
Making music through real-time voice timbre analysis: machine learning

and timbral control
Stowell, Dan

 

 

 

 

 

This work is copyright c2010 Dan Stowell, and is licensed under the Creative Commons

Attribution-Share Alike 3.0 Unported Licence. To view a copy of this

licence, visit

http://creativecommons.org/licenses/by-sa/3.0/

 

 

For additional information about this publication click this link.

https://qmro.qmul.ac.uk/jspui/handle/123456789/412

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

https://qmro.qmul.ac.uk/jspui/handle/123456789/412


Making music through

real-time voice timbre analysis:

machine learning and timbral control

Dan Stowell

PhD thesis

School of Electronic Engineering and Computer Science

Queen Mary University of London

2010



Abstract

People can achieve rich musical expression through vocal sound – see for example
human beatboxing, which achieves a wide timbral variety through a range of
extended techniques. Yet the vocal modality is under-exploited as a controller
for music systems. If we can analyse a vocal performance suitably in real time,
then this information could be used to create voice-based interfaces with the
potential for intuitive and fulfilling levels of expressive control.

Conversely, many modern techniques for music synthesis do not imply any
particular interface. Should a given parameter be controlled via a MIDI key-
board, or a slider/fader, or a rotary dial? Automatic vocal analysis could provide
a fruitful basis for expressive interfaces to such electronic musical instruments.

The principal questions in applying vocal-based control are how to extract
musically meaningful information from the voice signal in real time, and how
to convert that information suitably into control data. In this thesis we ad-
dress these questions, with a focus on timbral control, and in particular we
develop approaches that can be used with a wide variety of musical instruments
by applying machine learning techniques to automatically derive the mappings
between expressive audio input and control output. The vocal audio signal is
construed to include a broad range of expression, in particular encompassing
the extended techniques used in human beatboxing.

The central contribution of this work is the application of supervised and
unsupervised machine learning techniques to automatically map vocal timbre
to synthesiser timbre and controls. Component contributions include a delayed
decision-making strategy for low-latency sound classification, a regression-tree
method to learn associations between regions of two unlabelled datasets, a fast
estimator of multidimensional differential entropy and a qualitative method for
evaluating musical interfaces based on discourse analysis.
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Chapter 1

Introduction

1.1 Motivation

The human voice is a wonderfully, perhaps uniquely, expressive instrument. It
can exhibit a bewildering number of expressive variations beyond those of pitch
and loudness, including trill, effort level, breathiness, creakiness, growl, twang
[Soto-Morettini, 2006]. One may scarcely believe that the same basic apparatus
is used to create such disparate sounds as heard in Mongolian/Tuvan throat
singing [Lindestad et al., 2001], Inuit vocal games [Nattiez, 2008], twentieth-
century art music [Mabry, 2002] and human beatboxing (Section 2.2). Even
in Western popular music, singers regularly exploit a variety of modulation
techniques for musical expression [Soto-Morettini, 2006]. Further, most people
are able to use their voice expressively – in speech even if not necessarily in a
trained musical manner.

Such vocal expression is a rich source of information, which we perceive
aurally and which may be amenable to automatic analysis. There has been
much research into automatic speech analysis, and relatively little on automatic
singing analysis (see Chapter 2); and very little indeed that aims to encompass
the breadth of vocal timbral expression which we might call extended technique.
Yet if we can analyse/parametrise vocal expression in a suitable manner in real
time, then a voice-based musical interface has the potential to offer a level of
expression that could be intuitive and fulfilling for the performer.

Conversely, although traditional musical instruments such as the guitar or
piano come with their own physical interface, many modern techniques for mu-
sic synthesis do not imply any particular interface. For example, algorithmic
processes such as granular synthesis [Roads, 1988] or concatenative synthesis
[Schwarz, 2005] can be controlled by manipulating certain numerical parameters.
Should a given parameter be controlled via a MIDI keyboard, or a slider/fader,
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or a rotary dial? The history of electronic instruments throughout the twentieth
century has shown a tendency for the piano-like MIDI keyboard to prevail. We
concur with Levitin et al. [2002] who argue:

Our approach is the consequence of one bias that we should reveal
at the outset: we believe that electronically controlled (and this in-
cludes computer-controlled) musical instruments need to be eman-
cipated from the keyboard metaphor; although piano-like keyboards
are convenient and familiar, they limit the musician’s expressive-
ness (Mathews 1991, Vertegaal and Eaglestone 1996, Paradiso 1997,
Levitin and Adams 1998). This is especially true in the domain of
computer music, in which timbres can be created that go far beyond
the physical constraints of traditional acoustic instruments. [Levitin
et al., 2002]

Such motivation spurs a wide range of research on new interfaces for musical
expression [Poupyrev et al., 2001]. We believe that automatic vocal analy-
sis could provide a fruitful basis for expressive interfaces to electronic musical
instruments. Indeed, there is evident appetite for technology which extends
the range of possibilities for vocal expression, shown in musicians’ take-up of
vocoder and Auto-Tune effects [Tompkins, 2010, Dickinson, 2001] (note that
these technologies alter a vocal signal rather than using it to control another
sound source).

The principal questions in applying vocal-based control are how to extract
musically meaningful information from the voice signal in real time, and how
to convert that information suitably into control data. In the present work we
address these questions, and in particular we develop approaches that can be
used with a wide variety of musical instruments by applying machine learning
techniques to automatically derive the mappings between expressive audio input
and control output.

1.2 Aim

The aim of this work is to develop methods for real-time control of synthesis-
ers purely using a vocal audio signal. The vocal audio signal is construed to
include a broad range of expression, in particular encompassing the extended
techniques used in human beatboxing. The real-time control should be suitable
for live expressive performance, which brings requirements such as low-latency
and noise robustness. The choice of synthesiser should be left open, which means
that we must apply machine learning techniques to automatically analyse the
relationship between the synthesiser’s controls and output.
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1.3 Thesis structure

Chapter 2 introduces the main bodies of existing research which we will build
upon. It begins by considering the physiology of the human vocal tract
and the sounds used in beatboxing, and then surveys relevant research
topics including speech analysis, singing voice analysis, musical timbre,
and machine learning. The chapter concludes by reflecting on this existing
work to consider a strategy for achieving the research aim.

Chapter 3 focuses on the representation of timbre using features measured
on the audio signal. We investigate the relative merits of a diverse set of
features, according to perceptual and other criteria which are each relevant
to our choice of features for use in our timbral applications. The chapter
finds some commonalities and tensions between these criteria, and makes
some recommendations about choice of features.

Chapter 4 investigates the event-based paradigm applied to musical control by
voice timbre. We describe a human beatboxing dataset which we compiled,
and classification experiments performed on these data. In particular,
we investigate latency issues, finding that a small latency is beneficial to
the classifier, and perform a perceptual experiment with human listeners,
determining the acceptable bounds on latency in a novel “delayed decision-
making” real-time classification approach.

Chapter 5 investigates the continuous (event-agnostic) paradigm applied to
musical control by voice timbre. We introduce our concept of “timbre
remapping” from voice timbre onto synthesiser timbre, and consider var-
ious strategies for automatic machine learning of mappings from unla-
belled data. In particular, we introduce a novel regression-tree method,
and demonstrate that it outperforms a nearest-neighbour-type mapping.

Chapter 6 evaluates timbre remapping in use with actual beatboxers. We first
discuss evaluation issues for expressive musical systems, finding that some
of the traditional HCI techniques are not ideally suited to such evaluation.
We then introduce a rigorous qualitative evaluation method, and apply it
to evaluate a timbre remapping system, illuminating various aspects of
the technique in use.

Chapter 7 concludes the thesis, drawing comparisons and contrasts between
the event-based and continuous approaches to vocal timbral control, and
considering the prospects for further research.
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1.4 Contributions

The principal contributions of this thesis are:

• Chapter 4: a “delayed decision-making” strategy to circumvent the issue
of latency in real-time audio event classification, and perceptual results
indicating bounds on its applicability.

• Chapter 5: a nonparametric method based on regression trees which can
learn associations between regions of two unlabelled datasets.

• Chapter 5: The use of the above-mentioned tree-based method to improve
“timbre remapping” from one type of sound to another, by accounting for
the differences in timbre distributions of sound sources.

• Chapter 6: a novel approach to evaluating creative/expressive interfaces
in a rigorous qualitative fashion, using discourse analysis.

• Appendix A: a fast estimator of the differential entropy of multidimen-
sional distributions.
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1.5 Associated publications

Portions of the work detailed in this thesis have been presented in national and
international scholarly publications, as follows (journal publications highlighted
in bold):

• Chapter 2: Section 2.2 on beatboxing was published as a technical report
[Stowell and Plumbley, 2008a].

• Chapter 3: An early version of some of the feature-selection work was
presented at the International Conference on Digital Audio Effects [Stowell
and Plumbley, 2008b].

• Chapter 4: Accepted for publication in the Journal of New Music

Research [Stowell and Plumbley, in press].

• Chapter 5: The early timbre remapping work presented in sections of this
chapter was presented at a meeting of the Digital Music Research Network
[Stowell and Plumbley, 2007].

A version of the regression tree work (Section 5.2) is submitted to a jour-
nal.
A briefer presentation (focusing on the application to concatenative syn-
thesis) was presented at the Sound and Music Conference [Stowell and
Plumbley, 2010].
A discussion of the three timbre remapping methods is accepted for presen-
tation at the 2010 Workshop on Applications of Pattern Analysis [Stowell
and Plumbley, accepted].

• Chapter 6: The discourse analytic approach to evaluation was presented
in an early form at the International Conference on New Interfaces for
Musical Expression [Stowell et al., 2008], and in a more complete form in
a collaborative article of which I was the lead author, in the International

Journal of Human-Computer Studies [Stowell et al., 2009].

• Appendix A: Published in IEEE Signal Processing Letters [Stowell
and Plumbley, 2009].
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Chapter 2

Background

To establish the basis upon which this thesis will be developed, in this chapter
we introduce the main research areas which relate to our aim. We start by
discussing the components and operation of the human vocal system, which will
be useful in our discussion of speech and singing research and in later chapters.
We also discuss specific characteristics of the beatboxing vocal style. We then
introduce the main research fields which bear on our thesis. We conclude the
chapter by reflecting upon how the state of the art in these fields bears upon
our choice of strategy.

2.1 The human vocal system

Figure 2.1 gives a functional model of the vocal tract [Clark and Yallop, 1995].
The energy used to produce vocal sound comes primarily from the respiratory
forces moving air into or out of the lungs.1 To produce vocalic sounds (vowels
and similar sounds such as voiced consonants or humming) the vocal folds are
brought close together such that the passage of air is constricted, creating a
pressure drop across the vocal folds which can cause them to oscillate. Variations
in the muscular tension in the vocal folds are used to modulate the fundamental
frequency of the oscillation as well as some of its harmonic characteristics: for
example the relative amount of time during an oscillation that the folds remain
apart (characterised by the glottal open quotient or conversely the glottal closed
quotient) determines the relative strengths of harmonics in the glottal oscillation
[Hanson, 1995].

1The vast majority of vocalisations are performed while exhaling rather than inhaling.
Inhaled sounds are phonetic units in some languages [Ladefoged and Maddieson, 1996] and
are used for performed sounds in traditions such as Inuit vocal games [Nattiez, 2008] and
human beatboxing (Section 2.2).
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Figure 2.1: Functional model of the vocal tract, after Clark and Yallop [1995,
Figure 2.2.1].

The vocal folds are therefore the main source of acoustic oscillations that
propagate through the rest of the vocal system. The vocal tract contains regions
which we model as resonant chambers, in particular the pharyngeal cavity and
the oral cavity. The size and shape of these cavities can be modulated by
various muscle movements (including the position and shape of the tongue and
lips) to determine the main resonant frequencies excited by the glottal signal,
which will be audible in the sound emitted to the outside. These resonances are
called formants in literature on voice, and their frequencies and character are
important in differentiating vowels from one another.

The nasal cavity also has a role in modulating the sound. The soft palate
(velum), normally open in breathing to allow air through the nasal cavity, is
closed when producing vowels to force most or all of the air to pass through the
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oral cavity. Some vocal sounds are nasalised, with the soft palate opening to
allow some of the energy to pass into the nasal branch of the vocal tract. The
audible result is a set of formants due to nasal radiation as well as antiformants
as energy is removed from the oral radiated sound [Fujimura and Erickson, 1999,
Section 2.4.3]. (In the terminology of filter design, a formant corresponds to a
pole, and an antiformant to a zero, in a filter response.)

The musculature around the vocal folds is highly configurable. We have al-
ready mentioned that it can change the fundamental frequency of the oscillation
and the glottal closed quotient; it can also induce a variety of different phonation
types, called modes of phonation [Laver, 1980][Clark and Yallop, 1995, Section
2.6]:

• The most common mode is (a little confusingly) referred to as modal
phonation, in which the vocal folds oscillate regularly and with a glot-
tal closure on each cycle.

• Whispering is a mode in which the vocal folds are held moderately wide
apart such that no oscillation occurs; rather, the slight constriction creates
a turbulence in the airstream which creates a broadband noise (resulting
in an inharmonic sound).

• Breathy voice is a related mode in which the vocal folds meet along only
some of their length, resulting in a glottal source signal which is a mixture
of regular oscillation and turbulent noise.

• Creaky voice (often called vocal fry in musical contexts) is produced when
the vibration of the vocal folds turns on and off repeatedly (because the
system is on the cusp of oscillation), causing the glottal signal to contain
significant sub- and interharmonics [Gerratt and Kreiman, 2001].

• Ventricular mode phonation occurs when the ventricular vocal folds (also
called “false” or “vestibular” vocal folds; see Figure 2.1) are brought into
sympathetic resonance with the vocal folds, causing a rich low-pitched
oscillation used notably in Tibetan chant and Tuvan/Mongolian throat-
singing [Fuks, 1998, Lindestad et al., 2001].

The taxonomy of vocal modes varies among authors but the above are quite
common. Differences between modes are sometimes used in language to mark
phonemic differences (e.g. two vowels may differ only in whether they are modal
or creaky), but in most languages they do not [Ladefoged and Maddieson, 1996].
The variation of vocal mode and its perception are partly categorical and partly
continuous in nature [Gerratt and Kreiman, 2001], and can reflect the emotional
or physiological state of the speaker.
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The above description of the vocal tract has focused on vocalic phonation,
with the vocal folds as the primary sound source. However, human vocalisa-
tions include a wide range of sounds with excitation sources at various points
in the vocal tract [Fry, 1996/1979], used to varying extent in language. Some
consonant-type sounds (fricatives such as /f/ /θ/ /s/ /h/)2 are created by con-
stricting the airflow at specific points such as the lips/tongue/teeth to create
turbulence which results in audible noise. Trills are relatively slow oscillations
(often 20–30 Hz [Fujimura and Erickson, 1999, Section 2.4]) produced by forc-
ing air past a loose obstruction in the vocal tract (formed e.g. by the tongue
or lips) which then oscillates between open and closed. Plosives are caused by
blocking the airflow to build up pressure which is then released in a burst of
sound. Clicks are percussive sounds caused for example by the tongue hitting
the floor of the mouth.

In language and in vocal expression generally, these non-vocalic sounds can
often be used in conjunction with vocalic phonation or independently. Vocalic
phonation is usually the primary source of sound energy, and so other sources
are often neglected in discussions of human voice and – as we will see in Section
2.3.1 – in automatic analyses. However if we wish to consider a wide range of
human vocal expression, we must bear in mind that the human vocal apparatus
includes various different potential sound sources. For example, the percussive
sounds obtained by plosives, trills and clicks are important to vocal percussion
performers such as human beatboxers, as we will next discuss specifically.

2.2 The beatboxing vocal style

Beatboxing is a tradition of vocal percussion which originates in 1980s hip-hop,
and is closely connected with hip-hop culture. It involves the vocal imitation
of drum machines as well as drums and other percussion, and typically also the
simultaneous imitation of basslines, melodies and vocals, to create an illusion of
polyphonic music. It may be performed a capella or with amplification. Here
we describe some characteristics of the beatboxing vocal performance style, as
relevant for the music signal processing which we will develop in our thesis.
In particular we focus on aspects of beatboxing which are different from other
vocal styles or from spoken language.

Beatboxing developed well outside academia, and separate from the vocal
styles commonly studied by universities and conservatories, and so there is (to
our knowledge) very little scholarly work on the topic, either on its history or

2Characters given between slashes are International Phonetic Alphabet (IPA) representa-
tions of vocal sounds [International Phonetic Association, 1999] (see also Fukui [2004]). For
example, /θ/ represents an unvoiced “th” as in “theory”.
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on its current practice. Beatboxing is mentioned in popular histories of the
hip-hop movement, although rarely in detail. An undergraduate thesis looks
at phonetic aspects of some beatboxing sounds [Lederer, 2005]. Some technical
work is inspired by beatboxing to create (e.g.) a voice-controlled drum-machine
[Hazan, 2005a,b, Kapur et al., 2004, Sinyor et al., 2005], although these authors
don’t make explicit whether their work has been developed in contact with
practising beatboxers.

In the following we describe characteristics of beatboxing as contrasted
against better-documented traditions such as popular singing [Soto-Morettini,
2006] or classical singing [Mabry, 2002]. Because of the relative scarcity of
literature, many of the observations come from the author’s own experiences
and observations: both as a participant in beatboxing communities in the UK
and online, and during user studies involving beatboxers as part of the work
described in this thesis.

In this section we will describe certain sounds narratively as well as in IPA
notation; note that the IPA representation may be approximate, since the no-
tation is not designed to accommodate easily the non-linguistic and “extended
technique” sounds we discuss.

2.2.1 Extended vocal technique

Perhaps the most fundamental distinction between the sounds produced while
beatboxing and those produced during most other vocal traditions arises from
beatboxing’s primary aim to create convincing impersonations of drum tracks.
(Contrast this against vocal percussion traditions such as jazz scat singing or
indian bol, in which percussive rhythms are imitated, but there is no aim to
disguise the vocal origin of the sounds.) This aim leads beatboxers to do two
things: (1) employ a wide palette of vocal techniques to produce the desired
timbres; and (2) suppress some of the linguistic cues that would make clear to
an audience that the source is a single human voice.

The extended vocal techniques used are many and varied, and vary according
to the performer. Many techniques are refinements of standard linguistic vowel
and consonant sounds, while some involve sounds that are rarely if at all em-
ployed in natural languages. We do not aim to describe all common techniques
here, but we will discuss some relatively general aspects of vocal technique which
have a noticeable effect on the sound produced.

Non-syllabic patterns

The musical sounds which beatboxers imitate may not sound much like con-
ventional vocal utterances. Therefore the vowel-consonant alternation which is
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typical of most use of voice may not be entirely suitable for producing a close
auditory match. Instead, beatboxers learn to produce sounds to match the
sound patterns they aim to replicate, attempting to overcome linguistic pat-
ternings. Since human listeners are known to use linguistic sound patterns as
one cue to understanding a spoken voice [Shannon et al., 1995], it seems likely
that avoiding such patterns may help maintain the illusion of non-voice sound.

As mentioned above, vocal traditions such as scat or bol do not aim to
disguise the vocal origin of the sounds. Hence in those traditions, patterns are
often built up using syllable sounds which do not stray far from the performers’
languages.

Use of ingressive sounds

In most singing and spoken language, the vast majority of sounds are produced
during exhalation; a notable characteristic of beatboxing is the widespread use
of ingressive sounds. We propose that this has two main motivations. Firstly
it enables a continuous flow of sounds, which both allows for continuous drum
patterns and helps maintain the auditory illusion of the sounds being imitated
(since the sound and the pause associated with an ordinary intake of breath are
avoided). Secondly it allows for the production of certain sounds which cannot
be produced equally well during exhaling. A commonly-used example is the
“inward clap snare” /Îl/.3

Ingressive sounds are most commonly percussive. Although it is possible to
phonate while breathing in, the production of pitched notes while inhaling does
not seem to be used much at all by beatboxers.

Although some sounds may be specifically produced using inward breath,
there are many sounds which beatboxers seem often to be able to produce in
either direction, such as the “closed hi-hat” sound /t^/ (outward) or /Ö^/ (in-
ward). This allows some degree of independence between the breathing patterns
and the rhythm patterns.

Vocal modes/qualities

Beatboxers make use of different vocal modes (Section 2.1) to produce specific
sounds. For example, growl/ventricular voice may be used to produce a bass
tone, and falsetto is used as a component of some sounds, e.g. vocal scratch,
“synth kick”. In these cases the vocal modes are employed for their timbral
effects, not (as may occur in language) to convey meaning or emotional state.

Some beatboxing techniques involve the alternation between voice qualities.
If multiple streams are being woven into a single beat pattern, this can involve

3http://www.humanbeatbox.com/inward_snares
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Figure 2.2: Laryngograph analysis of two seconds of “vocal scratching” per-
formed by the author. The image shows (from top to bottom): spectrogram;
waveform; laryngograph signal (which measures the impedance change when
larynx opens/closes – the signal goes up when vocal folds close, goes down
when they open); and fundamental frequency estimated from the laryngograph
signal. The recording was made by Xinghui Hu at the UCL EAR Institute on
11th March 2008.

rapid alternation between (e.g.) beats performed using modal voice, “vocals” or
sound effects performed in falsetto, and basslines performed in growl/ventricular
voice. The alternation between voice qualities can emphasise the separation of
these streams and perhaps contribute to the illusion of polyphony.

Fast pitch variation

Fast pitch variation is a notable feature of beatboxing, sometimes for similar
reasons to the alternation of vocal modes described above, but especially in
“vocal scratching”. This is the vocal imitation of scratching (i.e. manually
moving the record back and forth) used by DJs. Since real scratching involves
very rapid variations in the speed of the record and therefore of the sound
produced, its imitation requires very rapid variation in fundamental frequency,
as well as concomitant changes in other voice characteristics. In laryngograph
measurements made with Xingui Hu at the UCL EAR Institute (Figure 2.2),
we observed pitch changes in vocal scratching as fast as one-and-a-half octaves
in 150 ms.
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Trills / rolls / buzzes

Beatboxers tend to use a variety of trills to produce oscillatory sounds. (Here
we use the term “trill” in its phonetic sense, as an oscillation produced by a
repeated blocking and unblocking of the airstream; not in the musical sense of
a rapid alternation between pitches.) The IPA explicitly recognises three trill
types:

• /r/ (alveolar trill or “rolled R”)

• /à/ (voiced bilabial trill)

• /ö/ (uvular trill)

These have a role in beatboxing, as do others: trills involving the palate, inward-
breathed trills and click-trills.

The frequency of vocal trills can vary from subsonic rates (e.g. 20–30 Hz)
to low but audible pitches (e.g. 100 Hz). This leads to trills being employed in
two distinct ways: (1) for rapidly-repeated sounds such as drum-rolls or “dalek”
sound (the gargling effect of uvular trill); and (2) for pitched sounds, particularly
bass sounds. In the latter category, bilabial trill (“lip buzz”) is most commonly
used, but palatal trills and inward uvular trills (“snore bass”) are also used.

Notably, beatboxers improve the resonant tone of pitched trills (particularly
/à/) by matching the trill frequency with the frequency of voicing. This requires
practice (to be able to modify lip tension suitably), but the matched resonance
can produce a very strong bass tone, qualitatively different from an ordinary
voiced bilabial trill.

A relatively common technique is the “click roll”, which produces the sound
of a few lateral clicks in quick succession: /{{{

<
/ . This is produced by the tongue

and palate and does not require the intake or exhaling of air, meaning (as with
other click-type sounds) that beatboxers can produce the sound simultaneously
with breathing in or with humming. (There exist click-roll variants produced
using inhaled or exhaled breath.)

Although trilling is one way to produce drum-roll sounds, beatboxers do
also use fast alternation of sounds as an alternative strategy to produce rapidly-
repeated sounds, e.g. /b^d^b^d^b^d^/ for kicks or /t^f^t^f^t^f^/ for hi-hats.4

2.2.2 Close-mic technique

Beatboxing may be performed a capella or with a microphone and amplifica-
tion. In the latter case, many beatboxers adopt a “close-mic” technique: while

4http://www.humanbeatbox.com/rolls
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standard dynamic microphones are designed to be used at a distance of around
15–20 centimetres from the mouth for a “natural” sound quality [Shure Inc.,
2006], beatboxers typically use a standard dynamic vocal mic but positioned
around one or two centimetres from the mouth.5 This is to exploit the response
characteristics of the microphone at close range, typically creating a bassier
sound [Shure Inc., 2006]. The performer may also cup the microphone with one
or both hands to modulate the acoustic response.

For some sound qualities or effects the microphone may be positioned against
the throat or the nose. Against the throat, a muffled “low-pass filter” effect can
be produced.

A beatbox routine may be performed with the microphone held in a relatively
constant position against the mouth, but some beatboxers rapidly reposition the
microphone (e.g. pointing it more towards the nose for some sounds) to modulate
the characteristics of individual sounds, which may help to differentiate sounds
from each other in the resulting signal. It requires some skill to synchronise these
movements with the vocal sounds, but it is not clear that fast mic repositioning
is used by all skilled beatboxers.

Close-mic techniques alter the role of the microphone, from being a “trans-
parent” tool for capturing sound to being a part of the “instrument”. There is
an analogy between the development of these techniques, and the developments
following the invention of the electric guitar, when overdrive and distortion
sounds (produced by nonlinearities in guitar amplifiers) came to be interpreted,
not as deviations from high fidelity, but as specific sound effects.

2.2.3 Summary

Beatboxing is a relatively recently-developed performance style involving some
distinct performance techniques which affect the nature of the audio stream,
compared against the audio produced in most other vocal performance styles.
The use of non-syllabic patterns and the role of inhaled sounds typically leads
to an audio stream in which language-like patterns are suppressed, which we
argue may facilitate the illusion of a non-vocal sound source or sources. These
and other extended vocal techniques are employed to provide a diverse sound
palette. Close-mic techniques are used explicitly to modify the characteristics
of the sound.

In this discussion we have documented aspects of these performance tech-
niques, and have provided details to illuminate how the performance style may
affect the nature of the recorded sound, as contrasted against other vocal mu-
sical performance styles. We next introduce the research fields which will be

5http://www.humanbeatbox.com/techniques/p2_articleid/128
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important in our work on vocal sounds including beatboxing.

2.3 Research context

2.3.1 Speech analysis

Spoken language is perhaps the main use of the human voice and so the vast ma-
jority of voice research has been dedicated to understanding and automatically
analysing speech. Research into automatic speech analysis systems flourished in
the 1960s and 1970s with the widespread application of computers, and contin-
ues to the present day. We discuss topics in this field as relevant to our purpose,
rather than aiming to give a complete overview.

A prominent topic in this field is Automatic Speech Recognition (ASR), with
the aim of enabling machines to extract the words and sentences from natural
spoken language audio [Rabiner and Schafer, 1978, Rabiner and Juang, 1993,
O’Shaughnessy, 2003]. The basic unit of analysis is typically the phoneme, a
term for the smallest segmental units of spoken language corresponding roughly
to what many people would think of as “vowels and consonants” [International
Phonetic Association, 1999, Chapter 2]. We emphasise at this point that ASR is
not intended to extract all the information that may be available in a speech sig-
nal (e.g. emotional or physiological information), nor typically to extract infor-
mation from non-speech voice signals. A typical audio signal presents thousands
of samples per second, while speech contains only roughly 12 phonemes per sec-
ond (chosen from a relatively small dictionary of phonemes) [O’Shaughnessy,
2003]. Hence ASR is a kind of pattern-recognition process that implicitly per-
forms a data reduction.

The first main step in a typical ASR process is to divide the audio signal
into frames (segments of around 10–20 ms, short enough to be assumed to reside
within one phoneme and treated as “quasi-stationary” signals) and then to rep-
resent each frame using a model designed to capture the important aspects either
of the state of the vocal apparatus (physical modelling) or of the sound charac-
teristics deemed useful to our auditory system (perceptual modelling). The evo-
lution of the model state over a sequence of frames is then used to infer the most
likely combination of phonemes to assign to a particular time series. The dom-
inant approach for such inference is the Hidden Markov Model (HMM) which
models transitions between “hidden states” (e.g. phonemes) [Bilmes, 2006]. In
this thesis we will not be focusing on the temporal evolution of sequences such
as phonemes; however we will need to consider mid-level signal representations,
so we next discuss the main models used for this in ASR.

The formants and antiformants of the vocal tract, discussed in Section 2.1,
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can be observed by inspecting spectrograms of voice signals [Fry, 1996/1979].
Further, they are commonly modelled directly using the source-filter physical
model of the vocal tract: if the glottal oscillations are treated as an independent
source signal, and the modulations due to the vocal tract as a combination of
linear time-invariant (LTI) filters, then a variety of mathematical tools can be
applied to analyse the combined system. Notable is linear prediction analysis
[Markel, 1972, McCandless, 1974], which can be used to estimate parameters
for the LTI filters used to model the vocal tract resonances and therefore to
derive formant information such as frequency and bandwidth. An estimate
of the glottal source signal can also be produced as the “residual” from the
linear prediction model. Linear prediction has been an important tool in speech
analysis despite the many simplifying assumptions made by the model (e.g.
independence of glottal source from the rest of the system, LTI nature of the
resonances) and is used for example in speech audio compression algorithms
[Schroeder and Atal, 1985].

An alternative to the physical modelling used in linear prediction is percep-
tual modelling. Auditory models exist which replicate many of the behaviours
of the components in the human auditory system, and could be used as input
to ASR [Duangudom and Anderson, 2007]. However, the most common such
model is the Mel-frequency cepstrum, which parametrises the shape of an audio
spectrum after warping the frequency axis to roughly represent the salience of
different frequency bands in the auditory system [Rabiner and Schafer, 1978]
(see also Fang et al. [2001]). The Mel-frequency cepstral coefficients (MFCCs)
are therefore designed to represent perceptually salient aspects of spectral shape
in a few coefficients. Compared against fuller auditory models they neglect many
known phenomena of the auditory system (such as temporal masking, which can
render a sound imperceptible depending on the sounds occurring immediately
before or after) yet are computationally relatively lightweight to calculate. To
capture some measure of temporal variability, the MFCCs are often augmented
with their deltas (∆MFCCs, the difference between coefficient values in the
current and previous frames) and sometimes also the double-deltas (deltas-of-
deltas, ∆∆MFCCs).

Both linear prediction and MFCCs derive information largely about reso-
nances such as vowel formants, and little detail about consonant sounds such as
fricatives; but this information content is sufficient that good speech recog-
nition performance can be obtained from an ASR system which uses them
[O’Shaughnessy, 2003]. In fact ASR systems often neglect quite a lot of in-
formation that is readily perceivable by a human in speech, including phase,
pitch and mode of phonation, since the small improvement over baseline accu-
racy that could be achieved is considered not to be worth the complexity costs
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[O’Shaughnessy, 2003].
Linear prediction and MFCCs are the two most common mid-level represen-

tations used in speech systems, with MFCCs dominant in speech recognition
[O’Shaughnessy, 2003]. For example, European Standard ES 201 108 for dis-
tributed speech recognition specifies an MFCC implementation for the signal
representation [Pearce, 2003].

The ASR task is not the only automated analysis of interest to speech re-
searchers, of course. Issues such as detecting emotional states and recognising
or verifying speaker identity have been the subject of a growing body of work.
Often a similar toolset is applied as in ASR: MFCCs are commonly used in e.g.
emotion recognition [Zeng et al., 2009] and speaker recognition [Ganchev et al.,
2005, Mak et al., 2005, Hosseinzadeh and Krishnan, 2008] for example, although
in research systems these may often be supplemented with other features. Such
tasks involve some analysis of what we might call voice “quality” or “timbre”;
here we will briefly focus on emotion recognition, since musical expression can
be said to be connected to the conveying of emotional meaning [Soto-Morettini,
2006, Introduction].

The state of the art in emotion recognition in speech is largely based on two
types of mid-level feature from the audio signal: instantaneous spectral/temporal
features and prosodic features (concerning the rhythm, stress and intonation
of speech) [Schuller et al., 2009, Zeng et al., 2009]. In the former category,
MFCCs are popular as well as harmonics-to-noise ratio, zero-crossing rate (ZCR)
of the time signal, energy and pitch [Schuller et al., 2009]. The latter cate-
gory may include measures such as the distribution of phoneme/syllable dura-
tions, or whether a sentence/phrase/word has a pitch trajectory that is down-
wards/upwards/flat or matches one of a set of linguistically-informed templates.

The mechanism for deciding on emotional state from these features varies
among researchers. HMMs may be employed and/or other machine learning
techniques (see Section 2.3.4). As an example, the winning system in a recent
emotion-recognition challenge employs a decision tree algorithm which combines
elements of both expert knowledge and automatic classification into the design
[Lee et al., 2009].

Note that prosodic features are very strongly bound to linguistic expression,
and depend on some kind of segmentation of the audio stream into linguistic
units. This means that they are problematic to translate to a context which
encompasses non-linguistic vocalisations. Even in singing it is not clear that
prosodic analyses developed for speech would be usefully applicable: although
singing often has linguistic content, the pitch trajectories and durations of syl-
lables are strongly influenced by musical factors not present in speech.

It is the singing voice to which we next turn, to consider singing-oriented
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research that may be relevant for our topic.

2.3.2 Singing voice analysis

Research on the singing voice, although related, is distinct from that on the
speaking voice. This is in part because intended applications are different (e.g.
applications in music technologies) but perhaps more fundamentally because of
important differences between speech and singing. In the following we discuss
these differences before indicating some singing-voice research relevant to our
topic, as well as considering how such research relates to musical voice construed
more broadly than singing.

The singing voice

Important differences between singing and speech include the use of pitch and
duration. In speech, pitch modulation is an aspect of prosody, whereas in singing
musical principles usually dominate pitch modulation (although both musical
and prosodic influences may be present). Pitch is also often higher and covers a
wider range in singing than speech [Howard, 1999, Loscos et al., 1999]. Musical
considerations of rhythm and metre also strongly affect the duration of syllables,
with one consequence that vowels are generally longer than in speech [Loscos
et al., 1999]. In some traditions a deliberate vibrato (rapid pitch modulation)
is added which is not found in language, for example in Western classical/opera
[van Besouw et al., 2008] or Indian classical [Rao and Rao, 2008] styles. The
resonances of the voice may also be deliberately modulated by trained singers
for aesthetic effect or volume, as in the strong resonance called the “singer’s
formant” observed in Western classical/opera singers [Sundberg, 2001].

In Section 2.1 we discussed vocal phonation modes, which to some extent
convey linguistic or emotional information in speech. These are relevant in
singing too (see for example Soto-Morettini [2006] on the use of creaky and
breathy voice in Western popular singing). A further set of vocal configurations
used to modulate singing voice quality are referred to under the term of vo-
cal register [Henrich, 2006]. Different vocal registers were originally described
according to perceived differences in voice quality and pitch range, and/or in-
trospection by singers on the way it felt to produce different sounds, although a
strong tradition developed following Garcia [1854] of considering vocal registers
fundamentally to be different mechanical oscillatory modes in the vocal cords
[Henrich, 2006]. Traditional labels used by singers might describe “chest voice”,
“head voice” and “falsetto” as the main vocal registers (with the latter two
sometimes synonymous), where chest voice was used for the lower part of the
singer’s ordinary pitch range and the other two for the upper part. Less per-
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vasively used were: the “whistle” or “flute” register, a very high register with
a ringing tone more commonly described in women than men; the very low-
pitched “strohbass” register described in men; and the loud mid-range “belt”
register used more often in Western popular than classical music.

As discussed by Henrich [2006] there is still a tension between vocal register
as a practical term for singers’ techniques or perceived vocal qualities, and the
physiological-mechanical conception of vocal register as different types of oscil-
lation in the larynx, although the latter has developed significant insights since
Garcia’s day. Four main modes of vocal fold oscillation (different from the vocal
modes discussed for speech in Section 2.1, but with some overlap) have been
observed and standardised under the labels M0 through M3: M0 is the very low
“pulse” register including strohbass and the ventricular mode phonation men-
tioned in Section 2.1; M1 is the more common low-to-mid-range chest register;
M2 is the mid-to-upper head register (including falsetto); M3 is the very high
whistle/flute register. These different registers create glottal source waves with
audibly different characteristics, and so can produce different vocal qualities. In
the Western classical/opera tradition, singers train to minimise the differences
between the sound of the registers, so as to minimise audible transitions of reg-
ister; a fact which emphasises that the physiologically-defined registers M0–M3
are not exactly identical with the registers defined according to perception and
singing practice, since the changes in oscillation mode will still occur even if
their timbral effect can be suppressed. Singers may modulate other aspects of
their voice such as vocal tract resonances [Story et al., 2001], either to bring
two registers closer together in sound, or to create differences in sound. As an
example of the latter, the physiological description of the belt register has been
found to consist of M1 combined with a high glottal pressure and a high glottal
closed quotient, which together create the loud, harmonically-rich sound and its
perceived differences from chest voice [Henrich, 2006].

At this point we highlight that much singing voice research has focused pri-
marily on professional singers in the Western classical/opera traditions (men-
tioned by Henrich [2006]; see also the spread of topics covered in conferences such
as the International Conference on the Physiology and Acoustics of Singing6).
Such singers are highly trained in a particular style, and so we must take care to
distinguish results which apply generally to human voice (such as the oscillation
modes of the vocal folds) and those which might be developed within specific
vocal traditions (such as the singer’s formant). At this point therefore we briefly
note some facets of other vocal traditions identified in the literature, to broaden
our perspective slightly on the varieties of expression used in singing.

6http://projects.dlc.utsa.edu/pas/
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• Indian classical singing uses vibrato as does Western classical singing, but
with a much more dramatic depth of modulation [Rao and Rao, 2008].

