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ABSTRACT 
 

The efficacy of oncolytic virotherapy is influenced by the interactions between 

the tumour, virus and host immunity. The first generation of oncolytic adenoviruses, 

based on serotype 5 (Ad5), has achieved limited success in clinical trials. Its 

shortcomings include the downregulation and inaccessibility of its receptor, the 

Coxsackie and adenovirus receptor (CAR) in cancer cells, high prevalence of 

neutralising antibodies and hepatotoxicity. In contrast, Ad11 binds to CD46 and other 

receptor(s) but its potential as an oncolytic virus remains to be explored. 

 

A panel of human cancer cell lines were found to express higher levels of CD46 

than CAR. However, not all cell lines were more sensitive to Ad11-mediated 

cytotoxicity in vitro compared to Ad5. Treatment of Ad5-insensitive PC-3 human 

prostate cancer xenografts with Ad11 resulted in significant reduction in tumour growth, 

but not Ad11-insensitive MIA PaCa-2 human pancreatic cancer xenografts. Virus 

attachment and nuclear entry of Ad11 were significantly better than Ad5 even in cells 

that were insensitive to Ad11 killing. In these cells, however, Ad11 E1A mRNA levels 

were much lower than those of Ad5, producing a negative effect on viral DNA 

amplification, structural protein synthesis, progeny production and cell killing. Cells 

that were sensitive to Ad11 cytotoxicity showed higher levels of E1A mRNA. 

 

The region upstream of Ad5 E1A demonstrated higher transcription-enhancing 

activity than the corresponding region of Ad11. Two Ad11 mutants were constructed in 

which E1A was under the control of the Ad5 E1A promoter and enhancer-promoter, 

respectively. With the latter virus, improved oncolytic potency was observed. It was 

superior to Ad11 and also to Ad5 in many cancer cell lines, and was as effective as Ad5 

in the MIA PaCa-2 xenograft model. Therefore, Ad11 with the Ad5 E1A enhancer-

promoter should be used as a backbone for the future development of potent and 

tumour-specific oncolytic Ad11 mutants. 
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CHAPTER 1 
Introduction 

 

1.1 Oncolytic virus 
Cancer is a major cause of death globally. Conventional chemotherapy and 

radiotherapy still have limited effects against many forms of cancer, not to mention a 

plethora of treatment-related side effects. Cancer is a complex disease, characterised by 

a combination of multiple genetic aberrations, epigenetic changes and post-

transcriptional modifications. Multimodality treatment, therefore, is still far more 

effective than monotherapy. Indeed there has been a move towards combination 

chemotherapy and the use of targeted agents with standard chemotherapy. Although the 

use of targeted agents has led to significant improvements in the outcome of patients 

with malignancies such as breast cancer and gastrointestinal stromal tumour, little 

progress has been made for pancreatic cancer, widely considered as one of the deadliest 

of malignant diseases. Only about 10% of patients present with potentially curable, 

resectable disease at diagnosis1. Outcome has not improved substantially over the past 

30 years, with overall five-year survival remaining dismally poor at 5%2. Patients with 

locally advanced disease have a median survival of six to ten months, whilst for those 

with metastatic disease it is only three to six months3. So far only erlotinib, an 

epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, has shown a 

statistically significant but small survival benefit in combination with gemcitabine for 

patients with advanced disease (median survival of 6.24 versus 5.91 months with 

gemcitabine alone)4. Nine other phase III clinical trials with various targeted agents, 

ranging from matrix metalloproteinase inhibitors to anti-vascular endothelial growth 

factor (VEGF) antibody, have failed to make any measureable impact (see Appendix for 

a more thorough review)5. Clearly there is a need for the development of novel therapies 

to treat this devastating disease. One such approach is the use of oncolytic viruses. 

 

The ability of viruses to kill cancer cells has been recognised for more than a 

century, when tumour regression was reported to coincide with natural virus infection6. 

They achieve this by a number of mechanisms, including direct lysis, apoptosis, 

expression of toxic proteins, autophagy and shutdown of protein synthesis, as well as 

the induction of anti-tumoural immunity7, 8. In 1912, a patient with cervical carcinoma 

reportedly responded after rabies vaccination9. In 1949, in one of the first trials of 
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virotherapy for cancer, Hoster et al.10 injected serum or tissue extract from patients with 

viral hepatitis into 22 patients suffering from Hodgkin’s lymphoma. Seven patients 

showed improvement lasting at least one month in one or more aspects of their disease, 

but 14 of them developed hepatitis. