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Abstract

This thesis studies the viability of classes of modified dyafMG) theories based on gen-
eralisations of the Einstein-Hilbert action. Particularghasis is given tgf( R) theories in
both the metric and Palatini formalisms, scalar-tensauities and generalised Gauss-Bonnet
theories. An urgent task at present is to devise stringetd te order to reduce the range of
candidate models based on these theories. In this thesigikedestudy is made of the viabil-
ity of these models using constraints from requirementabisity, background cosmological
dynamics, local gravity constraints (LGC) and matter dignserturbations.

In each case the conditions required for stability and Viigof the background dynam-
ics are presented. In the case of generalised Gauss-Boeigs the circumstances leading
to the existence and stability of cosmological scaling sohs are established.

In the scalar-tensor theories considered here, which dedumetricf (R) theories as a
special case, there is a strong coupling of the scalar fieldter in the Einstein frame
which violates all LGC. It is shown that using a chameleon Ima@tsm, models that are
compatible with LGC may be constructed. It is found that soabdels, which are also
consistent with background dynamics, are constrained tbdse to the\CDM model during
the radiation/matter epochs and can lead to the divergeihttee@quation of state of dark
energy. In contrast, such constraints only impose mildie&ins on Palatinif (R) models.

Still more stringent constraints are provided by studyingtter density perturbations.
In particular, it is shown that the unconventional evolatmf perturbations in the Palatini
formalism leads tg'( R) models in this case to be practically identical to t@DM model.
For each case it is also shown that (for viable models) mp#gurbation equations derived
under a sub-horizon approximation are reliable even foestifubble scales provided the
oscillating mode does not dominate over the matter-indmeede. Such approximate equa-
tions are especially reliable in the Palatini formalism endthe oscillating mode is absent.
In summary, the analyses carried out in this thesis suggasstbjecting MG theories to ob-
servational constraints confines the viable range of mdddie very close to (and in some
cases indistinguishable from) tA&CDM model.
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Chapter 1
Background and Motivation

The recent high-precision measurements of the cosmic mare background (CMB) pro-
vided by the Wilkinson Microwave Anisotropy Probe (WMAPQgether with other high
redshift surveys, have produced a wealth of informatiorardmg the early Universe. The
analysis of the resulting data has provided strong evidémcthe predictions of inflation-
ary cosmology, including the almost spatial flatness of thevérse [1]. Furthermore, these
observations coupled with the low redshift Supernovaeestgy2; 3; 4; 5] and observations
of large scale structure [6; 7] and baryon acoustic osoiltest [8] suggest that the Universe
is at present undergoing a phase of accelerated expandiolCfhsequently a ‘standard’
model of cosmology has emerged which is characterised hydigtinct dynamical phases:
accelerated expansions at both early and late times, needt radiation-dominated and
matter-dominated eras [10]. The two phases of accelerageahsion pose a serious chal-
lenge for cosmology since they are difficult to explain witkine original general relativistic
framework.

Concerning the phase of late time accelerated expansiesiitiplest phenomenological
way to generate such a phase is through the addition of a dogioal constant{) to the
Einstein field equations. In the classical setting this is\eent to a constant energy density
with a negative pressure that permeates the entire Univenssgeneously. Quantum me-
chanically, however) is associated with the energy density of the vacuum whichuskto
the sum of zero-point energies of quantum fields. Althoughghm is formally infinite, we
expect that quantum mechanics will only be valid up to thex€{ascale indicating an ultra-
violet momentum cut-off. In this case the integral is fin@& [In spite of this, the predicted
guantum mechanical value afstill differs from the observed value by more than a hundred
orders of magnitude [11].

In order to resolve the problem an almost, but not exact, eéaton is required by an
equally large term of the opposite sign. Super-symmetrld figeories, for example, assert
that for every bosonic degree of freedom there exists a fariaicounterpart contributing
negatively to the zero-point energy, thereby cancellirg\thcuum energy [11]. Unfortu-

12



1: Background and Motivation 13

nately, the predicted value df is still substantially different from the observed valuéig
problem, i.e., the problem of how to consistently accoumt/fowithin a theory of quan-
tum gravity, is usually referred to athe cosmological constant problep{which, in many
respects, is also ‘eine-tuning problemy [9].

In the A-Cold Dark Matter A\CDM) model, A accounts for approximately 73% of the
present energy-density of the Universe, cold dark mattét 28d baryonic matter 4%. In
this case, an additionfihe-tuning problenarises: given that the matter energy density scales
as(time)~2, the problem is to understand whyis comparable to the present cosmological
matter density. This is known as tfe@smic coincidence problenaind is shared with other
dark energy (DE) models in general. Thus far, there is no conclusivetgmitto this prob-
lem, nor is there a successful mechanism whetéleycosmological constant probleran
be explained. This has motivated a large number of altermatiodels.

Within the framework of general relativity (GR), a numberatfempts have been made
to account for the apparent DE as an effect of spatial avegagi an inhomogeneous Uni-
verse [12; 13; 14]. Consider, for example, the scenario gsed by Kolbet al. [14], where
it is argued that the backreaction of cosmological pertiiwba exhibits an effect that may
be interpreted as cosmic acceleration. The authors deratashrough the effective Fried-
mann equations describing an inhomogeneous Universesafi@othing, that acceleration in
our local Hubble patch may be possible even if the fluid eldsyda not individually drive
accelerated expansion. This would then violate‘tieego theorem” that there can be no
acceleration in our local Hubble patch if the Universe ontytains irrotational dust. On
the other hand, other authors have pointed out that theteffeweraging nonlinear inhomo-
geneities has an insignificant impact on the average cognwalodynamics [15; 16]. As a
result, it is uncertain whether the backreaction of pewtidns would be able to account for
the present epoch of accelerated expansion.

Alternatively, a number of articles have recently consedithe’Swiss-cheeseiodel of
the inhomogeneous Universe, where each spherical void@ithed by the inhomogeneous,
spherically symmetric, Lemaitre-Tolman-Bondi (LTB) sttun. At the boundary of these re-
gions the LTB metric is matched with the Friedmann-LemaRabertson-Walker (FLRW)
metric that describes the evolution between the inhomages§l7; 18]. The idea is that the
less dense regions (voids) act as a concave lens, bendihgtibifom a distant object away
from the observer. Therefore, light from Supernovae tratdalied through a series of voids
would appear dimmer than expected without the need to inlikeHowever, it has been
argued that the above set up is too idealised [19] . In a maiestie Universe, light from the
Supernovae would pass through both under dense and over ceEgiens. Therefore, con-
trary to observations, some Supernovae (the light from wpesses predominantly through

1Dark energy refers to a hypothetical form of energy respaadior the present phase of accelerated ex-
pansion.



1: Background and Motivation 14

voids) would appear dimmer, whereas others would appeghtan (because the light was
passing mainly through denser regions and bending towhedsliserver).

In summary, it is fair to say that the models proposed withi ¢ontext of general rel-
ativity, so far, are not completely satisfactory in expiagmthe current phase of accelerated
expansion. Consequently a large number of studies havathgdecused on the possibil-
ity of modifying Einstein’s (original) theory of GR. Suchetries can be classified into two
broad groups: those that invoke an exotic matter sourcehdark energy and those that
modify the gravitational sector of the theory.

An important subset of the former classes of theories aresthealled ‘Quintessence’
models based on a scalar field that minimally couples to ty§20]. In these models, the
potential energy of the dynamical field can give rise to thespnt epoch of accelerated
expansion. In addition, if the field’s self-interaction eotial is of an exponential form [21],
these models possess cosmologieedling solutions22; 23; 24; 25; 26] in which the field
energy density is proportional to the fluid energy densitis Well known that such solutions
can be useful in developing a viable background cosmolbgicdution.

In addition to the quintessence models, there have been bharurhscalar field models
proposed in the literatufe of which a partially complete list includes: Quintessahti-
flation, which attempts to unify both the early and late pkasfeaccelerated expansion via
a single scalar field [27]; scalar field models of Chaplygis,gahich attempt to unify DE
with dark matter by allowing for a fluid with an equation of ttdhat interpolates between
the two [28]; models with a non-canonical kinetic term, kmoas K-essence [29]; phantom
or dilatonic dark energy, where the kinetic term in the lagjian density has the opposite
sign to quintessence [30]; and string inspired tachyonide[31]. Details and references
for all these models, including additional ones, can be donrRefs. [9; 26; 32; 33; 34].

On the other hand, a great deal of effort has gone into the stiughodified gravity (MG)
theories where the gravitational sector of the theory ied#t from the one in GR. Among
these classes of theories gfeR) theories, which involve non-linear generalisations to the
(linear) Einstein-Hilbert action. Such modifications asg@ected to arise in the effective
action of the gravitational field when string/M-theory eextions are considered [35]. An
important motivation for the recent interestfR) theories has been the demonstration that
generalised lagrangians of this type — which include negaind positive powers of the
curvature scalar — can lead to accelerating phases botha{2@] and late [37] times in the
history of the Universe.

In deriving the Einstein field equations from the EinsteiitbErt action there are two
approaches that may be taken. These depend on the choicepeimdent fields with respect
to which the action is varied. In thenetric’ approach only variations with respect to the
metric are considered, whereas in tRalatini’ approach the action is varied with respect to

2We note that scalar field models also invofiree-tuningwhen confronted with observations.



1: Background and Motivation 15

both the metric and the connection. In the latter formutatthe Riemann tensoR*¢, and
the Ricci tensorR*, are defined with respect to the independent connecliy, and do
not necessarily coincide with the Ricci and Riemann tensfifse metricg,,. Consequently,
the Ricci scalar is constructed from the connecfiﬁulg and metric. If the lagrangian is linear
in R, variation with respect to the independent connectiong®iit to reduce to the Levi-
Civita connection of the metric, while variation with resp& the metric gives the standard
Einstein equations. Therefore, in the case of the Eindtidimert action both approaches
result in identical field equations. However, in the moreagahcases with nonlinegi(R)
lagrangians the metric approach results in fourth-ordéd Bguations, whereas the Palatini
variation generates a second-order system.

For some of the simplest choices 6fR) in the metric formalism (e.g.f(R) = R —
p2 0 /R™ with n. > 0 [37]), Dolgov and Kawasaki [38] have shown that the solutioh
the fourth-order field equations in the interior of some madiistributions, such as a star, are
unstable and grow with time. Such models are therefore ralgdn the metric approach.
The instabilities are found to occur if the conditiéhf /0R? > 0 is violated [39; 40]. In the
Palatini formalism, on the other hand, these instabiliiesabsent due to the second-order
nature of the field equations. Therefore, the simple modhesdre excluded in the metric
formalism may be allowed in the Palatini formalism [41]. {Flkliscussion is made more
transparent in Sections 2.1.1 and 2.1.2 where the field mmsafor thef(R) theories have
been derived.)

The viability of the background cosmological dynamicsf¢f?) gravity models in the
metric formulation has been the focus of a number of studiesdent years. The issue was
first studied in Ref. [42], where the authors demonstrated fitr all models possessing a
lagrangian density that behaves as a poweRddt large or small scales, the scale factor
during the matter era grows #52 as opposed to the standard’. In a detailed extension
of this work [43], the conditions [imposed of{ R)] required to produce the conventional
background dynamics, i.e., an era of late time acceleratpdresion preceded by a standard
matter era, were derived without specifying the formy¢f?). Under these conditions, many
functional forms off (R) are ruled out, although there still exist some special cab¢$R)
that can be viable.

In contrast, a wide range gf(R) models in the Palatini formalism (including R) =
R — >t /R™) are capable of producing the correct sequence of radiaioninated,
matter-dominated and de-Sitter periods [10]. Moreoverdet®featuring both positive and
negative powers aR in addition to the Einstein-Hilbert term have been showriesistently
produce both early as well as late accelerating phases.

Local gravity experiments can impose strong restrictiomthe viability of f (R) gravity
models. In Ref. [44], Teyssandier and Tourrenc pointed loatt £( ?) theories in the metric
approach are dynamically equivalent to Brans-Dicke tlemowith a potential and a Brans-
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Dicke parametews, = 0. Since interferometry observations of the deflection bystine of
radiation from radio quasars constrain the Brans-Dickeup&ter to satisfywgp > 40000
[45; 46], it was originally argued that such theories ar@meatible with solar system tedts

It was quickly realised, however, that the bounds given ifsR@5; 46] apply only to the
usual Brans-Dicke theories (without a potential), in whiase the mass of the scalar field
vanishes. In the presence of a potential (which leads to &romeffective scalar field mass)
these theories can be made compatible with local graviterexgnts using a chameleon
mechanism.

Briefly, a chameleon mechanism is realised by certain sdielals that have a potential
and a coupling to matter. These combine to create an eféeptitential for the field [47].
The values of the scalar field at the minima of the effectiiepbal generally depend on the
local density of matter, and since the mass squared of teetefé scalar field is given by
the second derivative of the effective potential evaluatetie minima, the scalar field mass
will depend on the ambient matter density [48]. In particullae field is nearly massless in
the underdense regions of the universe, where the mattsitgenextremely small. On the
other hand, the effective scalar field mass in sufficientlysgeregions of the Universe, such
as the solar system, is large. In Sec. 4.1.2 a more detaedsiion on the implications of
chameleon fields on the viability of cosmological modelsrsvaled.

The possibility of finding consistent solutions for staspherically-symmetric matter
configurations in the Palatini formulation has been an isgueterest recently. This debate
originated from Ref. [49], in which the authors claimed tbhbosing a polytropic equation
of state, with index¢ < v < 2, to describe the fluid in the vicinity of the surface of a
sphere results in curvature singularities, independenttifhe form of f(R). This implies
that stellar configurations can not be described within talatihi framework. Immediately
one notices two major drawbacks of this conclusion, howewestly, a polytropic equation
of state is too idealised to give a detailed description oidten configuration that resembles
an astrophysical star. Secondly, even if we were to acceplyarppe, the range in which
the singularities have been shown to occur is restrictegl to v < 2. It should be noted
that there are at least two physical matter configurationstwvare exactly described by a
v = g polytrope: a monatomic isentropic gas and a degenerateaiativistic electron gas.
The conclusions of Ref. [49] are further disputed in Ref.][%there the authors calculate
the tidal forces arising due to the presence of the surfagguiarities. They find that the
length scale on which the tidal forces diverge due to theature singularity is shorter than
the mean free path of the fluid and conclude that the systehersfore not well-described
by the fluid approximation. In summary, it is fair to say thhistissue is not completely

3As will be illustrated later on, the Palatini formalism cesponding tavgp = —3/2 is a special case in
which the weak-field description of Brans-Dicke theoriesaks down. Hence, such observations can not be
applied in the same way.
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resolved.

Another issue, that has recently been discussed in thatliter, concerns thevell-
posednessf the Cauchy problem of (R) gravity in the Palatini approach. By considering
the dynamical equivalence between these theories and -Briake theories withwgp =
—3, the authors of Ref. [51] argue that the Cauchy probleiifi-gosed They argue that
the non-dynamical nature of the scalar field makes it imfs<o eliminate second-order
derivatives of the field in tha+1 ADM framework. This leads to aifl-formulatedand there-
fore ill-posedinitial value problem. On the other hand, the authors of Ref. [53] have rigor-
ously demonstrated that an appropriate choice of coorelénedin lead to well-formulated
and well-posedCauchy problem in the vacutm Moreover, by introducing matter fields,
one can define a suitable scalar field that allows the thedwe teritten in scalar-tensor form
and also allows the form of (R) to be related to the trace of the energy-momentum ten-
sor. It is then argued that this results imvall-formulatedCauchy problem that is free from
singularities [54].

The f(R) gravity theories can be further generalised by includingngein R R,
R R cq, OF Other invariants of the Riemann tensor. (It is informatio note that these
higher-order gravity theories are conformally related todtein gravity minimally coupled
to one or more scalar fields. Additionally, as will be illeted in Sec. 2.2, such higher-
order theories can always be expressed as scalar-tensoreg)e However, unless these
extra terms appear in the Gauss-Bonnet combination, ohgevierally be faced with ghost
instabilities (instabilities associated with a positicalar field kinetic term in the equivalent
scalar-tensor gravitational action) in the theory [55;.56]

In this thesis a detailed study of the viability of modifiecgty theories is performed,
focusing on a number of specific classes of theories thatdteclf (R) theories in the metric
formalism; f(R) theories in the Palatini formalism; scalar-tensor thesyrand generalised
Gauss-Bonnet theories. Given the large number of modeifitive been (or can potentially
be) considered within the context of these theories, thehare will be to reduce the range
of viable candidates by employing constraints providedigyfollowing set of observational
tests:

1. the requirement of stability,

2. the background cosmological dynantics

“Note that in the3 + 1 ADM formulation, if the system of equations arell-formulatedand satisfy hyper-
bolicity, then the initial value problem is said to bell-posed52].

>Becausef (R) theories (like GR) are gauge theories, the Cauchy problegrerntts on suitable constraints
and choice of coordinates [54].

6As is often done in studies of dark energy, we shall ignorestiiy epoch of inflation and concentrate on
the three later phases of cosmic evolution. That is, we denshe observed temperature fluctuations in the
CMB as initial conditions without discussing the mechanikat produced them.
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3. the local gravity constraints (LGC),
4. the evolution of matter density perturbations.

In the solar system, GR is in excellent agreement with erpamis. Classically these
experiments include: the perihelion precession of Merctmy deflection by the sun of light
from distant sources; and the gravitational redshift ditigMore recent experiments include:
(i) testing the Shapiro effect (the time delay in photon algrcaused by the time dilation in
the gravitational potential of the sun [57; 58]); (ii) greaational lensing [59]; and (iii) tests
of the equivalence principle. Thus, any candidate theoyravity should reproduce GR on
solar system scales.

In order to provide a framework in which the weak-field testgavity may be inter-
preted, the parametrised post-Newtonian (PPN) approasiéan developed [60]. In this
formalism, a set of post-Newtonian parameters completefracterise the weak-field be-
haviour of GR. These parameters are then severely constidip solar system tests. For
example, gravitational lensing effects and the time dellathe Cassini tracking constrain
the Eddington parametey, (This is a parametrisation of the amount of deflection dftlig
caused by a gravitational source). It is found that [61]

vy —1] <23 x107° (1.1)

and further experimental bounds on the PPN parameters cinubé in Ref. [61].

In addition to background dynamics and local gravity caaists, the study of pertur-
bations can be used to place bounds on the parameters of snd@et this purpose, the
observed large scale structure [7; 62] provides a usefubgrdt is well known that the
large scale structure that is seen in the Universe today giegravitational instability from
small initial density perturbations. These initial peldations are believed to have originated
from quantum fluctuations generated during an early epochfiaitionary expansion. The
evolution of these density perturbations is determinedheytheory of gravity. Therefore,
the viability of a given theory may be tested by confrontibgith observables such as the
matter power spectrum [63].

Another useful observable is the linear growth rateayhich measures how rapidly struc-
ture grows as a function of time. Recently a number of suriay® aimed to constrain this
quantity by observing the clustering of galaxies. At a reiish~ 3, McDonaldet al. [64]
obtained the constraint= 1.46 + 0.49 from observations of the matter power spectrum of
the Lymane forests. Taking into account the more recent data repogtéddd and Haehnelt
[65] in the redshift rangé < 2 < 4, the maximum value for the growth rate allowed by cur-
rent observations is given by [66]

dInd,,
dlna

<15. (1.2)
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The current data still has large error bars and some dataai@ms for values in the range
—1 < s < 2[65]. However, it is expected that future observations wiither constrain the
growth rate.

This thesis is organised as follows. We begin in Chapter 20omally introducing the
classes of MG theories that are to be considered in thissh€ke corresponding field equa-
tions are derived and the basic characteristics of the ibeare discussed. We proceed by
introducing conformal transformations, which are thetisgd to show the equivalence be-
tween some MG theories and scalar-tensor theories. Thewcoaf equivalence between
certain MG theories and GR is also demonstrated. Thereé#iffield equations for a spa-
tially isotropic FLRW Universe sourced by a perfect barptodfluid are presented.

The framework for studying cosmological perturbationdseautlined in Chapter 2. De-
scribing an inhomogeneous space-time in terms of a homoger®ckground with pertur-
bations is equivalent to specifying a mapping between spaee points in the background
and points in the inhomogeneous universe [67]. This mapisimgpt unique and leads to a
gauge problemMoreover, the separation of quantities into backgrourd! @erturbed parts
is not a covariant procedure. This can lead to gauge deperadeim perturbed quantities,
which means that physical quantities can have differertrgegons depending on the choice
of coordinates [67]. After a short discussion aimed at tfarg thegauge problenmwe pro-
ceed by deriving the perturbed field equations for those Mébtiles that we consider in later
chapters.

In contrast to this ‘standard approach’ of studying cosrgial perturbations in the con-
text of generalised gravity, an alternative method has blegaloped that is essentially based
on utilising a generalisation of Birkhoff’s theorem. In Qiter 3, we begin by comparing and
contrasting both approaches in the context of Paldtiii) gravity [68]. The general form of
the gravitational lagrangian for which the two frameworlkelg identical results in the long-
wavelength limit is derived. This class of models includes tase where the lagrangian is
a power-law of the Ricci curvature scalar. The evolutionefisity perturbations in theories
of the typef(R) = R — p>™+Y / R™ is investigated numerically [68].

Pursuing this further, in Chapter 4 a detailed study of matensity perturbations in
f(R) gravity for both the metric and Palatini formalisms is madéhim the context of the
standard approach [69]. In each case, a brief review of tinstcaints provided by back-
ground cosmological dynamics, as well as LGC, is presentadhe case of the metric
formalism, this requires a discussion of the Chameleon @r@sim. We proceed by de-
riving the evolution equations for matter density pertdidy@s in each case in a number of
gauges, including the comoving, longitudinal and uniforemsity gauges. In addition, the
perturbation equations are also derived under a sub-hoapproximation and are shown to
be accurate for the models that satisfy the background asal gavity constraints. Using
these equations, a comparative study of the behaviour dénagnsity perturbations, as well
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as gravitational potentials for a number of classeg(@?) theories, is carried out both ana-
lytically and numerically. Employing the constraints pided by the above set of tests, the
parametern = Rf rr/f r (Which characterises the deviation from th€ DM concordance
model) is constrained.

Given that a number of classes of theories — includif§) metric and Palatini theories,
and low energy effective superstring theories [70] — candpeessed in terms of scalar-tensor
theories, the analysis of Chapter 4 is extended to includgmargl class of scalar-tensor theo-
ries in Chapter 5. In this way a unified framework is achiewalbwing for the simultaneous
study of a range of theories. A class of scalar-tensor teeaihere the scalar field couples
to matter with a constant coupling), is considered. We begin by studying the background
cosmological dynamics and consider the cases of constamelagas varying) (the slope
of the potential in the physical frame). The stability asaywhich is crucial in determin-
ing the background evolution is also presented. A family ofeptials which are natural
generalisations of a viable family of models fiiR) gravity is introduced. By employing
the chameleon mechanism (as in the casg(&f) gravity), experimental bounds on the pa-
rameters of viable scalar-tensor models are then derivied) s®lar-system and equivalence
principle constraints. For the models that are compatilite WGC, a study of the evolution
of the equation of state of DE reveals that the divergenaemf previously found inf(R)
theories is also present in these cases. Finally, the @wnlof density perturbations is dis-
cussed and used to place constraints on the coupling andl pa@eneters by considering
differences in the slopes of the power spectra over large staicture and CMB scales.

In Chapter 6, a general class of theories where the Einstgiert action is modified by
the inclusion of a function of the Gauss-Bonnet curvatuvaiiiant, f (G), is considered [71].
In this case, the most general form for the functjti) that results in power-law (scaling)
solutions is identified. By employing an equivalence betwiée Gauss-Bonnet action and
a scalar-tensor theory of gravity, the field equations amessed as a plane autonomous
system. A dynamical systems analysis is then employed tly she stability of the vacuum
and non-vacuum solutions.

Finally, we conclude in Chapter 7 with a summary.



Chapter 2

The field equations and cosmological
perturbations

The field equations for the classes of modified gravity tresowhich we study in subsequent
chapters are presented here. In each case, we introdut¢etireets, outline the derivations of
the field equations, show their equivalence to scalar-taghsories, derive the corresponding
background equations, and state the perturbed field eaqgatite also introduce notations
and motivate the assumptions that will subsequently be nmeithés thesis.

2.1 The field equations for modified theories of gravity

2.1.1 f(R) theories in the metric variational approach
Let us first consider the action

1
Sf(R) - 167TGN

/ 2= S (R) + Son[gaps o). (2.1)

whereG y is the gravitational constany, is a general differentiable function of the Ricci
scalar, R, the idiciesa, b (later) ¢, d ande are summed fron to 3, and the matter action

is a functional only of the metric tensat, and matter fields),,. We adopt the metric

signature(—, +,+, +). When varying the action to derive the field equations, theals
(metrig approach is to use the metric compatible connectidj, This means that the
covariant derivative formed from the connection satisiesy,, = 0 and the connection is

the usual Levi-Civita connection written in terms of the reas:

1
Io = QQCd(aagbd + Ov9da — Dagab)- (2.2)

21
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In this case the metrig,, is the only field that mediates the gravitational interactnd any
other fields that exist are included in the matter actign In this subsection we adopt the
metric variational approach to derive the field equationgheftheory whose action is given
by (2.1).

Varying the gravitational lagrangian with respect;t gives [72]:

S = V7 [FOR = jeafos”]
= Vg {F 90 Rea + Gga”f —F R“b) 5gab:| , (2.3)
where,F' = 0f /0OR and we have used the relation
69" = —9"9""6gca- (2.4)
Given that the Ricci tensor satisfies the following relation
Rea=Ty, —Thea+Tnnleg — Tanle, (2.5)

where a comma denotes partial differentiation, it followatt

§Req = 0T7, — 6T (2.6)

nc;d )

where a semi-colon denotes a covariant derivative definderims of the Levi-Civita con-
nection. Bearing in mind that

1
5F§C = é[dgkbﬁ + 6gkc;b - 5gbc;k] ) (27)
Eqg. (2.6) becomes

1
5Rcd - _§gkn [dgcd;k:n + 6gkn;cd - 6gck;dn - 5gdn;ck:]
0Rea = §""[0geckidn — 69edsin]. (2.8)

Contracting’ R4 with the metricg*? then yields
9% Rea = 69y — D095, (2.9)
whered = ¢*V,V,, and since

O(FégS) = 09, 0F + FObg, + Fdg* 4+ Fadg™,,
(Fog“)iea = Feadg® + Fog™ g+ Fdg™ y + Fadg®,,
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it follows that Eq. (2.9) can be expressed in the form
FgReg = 69, 0F — 6g°““Feqg + (F5g™).cqg — O(Fdg.°). (2.10)

The last two terms of Eq. (2.10) are total derivatives. These be eliminated here as
they can be transformed via Gauss’s theorem to terms on thedamy, which are assumed to
vanish. There is however a slight subtlety related to thegmee off’ in the total derivative
terms (see Ref. [73] for a detailed discussion). In contagite case of the Einstein-Hilbert
action, the total derivative terms in (2.10) are not expgl#ess the total variation of a func-
tional whenF" # constant. This implies that it is not possible to eliminate these ®imw
imposing suitable boundary conditions on the metric. Ha@velwecause up to fourth-order
derivatives of the metric arise in the field equations [cfsE&.9) and (2.10)], it is possible
to fix more degrees of freedom on the boundary other than theatself in order to elim-
inate the total derivative terms [74]. In general, choosang fixing degrees of freedom on
the boundary has physical implications. Nonetheless, weqad by adopting the standard
approach of assuming that a suitable fixing has been chosercina way that we can ignore
the surface terms [36; 72; 73; 75; 76]. It then follows that

Fg“%R.y = 69 0F —6g°“F.oq
= 69°/(geadF — Fleq)
= 0gea(F*" — g™00F), (2.11)

and substituting Eq. (2.11) into Eq. (2.3), we find that
1
§(v=gf) = V/—g|-FR® + 590” f+VVF — ¢gOF5ga. (2.12)

Finally, the variation of the matter lagrangian yields

1
5( \% _gﬁm) - 5 V _gTab(sgab
1
- _5\/__9Tab6.gab> (213)
whereT is theenergy-momentutensor, and the field equations are then given by [72]

1
= F(R)gu — VaVyF(R) + guOF (R) = 817Gy T, (2.14)

F(R)Ru — 5

This is clearly different from the case of the second-ordddfequations of GR, correspond-
ing to f(R) o< R. The trace of Eq. (2.14),

FR—2f + 30F = 87GnT, (2.15)
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further highlights the discrepancy with GR, chiefly becausand T are related differ-
entially rather than algebraically (note that in GR, = —8xGxT). In fact, this prop-
erty leads to the Dolgov and Kawasaki instability [38] men&d in Sec. 1. That is, the
first-order perturbative solution of Eq. (2.15) around aeyahrelativistic background (i.e.,
R = —87GNT + RW) inside some spatially finite matter distribution is highiystable.

2.1.2 f(R) theories in the Palatini variational approach
The f(R) action (2.1) in this case is re-written as

1
S.an =
IR ™ 167Gy

/d4l’\/—_gf(R) + Sm[gaba wm]? (216)

where R = ¢**R,,(I") and the Ricci tensor, which depends on the affine conneétjdsa
given by

Ry(T) =17, —Tn,, + 10 Im Ty 1 (2.17)
The matter action is assumed to be independent of the affimeectionl. In this case, be-
cause there are two independent fields which mediate grapéig.yindfgb, the gravitational
action is varied with respect to each of these fields indepetigt. Henceforth, for simplic-
ity, the use of over-hats to denote a quantity defined by theectionfj;b is omitted , except
where its use may make the discussion more transparent.