• Rock singers often use the belt register mentioned above [Soto-Morettini,
2006], and sometimes produce a so-called “dist” register apparently by
modulating the glottal oscillations with a low-frequency oscillation of ma-
terial around the vocal folds [Zangger Borch et al., 2004].

• Traditional pygmy African singing employs numerous vocal effects includ-
ing “hoots, screams, ... yodeling and hocketing” as well as “falsetto singing
and ... holding the nose and singing” [Frisbie, 1971]. (Some of these effects
were heard in the West through the pygmy-influenced music of Zap Mama
[Feld, 1996].)

• Western avant-garde art music of the twentieth century explored a variety
of extended vocal techniques including laughter, weeping, heavy breathing,
and muffling the mouth with the hands [Mabry, 2002, Part II][Mitchell,
2004].

• Overtone singing styles originating in Asian traditions involve the singer
learning to manipulate vocal tract resonances to produce a strong, clear,
high-pitched ringing resonance in addition to the ordinary vocal formants
[Bloothooft et al., 1992, Kob, 2004].

• The Croatian dozivački folk singing style involves singing “very loud in a
high register (male singing), and to a Western ear this singing may not be
perceived as singing at all, but as shouting” [Kovačić et al., 2003].

This disparate list serves to indicate some of the techniques singers can employ,
and to remind us that vocalists have available a highly varied palette of mod-
ulations – beyond the basics of pitch and timing, and beyond the phonation
modes and vocal registers we have discussed.

We will next survey research into singing voice analysis technologies, and we
will see that the pitch evolution of the vocal signal has been quite a common
object of study, either in itself or as the basis for other techniques. Through
this overview it is worth remembering that pitch is but one component of the
expression available to a vocal performer.

Singing voice technology

Singing voice technologies and speech technologies exhibit some overlap and
common history. Pitch tracking has been extensively studied both in speech
and singing [Gerhard, 2003], and very good general pitch tracking algorithms
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are now available at least for solo monophonic sources such as a single voice
[de Cheveigné and Kawahara, 2002, McLeod and Wyvill, 2005]. The physical
model of linear prediction and the perceptual model of MFCCs (Section 2.3.1),
both developed primarily in the speech context, can be applied to singing, al-
though with some caveats: as the fundamental frequency of singing is often
higher than speech, MFCC values may exhibit unwanted dependence upon fre-
quency, since the harmonics of the voice will sample the vocal tract spectrum in-
creasingly sparsely [Gu and Rose, 2001]. ASR techniques (Section 2.3.1) can be
applied to singing, e.g. for transcribing the words in singing or for time-aligning
a singing signal with known lyrics, although perhaps with some modifications
to standard ASR to account for characteristic aspects of singing [Loscos et al.,
1999].

However, singing voice technology research also comprises topics not found
under the umbrella of speech research. Often these are connected with the field
of Music Information Retrieval (MIR) which has developed particularly since
the growth of digital music formats, and which studies music signals and data,
and informatic tasks relevant for music creation/consumption and musicology
[Orio, 2006]. One example related to monophonic pitch tracking is the issue of
detecting a lead vocal line in polyphonic music audio. In many musical styles a
human vocalist provides a sung melody which is the focus of the music – so the
detection and tracking of this lead melody, despite the presence of harmonically-
related accompaniment, is a common topic [Li and Wang, 2005, Sutton, 2006,
Rao and Rao, 2008]. Related is the application of source separation techniques
to recover the singing signal from the audio mixture [Ozerov et al., 2005].

Some research studies specific aspects of singers’ vocal styles in order to in-
form musicological analyses or information retrieval. For example Garner and
Howard [1999] characterise aspects of the singing voice to investigate the dif-
ferences between trained and untrained singers (e.g. differences in glottal closed
quotient) with potential applications in voice training. Nwe and Li [2007] detect
vibrato characteristics of singing (in polyphonic audio) to perform vibrato-based
singer identification. Maestre et al. [2006] model singers’ articulation gestures
(the way they move from one note to the next). Nordstrom and Driessen [2006]
study effort in singing voice; they criticise standard linear prediction as unable
to model flexibly the different glottal spectra produced by different singing effort
levels, and develop a variant of linear prediction which allows for the variations
in glottal source spectrum.

Having extracted information from a singing signal, it should be possible
either to resynthesise the audio or to use the data as musical control informa-
tion. Kim [2003] develops a linear-prediction model for singing voice analysis-
synthesis, with applications including singer voice transformation (from tenor to
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bass or vice versa). Fabig and Janer [2004] use a phase vocoder (Discrete Fourier
Transform) analysis-synthesis technique with some inspiration from source-filter
models, to modify timbral characteristics of a singing voice recording such as
the smoothness of pitch transitions or the apparent vocal effort. With ad-
vances in computing power and in algorithms it even becomes feasible to use
singing voice analysis for such purposes in real time (e.g. for a live performance):
singing-controlled-synthesis has been studied by Loscos and Celma [2005] and
Janer [2008], developing relatively simple analyses which run in real time to
control pitched synthesisers.

Thus far we have not touched upon the complement to voice analysis re-
search, namely that into voice synthesis. Although active, and with conceptual
connections to the speech and singing research discussed above, it has less direct
relevance to the topic of this thesis. However, we note that one application of
the information derived from a singing voice signal could be to control singing
voice synthesis (SVS) [Janer, 2008].

Beyond singing

This section so far has focused on singing; however singing is but a subset
of musical vocalisation, let alone of vocalisation. In this thesis we wish to
encompass a wide range of vocal expression, so we note some vocal traditions
which stretch beyond singing.

We have already discussed beatboxing in some detail; however vocal percus-
sion arises in many world music traditions. For example Indian tabla-players
use a vocal imitation of tabla patterns called bol [Gillet and Richard, 2003], per-
haps the oldest continuing vocal percussion tradition. More recently a rhythmic
wheezing style of vocal percussion called eefing or eephing is recorded as devel-
oping in Appalachia in the late nineteenth and early twentieth centuries [Sharpe,
2006], heard widely in Western media when used by Rolf Harris in the 1960s.

Other vocal techniques which lie beyond the realm of singing include screams
and growls. Punk and other hard rock styles often employ unpitched shouting or
screaming rather than sung vocals. In a related but different technique, death
metal vocalists typically “growl” or “grunt” in a roaring sound [Cross, 2007]
which probably involves ventricular mode phonation.

As described in the previous section, singing voice research primarily attends
to the pitched vocalic sounds, with the source-filter model strongly influential.
Our brief discussion of non-singing vocal styles suggests that that approach may
encounter limitations when faced with the wide variety of sounds of which the
human voice is capable. If we wish to preserve broad applicability to musical
vocal expression, we may need to use representations of vocal character which do
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not depend entirely on the pitched vocalic model. Bearing this in mind, we next
consider the psychological and acoustical study of musical timbre encompassing
musical sounds of various types.

2.3.3 Musical timbre

The musical term timbre is used broadly to refer to the variability in sonic char-
acteristics that different instruments produce. (Some writers use terms such as
sound quality or tone colour to a similar end, e.g. Kreiman et al. [2004].) It
is generally considered conceptually separate from the aspects of pitch, loud-
ness and duration, encompassing attributes which musicians might describe as
“bright” vs “dull”, “rough” vs “smooth”, etc.; although its definition has been
a matter of some debate [Papanikolaou and Pastiadis, 2009].

Hermann von Helmholtz’s studies in the nineteenth century are perhaps the
first formal investigations of timbre and its relation to acoustic properties [von
Helmholtz, 1954/1877]. He found that the distribution of energy among the
harmonics of a note was an important determinant of timbre: for example a
clarinet’s distinctive “hollow” sound is largely due to the absence of energy in
the even-numbered harmonics (those whose frequency is 2NF0, where N is an
integer and F0 the fundamental frequency). This harmonic-strengths approach
to timbre is still employed today in various works. Note however that its utility
is largely confined to pitched harmonic sounds.

Von Helmholtz’s approach separates the concepts of timbre and pitch, which
is common. However it is worth noting the contrary opinion expressed by Arnold
Schoenberg, influential as both a composer and music theorist in the twentieth
century:

I cannot readily admit that there is such a difference, as is usu-
ally expressed, between timbre and pitch. It is my opinion that the
sound becomes noticeable through its timbre and one of its dimen-
sions is pitch. In other words: the larger realm is the timbre, whereas
the pitch is one of the smaller provinces. The pitch is nothing but
timbre measured in one direction. If it is possible to make com-
positional structures from timbres which differ according to height,
[pitch] structures which we call melodies, sequences producing an
effect similar to thought, then it must also be possible to create such
sequences from the timbres of the other dimension from what we
normally and simply call timbre. Such sequences would work with
an inherent logic, equivalent to the kind of logic which is effective
in the melodies based on pitch. All this seems a fantasy of the fu-
ture, which it probably is. Yet I am firmly convinced that it can be
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realized. [Schoenberg, 1922, p471]

Schoenberg’s position on pitch as a dimension of timbre is not commonplace in
musical discussion, but suggests an interconnected way of thinking about the
two which will become salient shortly when we consider perceptual studies on
musical timbre and its relation to pitch. It also appears to have been shared by
other prominent musical thinkers such as Edgar Varèse [Mitchell, 2004].

Disagreements over the nature of timbre have never completely been re-
solved, although many aspects have been elucidated by perceptual and some
neural studies (discussed shortly). In absence of a true consensus, one of the
most widely-used definitions is that given by the American National Standards
Institute (ANSI). A concise positive definition is rather difficult to state, and
so the ANSI definition is curiously negative, based primarily on what timbre is
not:

[Timbre is] that attribute of sensation in terms of which a listener
can judge that two sounds having the same loudness and pitch are
dissimilar. [ANSI, 1960]

This definition of timbre implies very little about its form: for example, is it
one-dimensional or multidimensional, continuous or categorical? (The ANSI
definitions of both pitch and loudness give them as one-dimensional continu-
ous attributes.) The definition has been criticised on such grounds, but no
stronger definition has reached widespread acceptance or usefulness [Kreiman
et al., 2004]. As we will describe shortly, no widely-agreed complete analysis
of timbre into measurable components yet exists, although the literature shows
consensus on some specific aspects of musical timbre – so it is perhaps reason-
able that no more precise definition exists, as long as the psychoacoustics of the
phenomenon are not fully mapped out.

Note that the ANSI definition allows for timbre to be a differentiator be-
tween instruments or between settings of a single instrument: the “two sounds”
could be that of a saxophone and a guitar, or two different notes from the
same saxophone. Some research concentrates exclusively on inter-instrument
differences while some focuses on intra-instrument variation; in this thesis we
will have cause to consider both these types of difference. The ANSI definition
would also seem to include the duration of notes as an aspect of timbre, al-
though in many works duration is considered separately, as an aspect of musical
expression or of the musical score.

In the following we will consider some themes that have emerged from per-
ceptual studies into musical timbre, including the important question of whether
perceived timbre attributes can generally be predicted by measured attributes of
the acoustic signal. We will then consider some applications of timbre analysis
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technology in the MIR domain, in order to inform our development of timbre-
based technology.

Perceptual studies of timbre and its acoustic correlates

The ANSI definition of timbre quoted above seems almost directly to suggest
an experimental framework for investigating timbre: present a listener with two
sounds having the same loudness and pitch, and determine the extent to which
they can judge their dissimilarity. After multiple such presentations, data about
the dissimilarity judgements could be used somehow to create a general map of
timbre.

However there is a problem in that the definition tells us nothing about the
kind of map we could expect to produce, which would bear upon the tools we
should use to produce the map. Should we expect timbre to be categorical,
with the important differences being between major groups such as voice vs.
percussion, or more a smoothly continuous attribute? If timbre can be portrayed
in an underlying “timbre space”, is that space Euclidean, or would it be better
represented for example as a tree-like space? (See especially Lakatos [2000] on
this question.) If a Euclidean space can represent timbre, how many dimensions
should it have? To our knowledge there has never been a persuasive argument
which specifies what geometry a timbre space should have. However it is quite
common to base investigations on tools which assume a Euclidean geometry.

The most influential work on musical timbre perception has been that of
Grey and co-workers in the 1970s [Grey, 1977, Grey and Gordon, 1978], using
a mathematical technique called multi-dimensional scaling (MDS). MDS is de-
signed to recover a Euclidean space of a user-specified number of dimensions
from a set of dissimilarity data [Duda et al., 2000, Chapter 10], although gener-
alisations of MDS to non-Euclidean geometries also exist. Grey and co-workers
presented listeners with pairs of recordings of individual notes recorded from or-
chestral instruments, and asked them to rate their dissimilarity on a numerical
scale. They then applied MDS to these results, thus producing Euclidean spaces
in which each orchestral instrument (or more strictly, each recorded sound) was
positioned relative to the others. These positions could then be analysed to
probe correspondences, for example whether instruments tended to cluster to-
gether based on instrument family. Although the MDS algorithm cannot directly
decide the dimensionality of the space, if one creates solutions in a selection of
dimensionalities one can then choose the solution which has a low “stress” – a
measure of disagreement between the allocated positions and the input dissimi-
larities. Grey and others found a three-dimensional space useful for representing
the perceived differences between orchestral instruments.
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Subsequent studies have expanded on the MDS theme. Iverson and Krumhansl
[1993] studied “dynamic aspects” of timbre, specifically the influence of the at-
tack and decay portions of the signal, finding significant redundancy in timbral
information across the signal, since the MDS space recovered from judgements
about attacks contained much the same structure as those recovered from judge-
ments about decays or about entire sounds. McAdams et al. [1995] applied ex-
tensions of the MDS algorithm to account for possibilities including subgroup
effects in experimental participants (e.g. perhaps musicians and non-musicans
use different strategies to judge timbral differences) and instrument specifici-
ties (additional distances not accounted for by the Euclidean space but which
separate some instruments further from others); they found evidence of both
subgroup effects and specificities in their three-dimensional model. Lakatos
[2000] investigated whether pitched (harmonic) and percussive sounds were best
treated within a single space or separately, by using a clustering analysis in con-
junction with MDS. He found that spectral centroid and attack time worked
well as continuous-valued predictors of the leading dimensions in MDS, but
also found strong evidence of categorical judgements when listeners judged a
wide variety of sounds, in that categories of instrument tended to form well-
separated groups in MDS space, and the categories were well represented in a
tree structure recovered by clustering. Burgoyne and McAdams [2007, 2009]
applied a nonlinear extension of MDS (called Isomap [Tenenbaum et al., 2000])
to reanalyse data from the work of Grey and McAdams et al., finding that the
Isomap technique (with specificities) successfully improved the representation
of the data, suggesting that nonlinearity effects in timbre judgements may be
important.

The history just recalled does not give strong grounds for confidence in tim-
bre as a simply-defined (e.g. Euclidean) space, given the various modifications
for categories of sound and of listener plus specificities and other nonlinearities.
Despite such reservations, MDS spaces have been one of the main bases for
inferences about which acoustic features, measurable on the audio signal, may
best represent perceptual timbre. The canonical approach is to find acoustic
features whose values (for the sounds used in MDS experiments) correlate well
with sounds’ positions on one or more of the axes of the MDS space produced.
The aim is largely to predict rather than explain timbral judgements – in other
words, there is no general claim that highly-correlating features are likely to
represent calculations that are actually made in the human auditory system.
Features based on detailed auditory models may yet become more prevalent
(see e.g. Howard and Tyrrell [1997], Pressnitzer and Gnansia [2005]); however
simpler statistics of the time- or frequency-domain signal are widely used [Casey,
2001].
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From the start, MDS analysis of timbre was accompanied by exploration of
acoustic correlates to the timbre spaces produced. Grey and co-workers [Grey,
1977, Grey and Gordon, 1978, Grey, 1978] interpreted axes as relating to “spec-
tral shape”, “attack time” and “harmonic onset irregularity”, and tested the
strength of correlations between the axes and some features chosen to capture
such phenomena. They found the spectral centroid feature (analogous to the
“centre of mass” measured on a spectrum, thus characterising the general loca-
tion of the sound energy on the frequency axis) to be a good correlate of the axis
characterised as denoting an instrument’s “brightness”. In subsequent research
this correlate has been the most persistent: in perceptual experiments and in
applications, both the musical concept of “brightness” and its characterisation
using the spectral centroid is highly common. Similarly common is the impor-
tance of “attack time”, often measured in the log-time domain, in interpreting
such spaces. Wessel [1979] performed an MDS analysis and found by inspection
that brightness and attack time corresponded to the axes of his two-dimensional
solution. Krimphoff et al. [1994] performed MDS on the synthetic instrumental
sounds used in Krumhansl [1989], finding that the three axes correlated well
with spectral centroid, log attack time and a measure of irregularity of the
spectrum. Caclin et al. [2005] created synthetic stimuli with variations in four
timbral parameters, and found spectral centroid and attack time to be the main
two axes recovered by MDS. McAdams et al. [2006] performed a meta-analysis
of 10 MDS timbre spaces, investigating 72 potential acoustic correlates. They
found that the log attack time, spectral centroid and spectral spread were among
the best correlates.

Perceptual studies have probed these putative dimensions of timbre to de-
termine whether they are perceptually separable from one another and from
pitch, by testing for correlations between measurements on these axes. This is
an important issue not only because it bears upon whether timbral and pitch
processing is a holistic process in human audition, but also because it will have
implications for technical procedures we may wish to apply such as targeted
timbre modifications. Marozeau and de Cheveigné [2007] performed an MDS
analysis using synthetic tones in which fundamental frequency (F0) and spectral
centroid were manipulated, and found significant interaction between the two
dimensions, proposing a corrective factor for the spectral centroid dependent on
F0. Applying an experimental paradigm called Garner interference (based on
participant reaction times in an identification task) to musical sounds, interac-
tions have been recorded between pitch and timbre, and between acoustic timbre
dimensions including attack time and spectral centroid [Krumhansl and Iver-
son, 1992, Caclin et al., 2007]. However a study of nerve potentials in auditory
sensory memory suggests timbre dimensions are coded separately in the early
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stage of the auditory chain [Caclin et al., 2006], suggesting that any interaction
occurs in later processing stages. Timbre can affect listener judgements about
pitch deviations [Vurma and Ross, 2007], and pitch differences between notes
from the same instrument can cause listeners to misidentify them as coming
from different instruments [Handel and Erickson, 2004].

Studies have also demonstrated contextual effects of timbre perception. Grey
[1978] found timbral similarity judgements could differ depending on whether
the sounds were presented as single notes or in monophonic or polyphonic se-
quences. Krumhansl and Iverson [1992] found that the timbre of sounds pre-
ceding or following a target sound could influence timbre recognition in se-
quences, but that this effect vanished when pitch also varied, suggesting pitch
may be the dominant percept. Margulis and Levine [2006] found participants’
timbre recognition to improve when a stimulus was presented in a sequence
which fit with melodic expectations, as compared against the stimulus with-
out any melodic context; and conversely, recognition worsened when presented
in sequences which contravened melodic expectations. Such contextual effects
demonstrate that timbre is a complex phenomenon and reinforce the potential
difficulty in generalising results such as the timbre spaces derived from MDS
experiments.

The results discussed so far have largely concerned differences between recorded/
synthesised single notes representing standard orchestral instruments, or additive-
synthetic tones designed to cover the acoustic correlates of spaces derived using
such instruments. Lakatos [2000] offered some generalisation to include percus-
sive sounds, but also found evidence that instruments clustered together strongly
into percussive and non-percussive types, whose timbre may be represented best
by different acoustic descriptors (see also McAdams et al. [2006]). However,
some authors have applied MDS to variations within a single instrument, thus
investigating what might be considered a narrower range of timbral variation.
Barthet [accepted] applied MDS to clarinet notes played on the same instru-
ment but with different techniques, finding that the resulting space correlated
well with spectral centroid and attack time and with the ratio of odd-to-even
harmonic strengths. Martens and Marui [2005] performed a similar analysis on
electric guitar sounds, varying the nature of the distortion effect applied, finding
that a measure related to brightness strongly predicted the leading MDS axis.
Stepánek [2004] derived MDS spaces based on violin notes played on various
violins and with various playing styles, and compared the MDS axes with ad-
jectival descriptions. Kreiman et al. [1993] applied MDS to supraperiodic voices
(ones showing oscillations on longer timescales than the vocal pitch period, such
as the creaky or ventricular modes described in Section 2.1), and confirmed that
these vocal sounds were strongly distinguishable by listeners.

42



To summarise, there is still much scope for work in elucidating musical timbre
perception; but the MDS approach initiated by Grey and others in the 1970s
has been applied in a variety of contexts and has led to a consensus on two of
the most important attributes in musical timbre, namely the brightness (with
spectral crest as a good acoustic correlate) and the attack time (often measured
in the log-time domain). There is a wealth of evidence that the relationship
between timbral attributes is not simple: they can interact with each other
and with pitch perception; their perception can depend strongly on context;
and timbral judgement appears to exhibit significant nonlinearities. The total
number of dimensions needed to account satisfactorily for timbral variation is
uncertain, and it is quite likely to be context-dependent: many studies find
three- or four-dimensional solutions acceptable, although it must be borne in
mind that MDS studies are always based on a small selection of example sounds
(limited by the number of pairwise comparisons that it is feasible for participants
to draw).

In this thesis we will be making use of acoustic timbre features and in Chap-
ter 3 we will consider timbre features further. We will be applying machine
learning techniques to create automated real-time timbre manipulations, and so
in the next section we introduce selected topics in the field of machine learn-
ing, as well as describing some previous applications of machine learning to
timbre-related issues in Music Information Retrieval (MIR).

2.3.4 Machine learning and musical applications

Machine learning research applies statistical and algorithmic techniques to allow
computers to adapt their behaviour based on data input [Mitchell, 1997, Mars-
land, 2009]. It is conceptually related to artificial intelligence, having perhaps
a difference of emphasis in applying algorithms that can learn to solve specific
problems rather than to create a more general machine intelligence. The reader
is referred to Mitchell [1997], MacKay [2003], Marsland [2009] for comprehen-
sive introductions; here we introduce some general concepts in machine learning
which we will be using in this thesis, as well as the application of such techniques
to musical data.

Classification: The most common type of task in machine learning is classifi-
cation, applying one of a discrete set of labels to data [Duda et al., 2000].
A classifier must first be trained using a labelled dataset, assumed to be
representative of the data which is to be classified. The classifier adapts
internal parameters based on the training data, after which it can apply
labels to new data presented. A wide variety of real-world tasks can be
expressed in this framework, including medical diagnosis and automatic
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speech recognition (Section 2.3.1). It can be demonstrated that no clas-
sification algorithm is universally optimal for all tasks [Duda et al., 2000,
Section 9.2], and so a range of such algorithms continues to be studied.
Common issues in classification include assumptions made by the classi-
fier (e.g. smoothness or Gaussianity of data distributions), and the danger
when learning from necessarily limited training data of overfitting – learn-
ing the particularities of the training data points rather than the more
general distribution they represent.

Clustering: Related to classification is clustering, which takes a set of unla-
belled data and attempts to collect the data points into clusters such that
points within clusters are more similar to each other (by some measure)
than they are to points in other clusters [Xu and Wunsch II, 2005]. Unlike
classification, clustering typically does not label the produced clusters,
and the number of clusters may be decided algorithmically rather than
user-specified. Clustering is a type of unsupervised learning, and classi-
fication a type of supervised learning, where the supervision in question
refers to the supply of the “ground truth” labelled training set.

Regression: A third machine learning task is regression, which is similar to
classification except that the aim is to predict some variable rather than
a class label. This variable is called the response variable or dependent
variable; it is typically continuous-valued and may be multivariate. Some
regression frameworks are adaptations of classification frameworks (e.g.
regression trees [Breiman et al., 1984, Chapter 8]), while some are unre-
lated to classification (e.g. Gaussian processes [Rasmussen and Williams,
2006]).

These key tasks in machine learning will appear in various forms in this thesis,
and we will introduce specific algorithms where they are used. We next discuss
some themes which apply across all these tasks.

An important issue in many applications of learning from data is the curse
of dimensionality [Chávez et al., 2001][Hastie et al., 2001, Chapters 2 and 6].
Adding extra dimensions to a mathematical space causes an exponential in-
crease in volume, with the consequence that the number of data points needed
to sample the space to a given resolution has an exponential dependence on the
number of dimensions. The amount of training data available for training a clas-
sification/regression algorithm is generally limited in practice (as is the amount
of computation effort for training), which means that the algorithm’s ability to
generalise correctly will tend to deteriorate as the dimensionality of the input
data becomes large. In clustering too, high dimensional spaces incur a curse
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of dimensionality, as similarity (proximity) search is similarly affected [Chávez
et al., 2001]. This has practical implications: although we might wish machine
learning algorithms to uncover regularities in data irrespective of whether or not
the regularities are represented in few or many dimensions and whether other
irrelevant input dimensions are supplied, in practice we need to provide learning
algorithms with a relatively small number of informative input features, in order
to generalise well from training data.

Strategies for choosing a parsimonious data representation are therefore im-
portant. One strategy is feature extraction based on expert domain knowledge;
in Section 2.3.1 we discussed compact feature representations such as MFCCs
and linear prediction, which contain no information beyond what is in the au-
dio signal, but compress information from on the order of 1000 dimensions (in a
10–20 ms audio frame) down to perhaps 10 dimensions intended to capture the
important aspects of the signal. Other more general dimension reduction strate-
gies attempt automatically to compress high-dimensional data into a smaller
number of dimensions [Marsland, 2009, Chapter 10]. One of the most com-
mon techniques is Principal Components Analysis (PCA) which identifies linear
combinations of dimensions along which the data have the largest variance, pro-
ducing a new orthogonal basis in which most of the variance is captured in the
first few dimensions [Morrison, 1983, Section 7.4]. Data reduction is therefore
achieved by keeping only some of the principal components. An alternative
to dimension reduction is feature selection which does not transform the input
features but decides to keep only a subset of them [Guyon and Elisseeff, 2003].
Most commonly feature selection is applied in the context of classification tasks,
where training data can be used to identify which features best predict the class
labels. A relatively recent development is feature selection in unsupervised sit-
uations, where features must be selected according to measures made on the
feature set itself – such as the amount of redundancy between features or the
extent to which features support clustering [Mitra et al., 2002, Li et al., 2008].

Another consideration in machine learning is online vs. batch learning. Many
algorithms operate in two distinct stages, with an initial training stage which
precedes any application to new data (or in clustering, training precedes output
of cluster allocations), with the algorithmic parameters determined in the first
stage and thereafter held fixed. (This is often called batch learning.) It is some-
times desirable to have an online algorithm which learns at the same time as
it outputs decisions, perhaps because the data is arriving in a temporal stream
and decisions about early data points are required before the later input data
points are available. Batch algorithms may be adapted for online application
(e.g. Duda et al. [2000, Section 10.11], Davy et al. [2006], Artac et al. [2002]),
or algorithms may intrinsically be amenable to online use. Notable in the latter
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category are artificial neural networks such as multilayer neural networks [Duda
et al., 2000, Chapter 6] or the Self-Organising Map (SOM) [Kohonen, 1990]:
since they were developed by analogy with natural neural networks, which gen-
erally experience no distinct training stage but adapt through the process of
interacting with the world, such algorithms are often capable of online learning.

In real-time systems online learning can be useful to adapt to changes of
context, or to begin operation quickly without an explicit training stage, so as
we apply machine learning techniques to real-time vocal control we will consider
the desirability of online learning.

Timbre and machine learning in Music Information Retrieval

Music Information Retrieval (MIR) applies machine learning and other tech-
niques to topics related to musical information [Orio, 2006]. It covers a wide
variety of analyses and tasks which we will not cover here (concerning e.g. pitch,
tempo, rhythm), but also timbre-oriented topics. Such topics are generally in-
formed by the research on timbre perception discussed in Section 2.3.3. Here
we consider some of the existing MIR approaches to timbre.

Quite often “timbre” in MIR is taken to refer to the sound character of en-
tire polyphonic music recordings, with timbral similarity measures then defined
between the recordings [Tzanetakis et al., 2001, Aucouturier and Pachet, 2004].
Various acoustic features have been used in this context, including MFCCs,
spectral centroid, ZCR, and MPEG-7 features. Note that log attack time (see
Section 2.3.3) is less useful in this context because it cannot be measured with-
out some segmentation of audio into events and possibly into different sources.
Modelling of the distribution of features has employed strategies such as HMMs
and Gaussian Mixture Models (GMMs) which model each data point as gener-
ated by one of a set of Gaussian distributions whose mean and covariance are
to be inferred. Aucouturier and Pachet [2004] investigate the limits of MFCC-
plus-GMM-based music similarity measures, finding an upper limit at around
65% accuracy compared against a ground truth, but also arguing for additional
features such as spectral contrast measures.

Timbre models have been applied for analysis at the instrumental level:
De Poli and Prandoni [1997] develop an MFCC-based model for characterising
the timbral differences between instruments, while Jensen [1999, 2002] devel-
ops a detailed timbre model based around sinusoidal analysis and harmonic
strengths. As previously remarked, such a harmonics-based approach may be
productive for analysis of harmonic instruments but its relevance diminishes for
percussive and inharmonic sounds. Herrera et al. [2002] investigate the auto-
matic classification of a database of drum sounds, applying a feature selection
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technique to determine useful acoustic features (with MFCCs not found to be
highly useful in this context). Tindale et al. [2004] perform a study in a simi-
lar vein, but focusing on a narrower range of sounds, automatically classifying
different playing styles in snare drum hits.

Machine listening and real-time signal processing

Many of the MIR systems described in the previous section are designed for
offline use, processing prerecorded musical datasets in non-real-time. However
it is often desirable, and with improvements in computer processing power in-
creasingly feasible, to analyse an audio stream in real time. When MIR-type
techniques are applied to a real-time audio signal to extract semantic musical
information, or to enable interactive musical tasks, this begins to take on a role
analogous to that of the auditory system in human music listening, and we call
it machine listening [Collins, 2006]. The term is also used in the context of non-
musical real-time tasks [Foote, 1999] but in this thesis we primarily consider
musical machine listening.

Real-time applications impose specific demands on a system which are not
necessarily present in offline processing:

Causality: Decisions can only be based on input from the past and present –
only that part of the signal’s evolution is available to the system.

Low latency: It is often desirable for the system to react within a short time
frame to events or changes in the audio stream. The acceptable bounds will
depend on the task. For example, in real-time onset detection (detecting
the beginning of musical notes) [Collins, 2004], we may desire a system
to react to events such that the latency is imperceptible by humans –
in music, the threshold of perception for event latency can be held to
be around 30 ms, depending on the type of musical signal [Mäki-Patola
and Hämäläinen, 2004]. The latency of the machine listening process will
typically be in addition to other latencies in the overall system such as
the analogue-to-digital audio conversion [Wright et al., 2004].

Efficiency: The system must be able to run on the available hardware and
make decisions within the bounds of acceptable latency, meaning that
computation-intensive algorithms are often impractical. Even if an algo-
rithm can run in real time on a standard desktop computer, there are often
other tasks running (e.g. music playback or synthesis, or control of MIDI
instruments) meaning that only a portion of the computational resources
may be available for the machine listening system.
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See for example the work of Brossier [2007] who develops techniques for musical
onset detection and pitch tracking with attention to these three constraints.

Real-time systems have been developed which apply signal processing tech-
niques to derive parameters either for modulating effects [Verfaille et al., 2006]
or controlling musical synthesisers [Janer, 2008]; however in these works the
connection between input and output is manually specified rather than derived
by machine learning. Automatic classification is applied in Hazan [2005b] to
trigger events based on detecting and classifying audio onsets in real time. In a
related but non-musical context, the Vocal Joystick system classifies non-speech
vocalisations in real time for joystick-like control [Bilmes et al., 2006]. Collins
[2006] develops real-time beat tracking and event segmentation algorithms, and
applies them to develop agent-based systems which can interact musically in
real time.

We highlight in the above examples the issue of event segmentation (onset de-
tection). In some applications it is highly desirable to segment the audio stream
into events, such as in the percussion classification of Hazan [2005b], whereas
in some applications the continuous audio stream is used without segmenta-
tion [Verfaille et al., 2006]. The Vocal Joystick combines aspects of continuous
and discrete control, able to identify discrete command sounds or sounds with
continuous modulation (of the vowel formants) [Bilmes et al., 2006]. We will
consider both event-based and continuous approaches in later chapters of this
thesis, and attempt to investigate the differing affordances of each.

To conclude this section: we have seen that machine learning has a broad
applicability in extracting information from data, and in particular that it can
be applied to enhance the extraction of musical information from audio. When
this can be applied in real-time systems it has the potential to enrich human-
machine musical interactions, and indeed some interesting applications have
already been studied, despite the important real-time constraints of causality,
low latency and efficiency.

2.4 Strategy

In this chapter we have set the context for our research topic, introducing the
topics of human voice analysis (both speech and musical voice), musical timbre,
machine learning and real-time music processing. We are now in a position to
reflect upon our aim (Section 1.2) in light of this context, and reflect on our
strategy for achieving the aim.

We have seen various analytical models, such as the source-filter model of
vocal production and linear prediction analysis which derives from it. This
is a simplified model which concentrates on vocalic sound and therefore cap-
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tures a lot of linguistically important information, but largely neglects sounds
in which vocal tract resonances are less relevant. We aim to make use of a wide
range of vocal sounds including non-vocalic sounds – and further, we will have
cause to analyse the timbre not just of the voice but of synthesisers we wish
to control. Therefore it may be preferable to avoid a model of the production
system such as the source-filter model, in favour of models based on timbre per-
ception. The requirement to treat a wide range of sounds also argues against
purely harmonics-based models since many sounds are not well characterised
by decomposition into harmonics. We have seen that simple auditory models
such as MFCCs are commonly used in speech recognition and MIR. We have
also seen that human timbre perception is a complex phenomenon with signifi-
cant outstanding questions, but that there is consensus on at least some of the
perceptually important factors – and there are acoustic features which largely
correlate with these factors albeit not explain them. We therefore have acoustic
features available which can model timbre quite generally, although there may
still be questions over which combination of features works best for our purpose.

We have also seen different approaches to the temporal nature of sounds.
Typical ASR systems model speech sound (using HMMs) as a temporal evolu-
tion from one discrete phoneme to another, while prosodic modelling for emotion
recognition in speech is often based on segmentation of the stream into words or
phrases. Such segmentation schemes are clearly only appropriate to linguistic
audio. In MIR, some applications segment a signal into events (e.g. musical
notes), while some do not perform segmentation and use the continuous audio
stream. There are advantages to both approaches: segmentation may allow for
analysis such as automatically determining the attack time of notes, yet it may
lead to unnecessary focus on the chunked events as opposed to the continuous
evolution of auditory attributes, and may make subsequent analysis dependent
on the quality of the real-time segmentation. Therefore we will investigate both
approaches, event-based and continuous, and reflect on the different affordances
of the processes thus created – the range of musical expression they allow, and
how easy or difficult, obvious or obscure, they make the task of expressive per-
formance. This will be explored in evaluation experiments with users.

Our discussion of machine learning in the music/audio context shows that
there are prospects for applying machine learning to automatically determine
mappings from vocal audio input to synth controls. However real-time con-
straints, in particular those of low latency and efficiency, will limit our choice
of technique. These constraints suggest that offline learning may be preferable,
so that the computational effort used for training can be performed in advance
of a real-time music performance; however this is not an absolute requirement,
and we will consider possibilities for online learning where appropriate.
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Chapter 3

Representing timbre in

acoustic features

An important question for the design of any system based on automatic timbre
analysis is how timbre will be measured. In Section 2.3.3 we saw that timbre
is not straightforward to define and measure, but some features are common in
the literature; in Section 2.4 we stated a strategy based on features which can
be measured on signals quite generally. In this chapter we will devote attention
to the choice of such features, to ensure that we are using good features for
our timbre-based systems - improving the likelihood that our machine learning
processes, fed with good data, can learn useful generalisations about timbre.

There exists an unbounded set of possible features one could extract from
an audio signal. In this work we will focus our attention on those that can be
measured on an arbitrary frame of audio, so as to be able to characterise the
instantaneous timbre of voice and synthesiser (synth) sounds. This excludes
some features such as those that can only be measured on a harmonic signal
(harmonic strengths, odd-even harmonic strength ratio) and those that require
segmentation (attack time – although this will be included in Section 3.2 for
comparison).

However there is still a large selection of features available. In this chapter we
consider a variety of features found in the MIR literature, and analyse them to
determine which are the most suitable for our task of timbral synthesis control.

Many feature selection studies relate to a classification task, and so feature
selection algorithms can be applied which directly evaluate which features enable
the best classification performance [Guyon and Elisseeff, 2003]. In this work
our core interest will be with features that enable expressive vocal control of
a synth. This is not purely a classification-type application since we construe
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vocal expression very broadly and not always as a selection from a small set of
discrete categories, and we will also (in Chapter 5) be controlling continuous-
valued synth parameters. Our desire for feature selection could perhaps be
addressed by user studies where different features are used in an interactive
system, but it would be prohibitively expensive in time and resources to probe
more than a handful of feature combinations in such a way.

Therefore we will evaluate candidate features without direct reference to the
target task but to requirements which we can evaluate across a wide range of fea-
tures. Our three requirements will be perceptual relevance, robustness and
independence. We next describe these requirements and outline our reasons
for choosing them.

Perceptual relevance: Perhaps the core requirement for acoustic timbre fea-
tures is that they reflect to some extent the variation that we hear as
timbral variation. This requirement might perhaps outweigh others if not
for the fact that definitional issues in timbre remain open (Section 2.3.3)
and so there is still some ambiguity in how we might measure the ability of
a feature to fulfil this requirement. However, as discussed in Section 2.3.3
the Multi-Dimensional Scaling (MDS) approach leads to one such analysis:
we can measure how well different features correlate against coordinates
of the spaces recovered from MDS studies of musical timbre.

In Section 3.2 we will perform a re-analysis of some MDS data from the
literature. It is worth noting in advance that MDS data is necessarily
derived from a limited set of musical instrument stimuli and that different
spaces are recovered when using different stimuli. The focus in the litera-
ture has largely been on inter-instrument timbral differences, whereas our
concern might be described more as with intra-instrument timbral differ-
ences, i.e. the expressive modulations in timbre that can be achieved with
a single instrument.

Robustness: It is also important that our features are robust or repeatable:
repeated timbre measures taken on a stationary sound should not exhibit
too much variation. For example one might expect that a synth playing
a sustained note at a fixed setting which sounds timbrally steady should
yield acoustic timbre measures that change little. This expectation will
underlie our operational definition of feature robustness applied to synth
sounds in Section 3.3.1.

Robustness becomes particularly important when timbre analysis is placed
in a machine learning setting. Many machine learning techniques involve a
training phase on limited data before application to new data, and there-
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fore assume that measurements on the training data are representative of
those that will be made on new data.

Further, we will consider a second type of robustness. Robustness to
degradations (such as additive noise) is important in many systems since
real-world data often contains noise. In our context there are two principal
types of sound source: vocal sounds captured by a microphone and synth
sounds captured directly from the synth audio output. Both such sounds
may contain line noise (Johnson–Nyquist noise or thermal noise, having
essentially a flat spectrum [Johnson, 1928]); additionally the vocal signal
may be contaminated by background noise from the environment such
as crowd noise or music noise in a live performance. We will primarily
focus on the vocal signal in Section 3.3.2 in order to characterise the noise
robustness of the timbre features under consideration.

Independence: Given an arbitrary set of acoustic features, we have no guar-
antee that there is not significant overlap (redundancy) in the information
provided by the features. If a pair of features is strongly correlated, for
example, then it may be possible to exclude one feature from consideration
with very little detriment to further analysis, since the excluded feature
provides very little information that is not otherwise present. Reducing
such overlap should allow us to capture the necessary timbral information
in a small set of features, which can reduce both the computational load of
timbral analysis and the effect of curse of dimensionality issues. Correla-
tions have a strong history of use in the sciences for analysing associations
between variables; in Section 3.4 we will apply information-theoretic mea-
sures that attempt to capture more general types of dependence.

Each of these requirements can be operationalised as measurements which we
will investigate separately during this chapter, before concluding by drawing
together the results relating to the three requirements. As we will see, none of
the experiments in themselves will suggest a specific compact feature set; rather,
they tend to allow us to rank features relative to one another, identifying some
which are particularly good (or bad) according to each criterion. In some cases
there will be a tension between the satisfaction of different requirements. Our
final choice of features will therefore involve a degree of judgement in generalising
over the findings of this chapter. First we describe the acoustic features we
selected for investigation.
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Label Feature
centroid Spectral centroid (power-weighted mean frequency)
spread Spectral spread (power-weighted standard deviation)
mfcc1–mfcc8 Eight MFCCs, derived from 42 Mel-spaced filters

(zero’th MFCC not included)
dmfcc1–dmfcc8 Delta MFCCs (temporal differences of mfcc1–mfcc8 )
power Spectral power
pow1–pow5 Spectral power in five log-spaced subbands

(50–400, 400–800, 800–1600, 1600–3200 and 3200–6400 Hz)
pitch Autocorrelation pitch estimate (in log-frequency domain)
clarity Clarity measure of autocorrelation pitch estimate

(normalised height of first peak in autocorrelation)
pcile25–pcile95 Spectral distribution percentiles: 25%, 50%, 75%, 95%
iqr Spectral distribution interquartile range
tcrest Temporal crest factor (TCF)
crest Spectral crest factor (SCF)
crst1–crst5 Spectral crest factor in five log-spaced subbands

(50–400, 400–800, 800–1600, 1600–3200 and 3200–6400 Hz)
zcr Zero-crossing rate (ZCR)
flatness Spectral flatness
flux Spectral flux
slope Spectral slope

Table 3.1: Acoustic features investigated.

3.1 Features investigated

We chose to investigate the set of features summarised in Table 3.1. Many of the
features are as given by Peeters [2004]; we now discuss each family of features
in turn.

Spectral centroid & spread: As discussed in Section 2.3.3 spectral centroid
is often held to carry timbral information, in particular relating to the
“brightness” of a sound. The exact calculation varies across authors (for
example, whether it is measured on a linear or bark frequency scale); in
this work the spectral centroid is the amplitude-weighted mean frequency
measured on a linear frequency scale:

Spectral centroid =
∑N
i=1 |Si|fi∑N
i=1 |Si|

(3.1)

where N is the number of Discrete Fourier Transform (DFT) bins (ranging
from zero to the Nyquist frequency), fi is the centre frequency of bin i

(in Hz) and Si the value of the DFT in that bin. A related feature is the
spectral spread, being the amplitude-weighted variance of the spectrum.
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MFCCs & ∆MFCCs: The popularity of MFCCs for speech analysis and in
MIR was discussed in Chapter 2. To capture some aspect of the local
dynamics, MFCCs are often augmented with their deltas, meaning their
temporal first difference [O’Shaughnessy, 2003]. We measured 8 MFCCs
(not including the zero’th coefficient) and their deltas.

Spectral power: The instantaneous power in a signal may convey expressive
information, and the relative balance of energy within frequency bands,
used for example by Hazan [2005b], Wegener et al. [2008]. We measured
the overall spectral power in a frame, as well as the proportion of that
power that was contained in each of a log-spaced set of bands (50–400,
400–800, 800–1600, 1600–3200, 3200–6400 Hz).

Pitch & clarity: Although pitch is commonly construed as separate from tim-
bre, as discussed in Section 2.3.3 this is not always accepted, and timbre
perception can show significant interactions with pitch perception. For
these reasons as well as to compare timbre features against a pitch fea-
ture, we used an autocorrelation-based estimate of instantaneous pitch
[McLeod and Wyvill, 2005] (recorded on a log frequency scale).

Using an autocorrelation-based pitch tracker yields not only a pitch esti-
mate, but also a measure of pitch clarity: the normalised strength of the
second peak of the autocorrelation trace [McLeod and Wyvill, 2005]. This
clarity measure gives some indication of how “pure” the detected pitch
will sound; it has been used as a timbral feature in itself, and so we also
included it in our analysis.

Spectral percentiles: We also measured various percentiles on the amplitude
spectrum. The name “spectral rolloff” is used for a high percentile, mean-
ing it represents the frequency below which the majority of the spectral
energy is found; however its definition varies between 85-, 90- and 95-
percentile [Paulus and Klapuri, 2003, Sturm, 2006]. Further, as in many
analyses where the median is a useful alternative to the mean, we con-
sider that the spectral 50-percentile (median) is worthy of consideration
as an alternative to the spectral centroid. In this work we measured the
spectral 25-, 50-, 75- and 95-percentiles. We also recorded the spectral
interquartile range (i.e. the difference between the 25- and 75-percentiles)
which has an analogy with the spectral spread.

Spectral and temporal crest factors: A further set of features we investi-
gated were spectral and temporal crest factors. A crest factor is defined
as the ratio of the largest value to the mean value, indicating the degree
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to which the peak value rises above the others. The spectral crest factor
is then

Spectral crest =
N max |Si|∑N

i=1 |Si|
(3.2)

where notation is as for Equation (3.1). Spectral crest factors can be
measured across the whole spectrum or in specific bands, and have been
investigated by Hosseinzadeh and Krishnan [2008], Ramalingam and Kr-
ishnan [2006], Herre et al. [2001]. We measured the overall spectral crest
factor (SCF) as well as that for the same log-spaced frequency bands as for
power ratios (above). We also measured the temporal crest factor (TCF)
derived from the time-domain signal, which has occasionally been found
useful [Hill et al., 1999].

Zero-crossing rate: The zero-crossing rate (ZCR) is the number of times the
time-domain signal crosses zero during the current frame.

Spectral flatness: The geometric mean of the amplitude spectrum divided by
its arithmetic mean is often used as a measure of the flatness of the spec-
trum, designed to distinguish noisy (and therefore relatively flat) spectra
from more tonal spectra.

Spectral flux: Spectral flux is the sum over all the DFT bins of the change
in amplitude of each bin between the previous and current frame. It
reflects short-term spectral instability and thus may be relevant for timbral
roughness.

Spectral slope: The slope of the best-fit regression line for the amplitude spec-
trum is another way to summarise the balance of energy across frequencies.

For examples of these features in use in the literature see e.g. Herre et al. [2001],
Hazan [2005b], McAdams et al. [2006].

Features were measured on 44.1 kHz monophonic audio using a frame size of
1024, and Hann windowing for FFT analysis. The hop size between frames was
0.125 – a relatively high degree of overlap, to increase the amount of data avail-
able for analysis. The audio signals analysed vary according to the experiment
and will be described in later sections of this chapter.

Having described the features we chose to investigate, we can now proceed
with experimental explorations of our requirements of those features, starting
with their perceptual relevance.
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3.2 Perceptual relevance

The features we have chosen have all been used in the past as timbre-related
statistics, but it is not necessarily clear how far they actually capture perceiv-
able timbre differences between sounds. It would be unwise to proceed without
investigating whether there is a measurable connection between our acoustic
timbre features and perceptual timbre. In this section we will perform an anal-
ysis which contributes towards this goal. Ideally we would select some subset
of the features which captures most of the important timbral variation, but as
we will see, the analysis will not yield a simple subset of features, though it will
yield some useful observations e.g. on the relation between spectral centroid and
brightness.

The tradition of Multi-Dimensional Scaling (MDS) timbre studies was in-
troduced in Section 2.3.3, including the correlation-based approach to compare
acoustic features with the results. Briefly, if the values of a given acoustic feature
measured on the sound stimuli correlate well with the positions of the stimuli
in the MDS space, then we infer that it captures some perceptually relevant
information and may be useful when measured on other sounds. Note that this
is an inference rather than a deduction: high correlation between a feature and
one axis of an MDS space can occur by chance, especially since the number of
points in an MDS timbre space is typically small (on the order of 10–20 audio
stimuli).1 Our confidence in such inferences will increase if correlations emerge
from multiple separate MDS experiments, since that would be much less likely
to arise by chance.

It is also unclear how far such correlations might generalise, again since
only a few audio stimuli are used. On this point see especially Lakatos [2000]
who investigated whether pitched and percussive sounds could be described in a
common MDS space. He found that both pitched and percussive sounds led to
MDS spaces with spectral centroid and attack time as acoustic correlates, but
that listeners showed a tendency to group sounds according to source properties,
suggesting that differences between diverse sounds may be better explained
categorically rather than through continuous spatial correlates.

A further issue comes from recent reanalyses of MDS experiments such as
Burgoyne and McAdams [2009] who argued that MDS with certain nonlinear
extensions yielded spaces which better accounted for the dissimilarity data.

Although the original MDS studies do explore acoustic correlates [Grey,
1978, Grey and Gordon, 1978, Grey, 1977, McAdams et al., 1995], they do not

1The small number of stimuli comes from a practical limitation. The raw data for MDS
studies consists of pairwise comparisons. Listeners must therefore judge the similarity of on
the order of 1

2
N2 pairs if there are N stimuli, which for around N > 20 becomes too many

for a listener to judge without fatigue affecting the data.
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explore all the features we are considering, so we wished to perform our own
correlation analysis. Having the choice of using the published MDS coordinates
from the original studies or from the reanalysis of Burgoyne and McAdams
[2009], we chose the latter, on the basis of Burgoyne and McAdams’ evidence
that their model accounts for more of the structured variation in the data.

3.2.1 Method

We used MDS coordinates from Burgoyne and McAdams [2009] in conjunc-
tion with our own acoustic timbre features measured on the audio stimuli from
three experiments in the literature (stimuli kindly provided by McAdams, pers.
comm.). In addition to our instantaneous timbre features, averaged over the
duration of the non-silent portion of each audio stimulus, we also included the
log attack time measured on each stimulus as a potential correlate, since the
stimuli were amenable to that measure and it has been found useful in previous
studies (as discussed in Section 2.3.3). This will be listed in the results tables
as attacktimeLOG.

We measured the Pearson correlation between each acoustic feature and
each dimension from the selected MDS spaces. One might argue that the MDS
spaces should be treated as a whole, e.g. by analysing the multivariate correla-
tion between every feature and each 2D or 3D space. In a simple MDS analysis
this is particularly justified since the orientation of the solution space would be
arbitrary; however the MDS spaces from Burgoyne and McAdams [2009] accom-
modate latent-class weights as well as perceptual distances, giving a consistent
orientation (Burgoyne, pers. comm.), meaning each dimension should represent
some perceivable factor whose acoustic correlates are of individual interest.

We wished to analyse correlations and derive significance measures for our
results. However, the phenomenon of strong correlations arising through chance
(e.g. through random fluctuations in the data) becomes very likely if a large
number of correlation measures are taken, and so it is important to control for
multiple comparisons [Shaffer, 1995]. For the set of correlations we measured,
we used Holm’s sequentially-rejective procedure [Shaffer, 1995] to control for
multiple comparisons at a familywise error rate of p < 0.05 (in other words,
to test for the significance of all measured correlations such that our chance of
falsely rejecting one or more null hypotheses was maintained at less than 0.05).

We further mitigated the issue of multiple comparisons by choosing only one
MDS space for analysis from each dataset. There are various options available
in deriving an MDS space, such as the number of dimensions in the output
space and the inclusion of nonlinearities into the the model. These are explored
by Burgoyne and McAdams [2009] who produce a selection of output spaces

57



and explore the goodness-of-fit of various spaces derived using varieties of MDS
processing. From the data and discussion in that paper we selected the space
which was said to best represent the data, and applied our correlation analysis
to that.

Our three datasets were therefore (where each “model” is from Burgoyne
and McAdams [2009]):

G77 : Stimuli from Grey [1977],
with coordinates from the 3D-with-specificities model

G78 : Stimuli from Grey and Gordon [1978],
with coordinates from the 2D-without-specificities model

M95 : Stimuli from McAdams et al. [1995],
with coordinates from the 3D-without-specificities model

3.2.2 Results

Results are shown in Table 3.2, listing the strongest-correlating features for each
dimension and with significant correlations in bold.

The leading dimensions of G77 and G78 show multiple significant correla-
tions with our timbre features, while the other dimensions show only one or zero
significant correlations. This occurs too for M95 except with the second dimen-
sion showing the correlations. This indicates that not all of the MDS timbre
space dimensions are predictable from the acoustic features we have measured:
either the remaining dimensions are predictable using features we have not inves-
tigated, or they are not directly predictable from acoustic features – for example
they may represent cultural or learned responses to particular sounds.

As in previous studies (discussed in Section 2.3.3) we find the spectral cen-
troid (centroid) correlates well with the leading dimension in all three of the
spaces analysed (although this did not reach our specified significance level for
M95, it still ranked highly) – yet the exact same can be said of the spectral
95-percentile (pcile95 ), which in fact outranks the spectral centroid in two of
the three spaces. (mfcc2 also shows a strong correlation with the leading di-
mension of G77 and G78.) Since spectral percentiles are not tested as often
as the spectral centroid in the literature, we cannot be sure whether this sim-
ilarity in the predictive power of these two features holds very generally, but
we note from our results that it seems likely that either of these two features
would appear to serve equally well as a representative of this leading dimension
of timbre. This is the dimension referred to by previous authors as the “bright-
ness” dimension since informal listening indicates that it serves to differentiate
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Feature r1 Feature r2 Feature r3

centroid 0.967* clarity -0.764* mfcc4 0.69
mfcc2 -0.964* mfcc3 -0.664 attacktimeLOG 0.666
pcile95 0.954* spread -0.603 slope 0.61
pcile75 0.947* pow2 0.58 dmfcc3 0.584
pcile50 0.87* mfcc4 -0.508 mfcc8 -0.557
iqr 0.865* pcile95 -0.506 dmfcc2 0.547
pow4 0.82* mfcc1 0.479 pow1 0.544
power -0.809* mfcc2 0.463 pow3 -0.513
spread 0.796* flatness -0.449 pcile25 -0.501
flatness 0.792* pitch 0.437 clarity 0.413

(a) G77

Feature r1 Feature r2

pcile95 0.973* pow1 -0.805*
mfcc2 -0.829* mfcc4 -0.729
iqr 0.812* pcile25 0.695
centroid 0.808* clarity -0.648
pcile75 0.804* mfcc8 0.615
spread 0.732 crest -0.585
power -0.715 dmfcc3 -0.578
flux -0.63 dmfcc4 -0.572
pow4 0.583 pow3 0.569
pcile50 0.543 slope -0.552

(b) G78

Feature r1 Feature r2 Feature r3

mfcc1 -0.815* pcile50 -0.861* flux -0.701
pcile95 0.715 crest 0.84* dmfcc5 0.494
centroid 0.691 pow1 0.817* mfcc3 0.452
attacktimeLOG -0.676 mfcc2 0.779* pow5 0.434
flatness 0.675 pcile25 -0.729 pow1 0.391
slope 0.667 mfcc5 0.713 pow3 -0.377
spread 0.624 crst3 0.709 mfcc4 0.363
crst3 0.592 pow4 -0.667 slope 0.345
clarity -0.589 pow3 -0.646 iqr 0.329
power -0.562 mfcc4 0.619 mfcc7 -0.316

(c) M95

Table 3.2: Ranked Pearson correlations of timbre features against axes of MDS
spaces. Strongest 10 correlations are shown for each axis, and those judged
significant (at a familywise error rate p < 0.05, Holm’s procedure) are shown in
bold and starred. The dimensions are labelled rn.
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“bright” and “dull” sounds. It may be that we come to prefer one of these two
features over the other based on the other criteria explored during this chapter.

There are no other correlation patterns which show much consistency across
these three spaces. Some features show significant correlation in one of the three
spaces (clarity, pow1, mfcc1, pcile50 ) but this is generally not supported by any
similarly strong correlation in the other spaces.

The log attack time is generally considered in the literature to correlate
well against timbral perceptual data, but in our analysis it shows only a weak
association with the timbre dimensions. For G77 and M95 it shows a cor-
relation strength of around 0.67 with one axis, but in both these cases there
are spectral features which correlate more strongly with that axis. Compare
this with, for example, correlation strengths of around 0.8 for log attack time
in some experiments reported by Burgoyne and McAdams [2009] and by Iver-
son and Krumhansl [1993]. This difference is likely due to differences in the
datasets used, although there may be some small influence from differences in
implementation of the log attack time measure.

It is worth recalling some of the limitations of MDS studies into musical tim-
bre perception. Since participants must make a large number of comparisons,
only a small number (10–20) of stimulus sounds can feasibly be used and so gen-
eralisation to a larger variety of sounds is problematic – only the associations
which repeatedly emerge from such studies are likely to be broadly applicable.
Also, these studies use comparisons between single notes, and so they do not di-
rectly concern the timbral variation that is possible within a single instrument’s
range or even within the evolution of a single note or sound. (MDS studies
for within-instrument variation do exist, such as Barthet [accepted] for clarinet
and Martens and Marui [2005] for electric guitar distortion. They too report a
“brightness” axis as the main consistent finding.)

However, our aim here has been to investigate the predictive strength of our
selection of acoustic timbre features for these MDS timbre spaces that are well-
known in the musical timbre literature, as one approach to selecting features
for use in a real-time timbre analysis. For the types of timbre judgements
captured in these MDS studies our correlation analysis finds only one generality:
the leading dimension in such timbre judgements is well predicted by both the
spectral centroid and the spectral 95-percentile. For the spectral centroid this
is in agreement with the literature. The log attack time, also discussed in the
literature, is not confirmed by our analysis as a strong correlate.
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3.3 Robustness

The perceptual data give us a reasonable confidence that a “brightness” di-
mension, represented by the spectral centroid or 95-percentile, is one aspect of
perceptually relevant information, which we can measure on an arbitrary frame
of an audio signal. It is clear that this is not the only perceptible axis of tim-
bral variation, but we must defer further perceptual studies to future research.
Instead, we turn to the other criteria against which we wish to judge timbre
features.

Our application of timbre features will be as input to machine learning algo-
rithms. Therefore we need to ensure that we are supplying “good data” to the
algorithms, in particular data that is relatively tolerant to degradations such as
additive noise or the inherent signal variability in sounds which are perceptually
stationary.

Study of the noise-robustness of audio analysis algorithms has a long pedi-
gree, e.g. for speech recognition systems [O’Shaughnessy, 2003, Section G] or
musical instrument classifiers [Wegener et al., 2008]. In such cases the context
of application provides a way to quantify the robustness, via such measures
as word error rate or classification error rate, measured against ground truth
annotations. If a given algorithm’s error rate increases substantially when degra-
dations are introduced, then the algorithm is said to be less robust than one
whose error rate increases less under the same degradations.

Our application will involve the analysis of two types of signal: the output
of synths, and voice signals captured by microphone. The latter may take place
in live performance situations, where degradations such as background noise
or signal distortion are more likely to occur than in a studio situation, where
signal quality can be more tightly controlled. In this section we will therefore
investigate the robustness of our timbre features in two ways:

• Robustness to the inherent signal variability in perceptually stationary
sounds, characterised by repeatedly measuring features on constant synth
settings and characterising the amount of variation;

• Robustness to degradations such as additive noise and signal distortions,
measured on representative datasets of performing voice signal.

We will find some consistency in the results of these two related investigations.
We proceed first with the robustness measures on synth signals.

3.3.1 Robustness to variability of synth signals

The robustness of acoustic features can be characterised by making repeated
measurements of timbre features on a synth with its settings held constant, and
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determining the variability of those repeated measurements, using e.g. standard
deviation. If this is done for a variety of synth settings and for multiple features
then we have a measure of variability which we can use to compare features.
This relies on the assumption that the constant setting yields sounds which
give a stable timbral percept, which is not always true: many synths include
random, generative or dynamic features, meaning that the aural result of a fixed
configuration may not be constant. Therefore in order to probe the robustness
of features we must choose a set of synths which can be said to satisfy the
assumption, as well as broadly representing the types of synth sound which we
may wish to control in our application.

Method

We implemented five types of monophonic synth as patches in SuperCollider,
and for each one we enumerated a set of controls which we could programmati-
cally manipulate. The synths are described in full in Appendix B; in brief they
are:

supersimple, a simple additive synth;

moogy1, a subtractive synth;

grainamen1, a granular synth using a percussive sound;

gendy1, an algorithm originally conceived by Iannis Xenakis with a paramet-
rically varying waveform; and

ay1, an emulation of a real-world sound chip.

Three of the synths can be called “pitched” in that they have a fundamental
frequency control which has a strong relationship to the perceived pitch, while
two (grainamen1 and gendy1) are “unpitched”. These latter synths do not
have a fundamental frequency control; in some configurations they produce
sounds with a cyclical nature and therefore can sound pitched, but in many
configurations they produce noisy or percussive sounds with no clear impression
of pitch.

Our method for measuring the variability of each feature was to make re-
peated feature measurements on the synths held at constant settings, choosing
to sample features from non-overlapping frames from the steady-state portion
of the synth sound (i.e. attack and decay portions were not included). Variabil-
ity was quantified as the average standard deviation of feature values across a
variety of synths and a variety of settings.

Two caveats must be introduced at this point. The first is that some nor-
malisation must be applied to accommodate the fact that acoustic features have
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different ranges. We normalised each feature across the whole range of measured
timbre values to give zero mean and unit variance, so our measure of variability
within a single synth setting was the standard deviation calculated on the nor-
malised Euclidean distance. Since this normalisation involves dividing values
by the overall standard deviation, this has the effect that our measure is a ratio
of standard deviations: the ratio of the amount of variation within each synth
setting to the overall variation.

The second caveat is a practical one: the large number of possible synth
settings means that it is unfeasible to record a large number of examples from
all possible settings combinations. In our experiment we could not iterate over
all possible settings, so we instead used a random sample of settings for the
synths. In this case we used 100 different settings of each of the five synths, and
from each recorded a short segment producing 120 audio frames.

Results

Figure 3.1 summarises the standard deviation measurements on the timbre fea-
tures. The long whiskers indicate that all features exhibit some degree of vari-
ability. However, there is a clear separation among the medians, indicating that
some features are much more stable than others.

The ∆MFCCs (dmfcc ) stand out immediately as being far more variable
than all other features. One might suggest this is due to their nature as dif-
ferences between successive frames – their variability compounds the variability
from two frames. However, the spectral flux (flux ) is also a difference between
frames yet does not exhibit such strong variability here. Also note that features
measured on adjacent frames may be expected to have some concomitant varia-
tion (after all, adjacent frames share many audio samples since frames overlap),
and so the delta operation might be expected to cancel out some portion of the
variability.

After the ∆MFCCs, another family of features which performs poorly on
this robustness measure is the spectral crest features (crst and crest, and the
temporal crest tcrest), with many of these features among the lowest-ranked by
median variability. This may be due to the reliance of crest features on finding
the maximum of a set of values, an operation which may be strongly affected
by noise or variation on a single value. If crest features are desirable, it may
be possible to improve their robustness for example by using the 95-percentile
rather than the maximum; however we will not pursue this in the present work.

The strongest-performing families of features in this experiment are the
bandwise power ratios (pow ) and the spectral percentiles (pcile ), both of which
provide information about the broad spectral shape and whose value may be
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Figure 3.1: Variability (normalised standard deviation) of timbre features, mea-
sured on a random sample of synth settings and 120 samples of timbre features
from each setting. The box-plots indicate the median and quartiles of the dis-
tributions, with whiskers extending to the 5- and 95-percentiles.
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dominated by strong peaks in the spectrum. This can also be said of the spectral
centroid (centroid). The spectral flatness measure (flatness) performs similarly
well, and is one feature which (like the spectral crests) is designed to extract
some information comparing the strong peaks against the background. The
autocorrelation clarity (clarity) also performs strongly and may be said to char-
acterise a similar aspect of the sound, although calculated in the time domain
rather than the frequency domain. With such considerations in mind we may
be optimistic that our most stable features are not all redundantly measuring
the same aspect of the signal, a topic we will return to in Section 3.4.

Although the ∆MFCCs perform worst in this test, it is notable that the
MFCCs themselves (mfcc ) are also relatively unstable by our measure. In gen-
eral they are grouped in the lower half of the median-ranked features, although
the lower-valued MFCCs (particularly mfcc1 ) yield more acceptable robustness
performance.

In the next section we will move from synthesiser timbre to vocal timbre as
we turn to investigate the robustness of features to noise and signal distortions.

3.3.2 Robustness to degradations of voice signals

We aim to develop methods which can be driven by timbre measured from a
voice signal in a live vocal performance. Voice signals captured from a micro-
phone may be subject to different types of degradation than synthesiser signals
captured directly from the instrument, such as background noise from music or
a crowd. Hence in this section we will use performing voice signals and analyse
the robustness of the continuous-valued timbre features to degradations applied
to those signals. We will characterise robustness to degradations as the extent
to which information remains in the timbre features even after the degradations,
evaluated with an information-theoretic measure.

In Section 3.3.1 we used synthesiser settings as a ground truth against which
to measure robustness. However, we typically do not have access to analogous
datasets of voice with detailed timbral annotations. Therefore we will employ
a slightly different method, in which we analyse the variability of timbre fea-
tures as we apply synthetic degradations to recorded voice signals; the features
measured on the original voice recordings take the role of ground truth.

There are many ways to degrade an audio signal. Speech recognition al-
gorithms may commonly be evaluated for their robustness to the addition of
background noise (babble, street noise) or to the compression used in mobile
telephony [Kotnik et al., 2003]. Musical analysis systems may be evaluated for
robustness to MP3 compression or reverberation [Wegener et al., 2008]. Here
we are interested in real-time analysis of a microphone voice signal, used in a
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Label Description Duration (secs) Total non-silent frames (3 s.f.)
SNG Singing 529 30,300
SPC Speech 795 34,000
BBX Beatboxing 414 15,700

Table 3.3: The three datasets investigated.

live music performance. In this situation we will want to consider robustness
to additive white noise (as a generic model for the line or thermal noise which
affects many signal conductors [Johnson, 1928, Nyquist, 1928]), crowd noise,
clipping distortion due to saturated components in the signal chain, or feedback
echoes due to microphone placement.

We first describe the voice datasets used for this investigation, before de-
scribing the degradations applied and our measure of robustness given those
degradations.

Voice datasets and degradations

For our experiments we prepared three datasets representing three types of
performing voice: singing, speech and beatboxing. These datasets we refer to
as SNG, SPC and BBX respectively. These three types were selected because
they exhibit differences which may be relevant to timbral analysis: singing voice
signals contain relatively more vowel phonation than speech [Soto-Morettini,
2006], while beatboxing signals contain less vowel phonation and also employ an
extended palette of vocal techniques (Section 2.2). Participants were aged 18–40
and with varying levels of musical training. For SNG and SPC we recorded 5
male and 3 female participants; for BBX we recorded 4 male participants (the
beatboxing community is predominantly male). All recordings were made in
an acoustically-treated studio, using a Shure SM58 microphone and Focusrite
Red 1 preamp, recorded at 44.1 kHz with 32-bit resolution. Each recording
was amplitude-normalised and long pauses were manually edited out. After
feature analysis, low-power frames (silences) were discarded. The datasets are
summarised in Table 3.3.

We designed a set of signal degradations representative of the degradations
that may occur in a live vocal performance, listed in Table 3.4. For each of the
seven degradation types, we applied the degradation separately to the voice sig-
nals at four different effect levels, measuring the timbre features on the resulting
audio.
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Description Effect settings
Additive white noise -60 dB, -40 dB, -20 dB, 0 dB
Additive crowd noise -60 dB, -40 dB, -20 dB, 0 dB

(BBC Sound Effects, crowd, vol. 48)
Additive music noise -60 dB, -40 dB, -20 dB, 0 dB

(The Cardiacs, Guns, track 7, ALPHCD027)
Clipping distortion 0.3, 0.5, 0.7, 0.9
yt = max (min (xt, k),−k)

Delay with no feedback 5 ms, 25 ms, 40 ms, 70 ms
yt = xt + 1

2x(t−k)

Delay with feedback 5 ms, 25 ms, 40 ms, 70 ms
yt = xt + 1

2y(t−k)

Reverberation 0.1, 0.4, 0.7, 1.0
yt = FreeVerb.ar(xt, 0.5, room:k, 0.9)

Table 3.4: Audio signal degradations applied. Note that FreeVerb.ar is the
SuperCollider implementation of the public-domain Freeverb reverb algorithm,
see e.g. http://csounds.com/manual/html/freeverb.html.

Method

Having described the audio datasets and the degradations applied to them, it re-
mains to specify how the deviations of the features due to the degradations can
usefully be summarised and compared. Summarising the absolute or relative
deviation of the feature values directly (as in Section 3.3.1) is one possibility,
but here we wish to apply a general method based on the idea that our degra-
dations will tend to destroy some of the information present in the signal. Such
concepts find a mathematical basis in information theory [Arndt, 2001], where
the differential (Shannon) entropy H(X) of a continuous variable X quantifies
the information available in the signal:

H(X) =
∫
X

p(x) log p(x)dx (3.3)

The mutual information I(X;Y ) is a related information-theoretic quantity
which quantifies the information which two variables X and Y have in common,
and therefore the degree to which one variable is predictable or recoverable from
the other:

I(X;Y ) =
∫
Y

∫
X

p(x, y) log
(

p(x, y)
p(x) p(y)

)
dx dy (3.4)

= H(X) +H(Y )−H(X,Y ) (3.5)

where p(x, y) is the joint probability density of the random variables X and Y ,
p(x) and p(y) are their marginal probability densities. The mutual information
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measure then directly indicates the degree of informational overlap between X

and Y , a more general measure of redundancy than correlation.
If we measure timbre features on a clean signal and a degraded signal, and

then find the mutual information between those two measurements, this there-
fore provides a general quantification of how much information from the clean
timbre features is recoverable from the degraded timbre features. The mutual
information between two continuous variables is not bounded from above and
could theoretically be infinite, meaning one continuous variable gives perfect
information about the other. In practice we are working with sampled signals
and finite numerical precision, meaning our measurements will not diverge to
infinity.

We applied this information-theoretic approach to robustness of our timbre
features by measuring the timbre features on each of our voice datasets, both
clean and with the degradations applied. We then normalised the scaling of
each timbre feature such that the continuous entropy of the feature measured
on the clean audio had a fixed entropy of 10 nats (to remove the possibility of
biases introduced due to numerical precision error), before calculating the mu-
tual information (3.5) between each degraded feature set and its corresponding
clean set.

This process produced a large number of comparisons (having 7 degradations
each at four effect levels). We applied Kendall’s W test [Kendall and Smith,
1939] across the different degradations, as well as visually inspecting graphs of
the results, to determine whether results showed consistency across the different
degradation types. In all cases we found consistent effects (various values of W,
all yielding p < 0.001), so in the following we report the results aggregated
across all effect types.

Results

Table 3.5 summarises the robustness measures for each of the three voice datasets,
showing the mean of the mutual information between the degraded and the clean
feature values. The three tables show some commonalities with each other, but
also with the ranked lists derived from robustness measures in Section 3.3.1.
The overall agreement among the four rankings (i.e. Table 3.5 together with
Figure 3.1) is significant (Kendall’s W=0.381, p=0.0168, 41 d.f.).

The ∆MFCCs perform particularly poorly by our measure, with the crest
features and MFCCs also performing rather poorly. As noted in the previous
experiment, this does not appear to be explicable merely by the nature of the
∆MFCCs as inter-frame difference measures, since flux is also an inter-frame
difference measure yet performs relatively strongly.
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Feature MI

pitch 3.49
zcr 2.06
clarity 1.99
pow1 1.81
power 1.79
pcile25 1.73
slope 1.73
pow2 1.72
pow3 1.58
crst1 1.54
pcile50 1.54
crest 1.46
pow4 1.45
pow5 1.37
pcile75 1.32
pcile95 1.28
flux 1.28
crst2 1.25
iqr 1.21
mfcc2 1.12
centroid 1.12
mfcc4 1.1
mfcc1 1.08
spread 0.989
mfcc3 0.967
mfcc5 0.965
tcrest 0.957
crst3 0.954
mfcc6 0.904
mfcc7 0.881
crst4 0.877
flatness 0.876
mfcc8 0.87
crst5 0.81
dmfcc2 0.301
dmfcc1 0.3
dmfcc3 0.259
dmfcc6 0.258
dmfcc7 0.226
dmfcc5 0.219
dmfcc4 0.214
dmfcc8 0.212

(a) SNG dataset

Feature MI

pitch 3.05
clarity 2.37
zcr 1.91
power 1.76
pow1 1.7
slope 1.7
pow2 1.64
pcile50 1.5
pow3 1.48
flux 1.43
crest 1.41
pcile25 1.39
pow4 1.38
pcile75 1.36
pow5 1.3
iqr 1.26
crst1 1.24
pcile95 1.14
centroid 1.1
crst2 1.08
mfcc2 1.02
mfcc1 0.974
tcrest 0.938
mfcc3 0.932
spread 0.914
mfcc6 0.905
mfcc4 0.885
mfcc5 0.843
flatness 0.842
crst3 0.768
mfcc7 0.765
mfcc8 0.764
crst4 0.733
crst5 0.674
dmfcc1 0.604
dmfcc2 0.536
dmfcc3 0.443
dmfcc6 0.399
dmfcc4 0.378
dmfcc5 0.349
dmfcc8 0.336
dmfcc7 0.332

(b) SPC dataset

Feature MI

pitch 2.02
zcr 1.87
power 1.86
pcile25 1.84
pow1 1.82
clarity 1.8
pcile50 1.74
flux 1.74
slope 1.68
pcile75 1.62
centroid 1.52
pow3 1.5
pcile95 1.5
pow4 1.45
crest 1.45
pow5 1.42
iqr 1.4
mfcc1 1.37
spread 1.36
flatness 1.34
mfcc2 1.23
pow2 1.19
crst1 1.19
tcrest 1.14
mfcc3 1.09
mfcc4 0.938
mfcc7 0.88
mfcc5 0.862
crst3 0.833
mfcc6 0.822
mfcc8 0.798
crst4 0.682
crst2 0.681
crst5 0.647
dmfcc1 0.607
dmfcc2 0.516
dmfcc3 0.405
dmfcc4 0.372
dmfcc6 0.352
dmfcc8 0.347
dmfcc5 0.343
dmfcc7 0.337

(c) BBX dataset

Table 3.5: Noise robustness of timbre features, summarised across all degrada-
tions. “MI” is the mean mutual information in nats.

Strongest-performing are various features including autocorrelation pitch

69



and clarity, ZCR, power-based features and spectral slope. The spectral per-
centiles and centroid rank moderately highly in these figures, though not as
highly as in the previous robustness tests.

These investigations into robustness have shed some light on the relative
merits of individual features, the strongest conclusion being the recommendation
against the ∆MFCCs. In order to work towards a more integrated perspective
we must consider interactions between features, which we turn to in the final
section of this chapter.

3.4 Independence

Our investigations so far have been concerned with attributes of individual tim-
bre features. However we are likely to be using multiple timbre features together
as input to machine learning procedures which will operate on the resulting
multidimensional timbre space. We therefore need to consider which features
together will maximise the amount of useful information they present while min-
imising the number of features, to minimise the risk of curse of dimensionality
issues. We do this by studying the mutual information (MI) between variables.

Mutual information was introduced in Section 3.3.2 in the context of con-
sidering how MI was shared between a feature and its degraded version, where
the aim was to maximise the value; here we wish to avoid choosing feature-
sets in which pairs of features have high MI, since high MI indicates needless
redundancy in the information represented.

