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Abstract

Provision of efficient services to the user anywhere at anytime is being a centre of research

and development in Wireless Personal Area Networks (WPAN) and Wireless Body Area

Networks (WBAN). Antenna is the essential part of WPAN/WBAN applications that

got affected by two major factors: human body presence and nature of the surrounding

environment. The presence of the human body in the proximity of the antenna causes

electromagnetic (EM) reflections from the body surface and absorptions in the lossy body

tissues resulting in antenna detuning, radiation pattern degradations and impedance

mismatch. On the other hand, incident radio waves undergo reflections, diffractions and

scattering from the surrounding environment objects including buildings, trees, vehicles

and ground, causing multipath fading.

The thesis gives an overview of the main investigations, results and analyses accomplished

in a study concerning the commercially available Bluetooth and GPS antennas working

in the vicinity of the human body. Detailed numerical modelling process is adopted

followed by measurements for validation. The thesis highlights the role of surface waves

as a potential transmission medium in an on-body Bluetooth wireless communication

link taking into account the effects of antenna-body separations and presence of the

surrounding objects blocking the direct communication path. The thesis also presents

a novel statistical model to evaluate the performance of GPS mobile terminal antennas

in the multipath environment. This model characterises the antenna performance and

identifies the key factors that can be used to enhance it, in a real working environment

outside an anechoic chamber. The study also deals with presence of the human body in

the multipath environment and its effects on the operation of the GPS antennas.
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Chapter 1

Introduction

Electronic devices are an essential part of today’s life. Evolution of portable devices has

brought a revolution in the field of wireless communications both in terms of research

and development due to wider approach, mobility and ease of use. The trend of minia-

turisation of such devices with ever-growing demand of ease of portability has resulted in

the development of a vast variety of hand-held and body-worn applications [1, 2]. These

devices provide services ranging from communication to navigation and entertainment to

health care. Personal Digital Assistants (PDAs), laptops, Personal Navigation Devices

(PNDs), pocket gaming consoles, body-worn health monitors, RFID tags, wireless USB

dongles and mobile phones are a few examples [3]. These devices operate in the vicinity

of human user forming a personal communication system termed as Wireless Personal

Area Networks (WPAN) [4, 5]. Wireless Body Area Networks (WBAN) are a natural

progression from the WPAN concept with the human body as the primary focus [6].

This chapter discusses the WPAN/WBAN with brief overview of standardisation

issues discussing key features of the WPAN/WBAN applications. The challenges faced

by the WPAN/WBAN systems are described highlighting areas with scope of research.

1
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1.1 Wireless Personal Area Networks (WPAN)

Personal communication systems have seen a rapid growth and are now developed world-

wide. A WPAN is defined as a network that interconnects devices around an individual

person’s work space communicating using wireless medium [7]. The WPANs are classified

in three major categories based on the targeted application [8]:

• On-body communications

• Off-body communications

• In-body communications

The wireless link between wearable computing devices placed on the user’s body is

termed as on-body communications. A communication link between a mobile handset

placed in the user’s pocket and ear-worn Bluetooth headset is an example. Off-body

communications describe a wireless link between body-worn devices and a base unit. In

this case, most of the communication channel lies in the air, away from the body. Body-

worn sensors sending information of a patient’s blood pressure to the processing unit

forms an off-body communication link. The in-body communications scenario occurs

when the radio data transmission takes place between implanted devices and body-worn

nodes.

1.1.1 Standardisation of Wireless PAN

From the modest beginnings of land-mobile communications a few decades ago, the

WPAN is experiencing an explosive growth today. Increasing demand of the WPAN

applications necessitates a standardisation procedure to integrate such applications into

wireless wide-area infrastructure. IEEE 802.15 WPAN is an international standards

group working on this task [9]. Since, the WPAN typically spans very short distances

ranging at 10 m, a new standard based on the Bluetooth technology is proposed. IEEE
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IEEE 802.15.1Based on Bluetooth1-3 MbpsRange: 10 mSpectrum: 2.4 GHz ISM Band
IEEE 802.15WPANIEEE 802.15.2Develop coexistance model and mechanism for WPAN and WLAN IEEE 802.15.3High rate, low power WPAN11-55 MbpsRange: 30-50 mSpectrum: 2.4 GHz ISM Band

IEEE 802.15.4Low rate, Low power20 -250 kbpsRange: 10-75 mSpectrum: 314-316 MHz, 430-434 MHz, 779-787 MHz, 868 MHz, 916 MHz, 2.4 GHz IEEE 802.15.3cMillimeter-wave WPAN1-5 GbpsRange: <10 mSpectrum: 57-66  GHz 

IEEE 802.15.5Develop mechanism to enable mesh networking IEEE 802.15.6Develop standards optimised for low power around human body operation (WBAN)
Figure 1.1: Organisational structure of IEEE 802.15 standards working group for WPAN
(extracted from [9])

802.15 is divided into six task groups, presented in Figure 1.1, to address various standard

issues for the WPAN. Other short-range technologies considered in the WPAN include

Ultra-Wide Band (UWB) and Zigbee. Millimetre-wave communications have also got

attention in the WPAN [9].

Currently, no specified standard is available that defines the operability of WBAN

among other wireless networks. Although, a special task group, IEEE 802.15.6, is set-up

to look after the issue but its main focus is on the WBAN for medical devices. The task

group for the WBAN has initially concluded that the WBAN should operate in a range

of 0.01-2 m near the human body with on, off or inside the body mode of communication.

The devices should consume extremely low power (0.1-1 mW) and human body effects

with absorptions and health hazards should be considered [10]. However, the WBAN is

still in its initial stages and much work is needed to be done to achieve a comprehensive

integration with existing and future wireless systems. This study is therefore, mainly



Chapter 1. Introduction 4

focussed on the Bluetooth technology for the WPAN/WBAN on-body link.

1.1.2 Bluetooth

Bluetooth is a short range wireless technology for data and voice exchange. It supports

both point-to-point and point-to-multi-point communications. It is designed to be an

inexpensive, low power and always-on radio networking system for all classes of portable

devices.

Bluetooth implements a system architecture where units go into low-power modes

when not active on the network. It operates on a globally unlicensed 2.4 GHz industrial,

scientific and medical (ISM) frequency band. Bluetooth is an open specification for

short-range wireless communications ensuring globally available wireless connectivity.

Two Bluetooth devices located within a range of 10 m, can achieve a data rate of 1-3

Mbps, depending on the modulation technique used [11].

Bluetooth technology supports three application areas using short-range wireless con-

nectivity [12]:

• Data/Voice Access Points: Bluetooth allows portable and stationary commu-

nication devices to transmit real-time voice and data by facilitating easy wireless

connectivity.

• Cable Replacement: Bluetooth removes various types of cable attachments

required for the connection of different communication devices. These usually

proprietary cables need a fixed infrastructure limiting the flexibility and mobility

of user.

• Ad-hoc Networking: Ad-hoc networking enables personal devices to automati-

cally exchange information and synchronise with each other when located in close

range to each other.
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Figure 1.2: Structure of piconets and scatternets in the Bluetooth networking [12]

Bluetooth networks comprise of Piconets and Scatternets. Piconets are small groups of

Bluetooth enabled units that communicate to each other. Piconets consist of a master

unit and up to seven active slave units. The master starts transmission and the slaves

respond to that. This type of Bluetooth network can have only one master unit. The

overlapping of several piconets in a physical area causes communication between members

of different piconets. It forms a larger network, termed as a scatternet. Any unit can

communicate in more than one piconet, however, it can only serve as master for a single

piconet at a time [13].

1.2 Features of Wireless PAN/BAN

The WPAN exhibits a number of advantages. Being a continuation of the WPAN, the

WBAN inherits all the key features with added benefits. Major advantages include [14]:

• Exclusive frequency band with no requirement of licensing, especially for the med-

ical applications.

• Long time of usage as ultra low power is a requirement. Due to this, increasing

battery life is also getting attention in the WPAN/WBAN.
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• Extreme miniaturisation leads to few external elements with greater sense of mobil-

ity and flexibility.

• Low complexity as most of the units are worn on the body.

• Simple usability in everyday practice.

• Low costs per unit.

These advantages have attracted greater research and development activities in the

WPAN/WBAN in recent years. The future WPAN/WBAN systems are aiming to pro-

vide reliable data transmission, constant availability, re-configurability and discreteness

to make maximum use of the above listed features.

1.2.1 Applications of Wireless PAN/BAN

The idea of WBANs originated from the desire to monitor health aspects of a patient in

continuation. However, due to its greater advantages as a subsidiary of the WPAN, the

WBANs are set to play an increasingly important role in the applications operating in

the vicinity of an individual’s personal space. These fields include, but not restricted to,

secure data transmission, surveillance and safety, home entertainment and health care

[7, 8]. A Few examples of the WPAN/WBAN applications are shown in Figure 1.3 and

are listed as follows [3, 15]:

• A number of WBAN applications are currently in use for health monitoring. These

applications can measure body parameters including acceleration, temperature,

oxygen consumption, blood pressure, glucose level, vision and pulse rate. Other

applications include pacemakers, imaging camera pills, systems for epilepsy and

depression monitoring and radio treatments for tumours [15–18]. E-health and

tele-health concepts (Figure 1.4) are an upcoming front where a patient will be

treated by doctors sitting at far distances. The patient’s condition will be observed

and treatments will be made using the monitored body parameters transmitted and
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processed on a remote computer [16, 19, 20].

• Access/identification systems based on recognition of individual parameters or

peripheral devices.

• Navigation and positioning support to individual or to vehicle using efficient com-

munication with existing GPS technology.

• Monitoring of athletes body parameters, for example pulse rate, blood pressure,

etc. using bio-sensors to enhance their performance.

(a) Blood pressure monitoring watch (b) Tele-health monitor

(c) WPAN/WBAN entertainment systems

Figure 1.3: Some examples of modern day WBAN/WPAN applications [14]
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Figure 1.4: Concept of bio-telemetry system for distant health monitoring

• Home entertainment systems and portable gaming consoles including MP3 players,

tablet PCs, Wii, PSP and mobile phones.

• Military applications including tracking systems for soldier’s location, in-field instant

communications and image/video transmission.

• Emergency services and assistance to police, fire fighters and paramedics.

• Industrial automation to enhance the productivity while reducing cost.

• RFID tags for enhanced security measures in retail outlets.

1.3 Challenges in Wireless PAN/BAN

The distinction between the wireless and conventional wired systems is its wireless mode

of communication. Being wireless is an apparent challenge for the WPAN/WBAN as

this medium of communication is hostile to radio waves causing attenuation, delay and
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distortion of the transmitted signal. The WPAN/WBAN systems consist of a number of

nodes and units either placed on the human body or working in the close proximity of

the human body. As discussed in the previous section, the WPAN/WBAN applications

vary from low power, low data rate communication used for health monitoring to high

power, high data rate personal entertainment systems.

The human body being an integral part of the WPAN/WBAN by definition, makes

antenna design a very complex issue. These antennas not only require to be of small size

to guarantee ease of portability and mobility with reliable data transmission but also

have to cope with the effects of the presence of the human body. The lossy nature of

human body causes the WPAN/WBAN antennas to suffer from reduction in efficiency

due to electromagnetic absorption in tissues, degradation of the radiation pattern and

variation in the feed point impedance [8, 21–27]. These effects are system specific in

nature depending on the operating frequency, physical limitations of the antenna itself

and propagation environment [10]. The changing body postures and varying on-body

antenna placements affect the transmission behaviour in these networks [28, 29].

The real working environment for the antennas is quite different from the condi-

tions they are tested in the anechoic chamber. The incident communication signal in

a radio environment is affected by the reflections, diffractions and scattering from the

objects located in the vicinity of the antenna including buildings, vegetation, vehicles

and ground plane modifying the antenna free space parameters greatly. These factors

result in multipath arrival of the signal at the receiving antenna terminal. Miniaturised

WPAN/WBAN devices restrict the antenna size only to a fraction of a wavelength. Typ-

ical length of a handset chassis ranges from 80-100 mm. It contains multiple components,

for example, camera, loudspeaker, radio that further restricts the size of the antenna. It

affects the antenna characteristics of gain, directivity, efficiency and polarisation due to

losses caused by input impedance mismatch and circuit absorptions. As a result, these

electrically small antennas are more vulnerable to the environmental degradations. It

makes the traditional electromagnetic evaluation tools inefficient to predict the overall
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behaviour of the WPAN/WBAN antennas in the real multipath scenarios [3, 30–33].

Characterisation of the human body and environment effects is a challenging task.

This is due to the fact that the human body consists of a number of inhomogeneous layers

with each having different electric properties. Also, the radiated signal took different

paths including in-body, on-body and off-body and reflected, scattered and diffracted

rays occur from different environmental objects present in the path of the signal before

reaching the destination. There are some studies reported in the literature that tried

to explore the actual transmission mechanism in an on-body link [8, 24, 34]. However,

these efforts are mainly based on individual human body part models (e.g. arm models)

rather than the whole body models.

The aspects of the multipath environment and its effects on the WPAN/WBAN

antennas are also of greater importance. This issue has also been investigated with a few

studies being reported in the literature. However, these investigations are restricted to

land mobile radio environments with human head models [35–37]. The studies conducted

to evaluate the environment effects in the presence of a complete human body model are

very small in number.

1.4 Research Scope and Objectives

The characterisation of human body and environment effects is essential to develop

a WPAN/WBAN system with desired levels of mobility and efficiency. Although, a

detailed measurement process could be employed to study these effects, it needs extreme

care and a longer time to reach the conclusions. Hence, efficient numerical and statistical

modelling in accordance to the required system specifications is necessary for better

understanding. The proposed techniques should give a clear picture of the performance

of the WPAN/WBAN antennas under different practical scenarios.

The aim of the research work presented in this thesis is therefore, to investigate the
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effects of the human body and the surrounding environment on different antennas, that

are being used in the WPAN/WBAN applications. The main objectives of the work

include:

• Study of on-body communication links for better understanding of the degrading

effects of the human body on the performance of the WPAN/WBAN antennas

using efficient numerical models.

• Investigation of the operation of body-worn antennas with respect to on-body

placement, antenna-body separation and body postures.

• Development and application of a statistical model replicating the real multipath

environment to study the environmental effects on the performance of the GPS

antennas used to provide navigation services in the WPAN/WBAN applications.

• Study and analyse the working of the GPS antennas for WPAN/WBAN mobile

terminals operating in close proximity of the human body in the multipath envi-

ronment using developed statistical models and considering various on-body place-

ments of the antennas with effects of homogeneous and inhomogeneous body mod-

els.

1.5 Organisation of Thesis

Following the introductory chapter, the rest of the thesis is organised as follows:

Chapter 2 introduces practical considerations for the WPAN/WBAN reviewing the

literature and highlighting main requirements for the antennas, numerical modelling of

the human body, GPS and provision of the navigation services. The fundamentals of

statistical modelling of the multipath environment are also discussed.

Chapter 3 describes the transmission mechanism in an on-body Bluetooth link

between a commercial mobile handset antenna and a Bluetooth headset antenna empha-
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sising the role of surface waves in this link. The effects of surrounding objects and effects

of handset antenna orientations on the link are also studied numerically.

Chapter 4 details the work carried out to characterise the effects of the multipath

environment on the performance of the GPS antennas introducing a novel statistical

environment model. The working of the GPS mobile terminal antennas in the multipath

environment is analysed highlighting the role of the antenna orientation and performance

enhancement using diversity antennas.

Chapter 5 deals with the effects of the human body presence on the operation of a

GPS receiver antenna taking into account different body postures, antenna placements

and antenna-body separations. It also discusses the performance of the GPS mobile

terminal antennas in the multipath environment while operating in the vicinity of the

human body taking into account varying on-body placements with effects of homogeneous

and inhomogeneous head models.

Chapter 6 provides a summary of the main findings and contributions of the study,

concluding the accomplished work and giving aspects of potential future research.
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Chapter 2

Antennas and Propagation in

Wireless PAN/BAN

Wireless Personal Area Networks/Wireless Body Area Networks (WPAN/WBAN) is a

key area of wireless communication systems that has seen enormous growth in recent

years. The antennas used in WPAN/WBAN systems operate close to the human body

and have to cope with degrading effects caused by its lossy nature. Also the reliability

of the WPAN/WBAN data link strongly depends upon the environment in which these

applications work. Multipath arrival of the transmitted radio waves, caused by reflection,

diffraction and scattering from the objects around the receiver, tends to undermine the

successful data transmission [1].

This chapter discusses the radio propagation in the WPAN/WBAN highlighting

antenna specifications. An overview of Global Positioning System (GPS) and naviga-

tion services in the WPAN/WBAN is also presented. The main issues regarding on-body

propagation mechanism, numerical modelling of the human body and environment effects

are discussed with literature review covering recent developments.

16
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2.1 Practical Considerations for Wireless PAN/BAN

The design of body-worn and hand held devices has many aspects to be taken into

account including safety for the user, low power requirements, low profile, scalable data

rates and low complexity to provide mobility with ease of use and low cost to be affordable

for the masses [2, 3]. This area has undergone great research and development activities

because of the huge scale of current usage and anticipated future increase in the use of

WPAN/WBAN devices [4–6].

The human body is an inherent part of the WPAN/WBAN applications. Being

wireless makes these applications vulnerable to electromagnetic distortions caused by

the lossy human body tissues. Therefore, the electromagnetic interaction between the

human body and antennas has been an important research area [7–14]. It is now a well

established fact that the performance of the antennas operating in close proximity of the

human body is degraded due to losses caused by varying electric properties of human

tissues. As a result, the WPAN/WBAN antenna suffers from distortion in radiation

pattern, reduction in radiation efficiency and de-tuning of input impedance [3, 15–18].

The fears for the safety of the human body resulted in standardisation of maxi-

mum levels of expositions of human tissues to electromagnetic radiations emitted by the

body-worn antennas defined in terms of Specific Absorption Rate (SAR) [19–21]. Many

studies have also been reported on the human body interaction with the WPAN/WBAN

antennas and their compliance to the SAR standards [22–25]. Human body phantoms

(Figure 2.1) are also developed for the experimental investigations of wearable antenna

performance [26].

2.1.1 On-Body Transmission Mechanism

The efficient deployment of the WPAN/WBAN systems make it indispensable to eval-

uate the interaction of the human body with electromagnetic waves radiated by the
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Figure 2.1: Realistic human body phantom for on-body measurements [27]

antennas. Wearable antennas use the human body as a transmission channel for on-

body communications. Reliable wireless communications require the characterisation of

the radio channel with deep understanding of the transmission mechanism. A number of

studies has been reported on the on-body communication link using stochastic path loss

models [28, 29], concluding that on-body communication channel varies depending not

only on the body posture and movement but also on antenna type, placement on-body

and orientation as well as local environment [3]. However, there is a lack of information

related to the transmission mechanism of the body worn and near body devices in the

physical sense to describe the cause of these variations.

A few steps have been taken in this direction now as Fujii et al. [30, 31] studied the

transmission mechanism for a short range on-body channel between a hand-held receiver

and wrist-worn transmitter. The two devices were placed at a distance of 200 mm and

communicate at a frequency of 10 MHz. A simple cube has been used to represent

the human arm both numerically and experimentally. For this kind of study, electric

and magnetic field distributions give valuable information to characterise the dominant

medium of transmission and role of surface waves. Fujii et al. concluded in this study

that for this small on-body channel, the dominant medium is surface waves and not the

air waves or the penetrating waves.
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Conway et al. [32, 33] have demonstrated the importance of the surface waves in

a 250 mm on-body channel at 2.45 GHz. The link has been established between two

microstrip patch antennas placed on a small cylindrical homogeneous model representing

the human body.

The on-body transmission mechanism has also been studied by Hao et al. [17] and

See et al. [34]. However, these studies mainly deal with the statistical channel modelling

and effects of the human body presence on radiation patterns and input impedance of

the antennas giving little information of the transmission mechanism.

The scope of the reported studies is, therefore, limited due to use of small canonical

models of human body and very short range on-body channels. Furthermore, the inves-

tigated antennas and their on-body placements do not represent a realistic and more

commonly used scenario. Also, the operating frequency of 10 MHz, used by Fujii et al.

makes the results less relevant to on-body communications using Bluetooth.

The acceptance of the human body as a transmission channel for on-body link is

therefore, limited due to a lack of insight into the actual physical mechanism of trans-

mission. This important but mostly neglected aspect of the WPAN/WBAN needs to be

explored further to develop a more efficient and reliable on-body communication channel.

It necessitates the investigation of larger on-body link between commercially available

antennas placed on more realistic positions on a complete human body model. Chapter

3 of this thesis addresses this issue in detail highlighting the role of the surface waves in

the on-body link.

2.1.2 Antennas for Wireless PAN/BAN

The optimal performance of a radio system depends greatly on efficient design of the

antenna. In addition to the general characteristics of the antennas, the WPAN/WBAN

requires high performance antennas with small size, less weight, body-conformal and

inexpensive designs. These added requirements are necessary to guarantee maximum
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mobility, less complexity and reliability of service.

The presence of the lossy human body in the proximity makes the design of body-worn

antennas more critical. These antennas have to exhibit good performance while undergo-

ing efficiency reduction, detuning and radiation pattern distortions caused by the human

body. Many studies have presented various miniaturised designs for WPAN/WBAN

applications including printed dipoles, planar inverted F antennas (PIFAs), ceramic sub-

strate antennas and dielectric loaded antennas (DRAs) that perform well to cope with

the degradations caused by the human body [2, 33, 35].

The concept of integration of the antennas into clothes has realised textile antennas

[36, 37]. These antennas however, often face the problem of being bent, wrinkled and

sometimes wet in common use scenarios. Sanz-Izquierdo et al. have presented novel

designs of a metallic button antenna and belt antenna [38, 39]. These antennas have

the appearance and dimensions of standard jeans button and a standard belt buckle,

respectively. These designs not only cope well with the bending, wrinkling and being

wet effects but also offers good dual band performance at 2.45 GHz and 5 GHz in the

on-body scenarios. Various designs of implantable antennas have also been proposed [40]

in the literature for medical use, especially for cancer detection and treatment.

2.2 Numerical Modelling of Antenna and Human Body

Interaction

The evolution of computer based modelling techniques has brought a revolution in the

solution and analysis of electromagnetic problems. Complex electromagnetic problems

such as interaction of antennas and the human body and on-body radio propagation,

can be solved easily using these numerical simulation tools. These very powerful elec-

tromagnetic analysis tools are also capable of providing useful physical insight into the

radio propagation mechanism, extending the body modelling to include the surrounding
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Table 2-1: Maxwell’s Equations in differential and corresponding integral form

EM Law Differential Form Integral Form

Gauss’s law
∇.D = ρ

∫
D.ds =

∫
ρ.dV

Magnetic field
law ∇.B = 0

∫
B.ds = 0

Faraday’s law

∇× E = −∂B

∂t

∫
E.dl = − ∂d

∂dt

∫
B.ds

Ampere’s Law

∇×H = Je +
∂D

∂t

∫
H.dl =

∫
Je.ds +

∂d

∂dt

∫
D.ds

environment.

The numerical techniques attempt to solve fundamental Maxwell’s equations, sub-

ject to the boundary constraints posed by the geometry. They usually require greater

computational resources.

2.2.1 Full-Wave Numerical Modelling

The core of electromagnetic numerical modelling is based on the relationships and vari-

ations of charges, currents and electric and magnetic fields defining the behaviour of

electromagnetic waves [41, 42]. In 1873, James Clark Maxwell assembled the laws of

Ampere, Faraday, Gauss and the magnetic field law into a set of equations which formed

the basis of modern electromagnetic numerical tools. Table 2-1 presents these equations

in differential and corresponding integral formulations.

The electromagnetic problems are related to the field behaviour in certain medium.
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Following equations are used to describe and relate the Maxwell’s equations with the

properties of the medium [42, 43]:

D = εE (2.1)

B = µH (2.2)

Je = σE (2.3)

Where E is the electric field intensity (V/m), D is the electric flux density, H is the

magnetic field intensity (A/m) and B is the magnetic flux density (Wb/m2). Also, Je is

the electric current density (A/m2) and σ is the electric conductivity (S/m).

The electric permittivity and magnetic permeability of the medium is defined as:

ε = εrεo (2.4)

µ = µrµo (2.5)

Where εo = 8.854 × 10−12 F/m is the permittivity of the free space and µo = 4π ×
10−7 H/m is the permeability of the free space.

A number of numerical techniques are available with each exhibiting its own strength

and limitations. Great care is needed to be exercised in the choice of a modelling

technique and simulation parameters including mesh generation, simulation duration

and computational domain size to avoid errors [44]. At present, the best numerical

method/tool for the design and verification of radio communication on the human body

is not yet very clear. However, a COST244 benchmark study of different commercial

codes based on various numerical techniques on the same electromagnetic problem has

concluded that although, using more computational resources, Finite Difference Time

Domain (FDTD) / Finite Integration Technique (FIT) based tools provide highly accu-

rate results with faster computation time [45]. Therefore, Computer Simulation Technol-

ogy (CST) Microwave Studio R© is used for numerical modelling throughout the thesis.
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Appendix A discusses two electromagnetic numerical modelling techniques, FDTD

and FIT briefly, highlighting key features of CST Microwave Studio R©.

2.2.2 Electric Properties of Human Body

The biological system of the human body is an irregularly shaped dielectric medium with

frequency dependent permittivity and conductivity. The electromagnetic interaction of

antennas and human body depends upon the body’s electric parameters, geometry as

well as the frequency and the polarisation of the incident wave. Advanced numerical

techniques have made it possible to model the complex electromagnetic problems involv-

ing the human body with a choice of high resolution models in a broad frequency range.

Therefore, a set of specific parameters defining the electric properties of the human tis-

sues at different frequencies is required to model the electromagnetic fields in and around

the body correctly.

The parameters that describe the electric properties of the human tissues include

the relative permittivity (εr) and the conductivity (σ). Many researchers have mea-

sured these properties and compiled the results for various body tissues covering a wide

frequency range from 10 Hz to 100 GHz [46–49]. The parametric values for different

tissues at considered frequencies used in different models in this thesis are indicated in

the following chapters.

2.3 Navigation Services in Wireless PAN/BAN

Ever-growing demand of navigation and positioning facilities to be available in portable

devices has made the GPS antennas an essential part of the modern WPAN/WBAN

applications, especially the mobile phones. The WPAN/WBAN works in collaboration

with existing technology of Global Positioning System (GPS) to provide these services.

Although, external GPS receivers are available for mobile PCs, portable media players
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Figure 2.2: Survey and forecast of worldwide PNDs and GPS-enabled smart phones in
use (reproduced from [51])

and digital cameras, there is a greater demand of integration of GPS receivers within

these products. A Federal Communications Commission (FCC) adoption to enhance

the provision of emergency services by tracking a user’s location through his mobile also

necessitates the integration of the GPS to the cellular phones [50].

