 1994 and Table 3.4). All the tested flies showed

strong rhythmicity in DD conditions, indicating that the two genes complemented

each other and therefore 2T-30 does not affect timeless.

Genetic complementation analysis of 4 trp genes suggests that 2T-30 does

not affect trpM, painless, trp trpl nor nompC (Figure 3.21E–H). Although 2T-

30/pain3 is not completely normal, complementation to the the allele pain1 restores

completely the wild-type phenotype. Both the pain alleles are induced by P -

element insertion in the start region of the pain gene and they are both null

mutation (Tracey et al., 2003).

The attempt to map the mutation by meiotic recombination with second

multiple-marked chromosome which carry recessive mutations associated with

morphological markers in known positions, failed. At the moment of writing a

finer localization of the mutation is being carried out by deficiency mapping cov-

ering all the left arm of chromosome 2.
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Figure 3.21: Complementation test between 2T-30 and 2nd-chromosome mutants
during LL and 12:12 hr – 25:16℃ TC. Rest-activity pattern of (A) Canton S, wild-type
control, (B) 2T-30 mutant control, (C) 2T-30 over tim01, (D) 2T-30 over vrille1, (E)
2T-30 over trpM , (F) 2T-30 over painless3, (G) 2T-30 over painless1 and (H) 2T-
30 over trp trpl. White bars represent average activity during warm (25℃) and grey
bars activity during cold phase (16℃). Number of individual is indicated in brackets.
I,J) Average actogram of y w; tim01/tim01 (n = 12) and y w; tim01/2T-30 (n = 16),
respectively, for 4 days in LD followed by 7 days in DD (25℃). Note that DD rhythmicity
is rescued in the heterozygous flies (100%, τ = 24.1±0.05, RI=0.51±0.02, RS=4.8±0.20).
K) DD analysis of a representative y w; tim01/2T-30 fly.

3.7 Summary

• Screen of 1637 EMS-induced mutant lines analysing per-luc expression in

isolated legs during LL and 12:12 hr 25:16℃ TC.

• Isolation of three lines, 2T-30, 2T-38 and 2P-42, which have impaired per-

luc expression specifically during TC (both in LL and DD) and normal in

LD conditions.

• Locomotor activity of the three mutant lines is affected specifically during
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25:16℃ TC and normal during LD conditions. In particular, they all exhibit

a sharp peak of activity after the increase of temperature and a less pro-

nounced peak of activity in the second half of the warm phase. Statistical

analysis at different and smaller temperature intervals revealed that all mu-

tants exhibit overall defects of entrainment to temperature, but only mutant

line 2T-30 fail to synchronize at 29:25℃ TC when considering the evening

anticipation peak only. In DD and TC, 2T-30 mutants do not synchronize

their locomotor activity to temperature and they are mainly arrhythmic in

constant conditions. 2T-38 flies exhibit mainly a reaction peak to temper-

ature and the entrainment peak is barely visible (and not significant). Line

2P-42, instead synchronize to TC in DD but not in the same extent as

controls.

• Locomotor activity of 2T-30 mutants is mainly arrhythmic in constant con-

ditions, while adult emergence is normal, suggesting that the mutation af-

fects the locomotor output pathway in addition to the temperature entrain-

ment one.

• The mutant line 2T-30 exhibit an “uncoordinated” phenotype when ex-

posed to high temperature and low humidity, suggesting involvement of the

chordotonal organs for the gene affected.

• 2T-30 complement with tim, vri, trpM, pain and double mutant trp trpl in

LL and TC, suggesting that the mutation does not hit any of those second

chromosome genes.
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Chapter 4

Role of the forkhead domain 3F

gene in the circadian clock

4.1 Screen of 148 RNAi lines for defects in the

temperature synchronization of the circadian

clock

In parallel to the chemical mutagenesis screen, we screened a library of RNAi

lines generated by the National Institute of Genetics Fly Stock Center (Japan)

and generously provided by François Rouyer’s group (CNRS, Paris, France).

We combined the UAS-GAL4 system (Brand and Perrimon, 1993) with the bi-

oluminescence assay monitoring real-time per-luc expression in living flies. Driven

by GAL4, the RNAi flies produce double-stranded RNA which induces knock-

down of the specific target gene in vivo. We used a tim-gal4 (line 27) driver

line in order to down-regulate the expression of targeted genes in all clock cells

(tim-expressing cells, see Kaneko and Hall, 2000).
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In Appendix A are listed the 148 lines we screened, which covered 96 different

genes (for most of the genes, 2 independent insertion lines were available). Figure

4.1 shows the crossing scheme we applied to generate flies in which we could as-

say the RNAi lines for their ability to entrain XLG-luc expression to temperature

cycles in constant light. For reasons described in the previous chapter, we mon-

itored per-luc expression in isolated legs, kept in an insect-tissue culture media.

The XLG-luc transgene encodes for the full PERIOD protein (except for the last

10 aa) fused to LUCIFERASE (see Figure 3.1). This construct can partially res-

cue rhythmicity and restore per spatial distribution in a per01 background (Veleri

et al., 2003).

Among the 148 lines screened we isolated one which failed to synchronize per

expression to temperature in isolated legs. tim-gal4 down-regulation of 12632-R2

led to misexpression of per-luc during LL and TC and during LD cycle (Figure 4.2).

The line 12632-R2 affects the gene CG12632 (Flybase annotation symbol) which

encodes the FORKHEAD DOMAIN 3F transcription factor, or FD3F (see below

for more details on the gene). In both LD and TC conditions, XLG-luc expression

is drastically reduced in isolated legs of tim-driven RNAi flies, in terms of cycling

amplitude and overall expression level. The two upper graphs of Figure 4.2 show

the bioluminescence readings of control and fd3F -RNAi-R2, respectively. In TC

Screen of UAS-RNAi library driven by tim-gal4

P: '' UAS-RNAi × ♂ y w
Y

; tim−gal4
CyO

; XLG−luc
TM3

F1: ♂ +
Y

; tim−gal4
UAS-RNAi

; XLG−luc
+

or +
Y

; tim−gal4
+

; XLG−luc
UAS-RNAi

→ to test

Figure 4.1: An UAS-RNAi library was crossed to tim-gal4 (line 27), in order to knock-
down specific genes in all the clock cells. Driver line carries also a per-luc transgene
(XLG-luc, line 1:1). CyO and TM3 are balancer chromosome for autosome 2 and 3,
respectively. ': virgin female flies, ♂: male flies.
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Figure 4.2: XLG-luc bioluminescence expression from isolated legs of fd3F -RNAi-
R2 and control flies in light and temperature entrainment. A–B) LUC readings of
controls and flies in which fd3F is down-regulated by the tim-gal4 driver (line 27),
respectively, during LD cycles (25℃). D–E) per-luc expression during LL and 12:12 hr
25:16℃ temperature cycles. In both conditions, the level of per-luc expression and the
cycling amplitude is drastically reduced in the RNAi line compared the control (which
carries the same XLG-luc). (C, F) To better visualize the effective down-regulation of
the period-luciferase gene caused by the RNAi line, we plotted the same graphs as above
normalizing the bioluminescence reading to the average value for each genotype . Control
XLG-luc: black dashed line. fd3F -RNAi-R2: red solid line. Number of individuals
tested is indicated in each graph with the genotype. In LD graphs, white/black bars
at the bottom indicate light and dark phase, respectively. In TC graphs, red/blue bars
indicate warm and cold phase, respectively. cps: counts per second. ZT: Zeitgeber Time
(ZT0 = lights-on or temperature-up. ZT12 = lights-off or temperature-down).
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conditions, the expression levels are between 1500 and 3000 counts per second

(cps) for the control and between 400–800 cps for the RNAi line. During LD

conditions, the difference is similar, if not even higher: 2000–6000 cps for control

versus 400–1000 cps of the RNAi. Given the very low level of LUCIFERASE

activity in the RNAi flies compared to controls (which carry the same XLG-luc

transgene), we normalized the expression values to the average values for each

genotype (Figure 4.2C,F). This allows a better visualization of the effects of fd3F

down-regulation not only on the overall per-luc expression levels, but also on the

amplitude of per-luc cycling. The amplitude of fd3F -RNAi is 2-fold reduced in

LD and 1.5-fold in TC conditions, compared to control. Note also that the phase

of per-luc expression during LL and TC is 2–3 hours advanced compared to LD

conditions, as we already observed in the previous chapter (Section 3.2).

Analysis of per-luc expression of tim-gal4;fd3F -RNAi-R2 in the whole intact

fly was not performed because tim-gal4:27 -driven fd3F -RNAi expression induces

adult lethality (flies die 2–3 days after hatching, see below).

A second RNAi line targeting the same gene is available, 12632R-1 (Table

A.1). When driven by tim-gal4, it induces adult lethality in the same way as the

line 12632R-2. Analysis of per-luc expression in legs in LL and 12:12 hr 25:16℃

TC gives comparable results, in term of reduction of per-luc expression level and

2-fold decrease of cycling amplitude (Figure 4.3). This suggests specificity of the

phenotype of the line 12632R-2, rather than insertional effects due to the presence

of the RNAi transgene. Given the reproducibility of the phenotype between the 2

lines, the line 12632R-1 was not investigated further.

Hereafter, all the results of this section refer to the line 12632R-2, which we

will call fd3F -RNAi.
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4.2 Behavioural analysis of fd3f -RNAi

Driver Lethality (stage)

tim-gal4:27 Adult day 2–3

tim-gal4:16 Adult day 4–5

tim-gal4:67 Adult day 2–3

nocte-gal4 Pupae

repo-gal4 Pupae

elav-gal4 n.l.

cryBN-gal4 n.l.

Pdf-gal4 n.l.

F-gal4 n.l.

Table 4.1: Different lethality ef-
fects on fd3F -RNAi caused by sev-
eral driver lines. n.l.: no lethality

When the fd3F gene is down regulated with

the tim-gal4:27 driver, flies do not survive the

third day of adult stage, suggesting severe de-

fects induced by the RNAi. Light-microscopy

inspection did not reveal any gross morpho-

logical abnormalities. We tested the effect of

several tim-gal4 lines, which only differ for the

insertional position on the chromosomes but

not for spatial distribution of timeless expres-

sion (Kaneko and Hall, 2000). As stated in

Table 4.1, there is a slight difference between

the onset of lethality induced by line 16 (4–5

days) and lines 27 and 67 (2–3 days). Kaneko

and Hall (2000) showed that the tim-gal4 lines

applied in this study have the same spatial ex-

pression both in larvae and in the adult. However, there could be some slight

spatially differences not detected by Kaneko and Hall and also differences in the

expression level (caused by insertion site).

Since tim-gal4 -induced lethality, locomotor activity of tim-gal4 /fd3F -RNAi

flies is difficult to be analysed and we could monitor only 4 days of activity in

LD conditions. Although it looks as if the morning peak, which anticipates the

transition from dark to light, is missing (or not very pronounced), the LD activity

looks normal and comparable to control (Figure 4.4F).

Expressing fd3F -RNAi with other drivers, which express in different tissues

than tim-gal4, does not induce adult lethality and therefore the rest-activity pat-
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Figure 4.4: Rest-activity patterns of fd3F -RNAi driven by different GAL4 driver lines,
as indicated. Flies were first synchronized to LD cycles for 5–7 days at 25℃ (A–F), then
subjected for 7 days to constant light and 12:12 hr 25:16℃ temperature cycles which
was in opposite phase compared the previous LD (G–K). F) tim-gal4 -driven silencing of
fd3F induces lethality. However, when line 16 is used, flies survive until day 4–5 of adult
stage, so it is possible to monitor rest-activity pattern up to 4–5 days. Only activity
during LD entrainment has been analysed and it is normal. Number of individuals
tested is indicated in brackets.
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terns could be monitored (Figure 4.4 and Table 4.1). When we used the neuronal-

specific driver elav-gal4, which express GAL4 in the CNS and PNS (Luo et al.,

1994), fd3F -RNAi flies can synchronize both to LD and LL and TC with no dif-

ference compared to control (4.4B,G).

Interestingly, a driver widely expressed like elav-gal4 does not kill the flies,

while tim-gal4 does (Table 4.1). This suggests either that FD3F executes essential

functions in non-neuronal tim-expressing cells or that elav-gal4 is not as strongly

expressed as tim-gal4. Moreover, when we silenced fd3F with the nocte-gal4 driver,

which is broadly expressed in the fly, including neurons and glia cells in CNS

(Sehadova et al., 2009), fd3F flies do not hatch (flies die at the pupal stage).

Given that the glia-specific driver repo-gal4 (Sepp et al., 2001) also induces fd3F -

RNAi pupal lethality, we could speculate an essential role for FD3F in glia cells.

We then investigated locomotor behaviour of fd3F -RNAi when down-regulated

by drivers specific to subgroups of clock neurons. CRY is expressed in small-

and large-LNvs, 3 LNds and some DN1 neurons (Yoshii et al., 2009b). If fd3F

down-regulation is restricted to cry expressing cells using a cry-gal4 line (Emery

et al., 2000), flies entrain normally to LD cycles (Figure 4.4C) and to temperature

cycles: the evening peak of activity is advanced and flies are more active during

the cold phase compared to controls (Figure 4.4I). The mean activity during the

cold phase (per 30 minutes interval) is 20.3 for cry-gal4 /fd3F -RNAi versus 9.0 for

the wt control. The overall pattern of activity, in particular if we consider the

anticipation from warm to cold, is normal. We observed similar results when we

crossed pdf-gal4 to UAS-fd3F -RNAi. In this case, fd3F is silenced in the PDF-

positive LNvs (Park et al., 2000). Locomotor activity in LD cycles is again normal

but in TC flies do not exhibit a clear and pronounced evening anticipation of the

transition to 16℃ and flies are more active during the cold phase (mean activity
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28.9).

A more severe temperature entrainment phenotype was seen when we silenced

fd3F with F-gal4 (Figure 4.4K), a chordotonal (ch) organ driver line (Kim et al.,

2003; Sehadova et al., 2009). LD entrainment is not affected (Figure 4.4E) but, in-

terestingly, temperature entrainment in LL is compromised (Figure 4.4K). There

is no evening anticipatory peak but a gradual increase of activity towards the

middle of the day (as in Pdf-gal4 ) but not a clear reduction afterwards. The over-

all level of activity in the cold phase is comparable to the controls (mean activity

12.6) but flies exhibit mainly a reaction to temperature changes, typical phenotype

of “temperature mutants” (Glaser and Stanewsky, 2005; Sehadova et al., 2009).

Although these are preliminary results, and analysis of F-gal4 -driven fd3F -RNAi

need to be addressed more in details and in different conditions, this is very in-

triguing. Our group already reported the importance of ch organs for temperature

entrainment (see further sections and Sehadova et al, 2009). This data suggest

a good potential candidate (a forkhead transcription factor) for TC-dependent

transcription regulation in ch organs (see below and Discussion).

However, it is important to mention that F-gal4 is not expressed exclusively

in neurons of ch organs as reported by Kim et al. (2003), but also in a number

of putative chemoreceptive and mechanoreceptive external sensory organs located

in the legs, labial and maxillary pulpus, wings, haltere and antennae. It is also

expressed in the retina and neurons of the central brain, most prominently within

the antennal lobes (Sehadova et al., 2009). I mention this because the function

of FD3F could be executed in different structures than — or not only in — ch

organs.

Finally we examined whether the down-regulation of the forkhead transcription

factor has any effects on the free-running locomotor activity in constant conditions.
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Genotype n % rhythmic τ (h) ± SEM RI ± SEM RS ± SEM

+;fd3F-RNAi 11 90.1% 24.1 ± 0.2 0.45 ± 0.02 4.3 ± 0.3
cry-gal4/fd3F-RNAi 18 94.4% 24.5 ± 0.1 0.45 ± 0.02 4.3 ± 0.2

Pdf-gal4;fd3F/+ 18 100% 24.4 ± 0.1 0.47 ± 0.03 4.9 ± 0.3

Table 4.2: Free-running locomotor rhythmicity of control (non-driven RNAi line) and
fd3F -RNAi driven by cry-gal4 and Pdf-gal4. Flies were entrained in LD (for at least 3
days) then released to DD and constant temperature (25℃). The free-running period (τ)
of rhythmic flies is calculated and autocorrelation values are shown. RI: Rhythmicity
Index. RS: Rhythmicity Statistic. SEM: Standard Error of the Mean.

When we silenced FD3F with cry-gal4 or Pdf-gal4 and monitored activity in

constant conditions, flies free-run with a strong rhythm and normal period (Table

4.2). This suggests that FD3F does not execute essential clock function in Pdf -

and cry-cells. Since Pdf -expressing ventro-lateral neurons (LNvs) are necessary

to generate DD free-run activity (Frisch et al., 1994; Blanchardon et al., 2001), we

can speculate that FD3F function is not required to generate free-running activity

driven by the Pdf cells.

4.3 FD3F affects PERIOD accumulation in LL

and TC

We showed that tim-gal4 -driven down-regulation of fd3F compromised period-

luciferase expression, both during LD and during LL and temperature cycles. We

wondered whether this is reflected at the protein level, i.e. if temporal PER accu-

mulation is normal or not, as suggested by the abnormal per-luc expression. For

this, we quantified PERIOD protein levels isolated from head-extracts of individ-

uals that have been previously entrained in LD or LL and TC, at 4 hr intervals.

We showed that tim-gal4:16 driven knocked-down of fd3F induces adult lethal-

ity at day 4–5, thus we entrained flies to different environmental conditions from
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A B
LD LL and TC

ZT 1 5 9 13 17 21 1 5 9 13 17 21

Control

fd3F -RNAi

C

Figure 4.5: Quantification of PERIOD amount in head-extracts of fd3F flies and
controls. Western blot of PER protein extracted from equal amount of heads from flies
entrained for 4 days in LD (A) or LL and 12:12 hr 25:16℃ temperature cycles (B).
tim-gal4 line 16 was used to silence fd3F in clock cells. tim-gal4/fd3F -RNAi flies have
been entrained since eclosion, due to early lethality in adult stage (see Table 4.1). C)
Quantification of PER in fd3F -RNAi and control flies from 3 independent experiments of
20-25 individuals each. Error bars indicate SEM. “Control” is the non-driven parental
line fd3F -RNAi. ZT: Zeitgeber Time (ZT0 is lights-on or temperature-up. ZT12 is
lights-off or temperature-down).

the time of eclosion, in order to have enough days of entrainment before the flies

died.

During LD entrainment, PER protein oscillates with a peak at ZT21 and

trough at ZT9, both in control and in tim-gal4/fd3F -RNAi flies (Figure 4.5).

In the RNAi flies, we observed a slight extension of the PER trough (until ZT13),

even though with a prominent error, indicating non-continuity between indepen-

dent experiments. These data are conflicting with the previously described per-luc
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oscillation results, which indicated defects on per expression also in LD conditions.

However, per-luc expression has been monitored in isolated legs, while the PER

protein has been quantified from head-extracts.

During LL and TC entrainment, PER protein in wild-type heads oscillates

with a smaller amplitude compared to LD conditions (Figure 4.5B–C), and the

protein peaks 2–3 hours earlier (compare also Glaser and Stanewsky, 2005). This

fits well with the advanced peak of per-luc expression and the earlier evening peak

of locomotor activity in LL and TC compared to LD entrainment, described in the

previous chapter (Section 3.2). PER in fd3F -RNAi flies, is highly accumulated and

it seems to weakly oscillate with opposite phase compared the control, but with no

statistical significance (p > 0.05, 1-way Anova). It is also difficult to distinguish

different PER bands corresponding to the different forms of the phosphorylated

protein (compare control at ZT1, for instance, and Edery et al., 1994), suggesting

defects in PER phosophorylation and subsequent degradation during the warm

phase of TC.

4.4 fd3F alters the phase of eclosion

RNAi-mediated down-regulation of fd3F in all clock cells (via tim-gal4 ) induces

early lethality and therefore behavioural analysis of the knocked-down flies is re-

stricted to a few days only. Therefore, we opted to investigate another circadian

rhythmicity to complement the limited locomotor rest-activity pattern analysis.

We investigated the eclosion activity of fd3F -RNAi flies driven by tim-gal4

during LL and TC conditions. Pupae of Canton S wild-type cultures synchronize

their eclosion rhythm to TC in 2 days and the peak of emergence occurs towards

the end of the cold phase (Figure 4.6A–B). We silenced fd3F with 3 different
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tim-gal4 driver lines (16, 67 and 27, see M&M), and then monitored the eclo-

sion activity during LL and TC entrainment. The eclosion occurs rhythmically,

synchronized with TC, but with a different phase compared the control. The

flies eclose mainly during the warm phase (25℃) and no distinct eclosion peak

is visible (Figure 4.6C–E). We did not observe any difference of eclosion activity

when different tim-gal4 lines were used to silence fd3F. Therefore, we could com-

bine the results of the 3 independent experiments in a single plot in which the

phenotype was even more prominent (Figure 4.6F). Control cultures move their

eclosion phase from the previous “LD-entrained” to the “TC-entrained” in the

first 2 days, and they stabilize their phase with the temperature cycles from day

3. In contrast, fd3F -RNAi cultures always (and immediately) hatch in the warm-

phase. Although this might be interpreted as lack of entrainment, analysis of the

clock mutant per01 suggests that fd3F -RNAi exhibits a difference of eclosion phase

rather than lack of synchronization (see chapter 6, Figure 6.2 and Discussion).

Figure 4.6 (preceding page): Eclosion profiles of control and fd3F -RNAi cultures in
LL and TC. A–F) The left columns show double-plot actograms of flies emerged during
LL and 12:12 hr 25:16℃ TC, which was in opposite phase compared to the previous LD
entrainment. Only the last dark cycle of the previous LD entrainment is indicated (in A–
D). The two right-hand columns depict, respectively, the total number of flies emerged
as a function of time (“raw activity”, middle plot) and 4-hr low-pass filtered versions of
the middle plots (“filtered activity”, right-hand plot, see M&M for more details). The
total number of flies emerged is indicated in brackets next to the genotype. Shaded areas
refer to temperature conditions (grey shading: 16℃; white shading: 25℃). A–B) Canton
S and y w control flies synchronize eclosion to TC in 2 days and, once synchronized,
exhibit peak of emergence during the last part of the cold phase (ZT22–23). C–E)
fd3F -RNAi driven by tim-gal4 eclose with a different phase, emerging mainly at 25℃,
regardless of the tim-gal4 line used (16, 67 and 27, respectively). We thus combined the
3 independent experiments (F) to better visualize this phenomenon. G) Quantification
of number of flies eclosed during the warm phase (white bar) compared the cold phase
(grey bar). There is a statistically significant preference (F(1,2)=26.88, P<0.05, two-
way ANOVA) in fd3F -RNAi to emerge during the warm phase compared to control
flies. Plot generated from average of 3 independent experiments. Error bars indicate
SEM.

119



CHAPTER 4. ROLE OF FD3F

To support the idea that tim-gal4 /fd3F -RNAi has a different eclosion phase,

we calculated the number of flies eclosed during the warm phase, compared to

the ones emerged in the cold. Figure 4.6G shows a striking difference between

the number of fd3F -RNAi flies which eclose during the warm phase (66 ± 5.6%)

compared the control (32 ± 5.8%). The analysis of variance between the RNAi

line and control reveals statistical significance (F (1,2)=26.88, P<0.05, Two-way

Anova).

The eclosion profile of fd3F -RNAi, induced by tim-gal4 (line 67) has been

monitored in free-running conditions (Figure 4.7). After LD entrainment, control

flies (Canton S and y w, in our case) emerge rhythmically in DD with a strong

period of circa 24 hours (24.5 and 23.8 hours, respectively). fd3F -RNAi flies also

eclose rhythmically in constant conditions, with a period of 24.3 hours, although

the rhythm is not as strong as in the control flies: the profile is “noisier” and the

peak less “sharp” compared to control, which is also indicated by the lower RS

values.

The eclosion peak of wt cultures is centred to the transition between the sub-

jective dark- to light-phase, following the pattern of eclosion during LD cycles,

where the majority of flies emerge at dawn (Figure 4.7 and Qiu and Hardin, 1996).

Interestingly, fd3F knocked-down flies eclose mainly during the whole part corre-

sponding the subjective day, and the peak is “broader” and centred at the middle

of the subjective light-phase. This correlates with the eclosion activity during TC,

which is phase-shifted (towards the warm phase) compared to the controls (Figure

4.7 and 4.6).

It has been shown previously that mutants can affect the phase of eclosion. Mu-

tants for the RNA-binding protein LARK, for instance, exhibit an early-eclosion

phenotype: lark mutant eclose several hours earlier than control both during LD
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Eclosion of control and fd3F -RNAi cultures in free-running conditions
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Figure 4.7: Flies were entrained in LD and then released to DD (at 20℃). Only the last
cycle of LD is included in the plot. The 3 left-hand columns are as described in Figure
4.6. The most right-hand plot depicts the autocorrelation values calculated for the DD
part only. A) y w and (B) Canton S flies exhibit free-running rhythm with a period of
23.8 and 24.5 hr, respectively. C) tim-gal4/fd3F -RNAi (line 67) eclosed rhythmically
with a period of 24.3 hr. Number of flies eclosed is indicated in brackets. D) Eclosion
activity of the cultures depicted in (A–C) to which a 5-point moving average has been
applied. fd3F -RNAi flies eclose with a later phase compared to controls (arrows). Light-
and dark-grey areas indicate subjective days and nights, respectively.
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and TC entrainment (Newby and Jackson, 1993). Accumulation of the clock

proteins PER and TIM in lark mutant is normal as well as locomotor activity,

suggesting that LARK acts specifically on the “eclosion output pathway” of the

clock (McNeil et al., 1998; Schroeder et al., 2003). Our data, however, indicate

abnormal PER-LUC expression and PER accumulation in fd3F -RNAi adults, to-

gether with the delayed-phase of eclosion and abnormal behaviour of adults during

TC (when driven by F-gal4 ). The transcription factor nature of the gene, sug-

gests more a role on clock gene expression, rather than on the output pathway

(see Discussion).

4.5 Role and function of forkhead transcription

factors

In the RNAi screen, monitoring real-time per-luc expression in tissue cultures

kept in LL and TC, we isolated the line CG12632 as showing impaired period

synchronization. The line affects the gene forkhead domain 3F (or fd3F ) which

encodes a forkhead domain containing protein. What are forkhead proteins?

Forkhead domains, known also as “winged helix”, are a family of DNA-binding

domains highly conserved between different eukaryotic transcription factors, from

yeast to humans (Lai et al., 1993). They were first discovered in Drosophila as

proteins required for the proper development of the terminal structures of the

anterio- and posterio-gut. forkhead mutants fail to develop correctly and the em-

bryo shows a “spiked head” — hence the name (Weigel et al., 1989). While the

detailed temporal and spatial expression of forkhead domain proteins differ, they

are expressed in many, if not all, tissues (Lai et al., 1993). The mammalian coun-

terparts of Drosophila’s forkhead proteins are Hepatocyte Nuclear Factor-3 (HNF-
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3), named because they are required to activate specifically expression of genes

in the rat and mouse liver (Clark et al., 1993). Interestingly, mammalian HNF-3

transcription factors are under the control of the circadian clock and their expres-

sion is regulated by clock-controlled gene (CCG) promoters (Bozek et al., 2009).

HNF-3 mRNA expression is reduced by the Clock mutation and up-regulated in

Cry-deficient mice (Oishi et al., 2003).

In Drosophila there are 17 forkhead domain protein encoding genes. Only 6 of

them are characterized and studied; Those include forkhead (fkh), sloppy paired 1

(slp1 ), sloppy paired 2 (slp2 ), crocodile (croc), jumeaux (jumu) and biniou (bin)

(reviewed by Kaufmann and Knochel, 1996; Lee and Frasch, 2004). Phylogenetic

analysis with each other and with mouse orthologues allows classification of 13

members (out of 17) to 10 subgroups (Figure 4.8). The classification considers

sequence comparison with forkhead domain in mouse and rat rooted with the

forkhead domain sequence from the yeast protein Fhl1p as an outgroup (Lee and

Frasch, 2004). The remaining 4 genes cannot be grouped within any subclass

that are known in chordates, and are named according their cytological position

(Lee and Frasch, 2004). One of these 4 is fd3F which maps to position 3F on

chromosome X (3F2 ), and it does not have a mouse homologue.

fd3F mRNA expression is broadly distributed during early embryonic stages

(until stage 12, see Figure 4.9, taken from Lee and Frasch, 2004). Interestingly, af-

ter stage 12, fd3F expression is restricted to a subgroup of cells which, based upon

their position and arrangements, corresponds to chordotonal sensory organs and

their precursor (Lee and Frasch, 2004). These observations are in good agreement

with our findings, which showed that F-gal (ch organ-specific) down-regulation of

fd3F exhibits defects of synchronization of locomotor behaviour to temperature

cycles (Figure 4.4K).
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Figure 4.8: Phylogenetic tree of Drosophila and mouse forkhead domains. The tree
is constructed from sequence alignment of all Drosophila forkehaed domains with each
other and and with mouse orthologs, using the forkhead domain sequence from the
yeast protein Fhl1p as an outgroup. Drosophila proteins are shown in black boxes. CG
numbers refer to Computed Gene Products as predicted by the Berkeley Drosophila
Genome Project (BDGP). The bar denotes 10% divergence. Nodes with a bootstrap
value of < 50% are unmarked, those at 50–75% are marked +, 77-95% ++, and 95-100%
+++. This figure is taken from Lee and Frasch (2004).
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Figure 4.9: mRNA expression pattern of fd3F gene in Drosophila embryos. v) Stage 10
embryo with uniform fd3F mRNA expression, w) ventral view of early stage 12 embryo
with fd3F mRNA expression in chordotonal sensory precursor cells and (x) lateral view
of stage 15 embryo with expression in chordotonal organs. Figure taken from Lee and
Frasch (2004).

Given that ch organs are required for clock entrainment to TC (Sehadova

et al., 2009), we can speculate that fd3F plays a role in this mechanism and

in these structures. The transcription factor nature of the protein suggests a

possible regulation of important target genes required for temperature entrainment

(nocte?), which, so far, are mainly unknown.

It has been reported that a gene related to the class of forkhead domain tran-

scription factors is involved in circadian rhythm. Circadianly Regulated Gene 1

(Crg-1 ) is circadianly expressed with the same phase as per and tim and its spatial

distribution overlaps with that of per — at least in Drosophila heads (Rouyer et al.,

1997). Interestingly, genomic sequence analysis of different Drosophila species

showed that Crg-1 is a chimeric gene originating from a genomic duplication and

fusion of the fd3F and Tousled-like kinase (tlk) genes (Hogan and Bettencourt,

2009 and Figure 4.10). fd3F is present in all the Drosophila species according to

this study, while Crg-1 is absent in evolutionary related species like D. simulans

and D. yakuba and appears only in D. melanogaster (which originated ∼2.3 mil-

lion years ago) (Hogan and Bettencourt, 2009). This explains why Crg-1 exhibits

high sequence similarity with fd3F. However, even if Crg-1 probably acquired the

novel function as circadian regulator only after the duplication event (Hogan and

Bettencourt, 2009), we can not exclude a possible circadian regulation for fd3F as
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Figure 4.10: Schematic of the duplication model for the fd3f locus. Ancestral con-
dition of closely related Drosophila species contain single copies of tlk, HIP, CG32779,
and fd3F. Only D. melanogaster possesses the duplication. An unequal crossover event
gave rise to a region composed of seven genes through the complete duplication of HIP
and CG32779 and the formation of a new gene, Crg1, through the fusion of portions of
tlk and fd3F. This figure is taken from Hogan and Bettencourt (2009).

well.

Analysis of protein interaction libraries based on genome-wide yeast 2-hybrid

data, reveals putative interactions of FD3F with 2 proteins: NINAE and X11L. We

considered three independent Drosophila interaction databases, BioGrid (Stark

et al., 2006), IntAct (Hermjakob et al., 2004) and Mint (Zanzoni et al., 2002): the

three of them indicated identical putative interactions.

The neither inactivation nor afterpotential E (ninaE ) gene encodes the major

visual pigment protein (Rhodopsin 1) contained in Drosophila photoreceptor cells
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R1–R6 (O’Tousa et al., 1985). ninaE mutants lack the rhodopsin protein Rh1

and although the light-sensitivity of the mutant is reduced in circadian context

(Stanewsky et al., 1998), it does not affect the light-dependent degradation of TIM

(Yang et al., 1998).

The Drosophila X11L is homologue to the mammalian X11L proteins, which

interact with the cytoplasmic domain of the amyloid precursor protein (APP) and

act as adapter proteins during the regulation of neural function (Hase et al., 2002).

X11L plays an important role in the preservation and/or degeneration of neuronal

functions (Hase et al., 2002). In Drosophila, the expression of the X11L is neural

tissue-specific, and its overexpression results in destruction of the eye morphology

probably due to enhanced developmental apoptosis (Hase et al., 2002; Vishnu

et al., 2006).

Based on these observations, it is difficult to speculate a role for FD3F, in

particular, it is not known whether fd3F is co-expressed with ninaE and/or x11l.

Furthermore, the interactions are suggested by databases which are based on the

yeast system and thus the interactions may not occur in vivo.

4.6 Summary

• tim-gal4 -driven knock-down of fd3F reduces the expression level and cycling

amplitude of per-luc both during LD and TC conditions.

• PER protein during TC is not cycling and is highly expressed throughout

the day, while it is normal in LD conditions.

• Adult tim-gal4 down-regulated flies do not survive more than 4–5 days after

hatching and display a normal locomotor activity in LD.
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• F-gal4 -driven down-regulation compromises the ability of the flies to syn-

chronize their rest-activity pattern to TC.

• fd3F embryonic expression is restricted to ch organs suggesting an active

role for the transcription factor in development of the ch organs, supporting

the observation of locomotor synchronization defects of the RNAi line when

driven by F-gal4.

• Eclosion activity is rhythmic in DD conditions, and therefore the central

oscillator is not affected. However, tim–gal4 -driven fd3F -RNAi flies eclose

mainly during the warm phase in temperature entrainment conditions with

implications to the regulation of eclosion phase.

128



Chapter 5

Involvement of TRP channels in

temperature synchronization of

the circadian clock

5.1 Background

In the previous chapters, we described two screens we performed in order to iso-

late novel components playing a role in the entrainment of the circadian clock of

Drosophila melanogaster. The screens were based on random chemical mutage-

nesis and screen of RNAi library, respectively. These two approaches, although

different, share very similar principles, i.e. “forward genetics”. This means that we

started inducing mutants (or making use of available RNAi libraries) and screen

for a phenotype — in our case, defects of entrainment of the circadian clock to

TC. The mutation responsible for the mutant phenotype is then identified (step

unnecessary in the case of the RNAi screen) and further analyses are conducted

to determine the role of the gene affected and the function being studied.
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CHAPTER 5. TRP CHANNELS

The work described in this chapter made use of a “reverse genetics” approach.

Instead of searching for the genetic basis of a particular phenotype (defect of tem-

perature entrainment), we used a candidate gene approach. For this, we utilized

the RNAi technique (and the availability of genomic RNAi libraries), and specific

mutants to knock-out (or knock-down, in case of RNAi) genes which we thought

might be possible candidates for playing a role in the temperature entrainment

mechanism.

The transient receptor potential (TRP) family of cation channels are ubiqui-

tously involved in sensory physiology. They are highly conserved between organ-

isms, from nematodes to human and they respond to light, temperature, touch,

pain, sound, humidity and mechanical stress (reviewed by Clapham, 2003; Montell,

2005; Minke and Parnas, 2006; Hardie, 2007).

In Drosophila there are 13 trp channel encoding genes, belonging to 7 different

subgroups, or classes (Table 5.1). Most of them have been implied to function in

several physiological sensory responses (Table 5.1).

Although the mechanisms underlying the temperature synchronization of the

circadian clock is only poorly understood, it is reasonable to imagine the require-

ment of temperature sensors, able to “sense” and transmit the temperature in-

formation from the external, environmental world, to the internal, physiological

environment (and thereafter, to the central clock). Given the distribution and

variety of TRP channels in sensory physiology, they were our first candidates as

putative components for the temperature input pathway to the circadian clock.
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5.2 Analysis of RNAi targeting trp genes

Our “reverse genetic” approach involved the use the RNAi technique of available

lines (see Table 5.1) combined with the biolominescence assay, monitoring real-

time expression of per-luc transgenes in living flies. We silenced trp channel genes

in all clock cells, crossing RNAi lines with a tim-gal4 driver (line 27, Kaneko and

Hall, 2000). Flies were monitored in our automated bioluminescence assay for their

ability to synchronize per-luc (XLG-luc) in LL and 12:12 hr 25:16℃ TC. Initially,

we restricted our analysis to monitoring per-luc expression in isolated legs. Among

the 23 RNAi lines available (covering 11 different genes) we did not observe any

major defects of per-luc expression during LL and TC (data not shown).

We wondered if this was a false negative determined by the nature of the

RNAi technique with the combination of the tim-gal4 driver line. RNAi does not

induces null mutation of targeted genes and the expression pattern of many TRP

channels is not known. It is possible that a more comprehensive driver might be

more useful. We extended out investigation to several mutants available against

trp channel encoding genes (Table 5.1). To our knowledge, there is not so far

any study which connects the TRP channels family to the circadian clock, with

the exception of trp and trpl in the phototransduction cascade required for the

Drosophila visual system (Niemeyer et al., 1996; Yang et al., 1998).

5.3 Behavioural analysis of trp mutants

5.3.1 Behaviour analysis in constant light and TC

We analysed 12 mutant lines, targeting 7 trp encoding genes, for their ability to

entrain locomotor activity to TC. Flies were entrained in LD first and then released
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in LL and TC, which were in opposite phases compared the previous LD cycles

(Figure 5.1). One line exhibited entraining defects in LD cycles. nan36a does

not synchronize to LD but rather reacts to lights-on and lights-off: High peaks of

activity arise just after the change of conditions, with a lack of typical anticipatory

patterns both in the morning and in the evening (Figure 5.1B). Interestingly,

during LL and TC the activity looks more “normal”(Figure 5.1O), although the

evening peak of activity arises later and persists more during the cold phase,

compared to control (Figure 5.1N). A second allele affecting the same nanchung

gene (nandy5) also lacks the anticipatory activity from dark to light, whereas the

evening peak of activity is normal in both LD and LL and TC (Figure 5.1C, P).

nan has been identified as a TRP channel required for hearing, and is expressed

in larval and adult chordotonal organs (Kim et al., 2003). nan36a and nandy5

were generated by P -element imprecise excision and lack the first intron, and the

first four introns, respectively (Kim et al., 2003). The two mutants alleles have

been reported to be sedentary and mildly “uncoordinated” (Kim et al., 2003), and

this might explain the inability of nan36a to properly synchronize to LD cycles.

However, this is not the case for the allele nandy5, which is normal.

Another line exhibits minor entrainment defects both during LD and TC con-

ditions. The double mutant trpl302; trpP343 affects the 2 related TRP channels trp

and trpl genes, which are components required for the visual phototransduction

cascade (Niemeyer et al., 1996). During LD conditions, trpl302; trpP343 flies an-

ticipate the light-dark transitions but their behaviour lacks a pronounced siesta

and flies are instead very active during the whole day (Figure 5.1M). Also during

LL and TC the activity is not normal, the flies are more active during the warm

phase and the peak of activity that usually anticipates the transition from warm

to cold is (if present at all) advanced (Figure 5.1Z).
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LL and 12:12 hr 25:16℃ Temperature Cycles
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The trpl;trp double mutant is visually blind but the circadian clock can still be

reset by light (through non-visual light signalling, i.e. CRY) but the light-induced

TIM degradation is attenuated (Yang et al., 1998). It has been reported that

the trpl302; trpP343 double mutants have impaired cold avoidance behaviour, when

mutant larvae are let to choose between room-temperature and cold-temperature

(15℃) in a thermal gradient (Rosenzweig et al., 2008).

Among the lines tested, we found 4 mutant lines (affecting 3 genes) which

showed abnormal locomotor activity specifically during TC conditions. Mutants

for pyrexia (pyx ), trpM and TrpA1 have normal LD behaviour but fail to syn-

chronize to TC: no anticipatory activity for the transition from warm to cold and

a pronounced startle response after temperature step-up (TrpA1 ) or step-down

(pyx and trpM ). For pyrexia, two different alleles show very similar results, to-

gether with the transheterozygous line pyx2/pyx3, indicating that the phenotype

is specific to the pyrexia gene.

The pyx mutants have been isolated in a screen aimed to isolate thermopref-

erence mutants (Lee et al., 2005). The channel is made of two isoforms, PYX-PA

and PYX-PB, resulting from alternative transcripts. pyx2 is characterized by a

P -element inserted 538 bp upstream from the first translation codon which greatly

decreases the expression of the PYX-PB transcript and increases that of the PYX-

PA. pyx3, which has been induced by P -element hopping, is a null allele, and it

Figure 5.1 (preceding page): Daily average profiles of TRP channel mutants during
LD cycles and LL and TC. Flies were first synchronized in 12:12 hr LD cycles at 25℃
(A–M) and then subjected to LL and 12:12 hr 25:16℃ TC (N–Z) which were in opposite
phase compared to the previous LD. All the genotypes included in the figure have been
tested at least twice, with reproducible results. trpM (D, Q), TrpA1 (G, T) and pyx
(H–J, T–W) lines display mutant phenotype specifically in LL and TC (and not in LD
conditions). See text for more details. Grey shading represents activity during dark-
phase in LD or cold-phase in TC. Number of individuals is indicated in brackets next
to the genotype.
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does not express any of the two PYX transcripts (Lee et al., 2005). pyx mutant

flies do not distribute normally when they are subjected to a temperature gradi-

ent, they are less responsive to heat stress and they paralyse faster than wild-type

if exposed to noxious warm temperature (40℃) (Lee et al., 2005). It has also been

shown by Lee et al. (2005) that PYX channels are gated by temperature, at least

when expressed in X. leavis oocytes or HEK cells. In vivo studies of PYX distri-

bution revealed that it is widely expressed in larval central and peripheral nervous

system (Lee et al., 2005). In the adult, it is expressed in both multidendritic

(type II) and nonmultidendritic (type I) sensory neurons innervating bristles, in

the maxillary palps, proboscis, and antennae (Lee et al., 2005). A more recent pa-

per (Sun et al., 2009), studying the function of different TRP channels in geotaxis

within the chordotonal neurons of Johnston’s organ (which is the specialized organ

for hearing, located in the antennae, see Introduction), revealed the expression of

pyx in the cap cells of the scolopidium.

The trpM mutant is caused by a P -element insertion (Flybase symbol P-

{EPgy2}CG34123EY01618) in the coding region of the CG34123 gene, or trpM.

TRPM has been recently described as required for magnesium (Mg2+) intake in

the Malpighian tubules (Hofmann et al., 2010). Given that two mutants alleles

generated by Hofmann et al. (2010) are pupal lethal, the allele we used (named

trpM ) is presumably hypomorphic. In our assay, trpM exhibits a very similar

phenotype to the pyx mutants. It belongs to the TRPM class and trpM mutant

flies are normal in a thermopreference assay (Rosenzweig et al., 2005). The mam-

malian ortholog to trpM is TRPM3, which is activated by cell swelling (reviewed

by Kraft and Harteneck, 2005). The other six members of the mammalian TRPM

class are associated with taste transduction, sensation of cool temperatures and

Mg2+ absorption in the intestine (Hofmann et al., 2010).

137



CHAPTER 5. TRP CHANNELS

TrpA1 has been already described as a TRP channel required for warm avoid-

ance in Drosophila larvae (Rosenzweig et al., 2005, 2008) and adults (Hamada

et al., 2008). TrpA1ins null mutant has been generated via site-directed inser-

tional disruption which change its reading frame resulting in a truncated protein

(Hamada et al., 2008). TrpA1 is expressed in three groups of cells in the adult

brain, the anterior cells (AC), the ventral cells (VC) and the lateral cells (LC)

neurons, but only the AC neurons (which projects to the antennal lobe) seem to

be necessary and sufficient to restore normal thermopreference in TrpA1 mutants

and to act as “internal” thermosensors (Hamada et al., 2008) in addition to the

“external” one, located in the third antennal segment (Sayeed and Benzer, 1996).

Recently, TRPA1 has been proposed to be required for chemical nociception and

TrpA1 mutants fail to respond to reactive electrophiles, i.e. allyl isothiocyanate,

N -methylmaleimide or cinnamaldehyde (Kang et al., 2010).

5.3.2 Behaviour analysis at different temperature intervals

The different TRP channels can be activated and respond to warm and cold in

a wide range of temperatures (Montell and Caterina, 2007). To address whether

certain genes or mechanisms operate in restricted temperature intervals, and to

identify the specific role that each isolated trp mutant plays in the process of

temperature entrainment of the circadian clock, we investigate the locomotor be-

haviour at different and smaller temperature intervals than the one utilized previ-

ously. We first entrained the flies to 12:12 hr LD cycles and then monitored their

activity in LL and three different TC: 29:25℃, 25:20℃ and 20:16℃.

Figure 5.2 shows the locomotor activity of the four TRP channel mutants and

controls in LL and different temperature intervals. Flies were first entrained in LD

(25℃) then transferred to LL and 12:12 hr 29:25℃ TC for 5 days. Subsequently,
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Figure 5.2: Locomotor activity of TRP channel mutants and controls in LL and
different temperature intervals. The plot on top depicts average actograms. The lower
plots depict daily average activity (left) and a low-pass filtered version of the same plot
(right) from which the average peak phase (in ZT) has been extrapolated (and depicted
in Table 5.2), in LL and 12:12 hr 29:25℃, 25:20℃ and 20:16℃ TC, respectively (as
indicated). Flies have been entrained in LD first and then subjected to LL and the
different temperature intervals, each of those were 6-hr phase delayed compared to the
previous conditions (see shaded areas in the actogram). LD part is not shown. The
experiment has been performed twice. In the second repetition, the TC intervals have
been applied in the reverse order, i.e. from 20:16℃ to 29:25℃. The results were similar,
excluding that ageing effects caused the failure of entrainment during the cold interval
(data not shown). Shaded areas (grey in the actograms and daily average or blue in
the peak-phase plots) represent activity during the cold-phase. Number of individuals
tested is indicated in brackets.
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trpM : F(22,529)=2.66, P< 0.0001

Figure 5.3: Daily average activity of controls (red line) and TRP mutants (green,
blue, grey and black, as indicated) during the warm-phase only in LL and different
temperature intervals of the histograms depicted in Figure 5.2B–D, F–H, J–L, N–P,
R–T. Two-way Anova was performed to determine statistical interaction between Can-
ton S (CS) control and each TRP mutant lines in the range ZT 0–12. Coloured bars
underneath represent the time points in which the respective mutants show significant
difference compared to Canton S control (Bonferroni posttest P< 0.05).

the temperature regime was then changed to 25:20℃ and delayed by 6 hr compared

the previous regime. After 6 days, the temperature cycles regime was shifted

again by other 6 hr (delay) and changed to 20:16℃. Activity was first analysed

by monitoring both actograms and histograms (Figure 5.2). Subsequently, by

overlapping the daily activity of the mutants and control in the same plot and

performing a Two-way Anova to determine statistical interactions of each mutant
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with the controls in the warm phase only (Figure 5.3). In addition, the phase of

the activity peak and amplitude of the rhythm were calculated (Table 5.2).

Canton S flies entrain their locomotor activity to any of the three temperature

intervals. As described in the previous chapter (Section 3.3.1) Canton S flies nicely

display the effect of “seasonal adaptation” of behaviour to different temperature

intervals (Figure 5.2A–D, Figure 5.3 and Table 5.2).

TrpA1ins flies do not entrain at 20:16℃ TC and 25:20℃ TC and very weakly, if

at all, at 29:25℃, but not in a way comparable to controls (Figure 5.2E–H). Two-

way Anova finds highly significant interaction with Canton S at any temperature

intervals (Figure 5.3) and the pattern of activity during the warm phase is weakly

cycling (amplitude 2.8) only at 29:25℃, whereas it is not rhythmic at 25:20℃ and

at 20:16℃ TC (Table 5.2). To support this observation, note that the main peak

of activity occurs just after temperature changes (phase values in Table 5.2).

Analysis of actograms and histograms of pyx2 flies revealed that they synchro-

nize their rest-activity pattern to temperature cycles in the warm range (29:25℃),

very weakly in the mid range (25:20℃) and not in the cool (20:16℃). Two-way

Anova suggests significant difference from control at any temperature intervals

and this can be explained by the different phase of activity: the peak of evening

activity during 29:25℃ occurs 2.5 hours earlier than in controls and 1.5 hours

later during 25:20℃ TC (Table 5.2). In the cold range, pyx2 activity is flat (am-

plitude not significant) and flies do not exhibit any peak of activity in terms of

anticipation of the warm-cold transition (Figure 5.2L Figure 5.3 and Table 5.2).

The behaviour of pyx3 mutants resembles very much that of pyx2: entrainment

in 29:25℃ and 25:20℃ intervals, but not at 20:16℃ TC. The phase of activity

in the two higher temperature intervals occurs two hours earlier than control,

resulting in an significant difference of the overall activity compared to control
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when Anova is performed (Figure 5.3). This is supported also by the overall higher

level of activity of the mutants compared to Canton S in all the three temperature

intervals. Activity in the cold range (20:16℃) is flat (amplitude not significant),

and flies are not synchronized. The PYX channel is required for warm avoidance

and the mutants lack the ability to react to noxious warm (Lee et al., 2005), so one

would expect inability to entrain in a warm temperature interval. Yet our results

reveal the opposite effect on temperature entrainment: both pyrexia mutant alleles

we assayed entrain to 29:25℃ TC but not at all at 20:16℃.

trpM mutants entrain normally to LL and 25:20℃ TC, in a way comparable to

control (Figure 5.2 and Figure 5.3). Similarly to pyx2 and pyx3, the shape of the

daily average activity during 29:25℃ TC is similar to that of wild-type control,

but the phase is 2 hours earlier and the activity level higher, resulting in an overall

statistically significant interaction with control. trpM mutants fail to synchronize

their activity to the cold interval 20:16℃: the activity pattern is flat (amplitude

not significant, Table 5.2) and it exhibits only a sharp increase when temperature

drops to 16℃ (Figure 5.2 and Figure 5.3).

Looking at the actograms in Figure 5.2, one could argue that the mutants

inability to synchronize their behaviour in the cold interval 20:16℃ could be con-

sequence of ageing effects, since the cold temperature interval occurs at the end

of the experiment. To address this question, the same experiment was performed

with opposite temperature regimes, i.e. starting with the cool range 20:16℃ and

increasing up to 29:25℃. The results were comparable and the mutant lines showed

the same activity patterns, regardless of the order in which the temperature in-

tervals had been applied (data not shown).
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LL and Temperature cycles

Phase Amplitude

25:16℃ 29:25℃ 25:20℃ 20:16℃ 29:25℃ 25:20℃ 20:16℃
Canton S 10.8 12.8 10.8 8.3 18.4 38.2 8.9
TrpA1ins 1.3 12.8 12.8 0.8 2.8 ns ns
pyx2 12.3 10.3 12.3 11.3 11 0.7 ns
pyx3 12.8 9.8 8.8 10.3 7 2.8 ns
trpM 13.3 9.8 10.8 12.3 6.2 6.1 ns

DD and Temperature cycles

Phase Amplitude

25:16℃ 29:25℃ 25:20℃ 25:20℃ 29:25℃ 25:20℃ 20:16℃
Canton S 3.3 1.8 1.8 3.8 16.5 16.4 8.8
TrpA1ins 1.8 1.3 2.3 2.3 7.9 12.5 8.5
pyx2 2.3 0.3 9.8 2.3 6.9 3.6 23.9
pyx3 1.8 0.3 1.3 1.8 3.6 2.1 2.8
trpM 2.3 1.3 2.8 4.3 14.1 16.9 26.7

Table 5.2: Summary of peak phase and amplitude of locomotor activity in LL or DD
and different temperature intervals. The phase values (in ZT) are calculated from 4-hr
low-pass filtered versions of daily average histograms depicted in Figure 5.1, 5.2, 5.4
and 5.6. When more than one peak of activity was observed, only the main one is
considered (100% relative intensity). Colour backgrounds summarize the behaviour of
flies which were entrained (green), not entrained (red) or weakly entrained (hypomorphic
behaviour, yellow) in the different conditions. Amplitude was calculated by dividing the
the maximum and minimum activity level of daily average activity. One-way Anova
was used to calculate whether the activity oscillation between peak and trough was
significant (P<0.05. ns: P>0.05).

5.3.3 Behaviour analysis in constant darkness and TC

All the behavioural analysis shown so far has been performed in constant light

(and TC). It is known that at least some TRP channels are involved in the photo-

transduction cascade, for instance, TRP and TRPL (Niemeyer et al., 1996). Both

are not directly activated by light, but through a phospholipase C (PLC)-mediated

signalling pathway (reviewed by Katz and Minke 2009). We therefore wondered if

the constant presence of light could have some direct effects on the channels that

may alter behaviour, in spite of the putative role on the temperature synchroniza-

tion of the clock. We thus monitored the ability of the trp mutants to entrain to

temperature cycles in DD.
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The locomotor activity pattern of wild-type flies in DD and TC resembles in

shape the activity pattern during LL and TC, exhibiting a unimodal pattern (and

not a bimodal one as in LD entrainment) but with a different phase. The peak of

activity does not occur towards the end of the warm phase (around ZT10), but at

beginning of the thermo-phase, soon after the raise of temperature (around ZT3,

Figure 5.4A). During DD and TC conditions, temperature-entrainment mutant

flies, such as norpAP41 (Glaser and Stanewsky, 2005), exhibit a so called “startle

response”, which occurs just after the temperature increases (ZT0–1) (see Figure

5.4F). In LL and TC conditions, the circadianly-regulated peak (at around ZT10)

is far apart from the startle response at ZT0 so it is “easier” to discriminate

mutant flies from wild-type. In DD and TC, the situation is different, since the

circadianly-regulated peak partially overlaps the startle response peak at the be-

ginning of the day (warm-phase). For this reasons, it can be misleading to judge

the behaviour of a fly only on the position of the activity peak of histograms

(during TC conditions). However, careful inspection of the activity pattern, gives

in many cases the possibility to discriminate whether the activity is reaction to

temperature or (in addition) circadianly regulated. One way to test if the locomo-

tor activity is synchronized to temperature is to monitor the transients from one

condition to another and to check free-running phase when the flies are released

to constant conditions.

Figure 5.4 shows actograms, histograms and peak phase analysis of trp mu-

Figure 5.4 (preceding page): Locomotor activity of TRP channel mutants and controls
during DD and TC. Average actograms (top plot), daily average (middle plot) and
activity peak phase (bottom plot) during 12:12 hr 25:16℃ TC. Flies were first entrained
in LD conditions (3 days are included in the actograms) and then moved to DD and TC
which was in opposite phase compared to the previous LD (warm-phase corresponding to
previous dark and cold-phase corresponding to light). Subsequently, flies were released
to constant conditions (DD and 25℃).

147



CHAPTER 5. TRP CHANNELS

Activity in DD and 25:16℃ TC

trpA1 : F(23,576)=6.06, P< 0.0001

pyx2: F(23,528)=4.61, P< 0.0001

pyx3: F(23,576)=3.06, P< 0.0001

trpM : F(23,480)=3.96, P< 0.0001

norpA: F(23,480)=4.66, P< 0.0001

Figure 5.5: Daily average activity of controls (red line), TRP mutants (green, blue,
grey and black) and norpA (light blue), as indicated, during the warm-phase only in DD
and 25:16℃ TC of the histograms depicted in Figure 5.4. Two-way Anova was performed
to determine statistical interaction between Canton S (CS) control and each mutant lines
in the range ZT 0–12. Coloured bars underneath represent the time points in which the
respective mutants show significant difference compared to control (Bonferroni posttest
P< 0.05). Error bars indicate SEM.

tants and controls during (25℃) to DD and 12:12 hr 25:16℃ TC (after initial LD

entrainment) and subsequent release to constant conditions. The activity peak

of wild-type flies occurs 3 hours after the transition from cold to warm and it

takes 2–3 transition cycles to stabilize. When wild-type flies are then released

to constant conditions, the initial phase of free-running activity follows the phase

observed during entrainment.

trpM flies exhibit a very similar behaviour to Canton S controls, although their

peak phase during TC occurs one hour earlier (ZT2.3 versus ZT3.3 of control,

see Table 5.2), resulting in significant interaction with control in an Anova test

(Figure 5.5). trpM behaviour exhibits transients before reaching a stable phase

and it is distinct from a pure temperature-reaction activity, which mainly occurs
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just after the cold-warm transition (compare with norpAP41, Figure 5.6F). Also,

free-running activity after TC follows the behaviour peak observed at the end

of entrainment (Figure 5.4B), suggesting the trpM flies entrain their activity to

25:16℃ TC. This result indicates a striking difference of behaviour during TC

between LL and DD for the trpM mutant flies.

TrpA1ins activity is very similar to a “temperature mutant”: a prominent

behavioural activity peak just after temperature increase from the first day of the

new regime and no clear transients are observed (Figure 5.4C). Two-way Anova

revealed highly significant interaction with Canton S, and the main peak of activity

occurs 1.5 hours earlier then control. Also free-running activity after TC is not

clearly synchronized with the behaviour during TC (Figure 5.4C). These results are

consistent with the inability of TrpA1ins mutants to synchronize their behaviour

to LL and TC (Figure 5.1).

Similar to trpM, pyx2 flies are able to entrain to TC during DD (Figure 5.4D).

This is particularly evident if considering the free-running activity after TC en-

trainment (see below and Figure 5.4D). pyx3 shows a similar synchronization to

temperature than pyx2: the activity peak during TC follows the temperature

and the free-run activity after TC conditions is dampened but in phase with the

previous activity. For both mutants, Two-way Anova revealed significant differ-

ence form control (Figure 5.5), probably because they exhibit an higher response

to temperature increase, an overall higher activity level and an earlier phase of

activity peak (1 and 1.5 hours, respectively, Table 5.2).

Interestingly, pyx and trpM mutants do not entrain locomotor behaviour to

25:16℃ TC in LL but they do in DD. We had also observed different behaviour

among the mutants assayed in LL when smaller temperature intervals were applied,

so we investigated if this was the case also in constant darkness.
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Figure 5.6 and Figure 5.7 show rest-activity patterns of TRP mutants and

controls in DD and different temperature intervals.

Canton S flies entrain to any of the three temperature intervals we applied. The

activity shows clear transients when flies are subjected to the different TC and they

persist longer than in LL. Interestingly, the seasonal adaptation of the behaviour

is also less pronounced compared to LL and TC condition (figure 5.2A–D). Those

observations are in agreement with previous results of “stronger” entrainment in

LL compared to DD (see Tomioka et al., 1998; Yoshii et al., 2002; Glaser and

Stanewsky, 2005 and Discussion).

Analysis of variance between TrpA1ins flies and Canton S exhibit statistical

interaction at any temperature intervals (Figure 5.7). By inspection of the ac-

tograms and histograms (Figure 5.6), TrpA1 flies do not exhibit the same activity

pattern as controls. In particular, we did not observe any transients and the

activity peak of TrpA1ins flies occurs just after the temperature raise.

trpM mutants entrained to 25:20℃ and 20:16℃ temperature interval and

weakly at 29:25℃ TC. Interestingly, trpM entrain to the cold 20:16℃ TC (a

condition to which it does not entrain in LL, compare Figure 5.2T). Anova analy-

sis restricted to the warm-phase only shows interaction with Canton S at 29:25℃,

probably as a consequence of the lower activity level and the slightly earlier ac-

tivity phase (0.5 hour). However, the pattern of activity (Figure 5.7) and the

amplitude of oscillation (Table 5.2) is comparable to control suggesting trpM flies

are weakly entrained (but not in the same extent as controls).

pyx2 flies exhibit a different activity profiles compared to control in the 29:25℃

and 25:20℃ intervals, while it is comparable to control (P>0.05, Two-way Anova)

in the cold interval (Figure 5.7). Interestingly, in the 29:25℃ and 25:20℃ ranges,

the activity peak is shifted towards the end of the warm phase (ZT10), the activity
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Figure 5.6: A–T) Locomotor activity of TRP channel mutants and control in DD and
different temperature intervals. The plots have been described in Figure 5.2. Flies were
entrained in 12:12 hr LD cycle (not included in the graphs) and then subjected to DD
and different TC (29:25℃, 25:20℃ and 20:16℃ respectively, as indicated) which were
6-hr phase delayed and advanced, respectively, compared to the previous entrainment
regime (see shading). Note that in DD and TC, the main peak of activity seats at the
beginning of the warm phase. See text for more details. Average phase values of the
main activity peak (100% relative intensity) are summarized in Table 5.2.
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Activity at 29:25℃ TC Activity at 25:20℃ TC

trpA1 : F(23,672)=1.91, P< 0.01 trpA1 : F(23,672)=3.91, P< 0.0001

pyx2: F(23,648)=7.83, P< 0.0001 pyx2: F(23,648)=14.09, P< 0.0001

pyx3: F(23,720)=4.88, P< 0.0001 pyx3: F(23,720)=7.02, P< 0.0001

trpM : F(23,720)=2.01, P< 0.01 trpM : ns

Activity at 20:16℃ TC

trpA1 : F(23,659)=4.83, P< 0.0001

pyx2: ns
pyx3: F(23,696)=2.05, P< 0.01

trpM : ns

Figure 5.7: Daily average activity of controls (red line) and TRP mutants (green,
blue, grey and black, as indicated) during the warm-phase only in DD and different
temperature intervals of the histograms depicted in Figure 5.6B–D, F–H, J–L, N–P,
R–T. Two-way Anova was performed to determine statistical interaction between Can-
ton S (CS) control and each TRP mutant lines in the range ZT 0–12. Coloured bars
underneath represent the time points in which the respective mutant shows significant
difference compared to Canton S (Bonferroni posttest P< 0.05). Error bars indicate
SEM.
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profile is relatively noisy, the cycling amplitude is lower than control as well as

the overall activity level. A similar behaviour is observed for pyx3 in the same

ranges. Instead, the behaviour of the pyx3 allele at 20:16℃ seems more a reaction

to the temperature increase, rather than synchronization (Figures 5.6 and 5.7). In

fact, the activity is more concentrated during the warm-phase (and the level higher

than control), and we did not observe transients between the different temperature

intervals.

Among the TRP channel mutants we analysed, TrpA1ins exhibits the most

severe phenotype of defective temperature entrainment. In addition, from my

observations it emerges a very complex picture in which it is challenging how

to classify mutations affecting trp genes that also affect aspects of temperature

entrainment of the circadian clock. It appears that it is crucial to consider the

conditions in which the flies are assayed, in terms of light or darkness and interval

of temperature cycles in order to judge how a TRP channel affects temperature

entrainment. Some mutant lines can exhibit the phenotype in certain conditions,

but not in other, and vice versa. These observations could also help to understand

the functions that a specific channel plays. For instance, the ability to entrain

only in one specific temperature range, could mean the non-requirement of that

particular channel in that specific range. In other words, the different behaviour of

trp mutants could help to generate a “temperature map” where different channels

respond to different temperature cycles, thereby allowing the fly to sense, react,

and ultimately entrain to different environmental conditions.
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5.4 per-luc expression in trp mutants

I next investigate if trp mutants affect directly the expression of the period gene

and its product when assayed in temperature cycles conditions. I first assayed

per-luc expression in RNAi lines against TrpA1, trpM and pyx driven by tim-gal4,

both in isolated legs and in the whole adult fly. Four independent RNAi lines are

available against trpM, and one each against TrpA1 and pyx (see Table 5.1).

Flies were first entrained to LD (25℃) and then subjected to LL and 12:12

hr 25:16℃ TC in opposite phase compared the previous LD regime. Note that

wild-type adult flies take up to 2 days to entrain to the new temperature regime,

while isolated legs are fully synchronized to temperature after 1 day of transition

(Figure 5.8). Overall per-luc (XLG-luc) expression appeared normal in isolated

legs during LL and TC in all the RNAi lines we assayed (Figure 5.8, left column),

as already discussed in Section 5.2. Expression levels in legs of tim-gal4 -driven

TrpA1 -RNAi and pyx -RNAi were slightly lower than in controls, but similar in

terms of rhythmicity, amplitude and phase. Interestingly, when we monitored per-

luc expression in the whole adult fly, we observed that PER-LUC in trpM -RNAi

(line R4) is not cycling at all, while it is normal in pyx -RNAi and TrpA1 -RNAi.

We tested 4 different RNAi lines against trpM and only one (line R4) shows the

phenotype (reproducible among different experiments). This can be interpreted

in 2 different ways. The first explanation is that the other 3 RNAi lines are not

efficient or they do not knock-down the trpM gene enough in order to manifest

the phenotype. Secondly, it could be that the phenotype induced by trpM -RNAi

(line R4) is not due to silencing the trpM gene, but due to insertional effects of

the RNAi line itself, and this would be supported by the results obtained with

the XLG-luc transgenic mutant line (see below). However, the observation that

per-luc expression synchronizes to temperature in legs but not in the context
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Average recordings of TRP-RNAi lines in LL and TC

Isolated legs Whole adult fly
A trpM -RNAi

B TrpA1 -RNAi

C pyx -RNAi

Figure 5.8: Flies were first entrained in LD and then subjected to LL and 12:12 hr
25:16℃ TC which was in opposite phase compared the previous LD regime. The last
day of LD is included in the plots (except in (B) left column, were only LL and TC part
is included). Black line represents bioluminescence readings from control flies. Blue line
represents reading from tim-gal4 -driven RNAi lines. White/black bars indicate light
and dark phase. Red/blue bars indicate 25℃ and 16℃ phase, respectively. Error bars
(grey) indicate SEM. Number of individuals tested (n) is indicated.

157



CHAPTER 5. TRP CHANNELS

of the whole animal is reminiscent of the phenotype of the known “temperature

mutants” nocte1 and norpAP41 (Glaser and Stanewsky, 2005; Sehadova et al., 2009

and C. Gentile, A. Simoni, R. Stanewsky, in preparation). It is interesting to note

that this phenotype appears in several different mutants, as for example in the

EMS mutants (in DD and TC, described in the Section 3), nocte, norpA and now

trpM. At the moment, the explanation for this phenomenon remains unknown, but

further investigation will hopefully help to understand the underlying mechanism.

The RNAi technique is an extremely powerful genetic tool, however it is not free

from drawbacks. RNAi knock-down may be not sufficient to induce a phenotype

(in particular when dealing with potential signal transduction events that can be

amplified) or RNAi may be driven in the wrong cells (see Discussion). To solve

those problems, we also generated transgenic flies carrying the XLG-luc transgene

in the TrpA1ins, trpM and pyx mutant backgrounds.

In order to compare the results obtained with the RNAi lines with results of

chromosomal mutation in the same genes we monitored TRP channel mutants for

their ability to synchronize per-luc expression in LL and 12:12 hr 25:16℃ TC.

trpM ;XLG-luc flies entrain PER-LUC expression to temperature. Expression in

isolated legs is equivalent to wild-type controls, and in adult flies the per-luc

expression reaches a stable and synchronized phase to TC one day earlier than

controls (Figure 5.9). trpM mutants exhibit a small (and bigger than control)

rise in PER-LUC expression directly after the temperature increase (particularly

evident at ZT12 of day 3 of TC, Figure 5.9A, right). Two-way Anova performed

in the range ZT 48–144 (i.e. for four days after the moment per-luc expression is

synchronized to TC) revealed not statistical interaction between the genotypes,

indicating no significant difference between trpM XLG-luc and control both in

isolated legs and in the whole adult flies.
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Average recordings of TRP mutant lines in LL and TC

Isolated legs Whole adult fly
A trpM

Interaction not significant Interaction not significant

B TrpA1

Interaction not significant F(95,1746)=1.54, P< 0.001

Figure 5.9: Average bioluminescence recordings of (A) TRPM and (B) TRPA1 mutant
lines in LL and TC. Flies were first entrained to LD and then subjected to LL and
12:12 hr 25:16℃ TC which was in opposite phase compared the previous LD regime.
The last day of LD is included in the plots. Black line represents bioluminescence
recordings from control flies (XLG-luc). Blue line represents XLG-luc in TRP channel
mutant backgrounds, as indicated. Number of individual tested is indicated next to
the genotype. White/black bars indicate light and dark phase. Red/blue bars indicate
25℃ and 16℃ phase, respectively. Error bars (grey) indicate SEM. Two-way Anova was
performed in the range ZT 48–144 to determine statistical interaction of each mutant
with control (results reported under each plot).
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The TrpA1ins XLG-luc flies entrain to TC, but not in the same extent com-

pared to control. per-luc expression in isolated legs is strongly reduced in terms

of amplitude only during LL and TC and not in LD (Figure 5.9B). Analysis of

variance revealed interaction not significant but an highly significant genotype ef-

fect (F(1,1746) = 66.4, P< 0.0001), as a results of the lower amplitude of cycling,

but not an overall effect on the rhythmic per-luc expression and phase (Figure

5.9). PER-LUC expression in the whole adult flies of TrpA1 mutant is lower com-

pared to control in terms of cycling amplitude. It is instead comparable with the

wild-type control in terms of overall bioluminescence levels, suggesting defects in

synchronization rather than generally repressing PER expression. Two-way Anova

performed in the range ZT 48–144 shows highly significant interaction between the

mutant and control (F(95,1746)=1.54, P< 0.001). Interestingly, we noticed also a

2-hr phase delay of per-luc expression in the TrpA1 mutant compared to wild-

type control during LD conditions. This is noticeable only in adult flies, but not

in isolated legs (Figure 5.9B).