In the following we report an experiment using MI calculated pairwise be-
tween features. This gives a useful indication of where informational overlaps
exist. It would also be useful to consider the interactions between larger feature
subsets. In Appendix C we report preliminary results from an information-
theoretic feature selection approach which aims to consider such interactions;
however, we consider such methods currently need further development, so we
concentrate here on the mutual information results.

3.4.1 Method

We used the same three voice datasets SNG SPC and BBX as described in
Section 3.3.2. We applied the probability integral transform to normalise each
of the features’ values and ensure that our measures were not influenced by
differences in the distributions of the features. (This standardisation of the
marginal variables is closely related to the use of empirical copulas to study
dependency between variables, see e.g. Nelsen [2006, Chapter 5], Diks and
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zcr � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

tcrest � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

spread � � � � � � � � � � � � � � � � � � � 2 � 2 2 2 � � � � � � � � � � � � � � �

centroid � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
flatness � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

flux � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

slope � 2 � � � � � � � � � � � � � � � � � � 2 � 2 2 � � � � � � � � � � �

iqr � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
pcile95 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
pcile75 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
pcile50 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
pcile25 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

crst5 � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

crst4 � � � � � � � � � � � � � � � � � � � � � � � � � � � �

crst3 � � � � � � � � � � � � � � � � � � � � � � � � � � �

crst2 � � � � � � � � � � � � � � � � � � � � � � � � � �

crst1 � � � � � � � � � � � � � � � � � � � � � � 2 � �
crest � � � � � � � � � � � � � � � � � � 2 2 2 � 2 2

dmfcc8 � 2 2 � � � � � 2 � 2 � � � � � � � � � � � �

dmfcc7 � 2 2 � � � 2 � 2 � 2 � � � � 2 � � � � � �

dmfcc6 � � � � � � � � 2 � � � � � � 2 � � � � �

dmfcc5 � � 2 � � � � � 2 � 2 � � � � 2 � � � �

dmfcc4 � � � � � � 2 � 2 � � � � � � 2 � � �

dmfcc3 � � � � � � � � � � � � � � � � � �

dmfcc2 � � � � � � � � � � � � � � � � �

dmfcc1 � � � � � � � � � � � � � � � �

mfcc8 � 2 � � � � � � � � � � � � �

mfcc7 � � � � � � � � � � � � � �

mfcc6 � � � � � � � � � � � � �

mfcc5 � � � � � � � � � � � �

mfcc4 � � � � � � � � � � �

mfcc3 � 2 � � � � � � � � Symbol Range
mfcc2 � 2 � � � � � � � 2 0 < MI ≤ 0.01
mfcc1 � � � � � � � � � 0.01 < MI ≤ 0.1
pow5 � � � � � � � � 0.1 < MI ≤ 0.3
pow4 � 2 � � � � � 0.3 < MI ≤ 0.5
pow3 � 2 � � � � 0.5 < MI ≤ 0.7

pow2 � � � � � 0.7 < MI ≤ 0.9

pow1 � � � � 0.9 < MI ≤ 1.0
power � �

clarity �

Table 3.6: Mutual Information (bits) between features, for the aggregate of the
three voice datasets.

Panchenko [2008].) We then used our partition-based entropy estimator (Ap-
pendix A) to estimate the mutual information (MI) by Equation 3.5.

3.4.2 Results

We first measured the MI between features using each of the three performing
voice datasets separately. However, on comparing the results we found very
strong agreement between the three sets (Pearson’s r ≥ 0.944, one-tailed, N =
276, p < 10−10), so we report MI measured over the aggregate of all three voice
datasets (Table 3.6). A general pattern which is visually apparent is for the
larger MI values to be confined to a subset of features: the central features in
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the table – MFCCs, ∆MFCCs, and spectral crests – each show only small MI
with any other feature, while the larger MIs are confined to other features, in
particular the spectral percentile and subband power measures. (Other features
exhibiting only small MIs are clarity, spectral slope and spectral flux.)

The MFCC calculation does include an approximate decorrelation using a
Discrete Cosine Transform [Rabiner and Schafer, 1978] (done in order to com-
pact spectral energy into the lower coefficients as well as for approximate decor-
relation), which provides a theoretical reason to expect the within-set indepen-
dence of MFCCs. The spectral crest calculation does not deliberately decorre-
late the subbands, so the within-set independence is perhaps more notable.

The features pitch and power are not usually considered timbral features
(cf. Section 2.3.3), and are included to probe dependencies between them and
timbre-related features. In this dataset we see only small interactions: slope is
the only feature which shares more than 0.5 bits of information with power, and
no feature shares that much information with pitch.

The larger MI values are mainly found among feature pairs drawn from the
spectral percentile and subband power measures. This is perhaps unsurprising
given the strong formal connection between the calculations: the 95-percentile
is inherently constrained never to take a value lower than the 75-percentile, for
example, while a pow1 value greater than 0.5 would tell us that at least 50%
of the spectral power lies below 400 Hz (the top of the subband) and therefore
that the lower percentiles must be below that level.

The spectral centroid and spread also show some interaction with the spec-
tral percentile measures. The centroid has its strongest interaction with pcile75,
and the spread with pcile95, suggesting that these parametric and nonparamet-
ric representations (i.e. moments and percentiles, respectively) are alternatives
which to some extent capture the same information about the spectral shape.
Compare this with the results of Section 3.2, which found both centroid and
pcile95 to be strong correlates with the perceptually-derived dimensions said
to relate to brightness. This would lead us to expect a rather high informa-
tional overlap between the two features, which is what we find. However this
overlap is not the highest MI detected, suggesting that there may be scope to
tease apart the relation between the two measures and perceptual brightness,
in future studies.

3.5 Discussion and conclusions

In choosing acoustic features to represent timbre, we wish to select features
which capture perceptible variation yet which are robust to minor signal varia-
tions, and ideally which form a compact subset without too much informational
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overlap. The criteria we have considered in this chapter go some way toward
helping us to make such a selection, each leading to recommendations for or
against some subsets of the features we have investigated.

The perceptual tests (Section 3.2) confirmed spectral centroid and spectral
95-percentile as strong predictors of a timbral dimension recovered from MDS
experiments. However there was little agreement across the perceptual tests
about correlates for other axes. In particular the log attack time was not con-
firmed as a consistent strong correlate. Despite this, timbral variation is indeed
richer than just this one dimension, as indicated by the MDS experiments of
others, so in order to try and capture some of this richness we should make
use of other features, to present further information to our machine learning
algorithms which may help make useful decisions.

Robustness of measurements is important to avoid passing too much irrele-
vant information (e.g. originating from background noise) on to the later pro-
cessing. Our robustness tests (Sections 3.3.1 and 3.3.2) yielded some agreement
over the relative merits of features. In particular the ∆MFCCs were shown to
be highly sensitive to noise and variation, and to a lesser extent so were the
spectral crest measures. This is useful information given that the ∆MFCCs
are quite commonly used in e.g. speech analysis [Mak et al., 2005]. Strongly-
performing features from the robustness tests include spectral centroid, spectral
percentiles, spectral spread, subband powers, and spectral flatness. Notably, the
spectral centroid and spectral 95-percentile recommended from our perceptual
experiment generally exhibited good robustness, indicating that the brightness
dimension can be characterised quite dependably.

The MFCCs performed relatively poorly in the robustness tests, although
not as poorly as the ∆MFCCs and crest features. These results reflect a theme
found in the literature, that MFCCs although useful are quite sensitive to noise
– this issue and some potential remedies have been discussed for analysis of
speech [Gu and Rose, 2001, Chen et al., 2004, Tyagi and Wellekens, 2005] and
music [Seo et al., 2005].

The independence experiment (Section 3.4) shows that MFCCs, ∆MFCCs
and spectral crest factors all show a particularly low degree of information over-
lap among themselves or with other features. Conversely there is a general in-
dication that the subband powers and the spectral percentiles, taken together,
form a subset with quite a lot of redundancy. Therefore a multidimensional
timbre space need only use some of those features in order to capture much of
the information they provide.

Despite the tensions in the experimental data, it is possible to draw some
conclusions about the suitability of the timbre features studied, for our applica-
tion in real-time timbre analysis of voice and of synthesisers. Spectral centroid
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and spectral 95-percentile are recommended for their perceptual relevance and
robustness. Some subset of subband powers and spectral percentiles are rec-
ommended as a robust class of features albeit with some redundancy. Spectral
crests and ∆MFCCs are not recommended since they show particularly poor
robustness in our tests. We will take account of these conclusions in future chap-
ters, when designing machine learning techniques based on continuous timbre
features.
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Chapter 4

Event-based paradigm

In real-time signal processing it is often useful to identify and classify events
represented within a signal. With music signals this need arises in applications
such as live music transcription [Brossier, 2007] and human-machine musical in-
teraction [Collins, 2006, Aucouturier and Pachet, 2006]. This could be a fruitful
approach for voice-driven musical systems, detecting vocal events and trigger-
ing sounds such as synthesiser notes or samples. Indeed some prior work has
explored this potential in non-real time [Sinyor et al., 2005] and in real time
[Hazan, 2005b, Collins, 2004].

Yet to respond to events in real time presents a dilemma: often we wish a
system to react with low latency, perhaps as soon as the beginning of an event
is detected, but we also wish it to react with high precision, which may imply
waiting until all information about the event has been received so as to make
an optimal classification. The acceptable balance between these two demands
will depend on the application context. In music, the perceptible event latency
can be held to be around 30 ms, depending on the type of musical signal [Mäki-
Patola and Hämäläinen, 2004].

We propose to deal with this dilemma by allowing event triggering and classi-
fication to occur at different times, thus allowing a fast reaction to be combined
with an accurate classification. Triggering prior to classification implies that for
a short period of time the system would need to respond using only a provisional
classification, or some generic response. It could thus be used in reactive music
systems if it were acceptable for some initial sound to be emitted even if the
system’s decision might change soon afterwards and the output updated accord-
ingly. To evaluate such a technique applied to real-time music processing, we
need to understand not only the scope for improved classification at increased
latency, but also the extent to which such delayed decision-making affects the
listening experience, when reflected in the audio output.
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classifier
synthesis

timbre features

audio

Figure 4.1: An approach to real-time beatbox-driven audio, using onset detec-
tion and classification.

In this chapter we investigate delayed decision-making in the context of
musical control by vocal percussion in the human beatbox style (discussed in
Section 2.2). We consider the imitation of drum sounds commonly used in
Western popular music such as kick (bass) drum, snare and hihat (for definitions
of drum names see Randel [2003]). The classification of vocal sounds into such
categories offers the potential for musical control by beatboxing.

This chapter investigates two aspects of the delayed decision-making con-
cept. In Section 4.1 we study the relationship between latency and classifica-
tion accuracy: we present an annotated dataset of human beatbox recordings,
and describe classification experiments on these data. Then in Section 4.2 we
describe a perceptual experiment using sampled drum sounds as could be con-
trolled by live beatbox classification. The experiment investigates bounds on
the tolerable latency of decision-making in such a context, and therefore the
extent to which delayed decision-making can help resolve the tension between a
system’s speed of reaction and its accuracy of classification.

4.1 Classification experiment

We wish to be able to classify percussion events in an audio stream such as
beatboxing, for example a three-way classification into kick/hihat/snare event
types. We might for example use an onset detector to detect events, then use
acoustic features measured from the audio stream at the time of onset as input
to a classifier which has been trained using appropriate example sounds (Fig-
ure 4.1) [Hazan, 2005b]. In such an application there are many options which
will bear upon performance, including the choice of onset detector, acoustic
features, classifier and training material. In the present experiment we factor
out the influence of the onset detector by using manually-annotated onsets, and
we introduce a real-world dataset for beatbox classification which we describe
below.

We wish to investigate the hypothesis that the performance of some real-time
classifier would improve if it were allowed to delay its decision so as to receive
more information. In order that our results may be generalised we will use a
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classifier-independent measure of class separability, as well as results derived
using a specific (although general-purpose) classifier.

To estimate class separability independent of a classifier we use the Kullback-
Leibler divergence (KL divergence, also called the relative entropy) between the
continuous feature distributions for classes [Cover and Thomas, 2006, Section
9.5]:

DKL(f ||g) =
∫
f(x) log

f(x)
g(x)

dx (4.1)

where f and g are the densities of the features for two classes. The KL diver-
gence is an information-theoretic measure of the amount by which one proba-
bility distribution differs from another. It can be estimated from data with few
assumptions about the underlying distributions, so has broad applicability. It
is nonnegative and non-symmetric, although can be symmetrised by taking the
value DKL(f ||g) +DKL(g||f) [Arndt, 2001, Section 9.2]; in the present experi-
ment we will further symmetrise over multiple classes by averaging DKL over all
class pairs to give a summary measure of the separability of the distributions.
Because of the difficulties in estimating high-dimensional densities from data
[Hastie et al., 2001, Chapter 2] we will use divergence measures calculated for
each feature separately, rather than in the high-dimensional joint feature space.

To provide a more concrete study of classifier performance we will also ap-
ply a Näıve Bayes classifier [Langley et al., 1992], which estimates distributions
separately for each input feature and then derives class probabilities for a da-
tum simply by multiplying together the probabilities due to each feature. This
classifier is selected for multiple reasons:

• It is a relatively simple and generic classifier, and well-studied, and so may
be held to be a representative choice;

• Despite its simplicity and unrealistic assumptions (such as independence
of features), it often achieves good classification results even in cases where
its assumptions are not met [Domingos and Pazzani, 1997];

• The independence assumption makes possible an efficient updateable clas-
sifier in the real-time context: the class probabilities calculated using an
initial set of features can be later updated with extra features, simply by
multiplying by the probabilities derived from the new set of features.

Both our KL divergence estimates and our Näıve Bayes classification results
operate on features independently. In this chapter we do not consider issues of
redundancy between features.
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4.1.1 Human beatbox dataset: beatboxset1

To facilitate the study of human beatbox audio we have collected and published
a dataset which we call beatboxset1.1 It consists of short recordings of beat-
boxing recorded by amateur and semi-professional beatboxers recorded under
heterogenous conditions, as well as onset times and event classification annota-
tions marked by independent annotators. The audio and metadata are freely
available and published under the Creative Commons Attribution-Share Alike
3.0 license.

Audio: The audio files are 14 recordings each by a different beatboxer,
between 12 and 95 seconds in length (mean duration 47 seconds). Audio files
were recorded by the contributors, in a range of conditions: differing microphone
type, recording equipment and background noise levels. The clips were provided
by users of the website humanbeatbox.com.

Annotations: Annotations of the beatbox data were made by two inde-
pendent annotators. Individual event onset locations were annotated, along
with a category label. The labels used are given in Table 4.1. Files were anno-
tated using Sonic Visualiser 1.5,2 via a combination of listening and inspection
of waveforms/spectrograms. A total of 7460 event annotations were recorded
(3849 from one annotator, 3611 from the other).

The labelling scheme we propose in Table 4.1 was developed to group sounds
into the main categories of sound heard in a beatboxing stream, and to provide
for efficient data entry by annotators. For comparison, the table also lists the
labels used for a five-way classification by Sinyor et al. [2005], as well as symbols
from Standard Beatbox Notation (SBN – a simplified type of score notation for
beatbox performers3). Our labelling is oriented around the sounds produced
rather than the mechanics of production (as in SBN), but aggregates over the
fine phonetic details of each realisation (as would be shown in an International
Phonetic Alphabet transcription).

Table 4.2 gives the frequency of occurrence of each of the class labels, con-
firming that the majority (74%) of the events fall broadly into the kick, hihat,
and snare categories.

1http://archive.org/details/beatboxset1
2http://sonicvisualiser.org
3http://www.humanbeatbox.com/tips/
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Label Description SBN Sinyor
k Kick b / . kick
hc Hihat, closed t closed
ho Hihat, open tss open
sb Snare, bish or pss-like psh p-snare
sk Snare, k -like (clap or

rimshot snare sound)
k k-snare

s Snare but not fitting
the above types

– –

t Tom – –
br Breath sound (not in-

tended to sound like
percussion)

h –

m Humming or similar (a
note with no drum-like
or speech-like nature)

m –

v Speech or singing [words] –
x Miscellaneous other

sound
– –

? Unsure of classification – –

Table 4.1: Event labelling scheme used in beatboxset1.

4.1.2 Method
To perform a three-way classification experiment on beatboxset1 we aggregated
the labelled classes into the three main types of percussion sound:

• kick (label k; 1623 instances),

• snare (labels s, sb, sk; 1675 instances),

• hihat (labels hc, ho; 2216 instances).

The events labelled with other classes were not included in this experiment.
We analysed the soundfiles to produce the set of 24 features listed in Table

4.3. Features were derived using a 44.1 kHz audio sampling rate, and a frame
size of 1024 samples (23 ms) with 50% overlap (giving a feature sampling rate
of 86.1 Hz). This set of features is slightly different from that used in Chapter
3 (Table 3.1) since the experiment was conducted before that work concluded,
although majority of features are the same.

Each manually-annotated onset was aligned with the first audio frame con-
taining it (the earliest frame in which an onset could be expected to be detected
in a real-time system). In the following, the amount of delay will be specified
in numbers of frames relative to that aligned frame, as illustrated in Figure
4.2. We investigated delays of zero through to seven frames, corresponding to
a latency of 0–81 ms.
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Label Count
k 1623
hc 1840
ho 376
sb 469
sk 1025
s 181
Sum 5514 (74%)

(a) Main

Label Count
t 201
br 132
m 404
v 76
x 1072
? 61
Sum 1946 (26%)

(b) Others

Table 4.2: Frequencies of occurrence of classes in beatboxset1 annotations,
grouped into the main kick/hihat/snare sounds versus others.

Figure 4.2: Numbering the “delay” of audio frames relative to the temporal
location of an annotated onset.

To estimate the KL divergence from data, we used a Gaussian kernel es-
timate for the distribution of each feature separately for each class. For each
feature we then estimated the KL divergence pairwise between classes, by nu-
merical integration over the estimated distributions (since the KL divergence is
a directed measure, there are six pairwise measures for the three classes). To
summarise the separability of the three classes we report the mean of the six es-
timated divergences, which gives a symmetrised measure of divergence between
the three classes.

In applying the Näıve Bayes classifier, we investigated various strategies for
choosing features as input to the classifier, exploring “stacking” as well as feature
selection:

Feature stacking: We first used only the features derived from the frame
at a single delay value (as with the divergence measures above). However, as we
delay the decision, the information from earlier frames is in principle available
to the classifier, so we should be able to improve classification performance by
making use of this extra information – in the simplest case by “stacking” feature
values, creating a larger featureset of the union of the features from multiple
frames [Meng, 2006, Section 4.2]. Therefore we also performed classification
at each delay using the fully stacked featuresets, aggregating all frames from
onset up to the specified delay. Our 24-feature set at zero delay would become
a 48-feature set at one frame delay, then a 72-feature set at two frames’ delay,
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Label Feature
mfcc1–mfcc8 Eight MFCCs, derived from 42

Mel-spaced filters
(zero’th MFCC not included)

centroid Spectral centroid
spread Spectral spread
scf Spectral crest factor
scf1–scf4 Spectral crest factor in subbands

(50–400, 400–800, 800–1600, and
1600–3200 Hz)

25%ile–95%ile Spectral distribution percentiles:
25%, 50%, 90%, 95% (“rolloff”)

HFC High-frequency content
ZCR Zero-crossing rate
flatness Spectral flatness
flux Spectral flux
slope Spectral slope

Table 4.3: Acoustic features measured for classification experiment (cf. the
features used in Chapter 3 [Table 3.1]).

and so forth.
Feature selection: Stacking features creates very large featuresets and so

risks incurring curse of dimensionality issues, well known in machine learning:
large dimensionalities can reduce the effectiveness of classifiers, or at least re-
quire exponentially more training data to prevent overfitting (see Section 2.3.4).
To circumvent the curse of dimensionality yet combine information from differ-
ent frames, we applied two forms of feature-selection. The first used each of our
24 features once only, but taken at the amount of delay corresponding to the
best class separability for that feature. The second applied a standard feature-
selection algorithm to choose the 24 best features at different delays, allowing it
to choose a feature multiple times at different delays. We used the Information
Gain selection algorithm [Mitchell, 1997, Section 3.4.1] for this purpose.

In total we investigated four featuresets derived from our input features:
the plain non-stacked features, the fully stacked featureset, the stacked feature-
set reduced by class-separability feature-selection, and the stacked featureset
reduced by Information Gain feature-selection.

We used SuperCollider 3.3 [McCartney, 2002] for feature analysis, with Hann
windowing applied to frames before spectral analysis. KL divergence was es-
timated using gaussian kde from the SciPy 0.7.1 package, running in Python
2.5.4, with bandwidth selection by Scott’s Rule. Classification experiments were
performed using Weka 3.5.6 [Witten and Frank, 2005], using ten-fold cross-
validation.
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Figure 4.3: Separability measured by average KL divergence, as a function of
the delay after onset. At each frame the class separability is summarised using
the feature values measured only in that frame. The grey lines indicate the
individual divergence statistics for each of the 24 features, while the dark lines
indicate the median and the 25- and 75-percentiles of these values.

4.1.3 Results

The class separability measured by average KL divergence between classes is
given in Figure 4.3, and the peak values for each feature in Table 4.4. The values
of the divergences cover a broad range depending on both the feature type and
the amount of delay, and in general a delay of around 2 frames (23 ms) appears
under this measure to give the best class separation. Note that this analysis
considers each amount of delay separately, ignoring the information available
in earlier frames. The separability at zero delay is generally the poorest of
all the delays studied here, which is perhaps unsurprising, as the audio frame
containing the onset will often contain a small amount of unrelated audio prior
to the onset plus some of the quietest sound in the beginning of the attack. The
peak separability for the features appears to show some variation, occurring at
delays ranging from 1 to 4 frames. The highest peaks occur in the spectral 25-
and 50-percentile (at 3 frames’ delay), suggesting that the distribution of energy
in the lower part of the spectrum may be the clearest differentiator between the
classes.

The class separability measurements are reflected in the performance of the
Näıve Bayes classifier on our three-way classification test (Figure 4.4). When
using only the information from the latest frame at each delay the data show a
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Figure 4.4: Classification accuracy using Näıve Bayes classifier.

similar curve: poor performance at zero delay, rising to a strong performance at
1 to 3 frames’ delay (peaking at 75.0% for 2 frames), then tailing off gradually
at larger delays.

When using feature stacking the classifier is able to perform strongly at the
later delays, having access to information from the informative early frames, al-
though a slight curse of dimensionality effect is visible in the very longest delays
we investigated: the classification accuracy peaks at 5 frames (77.6%) and tails
off afterwards, even though the classifier is given the exact same information
plus some extra features. Overall, the improvement due to feature stacking is
small compared against the single-frame peak performance. Such a small ad-
vantage would need to be balanced against the increased memory requirements
and complexity of a classifier implemented in a real-time system – although
as previously mentioned, the independence assumption of the classifier allows
frame information to be combined at relatively low complexity.

We also performed feature selection as described earlier, first using the peak-
performing delays given in Table 4.4 and then using features/delays selected
using Information Gain (Table 4.5). In both cases some of the selected features
are unavailable in the earlier stages so the feature set is of low dimensionality,
only reaching 24 dimensions at the 5- or 6-frame delay point. The performance
of these sets shows a similar trajectory to the full stacked feature set although
consistently slightly inferior to it. The Information Gain approach is in a sense
less constrained than the former approach – it may select a feature more than
once at different delays – yet does not show superior performance, suggesting
that the variety of features is more important than the varieties of delay in
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Feature Delay Divergence
mfcc1 3 1.338
mfcc2 3 0.7369
mfcc3 1 0.3837
mfcc4 3 0.1747
mfcc5 1 0.2613
mfcc6 6 0.2512
mfcc7 1 0.1778
mfcc8 2 0.312
centroid 3 1.9857
spread 2 0.5546
scf 2 0.6975
scf1 0 0.1312
scf2 2 0.0658
scf3 4 0.0547
scf4 4 0.0929
25%ile 3 4.6005
50%ile 3 2.9217
90%ile 2 0.8857
95%ile 2 0.6427
HFC 4 0.7245
ZCR 1 0.454
flatness 2 0.6412
flux 1 1.2058
slope 1 1.453

Table 4.4: The delay giving the peak symmetrised KL divergence for each fea-
ture.

classification performance.
The Information Gain feature selections (Table 4.5) also suggest which of

our features may be generally best for the beatbox classification task. The 25-
and 50-percentile are highly ranked (confirming our observation made on the
divergence measures), as are the spectral centroid and spectral flux.

In summary, we find that with this dataset of beatboxing recorded under
heterogeneous conditions, a delay of around 2 frames (23 ms) relative to onset
leads to stronger classification performance.4 Feature stacking further improves
classification results for decisions delayed by 2 frames or more, although at the
cost of increased dimensionality of the feature space. Reducing the dimension-
ality by feature selection over the different amounts of delay can provide good
classification results at large delays with low complexity, but fails to show im-

4Compare e.g. Brossier [2007, Section 5.3.3], who finds that for real-time pitch-tracking of
musical instruments, reliable note estimation is not possible until around 45 ms after onset.
This suggests for example that for a system performing real-time pitch-tracking as well as
event classification, a delay of 23 ms could well be acceptable since it would not be the
limiting factor on overall analysis latency.
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Rank Feature Delay

1 50%ile 2
2 centroid 2
3 50%ile 3
4 centroid 3
5 25%ile 2
6 flux 1
7 flux 2
8 50%ile 4
9 50%ile 1

10 slope 1
11 centroid 1
12 25%ile 3

Rank Feature Delay

13 mfcc1 2
14 90%ile 2
15 slope 2
16 25%ile 1
17 50%ile 5
18 flux 3
19 ZCR 1
20 25%ile 4
21 centroid 4
22 mfcc1 1
23 mfcc1 3
24 90%ile 1

Table 4.5: The 24 features and delays selected using Information Gain, out of a
possible 192.

provement over the classifier performance simply using the features at the best
delay of 2 frames.

In Figure 4.5 we show the waveform and spectrogram of a kick and a snare
from the dataset. The example shows that the snare and kick sounds do not
differ strongly in their spectral content at first – the main difference between the
two sounds is that the snare “fills out” with more energy in the mid and upper
frequencies (above ∼ 1 kHz) after the initial attack. From such evidence and
from our experience of beatboxing techniques, we suggest that this reflects the
importance of the beatboxer’s manipulation of the resonance in the vocal cavity
to create the characteristics of the different sounds. This can induce perceptibly
different sounds, but its effect on the signal does not develop immediately. It
therefore suggests that the experimentally observed benefit of delayed decision-
making may be particularly important for beatboxing sounds as opposed to
some other percussion sounds.

In designing a system for real-time beatbox classification, then, a classi-
fication at the earliest possible opportunity is likely to be suboptimal, espe-
cially when using known onsets or an onset detector designed for low-latency
response. Classification delayed until roughly 10–20 ms after onset detection
would provide better performance. Features characterising the distribution of
the lower-frequency energy (the spectral 25- and 50-percentiles and centroid)
can be recommended for this task.

85



Figure 4.5: Waveform and spectrogram of a kick followed by a snare, from the
beatboxset1 data. The duration of the excerpt is around 0.3 seconds, and the
spectrogram frequencies shown are 0–6500 Hz.

4.2 Perceptual experiment

In Section 4.1 we confirmed that beatbox classification can be improved by
delaying decision-making relative to the event onset. Adding this extra latency
to the audio output may be undesirable in a real-time percussive performance,
hence our proposal that a low-latency low-accuracy output could be updated
some milliseconds later with an improved classification. This two-step approach
would affect the nature of the output audio, so we next investigate the likely
effect on audio quality via a listening test.

Our test will be based on the model of an interactive musical system which
can trigger sound samples, yet which allows that the decision about which sound
sample to trigger may be updated some milliseconds later. Between the initial
trigger and the final classification the system might begin to output the most
likely sample according to initial information, or a mixture of all the possible
samples, or some generic “placeholder” sound such as pink noise. The resulting
audio output may therefore contain some degree of inappropriate or distracting
content in the attack segments of events. It is known that the attack portion
of musical sounds carries salient timbre information, although that information
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is to some extent redundantly distributed across the attack and later portions
of the sound [Iverson and Krumhansl, 1993]. Our research question here is
the extent to which the inappropriate attack content introduced by delayed
decision-making impedes the perceived quality of the audio stream produced.

4.2.1 Method

We first created a set of audio stimuli for use in the listening test. The delayed-
classification concept was implemented in the generation of a set of drum loop
recordings as follows: for a given drum hit, the desired sound (e.g. kick) was
not output at first, rather an equal mixture of kick, hihat and snare sounds was
output. Then after the chosen delay time the mixture was crossfaded (with a
1 ms sinusoidal crossfade) to become purely the desired sound. The resulting
signal could be considered to be a drum loop in which the onset timings were
preserved, but the onsets of the samples had been degraded by contamination
with other sound samples. We investigated amounts of delay corresponding
to 1, 2, 3 and 4 frames as in the earlier classifier experiment (Section 4.1) -
approximately 12, 23, 35 and 46 ms.

Sound excerpts generated by this method therefore represent a kind of ide-
alised and simplified delayed decision-making in which no information is avail-
able at the moment of onset (hence the equal balance of all drum types) and
100% classification accuracy occurs after the specified delay. Our classifier ex-
periment (Section 4.1) indicates that in a real-time classification system, some
information is available soon after onset, and also that classification is unlikely
to achieve perfect classification accuracy. The current experiment factors out
such issues of classifier performance to focus on the perceptual effect of delayed
decision-making in itself.

The reference signals were each 8 seconds of drum loops at 120bpm with one
drum sample (kick/snare/hihat) being played on every eighth-note. Three drum
patterns were created using standard dance/pop rhythms, such that the three
classes of sound were equally represented across the patterns. The patterns were
(using notation k=kick, h=hihat, s=snare):

k k s h h k s h

k h s s k k s h

k h s k h s h s

We created the sound excerpts separately with three different sets of drum
sound samples, which were chosen to be representative of standard dance/pop
drum sounds as well as providing different levels of susceptibility to degradation
induced by delayed classification:

Immediate-onset samples, designed using SuperCollider to give kick/hihat/snare
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sounds, but with short duration and zero attack time, so as to provide a
strong test for the delayed classification. This drum set was expected to
provide poor acceptability at even moderate amounts of delay.

Roland TR909 samples, taken from one of the most popular drum synthe-
sisers in dance music [Butler, 2006, p. 326], with a moderately realistic
sound. This drum set was expected to provide moderate acceptability
results.

Amen break, originally sampled from “Amen brother” by The Winstons and
later the basis of jungle, breakcore and other genres, now the most popular
breakbeat in dance music [Butler, 2006, p. 78]. The sound samples are
much less “clean” than the other sound samples (all three samples clearly
contain the sound of a ride cymbal, for example). Therefore this set was
expected to provide more robust acceptance results than the other sets,
yet still represent a commonly-used class of drum sound.

The amplitude of the three sets of audio excerpts was adjusted manually by the
first author for equal loudness.

Tests were performed within the “MUlti Stimulus test with Hidden Refer-
ence and Anchor” (MUSHRA) standard framework [International Telecommu-
nication Union, 2003]. In the MUSHRA test participants are presented with
sets of processed audio excerpts and asked to rate their basic audio quality in
relation to a reference unprocessed audio excerpt. Each set of excerpts includes
the unprocessed audio as a hidden reference, plus a 3.5 kHz low-pass filtered
version of the excerpt as a low-quality anchor, as well as excerpts produced by
the systems investigated.

Our MUSHRA tests were fully balanced over all combinations of the three
drum sets and the three patterns, giving nine trials in total. In each trial,
participants were presented with the unprocessed reference excerpt, plus six
excerpts to be graded: the hidden reference, the filtered anchor, and the delayed-
decision versions at 1, 2, 3 and 4 frames’ delay (see Figure 4.6 for a screenshot
of one trial). The order of the trials and of the excerpts within each trial was
randomised.

Participants: We recruited 23 experienced music listeners (17 men and 6
women) aged between 23 and 43 (mean age 31.3). Tests took around 20–30
minutes in total to complete, including initial training, and were performed
using headphones.

Post-screening was performed by numerical tests combined with manual
inspection. For each participant we calculated correlations (Pearson’s r and
Spearman’s ρ) of their gradings with the median of the gradings provided by
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Figure 4.6: The user interface for one trial within the MUSHRA listening test.

the other participants. Any set of gradings with a low correlation was inspected
as a possible outlier. Any set of gradings in which the hidden reference was not
always rated at 100 was also inspected manually. (Ideally the hidden reference
should always be rated at 100 since it is identical to the reference; however,
participants tend to treat MUSHRA-type tasks to some extent as ranking tasks
[Sporer et al., 2009], and so if they misidentify some other signal as the high-
est quality they may penalise the hidden reference slightly. Hence we did not
automatically reject these.)

We also plotted the pairwise correlations between gradings for every pair
of participants, to check for subgroup effects. No subgroups were found, and
one outlier was identified and rejected. The remaining 22 participants’ gradings
were analysed as a single group.

The MUSHRA standard [International Telecommunication Union, 2003] rec-
ommends calculating the mean and confidence interval for listening test data.
However, the grading scale is bounded (between 0 and 100) which can lead
to difficulties using the standard normality assumption to calculate confidence
intervals, especially at the extremes of the scale. To mitigate these issues we
applied the logistic transformation [Siegel, 1988, Chapter 9]:

z = log
x+ δ

100 + δ − x
, (4.2)
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(a) Immediate-onset
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(c) Amen break

Figure 4.7: Results from the listening test, showing the mean and 95% confi-
dence intervals (calculated in the logistic transformation domain) with whiskers
extending to the 25- and 75-percentiles. The plots show results for the three
drum sets separately. The durations given on the horizontal axis indicate the
delay, corresponding to 1/2/3/4 audio frames in the classification experiment.

where x is the original MUSHRA score and the δ is added to prevent boundary
values from mapping to ±∞ (we used δ = 0.5). Such transformation allows
standard parametric tests to be applied more meaningfully (see also Lesaffre
et al. [2007]). We calculated our statistics (mean, confidence intervals, t-tests)
on the transformed values z before projecting back to the original domain.

The audio excerpts, participant responses, and analysis script for this exper-
iment are published online.5

4.2.2 Results

For each kit, we investigated the differences pairwise between each of the six
conditions (the four delay levels plus the reference and anchor). To determine
whether the differences between conditions were significant we applied the paired
samples t-test (in the logistic z domain; d.f. = 65) with a significance threshold
of 0.01, applying Holm’s procedure to control for multiple comparisons [Shaffer,
1995]. All differences were significant with the exception of the following pairs:

• Immediate-onset samples:

– anchor and 12 ms

– 23 ms and 35 ms

– 35 ms and 46 ms
5http://archive.org/details/dsmushradata09
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• Roland TR909 samples:

– anchor and 35 ms

– anchor and 46 ms

The logistic transformation mitigates against boundary effects when applying
parametric tests. However the MUSHRA standard does not propose such trans-
formation, so as an additional validation check we also applied the above test
on the data in its original domain. In this instance the significance testing
produced the same results.

Figure 4.7 summarises the results of the listening test. It confirms that
for each of the drum sets, the degradation is perceptible by listeners since the
reference is readily identifiable, and also that the listening quality becomes worse
as the delay lengthens. It also demonstrates that the three drum sets vary in
their robustness to this degradation, as expected.

The immediate-onset drum set was designed to provide a kind of lower bound
on the acceptability, and it does indeed show very poor gradings under all of the
delay lengths we investigated. Participants mostly found the audio quality to
be worse than the low-pass filtered anchor, except in the 12 ms condition where
no significant difference from the anchor was found, so we say that participants
found the audio quality to be similarly poor as the anchor. For such a drum
set, this indicates that delayed decision-making would likely be untenable.

The other two sets of drum sounds are more typical of drum sounds used in
popular music, and both are relatively more robust to the degradation. Sound
quality was rated as 60 or better (corresponding in the MUSHRA quality scale
to good or excellent) at 12 ms for the TR909 set, and up as far as 35 ms for
the Amen set. Even at 46 ms delay, the acceptability for the Amen set is much
greater than that for the immediate-onset set at 12 ms delay.

When applied in a real-world implementation, the extent to which these per-
ceptual quality measures reflect the amount of delay acceptable will depend on
the application. For a live performance in which real-time controlled percussion
is one component of a complete musical performance, the delays corresponding
to good or excellent audio quality could well be acceptable, in return for an
improved classification accuracy without added latency.

4.3 Conclusions

We have investigated delayed decision-making in real-time classification, as a
strategy to allow for improved characterisation of events in real time without
increasing the triggering latency of a system. This possibility depends on the
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notion that small signal degradations introduced by using an indeterminate
onset sound might be acceptable in terms of perceptual audio quality.

We introduced a new real-world beatboxing dataset beatboxset1 and used it
to investigate the improvement in classification that might result from delayed
decision-making on such signals. A delay of 23 ms generally performed strongly
out of those we tested. This compares favourably with e.g. the 45 ms minimum
delay for pitch-tracking reported by Brossier [2007, Section 5.3.3]. Neither fea-
ture stacking nor feature selection across varying amounts of delay led to strong
improvements over this performance.

In a MUSHRA-type listening test we then investigated the effect on percep-
tual audio quality of a degradation representative of delayed decision-making.
We found that the resulting audio quality depended strongly on the type of
percussion sound in use. The effect of delayed decision-making was readily
perceptible in our listening test, and for some types of sound delayed decision-
making led to unacceptable degradation (poor/bad quality) at any delay; but
for common dance/pop drum sounds, the maximum delay which preserved an
excellent or good audio quality varied from 12 ms to 35 ms.
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Chapter 5

Continuous paradigm:

timbre remapping

Chapter 4 represents an event-based paradigm for synthesiser control, an ap-
proach which has to some extent been dominant in digital music research (see
for example the classification papers referred to in that chapter). However we
wish in the longer term to move towards systems which can reflect the rich
complexity of vocal expression, which means moving beyond a simplistic model
such as classification over a small number of event types. It may mean aug-
menting such events with information that serves a kind of adjectival role (a
“soft” snare, a “crisp” snare, etc.), or some aspect of fuzzy categorisation for
data whose boundaries are themselves fuzzy. It may mean augmenting the
events with information about modulations over time (a humming sound may
begin gently but increase in harshness) or with longer-term information such as
recognition of patterns (e.g. a drum-and-bass breakbeat pattern, which implies
genre-derived roles for the constituent sounds which may not be discernible from
the events considered in isolation).

But it may mean moving away from such categorisations, since the event
model may well break down in various cases such as: sounds which combine
aspects of two categories; sounds which overlap in time; indeterminate sounds
which mean different things to different listeners. Further, the categorical ap-
proach could be said to apply a false emphasis to the basic categories chosen,
even if modulations and variants are incorporated as extensions to the model.
Human music perception is sufficiently rich, context-sensitive and culturally in-
formed that it may be better to attempt to reproduce timbral variation in a
continuous way, and allow the listener to interpret the continuous audio stream
as an interplay of events and modulations as appropriate.

93



This is the motivation for this chapter, to develop methods for voice timbral
control of synthesisers that are continuous in nature. We wish to take expres-
sive vocal timbre modulations and reproduce them as timbre modulations in a
synthesiser’s output, which presents a kind of mapping problem in two senses.
We must derive relationships between the input controls for the synthesiser and
its output timbre. But we must also map vocal timbre usefully into target syn-
thesiser timbre, in a way which accounts for broad differences between the two
– the underlying distributions of the two are not the same (since they are not
capable of the same range of timbres) and so the mapping should be able to
infer timbral analogies. For example, if a singer produces their brightest sound,
then it is reasonable that the best expressive mapping would be to the brightest
sound that the target synthesiser can achieve, whether that is brighter or duller
than the input.

In the present work we are considering instantaneous timbre as represented
in the features discussed in Chapter 3. The temporal evolution of sounds can be
modelled and may provide useful information for timbre-based control, but we
leave that consideration for future work and focus on control through instanta-
neous timbre.

The organisation of this chapter is as follows: we first introduce our approach
to this task, which we call timbre remapping, comparing it to related research
in the field, and describing our early explorations based on existing machine
learning methods. Those methods showed some limitations for the task in hand,
so we then describe a novel method based on regression tree learning (Section
5.2). We demonstrate the application of this approach to timbre remapping in
an experiment using concatenative synthesis, before concluding by discussing
prospects for the future of such methods.

Note that the following chapter (Chapter 6) develops a user evaluation
method and applies it to a timbre remapping system. Our empirical perspective
on timbre remapping will therefore consist of that user evaluation taken together
with the numerical experiments described in this chapter (Section 5.3).

5.1 Timbre remapping

The basis of what we call timbre remapping is outlined in Figure 5.1. We con-
sider two probability distributions within a common space defined by a set of
timbre features: one for the voice source, and one for the target synthesiser
(synth). These two distributions have common axes, yet they may have differ-
ent ranges (e.g. if the synth has a generally brighter sound than the voice) or
other differences in their distributions. Given a timbre space as defined using
acoustic features as discussed in Chapter 3, then, timbre remapping consists of
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Figure 5.1: Overview of timbre remapping. Timbral input is mapped to syn-
thesiser parameters by a real-time mapping between two timbre spaces, in a
fashion which accounts for differences in the distribution of source and target
timbre.

taking each vocal timbre coordinate and inferring a good choice of synth timbre
coordinate to produce in response, and inferring the synth controls to use to
create this timbre.

The mapping from vocal timbre coordinate to synth timbre coordinate could
take a number of forms. It could be an identity mapping, making no correction
for the different distributions of vocal vs. synth timbre. In some cases this
might be useful, but generally we consider that this is less likely to be useful for
expressive performance since it may generally put some synth settings beyond
reach. This could be accommodated by a relatively simple normalisation (e.g.
of mean and variance), which would eliminate broad differences of location but
would not in general bring the distributions into strong alignment – it would
not account for differences in the shapes of the distributions. Figure 5.3 (later
in this chapter) is an illustrative example, in which the timbral distributions of
two sound excerpts visibly exhibit general structural similarities but differences
in shape.

Whatever the mapping, we wish it to be induced automatically from unla-
belled timbre data, so that it can be applied to large datasets and/or a wide
variety of synthesisers without requiring a large investment of human effort
in annotation. In this chapter we will consider different types of mapping.
Note that we broadly wish mappings to preserve orientation in timbre space:
increased brightness in the source signal should generally produce increased
brightness in the target signal, and so on.1

There is also a choice to be made in how synth timbre coordinates could be
mapped (or “reverse engineered”) into synth controls. If one can assume some
parametric relationship between a control and a timbral attribute then one could
infer the continuous mapping. For example, many synths have low-pass filters,

1“Brightness” was discussed in Sections 2.3.3 and 3.2.2.
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whose cutoff frequency often has a direct connection with brightness; in such a
case one could restrict mappings to linear or polynomial functions, to be fitted
to data. However more generally such a neat relationship cannot be assumed.
For example, frequency modulation (FM) synthesis is a relatively simple and
widespread parametric synthesis technique, yet the relationship between input
parameters and the output timbre is famously non-trivial [Chowning, 1973].
Many other modern techniques such as granular synthesis [Roads, 1988] or con-
catenative synthesis [Schwarz, 2005] have similarly intricate and nonlinear re-
lationships between controls and timbre, as do commercial synthesiser circuits
[General Instrument, 1979]. Therefore it may be preferable to use nonparamet-
ric techniques such as nearest-neighbour (NN) search to connect timbres with
the synth controls which could produce them. This has some disadvantages –
we lose the smooth interpolation of parameters that a parametric model could
provide – but will preserve the general applicability of the technique to a wide
variety of real-world synthesisers.

5.1.1 Related work

Previous work has investigated audio-driven systems which use continuous tim-
bre features as input, whether for controlling audio effects [Verfaille et al., 2006]
or synthesising sound [Beauchamp, 1982] – note in particular the work of Janer
[2008] who like us focuses on real-time mapping from voice to instrumental
timbre. However these depend on a fixed or user-specified mapping between
input timbre and the algorithm controls, rather than automatic inference of the
relationship.

Work also exists which performs automatic inference by finding a closest
match between input and output timbre spaces [Puckette, 2004, Hoffman and
Cook, 2007, Janer and de Boer, 2008]. These all operate via a relatively straight-
forward NN search, typically using a Euclidean distance metric, and so they
may not address issues discussed above about accommodating the differences
between distributions and learning to make the desired “analogies” between
timbral trajectories.

5.1.2 Pitch–timbre dependence issues

It is standard practice and often convenient to treat pitch and timbre as separa-
ble aspects of musical sound (Section 2.3.3), whether considered as perceptual
phenomena or as the acoustic features we measure to represent them. For ex-
ample many synthesisers have a fundamental frequency control: in such cases,
although there may be other controls which affect the fundamental frequency
(such as a vibrato control), the frequency control is typically the overwhelm-
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ing determinant of the pitch of the output, while other controls may separately
affect the timbre. Yet as discussed in Section 2.3.3 there is psychoacoustic ev-
idence of some interactions between the perception of pitch and timbre, and
some common acoustic features used for timbre analysis can be affected when
the fundamental frequency of the signal varies. So although our focus is on
acoustic timbre features, it is worth considering the role of pitch estimation in
our approach.

In Section 3.1 we included an autocorrelation-based pitch estimate as a can-
didate feature. One approach to handling pitch could be to follow Schoenberg
(see quote in Section 2.3.3) and treat this simply as if it were any other timbre
feature. This has a conceptual simplicity, and may have particular advantages –
for example if we apply a decorrelation process to such data then the inclusion
of the pitch dimension could help to separate the influence of pitch out from
the other dimensions. However, it could also have important drawbacks: as we
have argued, timbre remapping will need to take account of relative/contextual
aspects of timbre – yet human pitch perception is closely related to fundamental
frequency [van Besouw et al., 2008] and very sensitive to the octave relation-
ships between notes [Houtsma and Smurzynski, 1990]. This tends to imply that
our mapping process should not be deriving a nonlinear mapping of pitch, but
rather should be able pass the estimated pitch directly to the target synthesiser,
if it has a fundamental frequency input.

We therefore allocate a dual role for pitch estimation in the remapping pro-
cess, illustrated in Figure 5.2. It is included in our set of potential timbre
features, creating a timbre space in which pitch-dependencies can be implic-
itly accounted for, since this leaves open the possibility for mappings from two
sounds to differ even if they differ only in estimated pitch and not in our timbre-
features. Yet the pitch estimate can also be passed directly through to the target
synth if there is a fundamental frequency control. If so, then any settings for
the fundamental frequency control which are retrieved by the remapping are
overridden by the information from the pitch tracker.

The remainder of this chapter discusses the development of two approaches
to timbre remapping. In both of them, pitch tracking takes the dual role just
described, although in Section 5.3.1 we present an experimental evaluation in
which the role of pitch is deliberately minimised in order to focus on timbral
aspects.

5.1.3 Nearest-neighbour search with PCA and warping

Using nearest-neighbour (NN) search is an obvious candidate for a mapping
scheme such as timbre remapping, being simple in concept and in implementa-
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Figure 5.2: Pitch tracking serves a dual role in the timbre remapping process.
It is used as an input “timbre feature”, and if the target synth has a frequency
control then it also directly drives that control. If the target synth does not
have a frequency control then the estimated pitch is treated like any other
timbre feature.

tion. The NN concept can be applied to a wide variety of metric spaces and a
variety of distance metrics can be used [Chávez et al., 2001], although in the
current context is typically implemented using Euclidean distance (see cited
works in Section 5.1.1), on raw or normalised timbre features.

Two problems for the basic form of the NN search have already been raised.
One is the curse of dimensionality, affecting search in high-dimensional spaces;
and one is the difference in data distributions which may inhibit the ability of
the NN search to produce useful timbral analogies. However, it may be that
some modification or preprocessing steps could mitigate these issues and allow
NN search to be applied usefully.

Our first approach to timbre remapping is indeed based on a NN search using
Euclidean distance, with preprocessing applied to the timbre data to alleviate
these two potential issues. We next consider each of the two issues and introduce
the preprocessing steps which our implementation uses to alleviate them.

Curse of dimensionality; dimension reduction

Timbre spaces may often be of high dimensionality, being derived from a large
number of acoustic features (e.g. the large featuresets used in Chapters 3 and
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4). With high-dimensional spaces, the curse of dimensionality (Section 2.3.4)
becomes a concern, and may reduce the effectiveness of NN search.

In Section 2.3.4 we introduced the concepts of feature selection and dimen-
sion reduction, either of which can be applied to mitigate the curse of dimension-
ality by projecting the data into a lower-dimensional space. One well-understood
dimension reduction technique is Principal Component Analysis (PCA), which
finds an orthogonal set of axes along which most of the variance in the data
set lies [Morrison, 1983, Section 7.4]. By projecting the data onto these axes,
a lower-dimensional dataset is created, which will typically discard some of the
variation from the full dataset; however the PCA axes produced will conserve
the largest amount of variance possible given the number of dimensions in the
output. (The dimensionality of the output is a free parameter, not determined
by the PCA algorithm, and so must be user-specified based on requirements or
heuristics.) Further, the PCA axes are decorrelated, which can be beneficial for
some tasks.

PCA is relatively simple to implement, and once the projection has been
determined it is easy to apply: the projection is simply a matrix rotation,
which can typically be carried out in a real-time system without imposing a
large processing burden. Therefore in our NN lookup we use a PCA projection
onto four dimensions as a preprocessing step. Choosing a 4D projection (i.e.
the first 4 principal components) is relatively arbitrary but is motivated by the
timbre literature discussed in Section 2.3.3 as well as studies such as reported by
Alder et al. [1991] who argue that the intrinsic dimensionality of speech audio
“may be about four, in so far as the set can be said to have a dimension”.

Differing data distributions; warping

A key feature of the timbre remapping process should be the ability to map
from one type of sound input onto a very different sound type. One issue is that
the timbral measurements made on the ‘source’ and ‘target’ audio will often
occupy different regions of the timbral space, as discussed in Section 5.1. Range
normalisation could be used to align the source and target timbre spaces, but
would be unable to account for differences in the shapes of the distributions,
and so is only a partial solution.

One way to mitigate the effect of differences between data distributions is
to transform the data to satisfy specific requirements on the distribution shape.
Standardising the mean and variance, or the range, are simple transformations
in this category; others include those which transform distributions to a more
Gaussian shape (Gaussianisation) [Xiang et al., 2002], and the probability inte-
gral transform (PIT) which transforms univariate data (or the marginal distri-
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Figure 5.3: Two-dimensional PCA projections of timbre coordinates derived
from analysis of the Amen breakbeat (left) and thunder (right) sound excerpts
(described in Section 5.3.1). The timbre distributions have broad similarities in
structure as well as differences: both show a non-linear interaction between the
two axes yielding a curved profile; yet the second plot exhibits a sharper bend
and a narrower distribution in the upper-left region. The common PCA rotation
used for both projections was calculated using the balanced concatenation of
the separately-standardised datasets (Equation (5.4)).

butions of multivariate data) to the uniform distribution U(0, 1) [Angus, 1994,
Nelsen, 2006]. Such methods are typically quite generally applicable, and the
choice of which to use will depend on what is to be done with the data in later
processing.

In this context – timbre-remapping using NN search on PCA-transformed
timbre data – we wished to transform the data so that the data space was “well-
covered” in the sense that any input data point would have a roughly equal
chance of finding a nearest neighbour within a small radius. This translates
quite naturally into a requirement to produce approximately uniform output
distributions. We also wished to design a transformation which was efficient
enough to run in real time and amenable to online learning (Section 2.3.4).
The PIT is slightly problematic in this regard: it could be estimated from
partial data (and therefore usable in online learning) but this would require the
maintenance and updating of a large number of data quantiles in memory, which
requires the maintenance of a list of data points received so far (or another layer
of approximation [Chen et al., 2000]).

Instead we designed a linear piecewise warping using the statistics of mini-
mum, maximum, mean and standard deviation, all of which statistics can easily
be calculated online for an unbounded number of inputs. Given those statistics,
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Figure 5.4: Illustration of the linear piecewise warping procedure, mapping
regions of the data distribution to fixed intervals in the output (y axis).

our warping transformation is

f(x) =


(0.5− k) x−αx

(x̄−σx)−αx if x < (x̄− σx),

2k x−(x̄−σx)
(x̄+σx)−(x̄−σx) + (0.5− k) if (x̄− σx) ≤ x ≤ (x̄+ σx),

(0.5− k) x−(x̄+σx)
ωx−(x̄+σx) + (0.5 + k) if (x̄+ σx) < x

(5.1)

where αx, ωx, x̄ and σx are respectively the minimum, maximum, mean and
standard deviation of input data x (estimated from sample statistics), and k a
constant which controls the shape of the output distribution (0 < k < 0.5). Fig-
ure 5.4 depicts the application of f(x) graphically. A typical warping with k =
0.25 might remap the minimum to 0, the mean-minus-one-standard-deviation
to 0.25, the mean to 0.5, the mean-plus-one-standard-deviation to 0.75, and the
maximum to 1. This is applied separately to each axis of our data. Figure
5.5 shows examples of the piecewise linear warping applied to different types of
distribution.

The flow of information processing from audio through the PCA and warping
steps to the well-covered timbre space is illustrated in Figure 5.6a. Timbre
remapping in such a space is implemented by mapping an input point into
the space (with a warping dependent on the source type, e.g. voice) and then
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Figure 5.5: Illustration of the linear piecewise warping used in the PCA-based
system, applied to sampled data from three types of distribution (uniform, Gaus-
sian, and exponential). The distributions become more similar in the way they
span the space. In this example all distributions are changed (for illustrative
purposes) but with a suitable choice of the linear piecewise warping parameters,
a transform can be produced which tends to leave e.g. uniformly-distributed
data unchanged.

performing a NN search for a datum from the training set for the target synth.
(The coordinates in the training set for the target synth are projected and
warped in analogous fashion.) The control settings associated with that nearest
neighbour are then sent to the synthesiser.

Implementation

We implemented the system in SuperCollider 3.3, providing components for the
PCA rotation, the linear piecewise warping, and the NN lookup. All components
were implemented to be amenable to online learning, with the exception of the
learning of the PCA rotation matrix (although that is possible [Artac et al.,
2002]) since offline PCA analysis was simplest to implement for prototyping.

Results

The PCA-based method was applied to a small selection of synths. We derived
warping statistics for each synth as well as for a voice dataset, and built NN
lookup tables for each synth based on random sampling of synth control settings.

In informal testing (with live microphone input) during development, we
found that the method produced good mappings for some synths. The ay1

synth and this PCA-based method formed the basis of a system used for live
performances and demonstrations – notably, it was selected as a finalist in the
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(a) PCA-based (see Section 5.1.3) (b) SOM-based (see Section D)

Figure 5.6: The PCA- and SOM-based approaches used to create a “well-
covered” timbre space from audio data.

Guthman New Musical Instrument Competition 2009, held at Georgia Tech
university (Altanta, Georgia, USA).2 We then conducted a formal evaluation
with a group of users, using the PCA-based method with one particular synth;
the study found good results, encouraging the development of timbre remapping
as an interface to vocal music-making. We defer discussion of the formal user
evaluation study to Chapter 6, when we will broadly consider issues of evaluating
such systems before concentrating on the evaluation of our timbre remapping
system.

However we encountered some difficulties in applying the PCA-based method
to some synths, in particular those with a large number of control settings.
This may be because of the difficulties in sampling a large space of possible

2http://www.wired.com/gadgets/mods/multimedia/2009/03/gallery_instruments
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control setting combinations. During the development process this led us to
consider that the approach may be limited by its rather fragmented treatment
of timbre space, as we will next discuss. In fact, in a quantitative experiment to
be described later in this chapter (Section 5.3.1) we derived numerical results
which suggest the improvement over a standard NN search is only modest.

Issues

One issue with the PCA-based method is that the piecewise warping is a rather
arbitrary approach to standardising the shapes of distributions, and has some
practical problems. One problem is visible in Figure 5.5, in that the piecewise
nature of the transformation leads to rather odd changes in distribution den-
sities at the transition points between differently-warped regions. There are
also questions about NN search for data points near the transition points: if
for example a point has two nearest neighbours in the warped space, one of
which lies in the same region and one of which lies in a neighbouring region, is
it reasonable to treat them as equally near?

Strongly skewed data would also cause a technical issue for our chosen warp-
ing scheme (Equation 5.1) since for example the mean-plus-one-standard devi-
ation could extend beyond the data maximum, which would cause problems for
our mapping function. One could swap or limit the mapping points in such
cases, but such considerations primarily serve to highlight the arbitrary nature
of the mapping.

A more fundamental issue with the scheme is that it is unable to account for
dependences between the data axes. Since the warping is applied independently
for each of the axes, it can only affect aspects of the marginal distribution,
and cannot remove interactions in the joint distribution. For example, the
interaction between dimensions shown in Figure 5.3 means that the warping
process would leave a large unoccupied region within the joint density (in the
top-right of the plots), where the nearest neighbour to an input point could
actually be rather far away. Results from the quantitative experiment described
later (Section 5.3.1) provide some evidence that such issues may indeed limit
the usefulness of our modifications to NN search.

There are many ways one could address such issues, e.g. by designing some
multidimensional warping scheme. However, there exist algorithms in the exist-
ing machine learning literature which can learn the structure of a data distribu-
tion in a continuous multidimensional space, and even provide a data structure
which could be useful in performing the remapping. These hold the potential to
support the timbre remapping process in a more theoretically elegant way than
the PCA-based method, combining aspects of dimension reduction, nonlinear
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mapping, and lookup into one scheme. In Appendix D we report investigations
in using the Self-Organising Map (SOM) algorithm [Kohonen, 2001] for this
purpose – investigations which were not ultimately fruitful, for reasons we con-
sider in the appendix. In the remainder of this chapter we investigate a novel
approach based on regression trees which is well-suited to our task.

5.2 The cross-associative multivariate regression

tree (XAMRT)

To recap, we seek a technique which can learn the structure (including nonlin-
earities) of separate timbre data distributions in a timbre space (where the data
distributions may be of relatively low intrinsic dimensionality compared against
the extrinsic dimensionality, i.e. that of the space), and can learn to project
from one such distribution into another so as to retrieve synth control settings.
In this section we introduce a family of algorithms which perform an efficient
nonparametric analysis of data distributions, and then introduce a novel variant
which is well-suited to timbre remapping. We demonstrate this with a quantita-
tive experiment on timbre remapping, and also show the potential application of
our algorithm to other domains, through an experiment on speech vowel data.

The family of techniques known as classification and regression trees (CART)
[Breiman et al., 1984] was developed as a computationally efficient nonparamet-
ric approach to analysing structure in a multivariate dataset, with a class label
or a continuous-valued response variable to be predicted by the independent
variables. The core concept is to recursively partition the dataset, at each step
splitting it into two subsets using a threshold on one of the independent vari-
ables (i.e. a splitting hyperplane orthogonal to one axis). The choice of split
at each step is made to minimise an “impurity” criterion (defined later) for the
value of the response variable in the subsets. When the full tree has been grown
it is likely to overfit the distribution, so it is typically then pruned by merging
branches according to a cross-validation criterion to produce an optimally-sized
tree.

CART methods have found application in a variety of disciplines and have
spawned many variants [Murthy, 1998]. Classification and regression using such
an algorithm are different but thematically similar; Breiman et al. [1984] develop
both types, giving methods for choosing which split to make at each step, as well
as pruning criteria. Classification trees are perhaps more commonly used than
regression trees; here we focus on the latter. Note that tree-based methods are
not restricted to datasets with an underlying hierarchical structure, rather they
provide an efficient approach to general nonparametric modelling of the variation

105



and structure within a dataset. Tree methods are attractive in our context of
timbre remapping because the recursive partitioning provides a generic approach
to partitioning multidimensional distributions into regions of interest at multiple
scales, with a common structure (e.g. a binary tree) that we might be able to
use to association regions of different distributions one with another.

The standard CART is univariate in two senses: at each step only one vari-
able is used to define the splitting threshold; and the response variable is uni-
variate. The term “multivariate” has been used in the literature to refer to
variants which are multivariate in one or other of these senses: for example
Questier et al. [2005] regress a multivariate response variable, while Brodley
and Utgoff [1995] use multivariate splits in constructing a classification tree;
Gama [2004] considers both types of multivariate extension. In the following we
will refer to “multivariate-response” or “multivariate-splits” variants as appro-
priate. Multivariate-splits variants can produce trees with reduced error [Gama,
2004], although the trees will usually be harder to interpret since the splitting
planes are more conceptually complex.

We next consider a particular type of regression tree which was proposed for
the unsupervised case, i.e. it does not learn to predict a class label or response
variable, rather the structure in the data itself. We will extend this tree to
include multivariate splits, before considering the cross-associative case.

5.2.1 Auto-associative MRT

Regression trees are studied in a feature-selection context by Questier et al.
[2005], including their application in the unsupervised case, where there is no
response variable for the independent variables to predict. The authors propose
in that case to use the independent variables also as the response variables,
yielding a regression tree task with a multivariate response which will learn
the structure in the dataset. In their feature-selection application, this allows
them to produce an estimate of the variables that are “most responsible” for the
structure in the dataset. However the strategy is quite general and could allow
for regression trees to be used on unlabelled data for a variety of purposes.
It is related to other data-dependent recursive partitioning schemes, used for
example in estimation of densities [Lugosi and Nobel, 1996] or information-
theoretic quantities (Appendix A).

Splitting criterion

In constructing a regression tree, a choice of split must be made at each step.
The split is chosen which minimises the sum of the “impurity” of the two re-
sulting subsets, typically represented by the mean squared error [Breiman et al.,
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1984, Section 8.3]:

impurity(α) =
nα∑
i=1

(yi − ȳ)2 (5.2)

where nα is the number of data points in the subset α under consideration, and
ȳ the mean of the sampled values of the response variable yi for the points in
α.

Questier et al. [2005] use the multivariate-response generalisation

impurity(α) =
nα∑
i=1

p∑
j=1

(yij − ȳj)2 (5.3)

with definitions as in (5.2) except that the yi (and therefore also ȳ) are now
p-dimensional vector values, with j indexing over the dimensions. In the auto-
associative case the yij are the same as the xij , the variables by which the
splitting planes will be defined.

The impurity measures (5.2) and (5.3) are equivalent to the sum of variances
in the subsets, up to a multiplication factor which we can disregard for the
purposes of minimisation. By the law of total variance (see e.g. Searle et al.
[2006, Appendix S]), minimising the total variance within the subsets is the same
as maximising the variance of the centroids; therefore the impurity criterion
selects the split which gives the largest difference of the centroids of the response
variable in the resulting subsets.

In the feature-selection task of Questier et al. [2005] it is the univariate splits
which are counted for feature evaluation, so a multivariate-splits extension would
not be appropriate. We are not performing feature-selection but characterising
the data distributions; as explored by Gama [2004] it may be advantageous
to allow multivariate splits to reduce error. Further, if we are not performing
feature-selection then we wish to allow all dimensions to contribute towards our
analysis of the data structure, which may not occur in cases of limited data: if
there are N data points then there can be no more than around log2N splits
used to reach a leaf in a balanced binary tree, which could be fewer than the
number of dimensions. We therefore extend the AAMRT approach by allowing
multivariate splits.

The hyperplane which splits a dataset into two subsets with the furthest-
separated centroids is simply the hyperplane perpendicular to the first principal
component in the centred data. This multivariate-splits variant of AAMRT
allows for efficient implementation since the leading principal component in a
dataset can be calculated quickly e.g. by expectation-maximisation [Roweis,
1998].
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5.2.2 Cross-associative MRT

Auto-associative MRT may be useful for discovering structure in an unlabelled
dataset [Questier et al., 2005]. Here we wish to adapt it such that it can be used
to analyse structural commonalities between two unlabelled datasets, and learn
associations between the two. Therefore we now develop a variant that is cross-
associative rather than auto-associative; we will refer to it as cross-associative
MRT or XAMRT.

Our assumptions will be that the two datasets are i.i.d. samples from two
distributions which have broad commonalities in structure and orientation in
the measurement space, but that there may be differences in location of regions
between the distributions. These may be broad differences such as the location
(centroid) or dispersion (variance) along one or many dimensions, or smaller-
scale differences such as the movement of a small region of the distribution
relative to the rest of the distribution. Some examples of situations where these
assumptions are reasonable will be illustrated in the experiments of Section 5.3.

The AAMRT approach is adaptable to the case of two data distributions
simply by considering the distributions simultaneously while partitioning – in
other words, we determine the splitting plane based on the union of the datasets
(or of subsets therefrom). However, we allow the two distributions to have dif-
ferences in location by perform centring separately on each distribution, before
combining them for the purpose of finding a common principal component.
Therefore the orientation of the splitting plane is common between the two, but
the exact location of the splitting plane can be tailored to the distribution of
each separate dataset. We perform this centring at each level of the recursion,
which creates an algorithm which allows for differences in location both overall
and in smaller subregions of the distributions. This is illustrated schematically
in Figure 5.7.

If the datasets contain unequal numbers of data points then the larger set
will tend to dominate over the smaller in calculating the principal component.
To eliminate this issue we weight the calculation so as to give equal emphasis to
each of the datasets, equivalent to finding the principal component of the union
J of weighted datasets:

J = (NY (X − CX)) ++ (NX(Y − CY )) (5.4)

where X and Y represent the data (sub)sets, CX and CY their centroids, and
NX and NY the number of points they contain.

By recursively partitioning in this way, the two datasets are simultaneously
partitioned in a way which reflects both the general commonalities in structure
(using splitting hyperplanes with a common orientation) and their differences
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Figure 5.7: Schematic representation of the first two steps in the XAMRT re-
cursion. In the first step (top), the centroids of each dataset are calculated
separately, and then a splitting plane with a common orientation is chosen.
The second step (bottom) is the same but performed separately on each of the
partitions produced in the first step.

in location (the position of the hyperplanes, passing through the centroids of
subsets of each dataset) (Figure 5.7). The tree structure defines two different
partitions of the space, approximating the densities of the two distributions,
and pairing regions of the two distributions.

The tree thus produced is similar to a standard (i.e. neither auto-associative
nor cross-associative) multivariate-response regression tree, in that it can predict
a multivariate response from multivariate input. However it treats the two
distributions symmetrically, allowing projection from either dataset onto the
other. Unlike the AAMRT it does not require the input data to be the same as
the response data.

Pruning criterion

Allowing a regression tree to proceed to the maximum level of partitioning will
tend to overfit the dataset. Criteria may be used to terminate branching, but a
generally better strategy (although more computationally intensive) is to grow
the full tree and then prune it back by merging together branches [Breiman
et al., 1984, Chapter 3]. In the CART framework, the standard measure for
pruning both classification and regression trees is crossvalidation error within
a branch: a normalised average over all data points of the error that results
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from estimating the label of each datum from the other data labels [Breiman
et al., 1984, Chapters 3 and 8]. Branches which exhibit crossvalidation error
above a user-specified threshold are merged into leaf nodes, so as to improve
the stability and generality of the tree.

In our case this approach cannot be applied directly because we consider the
unsupervised case, i.e. without labels. In Questier et al. [2005] the unlabelled
data are used to predict themselves, meaning that the tree algorithm does in fact
see (multivariate) labels attached to the data and the crossvalidation measure
can be used. We wish to associate two separate distributions whose data points
are not paired, and so such a strategy is not available to us.

Instead, we propose to apply the crossvalidation principle to the splitting
hyperplanes themselves, producing a measure of the stability of a multivariate
split. This would penalise splitting hyperplanes which were only weakly justified
by the data, and so produce a pruned tree whose splits were relatively robust
to outliers and noise. Our crossvalidation measure is calculated using a leave-
one-out (“jackknife”) procedure as follows: given a set of N data points whose
first principal component p has been calculated to give the proposed splitting
plane, we calculate

R =
1
N

N∑
i=1

abs(p · p̂i) (5.5)

where p̂i is the first principal component calculated after excluding datum i.
A measured principal component may be flipped by 180◦ yet define the same
splitting hyperplane (cf. Gaile and Burt [1980]), hence our measure is designed
to consider the orientation but not the direction of the principal component
vectors – this is achieved by taking the absolute value of each item in the sum.
Both p and p̂i are unit vectors, so R is the average cosine distance between the
principal component and its jackknife estimates.

As with the standard CART, we then simply apply a threshold, merging a
given branch if its value of R is below some fixed value. Our measure ranges
between 0 and 1, where 1 is perfect stability (meaning the principal component
is unchanged when any one data point is excluded from the calculation). In
this work we use manually-specified thresholds when applying our algorithm,
as in CART. Alternatively one could derive thresholds from explicit hypothesis
tests by modelling the distribution of the jackknife principal components on the
hypersphere [Figueiredo, 2007].

Summary of algorithm

The algorithm is summarised as pseudocode in Figure 5.8. Given two datasets X
and Y , both taking values in X = RD, the recursive function GROW creates the
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regression tree fromX and Y , and the recursive function PRUNE prunes the tree
given a user-specified stability threshold. We have published our implementation
of the algorithm in Python,3 as well as a real-time tree lookup component for
SuperCollider.4

To test the efficient operation of the real-time lookup component, we derived
a tree from voice recordings and the gendy1 synth (see Appendix B), having 9
timbre dimensions and around 4000 nodes, and then ran a tree lookup in real
time on a laptop (Mac 10.4.11, 1.67 GHz PowerPC G4), driving the synthesiser
based on a recorded voice sample. CPU usage (analysed with Apple’s profiler,
Shark 4.5.0) showed the lookup component to use less than 0.06% of the available
CPU power. As expected for a regression tree, the lookup is highly efficient.

5.3 Experiments

We next describe two experiments we conducted to explore the use of the tree
regression algorithm (XAMRT) developed in the previous section, in different
application domains.

The first directly relates to our goal of timbre remapping, using concatenative
synthesis as an established technique in which timbre remapping can be used,
and which can be evaluated numerically. This experiment will compare standard
nearest neighbour (NN) search with the PCA-based method (Section 5.1.3) as
well as with XAMRT, all applied to the same concatenative synthesis task.

The second experiment demonstrates application of XAMRT to a different
domain – vowel formant frequencies, using a published dataset from the study
of phonetics. This is done to explore the potential of the algorithm for use in
other applications, as well as to provide an example of remapping from one dis-
tribution to another in the case where ground-truth-labelled data are available
to compare against the output of the algorithm.

5.3.1 Concatenative synthesis

Our first experiment applies the regression tree method for our intended purpose
of timbre remapping. In order to be able to evaluate the procedure numerically,
we choose to apply timbre remapping in the context of concatenative synthe-
sis (or “audio mosaicing”), which can use the timbral trajectory of one sound
recording to create new audio from segments of existing recordings [Schwarz,
2005, Jehan, 2004, Sturm, 2006]. These brief segments (on the order of 100 ms
duration, henceforth called “grains”) are stored in large numbers in a database.

3http://www.elec.qmul.ac.uk/digitalmusic/downloads/xamrt/
4http://sc3-plugins.sourceforge.net/
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GROW(X,Y )
CX ← centroid of X
CY ← centroid of Y
J ← result of equation (5.4)
p← principal component of J
Xl ← X ∩ ((X − CX) · p > 0)
Xr ← X ∩ ((X − CX) · p ≤ 0)
Yl ← Y ∩ ((Y − CY ) · p > 0)
Yr ← Y ∩ ((Y − CY ) · p ≤ 0)
if Xl is singular or Yl is singular

then L = [Xl, Yl]
else L = GROW(Xl, Yl)

if Xr is singular or Yr is singular
then R = [Xr, Yr]
else R = GROW(Xr, Yr)

return [L, R]

PRUNE(tree, threshold)
PRUNE(left child, threshold)
PRUNE(right child, threshold)
if children of left child are both leaf nodes

then PRUNEONE(left child, threshold)
if children of right child are both leaf nodes

then PRUNEONE(right child, threshold)

PRUNEONE(tree, threshold)
R← result of equation (5.5)
if R < threshold

then merge child nodes into a single node

Figure 5.8: The cross-associative MRT algorithm. X and Y are the two sets of
vectors between which associations will be inferred.
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Description Duration (sec) No. of grains
Amen breakbeat 7 69
Beatboxing 93 882
Fireworks 16 163
Kitchen sounds 49 355
Thunder 8 65

Table 5.1: Audio excerpts used in timbre experiment. “No. of grains” is the
number of 100 ms grains segmented and analysed from the audio (excluding
silent frames) – see text for details.

It is typically impractical to manually annotate the grains, so our unsupervised
technique may be practically useful; at the same time, we can use the indices
of the selected grains to design an evaluation statistic based on the pattern of
grain use.

Concatenative synthesisers typically operate not only on timbre, but use
pitch and duration as well as temporal continuity constraints in their search
strategy, and then modify the selected grains further to improve the match
[Maestre et al., 2009]. While recognising the importance of these aspects in a
full concatenative synthesis system, we designed an experiment in which the
role of pitch, duration and temporal continuity were minimised, by excluding
such factors from grain construction/analysis/resynthesis, and also by selecting
audio excerpts whose variation is primarily timbral.

For this synthesis application, a rich and varied output sound is preferable to
a repetitious one, even if the fine variation is partly attributable to measurement
noise, and so in the present experiment we do not prune trees derived from
timbre data. In a full concatenative synthesiser it may be desirable to use pruned
trees which would return a large number of candidate grains associated with a
typical leaf, and then to apply other criteria to select among the candidates; we
leave this for future work.

We first describe the audio excerpts we used and how timbre was analysed,
before describing the concatenative synthesiser and our performance metric.

Audio data

In order to focus on the timbral aspect, we selected a set of audio excerpts in
which the interesting variation is primarily timbral and pitch is less relevant.
The five excerpts – two musical (percussive) and three non-musical – are listed
in Table 5.1 (with spectrograms illustrated in Figure 5.9) and are also available
online.5 The excerpts are 44.1 kHz mono recordings.

The excerpts are quite heterogeneous, not only in sound source but also in
5 http://archive.org/details/xamrtconcat2010
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duration (some differ by an order of magnitude). They each contain various
amounts/types of audio event, which are not annotated.
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Figure 5.9: Spectrograms of the audio excerpts listed in Table 5.1 (from top
to bottom: Amen breakbeat, beatboxing, fireworks, kitchen sounds, thunder).
Each shows a duration of 7 seconds and a frequency range of 0–6500 Hz.
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Timbre features

We chose a set of 10 strongly-performing features from Chapter 3 to represent
signal timbre: centroid, power, pow1–pow5, pcile25, pcile95, and zcr (labels as
given in Table 3.1 [page 53]). Analysis was performed on audio grains of fixed 100
ms duration taken from the audio excerpt every 100 ms (i.e. with no overlap).
Each grain was analysed by segmenting into frames of 1024 samples (at 44.1
kHz sampling rate) with 50% overlap, then measuring the feature values for
each frame and recording the mean value of each feature for the grain. Grains
with a very low spectral power (< 0.002) were treated as silences and discarded.
(Power values were measured on a relative scale where 1 is full time-domain
amplitude, meaning the power threshold is around -54 dB.) The timbre features
of the remaining grains were normalised to zero mean and unit variance within
each excerpt. Analysis was performed in SuperCollider 3.3.1 [McCartney, 2002].