The navigation devices are typically divided into two parts, Personal Navigation

Devices (PNDs) and GPS enabled mobile handsets. In the past few years, PNDs had

dominated the global navigation market. However, introduction of the smart phones has

been causing a change in this trend and they are tipped to account for a 70% share of

the personal navigation market in 2014. The usage of navigation-enabled smart-phones

will rise to 305 million units, exceeding the 128 million PNDs in 2014 (Figure 2.2). The

navigation industry is predicted to earn a gross total of £130 billions in 2014 [51, 52].

2.3.1 GPS

Global Positioning System (GPS) delivers the navigation and positioning services world-

wide being the only fully functional satellite navigation system at present. The GPS

navigation services can be used on land, sea, in the air and even in space.
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A number of applications make use of GPS to provide navigation, positioning, mon-

itoring, geographic surveys, natural resource explorations, mapping, weather and atmo-

spheric information, public safety and surveillance. Figure 2.3 shows few examples of

GPS enabled WPAN/WBAN devices.

2.3.2 Principle of GPS

The navigation systems are based on a fundamental positioning procedure where knowing

the distance from an unknown location to a certain number of known locations, allows

finding the coordinates of the unknown position. In the GPS, a number of satellites

orbiting the earth provide the known locations while the position of the user on earth

(a) In-vehicle GPS PND (b) GPS-enabled wrist watch

(c) GPS-enabled smart phone (d) GPS-enabled mobile handset

Figure 2.3: Examples of portable navigation devices [53–55]
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with a receiver is the unknown location [56].

To determine 3-D position of the receiver, time delay between transmission and recep-

tion of each GPS radio signal transmitted by the GPS satellites is measured. The distance

between the user and the satellite is calculated from this time delay as the speed of signal

(equals to the speed of light) is already known. The GPS signals also carry information

about the location of the satellites. By determining the position of, and distance to at

least three satellites, the GPS receiver can compute its position in terms of latitude,

longitude and height. However, a fourth satellite is also required for a timing offset that

occurs between the clock in the receiver and those in the satellites due to poor synchro-

nisation. Using the data from the fourth satellite, the receiver can find this timing offset

and hence can eliminate it [56–58].

2.3.3 GPS System Architecture

The GPS system comprises of three segments that operate together to provide a func-

tional positioning service namely space segment, control segment and user segment (Fig-

ure 2.4).

The space segment consists of 30 satellites placed in six Middle Earth Orbits (MEO)

at an altitude of 20,180 km above the surface of the earth. These orbits are inclined

at 55o to the equator. This satellite constellation makes at least four satellites visible

above the horizon anywhere on the earth, at any time of the day [57, 58]. The space

segment transmits navigation message containing satellite time and ephemeris data. The

ephemeris data provides information about the precise location of the satellite in the orbit

[56].

The control segment consists of a system of monitoring stations spread around the

globe. This segment tracks the GPS satellites and generate periodic updates of their

position drift and clock skew. The individual satellites then adjust the ephemeris data

provided to the user segment based on these updates [56, 58].
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Figure 2.4: GPS system architecture with space, control and user segments

The user segment processes the time and the ephemeris data from the GPS satellites

and generates accurate estimates for position, velocity and timing. The user segment

typically consists of three components including GPS antenna, processor and display.

The antenna receives the GPS signal from the satellites and passes it to the processor

that extracts useful information from these signals and determines the navigation solution

being relayed to the end user by the display [56, 57].

2.3.4 GPS Satellite Signal

The GPS operation is divided into civilian and military categories. The commercially

available civilian GPS operates at a frequency of 1575.42 MHz (L1) while US military

uses the GPS frequency of 1227.60 MHz (L2) [57–59].
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The GPS assigns a unique Coarse Acquisition Code (C/A code) and a unique Preci-

sion Code (P-code) to each satellite. The navigation message is superimposed on both

the C/A and the P codes. The phase of the transmitted L1 and L2 carrier signal is

shifted by the C/A code, the P-code and the navigation message. Code Division Mul-

tiple Access (CDMA) technique is employed by the satellites to use a common carrier

frequency while still allowing the receiver to determine which satellite is transmitting

[57, 59].

The C/A code is a Pseudo Random Noise (PRN) code that repeats every 1023 bits

(one millisecond). This code modulates the L1 carrier signal used for commercial Stan-

dard Positioning Service (SPS), spreading the spectrum over a 1 MHz bandwidth [57, 59].

The P-Code is a very long PRN code that repeats every seven days. This code

modulates both the L1 and the L2 carrier phases, spreading the spectrum over a 10

MHz bandwidth. The P-Code is further encrypted into another code called the Y-Code.

This P(Y)-Code requires special modules that could be used by authorised personnel

having the cryptographic keys and is the basis for the US military’s Precise Positioning

Service (PPS) [59].

The navigation message also modulates the L1-C/A code signal. It is a 50 Hz signal

containing the satellite ephemeris data, atmospheric propagation correction data and

satellite clock bias [56, 59].

The civilian GPS signal is controlled by the US Department of Defence (DoD) to

provide 100 m horizontal accuracy, 156 m vertical accuracy and 340 nsec time accuracy

[56, 58]. Many techniques are being employed nowadays to improve the positioning

accuracy including Differential GPS and Assisted GPS that are beyond the scope of this

thesis.

A number of factors affect the performance of a GPS system including atmospheric

effects, clock errors, signal jamming, incorrect positioning, multipath effects and presence

of the human operator [56, 57]. The multipath effects occur when the signal from the
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satellite is reflected from different objects located near the GPS receiver. This increases

travel time of the signal and introduces errors. The electromagnetic absorptions in

the human body tissues and reflections from the body surface also detunes the GPS

receiver antenna. It reduces the antenna performance introducing impedance mismatch,

efficiency drop, resonance shift and radiation pattern fragmentation. These issues are

discussed thoroughly in the following chapters of this thesis.

2.3.5 Wireless PAN/BAN Antennas for GPS

Antenna is an important element of a GPS receiver. The basic theoretical requirements

for a GPS antenna can be listed as [60–62]:

• Antenna should be capable of handling Circularly Polarised (CP) waves to transfer

most of the incoming Right Hand Circularly Polarised (RHCP) GPS signal power

to the receiver.

• Uniform radiation pattern over the entire upper hemisphere is required to ensure

that all visible satellites can maintain signal lock.

• To eliminate the multipath effects, a good rejection of Left Hand Circular Polari-

sation (LHCP) and no back lobes are essential.

• The receiving GPS antennas should exhibit a minimum of 2 MHz bandwidth as

the modulated GPS signal is spread over 2 MHz bandwidth in L1 band with centre

frequency of 1575.42 MHz. However, efficient performance of commercial GPS

applications typically require the antennas to achieve -10 dB impedance bandwidth

of ±5 MHz to mitigate the variations caused by transmitting satellite hardware and

atmospheric effects [63].

The modern mobile handsets are no longer just cellular phones, but have to support

other services including mobile television, Bluetooth, Wi-Fi, FM radio and digital camera

applications. This consumer driven market also necessitates provision of these features
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in a small form factor at reasonable cost. Integration of the GPS on the same platform

also requires miniaturisation of the antenna [50, 63].

An enhanced emergency protocol adopted by the FCC requires the mobile phones to

be able to establish a GPS communication link when the user makes a call to emergency

services. It helps to track the user’s location so that help can be provided in the event

of a call drop or user’s inability to give information about his whereabouts [50]. The

proximity of the user’s head and hand in this scenario affects the radiation characteristics

of the GPS antennas. Similarly, the mobile phones are not used in a fixed position which

means the “up” direction of the antenna changes depending in which orientation the

mobile phone is being used. In the talking position, the user’s head and hand obstructs

the clear view of the sky of the mobile terminal GPS antenna. Also, the reflections of

the incident RHCP satellite signal from the objects in the vicinity of the mobile terminal

GPS antenna cause change in the signal polarisation.

In the common operating scenarios of cluttered environments, for example indoors

and city streets, the line-of-sight satellite signal is obstructed and a limited angular space

is available for its arrival while the polarisation of the reflected signal is not defined.

Therefore, a wide-beam linearly polarised GPS antenna gives better performance as

compared to the conventional circularly polarised antenna types. Hence, these antennas

are a preferred choice to acquire signals concurrently from the four GPS satellites for

the navigation solution [64, 65].

The current developments and expected future growth of GPS usage in the WPAN/

WBAN devices necessitate a detailed study of the electromagnetic interaction of the

human body and the GPS mobile terminal antennas. A number of studies have been

reported in the literature covering design aspects of the GPS antennas for hand-held

devices [66, 67]. However, effects of the human body presence on these antennas have

got little attention. Chapter 5 of this thesis presents detailed investigations of the electro-

magnetic interaction of the human body and the GPS antennas for the WPAN/WBAN

applications.
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2.4 Multipath Environment and Wireless PAN/BAN

The hand-held devices in the WPAN/WBAN applications are used freely in different

situations and positions. The radio wave propagation in the WPAN/WBAN, therefore,

not only depends upon the antenna placements and orientations on-body but also on the

near-by environment.

The antenna designers are used to stringent requirements in free space with a sin-

gle wave incident. However, in an actual working environment, objects surrounding the

receiving antenna including vehicles, trees, buildings, ground and even the human body

itself cause the incident waves to reflect, diffract and scatter resulting in a multipath

scenario. These factors cause the antenna radiation patterns to modify greatly resulting

in degradation of antenna performance due to propagation losses. It makes the tradi-

tional electromagnetic approaches, based on the free space parameters to evaluate the

antenna performance, insufficient [1, 68]. These factors must be characterised in order

to design efficient transceivers that provide a better sense of reliability in the wireless

communication link.

The analysis of antenna performance in a multipath environment through open-field

test suffers from disadvantage of long experimental time. Moreover, the weather condi-

tions, temperature and location hazards make it difficult to control the test environment.

It results in decreased accuracy and poor repeatability. The draw-backs of the field test

can be avoided using statistical models to replicate the real multipath scenario. It pro-

vides an excellent alternative to the field tests predicting the antenna performance with

added benefits of controlled test conditions and enhanced accuracy due to faster and

repeatable calculations [69, 70].

In recent years, environmental effects on the performance of the antennas in land

mobile radio environment are studied by various groups. The environmental factors are

usually defined by Angle of Arrival (AoA) distribution and Mean Effective Gain (MEG)

of the incoming wave in a land mobile radio environment [1, 69–71].
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2.4.1 Mean Effective Gain (MEG)

The Mean Effective Gain is the average gain of the antenna performance in a multipath

radio environment. It is a figure of merit for the average performance of an antenna

on a mobile terminal taking into account the incident radio waves in the multipath

environment and also the gain patterns of the antenna.

In 1977, the ground breaking idea to predict the average performance of an antenna in

a multipath environment was proposed by Andersen et al. [69]. They suggested that this

prediction can be made by measuring the mean levels of the received power of the test

antenna and a reference antenna on a random route in a typical working environment.

The MEG of the antenna is then calculated as the ratio of the two measured values.

Although, this method is the best evaluation technique due to reliability, it lacks in

accuracy because of poor repeatability of the measurement and longer measurement

times [1, 70, 72].

The need for a fast computational method for the MEG calculations were fulfilled by

Taga [70]. He derived a general expression that can be used to evaluate the MEG of an

antenna in a certain environment based on 3-D power gain pattern of the antenna and

the average angular distribution of incident plane waves in the environment. The power

distribution must be known in both the azimuth and the elevation, and separately for

horizontal and vertical polarised field components. The clear benefit of this method is

fast and repeatable computations. Furthermore, it enables to characterise the antenna

properties of gain and polarisation and directional response of the communications chan-

nel separately [1, 72].

The MEG of an antenna in a mobile terminal is defined as the ratio between the

mean received power of the antenna, Preceived, over a random route and the total mean

incident power, Pincident, arriving at the antenna [70]:

MEG =
Preceived

Pincident
(2.6)
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If Pθ is the mean incident power of θ polarised incident waves and Pφ is the mean

incident power of φ polarised incident waves, then Pθ + Pφ is the total mean incident

power arriving at the antenna.

The ratio between the time averaged mean powers received in θ and φ polarisations

when the transmitted radio wave is θ polarised is called Cross Polarisation Ratio (XPR)

and described as:

XPR =
Pθ

Pφ
(2.7)

For spherical coordinates, Preceived can be expressed as [73]:

Preceived =
∫ 2π

0

∫ π

0
[P1Gθ (θ, φ) pθ (θ, φ) + P2Gφ (θ, φ) pφ (θ, φ)] sin θdθdφ (2.8)

Where Gθ (θ, φ) and Gφ (θ, φ) are the θ and φ components of the antenna power gain

pattern, respectively. pθ (θ, φ) and pφ (θ, φ) indicate the components of angular density

functions of the incoming waves in the elevation and the azimuth planes, respectively.

θ is the angle in the elevation and φ is the angle in the azimuth as shown in FigureZ

X
YAntenna under test θθθθ

φφφφ

Incident wave distribution in elevation plane
Incident wave distribution in azimuth plane

Figure 2.5: Spherical coordinates system and representation of a hypothetical incident
wave distribution model
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2.5. P1 represents the mean power that would be received by an isotropic antenna in θ

polarisation while P2 is the mean power received by an isotropic antenna in φ polarisation.

These functions satisfy the following conditions [1, 70, 72]:

∫ 2π

0

∫ π

0
[Gθ (θ, φ) + Gφ (θ, φ)] sin θdθdφ = 4π (2.9)

∫ 2π

0

∫ π

0
pθ (θ, φ) sin θdθdφ =

∫ 2π

0

∫ π

0
pφ (θ, φ) sin θdθdφ = 1 (2.10)

Using Equations 2.7-2.10, the MEG expression can be rearranged to form the fol-

lowing equation:

MEG =
∫ 2π

0

∫ π

0

[
XPR

1 + XPR
Gθ(θ, φ)pθ(θ, φ)

+
1

1 + XPR
Gφ(θ, φ)pφ(θ, φ)

]
sin θdθdφ (2.11)

2.4.2 Statistical Distribution Model of Incident Waves

In a multipath radio environment, the incident plane waves arriving at the mobile termi-

nal have various Angles of Arrival (AoA) and the Cross Polarisation Ratio (XPR). The

MEG of the mobile antenna (Equation 2.11) depends upon the XPR and the nature

of the multipath environment depicted by the angular density functions pθ(θ, φ) and

pφ(θ, φ). Those functions describe the AoA distribution of the incident waves. There-

fore, it is necessary to study a suitable statistical model of the AoA distribution of the

incoming plane waves, similar to an actual working environment to be able to get an

account of the antenna performance in real scenarios, outside an anechoic chamber.

Various groups have studied the land mobile terminal antenna performance in mul-

tipath environment and reported quite a few statistical models for the AoA distribution

of incoming radio waves based on simulations and actual measurements [70, 72, 74]. It is

assumed that due to the random movement of the mobile user in any environment, the
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radio waves can be incident from any azimuth direction with equal probability resulting

in a uniform power density function [1, 68, 70, 72, 74–77]. However, the AoA distribution

in the elevation is found to follow the Gaussian and Laplacian distribution [70, 77, 78]

summarised in Table 2-2. In these equations, mV and mH are the mean elevation angles

whereas σV and σH are the standard deviations of the vertical and horizontal polarised

wave distributions, respectively. Aθ and Aφ are constants determined by Equation 2.10.

Table 2-2: Commonly used statistical AoA distributions for the incident radio waves in
a land mobile radio environment [1, 72, 78]

Distribution Mathematical Formulation

Uniform
pθ (θ, φ) = 1 (0 ≤ θ ≤ π)

pφ (θ, φ) = 1 (0 ≤ θ ≤ π)

Gaussian

pθ (θ, φ) = Aθ exp

[
−{θ − [(π/2)−mV ]}2

2σ2
V

]
(0 ≤ θ ≤ π)

pφ (θ, φ) = Aφ exp

[
−{θ − [(π/2)−mH ]}2

2σ2
H

]
(0 ≤ θ ≤ π)

Laplacian

pθ (θ, φ) = Aθ exp

[
−
√

2 |θ − [(π/2)−mV ]|
σV

]
(0 ≤ θ ≤ π)

pφ (θ, φ) = Aφ exp

[
−
√

2 |θ − [(π/2)−mH ]|
σH

]
(0 ≤ θ ≤ π)

Studies are also reported with environmental effects on mobile antennas in street



Chapter 2. Antennas and Propagation in Wireless PAN/BAN 36

microcells [74] and on diversity antennas [75, 76, 79] in literature. The antenna perfor-

mance in an indoor multipath environment is also investigated [77]. All these studies are

concentric on land mobile environment (900 MHz-5.8 GHz) and no serious effort is made

to study the environmental effects on the GPS applications. Chapter 4 of the thesis

discusses this relatively unexplored topic thoroughly.

2.4.3 Antennas and Human Body Presence in Multipath Environment

Being an integral part of the WPAN/WBAN applications, the human body influences

the performance of the mobile terminal GPS antennas greatly. On the other hand,

these antennas operate in the multipath environment and hence, are affected by the two

degrading elements (i.e. human body and multipath environment) simultaneously. It

necessitates to study the performance of the mobile terminal antennas in the multipath

environment while operating in the vicinity of the human body.

Recently, the effects of the presence of a human head beside the mobile handset

antennas [68] are studied, however, the GPS antennas have not been studied so far.

Chapter 5 of this thesis gives a detailed investigation of the performance of the on-body

mobile terminal GPS antennas while operating in the multipath environment.

2.5 Summary

The antenna considerations and importance of the electromagnetic numerical methods

in the analysis of the complex problem of radio propagation on and around the human

body has been discussed. Use of the GPS technology to provide the navigation services

in the WPAN/WBAN applications is highlighted. Antennas operating in real scenarios

suffer from the multipath arrival of the transmitted radio waves due to the presence of

reflectors and scatterers in the surroundings. The importance of the stochastic models

for the multipath environment to characterise the environment degradations and predict
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the antenna’s actual performance has also been discussed with details of parameters of

the Mean Effective Gain and the Angle of Arrival.

The presented review of the open literature on studies regarding the electromagnetic

interaction of the human body with the antennas has concluded that efficiency reduction

due to power dissipation in tissues, radiation pattern fragmentation and variation in feed

point impedance are often associated with the WPAN/WBAN antennas. The presence

of reflectors and scatterers in the vicinity causes the multipath arrival of the electromag-

netic waves resulting in further degraded performance. A need for a deep insight into

the physical mechanism involved in the on-body radio transmission and effective anal-

ysis of the multipath environment effects is therefore, pertinent. This will provide the

necessary tools and assist to pave the way for the development of reliable and efficient

WPAN/WBAN systems.
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Chapter 3

On-Body Bluetooth Transmission

Mechanism

The development of portable devices including mobile phones, Personal Digital Assis-

tants (PDAs), Personal Navigation Devices (PNDs) and laptops has brought a revolution

in the field of wireless communications. This rapid growth of research and development

has been promoted by the wider approach, mobility and ease of use provided by these

devices. It has necessitated the advances of several portable and wearable technologies,

such as Bluetooth headsets within Wireless Personal Area Networks (WPAN) and Wire-

less Body Area Networks (WBAN). Since, the human body is an integral part of the

WPAN/WBAN applications, such wearable devices use the human body as a communi-

cation channel. Hence, a comprehensive understanding of the transmission mechanism

between these devices is vital.

This chapter presents an investigative study to characterise the electromagnetic trans-

mission between a body-mounted Bluetooth headset antenna and a mobile phone handset

antenna. Commercially used planar inverted F antennas (PIFA) on the mobile phone

handset and a meander line monopole antennas on the headset have been used in this

study. Various factors affecting the on-body communication links including handset-to-

44
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body separation, handset antenna orientation and presence of blocking objects have been

considered. A thorough numerical modelling, supported by the measurements, has been

carried out to demonstrate the importance of surface waves in the on-body Bluetooth

transmission.

3.1 Characterisation of On-body Propagation Channel

The electromagnetic interaction between the human body and antennas has been studied

for many years [1, 2]. It is now well established fact that the close proximity of the

human body degrades the performance of the antennas significantly [1–9]. The very lossy

nature of human tissues causes high level of losses over the communication spectrum.

The resulting phenomena affects the antenna performance by introducing distortion in

the radiation pattern, reduction in radiation efficiency and detuning in antenna input

impedance [5–9].

In principle, the human body can be used as a communication channel for different

devices that are located within a close proximity as well as body-worn devices. A typical

scenario may involve a Bluetooth enabled body-worn mobile handset and a Bluetooth

headset forming a similar wireless communication link. Characterisation of such on-

body channel has attracted the interest of many researchers around the world. Various

characterisation criteria have been taken into account to evaluate this communication

channel including path gain, radiation pattern, gain and efficiency of different antennas

[4, 7–9]. The influences of varying the body postures and the different antenna types

on the on-body communication channel, as well as the on-body channel path gain for a

moving human body have also been studied [7, 8].

The on-body wireless communication link involves two mediums for the transfer of

signals, the human body and the air. It has been noticed that when there is no line-of-

sight and reflecting objects, the transfer of electromagnetic energy between two body-

mounted antennas takes place mostly in the form of surface waves [8–10]. These waves are
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generated in, and guided by the air-body interface. Studies have also shown that these

surface waves may play an important role in UWB communications [6]. However, most

of these studies were only concerned with the models of a small part of the human body

with shorter on-body channels and generic antennas. In practical scenarios, on-body

communication link requires a better insight into the on-body radio wave propagation

including effects of antenna orientations and presence of blocking objects so that possible

measures can be taken to improve the link budget. Therefore, this study examines the

role of these surface waves in practically used larger on-body Bluetooth links involving

a complete human body model.

3.2 Antennas for On-body Communication

Two commercially available antennas operating at 2440 MHz are used in this study.

The antenna parameters are numerically investigated using CST Microwave Studio R©

and verified through measurements.

3.2.1 Headset Antenna

The headset antenna used in this study is a meander line monopole. The antenna is

implemented in one of Sony Ericsson’s Bluetooth headsets. The antenna is mounted on

one end of the PCB (FR4), as illustrated in Figure 3.1 with a ground plane of 55 mm×12

mm. The headset antenna prototype used in measurements is shown in Figure 3.13(b).

Simulations have been carried out in CST Microwave Studio R© using a discrete port

with 50 Ω impedance to represent the commonly used 50 Ω coaxial port feed. Figures

3.1-3.4 show the antenna performance in free space. It can be seen from Figure 3.2

that the antenna has a very wide coverage over the Bluetooth band. It has a -10 dB

bandwidth of 592 MHz, ranging from 2142 MHz to 2734 MHz. The 3-D radiation pattern

(Figure 3.4) indicates a typical donut shape with a maximum gain value of 2.7 dBi. It is
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Figure 3.1: Schematic of headset meander line monopole antenna (all lengths are in mm)
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Figure 3.2: Simulated (blue) and measured (red) S11 curves for headset meander line
monopole antenna at 2440 MHz

verified in experiments by measuring the 2-D patterns on the XY and YZ planes in an

anechoic chamber in Antenna Measurement Lab at QMUL, shown in Figure 3.3. The

measurements agree well with the simulated results.

3.2.2 Handset Antenna

A mobile handset (one of Sony Ericsson’s mobile phone model K750i) with a PIFA

antenna as the radiating element has been modelled in this study. The PIFA is mounted

on a ground plane of 100 mm×40 mm and fed by a coaxial port, as shown in Figure 3.5.

The handset antenna prototype used in the measurements is shown in Figure 3.13(b).
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Figure 3.3: Simulated (blue) and measured (red) 2-D radiation patterns of headset
meander line monopole antenna at 2440 MHz-37.3 2.7 dBi0
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Figure 3.4: Simulated 3-D radiation pattern for headset meander line monopole antenna
at 2440 MHz

The antenna itself is not visible as it is covered by the mobile casing.

Figures 3.5-3.8 show the antenna performance illustrating simulated and measured

S11 curves, simulated and measured 2-D radiation patterns and simulated 3-D radiation

pattern. It is noted that the measured resonance is shifted slightly upwards due to the

fact that the antenna is surrounded by other components including LCD, camera and
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Figure 3.5: Geometrical structure of handset PIFA antenna (all lengths are in mm)

1000 1500 2000 2500 3000
−20

−15

−10

−5

0

Frequency (MHz)

S
1

1
 (

d
B

)

 

 

Simulated

Measured

Figure 3.6: Simulated (blue) and measured (red) S11 curves for handset PIFA antenna
at 2440 MHz

covered by a chassis, that are not included in the simulated model. Nevertheless, the

measured and simulated S11, illustrated in Figure 3.6, both cover the -10 dB bandwidth

of 206 MHz in the required frequencies which is sufficient for the Bluetooth applications.

Figure 3.8 shows the simulated 3-D radiation pattern with a maximum gain of 4.09 dBi.
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Figure 3.7: Simulated (blue) and measured (red) 2-D radiation patterns of handset PIFA
antenna at 2440 MHz -35.9 0 4.09 dBi
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Figure 3.8: Simulated 3-D radiation pattern for handset PIFA antenna at 2440 MHz

The comparison of simulated and measured 2-D radiation patterns on the XY and YZ

planes is illustrated in Figure 3.7 where an acceptable agreement between the two results

can be observed.

The presented comparison of the simulated and measured results for the headset and

handset antennas also indicate that although, a worst case scenario in terms of PCB

components can be realised by replacing them with a perfect electric conductor (PEC)



Chapter 3. On-Body Bluetooth Transmission Mechanism 51

in the numerical model, the protective casing of the two devices affects the performance

quite significantly. This effect is more visible in case of handset antenna as a difference

of 3 dB in S11 (Figure 3.6) and 5 dBi in the radiation patterns at 2440 MHz in certain

directions (Figure 3.7) can be noted. Therefore, besides increasing the complexity, inclu-

sion of the casing in the modelled structure would have given a more realistic operating

scenario for the two antennas.

3.3 Numerical Modelling of Human Body

The human body is primarily made of four types of tissues: skin, fat, muscles and bones.

Muscle is the most abundant tissue in the human body while skin is the largest organ of

the human body with a thickness of 0.07-2 mm depending on the part of the body. The

human skeleton has 206 bones of different sizes and shapes while the fatty tissues are

found in almost all parts of the body. In a healthy person of average weight, the muscle

tissues contribute about 40%, fat is nearly 30% while bones make up 20% of total body

weight. The remaining body weight is composed of the skin and other organs including

connective tissues, blood, etc.

In this study, a single layer human body model has been developed using the CST

Microwave Studio R©. Owing to the complexity of the human body composition, the

tissue properties have been averaged out by estimating weight of the main tissue contents.

Table 3-1: Electric properties of specific human tissues at 2440 MHz used within the
constructed homogeneous body model

Tissue
Electric Properties

Dielectric Constant (εr) Tissue Conductivity (σ) (S/m)

Bone 18.24 0.81

Fat 5.28 0.11

Muscle 52.34 1.73

Skin 38.02 1.46
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Figure 3.9: Structure of high-resolution, medium-resolution and low-resolution numerical
models of the human body with on-body positioned headset and handset antennas (all
lengths are in mm)

Hence, the homogeneous human body model is approximated to include 10% skin, 30%

fat, 40% muscle and 20% bone, which leads to an averaged relative permittivity of 28.16

and conductivity of 1.14 S/m at 2440 MHz. The dielectric properties of the human body

tissue are taken as described in [11–13]. The values for the four types of tissues at 2440

MHz used in this study are summarised in Table 3-1.