Varying the gravitational lagrangian (2.16) with respectt’ leads to
1
o(vV—gf) = |:FRab - ifgab} 59, (2.18)

whereF = df(R)/dR. The last equality follows from the fact that in the Palaforimalism
R = R(I'). Consequently, the variationR,,, with respect to the metric is zero. Using
Eqg. (2.13), the generalised Einstein field equations in tiatki approach are then given by

1
F(R)Rab — if(R)gab = 8nGNT . (2.19)

Interestingly, allowing the connection to be a dynamicaialasle has reduced rather than
increased the number of degrees of freedom in the theory ;8in GR, the field equations
here are second-order equations. Furthermore, the aigaletation betweem? and 7 is

1Although this method is generally attributed to Palatingtiould be noted that it was first used by Einstein
[77].
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manifest in the trace of (2.19):
RF —2f =8rGnNT. (2.20)

Therefore, in contrast to the metric formulation where tredfiequations are generally
fourth-order and in practice difficult to analyse, the Ralaformalism is more tractable.
In addition, unlike the metric formalism, the Dolgov and Kasaki instability is absent in
the Palatini formalism because Eq. (2.20) is algebraic.s Tlhistrates the better stability
properties of the second-order differential system comegbavith its fourth-order counter-
part. Obviously, this mathematical convenience does mglsiout the Palatini approach
as the fundamentally correct variational procedure. Né&edess, its second-order nature is
conceptually more compatible with other known laws of phgsiMore specifically, in the
metric alternative one has to specify initial values up taitberivatives in order to determine
the evolution of the system [79].
To proceed, the variation of action (2.16) with respect edffine connectiorf‘gc, yields

0(vV=3f) = V/=99" F Ray. (2.21)

The variation of the Ricci tensoR,,, in this case is identical to that of the metric approach,
except that the connection is the affine conneclioithus

§Rapy = V017, — V017 (2.22)
whereV is the covariant derivative defined lﬁ}gc. Substituting (2.22) into (2.21) gives
0(V=9f) = V=99 F (VL — VoLl (2.23)

and after integrating by parts and ignoring the surface sessbefore by settin@f”gx =0
on the boundary, Eq. (2.23) reduces to [80]

0(V=9f) = —[ValV=g9"F)T%) — (Vi(v/=gg* F)oT,]
= —OIR[Vn(V=g9™F) — 6, Vi(v=gg"'F)] . (2.24)

Requiring that the variation of the action (2.16) vanisteaglk to the condition
5kb@m( \% _ggabF) - 5km@b(\/ _ggabF) =0, (225)

and contracting over the indices andk leads to the field equation fd?i‘gc [80]

Vo[FV=g9™] = 0. (2.26)
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If we now define a conformal metric

hab = Fgap , (2.27)
it is easy to show that in terms of the new metric, Eq. (2.26)mawritten as

V[V —hh®] = 0. (2.28)

The solution to Eq. (2.26) can therefore be expressed b}'ngrftgb as the Levi-Civita con-
nection for a new metrié,;, which is conformally equivalent to the spacetime metyic
The expression for the affine connecti(ﬁm, in this case is given by

) 1
FZb = ihnm(hbm,a + hma,b - hab,m)

1
= ﬁgnm[ngm,a + Fgma,b - Fgab,m + gmea + gmaEb - gabEm]
1
= To+ 55050 + 6;00F — gapg"™ " O F). (2.29)

2F

We recall that the Ricci tensor defined in Eq. (2.17) is wnitte terms of the affine
connection only. It is desirable, however, to express theeiRensor in terms of quantities
that can be computed for a given metric [80]. Re-writing EX329) in the form

=17 +0n (2.30)
implies that the Ricci tensor becomes
R = Rap(9) + Coppn — Crlap + TGy + T O
wmCab = UbmCna = UnaCom — Cpn O
or equivalently,
Ruy = Ra(g) + Cly, — Clpy + C1 Ol — Cpt O (2.31)

whereR,;(g) is the Ricci tensor of the Levi-Civita connection. We now gquute each term
after R, (g) on the right hand side (r.h.s) of Eq. (2.31). The second texooimes

n Frn o " . 1
ab;n = - 2F2 (611 Eb + 6b Ea —4g gabEm) + ﬁ(QEab - gabDF)
1 1 . 1
- _ﬁ(F;aF;b - igabF’ En) + ﬁ(QF;ab — gabDF), (2.32)



2.1: The field equations for modified theories of gravity 27

~

whereF' = F(R(R)). The third term is

2 2
C" . = ZFu— —F,F,, 2.33
na;b o b F270 ;0 ( )

where we have use@’, = 2F,/F, which follows from contracting over the indicesand
bin Eg. (2.29). The fourth term on the right hand side of (2i31)

n m 2 m
nm%“ab T FEm ab
1 .
= ﬁ(2F’;aF’;b - gameF’;n) ) (234)

and the last term is

1
ChnCit = 08 Fon + s — ™90 Fa) 07 Fo + 071 Foa — 0700 )
1 .
= W(SF}QF}I} — gabF’nEn). (235)

Finally, by replacing the terms in Eq. (2.31) with Egs. (9-82.35), the expression for the
Ricci tensor of the affine connectioﬂab(f), becomes

. 3 1 1
Rap(T') = Rup(g) + ﬁvaFva — FVaVbF — ﬁgabDF . (2.36)

Moreover, by taking the trace of Eq. (2.36), we can relatecti@ature scalar of the affine
connection 12, to the curvature scalar of the Levi-Civita connectié thus:

. 3 .3
R(E) = R(g) + 575 Vo FVF — Z0F . (2.37)

2.1.3 Scalar-tensor theories

We next consider the following class of scalar-tensor tlesdB1]

Sep — ﬁ / d2\/=g [F()R — Z(8)g"0a00s6 — V()] + Sm[gatr )],
(2.38)

where F'(¢) needs to be a positive-definite functiongfor gravitons to carry positive en-
ergy, Z(¢) is an arbitrary function of andV'(¢) is the field potential. Such theories satisfy
hyperbolicity (i.e., possess a well posed Cauchy problesn @hen formulated in the Jordan
frame) [82]. Setting the variation of the action (2.38) widispect tq;* to zero, we obtain
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the following field equations

F(0)[Ras — 50aR] = 87CNTop + 2(6)[0u60h0 — 50 00.0)
5V (@) + ()5 %, (239)

Using the relation (2.11), the gravitational field equasi¢®.39) are [81]

F(0)[Ras — 50uR] = 87CNTop + 2(6)[0u60h0 — 50 00.0)
30V (9) — guDF(6) + Db F(9). (2.40)

On the other hand, varying action (2.38) with respect tives the scalar field evolution
equation:

270¢ = —F 4R — Z 40°00.0 + V. (2.41)
The trace of Eq. (2.40),

—FR =8rGNT — Z8°¢0.¢ — 2V — 30IF, (2.42)
can then be used to replace the Ricci scdtain Eq. (2.41), thus leading to the relation

1
(2ZF +3F,2)0¢ = 8nGnF T — 50°00:0(2ZF + 3F, o )6
+FVy—2VF,. (2.43)

A special class of scalar-tensor theories that have bedrstuglied in the literature are
the Brans-Dicke theories [83]. These are defined by themctio

Sop = 1gme [ €0VTT[oR — 2220,00% ~ V0)| + Syl vl (240
TGN ¢

wherewgp is the Brans-Dicke (BD) parameter. To be precise, in theimasigvork of Brans

and Dicke [83] the action did not include a potential. Deshis, the more general form of

the action (2.44) is considered here because this is thetfaatns relevant to our subsequent

discussions. For simplicity, we shall refer to the actiod) as the Brans-Dicke action.
Assuming that the Brans-Dicke parametepp, is a constant, the field equations ob-

tained from action (2.44) are given by substitutifigp) = ¢ andZ(¢) = wgp/¢ in the field
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equations (2.40) and (2.43). In this case, the field equatiecome

1 8rG 1
Rap — igabR = W¢ M T + w;;D <aa¢ab¢ - égabac¢ac¢)
2 (0,006 — 900) — - (2.45)
¢ ab Jab 2¢gab .
and
(QQJBD + 3)D¢ = 81GNT + va,d> -2V, (2.46)

respectively.

2.1.4 Generalf(R, P, Q) theories

Finally, we consider gravitational theories that includétblinear and quadratic contractions
of the Riemann curvature tensak, P = R, R® andQ = R,;.qR%*. The general action
we consider is [84]

1
167TGN

Sro = / 3o "GF (R, P,Q) + Sunlga v, (2.47)

where f is a general differentiable function dt, P and ). Varying the gravitational la-
grangian with respect to the metric gives

SRR, P.Q) = VG | 5100 + bRt 0P + 1030 (2.48)
where

SR = Rudg™ + ¢" Ry,
P = (R%Ra + R, Ry.)0g™ + 2R™6 R, ,
6Q = (RegapR™ + Regea R, )0g™ + 2R SR, . (2.49)

Substituting the relations (2.49) into Eq. (2.48) then ipthat

1
o(vV—9f) = V-yg éfgabégab + fr(Ra69™ + g0 Rup)

+4/ —g [2f7p( (CaRb)c5g“b + RabéRab)]
+v=g[2 f7Q(Rcde(bRa)6dc5g“b + RORY,,)] (2.50)
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where we use the subscripts () to indicate a totally symmgtrantity [i.e..U.,) = %(Uab +
Usa)]. It then follows that by using the relations [84]

f,PRab&Rab i
vaRadeé‘Rabcd

[D(f,PRab) + (f,PRCd);cdgab - 2(f,PRC(a);b)c} 5gab>
_2(f,QRC(ab)d);cd5.gab> (251)

wherey means equal up to terms which are pure divergences, togeitieEqs. (2.11) and
(2.13), that the field equations can be expressed in the 84m35]

1
BTGNT™ = — Sfg"+ [rR + 2/ pRR 4+ 2f oRUR",,

+ ¢"Ofr— fa" +0(fpR™) + ¢ (f.rR).ca
- 2(f,PRC(a);b)c - 4(f,QRC(ab)d);cd . (252)

A well-motivated action of the type (2.47) follows from th@a-energy action of string
theory, where the Gauss-Bonnet (GB) combination of cureanwariants, defined by

G=R>—4R™ R, + R™Rpeq, (2.53)

arises as a leading-order correction [31]. In four dimensjdhe GB term is a topological
invariant and introducing a term proportionaldointo the Einstein-Hilbert action does not
modify the dynamics. Recently, however, the cosmology oflel® based on a class of
generalised theories with an action of the form

1
167TGN

Sa =

/ o =GIR + F(G)] + Sulgar, ], (2.54)

have been considered. Varying the Einstein-Hilbert terrihis action yields the usual Ein-
stein tensor, whereas varying tfig7) term implies that

S(V/=a1) = V=3 | 190 + Jo(2ROR - 18P +00) (2.5

By employing the same procedure as for the previous exartpefield equations for the
theory (2.54) are then found to be given by [86]

Rap — % gawR = 8tGNTu + % Jarf — 2F RRyy, + AF RS, Ry,
—2F Ryege R — 4F Ryeqy R + 2RV, V, F
—29ap ROF — 4R, V,V.F — 4RV ,V .F
+4RBOF + 49, RV Vg F — 4RapqaVVF, (2.56)

where ' = 0f/0G. As in the case of the metri¢(R) theories, introducing non-linear
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curvature invariants into the Einstein-Hilbert actioncalsads to field equations which con-
tain fourth-order derivatives of the metric. This is exetsince the curvature invariants
themselves contain second-order derivatives of the metniche Palatini formalism, the

field equations are second-order equations precisely Bedae curvature invariants are in-
dependent of the metric. This discussion is made more teagspin the next section by
considering the dynamical equivalence of these theorissdtar-tensor theories.
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2.2 The scalar-tensor equivalence

The MG theories presented in the previous section can betretta a scalar-tensor form by
employing suitable field redefinitions. In fact, as will beosm below, anymetric gravity
theory based on curvature corrections to the Einsteingtilction can always be expressed
in terms of a scalar-tensor theory where the scalar-fieldaheasnishing kinetic term. This
dynamical equivalenéegroves useful when studying more complicated theories afity,
such asf(G) gravity, as we shall see later in Sec. 6.

2.2.1 Conformal transformations

There is no unique prescription to redefine the fields of arthedne can employ auxiliary
scalar fields, for example, to re-write the action or the fedjdiations of a theory [87], or use
conformal transformations. Here, we briefly review confatitnransformations.

A conformal transformation is a position-dependent tranmsftion, mapping the original
metric, g5, INto @ new ‘conformal’ metricg,;,, such that

gab - QQ.gaba (257)

whereQ) = Q(z) is a function of spacetime coordinates and is referred thagsonformal
factor. The transformation is known as conformal, sincee@ves the angle between two
vectors in the space-time invariant [88]. The line elemsrtitansformed to

ds* = Q2ds? (2.58)
and the volume elements in four dimensions are related by

V== 07, (2.59)
The transformation yields a new Ricci scalar given by [88]

o Lllp. 120VQ  3g°°V.QV$)
02 NGS) 0?2

(2.60)

in four dimensions.

The conformal factof? in general can depend implicitly on the scalar curvature @amd
the matter fields. By carefully choosing the conformal factme can map a non-standard
theory of gravity formulated in the Jordan frame to one tlsastandard in the Einstein

2As a clarifying remark: two theories are considered ‘dynzatly equivalent’ if, under a suitable redefini-
tion of the gravitational and matter fields, one can make fiedd equations and/or their actions coincide.
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frame, where gravity takes the usual Einstein form. Thedoifdame is the frame in which
the energy-momentum tensor is covariantly conserved anahich test particles follow
geodesics of the space-time metric. Under a conformal flamsition, which is a field re-
definition as opposed to a coordinate redefinition, the tgonal and matter degrees of
freedom become mixed [89]. Thus, in the Einstein frame, thergy-momentum tensor of
the matter fields are not always covariantly conserved asidp@ticles do not necessarily
follow geodesics of the space-time metric.

There is a long standing debate in the literature regardiegtysical status of the dif-
ferent frames. Essentially, this dispute concerns theipalsquivalence of two conformally
related theories. Some authors argue that conformal eguisa does not necessarily indi-
cate physical equivalence [90], while others assert thatiged standard clocks and rulers
are adjusted appropriately, a mathematically equivalesbiy is always physically equiva-
lent [91]. The latter viewpoint implies that one can choasevbrk in any conformal frame
so long as the transformations are consistent.

Given that there is, so far, no conclusive way to single oytlay$ical” frame, the usual
practice is to proceed by choosing the frame that is mostauent. For example, in the
Einstein frame the field equations are always second-omkgilas frame is therefore par-
ticularly useful for finding vacuum solutions. In the preserof matter fields, however, the
Einstein frame may be less useful [89]. In this study we atgrsihe Jordan frame to be the
physical frame, since this is the frame in which the condesmdaws hold and which usually
corresponds to the frame in which the theory is formulated.

In the following, we illustrate the dynamical equivalencgween various MG theories
and scalar-tensor theories.

2.2.2 f(R) theories in the metric variational approach
By introducing an auxiliary fieldgp, the action (2.1) can be shown to be equivalent to [44; 87]

B 1
N 167TGN

/ 3oy =G [F() + (R — O)F(S)] + Sualgass o (2.61)

where F(¢) = 0f(¢)/0¢. Indeed, ifd*f/0¢* # 0 one can easily verify that the-field
equation isp = R, which reproduces the original action (2.1). The theori&)and (2.61)
are formulated in the Jordan frame. Redefining the fieldy x = F'(¢) without loss of
generality, the action (2.61) takes the form

1
167TGN

/ 5= R — VOO + Sunlgats ), (2.62)
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where the potentidl’ () is defined as

V(x) =x0(x) — f(6(x)) = RF(R) — f(R). (2.63)

A comparison with (2.44) reveals that the action (2.62) esdhtion of a Brans-Dicke theory
with the BD parametevsp = 0. Thus, thef(R) gravity theories in the metric variational
approach are dynamically equivalent to a class of Brang&dilbeories with a potential and
vanishing kinetic term [87]. This equivalence holds onlytfeeories where the matter action
depends only og,;, and the matter fields,,.

Anticipating the later sections, it is useful to derive tf@responding Einstein frame
action here. Consider again the action (2.61). Making aaomdl transformation

gab - Fgaba (264)

where¢ = R, the action (2.61) is transformed into the Einstein framead92; 93]

Se = qooa [ MV z%—ﬂj()’ PGV ()
OF(6) = £(9)
S 5P 0) ) (2.65)

where gravity is minimally coupled to the scalar field. Heremave used the relation (2.60).
The metricg,, is the Einstein frame metric and quantities with a tilde dertbose that are
defined using the metrig,;,. Introducing a canonical scalar field,, such that

Ve
N 167TGN

D In F(¢), (2.66)

the action (2.65) can be re-written in the more conventiéoah [87; 93]:

R -
Sk = /d%\/j@ (m - %(V%f - V(S%)) + S (F (1) Gabs ), (2.67)

where the potential/ (¢ ), is defined using Eq. (2.66) to be

oF(9) — f(9) (2.68)

Vo) = 6 GeF (o)

In the class of theories (2.67), the scalar field couples ttienaith the same strength as
gravity.
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2.2.3 f(R) theories in the Palatini variational approach

Proceeding in the same way as for the metric case, i.e., bydnting a field,p, into the
action (2.16) and then redefining it in terms)gfleads to the action

B 1
N 167TGN

/ =g R — VOO + Sunlgats i), (2.69)

where the potentiall’(x), is defined in Eq. (2.63). Using the redefinitign= F'(¢), the
conformal metric (2.27) is expressed/as = xg.- By using the Eqg. (2.37), we may then
relate the Ricci scalar of the affine connectighto the Ricci scalar of the metric compatible
connection R, thus:

R 3 3
R=R+—(Vx)* - —Oy. (2.70)
2x? X

Replacing in (2.69) with (2.70) and ignoring the total divergence terme have

5= 167T1GN / d'zy/=g [XR + %(VX)2 — V)] + SonlGab, ). (2.71)

Comparison with Eq. (2.44) indicates that the action (2igX@quivalent to the BD action
with wgp = —%. This is a special case of the Brans-Dicke theories wherkitigtic term of
the BD field vanishes, i.e., the Klein-Gordon equation (2lBEcomes a constraint. This re-
duction in the number of degrees of freedom is an intrinsopprty of Palatinif (R) gravity,
which reflects its second-order nature.

2.2.4 General gravity theories based on curvature invariats

Finally, we consider a general class of theories based oadien

4 R
5= [dey=g (WGN " f(y)) , (2.72)

wheref()) is some arbitrary differentiable function of curvatureansants) . In particular,
Y could take the form

Y= R* + s R Ry, + a3 R Rpea, (2.73)

whereay, as, a3 are constants. In the case®f = 1,ao = —4, a3 = 1, the combination
reduces to the GB invariant defined in Eq. (2.53).
Action (2.72) may be expressed in an alternative form byuhticing two auxiliary scalar
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fields y and( such that

s= [y (16 L) +f(x)) | (2.74)

Varying Eq. (2.74) with respect tQyields the constraingy = ), thereby reproducing action
(2.72). On the other hand, varying the action (2.74) witlpees toy implies that{ = F'(y),
whereF(x) = 0f(x)/0x. Substituting this condition back into Eq. (2.74) then k&althe
action

/d%\/— (16 G. T =X+ f(x)) : (2.75)

It follows, therefore, that the action (2.72) is equivalemthe action

5= [dey=g V(o) — (@)Y, (2.76)
167 G N
where the scalar fields, is defined implicitly by
h(¢) = —F(Y) (2.77)
for some functiom(¢) and has an effective self-interaction potential

Vig) =YF() - f(), (2.78)

whereF = df /o).

In summary, any generalised gravity theory of the form (2fé2aturing a general func-
tion of higher-order curvature invariants can be expressed scalar-tensor theory of the
form (2.76).

Let us focus ory (G) gravity, defined by (2.54), in which case the action (2.7@0doees

5= [ 073 (g~ VO - MG + Snlgon ] (2.79)

Before we proceed to vary the action, it is worth noting thaileva term proportional to
G in the gravitational action does not modify the field equagicterms such as,/—gG do
so. The reason is thab,/—gg is not a total derivative, and therefore can not be elimithate
by evaluating it on the boundary [94]. Taking this into acauhe variation of (2.79) with
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respect tgy,, leads to the following field equations [95]

R" —g"R= — g¢"(V($)+ h(d)G) + 2h(¢) RR™ — 2(h(¢) R)"" (2.80)
29“bD(h( O)R) — 8h(¢) R, R" + 4(h(¢) R™),*

4(h(@)R™),;" — 40(h(§)R™) — 49" (W(¢) R**) ca
2h(O) R R’ e — A(M(O)R™ ™ )ca + Ty

+ o+ +

The equation of motion for the scalar field is given by

Vis(0) + ho(d)G =0 (2.81)

and is an algebraic relation betwegandG. Therefore, the scalar field dynamics is inferred
from the derivatives of the Gauss-Bonnet couplirig) in the field equations (2.80). Fur-
thermore, the fourth-order nature of the theory can begitéorwardly deduced by recalling
thath(¢) = —F(G).

Following Ref. [95] we use the relations:

R = Riea = Raep (2.82)
. 1
Rca _ 2 R;a

acbd _ ab ac b
R*™ . = OR™— R™,

1.
Rac;c b _ 5R,ab o RacbdRcd =+ RacRbc

1
R* , = -OR
;ab 92 9

obtained through the Bianchi identities, to re-write thédfiequations (2.80) in the form

R® —g®R= — ¢"(V(¢)+ n(¢)G) + 2h(¢) RR™ + 4h(¢) R, R" (2.83)
_ 2h(¢)RacdeRdee _ 4h(¢)RacdbR6d _ 2Rh(¢);ab
+ 2¢°ROA(¢) + 4R"h(¢)..* + 4R h(¢)..”
— 4R“0h(¢) — 49" Rh(9).cq + AR () .ca + T

It follows that since the standard field equations of GR mestdrovered wheh(¢p) =
constant, only those terms involving derivatives bf¢) arise in the r.h.s of Eq. (2.83). This
implies that [94]

Rab_l

5 gdPR = — ¢V (¢) — 2Rh(d)™ + 29°ROA(¢) (2.84)

+ 4R"h(¢).." +AR“h(¢).” — AR®DOh(¢)
4gabRth(¢);cd 4 4Ra0bdh(¢);cd + T#Lb'
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2.3 Cosmological equations

In this section, following a brief review of FLRW cosmologye field equations for the
MG theories corresponding to a flat FLRW universe sourced fogréect barotropic fluid are
presented.

2.3.1 Friedmann-Lemaitre-Robertson-Walker cosmology

In spherical polar coordinates the FLRW metric is given by lthe element

dr?

2 2 2

+ 72(d6? + sin®(0)de*) | , (2.85)

wheret is cosmic timea(t) is the normalised scale factor akddescribes the geometry of
the universe, i.e,C = {+1,0, —1} corresponds to a closed, flat or open geometry, respec-
tively. The source of the energy-momentum tensor is modeltea perfect barotropic fluid,
specified by an energy densjiyand an isotropic pressuggi.e.,

Tay = (p + p)uatts + PYan, (2.86)
whereu® denotes the comoving fluid four-velocity. The Einstein eopres,
1
Rab - égabR = 87TGNTab> (287)

in this case reduce to the Friedmann equation:

. 2
H? = <9) _8nGy K (2.88)

a 3 a?’

where H is the Hubble parameter and a dot denotes differentiatidh mispect to cosmic
time, and the Raychaudhuri equation
a 47TGN

S N ), (2.89)

The conservation of energy-momentum, following from thargihi identities, leads to the
continuity equation

p+3H(p+p) =0. (2.90)

We note that only two of the equations (2.88)-(2.90) are peehelent. Using the continuity
equation with either the Friedmann or Raychaudhuri eqnative remaining equation can
always be derived.
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The Friedmann equation (2.88) can be written in the dimeresgs form:

Q) =1+ %, (2.91)
whereQ(t) = p(t)/p.(t) is the dimensionless energy density parameter and theadriti
energy density is defined as(t) = 3H?(t)/87G y. Clearly the spatial geometry of the uni-
verse depends on the amount of matter present{i.e.,1, 2 = 1 and(2 < 1 correspond to a
closed, flat and open geometry of the universe, respectiValy recent WMAP observations
[1] indicate that our universe is very close to being spbtidt. Therefore, we shall assume
K = 0 in what follows.

The energy density and pressure of a barotropic perfect fitadelated by the equation
of state (e.o0.s) parameter defined by

w = p/p. (2.92)

We will assumew to be constant. In this case, integrating the Friedmanntengué?.88)
along with the equation

H = —4nGn(p+p), (2.93)
we obtain
a(t) o t5 W and p(t) o< a3+, (2.94)

The special cases = 1/3 andw = 0 correspond to radiation and dust, respectively. In
this context, a more useful form of equation (2.89) is

d_ 47TGN

p(1+ 3w). (2.95)

This implies that both a radiation and a dust filled univeessdito a decelerated cosmic
expansion. To accommodate for the current phase of actedeexpansion, the dominant
fluid in the universe (at present) must violate the stronggneondition: p + 3p > 0.
Consider, for example, the simplest modification to Eimsseiheory given by the addition
of a cosmological constant to the field equations. Assuntiagguch a term behaves like a
perfect fluid, it can readily be seen from Eq. (2.90) that tleese should bevy, = —1. With
this correction the Friedmann equation becomes

i 87TGN
3

H* (p+ pa); (2.96)
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and

a 4’/TGN

- = —9 2.97
” 3 (p+3p—2py), (2.97)

wherep, = A/87G y. This clearly demonstrates that the cosmological constamiributes
negatively to the pressure term and therefore exhibits alse@ effect.

2.3.2 Cosmological equations for MG theories

In order to compute the Friedmann equations for the MG tlesatiscussed above, it is worth
recalling that the non-zero components of the Levi-Civdareection are

. a
o _ - T 7
Fij = &a(SZ-j s FOj = 55 T

(2.98)

where the indices j and (later): are summed frorh to 3 (the so-called spatial components).
The non-zero components of the Ricci tensor that dependeométric are

Roo(g) = —3% ) Rz’j(g) = (a+ 2&2)(5“-. (2.99)

SinceF'(R) is a scalar quantity, the covariant derivativefois just the partial derivativet,,.
This means, for example, thal,, = F,,—1I'S, F .. Moreover, due to spatial homogeneity the
Ricci scalar,R, is a function of time only, sé’; = 0. Below we summarise the cosmological
equations for each modified gravity theory in turn. For siicipt, we set87Gy = 1 and
restore it when it makes the discussions more transparent.

e f(R) gravity in the metric formulation
The time-time component of the field equations (2.14) lead37]
1 .
3FH? =p+ 5(FR —f)—3HF, (2.100)

which replaces the usual Friedmann equation (2.88), reedu®y settingf = R. The space-
space components of (2.14) lead to the other independemefigiation,

—2FH = (p+p)+F - HF. (2.101)
The curvature scalar satisfies the following relation:

R =6(2H? + H). (2.102)
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e f(R) gravity in the Palatini formulation

Consider the following combination of components [88];, + a%l%’,j. Using Eq. (2.36)
this combination equals
s(F\° F
2 J— JEN— JEN—
6H" + 5 (F) +6HF. (2.103)
On the other hand, by using the field equations (2.19), it @shimwn that this combination
is equivalent to

% 4P }37” . (2.104)

Equating expressions (2.103) and (2.104) therefore leattetFriedmann equation:

. 2
6F <H—|—%> —f=p+3p. (2.105)

The curvature scalar is given by

. 3 (. . F?
R=6(2H*+ H) + i (F +3HF — ﬁ> : (2.106)

In the Palatini formalism it is possible, far = 0, to express the Hubble parameter as a
function of R only. For this purpose we require an expression/fan order to eliminate the
time derivatives off’ on the left hand side of Eq. (2.105). Taking the time derxeatf the
trace equation,

FR—-2f=—p+3p, (2.107)

and substituting for the resultingterm using the continuity equation (2.90), we obtain

SH

R= —m(/)—lrp)(l—i%w). (2.108)

To derive this equation we used the relatigfp = w = const for a barotropic fluid. In
the matter dominated era (whepg, = w = 0) an expression fot{(R) follows from
Egs. (2.105) and (2.108):

H2

_3f - RF <1 3@)_ . (2.109)

6F 2 F(F —RFp)
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e Scalar-tensor gravity

The generalised field equations (2.40) reduce to the Friadraad Raychaudhuri equa-
tions

1 . .

3FH?*=p+ 5(Z¢2 —6HE +V) (2.110)
and

—2FH = (p+p)+ Z$*+ F — HF, (2.111)

respectively. The equation of motion for the scalar figltbllows from (2.43) and is given
by

Z($+3H¢p) = 3F4(H+2H?) — %Z,d,g&? - %v,d,. (2.112)
e f(G) gravity
The time-time component of the field equations (2.56) leadké Friedmann equation
3H?=GF — f —24H3F + p. (2.113)
The scalar curvature and Gauss-Bonnet invaigasatisfy the following relations
R=6(2H? + H) (2.114)
and
G =24H?*(H*+ H), (2.115)

respectively. It is worth mentioning that all of the modifighvity theories presented here
satisfy the continuity equation (2.90).
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2.4 Cosmological Perturbations

Here, we briefly review the basic features of relativistictpdbation theory in the context
of the FLRW space-time. We briefly discuss tpeuge problemn first-order perturbation
theory and then proceed to state the governing evolutiomteans for the cosmological
perturbations that will be required in subsequent chapters

2.4.1 Metric and matter perturbations

Although the flat FLRW spacetime is a good approximation eflthniverse, a more precise
description requires anisotropies and inhomogeneitiesordler to describe such features
we employ a perturbative approach, where the departure fromogeneity and isotropy is
characterised by small perturbations about the FLRW backgt. This leads to observable
guantities being decomposed into homogeneous backgrowchthhomogeneous perturba-
tion contributions. As an essential feature of this analygie assume that the deviations
from homogeneity and isotropy have been small during mothehistory of the universe,
so that they can be treated as first-order effects [96].

The metric tensor, which has ten independent componentieasmposed into back-
ground (g,,) and perturbationd,;) parts such that

Jab = Gab + 0Gab- (2.116)
In this case, the line-element can be expressed as

ds® = —(1+2a)dt* — 2a(t)(b; + B)dtdz’ (2.117)
+a*(8)[(1 4 2¢)8i5 + 2Ei; + capj) + hag)da'da?,

where a vertical-bar subscript denotes a covariant devevatith respect to the spatial three-
metrngﬁf). It proves useful to classify the metric perturbations adew to their transforma-
tional properties under spatial transformations. Folloyvihe terminology of Bardeen [97],
the perturbations can be labelled as scalar, vector or terisdinear perturbation theory
this is particularly useful because the governing equataectouple, which implies that each
can be solved separately [67]. The metric perturbationsleacemposed as follows: the four
linear scalar perturbations ateb, ¢ and E; the divergenceless 3-vector fieldsandc; con-
tribute four vector degrees of freedom; and the symmetandverse and traceless 3-tensor,
hi;, which describes gravitational waves, contributes twsoemegrees of freedom.

The main purpose of considering perturbations in the ptasamntext is to study the for-

mation of large-scale structure. For this purpose, onlystear perturbations contribute
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significantly. The vectors are exponentially suppressetérearly universg and the tensor
modes make only a small, but important, contribution to then&le of the CMB polarisa-
tion. Consequently, we restrict our attention to the fowlacmetric perturbations, in which
case the perturbed line-element (2.117) reduces to

ds® = —(1 + 2a)dt* — 2a(t)bdtdz’ + a*(t)[(1 + 2¢);; + 2E;;)da’d’.  (2.118)

In general, linearly perturbing the energy-momentum tessarced by a fluid with en-
ergy densityp, isotropic pressurg, and 4-velocityu®, gives

Ty = —(p+dp), T9=(p+p)(Vi—by), (2.119)
T = (p+dp)d’; + 1L,

where the 3-velocity/; comes from the spatial part of the perturbed 4-velocity. Véetor
guantityV; can always be split into a scalar part (velocity poteritigland and a vector part
(V.*¢) such thatl; = V; + V.»*¢. Similarly, the anisotropic stresH,gl, has terms originating
from scalar, vector and tensor contributions. As before,only consider the irrotational
scalar perturbations because these are the componenianieier structure formation. Fur-
thermore, because we consider a pressureless fluid (withoérdygic equation of state) as
the matter source, by definitign= dp = II’ = 0. Hence, the components of the energy-
momentum tensor reduce to

TS = ~(pm +6pm)y, T9=pu(V—=0)i=—puvmi, T=0, (2.120)

J

where we have introduced the scalar velocity perturbatignwhich is related to the veloc-
ity potential through [98]:

U = —(V = b). (2.121)

If we consider the perturbed variables in Fourier space eher example, a perturbed
variables is written as a Fourier series

o= Z o1 (t)e™X,

we find that eactk-mode evolves independently. Ignoring tkesubscripts for notational
simplicity, the matter perturbation can be shown to satisé/following equations of motion

31t is well known that in an expanding FLRW universe (sourcgalperfect fluid witth- = 0), first-order
metric vector perturbations decay and hence rapidly bedosignificant.
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[81; 99; 100; 69]
1
Um + Hu,, = —av, (2.122)
a
k2
0pm + 3HOpm = pm (Ii —3Ha — —vm) , (2.123)
a

wherek is a comoving wavenumber,
]{2
= 3(Hoz—¢7)+¥x, (2.124)

and

a(b+ ak). (2.125)

X

If we now define the following variables

_ Pm

v=av, =—a(V —b), 6= o (2.126)

wherew is a covariant velocity perturbation [101], Egs. (2.123) #2.122) can be written as

2

- k
(5:I€—3HC¥—¥U, (2.127)
a=7. (2.128)

As will be explained in the next subsection, in order to avihid gauge problenmassoci-
ated with perturbation theory, it is necessary to considrrgg-invariant quantities only.
Choosing a comoving orthogonal hypersurface, the densitiyifbation can be expressed in
a gauge-invariant way as [98]:

Opm = 0pm + app(V —b). (2.129)
We shall define the density contrast on comoving orthogoyiétsurfaces as

50— Py 3y (2.130)

Pm
It then follows that since the right hand side of Eq. (2.130yauge-invarianty,, can be
evaluated in any gauge and the evolution equation,fois then given by
. : k2 . .
5m+2H5m+ﬁ(a—X):SB+6HB, (2.131)

whereB = Hv — ¢.
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2.4.2 Coordinate transformations

A central feature of general relativity is that it is covaniainder diffeomorphisms. This co-
variance is broken under tlmn-covarianprocedure of splitting quantities into background
and perturbation parts, which can lead to the latter becgrmooordinate dependant [67].
Quantities such as the line-elemei¢?, and the energy density, however, remain invari-
ant regardless of the choice of coordinates. This providetaéion between two coordinate
systems, which allows us to deduce how the perturbed qieswiill transform once a gauge
transformation has been specifig@7].

To elucidate this, let us consider the first-order gaugesfaamation

P =2 407, (2.132)

where quantities with a tilde represent those in the newdinate system, an#f determines
the choice of temporal gauge. We require the line-elemesatisfy

§° = gupdrdx’ = gupdxda’, .
ds? daz®dx® didz® (2.133)

which relates the two metric tensayg andg,,. Perturbing the right hand side of Eq. (2.133)
using the expansions of (2.132), the line element in the n@vdinate system can be ex-
pressed as [98]

ds? = — (1+2a)d2 — 2a(D)(b,; + f;)didi (2.134)
+ a®(D[(1 +29)di; + 2Ejij + Eujy + hijlditdi,

where the tilded perturbation variables are expressiblerms of combinations of the origi-
nal (untilded) metric perturbations and componentgcindd®. A similar analysis reveals
that the perturbationp,, transforms as [67]

5pm = 0pm + 0 pum . (2.135)

In summary, gauge transformations can induce gauge depeieden perturbed quantities.
Consequently, Bardeen [97] proposed that only variablketsstle explicitly gauge-invariant
should be considered. By construction, such variables dvelilninate the effects of gauge
modes induced by gauge transformations. Considering @larsmetric perturbations, the
idea essentially is to use the temporal and spatial gaugsftranations {° and¢’, respec-
tively) to substitute for two of the scalar metric pertuibas, thus allowing for the con-
struction of two gauge-invariant combinations [67]. Henee replace the gauge-dependant
metric perturbation$ and £, with the spatially gauge-invariant combinatiopgndx, de-

4This is referred to as thpassive approach to gauge transformatioivsRef. [67].
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fined in Egs. (2.125) and (2.124), respectively [102]. Westhave a set of quantities; v, ¢
andk, that are spatially gauge-invariant, of which only threeiadependent. The advantage
of using these variables is that by writing equations in teohthem, we can conveniently
fix the gauge degrees of freedom by setting specific metrimigEtions to zero [79]. For
example, the longitudinal gauge would correspong te 0.