Figure 5.3 plots a PCA projection of the grain timbre data for two of the
sound excerpts, illustrating the broad similarities yet differences in detail of the
timbre distributions.

Timbral concatenative synthesiser

We designed a simple concatenative synthesiser using purely timbral matching,
by one of three methods:

NN, a standard nearest-neighbour search

NN+, the NN search augmented with PCA and warping as developed in Sec-
tion 5.1.3

XAMRT, the cross-associative regression tree developed in Section 5.2 (with-
out pruning).

Given two excerpts – one which is the source of grains to be played back,
and one which is the control excerpt determining the order of playback – and
the timbral metadata for the grains in the two excerpts, the synthesis procedure
works as follows: For each grain in the control excerpt, if the grain is silent
(power < 0.002) then we replace it with silence. Otherwise we replace it with
a grain selected from the other excerpt by performing a lookup of the timbre
features using the selected method. For numerical evaluation, the choice of grain
is recorded. For audio resynthesis, the new set of grains is output with a 50 ms
linear crossfade between grains.

The NN search uses the standard Euclidean distance, facilitated using a k-d
tree data structure [Bentley, 1975]. Note that the timbre features are normalised
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for each excerpt, meaning the NN search is in a normalised space rather than
the space of the raw feature values.

In both the NN/NN+ and XAMRT lookup there is an issue of tie-breaking.
More than one source grain could be retrieved – at the minimum distance from
the query (for NN/NN+) or in the leaf node retrieved from the query (for
XAMRT) – yet we must choose only one. This is not highly likely for NN/NN+
search (depending on the numerical precision of the implementation) because
the distance measure is continuous-valued, but will occur in XAMRT when
mapping from a small to a large dataset, since the tree can grow only to the
size allowed by the smaller dataset. Additional criteria (e.g. continuity) could
be used to break the tie, but for this experiment we keep the design simple and
avoid confounding factors by always choosing the grain from the earliest part of
the recording in such a case.

To validate that the system was performing as expected, we performed two
types of unit test: firstly we applied the XAMRT algorithm to some manually-
defined “toy” datasets of specific shapes and inspected the results; and secondly
we confirmed that for all three search strategies, the self-to-self mapping (i.e.
using the same audio file as both the grain source and the control excerpt)
recovered the sequence of grains in their original temporal order. The outcome
of these tests was successful.

Evaluation method

For development and comparison purposes it is particularly helpful to have
objective measures of success. It is natural to expect that a good concatenative
synthesiser will make wide use of the “alphabet” of available sound grains, so
as to generate a rich as possible output from the limited alphabet. Here we
develop this notion into an information-theoretic evaluation measure.

Communication through finite discrete alphabets has been well studied in
information theory [Arndt, 2001]. A key information-theoretic quantity is the
(Shannon) entropy. This was applied in earlier chapters but primarily while
considering continuous variables; the entropy of a discrete random variable X
taking values from an alphabet A is defined as

H(X) = −
|A|∑
i=1

pi log pi (5.6)

where pi is the probability that X = Ai and |A| is the number of elements in
A. The entropy H(X) is a measure of the information content of X, and has
the range

0 ≤ H(X) ≤ log |A| (5.7)
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Query type Efficiency (%)
NN 70.8 ± 4.4
NN+ 72.3 ± 4.2
XAMRT 84.5 ± 4.8

Table 5.2: Experimental values for the information-theoretic efficiency of the
lookup methods. Means and 95% confidence intervals are given. The improve-
ment of XAMRT over the others is significant at the p < 0.0001 level (paired
t-test, two-tailed, 19 degrees of freedom, t > 10.01). The improvement of NN+
over NN is significant at the p = 0.0215 level (t = 2.506).

with the maximum achieved iff X is uniformly distributed.
If the alphabet size is known then we can define a normalised version of the

entropy called the efficiency

Efficiency(X) =
H(X)
log |A|

(5.8)

which indicates the information content relative to some optimised alphabet giv-
ing a uniform distribution. This can be used for example when X is a quantisa-
tion of a continuous variable, indicating the appropriateness of the quantisation
scheme to the data distribution.

We can apply such an analysis to our concatenative synthesis, since it fits
straightforwardly into this framework: timbral expression is measured using a
set of continuous acoustic features, and then “quantised” by selecting one grain
from an alphabet to be output. It does not deductively follow that a scheme
which produces a higher entropy produces the most pleasing audio results: for
example, a purely uniform random selection would have high entropy. However,
a scheme which produces a low entropy will tend to be one which has an uneven
probability distribution over the grains, and therefore is likely to sound relatively
impoverished – for example, some grains will tend to be repeated more often
than in a high-entropy scheme. Therefore the efficiency measure is useful in
combination with the resynthesised audio results for evaluating the efficacy of
a grain selection scheme.

Results

We applied the concatenative synthesis of Section 5.3.1 to each of the 20 pairwise
combinations of the 5 audio excerpts (excluding self-to-self combinations, which
are always 100% efficient) using each of the three lookup methods (NN, NN+,
and XAMRT). We then measured the information-theoretic efficiency (5.8) of
each run. Table 5.2 summarises the efficiencies for each lookup method. NN+
yields a small improvement over the basic NN method. The XAMRT method
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is seen to produce a dramatic improvement over both of the other search types,
improving average efficiency by over 12 percentage points.

This difference in performance suggests that the inability of NN+ to accom-
modate dependencies between dimensions may indeed be limiting its ability to
create a well-covered timbre space (as discussed in Section 5.1.3) and thus to
encourage a uniform use of grains. More detailed investigation would be needed
to confirm that as the cause.

Audio examples of the output from the system are available online.6 Note
that the reconstructed audio examples sound rather unnatural because the ex-
periment is not conducted in a full concatenative synthesis framework. In par-
ticular we use a uniform grain duration of 100 ms and impose no temporal
constraints, whereas a full concatenative synthesis system typically segments
sounds using detected onsets and includes temporal constraints for continuity,
and therefore is able to synthesise much more natural attack/sustain dynamics
[Maestre et al., 2009].

The XAMRT technique therefore shows promise as the timbral component
of a multi-attribute search which could potentially be used in concatenative syn-
thesis, as well as more generally in timbral remapping and in other applications
requiring timbral search from audio examples (e.g. query-by-example [Foote,
1999, Section 4.2]).

Note that this experiment shows that the XAMRT algorithm improves the
mapping in the sense of better matching the distributions, but does not di-
rectly tell us that it produces better audio results. Although audio examples
are available for judging this informally, in future it would be worthwhile to
design a perceptual experiment in which listeners rated the audio produced –
compare for example the perceptual experiment of the previous chapter (Section
4.2). However, it is harder to evaluate perceived quality in this case, because
we would not be measuring the perception of degradation but of the musical-
ity/pleasantness/appropriateness of the output. Although there is inter-rater
variation in assessing the quality of degraded audio, the variation is relatively
small and the nature of what is being assessed is typically well understood and
shared among raters. Any quantitative perceptual experiment testing success
of the musical “analogies” created by timbre remapping would need to be de-
signed with careful attention to what is being measured, and the potential effect
of listeners’ musical and cultural background on their ratings.

Having demonstrated that the XAMRT technique works well as intended
for the application to timbre remapping, our second experiment turns to an
application domain outside of the main focus of this thesis, showing the potential
for using XAMRT for other tasks.

6http://www.archive.org/details/xamrtconcat2010
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Figure 5.10: Frequencies of the first two vocal formants, measured by Hawkins
and Midgley [2005] for specific hVd words as given in the legend.

5.3.2 Vowel formant analysis

In our second experiment on the performance of the XAMRT algorithm we
analyse data representing the change in vowel pronounciation between different
generations of speakers of British English. In Hawkins and Midgley [2005] the
first two formant frequencies F1 and F2 (the two main resonances of the vocal
tract) are measured for different age groups of speakers of Received Pronouncia-
tion (RP) British English, and comparisons are then drawn between generations.
These data are labelled: each measurement is made on a single-syllable word of
the form hVd, where the V stands for a monophthong vowel. The labelled data
is displayed (aggregated over all age groups) in Figure 5.10.

Such data allows us apply our unsupervised analysis to the formant frequen-
cies (ignoring the labels), pairing the data distribution for one generation of
speakers with that of another, and compare this analysis with the expert ob-
servations about intergenerational change made by the authors of the original
study.

We took the formant data for the oldest and youngest group of speakers
(group 1 and 4 respectively), and applied our tree-based partitioning algorithm.
We then calculated the two-dimensional centroid locations for each cluster, and
visualised the movement from a centroid in the older generation, to the corre-
sponding centroid in the younger generation (Figure 5.11a).

The results indicate quite a lot of movement between the two data distribu-
tions. Notable are three regions with long right-pointing arrows, which suggest
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(a) Movement of the centroids of clusters determined automatically by our algorithm.
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(b) Movement of the centroids of word-labelled groups.

Figure 5.11: Movement of formant positions determined either automatically
or using the word labels. Each arrow connects paired regions of density, going
from Hawkins and Midgley [2005]’s group 1 (age 65+ years) to their group 4
(age 20–25 years). Axes represent the frequencies of the first two vocal formants.

that the F1 frequency in these regions may have raised in the younger genera-
tion while the F2 stayed roughly constant. The upper two of those three regions
represent the vowels /E/ /æ/ (heed, had) and directly match the authors’ first
observations about F1 (although less so for F2): “The mean frequencies of /E/
and /æ/ are successively slightly lower in F2 and markedly higher in F1 in each
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age group from oldest to youngest, consistent with the percept that they are
becoming progressively more open with younger speakers” (p. 188).

The authors continue: “In contrast, the mean frequency of /u:/ has a higher
F2 in successive age groups, with F1 unchanged or little changed”. This too can
be seen in our analysis: the /u:/ (who’d) vowels are to be found at the left and
near the bottom of the plot, in a region whose arrows point upwards indicating
the raised F2. However, just above are some arrows pointing leftwards (suggest-
ing a lowered F1) which can also be considered to belong to the domain of the
/u:/ (who’d) vowels, a shift which does not exist in the authors’ description.

The authors next observe for the vowel /U/ (hood) that “the youngest group
has a rather higher F1 ... and a markedly higher F2”. This vowel is at the
lower left in our figure, and although our analysis shows the raised F1 it does
not capture the raised F2.

The authors go on to note that the vowels /i:/ /I/ /A:/ /6/ /O:/ /2/ /3:/
remain largely unchanged across the generations. These vowels occupy the
upper-left through to the centre of our figure, regions showing changes which
are generally small in magnitude and inconsistent in direction. These small
changes may represent noise in the data, artifacts due to our algorithm or real
changes in pronounciation which were too small to be remarked by the authors.

We can visually compare our results with a plot of formant movements
grouped according to the vowel labels, showing the change in the mean for-
mant location for each vowel (Figure 5.11b). At the upper right of Figure 5.11b
are two large increases in F1 which are strongly similar to shifts identified by
our unsupervised analysis. Some other arrows show similar orientations and
directions; however the plot makes clear that our algorithm has not identified
the notable rise in F2 displayed by the two vowels /u:/ /U/ (who’d and hood, at
the lower left of the plot), perhaps because those vowels appear to have moved
into a region at the same time as other vowels move out of it.

To summarise, our technique has highlighted some of the phonetically im-
portant changes observed by Hawkins and Midgley [2005], despite being un-
supervised and hence ignorant of the phoneme labels. This demonstrates the
potential of this technique to highlight changes between two data distributions
which may be of interest for further study. The data we have used happens
to be labelled with corresponding words from a controlled vocabulary; however,
large corpuses of data may be unlabelled, and so the procedure could be applied
for preliminary analysis in such cases. One difference between the Hawkins and
Midgley [2005] data and a large-corpus analysis is that the latter would not use
a controlled distribution of words, and so the analysis would reflect changes in
formants balanced over the distribution of phoneme use in the corpus rather
than over the controlled vocabulary.
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5.4 Conclusions

In this chapter we have charted the development of our approach to timbre
remapping as a technique to create useful real-time mapping from voice timbre
to synth timbre. Our first method was based on a simple nearest-neighbour
(NN) search, with modifications to create a more even coverage of the search
space. It produced adequate results and has been used in live performances
and demonstrations, but is somewhat ad-hoc, and was seen in an experiment to
yield only a small improvement over the basic NN search. Our second method
(discussed more fully in Appendix D) aimed to bring a more coherent frame-
work to bear on the process using Self-Organised Maps (SOM); however this
approach was severely hampered by difficulties in controlling the alignment of
maps, difficulties which are inherent in the standard SOM algorithms. Our third
approach was to develop a novel regression-tree based method (XAMRT). This
was designed specifically to pair two different yet related timbre distributions;
in numerical experiments with a simple concatenative synthesiser, we demon-
strated that it makes significantly better use of the source material than both
the basic and augmented NN search.

Throughout the chapter we have been concerned to develop techniques that
can be applied in real time, so as to be usable in a live expressive vocal per-
formance. The XAMRT method fulfils this since regression trees are very com-
putationally efficient. However, we also wished to leave open the possibility of
online learning rather than having to train the system in advance. This is one
attraction of the SOM, which was indeed first developed as an online learning
algorithm [Kohonen, 2001]. At present we only have a batch method for training
the XAMRT; as future work it would be useful to develop techniques for online
adaptation of the regression tree, e.g. to allow it to adapt to the vocal range of
a particular performer.

Our concatenative synthesis experiment (Section 5.3.1) demonstrated the
technique used in a simplified synth using only timbral criteria. In order to use
timbre remapping in a full concatenative synthesiser, or in some similar system,
future work would need to consider how to combine timbre remapping with
other criteria, such as the pitch, duration and continuity criteria used in more
sophisticated concatenative synths [Maestre et al., 2009].
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Chapter 6

User evaluation

In Chapters 4 and 5 we developed two different approaches to real-time, low-
latency control of synthesisers through vocal timbre – one based on event-based
control, and one based on continuous mapping. Throughout this development
we have measured statistics to demonstrate the efficacy of our approach or to
determine the effect of parameters (classification accuracy [Section 4.1], listening
test data [Section 4.2], information-theoretic mapping efficiency [Section 5.3.1]).
Yet the aim of this thesis (Section 1.2) is to develop such methods of vocal timbre
control “suitable for live expressive performance”. We therefore consider it
important to evaluate such methods in a way which sheds light on the usefulness
of such methods for the live performance, from the performer’s perspective and
with a bearing upon the interaction between the system and the performer’s
creativity/expressiveness.

In our discussion thus far, issues of creativity or expressiveness have only
indirectly been considered. In part this is because statistics derived from algo-
rithm output (such as classification accuracy) do not tell us much about these
issues – but also because live technologically-mediated expression is a dynamic
situation involving continuous feedback between the system and the performer,
which creates difficulties in designing experiments to probe the situation. Yet
this interaction between performer and system is a critical aspect of the tech-
nology, which we take to be an important factor in determining whether (and
how) a particular technology is taken up.

In this chapter we first consider issues in evaluating expressive/creative mu-
sical systems and describe previous research in the area, before developing a
performer-centred qualitative approach to evaluation. We then describe an
evaluation study performed with human beatboxers, on an early version of the
timbre remapping system of Chapter 5, illuminating some aspects of the vocal
interaction with this technology. As we will discuss, our development fits into a
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Evaluation type NIME conference year
2006 2007 2008

Not applicable 8 9 7
None 18 14 15

Informal 12 8 6
Formal qualit. 1 2 3
Formal quant. 2 3 3

Total formal 3 (9%) 5 (19%) 6 (22%)

Table 6.1: Survey of oral papers presented at the conference on New Interfaces
for Musical Expression (NIME), indicating the type of evaluation described.
The last line indicates the total number of formal evaluations presented, also
given as a percentage of the papers (excluding those for which evaluation was
not applicable).

current research context in Human-Computer Interaction (HCI) which aims to
move beyond task-focused evaluation to include affective and context-sensitive
evaluation techniques, sometimes referred to as the “third paradigm” in HCI
research [Harrison et al., 2007].

6.1 Evaluating expressive musical systems

Live human-computer music-making, with reactive or interactive systems, is a
topic of recent artistic and engineering research [Collins and d’Escriván, 2007,
esp. Chapters 3, 5, 8]. However, the formal evaluation of such systems is rela-
tively little-studied [Fels, 2004]. A formal evaluation is one presented in rigorous
fashion, which presents a structured route from data collection to results (e.g.
by specifying analysis techniques). It therefore establishes the degree of gener-
ality and repeatability of its results. Formal evaluations, whether quantitative
or qualitative, are important because they provide a basis for generalising the
outcomes of user tests, and therefore allow researchers to build on one another’s
work. As one indicator of the state of the field, we carried out a survey of
recent research papers presented at the conference on New Interfaces for Musi-
cal Expression (NIME – a conference about user interfaces for music-making).
It shows a consistently low proportion of papers containing formal evaluations
(Table 6.1).

Live human-computer music making poses challenges for many common HCI
evaluation techniques. Musical interactions have creative and affective aspects,
which means they cannot be described as tasks for which e.g. completion rates
can reliably be measured. They also have dependencies on timing (rhythm,
tempo, etc.), and feedback interactions (e.g. between performers, between per-
former and audience), which further complicate the issue of developing valid
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and reliable experimental procedures.
Evaluation could be centred on a user (performer) perspective, or alterna-

tively could be composer-centred or audience-centred (e.g. using expert judges).
In live musical interaction the performer has privileged access to both the in-
tention and the act, and their experience of the interaction is a key part of
what determines its expressivity. Hence in the following we focus primarily on
performer-centred evaluation, as have others (e.g. Wanderley and Orio [2002]).

“Talk-aloud” protocols [Ericsson and Simon, 1984, Section 2.3] are used
in many HCI evaluations. However, in some musical performances (such as
singing or playing a wind instrument) the use of the speech apparatus for music-
making precludes concurrent talking. More generally, speaking may interfere
with the process of rhythmic/melodic performance: speech and music cognition
can demonstrably interfere with each other [Salamé and Baddeley, 1989], and
the brain resources used in speech and music processing partially overlap [Peretz
and Zatorre, 2005], suggesting issues of cognitive “competition” if subjects are
asked to produce music and speech simultaneously.

Other observational approaches may be applicable, although in many cases
observing a participant’s reactions may be difficult: because of the lack of objec-
tively observable indications of “success” in musical expression, but also because
of the participant’s physical involvement in the music-making process (e.g. the
whole-body interaction of a drummer with a drum-kit).

Some HCI evaluation methods use models of human cognition rather than
actual users in tests – e.g. GOMS [Card et al., 1983] – while others such as cogni-
tive walkthrough [Wharton et al., 1994] use structured evaluation techniques and
guidelines. These are good for task-based situations, where cognitive processes
are relatively well-characterised. However we do not have adequate models of
the cognition involved in live music-making in order to apply such methods.
Further, such methods commonly segment the interaction into discrete ordered
steps, a process which cannot easily be carried out on the musical interactive
experience.

Another challenging aspect of musical interface evaluation is that the partic-
ipant populations are often small [Wanderley and Orio, 2002]. For example, it
may be difficult to recruit many virtuoso violinists, human beatboxers, or jazz
trumpeters, for a given experiment. Therefore evaluation methods should be
applicable to relatively small study sizes.

6.1.1 Previous work in musical system evaluation

There is a relative paucity of literature in evaluating live sonic interactions, per-
haps in part due to the difficulties mentioned above. Some prior work has looked
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at HCI issues in “offline” musical systems, i.e. tools for composers (e.g. Buxton
and Sniderman [1980], Polfreman [1999]). Borchers [2001] applies a pattern-
language approach to the design of interactive musical exhibits. Others have
used theoretical considerations to produce recommendations and heuristics for
designing musical performance interfaces [Hunt and Wanderley, 2002, Levitin
et al., 2002, Fels, 2004, De Poli, 2004], although without explicit empirical valida-
tion. Note that in some such considerations, a “Composer→Performer→Audience”
model is adopted, in which musical expression is defined to consist of timing and
other variations applied to the composed musical score [Widmer and Goebl,
2004, De Poli, 2004]. In this work we wish to consider musical interaction more
generally, encompassing improvised and interactive performance situations.

Wanderley and Orio [2002] provide a particularly useful contribution to our
topic. They discuss pertinent HCI methods, before proposing a task-based
approach to musical interface evaluation using “maximally simple” musical tasks
such as the production of glissandi or triggered sequences. The authors propose
a user-focused evaluation, using Likert-scale feedback (i.e. allowing users to
report their experience in a simple rank-scale format [Grant et al., 1999]) as
opposed to an objective measure of gesture accuracy (e.g. relative pitch error
on a task involving production of pitches), since such objective measures may
not be a good representation of the musical qualities of the gestures produced.
The authors draw an analogy with Fitts’ law, the well-known law in HCI which
predicts the time required to move to a target (e.g. by moving a mouse cursor)
based on distance and target size [Card et al., 1978]; they suggest that numbers
derived from their task-based approach may allow for quantitative comparisons
of musical interfaces.

Wanderley and Orio’s framework is interesting but may have some draw-
backs. The reduction of musical interaction to maximally simple tasks risks
compromising the authenticity of the interaction, creating situations in which
the affective and creative aspects of music-making are abstracted away. In
other words, the reduction conflates controllability of a musical interface with
expressiveness of that interface [Dobrian and Koppelman, 2006]. The use of
Likert-scale metrics also may have some difficulties. They are susceptible to
cultural differences [Lee et al., 2002] and psychological biases [Nicholls et al.,
2006], and may require large sample sizes to achieve sufficient statistical power
[Göb et al., 2007].

Acknowledging the relative scarcity of research on the topic of live human-
computer music-making, we may look to other areas which may provide useful
analogies. The field of computer games is notable here, since it carries some of
the features of live music-making: it can involve complex multimodal interac-
tions, with elements of goal-oriented and affective involvement, and a degree of

127



learning. For example, Barendregt et al. [2006] investigates the usability and
affective aspects of a computer game for children, during first use and after
some practice. Mandryk and Atkins [2007] use a combination of physiological
measures to produce a continuous estimate of the emotional state (arousal and
valence) of subjects playing a computer game.

In summary, although there have been some useful forays into the field of
expressive musical interface evaluation, and some work in related disciplines
such as that of computer games evaluation, the field could certainly benefit
from further development. Whilst task-based methods are suited to examining
usability, the experience of interaction is essentially subjective and requires al-
ternative approaches for evaluation. Therefore in the next section we develop
a method based on a rigorous qualitative method which analyses language in
context, before applying this method to a vocal timbre remapping interface.

6.2 Applying discourse analysis

When a sonic interactive system is created, it is not “born” until it comes into
use. Its users construct it socially using analogies and contrasts with other
interactions in their experience, a process which creates the affordances and
contexts of the system. This primacy of social construction has been recognised
for decades in strands of the social sciences and psychology (e.g. Pinch and
Bijker [1984], Norman [2002]), but is often overlooked by technologists. It is
reflected to some extent in the use of the term “affordances” in HCI research: it
originally referred to the possibilities for action offered by a system, but found
wide application in HCI after an emphasis on perceived possibilities developed,
meaning affordances are dependent not only on the system itself and the user’s
capabilities, but also on their goals, beliefs and past experiences [Norman, 2002].

Discourse Analysis (DA) is an analytic tradition that provides a structured
way to analyse the construction and reification of social structures in discourse
[Banister et al., 1994, Chapter 6][Silverman, 2006, Chapter 6]. The source data
for DA is written text, which may be appropriately-transcribed interviews or
conversations.

Interviews and free-text comments are sometimes reported in studies on
musical interfaces. However, often they are conducted in a relatively informal
context, and only quotes or summaries are reported rather than any structured
analysis, therefore providing little analytic reliability. DA’s strength comes from
using a structured method which can take apart the language used in discourses
(e.g. interviews, written works) and elucidate the connections and implications
contained within, while remaining faithful to the content of the original text
[Antaki et al., 2003]. DA is designed to go beyond the specific sequence of
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phrases used in a conversation, and produce a structured analysis of the con-
versational resources used, the relations between entities, and the “work” that
the discourse is doing.

DA is not a single method but an analytic tradition developed with a so-
cial constructionist basis. Discourse-analytic approaches have been developed
which aim to elucidate social power relations, or the details of language use. Our
interest lies in understanding the conceptual resources brought to bear in con-
structing socially a new interactive artefact. Therefore we derive our approach
from a Foucauldian tradition of DA found in psychology [Banister et al., 1994,
Chapter 6], which probes the reification of existing social structures through
discourse, and the congruences and tensions within.

We wish to use the power of DA as part of a qualitative and formal method
which can explore issues such as expressivity and affordances for users of inter-
active musical systems. Longitudinal studies (e.g. those in which participants
are monitored over a period of weeks or months) may also be useful, but imply a
high cost in time and resources. Therefore we aim to provide users with a brief
but useful period of exploration of a new musical interface, including interviews
and discussion which we can then analyse.

We are interested in issues such as the user’s conceptualisation of musical
interfaces. It is interesting to look at how these are situated in the described
world, and particularly important to avoid preconceptions about how users may
describe an interface: for example, a given interface could be: an instrument; an
extension of a computer; two or more separate items (e.g. a box and a screen);
an extension of the individual self; or it could be absent from the discourse.

In any evaluation of a musical interface one must decide the context of the
evaluation. Is the interface being evaluated as a successor or alternative to some
other interface (e.g. an electric cello vs an acoustic cello)? Who is expected to
use the interface (e.g. virtuosi, amateurs, children)? Such factors will affect not
only the recruitment of participants but also some aspects of the experimental
setup.

6.2.1 Method

As discussed, we based our method on that of Banister et al. [1994, Chapter 6],
but wished to stimulate participants to talk in a relatively unconstrained manner
during and after using a musical interface, so as to elicit talk in reaction to the
interface (the raw data for DA). We therefore designed study sessions in which
participants would be encouraged to use and explore the system in question,
while recording their speech and actions and aiming to stimulate discussion.

Our method is designed either to trial a single interface with no explicit
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comparison system, or to compare two similar systems (as is done in our case
study of timbre remapping). The method consists of two types of user session,
solo sessions followed by group session(s), plus the Discourse Analysis of data
collected.

We emphasise that DA is a broad tradition, and there are many designs
which could bring DA to bear on evaluating sonic interactions. The method
described in the following is just one approach.

Solo sessions

In order to explore individuals’ personal responses to the interface(s), we first
conduct solo sessions in which a participant is invited to try out the interface(s)
for the first time. If there is more than one interface to be used, the order of
presentation is randomised in each session.

The solo session consists of three phases for each interface:

Free exploration. The participant is encouraged to try out the interface for
a while and explore it in their own way.

Guided exploration. The participant is presented with audio examples of
recordings created using the interface, in order to indicate the range of pos-
sibilities, and encouraged to create recordings inspired by those examples.
This is not a precision-of-reproduction task; precision-of-reproduction is
explicitly not evaluated, and participants are told that they need not repli-
cate the examples.

Semi-structured interview [Preece et al., 2004, Chapter 13]. The interview’s
main aim is to encourage the participant to discuss their experiences of
using the interface in the free and guided exploration phases, both in rela-
tion to prior experience and to the other interfaces presented if applicable.
Both the free and guided phases are video recorded, and the interviewer
may play back segments of the recording and ask the participant about
them, in order to stimulate discussion.

The raw data to be analysed is the interview transcript. Our aim is to allow the
participant to construct their own descriptions and categories, which means the
interviewer must be critically aware of their own use of language and interview
style, and must (as far as possible) respond to the terms and concepts introduced
by the participant rather than dominating the discourse.

Group session

To complement the solo sessions we also conduct a group session. Peer group
discussion can produce more and different discussion around a topic, and can

130



demonstrate the group negotiation of categories, labels, comparisons, and so
on. The focus-group tradition provides a well-studied approach to such group
discussion [Stewart et al., 2007]. Our group session has a lot in common with a
typical focus group in terms of the facilitation and semi-structured group discus-
sion format. In addition we make available the interface(s) under consideration
and encourage the participants to experiment with them during the session.

As in the solo sessions, the transcribed conversation is the data to be anal-
ysed. An awareness of facilitation technique is also important here, to encourage
all participants to speak, to allow opposing points of view to emerge in a non-
threatening environment, and to allow the group to negotiate the use of language
with minimal interference.

Data analysis

Our DA approach to analysing the data is based on that of Banister et al. [1994,
Chapter 6], adapted to the experimental context. The DA of text is a relatively
intensive and time-consuming method. It can be automated to some extent, but
not completely, because of the close linguistic attention required. Our approach
consists of the following five steps:

(a) Transcription. The speech data is transcribed, using a standard style of
notation which includes all speech events (including repetitions, speech
fragments, pauses). This is to ensure that the analysis can remain close to
what is actually said, and avoid adding a gloss which can add some distor-
tion to the data. For purposes of analytical transparency, the transcripts
(suitably anonymised) should be published alongside the analysis results.

(b) Free association. Having transcribed the speech data, the analyst reads it
through and notes down surface impressions and free associations. These
can later be compared against the output from the later stages.

(c) Itemisation of transcribed data. The transcript is then broken down
by itemising every single object in the discourse (i.e. all the entities re-
ferred to). Pronouns such as “it” or “he” are resolved, using the partic-
ipant’s own terminology as far as possible. For every object an accom-
panying description of the object is extracted from that speech instance
– again using the participant’s own language, essentially by rewriting the
sentence/phrase in which the instance is found.

The list of objects is scanned to determine if different ways of speaking
can be identified at this point. For example, there may appear to be a
technical music-production way of speaking, as well as a more intuitive
music-performer way of speaking, both occurring in different parts of the
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(c) Itemisation

Interview

(a) Transcription

(b) Free association

Resolve references

List objects

List actors

(d) Reconstruction of the described world(s)

(e) Examining context

Figure 6.1: Outline of our Discourse Analysis procedure.

discourse; they may have overlaps or tensions with each other. Also, those
objects which are also “actors” are identified – i.e. those which act with
agency/sentience in the speech instance; they need not be human.

It is helpful at this point to identify the most commonly-occurring ob-
jects and actors in the discourse, as they will form the basis of the later
reconstruction.

Figure 6.2 shows an excerpt from a spreadsheet used during our DA pro-
cess, showing the itemisation of objects and subjects, and the descriptions
extracted.

(d) Reconstruction of the described world. Starting with the list of most
commonly-occurring objects and actors in the discourse, the analyst re-
constructs the depictions of the world that they produce, in terms of the
interrelations between the actors and objects. This could for example be
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Figure 6.2: Excerpt from a spreadsheet used during the itemisation of interview
data, for step (c) of the Discourse Analysis.

represented using concept maps. If different ways of speaking have been
identified, there will typically be one reconstructed “world” per way of
speaking. Overlaps and contrasts between these worlds can be identified.
Figure 6.3 shows an excerpt of a concept map representing a “world”
distilled in this way.

The “worlds” we produce are very strongly tied to the participant’s own
discourse. The actors, objects, descriptions, relationships, and relative
importances, are all derived from a close reading of the text. These worlds
are essentially just a methodically reorganised version of the participant’s
own language.

(e) Examining context. One of the functions of discourse is to create the
context(s) in which it operates, and as part of the DA process we try to
identify such contexts, in part by moving beyond the specific discourse
act. For example, the analyst may feel that one aspect of a participant’s
discourse ties in with a common cultural paradigm of an dabbling amateur,
or with the notion of natural virtuosity.

In our design we have parallel discourses originating with each of the
participants, which gives us an opportunity to draw comparisons. After
running the previous steps of DA on each individual transcript, we com-
pare and contrast the described worlds produced from each transcript,
examining commonalities and differences. We also compare the DA of the
focus group session(s) against that of the solo sessions.

Our approach is summarised in Figure 6.1. In the next section we apply this
method to evaluate an instance of our timbre remapping system.
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made

Figure 6.3: An example of a reconstructed set of relations between objects
in the described world. This is a simplified excerpt of the reconstruction
for User 2 in our study. Objects are displayed in ovals, with the shaded
ovals representing actors.

6.3 Evaluation of timbre remapping

We performed an evaluation of the timbre remapping approach described in
Chapter 5. The system used was a relatively early version, using the PCA-based
remapping technique (Section 5.1.3) rather than the regression tree method
advocated in the later part of that chapter. Our primary aim was to evaluate
timbre remapping as a general approach to vocal musical control, rather than a
particular variant of the technique.
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In our study we wished to evaluate the timbre remapping system with beat-
boxers (vocal percussion musicians), for two reasons: they are one target audi-
ence for the technology in development; and they have a familiarity and level
of comfort with manipulation of vocal timbre that should facilitate the study
sessions. They are thus not representative of the general population but of a
kind of expert user.

After piloting the evaluation method successfully with a colleague, we re-
cruited by advertising online (a beatboxing website) and with posters around
London for amateur or professional beatboxers. Participants were paid £10
per session plus travel expenses to attend sessions in our (acoustically-isolated)
university studio (“Listening Room”). We recruited five participants from the
small community, all male and aged 18–21. One took part in a solo session;
one in the group session; and three took part in both. Their beatboxing ex-
perience ranged from a few months to four years. Their use of technology for
music ranged from minimal to a keen use of recording and effects technology
(e.g. Cubase). The facilitator was known to the participants by his membership
of the beatboxing website.

In our study we wished to investigate any effect of providing the timbre
remapping feature. To this end we presented two similar interfaces: both tracked
the pitch and volume of the microphone input, and used these to control a
synthesiser, but one also used the timbre remapping procedure to control the
synthesiser’s timbral settings. The synthesiser used was an emulated General
Instrument AY-3-8910 [General Instrument, 1979], which was selected because
of its wide timbral range (from pure tone to pure noise) with a well-defined
control space of a few integer-valued variables. The emulation was implemented
in a very similar way to the ay1 synth given in Appendix B. Participants spent
a total of around 30–60 minutes using the interfaces, and 15–20 minutes in
interview. Analysis of the interview transcripts using the procedure of section
6.2.1 took approximately 9 hours per participant (around 2000 words each).

We do not report a detailed analysis of the group session transcript here: the
group session generated information which is useful in the development of our
system, but little which bears directly upon the presence or absence of timbral
control. We discuss this outcome further in Section 6.4.

In the following, we describe the main findings from analysis of the solo ses-
sions, taking each user one by one before drawing comparisons and contrasts.
We emphasise that although the discussion here is a narrative supported by
quotes, it reflects the structures elucidated by the DA process – the full tran-
scripts and Discourse Analysis tables are available online1 and excerpts from
the analysis are given in Appendix E. In the study, condition “X” was used to

1http://www.elec.qmul.ac.uk/digitalmusic/papers/2008/Stowell08ijhcs-data/
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refer to the system with timbre remapping inactive, “Y” for the system with
timbre remapping active.

6.3.1 Reconstruction of the described world

User 1 expressed positive sentiments about both X (without timbre remapping)
and Y (with timbre remapping), but preferred Y in terms of sound quality, ease
of use and being “more controllable”. In both cases the system was construed as
a reactive system, making noises in response to noises made into the microphone;
there was no conceptual difference between X and Y – for example in terms of
affordances or relation to other objects.

The “guided exploration” tasks were treated as reproduction tasks, despite
our intention to avoid this. User 1 described the task as difficult for X, and
easier for Y, and situated this as being due to a difference in “randomness” (of
X) vs. “controllable” (of Y).

User 2 found the the system (in both modes) “didn’t sound very pleasing
to the ear”. His discussion conveyed a pervasive structured approach to the
guided exploration tasks, in trying to infer what “the original person” had done
to create the examples and to reproduce that. In both Y and X the approach
and experience was the same.

Again, User 2 expressed preference for Y over X, both in terms of sound
quality and in terms of control. Y was described as more fun and “slightly
more funky”. Interestingly, the issues that might bear upon such preferences
are arranged differently: issues of unpredictability were raised for Y (but not
X), and the guided exploration task for Y was felt to be more difficult, in part
because it was harder to infer what “the original person” had done to create
the examples.

User 3’s discourse placed the system in a different context compared to
others. It was construed as an “effect plugin” rather than a reactive system,
which implies different affordances: for example, as with audio effects it could
be applied to a recorded sound, not just used in real time; and the description
of what produced the audio examples is cast in terms of an original sound
recording rather than some other person. This user had the most computer
music experience of the group, using recording software and effects plugins more
than the others, which may explain this difference in contextualisation.

User 3 found no difference in sound or sound quality between X and Y, but
found the guided exploration of X more difficult, which he attributed to the
input sounds being more varied.

User 4 situated the interface as a reactive system, similar to Users 1 and 2.
However, the sounds produced seemed to be segregated into two streams rather
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than a single sound – a “synth machine” which follows the user’s humming,
plus “voice-activated sound effects”. No other users used such separation in
their discourse.

“Randomness” was an issue for User 4 as it was for some others. Both X and
Y exhibited randomness, although X was much more random. This randomness
meant that User 4 found Y easier to control. The pitch-following sound was felt
to be accurate in both cases; the other (sound effects / percussive) stream was
the source of the randomness.

In terms of the output sound, User 4 suggested some small differences but
found it difficult to pin down any particular difference, but felt that Y sounded
better.

6.3.2 Examining context

Users 1 and 2 were presented with the conditions in the order XY; Users 3 and
4 in the order YX. Order-of-presentation may have some small influence on the
outcomes: Users 3 and 4 identified little or no difference in the output sound
between the conditions (User 4 preferred Y but found the difference relatively
subtle), while Users 1 and 2 felt more strongly that they were different and
preferred the sound of Y. It would require a larger study to be confident that
this difference really was being affected by order-of-presentation.