The high level discretisation of the whole-body model represents an average built

human with a height of 1755 mm, as shown in Figure 3.9(a). An adaptive meshing

scheme has been implemented where finer cell sizes have been used around the vital

parts of the body. This scheme reduces the required number of cell volumes (voxels) in

the computational domain significantly, hence the computation and time requirements.

The Perfectly Matched Layer (PML) absorbing boundary conditions are used [14], with

a maximum mesh cell size of 10 mm near the boundaries of the computational domain

and a minimum mesh cell size of 0.08 mm at the edges of the solids in the computational
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domain. The headset antenna was placed 10 mm away from the head at the approximate

location of the ear in order to incorporate the clearance for the cover assembly. The

handset antenna was placed on the right side of the body model at the waist realising a

typical body worn position, with the same separation of 10 mm from the body to add

the cover assembly clearance.

The choice of the right model for the study is very critical as computational efficiency

decreases with increase of model resolution and its size. In this study, the main interest

lies in the investigation of the surface wave behaviour in on-body communication links.

Earlier publications have reported that in such studies, simple human body models could

also deliver accurate results [5]. To confirm this, two simplified models have also been

designed. First, the high-resolution human body model is modified keeping the head as a

high-resolution object while the remaining organs are simplified. This medium-resolution

model represents a nearly realistic shape of an average built human with a height of

1755 mm and thickness of 220 mm, as illustrated in Figure 3.9(b). This model has

benefits of reduced complexity and flexibility in terms of re-positioning body parts (e.g.,

sitting, standing, talking and holding phone positions). Finally, a low-resolution simpler

homogeneous model following the average physical size of a volunteer is developed. The

complete height of this low-resolution body model is 1720 mm. The thickness of the

torso for this low-resolution model is 120 mm while radius of the head is 86 mm. The

location of the headset and the handset antennas were kept the same as above with 10

mm separation from the body surface.

The electric field distributions on the body surface are investigated on the cross-

section plane through the headset as shown in Figure 3.12 and are then compared for

the three models. The fields are normalised to the value at the feeding point of the

horizontally placed handset antenna as presented in Figure 3.10. From these results,

it is obvious that the three models support a similar field pattern. In the three cases,

the field strength at the headset antenna is in the order of -18 dB. It is also evident

from Figure 3.10 that the lower part of the body (knees to feet) is not a contributor to
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Figure 3.10: Comparison of normalised electric field distributions and on-body surface
waves on realistic high-resolution and medium-resolution whole body models and simple
thigh-to-head body model for horizontally oriented handset antenna on the cross section
plane through headset
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Figure 3.11: Comparison of simulated path gain curves for horizontal handset PIFA
antenna using three types of human body models

the Bluetooth on-body link between the handset and the headset antennas and only the

upper part of the body (from thighs to head) is the major area of concern in this study.
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The simulated path gains obtained using the three models of the human body are

also compared in Figure 3.11. It also shows that the three models produce very similar

results. The difference between the path gains for the detailed high-resolution model

and simpler low-resolution model is only 1.7 dB at 2440 MHz. These factors lead to the

choice of a simpler low-resolution model for further investigations. Also, based on the

electric field distribution results, the human body model is modified to exclude the lower

part of the body (knees to feet) from the simulation setup for the sake of computational

efficiency. This approach reduces the effective length of the body model to 1100 mm

(Figure 3.12). The close agreement between the simulated and measured values of path

gain observed in the next section further increases the level of confidence in the use of

this simple model whose benefits in terms of computational efficiency are clear.

3.4 Simulation and Measurement Set-Up

Two orientations of the handset antenna, horizontal and vertical, have been considered.

In the horizontal arrangement, the antenna ground plane is parallel to the body, longitu-

dinal in x-axis with the PIFA at the top of the ground plane. In the vertical arrangement,

the antenna is rotated 90o, now having the ground plane longitudinal in z-axis with the

PIFA on the left as described in Figure 3.12. The vertical distance between the headset

and the handset antennas is 620 mm.

The Bluetooth link is characterised in terms of average path gain (S21). The simu-

lated results are confirmed through the measurements using Agilent HP8720ES Vector

Network Analyser. The headset and handset antennas have been worn by the volunteer

arranged in the same configurations as were modelled. The two antennas are fed by

low-loss coaxial cables of 5 m length. The coupling between two feed cables is measured

separately and a loss variation of 0.5 dB (maximum) is found on-body. The measurement

set-up in an anechoic chamber is illustrated in Figure 3.13(a).
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Figure 3.12: Simulation set-up with low-resolution thigh-to-head numerical model of
the human body and on-body test configurations with headset and handset antenna
positions and location of cross-section plane for observation of electric field distribution
(all lengths are in mm)

3.5 On-Body Bluetooth Transmission

3.5.1 Transmission in Absence of Human Body

Initially, the Bluetooth link is studied in the absence of the human body. In this scenario,

the handset PIFA antenna and the headset meander line monopole antenna are placed

exactly at the same locations where they would be in the presence of the human body.

Therefore, the test set-up is essentially the same as described in Figure 3.12, but without

the presence of the human body model. To locate these exact positions, a cube of

polystyrene replicating the on-body gap between the two antennas was used.

It is observed that the direct link between the handset and the headset antenna is -36.8

dB in simulation and -36.5 dB in measurement at 2440 MHz when the handset antenna is

placed horizontally, as illustrated in Figure 3.14. Placing the handset antenna in vertical

orientation causes some drop in path gain and the simulated and measured values of the
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Figure 3.13: Measurement set-up with headset and handset antenna prototypes for the
study of on-body Bluetooth transmission mechanism in an anechoic chamber

path gain appears to be -38.3 dB and -37.2 dB respectively, as shown in Figure 3.15.

This decrease in the path gain can be easily understood as the changing orientation

of the antenna varies its polarisation. The directivity of the vertically oriented handset

antenna is also dropped in the upward direction (z-axis) as shown in the radiation pattern

in Figure 3.8. In general, the simulated and measured results represent a close agreement

to each other.

3.5.2 Transmission in Presence of Human Body

The Bluetooth link is then investigated for the on-body transmission with body-worn

handset and headset antennas. Both horizontal and vertical placements of the handset

antenna are taken into account. The simulated and measured average path gain between

the body-worn, horizontally placed handset and the headset antennas is found to be -51.6

dB and -52.0 dB respectively at 2440 MHz, as indicated in Figure 3.14. On the other

hand, the path gain for the body-worn vertically placed handset antenna configuration is

found to be -49.1 dB in simulation whereas -47.6 dB in measurement as shown in Figure

3.15. Table 3-2 summarises the simulated and measured results of the average path gains
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Figure 3.14: Comparison of simulated and measured path gains for horizontally placed
handset antenna with and without presence of the human body

between the handset and the headset antennas in different test configurations.

It is not surprising that the path gain drops substantially in the presence of the

human body, which blocks the line-of-sight between the headset and handset antennas.

However, the decrease in link differs with the change in handset antenna orientation:

14.8 dB (simulation) or 15.5 dB (measurement) in case of horizontally placed handset
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Figure 3.15: Comparison of simulated and measured path gains for vertically placed
handset antenna with and without presence of the human body
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antenna and 10.8 dB (simulation) or 10.4 dB (measurement) in case of vertically placed

handset antenna. This apparent difference caused by the orientation of the handset

antennas is associated with varying polarisation and will be explained when the role of

the surface waves is addressed in the next section.

The simulated path gains have shown a good overall agreement to the measured

values. A maximum difference of 1.5 dB occurred in the case of the vertically placed

handset antenna on-body. The reasons for this error lie in small differences between the

computer model and the experiment, such as the shape of the body, tissue properties,

presence of clothes and feeding cables. However, this close agreement between the two

values validates the computer models and serves as a benchmark for further study of the

on-body communication link. It also justifies the choice of a simple homogeneous model

to study the on-body Bluetooth transmission mechanism in the following section.

3.6 Role of Surface Waves in On-Body Bluetooth Trans-

mission

The path gain values obtained in the previous section are useful in designing the Blue-

tooth enabled handsets and headsets. However, further insights into the electromagnetic

wave propagation are required in order to devise means to improve this communication

Table 3-2: Simulated and measured values of the average path gain (S21) for different
test configurations, with different handset antenna orientations and with and without
human body at 2440 MHz

Test Set-up
Average Path Gain (S21) (dB)

Simulated Measured

Horizontal handset antenna, without
body

-36.8 -36.5

Horizontal handset antenna on-body -51.6 -52.0

Vertical handset antenna , without body -38.3 -37.2

Vertical handset antenna on-body -49.1 -47.6
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Figure 3.16: Illustration of radio wave propagation between two antennas positioned
above a lossy conductor via space (air) wave and surface wave

link. The electromagnetic energy travels from a transmitting antenna to a receiving

antenna placed at short distances above a lossy conductor such as the human body in

two ways; air waves and the surface waves [15]. When a wave hits a thin layer of a

lossy conductor (the human body tissue in current case as the penetration depth is very

small) at an arbitrary incidence angle, reflection or refraction of the wave components

occurs. However, the boundary conditions force some of the wave components to propa-

gate along the curvature of the interface of the two mediums resulting in the formation

of the surface waves [16, 17] as depicted in Figures 3.16 and 3.17. In the absence of

a line-of-sight link, these surface waves play an important role to establish an efficient

wireless communication link. Attenuation of these surface waves depends considerably

on the electric properties of the surface [18, 19].

In this section, the distribution of electric field magnitude and electric field strength

is employed to investigate the role of surface waves in the on-body Bluetooth link. The

electric field strength is calculated on the human body surface along the path between

the two antennas. The electric field distribution is plotted on the cross-section plane

normal to the x-axis cutting through the headset antenna as illustrated in Figure 3.12

and on the front surface of the body, respectively. The electric field is normalised to the

value at the feeding point of the handset PIFA antenna. Different scenarios including

changing handset antenna orientation, varying handset-body separation and presence
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Figure 3.17: Generation of surface waves on the interface of air and lossy conductor

of blocking object in the transmission path at varying gaps from the human body are

considered to study the importance of the surface waves.

3.6.1 Effects of Handset Antenna Orientation

The two orientations of the mobile handset PIFA antenna; horizontal and vertical are

re-investigated to study the surface wave’s behaviour. Figures 3.18 and 3.19 show distri-

butions of normalised electric field magnitude, viewed on the cross-section plane through

the headset and the front surface of the body for horizontal and vertical orientation,

respectively. A zoomed-in view, highlighting the strength of on-body surface waves for

the two orientations of the handset antenna, is depicted in Figures 3.20 and 3.21. It

is evident from the electric field distributions in Figure 3.18 and Figure 3.19 that the

surface waves are generated on the surface of the human body. These surface waves are

guided by the air-body interface and creeps towards the headset antenna. These surface

waves reach almost all parts of the body but their decay is rapid due to high losses of

the human body tissues as illustrated in Figure 3.18(b). Also, the direction of propaga-

tion of stronger air waves is away from the body because of reflections and hence, little

contribution can be noted at the headset antenna.

The electric field distribution for the vertical oriented handset antenna in Figure

3.21 depicts much stronger surface waves as compared to the horizontal oriented hand-
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Figure 3.18: Normalised electric field distribution and on-body surface waves for hori-
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Figure 3.19: Normalised electric field distribution and on-body surface waves for verti-
cally oriented handset antenna

set antenna (Figure 3.20). It is due to the fact that stronger vertical polarised signal

generated by the vertical placement of the handset antenna results in the electric field

perpendicular to the human body surface. It minimises the contact of the electric field

with the human body reducing the energy absorption in the lossy tissues. On the other
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hand, the electric field is parallel to the human body surface when the radio signal is

in horizontal polarisation. A constant contact with the human body surface of such

wave makes it to attenuate more rapidly as evident from Figure 3.18. Therefore, the

vertical orientation of the handset antenna forms a stronger on-body link with the head-

set antenna than the one observed for the horizontal placement of the handset. The

path gains for the two orientations given in Table 3-2 further confirm it with higher

values for the vertically placed handset antenna than that with a horizontally placed

handset antenna. Moreover, a weaker link for the vertically placed handset antenna in

the absence of the human body, observed in the previous section, further supports the

argument.

The electric field strength on the body surface in Figure 3.18(b) and 3.19(b) is used

to get more insight of the surface wave behaviour in on-body transmission mechanism.

The electric field strength for both the horizontal and vertical placed handset antennas

is plotted as a function of distance towards the headset antenna. The origin of the three

axes is located on the right side of the body, above the handset antenna. The starting

point in vertical direction (the origin of z-axis) for all the plots are chosen 180 mm away

from the handset antenna to avoid the antenna near field region as shown in Figure

3.22(a).

Figure 3.23 illustrates the electric field strength along the width of the body surface

(from right to left: -80 to 280 mm) for horizontally placed handset antenna whereas

Figure 3.24 describes the electric field strength for vertical orientation of the handset

antenna in the same fashion. The curves on the two extremes are excluded to avoid the

diffraction effects on the edges. Similarly, Figures 3.25 and 3.26 presents the electric field

strength in front of the human body, starting from the body surface and extending to

a separation of 280 mm, for both the horizontal and vertical oriented handset antennas

respectively.

Figure 3.24 (vertically oriented handset antenna), shows that in the region of 300

mm to 500 mm (from chest to ear) along the body surface (in the z-axis direction), the
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Figure 3.20: On-body surface waves for horizontal handset antenna

Figure 3.21: On-body surface waves for horizontal handset antenna

curves descent very gradually indicating a slower decrease in the electric field strength

and hence the surface waves. On the other hand, the slope of the curves in this region
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Figure 3.22: Definition of curves to observe the received electric field strength between
the handset and headset antennas on the body surface (right-to-left) and away from the
body surface (all lengths are in mm)

has comparatively sharper decline when the handset antenna is placed in horizontal

orientation in Figure 3.23, which illustrates more rapid decay of the surface waves. Also,

the strength of the electric field for vertical orientation of the antenna in front of the body

is greater as compared to that observed along the body surface depicting less contact

with the lossy body surface as shown in Figure 3.26, observed on the curves defined

away from the body (Figure 3.22(b)). An opposite trend could be noted in Figure 3.25

showing greater contact of the electric field generated by the horizontal orientation of

the handset antenna with the body surface. Hence, the surface wave component of the

vertically polarised signal undergoes less attenuation and results in a much stronger

communication link. This, along with the field distributions shown in Figure 3.18 and

3.19 confirms that the surface waves have a more dominant role than the air waves in

the Bluetooth on-body link.
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Figure 3.23: Electric field strength on the path along the body surface between the
horizontal handset and the headset antennas, corresponding to Figure 3.22(a)

3.6.2 Dependency on Handset and Body Separation

The excitation condition of the on-body surface waves has been examined by analysing

the effects of varying separations between the human body and the handset antenna on

the Bluetooth link. The horizontally oriented handset antenna is used to investigate

the worst-case scenarios. The path gain and electric field strength has been studied for

handset-body separations (dh) of 10 mm, 20 mm and 30 mm. Table 3-3 presents the

path gain values obtained via simulations for the three set-ups. It is evident from these

results that increasing the gap between the antenna and the human body deteriorates

the on-body Bluetooth communication link.

The electric field strength on the path between the two antennas on the body surface

is plotted in Figure 3.27 as a function of separations between the body and the handset

antenna. The degradation of the Bluetooth link at 20 mm gap is apparent from the
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Figure 3.24: Electric field strength on the path along the body surface between the
vertical handset and the headset antennas, corresponding to Figure 3.22(a)

signal strength values as the surface waves are weakened because of a reduced coupling

to the surface of the human body. Increase in antenna-body separation to 30 mm further

reduces the strength of the surface wave component that causes the path gain to drop

to -53.3 dB. These results further confirm that the surface waves are a major factor in

this communication link as compared to the air waves and the 10 mm separation is the

optimal position for the horizontally placed handset antenna (of the three studied cases)

to excite the surface waves.

Table 3-3: Simulate results for average path gains obtained with different handset-body
(dh) separations for horizontally placed handset antenna at 2440 MHz

Handset-Body Separation (dh) (mm) Average Path Gain (S21) (dB)

10 -51.6

20 -52.5

30 -53.3
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Figure 3.25: Electric field strength away from the body surface between the horizontal
handset and the headset antennas, corresponding to Figure 3.22(b)

3.6.3 Effects of Blockade by Surrounding Objects

Identification of the dominant transmission channel in this on-body communication link

is of particular interest. It is helpful to the antenna designers to come up with designs that

support the dominant medium of transmission, increasing efficiency and reliability of the

communication channel. The dominant transmission medium is further determined by

blocking the direct path between the handset and the headset antennas and investigating

the subsequent effects on the link budget. The direct path between the two antennas

is blocked using a metal barrier. The barrier has dimensions of 458 mm×261 mm×20

mm and is located at a height of 140 mm from the horizontally placed handset antenna

as shown in Figure 3.28. Variation in the path gain values and behaviour of the surface

waves because of the presence of the barrier is studied for varying barrier-body gaps.

Three separating distances (db) between the body and the barrier, i.e. 0 mm, 20 mm
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Figure 3.26: Electric field strength away from the body surface between the vertical
handset and the headset antennas, corresponding to Figure 3.22(b)
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Figure 3.27: On-body surface waves for different separations of horizontal handset
antenna and body (dh)

and 60 mm have been considered. Table 3-4 gives an account of the path gain values

obtained from the simulated configurations.



Chapter 3. On-Body Bluetooth Transmission Mechanism 70

10

140

261

458

20

XY

Z

Figure 3.28: On-body test configuration for the study of transmission mechanism in the
presence of a horizontal barrier (all lengths are in mm)

It can be seen that the path gain drops dramatically to -70.4 dB when the separation

between the barrier and the body is set to 0 mm. Increasing the body-barrier separation

shows a tendency to improve the on-body Bluetooth link. With 20 mm separation, path

gain is enhanced to -58.2 dB while this value reaches to -50.2 dB with a separation of 60

mm between the body and the barrier.

Figure 3.29 illustrates the normalised electric field distributions in the presence of

the barrier. The link is worst when there is no gap between the body and the barrier.

Although, a few surface waves could creep through the gap at the arms, the barrier

blocks most of the air waves and the surface waves as described in Figure 3.29(a). It also

Table 3-4: Simulated values of average path gain for on-body transmission with blocking
effects due to a metal barrier placed at various separations from the body surface at 2440
MHz

Barrier-Body Separation (db) (mm) Average Path Gain (S21) (dB)

0 -70.4

20 -58.2

60 -50.2
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Figure 3.29: On-body surface waves observed on the cross-section plane with barrier at
different separations (db) from the body surface

shows that the human body is not a good medium for communication link as little elec-

tromagnetic energy is passing through the body. Increasing the barrier-body separation

to 20 mm, the path gain improves because of generation and propagation of the surface

waves as shown in Figure 3.29(b). In this configuration, surface waves are the dominant

medium as air waves are still blocked.

The electric field distribution for 60 mm separation is shown in Figure 3.29(c). The

link shows greater enhancement for this separation as path gain becomes -50.2 dB, 1.4

dB more than that achieved with no blocking. It can be seen that much stronger surface

waves can reach the top part of the body in this case as the barrier blocks the air waves.

Reflections from the barrier and diffraction at the edge of the barrier also contributes to

strengthen the surface waves. Moreover, a separation of 60 mm is almost equal to the

half wavelength (wavelength is 122.95 mm at 2440 MHz) whereas 20 mm is less than

the quarter wavelength. The surface wave needs at least half wavelength space to pass

through efficiently. Therefore, the link is improved at 60 mm separation as compared

to the configurations with narrower gaps. These results confirm that the surface waves
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creeping on the air-body interface from the handset to the headset antenna are the

dominant path in this on-body Bluetooth transmission channel.

3.7 Summary

The on-body Bluetooth link between a mobile handset and Bluetooth headset has been

analysed using computer simulations and verified through the measurements in this chap-

ter. The link characteristics have been investigated for its dependency on the handset

antenna orientation, distance between the handset and the human body and presence of

line-of-sight blocking objects in the transmission path.

It is shown that the human body causes a loss of 10-15 dB in the Bluetooth path

gain due to blocking of line-of-sight between the handset and the headset antennas. The

handset antenna in vertical orientation forms a stronger link due to less rapid decay of

the surface waves as compared to the horizontal orientation. The surface wave excitation

also depends on the distance between the handset antenna and the human body besides

the handset antenna orientation. The increasing handset-body separation results in a

weaker on-body Bluetooth link because of decrease in the strength of the on-body surface

waves. It is deduced that surface waves extend to at least one half wavelength away from

the human body and blocking objects located nearer than that can cause the on-body

link to degrade due to blockage of the surface waves.
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Chapter 4

Effects of Multipath Environment

on GPS Antennas

The introduction of built-in GPS in portable Personal Navigation Devices (PNDs) espe-

cially the mobile phones has revolutionised the navigation industry. The ever growing

demand of availability of the navigation facilities in these devices has made the GPS

an essential part of the modern Wireless Personal Area Network (WPAN) and Wireless

Body Area Network (WBAN) applications. The portable GPS mobile terminal antennas

experience multipath fading due to reflections or diffractions of the incident radio waves

from the surrounding environment. Therefore, the GPS antenna’s performance in real

working environment cannot be judged on the basis of traditional analysis of the free

space antenna parameters.

This chapter details a novel technique to characterise these environmental effects

on the GPS antennas using statistical models. The antenna performance is accounted

in terms of GPS Mean Effective Gain (MEGGPS), GPS Angle of Arrival (AoAGPS)

distribution and GPS Coverage Efficiency (ηc). This statistical approach provides an

efficient alternative to the actual field test with added benefits of repeatability and

accuracy. The validation of the model is carried out both through measurements and

75



Chapter 4. Effects of Multipath Environment on GPS Antennas 76

performance analysis of various GPS antennas.

4.1 Antennas and Multipath Environment

The performance of the antennas in the WPAN/WBAN applications is usually tested by

the antenna designers using traditional electromagnetic procedures considering free space

input impedance, radiation efficiency and radiation patterns. However, the real working

environment for these antennas is quite different from the conditions under which they

are tested in an anechoic chamber. The free space antenna parameters are modified

greatly due to reflections, diffractions and scattering of the incoming radio waves from

the objects located in the vicinity, including buildings, trees, vehicles and ground as

shown in Figure 4.1.

Theoretically, the GPS antennas should have good Right Hand Circular Polarisation

(RHCP) with a uniform radiation pattern over entire upper hemisphere in order to

receive the incoming GPS signal efficiently and provide better coverage. A good rejection

of Left Hand Circular Polarisation (LHCP) is also required to avoid multipath fading

[1–3]. However, these requirements are hard to fulfil in portable devices. The reasons

involved are the limitations of size and space of the hand-held GPS receivers, especially

the mobile phones, that have to provide a number of other services including Wi-Fi, FM

radio, digital camera and mobile TV [4, 5]. Also, in the common working conditions

of cluttered environments including indoors and city streets, a weak signal is available

directly from the satellite while the reflected signals may have arbitrary polarisations.

Moreover, the mobile phones are hardly used in a fixed position and the “up” direction of

the antenna changes depending on the used orientation. Therefore, a wide-beam linearly

polarised GPS antenna is a preferred choice as it gives better performance compared to

the conventional RHCP antennas [6–8].

Since, the WPAN/WBAN applications are desired to allow maximum mobility of

the user and flexibility of use in different situations with reliable data transmission,
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the antennas in these devices should cope all these effects successfully. It makes the

traditional electromagnetic techniques incapable to give a correct account of the antenna

performance in the real working environment. Many efforts have been reported in the

literature to study the performance of the mobile antennas in land mobile environment

using the Mean Effective Gain (MEG) and statistical models for Angle of Arrival (AoA)

of the incident waves [9, 10]. The increasing use of the GPS antennas in portable devices

make it pertinent to study these effects thoroughly.

4.2 Statistical Environmental Model for GPS Operation

Performing field tests to analyse the performance of a GPS antenna has the drawback

of longer procedures where weather, temperature and location hazards make it hard to

control the test environment. It results in lack of accuracy due to poor repeatability and

efficiency. The statistical models representing the real multipath scenarios provide an

excellent alternative to the field tests, predicting the antenna performance while avoiding

the short-comings of the field tests. Moreover, effects of antenna properties of gain and

polarisation and directional response of the environment on the antenna performance

could be characterised separately.

A novel stochastic method is developed to characterise the environmental factors

on the performance of the GPS antennas, introducing the parameters of GPS Mean

Effective Gain (MEGGPS) and Coverage Efficiency (ηc). This method models the GPS

multipath environment using statistical definitions of the antenna MEG and incident

wave AoA distributions. The MEG equation derived by Taga [9] is re-formulated to suit

the GPS environment with RHCP incoming waves and environmental reflections. An

overview of the expected performance of the GPS antennas in the multipath environment

can be achieved using this method having the knowledge of 3-D free space antenna

radiation patterns and average angular distribution of incident power in the environment.

The power distribution must be known in both azimuth and elevation, and separately
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Figure 4.1: GPS environment and multipath signals

for perpendicular and parallel polarised field components. It effectively eliminates the

need of an actual field test with clear benefits of repeatability, flexibility and efficient

computation.

4.2.1 GPS Mean Effective Gain (MEGGPS)

The MEG is the average gain of the antenna performance in a multipath radio environ-

ment compared to the performance of a reference antenna in the same environment. It

characterises average performance of an antenna by taking into account the polarisation

and probability of the incident radio waves and the gain patterns of the antenna under

test in the multipath environment. The MEG of an antenna in a mobile terminal is
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defined as [9]:

MEG =
Mean Received Power (Preceived)

Total Mean Incident Power (Pincident)
(4.1)

For spherical coordinates, Preceived can be expressed as [11]:

Preceived =
∫ 2π

0

∫ π

0
[P1Gθ (θ, φ) pθ (θ, φ) + P2Gφ (θ, φ) pφ (θ, φ)] sin θdθdφ (4.2)

where Gθ (θ, φ) and Gφ (θ, φ) are θ and φ components of the antenna power gain pattern

respectively, pθ (θ, φ) and pφ (θ, φ) indicate the θ and φ components of angular density

functions of the incoming waves respectively. P1 is the mean power that would be

received by an isotropic antenna in θ polarisation while P2 is the mean power received

by an isotropic antenna in φ polarisation.

The total mean incident power (Pincident) arriving at the antenna would be the sum-

mation of the mean power in the two polarisations, given as:

Pincident = P1 + P2 (4.3)

The incident wave in the GPS mobile environment can be split into two components,

perpendicular polarised component and parallel polarised component. Therefore, θ and

φ components respectively correspond to the perpendicular and parallel polarised com-

ponents. Reformulating Equation 4.2 to suit the GPS environment results as follows:

PreceivedGPS
=

∫ 2π

0

∫ π

0

[
P⊥G⊥ (θ, φ) p⊥ (θ, φ) + P||G|| (θ, φ) p|| (θ, φ)

]
sin θdθdφ (4.4)

Now, P⊥ and P|| are the mean received power in the perpendicular and parallel polar-

isations with respect to the ground plane while p⊥ (θ, φ) and p|| (θ, φ) represent the

perpendicular and parallel components of the angular density functions of the incoming

waves respectively, as shown in Figure 4.1. Pincident arriving at the mobile GPS terminal
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Figure 4.2: Multipath environment model around the GPS receiver antenna

is then:

PincidentGPS
= P⊥ + P|| (4.5)

The ratio of the mean powers received in perpendicular and parallel polarisations

when the transmitted radio wave is perpendicular polarised is termed as XPR (Cross

Polarisation Ratio) and described by:

XPR =
P⊥
P||

(4.6)

Using Equations 4.4-4.6, the MEG expression for the GPS antenna can be formulated

as:

MEGGPS =
∫ 2π

0

∫ π

0

[
XPR

1 + XPR
G⊥(θ, φ)p⊥(θ, φ)

+
1

1 + XPR
G‖(θ, φ)p||(θ, φ)

]
sin θdθdφ (4.7)

Since, XPR governs the polarisation of the incoming wave in this model; the circular

polarised nature of the incoming GPS satellite signal is accumulated by making XPR =

0 dB. It employs the fact that simultaneous transmission of two linearly polarised waves

that have a phase difference of π/2 (radian) results in the generation of a circularly

polarised wave.
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4.2.2 GPS Angle of Arrival Distribution GPS (AoAGPS)

The AoAGPS defines the direction of arrival of the incident waves at the GPS receiver

from the satellite antenna. In order to evaluate the actual antenna performance in a

multipath environment, it is necessary to apply a suitable statistical model similar to

the real environment. Since, at least four GPS satellites are visible at a single point on

earth at any time, it can be assumed that at least four incident waves arrive at the GPS

receiving antenna placed in a wireless communication environment. Most of the incident

waves are reflected, diffracted and scattered from the objects surrounding the receiving

antenna including buildings and the ground plane. This provides a reasonable basis to the

assumption that the angular density function in azimuth can be considered as uniform,

similar to the case of land mobile environment [9, 12, 13]. However, in the elevation,

situation becomes different as reflections take place from the ground plane, in the lower

hemisphere as illustrated in Figure 4.2. Since, no measurements are reported in the

literature for angle of arrivals for the GPS antenna, it is assumed as a starting point that

angular density function is uniform in upper hemisphere while in lower hemisphere; it is

uniform but reduced by a factor governed by the reflection coefficients for perpendicular

and parallel polarised components.

In accordance with the preceding assumptions, a novel statistical model for the GPS

antenna in a multi-path environment is proposed as follows:

p⊥(θ, φ) = pinc⊥(θ, φ) + pref⊥(θ, φ)

=





1 0≤θ≤π/2

1 ·A(θ)⊥ π/2≤θ≤π

(4.8)

p‖(θ, φ) = pinc‖(θ, φ) + pref‖(θ, φ)

=





1 0≤θ≤π/2

1 ·A(θ)‖ π/2≤θ≤π

(4.9)
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Where A (θ) depends upon the reflection coefficients for the perpendicular and parallel

components that varies with angle of incidence (θ). Hence:

A(θ)⊥ = P⊥ · Γ⊥ (4.10)

A(θ)|| = P|| · Γ|| (4.11)

The reflection coefficients for the two polarisations are defined as [14, 15]:

Γ⊥ =
cos θi −

√
(ε2/ε1)− sin2 θi

cos θi +
√

(ε2/ε1)− sin2 θi

(4.12)

Γ|| =
(ε2/ε1) cos θi −

√
(ε2/ε1)− sin2 θi

(ε2/ε1) cos θi +
√

(ε2/ε1)− sin2 θi

(4.13)

4.2.3 GPS Coverage Efficiency (ηc)

Coverage efficiency of the receiving GPS antenna is another important parameter. It is

the capability of the antenna to receive the signals coming directly from the satellites.

It defines the quality and number of the GPS satellites an antenna can track for efficient

navigation and positioning services.

Currently, the GPS antenna performance is characterised by its ability to receive

the signals at elevation angles higher and lower than 10o as antenna performance is

hugely degraded by multipath fading at lower angles [16]. This merit requires separate

analysis for both the elevation regions and hence, fails to describe the true coverage of

the antenna. The concept of the antenna coverage efficiency overcomes this drawback

by giving information about the antenna coverage in the whole upper hemisphere. The

GPS antenna can receive signals from all directions that lie within its coverage area. The

signals incident at angles beyond this limit are too weak to be used in the navigation

solution, resulting in the rise of the wasted component of the incident waves.
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Figure 4.3: Illustration of Coverage Efficiency calculations and corresponding RHCP
gain levels in the covered area of a GPS antenna with an arbitrary donut shaped gain
pattern

The coverage efficiency of the GPS antenna can be calculated in terms of the solid

angle by defining a threshold level. Signals below this level are considered too weak

to make an impact and hence, they are wasted. Figure 4.3(a) illustrates the coverage

efficiency calculations in the incident region (0o ≤ θ ≤ 90o) with 0o representing the

zenith and 90o the horizon. The coverage area of the antenna under test is made up
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of those AoAs where received GPS signal is above the selected threshold level. The

threshold line is shown in green while grey coloured area depicts the coverage area in

Figure 4.3. The total area describes the maximum coverage that can be obtained by a

reference GPS antenna. In case of a hypothetical isotropic antenna, the whole incident

region is the total area, illustrated by shaded cyan colour in Figure 4.3.

The coverage efficiency of the antenna under test is then calculated as the ratio of the

solid angles subtended by the coverage area and the total area, resulting in the following

expression:

ηc =
Coverage Area

Total Area
(4.14)

In this equation, the total area is the half hemispherical solid angle for an isotropic

antenna, that is equal to 2π. To incorporate the Right Hand Circular Polarisation of

the incoming wave, RHCP gain pattern is used in this calculation as described in Figure

4.3(b). The coverage area of this arbitrary antenna would be the solid angle subtended

by the useful angles i.e. the parts where the RHCP gain is above the selected threshold

in the incident region (0o ≤ θ ≤ 90o).

Selection of an appropriate signal threshold level could be obtained from the GPS link

budget calculations. The GPS link budget for L1 band is calculated using the following

equation [17]:

Pr = Pt + Gt − Lp − Lm + Gr (4.15)

Where, Pr is the receiver sensitivity in dBW while Pt is transmitted output power includ-

ing the transmitter losses in dBW. Gt and Gr indicate gain of the transmitting and

receiving antennas in dBi respectively, while Lp is the free space loss in dB and Lm indi-

cates the miscellaneous losses including polarisation mismatch and atmospheric losses in

dB. The link budget is calculated as follows:

Frequency of operation = f = 1575.42 MHz
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Figure 4.4: Power levels in a GPS L1 band link budget

Satellite altitude = R = 20,180 km

Gt = 13 dBi [17, 18]

Pt = 16.99 dBW (corresponds to 50 W typical) [17]

However, impedance mismatches and circuit losses reduce the transmitted power in prac-

tical scenarios and therefore,

Pt = 14.3 dBW [18]

Lp = (4πR/λ)2 = 182.5 dB

Lm = 2 dB [17, 18]

Pr = -160 dBW (corresponds to -130 dBm typical)

Vendor values for different GPS receivers show that the sensitivity of the GPS receiver

could be as high as -145 dBm (corresponding to -175 dBW) [19]. Therefore,

Pr = -175 dBW

Rearranging Equation 4.15 and putting the values gives:

Gr= -17.8 dBi

The link budget calculations show that a minimum threshold level of -17.8 dBi is

required to calculate the coverage efficiency of the GPS antenna. However, a threshold

level of -13 dBi has been selected for the proposed model to investigate the worst case

scenarios. This threshold level has been verified by a close agreement between the values

obtained through calculations using the proposed model and the open field test results
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observed in the following sections.

4.3 Open Field Test Procedure

A detailed open field test procedure is adopted to verify and validate the model’s predic-

tions. In these measurements DG-100 GPS receiver from GlobalSat Technology is used

for the GPS signal reception. This receiver uses a SIRF Star III chipset module with 20

channels (can track up to 20 satellites) and has a built-in patch antenna. It also provides

a micro-miniature coaxial connector (MMCX) port for external antennas. The sensitiv-

ity of the receiver is -145 dBm. The measurements has been performed independently

at QMUL and Sony Ericsson Communications, Sweden.

4.3.1 Measurement of GPS Mean Effective Gain

For MEGGPS , the received signal power (Psignal) should be known. The Signal-to-noise

ratio (SNR) is a measure that is used to evaluate the performance of the designed GPS

antennas. It indicates how strongly the satellite’s radio signal is being received. It is

computed as a ratio of the signal power to the noise power attenuating the signal:

SNR =
Signal Power (Psignal)
Noise Power (Pnoise)

(4.16)

And:

SNR (dB) = Psignal (dBm)− Pnoise (dBm) (4.17)

On re-arranging Equation 4.17:

Psignal (dBm) = SNR (dB) + Pnoise (dBm) (4.18)

Also [18]:

Pnoise (dBm) = Psr (dBm) + NF (dB) (4.19)
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Here, NF is the noise figure representing the noise generated within the GPS receiver

while Psr is the temperature dependent source resistance noise power. At a temperature

of 25oC and for a system bandwidth of 1 Hz, Psr can be calculated as [20]:

Psr (dBm) = kTB = 1.380× 10−23 J/K × 298.15 K × 1 Hz = −174 dBm (4.20)

Where, k is Boltzmann’s constant and T is temperature in Kelvins. Now, putting these

values in Equation 4.18, the following expression is being obtained:

Psignal (dBm) = SNR (dB) + NF (dB)− 174 dBm (4.21)

It implies that the signal strength delivered to the GPS receiver is linearly dependent

on the SNR if the NF is constant and hence, Mean Received Power (Preceived) in Equation

4.1 of a GPS antenna can be calculated using the mean SNR level for that antenna.

Mean SNR level of the reference antenna (typically dipole antenna) gives the total Mean

Incident Power (Pincident). Finally, MEGGPS is calculated by taking the ratio of the

SNR levels of the two antennas.

4.3.2 Measurement of GPS Coverage Efficiency

The coverage efficiency describes how well the antenna can view the sky and receive the

satellite signal. In open field test, this quality corresponds to the number of satellites

that the antenna can track. It is obtained by taking the ratio of the mean value of

the useful tracked satellites (representing the coverage area of the antenna under test in

Equation 4.14) and the maximum number of the tracked satellites observed during the

whole measurement process (representing the total area in Equation 4.14).

ηc =
Nmean

Nmaximum
(4.22)
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Figure 4.5: Illustration of the test set up used in the field measurements of Mean Effective
Gain and Coverage Efficiency for the GPS antennas

4.3.3 Measurement Set-up

The performance of the GPS antenna is evaluated based on its capability to receive

the GPS signal in outdoor environments using GlobalSat GPS receiver DG-100. The

GPS antenna-under-test is used to observe the number of tracked GPS satellites and to

collect the Signal-to-Noise ratio (SNR) data of the GPS signal. The field test set up

is illustrated in Figure 4.5 and 4.6. The antennas are connected to the GPS receiver

via a micro-miniature coaxial connector (MMCX) to sub-miniature version A connector

(SMA) jumper cable.

The GPS receiver provides the following information on PC utility window shown in

Figure 4.7.

• Date, time, direction and speed.

• Current location of the user in terms of latitude and longitude.

• A satellite distribution map as shown in the upper left of Figure 4.7. This map
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Figure 4.6: Field measurements of Mean Effective Gain and Coverage Efficiency for the
GPS antennas

displays the position of all tracked satellites with North at top. Current location

of the user is at the centre of the map. Outer circle represents the horizon while

the inner circle is looking up at an angle of 45o.

• A satellite status chart shown in terms of vertical bars displays the SNR for the

tracked GPS satellites. Each bar corresponds to a specific satellite. At the bottom

of the each satellite bar are two numbers. The top number represents received

SNR while the bottom number represents the satellite number. The bars in blue

colour represent the satellites whose signal is good enough and are being used in

position calculation. The red bars indicate the satellites that are tracked but signal

is weaker, hence, not used in position calculation. Location of the corresponding

satellites is indicated on the satellite distribution map in the same colours.

The designed antennas are tested for the GPS signal reception in outdoor open envi-

ronment in both the horizontal and vertical orientations with respect to the ground. In

this suburban environment, near by houses has been located at ∼100 m distance from

the test point. The GPS receiver and the antenna are placed at a height of 1 m from the
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Figure 4.7: GPS status window shown by the GPS receiver on PC utility, observed to
collect the SNR values and number of the tracked satellites

ground. The antennas were rotated horizontally and eight readings of the GPS signal

reception information was recorded for the following angles:

φ = n× π

4
n = 0, 1, 2, ..., 7 (4.23)

It effectively provides the average reception of the signal in the environment. MEGGPS

is calculated from the SNR values of the GPS signals. Both the red and blue bars are

included in the calculations as they represent the tracked satellites. The information of

the eight best values of the received SNR are used to calculate the mean SNR level for

each antenna to represent the MEGGPS . ηc is calculated using the mean number of the

tracked satellites and dividing by 12, which appeared to be the maximum number of the

tracked satellites during the measurements.

4.4 Validation of Proposed Statistical Model

Three approaches have been adopted to establish accuracy and efficiency of the pro-

posed statistical model in the prediction of GPS antenna performance in the multipath
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environment. The three methods are listed below:

• Comparison based on extreme environments

• Comparison based on simulated and measured 3-D gain patterns

• Comparison based on measured 3-D gain patterns and actual field measurements

4.4.1 Design of Generic GPS Antennas

Three types of generic GPS antennas; dipole, CP microstrip patch and PIFA; are anal-

ysed in the multipath environment for this study.

4.4.1.1 Dipole

The use of a standard simple antenna with known characteristics is inevitable to bench-

mark the model. Therefore, a half wavelength dipole antenna working at 1575.42 MHz

is chosen for this purpose due to its simplicity and wide usage as a standard antenna.

The antenna is fed using a 50 Ω coaxial port and a quarter wavelength balun is used

to balance the current distribution. The antenna dimensions and fabricated prototype

are shown in Figure 4.8(a), while Figure 4.8(b) shows the measured S11 response for the

antenna. The antenna performs well in the L1 frequency band with -10 dB bandwidth

of 153 MHz covering all the frequencies from 1473 MHz to 1630 MHz. The highlighted

region shows the frequency range for the desired ±5 MHz bandwidth, based on the

discussion in Chapter 2, Section 2.3.5.

The measured 3-D gain patterns for the perpendicular and parallel polarisations of

the antenna in horizontal and vertical orientations are illustrated in Figures 4.9(a) and

(b).
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Figure 4.8: Geometrical structure of dipole GPS antenna with measured S11 curve (all
lengths are in mm)

4.4.1.2 Microstrip Patch

The microstrip patch antennas are the most widely used designs in GPS applications [21].

The truncated corner microstrip patch antenna used in this study has a ground plane of

100 mm×100 mm. A printed square patch of 53.4 mm×53.4 mm, fed by a coaxial line,
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Figure 4.9: Measured 3-D gain patterns for perpendicular and parallel polarisations of
dipole GPS antenna in vertical and horizontal orientations

is used as the radiating element. The substrate used is a FR4 with a thickness of 1.6

mm and εr=4.7. Figure 4.10(a) shows the geometry of the fabricated antenna. The free

space S11 response of the antenna in Figure 4.10(b) shows excellent impedance matching

in L1 band with centre frequency at 1578 MHz. The antenna has a -10 dB bandwidth

of 25 MHz covering all the frequencies in the range of 1566 MHz to 1591 MHz. The

measured 3-D gain patterns for perpendicular and parallel polarisation of the antenna

for both the horizontal and vertical orientations are illustrated in Figures 4.11(a) and

(b).
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Figure 4.10: Geometrical structure of truncated corner microstrip patch GPS antenna
with measured S11 curve (all lengths are in mm)

4.4.1.3 Generic PIFA

The planar inverted F antenna (PIFA) is a popular antenna choice when size is a matter

of concern since it is compact and extends approximately 1/20 of a wavelength. The

unobtrusive design makes it an often-used embedded type of antenna element in portable

devices. Due to these characteristics, a PIFA antenna is designed and its performance is
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Figure 4.11: Measured 3-D gain patterns for perpendicular and parallel polarisations of
truncated corner microstrip patch GPS antenna in vertical and horizontal orientations

studied for the GPS operation in the multipath environment. The antenna has a ground

plane of 60 mm×31 mm with a shorting strap of 9 mm×7 mm. The planar radiator

is of dimensions 38 mm×14 mm as shown in Figure 4.12(a). A polystyrene foam with

εr=3.6 is used as the dielectric. The measured S11 curve of the antenna shown in Figure

4.12(b) indicates that the PIFA operates well in the L1 band having -10 dB bandwidth

of 45 MHz and covers the frequencies ranging from 1545 MHz to 1590 MHz. Figures

4.13(a) and (b) give an account of the measured 3-D gain patterns for perpendicular and

parallel polarisations of the antenna in both the horizontal and vertical orientations.



Chapter 4. Effects of Multipath Environment on GPS Antennas 96

60
931 14 386Feed point X ZY2

(a) Generic PIFA prototype and geometry

1400 1500 1575.42 1600 1700
−25

−20

−15

−10

−5

0

Frequency (MHz)

S
1

1
 (

d
B

)

(b) Measured S11 curve

Figure 4.12: Geometrical structure of generic PIFA GPS antenna with measured S11
curve (all lengths are in mm)

4.4.2 Comparison Based on Extreme Ideal Environments

Theoretically, the performance of a GPS antenna in terms of its MEGGPS in an actual

reflection environment (AR) should lie between two extreme ideal environments i.e. total

reflection environment (TR) and no reflection environment (NR). In the total reflection

environment, all of the incident power is reflected with no loss of energy, while all of the

incident power is absorbed with zero reflections in the no reflection environment. In the
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Figure 4.13: Measured 3-D gain patterns for perpendicular and parallel polarisations of
generic PIFA GPS antenna in vertical and horizontal orientations

actual reflection environment, part of the incident wave is reflected, depending upon the

corresponding reflection coefficients.

The three environments are incorporated in the model and the performance of the

horizontal dipole antenna (with respect to the ground) is evaluated in terms of its ηc and

MEGGPS to test the accuracy of the model’s predictions. The ground reflections in an

actual environment are considered in the model from a dry concrete ground plane with

a relative permittivity of 4.5 [22, 23]. The simulated 3-D gain patterns for perpendicular
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Table 4-1: Comparison of calculated GPS Coverage Efficiency and GPS Mean Effective
Gain of generic GPS antennas based on simulated 3-D gain patterns using three types
of the multipath environment for validation of proposed GPS multipath model

Antenna ηc (%)
MEGGPS (dB)

Total
Reflection

(TR)
(A(θ) = 1)

No
Reflection

(NR)
(A(θ) = 0)

Actual Reflection
(AR) (A(θ)

corresponds to a
ground permittivity

of 4.5)

Isotropic 100 0 -3.0 -1.5

Horizontal Dipole 95 -3.2 -6.1 -5.2

Horizontal CP
Patch

100 -5.2 -5.7 -5.4

Horizontal PIFA 98 -4.0 -5.8 -4.6

and parallel polarisations of the dipole antenna are used. To further establish the model’s

efficiency, comparison is also made to an idealised isotropic antenna that is often used

as a figure of merit due to its known theoretical gain values.

The calculated values of ηc and MEGGPS using the proposed model for the three

antennas along with the hypothetical isotropic antenna are presented in Table 4-1. The

results indicate that the proposed model works well exhibiting the expected behaviour

since, the MEGGPS values for the actual reflection environment lies in between the two

ideal extreme environments for the tested antennas.

4.4.3 Comparison Based on Simulated and Measured 3-D Gain Pat-

terns

In the second step of the validation process, the statistical calculation results of the

model are compared for two different input methods. The 3-D gain patterns of the three

antennas, obtained through the simulations and the anechoic chamber (Satimo Stargate

64) measurements, are used for the comparison. The results summarised in Table 4-

2 show good agreement between the calculated results of ηc and MEGGPS using the
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simulated and the measured 3-D gain patterns. A maximum difference of 0.6 dB has

been observed in MEGGPS values in the actual reflection environment while 4% in ηc

values. This difference is associated to antenna fabrication errors.

Table 4-2: Comparison of calculated GPS Coverage Efficiency and GPS Mean Effec-
tive Gain of the three generic GPS antennas in different reflection environments using
simulated and measured 3-D gain patterns for validation of proposed GPS multipath
model

Antenna
Model Calculations Using

Simulated 3-D Patterns
Model Calculations Using

Measured 3-D Patterns

ηc (%)
MEGGPS (dB)

ηc (%)
MEGGPS (dB)

TR NR AR TR NR AR

Horizontal Dipole 95 -3.2 -6.1 -5.2 97 -3.7 -6.4 -5.4

Horizontal CP
Patch

100 -5.2 -5.7 -5.4 99 -5.8 -6.2 -6.0

Horizontal PIFA 98 -4.0 -5.8 -4.6 94 -4.3 -6.3 -5.1

Since, the performance of the horizontal dipole antenna in the actual reflection

environment is used as a standard of comparison for other tested GPS antennas, the

MEGGPS value for actual reflection environment (AR) of -5.4 would serve as a reference

in the following sections.

4.4.4 Comparison Based on Measured 3-D Gain Patterns and Actual

Field Tests

The final and most important step of the validation process is to verify the calculated

results of ηc and MEGGPS of the GPS antennas using the proposed stochastic model

by comparing them to the results obtained in an actual open field test. The open field

tests are performed both at the Sony Ericsson Communications, Sweden and QMUL,

London.

Since, the field test results are described in reference to an antenna measured in the

same test, the horizontal dipole is chosen as the reference antenna. For the calculated
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values of MEGGPS using the proposed model and 3-D measured gain patterns, the

MEGGPS value of -5.4 (for actual reflection environment given in Table 4-2) is used

to get the normalised MEGGPS for the antenna under test. Therefore, MEGGPS is

represented as dBd. The results obtained through the field tests are also normalised to

the noted mean SNR level of horizontal dipole i.e. 40.2 dB. The field test performance of

the dipole, CP patch and Generic PIFA are compared with the calculated results using

the measured 3-D gain patterns. The antennas are placed horizontally with respect to

the ground.

In these assessments, the repeatability of the measurement procedure must also be

known. Therefore, in these as well as the following investigations, MEGGPS and ηc are

calculated performing three sets of measurements and mean values are reported. It has

been noted that the two results are repeatable with a mean standard deviation of 0.6

dB.

Table 4-3: Comparison of calculated GPS Coverage Efficiency and GPS Mean Effective
Gain of the three generic GPS antennas using measured 3-D gain patterns to the actual
field test measurements for validation of proposed GPS multipath model

Antenna
Model Calculations Using
Measured 3-D Patterns

Open Field Test
Measurements

ηc (%) MEGGPS (dBd) ηc (%) MEGGPS (dBd)

Horizontal Dipole
(reference)

97

0 (corresponding
to calculated

value of -5.4 dB
in AR)

96

0 (corresponding
to measured

average SNR of
40.2 dB)

Horizontal CP
Patch

99 -0.6 97 -0.4

Horizontal
Generic PIFA

94 0.3 94 0.2

Table 4-3 summarises the calculated and the measured results. The field test results

show a good agreement with the model’s predictions for the MEGGPS and ηc values

for the GPS antennas. Figures 4.14 and 4.15 present the comparison of the two results

showing the ranking of the antennas achieved by two methods. It is evident from these

results that the model has successfully translated and predicted the GPS antenna per-
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Figure 4.14: Comparison of calculated and measured values of MEGGPS and perfor-
mance ranking of the GPS dipole, CP patch and generic PIFA antennas in horizontal
orientation taking horizontal dipole as reference (0 dBd)

formance and rated the antennas in the similar fashion as observed in the open field

test. A maximum relative difference of 0.2 dB is noted for MEGGPS values and 2%

for ηc values. These differences are well below the accepted levels reported in litera-

ture [9, 12, 24]. These differences are mainly attributed to random errors caused by

uncontrolled environment factors including height, temperature and wind in open field

tests.

The results describe that MEGGPS is an attractive measure to characterise the

antenna performance. It simplifies the practical evaluation of the antenna performance as

it is based on the antenna gain pattern measurements in anechoic chamber. It describes

the antenna performance incorporating both the polarisation properties of the antenna

under test and the directional properties of the radio environment. For example, from

the prospects of antenna efficiency and maximum gain, the CP patch should out-perform

the dipole and generic PIFA for the GPS operation. However, MEGGPS results show

that these methods are not enough to depict the real performance of the antennas in

practical scenarios. A combined consideration of antenna gain, polarisation and the radio

environment (i.e. the AoAGPS distributions) in terms of MEGGPS makes the generic
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Figure 4.15: Comparison of calculated and measured values of ηc and performance rank-
ing of the GPS dipole, CP patch and generic PIFA antennas in horizontal orientation

PIFA a better performing antenna in multipath.

The three validation steps confirm that the proposed statistical model successfully

describes the multipath environment factors and their effects on the operation of the

GPS antennas. It is therefore, an efficient tool to analyse the GPS antenna performance

in the multipath environment. The calculated results using this model are further veri-

fied through the field tests to establish its accuracy using various GPS antennas in the

following sections.

4.5 Performance Evaluation of GPS Mobile Terminal Anten-

nas in Multipath Environment

The proposed model is used to evaluate the GPS antennas’ performance in the multipath

environment to get an insight of the environment effects. It also serves to further establish

accuracy of the model. Five types of the GPS mobile terminal antennas; PIFA, IFA,

DRA, helix and mono-loop antenna operating at 1575.42 MHz, in horizontal orientation

are used in this study. The antennas are designed in CST Microwave Studio R© package
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and prototypes are fabricated and tested in the Antenna Measurement Lab at QMUL.

The 3-D gain patterns are measured at Antenova Ltd., Cambridge. The measured 3-D

gain patterns of the antenna configurations are then used to calculate MEGGPS and

ηc statistically. The calculated values are compared to the field test measurements by

taking the horizontal dipole antenna as the reference.

4.5.1 Design of Mobile Terminal GPS Antennas

4.5.1.1 Mobile Terminal PIFA

A mobile terminal PIFA is also designed due to vast usage of this type of antennas in

mobile applications. It is termed as “mobile terminal PIFA” due to its mobile phone

standard ground plane size. The PIFA is designed using FR4 substrate of 1.6 mm

thickness. The PCB size is 100 mm×40 mm. The antenna is fed using a 50 Ω coaxial

port. Figure 4.16(a) shows the geometrical structure of the prototype while Figure

4.16(b) presents the measured S11 curve for the antenna. The antenna has 4.1% of -10

dB impedance bandwidth for a frequency range of 1560 MHz to 1625 MHz, adequate for

the GPS operation. The measured 3-D gain patterns for the antenna at 1575.42 MHz

for vertical and horizontal orientations are depicted in Figures 4.16(b) and (c).

4.5.1.2 IFA

The inverted F antenna (IFA) is designed on a metal plate of 0.45 mm thickness, 100 mm

length and 40 mm width. The radiating element is mounted on the left side of the metal

plate and has similar thickness (Figure 4.18(a)). The antenna is fed using a standard

50 Ω coaxial port. The antenna is fabricated and tested showing good performance for

the GPS operation with excellent matching and exhibiting -10 dB bandwidth of 11.9%

covering all the frequencies from 1480 MHz to 1668 MHz. Figure 4.18(b) shows the

measured S11 response for the antenna while Figures 4.19(a) and (b) illustrate the mea-
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(b) Measured S11 curve

Figure 4.16: Geometrical structure of mobile terminal PIFA antenna for GPS operation
with measured S11 response (all lengths are in mm)



Chapter 4. Effects of Multipath Environment on GPS Antennas 105

-10
50-5-15
dBi

-35-30-25-20
G⊥(θ, φ) G‖(θ, φ)

(a) 3-D measured gain patterns for vertical orientation
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(b) 3-D measured gain patterns for horizontal orientation

Figure 4.17: Measured 3-D gain patterns for perpendicular and parallel polarisations of
mobile terminal PIFA antenna for GPS operation in vertical and horizontal orientations

sured 3-D radiation patterns for the antenna at 1575.42 MHz for vertical and horizontal

orientations.

4.5.1.3 DRA

Ceramic antennas are another popular choice for embedded antennas due to their small

size. Therefore, a dielectric resonant antenna (DRA) is designed for this study. The

antenna is loaded with a dielectric of εr = 21. The ground plane is 100 mm×40 mm×1
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(b) Measured S11 curve

Figure 4.18: Geometrical structure of mobile terminal IFA antenna for GPS operation
with measured S11 response (all lengths are in mm)
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(a) 3-D measured gain patterns for vertical orientation
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Figure 4.19: Measured 3-D gain patterns for perpendicular and parallel polarisations of
mobile terminal IFA antenna for GPS operation in vertical and horizontal orientations

mm of lossy copper type with σ=5.8×107S/m. The loaded dielectric is covered with

lossy silver having σ=6.17×107S/m. The antenna is fed using a 50 Ω coaxial port. The

prototype is fabricated at Sony Ericsson Communications, AB, Sweden. Figure 4.20(a)

describes the geometrical structure of the fabricated antenna. The measured S11 shown

in Figure 4.20(b) indicates that the antenna works well in L1 band with 2.8% of -10 dB

bandwidth that covers frequencies from 1553 MHz to 1597 MHz with centre frequency at

1574 MHz. The measured 3-D gain patterns for the antenna at 1575.42 MHz for vertical

and horizontal orientations are described in Figures 4.21(a) and (b).
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Figure 4.20: Geometrical structure of mobile terminal DRA antenna for GPS operation
with measured S11 response (all lengths are in mm)
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(a) 3-D measured gain patterns for vertical orientation
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Figure 4.21: Measured 3-D gain patterns for perpendicular and parallel polarisations of
mobile terminal DRA antenna for GPS operation in vertical and horizontal orientations

4.5.1.4 Helix

The external antennas, like the helix, are not used widely in the portable applications

nowadays. However, a performance comparison needs such a type of antenna to under-

stand the nature of the degradation caused by the multipath environment. Therefore, a

helix antenna has also been designed for this study. The designed helix antenna has no

substrate and is mounted on the left top of the metallic ground plane having dimensions

of 100 mm×40 mm×0.45 mm, shown in Figure 4.22(a). The radius of the helix wire is
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0.45 mm with a length of 26 mm. The antenna is fed through a 50 Ω coaxial port. The

measurement result for S11 response plotted in Figure 4.22(b) describes that antenna

works well in the L1 band having a -10 dB bandwidth of 9% ranging from 1495 MHz to

1638 MHz frequencies. The measured 3-D radiation patterns of the antenna in vertical

and horizontal orientations are shown in Figures 4.23(a) and (b).

4.5.1.5 Mono-loop

The single-element mono-loop antenna is designed and fed by a microstrip line with a

substrate of 100 mm×40 mm, having a dielectric permittivity of 4.7. The radiating

element is a combination of monopole and loop structure. The ground plane size is only

18 mm×80 mm. The radiating element consists of 11 loops of 23.2 mm×2 mm. The

antenna exhibits a -10 dB impedance bandwidth of 107 MHz covering the frequencies

from 1520 MHz to 1627 MHz. Figure 4.24(a) illustrates the geometrical structure and

Figure 4.24(b) shows the measured S11 curve for the antenna. Figures 4.25(a) and (b)

depict the measured 3-D patterns for the antenna.

Table 4-4 gives the account of MEGGPS and ηc results for different mobile terminal

GPS antennas in the multipath environment in the horizontal orientation (with respect to

the ground). The calculated MEGGPS (in AR) and measured SNR values of horizontal

dipole antenna i.e. -5.4 dB and 40.2 dB are used as the reference. The calculated results

are compared and verified through the field test measurements and a good agreement

between the two has been achieved. Figures 4.26 and 4.27 show the comparison of

the antenna rankings achieved by the two methods. These results further validate the

working of the model since, the antennas are ranked in the similar fashion as observed

in the open field test. The model has given very precise results with a maximum relative

difference of 0.4 dB for MEGGPS values while 3% for ηc values due to random errors.

The results also indicate that the two parameters of MEGGPS and ηc do no rely

tightly on each other. An antenna with good ηc may exhibit poor MEGGPS and vice
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(b) Measured S11 curve

Figure 4.22: Geometrical structure of mobile terminal helix antenna for GPS operation
with measured S11 response (all lengths are in mm)
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Figure 4.23: Measured 3-D gain patterns for perpendicular and parallel polarisations of
mobile terminal helix antenna for GPS operation in vertical and horizontal orientations

versa, for example the case of the helix and DRA antennas. It is due to the fact that

MEGGPS incorporates the whole environment, especially the ground reflections, whereas

ηc only describes the satellite tracking capability of the antenna. Therefore, it is observed

during the measurements that even the antennas with poor MEGGPS could efficiently

get a number of GPS satellites locked. However, an optimal performance could only be

achieved with an antenna exhibiting good MEGGPS and ηc. It is further investigated in

the following section when effects of the change in antenna orientation has been studied.
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(b) Measured S11 curve

Figure 4.24: Geometrical structure of mobile terminal mono-loop antenna for GPS oper-
ation with measured S11 response (all lengths are in mm)
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(a) 3-D measured gain patterns for vertical orientation
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Figure 4.25: Measured 3-D gain patterns for perpendicular and parallel polarisations
of mobile terminal mono-loop antenna for GPS operation in vertical and horizontal
orientations

4.5.2 Dependance on Antenna Orientation

The antenna orientation plays vital role in the communication links as changing the

orientation causes change in the antenna main lobe direction inflicting link losses. Since,

the mobile terminal antennas are not fixed and operate in ever-changing orientations

depending on the user’s holding position, effects of change of orientation need to be

considered for a reliable GPS link. Therefore, the performance of various GPS antennas,
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Figure 4.26: Comparison of calculated and measured values of MEGGPS and perfor-
mance ranking of the GPS mobile terminal antennas in horizontal orientation taking
horizontal dipole as reference (0 dBd)
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Figure 4.27: Comparison of calculated and measured values of ηc and performance rank-
ing of the GPS mobile terminal antennas in horizontal orientation

discussed in the previous sections, is evaluated in vertical orientation using the proposed

statistical model and verified through open field measurements.

The results are summarised in Table 4-4 while comparison of the antenna rankings

in terms of their MEGGPS and ηc based on the model’s calculations and open field test

measurements is presented in Figures 4.28 and 4.29. It is evident from the presented
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results that the model delivers precise results with a close agreement to the field test

observations. A maximum relative difference of 0.4 dB in MEGGPS and 4% in ηc has

been noted.

Table 4-4: Comparison of calculated GPS Coverage Efficiency and GPS Mean Effective
Gain of various GPS antennas in vertical orientation using measured 3-D gain patterns
to the actual field test measurements

Antenna Orientation
Model Calculations
Using Measured 3-D

Patterns

Open Field Test
Measurements

ηc MEGGPS ηc MEGGPS

(%) (dBd) (%) (dBd)

Dipole Horizontal 97

0 (corre-
sponding to
calculated

value of -5.4
dB in AR)

96

0 (corre-
sponding to
measured
average

SNR of 40.2
dB)

Vertical 94 -0.2 92 -0.2

CP Patch Horizontal 99 -0.6 97 -0.4

Vertical 72 -2.1 72 -2.2

Generic PIFA Horizontal 94 0.3 94 0.2

Vertical 97 -0.5 97 -0.8

Terminal PIFA Horizontal 83 -2.2 81 -2.3

Vertical 95 -3.3 92 -3.1

IFA Horizontal 100 0.6 97 0.4

Vertical 79 -0.4 81 -0.3

DRA Horizontal 95 -0.6 94 -0.5

Vertical 94 -0.5 90 -0.5

Helix Horizontal 97 -1.2 96 -1.5

Vertical 87 -0.6 87 -1.0

Mono-loop Horizontal 80 -2.0 82 -1.6

Vertical 78 -1.6 80 -1.8

The results indicate that change in the antenna orientation plays an important role.

Although, no set pattern could be described for the tested GPS antennas, comparing the

vertically oriented antennas to those in horizontal orientation (Figures 4.30 and 4.31),
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Figure 4.28: Comparison of calculated and measured values of MEGGPS and perfor-
mance ranking of various GPS antennas in vertical orientation taking horizontal dipole
as reference
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Figure 4.29: Comparison of calculated and measured values of ηc and performance rank-
ing of various GPS antennas in vertical orientation

the horizontal configurations show an overall better performance in terms of MEGGPS .

It describes that the antenna gain and polarisation responds better to the nature of the

incident plane waves when placed horizontally. The higher values of the antenna gain
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Figure 4.30: Performance comparison of various GPS antennas with effects of change in
orientation in terms of calculated MEGGPS taking horizontal dipole as reference

especially in the upper hemispherical space, in both the perpendicular and parallel polar-

isations (as presented in the gain pattern figures) is a key contributor. The horizontally

oriented antennas also exhibit better ηc as more open sky view is available increasing

the number of the tracked satellites. An increased level of received signal in the incident

region (0o ≤ θ ≤ 90o) lessens the wasted component and hence, increasing the overall ηc.

The DRA has been proved to be the most stable antenna to the changing orientation

effects with similar values of MEGGPS and ηc. It has been observed that the IFA, helix,

CP patch and terminal PIFA are more vulnerable to change in orientation as MEGGPS

and ηc changes significantly. The vertical CP patch has lost 27% of its coverage as

compared to the horizontal orientation while ηc of the vertical IFA is decreased by 20%.

The performance of the horizontal CP patch is affected the most as its MEGGPS is also

reduced by 1.6 dB. It also shows that linear polarised mobile terminal antennas could

deliver good performance as compared to the circular polarised antennas in real working

scenarios.

The change in antenna ηc with changing orientation (with respect to the ground) is
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Figure 4.31: Performance comparison of various GPS antennas with effects of change in
orientation in terms of calculated ηc

attributed to the sensitivity of the antenna to receive the incoming GPS signal. Since,

the incoming GPS signal is RHCP, antenna RHCP gain patterns are evaluated in order

to study the relation between ηc and RHCP gain with change in antenna orientation.

Figures 4.32-4.39 present the comparison of measured RHCP gains in the incident region

(0o ≤ θ ≤ 90o) for the tested antennas in both the horizontal and vertical orientations.

The comparison of the presented plots clearly indicates that ηc of the antenna depends

upon the strength of the RHCP gain in the incident region. For example, in the case of the

CP patch antenna, the vertical orientation exhibits much lower ηc of 72% as compared to

99% for the horizontal orientation. The comparison of the RHCP gain patterns clearly

indicates that almost all of the incident region is above the required threshold level

of -13 dB when the antenna is working in the horizontal orientation (Figure 4.33(a)).

However, presence of the RHCP gain levels lower than -13 dB when the antenna operates

in the vertical orientation, particularly in the angles 30o ≤ θ ≤ 90o, 0o ≤ φ ≤ 60o and

40o ≤ θ ≤ 90o, 330o ≤ φ ≤ 360o, gives rise to the wasted signal resulting in a lower ηc.

Similarly, the IFA has also been observed to be an orientation sensitive antenna
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(a) Horizontal orientation
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(b) Vertical orientation

Figure 4.32: Measured RHCP gain patterns in the incident region for dipole GPS
antenna in horizontal and vertical orientations

exhibiting 100% ηc in horizontal orientation but only 79% in vertical orientation. The

difference in the RHCP gain patterns again explains the reason for this decrease in the

antenna coverage. Figure 4.36(a) shows that the antenna covers whole of the incident

region with the RHCP gain above -13 dB while operating in the horizontal orientation.

However, the vertical configuration of the antenna loses coverage in most of the incident

angles in the range of 30o ≤ θ ≤ 90o, 10o ≤ φ ≤ 165o with lower than -13 dB RHCP

gain as illustrated in Figure 4.36(b). The difference in ηc of the terminal PIFA and helix

antennas with varying orientation is also because of the variation in the RHCP gain of

the antenna in the incident region, depicted in Figures 4.35 and 4.38, respectively.

4.5.3 Effects of Antenna Position on PCB/Ground Plane

The position of the radiating element on the antenna ground plane could also play a

role in its performance in the multipath environment by changing the radiation pat-
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(a) Horizontal orientation
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Figure 4.33: Measured RHCP gain patterns in the incident region for CP patch GPS
antenna in horizontal and vertical orientations
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Figure 4.34: Measured RHCP gain patterns in the incident region for generic PIFA GPS
antenna in horizontal and vertical orientations
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(b) Vertical orientation

Figure 4.35: Measured RHCP gain patterns in the incident region for mobile terminal
PIFA GPS antenna in horizontal and vertical orientations
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(b) Vertical orientation

Figure 4.36: Measured RHCP gain patterns in the incident region for IFA GPS antenna
in horizontal and vertical orientations
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(b) Vertical orientation

Figure 4.37: Measured RHCP gain patterns in the incident region for DRA GPS antenna
in horizontal and vertical orientations
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(b) Vertical orientation

Figure 4.38: Measured RHCP gain patterns in the incident region for helix GPS antenna
in horizontal and vertical orientations
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Figure 4.39: Measured RHCP gain patterns in the incident region for mono-loop GPS
antenna in horizontal and vertical orientations

tern. Therefore, the performance of two mobile terminal GPS antennas; IFA and DRA

is investigated by varying the position of the radiating element on the ground plane.

The vertically oriented antennas are considered with different locations of the radiating

element on the PCB/ground plane including left (i.e. original position), right, top and

bottom edges.

Figures 4.40 and 4.43 illustrate the tested antenna configurations. The dimensions

of the two antennas are similar as described in Figures 4.18 and 4.20. Figures 4.41 and

4.42 show the simulated 3-D gain patterns for perpendicular and parallel polarisations of

the IFA with the radiating element positioned on the left, right, top and bottom edges

of the ground plane respectively. Similarly, Figures 4.44 and 4.45 show the simulated

3-D gain patterns for perpendicular and parallel polarisations of the DRA for the left,

right, top and bottom positioned radiating element on the PCB respectively. MEGGPS

and ηc are calculated using the proposed model and compared in Figures 4.46 and 4.47

for the two antennas.
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(b) Radiating element on right edge of ground plane
(c) Radiating element on top edge of ground plane
(d) Radiating element on bottom edge of ground plane(a) Radiating element on left edge of ground plane

Figure 4.40: Schematic of re-positioned radiating element on the ground plane for IFA
with respect to the original design (all lengths are in mm)

The results for the vertical IFA antenna in Figures 4.46 and 4.47 show that the bot-

tom edge of the PCB is the most optimum location for the radiating element with a 8%

increase in coverage efficiency, compared to the original position of the left edge place-

ment reducing the wasted component significantly. The MEGGPS value also increases

by 0.3 dB. However, the draw back of this structure is that the size of the radiating ele-

ment increases by 15% in the top and the bottom placements to get the right resonance.

The worst performance is observed in the top placement that has reduced ηc by 5% and

MEGGPS by 0.4 dB. There is no significant change in antenna performance with left

and right placements of the radiating element.

The comparison of the performance of the re-located vertical DRA antenna shown

in Figures 4.46 and 4.47 indicates that shifting the radiating element from the original

position i.e. on the left edge of the PCB to the right and bottom edges causes no

significant change in the antenna operation with similar values of MEGGPS and ηc.
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(a) 3-D simulated gain patterns for vertical IFA with radiating element on left-17 dBi60 3-34

G⊥(θ, φ) G‖(θ, φ)

(b) 3-D simulated gain patterns for vertical IFA with radiating element on right

Figure 4.41: Simulated 3-D gain patterns for IFA GPS mobile terminal antenna in
vertical orientation with antenna positioned at left and right edges of the ground plane

However, the placement of the radiating element on the top edge of the PCB increases

ηc by 5% at the expense of a 0.3 dB reduction in MEGGPS . It makes the enhanced ηc

trivial by keeping the overall antenna performance in the same range.

The difference in the performance of the IFA and DRA has not changed hugely when

the radiating element is re-located from its original position on the left edge. The small

changes noted in MEGGPS and ηc values with the top and bottom placements of the

radiating element are associated to the variations in the antenna gain patterns. An
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(a) 3-D simulated gain patterns for vertical IFA with radiating element on top-17 dBi60 3-34

G⊥(θ, φ) G‖(θ, φ)

(b) 3-D simulated gain patterns for vertical IFA with radiating element on bottom

Figure 4.42: Simulated 3-D gain patterns for IFA GPS mobile terminal antenna in
vertical orientation with antenna positioned at top and bottom edges of the ground
plane

incense in ηc for the DRA in the top placement indicates that the antenna has more

clear sky view and a larger area is above the threshold level of -13 dBi in the incident

region. A decrease in ηc when the antenna is placed at the bottom edge, is caused by

comparatively less area meeting this threshold. On the other hand, MEGGPS incorpo-

rates the overall changes in the antenna gain pattern for both the polarisations and its

response to the multipath environment in terms of AoAGPS that also include ground

reflections. Hence, MEGGPS values decrease in both the top and bottom placements of
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(b) Radiating element on right edge of PCB
(c) Radiating element on top edge of PCB
(d) Radiating element on bottom edge of PCB(a) Radiating element on left edge of PCB

Figure 4.43: Schematic of re-positioned radiating element on the ground plane for DRA
with respect to the original design (all lengths are in mm)

the radiating element due to reduction in overall gain levels, as illustrated by the gain

patterns in Figure 4.45. The discussed factors also govern the performance of the IFA

in the top and bottom placements in a similar fashion.

Based on the presented results, it can be deduced that a change in the location of the

antenna radiating element on the PCB/ground plane offers no significant enhancement

for the GPS antenna operation working in the multipath environment.

4.6 GPS Antenna Performance Enhancement Through Diver-

sity

It is apparent from the discussion in the previous section that the multipath environment

severely degrades the performance of the GPS mobile terminal antennas. Provision of a
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(a) 3-D simulated gain patterns for vertical DRA with radiating element on left-17 dBi60 3-34

G⊥(θ, φ) G‖(θ, φ)

(b) 3-D simulated gain patterns for vertical DRA with radiating element on right

Figure 4.44: Simulated 3-D gain patterns for DRA GPS mobile terminal antenna in
vertical orientation with antenna positioned at left and right edges of the ground plane

reliable navigation service demands mitigation of these degrading effects. A number of

solutions are being proposed to improve the GPS antenna performance including dielec-

tric loading, high value substrates, active circuits and diversity antennas. It is reported

that diversity antennas have a potential to enhance the performance while maintaining

relatively low profile, small size and low cost [25, 26]. Therefore, dual-element designs

are considered and performance in the multipath environment is analysed for the mobile

terminal PIFA and mono-loop antennas. It describes the benefit of using the diversity

antennas in modern day navigation devices to counter the multipath degradations.
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(a) 3-D simulated gain patterns for vertical DRA with radiating element on top-17 dBi60 3-34

G⊥(θ, φ) G‖(θ, φ)

(b) 3-D simulated gain patterns for vertical DRA with radiating element on bottom

Figure 4.45: Simulated 3-D gain patterns for DRA GPS mobile terminal antenna in
vertical orientation with antenna positioned at top and bottom edges of the ground
plane

4.6.1 Mobile Terminal PIFA GPS Diversity Antenna

The PIFA antenna described in Section 4.5.1.1 is used to design a dual-element diversity

PIFA antenna due to its vast usage in commercial applications. The fabricated prototype

of the two element design is shown in Figure 4.48(a). The elemental dimensions are the

same as described in Figure 4.16(a). The measured S11 and S21 curves are shown in

Figures 4.48(b) and (c), respectively. The antenna exhibits -10 dB impedance bandwidth
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Figure 4.46: Comparison of calculated MEGGPS values for varying positions of the
radiating element of IFA and DRA GPS antennas taking horizontal dipole as reference
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Figure 4.47: Comparison of calculated ηc values for varying positions of the radiating
element of IFA and DRA GPS antennas

of 55 MHz covering the frequency range from 1552 MHz to 1607 MHz. The mutual

coupling of the antenna is not very great as S21 value at 1575.42 MHz appeared to be

-11.4 dB. Figure 4.49 illustrates the measured 3-D gainpatterns for the perpendicular
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Figure 4.48: Geometrical structure of GPS mobile terminal dual-element PIFA diversity
antenna with measured S11 and S21 curves

and parallel polarisations of the dual-element PIFA antenna.

4.6.2 Mono-loop GPS Diversity Antenna

A dual-element mono-loop antenna based on the mono-loop antenna design described

in Section 4.5.1.5 is also designed to study the enhancement of the GPS antenna per-
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(b) 3-D measured gain patterns for horizontal orientation

Figure 4.49: Measured 3-D gain patterns for perpendicular and parallel polarisations
of GPS mobile terminal dual-element PIFA diversity antenna in vertical and horizontal
orientations

formance in the multipath environment using diversity. The elemental dimensions are

similar as illustrated in Figure 4.24(a) with a distance of 41.8 mm between the two

elements. Figure 4.50(a) shows the fabricated prototype of the designed antenna while

Figures 4.50(b) and (c) describe the measured S11 and S21 curves respectively for the

antenna. The antenna has a -10 dB impedance bandwidth of 250 MHz covering all

the frequencies ranging from 1385 MHz to 1635 MHz. An acceptable level of coupling

between the two elements is observed with the measured S21 of -14.1 dB at 1575.42
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Figure 4.50: Geometrical structure of GPS mobile terminal dual-element mono-loop
diversity antenna with measured S11 and S21 curves

MHz. The measured 3-D gain patterns for the perpendicular and parallel polarisations

of the dual-element mono-loop antenna are illustrated in Figure 4.51.

4.6.3 Performance of GPS Diversity Antennas in Multipath Environ-

ment

The performance of the two diversity antennas in the multipath GPS environment is

evaluated using the proposed statistical model and verified through open field test mea-

surements. A power combiner is used to combine the signal from the two elements with
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Figure 4.51: Measured 3-D gain patterns for perpendicular and parallel polarisations of
GPS mobile terminal dual-element mono-loop diversity antenna in vertical and horizontal
orientations

an insertion loss of 0.5 dB. The vertical orientation of the two antennas is taken into

account. 3-D gain patterns of the antenna configurations are input to the model. The

effectiveness of the diversity is analysed in terms of ηc and MEGGPS with the horizontal

dipole antenna taken as the reference.

Table 4-5 summarises the MEGGPS and ηc results for the two antennas while a

comparison with the performance of respective single element (non-diversity) antennas

is presented in Figures 4.52 and 4.53.
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Table 4-5: Performance evaluation of mobile terminal GPS Diversity antennas in hori-
zontal and vertical orientations using the multipath environment model in comparison
with the measured results

Antenna
Model Calculations Using
Measured 3-D Patterns

Open Field Test
Measurements

ηc (%) MEGGPS (dBd) ηc (%) MEGGPS (dBd)

Horizontal Dipole
(reference)

97

0 (corresponding
to calculated

value of -5.4 dB
in AR)

96

0 (corresponding
to measured

average SNR of
40.2 dB)

Vertical Terminal PIFA 95 -3.3 92 -3.1

Vertical Dual Terminal
PIFA

97 -2.7 97 -2.6

Vertical Mono-loop 78 -1.6 80 -1.8

Vertical Dual
Mono-loop

95 -0.2 96 -0.3

PIFA (Terminal) Mono−loop Dual PIFA Dual Mono−loop
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Figure 4.52: Performance enhancement of GPS diversity antennas in multipath environ-
ment in comparison of single element designs in terms of calculated MEGGPS taking
horizontal dipole as reference

Figure 4.52 shows that the use of the diversity antennas increases MEGGPS for the

GPS multipath operation significantly. The extent of this enhancement is different for

the two antennas with 0.6 dB increase achieved by the dual-element PIFA while 1.4 dB
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Figure 4.53: Performance enhancement of GPS diversity antennas in multipath environ-
ment in comparison of single element designs in terms of calculated ηc

increase is offered by the dual-element mono-loop.

Similarly, a significant improvement in the coverage of the incoming GPS signal has

been exhibited by the dual-element mono-loop with a ηc increment of 17%. The ηc of

the dual-element PIFA has also increased by 2% that is not very significant but shows a

tendency of improvement.

The higher values of MEGGPS and ηc achieved for the two diversity antennas are a

result of enhanced gain patterns. The use of spatial diversity has broaden the antennas

clear sky view, modified the gain patterns and increased the gain levels as illustrated in

Figures 4.49 and 4.51. The modified gain patterns has enabled the antennas to cover

a wider range of AoAGPS . This, combined with an overall increased gain levels has

resulted in comparatively larger values of MEGGPS for the diversity antennas. The

enhanced gain values have also increased the coverage of the antennas and hence their

ηc as it depends on the solid angle subtended by the area where gain levels are higher

than -13 dBi in the upper hemisphere. The results show that the diversity is good for

the monoloop antenna but its benefit is marginal for the PIFA. The less resounding
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performance of the dual-element PIFA is related to fabrication errors that lead to higher

mutual coupling between the two elements. The S21 measurements, presented in Figures

4.48(c) and 4.50(c), show that the dual-element PIFA has a mutual coupling of -11.4 dB

as compared to -14.1 dB for the dual-element monoloop at 1575.42 MHz. It reduces the

performance of the dual-element PIFA to a greater extent resulting in less significant

improvement in MEGGPS and ηc values as compared to the dual-element monoloop

antenna.

Overall, the dual-element diversity antennas have shown better performance in the

multipath environment as compared to their single-element counterparts. It is therefore,

deduced that diversity is a viable solution in terms of effective GPS reception. Further

optimisation of the antenna designs and minimisation of the fabrication errors would

result in more enhanced GPS multipath operation of the mobile terminal.

4.7 Model Limitations

Besides its precise predictive capabilities, the proposed statistical model for the GPS

environment is currently only suitable for uniform AoAGPS distributions in azimuth

and elevation planes. This assumption is not very realistic in case of the elevation

plane. Therefore, accuracy of the model could be further increased by looking into

more practical AoAGPS distributions, for example Gaussian and elliptical, that represent

greater probability of the arrival of the GPS signal near the zenith as compared to the

horizon angles.

4.8 Summary

A statistical model to evaluate the GPS antenna performance in a multipath environ-

ment is presented with a novel GPS Angle of Arrival (AoAGPS) distribution and a new

concept of the GPS Mean Effective Gain (MEGGPS) and Coverage Efficiency (ηc). The
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model is implemented and verified through extensive numerical studies and its preci-

sion is established through experimental procedures. The model efficiently predicts the

GPS antenna performance showing close agreement to the open field measurements.

Therefore, it provides a means to analyse antenna operation in actual working scenarios

without doing open field measurements.

The performance of a number of GPS antennas, both generic and mobile terminal

antennas is evaluated. Effects of the change in the antenna orientation with respect to the

ground (earth) and effects of the varying radiating element position on the PCB/antenna

ground plane on the performance of these GPS antennas in the multipath environment

are also investigated. The use of diversity antennas to enhance the GPS operation in the

multipath environment has also been studied using two different types of mobile terminal

antennas.

It has been shown that the performance of the GPS antennas in the multipath envi-

ronment could be characterised by its MEGGPS and ηc. These factors are controlled

by the AoAGPS distribution of the incident radio wave and gain patterns of the GPS

receiving antenna. It is also noted that change in the antenna orientation plays a vital

role as it varies antenna gain patterns resulting in ηc deviations. However, it is hard to

determine a fixed and generalised pattern caused by the variation in antenna orientation

as it differs from antenna to antenna. Generally, the horizontal orientation of the antenna

appears to be more efficient in terms of ηc due to wider clear sky view, for example the

IFA and helix has ηc of 100% and 97% in horizontal orientation as compared to 79% and

87% in vertical orientation. The general trend is similar in case of MEGGPS as most

of the tested GPS antennas showed improved MEGGPS for horizontal orientation as

compared to the vertical one. It is due to an overall high level of gain values particularly

in the upper hemisphere increasing the reception of the GPS signal.

The study of the varying position of the antenna radiating element on the PCB/ground

plane for the IFA and DRA antennas has shown that no significant improvement could

be achieved by employing this technique with little variation in MEGGPS and ηc values.
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The study of the performance of the dual-element diversity antennas in the GPS mul-

tipath environment has depicted performance enhancement both in terms of increased

MEGGPS and ηc. The dual-element mono-loop antenna has enhanced the MEGGPS by

1.4 dB and ηc by 23% as compared the single-element mono-loop antenna. Therefore,

the diversity antennas could be used effectively to reduce the degrading effects of the

multipath environment making it a viable solution for the GPS multipath operation.
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Chapter 5

Human Body and GPS Antennas

in Multipath Environments

The GPS devices in Wireless Personal Area Networks (WPAN) and Wireless Body Area

Networks (WBAN) typically operate either in on-body positions (held by the user) or

in near-body positions (working in the proximity of the human body). In either case,

the presence of the human body in the vicinity, affects the performance of the embedded

GPS antennas of such devices. To gain a complete picture of the working of the GPS

mobile terminal antennas, the effects of the presence of the human body needs to be

considered along with the multipath environment.

This chapter provides an understanding of the effects caused by the presence of the

human body on the operation of a standard GPS antenna. Numerical investigation shows

the behaviour of the antenna in the proximity of the human body. The effects of the body

on the antenna parameters are studied, considering varying antenna-body separations,

different on-body antenna positions and various antenna held-in-hand conditions. The

performance study of the GPS mobile terminal antennas in the multipath environment

is also extended by including the effects of the human body presence considering various

on-body scenarios. The statistical model for the multipath environment, proposed in

143
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Chapter 4, is used to analyse the working of the body-worn GPS antennas.

5.1 Interaction of Human Body and GPS Antennas

The human body is a principle element of the WPAN/WBAN devices. It is now a well

established phenomenon that the human body is a very lossy medium that affects the

performance of the antenna in these applications in three ways; reduction in efficiency

due to electromagnetic absorption in the tissues, degradation of the radiation pattern

and variation in the feed point impedance [1–7].

Characterisation of these effects is a challenging but necessary task to provide guide-

lines for the design of an optimal performance antenna resilient to these degrading factors

[8–11].

A detailed investigation is carried out to study the effects of the presence of the

human body in the vicinity of a GPS antenna. Different practical scenarios for the use

of portable GPS receivers are considered.

5.1.1 Design of Truncated Corner Microstrip Patch GPS Antenna

The object of this study is to analyse the effects of the human body presence on the

performance of a GPS antenna. Therefore, a simple truncated corner microstrip patch

antenna is chosen [12]. The antenna design is similar to that described in Chapter 4

having a ground plane of 100 mm×100 mm with a printed square radiating patch of

53.4 mm×53.4 mm and fed by a coaxial port. A FR4 substrate of 1.6 mm thickness and

εr=4.7 is used. Figure 5.1 shows the geometry of the antenna.

Antenna performance is analysed via simulations and validated through measure-

ments. The comparison of the simulated and measured S11 curves of the antenna are

shown in Figure 5.2. A good agreement between the two has been observed. The high-
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Figure 5.1: Schematic layout of the truncated corner microstrip patch antenna for GPS
operation at 1575.42 MHz fed by a coaxial port
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Figure 5.2: Simulated (blue) and measured (red) S11 curves for the truncated corner
microstrip patch GPS antenna in free space

lighted area shows ±5 MHz impedance bandwidth region typically desired for a good

performing GPS antenna [13, 14]. The antenna performs well in L1 band with centre

frequency at 1578 MHz. The antenna has a -10 dB bandwidth of 25 MHz covering

frequencies in the range of 1566 MHz to 1591 MHz.
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Figure 5.3: Simulated (blue) and measured (red) 2-D gain patterns in XY and YZ planes
of the truncated corner microstrip patch GPS antenna in free space at 1575.42 MHz
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Figure 5.4: Simulated 3-D RHCP and LHCP gain patterns of the truncated corner
microstrip patch GPS antenna in free space at 1575.42 MHz

Since, the microstrip patch antenna radiates normal to its patch surface, the gain

patterns for both XY plane and YZ plane are of importance. The simulated and measured

2-D gain patterns in XY plane and YZ plane are shown in Figure 5.3. A good agreement

can be found between the simulated and measured patterns. The small differences are
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Table 5-1: Electric properties of specific human body tissues used within the constructed
homogeneous body model at 1575.42 MHz

Tissue
Electric Properties

Dielectric Constant (εr) Tissue Conductivity (σ) (S/m)

Bone 19.65 0.52

Fat 5.37 0.07

Muscle 53.83 1.22

Skin 39.28 1.09

due to the fabrication imperfections. Figure 5.4 illustrates the simulated 3-D RHCP and

LHCP gain patterns of the antenna. These results confirm that the antenna performance

is excellent for the GPS operation with good RHCP and a small back side radiation of

order -20 dB, in accordance to the specified requirements in classic literature summarised

in Chapter 2.

5.1.2 On-Body Test Set-up

The single layer human body model, constructed and described in Chapter 3, is used in

this study. Simulations were carried out in CST Microwave Studio R©. The body model

is kept homogeneous for simplicity and to get a starting point of the electromagnetic

interaction between the human body and the GPS antennas. The weighted average tissue

properties have been adopted in continuity of the previous study. The homogeneous

human model is therefore, considered as a compound with 10% skin, 30% fat, 40%

muscle and 20% bone, which resulted in an averaged relative permittivity of 30.98 and

conductivity of 0.73 S/m at 1575.42 MHz. The dielectric properties of the human body

tissue are taken as described in [15–17]. The values for the four types of tissues at 1575.42

MHz used in this study are given in Table 5-1.

A complete body model with a height of 1720 mm is used in this study. Effects of

the presence of the human body on the GPS receiver antenna are studied for different

configurations considering varying separations of the body and the antenna, different
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Figure 5.5: Human body model and different on-body configurations of the truncated
corner microstrip patch antenna used to study the effects of the human body presence
on the GPS antenna (all lengths are in mm)

positions of the antenna on the body and different body postures shown in Figure 5.5.

5.1.3 Effects of Varying Antenna-Body Separation

The GPS antennas in portable devices, especially the mobile phones, are often integrated

with other radio communication systems. For the navigation use, the separation between

the portable device and the human body can change which results in varying the antenna

performance.

The effects of the human body on the performance of the microstrip patch GPS

antenna are studied by varying the separation (d) along the chest, illustrated in Fig-

ure 5.5. Different gaps between the antenna and the body are considered ranging from

d=10 mm to d=120 mm. Figures 5.6-5.7 provide a comparison of the antenna perfor-

mance in free space and in the presence of the human body at these separations. A

summary of various antenna parameters for different simulated configurations including
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Figure 5.6: Comparison of the simulated S11 responses of the truncated corner microstrip
patch GPS antenna for various antenna-body separations (d) along the chest
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Figure 5.7: Comparison of simulated 2-D gain patterns in XY and YZ planes of the
truncated corner microstrip patch GPS antenna as a function of the antenna distance
(d) from the body along the chest at 1575.42 MHz

fc, bandwidth, total efficiency and maximum gain (in XY plane) is presented in Table

5-2.
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The S11 curves in Figure 5.6 show a shift in the resonance frequency from 1575.42

MHz to lower frequencies depending upon the separation. The detuning of the antenna

is caused due to the fact that while the antenna is placed on-body, the electromagnetic

field produced in the space near human body contains both the fields induced by the

antenna itself and the fields reflected from the body surface. These reflected fields induce

currents on the antenna surface disturbing the free space distribution. It changes the

antenna impedance and hence, detunes the resonance frequency. A maximum drop of

49% in the antenna efficiency (simulated), compared to that in free space (93%), has

been observed when the antenna is placed at d=10 mm from the human body.

Table 5-2: Comparison of different simulated parameters of CP patch antenna analysed
for various body-worn configurations working at the GPS frequency of 1575.42 MHz

Antenna Body-worn
Configuration

fc

(MHz)
BW

(MHz)
ηt (%) Gain (dBi)

Antenna with no body presence
(free space)

1575 19 93 5.8

Varying separation
of antenna and
body

d=10 mm 1550 19 44 6.3

d=20 mm 1552 20 48 6.6

d=30 mm 1555 12 53 6.5

d=40 mm 1560 11 55 6.7

d=80 mm 1564 13 68 7.1

d=120 mm 1571 17 79 6.2

Varying antenna
position on-body

Middle chest 1550 19 44 6.3

Right chest 1549 17 45 6.9

Left chest 1549 17 46 7.1

Near belly 1537 13 16 3.7

Varying hand-held
antenna position

α=60o 1554 8 51 7.0

α=75o 1557 9 53 6.4

It appears that greater separations between the antenna and the human body tend

to improve the antenna performance. At d=40 mm, the antenna resonates at 1560 MHz

as compared to 1550 MHz when d=10 mm. It could be observed from the presented

results that further the antenna from the body, the closer is its resonance to that in free



Chapter 5. Human Body and GPS Antennas in Multipath Environments 151

space. The antenna efficiency also show improvement. With d=120 mm, the antenna

exhibits very close performance to the free space operation with resonating at 1571 MHz

having an efficiency of 79%. This enhanced performance is caused by change in the

amount of the reflected fields by changing the antenna-body gap. At larger separations,

the effective permittivity of the medium becomes closer to the value for the free space

that reduces the extent of frequency detuning and the radiation deformation.

Figure 5.7 demonstrates the antenna performance from radiation perspective in both

XY and YZ planes. The antenna radiation is compared for the absence of the human

body to that in its presence, as a function of the antenna and the human body sep-

aration, along the chest. These results show that the human body presence deforms

the antenna radiation patterns substantially in both planes due to power absorption in

the lossy tissues. It also causes increased gain levels and reduced antenna efficiency.

The antenna pattern shape keeps constant with increasing separations from the body.

However, radiated power increases in front direction, away from the body because of

greater reflected waves. An increase of 0.5-1.3 dB is noted in the antenna gain in front

direction while it reduces by up to 5 dB in backward direction. It is also observed that

the antenna radiation patterns have a tendency of improvement by getting closer to free

space performance as value of d increases from 10 mm to 120 mm due to reduced losses

in the human body tissues. Also, large ground plane used for the matching and opti-

mised performance of the antenna has played a part to reduce the pattern deformations

by shielding the antenna from some of the reacting field reflected by the body at closer

gaps. These effects would have a greater impact on antennas with smaller or no ground

plane.

It could also be noted from Figure 5.7 that antenna radiation characteristics are

affected more in YZ plane as compared to XY plane. It is a result of the presence of

greater body mass with increased losses in the tissues since, the height of the torso is

larger than the width as shown in Figure 5.5.
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Figure 5.8: Comparison of simulated S11 of the truncated corner microstrip patch GPS
antenna for different antenna positions on-body

5.1.4 Dependency on On-body GPS Antenna Position

The portable devices are commonly placed at different positions near the human body,

for example in the pocket of a shirt (near chest) or in the pocket of a jacket (near belly).

Difference in the shape of the body parts at different locations could influence the GPS

antenna to perform with varying radiation characteristics. The effects of varying on-

body placements of the antenna are also analysed to study the change in the antenna

performance.

The microstrip patch GPS antenna is placed at different positions on-body while

maintaining a gap of 10 mm between the antenna and the body to allow the covering

assembly clearance. The considered on-body positions include the antenna placed at the

middle chest, the right chest, the left chest and right waist near the belly. The results

are compared to the antenna performance in the absence of the human body.

The S11 curves in Figure 5.8 depict that resonance shifts from 1575.42 MHz to lower

frequencies depending upon the placement of the antenna on the body. The effect on the

antenna impedance is nearly equal for the three positions along the chest. An average
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Figure 5.9: Simulated 2-D gain patterns in XY and YZ planes for the truncated corner
microstrip patch GPS antenna with effects of variation in on-body antenna position at
1575.42 MHz

drop of 48% in the antenna total efficiency, compared to the free space efficiency, is

observed. However, the antenna is detuned to a larger extent and centre frequency comes

down to 1537 MHz when placed near the belly. The antenna efficiency also experiences

a huge drop reaching to 16%. It is because the presence of discontinuities towards legs

and arms near the belly changes size and shape of the lossy tissue more as compared

to the three chest positions. Hence, the resulting modification of the effective medium

causes larger variation in the antenna input impedance.

The gain patterns shown in Figure 5.9 confirm that the radiation characteristics

of the antenna are also affected but the shielding provided through the ground plane

minimises this effect. The pattern shapes are again similar for the three chest positions

with reduced back lobes. The discontinuities towards legs and arms near the belly have

also caused scattered fields with greater pattern deformations.
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Figure 5.10: Simulated S11 responses of the truncated corner microstrip patch GPS
antenna for hand-held configurations with arm bent at three different angles (α)

5.1.5 Performance of GPS Antenna Held in User’s Hand

The portable devices, especially the GPS navigators, are usually used in held-in-hand

scenarios with the user watching the screen. The direct contact of the human hand with

the GPS antenna affects the radiation properties of the antenna resulting in a reduced

performance. The presented microstrip patch GPS antenna is tested to demonstrate the

human body effects on its performance for held-in-hand scenarios. Although, a realistic

hand model (constructed in later studies) could not be added to the designed structure

due to the model limitations, the human body model is modified to represent the user’s

watching position with the antenna held in the left hand. The bending angle of the arm

is represented by α. Two held-in-hand configurations with the arm bent at an angle

of α=60o and α=75o are considered and results are compared with the antenna in the

absence of the human body and antenna placed on-body at the middle chest (α=0o).

The three configurations have the separation between the body and the antenna equal

to 10 mm, 190 mm and 350 mm, respectively, as illustrated in Figure 5.5.

The antenna impedance performance is compared in Figure 5.10. The presence of the

human body has detuned the antenna causing the resonance frequency to shift from 1575
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Figure 5.11: Comparison of 2-D gain patterns in XY and YZ planes of the truncated
corner microstrip patch GPS antenna for hand-held configurations with arm bent at
three different angles (α) at 1575.42 MHz

MHz to lower values. The detuning of the antenna again depends upon the separation

of the antenna and the human body. The resonance gets closer to the one observed for

the antenna in free space scenario with wider bending angles as antenna becomes less

affected by the torso. It also improves the antenna efficiency to 51% in comparison to

the free space value with α = 75o while it is 53% when α = 60o as drop is minimised.

However, the antenna impedance undergoes detuning in the two cases due to the currents

induced in hand tissues causing the drop in the efficiency.

The antenna radiation performance is compared in Figure 5.11. The reflected fields

again have caused changes in the gain and introduced deformations in the polar patterns.

Increasing distance between the body and the antenna due to increased bending angle has

modified the patterns with high backward radiations. It is because of the fact that the

antenna is less affected by the greater body mass of torso and legs at these separations.

The major part of the degradation in these configurations, comes from the bent arm.
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The presented results confirm that the GPS antenna undergoes frequency detuning

while operating in the vicinity of the human body depending upon the on-body antenna

placement, present body mass and physiological parameters of the body. This tends

to decrease the resonant frequency of the antenna, causing it to be mismatched at its

intended operating frequency of 1575.42 MHz. The antenna loses the desired ±5 MHz

bandwidth in most of the cases whereas its radiation pattern also deforms. It is, therefore,

evident that the human body presence affects the GPS antenna performance to a visible

extent and should be taken into account to design an efficient navigation system.

5.2 Human Body Effects on GPS Mobile Terminal Anten-

nas in Multipath Environment

The discussion in the above sections has established that the performance of the GPS

antennas tends to deteriorate while placed near the human body. It increases the mag-

nitude of degradations in mobile terminal GPS antennas operating in the multipath

environment, that already have been suffering from reflections, diffractions and scatter-

ing of the incoming radio waves from the surrounding objects, as illustrated in Figure

5.12. It results in attenuation, delay and distortion of the communication link. To guar-

antee a reliable navigation system, the GPS mobile terminal antennas should cope these

deteriorations. Therefore, these antennas must be tested not only for the effects of the

multipath environment but also for the presence of the human body in this environment.

The study of the human head presence in the multipath environment and its effects

on the land mobile antennas has been reported [18–20]. The Mean Effective Gain of the

antenna is taken as a figure of merit for the antenna performance in these studies. Since,

the calculations of antenna Mean Effective Gain are based on the antenna power gain

patterns, it simplifies antenna performance evaluation in practical scenarios including

antenna on-body placements as follows [19, 21–23]:
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Figure 5.12: GPS environment and reception of multipath signal by GPS mobile terminal
antenna operating near human user

• The gain degradations due to radiation pattern deformations can be easily accom-

modated.

• The degradations of the antenna efficiency as a result of variations in the input

impedance can also be accounted for, irrespective of whether it is caused by the

human body proximity or absorptions by the human body.

The fast growing demand of the portable navigation devices necessitate the extension

of this investigation to the GPS mobile terminal antennas. The effects of the presence of

the human body on the performance of the GPS mobile terminal antennas is studied and

characterised using the statistical model for the GPS multipath environment discussed

in Chapter 4. The computer simulations with realistic numerical models of human head,

hand and the whole body are used to analyse the performance of various GPS mobile

terminal antennas.



Chapter 5. Human Body and GPS Antennas in Multipath Environments 158

The study is conducted in two parts; first, investigating the effects of the presence

of the human head and hand, second, investigating the effects of the presence of the

whole body in the vicinity of the antennas. Different possible on-body scenarios are

investigated including antenna held in user’s hand, antenna placed by the user’s head,

antenna held in user’s hand near to the head in talking position and antenna placed

at user’s pocket position. Effects of a multi-layered human head are also taken into

account. The performance of the GPS mobile terminal antennas is characterised in terms

of MEGGPS along with ηc. Since, these parameters are calculated using simulated 3-D

power gain patterns that only considers the power absorptions in the human body tissues

[24], it is essential to include the mismatch losses caused by the antenna detuning in these

on-body configurations. These losses are accumulated in MEGGPS and ηc employing

the concept of ‘Realised Gain’, calculated using the following equation [25]:

Gainrealised = Gain× ηm (5.1)

Where, Gain is the simulated gain that takes material losses into account. ηm represents

the antenna mismatch efficiency that accounts for the antenna detuning losses and is

calculated as follows:

ηm = 1− |S11|2 (5.2)

The CST Microwave Studio R© provides an embedded option for the realised gain

mode [24].

5.2.1 Design of GPS Mobile Terminal Antennas

Three types of the GPS mobile terminal antennas are considered in this study to investi-

gate the human body effects. The three antennas include PIFA, DRA and helix antennas

and are similar in design as described in Chapter 4. The antennas operate at the GPS

frequency of 1575.42 MHz. The PIFA is designed using FR4 substrate of 1.6 mm thick-
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Figure 5.13: Geometrical structure of GPS mobile terminal PIFA antenna used to study
the effects of human body presence on the antenna performance in multipath environment
(all lengths are in mm)

ness. The PCB size is 100 mm×40 mm. The DRA antenna is loaded with a dielectric

of εr = 21. The ground plane is 100 mm×40 mm of lossy copper type while the loaded

dielectric is covered with lossy silver. The helix has no substrate and is mounted on the

left side of the metallic ground plane of dimensions 100 mm×40 mm×0.45 mm. The

PIFA and DRA antennas are fed using discrete ports with 50 Ω impedance to represent

the commonly used 50 Ω coaxial port feed. Figures 5.13-5.15 show the schematic layout

of the three antennas. The antenna prototypes are fabricated and tested in the Antenna

Measurement Lab at QMUL and results have been reported in Chapter 4. In current

study however, only the simulation results are of interest.
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Figure 5.14: Schematic layout of GPS mobile terminal DRA antenna to study the effects
of human body presence on the antenna performance in multipath environment (all
lengths are in mm)

Table 5-3: Electric properties of specific human tissues at 1575.42 MHz used within the
constructed inhomogeneous multi-layer head model

Tissue
Electric Properties

Dielectric Constant
(εr)

Tissue Conductivity
(σ)(S/m)

Skin (Dry) 39.28 1.10

Muscle 53.86 1.22

Skull (Average Bone) 12.33 0.27

Brain (Average Grey and White) 43.96 1.04

Spinal Chord 31.17 0.77
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Figure 5.15: Geometry and dimensions of GPS mobile terminal helix antenna for the
study of the presence of the human body effects on the antenna performance in multipath
environment (all lengths are in mm)

5.2.2 Effects of Human Hand and Head Presence

In the first part of the study, only the effects of the presence of a realistic human head and

hand model are investigated for the performance of the GPS mobile terminal antennas

in the multipath environment.
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(b) Antenna held in hand

(a) Realistic head and hand model configuration

(c) Antenna placed beside realistic head model240
210Y XZ

45o

(e) X-section view of multi-layer head model
(d) Antenna held in hand beside realistic head model in talking-on-phone position

Figure 5.16: High resolution model for human head and hand with different test config-
urations for three GPS antennas-under-test (all lengths are in mm)

5.2.2.1 Test Set-up

A high resolution realistic model of the human head and hand with dimensions for an

average built human is used as shown in Figure 5.16. The electric properties of the muscle

tissues are considered for the homogeneous head and hand models at 1575.42 MHz with

a permittivity of 53.86 and conductivity of 1.22 S/m [15–17]. An inhomogeneous multi-

layer head model is also employed to characterise the effects of different head tissues

on the antenna working. Five head tissues including skin, muscle, skull, brain and
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spinal chord are incorporated in this inhomogeneous model. Table 5-3 summarises the

electric properties of these tissues at 1575.42 MHz and Figure 5.16(e) depicts the x-

section view of the multi-layer head model with anatomical details. An adaptive mesh is

employed with different cell sizes that has reduced the number of volume cells (voxels) in

the computational domain significantly. The Perfectly Matched Layer (PML) absorbing

boundary conditions [24] are used with a maximum cell size of 10 mm near the boundaries

and a minimum size of 0.08 mm at the edges of the solids in the computational region.

Various on-body scenarios including the antennas placed by the homogeneous head,

held in hand and held in hand near to the head in talking position are taken into con-

sideration to investigate the added effects of the human head and hand on the antenna

performance in the GPS multipath environment. The effects of the multi-layer head

model in all the above configurations are then analysed. The antennas are placed beside

the head inclined at 45o for the talking positions. A separation of 10 mm between

the antenna and the head is kept to allow clearance for mobile casing. The statistical

analysis of the antenna performance in the multipath environment in these on-body con-

figurations needs the information of the 3-D gain patterns in the perpendicular and the

parallel polarisations. Therefore, the simulated 3-D gain patterns for all the test setups

are recorded.

5.2.2.2 Performance of GPS Antennas

The S11 response of the three antennas is shown in Figures 5.17-5.19. These figures

confirm the well known phenomenon of antenna detuning caused by the presence of

the human body. The amount of this detuning varies from antenna to antenna. The

most resilient antenna to this detuning effect has proved to be the helix, that offered

the required -10 dB bandwidth of ±5 MHz (desired for efficient GPS operation) in all

the cases due to its wide bandwidth. The S11 responses for the DRA antenna (Figure

5.18) makes it the most sensitive, of the three tested antenna types, to the human body

effects. It has shown greater detuning than the PIFA and helix antenna whereas loosing
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-10 dB impedance bandwidth in the desired ±5 MHz L1 band for held in hand and

the talking positions (held in hand placed beside head). The performance of the PIFA

is also degraded greatly with the antenna held in talking position has suffered worse.

These results also show that the S11 response is similar for the single layer and the

multi-layer head models and the inner organs incorporated in the inhomogeneous multi-

layer model have little impact. It is due to the fact that input impedance is a relatively

local phenomenon. It is influenced more significantly by the objects located close to the

antenna feed point while the inner organs of the multi-layer head are comparatively more

displaced [1].

Figures 5.21-5.25 illustrate the simulated 3-D gain patterns for the perpendicular and

parallel polarisations of the PIFA, DRA and helix, operating in different scenarios near

the human hand and head. It is evident from these results that the antenna detuning

effect is also replicated in the radiation pattern deformations depending on the posture

of the human hand and head.

In the held-in-hand position (Figure 5.21), the radiating element of the PIFA is in

the negative x-direction while the DRA is in the negative x-direction. Hence, the PIFA
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Figure 5.17: S11 curves for PIFA with effects of different placements near human hand
and head
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Figure 5.18: S11 curves for DRA with effects of different placements near human hand
and head
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Figure 5.19: S11 curves for helix with effects of different placements near human hand
and head

is affected more by the gripping fingers while the DRA suffers more by the absorptions

in the palm. For the helix in free space, the ground plane is a major contributor in the

radiation. Therefore, it is also affected by the gripping fingers. In the antenna placed

near head position, a greater body mass reduces the radiation of the three antennas in

positive x-direction making the gain patterns directive in negative x-direction as shown

in Figures 5.22 and 5.23. It could also be observed from these results that gain levels are
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XZY
-17 dBi60 3-34

G⊥ G‖

(a) 3-D gain patterns of PIFA in free space

XZY
-17 dBi60 3-34

G⊥ G‖

(b) 3-D gain patterns of DRA in free space

XZY
-17 dBi60 3-34

G⊥ G‖

(c) 3-D gain patterns of helix in free space

Figure 5.20: Simulated 3-D gain patterns for perpendicular and parallel polarisations of
PIFA, DRA and helix GPS mobile terminal antennas in free space



Chapter 5. Human Body and GPS Antennas in Multipath Environments 167

XZY
-17 dBi60 3-34

G⊥ G‖

(a) 3-D gain patterns of PIFA held in user’s hand

XZY
-17 dBi60 3-34

G⊥ G‖

(b) 3-D gain patterns of DRA held in user’s hand

XZY
-17 dBi60 3-34

G⊥ G‖

(c) 3-D gain patterns of helix held in user’s hand

Figure 5.21: Simulated 3-D gain patterns for perpendicular and parallel polarisations of
PIFA, DRA and helix GPS mobile terminal antennas held in user’s hand
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XZY
-17 dBi60 3-34

G⊥ G‖

(a) 3-D gain patterns of PIFA placed beside user’s single layer head

XZY
-17 dBi60 3-34

G⊥ G‖

(b) 3-D gain patterns of DRA placed beside user’s single layer head

XZY
-17 dBi60 3-34

G⊥ G‖

(c) 3-D gain patterns of helix placed beside user’s single layer head

Figure 5.22: Simulated 3-D gain patterns for perpendicular and parallel polarisations of
PIFA, DRA and helix GPS mobile terminal antennas placed beside user’s homogeneous
single layer head
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XZY
-17 dBi60 3-34

G⊥ G‖

(a) 3-D gain patterns of PIFA placed beside user’s multi-layer head-17 dBi60 3-34
XZY

G⊥ G‖

(b) 3-D gain patterns of DRA placed beside user’s multi-layer head

XZY
-17 dBi60 3-34

G⊥ G‖

(c) 3-D gain patterns of helix placed beside user’s multi-layer head

Figure 5.23: Simulated 3-D gain patterns for perpendicular and parallel polarisations of
PIFA, DRA and helix GPS mobile terminal antennas positioned beside user’s inhomo-
geneous multi-layer head
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XZY
-17 dBi60 3-34

G⊥ G‖

(a) 3-D gain patterns of PIFA held in user’s hand and placed beside his single layer head

XZY
-17 dBi60 3-34

G⊥ G‖

(b) 3-D gain patterns of DRA held in user’s hand and placed beside his single layer head

XZY
-17 dBi60 3-34

G⊥ G‖

(c) 3-D gain patterns of the helix held in user’s hand and placed beside his single layer head

Figure 5.24: Simulated 3-D gain patterns for perpendicular and parallel polarisations
of PIFA, DRA and helix GPS mobile terminal antennas held in user’s hand and placed
beside his homogeneous single layer head



Chapter 5. Human Body and GPS Antennas in Multipath Environments 171

XZY
-17 dBi60 3-34

G⊥ G‖

(a) 3-D gain patterns of PIFA held in user’s hand and placed beside his multi-layer head-17 dBi60 3-34
XZY

G⊥ G‖

(b) 3-D gain patterns of DRA held in user’s hand and placed beside his multi-layer head

XZY
-17 dBi60 3-34

G⊥ G‖

(c) 3-D gain patterns of helix held in user’s hand and placed beside his multi-layer head

Figure 5.25: Simulated 3-D gain patterns for perpendicular and parallel polarisations
of PIFA, DRA and helix GPS mobile terminal antennas held in user’s hand and placed
beside his inhomogeneous multi-layer head
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less in the upper hemisphere as compared to the lower hemisphere. When the antenna

is held in user’s hand in talking position, presence of both the hand and head on the

two sides of the antennas give rise to electromagnetic absorptions and reflected fields are

minimum. It defragments the antenna radiation greatly and causes poor gain levels in

all the directions, depicted in Figures 5.24-5.25.

The performance of the PIFA, DRA and helix GPS mobile terminal antennas in the

multipath environment is evaluated using the discussed statistical model in terms of

MEGGPS and ηc. The simulated 3-D gain patterns of the designed antennas in different

configurations, shown in Figures 5.20-5.24 are input to the model. The ground plane

(earth) is considered as made of dry concrete with a relative permittivity of 4.5 [26, 27]

to include the ground reflections.

Table 5-4: Calculated GPS Coverage Efficiency and GPS Mean Effective Gain of three
mobile terminal GPS antennas operating at 1575.42 MHz in multipath environment in
proximity of human body with effects of human hand and head

Test Set-up in Presence
of Human Hand and Head

Model Calculations Using
Simulated 3-D Patterns in Actual Reflection

Multipath Environment
PIFA DRA Helix

ηc MEGGPS ηc MEGGPS ηc MEGGPS

(%) (dB) (%) (dB) (%) (dB)

Antenna without human
body presence

92 -8.2 95 -5.7 88 -5.8

Antenna held in user’s
hand

89 -11.2 58 -10.6 78 -7.8

Antenna placed beside
user’s single layer head

75 -10.0 76 -8.2 66 -7.4

Antenna placed beside
user’s multi-layer head

74 -10.1 73 -8.4 65 -7.5

Antenna held in talking
position beside user’s
single layer head

42 -15.9 36 -14.9 58 -11.0

Antenna held in talking
position beside user’s
multi-layer head

41 -16.0 34 -15.2 57 -11.1
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Table 5-4 summarises the calculated values of ηc and MEGGPS for the three tested

antennas in different near-body configurations. It has been noted that the presence of

the lossy human body tissues causes significant degradation in the antenna performance

due to electromagnetic absorptions in the tissues and field reflections from the surface of

the human body. It results in the gain pattern deformations as compared to that without

the presence of the human body, illustrated in Figures 5.21-5.25. This deterioration of

the gain patterns reduces the coverage and MEGGPS of the GPS antennas and their

ability to pick up the GPS satellite signal suffers drastically.

It has also been noted that the reduction in ηc depends mainly on the extent of

available clear sky view to the radiating element. The more the antenna radiating element

is covered by the user, the lesser is its ηc. The amount of present body mass in the vicinity

of the GPS antenna also plays a key role.

Figure 5.26(a) compares the coverage of the three antennas in the above described

test configurations. In the case of the PIFA, the radiating element is in the negative

x-direction. For the held in hand position, the radiating element (top edge of the PCB)

is not covered by the palm or the gripping fingers. Only a small disturbance comes from

the index finger resulting in ηc of 89% i.e. 3% lower than the free space value. When the

antenna is placed beside the head, greater body volume produces larger detuning due

to the surface reflections and energy absorptions and hence, ηc decreases to 75%. The

antenna placement in the talking position shields its clear sky view on both sides by the

user’s holding hand and his head reducing the antennas’s coverage to 42%.

On the contrary, the radiating DRA is in positive x-direction, located in the middle

of the PCB and hence, affected more by the palm. The gripping fingers also cover most

part of the radiating element, resulting in a reduced ηc value of 58% as compared to the

free space value of 95%. Placing the antenna beside the head blocks its view only on one

side resulting in ηc of 76% but the presence of both the hand and head shields most of

the useful angles and hence, ηc becomes 36%.
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C1: Antenna without human body presenceC2: Antenna held in handC3: Antenna placed beside single layer headC4: Antenna placed beside multi-layer head C5: Antenna in talking position with single            layer head C6: Antenna in talking position with multi-       layer head C1 C2 C3 C4 C5 C6
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(b) MEG of GPS antennas

Figure 5.26: Multipath environment performance of three GPS mobile terminal antennas
in free space and in different on-body positions with effects of human head and hand

For the helix, the radiating element is mounted on the top left of the ground plane,

having the feed in negative x-direction. The index finger restricts the radiating element

view on one side when held in hand. The palm of the holding hand and gripping fingers

also disturbs the major radiation area as evident by comparing Figure 5.20(c) and Figure
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5.21(c). It causes ηc to drop from 88% for free space to 78%. The placement of the

antenna beside the head is affected from the surface reflections. The antenna experiences

clear sky view on one side but the other half is completely blocked causing ηc to drop

to 66%. The talking position with held in hand placed near head restricts the clear sky

view of the antenna on both sides in similar fashion as noted for the PIFA and DRA,

resulting in a poor ηc of 58%.

The loss due to the human body presence is also replicated in MEGGPS values,

shown in Figure 5.26(b). Since, MEGGPS is the average performance of the antenna in

the multipath environment, it depends on the overall gain pattern, taking into account

both the power absorptions in the human body tissues and the antenna detuning, rather

than the extent of the radiating element’s clear sky view. Therefore, the three GPS

antennas have been affected by the human head and hand presence in similar fashion.

The performance degradation is less in held in the hand position and worst in held

in the hand beside the head position as compared to the MEGGPS value for antenna

operating in multipath environment without human body presence. From Figure 5.20,

it is clear that the three antennas have stronger radiation in azimuth plane with main

lobes in negative y-direction. Therefore, when these antennas are held in the user’s

hand restricting most of the azimuth angles, gain values decrease sharply with almost

equivalent levels in both the azimuth and elevation planes (Figure 5.21) resulting in

decreased MEGGPS values.

In the antennas placed beside the user’s head configuration, the lossy human tissues

are present on one side of the antennas. It produces reflected electromagnetic fields

resulting in highly directive gain patterns as illustrated in Figure 5.22. This increase in

directivity in certain azimuth angles fails to make a greater impact because of reduction

in the gain levels in other directions, especially in the upper hemisphere. It lowers the

overall performance of the antenna resulting in decreased MEGGPS .

Finally, when the GPS antennas are placed in talking position, they are covered

by the user’s hand on one side and by his head on the other. The electromagnetic
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absorptions in the lossy tissues and reflections from the head and hand surfaces cause

greater degradation in the gain values causing MEGGPS to reach its lowest (of the

observed cases).

A reduction of 1.8-7.7 dB (in comparison to the MEGGPS for no human body pres-

ence scenario) is observed in case of the PIFA antenna while this reduction is between

2.5-9.2 dB and 1.6-5.2 dB for the DRA and helix antenna, respectively.

The effects of the presence of a multi-layer head near the three GPS mobile terminal

antennas for placed beside head with and without holding hand are also studied. The

comparison of ηc and MEGGPS obtained for these scenarios with that of the single layer

head model, presented in Figure 5.26 clearly indicates that the internal organs have no

significant effect on the antenna performance. The reduction in the values of ηc and

MEGGPS is between 1-3% and 0.1-0.3 dB respectively with varying permittivity and

conductivity values of the internal head organs increasing the losses. However, the pen-

etration depth is only slightly changed from 30.2 mm for single layer head model to 33.5

mm (average) for the multi-layer case at 1575.42 MHz. It minimises the increase in the

power absorption resulting in little impact on MEGGPS and ηc. It is therefore, con-

cluded that study of the antenna performance in the multipath environment with single

layer human body models containing electric properties of the muscle tissues provides

reasonably accurate results and computational time could be saved by not employing

multi-layer models.

Overall, the DRA antenna offers better performance in the multipath environment

with no human body presence, in comparison to the PIFA and helix, with wider coverage

and good MEGGPS . However, performance of the helix antenna is good and more

consistent in the presence of the human head and hand.
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5.2.3 Effects of Complete Human Body Presence

The previous section has given an overview of the effects of the user’s hand and head

on the performance of the GPS mobile terminal antennas. However, in actual working

scenarios, these antennas have to operate in the vicinity of the user’s whole body that

can further reduce their performance due to greater absorptions and reflections from the

body surface. Therefore, it is pertinent to take into account the effects of the whole body

presence on the working of the GPS mobile terminal antennas.

240
575
940

(b) Placed at pocket position

(c) Watching position

(d) Talking position(a) Realistic whole body modelXZY
Figure 5.27: Medium resolution single layer homogeneous realistic human body model
used to study effects of body presence on performance of GPS antennas with different
placements of the antennas on-body (all lengths are in mm)
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(a) Pocket position (b) Watching position (c) Talking position

Figure 5.28: Various on-body placements of GPS mobile terminal PIFA

(a) Pocket position (b) Watching position (c) Talking position

Figure 5.29: Various on-body placements of GPS mobile terminal DRA

(a) Pocket position (b) Watching position (c) Talking position

Figure 5.30: Various on-body placements of GPS mobile terminal helix

5.2.3.1 Test Set-up

In this study, the medium resolution realistic complete human body model, described in

Chapter 3, is considered. The human body is modelled as a single layer homogeneous
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Figure 5.31: S11 response of PIFA operating in different on-body positions
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Figure 5.32: S11 response of DRA operating in different on-body positions

object, based on the observations made in the previous section for the single layer and

multi-layer head models. This model offers not only faster computations as a result of

reduced complexity but also gives flexibility in terms of re-positioning the body parts. It

makes it easy to represent the talking-on-phone position and holding the phone positions.

A high resolution hand is also added to realise the antenna held in hand scenarios, shown

in Figure 5.27. The dielectric properties of the muscle tissue at 1575.42 MHz are used

with permittivity of 53.86 and conductivity of 1.22 S/m [15–17].
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Figure 5.33: S11 response of helix operating in different on-body positions

The similar three types of the GPS antennas used in mobile terminals discussed in

Section 5.2.1, PIFA, DRA and helix are used to analyse the effects of the human body

presence in the multipath environment. Three possible scenarios of on-body placement

of the GPS mobile terminal antennas are considered. For the device kept in the user’s

pocket, GPS antennas are placed on the left bottom torso at the pocket position on the

body as shown in Figure 5.27(b). The separation between the antenna and the body is

kept 10 mm to allow the clearance for the mobile casing. In the scenario where the GPS

mobile terminal antenna is being watched by the user, the antennas are modelled to be

held in the user’s hand in front of the body, at a distance of 175 mm from the body

surface, illustrated in Figure 5.27(c). Lastly, the effects of the presence of the human

body on the GPS mobile terminal antennas are investigated for a common position of

talking-on-the-phone. This configuration is modelled by re-positioning the human body

in such a way that the antenna is being held in the user’s hand beside the head, depicted

in Figure 5.27(d). The separation is again kept at 10 mm between the antenna and

the head to allow the covering assembly, whereas the antennas are inclined at 45o with

respect to the z-axis. Figures 5.28-5.30 illustrate the details of position and orientation

of the radiating elements of the three antennas in the considered on-body placements.
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5.2.3.2 Performance of GPS Antennas

The S11 curves of the three antennas working in the on-body placements are plotted

in Figures 5.31-5.33. The antenna detuning is evident from these results caused by the

presence of the human body.

The PIFA is affected most as it has failed to exhibit the desired -10 dB impedance

bandwidth of ±5 MHz in the three on-body configurations (Figure 5.31). The DRA

antenna has also shown a poor performance as it completely detuned in the watching

and talking position while achieving -10 dB impedance bandwidth of 5 MHz covering

frequency range of 1570 MHz to 1575 MHz in the placed at pocket position, shown

in Figure 5.32. The helix antenna has again shown a less sensitive behaviour to the

detuning effects caused by the human body. It has fulfilled the ±5 MHz impedance

bandwidth requirement in L1 band for placed at pocket and held in watching positions,

while managed to attain a comparatively reasonable -8 dB impedance bandwidth of ±5

MHz when operating in the talking position (Figure 5.33). Overall, the three antennas

has performed poorly in the talking position as compared to the other scenarios.

(a) Original watching position (b) Modified watching position (dz=40 mm)

Figure 5.34: Modified watching position for GPS mobile terminal DRA to investigate
S11 response

The greater detuning of the DRA in watching position and the helix in talking posi-

tion is due to electromagnetic absorptions in the palm of the holding hand and the

gripping fingers. The two antennas could perform better if the radiating element is
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(a) Original talking position (b) Modified talking position (dz=40 mm)

Figure 5.35: Modified talking position for GPS mobile terminal helix to investigate S11
response
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Figure 5.36: Comparison of S11 curves for DRA in original and modified watching
positions

cleared from the palm of the hand and the gripping fingers. Therefore, the DRA in

watching position and the helix in talking position are tested moving the antenna by 40

mm in z-direction (dz). The two tested configurations are shown in Figures 5.34(b) and

5.35(b) in comparison to the original positions (Figures 5.34(a) and 5.35(a)).

The S11 responses of the DRA and helix in the modified watching and talking sce-

narios are plotted in Figures 5.36 and 5.37, respectively. It could be observed from these

results that the two antennas exhibit better impedance matching when placed at dz=40

mm as compared to the original positions. It is therefore, evident that the way a user
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Figure 5.37: Comparison of S11 curves for helix in original and modified talking positions

holds the antenna plays a vital role to define the extent of antenna detuning.

The 3-D simulated gain patterns of the three antennas in different on-body positions

are also observed and recorded, depicted in Figure 5.38-5.40. The proposed statistical

model for the GPS multipath environment is used for the evaluation and comparison of

the performance of the antennas in the three on-body configurations. The realised gain

is used in the calculations of ηc and MEGGPS to incorporate both the power absorption

and detuning effects caused by the human body presence. Table 5-5 summarises these

results in comparison to the values observed when the antennas operate without presence

of the human body.

Figure 5.41 compares ηc and MEGGPS for the three antennas. These results further

strengthen the fact that the GPS mobile terminal antennas in the multipath environment

undergoes performance degradations due to the presence of the lossy human body. The

operation of the three antennas depends upon the factors discussed in the previous

section including clear view of the sky, shielding body mass and antenna placement.

The human body presence causes a minimum drop of 3% in the GPS antenna’s ηc and

1.5 dB in MEGGPS . The three antennas perform reasonably well in the placed at pocket
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(a) 3-D simulated gain patterns of PIFA at pocket position

XZY
-17 dBi60 3-34

G⊥ G‖

(b) 3-D simulated gain patterns of DRA at pocket position

XZY
-17 dBi60 3-34

G⊥ G‖

(c) 3-D simulated gain patterns of helix at pocket position

Figure 5.38: Simulated 3-D gain patterns for perpendicular and parallel polarisations of
PIFA, DRA and helix GPS mobile terminal antennas placed at user’s pocket position to
evaluate effects of body presence on performance of the GPS antennas
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(a) 3-D simulated gain patterns of PIFA in watching position

XZY
-17 dBi60 3-34

G⊥ G‖

(b) 3-D simulated gain patterns of DRA in watching position

XZY
-17 dBi60 3-34

G⊥ G‖

(c) 3-D simulated gain patterns of helix in watching position

Figure 5.39: Simulated 3-D gain patterns for perpendicular and parallel polarisations of
PIFA, DRA and helix GPS mobile terminal antennas held in user’s hand at watching
position to evaluate effects of body presence on the GPS antennas’ operation
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XZY
-17 dBi60 3-34

G⊥ G‖

(a) 3-D simulated gain patterns of PIFA in talking position

XZY
-17 dBi60 3-34

G⊥ G‖

(b) 3-D simulated gain patterns of DRA in talking position

XZY
-17 dBi60 3-34

G⊥ G‖

(c) 3-D simulated gain patterns of helix in talking position

Figure 5.40: Simulated 3-D gain patterns for perpendicular and parallel polarisations of
PIFA, DRA and helix GPS mobile terminal antennas held in user’s hand beside head in
talking position for the GPS antenna performance evaluation near human body
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Table 5-5: Calculated GPS Coverage Efficiency and GPS Mean Effective Gain of three
mobile terminal GPS antennas working in the vicinity of human body in multipath
environment with effects of whole human body presence

Test Set-up in Presence
of Complete Human Body

Model Calculations Using
Simulated 3-D Patterns in Actual Reflection

Multipath Environment
PIFA DRA Helix

ηc MEGGPS ηc MEGGPS ηc MEGGPS

(%) (dB) (%) (dB) (%) (dB)

Antenna without human
body presence

92 -8.2 95 -5.7 88 -5.8

Antenna placed at pocket
position

52 -10.7 58 -7.2 53 -7.3

Antenna held in watching
position

69 -13.2 3 -24.8 85 -8.0

Antenna held in talking
position

34 -17.5 17 -18.5 20 -13.8

position. A greater clear view of the sky and enhanced gain levels in directions away from

the body, owed to reflections from the surface of the body, constitute to minimise the

degradations caused by the presence of the human body. The DRA antenna has shown

best performance because of stronger radiation in upper hemisphere with ηc of 58% and

MEGGPS of -7.2 dB. In the watching position, larger gap between the torso and the

antenna has lessened the tissue losses. The presence of the holding hand has proved the

major source of degradation in this case. The PIFA and helix have exhibited an improved

ηc of 69% and 85%, respectively, as a combined result of less shielded radiating element

and increased gain in the upper hemisphere because of the reflections from the palm and

arm. However, this increased coverage is made less effective by a reduced MEGGPS of

-13.2 dB and -8.0 dB, respectively, due to pattern deformations. On the other hand, the

performance of the DRA has suffered greatly since, the radiating element is blocked to

a larger extent by the palm and gripping fingers of the holding hand. It has reduced its

ηc to just 3% and MEGGPS to -24.8 dB.

The three antennas have again exhibited a poor performance in the talking position.
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Figure 5.41: Multipath environment performance of GPS mobile terminal antennas in
free space and in different on-body scenarios with effects of complete human body pres-
ence

The electromagnetic shielding by the lossy head and hand tissues on both sides has

limited the reception of the signal from all directions. The ηc values are observed to be

34%, 17% and 20% for the PIFA, DRA and helix antenna, respectively. The MEGGPS
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is noted to be -17.5 dB, -18.5 dB and -13.8 dB for the three antennas, respectively. The

ranking of the antenna performance is similar as observed in the previous section (in the

presence of both the head and hand) whereas added losses have been introduced mainly

by the shoulder and arm.

Overall, the helix has shown better capability to operate in the vicinity of the human

body in the three tested scenarios, exhibiting reasonable level of MEGGPS and ηc with

lesser detuning in comparison to the PIFA and DRA. Therefore, it could be deduced

that size and position of the radiating element also plays an important role to reduce

the losses introduced by the human body tissues.

5.3 Summary

The demand of portable WPAN/WBAN devices with built-in navigation services has

been rapidly increasing. The GPS receiving antennas have therefore been an essential

part of such applications which necessitates the study of the function and behaviour of

these antennas in the presence of the human body with very lossy tissues to realise the

true extent of the performance degradation caused in actual working scenarios.

An investigative study on the performance of the GPS antennas operating near the

human body has been presented in this chapter. The performance of a CP truncated

corner microstrip patch antenna for the GPS operation in the vicinity of the human body

has been studied using a low resolution human body model. The antenna performance

is characterised in terms of S11 and radiation patterns, considering different on body

scenarios including varying separation between the GPS antenna and the body, various

on-body positions of the antenna and different held-in-hand situations.

The presence of the human body causes resonance shift, drop in antenna efficiency

and radiation pattern deformations. It is observed that increasing separations between

the body and the antenna, tends to reduce the detuning, improve the efficiency and
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reduce the pattern deformations. Reduced amount of reflected (from the body) fields and

shielding provided by the larger ground plane of the antenna dictates this behaviour. The

shape of the lossy tissues and body mass present also affects the antenna performance.

For example, the antenna placed at waist near belly has experienced greater degradations

compared to the chest positions because of scattering caused by discontinuous edges

towards legs and arms. Moreover, the deformation effects on the radiation performance

of the antenna are more significant in YZ plane (body height) than XY plane (body

width) due to the presence of greater body mass resulting in stronger reflecting fields.

A medium resolution human body model with realistic head and hand has been

designed and employed to study the effects of the presence of the human body in the

multipath environment on the operation of the GPS mobile terminal antennas. The

antenna working is analysed first for only the human hand and head effects and then for

the whole body presence in various practical scenarios. The proposed statistical model

replicating the multipath environment with defined parameters of MEGGPS , AoAGPS

and ηc is used to characterise the GPS mobile terminal antenna performances.

It has been noted that the presence of the human body lowers the operation of the

GPS mobile terminal antennas due to the radiation pattern deformations. It limits the

antenna coverage which influences less reception of the incoming GPS signal in the useful

AoAGPS . This pattern deformation also causes a decreased MEGGPS . It is also noted

that clear view of the sky observed by the antenna radiating element is necessary for

a better ηc. A minimum loss of 3% in the GPS mobile terminal antenna coverage and

1.5 dB in its MEGGPS is observed caused by the human operator. The reflections from

and absorptions in the head and hand tissues on either side of the antenna in talking

position forced the antennas to exhibit worst performance due to very limited coverage

and poor radiation levels. It is therefore, concluded that in talking position, the size of

the radiating element has a crucial role in the GPS mobile terminal antenna performance.

The presented results confirm that the multipath environment performance of the

GPS mobile terminal antennas in the vicinity of the human user strongly depends on the
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type of the antenna used, position of the antenna on-body and the human body posture.

MEGGPS provides a good figure of merit for the antenna performance as it describes the

effects of polarisation state and directional response of the antenna while incorporating

the impedance mismatch and total efficiency. Also, in such studies, acceptable results can

be obtained using a single layer homogeneous model of the human body as maximum

loss caused by the inner head organs with multi-layer inhomogeneous model is in the

range of 2-3% for ηc and 0.1-0.3 dB for MEGGPS .

References

[1] M. A. Jensen and Y. Rahmat-Samii, “EM interaction of handset antennas and
human in personal communications,” IEEE Transactions on Antennas and Propa-
gation, vol. 83, no. 1, pp. 7–17, January 1995.

[2] J. Toftgard, S. Hornsleth, and J. B. Anderson, “Effects on portable antennas of the
presence of a person,” IEEE Transactions on Antennas and Propagation, vol. 41,
no. 6, pp. 739–746, June 1993.

[3] M. Okoniewski and M. A. Stuchly, “A study of the handset antenna and human body
interaction,” IEEE Transactions on Microwave Theory and Techniques, vol. 44,
no. 10, pp. 1855–1864, October 1996.

[4] P. A. Mason, W. D. Hurt, T. J. Walters, J. A. D’Andrea, P. Gajsek, K. L. Ryan,
D. A. Nelson, K. I. Smith, and J. M. Ziriax, “Effects of frequency, permittivity
and voxel size on predicted specific absorption rate values in biological tissue dur-
ing electromagnetic field exposure,” IEEE Transactions on Microwave Theory and
Techniques, vol. 48, no. 11, pp. 2050–2058, November 2000.