Here we are interested in the quantify, which is defined in a gauge-invariant way in the
comoving orthogonal gauge in Eq. (2.130). In what follows,@valuate the gauge invariant
combination on the right hand side of Eq. (2.130), for thréfeént gauge choices that are
relevant for this study.

e Comoving gauge:in which the spatial hypersurfaces correspond to those evtier
3-velocity and the scalar shift function vanish (i.e.= 0). This implies that along
with the 3-velocity the momentum vanishes as well [97]. Ttinesgauge-invariant,,
in this gauge becomes

_ dpm

oY)
Pm

(2.136)

v=0

e Longitudinal gauge: in which one chooses to work on spatial hypersurfaces with
vanishing shear, i.e., the shift vector,and the anisotropic potentiak;, both vanish,
resulting iny = 0 [103; 104]. The gauge-invarian, in this gauge is

dpm
500 = 2Pm 4 311y

m pm

(2.137)

x=0

¢ Uniform density gauge:in which one defines perturbed quantities on constant densit
hypersurfaces, i.e.p,, = 0 [105]. The gauge-invariat, in this gauge is

69 = 3Hv . (2.138)
5pm=0
The latter gauge choice does not imply that the matter demtion vanishes, itis just carried
by other perturbation quantities; in this case by the cavdrvelocity perturbatiom. De-
tailed and comprehensive reviews of first-order pertudratiheory can be found in a number
of publications, including Refs. [67; 102; 103; 104; 1067]L0

2.4.3 Field equations for scalar perturbations

In this subsection we present the equations in Fourier speategovern the evolution of
scalar perturbations set out in Sec. 2.4.1. Essentialdgsdtequations correspond to com-
ponents of the linearised field equations for the partictiaories at hand. The equations
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are presented in a gauge-invariant (also known as gaug-f&@2]) formalism where the
temporal gauge condition is unspecified.

e General scalar-tensor theories
We begin with a slightly revised form of the general scatarsor action (2.38):

1

6. R) = S0(0)(VP ~ V@) | + Sulgu ), (2139)

S:/d4x\/—_g .

where we have seéinrGGy = 1. The perturbed field equations in this case have been de-
rived in Ref. [99]. The energy constraint (ti& component of the field equations) for this
generalised gravity theory is

2

1
—?QD—FHK,:——

1
SF [w909+ §[w,¢>¢2 —(f —=2V)4lop + (2.140)

. k2 . . . .
(3H+3H2 — —) (5F—3H(5F+(3HF—w¢2)a+Ff<;+(5pm )

a?

The momentum constraint (tli& component of the field equations) is

k2 3 . . .
K=oy = ﬁ< ¢6¢+5F—H§F—Fa+pmv> . (2.141)

The shear propagation equation (tig— 30:Gf) component) is given by

r SF
(+ | H+=|x—a—p=—. 2.142
X+ ( + F) X—a—p=— ( )

The Raychaudhuri equation (ti& — G component) is
2F 2F 2F

F a A T . . L2
it <2H + —) P (3H 4 (6F + 3HF + dwd?) — —2) o (2.143)
a

2F

2
4wddd + 2w 40° + (f — 2V) 4]0 + (% - 6H2) §F

+3HOF 4+ 30F + 6py, |-

The trace equation (th@: component) is

.. . 2 R 2 . . 1 o
0F + 3HOF + <———) 5F+§w¢6¢+§[wy¢¢ +2(f —2V) 4l00  (2.144)

a? 3

1 . 2 . .. . 1
= gapm + F(k+a&) + (gwgzﬁQ +2F + 3HF> a— 5F&R,
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where the perturbed scalar curvature is given by

k2 : k?
R =2 {—/2;—4H/<c—|— (;—3H)a+2?4 . (2.145)
Finally, the scalar field equation of motion is
B we) 98 (V= fe
;+<7)ﬁ+< % ),qﬁ o

= G(k+a)+ (2(5 Y 3HO+ %052) a+ %E&R. (2.146)

5¢+(3H+%¢) 5 +

e f(R) theories in the metric formalism

By eliminating the contributions from the scalar field,in the equations of section 2.4.3,
one can readily derive the perturbed field equationsffd®) gravity theories. The energy
constraint reduces to [99]

k2 k2
— S¢+3H(Ha—¢)+—Hx (2.147)
a a
2

1 : . k . .
= — |3HSF — (3H +3H?>— = |§F —3HFa — Fk —6pm| ,
2F a?

and the momentum constraint becomes

1 . .
Ho—¢= [(SF — HSF — Fa + pmv} . (2.148)

The shear propagation equation is given by

1

CHy — o — 0 —
X+X0490F

(6F — F), (2.149)

and the Raychaudhuri equation takes the form

4+ 2Hk + ( 3H i !
K K - |Ja=—
a? 2F

2
(—6H2 + k—) OF (2.150)

a?

+3HOF 4 30F — Fr — 3(2F + HF)o — 3F6 + 0pyy | -

Finally, the trace equation is

. . 2 R
OF + BHOF + ( — — 5 ) 0F = (2.151)
a

1 . . . 1
g(Spm +F(k+ &)+ (2F+3HF)a — §F5R.
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e f(R) theories in the Palatini formalism

Here we present thé(R) field equations for scalar perturbations in the Palatinirfal
ism [69; 79]. More details are given in Appendix A.1. The gyeconstraint is

I<;2 F 1 [ 3F?
T H4+ — — (2 i 3pF
( +2F>”+2F<2F+3 )

2 2 )
! <3H2—£—E+k>5F+<£+3H>6F—5pm], (2.152)

2F

4F? 2 2F

and the momentum constraint is

) 1 . 3F .
Hoz—cp—ﬁ 5F—<H+ﬁ>5F—Foz+pmv (2.153)
The shear propagation equation corresponds to
X+tHx—a—p= F((SF FY), (2.154)

and the Raychaudhuri equation is

F 3F 3HF 3F% k2 3F
9H + — 7+ o on _F °2 4 (2.155
+< +2F> (3 F T oF TR a>0‘+2F0‘ ( )

2F F2

2 2 F . ..
Opm + <6H2+6H+3——R+k >5F+ <3H—6F> OF +36F | .

Finally, the trace equation is

RSF — F6R = —5p,, . (2.156)



Chapter 3

Cosmological perturbations in
Palatini-modified gravity

In addition to the standard procedure employed in reldto/erturbation theory for studying
cosmological perturbations, outlined in Sections 2.4, lser@ative procedure has recently
been developed. This alternative, put forward by Lue, Sooaoo and Starkman (LuSS)
[108], employs a generalised version of Birkhoff's theoréee also Ref. [109]). This
procedure has the benefit of greatly simplifying the analyisut suffers from the drawback
that the degree of its applicability in more general settirsgpresently not known in detail.

Here, the aim is to perform a detailed comparative study®gtiolution of perturbations
obtained by employing the LUuSS procedure and the direcatisation of the field equations
[68]. Such a comparison can serve as a crucial step in diagfthe status of the LuSS
approach in non-linear gravity theories. In the followimgg considerf(R) theories based
on the Palatini variational method.

3.1 The evolution of density perturbations

In conventional cosmology, there exists an interestingvadgnce between the Newtonian
and general relativistic frameworks. Both approachesltasudentical background evo-
lution equations (i.e. Friedmann equations) as well asut\ar equations for the scalar
perturbations. The former coincidence results from the that there is an analogue of
Newton’s sphere theorem in general relativistic settings, Birkhoff’s theorem holds. The
correspondence for the evolution of perturbations arisgbe absence of vector and tensor
fluctuations.

Recently, a procedure has been put forward by Lue, Scocmnaend Starkman [108]
which relies on the assumption that this Newtonian analogyyding Birkhoff’s theorem,
holds in the more general setting of modified gravity thesri&ccording to this procedure,

51
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it is assumed that the growth of large-scale structure candelled in terms of a uniform
sphere of dust of constant mass, such that the evolutictarnise sphere is determined by the
FLRW metric. Using Birkhoff’'s theorem, the spacetime mein the empty exterior is then
taken to be Schwarzschild-like. The components of the mxtenetric are then uniquely
determined by smoothly matching the interior and exteggions.

The overdensity,,(t) of the spherical distribution of pressureless matter witkssl/
and radius- is defined by

(3.1)

The matching conditions (relating the Schwarzschild ragdiuto the interior cosmic evolu-
tion) imply thati = r(H? + H) and the evolution of the density perturbation is then given
by [108; 110]

) . -
S+ 2HS,, — <2H + ﬁ> S =0, (3.2)

or, equivalently, by

Horr
H

Omrr + Homr — ( - 2H,T) Om =0, (3.3)
wherer = [ % defines the conformal time artd = a H = a. Eq. (3.3) can also be derived
by assuming that the continuity and Friedmann equationf/ajpgectly to the fluctuations
[109].

Recently, the evolution of perturbationsfQR?) gravity was investigated using the LuSS
procedure [108; 111]. The advantage of this approach isttlegrowth of the density
contrast can be expressed in terms of a single quadratunéving the Hubble parameter
and the scale factor [108]:

O X H/ an;;Q. (3.4)
In principle, therefore, the evolution of the perturbasaan be determined once the back-
ground dynamics has been specified. However, the validith@luSS procedure has yet
to be established in generalised gravity. It is importamgyefore, to compare this approach
with the method that directly linearises the gravitaticineld equations.

To this aim, let us consider the perturbations defined onteomslensity hypersurfaces

IWhile this definition is not related to the gauge invarianhtanation, Eq. (2.130), it clearly coincides with
the density contrats defined in Eq. (2.136). We therefor@sbdo keep this notation and note that this will be
of use later when we compare the two approaches for studgngity perturbations.
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(6pm = 0) where
0F =0R =0,

from Eq. (2.156) and Eqg. (4.107), and

2
U= q, k=3H0+ —w,
a

from EQs. (2.127) and (2.128). Substituting these relatifor the subsequent terms in
Eqg. (2.155), and using Eq. (2.106) to rewritewe obtain

F . 3F 3HF 3F?
H+— | H24+6H + 2 + 22— 2 )¢ .
3( +2F>U + <6 +6 —|—F+ I3 F2>U (3.5)
L
2Fa2v

It then follows that the evolution equation for comoving teatlensity perturbations,, =
3Hwv, in a pressureless universe satisfies

Om + C10m + 20, =0, (3.6)
where
2H HY\ F [? F
“ T I FpHF| ( H2> SHF  2I°F? | 2I°F | 3.7)
.. . . . 2
H? H 2H H ([ F
= ——— | =+ = | == 3.8
“ T IyfpHF| B B B (HF) (5:8)
B (" H R\ HF
HF \ H* 2H® H? 6a?H? H?2 H2F |~
(3.9
Eqg. (3.6) can be expressed in terms of conformal time sudh tha
2FH(FH*+ F,.) —2F>H + F,F(=2H . + H?
Omrr + 3H ( ) L £ ’ )5mT (3.10)
’ SFH?2(2FH + F ;) ’
—|6F*H*(H - — 2H H) + 6F2H(H? — H ;)
+F,F(3H ;- H — 6H%. — H*k?) + 6F ., FH(H . — H?)
Om = 0.

SFH?(2FH + F )
We will refer to Egs. (3.3) and (3.10) as the LUSS and KKS (kovand Kurki-Suonio
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[79]) perturbation equations, respectively. We will beeirgtsted in identifying the domain
where the equation based on the LuSS procedure providescanage description for the
evolution of the perturbations. In the following sectione wdopt an analytical approach
with the aim of identifying the general form of the gravitaial lagrangianf (R), for this to
be the case.

3.2 Analytical comparison
A direct comparison between the LUSS equation (3.3) and &® &quation (3.10) suggests
that the latter should be rewritten in the form

5m,7’7’ + SH(Sm,T - C (H,;_ZT

- 2H,T) S = 0, (3.11)

where the parametegsand( are defined by

2FF,, H —2F2H — 2FF.'H,,

=1+ FHEOFH + F) : (3.12)
and
H2 _ H F H
14t 7T ey a k? 3.13
¢ i Hrr — 2H,TH( & 3CFH+F,)(H,r —2H H) (3.13)

respectively. The form of Eq. (3.11) implies that the LuS8 KIKS equations are equivalent
when¢ = ¢ = 1, but it is clear that this occurs only for Einstein gravityeve ', = 0.
Indeed, the most striking difference is the presence of thdignt term in the KKS equation.
Such a term also arises in the corresponding density patiorbequation derived in the
metric variational approach, as we shall see later in S&. Zhe origin of this term can
be understood from the dynamical equivalence betwggt) Palatini gravity and Brans-
Dicke theory, as expressed in Eq. (2.71). Fluctuations engressureless matter induce
perturbations in the scalar field (i.e., the Ricci curvature, see Eq. (2.70)), which in turn
generate a pressure gradient in the fluid. In general, thegp$peed (see Ref. [112]) of the
fluctuations in the cold dark matter is given by

2 I

C
The magnitude of is independent of and is therefore unaffected by the specific choice
of scale. However, contains a gradient term which is proportionalitoand this may be
significant on small scales. Consequently, the evolutioimefperturbations will indeed be
different in the two approaches. However, the gradient teeeomes negligible in the long-
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wavelength limit (which corresponds formally t8 — 0). In this limit, a necessary and
sufficient condition for equivalence between the LuSS and&kquations is that = 1 and
this constraint is satisfied when

FF.;H—FH—FF.H,=0. (3.15)

Eqg. (3.15) may be viewed as a second-order, non-linearrdifteal equation for#'(7).
One solution to this equation is that of general relativitithwa cosmological constant,
f(R) = R — A. More generally, iff’, # 0 andF,, # 0, we may define a parameter
Y = F,/F. This reduces Eq. (3.15) to the remarkably simple form

Y, H.

Y  H’

(3.16)

which admits the integral” = YyH, whereY is an arbitrary integration constant. This in
turn implies that

F = Fya™, (3.17)

whereFj is a second integration constant.
On the other hand, the trace equation (2.20) for a univenseesd by pressureless matter
reduces to the condition [111]

~1/3
a o< (2f — R%) . (3.18)

Hence, substitution of Eq. (3.18) into Eq. (3.17) yields stforder, non-linear differential
equation in the gravitational lagrangigR):

(%) (2f — R%) = constant, (3.19)

wheren = 3/Y5.

Eq. (3.19) is a particular example of d’Alembert’s equataord may be solved in full
generality [113]. Since we are interested in the functiateglendence of the lagrangian on
the Ricci scalar, we may rescafewithout loss of generality such that the constant on the
right-hand side of Eq. (3.19) is unity. If we now define thedtions

1df 1 /df\T"
M=o N:i(@) (3.20)

and denote = df /dR, Eqg. (3.19) can be expressed in the fofitR) = RM(p) + N(p).
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Differentiating this expression with respect/fthen yields

dp [pdM(B) | AN ()

e
p=Mp)+ g5 \F—p b

(3.21)

However, Eq. (3.21) can be expressed as a linear diffetegization in the dependent
variableR and independent variabje

dR R n

b p P

(3.22)

Hence, solving Eg. (3.22) by the method of integrating fexcyeelds the general solution to
Eq. (3.19) in a parametric form:

n 1

R =CyP + 5 i (3.23)
1 1
= P+ o5 (3.24)

where( is an arbitrary integration constant afds a free parameter.

Egs. (3.23)-(3.24) represent the general form of the gutieihal lagrangiary (R) for
the LuUSS and KKS equations to be compatible in the long wagéhdimit. It is interesting
that for this class of theories the sound speed of the fluctusts constant with a numerical
value given by

c, = . (3.25)

When(C) = 0, which is equivalent to the asymptotic limit whekeis sufficiently small,
the gravitational action depends on a simple power of theiRwalar:

f(R) ox RV (4™ (3.26)

For this class of theories the Friedmann equation (2.1G8)aes to

2 —2
g2 3t2n (1 + 3) R, (3.27)
6on 2n

which in turn implies that the background dynamics is givgralpower-law solution for the
scale factorg oc H2%/(3+n) o 727/B3+n) - Consequently, the cosmic dynamics is equivalent
to that of a conventional relativistic universe dominategdabperfect fluid with a constant
equation of state. Finally, the paramefesimplifies in this case to

2n? k2

¢=1- 3(1+n)(3+n)(3+2n)H2 (3.28)
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In conclusion, therefore, the above analysis indicatestiiegal uSS equation should pro-
vide a good approximation to the full evolution equationtiee linear density perturbation
on sufficiently large scales in any modified gravity theorgtthsymptotes in the low-energy
limit to a power-law in the Ricci curvature scalar. On theasthand, for fixed values of
and’H, the LuSS equation becomes progressively less accurate awwe to smaller scales
(i.e. ask increases). In the following section, we will quantify teesonclusions further by
performing numerical calculations for a specific class ofiified gravity theories.

3.3 Numerical comparison

Motivated by the results of the previous section, we condgilde class of gravity theories
defined by

f(R)=R— (3.29)

ﬁ 9
whereb andc are free parameters whose values are constrained by obeasseSuch theo-
ries have been considered as possible candidates for eixgdhe late-time acceleration of
the universe [37; 10; 114]. In particular, a recent studynfibthat data obtained from CMB,
baryon oscillation and large-scale structure observat@mmnstrains the parametdis c) to

lie in the range9® € [—0.2,1.2] andc € [—3.5,6.6] at the 68% confidence level [10]. The
best-fit model corresponds to the valiésc) = (0.027,4.63) and theACDM concordance
model is represented by, c) = (0,4.38). These values are consistent with the results of
other studies that employ CMB and supernovae data [111].

For the above choice of parameters, we have made a detaiheplacative study of the
evolution of the density perturbations for both the LuSSagmun (3.3) and the KKS equa-
tion (3.10). The results of such a comparison can be quanhtifjedefining a ‘fractional
difference’ parameter

LuSS KKS

55—1{3, (3.30)
where subscripts ‘LuSS’ and ‘KKS’ refer to the results ob&al using the LuSS and KKS
equations, respectively. Thus, the two approaches are letehpidentical whenA = 0.
This parameter is defined in such a way that the differenosd®st the two approaches is of
the same order as the KKS approach wherr O(1). To a first approximation, therefore, it
is reasonable to suppose that the LUSS equation becomédsblerevhenA ~ 1.

There are three physical parameters in the field equationsetalues need to be spec-
ified in the numerical integrations. These &gy, Ry, and H,, where a subscript zero indi-
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cates present-day values aflg, is the normalised matter energy densityHowever, only
two constraint equations are available, correspondinged-tiedmann equation (2.109) and
the trace equation (2.107). In order to be consistent, tberewe specify the value afi

to be unity, as is the usual practice (see, e.g., [111]). Wa tise the constraint equations
(2.107) and (2.109) to determing,,, and Ry. The choice of Eg. (3.30) implies that the ini-
tial value of the perturbatiofi,, is unimportant. Finally, we need to specify the scale of the
perturbations. By fixing the wavenumber at a particular gatine focuses on perturbations
that entered the horizon at a particular epoch. For illdistgourposes we consider the val-
uesk = 5 andk = 20, corresponding to scales which remain within the horizaoulghout
our numerical evolution.

The left hand panel of Fig. 3.1 illustrates the evolutiomoivhenc = 4.38 andk = 5,
with b taking values in the rangec [0, 1]. As expectedA = 0 for the ACDM concordance
model (given by = 0), since it is known that the LUSS equation is exact in thigcam the
other hand, increasing the valuetotauses the behaviour of the two approaches to deviate
and the quantitative difference becomes more pronouncédbsascreased.
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Figure 3.1: lllustrating how the fractional difference aareter,A, varies with the nor-
malised scale factar asb is increased. Here = 4.38 and values ob are assigned to each
curve. The casé = 0 corresponds to thACDM model. The left hand panel corresponds to
k = 5 whereas the right hand panel corresponds to 20.

We have verified that these results remain qualitativelylamwhen the parameter values
lie in the range9 € [—0.2,1.2] andc € [—3.5, 6.6], respectively. An important outcome of
these results is that for values of the parameters consistiégim recent observations, the
agreement between the LuSS and KKS approaches is good iertke thatA < 0.1 for
b < 0.2. This implies that the LuSS equation provides a good appratidn to the full
(linear) perturbation theory (for this value @&). This can be understood by noting that
observations constrain theoretical models to lie clos@@a\CCDM point, where it is known

2Note that in modified gravity theories of the type considéretk, this parameter need not necessarily be
unity in a spatially flat universe.
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that the LUSS equation is exact.

Further inspection of the left hand panel of Fig. 3.1 indésathat as the value oéfis
increased, the models take longer to move away from\tbBM pointA = 0, but those with
smaller values o subsequently find it easier to approakh= 0 at later times. We may gain
further insight into the origin of this behaviour by invesdting the evolution of the quantity
@Q =1 — F. This vanishes at all times for Einstein gravity but is gisnQ = —bcR~(+)
for the class of models (3.29). This parameter thereforgiges a measure of the deviation
away from general relativity. Our numerical calculationdicate that initiallyR ~ O(10%)
and, consequently for larger valuestptthe scale factor must grow to a larger value before
the Ricci scalar has fallen sufficiently for the correcti@m () to become dynamically
significant. In other words, the onset of acceleration cg@irater times for large. On
the other hand, the correction term jitR?) that is proportional ta?~* will become more
important as the universe expands. The analysis of Sech&indicates that the accuracy
of the LuUSS equation will improve a& R) asymptotes to a power-law form. Consequently,
A will begin to decrease back to zero at later times.

We find qualitatively similar behaviour at larger valuestofThe right hand panel of Fig.
3.1 illustrates the corresponding evolution&fwhenk = 20. As expected, models with
lower values ofb move away from thel = 0 point at smaller values of the scale factor.
The model with the lowest non-zero valuelo#= 0.2 crosses the solutions fér= 0.4 and
b = 0.6. This can be understood from Eq. (3.28), which implies thatmagnitude of
depends on the ratie? /H? = k*/a*. At a formal level, therefore, increasing the valuekof
is equivalent to ending the numerical calculation at a fikdait with a smaller value for the
scale factor.

However, the quantitative agreement between the solutibtiee LUSS and KKS equa-
tions is poor wherk = 20 andA rapidly exceeds unity in this case. This discrepancy arises
primarily because the deviation of the parame&taway from unity is more pronounced at
largerk. Fig. 3.2 illustrates the evolution gffor the different values of.

3.4 Summary

In this chapter, we have studied the evolution of densityypkations in generalised theories
of gravity where the field equations are derived via the Ralaariational approach [68]. We
focused on models where the energy-momentum tensor isebbgca pressureless perfect
fluid. Two approaches to the study of density perturbatiansehecently been developed in
the literature [79; 108; 109]. These involve, respectivatyapplication of Birkoff's theorem
to modified gravity (the LuSS method) and the linearisatibthe full field equations (the
KKS approach). In the former case, the evolution of the pbations is determined entirely
by the background dynamics and no pressure gradients asergri the perturbation evo-
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Figure 3.2: lllustrating the evolution of the paramefedefined by Eqg. (3.13) in the text
for the parameter valugs = 5 (left panel) andk = 20 (right panel). The LuSS procedure
for the evolution of the perturbations becomes progressless accurate as the deviation of
this quantity from unity becomes more pronounced.

lution equation. However, such terms do arise in the lirsgdion approach, which takes
into account the fact that perturbations in the fluid indugetfiations in the Ricci curvature,
which in turn modify the sound speed of the fluctuations inrttegter.

In the long-wavelength limit, these gradient terms are igdge. We have identified
the most generaf(R) theory of gravity, as summarised in Egs. (3.23) and (3.2%){tie
LuSS and KKS approaches to be equivalent in this limit. Aipalar case of this class
of theories arises whefi(R) is a simple power law of the Ricci curvature scalar. This is
interesting because such terms are expected to arise &ctwons to the Einstein-Hilbert
action at low energies. Furthermore, theories of this tygmult in a background scaling
solution, in the sense that the homogeneous dynamics igaeui to that of a conventional
relativistic cosmology where the pressure and energy tdeotthe perfect fluid redshift at
the same rate [68]. It would be interesting to explore whethis scaling behaviour is a
necessary condition for compatibility between the LuSS larehrisation methods in more
general theories of modified gravity. For example, a power-tosmology arises in the
Palatini variation of Ricci squared gravity, whefex (R*R,,,)"/? [115].

We numerically investigated a specific class of power-lagoties of the type (3.29) and
compared the LuSS and KKS approaches on smaller scales gtagtient terms become
significant. We found that when the parameters of the unohgritheory take values that are
consistent with cosmological observations, the LUuSS mhoeprovides a reasonably good
approximation to the complete linearised theory i§ not too large (i.e. of the order of a few
or less). However, the agreement between the two approacloesbreaks down on smaller
scales [68].



Chapter 4

Density perturbations in f(R) gravity
theories In metric and Palatini
formalisms

In this chapter we make a detailed study of the viabilityf@f?) gravity theories in the
context of both metric and Palatini variational formalisrirseach case, we first summarise
the constraints provided by the requirements of stabilitg giable background dynamics,
and then proceed to discuss the constraints provided by ¢pasity constraints (LGC).
Compatibility of f(R) theories with LGC in the metric formalism requires the useaof
chameleon mechanism, which we briefly review in the follagveection before deriving the
resulting bounds on thg(R) models.

Despite the importance of these constraints in limitingrrege of viablef (R) models,
the study of density perturbations allows for more strirtggnstraints to be placed on the
parameters of the models. We thus study the evolution ofiyeperturbations and the re-
sulting observational consequences foR) theories in both metric and Palatini formalisms.

In exploring the evolution of scalar perturbations we gélia sub-horizon type approxi-
mation, under which approximate perturbation equatioaslarived. In the metric approach,
where the oscillating (so-called scalaron) mode [116] espnt, this approximation can be
invalid if the scalaron is overproduced in the early Unieerdowever, as long as the scalaron
is sub-dominant relative to a matter induced mode, we shalivghat approximate pertur-
bation equations can be valid even for the super-Hubble sodéhe models that satisfy
LGC. The approximation is especially reliable in the Palatiase because of the absence
of scalarons [69]. The simplicity of the equations derivadilitates the estimation of the
growth rate of perturbations both analytically and numedhc

Using these equations we make a comparative study of thevioeinaf matter density
perturbations in both formalisms, for a number of classeg (@) models satisfying the
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LGC as well as the background constraints [69]. These ircliable f (R) models recently
proposed in the literature [116; 117].

4.1 LGC and cosmological viability in the metric formal-
ism

The effective Newtonian gravitational couplings!!, in the Brans-Dicke theory (2.44) can

be derived under a weak-field approximation, by consideaisgpherically symmetric body

with a mass\/, of constant density and a radiug, in the vacuum g = 0). Decomposing

the field,p, into background and perturbation parts-€ ¢,+d¢) and using a linear perturba-

tion theory in the Minkowski background with a perturbatiop,, the effective gravitational
coupling is given by [118]:

GN efo
G = — (14— 4.1
Ng ( 3 2 ) (4.1)
where/ is a distance from the centre of the body and the effectiviastiald mass squared

is defined to be [118; 119; 120]

, 1 _d2V AV
M = 2 (d)d&? a d_dS) ’ (42)

where¢ is a local field in Minkowski spacetime. We should emphasere fthat the expres-
sion (4.1) is only valid subject to the conditidd/, < 1 [119; 120]. The definition of the
effective scalar field masgy/, comes from writing the linear expansion of the scalar field
equation of motion (2.46) in the form of the Klein-Gordon atjan

8’/TGN

V2 - Mg = =

p-

In the usual Brans-Dicke theory whev&¢) = 0 andwgp # —3, the massi/) vanishes
because propagates freely. Consequently, the Yukawa-correctom te—"*¢, in Eq. (4.1)
becomesl, in which case the Brans-Dicke parametegp, is constrained by local gravity
experiments to be larger tha®000 [45; 46]. An alternative way to understand this bound
is to consider the Eddington parameterwhich in the usual Brans-Dicke case is given by
[118]

B 1+ wpp
2+ wpp

v (4.3)

To satisfy the local gravity constraint (1.1), the parametg, is required to be larger than
40000. As was mentioned in Sec. 1, this constraint does not nedigssaply to f(R) gravity
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theories where the presence of a field potential can maketeaohies compatible with local
gravity constraints under certain conditions.

In the presence of a potentidl(¢), the scalar field is massive. If the scalar field mass
is large, it can happen that the condition for the appliegbdf linear perturbation theory
(¢ < ¢p) becomes invalid. Moreover, this validity depends on thedridiution of scalar-
field mass inside and outside the body. When the mass in th@rég< 7, is much larger
than the corresponding mass in the region /,, a*“thin-shell” can be formed inside the
body so as to satisfy local gravity constraints through araon mechanish{47]. The
formation of the thin-shell occurs in a non-linear regiominich the above linear result (4.1)
ceases to be valid [119].

An important point to note here is that the Palatini formali€orresponding tagp =
—3, is rather special in a number of fundamental ways. For examye recall that the)-
field’s kinetic term in Eq. (2.46) vanishes in this case, vaatit is non-zero in the metric case
with wgp = 0. As we shall see below this has the important consequentththascillatory
scalaron mode is absent jf{R) theories based on the Palatini formalism, whereas it is
present in all other models withgp # —%, including f(R) theories based on the metric
formalism.

Furthermore, asgp approachesg, the scalar field masg/, diverges for finite potential-
dependent terms in the parenthesis of Eq. (4.2). For thewith wgp # —%, the scalar field
mediates dfifth-force” with an interaction rangé/—!. Because the mas$/, defined in
Eq. (4.2) becomes singular agp, approaches-2, the usual notion of an interaction range
determined by the mas3a/, does not hold in the Palatini formalism. Therefore, theaiail
case should be treated separately compared to the otheiethadathwgp # —%.

Before we proceed to discuss the constraints provided by ,lM&review the back-
ground cosmological dynamics jf{ R) gravity.

4.1.1 Background cosmological dynamics

The study of the background cosmological evolutionfoR) theories in the metric formal-
ism has been carried out in Ref. [43]. In order to study th&kbeaund dynamics, it is useful

1A Chameleon mechanism is one by which a scalar field can ohtaiass that is greater in high-density
regions than in sparse ones. In a spherically symmetric lmddyonstant energy density this leads to the
scalar field,¢, being nearly constant everywhere inside the body apant froa small surface region (as will
be demonstrated in Sec. 4.1.2). This meansYhatvanishes everywhere apart from in this thin surface layer.
Since the force mediated lgyis proportional toV ¢, it is only this “thin-shell” that both feels and contribst®
the fifth-force mediated by (note that there exists strong solar system bounds on thefdifce). Furthermore,
since the chameleon field couples to a small fraction of maftthe large body, the Chameleon force is weak.
Thus, through a Chameleon mechanism it is possible to exddgent solar system tests [48].
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to define the following dimensionless variables

F f R H
) _ g 4.4
GFI’ T em e (4.4)

-Tl:_ﬁa L2 =

In terms of these variables, the energy fractipnof the pressureless matter and the effective
equation of statey.q, are given by
. _ 2 H 1
Qm 3FH2 :1—1'1—.1'2—.1'3, weﬁz—l—gﬁz—g(ng—l) (45)

To study the background dynamics, it is also useful to defieegparameters: andr [43].
The parametem, defined as

m = [l rR : (4.6)

" I

characterises the deviation from th€ DM model. In theACDM caseyn = 0. The param-
eterr is defined as
p= Bl _ T (4.7)
/ T
The cosmological behaviour ¢gff R) models can be understood by studying-) curves in
the (r, m) plane.
The background evolution equations (2.90), (2.100) arftD{®.can now be expressed as

dIl

N —1 — 23 — 379 + 23 — 1173, (4.8)
dx 1T

d—]\? = ;ng — 13(223 — 4 — 1), (4.9)
dx 1T

d—N?’ = - 717@3 — 2xs(xy — 2), (4.10)

where N = In(a) is the number of e-foldings. For later use we also introdeeviariable
x4 = aH, which satisfies

dl’4

= (s~ s (4.11)

The critical points of the autonomous system (4.8)-(4.h0)ude [43]

3m L4+4m  1+4m
Pm . 5 5 - y ’ ’ 2
(xl T .r3) (1 +m 2(1 +m)2 2(1 —|—m)) ( )
m . m(7 4 10m)
we e e m - T o1 )2
ff Ll+m 2(1 4+ m)?

which corresponds to a matter epoch. Simegwhich characterises the deviation from
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ACDM) needs to be much smaller than unity during the mattertbeecritical point,?,,, be-
comesP,, : (21, x2,23) ~ (0, —1, 1) for viable f (R) models. The fixed point corresponding
to a de-Sitter phase is given by

Pds . (1’1,.1'2,1’3) = (0,—1,2), weff:—l, szo (413)

In the (r,m) plane the matter fixed point correspondsig : (r,m) ~ (—1,0). In
order to have a saddle matter era followed by a phase ofilag&cceleration, the following
conditions must hold [43]

d
m>0, —1<d—m<o, at  (r,m)~ (—1,0). (4.14)
T

The de-Sitter fixed point?,,, lies on the line- = —2. It is stable provided that
O0<m<1, at r=-2. (4.15)

If the conditions (4.14) and (4.15) are satisfied,afr) curve exists which connects the

matter fixed point to the de-Sitter fixed point, leading tdokacosmological dynamics.
There are a number of models in the literature that satisyathove cosmological con-

straints. Examples include

(i) f(R) = a(R® — A)*with ¢ > 1, bc ~ 1 [121], and

(i) f(R)=R—aR’witha >0and0 < 3 < 1.