The defects in period expression during TC for TrpA1ins mutant correlates

well with the observation that this mutant shows the most severe “temperature

phenotype” at the behavioural level in many temperature conditions we assayed,

suggesting an important role for this TRP channel in the temperature entrainment

pathway. We also generated transgenic lines carrying XLG-luc in pyx2 and pyx3

mutant backgrounds. At the moment it is not possible to present any results

from those lines. For time reasons the experiments have not been completed and

further investigation will determine whether per-luc expression in pyrexia mutants

is affected. Additional experiments monitoring per-luc expression in the TrpA1,

pyx and trpM mutant backgrounds are also needed under the conditions in which

they exhibited a phenotype in our behaviour assays.
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5.5 Summary

• Analysis of trp channel encoding genes in LL and 25:16℃ TC revealed that

pyrexia, TrpA1 and trpM exhibit impaired synchronization of locomotor

activity specifically to TC and normal activity in LD conditions.

• tim-gal4 -driven knock-down of TRP-RNAi lines did not give any results.

• Behavioural analysis at different temperature intervals in LL shows that pyx

and trpM have entrainment defects specifically at cold interval (20:16℃)

and normal entrainment at 25:20℃ and 29:25℃ TC. TrpA1 mutants entrain

weakly (if at all) at 29:25℃ TC and do not at 25:20℃ and 20:16℃.

• pyx2 and trpM synchronize their behaviour in DD to 25:16℃ TC and even to

small temperature intervals (29:25℃, 25:20℃ and 20:16℃). Similarly, pyx3

entrain at 29:25℃ and 25:20℃ but not in the range 20:16℃. trpA1 flies

weakly entrain to all temperature intervals but not in the same extent as

control (statistical interaction highly significant).

• tim-gal4 -driven RNAi lines against pyx and trpA1 do not induce any effect

on per-luc expression in LL and TC. On the opposite, per-luc expression

in tim-gal4 -induced trpM -RNAi is not rhythmically cycling in LL and TC

when the whole adult flies are analysed and normal in isolated legs.

• XLG-luc expression in trpM mutant background is comparable to control.

TrpA1 mutant flies exhibit a down-regulation of XLG-luc expression both

in isolated legs and in the context of the whole fly (in terms of cycling

amplitude).
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Chapter 6

Circadian regulation of eclosion

6.1 Eclosion profile of “temperature mutants”

In the previous chapters, we discussed the isolation of new components which play

a role in the temperature synchronization of the circadian clock. We examined the

isolation of three mutants from an EMS mutagenesis screen, of three trp channel

encoding genes (pyx, trpM and trpA1 ) and of one forkhead transcription factor

encoding gene (fd3F ) which show defects in temperature entrainment. The iso-

lation of the mutant lines was based on the analysis of adult locomotor activity

or monitoring real-time expression of period-luciferase transgenes in temperature

entrainment regimes. In the past, similar approaches led to the isolation of two

other “temperature mutants”, nocte and norpA (Glaser and Stanewsky, 2005,

2007; Sehadova et al., 2009).

In my Ph.D. I also investigated whether the novel “temperature mutants”

exhibited defects in the synchronization of the circadian clock that regulates the

emergence of adult flies from the pupal stage.

Eclosion rhythms can be entrained, not only by light-dark cycles, but also by
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Constant light and 25:16℃ Temperature cycles
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Figure 6.1: Eclosion profile for control and “temperature mutant” cultures during LL
and TC conditions. The left-hand column shows double-plotted actograms of flies that
emerged during a LL and 12:12 hr 25:16℃ TC, which was in opposite phase compared to
the previous LD entrainment. Only the last dark cycle of the previous LD entrainment is
indicated (except in C–E, where the full last LD cycle is included). The two right-hand
columns depict, respectively, the total number of flies emerged as a function of time
(“raw activity”) and 4-hr low-pass filtered versions of the left plots (“filtered activity”,
see M&M and Levine et al., 2002a for more details). The total number of hatched flies
and the number of experiment repetitions are indicated in brackets with the genotypes.
Shaded areas refer to temperature conditions (grey shading: 16℃; white shading: 25℃).
A–B) Canton S and y w control cultures synchronize eclosion to TC in 2 days and exhibit
peak of emergence during the last part of the cold phase (ZT22–23). C–J) All the
“temperature mutant” lines we tested show similar synchronization to TC compared to
the control. Note the presence of a secondary peak, notably in day 3 and 4 of temperature
entrainment, just after the transition cold-warm, which is probably a gating response
induced by steep rise of temperature (see text). Repetitions showed reproducible results.

temperature cycles (Zimmerman et al., 1968). However, not many studies focus

on the regulation of eclosion entrainment during temperature cycles, particularly

in constant light conditions. In order to correlate the eclosion results with our

locomotor behaviour data, I investigated eclosion in LL under temperature cycles.
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Cultures for the desired genotype were raised in 12:12 hr LD cycles (at 20℃) and

monitored for eclosion after exposing the cultures to LL and 12:12 hr 25:16℃ TC

which was in the opposite phase compared to the previous LD. The eclosion profile

under TC conditions, after establishing a stable phase, exhibits a clear 24 hour

rhythm, and flies emerge in a 6–8 hour window which occurs shortly before the

cold to warm transition. The timing of eclosion is controlled by the circadian

clock, which imposes a “gate” that opens only during certain time of the day (Qiu

and Hardin, 1996).

Wild-type control cultures (Canton S and y w) synchronize their eclosion

rhythm to the TC after 2 transient days (Figure 6.1A–B), stabilizing the peak

of emergence at the end of the cold phase after day 3. A second eclosion peak

occurs just after the temperature rise (particularly noticeable in day 3 and 4 of

temperature entrainment). This second peak occurs probably in response to the

steep increase of temperature, inducing the pupae developmentally mature enough,

to hatch. This second temperature-induced eclosion peak has been mentioned pre-

viously in the same conditions (Newby and Jackson, 1993).

We monitored the eclosion activity of 8 different mutant lines: 2T-30, 2T-38,

2P-42, pyx2, pyx3, trpM, nocteP and norpAP41(fd3F was analysed in the chapter

4). All of them exhibited a mutant phenotype (to different extents) when adult

locomotor activity was monitored during temperature entrainment regime (see

chapters 3, 5, Sehadova et al., 2009 and Glaser and Stanewsky, 2005, respectively).

Surprisingly, all lines eclose with a normal pattern, synchronizing emergence after 2

days of TC and stabilizing the eclosion peak at the end of the cold phase (Figure

6.1). The only exception might be line 2T-30 (Figure 6.1C), which displays a

“noisier” pattern of eclosion, pupae take one day longer to be synchronized with

temperature and the gating window is wider then wild-type control (up to 12
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hours). 2T-30 cultures exhibit also a more pronounced rise in eclosion directly

after temperature rise (see day 4 and 5 of TC in Figure 6.1C). Although the

pattern appears nosier, 2T-30 cultures can entrain to TC (see also Figure 6.2B).

The only mutant line we observed having defects on entrainment of eclosion

to TC has been described in the previous chapter (4.4). When the transcription

factor fd3F is down-regulated in all the clock cells (via a tim-gal4 driver line), the

phase of eclosion is shifted towards the warm phase.

To determine eclosion we utilize an automated monitor which counts the num-

ber of flies that hatch as a function of time (see M&M for details). For this reason,

we could test only true breeding (not balanced) cultures, since we could not select

the desired genotype from the eclosed progeny. Thus, we could not test genotypes

like nocte1, in which heterozygous females do not express the phenotype. Here I

report the eclosion data from nocteP , a hypomorphic nocte allele (Sehadova et al.,

2009).

It was surprising that all genotypes we assayed exhibited a clear entrainment

of eclosion — lines which had manifested a distinct mutant phenotype at the

behavioural and molecular level in the adult. Our data suggest that entrainment

of the clock that regulates eclosion involves different components and/or pathways

compared to the adult clock.

To challenge further the ability to synchronize to TC even more than in the

previous regime, I subjected 2T-30 and control cultures to a temperature shift (in

LL) and monitored the ability to re-synchronize the eclosion clock.

Cultures were raised in LD conditions and the pupae were transferred to LL

and 12:12 hr 25:16℃ TC. After 3 days, the temperature regime was advanced

for 6 hours and eclosion was monitored. Canton S (control) and 2T-30 (mutant)

cultures shift the peak of eclosion according to the temperature cycles, exhibiting
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two days of transients and resynchronizing the emergence peak to the end of the

cold phase (Figure 6.2). Clock mutant per01 cultures, on the contrary, are unable

to synchronize to temperature cycles: they do not eclose with a 24-hr period but

instead manifest bursts of emergence after any temperature transitions (Figure
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Figure 6.2: Re-synchronization of eclosion rhythms after 6-hr advanced temperature
shift in LL. For description of the plots see Figure 6.1. Shift occurred at day 4, as shown
by the shaded area in the actograms. A) Canton S and (B) EMS mutant 2T-30 cultures
re-synchronize eclosion emergence to temperature cycles in 2 days. C) Eclosion of per01

cultures is not synchronized to TC: flies emerge mainly after all temperature changes
most likely as a reaction to temperature increase and decrease.
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Figure 6.3: per01 cultures eclose with a 12-hour period. Flies emerge mainly after all
temperature changes most likely as a reaction to temperature increase and decrease.

6.2C), therefore exhibiting a 12-hr period (Figure 6.3).

6.2 Effects of TC on the eclosion period

Given that adult “temperature mutants” do not exhibit eclosion phenotypes dur-

ing LL and 25:16℃ TC, I investigated in more detail the regulation of the circadian

clock to TC, by monitoring the eclosion rhythm after temperature entrainment in

constant conditions.

I raised cultures of Canton S and 2T-30 in LD and exposed them to LL and

12:12 hr 25:16℃ TC (which was 6 hr delayed compared to the previous LD) for

3 days at the early pupal stage, and then released them in DD and constant

temperature to monitor the eclosion rhythm. As shown in Figure 6.4A,B, the two

different cultures synchronize eclosion to temperature and, when released in DD,

they display a clear rhythm, which persists for several days, and is in phase with

the previous temperature regime. Very surprisingly, I observed that flies emerge

with a short (and reproducible) period of 20–21 hour. Canton S exhibit a 20 hour

period and 2T-30 a 21 hour period (Figure 6.4). Given that the short period of
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eclosion is stable (i.e. persists for several days) and is a common feature between

cultures of different genetic background, we assume that it is not affected by the

mutant tested.

Recent work from the Rouyer group proposed a model for temperature en-

trainment of the larval brain (Picot et al., 2009). Monitoring PER accumulation
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Figure 6.4: Free-running eclosion rhythms after 3 days of LL and TC entrainment.
Cultures of Canton S, 2T-30 and Pdf01 flies were raised in LD (20℃) until early pupae,
which were then collected and transferred to the eclosion discs. Those were subjected
to 3 full 25:16℃ temperature cycles in LL which were 6-hr delayed compared to the
previous LD and then release in constant darkness (at 20℃). Only 2 of the 3 days
of LL and TC entrainment are included in the plots. The three left-hand plots have
been described in Figure 6.1. The most right-hand plot depicts autocorrelation which
gives period values, calculated for the DD part only. Grey shaded areas represent 16℃
(during LL and TC) or darkness (20℃). White areas represent 25℃ (during LL and
TC). “p”, period (hr). “RI”, Rhythmicity Index. “RS”, Rhythmicity Statistic (RS 1.5
indicates rhythmicity, see M&M for details). Number of total emergents and experiment
repetition is indicated in brackets with the genotype.
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in the different groups of larval clock neurons, they described that the DN2s can

directly be entrained by TC and synchronize PER expression in the LNs through

a PDF-independent (unknown) pathway. They proposed that the CRY-negative

DN2s are required to entrain the larval central clock to temperature cycles (Picot

et al., 2009).

To address whether the short period was driven by the DN2s and if Pdf was

required in the synchronization of the eclosion to temperature cycles, we monitored

Pdf01 mutant cultures. Surprisingly, Pdf01 cultures eclosed rhythmically with a

short period of 22 hours, which persists for several days, comparable to wild-type

(Figure 6.4C).

Short eclosion period of wild-type cultures has never been reported before.

Moreover, Myers et al. (2003) reported that Pdf01 mutants exhibit aperiodic eclo-

sion after LD entrainment. We wondered if the short eclosion period, and rhyth-

micity of Pdf01 cultures, were determined by the different conditions we used.

Therefore, we investigated the free-running period of the same genotypes after

entrainment to LD. Figure 6.5 shows free-running rhythms of Canton S, y w, 2T-

30 and Pdf01 cultures. They all entrain to light-dark cycles and flies eclose with

a circa 24 hour free-running rhythm, which persists for several days. Pdf01 cul-

tures are strongly rhythmic for 3 days (with a 23.3 hour period) and then the

rhythmicity gradually dampens, resulting in aperiodic eclosion after day 5 (Figure

6.5D). Interestingly, my observations are in disagreement with data published by

the Sehgal group, which showed that eclosion of Pdf01 mutants (and flies lacking

pdf -expressing cells) is arrhythmic in DD (Myers et al., 2003). Thus, we showed

that (a) 3 days of entrainment in LL and TC during the pupal stage shortens the

period of eclosion of cultures which exhibit a normal 24 period after LD entrain-

ment and (b) that Pdf01 eclose rhythmically and comparable to control after LL
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Figure 6.5: Free-running eclosion rhythms after LD entrainment. Cultures of Canton
S, y w, 2T-30 and Pdf01 flies were raised in LD (20℃) and then released into constant
conditions (DD and 20℃) where the eclosion activity was monitored. Plots have been
described in Figure 6.1. Total numbers of emerged flies and experiment repetitions are
indicated in brackets next to the genotypes. All the cultures eclose rhythmically with a
circa 24-hr period. Pdf01 rhythm persists strongly for 3 days (with a 23.3 hr period) and
then gradually dampens. White/black bars at top indicate subjective day and night,
respectively.

and TC and that rhythmicity persist for 3–4 days in DD after LD entrainment.

Since we did not observe any gross differences in the eclosion pattern between

2T-30 and Canton S cultures (in constant conditions), we proceeded by monitoring

the emergence profiles of Canton S (control) and Pdf01 (mutant) to address the
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question on the origin of the short period observed after LL and TC entrainment.

This short period phenotype was obtained after exposing pupal cultures glued

to “eclosion discs” to TC for 3 days. Since we assume that the free-running period

is clock controlled, we wondered if we could observe the same short free-running

period if TC entrainment was restricted exclusively to the larval stages, in order

to discriminate whether the short period was generated by the larval or the pupal

clock.

Thus, we restricted temperature cycle entrainment (in LL) from day 2 of de-

velopment until the first pupa appeared in the cultures, and then transferred to

constant darkness (at 20℃). The free-running eclosion rhythm was then monitored

(Figure 6.6). Canton S flies eclosed rhythmically with a 22.8 hour period. The

eclosion profile is “noisier” and the peak less sharp than in the previous condi-

tions, probably because the cultures had been in DD for up to five days before

eclosion was monitored, and therefore individuals within the population being out

of phase each other. It is also interesting to note that the phase during free-run of

eclosion compared to that after temperature entrainment is reversed: The peak of

emergence is centred to the second half of the corresponding warm phase (CT10–

12) versus ZT22–6 during temperature entrainment. This nicely correlates with

the reported data that larval-only TC entrainment reverses the phase of adult

locomotor activity (Picot et al., 2009 and see below). When Picot et al. restricted

TC entrainment to larva only stages (in DD) and then monitored free-running

adult locomotor activity, they observed that the phase of activity was opposite

compared to activity of flies subjected to larval only LD entrainment (Picot et al.,

2009).

Pdf01 cultures exhibit aperiodic eclosion in the same conditions (Figure 6.6B).

The Pdf01 rhythm does not persist for more than 5 days in DD (after LD entrain-
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Figure 6.6: Free-running eclosion rhythms after LL and TC entrainment restricted
to larval stages. Cultures were subjected to LL and 12:12 hr 25:16℃ TC only during
the three larval stages (from day 2 of development until the first pupa appeared in the
culture), then were transferred to DD (20℃) where the eclosion rhythm was monitored.
A) Canton S rhythms persist in DD for several days with a period of 22.8 hour. B)
Pdf01 flies exhibit aperiodic eclosion. Red/blue bars at top indicate subjective warm-
and cold-phase, respectively (relative to larval-only TC entrainment). Number of flies
eclosed is indicated in brackets next to the genotype. Experiment in this conditions was
performed once.

ment, Figure 6.5) and, if TC entrainment is restricted to larvae only, cultures are

kept in DD for 5 days before eclosion is being monitored. Taken together, these

two observations could explain why the Pdf mutant is arrhythmic in the current

experiment. The Canton S free-running period of 22.8 hour lies in between the

short period (20 hr) observed after 3 days of TC entrainment restricted to the

pupal stage and the “normal” 24 hr period after LD entrainment.

Next, we asked which eclosion period cultures would exhibit when exposed to

TC throughout development. We entrained Canton S and Pdf01 cultures to LL

and 25:16℃ from late embryo to pupae and then released them in DD. Canton S

and Pdf01 cultures emerged with a short period of 22.5 and 21.8 hours, respectively
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(Figure 6.7), similar to the results obtained when TC entrainment is applied to

larvae or pupae only. This observation suggests that the timing at which the

TC is applied during development does not determine the period of free-running

eclosion, but are rather the conditions (LL and TC) themselves.

Figure 6.9 summarizes the experiments described above and illustrates free-

running period of Canton S and Pdf01 cultures after LL and TC entrainment

applied at different times during development. It appears that there is no clear

correlation between the developmental stage at which TC is applied and the re-

sulting free-running eclosion period in DD. TC restricted to larval stage only,

pupae only or during all developmental stages result in a short period of 22.5,

21 and 22.5 hours, respectively, for Canton S cultures. Similarly, temperature

entrainment restricted to pupae or during all developmental stages induces a pe-

riod of 21.5 and 21.8 hours, respectively, for Pdf01 mutants, whereas eclosion is

arrhythmic in larva-only temperature entrainment.

To address whether the short free-running period of eclosion after TC during

the pupal stage was induced by the continuous exposure to light we also monitored

free-running activity after entraining cultures to DD and TC. Canton S and Pdf01

cultures were entrained in DD and 12:12 hr 25:16℃ TC throughout development

before being transferred to the eclosion disc (see Figure 6.9) and then released

to constant conditions (at 20℃). As depicted in Figure 6.8, Canton S eclosion

is rhythmic, but the free-running period is not stable and seems to change over

the days. From day 1 to day 3 (of DD) flies eclose with a short, 22.5 hr period

(Figure 6.8A,C). During the subsequent days, the eclosion activity exhibits a 24

hr rhythm, and the rhythmicity dampens gradually over the days. Pdf01 cultures

also exhibit rhythmic eclosion, with a stable short period of 20.8 hr (Figure 6.8B).

The rhythm is strong for the first 3 days (with a 20.5 hr period, Figure 6.8D) and
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then gradually dampens and becomes very “noisy”.

The short period exhibited by Canton S flies is quite surprising, since previous

reports have shown a strong and stable eclosion rhythm with a 24 hr period af-

ter DD and temperature cycle entrainment (Zimmerman et al., 1968). However,

Zimmerman and Pittendrigh’s observation were based on experiments conducted

on D. pseudoobscura and not on D. melanogaster.

For the time being, it is difficult to speculate which components of the circa-

dian clock contribute to generate the short period of free-running eclosion after

entrainment to TC. It is also largely unclear which contribution each group of neu-

rons plays in regulating locomotor behaviour in the adult fly during temperature

entrainment. Even more unclear (and less studied) is which different neuronal

group drives eclosion rhythms. Nevertheless, the short eclosion period after TC
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Figure 6.7: Free-running eclosion rhythms after 9 days of LL and TC entrainment.
Cultures of Canton S and Pdf01 flies were raised in LL and 25:16℃ TC since day 2
of development then were transferred to DD and 20℃ where free-running periods were
calculated. The last cycle in LL and 25:16℃ is included in the plots (white/grey shading
in day 0). For description of plots, see Figure 6.1. Both Canton S (A) and Pdf01 (B)
flies eclose with a short rhythm of 22.5 and 21.8 hours, respectively. Numbers of flies
eclosed and experiment repetitions are indicated in brackets next to the genotype.
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entrainment, the pdf -independence of the rhythms, and indications from published

work (Picot et al., 2009) suggested an important role for the DN2 neurons in the

temperature entrainment of eclosion.

We can speculate a role for the larval DN2s in setting the period of eclosion.

We observed that TC applied to larval stages only reverse the eclosion phase and

this is not the case for pupal-only TC entrainment. It has been reported that the

larval DN2s have an opposite phase of PER expression (compared to the LNs)

in LD (Kaneko et al., 1997; Picot et al., 2009) and that they reverse their PER-

expression phase during metamorphosis (Kaneko et al., 1997). Larval LNs are

required to generate eclosion rhythms (Blanchardon et al., 2001) — they are the

only clock-gene expressing neurons during pupation (Kaneko et al., 1997; Helfrich-

Förster et al., 2007) — and we propose here that the eclosion phase is determined

by the temperature sensitive DN2s.

6.3 Summary

• Components required for entrainment of the adult locomotor activity to TC

do not affect the ability of cultures to synchronize their eclosion rhythms

to temperature. This suggests the involvement of different structures and

Figure 6.8 (preceding page): Free-running eclosion rhythms after DD and TC entrain-
ment. A–B) Cultures of Canton S and Pdf01 were entrained in DD and 12:12 hr 25:16℃
since day 2 of development until pupae were loaded on the “eclosion disc”. Then, cul-
tures were released in DD (and 20℃), where free-running emergence was monitored.
The last day of TC is included in the plots (white/grey areas indicate 25℃ and 16℃,
respectively). C–D) Analysis of rhythmicity considering only the first 3 days after TC
entrainment. A) Canton S flies eclose rhythmically with a period of 24 hours. The
rhythmicity is very noisy and dampens quickly. The free-running period changes from
22.5 the first 3 days (C) to 24 hours during subsequent days. B) Pdf01 cultures eclose
with a stable rhythm of 20.8 hr (20.5 hr in the first 3 days, D). After 3–4 days, the
eclosion profile of both genotypes becomes “noisier” and the peak less “sharp”. Number
of flies eclosed is indicated in brackets with the genotype. Experiment performed once.
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pathways for temperature entrainment of eclosion clock compared to the

adult clock.

• pdf01 mutants exhibit rhythmic eclosion in DD, after light and temperature

entrainment.

• TC applied at different times during development modulate the free-running

period of eclosion, in a largely PDF-independent manner. Pupal TC entrain-

ment drastically shortens free-running eclosion period of wild-type cultures,

and similarly of pdf01 mutants.

• Larval-only temperature entrainment reverse the phase of eclosion compared

to light-dark entrainment.

• We propose that the free-running phase and period of eclosion after TC are

determined by the DN2s
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Chapter 7

nocte and peripheral sensory

tissues

7.1 Background

In a previous EMS mutagenesis screen, aimed on the isolation of novel factors

involved in the temperature entrainment of the circadian clock, a new genes has

been isolated. no circadian temperature entrainment (nocte) shows impaired per-

luc synchronization as well as abolished entrainment of the locomotor behaviour

to temperature cycles (Glaser and Stanewsky, 2005). Later, the mutation has

been mapped on the X chromosome and the gene identified (Glaser, 2006).

In this chapter, the following work is discussed, which led to the publication

of the article “Temperature entrainment of Drosophilas circadian clock involves

the gene nocte and signaling from peripheral sensory tissues to the brain” in the

journal Neuron (Sehadova et al., 2009).
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7.2 My contribution to the paper

The contribution I had for the publication of the paper was the behavioural anal-

ysis of the two nocte alleles and of chordotonal organ mutants in LL and TC

(Figure 4). In particular, I analysed the behaviour of nocte1, nocteP , eys395,

eys734, spam1, tilB1 and smetana (the transheterozygous smet/Df(smet) and dou-

ble mutant nocteP;smet/Df(smet)). All those mutants lines showed defects of

temperature entrainment in LL and 25:16℃ TC. Similarly, analysis of the several

nocte-RNAi lines driven by F-gal4 have been tested in LL and TC, and quantifica-

tion of behaviour is depicted in Figure S5. We observed that lines from both types

of RNAi constructs can results in either normal or mutant phenotype, indicating

that positional effects of the insertion sites influence the efficiency of the RNAi

effect.

Next, I showed that both nocte alleles exhibit an uncoordinated phenotype,

similar to spam mutants, after prolonged exposure to high temperature (37℃).

The uncoordination phenotype is rescued when flies are exposed to to the same

high temperature at >90% humidity (Figure 7).

I also showed that stopping the clock in the ch organs neurons by over-

expressing a dominant negative form of cycle (cyc-∆, Tanoue et al., 2004), under

the F-gal4 promoter, does not prevent the flies to entrain to TC in LL (Figure 8).

This suggests that temperature entrainment does not require a functional clock

in ch organ to take place. Finally, I demonstrated that removal of either the 3rd

antennal segment, or the whole antenna results in “entrained” behaviour (Figure

S5). This demonstrates that ch organs located in the antennae are not required

for temperature entrainment
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SUMMARY

Circadian clocks are synchronized by the natural
day/night and temperature cycles. Our previous
work demonstrated that synchronization by temper-
ature is a tissue autonomous process, similar to
synchronization by light. We show here that this is
indeed the case, with the important exception of
the brain. Using luciferase imaging we demonstrate
that brain clock neurons depend on signals from
peripheral tissues in order to be synchronized by
temperature. Reducing the function of the gene
nocte in chordotonal organs changes their structure
and function and dramatically interferes with temper-
ature synchronization of behavioral activity. Other
mutants known to affect the function of these
sensory organs also interfere with temperature
synchronization, demonstrating the importance of
nocte in this process and identifying the chordotonal
organs as relevant sensory structures. Our work
reveals surprising and important mechanistic differ-
ences between light- and temperature-synchroniza-
tion and advances our understanding of how clock
resetting is accomplished in nature.

INTRODUCTION

Circadian clocks regulate many biological processes so that

they occur at beneficial times for the organism. Although these

clocks are self-sustained and continue to run under constant

conditions, they are synchronized with the environment by so

called ‘‘Zeitgebers’’ (Dunlap et al., 2004). Two prominent Zeitge-

bers are the natural light-dark and temperature cycles that are

able to synchronize the circadian clock of Drosophila and other

organisms (see Boothroyd and Young, 2008; Dubruille and

Emery, 2008; Glaser and Stanewsky, 2007 for recent reviews).

Although our knowledge regarding light entrainment of both fly

and mammalian clocks is quite advanced, relatively little is

known about temperature synchronization. Light is generally

considered to be the more powerful Zeitgeber, but a temperature

cycle with only 2�C–3�C amplitude robustly synchronizes

Drosophila behavioral rhythms (Wheeler et al., 1993). In mam-

mals, chick, and zebrafish, similar low-amplitude temperature

rhythms (equivalent to body-temperature rhythms) are able to

synchronize clock gene expression in the suprachiasmatic

nucleus (SCN) and peripheral clock cells (Barrett and Takahashi,

1995; Brown et al., 2002; Herzog and Huckfeldt, 2003;

Kornmann et al., 2007; Lahiri et al., 2005; Prolo et al., 2005),

exemplifying the potential strength of this Zeitgeber. Moreover,

as shown for Drosophila (Glaser and Stanewsky, 2005), temper-

ature synchronization of clock gene expression in these organ-

isms occurs in tissue- or cell-autonomous manners, indicating

that similar mechanisms are involved in ectothermic and endo-

thermic animals.

Drosophila’s daily locomotor rhythmicity profile is bimodal,

exhibiting major activity peaks in the morning and evening

(e.g., Wheeler et al., 1993). This bimodality is regulated by

several groups of clock neurons in the fly brain (see Sheeba

et al., 2008 for a recent review). Recent work has revealed that

a group of ventrally located neurons controls mainly the morning

activity peak of fly behavior (M-cells), whereas more dorsally

located cells regulate evening activity (E-cells) (Sheeba et al.,

2008). These neurons control locomotor rhythms, and cyclically

express several clock genes and proteins in synchrony with

light-dark or temperature cycles (e.g., Yoshii et al., 2005; Zerr

et al., 1990).

While clock neurons are mainly cell autonomously synchro-

nized by light via Cry, it is not known how temperature signals

reach the brain clock. It is formally possible that temperature

sensitive neurons express a circadian temperature receptor

that is able to synchronize the molecular clock within the pace-

maker neurons (Hamada et al., 2008). Alternatively, temperature

could be sensed by other neurons in the brain or by sensory

structures in other parts of the fly, which then signal to the clock

neurons. Two mutations that interfere with temperature entrain-

ment, both molecularly and behaviorally, have been identified

and could therefore shed light on the temperature entrainment

mechanism (Glaser and Stanewsky, 2005). Mutants in the norpA
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gene, which encodes for the enzyme phospholipase C, are

not able to synchronize to temperature cycles (Glaser and Sta-

newsky, 2005), indicating that a G protein-coupled signal trans-

duction cascade might be involved. The mutated gene of the

other temperature-entrainment-deficient variant (nocte) was

not known until now.

Here we demonstrate that isolated Drosophila brains are not

able to synchronize to temperature cycles. Since they do

synchronize to light-dark cycles, these findings indicate that

the brain requires temperature input from the periphery. We

further reveal the molecular identity of the nocte gene, which

encodes a large glutamine-rich protein with unknown function.

Downregulation of nocte in peripheral tissues, including neurons

of specific sensory structures (chordotonal [ch] organs), thor-

oughly disrupts temperature entrainment of behavioral rhythms.

Similarly, other mutants known to affect the structure and

function of ch organs also interfere with temperature entrain-

ment, and mutant nocte alleles exhibit structural as well as

physiological defects of sensory organ function. Moreover we

show that a functional clock within these sensory structures

is not required for behavioral temperature entrainment to occur,

indicating that temperature information must be interpreted in

a temporal fashion by downstream clock neurons in the thoracic

central nervous system (CNS), or by the brain pacemaker

neurons themselves. Our findings demonstrate the existence

of a periphery-to-brain signaling pathway, identify the respon-

sible sensory structures, and uncover fundamental differences

between the light- and temperature-entrainment pathways of

the fly circadian clock.

RESULTS

Tissue-Autonomous Synchronization to Temperature
Cycles Is Restricted to Peripheral Organs
The Drosophila circadian clock can easily be entrained by

temperature cycles (or steps), both in constant darkness (DD)

and constant light (LL) (Busza et al., 2007; Glaser and Stanew-

sky, 2005; Matsumoto et al., 1998; Stanewsky et al., 1998;

Wheeler et al., 1993; Yoshii et al., 2002, 2005, 2007). We previ-

ously showed that molecular synchronization can occur on

a tissue-autonomous level. Isolated body parts of flies express-

ing two different period-luciferase (per-luc) constructs showed

entrained bioluminescence oscillations when kept in LL and

temperature cycles (Glaser and Stanewsky, 2005). When we per-

formed these experiments, we noticed that isolated brains

showed a 12 hr phase-advanced bioluminescence peak

compared to all other isolated tissues (Figure 1A and Glaser

and Stanewsky, 2005). This phase advance was not observed

in LD cycles at constant temperature (Figure 1A), perhaps

indicating a prominent role of the brain in synchronizing the

phase of other tissues during temperature cycles. Alternatively,

because the rise in luc-reported per expression occurs immedi-

ately after the temperature increase, it could reflect a mere

response to the environmental transition, rather than bona fide

synchronization of clock gene expression.

To address this issue we next analyzed brain per-luc expres-

sion in various mutant backgrounds known to interfere with

temperature entrainment. We applied the BG-luc and XLG-luc

transgenes, encoding 2/3 or the entire Per protein fused to

Luc, respectively; both expressed under control of a 4.2-kb

DNA fragment from the per promoter (Stanewsky et al., 1997;

Veleri et al., 2003). Both the norpA and nocte mutations, previ-

ously shown to abolish molecular and behavioral synchroniza-

tion by temperature (Glaser and Stanewsky, 2005), did not

prevent the increase in brain per-luc expression after the temper-

ature rise (Figure 1B). Next, we analyzed per-luc oscillations in

the clock mutant backgrounds of tim01 and ClkJrk (Allada et al.,

1998; Sehgal et al., 1994). Both mutations were previously

shown to disrupt temperature entrainment at behavioral and

molecular levels (Glaser and Stanewsky, 2005, 2007; Yoshii

et al., 2002, 2005, 2007). Although temperature-induced oscilla-

tions were strongly suppressed in most clock mutant tissues

analyzed, the brains again showed sharp increases of expres-

sion immediately after the change to the warm temperature

(Figure 1B).

Because the rise in Luc activity occurred in clock-less mutant

genetic backgrounds, the increase in reported per expression

reflects a response to the temperature increase, rather than

meaningful entrainment (which is read out as a cyclical phenom-

enon requiring an underlying oscillator). To address if this

temperature-induced rise in Per-Luc expression occurs in clock

neurons within the brain or in ectopic locations, we imaged brain

bioluminescence signals using a highly sensitive imaging system

(Figure 2). Brains were kept in cell culture medium in LL and

temperature cycles and imaged at a time corresponding to the

peak of luc-reported per expression (ZT8, Figures 1A and 1B).

In a control experiment, brains were kept in LD cycles and

constant temperature and imaged at ZT0, a time of high biolumi-

nescence levels in brains (and other tissues) kept in LD

(Figure 1A). In the LD control brains, luminescence signals could

be detected in regions corresponding to various groups of clock

neurons, presumably large and small Lateral Neurons ventral

(LNvs), the dorsal Lateral Neurons (LNds), and two groups of

the Dorsal Neurons (DNs) (Figure 2A, upper panel). Expression

was also found in the ocelli and in the retina (Figure 2A, upper

panel), previously shown to express per (Hall, 2003).

Surprisingly, brain expression in temperature cycles was not

confined to cells that usually express clock genes. In a clock-

normal genetic background, bioluminescence signals were

restricted to the dorsal brain (Figure 2A). Compared to the LD

expression pattern, the dorsal expression domain appeared

broader, indicating that in addition to the DN located in this

region, other cells now express the XLG-luc construct. More-

over, signals were clearly absent from brain regions where the

lateral clock neurons are usually located. This cannot be

explained by the constant presence of light (LL) (cf. Zerr et al.,

1990), because Per is expressed in these clock neurons under

LL and temperature cycling conditions in the intact animal (Yoshii

et al., 2005). Strikingly, an almost identical expression pattern

was observed in the tim01 genetic background, further indicating

the non-clock-related nature of luc-reported per expression

(Figure 2A). Similarly, in a ClkJrk mutant background, BG-luc

expression occurred in a central brain region corresponding to

the calyces of the mushroom bodies not known to contain any

clock-gene-expressing cells (Figure 2A). Note that both XLG-

luc and BG-luc transgenes are expressed in clock neurons
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during LD cycles (Stanewsky et al., 1997; Veleri et al., 2003;

Figure 2A), indicating that the dramatic difference of spatial

signal distribution between the two transgenic types observed

in isolated brains during temperature cycling conditions

depends more on the transgenic insertion site than on regulatory

per sequences contained within the transgene. Importantly, in

neither case does the spatial expression pattern significantly

overlap with that of clock-gene-expressing cells under LD
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Figure 1. Cultured Brains Synchronize to Light-Dark, but Not to Temperature, Cycles

Isolated body parts or whole flies were either kept in light-dark cycles (LD) at 25�C or in constant light and 25�C:16�C temperature cycles (LL & �C�) as indicated in

the figure.

(A) (Left) Phase comparison of bioluminescence peaks obtained from XLG-luc transgenic flies, in which the entire period (per) gene is fused to the luciferase (luc)

cDNA. (Right) XLG-luc brains kept in LL & �C� (top) or LD (bottom). Error bars indicate SEM. See Experimental Procedures for details about phase determination.

(B) Averaged bioluminescence recordings of different body parts from XLG-luc and BG-luc (containing a transgene encoding for two-thirds of the Per protein

fused to luc) flies in different mutant backgrounds.

(C) Bioluminescence recordings from the 8.0-luc:9 transgenic type. This promoter-less per-luc construct encodes the entire Per protein and is predominantly

expressed in dorsal clock neurons. White/gray and black bars indicate light/warm or dark/cold phase of the LD or temperature cycle, respectively.
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conditions, pointing to a complete lack of spatial regulation of

per under these conditions.

The ectopic Per-Luc expression observed in cultured brains—

along with the lack of such signals from clock neurons—raised

the possibility that spatial clock gene expression is generally

altered in LL and temperature cycles compared to LD cycles at

constant temperature. To test this, we imaged tissues known

to synchronize under these conditions as well as in LD cycles

(Glaser and Stanewsky, 2005; Figure 1A). Both legs and wings

showed very similar spatial Per-Luc bioluminescence expres-

sion patterns under the two entrainment regimes, showing that

peripheral clock tissues can be synchronized by light and

temperature (Figure 2B).

In agreement with an earlier study describing per-gal4-driven

GFP expression (Plautz et al., 1997), we also observe Per-Luc

expression in potential mechanosensory and chemosensory

cells along the wing margin and veins. In addition to what has

been reported, we detected strong Per-Luc signals originating

from the base of the wing, from the joints of the various leg

segments (Figure 2B), and from segments of the haltere (inset

in Figure 2B).

The 8.0-luc:9 line contains a promoterless per-luc fusion

gene, which is expressed within a subpopulation of the DNs

Figure 2. Spatial Per-Luc Expression in

Brains Dramatically Differs after Light-

Dark and Temperature Entrainment

(A) Brains dissected from XLG-luc flies and kept

in LD at 25�C show bioluminescence signals in

regions corresponding to the location of the

clock neurons (DN1, DN3, LNd, LNv) and in the

retina (R) and ocelli (Oc). In LL and temperature

cycles (25�C:16�C), ectopic Per-Luc expression

occurs in clock-normal and mutant genetic

backgrounds (arrows) (see text for details). (B

and C) Bioluminescence signals in peripheral

tissues of XLG-luc flies kept in LD and 25�C or

in LL and temperature cycles (25�C:16�C),

respectively. Signals were detected in the joints

of all leg segments, at the wing base, in ventral

wing margin (vmg), in longitudinal wing veins

(vII–vV), and in the scabellum, pedicel, and capi-

tellum of the haltera (insets in B). cx, coxa; fe,

femur; ti, tibia; tar, tarsus. (A–C) Left panels

represent merged bioluminescence and bright-

filed images; right panels show bioluminescence

images.

and occasionally in some LNd cells, but

not in peripheral clock cells (Veleri

et al., 2003). When 8.0-luc:9 adults

were tested in LL and temperature

cycles, bioluminescence peaks (presum-

ably reflecting Per expression in brain

clock neurons only) occurred late in the

cold phase, similar as for the other

Per-Luc transgenics tested (Figure 1C).

When isolated brains were analyzed, we

again observed a 12 hr phase shift, indi-

cated by increased bioluminescence levels immediately

following the temperature step up (Figure 1C).

Our results show that the brain has to be in the context of the

intact fly in order for clock-neuronal gene expression to be

synchronized by temperature cycles, and implies that in whole

flies temperature entrainment involves signaling from peripheral

tissues to the brain. As we will show below, this involves the gene

nocte, a locus previously identified to play a role in temperature

entrainment (Glaser and Stanewsky, 2005).

The nocte Gene Encodes a Large Glutamine-Rich
Protein
In order to learn more about the function of nocte in temperature

entrainment, we cloned the gene. Using meiotic mapping

involving visible marker mutations and single nucleotide polymor-

phisms (SNPs), nocte was mapped to the 9A2–9D3 interval on the

X chromosome (Experimental Procedures). Fine mapping using

deficiencies placed nocte within the 9C1–9D2 interval containing

12 genes, flanked by the proximal breakpoint of Df(1)c52,flwc52

(which removes 8E3-5;9C1; Tweedie et al., 2009) and the

distal breakpoint of Df(1)ED7010 (removing 9D3;9D4; Ryder

et al., 2004) (Experimental Procedures). A chromosomal duplica-

tion covering this region (Dp(1;2)v+75d 9A2;10C2) rescued the
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molecular temperature entrainment defects of the original

nocte mutant (Figure 3A), which confirmed the results of our

mapping experiments. Next, we analyzed available mutations

for the 12 candidate genes (Tweedie et al., 2009). One P element

insertion line exhibited a temperature entrainment phenotype

comparable to that observed in the original nocte mutant (Figures

3A, 4B, and 4C): wild-type flies anticipate the transition to the cold

phase by an increase of their activity levels, which usually peak
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Figure 3. The nocte Gene Encodes a Large Glutamine-Rich Protein

(A) Bioluminescence recordings of BG-luc (left) and XLG-luc (right) adults in wild-type and nocte mutant flies. The Dp(1;2)v+75d (Dp(1;2)) covers the X chromosomal

region 9A2–10C2 and rescues the phenotype of the EMS-induced nocte1 mutant.

(B) nocte gene structure, mRNA transcripts (gray: noncoding regions, blue: coding regions), location of the two mutant alleles, and the target regions of two nocte

RNAi constructs (brown bars). In addition to the two transcript types reported in flybase (CG17255-RA and RB), we identified two additional transcripts by

RT-PCR (RC and RD). All transcripts encode the same predicted protein and differ only in regard to the 50-UTR (see also Figure S2).

(C) The predicted Drosophila Nocte protein has weak homology to the mammalian GRP-1 protein (red) and to the BAT2 domain of MHCIII genes (orange). nocte1

results in a truncated protein as indicated. In addition to other Drosophilidae, potential Nocte homologs were found in the mosquitoes Aedes aegytpi and Anoph-

eles gambiae (Diptera), in the wasp Nasonia vitripennis (Hymenoptera), and in the beetle Tribolium castaneum (Coleoptera) (see Experimental Procedures for

details).
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several hours before the actual transition (Busza et al., 2007;

Glaser and Stanewsky, 2005), while flies carrying the chemically

induced nocte allele do not show this anticipation, and simply

react to temperature changes (Figure 4B) (Glaser and Stanewsky,

2005). Similarly, 80% of the flies carrying the insertion

P{lacW}CG17255d07154, or females heterozygous for the insertion

and the original nocte allele, do not synchronize properly to

temperature cycles, though they do entrain to LD (Figures 4C,

4G, and S1 available online). The insertion associated with this

line is located in the first intron of the gene CG17255 (Tweedie

et al., 2009) (Figures 3B and S2) and results in the generation of

abnormally spliced CG17255 transcripts (Figure S2). We

sequenced the open reading frame (ORF) of this gene in the

original nocte mutant and in the background strain used to

induce the original mutation (Experimental Procedures) and

found that this mutant contains a single base pair change

at nucleotide 5119 of the CG17255 cDNA. This alteration

introduces a premature stop codon (CAG / TAG) at position

1707 of the predicted protein, which normally is 2309 amino

acids long (Figure 3C). Both mutations interfere with molecular

and behavioral temperature entrainment, fail to complement

each other, and affect the same transcription unit (Figures 3A,

B, 4B, 4C, and S1). We therefore conclude that disruption of

CG17255 causes the observed phenotypes and named this

gene nocte. The original ethyl methanesulfonate (EMS)-induced

allele will from now on be referred to as nocte1; the P element

insertion as nocteP. The nocte1 mutation maps to a portion of

the gene’s ORF that encodes one of several poly-glutamine

stretches of Nocte. Apart from this feature and several poly-

alanine stretches, Nocte has no apparent homologies to any

other protein in the databases, except for a small region of simi-

larity to the mammalian BAT2 domain at its N terminus (the overall

similarity to the 70 N-terminal residues is weak, but it includes

11 identical amino acids). The BAT2 protein is encoded by

a gene belonging the MHCIII class genes, but its function is

unknown (Banerji et al., 1990). Nocte does not contain any

cysteine residues, suggesting that it is an intracellular protein.

Although Nocte has no apparent DNA binding domain, the pres-

ence of poly-Q and poly-A stretches also suggests that Nocte

may function as transcription cofactor (Riley and Orr, 2006),

which is further supported by a stretch of 268 amino acids

showing weak homology to the mammalian Glutamine Rich

Protein 1 (GRP-1) (Figure 3C; Cox et al., 1996). Comparison

with available genome sequences revealed that nocte is distrib-

uted among insects (i.e., not only Drosophilidae; Figure 3C), but

no obvious vertebrate homolog was identified (Experimental

Procedures).

Downregulation of nocte in Peripheral Cells Interferes
with Temperature Synchronization
Based on our finding that isolated peripheral tissues robustly

synchronize to temperature cycles, but isolated brains do not

(Figures 1 and 2), we wondered if nocte function in peripheral

tissues may be required for temperature entrainment of the

whole animal. For this, we generated two nocte UAS-RNAi

transgenes (1 and 2) (Figure 3B, Experimental Procedures),

and combined them (separately) with several gal4-containing

transgenes that drive expression in various regions of the

peripheral nervous system (PNS). Both UAS-nocteRNAi lines

result in substantial downregulation of nocte mRNA in third-

instar larvae, when crossed to tim-gal4 or nocte-gal4 (see

below) driver lines, reducing mRNA levels to 20%–35% of

peak levels (Figure S3). Synchronization to temperature cycles

was analyzed by monitoring locomotor activity first in a 12 hr:

12 hr LD cycle at constant 25�C, followed by exposure to an

out-of-phase 12 hr: 12 hr temperature cycle in LL for 1 week

(previous light phase corresponded to the cryophase [16�C]

and previous dark phase to the warm temperature [25�C]).

This was followed by another such cycle, in which the onset

of the warm phase was delayed by 6 hr compared to the initial

temperature cycling regime (Figure 4). In this regime wild-type

flies require 2–3 days to synchronize to the first temperature

cycle and about the same number of days to resynchronize to

the shifted temperature cycle. These ‘‘transients’’ are especially

obvious when the activity peak phase plot (next to the acto-

grams) is inspected (see Experimental Procedures and

Figure S4 for how these plots were generated and how the

ability to synchronize was determined and classified). In the

daily average plots below the actograms, wild-type entrained

behavior is characterized by a robust and defined activity

peak in the second half of the warm phase, reflecting an antic-

ipation of the transition to cold temperature (Figure 4A; Glaser

and Stanewsky, 2005). Strikingly, the F-gal4 transgenic (two

independent insertion lines; Experimental Procedures), which

is predominantly expressed in the neurons of the ch organs

(Kim et al., 2003; Figures 5J–5R), produced a severe tempera-

ture entrainment defect (Figures 4D and 4G) when used to drive

nocte RNAi-1 or 2. In the mutant plots the characteristic tran-

sients are missing or reduced and the animals largely react to

the new temperature cycle. Apart from the reaction to the

temperature change, the mutants remain rather constitutively

active during the warm phase, not exhibiting the distinct antici-

patory peak in the second half of the warm phase.

Interestingly, �25% of the nocteP mutant animals showed

normal entrainment to temperature cycles, and another 25%

Figure 4. Downregulation of nocte in Peripheral Sensory Structures and Ch Organ Mutants Interferes with Behavioral Synchronization to

Temperature Cycles

(A–F) Average actogram (left panels), activity peak phase (right panels), and daily activity plots (lower three panels) of flies that were entrained to 12 hr: 12 hr LD

cycles for 3 days (LD) followed by 6 days of LL and 12 hr: 12 hr temperature cycles (25�C:16�C; LL + TC preshift) in which the warm and cold phase were in

antiphase to the previous LD cycle. Subsequently, the onset of the warm phase was delayed by 6 hr compared to the initial regime (LL + TC postshift). Number

of individual flies tested is indicated in (G). Note that all flies, except Canton S controls, show abnormal entrainment to temperature cycles but normal synchro-

nization to LD. White bars or areas indicate light or warm phase and gray bars (areas) indicate dark or cold phase in LD and temperature entrainment conditions,

respectively. Dots above the daily average bars indicate SEM. (G) Summary and quantification of behavior in temperature cycles for all genotypes tested. For

nocte-RNAi lines 2:1b and 1:3 are shown (Figure S3); for tim-gal4 line, 16 was used. For classification criteria and methods see Experimental Procedures and

Figure S4.

Neuron

Peripheral Tissues Synchronize Brain Clock

Neuron 64, 251–266, October 29, 2009 ª2009 Elsevier Inc. 257



S T

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 4 8 12 16 20

period

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 4 8 12 16 20

ZT

Head 

Head 

Brain 

Brain 

Leg   

Wing 

Testis

Ovary

nocte

0

2

4

6

8

10

12

H
ea

d 

H
ea

d 
B

ra
in

 

B
ra

in
 

O
va

ry

Te
st

is

Le
g 

   

W
in

g 
 

+++             ++    +

R
el

at
iv

e 
R

N
A

 c
on

ce
nt

ra
tio

n

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 4 8 12 16 20

nocte

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 4 8 12 16 20

ZT

R
el

at
iv

e 
R

N
A

 c
on

ce
nt

ra
tio

n

0.0

0.3

0.5

0.8

1.0

1.3

4 16ZT 4     ZT 16

Ext. body parts

Neuron

Peripheral Tissues Synchronize Brain Clock

258 Neuron 64, 251–266, October 29, 2009 ª2009 Elsevier Inc.



were weakly entrained (Figure 4G). This indicates that the nocteP

allele is a hypomorph, which is not surprising given that

normally spliced nocte mRNAs can be detected in nocteP flies

(Figure S2).

As in nocte mutants, entrainment to LD cycles was not

affected in F-gal4/nocte-RNAi flies, indicating a specific defect

in temperature synchronization (Figures 4B–4D). Some nocte

RNAi insertion lines (from both types) resulted in only mild

temperature entrainment defects or even wild-type behavior

(Figures S5A and S5D), indicating that positional effects of the

transgene insertion site influence expression levels and RNAi

efficiency (although levels of downregulation mediated by such

‘‘weak’’ RNAi lines were not assessed molecularly). These latter

results, along with another control in which F-gal4 was used to

drive deaf1-RNAi (deaf1 encodes a DNA binding protein unre-

lated to circadian clocks and ch organ function) (Veraksa et al.,

2002; Figure 4G), also demonstrate that the temperature entrain-

ment defects are not elicited by the F-gal4 driver line alone.

F-gal4 Is Expressed in Ch and External Sense Organs
Adult ch organs are located at the joints between limb segments

and are internally attached to the cuticle. They function as stretch

receptors and the ch organs in adult legs and wings have been

implicated in proprioception, whereas the one in antennae medi-

ates hearing (Kernan, 2007). Neurons in larval body wall ch

organs exhibit temperature-dependent calcium changes (Liu

et al., 2003), but no connection between adult ch organs and

temperature reception has been reported so far.

Careful analyses of UAS-mCD8gfp and UAS-rfp expression

driven by the F-gal4 transgene revealed that in addition to

neurons of the ch organs (Figures 5Q and 5R), F-gal4 is also

expressed in a number of putative chemoreceptive and mecha-

noreceptive cells (external sense [es] organs) located in the labial

and maxillary palpus (Figure 5J), first antennal segment

(Figure 5K), wing (Figure 5L), haltere (Figure 5N), and leg (Figures

5O–5Q). Within the wing, F-gal4-positive cells were detected in

the wing base, the ventral wing margin, and all wing veins, partic-

ularly in the regions close to the wing base. In the haltere and leg,

F-gal4-positive cells are located in the cortex of every segment:

marker signals were especially abundant in the capitellum of the

haltere, the distal part of the femur, and the proximal part of the

tibia. We also detected limited F-gal4 expression in the brain

(Figures S6 and S8).

Mutations Affecting the Ch Organs Show Deficits in
Temperature Entrainment
To confirm the potential role of ch and es organs in temperature

entrainment, we analyzed mutants affecting the eyes shut (eys)

a.k.a. spacemaker (spam) gene that encodes a proteoglycan

expressed in the interrhabdomeral space within the eye as well

as within the luminal space of ch and es organs (Husain et al.,

2006; Zelhof et al., 2006; Figure 6G). eys mutants lack the inter-

rhabdomeral space, and as a consequence rhabdomeres are in

close contact, leading to visual impairment, but no mechanosen-

sory defects have been described (Husain et al., 2006). We

tested three eys/spam alleles: eys734 and eys395 behave as

loss-of-function mutants with respect to the rhabdomere pheno-

type, although Eys protein was detected in both mutants (Husain

et al., 2006). The spam1 allele is protein null and exhibits the

same rhabomere phenotype as the other two eys alleles (Zelhof

et al., 2006). All three alleles showed wild-type behavior under LD

conditions (Figure 4E and data not shown). Strikingly, in temper-

ature cycles, 80% to 100% of the eys/spam mutant flies were

mainly active during the warm phase, did not show the typical

transients after transfer to a new temperature regime, and did

not anticipate the temperature decrease, whereas the spam1

protein null allele showed the most severe phenotype (Figures

4E and 4G). The temperature synchronization defects observed

for all three eys/spam alleles again indicate that ch and/or es

organs are required for synchronization to temperature cycles

and suggest that this function can be separated from their

role in mechanoreception. Importantly, reducing eys/spam

function in the ch and es organs using F-gal4/eys-RNAi also

resulted in severely impaired behavioral synchronization to

temperature in a manner similar to that as observed with nocte-

RNAi (Figure 4G).

To specifically address the role of ch organs in temperature

synchronization, we applied mutations of genes that are known

to play a role in mechanoreception mediated by these organs

and also retained normal es organ function. touch insensitive

larvaeB (tilB) mutants have normal bristle receptor potentials

but lack adult ch organ function, at least that of Johnston’s organ

(Eberl et al., 2000; Kernan, 2007). tilB encodes a protein

conserved in ciliated eukaryotes that is required for ciliar struc-

ture and function (Kavlie, 2007; Tweedie et al., 2009). In tilB-

mutant spermatids the axonemal structures of the cilia are dis-

rupted, indicating that ciliary motility is impaired—the likely

Figure 5. Spatial and Temporal Expression Pattern of nocte

(A–R) Expression of UAS-mCD8gfp and UAS-rfp driven by nocte-gal4 (A–I) and F-gal4 (J–R) in potential chemoreceptors and mechanoreceptors and in neurons

of the ch organs. (A and J) Signals in the labial (labp), maxillary palpus (mxp), antenna (ant), and antennal ch organs (arrows). (B and K) Larger magnification of

the antenna. Arrow depicts neurons of the ch organ that project into the antennal nerve. (C and L) GFP and RFP signals in the wing base, ventral wing margin, all

wing veins, and wing ch organ (arrow). (D and M) Wing ch organ. (E, F, N, and O) Signals in all segments of the haltere and leg. Arrows point to the ch organs.

(G and P) Close-up of the last tarsal segments. (H, I, Q, and R) Leg ch organ (arrow). With nocte-gal4, both GFP and RFP signals were more abundant in all

external organs tested. Intensity of GFP signals varied between ‘‘strong’’ in the ch organs and ‘‘weak’’ or ‘‘undetectable’’ in the chemoreceptors and mecha-

noreceptors, while RFP signals in all positive cells appear uniform. Scale bar for (A), (C), (F), (J), (L), and (O), 100 mm; for (B), (D), (E), (G–I), (K), (M), (N), and (P–R),

10 mm. (S) Comparison of the relative RNA expression of nocte in different body parts (normalized by rp49). ANOVA indicated highly significant differences of

relative expression levels of nocte in the different body parts (ANOVA, F7.88 = 55.11; p < 0.001). According to LSD post hoc test (p < 0.05), they can be clustered

in three groups of higher (+++), medium (++), and lower (+) nocte expression. (T) Temporal RNA expression of nocte (left panel) and per (right panel) in different

body parts, under LL and temperature cycles (12 hr: 12hr, 25�C:16�C). Expression levels were normalized to rp49. Insets show the average of all body parts.

Note that the apparent peak expression of nocte in the legs at ZT16 was not significant, nor could it be reproduced in an independent experiment in which

mRNA levels in legs and wings were estimated at ZT4 and ZT16 (green histogram bars). Error bars in (S) and (T) indicate SEM. See Experimental Procedures

for details.
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cause of sterility associated with this mutation (Caldwell et al.,

2003). Although no such structural defect can be observed in

adult ch organs at the light microscopy level, the same defect

may underlie the deafness observed in tilB mutants (Kernan,

2007). smetana (smet) was isolated in a genetic screen for audi-

tory mutants, and like tilB1, causes male sterility and deafness,

indicating a structural defect of the axoneme, but the mutated

gene is not known (Caldwell et al., 2003). Strikingly, most tilB1

(90%) and smet/Df(smet) (65%) mutants show no or only weak

synchronization to temperature cycles (Figures 4F and 4G). In

order to determine potential genetic interactions between nocte

and ch-organ-specific mutants, we generated a nocteP; smet/

Df(smet) double mutant. Interestingly, the double mutant flies

exhibited a more sever temperature entrainment phenotype

compared to the single mutants, indicating an additive effect

and the involvement of both genes in the same process

(Figure 4G). These results strongly implicate ch organs and the

axonemal cytoskeleton surrounding the ch organ cilia as crucial

components of the temperature input pathway.

nocte Is Expressed in Many Tissues, Including Ch and Es
Organs
To determine if nocte is indeed expressed in the adult ch and

es organs, we generated a nocte-gal4 transgene by cloning

an �2 kb genomic DNA fragment upstream of the nocte tran-

scription start into a gal4 transformation vector (Experimental

Procedures). Crossing several independently isolated nocte-

gal4 insertion lines to a reporter strain containing UAS-mCD8gfp

and UAS-rfp transgenes revealed identical widespread, but not

ubiquitous, activity of the nocte promoter fragment (Figures
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Figure 6. Altered Dendritic Caps or NompA

Expression in the Femoral Ch Organs of

nocte1 Flies

(A–C) Femur dissected from legs of FM6 control

and (D–F) nocte1 flies expressing the gfp-nompA

construct. GFP-NompA (green) reports NompA

expression in the dentritic cap of the scolopale.

Cell bodies of ch organ neurons are visualized by

22C10 (magenta) and the scolopale actin capsule

by phalloidin (red). Note that the ch organ neurons

are the same as those expressing F-gal4 and

nocte-gal4 in Figures 5I and 5R. Gaps detected

in the NompA expression domain of nocte1 flies

are indicated by arrow heads. Scale bars are

10 mm. (G) Cartoon showing structure and selected

gene expression patterns in control and nocte1

mutant femoral scolopales (Kernan, 2007). Dotted

structures indicate the uncertainty of the integrity

of cilia, ciliary dilation (gray), and Spam/Eys distri-

bution (blue) in nocte1.

5A–5I, S6, and S8). Positive tissues

included those that can be synchronized

by temperature cycles in isolation, but

they also included the brain (Figures

5A–5I, S6, and S8). To validate the spatial

expression pattern of nocte, we per-

formed real-time PCR experiments on

RNA isolated from different body parts, which confirmed the

broad expression pattern observed with nocte-promoter-driven

reporter expression (Figure 5S). Our expression data are also in

good agreement with those reported in FlyAtlas for CG17255

(Chintapalli et al., 2007). Quantitative RNA expression analysis

revealed that nocte is neither circadianly nor temperature-

dependently regulated in the tissues analyzed (Figure 5T, and

data not shown).

Importantly, when we compared reporter signals in F-gal4 and

nocte-gal4 flies, the ch and es organs of the adult legs, wings,

haltere, and antennae were found to express nocte (Figures

5A–5R; Kim et al., 2003). In particular, strong neuronal expres-

sion in the ch organs was observed, similar to that reported for

F-gal4 (compare Figures 5I and 5R). Overall, the number of

nocte-positive cells was larger than that obtained with the

F-gal4 driver, but they were located in the same regions (Figures

5A–5R). It therefore appears that the F-gal4-expressing cells are

a subset of nocte-expressing ones. This is in good agreement

with our finding that nocte function within F-gal4-expressing

cells mediates temperature entrainment (Figure 4D).

Johnston’s Organ Is Not Required for Temperature
Entrainment
Because the antennal ch organ (Johnston’s organ, located in the

second antennal segment) of Drosophila is a highly specialized

organ mediating hearing, we speculated that it is not required

for temperature synchronization. On the other hand, a previous

report (Sayeed and Benzer, 1996) revealed a receptor for

temperature preference behavior to be located in the third

antennal segment. We had already shown that the antennae
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are not required for temperature-cycle-induced molecular clock

gene oscillations (Glaser and Stanewsky, 2005). Here we tested

flies, in which either the third antennal segments or the whole

antennae (including Johnston’s organ) were mechanically

ablated, for their ability to synchronize behaviorally to LD and

temperature cycles (Figures S5B and S5C). During both environ-

mental cycles, behavior of the manipulated flies was very similar

to that of wild-type, demonstrating that the antennae are not

required for temperature entrainment. Although we cannot

rule out a contribution of Johnston’s organ, it seems clear that

one or several of the other adult ch organs (Figures 5C–5I and

5L–5R) are sufficient for clock synchronization by temperature.

nocte Mutants Exhibit Visible Ch Organ Defects
Based on the involvement of nocte and ch organs in temperature

entrainment, it was possible that nocte mutants affected ch

organ structure. First we analyzed RFP expression in F-gal4/

nocte-RNAi/rfp and nocte1;F-gal4/rfp flies and could not detect

any gross structural abnormalities in the adult ch organ

(Figure S7 and data not shown). In order to reveal potential alter-

ations in the fine structure of ch organs, we crossed a gfp-

nompA reporter gene into the genetic background of nocte1

and nocteP. gfp-nompA encodes a GFP-NompA fusion protein,

expressed under the control of the endogenous nompA

promoter and recapitulating the spatial pattern of nompA

expression (Chung et al., 2001). NompA is a transmembrane

protein containing extracellular ZP domains, and is specifically

expressed in the dendritic cap of ch and es organs (Figures

6A–6G; Chung et al., 2001). Inspection of GFP-NompA expres-

sion in femur ch organs revealed that between 60% (nocteP)

and 100% (nocte1) of the nocte mutant flies tested contain

dendritic caps that appear to have physical gaps, or spatially

suppressed GFP-NompA expression (Figures 6D–6F and Table

S1 available online). Since NompA is critical for transmission of

mechanical stimuli from sensory structures to the sensory

neuron (Chung et al., 2001), the structural defect, or the NompA

expression phenotype we observed, indicates that ch organ

function is also impaired in nocte mutants.

nocte Mutants Exhibit a Temperature-Dependent
‘‘Uncoordinated’’ Phenotype
The above results suggest that a structural defect in ch organs

is responsible for the temperature synchronization defects

observed in nocte, tilB, and smet mutants. Interestingly, one

allele of the eys/spam locus (spam1) also effects ch and es organ

structure, but in a temperature- or humidity-dependent manner

(Cook et al., 2008). It was shown that the Eys/Spam protein

within the scolopale of ch organs conserves the shape and func-

tion of this structure after water loss induced by exposure to

excessive heat or osmotic shock. In spam1 mutants this struc-

tural conservation is lost and the scolopales undergo dramatic

cellular deformation, leading to flies that exhibit an irreversible

uncoordinated locomotor phenotype after prolonged exposure

to 37�C (Cook et al., 2008). Given that both eys/spam (including

spam1) and nocte mutants fail to entrain to temperature cycles

(Figures 4B, 4C, 4E, and 4G), we wondered if nocte mutants

also exhibit the same temperature-dependent uncoordinated

phenotype. For this, we exposed control and nocte mutant flies

to 37�C for 90 min and counted the number of flies that fell over

during this time in 15 min intervals (Experimental Procedures;

Cook et al., 2008). Both nocte alleles showed an uncoordinated

phenotype, with more flies falling over the longer they were

exposed to the high temperature (Figure 7). This phenotype

was again more pronounced in nocte1 compared to nocteP,

further suggesting that the latter allele is a weak hypomorph.

Interestingly, and as in the case of spam1 mutants, uncoordina-

tion was largely prevented when flies were exposed to the same

high temperature at >90% humidity (Figure 7). This indicates that

water loss from the scolopale also results in gross structural

defects and cellular deformations of nocte ch organs, which

may also explain why these organs fail to mediate temperature

synchronization when mutated.

Temperature Entrainment Does Not Require
a Functional Clock in the Ch Organs
We wanted to determine if a clock is required in the peripheral

tissues expressing F-gal4. For this, we expressed a dominant-

negative form of the cycle gene (cycD) in either all clock-gene

expressing cells or the F-gal4 pattern only. The UAS-cycD line

causes arrhythmicity under DD and constant temperature
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Figure 7. nocte Mutants Exhibit a Temperature-Dependent Uncoor-

dinated Phenotype

Control (BG-luc), nocte, and spam mutant flies were raised at 25�C and trans-

ferred (in groups of 10) for 90 min to 37�C where they were observed every

15 min. The percentage of normal walking flies compared to ‘‘uncoordinated’’

flies is shown. The number of independent experiments (including 10 flies per

genotype each) is indicated. Error bars indicate SEM.
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conditions (Tanoue et al., 2004). As expected from the results

obtained with the tim and Clk mutants (Figures 1B and 2A),

UAS-cycD expression driven in all clock cells by the tim-gal4

driver resulted in abnormal temperature entrainment

(Figure 8A) (Yoshii et al., 2002, 2005). In contrast, when UAS-

cycD was restricted to the F-gal4-expressing cells, temperature

entrainment appeared normal (Figure 8B). This result is in good

agreement with our failure to detect clock gene expression in

ch organs (Figure S7), and also explains why tim-gal4/UAS-noc-

teRNAi flies entrain normally to temperature cycles (Figure 4G).

DISCUSSION

Temperature Entrainment of the Brain Clock Requires
Signals from the Periphery
We show here unequivocally that isolated brains are not able

to synchronize their circadian clock to temperature cycles,

whereas they do entrain to LD. Tissue-autonomous synchroniza-

tion to LD cycles is very likely mediated by the blue light photo-

receptor Cry, which is expressed within a large subset of lateral

and dorsal clock neurons (Benito et al., 2008; Yoshii et al., 2008).

Likewise, synchronization of peripheral clock cells to light-dark

and temperature cycles is tissue autonomous (Figure 1A). In

contrast, brains depend on signals from the periphery for

temperature entrainment to occur, indicating different tempera-

ture entrainment mechanisms for peripheral clock cells and

central brain clock neurons. A possible reason for this may be

that clock neurons need to be ‘‘protected’’ from imminent influ-

ences of temperature changes, which can occur very sporadi-

cally in nature. In fact, work from the Emery lab has shown

that, even within the brain, a certain subset of light-responsive

clock neurons that mainly controls the behavioral morning

activity (M-cells) seems to repress temperature responsiveness

of a different group of clock neurons (Busza et al., 2007).
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Figure 8. Peripheral Clocks in Ch Organs Are Not Required for Temperature Entrainment

Flies of the indicated genotypes were analyzed during 12 hr: 12 hr LD or temperature cycles, as indicated next to the panels.

(A) Expression of a dominant-negative form of the cycle gene (cyc-D:24) in all clock cells using the tim-gal4 driver (line 27). Wild-type (Canton S) and UAS-cyc-

D:24 flies were used as controls.

(B) F-gal4/UAS-cyc-D:24 flies were entrained to LD for 3 days, followed by temperature cycles in LL, in which the warm and cold phase were in antiphase to the

previous LD cycle. White and gray areas, bars, and SEM are as described in the legend to Figure 4.
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Molecularly, this block could be mediated by Cry expression in

the clock neurons, because it has been shown that the cryb

mutation enhances the amplitude of temperature-entrained

clock gene expression (Glaser and Stanewsky, 2007). This

suggests that some neurons are more responsive to a certain

Zeitgeber than others and vice versa. For example, the Cry-

negative neurons may be more important as temperature

sensors as it was shown for the DN2 and Lateral Posterior

Neurons (LPNs) located in the dorsal and lateral brain (Miyasako

et al., 2007). These two neuronal groups do not (so far) belong to

the M- and E-cell groups, and they can mediate aspects of

temperature-entrained behavior in the absence of the M- and

E-cells (Busza et al., 2007). In larvae the Cry-negative DN2 also

play a prominent role under temperature entrainment conditions,

where they seem to determine the phase of the other clock

neurons in the larval brain (Picot et al., 2009).

It is conceivable that such a division of sensitivity to environ-

mental signals, including complex protection from temperature

signals in certain neurons, is required for stable synchronization

to natural light-dark and temperature cycles. Since temperature

cycles are a less reliable Zeitgeber compared to light-dark

cycles, it would make sense that a peripheral temperature input

is received only by a subset of clock neurons. These Cry-nega-

tive neurons are usually entrained by the light-responsive Cry-

positive neurons, but under certain environmental conditions

they could turn into the dominant neurons—now synchronizing

the light-responsive neurons and activity rhythms to temperature

cycles. The fact that temperature reception in these neurons

occurs non-cell-autonomously (i.e., via the periphery) perhaps

ensures that their input can more easily be controlled (i.e., shut

off) by the clock-neuronal network.

Ch Organs as Circadian Temperature Receptors
We applied a set of PNS-gal4 driver lines to home in on the

tissues responsible for circadianly relevant temperature recep-

tion. This strategy was based on three observations: (1) PNS

cells have been reported to express per, although a function

for this expression is not known (Plautz et al., 1997); (2) isolated

tissues containing these PNS cells are able to synchronize per

expression to temperature cycles (Figures 1, 2, and Glaser and

Stanewsky, 2005); and (3) nocte expression is also found within

PNS cells of these tissues (Figure 5). We found that F-gal4, previ-

ously reported to be expressed specifically in ch organs, leads

to disruption of temperature synchronization when crossed to

nocte-RNAi. Although this immediately suggested that ch

organs are crucial for this form of entrainment, careful inspection

of the F-gal4 expression pattern revealed that this driver is also

active in es organs (Figure 5) and in a few neurons in the brain

(Figures S6 and S8). Although nocte is also expressed in the

brain, the spatial expression pattern of both genes appears to

be distinct (Figures S6 and S8). Nevertheless, we cannot rule

out that nocte and F-gal4 are coexpressed in a few brain neurons

and that F-gal4-mediated downregulation in brain neurons

contributes to the observed temperature entrainment phenotype

in F-gal4/nocteRNAi flies. In fact, nocte’s broad expression

pattern in the brain does include the LNvs, and we could show

that one LNv is also positive for F-gal4 (Figure S8). But several

observations strongly suggest that it is the prominent expression

of F-gal4 and nocte in ch organs that is mediating temperature

entrainment. First, isolated brains do not synchronize to temper-

ature cycles, indicating that nocte expression in the brain is not

sufficient to mediate entrainment. Second, we found that muta-

tions known to affect ch organ structure and function (tilB, eys/

spam, smet) also interfere with temperature entrainment. Third,

expression or function in the brain for any of these genes has

not been described, and even if they do act in the brain it seems

very unlikely that they are all expressed in the same putative

‘‘temperature entrainment cells.’’ Fourth, if clock function is

compromised in the one F-gal4-positive LNv via expression of

the dominant-negative form of cyc, behavioral synchronization

to temperature cycles is not affected (Figure 8B).

The tilB and smet mutants applied here are known to specifi-

cally affect ch function and leave es organ function intact (Cald-

well et al., 2003; Eberl et al., 2000). Similarly, the eys734/395 alleles

retain normal mechanosensory function, but are thought to

exhibit a molecular defect of the sensory dendrite of ch organs

(Husain et al., 2006). All these mutations interfere with entrain-

ment to temperature, but not to light-dark, cycles. Together

with the prominent expression of F-gal4 and nocte in ch organs,

these findings strongly implicate ch organs as mediators of

temperature entrainment, at least within the temperature interval

applied in this study (25�C:16�C).

How May Ch Organs Perceive Temperature?
Ch organs can function as stretch receptors and have been

implicated in mediating proprioception, gravireception, and

vibration detection (Kernan, 2007). In contrast to external

sensory cells, adult ch organs do not contain external bristles,

and are attached to the inside of the cuticle. They consist of

one to several hundred sensory units (scolopodia), and each of

them contains a liquid-filled capsule (scolopale) that harbors

the sensory endings of one to three neurons (Figure 6; Kernan,

2007). Interestingly, the Eys/Spam protein can be detected at

the border between the ch neuron cell body and the lumen of

the scolopale, and close to a characteristic dilation of the ch cilia

(Cook et al., 2008; Husain et al., 2006). spam mutants exhibit

a massive cellular deformation of the scolopale after exposure

to 37�C (Cook et al., 2008). This deformation can be prevented

by exposing the mutants to >90% humidity during the high

temperature period. This suggests that the cellular deformation

is caused by water loss from the hemolymph, which leads to

water loss from the scolopale and subsequent neuronal defor-

mation (Cook et al., 2008). eys/spam mutants show normal

mechanoreceptor responses at room temperature, indicating

that the presence of Eys/Spam protects the scolopale from

excessive heat, probably by preventing water loss (Cook et al.,

2008; Husain et al., 2006). nocte mutants exhibit the same

temperature- and humidity-dependent uncoordinated pheno-

type as spam mutants, indicating a similar cellular deformation

induced by excessive heat (Figure 7). Given that mutants of

both genes also fail to synchronize to temperature cycles, we

suspect that both phenotypes are related. As we show here,

both nocte alleles lead to a structural defect in the dendritic

cap of the ch organ (or misexpression of the dendritic cap protein

NompA). It is conceivable that this defect also leads to excessive

water loss at high temperatures, which would explain nocte’s
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uncoordinated phenotype. For temperature entrainment to work

properly it seems therefore absolutely crucial that the scolopale

is protected from effects of extreme temperatures.

On the other hand, the ch organs must be able to sense subtle

changes of temperature alterations in the fly’s physiological

range in order to function as circadian temperature sensors. In

larvae, both ch organs and es neurons in the body wall react

by increasing [Ca2+] after raising or lowering the temperature

(Liu et al., 2003), suggesting that they are also capable of detect-

ing temperature changes in the adult. Considering that two other

temperature entrainment mutants, tilB and smet, very likely

affect the axonemal cytoskeleton structure of the ch cilia, we

believe that perhaps dynamic properties of the ch cilia underlie

temperature entrainment. The cilia in stimulated femoral ch

organs of grasshoppers show active bending (i.e., not a passive

reaction to the mechanical stimulus) close to the region where

the cilia enters the scolopale (Moran et al., 1977). This ciliar

bending presumably activates the ch neuron, which propagates

the signal to the thoracic CNS. Interestingly, the same study

showed that the femoral ch organ behaves tonically—in other

words, it keeps firing at the same rate as long as the mechanical

stimulation doesn’t change (Moran et al., 1977). This inability to

adapt to an environmental stimulus is exactly what would be

required for a circadian temperature receptor, because it is

necessary that it tracks subtle changes in temperature over

time. Our current hypothesis therefore postulates the scolopale

as an active unit for circadian temperature reception. Eys/

Spam and Nocte are required to protect the unit from water

loss at different temperatures, rendering the cilia able to react

to subtle changes in temperature by actively changing its shape

(perhaps by bending). The degree of ciliar bending then deter-

mines the firing frequency of the ch neuron, which is tightly

coupled to the ambient temperature.

The Role of the nocte Gene Product in Temperature
Entrainment
Both nocte alleles show similar phenotypes in regard to temper-

ature entrainment, dendritic cap, and uncoordination pheno-

types, although nocte1 always exhibits more severe defects

then nocteP. This suggests that nocteP is a hypomorphic allele,

a suggestion also supported by the observation that it is able

to generate normally spliced transcripts in addition to aberrant

ones (Figure S2). We also have evidence that nocte1 is not

a null allele, because (1) we can detect a truncated protein of

the predicted size on western blots probed with an anti-Nocte

serum, and (2) driving nocte-RNAi with broadly expressed gal4

driver lines (e.g., nocte-gal4, tim-gal4) leads to adult lethality

(C.G., H.S., A.S., A.G., and R.S., unpublished data).

Downregulation of nocte using F-gal4 results in a severe

temperature entrainment defect, confirming that this transcrip-

tion unit is involved in the process. Because F-gal4 is expressed

within the neurons and cilia of ch organs, this behavioral defect

indicates that nocte is also expressed in ch organ neurons

(Kim et al., 2003). Based on the potential structural defect

observed in nocte mutants, the Nocte protein may be required

for the proper connection between the scolopale and the

dendritic cap or proper expression and distribution of tempera-

ture-entrainment-relevant gene products along the cilia

(Figure 6). This would also explain the structural defect or nompA

misexpression phenotype caused by both nocte alleles (Figures

6D–6F and Table S1), which presumably underlies the observed

temperature entrainment phenotype.

Requirement of a Functional Clock in Ch Organs
Our findings indicate that a functional clock within peripheral

sensory structures important for temperature entrainment is

not required (Figures 8 and S8). We therefore propose a model

in which ch organ neurons, which do not possess a functional

clock, send temperature information to peripheral clock neurons

in the thoracic CNS, or directly to the more temperature-sensi-

tive clock neurons within the brain (see above). A similar pathway

has recently been described for sex peptide (SP) signaling, in

which specific SP-receptor-expressing neurons located within

the female reproductive tract signal to the CNS (Häsemeyer

et al., 2009).

For daily temperature entrainment to work, temperature

signals need to be interpreted by clock neurons in a time-depen-

dent (i.e., circadian) manner in order to result in coordinated

clock protein cycling and synchronized behavior controlled by

these neurons. Neuronal brain clocks totally depend on these

signals to become entrained by temperature, since they cannot

synchronize in culture (Figures 1 and 2). Because isolated brains

cell-autonomously synchronize to light (Figure 1), our findings

reveal a fundamental difference between these two entrainment

pathways.

EXPERIMENTAL PROCEDURES

Flies

For a detailed description of fly stocks used and generated for this study see

Supplemental Experimental Procedures.

Bioluminescence Recordings and Imaging

Bioluminescence rhythms emanating from whole flies or individual body parts

were recorded essentially as described (Glaser and Stanewsky, 2005) using an

automated bioluminescence counter (Topcount, Perkin-Elmer). For more

details, also regarding the generation of bioluminescence images shown in

Figure 2 using the LuminoviewLV200 imaging system (Olympus, Tokyo,

Japan), please refer to the Supplemental Experimental Procedures.

Mapping of nocte

By using visible markers, SNPs, chromosomal deficiencies, and insertions,

nocte was mapped to the CG17255 transcription unit at position 9C6–9D1 on

the X chromosome. For details see Supplemental Experimental Procedures.

Generation of nocte Constructs

Nocte RNAi constructs were designed using fusions between nocte genomic

and cDNA as described previously (Kalidas and Smith, 2002). For details see

Supplemental Experimental Procedures.

Behavioral Analysis

Locomotor activity rhythms were recorded automatically using the Drosophila

Activity Monitoring (DAM) system (Trikinetics, Waltham, MA) as previously

described (Glaser and Stanewsky, 2005). Flies were initially synchronized

and recorded in LD (12 hr: 12 hr) at a constant temperature of 25�C for

3–5 days and then released to LL and temperature cycles (12 hr: 12 hr,

25�C:16�C) in opposite phase to that of the initial LD cycle (i.e., cryophase

corresponded to light, and warm phase to dark portion of the LD cycle). For

the experiments shown in Figure 4, the temperature cycle was shifted after

6 days, so that the warm phase occurred in a 6 hr delay compared to the initial
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temperature cycle, as indicated by the shading in the locomotor-activity plots

(called actograms). For further details, please refer to the Supplemental Exper-

imental Procedures.

Uncoordinated Assay and Quantification

The assay was performed as previously described (Cook et al., 2008). Flies

were raised at 25�C and 10 young males were placed in a Petri dish and trans-

ferred for 90 min to a 37�C incubator where they were observed every 15 min.

Relative humidity in the incubator was between 20%–30%. High humidity was

obtained by adding a filter paper soaked in water to the Petri dish where the

flies were monitored. The percentage of normal walking flies was determined

by counting the number of flies walking at a certain time point and comparing it

to the number of flies unable to walk or completely uncoordinated (i.e., lying on

their backs or sides). High and low humidity observations were performed at

the same time.

Fluorescence Microscopy and Immunohistochemistry

See Supplemental Experimental Procedures.

RNA Extractions and qPCR

Adult Drosophila (y w) were entrained for 3 days both under LD 25�C and LL

25�C:16�C (12 hr: 12 hr) conditions, and then collected at Zeitgeber Time

(ZT) 0, 4, 8, 12, 16, and 20. Collection and dissection of 10 individuals started

30 min before and finished 30 min after each ZT. Wings, legs, and heads were

immediately transferred to dry ice; brains, ovaries, and testis to RNA later solu-

tion (Ambion), and then stored at �80�C until RNA extraction. Two different

UAS-nocte-RNAi transgenics (nocte-RNAi2:1b and nocte-RNAi1:3) were

crossed with tim-gal4:67 and nocte-gal4:M3. Crosses were kept at 18�C for

20 days and then transferred to 25�C. After four days at 25�C, five third-instar

larvae were collected from each cross and from two of the parental lines

(nocte-RNAi1:3 and tim-gal4:67), and processed for quantitative PCR using

a Reverse Transcription Reagents Kit (Applied Biossystems) (see Supple-

mental Experimental Procedures).

nocte Transcripts in nocteP Mutants

Two samples of two adult female flies were collected in parallel from Canton S

and nocteP strains, and RNA extraction was performed as described above for

samples used in qPCR and eluted in a final volume of 200 ml of H2O. Reverse

transcription reactions were performed with High Capacity RNA-to-cDNA

Master Mix (Applied Biosystems) according to the manufacturer’s instructions.

PCR products from both strains were generated with nocte-specific primers

and sequenced as described in the Supplemental Experimental Procedures.

Comparative Sequence Analysis to Identify nocte Homologs

Nocte protein sequence from Drosophila melanogaster was initially blasted

(tblastn tool) against both the whole-genome shotgun reads on the NCBI

website (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and the available genomic

sequences of insects on the Vector Base website (http://www.vectorbase.

org/Tools/BLAST/). Several insect species were identified as potentially con-

taining nocte homologs. In order to obtain a more specific blast result, the

genomic regions with the best hits were downloaded and blasted (blastx

tool) against the GeneBank protein sequences of Drosophila melanogaster in

Flybase website (http://flybase.org/blast/). The most reliable candidates are

presented in Figure 3C.

SUPPLEMENTAL DATA

Supplemental data for this article include eight Supplemental Figures, one

Supplemental Table, and Supplemental Experimental Procedures and can be

found at http://www.cell.com/neuron/supplemental/S0896-6273(09)00638-2.

ACKNOWLEDGMENTS

We thank OLYMPUS UK Ltd., namely Mr. Alan Kidger and Werner Kammer-

loher for their generous provision of the LuminoviewLV200, and Ko Fan

Chen for help with nocte homology searches. We also thank C. Kim for the

F-gal4; P. Hardin for UAS-cycD, U. Tepass for eys; A. Zelhof for spam; D. Eberl

for tilB, smet, and gfp-nompA flies; and P. Emery, J. Hall, and J. Levine for crit-

ical reading of the manuscript. Confocal imaging was performed with support

of the Blizard Advanced Light Microscopy facility at Queen Mary. This work

was supported by the Deutsche Forschungsgemeinschaft grants Sta 421/

3-3 and Sta 421/6-6 given to R.S. Work in our lab is supported by EUCLOCK,

an Integrated Project (FP6) funded by the European Commission and the

BBSRC.

Accepted: August 19, 2009

Published: October 28, 2009

REFERENCES

Allada, R., White, N.E., So, W.V., Hall, J.C., and Rosbash, M. (1998). A mutant

Drosophila homolog of mammalian Clock disrupts circadian rhythms and

transcription of period and timeless. Cell 93, 791–804.

Banerji, J., Sands, J., Strominger, J.L., and Spies, T. (1990). A gene pair from

the human major histocompatibility complex encodes large proline-rich

proteins with multiple repeated motifs and a single ubiquitin-like domain.

Proc. Natl. Acad. Sci. USA 87, 2374–2378.

Barrett, R.K., and Takahashi, J.S. (1995). Temperature compensation and

temperature entrainment of the chick pineal cell circadian clock. J. Neurosci.

15, 5681–5692.

Benito, J., Houl, J.H., Roman, G.W., and Hardin, P.E. (2008). The blue-light

photoreceptor CRYPTOCHROME is expressed in a subset of circadian

oscillator neurons in the Drosophila CNS. J. Biol. Rhythms 23, 296–307.

Boothroyd, C.E., and Young, M.W. (2008). The in(put)s and out(put)s of the

Drosophila circadian clock. Ann. N Y Acad. Sci. 1129, 350–357.

Brown, S.A., Zumbrunn, G., Fleury-Olela, F., Preitner, N., and Schibler, U.

(2002). Rhythms of mammalian body temperature can sustain peripheral circa-

dian clocks. Curr. Biol. 12, 1574–1583.

Busza, A., Murad, A., and Emery, P. (2007). Interactions between circadian

neurons control temperature synchronization of Drosophila behavior. J. Neu-

rosci. 27, 10722–10733.

Caldwell, J.C., Miller, M.M., Wing, S., Soll, D.R., and Eberl, D.F. (2003).

Dynamic analysis of larval locomotion in Drosophila chordotonal organ

mutants. Proc. Natl. Acad. Sci. USA 100, 16053–16058.

Chintapalli, V.R., Wang, J., and Dow, J.A. (2007). Using FlyAtlas to identify

better Drosophila melanogaster models of human disease. Nat. Genet. 39,

715–720.

Chung, Y.D., Zhu, J., Han, Y., and Kernan, M.J. (2001). nompA encodes

a PNS-specific, ZP domain protein required to connect mechanosensory

dendrites to sensory structures. Neuron 29, 415–428.

Cook, B., Hardy, R.W., McConnaughey, W.B., and Zuker, C.S. (2008).

Preserving cell shape under environmental stress. Nature 452, 361–364.

Cox, G.W., Taylor, L.S., Willis, J.D., Melillo, G., White, R.L., 3rd, Anderson,

S.K., and Lin, J.J. (1996). Molecular cloning and characterization of a novel

mouse macrophage gene that encodes a nuclear protein comprising polyglut-

amine repeats and interspersing histidines. J. Biol. Chem. 271, 25515–25523.

Dubruille, R., and Emery, P. (2008). A plastic clock: how circadian rhythms

respond to environmental cues in Drosophila. Mol. Neurobiol. 38, 129–145.

Dunlap, J.C., Loros, J.J., and DeCoursey, P.J. (2004). Chronobiolgy: Biological

Timekeeping (Sunderland, Massachusetts: Sinauer Associates, Inc).

Eberl, D.F., Hardy, R.W., and Kernan, M.J. (2000). Genetically similar transduc-

tion mechanisms for touch and hearing in Drosophila. J. Neurosci. 20, 5981–

5988.

Glaser, F.T., and Stanewsky, R. (2005). Temperature synchronization of the

Drosophila circadian clock. Curr. Biol. 15, 1352–1363.

Glaser, F.T., and Stanewsky, R. (2007). Synchronization of the Drosophila

circadian clock by temperature cycles. Cold Spring Harb. Symp. Quant.

Biol. 72, 233–242.

Neuron

Peripheral Tissues Synchronize Brain Clock

Neuron 64, 251–266, October 29, 2009 ª2009 Elsevier Inc. 265



Hall, J.C. (2003). Genetics and molecular biology of rhythms in Drosophila and

other insects. Adv. Genet. 48, 1–280.

Hamada, F.N., Rosenzweig, M., Kang, K., Pulver, S.R., Ghezzi, A., Jegla, T.J.,

and Garrity, P.A. (2008). An internal thermal sensor controlling temperature

preference in Drosophila. Nature 454, 217–220.
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Figure S1: Impaired temperature synchronization in nocte1/nocteP females. 

Group actograms, peak phase of activity (A, B upper left and right panels, respectively) 

and daily average activity (A, B middle and bottom panels) of flies that were entrained to 

12 hr: 12 hr LD cycles for 3 days followed by two weeks of LL and 12 hr: 12 hr 

temperature cycles (25:16ºC) in which the warm- and cold-phase were in anti-phase to 

the previous LD cycle (i.e., cold-phase corresponds to the light-phase) are shown. A) 

nocte1/FM6 females were crossed to nocteP males and locomotor rhythms of 

heterozygous nocte1/nocteP F1 females were analyzed. B) nocteP/FM6 females from the 

same cross served as controls. Note that control females exhibit a steep and gradual 

activity increase after a trough in the early morning, whereas the mutant females show 

high activity throughout almost the whole warm phase. Higher activity of females vs. 

males during the day is also typical for flies entrained to LD cycles (Helfrich-Förster, 

2000). White and black areas or bars in all behavioral plots indicate light or warm and 

dark or cold phase, respectively. Error bars and dots in peak phase and daily average plots 

indicate SEM’s. C) Quantification of ability to synchronize behavioral rhythms to 

temperature cycles (see Experimental Procedures for details). 
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Figure S2: nocte trancripts in the nocteP mutant. 

A) Transcripts from two independent RNA extractions (from two adult female flies each) 

from Canton S (i, ii) and nocteP flies (iii, iv), obtained by PCR with primers that amplify 

a ca. 1.2 kb wild type nocte fragment (varies according to the different transcripts), 

starting from the 5’-UTR region, and spanning the insertion site of the P-element in 

nocteP, and the start codon. B) Schematic representation of the nocte wild type transcripts 

cloned and sequenced from samples in (A). C) Abnormally spliced transcripts cloned and 

sequenced from nocteP. The upper transcript contains all necessary sequences to encode a 

normal Nocte protein. The middle transcript encodes a predicted fusion protein between 

proteins encoded by P-element sequences and 59 out-of-frame amino acids encoded by 

nocte. The bottom example encodes short (20 amino acid) peptides initiated at an ATG 

upstream of the predicted nocte ATG, which are terminated at an out-of-frame stop codon 

in the nocte coding region. 

 

Figure S3: Efficiency of nocte downregulation by RNAi. 

Relative amounts of nocte RNA in larvae expressing two different UAS-nocteRNAi 

constructs (lines 2:1b and 1:3) under the control of two different drivers (nocte-gal4:M3 

and tim-gal4:67). nocte mRNA levels in two of the parental lines (UAS-nocteRNAi:1:3 

and tim-gal4:67) were used as control. For all samples expression was normalized to 

rp49. For both drivers, Analysis of Variance (ANOVA) indicates that the difference 

between larvae expressing nocte RNAi and the control is highly significant (P<0.005). 

Error bars indicate SEM. 
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Figure S4: Examples and classification of flies with normal or impaired abilities to 

synchronize to temperature cycles. 

Locomotor activity plots of individual flies during the same LD and temperature 

entrainment regime shown in Figure 4. To classify each fly as ‘entrained’, ‘weakly 

entrained’, or ‘not entrained’ we generated an individual actogram (left column), and an 

average activity plot for each day of the experiment (middle and right columns, showing 

the activity during one day in the life of that particular fly, respectively). Flies were 

classified as ‘entrained’ if they exhibited a clear and sharp activity peak in the warm 

phase (arrows in the upper panel), or ‘weakly entrained’, if that peak appeared broader 

and the behavior during the warm phase was more erratic (arrows in the middle panel). 

For easier identification of the entrained peak, especially in more noisy records, a three-

point-moving-average filter was applied to the raw data (dots connected by red line). ‘Not 

entrained’ flies did not show a behavioral peak during the warm phase but stayed active 

constitutively or showed erratic behavior. All flies did show a response to the temperature 

changes by increasing or decreasing their activity abruptly after the temperature changes 

(arrow heads) (see Expermiental Procedures for more details). The flies shown here were 

from the Canton S (upper panel) and eys395 strains (middle and lower panels). 

 

Figure S5: Normal temperature-entrained behavior of ‘weak’ UAS-nocteRNAi lines, 

and flies with impaired antennae in temperature cycles. 

A-C) Group actograms and daily average activity of flies that were entrained to 12 hr: 12 

hr LD cycles for 5-7 days followed by one week of LL and 12 hr: 12 hr temperature 

cycles (25:16ºC) in which the warm- and cold-phase were in anti-phase to the previous 
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LD cycle (i.e., cold-phase corresponds to the light-phase). A) The nocte-RNAi line shown 

here belongs to type 2 (Figure 3B) (line 2-1a) and was crossed to the F-gal4 insertion on 

chromosome 2. B, C) Ablation of either the 3rd antennal segment or the whole antenna 

resulted in ‘entrained’ behavior demonstrating that the ch organ in the antenna is not 

required for temperature synchronization. Dots in daily average plots indicate SEM’s. D) 

Quantification of behavior in temperature cycles of all nocte-RNAi lines after crossing to 

the F-gal4 line located on chromosome 3. Note that lines from both types of nocte-RNAi 

can result in normal or mutant behavior, indicating that positional effects of the insertion 

site influence the efficiency of the RNAi effect. Similarly, the F-gal4 line located on 

chromosome 3 (F-gal4-33-5) produced stronger phenotypes compared to the 

chromosome 2 insertion line (compare nocte-RNAi-2-1a in panel A with panel D). 

 

Figure S6: Overview of F-gal4 and nocte-gal4 driven reporter gene expression in the 

brain. 

(A, B) Expression of UAS-gfp driven by nocte-gal4 in the brain. GFP was detected in 

many neurons and glia cells within the central brain, suboesophageal ganglion (SOG), 

and in the optic lobes (OL). A cluster of neurons in the ventro lateral brain (arrows) 

corresponds to the ventral lateral clock neurons (LNvs) (see Figure S8). Dorsally from 

the LNvs is a group of neurons (arrowheads) from which one cell projects dorsally into 

the midbrain (open arrowheads). This S-shape axonal projection is typical for a subset of 

the dorsal lateral clock neurons (LNd) suggesting that this neuron represents an LNd 

(Figure S8). About 20 large neurons are clustered in the pars intercerebralis (PI). In the 

SOG, neurons are marked in the lateral and ventral regions. Some of them (open arrows) 
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are located close to the intake of the connectives to the spinal nerve cord. Extensive GFP 

signals were found in all compartments of the mushroom bodies including α, β, and γ 

lobes (α, β, γ), pedunculus (P), and calyx (Ca). (C, D) Brain expression of UAS-gfp 

driven by F-gal4. The dorsal brain harbours a group of about 3 small and 1 large neurons 

(arrowheads) with typical S-shape axonal projection (open arrowhead) running first to the 

dorsal and then to the central brain where they ramify. Varicose fibres then split in a thin 

nerve bundle which extents into the contralateral brain hemisphere. In the dorsal brain 

close to the posterior surface, a cluster of about 5 small cells (asterisks) contains GFP. 

Five bilateral neurons (daggers) are clustered in the anterior deutocerebrum. The most 

prominent signal emanates from neuronal arborisations within the antennal lobes and 

antennal nerves (arrows) probably originating from neurons of the antennal chordotonal 

organs. These arborisations form two thin nerve bundles. One interconnects the 

arborisation in the contralateral brain hemispheres. The second one runs dorsomedially to 

the brain midline where it merges with axonal projections arising from a bilateral cluster 

of about 4 large neurons located in the ventral area of the SOG (open arrows) and then 

runs parallel to the contralateral bundle into the pars intercerebralis where it vanishes. 

This nerve fascicle divides into two small bilateral ramifications in the wedge between 

the proto- and deutocerebrum. A small neuron (double arrowheads) projecting to the 

central brain as well as to the medulla is located in the ventral optic tract. Signals in the 

retina (R) can represent an autoflourescence, since in the control experiment (UAS-gfp 

flies) a signal was detected in this area. Scale bar = 100 μm. 
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Figure S7: Reduction of nocte expression does not grossly interfere with development of 

chordotonal organs, which express F-gal4 but not tim-gal4. 

(A-G) UAS-rfp and nocteRNAi:1:3 driven by F-gal4 in external body parts. Widespread 

distribution of RFP was detected in nuclei of the putative chemo- and mechanoreceptors 

cells in the mouthpart (A), antennae (A, B), wing (C, D), haltere (E) and leg (F, G). 

Positive signals were also found in neurons of the chordotonal organs (arrows) in all 

external tissues tested. Down-regulation of nocte expression did not cause any significant 

changes in distribution of RFP, suggesting that nocte is not essential for development of 

F-gal4-expressing sensory organs (compare with Figure 5I-P). (H-N) UAS-mCD8gfp and 

UAS-rfp driven by tim-gal4:62. GFP and RFP signals were detected in mechano- and 

chemoreceptor cells in the mouthpart (H), antennae (H, I), wing (J, K), haltere (L), and 

leg (M, N). No signals were detected in the chordotonal organs (arrows). This was also 

the case for the other tim-gal4 lines used in this study. labp = labial palpus;  mxp = 

maxillary palpus; ant = antenna. Scale bar (A, C, F, H, J, M) = 100 μm, (B, D, E, G, I, K, 

L, N) = 10 μm. 

 

Figure S8: nocte-gal4 and F-gal4 expression in canonical clock neurons in the brain. 

Upper panel: Period expression in nocte-gal4/UAS-rfp flies was determined by anti-Per 

immunostaining (green) to identify dorsally located clock neurons co-expressing nocte-

gal4 (red). At least 4 DN1 and 1 LNd co-express Period and nocte-gal4 (arrowheads in 

merged image). Middle panel: Anti-PDH signals (red) in nocte-gal4/UAS-gfp brains 

reveal that nocte-gal4 is expressed in all ventrally located PDH-expressing clock neurons 

(LNvs). Lower panel: All clock neuronal groups were identified by anti-Per 
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immunostaining in F-gal4/UAS-gfp brains. Only 1 large LNv cell expresses both Period 

and the F-gal4 driver (arrowhead). l-LNv, s-LNv: large and small ventral Lateral 

Neurons; LNd: dorsal Lateral Neurons; DN1-3: Dorsal Neurons 1-3. Scale bar: 10 µm. 
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Table S1: Quantification of dendritic cap defects or NompA misexpression in nocte 

mutants 

 Genotype 

 control (FM6) nocte1 nocteP 

number of individual flies checked 10 4 5 

number of flies showing defects (%) 1 (10) 4 (100) 3 (60) 

average number of caps visualized per 

femur/average number of defective caps (%) 
30/1 (3) 20/7 (351) 22/6 (27) 

 

Males homozygous for the gfp-nompA reporter construct were crossed to nocte1/FM6 and 

nocteP/nocteP females. In the F1, 4-6 legs of each male individual from the indicated 

genotype (each carrying one copy of the gfp-nompA reporter) were dissected and 

mounted on a glass slide in a glycerol:water (2:1) solution. Freshly mounted legs were 

then directly inspected by confocal microscopy and one femur was scored for the 

presence and frequency of the dendritic cap phenotype per fly. 1Note that although every 

nocte1 fly exhibited the phenotype, the frequency of defective dendritic caps within one 

femur varied substantially between individuals: it ranged from 15% to 70% between 

individual flies. 
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Experimental Procedures 

 

Flies: As control flies either wild type Canton S or y Df(1)w (y w) were used (Lindsley 

and Zimm, 1992). XLG-luc; 8.0-luc:9 (Veleri et al., 2003), and BG-luc (Stanewsky et al., 

1997) transgenics have been described previously as have the ClkJrk (Allada et al., 1998), 

tim01 (Sehgal et al., 1994) rhythm mutants and the norpAP41 null mutation (Lindsley and 

Zimm, 1992). The original nocte1 allele was isolated after chemical mutagenesis as 

described (Glaser and Stanewsky, 2005). The P{XP}CG17255d07154 insertion in the first 

intron of nocte (nocteP) was obtained from the Exelixis collection at Harvard University, 

Boston, MA (USA) (Thibault et al., 2004). A duplication covering the chromosomal 

interval 9A2-10C2 [Dp(1;2)v+75d] was obtained from the Bloomington stock center as 

were the X-chromosomal deficiencies and multi marker chromosome bearing stocks used 

in the mapping tests. Two different insertion lines of F-gal4 were applied in this study, 

one is inserted on chromosome 2 (F-gal4), one on chromosome 3 (F-gal4-33-5) (Kim et 

al., 2003). The UAS-cycΔ:24 line was described previously (Tanoue et al., 2004) as well 

as eys395, eys734, and spam1 mutants (Husain et al., 2006; Zelhof et al., 2006), and the tilB1 

and smetana mutants (Caldwell et al., 2003). The reporter strain expressing a gfp-nompA 

fusion protein under control of nompA promoter sequences was generated in the 

laboratory of M. Kernan (Chung et al., 2001). The eys and deaf-RNAi stocks were 

obtained from the National Institute of Genetics Fly Stock Center (Japan). A transgenic 

type carrying tim-gal4 (lines 16, 27, 62, 67) (Kaneko and Hall, 2000) was used to drive 

UAS-cycΔ:24, to visualize tim expression in peripheral tissues (whereby tim-gal4 drove 

expression of UAS-mCD8gfp and UAS-rfp), and to drive UAS-nocte-RNAi to determine 
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the efficiency of nocte mRNA reduction or potential effects on temperature-entrained 

behavior. Transgenic flies carrying either of the two nocte-RNAi, and the nocte-gal4 

constructs (for details see below) were generated in a y w genetic background by 

BestGene Inc. Ten independent lines were generated for each construct. Six type-1 and 

six type-2 nocte-RNAi constructs were tested, out of which four (type-1) and two (type-

2) cause temperature entrainment phenotypes after crossing to F-gal4 (Figure S5). 

Experiments shown in Results were performed with lines UAS-nocte-RNAi-1:3 and UAS-

nocte-RNAi-2:1b (except the one shown in Figure S5A, where UAS-nocte-RNAi-2:1a was 

used). For nocte-gal4 three independent insertion lines (F10, M3, M6) were crossed to 

UAS-gfp (nuclear), UAS-mCD8gfp, and UAS-rfp (all reporter lines were obtained from 

the Bloomington stock center) and found to exhibit identical expression patterns in brain 

and peripheral clock tissues. The nocte-gal4:M3 line was applied in the experiments 

shown here. To visualize nuclear and membrane expression at the same time, a true-

breading stock containing UAS-rfp and UAS-mCD8gfp was generated by standard 

crossings.  

 

Bioluminescence recordings and imaging: Flies or tissues were kept either in LL and 

temperature cycling conditions (12 hr: 12 hr, 16°C: 25°C), or in LD (12 hr: 12 hr at 25°C) 

for the entire duration of the experiment. Raw data was plotted and analyzed (including 

determining the peak phase of expression plotted in Figure 1A) using Brass software 

(Locke et al., 2005) as described (Glaser and Stanewsky, 2005). For the images shown in 

Figure 2, tissues were dissected under M3 Insect Medium (Sigma) and kept for three days 

in culture medium (M3 Insect Medium with fetal Bovine serum, Penicillin-Streptomycin, 



 19

Insulin and Luciferin [200 µM, Biosynth]) in light and temperature regimes as stated in 

Results text. The entrained tissues were imaged in the LuminoviewLV200 (Olympus, 

Tokyo, Japan) at a time corresponding to peak expression of PER in the Topcount 

luminometer (at ZT18 for brains and external tissues in LD cycles and at ZT11 and ZT18 

for brains and external tissues, respectively, in LL and temperature cycles). Brains were 

exposed for 25 min and external tissues for 15 min at a gain of 255. Bioluminescence 

images were analyzed and merged with bright-field images using CellM imaging software 

for life science microscopy (Olympus). 

 

Mapping of nocte: 118 meiotic recombinants between the nocte and multi marker 

chromosome y w cv v f car were established. Testing these recombinants for molecular 

(using bioluminescence measurements, see above) and behavioral (see below) 

temperature-entrainment phenotypes placed nocte between cv (cytological map position 

5A13) and v (9F11). Further mapping using Single Nucleotide Polymorphisms (SNP’s), 

which distinguish the nocte and marker chromosomes, placed nocte between CG15245 

(9A2) and CG2124 (9D3). The accuracy of this mapping was confirmed by covering 

phenotypic effects of the nocte mutation with Dp(1;2)v+75d (9A2-10C2) (Figure 3A). For 

further mapping, chromosomal deficiencies with molecularly defined breakpoints were 

applied (Ryder et al., 2004). From five deficiencies tested [Df(1)ED6991, Df(1)ED7005, 

Df(1)ED7010, Df(1)ED429, and Df(1)ED7042] only Df(1)ED7005 uncovered effects of 

the nocte mutation (both in bioluminescence and behavioral assays), placing nocte in the 

interval between 9B3 and 9D3. This region is bordered by the genes CG15309 and 

CG15296, an interval containing 35 genes (Tweedie et al., 2009). Another deficiency 
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[Df(1)c52,flwc52, which removes 8E3-5;9C1] complements nocte but not flw, thereby 

further reducing the interval to the 12 genes between flw (9B14-C1) and CG15296 (9D3) 

(Tweedie et al., 2009). No obvious candidates could be identified among the 12 

remaining genes so that we initiated sequence determination of all candidates along with 

analysis of available mutations and P-element insertions. This approach resulted in the 

identification of a P-element insertion (P{XP}CG17255d07154) in the gene CG17255, 

which exhibits very similar temperature entrainment phenotypes compared to the original 

nocte mutation (Figures 3A and 4C). 

 

Generation of nocte constructs: For RNAi construct 1 genomic DNA containing nocte 

exon 2, intron 2, exon 3 and intron 3 was amplified by PCR and cloned into pUAST via 

EcoRI and NotI. An inverted cDNA fragment encoding exons two and three was 

subsequently cloned as a NotI-XhoI fragment into the same vector to create a fusion 

between the genomic DNA and the reversed cDNA. For nocte RNAi construct 2 the 3’ 

end of exon 4, intron 4, exon 5 and intron 5 were chosen and cloned into pUAST as a 

BglII-NotI fragment. An inverted cDNA fragment encoding the 3’ end of exon 4 and 

exon 5 was fused to this genomic DNA fragment by cloning it subsequently into the NotI 

and XbaI sites of the same vector. Primer sequences for nocte RNAi constructs: RNAi 

construct 1 genomic forward: 

GCGGACGAATTCAAACCCACCAGAAAGACTGAAACA; RNAi construct 1 

genomic reverse: 

CCGGCGACGCGGCCGCCTAAAATGGAAAATTCACCCAGTTAAAGG; RNAi 

construct 1 cDNA forward: 
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CCGGCGACGCGGCCGCCTTCGACTGAGACTAAGAGATTGT; RNAi construct 1 

cDNA reverse: GCATCCGCTCGAGATGAGTACACTGGGGGGAAG; RNAi construct 

2 genomic forward: GGCAGATCTAAAATGAATCTTTATGCGGCTCCAC; RNAi 

construct 2 genomic reverse: 

CCGGCGACGCGGCCGCCTGAAGAGGAAAGAAGGATGAATTAGG; RNAi 

construct 2 cDNA forward: CCGGCGACGCGGCCGCCGCGCCGTAGTTCTTGTGA;   

RNAi construct 2 cDNA reverse: GCGGTCTAGAATGAATCTTTATGCGGCTCCAC.  

The nocte promoter region contained 3.646 kb of DNA upstream of the predicted start 

codon and was amplified from genomic DNA using primers that introduce XbaI and SpeI 

sites. The resulting fragment was then cloned into pPTGAL4. PCR primers to amplify the 

nocte promotor region were: Forward: 

GGCTCTAGAGGAGTCAGATTCAGATTCCGGC Reverse: 

TGGCGCACTAGTGCTGCCAATAGATCCTCATTAG. 

 

Behavioral analysis: Daily average histograms and actograms were plotted using the fly 

toolbox and MATLab software (Levine et al., 2002). Quantification of the ability to 

resynchronize to temperature cycles was performed by first generating an actogram and 

daily histograms for individual flies. All individuals from each genotype were then 

scrutinized for their activity peak at each day of the experiment. To facilitate detection of 

peak activity a three-point moving average filter was applied to the data (red-dotted line 

in Figure S4) (Garnett, 1997). Wild-type flies typically show two activity peaks in the 

entrainment regime applied here: one peak immediately after the temperature rise, which 

we interpret as a ‘response’ to the environmental change, rather than entrainment (Glaser 
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and Stanewsky, 2005; Yoshii et al., 2005). In addition a major activity peak occurs in the 

second half of the warm phase. This peak is not observed in clock or temperature-

entrainment mutants and is therefore referred to as the ‘entrained’ peak. If present, this 

entrained peak was determined (by eye) and assigned a numerical value for each day and 

each individual and tracked throughout the experiment (Phase plots in Figure 4). These 

animals were classified as ‘entrained’ (Figure 4) and examples are shown in Figure S4. 

Most mutant animals did not show a clear entrained peak but were either constitutively 

active or inactive during the warm phase. Since they did show a response to the 

temperature increase, this ‘response’ peak was tracked and plotted in Figure 4. These 

individuals were classified as ‘not entrained’ (Figure 4) and examples are shown in 

Figure S4. In addition, some individuals displayed an intermediate behavior. They did 

show characteristics of an entrained peak, which was usually less pronounced and noisier 

compared to wild type flies and controls. Also, these flies often displayed a more drastic 

response to the warm transition compared to controls. These individuals were classified 

as ‘weakly entrained’ (Figure 4) and typical examples are shown in Figure S4. 

 

Fluorescence Microscopy and Immunohistochemistry: To observe GFP and/or RFP 

signals tissues of transgenic flies were dissected in Drosophila Ringer solution and fixed 

in 4% paraformaldehyde overnight at 4 ºC. Samples were then washed 3 times for 15 min 

in 0.1 M sodium phosphate buffer (pH 7.4) then 3 times for 10 min in phosphate-buffer 

saline (PBS) supplemented with 1% Triton X-100 (PBS-T) at room temperature. 

Following 5 min rinse in distilled water, samples were mounted in Vectashield medium 

(Vector laboratories, Burlingame, Calif.) and examined under a LSM-510 META 
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confocal microscope (Zeiss, Germany). In control assessments, the original UAS-

mCD8gfp, UAS-gfp, and UAS-rfp lines were used to verify the absence of Gal4-

independet signals (data not shown). For immunostaining with monoclonal 22C10 

antibodies, samples were blocked for 2 hr in 5% normal goat serum in PBS-T after the 

fixation and washing steps. This was followed by incubation with the primary antibody 

(dilution 1:100, Developmental Studies Hybridoma Bank) in blocking solution over night 

(4°C) and washing steps described above. Samples were then incubated with Phalloidin-

TRITC (1:1000, Sigma) and secondary Alexa 647 goat anti-mouse antibodies (Molecular 

Probes). Samples were then washed with PBS-T (3 x 20 min) and rinsed in water (5 min) 

before being mounted and inspected as described above. Control and nocte mutant flies 

expressing the gfp-nompA construct were obtained after crossing homozygous gfp-nompA 

males (inserted on chromosome 3) to nocte1/FM6 and nocteP/FM6 females. Legs from 2-

3 day old nocte1 mutant and FM6 control males generated by this cross (both carrying 

one copy of the gfp-nompA construct) were dissected in Ringer solution and cut at the 

proximal end of the femur to allow antibody penetration. For quantification of the ch 

organ structural defect observed in nocte mutants see legend to Table S1. For anti-Per and 

anti-PDH immunostainings (Figure S8) fixed and washed preparations were subsequently 

blocked with 10% normal goat serum in PBS-T for 2 h at room temperature and 

incubated for 2 days with anti-PER at 4°C (Veleri et al., 2003) or with affinity purified 

anti-crab-PDH (Hodge and Stanewsky, 2008) (both diluted 1:1000 in PBS-T). After 

washing, samples were incubated with AlexaFluor 488 (green) or AlexaFluor 594 (red), 

respectively (both diluted 1:300 in PBS-T). 
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RNA extraction, Reverse Transcription reaction, and qPCR: Total RNA was 

extracted with 0.5 ml of TRI Reagent (Ambion) followed by purification with Lithium 

Chloride solution (Ambion) according to the manufacturers’ instructions. The volume of 

H2O used for the final elution of the RNA depended on the nature of the sample, 

according to the potential cDNA synthesis inhibition detected for each one, which was 

determined as follows: standard curves of RNA dilutions from each sample were 

performed for every pair of primers to be used in the quantitative PCR. For 10 flies the 

volume of H2O used to elute the extracted RNA from each sample (volume in which no 

inhibition of cDNA synthesis was observed for any pair of primers) was: heads 100 μl, 

brains, legs, and wings 40 μl, ovaries and testis 200 μl, and 5 3rd instar larvae in 800 μl. 

cDNA synthesis was performed with Reverse Transcription Reagents Kit (Applied 

Biosystems) in 10 μl reactions according to the manufacturer’s instructions. For 

quantitative PCR, first, the 10 μl cDNA from each sample was diluted 10 times, and then 

qPCR reactions were prepared as follows: 7.5 μl Power SYBR Green PCR Master Mix 

(Applied Biossystems), 4.0 μl of cDNA, each primer at 0.5 μM final concentration and 

H2O to a 15 μl final volume reaction. The primers used in the qPCRs were as follows 

(always in 5’ -> 3’ orientation): rp49 sense CGATATGCTAAGCTGTCGCACA, rp49 antisense 

CGCTTGTTCGATCCGTAACC, period sense CAACAAGTCGGTGTACACGAC, period antisense 

GTCTTGACGGATGCGCTCTG, nocte sense AAGAACTACGGCGCGTG, nocte antisense 

CCAAGGCGTTCATGCTC (note that the pair of primers used for nocte targets a region that 

does not overlap with any of the two nocte-RNAi constructs used). Reactions were 

performed in a Chromo4 Detector (Bio-Rad) under the following temperature conditions: 

hot start at 95oC for 10 minutes followed by 40 cycles of 95oC for 15 seconds, 60oC for 
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30 seconds, and 10 seconds at a reading temperature (reading of the signal). The reading 

temperature for a pair of primers is generally ~3-5oC lower than the melting temperature 

of the amplicon they generate, and higher than that of the potential primer dimer. The 

reading temperature for the pair of primers used and listed above were 77oC for rp49 and 

period, and 80oC for timeless and nocte. For each sample, three replicas of the reaction 

were run in parallel, and the average of their Ct (threshold cycle) values (excluding 

outliers) was considered for quantification. The relative quantification was determined 

using the comparative CT method, also known as the ΔΔCT method, or the 2-ΔΔC
T method 

(Livak and Schmittgen, 2001; Pfaffl, 2001), using rp49 as control. The Applied-

Biosystems User Bulletin #2: Relative quantification of gene expression (1997, updated 

on 10/2001, available on line) was also used as support guide for the calculations, all 

performed in Microsoft Excel software. For the statistical analysis, analysis of variance 

(ANOVA) and LSD Post-Hoc test (P<0.05) were performed when possible (for details 

see legend of figures). 

 

nocte transcripts in nocteP mutants: PCR was conducted with 2.0 μl of cDNA, 12.5 μl 

of LongAmp Taq 2x Master Mix (New England Biolabs), a pair of primers for nocte gene 

to a final concentration of 0.5 μM each (sense: 5’- GCGGCAAACTTTATGTTGGA -3’; 

antisense: 5’- CGTGTCCTGTGGTAATTGC -3’), and H2O to a final volume reaction of 25 μl. 

The pair of primers used amplifies a ca. 1.2-kb wild type nocte fragment (varied slightly 

according to the different transcripts; see Figure 3B), starting from the 5’-UTR region, 

and spanning the insertion site of the P-element in nocteP and the start codon of the wild-

type transcripts. For each strain, the two independent PCR reactions were pooled and 
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purified with MicroSpin S-400 HR Columns (GE Healthcare Life Sciences), cloned in 

pGEM-T Easy Vector (Promega) according to the manufacturer’s instructions, and used 

to transform XL1 Blue cells. On average 25 clones from each transformation were 

sequenced. 
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7.3 Mechanical stimulation of ch organs synchro-

nizes fly’s locomotor activity

Recent findings suggest that chordotonal organs are required for the temperature-

dependent entrainment of circadian clocks (Sehadova et al., 2009). Insects use ch

organs to convert sound and other mechanical stimuli into action potentials that

then are propagated to the central nervous system (Eberl, 1999; Albert et al.,

2007). As ch organs are mechanosensory organs, I wondered whether the me-

chanical stimulation of ch organs alone could be sufficient for circadian clock

entrainment. Specifically, I asked if a vibratory stimulus that was designed to ex-

cite ch organs could act as Zeitgeber and therefore entrain the circadian clock. In

collaboration with Dr Jörg T. Albert (Ear Institute, University College London,

UK), we set-up a mechanical stimulation apparatus which allowed us to measure

the circadian patterns of locomotor activity of flies subjected to 12:12 hr “vibra-

tion:silence” (VS) cycles (see M&M for more details). Briefly, flies were subjected

for 12 hours to a continuous 2-component stimulus of 200 Hz and 40 Hz vibra-

tions followed by 12 hours of “silence” (i.e. background noise with an intensity

of the order of a ten-thousandth lower compared to the stimulus applied). The

two frequency have been chosen in order to stimulate both the Johnston’s Organ

(200Hz) and the other, non-hearing, ch organs in the fly’s body (40Hz).

Flies were first entrained to 12:12 hr LD cycles and then transferred to DD and

the VS was applied “in phase” with the previous LD (“vibration” corresponding

to the previous day and “silence” corresponding to the previous night). After 5

days, the VS regime was delayed by 6 hours compared to the previous one and

kept like that for 7 days. Next, another 6 hour VS shift (delay) was applied, so

that the VS stimulation resulted in opposite phase compared to the initial LD
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Figure 7.1: Average locomotor activity of wild-type and antennae-ablated flies (sub-
jected to VS cycles) and controls (not subjected to VS cycles). A, B) Wt (n=15) and flies
with bilateral ablation of all antennal segments (n=16) were first entrained in LD cycles
(2 days). Then, flies were transferred to constant darkness and 12:12 hr “vibration-
silence” (VS) cycles were applied in phase with the previous LD (arrows). After 5 days,
the VS cycles were shifted of 6 hr (delayed) and kept for 7 days. Next, a subsequent
6-hr delayed shift was applied so to have the VS cycles in opposite phase compared to
the initial LD regime. After that, flies were release in constant condition (arrow heads)
and the phase was calculated (see Figure 7.5). C, D) Wt (n=6) and flies with bilateral
ablation of the three antenna segments (n=14) were entrained to LD cycles and then
released in DD served as controls. Free-running period are given in Table 7.1. White
and grey shades represent “vibration” and “silence”, respectively (or light and dark, for
the first 2 days).
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Subjected to VS Not subjected to VS

n Rhythmic τ RS n Rhythmic τ RS
Wild-type 28 96.4% 24.1 ±0.1 2.89 ±0.19 21 100% 23.9 ±0.1 5.78 ±0.38

Ant ablated 26 96.2% 24.1 ±0.1 3.58 ±0.22 24 100% 24.0 ±0.1 4.92 ±0.49

Table 7.1: Free-running period of wild-type and antennae ablated flies subjected to
vibration-silence (VS) stimulation and control (not subjected to VS). Period (τ) and
rhythmicity statistic (RS) are calculated only for rhythmic flies. Total number of flies
tested is indicated (n).

entrainment (Figure 7.1A, B). In parallel, flies entrained to the same initial LD

cycles and then released to DD conditions without any vibration stimulus were

used as controls (Figure 7.1C,D).

Analysis of average actograms and daily activity revealed that wild-type Can-

ton S flies subjected to the VS stimulation exhibit different rest-activity patterns

compared to free-running controls (Figure 7.2A–D). They display a sharp increase

of locomotor activity after the transition from “silence” to “vibration”, plus a ma-

jor peak of activity during the vibration phase. The main peak of activity of flies

subjected to the mechanical vibration occurs at the end of the vibration in the first

VS cycles, then moves to the mid of the vibration part during the second VS cycles

and after the second shift, it arises soon before the transition from “silence” to

“vibration” (Figure 7.2B–D). The increase of activity occurring after vibration-on

is reminiscent of the startle response induced by light and temperature. Wild-type

flies not subjected to the VS cycles free-run with a period of 24 hours (Figure 7.1

and Table 7.1) and the phase of the main peak of activity follows the previous

LD entrainment (Figure 7.2E–H). The differences on the activity phase and pat-

tern induced by the exposure to the mechanical stimulation is conspicuous, and it

does not seem to be a reaction (masking) response to the vibration stimulus (see

below).

The fly’s hearing organ is located in the second antennal segment (Caldwell

and Eberl, 2002). It is composed of an array of specialized scolopidial cells, named

228



CHAPTER 7. NOCTE AND PERIPHERAL SENSORY TISSUES

Wild-type
LD cycles

A E

12 180 6
0

10

20

30

40

50

60

70

vib09M013C01−vib09M013C16 (n=15 days=2.0)

12 180 6
0

20

40

60

80

100

vib09M033C02−vib09M033C07 (n=6 days=2.0)

First VS cycles (in-phase)
B F

12 180 6
0

10

20

30

40

50

60

vib09M013C01−vib09M013C16 (n=15 days=5.0)

12 180 6
0

10
20
30
40
50
60
70
80

vib09M033C02−vib09M033C07 (n=6 days=5.0)

Second VS cycles (6 hr delayed)
C G

12 180 6
0

10

20

30

40

50

vib09M013C01−vib09M013C16 (n=15 days=7.0)

12 180 6
0

10

20

30

40

50

60

70

vib09M033C02−vib09M033C07 (n=6 days=7.0)

Third VS cycles (6 hr delayed)
D H

1218 0 6
0

10

20

30

40

50

vib09M013C01−vib09M013C16 (n=15 days=3.0)

12 180 6
0
5

10
15
20
25
30
35
40

vib09M033C02−vib09M033C07 (n=6 days=3.0)

Figure 7.2: Daily average activity of wild-type flies subjected to 12:12 hr VS cycles
and control. See Figure 7.3 legend for details.
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Johnston’s organ (JO). Beside the auditory JO, the fly possesses a series of further

ch organs which are mainly located in the animals’ legs and thought to serve pro-

prioceptive or vibratory functions. In order to assess the role of the fly’s antennal

ch organ for the observed behavioural changes, we removed the flies’ antennae prior

to subjecting them to the VS regime. As shown in Figure 7.3A–D, the pattern of

activity of antennae-ablated flies is comparable to that of wt flies subjected to the

same VS condition (Figure 7.2A–D). In contrast, the activity of antennae-ablated

flies not subjected to VS is comparable to that of wild-type (with antennae) not

subjected to VS (Figures 7.2E–H and 7.3E–H, respectively). This suggests that

the pattern of locomotor activity during VS conditions is not mediated by JO

only, and therefore it is not perceived by the flies as an acoustic signal only.

However, we observed two characteristics of the behaviour of antennae ablated

flies. The increase of activity just after “vibration-on” is reduced compared to wild-

type flies, suggesting that this “response” is mediated by the fly’s ear (JO) rather

than by the non-antennal ch organs. Secondly, antennae ablated flies are more

active during the “silence” phase compared to wild-type flies. This phenomenon is

more evident after the VS shift (Figure 7.3C,D). To support this observation, we

quantified the relative activity of flies during the “silence” phase of flies subjected

to the VS conditions, compared to the control flies kept in DD (free-running

conditions). As shown in Figure 7.4, 65% of the total activity of antennae ablated

Figure 7.3 (preceding page): Daily average activity of wt (Figure 7.2) and antennae-
ablated flies (this Figure) subjected to 12:12 hr VS cycles. A, E) Flies were first entrained
to 12:12 hr LD and then (B, F) subjected for 5 days to 12:12 hr “vibration-silence”
cycles which were in phase with the previous LD cycles (“vibration” corresponding the
previous day and “silence” corresponding to the previous night). C, G) The VS regime
was 6 hr shifted (delayed) and kept for 7 days. D, H) An additional 6 hr delayed shift
of VS regime was applied, resulting in an opposite phase compared to the initial LD
cycles. White and grey bars represent activity during the “vibration” and “silence”
phase, respectively. Number of individual tested is same as in Figure 7.1.
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Figure 7.4: Relative locomotor activity of wild-type and antennae ablated flies during
VS and free-running conditions. A) The plots represent activity during “silence” phase
relative to the total activity after the second VS shift only. Ablated antennae flies are
significant more active during the “quiet” phase compared to wild-type flies (F(1,5)=45.4,
P< 0.01, Two-way Anova). B) Relative activity during the corresponding “silence”
phase of free-running control flies. No difference between wild-type and antennae ablated
flies was observed. Graphs generated by 6 (A) and 2 (B) independent experiments. Error
bars indicate SEM.

flies occurs during the “silence” phase, compared to the 45% of wild-type flies with

antennae, in a reproducible way between independent experiments (F(1,5)=45.4,

P < 0.01, Two-way Anova). Free-running control flies do not show differences

of relative activity in the corresponding part of the day, indicating that the shift

of activity is not caused by the ablation of antennae per se, but that the effect

induced by the lack of antennae depends on the vibration stimulation. The reason

for this intriguing phenomenon is still unclear.

To investigate whether the locomotor activity pattern was synchronized to the

VS stimulus or the vibration was only masking the locomotor activity inducing a

passive response, we analysed the phase of free-running activity after releasing the

flies to constant conditions, compared to the phase of flies which have not been

exposed to the mechanical stimulation. From the actograms depicted in Figure
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7.1 it is already clear that there is a difference in phase between flies exposed to

VS (upper part) and controls (lower plots). Nevertheless, we estimated the free-

running phase of individual flies and determined the mean phase and intensity

in order to quantify the visual impression of the actograms. The circular phase

analysis (see Levine et al., 2002a,c and M&M for details) is depicted in Figure

7.5. Every dot in the plot represents the mean free-running peak phase time of

single flies plotted in a circular graph with the mean phase of the group depicted

by a vector starting from the center and pointing towards the time (expressed in

Circadian Time, CT0 = vibration-on, CT12 = vibration-off, or equivalent time

for the control). The phase of wild-type and antennae ablated flies (blue stars) is

2.0 and 1.4 hours, respectively. The phase difference compared to the respective

controls, which have not been subjected to the vibration (red circle), is 9.8 and

8.5 hours, respectively (Figure 7.5). The mean phase difference between flies

subjected to VS and control is strongly significant (M = 100 means p < 0.001).

Interestingly, the dispersion of phase values (given by the strength of the vector

in Figure 7.5) tends to be higher (and the vector smaller) for flies subjected to

VS (blue asterisks) compared to control (red circles), both for wt and antennae

ablated flies.

Therefore, the VS conditions change both the locomotor activity patters dur-

ing the stimulation, and during the subsequent free-run. Taken together, these

findings indicate that flies can be entrained by the “vibration-silence” cycles and

they do not exhibit a passive (masking) response only. The ablation of the anten-

nae does not prevent the flies from synchronizing to the VS stimulation, and thus

the antennae are not necessary for this behaviour, as they are not required for the

fly to entrain to TC. However, flies lacking antennae exhibit a different behaviour,

and the difference can be measured and quantified. The vibration stimulus is per-
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Figure 7.5: Circular phase analysis of activity peaks during free-run after VS regime
of wt and antennae ablated flies compared to control. The plots represent the mean
peak phase time values over the DD days of each individual flies after VS treatment
(blue asterisks) and non-treated controls (red circles). The mean phase is represented
as a vector with the mean direction indicating the time and the magnitude of the vector
indicating the variability (dispersion) within the group. The internal black circumference
represents 100% coherence between individuals of the same group. The closer the vector
is to the black line, the more coherent the group is. The phase is calculated from the
origin (0 h) and within the range −12 6 phase 6 12. The phase difference compared
to control is 9.8 hours for wild-type (A) and 8.5 hours for flies with antennae ablated
(B). M values > 95 indicate statistical significance of the mean phase difference between
the two groups (Rayleigh’s test). D values indicate dispersion within the group. In my
data, the mean phase is statistically significant (p < 0.001), whereas the distribution
of phase of the two groups cannot be statistically distinguished (p > 0.5). Number of
individual is given in brackets, next to the phase values of each group.

ceived by the fly’s mechanosensory organs, most likely of both type I and type II

(i.e. external sensory plus chordotonal organs and multidendritic neurons, respec-

tively, see Introduction). The fly’s system is partially redundant, and this explain

why removal of antennae does not abolish the response to the vibration stimulus.

Therefore, antennae are not necessary for this behaviour, but they contribute to

it.

Vibratory stimulus are perceived by fly’s mechanosensory organs and predom-
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inantly by ch organs. My preliminary work of entrainment of the circadian clock

by mechanical stimulation gives additional support to the idea of ch organs being

required for the entrainment of the clock. In this respect, we could speculate a

model were temperature is perceived by ch organs in a similar way than ch organs

perceive vibration. The mechanism underlying this process is still unknown and

awaits an explanation.

However, much is still to be done. Analysis of clock mutants and ch organ

mutants will reveal if there is a link between the circadian clock and the ch or-

gans which mediate entrainment. Vibration-pulse experiments together with the

analysis of locomotor behaviour in different VS regimes (“vibro-period”) and ap-

plication of different stimuli (in terms of frequency, duration and intensity) will

provide additional details to the vibration stimulus as novel Zeitgeber.

7.4 Summary

• Isolated Drosophila brains are not able to synchronize to TC but need in-

formation from the periphery.

• Down-regulation of nocte in peripheral sensory (chordotonal) organs mimic

the effect of the mutant.

• Mutant for ch organs exhibit defects of temperature entrainment similar to

the nocte mutants.

• nocte is required for signalling the temperature information form the periph-

ery to the brain in order to synchronize the central clock.

• nocte exhibits an “uncoordinated” phenotype when expose to 37℃ for 90

min, in a similar way to spam mutants.
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• A functional clock is not required in ch organs to execute temperature en-

trainment neither are required the ch organs in the antennae.

• Flies can entrain their behaviour to 12:12 hr vibration-silence (VS) cycles

that stimulates mechanosensory organs. VS phase the locomotor activity

during the stimulation and the subsequent free-running activity.

• The ablation of the antennae does not prevent the flies from synchronizing

to the VS regime, suggesting that antennae are not required for entrainment.
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Discussion

8.1 The power of genetic screens: Isolation of

novel components for the entrainment of the

circadian clock

To address the question of how the circadian clock of Drosophila melanogaster can

be synchronized to TC, we proceeded by searching for novel components which

affect the ability of the fly to entrain. In this work, we made use of several different

and complementary approaches all aimed on the isolation of new mutants and

genes.

The first approach we used to isolate novel genetic variants was an EMS chem-

ical mutagenesis. EMS mutagenesis reveals itself as an extremely powerful tool

of investigation in Drosophila. Most of the components of the circadian clock in

Drosophila have been isolated with EMS variants. In the 1970s the isolation of

the period mutants by Konopka and Benzer (1971) opened the door to the genetic

dissection of complex behaviours, such as those controlled by the circadian clock.
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Only two decades after, the EMS-mutagenesis approach gave further important

contributions. In 1998 four more components of the circadian clock were isolated:

doubletime (Kloss et al., 1998; Price et al., 1998), Clock (Allada et al., 1998; Bae

et al., 1998), cycle (Rutila et al., 1998) and cryptochrome (Stanewsky et al., 1998)

all from EMS mutagenesis screens. The following year, vrille was discovered as

component required for circadian rhythmicity (Blau and Young, 1999). More re-

cently, the “temperature mutant” nocte has been isolated by our group in an EMS

screen (Glaser and Stanewsky, 2005), indicating that the temperature entrainment

pathway can also be genetically dissected.

My work follows the previous investigations of EMS-induced variants which

affect circadian rhythmicity. In this work we screened 1637 chemical-induced mu-

tant lines and the screen has been successful with the isolation of 3 novel variants

which show defects in the synchronization of the circadian clock to temperature

cycles (Section 3). The 3 mutants were named 2T-30, 2T-38 and 2P-42. They

all map to chromosome 2 and have been isolated in a bioluminescence assay mon-

itoring real-time expression of period-luciferase in isolated legs in a temperature

entrainment regime. The two mutants 2T-30 and 2T-38 were isolated from a

batch of lines originated in a single EMS treatment, which led the possibility that

the two variants affected the same gene and they were potential clones. Com-

plementation tests revealed that the two mutants complement each other (Figure

3.10), excluding the possibility that they map to the same gene.

EMS mutagenesis is unpredictable: it introduces random mutations, it is unbi-

ased and can lead to unexpected results. The extensive use of random mutagenesis

screens in the laboratories is supported by power of the fly genetics. The com-

bination of a well-designed experimental read-out, and the feasibility of genetic

manipulation, makes Drosophila a perfect tool for screening of variants showing
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a desired phenotype among a population of random chemical-induced mutants.

The downside of the approach is that you need to map the mutation by meiotic

recombination, a process which is usually very complex and time consuming (as

in my case).

To get around this problem, a complementary approach used a library of RNAi

lines targeting specific genes. In Drosophila two main libraries are available to the

public domain and they cover over 90% of the predicted protein-coding genes

(http://www.shigen.nig.ac.jp/fly/nigfly and Dietzl et al., 2007). In this work,

we performed two RNAi screens, one targeting 148 randomly-chosen RNAi lines,

provided by François Rouyer (and originating from the NIG-FLY Stock Centre,

Japan) and a second targeting specifically TRP channels encoding genes (RNAi

lines provided by the Vienna Drosophila RNAi Center, VDRC). From the former,

we isolated one line which showed impaired synchronization of per-luc expression

in isolated legs, both during LD cycles and TC conditions. The RNAi line targets

the forkhead transcription factor fd3F, whose function is still unknown. The lat-

ter, TRP-RNAi candidate approach screen, did not give any positive results (see

below).

In the post-genomic era, more and more studies make use of RNAi libraries

as efficient tools to silence gene expression where mutant alleles are not available

(recently reviewed by Boutros and Ahringer, 2008 and Belles, 2010). The RNA

interference combined with the UAS-GAL4 system (Brand and Perrimon, 1993)

adds the possibility to silence target genes in specific tissues or specific develop-

mental stages, by the use of appropriate promoter-gal4 driver lines. This allows

performing knock-down studies of genes, where mutants might otherwise be lethal,

by restricting the effect to specific tissues or cells. There are also some disadvan-

tages of the RNAi technique. The phenotype associated with a certain RNAi line
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can be related to positional insertion of the RNAi construct itself. Also, RNAi is

often inefficient, resulting in knock-down rather than loss-of-function of the tar-

geted genes, often preventing the desired phenotype from arising. The UAS/GAL4

system can give a false negative result in situation where the expression pattern

of the targeted gene is not known. Those last two disadvantages, could be the

reasons why we did not obtain any phenotype from the trp-targeting RNAi screen

approach.

As a complementary approach, we also analysed 12 mutant lines affecting 7 —

out of the 13 — trp genes. Four mutants (affecting three genes), exhibited defects

of entrainment of the circadian clock specifically to temperature cycles. Mutants

of the pyrexia, trpA1 and trpM genes fail to synchronize locomotor activity to

TC, but they are normal under LD conditions. Although the respective RNAi

lines did not produce a similar phenotype, the analysis of mutants supported our

hypothesis that TRP channels may be involved in the temperature entrainment

of the circadian clock.

Therefore, a non complete silencing of TRP channel encoding genes could have

been the reason for the absence of phenotypes. Many TRP channels are formed

by different subunits and some form heteromultimeric complexes, as reported by

the Montell group for TRP and TRPL (Xu et al., 1997). If the double-stranded

RNA targets only one subunit, this still might allow the non-silenced subunits to

form a functional channel. The efficiency of the interference mechanism can be

enhanced by overexpression of components of the RNAi machinery, specifically

Dicer2 (Dietzl et al., 2007). The efficiency increase is particularly evident for the

RNAi lines generated by the VDRC compared to the ones from the NIG-FLY Stock

Center (this work and François Rouyer, personal communication). In this work, we

did not make use of additional Dicer to trigger the interference, mainly because of
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the difficulty in generating flies carrying simultaneously UAS-Dicer, tim-gal4 and

per-luc, together with the RNAi construct. The presence of overexpressed DICER

is also associated with an increase of false positive results due to off-target effects

(Dietzl et al., 2007). When DICER is overexpressed, the process that produce

small RNAs from double-stranded RNAs (dsRNAs) is enhanced and it raises the

probability of mismatches and gaps in pairing of the small RNA to the targeted

genes (Dietzl et al., 2007).

Another reason for the lack of trp-RNAi effect could be related to the specific

driver line. We restricted our analysis on clock cells-driven RNAi, using a tim-

gal4 driver to knock-down TRP channels. This was based on our initial hypothesis

that cells required for temperature entrainment of the circadian clock must indeed

possess a clock. Our recent findings (Sehadova et al., 2009) suggest that this is

not necessarily the case, and structures required for the temperature entrainment

of the clock, namely the chordotonal organs, may not possess a clock. There-

fore, the absence of the phenotype arising from tim-gal4 -driven RNAi can be a

results in se: this may speak towards the hypothesis that TRP channels are not

required in clock cells, but their putative function as thermoreceptors, or at least

as components required in the temperature entrainment pathway, is not executed

in clock-possessing cells, as suggested by the temperature entrainment defects of

“true” TRP channel mutants.

This work shows that genetic screens are a powerful and effective way to in-

vestigate and dissect complex biological processes, such as the entrainment of the

circadian clock. EMS chemical-mutagenesis continues to be a good resource for the

isolation of novel variants, even considering the drawback of the complicated and

time consuming mapping process. The specific candidate approach can combine

the huge availability of RNAi lines and genetic aberrations (mutants, P -element
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insertions, deficiencies, etc.) also providing a complementary tool for the isolation

of novel components required for specific mechanism.

8.2 per-luc expression in novel mutants reveals

differences between light and temperature

entrainment

The three EMS mutant lines exhibit a drastic reduction of per-luc expression in

isolated legs, in term of overall expression levels and cycling amplitude specifically

during TC conditions, while they exhibit normal per-luc expression in LD cycles

(Figure 3.3 and 3.6). per-luc expression in the whole adult fly during TC en-

trainment is compromised too (Figure 3.4): 2T-30 and 2T-38 exhibit non-cycling

per expression, indicating either malfunction at the central pacemaker resulting in

complete arrhythmic per expression at the whole fly level, or dyssynchrony among

central and peripheral clocks, generating an overall flat per expression due to dif-

ferent oscillating phases. Adult per-luc expression in the line 2P-42 is rhythmic

and exhibits an opposite phase compared to controls, both in LL (Figure 3.4) and

in DD and TC (Figure 3.8). This can be explained in two ways. (a) The mutation

alters the endogenous phase of per expression and makes it cycling in opposite

phase or (b) the bioluminescence expression is not circadianly regulated but in-

stead it exhibits a mere reaction to temperature increase and decrease. Given

that per-luc expression in DD and TC in isolated legs is normal, this suggests that

peripheral oscillators are entrained to temperature (at least in DD) and that the

overall per expression is out of phase between central and peripheral oscillators.

Interestingly, a similar phenomenon occurs in nocte1 and norpAP41 temperature
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entrainment mutant flies (Gentile C., Simoni A. and Stanewsky R., in preparation)

in which per-luc expression entrain to TC in isolated legs but not in the whole

fly. From my data it emerges also that a trp mutant exhibits the same phenotype:

per-luc expression in tim-gal4 driven trpM -RNAi is rhythmic in isolated legs, but

aperiodic in the adult fly (Figure 5.8) during LL and TC. A similar phenomenon

is observed in trpA1ins XLG-luc flies: per-luc expression in TC in isolated legs is

only reduced in terms of amplitude, whereas in the whole fly it is barely cycling

(Figure 5.9).

At the moment we still do not have an explanation for this intriguing phe-

nomenon, but it appears a common feature of different mutants affecting the

entrainment of period expression to temperature cycles. This may reflect a clear

difference between the light versus the temperature entrainment pathway. The

light entrainment signal acts directly on the central pacemaker, through the light-

dependent action of CRY in the clock neurons (Stanewsky et al., 1998; Emery

et al., 1998, 2000). As recently reported by our group (Sehadova et al., 2009), it

emerges that peripheral structures are instead required to entrain the fly to TC

and that the temperature signal is transmitted from the periphery to the brain.

The ability of some mutant tissues (legs), to entrain, while the whole mutant fly

cannot, may indicate a “hierarchy of entrainment”, in which the mutant disrupts

part of the pathway required for the entrainment of the whole organisms, while

specific isolated components can still be synchronized to temperature.

Interestingly, we observed that per-luc expression of trpM mutants is not af-

fected in LL and TC, while tim-gal4 -driven RNAi down-regulation of trpM abol-

ishes rhythmic per-luc expression in the adult fly (but not in isolated legs, Figure

5.9 and 5.8). This seems to suggest that the RNAi induces a stronger phenotype

than the mutant, which is generated by a P -element inserted to the coding region
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of the gene. However, at the behavioural level, the situation is opposite: trpM -

RNAi does not induce any effect while the P -element does. Recently, TRPM has

been indicated as required for the intake of Mg2+ from the hemolymph to the

Malpighian tubules (Hofmann et al., 2010). In this work, the authors generated

two mutant alleles of the trpM gene, named trpm1 and trpm2. trpm1 was gener-

ated by imprecise excision of the P -element P[EY01618] that removed three exons

(C9–C11). trpm2 was generated by insertion of the w+ gene in place of the exons

C2–C4 by ends-out homologous recombination (Hofmann et al., 2010). Both the

alleles generated are pupal lethal (Hofmann et al., 2010). This strongly suggests

that the mutant we used in our study (the P -element inserted in the 3’ splice site of

exon C11) is a hypomorphic allele and therefore may explain why the mutant line

does not induce mutant phenotype in certain assays (bioluminescence) whereas it

does in others (behaviour).

As mentioned in Chapter 3.2, for unknown reasons, the BG-luc control did not

display consistent rhythmicity between experiments. The 3 mutants have been

originated from EMS-fed BG-luc flies, therefore they should share the same genetic

background. However, as depicted in the crossing scheme in Figure 3.2, the lines

we assayed (F3 generation) have been genetically rearranged (via recombination)

on chromosome 1 and 3 with the balancer line y w; Bl
CyO

; +
+

(or y w; +
+

; H
TM3

, in case

of potential EMS-induced mutants on chromosome 3 ). Therefore, although the

mutant lines have been originated from BG-luc, they do not share the same genetic

background (independently of the additional EMS-induced mutations). Although

this does not explain why BG-luc flies did not exhibit consistent rhythmicity,

it may explain why the majority of EMS-fed lines — all minus the 3 isolated

as mutants — showed clear rhythmicity and could therefore be used as internal

controls for the screen (see for instance line 2X-8 in Table 3.2).
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8.3 Behaviour analysis of the novel temperature

mutants

8.3.1 Locomotor behaviour in LL and TC

Behavioural analysis of the seven novel mutants shows interesting differences be-

tween the lines. Initially, locomotor behaviour has been analysed for the ability

to re-entrain to LL and TC after a 12 hour shift compared to the previous LD

entrainment (except for tim-gal -driven fd3F -RNAi, see below). Wild-type control

flies resynchronize their rest-activity pattern to LL and TC after 2 transient days

(Figure 3.11). The mutants exhibit an abnormal behaviour pattern during LL and

TC. They show a drastic increase of activity (unlike Canton S) immediately after

temperature goes up (2T-30, 2T-38, 2P-42, trpA1ins) or temperature goes down

(trpM and pyx ) and the peak of activity that usually anticipate the transition

from warm to cold, is absent (2T-30 and trpA1ins) or only barely visible (2T-38,

2P-42, pyx and trpM ). The activity pattern during LD conditions is normal ex-

cept for the 3 EMS mutants and trpM, which are lacking the morning peak that

normally anticipates the transition from dark to light. This could be related to

the genetic background, at least for the EMS mutants, since BG-luc flies also lack

the anticipatory activity before the light goes on, see Figure 5A in Glaser and

Stanewsky (2005).

These data show that the isolated mutants exhibit clear defects in adjusting

their locomotor behaviour during LL and temperature cycles.
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8.3.2 Temperature entrainment differences between LL and

DD

The analysis of novel mutants involved in temperature entrainment had initially

been performed in constant light and temperature cycles. The reasons why con-

stant light was chosen versus constant darkness were based on the work from

Tomioka et al. (1998) and Yoshii et al. (2002), in which they showed that temper-

ature cycles are a stronger Zeitgeber in LL compared to DD, in terms of the ability

to entrain either wild-type flies to different thermoperiods, or to synchronize long

and short period variants to TC. A possible explanation could be the residual

(dominant) effect of the previous LD entrainment during DD and TC. Tempera-

ture, being a weaker Zeitgeber than light (Pittendrigh et al., 1958; Wheeler et al.,

1993), may not be strong enough to conflict the free-running rhythm set by the

light-dark cycle.

However, the use of constant light (rather than DD) during temperature en-

trainment prevents the possibility of monitoring free-running rhythms after releas-

ing the flies to constant conditions (in DD and constant temperature). In order

to determine proper entrainment (i.e. the peak of activity aligned with that ob-

served during entrainment) and to investigate any direct effects of light itself on

the ability to synchronize to TC, we also compared to the locomotor activity of

the novel “temperature mutants” in DD and 12:12 hr 25:16℃ TC conditions.

Wild-type locomotor activity in DD and TC exhibits a similar pattern com-

pared to the one in constant light, exhibiting a single unimodal peak of activity

(versus the bimodal pattern of activity in LD). However, the phase of activity is

advanced, and flies are mainly active at the beginning of the warm day (displaying

the main activity peak at ZT3.8, Table 3.3). Previous work studying temperature

entrainment in DD has shown that the activity pattern is bimodal, and the main
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peak of activity occurs at the end of the warm phase (Tomioka et al., 1998; Yoshii

et al., 2002; Busza et al., 2007). These results were based on experiments per-

formed in 30:25℃ and 29:20℃ temperature cycles, respectively, and the different

temperature intervals may explain the different patterns of activity in DD. A re-

cent work from Yoshii et al. (2009a) using conditions comparable to mine (26:16℃)

also showed a single peak of activity during the first half of the thermophase. In

addition, different constant temperatures affect the shape of free-running activity

(Majercak et al., 1999), and a higher temperature (29℃) induces the activity to

persist with a bimodal pattern for several days in DD, whereas cold temperature

(18℃) induce an unimodal pattern of free-run activity. This may be the case also

when high-interval (29:20℃ or 30:25℃) temperature cycles are applied, explain-

ing the unimodal activity of my observation at the “low” temperature interval of

25:16℃.

In many cases, it was difficult to judge whether the locomotor activity during

DD and TC was entrained, or if the flies were only reacting to the temperature

changes, given that the main activity peak partially overlaps with the startle re-

sponse induced by the increase of temperature. In these situations we need to con-

sider both the activity during the transient days (if present) and the free-running

activity once the flies have been released to constant conditions. Considering

these difficulties, a picture emerges in which some mutants are able to entrain to

DD and 25:16℃ TC (2T-38, 2P-42, trpM, pyx2 and pyx3, Figure 3.15 and 5.4)

in term of (a) exhibiting clear transients until resynchronization from LD to TC

conditions (comparable to controls) and (b) synchronized free-running activity in

constant conditions, following the previous TC. Other lines (2T-30 and TrpA1ins)

exhibit a mutant phenotype: no transient days but a burst of activity in response

to the temperature increase at the first day of TC, and free-running activity is not
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synchronized to the previous TC regime (Figure 3.15 and 5.4).

8.3.3 Entrainment to different temperature intervals

The temperature intervals chosen for this study were based on an agreement be-

tween several research groups collaborating in an European Integrated Project

focused on the entrainment of the Drosophila circadian clock (EUCLOCK). The

25:16℃ temperature cycles correspond to average recordings taken in natural con-

ditions at the end of September to the beginning of October (to which correspond

12:12 hr LD cycles), in northern Italy (Yoshii et al., 2009a).

Our idea was to reveal whether entrainment of the mutants at some specific

temperature ranges could give us hint about the function of the genes affected

in our novel mutants, thus we investigated locomotor activity of flies exposed to

different temperature intervals of 29:25℃, 25:20℃ and 20:16℃.

The fly’s behaviour adapts to the seasonal variations of photoperiod and tem-

perature, concentrating the activity to the milder part of the day in short and

cold days (spring and fall) and shifting the activity towards dawn and dusk in

long and warm summer days, perhaps to avoid dessication (Majercak et al., 1999;

Collins et al., 2004; Stoleru et al., 2007). We observed this phenomenon after

monitoring locomotor activity of wild-type flies in different temperature intervals.

Interestingly, the effect of temperature is again more pronounced in LL than in DD

(Figures 5.2 and 5.6, respectively), presumably for the reasons described above of

“better entrainment” in LL versus DD (Tomioka et al., 1998; Yoshii et al., 2002;

Glaser and Stanewsky, 2007). The effect of the seasonal adaptation of the be-

haviour to different temperature intervals is less pronounced in all novel mutants

compared to wild-type flies both in LL and in DD (Figures 3.13, 5.2 and 5.6).

Analysis of behaviour at different temperature intervals showed that some mu-
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tant lines can synchronize their locomotor activity in certain ranges, but not in

others. Interestingly, line 2P-42 and 2T-38, for instance, entrain to 25:20℃ and

20:16℃, but not in the 25:16℃ regime. This indicates that the mutant lines,

surprisingly, fail to synchronize to larger temperature intervals (25:16℃), while

they do at small intervals (25:20℃), suggesting some kind of “entrainment repres-

sion” induced by certain temperature ranges. This is also suggested by results

obtained with the trp mutants (summarized in Table 5.2). pyx and trpM mutants

fail to synchronize their locomotor activity to 20:16℃ TC but they entrain to

25:20℃ and 29:25℃ TC, suggesting indeed that the cold temperature range some-

how “represses” entrainment in these TRP channel mutants, whereas the high

temperature interval effects more the EMS mutants. TrpA1ins exhibit the the

most severe defects in temperature entrainment compared to the other mutant

lines we assayed. Locomotor activity in DD and different temperature intervals

confirms the idea that some genes are important for certain temperature ranges

(29:25℃), whereas other genes are important in different intervals (e.g. trpM and

pyx mutants in 20:16℃), although the effect in DD is less pronounced than in

LL. This is even more surprising given that pyx and trpA1 have been isolated as

mutants failing to avoid a warm noxious stimulus (Lee et al., 2005; Rosenzweig

et al., 2005). This suggests that thermal preference and temperature entrainment,

although they may be mediated by the same players — TRP channels — indeed

involve different mechanisms (see below). The existence of several thermal TRP

channels might be explained by the requirement of the same thermal sensor to

play different roles at opposite sides of temperature spectrum. For instance, PYX

and TRPA1 may be required either to respond to a warm noxious stimulus (above

40℃) and also to respond to cold TC (below 20℃) in terms of circadian entrain-

ment. This idea is supported by experiments conducted in larvae by the Montell
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group, where they propose that TRPA1, in addition to act as thermosensor for

noxious temperature, could also function indirectly for temperature sensation in

the comfortable range (Kwon et al., 2008).

Although it seems that TRP channels are involved in the entrainment of the

clock to temperature cycles, it is still unknown how the temperature stimulus is

processed in a circadian manner. The temperature stimulus as a noxious response

is mediated in a very small time-scale, in the order of seconds, or milliseconds.

This makes sense in the way that the fly must respond immediately to the stimulus

to avoid life threatening situations. For a stimulus to be circadianly significant

must act in the order of hours and must sense not an absolute temperature value

but temperature oscillations (independently of the absolute values). The circa-

dian clock is much less sensitive to temperature than to light, perhaps because

it must resist dramatic short-term perturbations of temperature, due to irregular

environmental conditions, as proposed by Currie et al. (2009).

In this context, TRP channels mediate entrainment not directly responding

to temperature, but rather function through second messenger pathway, or sig-

nal amplification mechanism, maybe mediated by a tonic stimulus response of the

channels, rather than phasic (transient) stimulus. Recently, it has been shown that

TRPA1 controls thermotaxis behaviour acting downstream of a PLC-dependent

signalling cascade (Kwon et al., 2008), similar to the PLC-coupled pathway result-

ing in TRP and TRPL opening in the visual system (Niemeyer et al., 1996). It is

already known that PLC is also involved in temperature entrainment (Glaser and

Stanewsky, 2005; Sehadova et al., 2009), although its role in the process is still

unclear. It is possible that norpA mediates a signal cascade associated with TRP

channel opening in the temperature entrainment pathway. However, this also im-

plies that the receptor is still elusive. If we compare to the visual transduction
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cascade, the “opsin” awaits to be found.

Further studies, and a deeper investigation of the available mutants — also

combining TRP mutants with norpA, for instance — will help to better under-

stand the role of these proteins in the temperature entrainment of the clock. At

the moment of writing, a member of our group is proceeding on mapping the mu-

tations and the isolation of the genes affected by the EMS mutants will hopefully

clarify some aspect of the entrainment mechanism. The attempt to map the 2T-30

mutant by meiotic recombination suggests that the mutation lays on the left arm

of chromosome 2.

Also, more analysis in different light and temperature conditions, monitoring

the fly’s activity in different temperature intervals, are needed. In particular,

analyses of the free-running phase of activity after TC at different intervals, in

order to discriminate proper synchronization from temperature-driven effect, are

necessary. My preliminary work in this direction, discussed in this thesis, shows the

benefits of the approach to dissect in more detail the ability of specific mutants to

synchronize the locomotor activity in different conditions. It will also be extremely

important to monitor real-time per-luc expression (or clock protein accumulation

and expression) during, and after, temperature entrainment at different intervals,

to correlate — and complement — my behavioural results.

8.3.4 2T-30 is a locomotor output mutant

Analysis of free-running locomotor behaviour of the isolated mutants revealed that

2T-30 flies are largely arrhythmic in constant conditions (Table 3.4). To address

whether the mutants affect the central clock mechanism, we investigated the eclo-

sion rhythm. Cultures of 2T-30 exhibit a strong rhythm with a period of 23.8

hours when they are released to DD after LD entrainment (Figure 3.19), indi-

251



CHAPTER 8. DISCUSSION

cating that the central pacemaker is not compromised. Given that the rhythmic

locomotor behaviour is strongly jeopardized, this suggests that the 2T-30 mutant

affects a gene related to the locomotor output, in addition to the temperature

input pathway.

8.4 Regulation of the eclosion circadian clock

8.4.1 Adult “temperature mutants” do not affect eclosion

In the present thesis we have investigated whether the novel temperature mutants

we isolated, in addition to the 2 known temperature mutants, nocte1 and norpAP41,

compromise the ability of the circadian clock to synchronize their eclosion activity

to temperature cycles, as much as they do for the adult locomotor activity.

The timing of adult emergence is controlled by the circadian clock and can be

synchronized by temperature cycles (Zimmerman et al., 1968; Newby and Jackson,

1993). Wild-type cultures raised in LD, resynchronize the eclosion activity to LL

and TC after 2 transient days. The eclosion window, or gate, after they establish

a stable phase, occurs at the end of the cold phase, just before the transition to

warm (Figure 6.1).

The phase of eclosion rhythm during TC occurs few hours earlier than during

LD cycles, in which flies eclose in a broad peak mainly during the first half of

the light phase (Qiu and Hardin, 1996). This correlates well with per-luc record-

ings and PER accumulation in LL and TC conditions (Section 3.2 and 4.3), in

which we showed that during TC, per expression and PER accumulation is 2–3

hours advanced compared to LD conditions. The advance eclosion activity in TC,

compared to LD, fits well also with an earlier phase of locomotor activity in TC

compared to LD.
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We observed also a second peak of eclosion occurring immediately after the

temperature rise, likely induced by the steep increase of temperature, promoting

the flies developmentally mature enough that missed the eclosion gate, to hatch

(also shown by Newby and Jackson, 1993). During LD conditions, the light-on to

light-off transition is the moment in which the clock measures the developmen-

tal state in order to trigger the eclosion in the next available eclosion gate (Qiu

and Hardin, 1996). It is not known at which point during the day this state is

determined during temperature entrainment.

The ability to re-entrain to a 6hr temperature shift (Figure 6.2) confirms that

TC are indeed a strong Zeitgeber perceived by the clock. However, there is a clear

difference between light-dark entrainment and temperature entrainment. The eclo-

sion profile of per01 cultures suggests that temperature per se induces a clock-

independent eclosion event occurring after change of conditions. During temper-

ature cycles, per01 cultures exhibit a 12-hr eclosion rhythm, and flies emerge af-

ter any temperature transitions, suggesting clock-independent temperature-driven

eclosion events (Figure 6.2 and 6.3). During LD conditions, per01 eclosion is ar-

rhythmic and the flies emerge throughout the light and dark phase (Konopka and

Benzer, 1971; Qiu and Hardin, 1996). Unlike for the locomotor behaviour of per01

mutant flies, which shows masking effects, the eclosion rhythm cannot be com-

pletely light-driven (Qiu and Hardin, 1996), but it can exhibit a light-induced

(light-on) response if a light pulse is applied only after the normal gate is opened

(McNabb and Truman, 2008). The ability of temperature changes to drive the

eclosion in per01 flies, suggests that the second eclosion peak occurring after tem-

perature step-up, in wild-type cultures, is temperature driven (masking), and not

clock-controlled.

In the current study we analysed the eclosion activity of seven novel (2T-30,
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2T-38, 2P-42, pyx2, pyx3, trpM and fd3F ) and 2 already described (nocte1 and

norpAP41) “temperature mutants” in LL and TC conditions. To our surprise, all

the cultures analysed exhibit a normal eclosion activity in TC conditions, syn-

chronizing the emergence to TC after 2 transient days, in a way comparable to

wild-type cultures. The only exception is fd3F, which exhibits an altered phase

of the eclosion rhythm, and will be therefore discussed separately (see below). To

our knowledge, this is the first time that adult “temperature mutants” have been

assayed in eclosion. My data suggest that the genes which affect temperature

entrainment in the adult do not play the same function in the synchronization of

the eclosion-regulating clock to TC.

8.4.2 Role of the DN2 neurons in the regulation of eclosion

The neuronal architecture which eventually triggers the eclosion event in a circa-

dian manner is not fully understood. Even less clear are the differences between

light-dark and temperature entrainment. However, recent work from Picot et al.

(2009) shed some light on the role of the DN2 neurons in the larval brain in tem-

perature entrainment. The authors propose that the light-blind CRY-negative

DN2s (Klarsfeld et al., 2004) are necessary (and sufficient) to entrain the larval

brain to TC. In LD, the PDF-positive LNs synchronize PER oscillations both

through the presence of CRY and through the visual system and they synchronize

PER expression in the DN2s via the neuropeptide PDF. During TC, the DN2s

are directly entrained by temperature and they synchronize the LNs through a

PDF-independent pathway. Previous studies in LD have shown that PER cycles

in the DN2s with an opposite phase compared to all other groups of larval neurons

(Kaneko et al., 1997; Klarsfeld et al., 2004) and that forced expression of CRY can

reverse their internal phase (Klarsfeld et al., 2004), in a PDF-independent manner
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(Picot et al., 2009).

My data showed that temperature entrainment applied during development

can modulate both the free-running eclosion period and phase. A single light-dark

cycle applied as early as at the first larval stage can phase the circadian clock and

drive a rhythmic locomotor behaviour (Sehgal et al., 1992; Kaneko et al., 2000;

Malpel et al., 2004). Larval-only TC entrainment generates an adult locomotor

activity which is in opposite phase compared to larval-only LD entrainment (Picot

et al., 2009). My data complement these studies, showing that eclosion activity

also exhibits an opposite phase after larval-only TC entrainment (Figure 6.6)

compared to LD entrainment. Although the LNs and the prothoracic gland (PG)

are required to generate eclosion rhythms (Kaneko et al., 1997; Blanchardon et al.,

2001; Myers et al., 2003), my data showed that PDF is not required to generate

rhythmic eclosion events both after LD or TC entrainment. We therefore propose

that temperature entrainment is mediated by the DN2s — in agreement with Picot

et al.’s results (2009) — and that it is PDF independent. Previous studies have

shown that the removal of the larval visual system can change the phase of adult

locomotor activity (Malpel et al., 2004). The authors speculated that the DN2s

are responsible to drive the opposite phase of adult activity, given their opposite

phase of PER cycling. My results strongly support this idea, suggesting that

temperature entrainment could supplement the lack of the information through

the visual system and phase the clock to gate a rhythmic eclosion. However, in this

respect it is not clear how the DN2s can be synchronized. Mealey-Ferrara et al.

(2003) proposed the existence of 3 pathways for the entrainment of the eclosion

circadian clock. The 1st pathway involves the larval visual system (opsin- and

norpA-mediated); the 2nd requires CRY as photoreceptor and a 3rd, mysterious

pathway, suggested by the light-entrainability of the eclosion clock in mutants
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lacking the first 2 pathways (Mealey-Ferrara et al., 2003). This mysterious 3rd

pathway could mediate the entrainment of the eclosion through the DN2s, in a

situation when the light-pathway is not effective, such as in TC entrainment,

consistent with my results.

Very interestingly, we observed that the free-running eclosion period of wild-

type cultures entrained in LL and TC is 21 hours (Figure 6.4, 6.7 and 6.9). This

is the case for temperature entrainment restricted to both larval-only and pupal-

only stages, as well as for TC applied during all developmental time. Based on

the hypothesis that during temperature entrainment the DN2s are the neuron that

set phase and period of eclosion, we propose that the free-running period of the

DN2s is shorter than 24 hours. This is strongly supported by the same short

eclosion period exhibited by Pdf01 mutants and from observation in adult flies:

Pdf01 mutants are mainly arrhythmic in DD, but the remaining rhythmic flies

exhibit a short, 21-hour periodicity (Renn et al., 1999).

The phase of PER oscillations in the adult DN2s is the same in all clock neurons

during LD conditions (Kaneko et al., 1997; Blanchardon et al., 2001). Thus, the

adult DN2s — which derive from the larval DN2s — change their internal phase of

PER cycling during metamorphosis (Kaneko et al., 1997). This is likely due to the

synchronization with the LNvs, which are the only group of neurons which express

PER throughout the metamorphosis (Kaneko et al., 1997; Helfrich-Förster et al.,

2007) and are also responsible for the developmental time-memory (Kaneko et al.,

2000).

In the future, a more detailed analysis of the developmental time at which tem-

perature entrainment can elicit a short free-running period of eclosion is needed.

Also, analysis of eclosion period and phase of culture which overexpress CRY in

specific groups of larval clock neurons will be performed, together with the modu-

256



CHAPTER 8. DISCUSSION

lation of the internal speed of the clock in specific cells, in order to address which

are the component that drive the short free-running period.

8.4.3 fd3F alters the phase of eclosion

Among the seven novel “temperature mutants” isolated in this work, one exhib-

ited an eclosion phenotype in LL and temperature entrainment. We showed that

tim-gal4 -driven down-regulation of the transcription factor FD3F resulted in an

abnormal phase of eclosion activity: flies emerged preferentially during the warm

phase and without any defined peak (Figure 4.6). The pattern of emergence is

unequivocally different from any other cultures we assayed, including the clock

mutant per01 (Figure 6.2). The rhythmic free-running eclosion activity excludes

the involvement of fd3F in the central clock mechanism, but rather suggests a role

in the regulation of eclosion gating.

Further investigations are necessary to clarify the effective role of the FD3F

transcription factor in this context. Many indications suggests that forkhead tran-

scription factors are expressed during development (see Section 4.5). Lethality in

different developmental stages of the fd3F -RNAi driven by tim-gal4, repo-gal4 and

nocte-gal4 suggests that FD3F is indeed required development of the fly. The spa-

tial and temporal expression profile of fd3F will help to understand which roles it

plays. Published data and this work suggest a direct involvement for FD3F in the

chordotonal organs (Lee and Frasch, 2004 and below). So far there are no known

connections between the chordotonal organs and the regulation of eclosion. Our

data showed that ch organs are required for the adult fly to entrain to tempera-

ture (see Sehadova et al., 2009 and below) and fd3F could be one component that

mediates the process.
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8.5 Chordotonal organs and temperature entrain-

ment

Accumulating evidence indicates the involvement of chordotonal (ch) organs in

the synchronization of the circadian clock of Drosophila to temperature cycles.

The gene nocte plays a crucial role in the temperature entrainment. EMS-induced

nocte1 mutant flies fail to synchronize per-luc expression and locomotor activ-

ity specifically to temperature cycles as they behave normally in LD conditions

(Glaser and Stanewsky, 2005, 2007; Sehadova et al., 2009). Down-regulation of

nocte with the F-gal4 driver reproduces the phenotype of the mutant. F-gal4

(originated by fusion of the nanchung promoter to gal4 sequences) was previously

reported to be expressed specifically in ch organs (Kim et al., 2003) but its expres-

sion was found also in some external sensory organs and few neurons in the brain

(Sehadova et al., 2009). Analysis of ch organs mutants, such as tilB, smetana and

eyes shut, confirmed the role of ch organs in temperature entrainment (Sehadova

et al., 2009). My work contributed to these findings including new and unpub-

lished data, which support the idea that ch organs are required for temperature

entrainment.

The transcription factor FD3F seems to be expressed exclusively in ch organs,

at least in the embryo (Lee and Frasch, 2004). We do not have any data concerning

the spatial expression profile in the adult. However, F-gal4 -driven down-regulation

of fd3F disrupts temperature synchronization of locomotor activity (Figure 4.4)

in a similar way as nocte-RNAi. This clearly indicates a role for fd3F in the adult

ch organs too.

Rouyer et al. (1997) described that the circadian regulated gene 1 (crg-1 ) is

rhythmically expressed in phase with the per gene and expressed in the same pat-
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tern in fly heads. Recently, it turned out that crg-1 is a chimeric gene, originated

by a duplication event that occurred only in Drosophila melanogaster (and not in

evolutionary related species) which led to the fusion of the 5’-region of fd3F and

the 3’-UTR region of Toulsed-like kinase (Tlk) (Hogan and Bettencourt, 2009 and

Figure 4.10). Although the crg-1 cDNA has been detected by PCR (Hogan and

Bettencourt, 2009), CRG-1 protein has never been detected (F. Rouyer, personal

communication).

It is possible that the circadian regulation of crg-1 has been gained after the

duplication event, occurred probably less than 2.3 mya (Hogan and Bettencourt,

2009). However, it is also possible that the fd3F gene is circadianly regulated

too, because the regulation region is shared between the two genes. The fd3F -

RNAi construct does not target crg-1, suggesting that the phenotypes we observed

in temperature entrainment are specific to FD3F and not to CRG-1. Given the

transcription factor nature of the gene, it is very tempting to look for the possible

circadian regulation of FD3F itself, and for possible regulation of clock genes, such

as period and timeless by fd3F. Although the presence of a functional clock in

chordotonal organ neurons (as defined by F-gal4 ) is not required for temperature

entrainment (Sehadova et al., 2009), this does not exclude the possibility that

fd3F is circadianly regulated. In fact, the assumption of ch organs non-clock

requirement for temperature entrainment is based on experiments in which the

clock was stopped with the F-gal4 driver, which is expressed in the ch organs

neurons (Kim et al., 2003; Sehadova et al., 2009). Neuronal-specific (elav-gal4 -

driven) knock-out of fd3F does not give any effects in temperature entrainment

(Figure 4.4), suggesting that FD3F could play a role in non-neuronal cells in the

chordotonal organs. This is also indicated by pupal lethality induced by repo-gal4

and nocte-gal4, but not by elav-gal4 driven fd3F knock down. nocte expression
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in the scolopidium is broader than F-gal4 (Sehadova et al., 2009) although at

the moment it is not clear exactly in which additional cells nocte is expressed.

This could suggest a role for FD3F in glia cells. PER is expressed in glia cells

(Zerr et al., 1990; Ewer et al., 1992; Kaneko and Hall, 2000) and analysis of

per+/per01 mosaics showed that rhythmic behaviour can be observed when PER

expression is restricted to glia cells (Ewer et al., 1992). Moreover, a role for the

glia cells in circadian rhythms has been proposed (Suh and Jackson, 2007). The

glia cells surrounding the ch neurons might be a good location for the presence

of a peripheral clock, where FD3F could play its role as a transcription factor.

Alternatively, the F-gal4 is perhaps a “stronger” driver than elav-gal4, explaining

the non-effect induced with elav-gal4. More works need to be done to identify

which structures require FD3F and at what level the transcription factor executes

its role. per, tim and nocte will be tested as possible targets and, in parallel, fd3F

expression will be tested in clock and nocte mutants.

The structure of the chordotonal organs is determined by the expression of

many different genes and proteins which allow the organ to develop and execute the

many functions played in Drosophila. The implications of ch organs go beyond that

of stretch receptor function. In the limb joints ch organs contribute to nociception,

whereas the biggest ch organ located in the antennae (named Johnston’s organ,

JO) mediates hearing (reviewed by Kernan, 2007) and geotaxis (Sun et al., 2009).

Several TRP channels belonging to the 3 superfamilies are expressed in ch organs,

implicated in transducing touch, sounds and mechanical pain: nompC (TRPN),

nanchung, incative (TRPV), and painless (TRPA). It has recently been shown

that pyrexia (TRPA) is involved in regulation of negative geotaxis mediated by

the JO and that it is expressed in the cap (or attachment) cells which connect

the scolopidium to the cuticle (Sun et al., 2009). pyx mutants do not affect
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Figure 8.1: Drawing of the elements of a scolopidium and the putative location of
the genes expressed. Two neurons (n) are present which culminate in a basal body
(bb). From the bb, the axoneme of the long cilium (c, red) is assembled, including the
ciliary dilation (cd, yellow). The dendritic cap (dc, green) connects the scolopale to
the cuticle. The location of the genes expressed in the scolopidium is indicated with
colours. Spam/eye shut is expressed in the scolopale space (ss, blue) and in the basal
region surrounding the basal body. nompA is expressed in the dendritic cap and pyx in
the dendritic cells that surround it (green). Many genes are expressed in the ch neurons
and in the cilium, including nompB, nompC, smetana (smet) and the TRP channels
nan, pain and iav. Beethoven (btv) is also probably expressed in the cilium. Modified
from Caldwell and Eberl (2002).
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hearing (Sun et al., 2009), whereas it mediates warm avoidance (Lee et al., 2005)

and temperature entrainment (this work). The fly’s antennae are also required for

thermotaxis behaviour, but this function is executed by the third antennal segment

(Sayeed and Benzer, 1996) whereas the JO is located in the second segment. The

fly antennae seem not to be required for synchronizing the circadian clock to TC,

since its physical removal does not prevent the fly to entrain to temperature cycles

(Glaser and Stanewsky, 2005; Sehadova et al., 2009). However, the expression

of TRP channels in the ch organs which have been implicated in temperature

entrainment is unlikely to be a coincidence. Interestingly, as shown in the Figure

8.1, PYX expression is detected in the proximity of the dendritic cap (the apical

part of the scolopale), which is the structure that manifests a morphological defect

in nocte mutants (Sehadova et al., 2009). Moreover, PYX is not expressed in the

chordotonal neurons, in contrast with the other ch TRP channels (Sun et al.,

2009), suggesting again that the non-neuronal cells of the ch organs may indeed

play a role in the temperature entrainment process. Although nocte probably plays

its role in the ch organ neurons — based on the observation that F-gal4 driven

nocte knock down induces the phenotype —, it may also effect the development

of non-neuronal structures, which surround the ch neuron.

We also identify TRPA1 as component required for temperature entrainment.