In our study we are not directly concerned with which condition sounds bet-
ter (both use the same synthesiser in the same basic configuration), but this is an
interesting aspect to come from the study. We might speculate that differences
in perceived sound quality are caused by the different way the timbral changes
of the synthesiser are used. However, participants made no conscious connection
between sound quality and issues such as controllability or randomness.

Taking the four participant interviews together, no strong systematic differ-
ences between X and Y are seen. All participants situate Y and X similarly,
albeit with some nuanced differences between the two. Activating/deactivating
the timbre remapping facet of the system does not make a strong enough dif-
ference to force a reinterpretation of the system.

A notable aspect of the four participants’ analyses is the differing ways the
system is situated (both X and Y). As designers of the system we may have one
view of what the system “is”, perhaps strongly connected with technical aspects
of its implementation, but the analyses presented here illustrate the interesting
way that users situate a new technology alongside existing technologies and
processes. The four participants situated the interface in differing ways: either
as an audio effects plugin, or a reactive system; as a single output stream or as
two. We emphasise that none of these is the “correct” way to conceptualise the
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interface. These different approaches highlight different facets of the interface
and its affordances.

The discourses of the “effects plugin” and the “reactive system” exhibit
some tension. The “reactive system” discourse allows the system some agency
in creating sounds, whereas an effects plugin only alters sound. Our own pre-
conceptions (based on our development of the system) lie more in the “reactive
system” approach; but the “effects plugin” discourse seemed to allow User 3
to place the system in a context along with effects plugins that can be bought,
downloaded, and used in music production software.

During the analyses we noted that all participants maintained a conceptual
distance between themselves and the system, and analogously between their
voice and the output sound. There was very little use of the “cyborg” discourse
in which the user and system are treated as a single unit, a discourse which hints
at mastery or “unconscious competence”. This fact is certainly understandable
given that the participants each had less than an hour’s experience with the
interface. It demonstrates that even for beatboxers with strong experience in
manipulation of vocal timbre, controlling the vocal interface requires learning –
an observation confirmed by the participant interviews.

The issue of “randomness” arose quite commonly among the participants.
However, randomness emerges as a nuanced phenomenon: although two of the
participants described X as being more random than Y, and placed randomness
in opposition to controllability (and to preference), User 2 was happy to describe
Y as being more random and also more controllable (and preferable).

A uniform outcome from all participants was the conscious interpretation
of the guided exploration tasks as precision-of-reproduction tasks. This was
evident during the study sessions as well as from the discourse around the tasks.
As one participant put it, “If you’re not going to replicate the examples, what
are you gonna do?” This issue did not appear in our piloting.

A notable absence from the discourses, given our research context, was dis-
cussion which might bear on expressivity, for example the expressive range of
the interfaces. Towards the end of each interview we asked explicitly whether
either of the interfaces was more expressive, and responses were generally non-
commital. We propose that this was because our tasks had failed to engage the
participants in creative or expressive activities: the (understandable) reduction
of the guided exploration task to a precision-of-reproduction task must have
contributed to this. We also noticed that our study design failed to encourage
much iterative use of record-and-playback to develop ideas. In the next section
we suggest some possible implications of these findings on future study design.
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6.4 Discussion

Our DA-based method was designed to extract a detailed reconstruction of
users’ conceptualisation of a system, and it has achieved that. Our investiga-
tion of a voice-controlled interface provides us with interesting detail on the
interaction between such concepts as controllability and randomness in the use
of the interface, and the different ways of construing the interface itself. These
findings would be difficult to obtain by other methods such as observation or
questionnaire.

However, we see evidence that the discourses obtained are influenced by the
experimental context: the solo sessions, structured with tasks in using both
variants of our interface, produced discourse directly related to the interface;
while the group session, less structured, produced wider-ranging discourse with
less content bearing directly on the interface. The order of presentation also may
have made a difference to the participants. It is clear that the design of such
studies requires a careful balance: experimental contexts should be designed
to encourage exploration of the interface itself, while taking care not to “lead”
participants in unduly influencing the categories and concepts they might use
to conceptualise a system. It is therefore appropriate to consider our method in
contrast with other approaches.

A useful point of comparison is the approach due to Wanderley and Orio
[2002], involving user trials on “maximally simple” tasks followed by Likert-scale
feedback. As previously discussed, this approach raises issues of task authen-
ticity, and of the suitability of the Likert-style questionnaire. Indeed, Kiefer
et al. [2008] investigate the Wanderley and Orio approach, and find qualitative
analysis of interview data to be more useful than quantitative data about task
accuracy. The Wanderley and Orio method may therefore only be appropriate
to cases in which the test population is large enough to draw conclusions from
Likert-scale data, and in which the musical interaction can reasonably be re-
duced or separated into atomic tasks. We suggest the crossfading of records by
a DJ as one specific example: it is a relatively simple musical task that may
be operationalised in this way, and has a large user-base. (We do not wish to
diminish the DJ’s art: there are creative and sophisticated aspects to the use of
turntables, which may not be reducible to atomic tasks.)

One advantage of the Wanderley and Orio method is that Likert-scale ques-
tionnaires are very quick to administer and analyse. In our study the ratio of
interview time to analysis time was approximately 1:30 or 1:33, a ratio slightly
higher than the ratio of 1:25–1:29 reported for observation analysis of video data
[Barendregt et al., 2006]. This long analysis time implies practical limitations
for large groups.
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Our approaches (as well as that of Wanderley and Orio) are “retrospective”
methods, based on users’ self-reporting after the musical act. We have argued
that concurrent verbal protocols and observation protocols are problematic for
experiments involving live musicianship. A third alternative, which is worthy of
further exploration, is to gather data via physiological measurements. Mandryk
and Atkins [2007] present an approach which aims to evaluate computer-game-
playing contexts, by continuously monitoring four physiological measures on
computer-game players, and using fuzzy logic to infer the players’ emotional
state. Analogies between the computer-gaming context and the music-making
context suggest that this method could be adopted for evaluating interactive
music systems. However, there are some issues which would need to be ad-
dressed:

• Most importantly, the inference from continuous physiological variables to
continuous emotional state requires more validation work before it can be
relied on for evaluation.

• The evaluative role of the inferred emotional state also needs clarification:
the mean of the valence (the emotional dimension running from happiness
to sadness) suggests one simple figure for evaluation, but this is unlikely
to be the whole story.

• Musical contexts may preclude certain measurements: the facial move-
ments involved in singing or beatboxing would affect facial electromyogra-
phy [Mandryk and Atkins, 2007], and the exertion involved in drumming
will have a large effect on heart-rate. In such situations, the inference
from measurement to emotional state will be completely obscured by the
other factors affecting the measured values.

We note that the literature, the present work included, is predominantly con-
cerned with evaluating musical interactive systems from a performer-centred
perspective. Other perspectives are possible: a composer-centred perspective
(for composed works), or an audience-centred perspective. We have argued in
introducing this chapter that the performer should typically be the primary fo-
cus of evaluation, in particular for the techniques evaluated here; but in some
situations it may be appropriate to perform e.g. audience-centred evaluation.
Our methods can be adapted for use with audiences – indeed, the independent
observer in our musical Turing Test case study takes the role of audience. How-
ever, for audience-centred evaluations it may be the case that other methods
are appropriate, such as voting or questionnaire approaches for larger audiences.
Labour-intensive methods such as DA will tend to become impractical with large
audience groups.
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A further aspect of evaluation focus is the difference between solo and group
music-making. Wanderley and Orio’s set of simple musical tasks is only appli-
cable for solo experiments. Our evaluation method can apply in both solo and
group situations, with the appropriate experimental tasks for participants. The
physiological approach may also apply equally well in group situations.

6.5 Conclusions

This chapter contributes to our topic in two ways:
Firstly, we contribute to the fledgling topic of evaluation methodology for

expressive musical systems, by developing a rigorous qualitative method based
on Discourse Analysis (DA). The method was trialled with a small user group
and found to yield useful information, although we hope to refine the method
in future iterations – perhaps by conducting experiments using pairs of users
rather than solo users, to encourage the generation of more relevant talk to be
analysed.

Secondly, we have illuminated aspects of the timbre remapping concept de-
veloped in Chapter 5 through a contextual user evaluation. With our cohort
of beatboxers, we found that the timbre remapping feature was an unproblem-
atic addition to a voice-controlled synthesiser system, not creating unwelcome
associations with e.g. uncontrollability. The DA also revealed various different
approaches to conceptualising the system, which may be useful information for
future design.
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Chapter 7

Conclusions and further

work

In fulfilment of our aim “to develop methods for real-time control of synthesisers
purely using a vocal audio signal” (Section 1.2), the central part of this thesis has
been the development of two different ways to apply machine learning techniques
to this task – an event-based approach and a continuous timbre remapping
approach. To support these techniques we have investigated the choice of timbre
features to use, and how to evaluate such systems as expressive interfaces for
real-time music making.

To conclude this thesis, we first summarise the contributions made; then we
reflect upon the event-based and continuous approaches in comparison with one
another. Finally, we consider some potential avenues for future work, including
specific consequences of our studies as well as a broader consideration of vocal
interfaces to music-making.

7.1 Summary of contributions

• As a preliminary we explored a variety of acoustic features used to rep-
resent timbre (Chapter 3). We found that spectral centroid and spec-
tral 95-percentile each could serve well as a representative of perceptual
“brightness”, but that correlation analysis of timbre perception data did
not support any compact set of features to represent the remaining varia-
tion in timbral judgements. We also analysed timbre features with respect
to criteria of robustness and independence, finding that spectral crest fea-
tures and ∆MFCCs performed particularly poorly on the robustness mea-
sures and therefore are not recommended for our purpose.
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• We developed a novel estimator of the differential entropy of multidimen-
sional data (Appendix A), which is computationally efficient and broadly
applicable. This was applied as part of the work on feature independence.

• In Chapter 4 we studied the event-based approach to real-time control by
vocal timbre (particularly beatboxing), where our particular contribution
was to circumvent the dilemma of low-latency vs. good-classification by
introducing a delayed decision-making strategy. We evaluated this new
strategy by measuring the deterioration in listening quality of some stan-
dard drum loops as a function of the amount of delay, and found that a
delay of around 12–35 ms for some common drum loops was acceptable,
in line with the delay which allows peak classifier performance.

• In Chapter 5 we developed a new regression-tree technique (XAMRT)
which can learn associations between the distributions of two unlabelled
datasets. We demonstrated that this technique could be used to perform
real-time timbre remapping in a way which accommodates differences in
the timbre distributions of the source and target, outperforming nearest-
neighbour based searches.

In fact the XAMRT procedure is quite a general technique and may find
uses in other domains – we presented one potential application in the
analysis of vowel sounds, comparing two populations of English speakers.

• In Chapter 6 we developed a novel approach to the evaluation of expres-
sive musical interfaces, by applying the rigorous qualitative method of
Discourse Analysis to participants’ talk. In a small study we applied the
method and found positive indications for the timbre remapping approach
generally. We also gained some insights into the evaluation procedure
and suggested future improvements. This provides a contribution to this
fledgling topic within musical HCI.

Many of these contributions are represented in international peer-reviewed con-
ference and journal articles, as listed in Section 1.5.

Other outputs include: contributions towards the academic understanding of
the beatbox vocal style, both descriptively (Section 2.2) and through producing
a publicly-available annotated beatbox dataset (Section 4.1.1); and open-source
implementations of algorithms (entropy estimator, XAMRT, SOM) for use in
various programming languages.
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7.2 Comparing the paradigms:

event classification vs. timbre remapping

While carrying out the investigations described in this thesis, we have had op-
portunities to witness our voice-controlled systems in practice, through informal
testing, evaluation with beatboxers, demonstrations at conferences, and musical
performances in a variety of settings. Drawing on these experiences as well as
the evidence presented, we now consider the relative merits of the two paradigms
for vocal musical expression.

The event-based approach with real-time classification appears to be rela-
tively limited in its expressive potential. Our experiments used a simple classifier
with only three event types, which is a very small number – a classifier with
many more event types might provide for more expression. However, the accu-
racy of the classification is difficult to maintain as the number of classes grows
(as observed in informal testing), and the effect of misclassification during a live
vocal performance can be quite distracting for the performer, when a clearly
unintended sound is produced by the system. The delayed decision-making
strategy helps to mitigate this but misclassifications will still occur.

The continuous timbre-remapping approach has shown a lot of potential. It
appears to be quite approachable, at least for performers such as beatboxers,
and doesn’t tend to make obvious “errors” as would be heard from a misclas-
sified event in a classifier-based system (instead it tends to make less glaring
errors, such as some amount of jitter on control parameters during what is
intended as a held note). Importantly, the relatively “unbounded” nature of
the interaction allows users to discover a wide variety of sounds they can make
within a timbre remapping system (e.g. by making popping sounds with the
lips, or through vocal trills), sounds which were not specifically designed in by
the developer. Our relatively basic approach of analysing instantaneous timbre
(with no attention to trajectory over time, for example) produces quite a sim-
ple mapping whose character is easily learnable by a performer. However the
instantaneous approach neglects the opportunity to reduce measurement noise
for example by smoothing the timbre trajectory over time, which may be useful
to add.

7.3 Further work

Further work that could follow on from the research of this thesis includes:

Temporal modelling: The timbre remapping technique has been developed
without any temporal modelling; but temporal evolution is relevant in var-
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ious aspects of timbre and vocalisation (such as trill, discussed in Sections
2.1 and 2.2), and temporal considerations could help to reduce noise arte-
facts, so the integration of temporal modelling could be a fruitful avenue
to pursue. Discrete event models such as HMMs may be applicable, for
example applied to transitions from one leaf to another in a XAMRT tree
– but methods which model continuous timbral evolution should also be
investigated.

Voice as expressive music interface: The real-time non-speech voice inter-
face is still underdeveloped in terms of research understanding, in music
as well as in other fields (e.g. non-speech command interfaces [Harada
et al., 2009]). Future work should investigate psychological aspects such
as the split of attention between input and output sounds, and the ben-
efits/disadvantages of de-personalising the sound by transforming it. Ex-
plicit formal comparisons between vocal interfaces and other modalities
should also be conducted.

Combining event-based and continuous: There may be benefit in combin-
ing aspects of both event-based and continuous paradigms into future
voice-based systems. For example, event segmentation would give access
to analysis of attack times, not possible in a purely instantaneous ap-
proach.

Study of group interaction: As one particular aspect of the voice interface,
group interactive aspects deserve more research attention. Beatboxers and
other vocal performers often perform and even improvise together, as do
other musicians, and there is scope for exploring the nature of group in-
teraction (such as self-identification and the exchange of musical ideas)
in technologically-mediated vocal performance. There is some work on
the interactive aspects of group improvisation [Healey et al., 2005, Bryan-
Kinns et al., 2007]; future work should investigate this for vocal group in-
teraction, teasing out any aspects specific to the vocal modality. More tra-
ditional vocal interactions should be studied first, so that technologically-
mediated vocal interactions can usefully be compared with them.

Use in other contexts: Our user study was conducted with beatboxers, but
the potential application of vocal technology such as timbre remapping
could exist in other areas. We envisage studies which explore its use in
populations such as novice users, children and users of music therapy ser-
vices. Some recent work has explored “vocal sketching” for sound design,1

another potentially fruitful application domain for these technologies.
1http://www.michalri.net/sid/category/about/
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7.3.1 Thoughts on vocal musical control as an interface

Vocal control of music technology is at present not mainstream. The MIDI
keyboard remains the de facto standard interface for digital musicians (referred
to in Chapter 1). The robotic sound of the “vocoder effect” has established a
niche for itself in popular music [Tompkins, 2010], and so too has exaggerated
Auto-Tune vocal processing (the “Cher effect”) [Dickinson, 2001]. Some voice-
interactive mobile music applications have gained media attention,2 though it
remains to be seen whether the latter will have long-term traction. The question
arises whether vocal musical control could or should ever become the mainstream
interface for musical expression. For example, could composers do away with
their MIDI keyboard and use the microphone built into their computer?

One obvious limitation on vocal interfaces is on polyphony. A solo vocalist
cannot directly produce the range of chords available to a solo keyboardist – even
the polyphony available through techniques such as overtone singing and ven-
tricular phonation (Section 2.3.2) is relatively limited. There are workarounds,
such as layering multiple sounds, but this inability of the interface directly to
enable musical effects such as harmony suggests that we would be unwise to
propose a vocal interface as the main tool for all solo composition tasks. How-
ever, the keyboard and the microphone can co-exist; and since microphones
are increasingly commonly included as standard in consumer computers, we
suggest that vocal interaction may increasingly become a component of music
technology, perhaps as part of a multimodal interaction.

An issue peculiar to the vocal interface is that people can often be inhibited
about vocal musical expression – confronting someone with a microphone can
induce them to opt out saying, “I can’t sing”, more often due to inhibition than
inability [Sloboda et al., 2005, Abril, 2007]. However, the popularity of karaoke
[Kelly, 1998] and of its transformation into computer games such as SingStar
[Hämäläinen et al., 2004] shows that many people can overcome this barrier
given the right social context. Further, techniques such as timbre remapping
might help to de-personalise the output sound (cf. Section 6.3.2) and therefore
help to overcome inhibitions.

Unlike the MIDI keyboard controller and various other interfaces, vocal
sound occupies the same modality (audio) as the musical result. It therefore
raises issues such as unwanted feedback, and the extent to which a performer
can/must pay attention both to the input and output sounds simultaneously.
Live performance styles such as beatboxing indicate that such issues are not
overly inhibiting. From practical experience performing with a timbre remap-
ping system, we note that feedback suppression would be useful for club-type

2http://www.smule.com/products, http://www.rjdj.me/
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environments where PA/monitor sound can bleed back into the microphone sig-
nal – feedback suppression schemes exist, but would probably need to be cus-
tomised to the timbre remapping case where the input and output are different
types of sound.

Current voice-based interfaces also preclude silent practice, since the per-
former must make noise even if the output sound is muted or played on head-
phones. One development which may bear upon this in future is that of silent
voice interfaces, which use non-audio analysis of the vocal system to react to
mimed vocalisations [Denby et al., 2010].

The phone “form factor”

Many developments in 20th century music seem to have been stimulated by
the equipment that was becoming widely available. Cheap drum machines and
samplers were important in rave and house music [Butler, 2006], vinyl turntables
in hip-hop and DJ culture. The massive growth of the general-purpose home
computer stimulated many musical scenes in the late 20th century, allowing
“bedroom producers” to make multitrack home recording studios with little
additional costs (such as the Atari ST in the mid 1980s, which even had built-in
MIDI ports) [Collins and d’Escriván, 2007, Chapter 5].

It is therefore worth noting the general rise of the mobile phone in the first
decade of the 21st century, and in particular the growing popularity of “smart-
phones” capable of general-purpose computing. The smartphone platform dif-
fers from the home computer – it has no keyboard (or a limited one) and few
buttons, but comes with a microphone built in. There is already some academic
and commercial work which aims to capitalise on the affordances of this form
factor for music,2 although we consider the topic to be still in its infancy, and
look forward to further development stimulated by the wide availability of ad-
vanced mobile phones. In our view this form factor will lead to an interaction
paradigm that is multimodal by default, using audio as well as camera-based
and touch interaction.

7.3.2 Closing remarks

Broadly, we note from experience that the subtlety of the sounds which peo-
ple can and do produce vocally is staggering, and is beyond the wit of current
algorithms to reproduce entirely. The techniques we have developed provide
expressive tools which performers enjoy and find useful; but from personal ex-
perience we assert that there is still more under-utilised information in the input
– both in the signal itself and in the cultural and musical significations which a
human listener can pick up. There is still a long way to go before systems can
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produce a really musically intelligent response to any given vocal input. That
would probably require systems trained with cultural and musical information
as well as rich processing of the immediate input stream(s).

Reflecting on the results of the qualitative study (Chapter 6) together with
our own experience of performing with the systems developed in this thesis, we
conclude that timbre remapping in particular is a viable approach to expanding
the palette of beatboxing, and hopefully also other types of vocal performance.
Since we do not claim that our current timbre remapping system is able to
translate all the subtleties of an expressive vocal performance into the output
sound, one might argue that the system is constraining rather than enabling,
since it is likely that there is less variety at the output than the input. However,
in performance situations a vocalist would have the option of switching between
the remapped or raw sound (in the focus-group session, participants did exactly
this), and/or switching among different synthesisers controlled – meaning the
overall effect is to extend a performer’s timbral repertoire and to allow them
move between different sonic palettes during the course of a performance.

Some beatboxers take a purist approach and prefer not to add further tech-
nological mediation to their performance – while a larger portion of performing
beatboxers use technology to build on top of the basic beatbox sound and to ex-
tend the musical interest of a live solo performance (e.g. by using audio-looping
effects). Based on our research and our experience of beatbox performance, we
look forward to timbre remapping techniques being available as part of perform-
ers’ live setup – not as an exclusive vehicle for expression, but as one such tool
in the vocal performer’s toolkit.
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Appendix A

Entropy estimation by k-d

partitioning

For a multivariate random variable X taking values x ∈ X , X = RD, the
differential Shannon entropy is given as

H = −
∫
X
f(x) log f(x) dx (A.1)

where f(x) is the probability density function (pdf) of X [Arndt, 2001]. Esti-
mating this quantity from data is useful in various contexts, for example image
processing [Chang et al., 2006] or genetic analysis [Martins Jr et al., 2008].
While estimators can be constructed based on an assumed parametric form for
f(x), non-parametric estimators [Beirlant et al., 1997] can avoid errors due to
model mis-specification [Victor, 2002].

In this appendix we describe a new non-parametric entropy estimator, based
on a rectilinear adaptive partitioning of the data space. The partitioning pro-
cedure is similar to that used in constructing a k-d tree data structure [Bentley,
1975], although the estimator itself does not involve the explicit construction
of a k-d tree. The method produces entropy estimates with similar bias and
variance to those of alternative estimators, but with improved computational
efficiency of order Θ

(
N logN

)
.

In the following, we first state the standard approach to entropy estima-
tion by adaptive partitioning (Section A.1), before describing our new recursive
partitioning method and stopping criterion in Section A.2, and considering com-
putational complexity issues in Section A.3. We present empirical results on the
bias, variance and efficiency of the estimator in Section A.4.
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A.1 Entropy estimation

Consider a partition A of X , A = {Aj | j = 1, ...,m} with Aj ∩ Ak = ∅ if j 6= k

and
⋃
j Aj = X . The probability mass of f(x) in each cell Aj is pj =

∫
Aj
f(x).

We may construct an approximation fA(x) having the same probability mass
in each cell as f(x), but with a uniform density in each cell:

fA(x) =
pj

µ(Aj)
, j s.t. x ∈ Aj (A.2)

where µ(Aj) is the D-dimensional volume of Aj .
Often we do not know the form of f(x) but are given some empirical

data points sampled from it. Given a set of N D-dimensional data points
{xi | i = 1, ..., N}, xi ∈ RD, we estimate pj by nj/N where nj is the number of
data points in cell Aj . An empirical density estimate can then be made:

f̂A(x) =
nj

Nµ(Aj)
, j s.t. x ∈ Aj . (A.3)

This general form is the basis of a wide range of density estimators, depending
on the choice of partitioning scheme used to specify A. A surprisingly broad
class of data-adaptive partitioning schemes can be used to create a consistent
estimator, meaning f̂A(x) → f(x) as N → ∞ [Breiman et al., 1984, Chapter
12][Zhao et al., 1990].

The within-cell uniformity of fA(x) allows us to rewrite (A.1) to give the
following expression for its entropy:

HA =
m∑
j=1

pj log
µ(Aj)
pj

(A.4)

and so our partition-based estimator from data points xj is

Ĥ =
m∑
j=1

nj
N

log
(
N

nj
µ(Aj)

)
(A.5)

To estimate the entropy from data, it thus remains for us to choose a suitable
partition A for the data.

A.1.1 Partitioning methods

A computationally simple approach to choose a partition A is to divide a dataset
into quantiles along each dimension, since quantiles provide a natural way to
divide a single dimension into regions of equal empirical probability. Indeed,
in one dimension this approach leads to estimators such as the “mN -spacing”
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estimator of Vasicek [1976] (see also Learned-Miller and Fisher [2003]). In the
multidimensional case, by dividing each dimension of RD into q-quantiles, we
would create a product partition having qD cells. However, such a product
partition can in fact lead to poor estimation at limited number of data points
N because f(x) is not in general equal to the product of its marginal densities,
and so the product partition may be a poor approximation to the structure of
the ideal data partition [Darbellay and Vajda, 1999].

Data-driven non-product partitioning methods exist. Voronoi partitioning
divides the space such that each data point is the centroid of a cell, and the
boundary between two adjacent cells is placed equidistant from their centroids.
Delaunay triangulation partitions the space using a set of simplices defined with
the data points at their corners [Edelsbrunner, 1987, Chapter 13]. Such parti-
tions are amenable to entropy estimation by (A.5), as considered by Learned-
Miller [2003]. However, the complexity of such diagrams has a strong interaction
with dimensionality: although two-dimensional diagrams can be O

(
N logN

)
in

time and storage, at D ≥ 3 they require O
(
Nd

D+1
2 e) time and O

(
Nd

D
2 e) storage

[Edelsbrunner, 1987, Chapter 13].
Partitioning by tree-like recursive splitting of a dataset is attractive for a

number of reasons. It is used in nonparametric regression [Breiman et al., 1984]
as well as in constructing data structures for efficient spatial search [Bentley,
1975]. The non-product partitions created can take various forms, but in many
schemes they consist of hyperrectangular cells whose faces are axis-aligned. Such
hyperrectangle-based schemes are computationally advantageous because the
storage complexity of the cells does not diverge strongly, requiring only 2D real
numbers to specify any cell. A notable example here is Darbellay and Vajda’s
2D mutual information estimator [Darbellay and Vajda, 1999], which recursively
splits a dataset into four subpartitions until an independence criterion is met. In
Section A.2 we will describe our new method which has commonalities with this
approach, but is specialised for the fast estimation of multidimensional entropy.

A.1.2 Support issues

If the support of the data is not known or unbounded then there will be open
cells at the edges of A. These are problematic because they have effectively
infinite volume and zero density, and cannot be used to calculate (A.5). One
solution is to neglect these regions and adjust N and m to exclude the regions
and their data points [Learned-Miller, 2003]. But for small datasets or high
dimensionality, this may lead to the estimator neglecting a large proportion of
the data points, leading to an estimator with high variance. It also leads to a
biased estimate, tending to underestimate the support.
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An alternative is to limit edge cells to finite volume by using the Maximum
Likelihood Estimate of the hyperrectangular support. This reduces to the esti-
mate that the extrema of the data sample define the support (since any broaden-
ing of the support beyond the extrema cannot increase the posterior probability
of the data sample). This is of course likewise a biased estimate, but does not
exclude data points from the calculation of (A.5), and so should provide more
efficient estimation at low N . We use this approach in the following.

A.2 Adaptive partitioning method

Since the approximation f̂A(x) has a uniform distribution in each cell, it is
reasonable to design our adaptive partitioning scheme deliberately to produce
cells with uniform empirical distribution, so that f̂A(x) best approximates f(x)
at limited N . Partitioning by recursively splitting a dataset along quantiles
produces a consistent density estimator [Breiman et al., 1984, Chapter 12][Zhao
et al., 1990], so we design such a scheme whose stopping criterion includes a test
for uniformity.

At each step, we split a set of data points by their sample median along
one axis, producing two subpartitions of approximately equal probability. This
has a close analogy in the approach used to create a k-d tree data structure
[Bentley, 1975], hence we will refer to it as k-d partitioning. Such rectilinear
partitioning is computationally efficient to implement: not only because the
splitting procedure needs only consider one dimension at a time, but because
unlike in the Voronoi or Delaunay schemes any given cell is a hyperrectangle,
completely specified by only 2D real numbers.

It remains to select a test of uniformity. Various tests exist [Quesenberry and
Miller, 1977], but in the present work we seek a computationally efficient estima-
tor, so we require a test which is computationally light enough to be performed
many times during estimation (once at each branch of the recursion). Since
our partitioning scheme requires measurement of the sample median, we might
attempt to use the distribution of the sample median in a uniform distribution
to design a statistical test for uniformity.

The distribution of the sample median tends to a normal distribution [Chu,
1955] which can be standardised as

Zj =
√
nj

2 ·medd(Aj)−mind(Aj)−maxd(Aj)
maxd(Aj)−mind(Aj)

(A.6)

where medd(Aj), mind(Aj), maxd(Aj) respectively denote the median, mini-
mum and maximum of the hyperrectangular cell Aj along dimension d. An
improbable value for Zj (we use the 95% confidence threshold for a standard
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kdpee({xi}, D,N)
LN ← result of equation (A.7)
A0 ← range({xi})
return kdpee recurse(A0, 1)

kdpee recurse(A, level)
d← level mod D
n← count(xi ∈ A)
med ← median along dth dimension of xi ∈ A
Z ← result of equation (A.6)
if level ≥ LN and |Z| ≥ 1.96

then
return n

N log(Nn µ(A))
else

U ← A ∩ (dimensiond < med)
V ← A ∩ (dimensiond ≥ med)
return kdpee recurse(U, level +1)

+kdpee recurse(V, level +1)

Figure A.1: The k-d partitioning entropy estimation algorithm for a set of N
D-dimensional data points {xi}. Note that the dimensions are given an arbitrary
order, 0...(D− 1). A0 is the initial partition with a single cell containing all the
xi.

normal distribution, |Zj | > 1.96) indicates significant deviation from uniformity,
and that the cell should be divided further.

This test is weak, having a high probability of Type II error if the distribu-
tion is non-uniform along a dimension other than d, and so can lead to early
termination of branching. We therefore combine it with an additional heuristic
criterion that requires partitioning to proceed to at least a minimum branching
level LN , so that the cell boundaries must reflect at least some of the structure
of the distribution. We use the partitioning level at which there are

√
N data

points in each partition,

LN =
⌈

1
2

log2N

⌉
. (A.7)

This is analogous to the common choice of m =
√
N in the m-spacings entropy

estimator, which in that case is chosen as a good compromise between bias and
variance [Learned-Miller, 2003]. Our combined stopping criterion is therefore
L ≥ LN and |Zj | > 1.96.

The recursive estimation procedure is summarised as pseudocode in Figure
A.1.

To produce a reasonable estimate, we expect to require a minimum amount
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of data values. We require the estimator to be able to partition at least once
along each dimension–in order that no dimension is neglected in the volume
estimation–so the estimator must have the potential to branch to D levels. The
number of levels in the full binary tree approximates log2N , which gives us a
lower limit of N ≥ 2D. This limit will become important at high dimensionality.

A.3 Complexity

The complexity of all-nearest-neighbour-based estimators such as that of Ky-
bic [2006] is dominated by their All Nearest Neighbour (ANN) search algo-
rithm. The näıve ANN search takes Θ

(
N2D

)
time, but improved methods

exist [Chávez et al., 2001]. For example, using a cover tree data structure,
ANN can be performed in O

(
c12N logN

)
time, where c is a data-dependent

“expansion constant” which may grow rapidly with increasing dimensionality
[Beygelzimer et al., 2006]. Time complexity of O

(
N logN

)
is possible in a

parallel-computation framework [Callahan, 1993].
Learned-Miller’s estimator based on Voronoi-region partitions [Learned-Miller,

2003] is, like ours, a multidimensional partitioning estimator. As discussed in
section A.1.1 the complexity of Voronoi or Delaunay partitioning schemes is
O
(
Nd

D+1
2 e) in time and O

(
Nd

D
2 e) in storage, meaning that for example a 3D

Voronoi diagram is O
(
N2
)

in time and storage.
Kernel density estimation (KDE) can also be a basis for entropy estimation

[Beirlant et al., 1997]. Methods have been proposed to improve on the näıve
KDE complexity of O

(
N2D

)
, although their actual time complexity is not yet

clear [Lang et al., 2004].
For our algorithm, the time complexity is dominated by the median parti-

tioning, which we perform in Θ
(
N
)

time using Hoare’s method [Hoare, 1961].
At each partitioning level we have mL cells each containing approximately N

mL

points, meaning that the total complexity of the mL median-finding operations
remains at Θ

(
N
)

for each level. For any given dataset, the stopping criterion
(A.6) may result in termination as soon as we reach level LN or may force us to
continue further, even to the full extent of partitioning. Therefore the number
of levels processed lies in the range 1

2 log2N to log2N . This gives an overall
time complexity of Θ

(
N logN

)
at any dimensionality. For D > 2 and a single

processor this is therefore an improvement over the other methods.
The memory requirements of our algorithm are also low. In-place partition-

ing of the data can be used, and no additional data structures are required, so
space complexity is Θ

(
N
)
. This is the same order as the cover-tree-based ANN

estimator, and better than the Voronoi-based estimator.
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A.4 Experiments

We tested our k-d estimation algorithm against samples from some common
distribution types, with N = 5000 and D from 1 to 12. In each case we ran
100 simulations and calculated the mean deviation from the theoretical entropy
value of the distribution, as well as the variance of the entropy estimates. These
will be expressed as deviations from the true entropy, which in all cases was 2
nats ( 2

ln 2 bits) or greater.
For comparison, we also tested two other common types of estimator: a

KDE-based resubstitution estimator, and an ANN estimator. We used publicly-
available implementations due to Ihler,1 which use a k-d tree to speed up the
KDE and ANN algorithms. All three implementations are Matlab code using
C/C++ for the main calculations. We did not test the Voronoi-region-based
estimator because it becomes impractical beyond around 4 dimensions (Learned-
Miller, pers. comm.).

Fig. A.2 plots the bias for up to 12 dimensions, for each of the three different
estimators. In general, the estimators all provide bias performance at a similar
order of magnitude and with a similar deterioration at higher dimensionality,
although our estimator exhibits roughly twice as much bias as the others. The
narrow confidence intervals on the graphs (exaggerated for visibility in Fig. A.2)
reflect the low variance of the estimators.

The upward bias of our estimator for non-uniform distributions at higher
dimensions is likely to be due to underestimation of the support, neglecting
regions of low probability (see Section A.1.2). This would lead to some overes-
timation of the evenness of the distribution and therefore of the entropy. Since
the estimator is consistent, this bias should decrease with increasing N .

Fig. A.3 plots the CPU time taken by the same three estimators, at various
data sizes and D ∈ 2, 5, 8. In all tested cases our estimator is faster, by between
one and three orders of magnitude. More importantly, the times taken by the
resubstitution and ANN estimators diverge much more strongly than those for
our estimator, at increasing D and/or N . As we expect from Section A.3, CPU
time for our estimator is broadly compatible with Θ

(
N logN

)
(Fig. A.4).

A.5 Conclusion

We have described a nonparametric entropy estimator using k-d partitioning
which has a very simple and efficient implementation on digital systems, running
in Θ

(
N logN

)
time for any dimensionality of data. In experiments with known

1http://www.ics.uci.edu/~ihler/code/
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Figure A.2: Bias of some entropy estimators at increasing dimensionality. Error
bars show the 95% confidence interval exaggerated by a factor of 10 for visi-
bility. Distributions tested are gaussian (top), uniform (middle), exponential
(bottom). N = 5000, 100 runs. ANN = all-nearest-neighbours estimator. RS
= resubstitution estimator. kd = k-d partitioning estimator.

distributions, our estimator exhibits bias and variance comparable with other
estimators.

The estimator is available for Python (numpy), Matlab or GNU Octave.2

2http://www.elec.qmul.ac.uk/digitalmusic/downloads
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Figure A.3: CPU time for the estimators in Figure A.2, using Gaussian dis-
tributions and D ∈ 2, 5, 8. Tests performed in Matlab 7.4 (Mac OSX, 2 GHz
Intel Core 2 Duo processor). Data points are averaged over 10 runs each (20
runs each for our estimator). 95% confidence intervals are shown (some are not
visible).
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Figure A.4: CPU time for our estimator, calculated as in Figure A.3 but for all
D ranging from 1 to 12. The shaded areas indicate slopes of kN logN .
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Appendix B

Five synthesisers

This appendix describes five simple synthesisers (synths) used for some of the
work in the thesis, including stability of features (Section 3.3.1). Each of them
was implemented as a “SynthDef” (synth definition) in SuperCollider 3.3.1 [Mc-
Cartney, 2002], and each is given here with a brief description, plus the Super-
Collider SynthDef source code and a description of the controls.

B.1 simple

A simple mixture of a sine-wave and a pink noise source, intended to represent
a synthesiser with a very simple timbral range.

SynthDef(\_maptsyn_supersimple, { |out=0, amp=1,

freq=440, noise=0|

var son;

son = XFade2.ar(SinOsc.ar(freq), PinkNoise.ar, noise);

Out.ar(out, son * (amp));

})

Control inputs:

freq: fundamental frequency, 25–4200 Hz exponential

noise: noise/tone mix control, −1–1 linear

B.2 moogy1

A software implementation of a popular type of analogue-inspired sound: a saw
wave with a variable amount of additive pink-noise and crackle-noise, passed
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through an emulation of a Moog synthesiser’s resonant low-pass filter [Fontana,
2007].

SynthDef(\_maptsyn_moogy1, { |out=0, amp=1,

freq=440, noise=0.1, dustiness=0.1, filtfreq=1000, filtgain=1|

var son;

son = MoogFF.ar(Saw.ar(freq) * PinkNoise.ar.range(1 - noise, 1)

+ Dust2.ar(dustiness), filtfreq, filtgain);

Out.ar(out, son * (amp * 2.8));

})

Control inputs:

freq: fundamental frequency, 25–4200 Hz exponential

noise: pink noise modulation depth, 0–1 linear

dustiness: additive crackle noise amplitude, 0–1 linear

filtfreq: filter cutoff, 20–20000 Hz exponential

filtgain: filter resonance gain, 0–3.5 linear

B.3 grainamen1

A granular synthesiser [Roads, 1988] applied to a recording of the Amen break-
beat [Butler, 2006, p78] to produce a controllable unpitched sound varying across
the timbral range of a drum-kit, yet with the granular synthesis aspect providing
a controllable stationarity that is not present in many drum sounds.