For these models, the parametersandr satisfy the relatiomn = C'(—r — 1), whereC'is a

positive constant. Using observational constraints orbdekground dynamics from SN la

and the sound horizon of the CMB, the parametdras been constrained to be< O(0.1)

[122].

4.1.2 LGC and the chameleon mechanism

If information from local gravity constraints is also inded, the bounds on the model pa-
rameters become very strong. The usual procedure to detetimé LGC forf(R) theories

is to consider their Brans-Dicke representations (2.629, expand the equations of motion
around a background Minkowski metric [118]. As was shownée.§2.2.2),f(R) theories

in the metric approach correspond to Brans-Dicke theorigswgsp = 0,

¢=F(R) and V(¢)=R(¢)F — f(R(9)). (4.16)

To define the potential/ (¢), in this way, we requirg” to be invertible. This invertibility is
generally associated with the conditigiz # 0 [119]. Using the correspondence given in
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Eqg. (4.16), the scalar field mass defined in Eq. (4.2) becomes

M? == <ﬁ - R) (4.17)
[ R

If M? < 0, the Yukawa correctiory*, is replaced by an oscillating functiaos(|M|/).

For very light fields, which represent long-range interacsi, this case is excluded by the

experimental requirement that the Eddington parameted][11

3 — e—JVM

~ 4.18
3+ efMé ( )

=
Hence, the mass squared{) is required to be positive.

For consistency with local gravity experiments (which reqwgp, > 40000) a large
mass,M, is needed. In that case, however, the effective gravitaticoupling (4.1) obtained
under the linear approximation ceases to be valid. As waadl{r mentioned above, a thin-
shell begins to form through a chameleon effect in this noedr regime. To consider this
chameleon effect irf (R) gravity, it is convenient to write the theories as Einsteiavity
minimally coupled to a scalar field. For this purpose it isfubt define a new metric (as
we did in section 2.2.2) thus:

gab = ngab ) ¢ - G_Qle . (419)

(We recall that a quantity or operator in the Einstein frameleénoted with a tilde). The
Einstein frame action then takes the form (2.67):

Se.= [ d'ey/TF | 3R - 5P — ()| + Sn(aae®.00), (4.20)
where the coupling®, in f(R) models and the potentidl;, are given by
1 R(¢)¢ — |
=——, U=—"=——"—. 4.21
Q=-— ¥ (4.21)

We recall that in the Einstein conformal frame the energyyrantum tensor is not covari-
antly conserved, but instead satisfies

6aifab = QT@IJ ¥ (422)

whereT = ¢4@¢T andT = ¢*T w, With T, being the energy-momentum tensor of matter
in the Jordan frame. This implies that matter will generédlgl a so-calledfifth-force” due
to gradients in the fielgh.

A Chameleon mechanism can be realised in scalar-field g&ofithe type (4.20), pro-
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vided the potential holds certain properties (see Ref. fdBmore details). In these cir-
cumstances, thé(R) theories would admit a chameleon mechanism. In gen@ralhich
parametrises the strength of the coupling of the mattedldie}, to the fieldy, could take
any value. However, in the case pfR) theories() is fixed to be—%.

1. The thin-shell condition

Theories which possess a Chameleon mechanism do not béteusulal linear theories of
massive scalar fields. In circumstances where massive $adeeinvolved, the chameleon
field is trapped inside these bodies and its influence (orr dithéies) is only apparent due
to a thin-shell on the outer edge of the massive body [47; 119; 123; 124]. As a result,
the field outside the massive body for distances less thamatiye of the chameleon force in
the outer vacuum is effectively damped. This leads to a dadkfifth-force, which becomes
undetectable [125]. In this section, we derive the condgiequired for a thin-shell to form.
Under these conditions th& R) theories become compatible with LGC.

Let us consider the Einstein frame action (4.20). The viamatf this action with respect
to ¢ leads to the following equation of motion

Op - U, =-QT. (4.23)

In a spherically symmetric setting with an energy dengity —T', the field,y, satisfies the
following equation [123]:

d?p  2dyp ~ dUes

— +=— = , 4.24

ez (de dy (4.24)
wherel is the distance from the centre of symmetry in the Einsteimf and

Uit () = U(p) + e%p*. (4.25)

Here we have introduced an energy dengityhich is conserved in the Einstein frame (i.e.,
p*(* =constant) and is related to the energy dengity the Jordan frame via the relation
pt = 2 p [47].

We consider a configuration in which the spherically symmdiody has a constant
energy density* = p* inside the body{ < /, = e~9¢/,). The energy density outside the
body ¢ > ,) is given byp* = p%, which is much smaller thap,. The mass of this body is
then given by
Anlipa Aml3 ¥,

*

M, =
3 3

(4.26)

Let us denote the field value at the minimum of the effectiieptial U.¢ (), corresponding
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to the density?, (p3), by v = w4 (p = ). Thatis, they are defined by

o(pa) + Q%4 ph =0, (4.27)

U
Uy(p B) + Qe“Ept = 0.

Under the condition?, > p3; the mass squared? = U/, (¢.4) is much larger tham?, =
"
eff(goB)'

Imposing appropriate boundary conditions/at: 0 and/ = 7, (see Appendix A.2 for
more details), the solution to Eq. (4.24) in the regian ¢, can be approximated by [47; 119]

7 Qeﬂ M*eimB (=t)

0) ~ — _ 4.28
where
Al Al pp—pa Gy M,
of = 3Q—=, —— ~ and ¢, = ——. 4.29
Qe = 3Q) 7 7 60%. 7 (4.29)

Athin-shell is developed under the conditid, /¢, < 1. In this case the effective coupling
|Qeq| becomes much smaller than unity so that the models can bestemtsvith LGC, even
if |Q| itself is of the order unity.

2. Constraints from solar system tests

The presence of the fifth-force interaction, mediated byfigld ¢, leads to a modification
to the spherically symmetric metric. Under the weak-fielgpragimation, the spherically
symmetric metric in the Jordan frame is given by [123; 124]

eff eff
ds? = — (1 — QGKM ) de® + (1 + WTM) de? + 2(d6? + sin? 6dp?) , (4.30)

where the effective gravitational couplings, and the Eddington parameter, are given
by

G~ Gy

1 ?Qeﬁe—mw—m] (4.31)

and

14+ (V6Qer/3)(1 + mpl)e ms(=4)
1— (V6Qeg /3)emB(E=10) ’

(4.32)

Note that in writing these expressions we have used the ajppation ~ ¢ that is valid in
the regionQy| < 1.
Provided that the conditiompg¢ < 1 holds in the environment where local gravity
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experiments are carried out, we have

~ 1+\/6Qeﬁ/3

e vy (4.33)

Hence, if|Q.q| is much smaller than unity through the chameleon mechariisspossible
to satisfy the severest solar system constraint presentédy.i (1.1). Using the thin-shell
parameter, this bound translates into

Al 4T x10°°
ls Q

If the body does not have a thin-shell f6p| of the order of unity, the condition (1.1) is not
satisfied.

(4.34)

3. Models that satisfy LGC

Models that satisfy the thin-shell condition have receh#en proposed by (i) Hu & Sawicki
[117], and (ii) Starobinsky [116]:

(R/R.)™
(R/R)? + 1’

R\ "
1= (145

wheren, A and R, are positive constants. In both models the cosmologicasteon dis-
appears in a flat spacetime, i.¢(R = 0) = 0. Note thatR. is roughly of the order of
the present cosmological Ricci scal&y, for n = O(1) andX = O(1). In high curvature
regimes,R > R,., these models behave as

R 2n
1 — (_C)
R

(i) f(R)=R-AR, (4.35)

(i) f(R) =R —AR. : (4.36)

F(R) ~ R — AR, , (4.37)

with
m o~ C(—r — 1)+ (4.38)

where(' is a positive constant, and andr are defined in Egs. (4.6) and (4.7), respectively.
Thus, they are very close to theCDM model with suppressed valuesf during matter
and radiation eras-(~ —1).

In the regimesk >> R, one can show that the teripg — 4| in EQ. (4.29) is of the order
of m(Rp) for n = O(1), whereRj is the Ricci scalar in the neighbourhoodof (which
is generally much larger thaR,. in an environment where local tests of gravity are carried
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out). Hence the thin-shell is developed under the condition
m(Rp) < D, . (4.39)

This can be regarded as a criterion for the compatibilitymatcal gravity constraints. In the
case of the Earth, the condition (4.39) correspondsa(&z) < @, ~ 107, Sinced, < 1

in most local gravity experiments, the parameters constrained to be much smaller than
unity in the region where the Ricci scal®&g is much larger than its present cosmological
value Ry ~ R.).

Cosmologically the condition (4.39) implies that viabledets need to be very close to
the ACDM model during the radiation and matter dominated epoéhs{ R,). However,
deviations from the\CDM model are allowed at around the present, acceleratechgpo~
Ry). Thus, for viable models, the parameteris negligibly small during the radiation and
matter eras, but continues to grow up to the present epoch.

For theories of the type (4.37) the corresponding Brang®ield ¢ = F(R), the po-
tential V' (¢) [defined in Eq. (2.63)] and the mass squared are given by

¢ ~1-2n\R,/R)*, (4.40)
V(¢) ~ AR, |1 — (2n+1) <12;A¢) —+] , (4.41)
R 1 2n+2
2~ "¢ 2n+1 — T 2n+1
M? =~ - @n ) (2n)\) 251 (1 — ¢) : (4.42)

which in the limit 2 — oo become:¢ — 1, V(¢) — AR. and M> — oo, respectively.
In these regimes the field is fixed around= 1 due to the presence ofiadependent term.
WhenR decreases to the order 8f, the field begins to evolve along the potentidly) with
a lighter mass\/ which is not very much different fronk.. Therefore, in the Brans-Dicke
description, the departure from the pomt= 1 amounts to a deviation from theCDM
model.

The models (4.35) and (4.36) are constructed to satisfytdimlisy conditions

fyR>0, f,RR>07 for R> Ry (> 0), (443)

where R, is the value of the curvature scalar at the late-time dexSoint. The first con-
dition is required to avoid repulsive gravity, whereas tleead ensures the absence of
tachyons or ghosts. The second condition is also require@ddosistency with LGC (as
discussed above) as well as to ensure the stability of depeiturbations [39] (as we shall
see below). We also note that the requirements (4.39) aA8)(dre entirely consistent with
the conditiond < m(R) < 1 derived in Ref. [43] which is necessary for the existence of a
standard matter era.
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To summarise, the conditions (4.39) and (4.43), togeth#r thie existence of the de-
Sitter point (4.15), are required for the viability ¢gf ?) models in the metric formalism.
The condition for the existence of the saddle matter eragivé=q. (4.14) is automatically
satisfied under the requirements (4.39) and (4.43).
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4.2 LGC and cosmological viability in the Palatini formal-
Ism

Before we consider the local gravity constraints, we revibe background dynamics of
Palatinif(R) gravity.

4.2.1 Background cosmological dynamics

The background cosmological evolution &fR) theories in the Palatini formalism has been
studied in Ref. [10]. By introducing dimensionless varesylthe cosmological equations
(2.90), (2.105) and (2.108) were written as a plane autonsnsgstem. It was shown that
equilibrium points corresponding to radiatioR,§, matter (°,,) and de-Sitter £,,) epochs
exist irrespective of the form of(R), provided that the function

(FR—2f)FrR

OB = S R P(Fak - F)

(4.44)

is well-behaved (i.e., it does not show discontinuous oedjent behaviour). Note that effec-
tive equations of state corresponding to poifts P,, and P,;, are given byw.g = %, 0,—1,
respectively. It can be seen from Eq. (2.107) that the deSwoint, P,,, corresponds to
FR—2f =0, inwhich cas&’(R) = 0. Furthermore, this implies that the de-Sitter solution
exists on the line = —2, which is the same as in the case of the metric approach.

The stability of the equilibrium point®,, P,, and P,;, was also studied in Ref. [10] by
obtaining the eigenvalues of the Jacobian matrix for pbdtions around each point. The
eigenvalues of the poii;; are(A\, \2) = (=3 —C(R), —4— C(R)), which implies that the
de-Sitter point on the line = —2 is always a stable attractor. This situation is differeatdr
the metric case in which the stability of the de-Sitter poequires the additional condition
0 < m(r = —2) < 1. The stability of the radiation and matter points, on theeotfand,
depends upon the particulAf?) models chosen. The eigenvalues corresponding to the point
P, are: (A1, \2) = (4 + C(R), 1) and those corresponding to the poit are: (A, Ay) =
(3 + C(R),—1). Consequently, the models with( R) > —3 give rise to an unstable node
for P. and a saddle point faP,,. Hence, models satisfying the conditi6iiR) > —3 lead
to a sequence of radiation, matter and de-Sitter epochs.

As an example, let us consider the following model [37; 126]

2(n+1)

R*

W

f(R)=R— (4.45)

wherey andn are constants. In this case one B4$R) = 3n in the regimeR™+! > 2" +1),
which means that a successful background trajectory issezhforn > —1. Note that a
stable de-Sitter solution exists witR;™ = (2 + n)p?™*) and C(R) = 0. Obviously
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the constraints for a successful trajectory, at least ab#dokground level, are not so severe
compared to the metric formalism. Indeed, one does not exgmne the conditiomn > 0
for the existence of a viable matter era.

4.2.2 Local gravity constraints

The usual determination of the interaction range in termghefinverse mass)/ !, can
not be applied to the casesp = —%. In order to study the LGC, therefore, one needs
to proceed in a different way [118]. From the trace equat@®2) we note that the field
¢ = F(R) depends on the value of the tra€ei.e.,¢ = ¢(7'). We will therefore expand
the field around the vacuumy(7T") = ¢o + (Orpo)T + -- -, whereg, = ¢(T" = 0) and

T ~ —p[l — O (v?/c?)]. (Note that we use the non-relativistic approximation hemeler
which the velocity,v, of matter is much smaller than the speed of light Carrying out a
post-Newtonian expansion around the Minkowski vacuypm & 7, + h,.) in the solar
system then implies that the solutions for the second-qudgurbation equations are given
by [118]

2GENM,  V, &

R~ ZINTO 70 g2y e ( ) 4.46
00 E 6¢0 ¢0 ( )
@ [0 Me | Vo (O 4.47

;" ~ [ 7 6¢o£ og ¢o dij (4.47)

wherel;, = V(¢o). The effective gravitational coupling and the post-Nevidor{Eddington)
parameter are

G My Mo — My,
G — (1 N _) _ Mo , 4.48
o\ T0) T (4.49)
where M., and M, are given by
Mo = [@rp 0D, My = [ (E - K) , (4.49)
¢ o ¢

andp is the energy density of the Sun.
To ensure compatibility with LGC, three conditions must bessied [118]:

(i) |My| <M,
(i) [Vol?/¢ol <1,
(iii) the contribution of the terrtvg (¢/¢¢) must be negligible.

The first condition arises from the experimental requiremer: 1. Since it is not easy
to interpret this requirement directly, we shall elucidttis by considering a specifit( R)
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model later. Concerning condition (ii), settiig= 0 in Eq. (2.20) and using (4.16) to obtain
Vo = f(Ry) translates this condition into

When the deviation from thaCDM model is small, the tern% is of the order of
1t

?@ P <. (4.50)

Ry)

S
R

the present cosmological Ricci scalds ~ HZ. Hence, on scales of the solar system this
condition is well satisfied.

Regarding condition (iii), the presence of the telig (¢/¢o) in EQs. (4.46) and (4.47)
leads to an additional acceleration of particles that shdel small in order to be consis-
tent with experiments. From the validity of the classicaldequation, the condition (iii)
translates to [118]

ps0¢ /0T
¢

wherep; is the energy density of the local structure. This implies the field»(7"), should
not have a strong dependence’®nUsing the relation§” = 2V — ¢V, andoV 4, — V4 =
fr/frr — R, this condition translates to

pS/f,RS
fr./ [ Rors — Rs

where R, is the Ricci scalar corresponding to the local structures #ometimes useful to
rewrite this condition in terms of the variabte defined in (4.6) thus:

‘m&%) - 1‘ > f%% (4.53)
When|m(R;)| < 1, this is well satisfied since bothg, andp,/ R are of the order of unity.
Note that this constraint is not so restrictive comparedh metric formalism. This can
be understood by recalling that in the Palatini case the fgelibn-dynamical without an
interaction range. In the metric formalism one needs a lacggaron mass\/, to satisfy the
thin-shell condition, which leads to a very small valuenofR,) satisfying Eq. (4.39). We
also note that in the Palatini case the conditfgf, > 0 is not required in order to satisfy
LGC.

As a concrete example, let us apply the above constraintsetéheories given by Eqg.
(4.45) withn > —1. In order to give rise to a late-time acceleratipnneeds to be of the
order of the present Hubble radiu%,. The field, ¢, and the potential}/(¢), defined in

‘ <1, (4.51)

<1, (4.52)
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Eqg. (4.16) are in this case given by

2

n+1
6=1+n (%) , (4.54)

2\ " —1 n+1)
V(g) = (n+ 1)u? (%) = (n+ 1)’ (d)n ) . (4.55)
Now in the de-Sitter case [vacuum & 0)], the solutionR, satisfies

F(Ro)Ry — 2f(Ro) =0, (4.56)

which for the model (4.45) gives

Ro = (n+2)@m 2, (4.57)
and
2(n+1) n+1 9
— S ———_ 4.58
®o o Vo 1 2) gl (4.58)

In settings where local gravity experiments are carried the parameter = TN po is
much smaller than unity. For example, if we take the meanideps = 10~} g/cm3 and
use the typical valueg® ~ HZ ~ py = 1072 g/lcm? and R, ~ p, thene is of the order of
10718,

Whenn > 0, then in the limite — 0, we havep — 1 andV(¢) — 0. Thus, in the
expression foM/y, given in Eq. (4.49) the ternﬁ dominates over the terﬁé. This implies
that

My =~ /d3xV0 ~ /d‘q’ycu2 and Mg =~ /d3:1:p5. (4.59)

Moreover, since:? ~ py < ps, the condition (i) is easily satisfied.
When—1 < n < 0, one hasp — 1 in the limite — 0 and the potentiall’, becomes of
the orderV ~ p(u?/R)"™ > Vi ~ p?. This gives

Myl ~ [ Eat/Ry =~ [ Pl (4.60)

where M, is the same as that in Eq. (4.59). The ratio of the integranmdise expressions
for My and M, can be estimated to kg, /ps)" ™! < 1, which means that the condition
|My| < My is again satisfied.
The parametem in this case is given by
(n+ 1)ne™t!
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Now, sincee is much smaller than 1, we find thiat(R,)| < 1. Hence, theories of the type
(4.45) withn > —1 can satisfy local gravity constraints.

The above discussion shows that it is easier to satisfy tba& lgravity constraints in
the Palatini formalism than in the metric approach. In theeftacase, we also require the
condition f pr > 0 to ensure that the scalaron mass squared is positive. Merethe
requirement of a heavy field-mas¥,, leads to very small values fai(R;), which imposes
the condition that viablg (R) models need to be very close to th€ DM model during the
matter and radiation epochs. We also note that even thoegtotiditionm(R;)| < 1is also
required in the Palatini case, the absolute valuesrgfz,)| do not need to be vanishingly
small. Indeed, even models (4.45) with> 0 can satisfy the correct Newtonian limit,
whereas they are excluded in the metric formalism becdugeis negative in these cases.
Thus, in the Palatini formalism models of the typ@?) = R — g(R) can be consistent with
local gravity tests provided that the contribution of themiey(R) is not significant relative
to the linear term.
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4.3 Density perturbations in the metric formalism

In this section, we discuss the evolution of matter pertiioipa and gravitational potentials
for f(R) theories in the metric formalism. When studying matter ydations it is useful
to work in the comoving gauge. In this gauge, the perturlbagiguations can be written in
a closed form using the dimensionless variables (4.4). @lisvs the exact evolution of
matter perturbations to be determined by solving the pleation equations simultaneously
with the background equations. When studying the graeitai potential, however, it is
more convenient to work in the longitudinal gauge. We theneetconsider the perturbation
equations in these two gauges. We carry out a detailed asédys number off (R) models
that can satisfy both the cosmological and local gravityst@ints and use the evolution of
density perturbations to place further constraints on tleeleh parameters as well as their
deviations from the\CDM model.

4.3.1 Comoving gaugey = 0)

Here we derive the evolution equations for matter pertuobatin the comoving gauge &
0). Whenv = 0 we havex = 0 andd? = « from Egs. (2.122) and (2.123). Hence, from
Eq. (2.150) we find that

oW + | 2H + L s = L (Zem2 ¢ i 6F + 3HOF + 36F + 6p,,| ,(4.62)

m 2F ) ™™  2F a? "

whereas from Eq. (2.151), the perturbatiofi satisfies

SF + 3H5F + k—2+ I
a®>  3frr

. 1 ..
—4H? — QH) OF = §5pm + FoW) (4.63)

The evolution of the matter perturbatioﬁé) can then be obtained by solving Egs. (4.62)
and (4.63) numerically.

1. Sub-horizon approximation

For models that satisfy local gravity constraints the masgmeed term defined in Eq. (4.17)
is well approximated by/? ~ % Such a term appears on the left-hand side of Eq. (4.63).
Now, we are mainly interested in the evolution of perturbiasi on sub-horizon scales, i.e.,

2

k .
= > {H? |H|}. (4.64)

We also recall that for the models satisfying LGC, the massmsgfl of the scalar field is
much larger thar? ~ H? ~ |H|. Hence, either the termls or 72 (or both) are dominant
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in the parenthesis on the left-hand side of Eq. (4.63). Ldirsisconsider the case in which
the time-derivative terms i/ are neglected, i.e.,

k2 ) ..
{¥|5F|,M2\6F\} > {|HSF|,|6F|} . (4.65)

The condition (4.65) amounts to neglecting the tédhthat leads to the oscillations 6#.
This is the approximation used to study scalar-tensor nsadeRefs. [9; 81; 127]. Later we
explore the validity of such an approximation, paying gautar attention to the conditions
that should be satisfied.

Under the conditions (4.64) and (4.65), Eq. (4.63) gives

 10pn +3F53)

S et (4.66)

_ K frr K

= = ——m. 4.67
a® fr 2R (4.67)

Using the approximation (4.65) in Eq. (4.62), we obtain
oW + | 2H + S 6 — AxGeosmep, ) ~ () (4.68)
m 1 + 36 2F m eff m=m ’

where the “cosmological” effective gravitational cougiis given by

Gy [(1+4¢
CcOosSmo — 4

and we have restored the bare gravitational congtant
Introducing a physical wavelength= ¢, the parametef defined in Eq. (4.67) can be
written as

1frr 1 1
_ 2 ~ — 470
where in the last approximate equality we have used the ajpate relation)/? ~ 3;’11;.

In the regimeg < 1, i.e., (M1)? > 1, Eq. (4.69) giveg7°¢™° ~ G /F. In this case
m < 1 for sub-horizon modest(> aH). Thus, the deviation from thACDM model is
small, i.e.,|F/HF\ < 1inEg. (4.68). Consequently, the evolution of matter péxations is
similar to that of the standard GR case. We reiterate that@eneral Relativistic behaviour
can be realised even fafzp = 0 because of the presence of a potential with a heavy scalar-
field mass (/2 > k*/a?).

In the regimest > 1, i.e., (MI)? < 1, Eq. (4.69) giveg7¢¥™° ~ 4Gy /3F. Thus,
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the evolution of matter perturbations is different fromttbAGR because of the appearance
of the 3 factor. If the mass of the Brans-Dicke scalar field is lighf{ < k?/a?), the
cosmological effective gravitational constant in Branske theory is given by [127]

. Gy (4 + 2wsp
como o, TN (2T VD ) 4.71
off ¢ <3 + 2wBD) ( )

Thus, in the regim& > 1, the f(R) theories in the metric formalism behave like Brans-
Dicke theories (withugp = 0), with a light scalar-field mass\W{? < k?/a?).

4.3.2 Longitudinal gauge § = 0)

We shall also derive the approximate equations in the lodgial gauge Y = 0) for sub-
horizon modes satisfying Eq. (4.64). We use the notaticn ¢ andyp = —W, which then
gives the relation? = ® + §F/F from Eq. (2.149). In addition to Eq. (4.65), we impose the
following conditions

IX| < |HX|, where X =F F &V, (4.72)
and
{Stol Sw. Sior1y > (1) 1), w1} 473

If the deviation from theACDM model is not significant, the conditions (4.72) are well
satisfied. The conditions (4.73) are also satisfied for suizbn modes given in Eq. (4.64)
provided thatb, ¥ and B are of the same order.

Under these approximations we obtain, from Egs. (2.131)4@), (2.150) and (2.151),
the following relations

50 + 205 + Lo 0, (4.74)
o (125
o (25
5F:%f (14335) 5 (4.77)

Eq. (2.148) suggests that the teims of the order of H®/p,, provided that the devia-
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tion from the ACDM model is not significant. Using Eq. (4.75) we find that tlagia
3Hv/(6pm/pm) is of the order of 2 which is much smaller than unity for sub-horizon
modes. This giveé,(ff) >~ 0pm/pm in EQ. (2.138). Now using Egs. (4.74) and (4.75), the

matter perturbation in the longitudinal gauge satisfiedoliewing approximate equation:

. : 1+ 4¢
() 4 9§00 _ Pm 00 ~ (. 4.7
00 + 2[00 2F(1+3g)5m 0 (4.78)

Compared to the comoving gauge the difference appears otiheifriction term. Since
viable f(R) models satisfy the conditiod”/H F| < 1, Eq. (4.68) reduces to Eq. (4.78). It
is trivial to check that in the uniform density gauge(, = 0) the perturbatiorzﬁfﬁ) satisfies
the same approximate equation as Eq. (4.78).

Before ending this subsection, we shall introduce a numbeseful parameters. One
such parameter is the effective gravitational potential

Do = ( + 1)/2, (4.79)

which characterises the deviation of light rays. This igdily linked to the Integrated Sachs-
Wolfe (ISW) effect in the CMB [39; 40] and weak lensing of @dist galaxies [128; 127].
From Eqgs. (4.75) and (4.76) we can approximate this pararbgte

2
a~ Pm
Do ~ _Q—M%@g) . (4.80)

A further parameter is the so-called anisotropic parameter

-V 2
U 14267

7 (4.81)

which behaves ag — 1 for £ > 1 andn — 2¢ for £ < 1. We also define the quantity
Y=q(1+n/2), (4.82)

whereq is defined viak?/a?)¥ = —(1/2)qpm5,(7§). Using the above expressionscan be
approximated by

S~ 1/F. (4.83)

Note thatX: is directly linked with®.¢. The parameterg:, n) will be especially important
in future surveys of weak lensing [128; 127].
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4.3.3 The appearance of scalarons

Among the approximations we have used in the previous twaestitons, the conditions
(4.43) and (4.65) can be violated if an oscillating modelggom) dominates over the matter
induced mode discussed above. Let us clarify when the as8oidj mode becomes important
for viable f(R) models satisfying the conditions < 1 and|F/HF| < 1. For the sub-
horizon modes, Eq. (4.63) is approximately given by

. . 2
OF +3HSF + (% 1 MQ) OF ~ %§pm . (4.84)

The solution of this equation is the sum of the matter indunedes F;, 4 and the oscillatory
scalaron modeéF,,. satisfying

2

0F o +3HOF,.. + <? + MQ) 0F,..=0. (4.85)

Under the conditiof M2, k*/a®} > H? this equation reduces to the form

(a*20 Fose) + w?(a*?0 Foge) = 0, (4.86)

wherew = /k?/a? + M?2. In the adiabatic regime characterised|byw?| < 1 we obtain
the following WKB solution

c 1
0F e >~ — cos wdt | 4.87
a2 V2w </ ) ( )
wherec is a constant. Hence, the solution of the perturbadiBns expressed by
1 1 c 1
R~ ——dp, + ————==cos (/wdt) . 4.88
Fal 436" " o3 Fanvio (489

For viablef (R) models, the scale factar, and the background Ricci scal&”, evolve
asa o t?% and R) ~ 4/(3t?) during the matter era. In this case the amplitudé Bf,.
relative toR(®) has a time-dependence

|0 Rosc| M?t
R0 x (/{:2/@2 +M2)1/4‘

(4.89)

Let us consider the models(r) = C(—r — 1)? (p > 0) for which the mass), evolves
asM o t~®*+Y during the matter-dominated epoch. When« 1 and¢ > 1 we have
|6 Rose|/R©) oc t=Cr+D/2 and |§ Ryee| /R oc t72+1/3) | respectively. Hence the amplitude
of the oscillating mode decreases faster than the backdrBicti scalar. This implies that
if the scalaron is over-produced in the early Universe sinat [pR| > R, the stability
condition (4.43) can be violated. This property persisthmradiation-dominated epoch as
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well [116]. Thus, in order to ensure the viability ¢f R) theories of gravity in the metric

formalism, we need to ensure thafz| is smaller than?(®) at the beginning of the radiation
era. This can be achieved by choosing the constamtEq. (4.87) to be sufficiently small

which amounts to a fine tuning for these theories. We notetthatfine tuning concerns

the stability of these theories and is an additional congtta those usually imposed on the
parameters of these theories by observations.

Under the condition that the scalaron matl,.. is negligible relative to the matter-
induced mode R;,,q, one can derive the evolution for the matter perturbatigras well as
the effective gravitational potentidl.s. When¢ < 1 the evolutions of,, and®.¢ during
the matter era are given by

O, X $2/3 ,  ®.g = constant . (4.90)

Note that the ratio of the matter induced mode relative tdtekground Ricci scalar evolves
as |6 Rina| /R® o t?/% « 6,,. For the models that satisfy cosmological and local gravity
constraints, the Universe typically starts from the reggme 1 and evolves into the regime

¢ > 1 during the matter-dominated epoch [116; 129]. Whep 1, §,, and®.4 evolve as

H(V33-1)/6

Sy OC g oc tV33D)/6 (4.91)

For the modelsu(r) = C'(—r—1)?, we have the time-dependené&,,q| /R o t~2+(V33-5)/6
in the regime¢ > 1. This decreases more slowly relative to the rgti®...|/R®
t=2(+1/3) 50 the scalaron mode tends to become unimportant with time.

4.3.4 Numerical study of the validity of approximations

In this subsection we numerically solve the exact pertuobaquations in order to check the
validity of the approximations used to reach Eqs. (4.68),&%and (4.80). We choose initial
conditions such that the scalaron mode is suppressed/estatine matter induced mode, i.e.
0R!..| < [0R! 4. (See Ref. [129] for a comprehensive and detailed study®ttalaron
mode. This study also gives the conditions under which théson mode dominates over
the matter induced mode at the initial stages.)

1. Comoving gauge

To study the dynamics of matter perturbations in the metrigelism, we use the dimension-
less variables defined in Eq. (4.4). In terms of theses Vimsakthe perturbation Egs. (4.62)
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and (4.63), in the comoving gauge, become

" 1 4 3 1 n
5" + (1'3 - 5551) 6 — S(1— 2y — a2 — 13)0%) = = [36F" +

2 T2

. L2 .
Ty
- - k2 2 -
5F” + (1—2$1+!E3)5F’+ |:—2—ZL’3+£+1—$1+3$2:| OoF =
Xy m
(1 — 1 — X9 — ZE3)(57(71}) — 1'157(7:)/ s (493)

wheredF = dF/F and a prime denotes a derivative with respect to the numbefalings
N = In(a). The exact evolution of the matter perturbations can beioéthby solving
these equations together with the background equatioB8%-(4.11) forxy, xs, v3 andzy.
Meanwhile, the approximate equation (4.68) can be exptddsserms of these variables as

(v)" T sy 3 LHAEN <)
where
K m
- - 4.
¢ (aH)? 623 (4.95)

Let us consider the case in which the conditidi > k?/a? (i.e.,& < 1) is satisfied. Since
M needs to be large during the matter-dominated epoch tdysh@C, this condition holds
in viable f(R) models at the beginning of the matter era for the modes reteealarge
scale structure [116; 129]. Consequently the tenrsy/m dominates over the teri¥ /x5 in
Eq. (4.93), which givesF ~ ms under the neglect of scalarons. Hence, the right-hand
side of Eq. (4.92) can be neglected relative to the left-lsae, which means that Eq. (4.92)
reduces to Eq. (4.94). The above argument shows that, iethmes < 1, Eq. (4.94) can be
valid even for super-Hubble modes as long as the contribatiche scalaron is unimportant.
In this regime the matter perturbations evolve as in the ocastandard GR, et oc 123,
The perturbations can enter the regim& < k%/a? (i.e., ¢ > 1) before reaching
the present epoch, depending on the mbdend on the evolution of\/ [116; 129]. For
example, for the modeh(r) = (—r — 1)? this occurs for the modéds/aoH, > 3.5, where a
subscrip®) represents present values. In the dase [, = 300, the redshift { = % — 1) at
k/a = M corresponds ta; = 4.83. SinceM? is always larger thari/? in the past because
of the requirementn < 1, the modes are inside the Hubble radi&s/¢>H? > 1) after
the perturbations enter the regimé® < k?/a*. Hence the approximation we used to reach
Eq. (4.94) is valid in this regime. In the regimé&* < k?/a? the term(k? /22)d F in Eq. (4.93)
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balances the terrfl — z; — x5 — xg)é,(fj), which gives rise to an additional contribution on
the right-hand side of Eq. (4.92). This then leads to the @pprate equation (4.94) with
¢ > 1, which has a growing-mode solutiap, o ¢(V33-1/6,
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Figure 4.1: The evolution of the matter perturbatﬁéﬁ in the comoving gauge for the model
m(r) = (—r—1)3 with the modek /aoH, = 10. Initial conditions were chosen to bg = 0,

2y = —0.5000, 25 = 0.5001, 5% = 1073, 6" = 1073, §F = 8.0 x 10715, §/” = 0 and
k/a;H; = 4.1 at the redshift: = 28.9. The solid curve is obtained by solving the exact
equations (4.92) and (4.93) numerically, whereas the datte is obtained by solving the
approximate equation (4.94).

In Fig. 4.1 we plot the evolution of”) for the modeln(r) = (—r — 1)3 with the mode
k/aoHo = 10. Initial conditions are chosen so that the scalaron modes doé dominate
over the matter-induced mode. In this case the transitmm the regime\/? > k*/a? to the
regionM? < k?/a? occurs at the redshift, = 1.62. We find that the approximate equation
(4.94) shows an excellent agreement with the results odxdieby numerically solving the ex-
act equations (4.92) and (4.93). The argument also holdséales that are initially outside
the Hubble radius. Thus the approximate equation (4.6&)i@lle in estimating the growth
of matter perturbations and the resulting matter power tspet; provided that the scalaron
does not dominate in the early Universe.
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2. Longitudinal gauge

In the longitudinal gauge the combination of Eqgs. (2.147})%1) leads to the following
perturbation equations

3
CDH + <2 — 5513'1 + xg) CI)/ + (3.1'2 + 3.1'3)(1) = (496)
3 - 1 1
51’25]"_’ — (5.1'3 + 1) (SF/ — §6F”,
~ ~ 4 k? 2 ~
OF" + (x3+2)0F + <——2 + 3x9 + ﬁ) OF = (4.97)
3] m
2 k2 ,
6.1'2—'—25173———2 @—(3[[’14—2)@,
3y
1 2 2\ -
o) = [(2 + 32y — a3 + —2 4 —2) §F (4.98)
1l—2) — a9 — 23 m Ty
+(2 4 21 + 23)0F" + OF" + (11 — 69 — 223)® + (41 + 2)<I>/} :
% = 20/ + (2—2)® + 6F + (1 4+ 21)0F, (4.99)

where we have usedl = & + 5. The effective potential defined in Eq. (4.79) is given by
Dog = P + %515. (4.100)

In order to understand the evolution of perturbations atrili@l stages of the matter era,
let us consider the regimge<< 1 without assuming the sub-horizon conditib(aH) > 1.
We have in mind viablef( R) models with vanishingly small values ef deep inside the
matter epoch. Equation (4.97) then becomes

2
SF ~ —2m {1 v L} O — 2md’. (4.101)

3(aH)?
Note that under the sub-horizon approximation we hékie~ —2mk®/3(aH)?, which
agrees with EqQ. (4.75). Using Eq. (4.101) we find that thetrltggnd side of Eq. (4.96) can
be neglected relative to the left-hand side, thus givingsiblation® = constant (together
with a decaying mode proportionalto®/?). From Egs. (4.79) angt.98) we obtain® g ~ ®
and

500 2K g (4.102)
" 3(aH)2Q,
60" ~ 500 (4.103)

Equation (4.102) agrees with the expression (4.80) obdaimeler the sub-horizon approx-
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imation (/a > H). Since®.; is a constant, the matter perturbation can be seen from
Eq. (4.102) to evolve a8 « a. This is consistent with the approximate equation (4.78),
i.e.,

" / 1 4
80" 4 23000 — 2(1 ) 250 (4.104)

143 ™

which has the growing mode solutiof = 5" o a in the regimes < 1.

One may ask why the above method reproduces the result demaer the sub-horizon
approximation, without employing the approximatiépa > H. In the regime{ < 1
the perturbation F' is suppressed relative ® as given in Eq. (4.101). This allows us to
neglect the right-hand side of Eq. (4.96), giving a consfanThis mimics the situation in
General Relativity wheré F = 0 and® = constant together with Eq. (4.102), resulting
in 5% « a. Moreover, from Eq. (4.99), the quantity = Hv + V¥ is well approximated
by B ~ 5&/3 = constant. Hence the right-hand side of Eq. (2.131) can be neglected
even without assuming the sub-horizon approximation. Tluséng the relation (4.102)
we can obtain Eq. (4.78) in the regije< 1 without assumingd:/a > H. The above
approximation corresponds to the limit of largé (M? > k?/a?), which gives rise to
the evolution of perturbations that is similar to the cas&seheral Relativity. In General
Relativity 0/ = 0 and /' = 0), one has the exact equation (4.102) from Egs. (2.147)
and (2.148). Thus the perturbations in the lafgecase { < 1) mimic those in General
Relativity, apart from the fact that the scalaron is pregeftie former but not in the latter.

When¢ > 1 one hask?/a® > M? > H?, which means that the sub-horizon type
approximation we used in Sec. 4.3.2 holds in this regimes $hiuation is similar to the case
of the comoving gauge. For the modes that start from the regifh > k2 /a? and enter the
regimeM? < k?/a* before the end of the matter era, the evolution of pertuoinatchanges
from the standard general relativistic form (4.90) to the+standard form (4.91).

In Fig. 4.2 we plot the evolution af,’ and®.g in the modeln(r) = (—r — 1)3 for the
modek = agH, that lies outside the Hubble radius at the start of integraft = 28.9).
Together with numerically integrating Egs. (4.96)-(4.98) also solve the approximate
equation (4.104) withlb.; derived from (4.80). From Fig. 4.2 we find that the approxienat
equations agree well with the exact numerical results, @#re mode is initially slightly
outside the Hubble radius. We note, however, that for l&gm@e modes far outside the
Hubble radius the scalaron can be important. In fact, we naveerically verified that the
oscillating mode appears for such super-Hubble modes sithescoefficient of the scalaron
in Eq. (4.88) is fine-tuned to be small. In Fig. 4.2 the growththe gravitational potential
is not seen in the region < z, since the transition redshift is smal,(= 0.36). It can,
however, be observed if we consider modes on smaller scales.
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2.0 10°
7|5m(x) ¥ (numerical)
----- |6m(X) ¥)(appr0ximat9)
15 10°H ®eq (numerical) ]
—--®_. (approximate)
1.0 10°
5.0 10°
0.0
o 5 10 15 20 25

Figure 4.2: The evolution af Y and®.¢ in the longitudinal gauge for the model(r) =
(—r — 1)% with a modek = agH,. The results were obtained by numerically integrating
Egs. (4.96), (4.97) and (4.98) with initial conditiofisy = 107°, ', = 0 andk/a;H; =
0.36 and withs5 and§{’ satisfying Egs. (4.102) and (4.103). Initial conditions floe
background quantities were chosen to be the same as in Eig\WWe also plotiﬁif) and® g
obtained by solving the approximate equations (4.104) dr8Dj. The approximation is
valid even when the mode is initially outside the Hubble uadi

In summary, for viablef (R) models that satisfy the cosmological and local gravity con-
straints, the approximate Egs. (4.104) and (4.80) are eaieh for those modes outside the
Hubble radius, as long as the scalaron is suppressed eetatthe matter-induced mode.

4.3.5 Constraints on the modelsn(r) = C(—r — 1)P

We consider the current and future constraints on modelbefypem(r) = C(—r — 1)?
with 0 < C < 1. At the background level, compatibility with the SNIa obssrons could
result in the divergence of the equation of state of darkgnfk22; 129]. Interestingly the
redshift at which such a divergence may occur could be ofrardiy. However, the current
SNla observations are not yet sufficiently accurate to rukesach cases. Some constraints
on the model parameters can be obtained from the preseni@yoéstate of dark energy,
but even models withh = 1.5 andC' = 1 are allowed [129]. Thus, the background does not
provide strong constraints. However, this situation magngfe in the future when higher
redshift data become available from SNIa and Gamma Ray bhs&rvations.

On the other hand, we recall from Sec. 1 that there are a nuofb®nstraints on the
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growth rate of matter perturbations,defined as

_dlnd,

= 4.105
S= (4.105)

(Note that in the standard general relativistic case, whgrex a, the growth rates = 1).
From Eqgs. (4.90) and (4.91) we have- 1 for M? > k?/a® ands = (/33 — 1)/4 = 1.186

for M? < k*/a®. In Fig. 4.3 we plot the evolution of the growth rate for maglel(r) =
(—r —1)3 for a number of different values @f The increase of from unity implies that the
perturbations enter the regindé? < k?/a?. For smaller scale modes this transition occurs
earlier, which leads to a larger maximum valuesof he growth rate begins to decrease once
the Universe enters the late-time accelerated epoch. Amastd analytically, the growth
rate is bounded by < 1.186. Hence the current observational constraint (1.2) is stdl
weak to place constraints en(r) = C'(—r — 1)? models.

(a) k=10 aH,
""""" (b) k=107 aH
— = (o) k=10 aH,
— - (d) k=10* aH,

Figure 4.3: The evolution of the growth rate= ¢/, /4,, with respect to the redshift in

the modeln(r) = (—r — 1) with four different values of.. Initial conditions were chosen
as in Fig. 4.2. The transition redshift, defined as the redshift whekga = M, becomes
larger for smaller scales. After the matter perturbatioteenthe region: < z; the growth
rate begins to increase toward the vatue 1.186, but it starts to decrease once the Universe
enters the stage of accelerated expansion.

However, these models exhibit peculiar features in the engibwer spectrum. This
is a consequence of the fact that there is a transition ritdshat which the growth rate
begins to change from = 1to s = 1.186. For the modes relevant to galaxy clusters
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[k/aoHy = O(10%)], this transition typically occurs during the matter-doraied epoch (see
Fig. 4.3). Since the timg, atz = z, depends upon the modest;, o k—3/(*»+1), this leads
to a change in the slope of the matter power spectrum. Therdifte between the slopes of
the matter power spectrum determined from galaxy survegslae CMB spectrum, on the
scalesk/agHy = O(10%), is given by [116; 129]

V33-5

An ~ .
" 3p+1

(4.106)

This analytic result agrees well with numerical resultseptdor models withpy > 1 [129].
Observationally no significant differences have so far bieemd between the two power
spectra. If we take the boumin < 0.05, we obtain the constraint > 5. To place further
constraints on models, a likelihood analysis is requiredictviemploys the data from both
the galaxy power spectrum and the CMB.

Numerically, we find that the modeta(r) = (—r — 1)° are constrained by a limit on
the present value of the deviation parameter givemlfy = 0) < 10~*. Thus, even though
m IS constrained to be very small during the matter era, a /@tviation from the\CDM
model can occur around the present epoch.

Finally, the ISW effect in the CMB power spectrum is impottéor large scale modes
with k/agHy = O(1). As can be seen from Fig. 4.2, even models with: 3 andC = 1
do not give rise to a significant amplification of the gravagaal potential. The models with
p > 2 are consistent with the low multipoles in the CMB data [1ZBjus, this effect does
not generally provide stronger additional constraints.
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4.4 Density perturbations in the Palatini formalism

Given the non-dynamical nature of Eq. (2.156), it is cleat tihe scalaron mode does not
exist in the Palatini case. This is associated with the faat the Palatini formalism corre-
sponds to a generalised Brans-Dicke theory with = —32. The perturbatiod 7' is directly
determined by the matter perturbatiop,, as

ER 6pm

sp— L2
Fl—m’

(4.107)

wherem is defined in Eq. (4.6).

As in the metric case, we choose to work in different gaug@&dding on convenience.
For the study of matter density perturbations it is convetiie consider the comoving gauge,
where the perturbation equations close. On the other haedongitudinal gauge can be
more useful when discussing gravitational potentials.

4.4.1 Comoving gauge

In the comoving gauges(= 0) one hasy = 0 andx = 5. Then, from Eq. (2.155), we find

. I\ . 1 .
(v) OH + — (v) — I
O +< +2F>5m 57 0pm + 30F +
6F\ _ . . 3F? k2
3H — — | 0F + | 6H* + 6H + — — R+ — | 6F|. (4.108)
F F? a?

As in the metric case this equation needs to be solved sinedizsly with the background
equations (2.105)-(2.107). Unlike the metric case, howatés not easy to find dimen-

sionless variables in terms of which both sets of equatitosec As a result we proceed to
integrate the equations directly. Using the backgroundhggns and ignoring the radiation,
the perturbation equation (4.108) can be written as

P 4+ P54 Py =0, (4.109)

where the coefficient®;, P, P; are given by

P = (1 — —QF) H?, (4.110)
157\ ., 3JY\ 1 6J\ FH

3JHF, 3J Hm

F Fp Fl-m’
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. . F2 2
p = P L <6H2 L6+ Ry k—) (4.112)
F? a?

andJ is defined as

_Fr pm

Fl—m

(4.113)

All the terms in the coefficient®;, P, P; can be expressed in terms of the scale faet(@r
equivalently V), which thus allows Eqg. (4.109) to close and be readily irdeggd numeri-
cally.

On the other hand, since we are mostly interested in the seolef modes on sub-
horizon scales, it makes sense to consider the approximgatgiens similar to those consid-
ered in the metric case.

Using a sub-horizon type approximation, such that only ¢ht@sms containing:*/a?
anddp,, are considered on the right-hand side of Eq. (4.108), tegetith Eq. (4.107), we
obtain the following approximate perturbation equation

. o\ . ¢
() ) s Pm _S ) sw ~
Oy +<2H+2F>5m Ya <1+1_m)6m ~0, (4.114)
where¢ is defined in Eq. (4.67).

Alternatively we may study the case in which the deviatiamfrthe ACDM model is
small, i.e.,

Im| < 1, (4.115)

as required from the local gravity constraint (4.53). Thedgive terms such aBgn’| and
|m”| are also assumed to be much smaller than unity. Using thetfacfrom Eqgs. (2.107)
and (4.107) the perturbatiof#" in this case is of the order ofis', Eq. (4.114) can be
obtained under condition (4.115) without using the subidwor approximation. Thus, if the
deviation from theA\CDM model is small, the approximate equation (4.114) istvalien for
modes outside the Hubble radius. This situation is simidd&né metric case. In fact, we have
confirmed this property by numerically solving the exactatpn (4.108) and comparing it
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with the solutions of the approximate equation (4.114).

One can estimate the order of the teR#F' on the right-hand side of Eq. (2.155) by using
Eqg. (4.107), i.e.ROF = mdp,,/(1 — m). This gives rise to the contribution of the order
of (pm/2F)m5,(ﬁ) in the third term of Eq. (4.114), which is negligible undee ttondition
(4.115). As long as we neglect this contribution, we can epipnatel /(1 — m) ~ £ in the
third term of Eq. (4.114). In the following, we implicitly agme this when we write the term
(1 —m) in the denominator.

In the limit¢ = a’;—QRm < 1, EQ. (4.114) agrees with Eq. (4.68) of the metric formalism.
However, a significant difference appears in the regime 1. In that case there is a strong
amplification of the matter perturbation in the Palatiniedsie of the growth of the terg
in Eq. (4.114).( We recall from Sec. 3 that this property ktalthe discrepancy between the
evolution of matter perturbations that we derived usinglth8S and KKS approaches). We
shall estimate this growth rate for a number of concrete risadeSec. 4.4.3 below.

4.4.2 Longitudinal gauge

We next consider the Longitudinal gauge & 0), and as in the metric case we use the
notationae = ® andy = —W. Under the sub-horizon type approximation used in the
comoving case above, the evolution equation reduces toZetgd)(obtained in the metric
formalism. Using Egs. (2.152) and (2.154), together with @dL07), these approximations
also give

;2 1 ¢ k2 1 ¢

Hence, the matter perturbations satisfy the following agpnate equation

50+ 2By - O (1 + ﬁ) 500 ~ 0. (4.117)

The effective gravitational potentidl.g defined in Eq. (4.79) satisfies

a? P
~ __ _Im 500
Do ~ 552 0 (4.118)
which is the same as in the metric case. Finally, the paraswtnd> defined in Egs. (4.81)
and (4.82) become

2 oL (4.119)

Ul p— F

We note that while the expression fgiis different from that in the metric casg, remains
the same.
The above approximate equations (4.117) and (4.118) ard uater the conditions
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(4.115) andé < 1 even without the sub-horizon approximation. Indeed, thyiauent is
similar to the metric case in which Egs. (4.78) and (4.80)oedto the corresponding GR
equations fot < 1.

We also note that in the reginte > 1 the perturbation modes are inside the Hubble
radius, which shows that the sub-horizon approximatioriisvalid. Thus, as long as the
condition (4.115) is satisfied, we can safely use Eqs. (4.4hd (4.118) even for super-
Hubble modes. Furthermore, since in the Palatini formatisenperturbatiod R is sourced
only by the matter induced mode, we do not need to worry aboeitdominance of the
scalaron oscillations for super-Hubble modes.

In Sec. 3.1 the evolution equation for matter perturbatiéus (3.6), was derived in the
uniform density gauge [68]. This is an exact equation asastiresponding equation in the
comoving gauge. Given that under the approximation (4.1th) term|F'/ HF| is of the
order of|m/|, the coefficientg; andc, given by Egs. (3.7) and (3.8) become:

"2 al k—Q (4.120)

—OH, ey =HY |- Ty T .
“a @ 7 HE ' GHF (aH )

We can estimate the first two terms in the square bracket by employing the following
approximate relations

OFH ~ —p,,, 2FH ~3Hp,,, (4.121)

which follows from Egs. (2.105) and (2.107). Moreover, E21108) implies that

. 3meRH

f=_tfma (4.122)
F — RFp
Using these relations, we find that the matter perturbatisfes the following approximate

equation of motion:

50+ 25 - Pm (1 ; ﬁ) 50 . (4.123)

This is the same as the evolution equation arising in theilodopal gauge, Eq. (4.117).
Since the evolution of matter perturbations do not physicipend on the gauge chosen,
we shall denote the matter perturbation simplyhyin what follows.

4.4.3 Analytic estimate for the growth of perturbations

As was discussed above, the evolution of perturbationsamagimel < 1 is similar to the
standard GR case whefig o t*/3, s = 6/ /6,, = 1 and® = constant. In this subsection,
we shall estimate the growth rate of perturbations afteisgfgtem enters the reginge> 1.
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We shall consider models witln| < 1 to be consistent with the local gravity constraint
(4.53).

During the matter era, in which the Ricci scalar evolvestas ¢~2, the parametef is
given by¢ = +ma/myax, where the subscript” denotes values when the system crosses
¢ = 1. Here we note that the plus sign corresponds to a posiiiaad the negative sign to
a negativen. As we have shown in Sec. 4.2.2, the latter case is allowetthat not so for
the metric formalism. It follows that under the condition| < 1, the matter perturbation
(4.117) satisfies the following equation

1, 3
Ot 50— 5 <1 + ﬁeNNk) 5y = 0. (4.124)
my

We now consider the case in which the evolution of the paramefs given by
m o<t (4.125)

wherep is a constant. Several differefit ?) models are parametrised by specific values of
p in the following way:

(i) f(R)=aR"™™ — A: p=0 (hereA is a constant),

(ii) f(R):R—ARC<R%>ﬁ: p=1-0for R>> R,,

2n

(i) f(R)=R—AR.gued=s: p=2n+1for R>>R,,

(V) f(R)=R— AR, {1— (1+§—§)_n}: p=2n+1 for R> R.,

wheren and\ are positive constants. With the above choiceoEq. (4.124) reduces to

1
5"+ 5(5;1 _ g [1 4 6(3p+1)(N*Nk)} 8, 0. (4.126)

Taking the positive sign in Eq. (4.126), i.e2, > 0, the solution of Eq. (4.126) can be written
in terms of a linear combination of Bessel functiohsandY,:

O = e~ V=N [0 ], (iz) + anY, (iz)] (4.127)

wherea;, a, are constants and

\/6eBPTHIN=N)/2 5

x = , V= .
3p+1 6p + 2

(4.128)

For the negative sign in Eq. (4.126), i.ex,< 0, the solution of Eq. (4.126) is given by

O = e~ V=N [0 ], () 4+ s, (2)] (4.129)
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wherex andv are defined in (4.128).
In the following, we shall discuss both positive and negatiases in turn.

1.m>0

As an example, we consider the constanmodels f = 0). In this case, the Bessel function
J,(iz) has a growing mode solutiofy j;(ix) o< I5/s(x) o< e /y/x for x > 1, wherels »(x)

is a modified Bessel function with = /6eN-"s)/2, Consequently, in the reginge>> 1,
the evolution of the matter perturbation and its growth eategiven by

o 6
5y o exp(VBeNTNO2) g = 6_m _ ge(NNk)/Q’ (4.130)
where we have used6e™ ~Ve)/2 > (N — N,,)/2. Thus, the growth rate of matter perturba-
tions increases very rapidly. Moreover, it follows from E4.118) that in the regimé > 1

the effective gravitational potential grows exponenyialé
D o exp(e‘/E(N_N’“)/Q) , (4.131)

which leads to a strong and observable ISW effect.
Similarly, in models withp # 0, one can estimate the evolution of perturbations in the
regimeé > 1:

(4.132)

3p+1)(N—Ny)/2
5, o Bur o exp <\/66( p+1)(N—Ny)/ ) e @e(3p+1)(N—Nk)/2'

3p+1 2

This shows that for models with > 0 the growth rate increases faster than in the constant
models. Wherp < —1/3 the above instability can be avoided, but in that casmecreases
towards the past. Thus, unless the present value @ negligibly small, the condition
|m| < 1 required by LGC can be violated during the matter era. We leoles therefore,
that these models are indistinguishable frd@DM in the present Universe.

2.m<0

Whenm is negative, the Bessel functions in the regilfies- 1 behave as

Jy(x) ~ \/%cos (:zc - @)
Y, (z) ~ \/%sin <x — @)

and
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respectively. Thus, the solution (4.129) in this asymptoggion becomes
O = Ce CPEIWN=NI/A o5 4 0) (4.133)

whereC' andf are constants. Using this solution, we obtain

1
o~ —7 B3P +2)0m — ?C@‘q’p(NN’“)/‘l sin(x + 6) (4.134)
1 1
s ~ —Z(3p+2) _St xtan(z +0) . (4.135)

Whenp > 0, §,, exhibits damped oscillations where@$,| increases in time with the os-
cillations. The averaged value of the growth rates given bys = —%, but it shows a
divergence every time changes byt.

If the Universe crosses the critical poigt = 1 around the end of the matter era, it does
not necessarily reach the reging > 1. In such cases one can not fully use the above
approximate solutions. We shall confirm later that, in sorages, the Universe can enter
the accelerated stage without oscillationssjn occurring up to the present epéchThe
frequency of oscillations tends to grow for larger valuesofThe models that enter the
regimes|¢| > 1 are generally inconsistent with observations, since tgpically lead to
large negative values afas given by Eq. (4.135).

3. Constraints on|m| from the requirement |£| < 1

The f(R) models can be consistent with observations if the Universesdiot enter the
regime|¢| > 1 until the end of the matter-dominated epoch. One can egithatratio of
the comoving Hubble radius /) ! during the matter era to its present value thus:

1
o (ﬁ) S (142)3, (4.136)
aH aop

wherec = 1 in the absence of the dark energy dominated epoch. The meséra dark
energy era leads to a change in the value. Mumerically this factor is around= 1.7-1.9.
Using the relation? ~ 3H? that holds during the matter era fon| < 1, we find that/¢|
crosses 1 at a critical redshift

B\ 2
ze & |m| <&0Ho) —1. (4.137)

If z. is smaller than order unity, the Universe does not enteregére|¢| > 1 during the
matter dominated epoch. This gives the following constrairbe consistent with observa-

2QOscillations ind,,, typically arise when we we choose larger valuegof andk.



4.4: Density perturbations in the Palatini formalism 97

tions;

im(2)| < (“050) , for z>O(1). (4.138)

The matter power spectrum has been observed over scalesriegime).02h Mpc ™ <
k < 0.2hMpc~'. Non-linear effects can be important for smaller scale& wit- 0.2k Mpc™
[130]. Taking the valué = 0.2h Mpc ™' ~ 600ayH,, below which linear perturbation the-
ory is valid, we obtain the constraipt:(z)| < 3 x 107¢ during the matter era.

Of course this is a rough estimate and the actual constramts(z) depend upon the
particular models considered. For example, eveg|itrosses 1 during the matter era, the
models can be consistent with observations provided|thatoes not grow rapidly after it
exceeds unity. Whether or noteaches the regimeé| > 1 depends on the particular models
chosen. In order to place constraints.antherefore, we need a detailed analysis for each
particular model. In the next subsection, we shall provideumerical investigation of a
number off(R) models presented above and place constraints on the prxedees ofmm as

well as the model parameters.

1

4.4.4 Constraints on model parameters

In this subsection we shall employ the information providgdthe growth of matter den-
sity perturbations to place constraints on the parametetseof (R) models presented in
Sec. 4.4.3 above. This is done by numerically solving theteaaolution equation for the
perturbations, Eq. (4.109), together with the backgrouwabéons (2.105) and (2.107). We
refer the reader to Appendix A.3 for equations written in arfonore convenient for numer-
ical integration.

1. Constantm models: f(R) = aR™™ — A

Compared to other models considered here, the growt| @ rather mild in the constant
m models, being of the fornt| oc a = V. Thus, in order for¢| to grow from0.1 to 10,
one would require an increase in the number of e-foldings.by 4

We shall first consider the positive case. In the left panel of Fig. 4.4 we plot the
evolution of the growth rates, for the modek = 600ay,H, for several values ofn. For
m = 3 x 107° we numerically obtairt, ~ 11, denoted by a black dot in Fig. 4.4. This
almost agrees with the analytical estimate (4.137) whigbsyi. ~ 10. In the regime& < 1
the evolution of matter perturbations is given&y = 4/ o a, which results ins ~ 1. The
growth rate begins to move away from unityélsecomes of order 0.1, and then continues to
grow before the Universe enters the stage of accelerateshsign. For this model we find
Smax ~ 2.06 and&,,.. ~ 3.13, which shows that the model does not enter the redinze 1
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where the evolution of perturbations is described by Eq4.3@) and (4.131).

For a model withm = 1.5 x 1072, the critical redshift occurs at around ~ 5 with
s ~ 1.4. The maximum value of the growth rateds.. ~ 1.57, which corresponds to the
marginal case satisfying the observational criterion)(1F2r a model withn = 2.0 x 1075,
the evolution of perturbations is not much different froma tieneral relativistic case.
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Figure 4.4: The evolution of perturbations for the modglR) = aR'*™ — A with positive
values ofm. In the left panel we show the growth rate= ¢/ /4,,, versus the redshift;,
for the modek/aqHy = 600 with three different values aofi. The black dots represent the
points at whicht crosses 1. The right panel depicts the evolution @dr m = 1.5 x 107°
with three different values of.

To show the variation of the growth rate as a function of scade depict in the right
panel of Fig. 4.4 the evolution offor the modelm = 1.5 x 107 for three different values
of k. As can be seen, the maximum value of the growth sadecreases asis decreased
(i.e. the scales become larger). In particular, for the miode 100a,H, (corresponding to
k = 0.033h Mpc1), the evolution of perturbations exhibits no differencengared to the
corresponding evolution in the general relativistic caddence the matter power spectrum is
enhanced on small scalds-€ 0.14-0.2h Mpc™1), while the spectrum remains similar to the
standard general relativistic case on larger scdles (.02h-0.04h Mpc~!). This results in
different spectral indices on different scales. Placingemmecise constraints an would
require performing a likelihood analysis using the datarfrthe matter power spectrum.
However, in order to obtain an order of magnitude estimatehfe maximum value ofn, it
is sufficient to use the criterion (1.2) for the mokle= 600a,H,. For the constant: models
we find the constraint to be < 10°.
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Whenm is negative, the growth ratedecreases unlike the positive case. In the left
panel of Fig. 4.5 we plot the evolution effor three different negative values of for the
modek/ayHy = 600. As can be seentends to decrease more rapidly with increasimg.

If m = —2.0 x 107°, the present value of becomes very smalk(< —1). As we see in
the right panel of Fig. 4.5, whem = —2.0 x 1075, there is a significant fall in the values
of s betweenk/ayH, = 300 andk/agH, = 600. This can lead to large differences in the
spectral indices of the matter power spectrum for small @ngel scale modes. From the
above argumenitn| should be smaller than the order i, which has an upper bound
similar to the positiven case.

Whenm = —2.0 x 10~° the Universe crosses the poiat = 1 at the redshift,. ~ 7.4,
but the increase df| for z < z. is mild. Moreover, the quantitt| begins to decrease after
the Universe enters the accelerated stage. Numericallybtsothe valug ~ —0.77 at
present £ = 0). Thus the system does not reach the regighe> 1, and hence not a single
period of oscillation occurs by the present epoch. Howdwetarger values ofm/|, we have
numerically checked that the oscillationséf indeed occur.
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Figure 4.5: The evolution of perturbations for the modg&lRR) = aR'™™ — A for negative
m. In the left panel we show the growth rate= ¢/ /4, versus the redshift for the mode
k/aoHy = 600 with three different values of.. The black dots represent the points at which
the quantity|¢| crosses 1. The right panel depicts the evolution tdr m = —2.0 x 107°
with three different values of.

We also recall that growth of the effective gravitationatgrdial .4 leads to an ISW
effect in the CMB spectrum on large scalégd,H, ~a few). However, whefin| ~ 1077,
®.4 does not grow for these modes. As a result the ISW effect doeprovide stronger
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constraints omn than those provided by the matter power spectrum.

2. f(R) = R — AR.(R/R.)"

The observational constraints on the parameters of thiseinedre studied in Ref. [79].
(Note thatR. is not very much different from the present value of the cosmical Ricci
scalarR,.) Here, we shall obtain constraints on the parametewhich for this model is
given by

m = )‘6(1 - ﬁ)(R/Rc)ﬁ_l
1= A3(R/R:)P-

(4.139)

and make a comparison between our results. The late-tinfittg-point @ = R;) IS
obtained from the constraint equatiéiz — 2f = 0, to give(R; /R.)'~? = A\(2 — 3). Thus
at this de-Sitter point the variable satisfies

m(Ry) = [(3/2. (4.140)
For 5 < 1, the parametem in the regimeR > R, is given by
m ~ A\3(1 — B)(R/R.)*~* o t*1=5) | (4.141)

which decreases towards the past.

If 5 (< 1) is of order unity, the quantity. is too large to satisfy the requirement (4.138)
for the modek = 600aoH, during the matter era. (Recall that from Eq. (4.140) the gmes
value ofm is of the order of3). This is basically associated with the fact that, in themeg
R > R, the model gives a linear relation betweerandr [m = C(—r—1)]. Consequently
we need the conditioff| < 1 in order to be compatible with the criterion (4.138).

To determine the changes in the behaviour of this model asci@un of 3, we considered
three distinct values of and calculated the corresponding growth rai@gnd the parameter
m in each case. Our results are summarised in Fig. 4.6. Thddeid panel shows the
evolution of the growth rate fok = 1 andk = 600aqH, with the three different values of
B. For3 = 1.5 x 10~ the present value of the parameteiis aroundm(z,) ~ 6.7 x 1072,
which is close to the value of: at the de-Sitter point¢(R;) = 7.5 x 10~°). We also find
that the parametefcrosses 1 at a redshift ~ 3 with m(z.) ~ 1.2 x 107°.