Both PYX and TRPA1 are required for thermotaxis and warm-avoidance (Lee

et al., 2005; Rosenzweig et al., 2005, 2008; Hamada et al., 2008). Interestingly,

cool and warm avoidance are distinct mechanisms, and involve different TRP

channels: cold avoidance is mediated by TRP and TRPL, and warm avoidance by

TRPA1, PYX and PAIN, indicating that Drosophila use different TRPs to respond

to different discrete ranges of temperature (Rosenzweig et al., 2008). However, in

contrast to PYX and TRPA1, PAIN is not required for thermotaxis (Rosenzweig
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et al., 2008) nor temperature entrainment (this work). atonal (ato) is a proneural

gene required for the specific formation of the ch organs (Jarman et al., 1995).

ato mutants lack all larval and adult ch organs (Jarman et al., 1995) but exhibit

normal thermotaxis behaviour (Rosenzweig et al., 2005). Given that TrpA1 is not

expressed in ch organs (Rosenzweig et al., 2005) this suggest that ch organs are

not required for thermotaxis.

Taken together, these data suggest that (a) thermotaxis, temperature avoid-

ance and ch organs-mediated temperature entrainment are distinct mechanisms,

(b) some TRP channels might have different functions mediating some of these

mechanisms, but not others, and (c) Drosophila use thermosensory reception

structures and overlapping players to execute different and distinct sets of be-

havioural responses.

Each scolopidium in the ch organs contains an internal liquid-filled capsule-like

structure called scolopale (see Introduction and Figure 8.1). The EYESHUT

(SPAM) protein is located at the border between the ch neurons and the scolopale

(Figure 8.1). Interestingly, eys mutants exhibit a massive deformation of the

scolopale due to loss of water by evaporation in flies that are exposed to high

temperature (37℃) for one hour (Cook et al., 2008). This results in an “uncoor-

dination” phenotype, which prevents the flies for walking properly, and eventually

they fall over (Cook et al., 2008). Increasing the environmental humidity, avoiding

the water to escape the scolopale, can rescue this phenotype. The same “uncoor-

dination” phenotype was observed for nocte (Sehadova et al., 2009) and the 2T-30

mutants (Figure 3.20). Since all the three mutants also exhibit similar defects in

entraining their locomotor activity to temperature cycles, this suggests they fulfil

related functions in maintaining ch organ activity.
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Finally, based on the observation that ch organs seem required to mediate

temperature entrainment, we tried to synchronize fly locomotor behaviour by di-

rect stimulation of the ch organs with a mechanical stimulus. Our preliminary

data showed that cycles between 12 hr of “vibration” stimulus (2-component of

frequencies of 40 and 200 Hz) and 12 hr of “silence” (in constant darkness), can

synchronize the locomotor behaviour (Figure 7.1, 7.2 and 7.3). Phase analysis

of free-running activity after vibration entrainment showed that physical removal

of the antennae does not prevent the clock to synchronize to the stimulus. This

correlates with previous observations of non-requirement of the antennae for tem-

perature entrainment of the clock (see above), and suggests that the stimulus

applied is perceived by the the fly ch organs as a whole and not exclusively as an

acoustic response (mediated by the antennae only).

Analysis of clock and temperature mutants combined with molecular studies of

clock genes are needed to confirm that the circadian clock is indeed synchronized

by the mechanical stimulation. However, these preliminary data strongly suggest

the role played by the ch organs in mediating the temperature entrainment of the

circadian clock of D. melanogaster and provide a new fascinating tool for studying

the temperature entrainment pathways.
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Conclusions

In this thesis I showed that genetic screens are still a powerful approach to iso-

late new components involved in complex mechanisms, such as the temperature

entrainment of the circadian clock. By a forward genetic approach I isolated three

novel EMS variants that have impaired synchronization of per-luc expression and

locomotor activity to temperature cycles. In a screen of RNAi lines I identified one

forkhead domain transcription factor (fd3F ) that, when down-regulated, reduces

the expression level and cycling amplitude of per-luc in isolated legs both during

LD and TC conditions. tim-gal4 -driven knock-down of fd3F alters the phase of

eclosion and induce lethality in early adults. In a candidate approach screen of

mutant lines for trp channels encoding genes I identified three TRP channels that

are required for entrainment of the circadian clock in LL and TC. Mutants for

pyrexia, trpM and trpA1 affect entrainment of locomotor activity to tempera-

ture cycles and analysis of behaviour at different temperature intervals suggested

that pyx and trpM are required for synchronization to cool temperatures, whereas

TrpA1 is required in any temperature intervals we applied.

With this work I provided additional evidence that temperature entrainment
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in Drosophila is mediated by the periphery, which autonomously receives tem-

perature signal from the environment and transmit it to the central clock in the

brain. In particular, in support of our recent publication (Sehadova et al., 2009),

my data indicate that chordotonal organs mediate circadian temperature entrain-

ment. nocte expression in the ch neurons and specific ch organ genes are required

for temperature entrainment (Sehadova et al., 2009). fd3F is also expressed in

ch organs (Lee and Frasch, 2004) and I showed that ch neuron down-regulation

of fd3F affects entrainment of locomotor activity to temperature. In addition,

PYX channels is also expressed in ch organs and the 2T-30 mutant exhibits an

“uncoordination” behaviour if exposed to high environmental temperature stress

probably due to structural defects of ch organs, in a similar way to nocte and

spam (Sehadova et al., 2009). Mechanical stimulation of mechanosensory organs

using a vibratory stimulus can entrain fly’s locomotor activity, in a similar was as

temperature does, providing additional evidence of the importance of ch organs

in the temperature entrainment pathway.

Finally, I showed that temperature entrainment of the clock that controls eclo-

sion timing requires different components and structures compared to the adult

clock. In this Thesis I showed that temperature entrainment applied during de-

velopment induce short, 21 hour, free-running eclosion rhythms, which are Pdf -

independent. In addition, larval-only temperature entrainment reverses the phase

of eclosion compared to larval-only LD entrainment. We proposed that the DN2

group of clock neurons determine the phase of eclosion during temperature en-

trainment conditions and have an endogenous short free-running period, which is

manifested after temperature entrainment conditions.
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RNAi lines

List of the 148 RNAi lines generated by the National Institute of Genetics Fly

Stock Center (Japan) screened for defects of synchronization of XLG-luc to tem-

perature cycles in LL. The lines have been crossed to y w
y w

; tim−gal4:27
CyO

; XLG−luc:1−1
TM3

.

All the lines listed below have been assayed in our bioluminescence assay in con-

stant light and 12:12 hr 25:16℃ temperature cycles.
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List of RNAi lines screened

1401R-1 3412R-1 5087R-2 7288R-2 9144R-2 10952R-2 12345R-1 14884R-3
1401R-2 3412R-3 5279R-2 7399R-1 9497R-2 11324R-2 12345R-4 15010R-2
1441R-2 4005R-1 5279R-3 7399R-3 9645R-1 11324R-3 12359R-4 15093R-2
1441R-3 4005R-2 5610R-1 7425R-2 9645R-3 11734R-1 12359R-2 15093R-3
1512R-3 4006R-1 5610R-2 7555R-3 9649R-3 11734R-3 12632R-1 15150R-4
1692R-1 4006R-3 5671R-2 7555R-1 9668R-1 11796R-1 12632R-2 15437R-1
1692R-2 4200R-2 5709R-3 7656R-2 9952R-2 11823R-1 12752R-2 15437R-2
1877R-1 4200R-3 6190R-3 7656R-1 10198R-3 11823R-4 12752R-3 16720R-1
2096R-3 4244R-1 6211R-1 8147R-1 10523R-1 11861R-2 13109R-1 16720R-3
2275R-1 4244R-2 6211R-3 8184R-1 10523R-2 11891R-1 13109R-3 16740R-4
2525R-1 4574R-2 6382R-1 8206R-1 10539R-3 11891R-2 13343R-3 17386R-1
2525R-3 4574R-3 6382R-2 8206R-3 10553R-1 11987R-3 13343R-4 30085R-1
3016R-1 4899R-1 6759R-1 8290R-2 10553R-2 11988R-3 13758R-3 30085R-2
3131R-2 4919R-1 6759R-3 8346R-3 10693R-1 12030R-3 14228R-1 31160R-1
3131R-3 4919R-2 6772R-2 8725R-3 10888R-2 12082R-1 14228R-2 31160R-3
3200R-2 4943R-1 6798R-3 8881R-3 10888R-1 12082R-2 14619R-1
3200R-3 4943R-2 6896R-1 8881R-4 10948R-1 12189R-3 14619R-3
3249R-2 5076R-1 6896R-2 9086R-3 10948R-3 12189R-1 14751R-1
3249R-3 5076R-2 7288R-1 9144R-1 10952R-1 12227R-2 14884R-1

Table A.1: List of RNAi lines from National Institute of Genetics Fly stock center
(Japan) screened for abnormalities in entrainment to temperature cycles when driven by
tim-gal4. Every line is labelled according the “CG annotation symbol” of the gene (from
Flybase) followed by insertion number (R). A total of 148 lines, covering 96 specific genes
have been screened (for most of them 2 independent insertion lines were available).
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DEG/ENaC Channels

List of RNAi targeting degenerin/epithelial sodium channels (DEG/ENaC) genes

which have been tested for defect on synchronization of the circadian clock to tem-

perature cycles. The RNAi lines were provided by the Vienna Drosophila RNAi

Centre (Vienna) and have been crossed to y w
y w

; tim−gal4:27
CyO

; XLG−luc:1−1
TM3

. All the lines

listed below have been assayed in our bioluminescence assay in constant light and

12:12 hr 25:16℃ temperature cycles. All of them showed normal phenotype, in

term of entraining per-luc expression to temperature cycles.
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Line name Gene Gene name

CG1058-T1 Rpk ripped pocketCG1058-T2
CG8178-T1 Ppk4 (NacH) NachCG8178-T2
CG11209-T1 Ppk6 pickpocket 6CG11209-T2
CG9499-T2 Ppk7 pickpocket7
CG14398-T4 Ppk13 pickpocket13
CG9501-T1 Ppk14 pickpocket14CG9501-T2
CG34059 Ppk16 pickpocket16
CG18287 Ppk19 pickpocket19
CG7577-T1 Ppk20 pickpocket20
CG12048-T1 Ppk21 pickpocket21CG12048-T2
CG8527-T1 Ppk23 pickpocket23CG8527-T2
CG15249-T1 Ppk25 pickpocket25
CG4805-T1 Ppk28 pickpocket28
CG32679-T1 CG32679
CG8546-T3 CG8546
CG8546-T4 CG8546

Table B.1: List of RNAi targeting DEG/ENaC channel genes which were tested for
defects on temperature entrainment of the circadian clock. The “line name” refers to
the Flybase annotation symbol followed by insertion number (according to the VDRC).

270



Bibliography

Adams, D. (2002). The Hitchhiker’s Guide to the Galaxy. Picador.

Albert, J. T., Nadrowski, B., and Gopfert, M. C. (2007). Drosophila

mechanotransduction–linking proteins and functions. Fly (Austin), 1:238–241.

Allada, R., White, N. E., So, W. V., Hall, J. C., and Rosbash, M. (1998). A

mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms

and transcription of period and timeless. Cell, 93:791–804.

Bae, K., Lee, C., Sidote, D., Chuang, K. Y., and Edery, I. (1998). Circadian

regulation of a Drosophila homolog of the mammalian Clock gene: PER and

TIM function as positive regulators. Mol. Cell. Biol., 18:6142–6151.

Belles, X. (2010). Beyond Drosophila: RNAi in vivo and functional genomics in

insects. Annu. Rev. Entomol., 55:111–128.

Blanchardon, E., Grima, B., Klarsfeld, A., Chelot, E., Hardin, P. E., Preat, T.,

and Rouyer, F. (2001). Defining the role of Drosophila lateral neurons in the

control of circadian rhythms in motor activity and eclosion by targeted genetic

ablation and PERIOD protein overexpression. Eur. J. Neurosci., 13:871–888.

Blau, J. and Young, M. W. (1999). Cycling vrille expression is required for a

functional Drosophila clock. Cell, 99:661–671.

271



BIBLIOGRAPHY

Bloomquist, B. T., Shortridge, R. D., Schneuwly, S., Perdew, M., Montell, C.,

Steller, H., Rubin, G., and Pak, W. L. (1988). Isolation of a putative phos-

pholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell,

54:723–733.

Boothroyd, C. E., Wijnen, H., Naef, F., Saez, L., and Young, M. W. (2007). Inte-

gration of light and temperature in the regulation of circadian gene expression

in Drosophila. PLoS Genet., 3:e54.

Boutros, M. and Ahringer, J. (2008). The art and design of genetic screens: RNA

interference. Nat. Rev. Genet., 9:554–566.

Bozek, K., Relogio, A., Kielbasa, S. M., Heine, M., Dame, C., Kramer, A., and

Herzel, H. (2009). Regulation of clock-controlled genes in mammals. PLoS ONE,

4:e4882.

Brand, A. H. and Perrimon, N. (1993). Targeted gene expression as a means of

altering cell fates and generating dominant phenotypes. Development, 118:401–

415.

Brandes, C., Plautz, J. D., Stanewsky, R., Jamison, C. F., Straume, M., Wood,

K. V., Kay, S. A., and Hall, J. C. (1996). Novel features of drosophila period

Transcription revealed by real-time luciferase reporting. Neuron, 16:687–692.

Brown, S. A., Zumbrunn, G., Fleury-Olela, F., Preitner, N., and Schibler, U.

(2002). Rhythms of mammalian body temperature can sustain peripheral cir-

cadian clocks. Curr. Biol., 12:1574–1583.

Busza, A., Emery-Le, M., Rosbash, M., and Emery, P. (2004). Roles of the two

Drosophila CRYPTOCHROME structural domains in circadian photoreception.

Science, 304:1503–1506.

272



BIBLIOGRAPHY

Busza, A., Murad, A., and Emery, P. (2007). Interactions between circadian neu-

rons control temperature synchronization of Drosophila behavior. J. Neurosci.,

27:10722–10733.

Caldwell, J. C. and Eberl, D. F. (2002). Towards a molecular understanding of

Drosophila hearing. J. Neurobiol., 53:172–189.

Ceriani, M. F., Darlington, T. K., Staknis, D., Mas, P., Petti, A. A., Weitz,

C. J., and Kay, S. A. (1999). Light-dependent sequestration of TIMELESS by

CRYPTOCHROME. Science, 285:553–556.

Chatterjee, A., Tanoue, S., Houl, J. H., and Hardin, P. E. (2010). Regulation of

gustatory physiology and appetitive behavior by the Drosophila circadian clock.

Curr. Biol., 20:300–309.

Clapham, D. E. (2003). TRP channels as cellular sensors. Nature, 426:517–524.

Clark, K. L., Halay, E. D., Lai, E., and Burley, S. K. (1993). Co-crystal structure

of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature,

364:412–420.

Collins, B. and Blau, J. (2007). Even a stopped clock tells the right time twice a

day: circadian timekeeping in Drosophila. Pflugers Arch., 454:857–867.

Collins, B. H., Rosato, E., and Kyriacou, C. P. (2004). Seasonal behavior in

Drosophila melanogaster requires the photoreceptors, the circadian clock, and

phospholipase C. Proc. Natl. Acad. Sci. U.S.A., 101:1945–1950.

Cook, B., Hardy, R. W., McConnaughey, W. B., and Zuker, C. S. (2008). Pre-

serving cell shape under environmental stress. Nature, 452:361–364.

273



BIBLIOGRAPHY

Currie, J., Goda, T., and Wijnen, H. (2009). Selective entrainment of the Dro-

sophila circadian clock to daily gradients in environmental temperature. BMC

Biol., 7:49.

Cyran, S. A., Buchsbaum, A. M., Reddy, K. L., Lin, M. C., Glossop, N. R.,

Hardin, P. E., Young, M. W., Storti, R. V., and Blau, J. (2003). vrille, Pdp1,

and dClock form a second feedback loop in the Drosophila circadian clock. Cell,

112:329–341.

Damann, N., Voets, T., and Nilius, B. (2008). TRPs in our senses. Curr. Biol.,

18:R880–889.

Dietzl, G., Chen, D., Schnorrer, F., Su, K. C., Barinova, Y., Fellner, M., Gasser,

B., Kinsey, K., Oppel, S., Scheiblauer, S., Couto, A., Marra, V., Keleman,

K., and Dickson, B. J. (2007). A genome-wide transgenic RNAi library for

conditional gene inactivation in Drosophila. Nature, 448:151–156.

Dolezelova, E., Dolezel, D., and Hall, J. C. (2007). Rhythm defects caused by

newly engineered null mutations in Drosophila’s cryptochrome gene. Genetics,

177:329–345.

Dubruille, R. and Emery, P. (2008). A plastic clock: how circadian rhythms

respond to environmental cues in Drosophila. Mol. Neurobiol., 38:129–145.

Dunlap, J. C. (1999). Molecular bases for circadian clocks. Cell, 96:271–290.

Dunlap, J. C., Loros, J. J., and DeCoursey, P. J. (2004). Chronobiology: Biological

Timekeeping. Sinauer Associates, Inc. Publisher.

Eberl, D. F. (1999). Feeling the vibes: chordotonal mechanisms in insect hearing.

Curr. Opin. Neurobiol., 9:389–393.

274



BIBLIOGRAPHY

Eberl, D. F. and Boekhoff-Falk, G. (2007). Development of Johnston’s organ in

Drosophila. Int. J. Dev. Biol., 51:679–687.

Edery, I., Zwiebel, L. J., Dembinska, M. E., and Rosbash, M. (1994). Temporal

phosphorylation of the Drosophila period protein. Proc. Natl. Acad. Sci. U.S.A.,

91:2260–2264.

Emery, P., So, W. V., Kaneko, M., Hall, J. C., and Rosbash, M. (1998). CRY,

a Drosophila clock and light-regulated cryptochrome, is a major contributor to

circadian rhythm resetting and photosensitivity. Cell, 95:669–679.

Emery, P., Stanewsky, R., Helfrich-Förster, C., Emery-Le, M., Hall, J. C., and

Rosbash, M. (2000). Drosophila CRY is a deep brain circadian photoreceptor.

Neuron, 26:493–504.

Ewer, J., Frisch, B., Hamblen-Coyle, M. J., Rosbash, M., and Hall, J. C. (1992).

Expression of the period clock gene within different cell types in the brain

of Drosophila adults and mosaic analysis of these cells’ influence on circadian

behavioral rhythms. J. Neurosci., 12:3321–3349.

Fang, Y., Sathyanarayanan, S., and Sehgal, A. (2007). Post-translational regu-

lation of the Drosophila circadian clock requires protein phosphatase 1 (PP1).

Genes Dev., 21:1506–1518.

Field, L. H. and Matheson, T. (1998). Chordotonal organs in insects. Adv. Insect

Physiol., 27:1–230.

Frisch, B., Hardin, P. E., Hamblen-Coyle, M. J., Rosbash, M., and Hall, J. C.

(1994). A promoterless period gene mediates behavioral rhythmicity and cyclical

per expression in a restricted subset of the Drosophila nervous system. Neuron,

12:555–570.

275



BIBLIOGRAPHY

Gao, Z., Joseph, E., Ruden, D. M., and Lu, X. (2004). Drosophila Pkd2 is haploid-

insufficient for mediating optimal smooth muscle contractility. J. Biol. Chem.,

279:14225–14231.

Gao, Z., Ruden, D. M., and Lu, X. (2003). PKD2 cation channel is required for

directional sperm movement and male fertility. Curr. Biol., 13:2175–2178.

Glaser, F. T. (2006). Temperatursynchronisation der circadianen Uhr von Dro-

sophila melanogaster: Eine genetische und molekulare Untersuchung beteiligter

Mechanismen und Rezeptoren. PhD thesis, Universität Regensburg.

Glaser, F. T. and Stanewsky, R. (2005). Temperature synchronization of the

Drosophila circadian clock. Curr. Biol., 15:1352–1363.

Glaser, F. T. and Stanewsky, R. (2007). Synchronization of the Drosophila cir-

cadian clock by temperature cycles. Cold Spring Harb. Symp. Quant. Biol.,

72:233–242.

Gong, Z., Son, W., Chung, Y. D., Kim, J., Shin, D. W., McClung, C. A., Lee, Y.,

Lee, H. W., Chang, D. J., Kaang, B. K., Cho, H., Oh, U., Hirsh, J., Kernan,

M. J., and Kim, C. (2004). Two interdependent TRPV channel subunits, inac-

tive and Nanchung, mediate hearing in Drosophila. J. Neurosci., 24:9059–9066.

Grima, B., Chelot, E., Xia, R., and Rouyer, F. (2004). Morning and evening

peaks of activity rely on different clock neurons of the Drosophila brain. Nature,

431:869–873.

Halberg, F., Cornelissen, G., Katinas, G., Syutkina, E. V., Sothern, R. B., Za-

slavskaya, R., Halberg, F., Watanabe, Y., Schwartzkopff, O., Otsuka, K., Tar-

quini, R., Frederico, P., and Siggelova, J. (2003). Transdisciplinary unifying

implications of circadian findings in the 1950s. J Circadian Rhythms, 1:2.

276



BIBLIOGRAPHY

Hall, J. C. (2005). Systems approaches to biological rhythms in Drosophila. Meth.

Enzymol., 393:61–185.

Hamada, F. N., Rosenzweig, M., Kang, K., Pulver, S. R., Ghezzi, A., Jegla, T. J.,

and Garrity, P. A. (2008). An internal thermal sensor controlling temperature

preference in Drosophila. Nature, 454:217–220.

Hardie, R. C. (2007). TRP channels and lipids: from Drosophila to mammalian

physiology. J. Physiol. (Lond.), 578:9–24.

Hase, M., Yagi, Y., Taru, H., Tomita, S., Sumioka, A., Hori, K., Miyamoto, K.,

Sasamura, T., Nakamura, M., Matsuno, K., and Suzuki, T. (2002). Expression

and characterization of the Drosophila X11-like/Mint protein during neural de-

velopment. J. Neurochem., 81:1223–1232.

Helfrich-Förster, C. (2002). The circadian system of Drosophila melanogaster and

its light input pathways. Zoology (Jena), 105:297–312.

Helfrich-Förster, C. (2005). Neurobiology of the fruit fly’s circadian clock. Genes

Brain Behav., 4:65–76.

Helfrich-Förster, C., Shafer, O. T., Wulbeck, C., Grieshaber, E., Rieger, D., and

Taghert, P. (2007). Development and morphology of the clock-gene-expressing

lateral neurons of Drosophila melanogaster. J. Comp. Neurol., 500:47–70.

Helfrich-Förster, C., Winter, C., Hofbauer, A., Hall, J. C., and Stanewsky, R.

(2001). The circadian clock of fruit flies is blind after elimination of all known

photoreceptors. Neuron, 30:249–261.

Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S.,

Orchard, S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., Margalit,

277



BIBLIOGRAPHY

H., Armstrong, J., Bairoch, A., Cesareni, G., Sherman, D., and Apweiler, R.

(2004). IntAct: an open source molecular interaction database. Nucleic Acids

Res., 32:D452–455.

Hofmann, T., Chubanov, V., Chen, X., Dietz, A. S., Gudermann, T., and Montell,

C. (2010). Drosophila TRPM channel is essential for the control of extracellular

magnesium levels. PLoS ONE, 5:e10519.

Hogan, C. C. and Bettencourt, B. R. (2009). Duplicate gene evolution toward

multiple fates at the Drosophila melanogaster HIP/HIP-Replacement locus. J.

Mol. Evol., 68:337–350.

Jarman, A. P., Sun, Y., Jan, L. Y., and Jan, Y. N. (1995). Role of the proneural

gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors.

Development, 121:2019–2030.

Johard, H. A., Yoishii, T., Dircksen, H., Cusumano, P., Rouyer, F., Helfrich-

Förster, C., and Nassel, D. R. (2009). Peptidergic clock neurons in Drosophila:

ion transport peptide and short neuropeptide F in subsets of dorsal and ventral

lateral neurons. J. Comp. Neurol., 516:59–73.

Kadener, S., Stoleru, D., McDonald, M., Nawathean, P., and Rosbash, M. (2007).

Clockwork Orange is a transcriptional repressor and a new Drosophila circadian

pacemaker component. Genes Dev., 21:1675–1686.

Kamikouchi, A., Inagaki, H. K., Effertz, T., Hendrich, O., Fiala, A., Gopfert,

M. C., and Ito, K. (2009). The neural basis of Drosophila gravity-sensing and

hearing. Nature, 458:165–171.

Kaneko, M. and Hall, J. C. (2000). Neuroanatomy of cells expressing clock genes

in Drosophila: transgenic manipulation of the period and timeless genes to mark

278



BIBLIOGRAPHY

the perikarya of circadian pacemaker neurons and their projections. J. Comp.

Neurol., 422:66–94.

Kaneko, M., Hamblen, M. J., and Hall, J. C. (2000). Involvement of the period

gene in developmental time-memory: effect of the perShort mutation on phase

shifts induced by light pulses delivered to Drosophila larvae. J. Biol. Rhythms,

15:13–30.

Kaneko, M., Helfrich-Förster, C., and Hall, J. C. (1997). Spatial and temporal

expression of the period and timeless genes in the developing nervous system of

Drosophila: newly identified pacemaker candidates and novel features of clock

gene product cycling. J. Neurosci., 17:6745–6760.

Kang, K., Pulver, S. R., Panzano, V. C., Chang, E. C., Griffith, L. C., Theobald,

D. L., and Garrity, P. A. (2010). Analysis of Drosophila TRPA1 reveals an

ancient origin for human chemical nociception. Nature, 464:597–600.

Katz, B. and Minke, B. (2009). Drosophila photoreceptors and signaling mecha-

nisms. Front Cell Neurosci, 3:2.

Kaufmann, E. and Knochel, W. (1996). Five years on the wings of fork head.

Mech. Dev., 57:3–20.

Kaushik, R., Nawathean, P., Busza, A., Murad, A., Emery, P., and Rosbash, M.

(2007). PER-TIM interactions with the photoreceptor cryptochrome mediate

circadian temperature responses in Drosophila. PLoS Biol., 5:e146.

Kernan, M. J. (2007). Mechanotransduction and auditory transduction in Droso-

phila. Pflugers Arch., 454:703–720.

279



BIBLIOGRAPHY

Kim, E. Y. and Edery, I. (2006). Balance between DBT/CKIepsilon kinase and

protein phosphatase activities regulate phosphorylation and stability of Droso-

phila CLOCK protein. Proc. Natl. Acad. Sci. U.S.A., 103:6178–6183.

Kim, J., Chung, Y. D., Park, D. Y., Choi, S., Shin, D. W., Soh, H., Lee, H. W.,

Son, W., Yim, J., Park, C. S., Kernan, M. J., and Kim, C. (2003). A TRPV

family ion channel required for hearing in Drosophila. Nature, 424:81–84.

Klarsfeld, A., Malpel, S., Michard-Vanhee, C., Picot, M., Chelot, E., and Rouyer,

F. (2004). Novel features of cryptochrome-mediated photoreception in the brain

circadian clock of Drosophila. J. Neurosci., 24:1468–1477.

Kloss, B., Price, J. L., Saez, L., Blau, J., Rothenfluh, A., Wesley, C. S., and Young,

M. W. (1998). The Drosophila clock gene double-time encodes a protein closely

related to human casein kinase Iepsilon. Cell, 94:97–107.

Ko, H. W., Jiang, J., and Edery, I. (2002). Role for Slimb in the degradation of

Drosophila Period protein phosphorylated by Doubletime. Nature, 420:673–678.

Koh, K., Zheng, X., and Sehgal, A. (2006). JETLAG resets the Drosophila cir-

cadian clock by promoting light-induced degradation of TIMELESS. Science,

312:1809–1812.

Konopka, R. J. and Benzer, S. (1971). Clock mutants of Drosophila melanogaster.

Proc. Natl. Acad. Sci. U.S.A., 68:2112–2116.

Konopka, R. J., Pittendrigh, C., and Orr, D. (1989). Reciprocal behaviour associ-

ated with altered homeostasis and photosensitivity of Drosophila clock mutants.

J. Neurogenet., 6:1–10.

Kraft, R. and Harteneck, C. (2005). The mammalian melastatin-related transient

receptor potential cation channels: an overview. Pflugers Arch., 451:204–211.

280



BIBLIOGRAPHY

Kwon, Y., Shim, H. S., Wang, X., and Montell, C. (2008). Control of thermotactic

behavior via coupling of a TRP channel to a phospholipase C signaling cascade.

Nat. Neurosci., 11:871–873.

Kyriacou, C. P. and Rosato, E. (2000). Squaring up the E-box. J. Biol. Rhythms,

15:483–490.

Lahiri, K., Vallone, D., Gondi, S. B., Santoriello, C., Dickmeis, T., and Foulkes,

N. S. (2005). Temperature regulates transcription in the zebrafish circadian

clock. PLoS Biol., 3:e351.

Lai, E., Clark, K. L., Burley, S. K., and Darnell, J. E. (1993). Hepatocyte nuclear

factor 3/fork head or ”winged helix” proteins: a family of transcription factors

of diverse biologic function. Proc. Natl. Acad. Sci. U.S.A., 90:10421–10423.

Landskron, J., Chen, K. F., Wolf, E., and Stanewsky, R. (2009). A role for the

PERIOD:PERIOD homodimer in the Drosophila circadian clock. PLoS Biol.,

7:e3.

Lee, C., Bae, K., and Edery, I. (1999). PER and TIM inhibit the DNA binding

activity of a Drosophila CLOCK-CYC/dBMAL1 heterodimer without disrupt-

ing formation of the heterodimer: a basis for circadian transcription. Mol. Cell.

Biol., 19:5316–5325.

Lee, H. H. and Frasch, M. (2004). Survey of forkhead domain encoding genes in

the Drosophila genome: Classification and embryonic expression patterns. Dev.

Dyn., 229:357–366.

Lee, J. E. and Edery, I. (2008). Circadian regulation in the ability of Drosophila

to combat pathogenic infections. Curr. Biol., 18:195–199.

281



BIBLIOGRAPHY

Lee, Y., Lee, Y., Lee, J., Bang, S., Hyun, S., Kang, J., Hong, S. T., Bae, E., Kaang,

B. K., and Kim, J. (2005). Pyrexia is a new thermal transient receptor potential

channel endowing tolerance to high temperatures in Drosophila melanogaster.

Nat. Genet., 37:305–310.

Levine, J. D., Funes, P., Dowse, H. B., and Hall, J. C. (2002a). Advanced analysis

of a cryptochrome mutation’s effects on the robustness and phase of molecular

cycles in isolated peripheral tissues of Drosophila. BMC Neurosci, 3:5.

Levine, J. D., Funes, P., Dowse, H. B., and Hall, J. C. (2002b). Resetting the circa-

dian clock by social experience in Drosophila melanogaster. Science, 298:2010–

2012.

Levine, J. D., Funes, P., Dowse, H. B., and Hall, J. C. (2002c). Signal analysis of

behavioral and molecular cycles. BMC Neurosci, 3:1.

Lim, C., Chung, B. Y., Pitman, J. L., McGill, J. J., Pradhan, S., Lee, J., Keegan,

K. P., Choe, J., and Allada, R. (2007). Clockwork orange encodes a transcrip-

tional repressor important for circadian-clock amplitude in Drosophila. Curr.

Biol., 17:1082–1089.

Lindsley, D. L. and Zimm, G. G. (1992). The genome of Drosophila melanogaster.

Acadmic Press.

Liu, L., Li, Y., Wang, R., Yin, C., Dong, Q., Hing, H., Kim, C., and Welsh, M. J.

(2007). Drosophila hygrosensation requires the TRP channels water witch and

nanchung. Nature, 450:294–298.

Liu, Y., Merrow, M., Loros, J. J., and Dunlap, J. C. (1998). How temperature

changes reset a circadian oscillator. Science, 281:825–829.

282



BIBLIOGRAPHY

Luo, L., Liao, Y. J., Jan, L. Y., and Jan, Y. N. (1994). Distinct morphogenetic

functions of similar small GTPases: Drosophila Drac1 is involved in axonal

outgrowth and myoblast fusion. Genes Dev., 8:1787–1802.

Lyons, L. C. and Roman, G. (2009). Circadian modulation of short-term memory

in Drosophila. Learn. Mem., 16:19–27.

Majercak, J., Chen, W. F., and Edery, I. (2004). Splicing of the period gene 3’-

terminal intron is regulated by light, circadian clock factors, and phospholipase

C. Mol. Cell. Biol., 24:3359–3372.

Majercak, J., Sidote, D., Hardin, P. E., and Edery, I. (1999). How a circadian

clock adapts to seasonal decreases in temperature and day length. Neuron,

24:219–230.

Malpel, S., Klarsfeld, A., and Rouyer, F. (2002). Larval optic nerve and adult

extra-retinal photoreceptors sequentially associate with clock neurons during

Drosophila brain development. Development, 129:1443–1453.

Malpel, S., Klarsfeld, A., and Rouyer, F. (2004). Circadian synchronization and

rhythmicity in larval photoperception-defective mutants of Drosophila. J. Biol.

Rhythms, 19:10–21.

Martinek, S., Inonog, S., Manoukian, A. S., and Young, M. W. (2001). A role

for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock.

Cell, 105:769–779.

McNabb, S. L. and Truman, J. W. (2008). Light and peptidergic eclosion hormone

neurons stimulate a rapid eclosion response that masks circadian emergence in

Drosophila. J. Exp. Biol., 211:2263–2274.

283



BIBLIOGRAPHY

McNeil, G. P., Zhang, X., Genova, G., and Jackson, F. R. (1998). A molecular

rhythm mediating circadian clock output in Drosophila. Neuron, 20:297–303.

Mealey-Ferrara, M. L., Montalvo, A. G., and Hall, J. C. (2003). Effects of com-

bining a cryptochrome mutation with other visual-system variants on entrain-

ment of locomotor and adult-emergence rhythms in Drosophila. J. Neurogenet.,

17:171–221.

Meissner, R. A., Kilman, V. L., Lin, J. M., and Allada, R. (2008). TIMELESS

is an important mediator of CK2 effects on circadian clock function in vivo. J.

Neurosci., 28:9732–9740.

Minke, B. and Parnas, M. (2006). Insights on TRP channels from in vivo studies

in Drosophila. Annu. Rev. Physiol., 68:649–684.

Miyasako, Y., Umezaki, Y., and Tomioka, K. (2007). Separate sets of cerebral clock

neurons are responsible for light and temperature entrainment of Drosophila

circadian locomotor rhythms. J. Biol. Rhythms, 22:115–126.

Montell, C. (2005). Drosophila TRP channels. Pflugers Arch., 451:19–28.

Montell, C. and Caterina, M. J. (2007). Thermoregulation: channels that are cool

to the core. Curr. Biol., 17:R885–887.

Myers, E. M., Yu, J., and Sehgal, A. (2003). Circadian control of eclosion: in-

teraction between a central and peripheral clock in Drosophila melanogaster.

Curr. Biol., 13:526–533.
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