SynthDef(\_maptsyn_grainamen1, { |out=0, amp=1,

// mapped:

phasegross=0.5, phasefine=0.05, trate=50,

// extraArgs:

bufnum=0

|

var phase, son, clk, pos, dur;

dur = 12 / trate;

clk = Impulse.kr(trate);

pos = (phasegross + phasefine) * BufDur.kr(bufnum)

+ TRand.kr(0, 0.01, clk);

son = TGrains.ar(2, clk, bufnum, 1.25, pos, dur, 0, interp: 0)[0];

Out.ar(out, son * (amp * 20));

})
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Control inputs:

phasegross: gross position from which to take grains, 0–0.95 linear

phasefine: fine position from which to take grains, 0–0.05 linear

trate: grains per second, 16–120 exponential

B.4 ay1

A software emulation of the General Instrument AY-3-8910 sound chip [Sinclair
Research Ltd., 1985], a real-world yet relatively simple sound-synthesis chip
with a set of integer-valued controls for three tone generators and one noise
generator, each with roughly square waveform. Only one tone generator was
used in this realisation to preserve monophony.

SynthDef(\_maptsyn_ay1, { |out=0, amp=1,

control=1, noise=15, freq=440|

var son;

son = AY.ar(

control: control,

noise: noise,

tonea: AY.freqtotone(freq).round,

toneb: 0,

tonec: 0,

vola: 15,

volb: 0,

volc: 0

);

Out.ar(out, son * (amp * 2.8));

})

Control inputs:

control: chip control (bit mask) for tone/noise/both, discrete values 1/8/9

noise: chip control for noise type, integers 0–31

freq: fundamental frequency, 25–4200 Hz exponential

B.5 gendy1

An implementation of the “dynamic stochastic synthesis generator” conceived
by Iannis Xenakis [Xenakis, 1992, Chapters 9, 13, 14] and implemented in Super-
Collider by Nick Collins, which is a synthesiser with some dynamic and random
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elements (yet with a consistent percept at any given setting), capable of a wide
range of timbres reminiscent of e.g. trumpet, car horns, bees.

SynthDef(\_maptsyn_gendy1, { |out=0, amp=1,

ampdist=1, durdist=1, adparam=1.0, ddparam=1.0,

minfreq=20, maxfreq=1000, ampscale= 0.5|

var son;

son = Gendy1.ar(ampdist, durdist, adparam,

ddparam, minfreq, maxfreq, ampscale, 0.5);

son = son.softclip;

Out.ar(out, son * amp);

}).writeDefFile

Control inputs (all directly controlling parameters of the Gendy1 algorithm, see
Gendy1 helpfile or [Xenakis, 1992, Chapters 9, 13, 14] for detail on their effect):

ampdist: integers 0–5

durdist: integers 0–5

adparam: 0.0001–1 linear

ddparam: 0.0001–1 linear

minfreq: 10–2000 Hz exponential

minfreq: 200–10000 Hz exponential

ampscale: 0.1–1 linear
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Appendix C

Classifier-free feature

selection for independence

Our investigations into timbre features in Chapter 3 largely investigated at-
tributes of the features individually. However we are likely to be using multiple
timbre features together as input to machine learning procedures which will op-
erate on the resulting multidimensional timbre space. We therefore wish to find
a subset of features which together maximise the amount of useful information
they present while minimising the number of features, to minimise the risk of
curse of dimensionality issues. To do this we wish to perform a kind of feature
selection based on analysing the redundancy among sets of variables.

However, our voice datasets are unlabelled and so we do not have the option
of using a classifier-based feature selection [Guyon and Elisseeff, 2003]. A very
few others have studied unsupervised feature selection, e.g. Mitra et al. [2002],
who use a clustering technique. In this Appendix we report some preliminary
experiments working towards the aim of selecting an independent subset of
features in an unsupervised context. This work is unfinished; as we will discuss,
it is a difficult task with issues still be resolved.

C.1 Information-theoretic feature selection

We have seen in Section 3.3.2 some use of entropy and mutual information
measures to characterise the amount of information shared between variables.
Generalisations of mutual information from the bivariate to the multivariate
case exist [Fano, 1961][Fraser, 1989], however these are not as widely used as
mutual information applied pairwise to features. Another useful measure is the
conditional entropy [Arndt, 2001, Chapter 13]. The entropy of Y conditional
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on X is given as

H(Y |X) =
∫
X

p(x)H(Y |X = x) (C.1)

= H(Y,X)−H(X) (C.2)

and can be seen as quantifying the amount of information provided by Y that
is not also provided by X (which may be multivariate).

The conditional entropy measure (C.2) can be used as a basis for feature
selection. Given a set of K features, for each feature we can calculate the
conditional entropy between that feature and the remaining K − 1 features, to
quantify the amount of information it provides that is not otherwise present in
the ensemble. We emphasise the contextual nature of such a calculation: the
results for each feature depend on which other features are being considered.
Using such measures, a subset could be chosen in which the lowest inter-feature
redundancy is found.

In feature selection, the optimal result could be determined by an exhaustive
search, but the number of possible combinations to be evaluated is exponential
in the number of candidate features and thus typically intractable [Dash and
Liu, 1997]. Two common types of search algorithm are sequential forwards
selection (or “greedy selection”) – in which a small set of features is repeatedly
grown by adding in an extra feature, such that some criterion is maximised –
and sequential backwards selection (or “greedy rejection”) – in which a large
set of features is repeatedly reduced by choosing a feature to reject, such that
some criterion is maximised [Jain and Zongker, 1997]. Either algorithm can be
used to produce a set of features of a desired size, and/or to rank all features
in order of preference. The choice/ranking is not guaranteed to be optimal but
is often near optimal [Jain and Zongker, 1997], and can be improved by using
a “floating” search which allows the possibility to backtrack, e.g. in forwards
selection by rejecting features that had been selected in an earlier iteration
[Pudil et al., 1994].

Conditional entropy can be used as an evaluation metric for sequential se-
lection. At each step one could identify which of K features has the lowest
conditional entropy with the others and can be rejected (backwards selection),
or could identify which of a set of additional features has the highest conditional
entropy with the K features and should be added to the set (forwards selection).
However, the nature of nonlinear dependence analysis presents some difficulties
which must be considered:

• Backwards selection is initialised with the full set of candidate features,
i.e. with a high-dimensional feature space. Yet estimators of information-
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theoretic quantities from data are known to perform worse at higher di-
mensionality (see Appendix A), so the earliest estimates in such an ap-
proach could introduce error such as prematurely rejecting a given feature
and therefore strongly skewing its ranking.

• Forwards selection begins with a small set of candidate features, and there-
fore the earlier estimates of information-theoretic quantities (on e.g. one-
or two-dimensional spaces) would be expected to be the more reliable.
However, nonlinear dependencies may exist within larger groups of fea-
tures that are not apparent when considering only small subsets. For
example, three features A B and C may be relatively independent from
one another when evaluated pairwise, yet there could still exist significant
informational overlap in the set A B C. In such a situation, the three-way
interaction would not be evident in the two-way measures such as H(A|B)
or H(B|A), meaning that for example A and B could be selected at an
early stage, producing a ranking which fails to reflect the higher-order
dependencies.

We therefore use a hybrid of both forwards and backwards techniques, as
follows. We choose a cardinality K at which it is tractable to evaluate all
possible subsets of the candidate features, e.g. K = 3 or K = 4. Given S

total features, the number of subsets to be evaluated is
(
S
K

)
= S!

K!(S−K)! . We
evaluate all possible feature subsets of cardinality K to find which has the least
redundancy between features – note that this can be made equivalent to finding
which subset has the largest joint entropy, if the features are first normalised
such that each has the same fixed univariate entropy (Equation C.2). Then
having identified the best such subset, we perform both forwards and backwards
selection starting from that point: backwards selection to rank the K features,
and forwards floating selection to append the remaining S − K features. In
this way, the entire feature set is ranked, and an information-bearing subset of
any size K ∈ (1...S) can be identified, yet the problems stated above for pure
forwards or backwards searches will be reduced in their effect.

C.2 Data preparation

We used the same data preparation as described in Section 3.4: the three voice
datasets SNG SPC and BBX were analysed, using our entropy estimator (Ap-
pendix A) to estimate conditional entropies by Equation (C.2).

The calculation was optimised by applying the probability integral transform
to each feature, which normalises the univariate entropies, meaning we could
select for maximum joint entropy rather than minimum conditional entropy.
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Rank Feature CondEnt
1 dmfcc8 -3.75242e-05
2 crst2 -0.00795948
3 dmfcc4 -0.0147636
4 mfcc3 -0.0214396
5 dmfcc2 -0.00500112
6 iqr -0.00924548
7 dmfcc6 0.0025963
8 dmfcc7 -0.00977632
9 crst5 -0.0184311
10 mfcc8 -0.00381674
11 dmfcc5 0.000197236
12 mfcc7 0.00144796
13 mfcc6 -3.33595e-05
14 pcile75 -3.33595e-05
15 mfcc5 -3.33595e-05
16 dmfcc3 -3.33595e-05
17 crst3 -3.33595e-05
18 power -3.33595e-05
19 flux -3.33595e-05
20 pow5 -3.33595e-05
21 centroid -3.33595e-05
22 mfcc4 -3.33595e-05
23 crst1 -3.33595e-05
24 mfcc2 -3.33595e-05
25 slope -3.33595e-05
26 tcrest -3.33595e-05
27 flatness -3.33595e-05
28 dmfcc1 -3.33595e-05
29 zcr -3.33595e-05
30 pow1 -3.33595e-05
31 pow4 -3.33595e-05
32 mfcc1 -3.33595e-05
33 pow3 -3.33595e-05
34 pcile95 -3.33595e-05
35 crest -3.33595e-05
36 pow2 -3.33595e-05
37 crst4 -3.33595e-05
38 spread -3.33595e-05
39 pitch -5.00396e-05
40 pcile50 -0.000100082
41 pcile25 -0.00138535
42 clarity -0.0145836

(a) SNG dataset

Rank Feature CondEnt
1 dmfcc7 -0.00704878
2 pow4 -0.0026457
3 dmfcc4 -0.0104024
4 dmfcc8 -0.0136911
5 dmfcc5 0.00327771
6 dmfcc3 -0.0020854
7 crst2 -0.00977744
8 crst5 -0.0181953
9 crst3 -0.00361814
10 crst4 -0.00196425
11 flux -0.00223691
12 mfcc8 0.000262112
13 pow5 -3.31625e-05
14 pcile75 -3.31625e-05
15 dmfcc1 -3.31625e-05
16 tcrest -3.31625e-05
17 mfcc7 -3.31625e-05
18 zcr -3.31625e-05
19 mfcc5 -3.31625e-05
20 mfcc4 -3.31625e-05
21 crest -3.31625e-05
22 mfcc6 -3.31625e-05
23 mfcc1 -3.31625e-05
24 slope -3.31625e-05
25 pow1 -3.31625e-05
26 spread -3.31625e-05
27 pcile95 -3.31625e-05
28 centroid -3.31625e-05
29 iqr -3.31625e-05
30 pow3 -3.31625e-05
31 pitch -3.31625e-05
32 mfcc3 -3.31625e-05
33 mfcc2 -3.31625e-05
34 flatness -3.31625e-05
35 pow2 -3.31625e-05
36 dmfcc6 -3.31625e-05
37 power -3.31625e-05
38 crst1 -3.31625e-05
39 dmfcc2 -3.31625e-05
40 pcile50 -0.000182408
41 pcile25 -0.00255674
42 clarity -0.0500113

(b) SPC dataset

Rank Feature CondEnt
1 dmfcc8 0.052939
2 mfcc5 -0.0284791
3 dmfcc2 -0.0388293
4 dmfcc4 -0.00424729
5 dmfcc6 -0.00141392
6 slope -0.0984349
7 dmfcc3 -0.162284
8 spread -0.102299
9 crst1 0.000493247
10 dmfcc7 -8.3309e-05
11 centroid -8.3309e-05
12 pow5 -8.3309e-05
13 pow2 -8.3309e-05
14 zcr -8.3309e-05
15 mfcc7 -8.3309e-05
16 mfcc2 -8.3309e-05
17 crest -8.3309e-05
18 crst4 -8.3309e-05
19 crst3 -8.3309e-05
20 pcile95 -8.3309e-05
21 pow1 -8.3309e-05
22 pow3 -8.3309e-05
23 mfcc1 -8.3309e-05
24 flux -8.3309e-05
25 crst2 -8.3309e-05
26 dmfcc1 -8.3309e-05
27 pow4 -8.3309e-05
28 mfcc8 -8.3309e-05
29 tcrest -8.3309e-05
30 mfcc6 -8.3309e-05
31 power -8.3309e-05
32 dmfcc5 -8.3309e-05
33 mfcc3 -8.3309e-05
34 crst5 -8.3309e-05
35 mfcc4 -8.3309e-05
36 flatness -0.000124966
37 pitch -0.000291612
38 iqr -0.000333278
39 pcile75 -0.000333278
40 pcile50 -0.00333779
41 pcile25 -0.0416762
42 clarity -0.220772

(c) BBX dataset

Table C.1: Results of feature selection: voice timbre features ranked using float-
ing selection/rejection algorithm with conditional entropy measure.

This standardisation of the marginal variables is closely related to the use of
empirical copulas to study dependency between variables, see e.g. Nelsen [2006,
Chapter 5], Diks and Panchenko [2008].

C.3 Results

Table C.1 shows the results of the information-theoretic feature selection carried
out on the three voice timbre datasets. Agreement between the ranking in the
three datasets is moderate – some commonalities can be observed by inspec-
tion, but the overall rank agreement is not statistically significant (Kendall’s
W=0.369, p=0.29, 41 d.f.). Notably, the rank ordering is very different from
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Rank Feature CondEnt
1 flux -3.75598e-05
2 mfcc4 -0.0130079
3 spread -0.0357503
4 pow4 -0.0694354
5 mfcc3 -0.172405
6 power -0.121682
7 zcr -0.0933562
8 pow5 -0.139361
9 clarity -0.0978034
10 pitch -0.097602
11 mfcc2 -0.0668573
12 mfcc1 -0.0432822
13 pow3 -0.00915218
14 slope -0.000816111
15 iqr -3.31647e-05
16 pcile95 -3.31647e-05
17 flatness -3.31647e-05
18 centroid -3.31647e-05
19 pcile75 -3.31647e-05
20 pow2 -3.31647e-05
21 pow1 -3.31647e-05
22 pcile50 -9.94975e-05
23 pcile25 -0.00137727

(a) SNG dataset

Rank Feature CondEnt
1 mfcc2 -3.7668e-05
2 spread -0.0150767
3 mfcc4 -0.0320311
4 flux -0.0489897
5 pitch -0.125682
6 power -0.106014
7 mfcc3 -0.0719297
8 zcr -0.0881291
9 clarity -0.134593
10 pow2 -0.100906
11 slope -0.0943874
12 pow4 -0.0462031
13 mfcc1 -0.00635225
14 pow5 -7.88219e-06
15 pow1 -3.30328e-05
16 pcile95 -3.30328e-05
17 pow3 -3.30328e-05
18 pcile75 -3.30328e-05
19 centroid -3.30328e-05
20 flatness -3.30328e-05
21 iqr -3.30328e-05
22 pcile50 -0.000181694
23 pcile25 -0.00254673

(b) SPC dataset

Rank Feature CondEnt
1 power 0.0140867
2 mfcc4 -0.0396685
3 mfcc2 -0.129682
4 pow2 -0.115882
5 pitch -0.0571967
6 zcr -0.0731364
7 pcile50 -0.130079
8 flux -0.354576
9 mfcc3 -8.18724e-05
10 mfcc1 -8.20182e-05
11 pow3 -8.20182e-05
12 pow1 -8.20182e-05
13 centroid -8.3309e-05
14 slope -8.3309e-05
15 pcile95 -8.3309e-05
16 spread -8.3309e-05
17 pow5 -8.3309e-05
18 pow4 -8.3309e-05
19 flatness -0.000124966
20 pcile75 -0.000333278
21 iqr -0.000333278
22 pcile25 -0.0416762
23 clarity -0.220772

(c) BBX dataset

Table C.2: Feature selection as in Table C.1 but using a reduced set of input
features.

that produced in the stability and robustness rankings (Sections 3.3.1 and 3.3.2),
and in fact to some extent it is reversed: the lowest-ranking features include the
autocorrelation clarity and spectral percentiles, while the highest-ranking fea-
tures include the ∆MFCCs, the spectral crests and MFCCs – in agreement with
the observations made on the pairwise MI values.

Knowing that some features gave poor results in the robustness tests, we also
performed the feature-selection experiment on a reduced feature set excluding
the ∆MFCCs, crests and MFCCs 5–8. Results are shown in Table C.2 and again
show only moderate agreement among datasets (Kendall’s W=0.362, p=0.35,
22 d.f.).

In all these feature selection experiments the spectral percentiles and sub-
band powers show some tendency to be rejected early, perhaps due to the infor-
mation overlap with subband power as discussed above (Section 3.4.2). How-
ever, it is difficult to generalise over these results because of the amount of
variation: for example clarity is the first to be rejected in all three of the full-
set experiments, yet curiously is ranked quite highly in two of the reduced-set
experiments.
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C.4 Discussion

We note that the results of the present feature-selection appear to exhibit some
tension with the robustness rankings reported in Sections 3.3.1 and 3.3.2, which
told us the extent to which features contain what we take to be irrelevant infor-
mation (e.g. due to noise). In light of this tension, it is important to recognise
that the analysis presented in this Appendix may have difficulties distinguish-
ing between relevant and irrelevant information: the analysis is unsupervised,
meaning no ground truth of relevance is considered, and very few assumptions
are made about the form of the data. Therefore it is difficult to be certain
whether the independence results reflect the kind of independence which may
be useful in constructing a multidimensional timbre space. The relative lack of
consistency in the feature selection experiments shown in Tables C.1 and C.2
does not lead to a strong confidence in their utility.

Such is the challenge of feature selection in the absence of a ground truth
such as classification labels. Others have attempted feature selection in such sit-
uations. For example Mitra et al. [2002] describe a method for feature selection
based on clustering features according to a similarity measure (e.g. correlation
or mutual information) and choosing features which best represent those clus-
ters. Such an approach may hold promise, but we note that it has a strong
dependence on the input feature set, in that consensus among features is the
main metric: for example, if the input feature set contains a particular feature
duplicated many times, this would “force” the algorithm of Mitra et al. [2002]
to select it since it would appear to represent a consensus, whereas our approach
based on unique information would tend to reject duplicate features at an early
stage. We therefore say that feature selection without classification, for non-
redundant feature subsets, is a subject for further exploration and development,
and should be noise-robust as well as robust to initial conditions.
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Appendix D

Timbre remapping and

Self-Organising Maps

In Chapter 5 we developed techniques which can learn the structure (including
nonlinearities) of separate timbre data distributions in a timbre space (where the
data distributions may be of relatively low intrinsic dimensionality compared
against the extrinsic dimensionality, i.e. that of the space), and can learn to
project from one such distribution into another so as to retrieve synth control
settings. In that chapter we presented a PCA-based nearest-neighbour method,
and our novel regression tree method, both of which worked and have been
used in user experiments and live performances. In this appendix we report
our investigations in using the Self-Organising Map (SOM) [Kohonen, 2001]
as a nonlinear mapping method for this purpose. The approach did not yield
successful results; we consider the reasons for this. We first briefly introduce
SOMs and explain their appeal in this context, before exploring the application
to timbre remapping.

The SOM is a relatively simple type of neural network – in other words,
a machine learning technique inspired by the observed behaviour of biological
neurons, in which a collection of similar interconnected units (called neurons
or nodes) can be trained to detect patterns or learn to model an input-output
relationship. The SOM is self-organising in the sense that it learns a mapping
in which the topology of the input data is reflected in the topology of the output
– the nodes of its network become organised around the topology of the input
data. The nodes of a SOM are typically arranged in a square or hexagonal grid
of interconnections, and each node also stores a location in the input space.
Each incoming training data point is associated with a node whose location
is nearest to it; then the location of that node as well as of nodes in a small
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Figure D.1: An illustration of the training of a self-organising map. The blue
blob represents the distribution of the training data, and the small white disc
represents the current training sample drawn from that distribution. At first
(left) the SOM nodes are arbitrarily positioned in the data space. The node
nearest to the training node (highlighted in yellow) is selected, and is moved
towards the training datum, as to a lesser extent are its neighbours on the
grid. After many iterations the grid tends to approximate the data distribution
(right).

neighbourhood on the grid is modified to move closer to the training data point
(Figure D.1). This means that the node locations adapt to the distribution of
the training data – but importantly, the effect of neighbourliness-on-the-grid
means that the nodes do not tend to move to some arbitrary set of locations
matching the distribution, but form a kind of manifold such that nodes which
are neighbours on the grid tend to be close together in the data space. The SOM
is therefore able to learn the nonlinear structure of a manifold embedded in a
space, by fitting a set of discrete points (the node locations) which approximate
that manifold. Any input point can be mapped to a coordinate on the SOM
simply by finding the nearest node, and outputting the coordinate of that node
within the SOM network.

Important in the use of SOMs is the choice of network topology for the node
connections [Kohonen, 2001, Chapter 3]. The dimensionality of the network
typically reflects the dimensionality of the manifold one hopes to recover and
is typically quite low, e.g. a 1- 2- or 3-dimensional square grid of nodes. The
SOM tends to adapt to the data even if the dimensionality is mismatched, but
the resulting mappings may be less practically useful since they may contain
arbitrary “twisting” of the map to fit the data. Consider for example a 1D
SOM adapting to a square (2D) dataset: the SOM will typically result in a
mapping which can be pictured as a piece of string arbitrarily curling around
to fill a square piece of paper [Kiviluoto, 1996]. The output coordinate along
this 1D SOM is likely to be not so informative about the intrinsic topology of
the data as that which would come from a 2D SOM.

It is also worth noting that standard SOM algorithms are agnostic about
the orientation of the map in the input space, meaning that any given mapping
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will typically take one arbitrary orientation out of many possible. For example,
the topology of a square grid of nodes has a symmetry which means that any
one of its four corners might equally probably find itself fitting to a particular
“corner” of the data distribution [Duda et al., 2000, p. 576]. This means that,
although a trained SOM can map any input data point to a coordinate on
the SOM network, the resulting coordinate could be dramatically different from
that produced by a similar SOM trained on the same data (given some variation
such as in the order of presentation of training data) [de Bodt et al., 2002]. It
is quite normal for SOM grids to rotate during the training process [de Bodt
et al., 2002], so even a preferred orientation given through setting the initial code
coordinates may not strongly affect this. This indeterminacy of orientation will
be an important consideration in our application.

We have not described all aspects of the SOM algorithm here – for example,
details of the learning procedure, in which the size of the learning neighbourhood
usually shrinks as learning progresses. The reader is referred to Kohonen [2001,
esp. Chapter 3] for a thorough and accessible introduction. Next, we consider
the application of SOMs to our remapping task.

Remapping using SOMs

To prepare a SOM-based timbre remapping system, we select a network topology
and dimensionality, and then train one such SOM using timbre data for each
sound source. For example, we might train one SOM using a generic voice
dataset, and also train one SOM using a dataset from a synth which we wish
to control vocally. In the latter case, we would also store the synth control
parameters associated with each data point with its corresponding SOM node.

The SOM learning process tends to distribute nodes in a way which approx-
imates the density of the data distribution (although often with slight “con-
traction” at the map edges), meaning that nodes are approximately equally
likely to be selected by an input data point [Kohonen, 2001, Chapter 3]. This
equalisation means that the space defined by the coordinates on the SOM grid
corresponds rather well to the “well-covered space” which we seek. Figure 5.6b
shows the SOM-based generation of the timbre space, illustrating that the SOM
replaces both the dimension reduction and the nonlinear warping of the previous
PCA-based approach (Figure 5.6a).

To actually perform the timbre remapping, we map a vocal timbre coordinate
onto its coordinate in the voice-trained SOM. We then retrieve the synth controls
associated with the analogous position in the synth timbre data, which is simply
the node at the same coordinate but in the SOM trained on the synth timbre
data (Figure D.2).
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Figure D.2: Diagrammatic representation of SOM use in remapping. Upper:
two distributions in the same space, with structural similarities as well as differ-
ences. Lower: SOM grids that might be fitted to these distributions. The arrow
shows a remapping from one distribution to the other, achieved by matching
coordinates on the SOM grid.

This process assumes a common orientation of the SOM grids, so that a
coordinate in one can be unambiguously held to correspond to the same coor-
dinate in the other (implicit in Figure D.2). As discussed, though, standard
SOM algorithms do not guarantee any such orientation. To try and encourage
a common alignment of SOM grids, one can initialise the node locations as a
grid oriented along some common principal component axes, as well as reduce
the amount by which the SOM nodes move towards training data points at each
step in the learning process.

The SOM algorithm is therefore conceptually a good fit to the timbre remap-
ping task: not only is it able to learn the shape of nonlinear timbre distributions
in a feature space, but it yields a coordinate representation which enables a di-
rect lookup of synth control parameters in one map, using coordinates retrieved
from a different map.

Implementation

We implemented the system in SuperCollider 3.3, providing components for
online SOM learning and for SOM lookup, with square-grid SOM topologies in
1D, 2D, 3D and 4D. Implementation of the SOM algorithms as components for
SuperCollider allowed for their use as elements in an efficient real-time timbre
remapping system, useful for prototyping as well as eventual use in performance.

The SOM components are publicly available.1 In order to validate that the
1http://sc3-plugins.sourceforge.net/

171

http://sc3-plugins.sourceforge.net/


SOM components were performing as intended, we designed some tests in which
the SOMs were trained to fit specified shapes (e.g. a sinusoid in a 2D space, or a
sinusoidally-undulating sheet in a 3D space). These were manually inspected to
verify that the correct results were produced; some of these tests are available
in the help files accompanying the published implementations.

Our preferred SOM dimensionality was 4D for the same reasons as in the
PCA-based method (Section 5.1.3). However we also experimented with 2D and
3D mappings. In all cases we initialised the SOM before training to a grid of
coordinates aligned with the leading components derived from a PCA analysis
of a large human-voice dataset (the amalgamation of the speech, singing and
beatbox datasets described in Section 3.3.2).

Results

The SOM-based timbre remapping never yielded satisfactory results in informal
testing/development. Vocal timbral gestures tended to produce a rather arbi-
trary timbral output from the target synth, even when the task was simplified
to a very basic synthesiser and a 2D map in a 2D feature space. See for example
Figure D.3, which shows a rather typical example of a SOM trained on timbre
data derived from the gendy1 synth: the SOM manifold curls back on itself in
various places and also interpenetrates itself.

Because of this, we did not bring the SOM-based timbre remapping to the
point of formal evaluation. We will conclude this section by discussing the issues
we encountered, which led us to leave this strand of development pending further
work. The numerical evaluation in the later part of this chapter will therefore
not feature a SOM-based technique.

Issues

From inspecting maps produced, we found that the main cause of this un-
satisfactory performance was the tendency for maps to rotate and to develop
twists/folds during training (e.g. Figure D.3). This could cause undesirable
mappings such as an increase in vocal brightness causing a decrease in synth
brightness. We tried to reduce these effects using the PCA initialisation of the
SOM grids, by reducing the amount by which SOM nodes move towards train-
ing points, and by experimenting with different SOM dimensionalities and sizes
(number of nodes). However in our tests there was no general setting which
produced consistently useful mappings.

One might attempt to mitigate the effects of rotation during the map train-
ing, for example by including some global orientation constraint in the training
algorithm. However, solving the rotational indeterminacy would not address
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Figure D.3: An example of a SOM trained on synth timbre data, illustrating
the twisting and folding that often occurred. Shown is a SOM with a 10-by-10
grid of nodes, trained using audio input from the gendy1 synth analysed with
10 timbre features. The visualisation shows the SOM node locations in the first
3 principal components of the 10-dimensional timbre space.

the whole problem, since the tendency for twists/folds to appear in the map
seems equally problematic.

The appearance of twists/folds in SOMs can be caused by a poor fit of
the map topology to the data. One cause could be an inappropriate choice
of the map dimensionality; more generally the distribution of timbre data in
the high-dimensional space could take some unusual shape which is not well
approximated by a regular grid of nodes. Kohonen [2001, Chapter 5] considers
some variants on the SOM algorithm, including those with arbitrary rather
than regular network topologies, and those whose network topology can change
(e.g. adding/removing nodes, making/breaking connections between neighbour
nodes). Taken to its extreme this adaptive approach to the network topology
is represented by the neural gas [Martinetz et al., 1993] and growing neural
gas [Martinetz et al., 1993] algorithms, which have no topology at initialisation
and learn it purely from data. However, applying such schemes to our timbre
remapping task presents a major issue: if the map topology is learnt or adapted
for each dataset, how can we map from one to another (e.g. voice to synth)
given that there will typically be no inherent correspondence between nodes in
different maps?

Such a SOM-like algorithm with adaptive topology, or a SOM with added
orientation constraints, could be the subject of future work in timbre remapping
techniques; in the present work we do not pursue this. From our investigations,
we believe that the issues we encountered are general issues with using SOMs
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for timbre remapping, although future work could reveal a variant of the SOM
algorithm which better suits the task.

174



Appendix E

Discourse analysis data

excerpts

This Appendix lists analyst’s notes for each of the four solo session participants
in the evaluation study of Chapter 6. The full transcriptions and data tables
are too large to include here, but are available at
http://www.elec.qmul.ac.uk/digitalmusic/papers/2008/Stowell08ijhcs-data/

The four participants are herein labelled by their codings P20, P21, P23,
P24. In the chapter they are labelled differently: User 1 (P24), User 2 (P21),
User 3 (P20), User 4 (P23).

These notes represent an intermediate stage of the analysis, after the tran-
scription and itemisation, when the analyst is extracting the main objects, actors
and ways of speaking. Concept maps were also sketched on paper as part of
the process but are not included here. The final narrative representation of the
results is given in the chapter text (Section 6.3).

Analysis coding

Identifying context of interviews:

Xi - interview follows mode X session

XYi - interview follows mode X session and mode Y session

Yi - interview follows mode Y session

YXi - interview follows mode Y session and mode X session

Identifying referents:
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Xf - mode X session/system during free exploration

Xg - mode X session/system during guided exploration

Xo - mode X session/system during BOTH free & guided

Yf - mode Y session/system during free exploration

Yg - mode Y session/system during guided exploration

Yo - mode Y session/system during BOTH free & guided

Participant P20

i. Systematically itemise objects

Most common objects:
- P20 (33)
- ((system)) “this sort of program” (13)
- ((output sound)) “the effect” (9)

ii. Objects are organised by ways of speaking

Notes on different ways of speaking:
Sounds P20 was doing → sounds it was doing in response
vs
P20 pushing air into microphone
Effect that can be applied in realtime or afterwards
vs
Something that “responds to” what you do (may have been prompted by

me? certainly described it more as an effect at the start)

iii. Systematically itemise the actors (who are a subset of

the objects)

Main actors:
* P20 (26)
- listens to a lot of aphex twin and squarepusher, goes for complicated beats,

doesn’t do a lot of sequencing
- would definitely have to figure out exactly (what to do with system),

wouldn’t do what they would normally do into a mic with no effects; was defi-
nitely doing very different things from what they normally do in beatboxing
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- heard what self was doing in real time rather than the new effect thing;
found it a lot easier with it on bypass

- would probably cringe if heard the Yg recordings without the editing on
them

- was trying to recreate sounds; started noticing from having to experiment
how ((examples)) were made; got a better understanding; got a few ideas from
Yg for sounds they should have done in Yf; should have used the record and
playback more in Yf

- rarely uses “ahhhh” side of it, generally doesn’t hum, got to use it in Xo,
found it hard to get around

- got ideas after Yo, for YXo, and carried a lot through; could try crazy
sounds when experimenter was out of the room; if given a longer time would
have tried melodies and other things anyway

- was quite happy with some of the sounds happening (YXf)
- could use fast notes on the high end of the scale, although it would sort of

be carried off in distortion
* ((system)) (5 in Yi) works in a certain way, reminds P20 of blue-glitch,

picks up a lot of breath and background sounds, picks up a much cleaner sound
with the more scat-singing side of bbxing

* ((output sound)) (3) depends on the force and the volume you’re doing it,
and is a lot more melodic in Xo

* the examples (3) influence ease of producing certain sounds, and give P20
ideas of things to do

* ((Yg) (2) helps P20 to understand how ((system)) works
* ((experimenter)) (2) went out of the room, and may or may not have heard

of blue-glitch

Participant P21

i. Systematically itemise objects

Most common objects:
* P21 (60) [see actor section for descriptions]
* ((P21’s vocal sound)) (14) P21 puts it in and it comes out strangely
* ((example sounds)) (10) someone originally made them in a certain way,

P21 tried to work out how and learned how to do them, couldn’t do all of them
* the other person (10) made the ((audio examples)), P21 is curious to see

how they did it
* ((Yo)) (11) is obviously a slightly different setting than Xo, sounds a bit

more distorted and better, is a bit more fun, gives a bit more control, is a bit
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more interesting
* ((system)) (8) makes strange noises, doesn’t sound very pleasing, some-

times beeps and sometimes doesn’t
* sound on the thing (8) were made by P21’s sounds, but sounded very/totally

different, got distorted
* ((general person)) (7) puts in sounds and they come out different, is made

to keep time with self
* ((an audio example)) (5) sounded like a human hadn’t made it, was so

distorted that P21 couldn’t work it out, P21 is curious to see how the other
person did this

* the initial noise (4) P21 was trying to work out what they were

ii. Objects are organised by ways of speaking

Notes on different ways of speaking:
No tensions evident here. Clear conceptual model of someone originally

making the sounds, and P21’s aim to work out how they did it in order to
record their own.

The system sounds bad, nevertheless quite insistent on the difference between
Y and X in that Y is more fun and interesting, despite sounding distorted and
being difficult to replicate the examples. This might seem like a tension, but I’m
quite sure it’s only a tension to me; P21 very comfortable with the coexistence,
no hedging of it or avoidance.

iii. Systematically itemise the actors (who are a subset of

the objects)

Main actors:
* P21 (42):
- never uses synthesisers, tries to keep it all natural, would get lost ((making

music with computers)), finds it all a bit techno
- tried to imagine and work out what the other person was doing, could

on certain snare sounds pick up what the original noise was, could tell where
inward K handclaps were, is curious to see how the other person did it, is not
gonna be able to record the same thing

- putting sounds into the mic, trying out beats, could pick up on trying to
make the timing better, suddenly realised hadn’t tried doing any clicks, did the
clicks, was doing a full beat pattern

- had more fun with ((Yo))
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* the other person)) (9) - does things to create audio examples, P21 is trying
to work out what they did, would be curious to see how they did it, in some
cases it’s gonna take a long time to work it out

* ((general person)) (5) - puts in a sound and it comes out quite different,
can come up with some slightly more funky noises in Yo, doesn’t get caught up
in how good it sounds; can make sounds with or without a synthesiser; if they
aren’t gonna copy the examples what are they gonna do?

* ((system)) (4) - really made a strange noise, makes funny noises, sometimes
beeps and sometimes doesn’t

Participant P23

i. Systematically itemise objects

Most common objects:
* P23 (25)
* the sounds ((it made)) (16)
* ((Yo)) (13; 10 in Yi, 3 in YXi)
* ((system)) (12)
* ((sound P23 makes)) (4; 2 in each)
* humming (4; 1 in Yi, 3 in YXi)
* ((sound system makes)) (3; 2 in Yi, 1 in YXi)

ii. Objects are organised by ways of speaking

Notes on different ways of speaking:
randomness vs accurately following: Yo could be a bit random, Xo was more

random; synth sounds followed the humming accurately.

iii. Systematically itemise the actors (who are a subset of

the objects)

Main actors:
* P23 (23)
- trying stuff out, wondering how to do certain things, discovering ((the

system)), getting confused occasionally
- not liking hearing self played back
* ((system)) (5) is epic, has broad ability, sounds quite random, sounds like

a synth machine with sound effects
* sounds ((made by system)) (5) are a bit random, switch around, don’t

always work
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* ((sound P23 makes)) (2) causes (“makes”) the system produce a certain
sound, and this is different in mode Y as in mode X

* ((general person)) (2)

Participant P24

i. Systematically itemise objects

Most common objects:
* P24 (21)
* ((Yg)) or ((Yo)) (10)
* ((system)) (10)
* ((Xo)) (7)
* ((examples)) the original sounds (6)
* ((general person)) (6)
* sounds ((made by system)) (6)

ii. Objects are organised by ways of speaking

Notes on different ways of speaking:
Only really one way of speaking here: trying to make noises, work out what’s

going on, trying to match examples.

iii. Systematically itemise the actors (who are a subset of

the objects)

Main actors:
* P24 (19) - was trying to work out what, did a standard beat, wasn’t

expecting those noises, thought own things were gonna be horrific; could do one
example but not spot on, couldn’t work out how to do that chimey sound; found
the sounds a bit easier to recreate in Yg than Xg; liked Y sound better; would
like to play around with it all a bit more

* ((general person)) (6) makes certain noises, ((system)) then makes strange
noises which couldn’t do with own mouth; has to learn to get a grip of this
process

* ((system)) (3) makes noises/sounds; changes the tone of the noises you’re
saying
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