Furthermore, we find that the growth rate is larger for theselatls than in the case of
constantn models. This is due to the fact th@in this case evolves faster, asx t>*/3-5),
The maximum growth rate reached for= 1.5 x 10~* corresponds tG,,.x ~ 1.88 with
¢ ~ 4. As expected, models with smaller valuesiopossess growth rates which are more
compatible with observational constraints. Employing ¢hierion (1.2) for the modé =
600ao Hy, we find the constraint < 8.2 x 10~°. This is slightly larger than the constraint
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B3 < 3.0 x 10~° obtained in [131] from the likelihood analysis of the SDS$aglan the left
panel of Fig. 4.6 we also consider this case in order to fincctreesponding evolution of
s. The maximum value of the growth rate in this case is foundae,, ~ 1.095, which
indicates that the constraint (1.2) is rather weak. Neededs, the criterion (1.2) is certainly
sufficient in order to extract an order of magnitude boungon
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Figure 4.6: The evolution of perturbations for the modéR) = R — AR.(R/R.)? with
positive 5 and\ = 1. The left-hand panel depicts= ¢/, /4,, versus the redshift;, for
the modek/agHy, = 600 with three different values of. The right-hand panel shows the
evolution ofm with respect to: for k/agH, = 600. From the requirement (1.2) we obtain
the constraing < 8.2 x 1075,

The right panel of Fig. 4.6 depicts the evolution of the pagtanm for the case with
A = 1l andk = 600a¢H, for the three different values ¢f. As can be seem increases from
the past to the present. Using the criterion (1.2) we obterbbundn(z = 0) < 3.5x107°.

If we adopt the stronger criterion < 1.1, the constraint becomes(z = 0) < 1.3 x 107°.
Thus the deviation from thACDM model is constrained to be smath(z = 0) < 1075).

We also examine the effects of changing the parameterthe bounds o. We consider
two cases\ = 10 and\ = 100. We find that these changesirhave negligible effects on
the constraints imposed ghandm(z = 0), in comparison to that obtained from the case
with A = 1. The reason for this lack of sensitivity is that a change is compensated for
by corresponding changes to the valuesafa, and H,.

Whenj < 0 the parametem is negative from Eq. (4.141). In the left panel of Fig. 4.7

3In Ref. [132] it was shown that the combined analysis usieg3PSS, CMB and Supernovae la data gives
more stringent constraintgt < 1076,



4.4: Density perturbations in the Palatini formalism 102

we plot the evolution of for three different values of with k/ag Hy = 600. We find that the
present values of become smaller than1 for |3 = 1.2 x 1074, in which casém(z = 0)|

is smaller than the order @3 x 10~° (see the right panel of Fig. 4.7). Thus, if we use the
criterions(z = 0) 2 —1 for the models to be viable, the upper bounds$@rand|m(z = 0)|

are similar to those in the positivecase.
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Figure 4.7: The evolution of perturbations for the modéR) = R — AR.(R/R.)? with
negatives and\ = 1. The left-hand panel depicts= ¢/ /d,, versus the redshift;, for
the modek/agHy = 600 with three different values of. The right-hand panel shows the
evolution of the quantityn with respect toz for k/agHy = 600. If we use the criterion
s(z = 0) > —1, we obtain the constraint > —1.2 x 10.

3. f(R) = R — AR.[1 — (1 + R?/R%)™™]

Finally we consider the above model (where- 0) recently discussed by Starobinsky [116].
The parametem for this model is given by

. 2ndx(1 + 23" 2[(2n + 1)2? — 1]

h = 4.142
1 —2nA\z(1 + 22)—1 , where == R/R., ( )
and the de-Sitter point & = R; corresponds to
1 2\n+1
A= ni(l +27) where 7, = Ri/R.. (4.143)

2[(14a3)rtt — 1 — (n+ 1)a?’
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Once we fix the value ok, z; is known accordingly. In the regimB > R, the parameter
m behaves as

m ~ 2n(2n 4+ D)A(R./R)*" ! o 230+ (4.144)

Due to the presence of a larger power(éf./R) in the expression fom in this case;mn
decreases more rapidly towards the past compared to thelrfiollg = R — AR.(R/R.)”
discussed above. For the mokle= 600a¢H,, the bound (4.138) implies that has to be
smaller than the order afo—5-10~° by the end of the matter-dominated epoch if the model
is not enter the regime > 1.

In Fig. 4.8 we plot, for the mode = 600a,H,, the evolution ok andm for A = 2.5 with
three different values af. Whenn = 3.07 the critical redshift is given by. ~ 1.05 with
m ~ 1x107°. The rapid increase afoccurs in the regimé > 1, after which the growth rate
reaches a maximum valug,., ~ 2. The present value of. is found to ben = 4.5 x 1074,
which is an order of magnitude larger than its correspondialge at{ = 1. Using the
criterion (1.2), we obtain the constraints> 3.23 andm(z = 0) < 2.9 x 10~* for A = 2.5.
The present value of: in this model is an order of magnitude larger than the comadmg
values arising in the constant models, as well as th& R) = R — AR.(R/R.)° model.
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Figure 4.8: The evolution of perturbations for the modélR) = R — AR.1 —
(1+ R?/R?)™"] with A\ = 2.5. The left-hand panel depicts = ¢/, /d,, versus the red-
shift, z, for the modek/aoHy = 600 with three different values af. The right-hand panel
shows the evolution of the quantity with respect to: for k/ayHy = 600.

We also find that in contrast to the mog&lR) = R — AR.(R/R.)” the constraints on
n for the Starobinsky model are sensitive to the values of #rampeter\. For larger values
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of \ the constraints om are weaker. For example, for = 10 and A = 50 we find the
corresponding constraints enimposed by (1.2) to be > 1.74 (m(z = 0) ~ 1.4 x 107%)
andn > 1.09 (m(z = 0) ~ 1.1x10~%), respectively. This can be understood in the following
way. When\ is increased, we obtain a larger rafio/ R. from Eq. (4.143), which also leads
to a larger ratioR/ R, in the past. Consequently from Eq. (4.144) a smaller value isf
sufficient to realise the conditiom:| < 1. It can also be seen from the form of the action
that the values oR. can also effect the constraints anWe find that for small values of;,

R. has a small effect on the constraint, whereas for large gadfi2 the effect of changing
R. is negligible.

From Eq. (4.144) we find that: can be negative fOl’—% <n < 0(@dX > 0)in
the regimeR > R.. Whenn is close to zero, the models are close to the mgdél) =
R — AR.(R/R.)? discussed above. We find that: = 0) is larger than—1 for |n| <
9.3 x 107°, in which case we haven(z = 0)| < 4.5 x 107°. Whenn is close to—3,
Eq. (4.144) seems to suggest that the models should be ddbe ttonstantn models.
However, care needs to be taken in this case sinchanges sign from negative to positive
values at R/R.)* = 1/(2n + 1) deep into the matter-dominated epoch. As a resultpfor
close to—3, we numerically find that the growth rate shows a rapid insedar(R/R.)? <
1/(2n+1). Thus, in the limit, — —2, the models do not behave as constanmodels and
they are excluded observationally.

Analysis of the Hu & Sawicki [117] modelf(R) = R — ARC% (n > 0), leads
to constraints on the parametersandm(z = 0) such that, > 3.33 andm(z = 0) <
2.15 x 1074, respectively, when\ = 2.5 andk/agH, = 600. These are similar to the
constraints derived above.

In summary, the present valuesmfare constrained to be(z = 0) < 10~* from the
bound (1.2) in both the Starobinsky and Hu & Sawicki models.
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4.5 Summary

We have made a detailed study of the evolution of densitygeations inf ( R) gravity the-
ories in both the metric and Palatini formalisms and empdayés to determine the viability
of models in each case. To study the viability of concrete efmdve considered three sets
of constraints provided by the background cosmologicalgian, local gravity experiments
and the evolution of matter density perturbations, resyeigt

We began by considering the cosmological and local grawhstraints. For models sat-
isfying these constraints, we then proceeded to deterndidiéi@nal bounds arising from the
evolution of density perturbations. This allowed us tolfertconstrain the model parameters
as well as their deviation from theCDM model.

The f(R) theories in the metric formalism are equivalent to gensealiBrans-Dicke the-
ories with a scalar-field potenti&l(¢) and Brans-Dicke parameteg, = 0. The presence
of the field potential allows for the construction pfR) models that satisfy the local gravity
constraints under the use of a chameleon mechanism. We thahd typical models of the
forms (4.35) and (4.36) are to satisfy the cosmological acdllgravity constraints, the pa-
rameterm must be much smaller than unity during the radiation andenatias. However,
it can grow to values of the order 06f1 in the accelerated epoch. Models in the metric for-
malism also suffer from an additional fine-tuning due to thespnce of scalaron oscillating
modes (which are absent in the Palatini case). Finally, sidigle these theories requifer
to be positive.

On the other hand, th¢(R) theories in the Palatini formalism correspond to gener-
alised Brans-Dicke theories with a scalar-field potenitiégh) and Brans-Dicke parameter
WRD = —%. This makes these theories special in the sense that thébsgi scalar de-
gree of freedom (scalaron) is absent in these theories amdftite the corresponding fine
tuning is not required. Moreover, in contrast to the casehefrnetric formalism, there is
no notion of field masg/ that determines an interaction length mediated by a fiftaeo
Thus the LGC for these theories need to be analysed sepaimntrast to theories with
WBD # —%. The main condition required in order to satisfy the LGC iatthn| must be
smaller than the order of unity. Moreover, the requirementcbsmological viability in the
Palatini formalism is not severe compared to the metric.cd$eis, in order to satisfy the
cosmological and local gravity constraints, we do not regjuanishingly small values of
during the radiation and matter dominated epochs and,durtbre,f zz can be negative in
this case. As a result, even models of the typ&) = R — p>™+Y/R™ with n > 0 are
allowed at the background level, which is not so in the mdtmalism.

We then studied the constraints provided by the evolutiodesfsity perturbations. In
the case of the metric formalism we derived the equationsrfatter perturbations under
sub-horizon approximations in several different gaugesthe regimeM? > k?/a? (i.e.,



4.5: Summary 106

¢ < 1), we found the approximate perturbation equations to bel wlen without using
sub-horizon approximations, provided that the scalaroderie not dominant relative to the
matter-induced mode. This is a consequence of the factwinetn /7> > k*/a?, the evolu-
tion of perturbations mimics that in General Relativityté&fthe Universe enters the regime
M?* < k*/a?, the modes are inside the Hubble radius due to the fact tleatdhdition
M? > Ris required for compatibility with LGC. Thus, for the modéhat satisfy LGC, as
long as the scalarons do not dominate over the matter-induoele, approximate perturba-
tion equations are valid even for those modes that initigyutside the Hubble radius. In
the Palatini case the approximate equations are even ni@elesbecause of the absence of
scalarons.

In the metric formalism, most viablg(R) models take the form(r) = C(—r — 1)P
(» > 1) in the regimes where the Ricci scalar is larger than itsgmesosmological value.
In these models, the modes relevant to the observed mattermpectrum correspond to
the regimeM? > k?/a* with the growth rates = ¢/ /4,, = 1 at the beginning of the matter
era. These models typically enter the regiifé < k?/a* during the matter era in which the
growth rate of matter perturbations is givendby- 1.186. If we use the present observational
bounds < 1.5, we do not obtain strong constraints on these models. Hawsiee the
transition time at:/a = M depends upon the mode there is a difference in the spectral
indices between the matter power spectrum and the CMB spedtee Eq. (4.106)]. If we
take the bound\n < 0.05, the models witlp > 5 are allowed. The present value of the
parametern is constrained to be:(z = 0) < 10~!. Thus, whilem needs to be negligibly
small during the radiation and matter eras, one can have preepble deviation from the
ACDM model around the present epoch.

In the Palatini formalism, the approximate matter perttidsaequations are valid even
for super-Hubble modes for models satisfying LG@( < 1). If m is positive, there is a
strong amplification of,,, in the regimet > 1, whereas ifm < 0 the matter perturbation
exhibits a damped oscillation fa¢| > 1. When the quantityn evolves asn o ¢* during
the matter era, we have analytically estimated the grow#srior both positive and negative
values ofm [see EQs. (4.132) and (4.135), respectively]. From theirement that the
Universe does not enter the regimiés> 1 during the matter era, we obtain the constraint
im(2)| < (agHy/k)? for z > O(1). While this is a good criterion to avoid non-standard
evolution of matter perturbations, one needs to carry oubgendetailed analysis to place
constraints on the quantity. for eachf(R) model. Whenm is positive, we have obtained
the constraintn. < 10~° by considering the moddsrelevant to the matter power spectrum.
We also studied the evolution of perturbations for the medeR) = R — AR.(R/R.)°
and f(R) = R — AR.[1 — (1 + R*/R?*)™"]. For these models we found the constraints
m(z =0) <107° andm(z = 0) < 107, respectively, from the requirement< 1.5. Thus,
unlike the metric case, the deviation from th€ DM model at the present epoch is small
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even whenn grows from the matter era to the accelerated epoch. Thiatstudoes not
change for negative values of.

To summarise, therefore, for viable models in the metrienfalism, the quantityn is
constrained from LGC to be very much smaller than unity dyitime matter era, but it can
grow to order 0.1 around the present epoch. In the Palatimdbsm, LGC and background
cosmological constraints do not place strong boundsidonly requiring|m| < 1071), but
the density perturbations can provide stringent congsajm| < 107°-10~%. Thus, in the
Palatini case the¢’(R) theories are hardly distinguishable from th€DM model even at
the present epoch. This follows due to a peculiar evolutibthe matter perturbations in
the regimel¢| > 1 that exhibits rapid growth (whem > 0) or damped oscillations (when
m < 0).

While the constraints obtained here are sufficient to dexder of magnitude constraints
on the allowed parameter values, it will be of interest taanbtnore precise bounds by using
recent and upcoming observational data, including largéesstructure, CMB, Supernova
la, gamma-ray bursts and weak lensing.



Chapter 5

Observational constraints on
scalar-tensor models of dark energy

In the previous chapter we demonstrated th@t) gravity in the Einstein frame corresponds
to a constant couplingy = —1/v/6, between dark energy and the non-relativistic fluid.
Basically, this is equivalent to the coupled quintessereaario [133] with a specific cou-
pling. Our aim in this chapter is to generalise the analydeShapter 4 to scalar-tensor
theories with the action (5.9), in which case the couplings an arbitrary constant. Af-
ter the pioneering works of Refs. [81; 100; 134; 135; 136;;1838; 139] the dark en-
ergy dynamics in scalar-tensor theories has been invéstiga many papers, including
Refs. [140; 141; 142; 143; 144; 145; 146]. If the mass of thmtg@gsence fieldy, is
always of the order of{, the solar-system constraingp > 4.0 x 10 [45; 46; 147] gives
the bound@| < 2.5 x 103. Previous studies dealing with the compatibility of sca&rsor
DE models with LGC have restricted their analysis to thislsowipling region [144; 145].
Here we extend the analysis to include cases in which thelioguj®)| is larger than the
above massless bound [148]. In fact, as we have alreadyssisduone can design the po-
tential,V (¢), in such a way that the mass of the field is sufficiently heauhéhigh-density
region so as to satisfy LGC through the chameleon mecharienshall construct such a
viable field potential inspired by the case ffR) gravity and place experimental bounds on
model parameters, which can be expressed as functioqdb48].

We shall also study the variation of the equation of statelfBrand the evolution of
density perturbations in such scalar-tensor theoriegréstingly, we find that the divergent
behaviour ofwpg, is also present as in the case of bgtlR) gravity [148] andf(G) gravity
[149]. In all cases, this divergence is associated with tioeease ofF' as we go back in
time and occurs wheft,, = F,/F’, wherely is the present value df. We also estimate the
growth rate of matter perturbations and show that the nanektrd evolution of perturbations
manifests itself from a certain epoch (depending upon mpaeimeters) during the matter
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era [148]. This is useful to place constraints on model patans using the data from large
scale structure and the CMB.

5.1 Scalar-tensor theories

We start with a class of scalar-tensor theories, which thesuthe puref (R) theories as well
as the quintessence models as special cases, of the form

1

5SSOIV | + S gpus Ym) - (5.1)

5= [atey=g|5r0.0 - ;

Here, f is a general differentiable function of the scalar fieldnd the Ricci scalar, ( is

a differentiable function of, andS,, is a matter Lagrangian that depends on the mefic
and matter fields),,. The action (5.1) can be transformed to the Einstein franteuthe
conformal transformation (2.57):

g;w - QQQ;W:
where
O=VF and F= .

OR

In what follows we shall considér to be positive in order to ensure that gravity is attractive.
We shall be considering theories of the type

f(¢,R) = F(¢)R =2V (¢), (5.2)

for which the conformal factor?, depends upom only. Introducing a new scalar field
(not be confused with the metric perturbatignthat appears in earlier chapters):

SICE

the action in the Einstein frame becomes

do, (5.3)

5o [ doy/G| 3R - §(T07 - U] + S 6), (5.4
where a tilde represents quantities in the Einstein frante an
Vv
U= Ik (5.5)

We recall from Sec. 2.2.2 that ifi R) gravity, the conformal factor), depends only
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on R. Introducing the new scalar field (2.66), we found that f{i&) action in the Einstein
frame is given by (2.67) [or equivalently (5.4)] while thetpntial is defined in Eq. (2.68).
Hence, thef(R) gravity can be cast in the form of scalar-tensor theorieseftype (5.1)
with (5.2), by identifying the potential in the Jordan frateebe

RF — f

V=3

(5.6)

In order to describe the strength of the coupling betweek elaergy and a non-relativistic
matter, we introduce the following quantity

F,

= —ﬁ (5.7)

From Eq. (2.66) one haB = ¢2/V6 which shows that th¢(R) gravity corresponds to
Q=-1/V6.

In what follows we shall study a class of scalar-tensor tiesowhere() is treated as an
arbitrary constant. This class includes a wider family ofdelg, includingf(R) gravity,
induced gravity and quintessence models. Using Egs. (B@B)®&7) we have the following
relations

F=e2%  (=(1-6Q)F Cﬁ). (5.8)

Then action (5.1) in the Jordan frame together with (5.2)dge

/ﬂ%¢*‘ FR—lu—&f)( ©)? = V| + Sn(guv: ¥m) - (5.9)

Note that in the limitQ) — 0, the action (5.9) reduces to the one for a minimally coupled
scalar fieldyp, with a potential/ ().
It is informative to compare (5.9) with the generalised Brdbicke theory (2.44):

YR =22y~ v

N + Gy Um) (5.10)

/d4x\/_

Settingy = F = ¢~29%, one easily finds that the two actions are equivalent if thrarpater
wpp IS related ta)) via the relation

1
Under this condition, the theories given by (5.9) are edaivieto the Brans-Dicke theories
(2.44).
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5.2 Background cosmological dynamics

In this section we shall discuss the cosmological dynanocgshe action (5.9) in the flat
FLRW spacetime (2.85). As a source of the matter actihn,we consider a non-relativistic
fluid with energy density,, and a radiation with energy densjiy. The evolution equations
in the Jordan frame are then given by

1 .

3FH? = 5(1 —6Q*)Fp* +V —3HF + pp + py (5.12)
. 4

OFH = —(1 - 6Q*)Fp* — F+ HF — p,, — 3P (5.13)

pm +3Hp, =0, (5.14)

pr+4Hp, =0. (5.15)

Taking the time-derivative of Eq. (5.12) and using Eq. (3, ¥& obtain

(1—-6Q*F <¢+3H¢+% >+v +QFR=0, (5.16)

where the Ricci scalar is given by Eq. (2.102).
In order to study the cosmological dynamics, it is convenienntroduce the following
dimensionless phase space variables

%) 1 \% 1 /p
_ — = .= 5.17
1 \/EH ) X2 H 3F ) €3 H 3F ( )
Then the constraint equation (5.12) gives
Qm53;H2—1—(1—6Q) — 22 — 2V6Qz; — 22. (5.18)
We also define the following quantities
Q. =22, Qpe=(1-6Q%)2% + 224 2V6Qx, . (5.19)
Eq. (5.18) then yields the relatidn,, + 2, + Qpg = 1.
From Egs. (5.13) and (5.16) we obtain
H 1 —6Q?
- ¢ [3 + 327 — 325 + 23 — 6Q%x] + 2\/6@351] (5.20)
+3Q (M3 — 4Q),
% = 3\ —V6r) +3Q [( 6Q%)2? + 2v6Qx, — 323 + 22 — 1] . (56.21)
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Using these relations, we obtain the following autonomapséons:

o ?(mé — V) + @ [(5 = 6Q)z1 + 2v/6Qm (5-22)
35 + 5 — 1} - wlﬁ :
% = ?(2@ — Nz — xg% , (5.23)
I EY S (5.24)
where is defined by
Vv
A= —7’“" . (5.25)

The exponential potentiaf (o) = Voe % produces a constant value df Generally, how-
ever, \ is dependent orp, where the fieldy is a function ofz,, x, andzs through the
definition ofz, and Eq. (5.20). Hence Eqgs. (5.22)-(5.24) are closed. Tleetafé equation
of staté is given by

. 2 H
Wep = —1—-—
. 3 H?
1 —6Q?
= -1+ 3Q (34 327 — 322 + 22 — 6Q%2% 4+ 2V6Qx,) (5.26)

—2Q(A\r3 — 4Q) .

In what follows we shall first discuss the case of constaad then proceed to consider
the varying\ case.

5.2.1 Constant\

If \is a constant, one can derive the fixed points of the systemetting the right hand side
of Egs. (5.22)-(5.24) to zero. In the absence of radiatign= 0), we obtain the following
fixed points:

1The effective pressuren{s ;) and energy densityp( ;) is obtained by expressing the right hand side of
equations (5.12) and (5.13) asys and(pesr + pey5), respectively. The effective equation of state can then be
defined AlVeff = peff/peff-
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(a) ¢ matter-dominated erg>(VIDE [133])

N V6Q _3-20°
(ZEl, Ig) = (73(2622 — 1) s 0) s Qm = 3(1 — 2@2)2 s (527)
_ A
et = 3T

(b1) Kinetic point 1

B 1 B B 3 —6Q
('TlaxQ)_ (\/6@—'—170) ) Qm_07 weﬁ_3(1+\/6Q) (528)
(b2) Kinetic point 2
B 1 B ~3+V6Q
(xth)_ (\/6@—1’0) ) Qm—07 Weft = 3(1—\/6@) (529)

(c) Scalar-field dominated point

) = (s et ) e
U = 0, we= _20;2(16—2295222;35A2
(d) Scaling solution
(x1,75) = (;/—E {3 i 26;;2_ GQQ} 1/2) : (5.31)
Q. - 1- 3—12C§+7Q)\7 weﬁz_?'
(e) de-Sitter point (present for = 4Q)
(r1,29) = (0,1), Qy =0, weg=—1. (5.32)

Note that, whemn:; # 0 we have a radiation fixed poifit, z2, 23) = (0,0, 1).

One can easily confirm that the de-Sitter point existsXot 4@, by settingy = 0 in
Egs. (5.12), (5.13) and (5.16). This de-Sitter solutionesgwp in the presence of the coupling
Q. Note that this is a special case of the scalar-field domihadént (c).



5.2: Background cosmological dynamics 114

When )\ is a constant, one can analyse the stability of the criticéhts (x{, 25), i.e.,
Egs. (5.27)-(5.32), by considering small perturbati®@nsanddz, such that

xp = x{ + 0xq, To = x5 + 0. (5.33)

Then the autonomous equations (5.22)-(5.24) lead to ficralifferential equations for the
perturbations of the form:

d 51‘1 51‘1
— =M . 5.34

The eigenvalueg; and i, of the matrix M characterise the stability of the fixed points
(x9, z5). The eigenvalues corresponding to the critical pointgéx)are given by

(@)

322 3420\ — 6Q?
ST 7 R (70 o
(b1)
C3(V6+4Q — N 3460
H1 = \/6+6Q ) M_il—%\/é@‘ (5.36)
(b2)
_3(V6-4Q + ) _3-6Q
M1 = V6 — 60 ’ Mz—l_\/éQ- (5.37)
(©
6 — A2+ 8QA — 16Q° 3 — A2+ TQN — 12
= — fiy = — (5.38)

201 —4Q% + QN) 1—4Q2 + QX
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(d)
s = %{A) 1+ (5.39)
|, 8(6Q% — 201 —3)(12Q7 + 2 — TQA — 3)
* 3020 — \)?
(e)
P = = —3. (5.40)

Now given a value foi, and using the stability conditions presented above, temotogical
dynamics can be specified. We shall briefly discuss the ¢@ase$ and@ # 0 in turn.

1.Q=0

When@ = 0 (i.e., ' = 1, which corresponds to a standard minimally coupled sca&d)fi
the eigenvalueg; and u, of the Jacobian matrix for perturbations about the fixed {soin
reduce to those derived in Ref. [22] (see Ref. [150; 151] &otier works). In this case the
matter-dominated era corresponds to either the point (@))oiThe point (a) is a saddle node
because,;, = —3/2 andu, = 3/2. The point (d) is stable fok? > 3, in which case,, < 1.
The late-time accelerated expansiang < —1/3) can be realised by using the point (c),
under the condition\> < 2. Under this condition the point (c) is a stable node. Henrfce, i
A\? < 2, the saddle matter solution (a) is followed by the stablekated solution (c) [note
that in this casé€?,, < 0 for the point (d)]. The scaling solution, (d), can have a evagta for

A? > 1, but in this case the epoch following the matter era is noncdiecelerated nature.

2.Q#0

We next consider the case of non-zero value§ oHere we do not consider the special case
of A = 4¢) which gives rise to the de-Sitter point. If the point (a) ispensible for the matter-
dominated epoch, we require the conditigh < 1. We then have2,, ~ 1 + 10Q%/3 > 1
andw.g ~ 4Q?/3 for the yMDE. When@? < 1 the scalar-field dominated point, (c), yields
an accelerated expansion provided that2+4@Q < A < v/244@Q?2. Under these conditions
the oMDE point is followed by a phase of late-time acceleratianis worth recalling that

in the case off (R) gravity (Q = —1/+/6) the pMDE point corresponds t€2,, = 2 and

2Note that under the conditiaj? < 1 and in the case where the dynamics is in the accelerated gihach
condition|@\| < 1 is also satisfied.



5.2: Background cosmological dynamics 116

weg = 1/3. In this case the universe in the matter era prior to lateetmceleration evolves
asa o t'/2, which is different from the evolution in the standard matteminated epoch.

We note that the scaling solution, (d), can give rise to thea&gn of statew.g ~ 0
for |Q| < |A|l. In this case, however, the conditiang < —1/3 for the point (c) leads
to \> < 2. Consequently the energy fraction of the pressurelessemfait the point (d)
does not satisfy the conditiof?,, ~ 1. In summary, the viable cosmological sequence
corresponds to a trajectory from theVIDE point to the scalar-field dominated point, (c),
under the condition§? < 1 and—v/2 + 4Q < A < V2 + 4Q.

5.2.2 Varying A

When the time-scale of the variation &fis smaller than that of the cosmic expansion, the
fixed points derived above, in the case of constgntan be regarded as “instantaneous”
fixed points [152; 153]. We shall briefly consider the caseQ of 0 and@ # 0 in turn.

1.Q=0

We begin with a brief discussion of th@ = 0 case. If the condition\? < 2 is satisfied
throughout the cosmic evolution, the cosmological trajacis similar to the constank case
discussed above except for the fact that the fixed pointseg@ded as the “instantaneous”
ones. In this case the saddle matter solution (a) is folldwetthe accelerated point (c).
When)\? >> 1 the scaling solution, (d), is stable wifh,, ~ 1. Hence the cosmological
trajectory during the matter era chooses the scaling solud), rather than the saddle point
(a). If |\| decreases at late-times, such that it satisfies the actefemndition\* < 2,
the trajectory stops following the solution representedt®matter point (d) to follow the
scalar-field dominated point () A representative model of this type is provided by the
double exponential potential;(¢) = Vo(e ¥ + e~*2¢), with A7 > 1 and A3 < 2 [154].
The assisted quintessence models in Ref. [155] also leasitailar cosmological evolution.

2.Q 0

We shall now proceed to consider the case of non-gerti | )| is initially much larger than
unity and decreases with time, it happens that the solufioaly approach the de-Sitter
solution (e) withA = 4Q). While the point, (e), is stable for constaxtit is not obvious that
this property also holds for a varying In what follows we shall discuss the stability of the
de-Sitter point.

It is convenient to consider the variabléy) as a function ofF'(p), i.e., A = A\(F). We

3Note that the de-Sitter solution (e), in this case, existg fur A\ = 0, i.e., the cosmological constant.
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define a variabley, = F, that satisfies the following equation

dx
d—]\? = —2V6Qu 24, (5.41)

where the right hand side vanishes at the de-Sitter poinO@)sidering th& x 3 matrix for
perturbation®x, dx, anddz, around the point (e), we obtain the eigenvalues

3 8 dA
1= =3, Hos = =5 11\/1—51?1@@(}71) ; (5.42)

where | = F(p;) is the value ofF" at the de-Sitter point with the field valug. Since
F1 > 0, we find that the de-Sitter point is stable for

dA dA
Q@(Fl) >0, ie., —(@1> <0. (543)

We have checked that this agrees with the stability conddierived in Refs. [156; 157] by
considering metric perturbations about the de-Sitter{oin

In the context off (R) gravity this condition translates intb\/dF' < 0. Since in this
caseF = ¢*?/V® = df/dR andV = (RF — f)/2, we havel = —Rfp/v/GV. Then,
together with the fact thak f r = 2 holds for the de-Sitter point, the conditidn/dF" < 0
is equivalenttaR < f r/f rr. FoOr positiveR this gives

Rf rr
fr

which agrees with the stability condition for the de-Sigpeint derived in Ref. [43].
We recall that in the context of (R) gravity studied above, the model based on the
lagrangian density (4.37):

0< <1, (5.44)

f(R)=R—puR.[1—(R/R.)™"] (n>0,R.>0,n>0),

was shown to be consistent with cosmological and local graanstraints. For this model,
¢ is related to the Ricci scalar, via the relatione2?/V6 = 1 — 2nu(R/R,)~ "1, Hence
the potentialy’ = (FR — f)/2, can be expressed in terms of the field as

_ pR. 2n+1 9/v/E\ 2 271

The parametek is then given by

4 71/(2n+1)
A= V6(2 )Z/@ +1>€2W6 (1_‘3%/@ % (5.46)
nILL n n

[1 ~ (2"—“ ey

—2n/(2n+1)
2ny1)2n/ (2n+1) }
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In the deep matter-dominated epoch in which the condiiig®. >> 1 is satisfied, the field
¢ is very close to zero. For andyu of the order of unity,| | is much larger than unity
during this stage. Hence the matter era is realised by thanteneous fixed point (d). As
the ratio R/ R. gets smaller|)\| decreases to the order of unity. If the solutions reach the
point A = 4Q = —4/1/6 and satisfy the stability conditiod\/dF < 0, the final attractor
corresponds to the de-Sitter fixed point (e).

For the theories with general couplings let us consider the following scalar-field po-
tential

Vig)=Vy [1 = C(1—e @] (Vo>0,C>00<p<1), (5.47)

as a natural generalisation of Eq. (5.45). The slope of them@l is given by

_ 20pQe2%?(1 — e 299!

A 1— O(1— e2Q¢)p

(5.48)

When@ > 0, the potential energy decreases fréfnas increases from 0. On the other
hand, ifQ < 0, the potential energy decreases frdfnasy decreases from 0. In both cases
we haveV (¢) — Vo(1 — C) in the limitsy — oo (for @ > 0) andy — —oo (for @ < 0).

In the model (5.47) the field is stuck around the value- 0 during the deep radiation
and matter epochs. In these epochs onefhasp,,/F from Egs. (5.12), (5.13) and (2.102)
by noting thatl} is negligibly small compared tp,, or p,.. Using Eq. (5.16), we obtain the
relationV,, + Qp,, ~ 0. Hence, in the high-curvature region the figld,evolves along the
instantaneous minimum given by

1 2V0pC) =
b , 5.49
4 2Q ( Pm (5.49)

We stress here that a range of minima appears depending bpamdgnitude of the
energy density,, of the non-relativistic matter. As long as the conditian > VypC is
satisfied, we havey,,| < 1 from Eq. (5.49).

Since Eq. (5.48) suggests that > 1 for field values aroung = 0, the instantaneous
fixed point (d) can represent the matter-dominated epochiged that|)] < |\|. The
deviation from Einstein gravity manifests itself when theddibegins to evolve towards the
end of the matter era. The variabie= ¢~2%¥ decreases in time irrespective of the sign of
the coupling strength and therefdre< ' < 1. This decrease df is crucial to the divergent
behaviour of the equation of state of DE, as we will see in Set.

The de-Sitter solution correspondsXe= 4Q), i.e.,

2
¢= (1—F)r 12+ (p-2)F]’ (5.50)
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-0.50 .

Figure 5.1: The evolution oflpg, .., 2, andw.g for the model (5.47) with parameters
Q = 0.01, p = 0.2 andC = 0.7 and initial conditionsr; = 0, 25 = 2.27 x 1077, 23 = 0.7
andz, — 1 = —5.0 x 10713,

whereF; is the value off” at the point (e). Provided that the solution of this equaérists
in the region0 < F} < 1, for given values ofC andp, the de-Sitter point exists. From
Eq. (5.48) we obtain

A\ 4CpQAF(1— F)P2[1 — pF — C(1 — F|

dp [1—C(1— F)r]2 (5.51)

When0 < C < 1, one can easily show that the functigt¥’) = 1 — pF' — C(1 — F)?
is positive in the regio < F' < 1 giving d\/de < 0. Hence, the conditions for a stable
de-Sitter point are automatically satisfied. In this cagesblutions approach the de-Sitter
attractor after the end of the matter era.