[5] P. S. Hall and Y. Hao, “Antennas and propagation for body-centric wireless net-
works,” Artech House Publishers, (UK), 2006.

[6] J. Wang and O. Fujiwara, “EM interaction between a 5GHz band antenna mounted
PC and a realistic human body model,” IEICE Transactions on Communications,
vol. E88-B, no. 6, pp. 2604–260, 2005.

[7] G. A. Conway and W. G. Scanlon, “Antennas for over-body-surface communication
at 2.45ghz,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 4, pp.
844–855, April 2009.

[8] M. Sanad, “Effect of the human body on microstrip antennas,” IEEE Antennas
and Propagation Society International Symposium (AP-S), vol. 1, pp. 298–301,
June 1994.



Chapter 5. Human Body and GPS Antennas in Multipath Environments 192

[9] H. R. Chuang, “Human operator coupling effects on radiation characteristics of
a portable communication dipole antenna,” IEEE Transactions on Antennas and
Propagation, vol. 42, no. 4, pp. 556–560, April 1994.

[10] J. S. Colburn and Y. Rahmat-Samii, “Human proximity effects on circular polar-
ized handset antennas in personal satellite communications,” IEEE Transactions on
Antennas and Propagation, vol. 46, no. 6, pp. 813–820, Junuary 1998.

[11] “Considerations for the evaluation of human exposure to electromagnetic fields
(EMFs) from mobile telecommunication equipment (MTE) in the frequency range
from 30MHz-6GHz,” CENELEC, European Specification, Ref. No. ES-59005:1998
E, 1998.

[12] L. Boccia, G. Amendola, and G. Di Massa, “Design of high precision antennas for
GPS,” Penton Media, Inc., 2004.

[13] N. Padros, J. I. Ortigosa, J. Baker, M. F. Iskander, and B. Thornberg, “Comparative
study of high-performance GPS receiving antenna designs,” IEEE Transactions on
Antennas and Propagation, vol. 45, no. 4, pp. 698–706, April 1997.

[14] R. B. Langley, “A primer on GPS antennas,” GPS World, pp. 50–55, July 1998.

[15] C. Gabriel, “Compilation of the dielectric properties of body tissues at RF and
microwave frequencies,” Brooks Air Force Technical Report, AL/OE-TR-1996-0037,
1996.

[16] “Body tissue dielectric properties,” Federal Communication Commision (FCC),
URL: http://www.fcc.gov/oet/rfsafety/dielectric.html.

[17] “Caculation of the dielectric properties of body tissues,” Institute of Applied Physics,
Italian National Research Council, URL:http:// niremf.ifac.cnr.it/ tissprop.

[18] J. O. Nielsen and G. F. Pedersen, “Mobile handset performance evaluation using
radiation pattern measurements,” IEEE Transactions on Antennas and Propaga-
tion, vol. 54, no. 7, pp. 2154–2165, July 2006.

[19] J. Krogerus, C. Ichelun, and P. Vainikainen, “Dependence of mean effective gain
of mobile terminal antennas on side of head,” European Conference on Wireless
Technology (ECWT), pp. 467–470, October 2005.

[20] M. G. Douglas, M. Okoniewski, and M. A. Stuchly, “A planar diversity antenna for
handheld PCS devices,” IEEE Transactions on Vehicular Technology, vol. 47, no. 3,
pp. 747–754, August 1998.

[21] K. Fujimoto and J. R. James, “Mobile antenna systems handbook (2nd edition),”
Artech House, Inc., (USA), 2001.

[22] G. F. Pedersen and J. B. Andersen, “Handset antennas for mobile communications:
Integration, diversity, and performance,” Radio Science Review 19961999, Oxford
University Press, UK, 1999.

URL: http://niremf.ifac.cnr.it/tissprop


Chapter 5. Human Body and GPS Antennas in Multipath Environments 193

[23] K. Ogawa and T. Uwanao, “Mean effective gain analysis of a diversity antenna
for portable telephones in mobile communication environments,” Electronics and
Communication in Japan (Part I: Communications), vol. 83, no. 3, pp. 88–96,
December 2000.

[24] CST Microwave Studio R© 2010 User Manual.

[25] C. Balanis, “Antenna theory analysis and design (2nd edition),” John Wiley and
Sons, Inc., (USA), 1997.

[26] J. Jemai, T. Kurner, A. Varone, and J. F. Wagen, “Determination of the per-
mittivity of building materials through WLAN measurements at 2.4GHz,” IEEE
International Symposium on Personal, Indoor and Mobile Radio Communications,
September 2005.

[27] G. Klysza, J. P. Balayssaca, and X. Ferriresb, “Evaluation of dielectric properties of
concrete by a numerical FDTD model of a GPR coupled antennaparametric study,”
NDT & E International, vol. 41, no. 8, pp. 621–631, December 2008.



Chapter 6

Conclusions and Future Work

6.1 Summary

The evolution of user-centric communications systems based on the concept of being

connected anytime and anywhere has brought a revolution in the field of wireless com-

munications. This rapid growth of research and development has been promoted by

the development of portable devices that provides multiple features in a small package

guaranteeing mobility and ease of use. These devices have to operate in the vicinity of

human users in cluttered environments.

The review of the open literature on studies regarding the operation of WPAN/WBAN

antennas has ascertained that a degraded performance in on-body communication links

is often associated to such antennas. The multipath arrival of the electromagnetic waves

due to the presence of the reflectors and scatterers in the vicinity further reduces the

antenna performance. It proved a need for a deeper insight into the physical mechanism

involved in the on-body radio transmission and effective analysis of the multipath envi-

ronment effects using statistical models. The main investigations and analyses presented

in this thesis based on the reviewing process and background studies, are summarised

as follows.

194
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The on-body Bluetooth link between a mobile handset and Bluetooth headset has

been analysed to study the physics behind the on-body transmission mechanism. The

comparison of high, medium and low resolution human body models has indicated that

in such studies, a low resolution human body model gives precise results with efficient

computations. The human body presence has caused a loss of 10-15 dB in the Blue-

tooth path gain attributed to the blocking of line-of-sight between handset and headset

antennas. The study has demonstrated that surface waves play an important role in

the on-body Bluetooth transmission channel. The dependance of this on-body channel

on the handset antenna orientation, handset antenna and human body separation and

presence of the surface wave’s blocking objects has also been analysed. A vertically

oriented handset antenna has shown much stronger link due to excitation of stronger

surface waves as compared to the horizontal orientation. Increasing separations of the

handset antenna from the human body weakens the on-body Bluetooth link because

of the reduction in the surface wave excitation. Blockage of the surface waves by the

objects located nearer than half wavelength also results in severe degradation of the

on-body link.

A statistical model has been presented with a novel GPS Angle of Arrival (AoAGPS)

distribution of the incident radio waves and a new concept of the GPS Mean Effective

Gain (MEGGPS) and GPS Coverage Efficiency (ηc). It has been demonstrated that the

proposed model efficiently predicts and precisely ranks the GPS antenna performance

with close agreement to open field measurements.

Characterisation of the GPS antenna performance in the multipath environment in

terms of MEGGPS and ηc has shown that these parameters depend strongly on AoAGPS

and antenna power gain patterns. The change in the antenna orientation with respect

to the ground (earth) plays an important role in the navigation solution as it varies

antenna gain patterns and inflicts ηc deviations. The horizontal orientation of the GPS

antenna has appeared to be more efficient in the majority of the tested cases exhibiting

high ηc due to greater clear sky view. Similarly, increased reception of the GPS signal
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due to higher gain values, especially in the incident region, give rise to MEGGPS for

majority of the horizontally oriented antennas. Varying the position of the antenna

radiating element on the PCB/ground plane has shown no significant improvement in

MEGGPS and ηc values as overall change in antenna radiation pattern is minimal. The

dual-element mono-loop antenna has increased MEGGPS by 1.4 dB and ηc by 23% as

compared to the single-element antenna indicating that the diversity antennas could be

used effectively to reduce the degrading effects of the multipath environment.

The dependence of truncated corner microstrip patch GPS antennas on the separation

between the antenna and the human body, on-body position of the antenna and held-

in-hand scenarios was investigated using numerical analysis. The study has shown that

degradations in antenna input impedance, efficiency and radiation pattern depends upon

the gap between the antenna and the body, physiological structure of the body and

amount of present body mass. These effects are more stronger in YZ plane (height of

the body) as compared to XY plane (width of the body) as the presence of greater body

mass resulted in stronger reflecting fields. Increased separations has lessened these losses.

The antenna placed at waist near belly has experienced more detuning as compared to

the chest positions because of larger change in tissue shape giving rise to reflected fields.

The true extent of the performance degradation a WPAN/WBAN antenna faces

in actual working scenarios has been realised by including the human body effects in

the multipath model. The study has demonstrated that the operation of GPS mobile

terminal antennas depends on the type of the antenna used, position of the antenna

on-body and the human body posture. MEGGPS is considered as a figure of merit due

to its essential benefits of describing antenna performance taking into account effects of

impedance mismatch, total efficiency, polarisation state and directional response of the

radio environment. The radiation pattern deformations caused by the human operator

has limited the antenna coverage influencing less reception of the incoming GPS signal

in the useful AoAGPS . In turn, MEGGPS of the antenna also decreased. The presence

of the human body has lowered the GPS antenna operation with a minimum loss of 3%
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in ηc and 1.5 dB in MEGGPS . The antenna held by the user in talking position has

exhibited worst performance due to reflections from and absorptions in the head and

hand tissues on either side of the antenna and restricted sky view resulted in a very

limited coverage and poor radiation levels. A maximum loss caused by the inner head

organs with multi-layer inhomogeneous model has been noted to be in the range of 1-3%

for ηc and 0.1-0.3 dB for MEGGPS showing that acceptable results could be obtained

using a single layer homogeneous model of the human body in such studies.

6.2 Key Contributions

The major contributions in this thesis are detailed as follows:

• Establishing the role of the surface waves in the on-body Bluetooth link between

two body-worn antennas. Antenna placements that excite stronger surface waves

have developed stronger on-body channels. Based on the investigations carried out,

the surface waves need an un-blocked space of at least half wavelength away from

the human body to contribute efficiently in the on-body Bluetooth communication.

• A novel statistical model for the GPS multipath environment with parameters of

GPS Angle of Arrival distribution, GPS Mean Effective Gain and GPS Coverage

Efficiency. This model is an efficient tool for the analysis of the GPS mobile

terminal antenna performance in the actual working scenarios eliminating the need

of an open field measurement test.

• Identifying the dependence of the GPS mobile terminal antenna performance in

the multipath environment not only on the orientation of the antenna with respect

to the ground but also on the location of the radiating element on the chassis.

Antenna MEGGPS and ηc vary with change in the orientation due to varying

radiation pattern and extent of clear sky view.

• Demonstrating the use of diversity antennas to enhance the performance of the
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mobile terminal GPS antennas in the multipath environment. The potential of the

diversity antennas has been shown achieving 40% increase in MEGGPS and 23%

in ηc employing a dual-element mono-loop antenna.

• Characterisation of human body effects on the performance of the GPS mobile

terminal antennas operating in the multipath environment. The antenna operation

depends on the type of the antenna used, position of the antenna on-body and the

human body posture and clear sky view of the antenna. Identifying acceptability

of the use of single layer homogeneous body model in such studies due to their

precision and efficient computations.

6.3 Future Work

The WPAN/WBAN are experiencing greater advancements both in terms of research

and development. The work presented in this thesis covers a small but important part

of this area. In the light of the drawn conclusions and limitations of the accomplished

work, further research could be carried out in the following aspects:

Numerical Modelling of Human Body

• A medium resolution efficient human body model with more realistic shape of the

torso could be developed to further investigate the effects of varying shapes of body

parts on the Bluetooth on-body transmission mechanism and performance of the

on-body GPS antennas.

On-body Bluetooth Transmission Mechanism

• The on-body Bluetooth transmission mechanism has been studied for a single type

of handset and headset antenna. The study could be expanded including other

types of commercially used antennas. Different placements of the handset antenna

on-body for example at back pocket or chest pocket position could be investigated.
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Placement of the headset antenna at the other side of the head is also a factor that

could be studied. Role of surface waves in the on-body link for different human

body postures would also provide useful information.

Statistical Modelling of Multipath GPS Environment

• The proposed statistical model for the GPS multipath environment takes the GPS

Angle of Arrival distribution as uniform in both the azimuth and elevation. A more

realistic GPS Angle of Arrival distribution for elevation plane should be applied to

suit the actual scenarios attained by the measurements. The Gaussian and elliptical

distributions could be the potential contenders describing higher probability of

arrival of the GPS signal near the zenith and lower near the horizon.

• Extending the proposed environment model to include effects of ground roughness

and varying electric properties (permittivity and conductivity) of ground (earth)

would also be of interest.

• More efficient diversity antennas with reduced level of mutual coupling should be

designed to achieve increased performance in the multipath environment

Human Body Presence and GPS Antennas in Multipath Environment

• The presented investigations for human body effects on the GPS antennas in the

multipath environment are based on simulation set-ups. Results based on open

field and anechoic chamber measurements would be helpful to enhance the level of

confidence in the presented data.

• It has been demonstrated in the thesis that the use of diversity antennas could

enhance the operation of the GPS antennas in the multipath environment. New

designs of the GPS mobile terminal antennas based on diversity techniques could

also be explored. These designs could offer performance increase in the antenna

stand alone operation as well as withstand the degrading effects of the human body

presence.



Appendix A

Numerical Modelling Techniques

Numerical techniques calculate the solution to a problem based on a full-wave analysis.

A number of numerical algorithms in the time and frequency domains have been widely

used to solve electromagnetic problems, with each technique suitable for the analysis

of a particular type of problem. In this thesis, time-domain methods are preferred over

others due to their stability and strength in modelling complex inhomogeneous dispersive

media [1].

A.1 Finite Difference Time Domain (FDTD)

Finite-Difference Time-Domain (FDTD) is a popular electromagnetic modelling tech-

nique. The basis of this method has been introduced in 1966 by K.S. Yee who introduced

the FDTD method for solving Maxwell’s equations in a discretised form [2]. Maxwell’s

equations are simply modified to central-difference equations, discretised, and imple-

mented in software. The equations are solved in a leapfrog manner; i.e., the electric field

is solved at a given instant in time, then the magnetic field is solved at the next instant

in time and the process is repeated over and over again [3, 4].

Maxwell’s curl equations can be expanded in their Cartesian vector component form

200
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Figure A.1: Leapfrog scheme in space and time for FDTD [4]

for the general 3-D case as:

∂Hx

∂t
=

1
µ

(
∂Ey

∂z
− ∂Ez

∂y
− σmHx

)
(A.1)

∂Hy

∂t
=

1
µ

(
∂Ez

∂x
− σmHy

)
(A.2)

∂Hz

∂t
=

1
µ

(
∂Ex

∂y
− ∂Ey

∂x
− σmHz

)
(A.3)

∂Ex

∂t
=

1
ε

(
∂Hz

∂y
− σeEx

)
(A.4)

∂Ev

∂t
=

1
ε

(
−∂Hz

∂x
− σeEy

)
(A.5)

∂Ez

∂t
=

1
ε

(
∂Hy

∂x
− ∂Hx

∂y
− σeEz

)
(A.6)

These six equations form the basis of the FDTD algorithm.

A.1.1 FDTD Method

This method uses a leapfrog scheme on staggered Cartesian grids where the electric field

(E) is offset spatially and temporally from the magnetic field (H). This approach solves

the “present” fields throughout the computational domain in terms of the past fields.
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Figure A.2: Yee cell representation for spatial discretisation [2]

FDTD uses simple central-difference approximations to evaluate the space and time

derivatives. The region being modelled is represented by two interleaved grids of discrete

points. One grid contains the points at which the magnetic field is evaluated. The second

grid contains the points at which the electric field is evaluated. Figure A.2 presents a

basic element of the FDTD space lattice, where a space lattice point (i, j, k) is denoted

as:

(i, j, k) = (i∆x, j∆y, k∆z) (A.7)

While any function of space and time is evaluated as:

Fn (i, j, k) = F (i∆x, j∆y, k∆z, n∆t) (A.8)

The simplified vector form of Maxwell’s curl equations can be represented in the FDTD

equations for EM waves by using the central finite difference approximation of space and

time derivatives. To incorporate the element of time, each of the E and H components

are evaluated at alternate half time-steps using an explicit finite difference approximation

and represented as the following equations:
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In the above equations, the superscripts represent the time index and the arguments

represent the spatial sampling location.

To use the FDTD, a computational domain must be established. It is the physical

region over which the simulation will be performed. The E and H fields are determined
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at every point in space within that computational domain. The material of each cell

inside the domain should be specified. Typically, the material is either free-space (air),

metal, or dielectric. Any material can be used if the permeability, permittivity, and

conductivity are mentioned [5].

After the computational domain and the grid materials are determined, the next step

is the specification of a source. The type of the source depends upon the application. It

may be a plane wave, a current on a wire, or an applied electric field [3].

The simulation gives usually the E or H field at a point or a series of points within

the computational domain because the fields are determined directly.

A.1.2 Far-field Computations Using FDTD

In the FDTD method, the fields are computed in the near field region around the cell.

In antenna modelling, it is desired to determine the far-field pattern. The near-field data

can be transformed to obtain the far-field pattern by weighting it with the free space

Green’s function and integrating over a surface, S, surrounding the cell [5].

A.1.3 Numerical Error and Stability

Free space is dispersion-less medium as a wave propagating in the free space, propagates

at the same phase velocity regardless of the direction of the propagation. However,

phase velocity of the propagating wave is distorted and waves propagating in a discrete

domain e.g. FDTD grid, suffer from numerical dispersion as a result of the discretisation.

Numerical dispersion is a function of the number of cells used per wavelength and the

direction of the wave propagation across the spatial grid. The variation of the phase

velocity with wave-propagation angle tends to improve significantly when the number of

cells used per-wavelength is increased.

Numerical stability is defined as a bounded input produces a bounded output, as
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the iteration time progresses. For the Yee algorithm to produce a convergent result,

its numerical stability must be ensured. One of the convergence factors is the Courant

stability criterion that assumes that for stability to be maintained, the field must not

change significantly from one point to another and a wave must not propagate more

than one spatial field point in any one iteration of the algorithm This can be achieved

by putting an upper limit on the time step that is used in the update equations [6].

In order to guarantee the numerical stability and to avoid the algorithm to be numer-

ically instable, the time increment ∆t should be bound relative to the lattice space incre-

ments ∆x, ∆y and ∆z. Hence, the maximum allowable time step for the smallest cell

size is expressed as:

∆t ≤ 1

c

√(
1

∆x

)2 +
(

1
∆y

)2
+

(
1

∆z

)2

(A.15)

Where c represents the speed of light. For an equilateral cubic volume cell this above

stability criterion could be simplified to:

∆t ≤ ∆
c
√

3
(A.16)

Where, ∆ = ∆x = ∆y = ∆z

For antenna analysis using the FDTD technique, several assumptions are made

including that the electric or magnetic field must not change significantly from one

field point to the next and the variation of the field between field points is linear. This

imposes limits on the sizes of the cells that are used in the spatial domain so that the

cells should not (normally) have a side length greater than λ/10.

A.1.4 Absorbing Boundary Conditions (ABCs)

To update the electric field strength in a cell in the FDTD grid, the central-difference

discretised Maxwell’s curl equations employed in FDTD needs the knowledge of the
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Figure A.3: Need of Absorbing Boundary Conditions in a FDTD grid

values of the locally neighbouring magnetic field points on either side of it.

Modelling an antenna using the FDTD in a finite volume of space makes it appear to

a propagating wave that is continuous beyond the finite volume of the modelled space.

Since, the field at inner cells of the grid can be modified easily but the field points at

the edge of the spatial domain do not have all the necessary data to be updated. It

makes the domain boundary vulnerable to non physical reflections of outgoing waves

and special treatment is needed for the edge points to avoid these reflections. This

special treatment is known as Absorbing Boundary Conditions (ABCs) that employs

special update equations at the spatial grid boundaries to absorb outgoing waves. There

have been many types of ABC developed over the time. The perfectly matched layer

(PML) [7] has been known to be one of the most successful ABCs ever developed. The

basic characteristic of the PML ABC is the splitting of the electric and magnetic fields

in the absorbing boundary region to account for the individual losses to be assigned.

This creates a non-physical absorbing medium that has its wave impedance independent

of the frequency and angle of incident of the incoming wave [8]. The spatial domain

is surrounded by layers of conducting material, several FDTD cells thick. These layers

have a conductivity profile that increases with more penetration into the material to

absorb any incoming wave. Reflection coefficients better than -100 dB can be achieved

using the PML absorbing boundaries.
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A.1.5 Advantages of FDTD

The FDTD method is the most direct possible solution of Maxwell’s equations. It is

complete and “full wave” i.e., there are no approximations that prevent a correct solution

from being reached. Boundary conditions are automatically satisfied. Furthermore, it

is easy to understand and easy to implement in software. Also, as it is a time-domain

technique, it can cover a wide frequency range with a single simulation run [9].

A.2 Finite Integration Technique (FIT)

The Finite Integration Technique (FIT) is a time-domain numerical method for solving

the integral forms of Maxwell’s equations. It is a consistent formulation for the discrete

representation of Maxwell’s equations on numerical grids and was introduced in 1977

by Weiland [10]. It solves the electromagnetic problems in a manner equivalent to the

FDTD method.

The matrix equations for the electromagnetic integral quantities obtained by FIT pos-

sess the inherent properties of Maxwell’s equations with respect to charge and energy con-

servation and thus ensure an especially favourable stability and convergence behaviour

in the numerical implementation. One of the great advantage of this formulation in

comparison with other methods is that it represents a comprehensive theory which can

be successfully used within the whole spectrum of electromagnetic applications [10, 11].

In FIT, for a three-dimensional problem, the volume is approximated by the tetrahe-

dral cells and special set of basis functions. Definition of volume sizes of the discretisation

of the computational domain is typically balanced between achieving numerical stability

(e.g. ten lines per wavelengths) and the computation cost in terms of the memory and

time [9].

New techniques such as non-orthogonal gridding, variable meshing and sub-gridding
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have been introduced to the FIT to increase the flexibility of controlling the cell grid-

ding/meshing in the problems. Errors which might exist due to stair-case approximations

can be reduced by either creating denser mesh cells, or by introducing a scheme where

only part of the cell is considered called Partial Cell Filling. The capability to take into

account the sub-cellular information makes FIT an algorithm with second order accuracy

for arbitrary shaped problems.

A.2.1 Advantages of FIT

A principal advantage of the FIT method is that the fields can be interpolated accu-

rately inside a cell of almost arbitrary shape, eliminating the need for tight control on

the cell shapes. This should also provide increased accuracy on irregular or non-uniform

grids. Also, more accurate solutions are obtained due to enhanced meshing techniques.

Furthermore, this method can solve problems associated to the whole spectrum of elec-

tromagnetic applications.

A.3 CST Microwave Studio R©

CST Microwave Studio R© is a specialist tool for the fast and accurate 3-D electromagnetic

simulation of high frequency problems using the Finite Integration Technique (FIT). It

is designed for the accurate calculation of S-parameters and antenna parameters on a

computer in a Windows based environment [12].

A.3.1 Features of CST Microwave Studio R©

CST Microwave Studio R© simplifies the process of inputting the structure by providing

a powerful solid modelling interface. Strong graphics feedback simplifies the definition

of the device even further. After the component has been modelled, a fully automatic

meshing procedure is applied before the simulation engine is started [12].
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Since no method works equally well in all application domains, the software contains

four different simulation techniques (transient solver, frequency domain solver, eigen-

mode solver, modal analysis solver) that best fit different particular applications.

The most flexible tool is the transient solver, normally used for on-body antenna

simulations, which can obtain the entire broadband frequency behaviour of the simulated

device from only one calculation run. This solver is very efficient for most kinds of high

frequency applications such as connectors, transmission lines and antennas [12].
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Appendix B

Reflection Coefficients for

Incident Wave Components

B.1 Reflection of the Oblique Incidence Incoming Wave

from the Ground Plane

To analyse the oblique incidence of a plane wave on an interface between two different

dielectric mediums, as shown in Figure B.1, it is convenient to consider the perpendicular

and parallel polarised wave components separately.

We can divide the incoming plane wave in the perpendicular and parallel components

as shown in Figures B.2- B.3. Hence, we can express the incident wave as:

Einc = Einc⊥ + Einc||
(B.1)

The reflection angle at each smooth reflection point is equal to the incident angle.
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θi θrε1ε2
Incident Wave Reflected Wave

Figure B.1: Reflection of plane wave of oblique angles of incidence from the dielectric
boundary

θi θrEiHi Er Hrε1ε2
Figure B.2: Parallel polarised wave component

The reflection coefficients can be found as [1, 2]:

Γ⊥ =
cos θi −

√
(ε2/ε1)− sin2 θi

cos θi +
√

(ε2/ε1)− sin2 θi

(B.2)

Γ|| =
(ε2/ε1) cos θi −

√
(ε2/ε1)− sin2 θi

(ε2/ε1) cos θi +
√

(ε2/ε1)− sin2 θi

(B.3)

Where, Γ⊥ is the reflection coefficient for perpendicular polarised component and Γ|| is

the reflection coefficient for parallel polarised component.

The reflected wave can also be separated in two components in the same fashion and

expressed as:

Eref = Eref⊥ + Eref||
(B.4)
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Figure B.3: Perpendicular polarised wave component
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Figure B.4: Graph between the incident angle and the reflection coefficients for perpen-
dicular and parallel components

These two components can be computed by the following equations:

Eref⊥ = Γ⊥Einc⊥ (B.5)

Eref||
= Γ||Einc|| (B.6)
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Appendix C

GPS Gain Calculator

C.1 GUI based on Matlab Coding

The statistical model for the multipath operation of the GPS antenna has been imple-

mented using MatLab. A graphical user interface (GUI) has also been developed to

provide the ease of use. The main window of the GUI is illustrated in Figure C.1.

The working of this GUI is simple. Data files containing power gain data of the

antenna is imported in .txt or .dat format using the “Import Data” button. The data

can either be in dB or linear values. Name of the imported file will be displayed. Antenna

efficiency can be selected from the drop down list with options of 100%, 75%, 50%, 25%,

2.5% and 1.25%. A number of coverage efficiency threshold levels are also available

ranging from -6 dB to -25 dB under “CE Threshold” drop down list. The performance

of the antenna in the multipath environment could be analysed by calculating Mean

Effective Gain (MEG) and Coverage Efficiency (CE) by pressing the “Calculate” buttons.

The calculated values are compared with the values obtained from open field tests as

well as values calculated using measured 3-D power gain patterns. The 3-D power gain

patterns are measured in Satimo Stargate 64 anechoic chamber as shown in Figure C.2.
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Figure C.1: GUI for the GPS System Gain calculator that implements the statistical
model for GPS multipath environment

Figure C.2: Satimo Stargate 64 anechoic chamber used to measure 3-D power gain
patterns of GPS antennas
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