WhenC' > 1, the functiong(F') becomes negative for values Bfthat are smaller than
the critical valueF,. (< 1). The de-Sitter point (e) is stable under the condition pF; >
C(1 — F1)P. Using Eq. (5.50) we find that this stability condition triaiss to

Fy > L. (5.52)
2—-p
If this condition is violated, the solutions choose anostable fixed point as an attractor.
In summary, wheo < C' < 1, the matter point (d) can be followed by the stable de-Sitter
solution (e) for the model (5.47). In Fig. 5.1 we plot the ex@n of Qpg, €2,,, ). andweg
for Q = 0.01, p = 0.2 andC = 0.7. Beginning from the epoch of matter-radiation equality,

the solutions first dwell around the matter point (d) witky; ~ 0 and finally approach the
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de-Sitter attractor (e) withv.g ~ —1. We have also numerically confirmed thais initially
much larger than unity and eventually approaches the vakiel().
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5.3 Local gravity constraints

In the absence of the potentidf|y), the Brans-Dicke parametefsp, is constrained to be
wpp > 4.0 x 10* from solar-system experiments [45; 46]. Note that this lbalso applies
to the case of a nearly massless field with the potehitial) in which the Yukawa correction,
e~ M¢ is close to unity (wher@/ is the scalar field mass arids an interaction length). Using
the boundugp > 4.0 x 10*in Eg. (5.11), we find

Q] <2.5x107° (for the massless case). (5.53)

This is a strong constraint under which the cosmologicalwgian for such theories is dif-
ficult to distinguish from th&) = 0 case. In this section we consider the case in which the
mass,M, of the scalar fieldy, is sufficiently heavy so that the interaction range of thielfie
(~ 1/M) becomes short so as to satisfy LGC.

5.3.1 Solar system constraints

Here it is useful to recall our discussions from Sec. 4.1.2k@ chameleon mechanism
in MG theories. There we essentially established that thdatso(4.37) can satisfy LGC
because the masg/, of the field potential (5.45) is sufficiently heavy in the IHdensity
region where the Ricci scalak, is much larger tha®.. Since the field massy,,, inside the
body is much heavier than that outside the body, most of thewe element within the core
does not contribute to the field profile &t ¢, except for a thin-shell around the surface of
the body. (Note that this contribution is proportionaktd’*, wherez is a distance from the
volume element to a point outside the body). In the case cfigénouplings(, the models
presented in Eq. (5.47) can be compatible with LGC. Undectimelition| Q| < 1, one has
U, ~ —2V,QpC(2Q¢p)P~! for the potential/ = V/F? in the Einstein frame (5.5). Then
from Eq. (4.27) we obtain the field values at the potentialimainside/outside the body:

1 ZVOpC)IiP 1 (2vopc*)1ip
~— ; ~— ; 5.54
o 2Q) ( pA o5 2Q) PB ( )

which satisfy|p4| < |pp|. Note that these are analogous to the field valyg, derived in
Eq. (5.49) in the cosmological setting. In order to realise &ccelerated expansion at the
present epochlj needs to be roughly the same order as the square of the piegbhte
parametertly,. ThusVy ~ HZ ~ py, wherep, ~ 10~ g/cm?® is the present cosmological
density. Note that the baryonic/dark matter density in alagy corresponds tog ~ 102
g/cn? [158; 159; 160]. This then shows that the conditiof@e 4| < 1 and|Qpp| < 1 are

in fact satisfied provided th&t is not much larger than unity.
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The field mass squaredz,i = d?U/dy?, atyp = o, is approximately given by

2—p

L—p pa\r
2 ~ 2 (A

This means that,(p4) can be much larger thaH, due to the conditiop, > ;. There-
fore, while the massn,, is not different from the order off, on cosmological scales, it
increases in the regions with a higher energy density.

Let us place constraints on the model parameters by usirgptaesystem bound (4.34).
In so doing, we shall consider the case where the solutioafiyfiapproach the de-Sitter
point (e). Since we havAl/, /(. ~ ¢p/(6Q®P,) with 5 given in Eq. (5.54), the bound
(4.34) translates into

(2VopC/pp) ) < 1.2 x 107°|Q) (5.56)

where we have used the valite = @, = 2.12 x 10~ for the Sun [47; 124]. At the de-Sitter
point, (€), one ha3F, H} = Vu[1—C(1— F;)P] with C givenin Eq. (5.50). Hence, we obtain
the following relation

2 —2)F!
vbzsﬂf—iiﬂ——li. (5.57)
Substituting this into Eq. (5.56) we find
Rl 1/(1-p)
(;J (1-F)<12x107"Q], (5.58)
B

where R, = 12H? is the Ricci scalar at the de-Sitter point. Since the tétm- F}) is
smaller than one half from the condition (5.52) we obtainitreguality (R, /pp)"/ P <

2.4 x 1071°|Q|. We assume thaR, is of the order of the present cosmological density
po = 1072 g/cn?. Taking the baryonic/dark matter density to e = 10~2* g/cm® outside
the Sun [158; 159; 160] we obtain the following bound

5
9.6 — log, |Q‘ .

For |Q] = 1072 and |Q| = 107! this givesp > 0.57 andp > 0.53 respectively. The
above bound correspondspa> 0.50 for the case off (R) gravity, which translates into the
conditionn > 0.5 in Eq. (5.45). This agrees with the result found in Ref. [124]

p>1 (5.59)
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5.3.2 Equivalence principle constraints

Let us proceed by considering the constraints resulting fagossible violation of the equiv-
alence principle (EP). Under the condition that the neighibood of the Earth has a thin-
shell, the tightest bound comes from solar system testsedi hthat make use of the free-fall
accelerations of the Moon(y,.,) and the Earthd;,) toward the Sun [47; 124]. The bound
on the differences between the two accelerations is [61]

ol Boon — de| _ 1015 (5.60)
AMoon + Qg

Since the acceleration induced by a fifth-force with the fafile o (¢) and the effective
coupling is given byusen = [Qer(£)| we obtain [47]

GyM, | , (Al Dy
= INYo 1149 e Ze 61
e > 1180 (% o | (5.61)
GuM, [ , (Al 2
oon 1418 ;
i 72 * Q ( EEB CI>®(I)Moon

where®,, ~ 2.1 x 1075, &5 ~ 7.0 x 1071% and Py, ~ 3.1 x 1071, are the gravitational
potentials of the Sun, the Earth and the Moon, respectivily 124]. Note that\ls /{4 is
the thin-shell parameter of the Earth. From the bound (516@) is constrained to be

Al _88x 1077
lo Q|
Note also that the thin-shell condition for the neighbouthoutside the Earth provides the
same order of the upper bound f&r,, /¢4, [124].
Taking a similar procedure as in the case of the solar systerstaints discussed above
(using the valug?, = 10~ g/cm? andpg = 10~2* g/cm?®), we obtain the following bound:

(5.62)

Y
13.8 —logyo Q|

This is tighter than the bound (5.59). Whip| = 102 and|Q| = 10~! we havep > 0.68
andp > 0.66, respectively. In the case ¢f(R) gravity the above bound corresponds to
p > 0.65 which translates ta > 0.9 for the potential (5.45).

In summary, the LGC can be satisfied under the condition |3d33he potential (5.47).

p>1

(5.63)

5.3.3 General properties for models consistent with LGC

In this subsection we shall consider the general propestissalar-tensor theories consistent
with LGC, without specifying the form of the field potentidin order to satisfy the LGC
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V(@
Q<0 Q>0

00 bis

Figure 5.2: This illustration describes a field potentidlp) that is consistent with LGC. For

a coupling@ that is positive (negative) the potential evolves in theaeg > 0 (¢ < 0).

In the figurey,, represents the field value during the radiation/matter, evlgch instanta-
neously changes in time. The field valug; corresponds to the one at the de-Sitter point.
Note that bothp,, andy,s are sustained by the presence of the couplgaving potential
minima characterised by the condition (5.64). In the eadgss of the cosmological evolu-
tion, the masg// of the fieldy is heavy for consistency with LGC. This mass gradually gets
smaller as the system approaches the de-Sitter point.

we require thatyp — 4| is much smaller than@Q®,| from Eq. (4.29). Since there is a
gap between the energy densities inside and outside of tiexisplly symmetric body, we
have|pp — wa| ~ |pg|, which implies|pp| < |Q®,|. The gravitational potentiab, is
very much smaller than unity in settings where local graexperiments are carried out,
hence this yields the constraifitz| < 1. Cosmologically this means th@p| is much
smaller than unity during matter/radiation epochs. Wheh >> 1 the condition|p| <
1 is not necessarily ensured, but those cases are excluddwelponstraints from density
perturbations unless the model is very close toAKEOM model (as we shall see later). In
the following we shall consider the theories wjth| < 1.

In the region|y| < 1 (i.e., F' ~ 1), the derivative terms are negligible in Eq. (5.16) and
the field stays at the instantaneous minima given by

Vo +QFR=0, (5.64)

in the late radiation-dominated and matter-dominated. ef&g condition (5.64) translates
into A\/Q = p,,/V which means that/Q > 1 in the radiation and matter epochs. Thisisin
fact consistent with the conditidm.s| = |2Q)/\| < 1 for the existence of a viable matter
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point (d). If the de-Sitter point (e) is stable, the solusdimally approach the minimum given
by (5.64),i.e.\/Q = 4.

The sign of\ needs to be the same as thatoih order to realise the above cosmological
trajectory. Whert) > 0, we requireA = —V,/V > 0, i.e.,V,, < 0, which means that the
field, ¢, evolves along the potential toward larger positive values o ~ 0. When@ < 0
the field evolves towards smaller negative values from 0.

Such potentials are illustrated in Fig. 5.2. Since the rafi@ decreases from the radia-
tion/matter epochs to the de-Sitter epoch, the derivatively is negative irrespective of the
sign of ). We recall that in this case the stability of the de-Sitteinp¢e) is also ensured.
Sinced\/dp = X\* — V,,/V, the mass squared

M=V

PP

(5.65)

is required to be positive to satisfy the conditibh/dy < 0. Moreover, the massy/, needs

to be sufficiently heavy in order to satisfy the conditibff > A2V in the radiation/matter
epochs. The model (5.47) provides a representative exaniptd satisfies all the require-
ments discussed above.

It is worth mentioning that for the models that satisfy LGl guantityF’ = ¢=29% in
the matter/radiation eras is larger than its value at th8itter point. It is this property which
leads to an interesting observational signature for the @u&agon of state, as we shall see in
the next section.
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5.4 The equation of state of dark energy

In scalar-tensor DE models, a meaningful definition of epelgnsity and pressure of DE
requires some care. In this section, following Ref. [140t]14ve shall discuss the evolution
of the equation of state of DE, which could provide comparsswith observations. In the
absence of radiation, Egs. (5.12) and (5.13) can be wrigen a

3FoH® = ppg+ pm (5.66)

—2FyH = ppg + poE + Pm s (5.67)

where the subscript “0” represents present values and

1 .
pop = 5(1=6QY)FQ* +V —3HF = 3(F — Fy)H?, (5.68)

P %(1 —6Q*)F* =V + F + 2HF + (F — Fy)(3H? + 2H), (5.69)

which satisfy the usual conservation equation

poe + 3H (ppr + poe) = 0. (5.70)

We define the equation of state of DE to be

i PoE Weft
DE — — )
ppe 1 — (F/Fy)Qy,

(5.71)

where(),, andw.g are defined in Egs. (5.18) and (5.26), respectively. Integgdq. (5.14),
we obtain

pm = 3F, QO H2(1 4 2)3 (5.72)

whereQ is the present energy fraction of the non-relativistic matOn using Egs. (5.66)
and (5.67), we find

3r— (14 z)(dr/dz)
3r— 300 (1+ 23

Wpg = — (5.73)
wherer = H?(z)/HZ. Note that this is the same equation as the one used in Hingteiity
[9]. By defining the energy density,r and the pressurgpg as given in Egs. (5.68) and
(5.69), the resulting DE equation of state;y, agrees with the usual expression which can
be used to confront the models with SNla observations.

From Eg. (5.71) we find thatpy becomes singular at the poif¥,, = Fy/F. This
happens for models in which increases from its present valiig as we go back in time.
From Eg. (5.8) it is clear that’ decreases in time faPy > 0. We note that even when
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Figure 5.3: Figure depicting the evolution ot for @ = 0.1 andC = 0.95 with three
different values op (0.3, 0.55,0.7). The redshiftz. at which the divergence abpg occurs
decreases for smaller

the system crosses the poinat, = Fy/F physical quantities such as the Hubble parameter
remain continuous.

The models (5.47) satisfy this condition regardless of ige sf , which means that
the divergent behaviour afip, indeed occurs. We recall that in the contextf¢f?) gravity
(Q = —1/v/6) the modelsf(R) = R — x>+ /R™ (n > 0) correspond to a scalar field
potential that decreases toward larger.e., > 0 [161; 126; 37]. Hence, the divergence of
wpg, does not occur in such models because of the decredseabard the past.

For the models that satisfy\| > 1 initially such that|\| decreases with time, the solu-
tions are in the regime around the instantaneous fixed pdjrdyring the matter era and fi-
nally approach either the scalar-field dominated point (¢he de-Sitter point (e). In Fig. 5.3
we plot the evolution ofupg, for the case&) = 0.1 andC' = 0.95, with three different values
of p. In these cases the final attractor corresponds to the th-$iint (e) satisfying the
relation\ = 0.4. During the deep matter era the solutions evolve along th&tdntaneous”
fixed point (d) with(2,, close to 1 (because > 1). After A decreases to the order of unity,
the solutions approach the de-Sitter solution (e) With= 0 andwpg = weg = —1.

Figure 5.3 clearly shows thatpg exhibits a divergence at a redshiftthat depends on
the values of). Whenp = 0.3, for example, the divergence occurs around the redshit 3.
For compatibility with LGC we require > 0.53 from solar system constraints, and- 0.66
from EP constraints, as was shown in the previous subsectiothose cases the critical
redshift gets larger, which is out of the current SNla obaBonal range. Nevertheless, the
DE equation of state shows a peculiar evolution that chaffges wpr < —1 t0 wpg >
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—1 at a redshift around. = O(1). This cosmological boundary crossing, similar to the
divergence ofwpg, Is attributed to the fact that’ increases as we go back in time. It is
worth noting that this is a common feature among viable nmotleht are consistent with
LGC, as we have illustrated in the previous subsection. E\ee this phenomenon seems
to be present in other viable modifications of gravity, irtthg f (R) gravity [129] andf(G)
gravity [149], which we shall discuss in the next section.

Note that in the limit)) — 0 the potential} (¢), approaches a constant valiéy) —
Vo(1 — C'). Hence, the models are hardly distinguishable fromAR®M model. In these
cases the critical redshift., also goes to infinity. Thus, the effect of modified gravity is
more apparent for larget)| and smallep. In f(R) gravity, for example, the model given
by Eg. (5.45) can give rise to the redshift as close as a few [129] while satisfying the
LGC (p > 0.65). These cases are particularly interesting to place tigiinds on model
parameters from future high-precision observations.
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5.5 Matter density perturbations

In this section we discuss the evolution of matter densitupeations and the resulting
spectra for scalar-tensor theories. For this purpose walrde results of Sec. 2.4. In the
longitudinal gauge, under the redefinition= ® andy = —V, the perturbed FLRW line
element (2.118) is given by [97; 103; 104]

ds? = —(1 +2®)dt* + a*(t)(1 — 2¥)da'da’ . (5.74)

Under this redefinition, it proves useful to restate soméefdquations presented in Sec. 2.4.
In Fourier space, matter perturbations satisfy the follmpequations of motion [EQs. (2.122)-
(2.123)]:

2

. . k
(6pm/pm) =3V — ?QU (575)
b= (5.76)

wherev = awv,, IS a covariant velocity perturbation. The evolution eqoiatior the gauge-
invariant density contrast,,, derived in Eq. (2.131) becomes:
.. . k2 .. .
Om +2H0y,, + —® =3B+ 6HB, (5.77)
a

whereB = Hv + V¥ andé,, is defined in Eq. (2.137).
Moreover, the evolution equations for the scalar metritypbations, Eqgs. (2.140)-(2.143),
become:

2 . T
Elp +3H(H® + V) = 57 wpdP + §(w,¢902 — F,R+2V,)dp (5.78)
. . L2 . . .
_3HGF + <3H Y 3H? E) SF + (3HE — w@?)® + 3E(H® + W) + dp | |
. 1 _ . .
HO + = — <w<p5<p Y OF — HF — FO + pmv> , (5.79)
SF
Vo= 5.80
=, (5.80)
% 2 9V, — FR
0+ (3H +“2p) op+ | + (22) 2+ (M) 5
w a w /e 2 2w v
. . 1
— b+ <2¢5 Y 3H + &gb?) D+ 3p(HO + ) + —F,0R, (5.81)
w w

wheredy pertains to the scalar field defined in Eq. (53)= (1 — 6Q?)F and

. . 2 . 2
SR =2 [—3(H<I> + ) — 12H(H® + 1) + <k— - 3H) ®— 2%@} . (5.82)
a

a2
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As long as the masg/, defined in Eq. (5.65) is sufficiently heavy, such that itdfas the
conditionsM? > R andM? > A\?V (in order to ensuré)\/dy < 0), one can approximate
((2V, — F,R)/2w) , ~ M?/w in Eq. (5.81). While this quantity becomes negative for
Q? > 1/6 this does not imply that the perturbatiéa exhibits a negative instability. In fact
we shall illustrate below, that due to the perturbatdhon the right hand side of Eq. (5.81),
the effective mass produced is positive.

Generally, the solution of Eq. (5.81) consists of the sunhefmhatter-induced mode;, 4
sourced by the matter perturbation and the oscillating miadg., i.e.,0 = dping + 0Yosc-
The oscillating mode corresponds to the solution of Eq.1(bi8 the absence of the matter
perturbation.

In order to derive the approximate perturbation equatiansub-horizon scales, we use
the approximation according to which the terms contaiihy@?, 6 p,,,, 6 R andM? dominate
in Egs. (5.78)-(5.81). This method was used in Refs. [9; 80; 127] in the nearly massless
case (/? < H?). In the context off (R) gravity we saw in Sec. 4.3.4 that this approximation
is extremely accurate even in the massive cagé > H?) as long as the oscillating degrees
of freedom do not dominate over the matter-induced mode [69]

In order to extract the peculiar features of the matter pbétions in scalar-tensor gravity
theories, let us first concentrate on the matter induced mateler the above-mentioned
approximation, we havéR;,q ~ —2(k*/a*)[¥ + (F,/F)dpina) from Egs. (5.80) and (5.82),
where the subscript “ind” represents a matter induced mdben from Eq. (5.81) we find

2QF k2
Lo — . .
O%ind = (5731 — 207 F + M2 @ (5:83)
Using Eg. (5.78) and (5.80) we obtain
2 27,2 o 2 2
Ry o _Oom (B/a)(1=2Q°)F + M? (5.84)
a? 2F (k%2/a®)F + M?
Koo 8o (/e (1+20%F + M2
a? o 2F (k%/a®)F + M?

In the limit M?/F > k?/a* one has(k?/a®)® ~ —6p,,/2F ~ —4xGNIp,,, Which re-
covers the standard Poisson equation. In the linitt/ ' < k?/a* one has(k?/a*)® ~
—(6pm/2F)(1 4 2Q?), where the effect of the coupling becomes important.

From Eg. (5.79) we find thatis of the order ofF" H®/p,,,. Using the fact thatk?/a?)®
is of the order of—(1/F)dp,, we can estimate tha8Hv/(6p,m/pm)| ~ (aH)?/k? < 1.
Hence we havé,, ~ dp,./p. in EQ. (2.137). Similarly the terms on the right hand side
of Eq. (5.77) can be neglected relative to those on the lefdtsade, which leads to the
following equation for matter perturbations:

Om + 2H 0y, — AT Gt prn0m =~ 0, (5.85)
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where the effective “cosmological”’ gravitational cougiis given by

1 (k*/a*)(1+2Q*)F + M?

ot = 5o (k2/a®)F + M? (5-86)
We can rewrite Eq. (5.85) by using derivatives with respect't

d%,, (1 3 Ao, 3 . (K*/a®)(1 +2Q*)F + M?

anz * <§ N Eweﬁ) a2 ey E e =Y (587

From Eq. (5.84) the effective gravitational potential aBregl in Eq. (4.79) is given by

a* pm
Do ~ —@?5% (5.88)
This coincides with the analogous result in tfieR) theory (4.80). The absence of the
coupling in Eg. (5.88) indicates that the weak lensing inatisgalaxies and the ISW effect
in the CMB, both of which depend ob.¢, are not affected by).

Furthermore, in order to confront models with weak lensibgarvations, it is convenient
to know the form of the anisotropic parametedefined in Eq. (4.81). From Eg. (5.84) we
obtain

4Q%(k*/a®)F

1= 02/ (1 =20 F + 02 (5:89)

which vanishes in the limif/?/F > k?/a?, but approaches a valug— 4Q?/(1 — 2Q?)
in the limit M?/F < k?/a®. We also introduced the parameterdefined in Eq. (4.82). It
follows that> ~ 1/F, which shows that the effective potential can be writtenbas ~
—(a®/2k?) pndm 3. Hence, unlike the case of Einstein gravity the weak lenpistgntial in
these scalar-tensor models of gravity is affected by thegésiinX as well asj,,.

During the matter era the fieldy, sits at the instantaneous minima characterised by
the condition (5.64). This is analogous to the situationstbered in Sec. 5.3.1, where for
the models (5.47) the field value at the potential minimum tredmass squarea’, are
given by Egs. (5.54) and (5.55), respectively. Hence, weslihg relationgy o« pﬁ# and
M? o< m?, o pﬁ,?z during the matter-dominated epoch. The figld can initially be heavy
so as to satisfy the conditiol/?/F' >> k*/a* for the modes relevant to the galaxy power
spectrum.01A Mpc~! < k < 0.2hMpc™t). Depending upon the model parameters and the
mode,k, the mass squared/?, can be smaller thak? /a* during the matter era.

Let us now consider the behaviour of the oscillating modentyggs. (5.78) and (5.80)
under the conditioi? /a? >> H?, the gravitational potentials faip,, = 0 are expressed by
dpesc- Consequently, from Eq. (5.82), the perturbatid® corresponding to the oscillating
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mode is given by

kQ
0 Ryse == 60 (&,bosc + 3H6Pose + g&posc) ) (5.90)

Substituting this into Eq. (5.81), we find

0Posc + 3H 0 pose + <k—z + —2) 0 Posc > 0, (5.91)
a F
which is valid in the regimeg/? > {R,\*V}. Equation (5.91) clearly shows that the
effective mass for the oscillating mode is positive evenér> 1/6.

In the following we shall confirm that as long as the oscifigtmode does not initially
dominate over the matter-induced mode, it remains subdammbihroughout the cosmic his-
tory. As before, we shall discuss the two casesM?)/ F > k*/a* and (i) M?/F < k*/a?,
separately.

5.5.1 Thecaseé\/?/F > k*/a®

In this regime the matter perturbation equation (5.87) ceduo the standard one in Einstein
gravity. The evolutions oé,, and®.¢ during the matter era, characteriseddby; ~ 0 and
Q,, ~ 1, are described by Eq. (4.90).

For the model (5.47) the matter-induced mode of the fieldupestion evolves as

2(4—p)
o t30-p)

0pm

M2

0Pina X

When the frequency,, = /k2/a? + M2/F changes adiabatically (i.éw,/w2| < 1), the
WKB solution to Eq. (5.91) is given by

1
0 Pose X a—3/27 cos </ wwdt) . (5.92)
%)

For the model (5.47), in the regime? /' >> k? /a?, this oscillating mode evolves as
5()008C X t2(1p_p) COs <Ctiﬁ) b (5-93)

wherec is a constant.
Now since the background fielg, during the matter era evolves @sx tl%p, we find

0 _ 4= 1
%P o123 4 ot A cos (ct 1;,) . (5.94)
©

This indicates that the matter-induced mode dominatestbeenscillating mode with time.
While the solution of the oscillating mode in Eq. (5.94) idigdaonly in the WKB regime
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(\ww/wg < 1), we have checked thaty approaches a constant value with oscillations at
the later stage in which the WKB approximation is violatedenkle, as long as the oscil-
lating mode is not overproduced in the early universe, itag® sub-dominant relative to
the matter-induced mode. Note that this property also haloigg the radiation-dominated
epoch.

5.5.2 Thecase/?/F < k?/a®

In this regime the effective gravitational coupling (5.86yiven byG.¢ = (1 + 2Q?)/8x F,
which means that the effect of modified gravity becomes ingmr From Egs. (5.87) and
(5.88) we obtain

5 o TR and B o T (5.95)

which grow faster than the solutions given in Eq. (4.90).sTleads to changes in the matter
power spectrum of the large scale structure as well as inSki¢ ¢ffect in the CMB.

The field perturbationjy, is the sum of the matter-induced mode given in Eq. (5.83) and
the oscillating modéy,s. given in Eg. (5.91). Using the WKB solution (5.92) for thetat
mode, we have

\/25448Q2 —

dp =cqt R ot =3 cos(ct'?) . (5.96)
Since the frequency has a dependeficg/'w?| ~ H  1/t, the WKB approximation tends
to be accurate at late times. Equation (5.96) shows that #teerrinduced mode dominates
over the oscillating mode with time.

5.5.3 The matter power spectra

The models (5.47) have a heavy magk, which is much larger tha® in the deep matter-
dominated epoch, but which gradually decreases to becortteeadrder of H around the
present epoch. Depending on the modeshe system crosses the poit’/ ' = k*/a* at
t = t; during the matter era. As shown above, in the contexf(d?) gravity this indeed
occurs for the modes relevant to the galaxy power spectr@j fEince for the model (5.47)
M evolves asM o t 17 during the matter era, the timg has a scale-dependence given
by t; o k;_%. Whent < t;, the evolution ob,, is given by Eq. (4.90), but far > ¢, its
evolution changes to the form given by (5.95).

The growth rate of matter perturbations, defined in Eq. )18 s = 1 in the regime

M?/F > k?/a®. After the system enters the reginé?/F < k*/a* during the matter-
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dominated epoch, we have

V25 148Q° — 1 (5.97)

4

During the matter era the mass squared is approximatelydaye

2—p

1 - P Pm -p
2 ~oo— 2 _
M7= (2Pp0)1/(1—P)Q (Vo) Vo (5.98)

Using the relatior,, = 3FOQ,(2)H§(1 + 2)3, we find that the critical redshift;,, at timet;,
can be estimated as

( k 1)2(1‘p) 2PpC 1 Vi
2 — —
‘ aoHo Q (1—p)' 7 (37,002 H3

1
4—p

1, (5.99)

whereq, is the present scale factor. The critical redshift incredeelargerk /(agHy). The
matter power spectrum, in the linear regime, has been obddov the scale8.012 Mpc—* <
k < 0.2h Mpct, which corresponds t80agHy < k < 600aqH,. In Fig. 5.4 we plot the
evolution of the growth rates, for the modet = 600ayH, and the coupling) = 1.08 with
three different values gf. We find that, in these cases, the critical redshift existghen
regionz, 2 1 and thatz, increases for smaller. Whenp = 0.7 we estimate;, = 3.9, from
Eqg. (5.99), which is consistent with the numerical resuFig. 5.4. The growth rate reaches
a maximum value,,., and then begins to decrease around the end of the matter era.

If we use the criteriors < 2 for the analytic estimation (5.97), we obtain the bound
@ < 1.08. Figure 5.4 shows that,.. is smaller than the analytic value = 2 (which
corresponds t@) = 1.08). Whenp = 0.7, for example, we find that,,., = 1.74. For the
values ofp that are very close to I,,., can be smaller than 1.5. However these cases are
hardly distinguishable from th& CDM model. In any case the current observational data on
the growth rate is not enough to place tight bounds)oendp.

The growth of matter perturbations continues up to the tigneharacterised by the condi-
tiona = 0. Attimet, the matter power spectrud,, = (k*/27%)|d,,|* exhibits a difference
compared to thd CDM model given by

Ps, (ta)  [ta

P({\CDM - E
The CMB power spectrum is also affected by the non-standastligon of ¢4 given in
Eq. (5.95). This mainly happens for low multipoles becausthe ISW effect. Since the

smaller scale modes in the CMB relevant to the galaxy powectspm are hardly affected
by this modification, there is a difference between the spettdices of the matter power

3

QQ,
2(%‘% (1=p)(v/25+48Q%—5)
k T=p . (5.100)
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Figure 5.4: The evolution of the growth rate, of matter perturbations in terms of the
redshift, z, for Q = 1.08 andk = 600aqH, with three different values gf. For smallerp
the critical redshiftzy, gets larger. The growth rate, reaches a maximum value and begins
to decrease after the system enters the accelerated epwcdméllerp the maximum value
of s tends to approach the analytic value given in Eq. (5.97).

spectrum and of the CMB spectrum on the scéles0.01h Mpc™:

Anty) = L= (V25 +48Q7 = 5). (5.101)

4—p

This reproduces the result ¢f R) gravity derived in Sec. 4.3.5. In Ref. [129] it was shown
that this analytic estimation agrees well with numericalutes except for large values pof
close to unity. This reflects the fact that for largethe redshiftz = z;, at timet = ¢,
gets smaller (being of the order of = O(1)) so the approximations used in deriving the
solutions (5.95), based an.s = 0 and(2,, = 1, break down. In Ref. [129] it was further
shown that the differencAn(t,) integrated to the present epoch does not show a significant
difference compared to (5.101).

Because we do not, at present, have any observationallifisagt evidence to suggest
the presence of a difference between the spectral indickeedEMB and the matter power
spectra [162], in Fig. 5.5 we plot the constraints comingrfrthe criterionAn(t,) < 0.05.

If |@| is smaller than 0.1, this condition is trivially satisfiedorHarger|Q)| the constraints
on the values op tend to be stronger. In the case pfR) gravity we obtain the bound
p > 0.78, which is stronger than the constraint coming from the \tiolaof the equivalence
principle. If we adopt the criteriod\n(¢,) < 0.03, the bound orp becomes tighterp >
0.87. Meanwhile, if|Q| is smaller than the order of 0.1, the EP constraint givesitigdst
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Figure 5.5: The allowed region of the parameter space in(th@) plane. We show the
bounds coming from the conditiosn(t,) < 0.05 ands < 2 as well as the solar-system
constraint (5.59) and the EP constraint (5.63).

bound. If we use the criterion < 2 for the analytic estimation (5.97), the coupling), is
bounded from above] < 1.08).

In Fig. 5.5 we show the allowed parameter space consistéhtourrent observational
and experimental constraints. The constraints coming th@emSW effect in the CMB due to
the change in evolution of the gravitational potential doprovide tighter bounds compared
to those shown in Fig. 5.5.
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5.6 Summary

We have considered a class of dark energy models based an-ssmador theories given by
the action (5.9). In these theories, expressed in the Emstgame, the scalar fielg is cou-
pled to the non-relativistic matter with a constant couplih The action (5.9) is equivalent
to the Brans-Dicke theory with a field potentid| where the Brans-Dicke parametegp,

is related to the couplingy, via the relatior8 + 2wpp = 1/(2Q?). These theories include
the f(R) gravity theories and the quintessence models as speces edgre the coupling is
given by@ = —1/+/6 (i.e.,wgp = 0) and@ = 0 (i.e.,wpp — o0), respectively.

We began by studying the background cosmological dynami@homogeneous and
isotropic setting, without specifying the field potenti&l,y), but under the assumption that
the slope of the potentiah = —V,/V/, is constant. The varying case can also be studied
by treating the fixed points as instantaneous ones. We fdueitdfdr a range of values of
the coupling constant()|, not much smaller than unity the matter era can be realised by
the solution corresponding to the point (d) in Eq. (5.31)jsatito the condition\/Q > 1.
Interestingly the presence of a non-zero coupling leadsde-&itter solution characterised
by the conditionV,, + QF R = 0 (i.e., A = 4Q)), which can lead to late-time acceleration.
(The condition for the stability of this de-Sitter solutiengiven byd\/d¢ < 0 at the fixed
point.)

In the absence of the scalar-field potential, solar-sysests tconstrain the coupling),
to have values in the rand€)| < 2.5 x 1073, The presence of the potential, on the other
hand, allows the LGC to be satisfied for larger valuegf if the field is sufficiently heavy
in the high-curvature region where gravity experimentsaaeied out. We found that even
when|Q)| is of the order of 1, a thin-shell can form inside a sphericayimmetric body such
that the effective coupling@).«|, defined in Eq. (4.28) becomes much smaller than 1.

We then considered a family of models given by the scalad-pettentials (5.47) which
generalise the corresponding potential in thek) theory, while at the same time satis-
fying the LGC for appropriate choices of the parameters. drtipular we found that as
p approaches unity, the mass of the field, becomes larger, thus allowing the LGC to
be satisfied more easily [see Eq. (5.55)]. Using the comégraioming from solar sys-
tem tests as well as compatibility with the equivalence @pie, we obtained the bounds
p>1-5/(9.6 —log,,|Q]) andp > 1 — 5/(13.8 — log,,|@|), respectively. Inf(R) gravity,
for example, these constraints correspong te 0.50 andp > 0.65 respectively.

During radiation/matter eras the field, needs to be very close to 0 for the compatibility
with LGC, which results inF’ = ¢=2¢¥ ~ 1. Figure 5.5 summaries the regions of the param-
eter space in thép, Q) plane where the corresponding potentials lead to modelpatibie
with the LGC.

For these models we found that the quanfityends to increase from its present value
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as we go into the past, which results in the equation of staieof dark energy becoming
singular when(2,,, = F,/F. This behaviour is similar to that found fgt(R) and f(G)
theories.

We also studied the evolution of density perturbationsliese models in order to place
constraints on the coupling), as well as on the parameters of the field potential. In the
deep matter era the masH,, of the scalar field is sufficiently heavy to make these models
compatible with LGC, but it gradually gets smaller as theuwdnse enters the accelerated
epoch. For those models compatible with the galaxy poweatsj®, there exists a “General
Relativistic” phase during the matter era characterisethbyconditionV/? /F >> k? /a®. At
this stage the matter perturbatioy and the effective gravitational potentidls evolve as
6m o< t2/% and®.4 = constant, respectively, as in the case of Einstein gravity. Aroural th
end of the matter-dominated epoch, the deviation from Eingjravity can be seen once
M?/F becomes smaller thak?/a?. The evolution of perturbations during this “scalar-
tensor” regime is given by Egs. (5.95). Under the critesoa Sm/Hém < 2 for the growth
rate of matter perturbations, and with the use of the arabgtimation (5.97), we obtain
the bound? < 1.08. The differenceAn of the spectral indices of the CMB and the matter
power spectra gives rise to another constraint on the madahpetep and the coupling).

Figure 5.5 illustrates the bounds derived from the condgidn < 0.05 ands < 2,
as well as those from local gravity constraints. The modeth y close to 1 satisfy all
these requirements. It will certainly be of interest to placore stringent constraints on the
values ofp and(@ by using the recent data of the matter power spectrum, CMBLgintan
alpha forest. Moreover, the future surveys of weak lensimy fimd some evidence of an
anisotropic stress between the gravitational potenftaad W, which can be a powerful tool
to distinguish modified gravity models from td&DM cosmology.



Chapter 6

Cosmological scaling solutions in
generalised Gauss-Bonnet gravity

In this chapter we consider the cosmology of models basedctasa of generalised theories
with an action of the form (2.54):

S = /d4x\/—_g (% + f(g)) + S, (6.1)

where the Gauss-Bonnet (GB) invariagt,is defined in Eq. (2.53). We recall that in four
dimensions, the GB term is a topological invariant and itticing a term proportional t6
into the Einstein-Hilbert action does not modify the dynesniln this chapter we investigate
the existence and stability of cosmological power-lawisggdolutions derived from theories
of the type (6.1) in the presence of a perfect fluid matter s®(ir1]. Scaling (attractor)
solutions play an important role in cosmology, since theglda the asymptotic behaviour
and stability of a particular cosmological background todatermined. Moreover, they
provide a framework for establishing the behaviour of mogaeyal cosmological solutions
[22; 25; 163; 164; 165].

6.1 Cosmological Field Equations

As was discussed in Sec. 2.2.4, the action (6.1) may be esqutés an equivalent form
[166]:

R
5= [dev=a (5 - Vo) 1)) + 5., 6.2
where the scalar fields, is defined implicitly by

h(o) = —F(G) (6.3)

139
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for some functiorh(¢) and has an effective self-interaction potential
V(¢) =GF(G) - f(9), (6.4)

whereF = 0f/0G. Eq. (6.2) may be interpreted as an effective ‘scalar-teétiseory, where
the scalar field has a vanishing kinetic term.

To study cosmological models based on action (6.1), one muepd directly by varying
the action to derive the field equations or, indirectly, byiag the equivalent action (6.2).
We employ the latter approach in the present work in view ®pidtential simplicity. The
field equations in this case take the form given in Eq. (2.84g equation of motion for the
scalar field takes the form

V(@) + hy(9)G =0. (6.5)

(This is Eq. (2.81) which we restate here for convenience).

The aim here is to study the dynamics of the isotropic andapatlat FLRW universe
sourced by a perfect barotropic fluid with an equation ofesfzrameternw,, = pu./pm-
For this spacetime, the GB invariant is given gy= 24H2(H + H?). The Friedmann
and Raychaudhuri equations derived from Eq. (2.84) forlhaiskground are then given by
[167; 31]

3H? = V(¢)+ 24Hh + ppn, (6.6)

(2ﬁ + 3) H* = V(¢)+8H*h+16H°h (1 + ﬁ) — Pm, (6.7)

respectively, and the scalar field equation (6.5) reduces to
Vi + 24h 4H*(H 4+ H*) = 0. (6.8)

It proves convenient to interpret the GB gravitational teram the right-hand side of
the Friedmann equation (6.6) as an effective energy dersith thatyg = Tg + V(¢),
whereT; = 24hH? plays the role of a kinetic energy. It is then natural to idiroe the
dimensionless variables

_ V()

=S 2= 8Hh, (6.9)

U
and the fractional energy densities

_  Pm
Qn = 32 =1—-vy— v, (6.10)
Qg

Y1+ Yo (6.11)
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The background field equations (6.6)-(6.8) can then be sgprkin terms of these variables
such that

d
d—]y\; = 2ey; — (1 —¢€)yq, (6.12)
dya

wheres = —H/H? andN = Ina.

6.2 Cosmological scaling solutions

We wish to identify the class of GB theories that admit s@ainlutions such that each of the
terms in the Friedmann equation (6.6) scales at the saméefate p,, o< V(¢) o Tg [168].
These conditions result in a power-law solution to Egs. )¢668) of the forma o t'/¢,
wheres = constant. For such a scaling solution, it follows from Eg. (6.8) that

1
V= _&W}W (6.14)
whene # 1, wherea is a finite constant. Integrating Eq. (6.14) then implieg tha

h= % + 5, (6.15)

where( is an arbitrary integration constant.

Relating the function¥(¢) andh(¢) in this way is equivalent to specifying the form of
the GB function,f(G), via the definition given in Eq. (6.4). Indeed, substitutifgy (6.15)
into Eq. (6.4) results in the first-order, non-linear di#fatial equation

a I
(g@ - f) <@ " 6) —a (6.16)

Eqg. (6.16) is an example of Clairaut’s equation [169] and tmagolved in full generality by
differentiating with respect tg:

af |/ df al
d_gQ[(Em) _5] 0 (6.17)

Eqg. (6.17) is trivially solved byf(G) = ao + a1 G, wherea; are constants. However, this
simply corresponds to the introduction of a cosmologicaistant in the action (6.1) and is
not physically interesting to the present discussion. é@Rebat a contribution of the form
f o G is also uninteresting since the GB term is a topologicalriave). On the other hand, a
singular solution to Eq. (6.16) with no arbitrary constacda be found by setting the square
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bracketed term in Eq. (6.17) to zero and substituting thelrésto Eq. (6.16). We find that
f(G) = £2Vag, (6.18)

where we have specified = 0 without loss of generality. Moreover, requiring the action
(6.1) to be real implies thatG > 0.

Egs. (6.15) and (6.18) represent the necessary and suffcmaditions for the existence
of power-law scaling solutions, wheee= constant. More general solutions to the field
equations, where is time-dependent, exist for this model. If the cosmololoedaviour of
the model (6.18) is to be determined, the coupled diffea¢muations (6.12)-(6.13) must
close. This implies that the parametemust be expressible as a functionyefandy, only.
When Eg. (6.15) is satisfied, we find that

3 2

=1—-—u. 6.19
€ 8ay1 ( )

Hence, substituting Eq. (6.19) into Egs. (6.12)-(6.13)dgehe plane autonomous system:

di 3 4 3 o

- I S 6.20
dy 3 3
—d]\? = 2(y2 - 1) - S—nyyg + @yf + 3(1 + U]m)(l — Y1 — y2>‘ (621)

Before concluding this section, it should be remarked thatdquivalence between ac-
tions (6.1) and (6.2) does not apply for the special case 1 (y; = 0), corresponding to
the coasting solutiony o ¢. In this case, integration of Eq. (6.8) would yiéld¢) = V, =
constant and the solution to Eq. (6.4) would then be givent{y) = —V; + ¢;G for some
constantc;. This disparity can be traced to the singular nature of thesttog solution for
the model (6.18). Specifically, the Friedmann equatiorveerdirectly from action (6.1) for
this model is given by

H?(2H® — H
3H? = HF@W + Pim (6.22)
and the term originating from the GB contribution is ill-dedd whens = 1 (y; = 0).
Consequently, we do not consider this solution in the phésgemnalyses of the following
sections.
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6.3 Vacuum solutions

In this Section, we consider vacuum solutions whege= 0 andy; = 1 — y,. The pair of
equations (6.20)-(6.21) then reduces to the one-dimeaksystem

dyl . 3 3 2
d—N = (2 - %yl - %Zh) . (6-23)

There exist two power-law solutions when+ 0:

1 1

which we denote a®*, respectively. The reality of the fixed points requires that>
—9/192. The power of the expansion can be expressed in terms of fibetieé equation of
state parameter

2
Wefs = -1+ 35 (625)

such thata(t) oc t2/B0+wers)l |t is determined by the value of the GB coupling parameter,
«, and substituting Eqgs. (6.19) and (6.24) into Eq. (6.25)liesghat

1
Wep = 5 | 400 = 3£ VO T 192a] , (6.26)

where thet/— corresponds to the poinis®, respectively. This dependency of the effective
equation of state on the GB parameter is illustrated in Figy. Bhe solution/* corresponds
to an inflationary cosmology when > 0 and the exponential, de Sitter solution arises when
a = 3/8. The solutionV~ is in a super-inflationary regimeu(;; < —1) for &« > 0. When
a < 0, the effective equation of state corresponds to that of aa-stiff fluid (w.;; > 1).
Our results are in line with the recent conclusions of Ref0]1 where a study of the late-
time cosmology based on the mogéli) « —G" was made with the field equations derived
directly from action (6.1).

The eigenvalues associated with the equilibrium polittsare given by

3

1
pr=—4—-—4+ —/9+192a. (6.27)
160 16«

The solutionV* is stable fora. > —9/192. The solutionV~ is a stable point when > 0
and unstable for-9/192 < a < 0.
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Vas

a a

Figure 6.1: lllustrating the effective equation of statg ; for the vacuum solution¥* and
V. Requiring that the fixed points are real yields the conditio> —9/192. The left-hand
panel corresponds tB*, which shows thaV* is an accelerating solution far > 0 and
corresponds to the de Sitter solutiorif= 3/8. The middle panel correspondsito when
a < 0 and in this regimev.;; > 1. The right-hand panel correspondsito whena > 0

and in this regimev s < —1.

6.4 Non-vacuum solutions

In this Section, we study the background dynamics of modateth on GB theories of the
type (6.18) in the presence of a perfect fluid. The vacuuntismis)’* remain as equilibrium
points of the autonomous system (6.20)-(6.21):

1 1 3 1
(yl, yg) = <—§ + 6\/9 + 192a, 3 ¥ 6\/9 + 19204) . (6.28)
In addition, there exist two scaling solutions, whéxg and(); are constants:
2¢/—=3a(1 + 3w,,) 120(1 + wyy)
) - :l: bl :l: ) 629
(Y1, y2) ( 3 \/—3a(1 T 3wn) ( )
2\/—3a(1 m 12a(1 + w,,
O - 1% V=3a(1 + 3w,y,) a(l+wy) | (6.30)
3 V=31 + 3w,,)
24/ — 1 m m
G = + V=3l + 3w,,) N 12a(1 + w,y,) (6.31)
3 Vv —=3a(1 + 3w,y,)

andw,;; = w,,. We denote these solutions Y.
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Figure 6.2: lllustrating the nature of the equilibrium pinv* (left-hand panel) and’~
(right-hand panel) in the parameter space spanneduhy «). Both fixed points are real if

a > —9/192. On the boundary (denoted by the solid line) that distingessthe stability of
the fixed point’*, one of the eigenvalugs, vanishes. This is indicated in the figure by a
change in colour. The dotted line in the left-hand panelesents the invariant sub-manifold
y1 = 0. In the case of the point—, neither of the eigenvalues vanishes in any region of the
(wm, ) plane.

The eigenvalues associated with the equilibrium polittsare given by

1
o= o [48(3 + wy) + 9 F 3v0 + 192a] + Af (6.32)
1
pE = o [48a(3 + wp) + 9 F 3V9 + 192 — A} (6.33)
1
M= o [256a2(1 + 3wy, )? + 288a(1 + w,,) + 18 (6.34)

1/2
F32a(1 + 3w,,)V9 + 192a F 69 + 192a] .

The stability of these vacuum solutions is altered when aenaburce is introduced into

the system and depends on both the GB parametand the perfect fluid equation of state,
w,,. This dependency is illustrated in Fig. 6.2. The solid linggresent the regions where
the nature of the equilibrium points changes as the paramaiiges are altered. The stability
of YV~ is determined by the sign of the GB parameterOn the boundary distinguishing the
nature of the fixed point*, one of the eigenvalue;sj2 vanishes. To analyse the stability
of the equilibrium point for these particular choices of graeter values would require a
second-order analysis, which is beyond the scope of thepregork.
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The eigenvalues associated with the scaling equilibriumtpss* are given by

n 3

pt = 2w 1) 47 (6.35)
3

pE = 1)t (6.36)

&+ = i +8a(1 + 3wy)/—3a(1 + 3wy) (6.37)

1/2
—a? (135w, + 306w, + 71)

The stability of these fixed points is illustrated in Fig. .61he points are real in the region
of parameter spacey(1 + 3w,,) < 0. Furthermore, they are only physically meaningful
if Q, =1—1y —y> > 0. This results in a further restriction in tHev,,, a) plane after
substitution of Eq. (6.30).

The top two panels of Fig. 6.3 correspond to the scaling e+ wherey; > 0 and
the bottom two panels correspond $o wherey; < 0. The pointSt is either a stable
node or a stable spiral. The poifit is always a saddle. On the cur¢®, = 0, one of the
eigenvalues of* vanishes.

To illustrate the scaling dynamics, let us consider the ifipecase wherga, w,,) =
(0.05,—0.6). At this location in parameter space, there exist two eluiilim points: the
saddle poinV* and the stable nodg*. The basin of attraction fa* is shown in Fig. 6.4.
As a second example, we consider the casev,,) = (—0.005, —0.05), where there exist
four equilibrium points: an unstable vacuum solutidn, a saddle poinS—, a stabley*
and a stable spir@f*. The spiral nature of the poit* is illustrated in the phase portrait of
Fig. 6.5, where the initial conditions were specified tdhge= ()¢ = 0.5.

INote that the poinV~ also exists but this occurs in the regign< 0. Stable scaling solutions arise only
fory; > 0 and, since; = 0 is a separatrix, a trajectory beginning in the regign< 0 will not be able to reach
ST. We therefore choose the initial conditions in Fig. 6.4 stiwty; > 0. This is equivalent to choosing the
negative sign in Eq. (6.15).
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6.5 Summary

In this Chapter we have investigated the existence andlisyadifi cosmological power-law
scaling solutions sourced by a barotropic fluid when an gmpate function of the Gauss-
Bonnet topological invariant is introduced into the Eimstelilbert action. It was found that
the general class of such theories that admit power-lawtisolslis given by Eq. (6.18), i.e.,
f(G) = +£2v/ag for some constant coefficient,, By exploiting an equivalence between
generalised Gauss-Bonnet gravitational theories and r@symonding higher-order, scalar-
tensor theory, it was further shown that the Friedmann eguogtfor this class of model
can be written in the form of a two-dimensional dynamicaltegs The stability of the
equilibrium points for both vacuum and non-vacuum models e&tablished. In the former
case, the GB parameter, determines the effective equation of state parameter.nbof
vacuum solutions, the nature of the critical points dep@mdsotha and the fluid equation of
state parametet,,,,. The regions of parameter spage w,,) that admit stable non-vacuum
scaling solutions were identified.

The models we have investigated do not admit a transitiom faodecelerating to an
accelerating phase of cosmic expansion. However, our atmsrchapter has been to focus
on power-law solutions rather than develop a phenomencdbgiodel of generalised Gauss-
Bonnet gravity as a candidate for dark energy. Power-lawtgwis are of interest since they
can be regarded as approximations to more realistic mobhgtarticular, phenomenological
models could be constructed where the parametes given by some function ofj (or
equivalently the scalar field), such thatv is slowly varying for much of the history of the
universe, but at some epoch undergoes a change in sign.nicigdeg, this could cause the
universe to enter a phase of accelerated expansion. It vbeultteresting to develop specific
models of this type, along the lines outlined in Ref. [171].

For a number of explicif (G) models, it has recently been shown that a transition from
decelerated to accelerated expansion is possible [17H.viltility of such an evolution is
subject to the conditiod? f /dG* > 0, which ensures the stability of a late-time de-Sitter so-
lution as well as the existence of standard radiation andemdbminated epochs. Through
a phase space analysis, the conditions required for theeegss of viable cosmological dy-
namics are generalised in Ref. [149]. In analogy witlR) gravity [43], the authors of
Ref. [149] study then(r) curves [wheren = G f gg/fg andr = —Gf g/ f] of f(G) models
and find that in order for a standard matter era to exist thelitons

need to be satisfied. The second condition ensures that ttierrdaminated epoch is a
transient phase. It was found that models of the tyf@) = a(G* — 3)?, wherea, (3, p
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andgq are positive constants, can produce cosmologically vibjectories with a de-Sitter
epoch as the final attractor. In fact, the modé}) = «(G1 — j3)5 was studied explicitly
[149]. We note that in the regime wheli@| is much larger than the order of the present value
Go, this model reduces to the modglG) Gz, considered here.

Given that models which admit viable background cosmoklgilynamics do indeed
exist, the next step would be to place observational boumdghese models using LGC
and matter density perturbations. Interestingly, as indh&e off(R) gravity and scalar-
tensor gravity, the oscillating mode and the deviationugfz is found to occur in viable
f(G) models (see Ref. [171] and Ref. [149], respectively). It ldaalso be interesting to
investigate whether or not these features are generic bdevMG theories.
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Figure 6.3: lllustrating the stability of the scaling edjoiilum pointsS= in the parameter
space spanned kyv,,, a). The region of parameter space is restricted by the reqainém
that the equilibrium points are real(1 + 3w,,) < 0, and also correspond to physically real-
istic solutions wheré,, > 0. The shaded areas depict the regions of parameter space wher
the solutions are unphysical. These restrictions imply tih@ analysis can be separated into
regions wherex > 0 (left-hand panels) and < 0 (right-hand panels). The regions of pa-
rameter space where the fixed points correspond to eithedidlespoint or a stable/spiral
node are identified. On the lirf¢,, = 0, the eigenvalug” = 0 (for the scaling pointS+)
whena > 0. Converselyu, = 0 (for the scaling poins—) when(2,, = 0 anda < 0.
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Figure 6.4: lllustrating the dynamics of the model (6.18) fbe particular case where
(o, wy,) = (0.05,—0.6). The left-hand panel depicts the phase space, where thghgtra
line y; = 1 — y, corresponds to the vacuum solutify), = 0. The red dot represents the
scaling fixed poinS*. For the range of initial conditions chosen, all non-vacyphysically
acceptable solutions are attractedto. The right-hand panel depicts the evolution of the
fractional energy densities of the perfect fluid,,, and the GB contributiorf)g, for the ini-
tial conditions(2,, = Qg = 0.5. It is seen that the fractional densities asymptote to @ost
values at late times, thus indicating that the solution &isg.
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Figure 6.5: lllustrating the dynamics of the model (6.18) fioe particular case where
(a, wy,) = (—0.005,—0.05). The left-hand panel depicts the phase space for this sognar
whereas the right-hand panel depicts the evolution of thaifsnal energy densiti¢s,, and
Qg. The initial conditions were chosen such thgt = Qg = 0.5. At late times, the frac-
tional energy densities of the fluid and GB contribution temdonstant values.



Chapter 7
Summary

The main focus of this thesis has been to investigate the @ogcal viability of a number
of classes of modified gravity theories which includ&R) gravity in both the metric and
Palatini formalisms, scalar-tensor gravity and genegdliGauss-Bonnet gravity. In order to
study the viability of concrete models we considered fous £ observational constraints
provided respectively by the requirement of stability, sistent background cosmological
dynamics, local gravity experiments and evolution of digngerturbations. We found that
these constraints impose stringent restrictions on theleie@nge of models.

In the case off (R) gravity in the metric formalism, the conditions (4.14)48) required
for viable background dynamics, together with the stapddnditions (4.43), greatly reduce
the range of allowed models. For the special classes of rdkat satisfy these conditions
[for instance those given by Eq. (4.37)], the most stringrmistraints are imposed by solar
system tests. The compatibility of models with such tedgsiires the formation of a thin-
shell, which is developed under the condition= Rf rr/fr < 1 (in an environment
where local gravity tests are carried out). Cosmologicthly condition [i.e., (4.39)] implies
that viable models need to be very close toAlt&@DM model during the radiation and matter
dominated epochs. The study of density perturbations,®ottier hand, provides bounds on
the present value of the deviation parameterwhich is constrained to be(z = 0) < 0.1.
Hence, althoughv is constrained to be very small during the matter era, a h@tdviation
from the ACDM model can occur around the present epoch.

Unlike the metric formalism, the stability conditions (8)4lo not apply tof (R) theories
in the Palatini approach. In addition, compared with therrmébrmalism, the background
dynamics and LGC only provide weak bounds on the parametefhe density perturba-
tions, however, provide stringent constrainjts] < 10~°-10~*. Consequentlyf (R) models
in the Palatini formalism that are consistent with obseoret are practically indistinguish-
able from theACDM cosmology even at the present epoch. This follows dukdgeculiar
evolution of the matter perturbations in the regifge> 1.

Comparing these results with those obtained using the Lypp&ach for studying den-
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sity perturbations (outlined in Chapter 3), we find that tmeanventional evolution of,,

(i.e., a rapid growth whem:» > 0) does not occur. This discrepancy, therefore, suggests
that one should be cautious in employing the LuSS approa@mwstudying density pertur-
bations in the Palatini formalism, especially in regimesevei¢| > 1. As k/a decreases,
however, the discrepancy between the LuSS and lineans@iiS) approaches becomes
less pronounced. We find that in the long-wavelength likit/¢* < H?), the LuSS and
KKS approaches are compatible for tfieR) models summarised in equations (3.23) and
(3.24). A particular case of this class of models arises wkg?) is a power law of the Ricci
scalar. When the deviation frodldCDM cosmology is small (i.ex is small), we find that

the LUSS and KKS approaches are always compatible.

We also considered a class of scalar-tensor theories (highvadmit a strong coupling
of the scalar field to the non-relativistic matter in the Eéns frame. Inspired byf(R)
gravity we considered the class of models given by the piatefi.47), which satisfy the
stability requirementl\/dy < 0 as well as producing viable background dynamics. The
strong coupling of the scalar-tensor theories (5.9) vedatl| LGC. The existence of a matter
dependent mass and a thin-shell effect, however, allowsuon theories to be compatible
with local gravity experiments. Using solar-system andiegance principle constraints,
we obtained the bounds (5.59) and (5.63), respectively.sdlvenstraints, along with the
bounds derived from the conditiodsn < 0.05 ands < 2 for matter density perturbations,
are illustrated in Figure 5.5. Although the observationsnséo prefer smaller values of
|Q|, it is found that models withp close to unity satisfy all the experimental constraints
considered. The allowed parameter space illustrated inSfsgmay be further restricted by
considering future observational data.

Finally, we considered modified Gauss-Bonngty), gravity. We established the con-
ditions required for the existence and stability of cosngatal power-law scaling solutions.
The general form of the action that leads to such solutiorssfaand to bef (G) = £2v/aG.

By employing the equivalence betweg((;) gravity and a corresponding scalar-tensor the-
ory (2.76), the cosmological equations were written as adyinal system and the stability
of the equilibrium points for both vacuum and non-vacuunusohs was determined. In the
case of the vacuum solutions, the stability was found to deéjoa the parameter, while in

the non-vacuum case the stability was found to depend oncbaiid the fluid equation of
state.

In conclusion, the analyses carried out in this thesis ssigipat confronting modified
gravity theories with observational constraints ressritie viable range of models to be very
close to (and in some cases indistinguishable fromMG®M model.
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Appendix

A.1 The f(R) field equations for scalar perturbations in the
Palatini formalism

This appendix summarises the derivations of the perturledd équations presented in sec-
tion 2.4.3 are provided69; 79]. We begin with the Einstein equation

1
o= R — S04R = (B.1)
1 a f_FR a 1 a a a ic a

which we derive using Egs. (2.19), (2.36) and (2.37). LogKmack at sections 2.1.1 and
2.1.2, we notice that the problem of evaluating the periBbi@stein tensoi7 , reduces to
computing the perturbations to the Christoffel symbolstiAg¢ point it is convenient to work
in conformal timer, in which case the perturbed metric (2.118) can be re-vriie

ds® = a*(7){—(1 + 2a)dr* — 2bdrdz’ + [(1 + 2)d;; + 2Ej;;]da’da }. (B.2)

For the metric (B.2), the components of the connectipn= T¢, + 0T, are:

% = H+a,, (B.3)
Y, = (a—Hb),,

Loy = (a—Hb—b,)",

Iy = H+e)0—E ;.

I = (H(1—2a+2p)+p,)8 + (b+2HE+ E,);,

F;‘k: = (Hb— )" + 60, + 6ij<10,l<: + (B W+ Ey ij - E\jk:i) ;

1This summary is partially based on private communicatioitis iikolay A. Koshelev.
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where’H = aH = a and the indicies, 7, k£ run over the spatial coordinates.
We recall that the covariant derivatives of a scalar figld, %) is just the partial deriva-
tive: ¢ ,. This means, for example, that,, = v, — I';,v.. Hence, to linear order in

perturbations, the covariant derivatives of a scalar figld =) = ¢ (t) + ¢ (¢, z*) are [96]:

VOV
V'V
V'V
VFV

VOV 41

oy = 0y + Hby + HOY 7 + s 4 20(4 7 — HY )]
0t — HOY — b — (a0 — 2HD) ]

— (¥ + 0 YHO' + 0+ [(2Ha — )0 — (b+ E))' ;s
—3H(Y + 0¢,) + 0" + [B2Ha — ¢) — (b+ Ey) 0]

| =V = 0 = 2H (o + 00 1) + 0O + (20 + HY )

+a,+3(Ha—¢,)— (b+ E,T)|k,€ (.

Bearing in mind the two spatially gauge-invariant comhios (2.125)-(2.124),

X = alb+E,), (B.4)

3
kK = -
a

2

k
(Ha = ¢7) + 35X (B.5)

and their derivatives

X7 =

R.r

aH(b+ E ), (B.6)
3 H k*H
E(HQ’T + HJ-O( - (,077-7-) - T(HOC — (,077-) — T(b + Eﬂ-) (B?)
]{32
— E
+ a (b,T + ,TT) bl
the components of the Ricci tensor are:
1 9 k2
= SH+3|(H —H,+ 5 ook - 20HK| , (B.8)
1 9 s (H
2P~ H(ar —5p,) —2(H, +2H)a — k X

1 H i
+(H,T + QHQ)} 62]' + ? |:—Oé —p+ QEX + (b,f + E,TT):| )

| J

2 .
?[HO( —Pr + (H,T - HQ)b]’Z R

2
?[—Hoz + o,
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2
R(g) = —= [ak, +4aHr +3(H — H?)a — 2K*p — kP — 3(H . + H?)] .

a?

We are now ready to compute the components of the field equsaf®.1). The energy
constraint () component of the field equation) is [69; 79]

F, 1 [(3(F,)? 1
— 2k2g0+(27{+?’) aﬂ—i_f(i%Jr?’HFf)a:f{ (B.9)

3/F\? a2 3F
_ .2 2 _ 27 _ 2 ZoT
a5pm—|—<3H 4(F) 2R+k>6F+(2F+3H)6ET],

and the momentum constrair@{ component of the field equation) is

Ho — ¢, = % [avpm —Fro— (H+ g%) oF + (5]777} . (B.10)

The shear propagation equatia®i(— 35:G§ component) is

X,r F-\x ~ _0F

and the Raychaudhuri equatia@’(— G) component) is

F F
F F_\? F
942 TT T o T o912
lﬁ(H,T H)+6<F (F)> SH— 2k]a

F_\? F,
a®5pm + <6H,T +3 (7) 2R+ k?) 6F — 6=26F, +36F . .

F. F,
20K ; + <4H + —) aKk + 33—, + (B.12)

F
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A.2 The thin-shell boundary conditions

This appendix summarises the boundary conditions thateapeined for the formation of a
thin-shell.

If the field value at the centre;(/ = 0), is close enough to the equilibrium valyg
with |o(f = 0) — pa| < |pa|, the thin-shell solution is realised [47]. Becayseis a local
extremum ofUg, the driving termdU.¢ /d¢ is initially negligible. In this case the field does
not move away fromp(¢ = 0) practically up to a radiug, which satisfies

AL _bL-h g (C.1)
l, l,

At { = [y, the field starts to roll down the potential and we fifid,(p)| < |Qe?¥ %]
for /, < ¢ < /,. Under the conditioNQe4| < 1, the right hand side of Eq. (4.24) is
approximately given bylU.s/de ~ Qp?%. Substituting this in Eq. (4.24) and using the
boundary conditiong = ¢4 anddy/d?¢ = 0 at/ = /;, the solution in the regiofy < ( < 7,

is given by

- . C.2
3 5 7 5 + ©a ( )

o Qpa <£+§> Qpals
Outside the body/(> /,) the gradient energies on the left hand side of Eq. (4.24)ec
important because the energy density drops down fpnto p3;. Taking into account the
mass termm of the effective potential/.¢, one hasiU.z/dy = m%(p — ¢p) on the right
hand side of Eq. (4.24). Using the boundary conditior= ¢ as/ — oo, the solution in
the region/ > /, is given by [47; 124]

Oeme (éff*)

v tes (C.3)

Matching the solutions (C.2) and (C.3)&t ¢,, we find
QM AN
- _ 11— [ 2L
c=-% {1 (ﬁ) ] (C.4)

~ 2

2 ©B — QA

U)o .
@ T c5

and
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where

o, =—=—7= (C.6)

In deriving Egs. (C.4) and (C.5), we assumed the conditig/f, < 1. The solution (C.3)
now becomes

QM 0| emet-t
~ « e mp(E£—Lx
o(l) = = {1 - (j) ] ———*¥n. (C.7)

Since we are in the thin-shell regime, the following relatis obtained from Eg. (C.5):

AL, _ ¥B YA
(. 6Q2,

(C.8)

The solution outside the body ¢ /,) is then given by Eq. (4.28) with Eq. (4.29).

If the field value at/ = 0 is not close tap, (i.e., [p(f = 0) — 4| = |@a4l), the field
rapidly rolls down the potential dt ~ 0. Setting/; = 0 in Eq. (C.7), we obtain the solution
(4.28) withQ. replaced byY). This is the thick-shell regime in which the effective caogl
is not small so as to satisfy the LGC.
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A.3 Equations convenient for numerical simulations in the
Palatini formalism

In this appendix we present the equations that are convefoemumerical simulations.
From Eqgs. (2.105), (2.107) and (2.108) we obtain
3Fr(FR—2f)]"

where C = — im . (Dl)

H2
6FC

Introducing a dimensionless quantity

 FR—f

y= GFCH? (D.2)
we obtain the differential equation fgr[10]:
v =y(l—y)B+C(R), (D.3)
whereC'(R) is defined in Eq. (4.44).
The following relations also hold
FR—f 2y
FR—2f 1-y’ (D.4)
_ Pm
Qn = SFCIE 1—y. (D.5)

Specifying the value of), the initial Ricci scalarR is determined by Eq. (D.4). Solving

Eq. (D.3), we obtairy, R, H and(,, from Egs. (D.4), (D.2) and (D.5). The effective

equation of state of dark energy is given by
I S

et = YT 3HF T 3HC  18FCH?

(D.6)

As long as the deviation from theCDM model is small (| < 1), we havew.g ~ —y;.
The perturbation equations (4.117) and (4.118) are given by

1 3
5;’1+§(1—3weﬂ>5:ﬂ—§C(1—y) <1+ﬁ) 5m20, (D?)
3 (aH\”
P ~ 5 (?) C(1—y)om . (D.8)

Although we solve exact perturbation equations, the abppecximate perturbation equa-
tions are found to be very accurate.
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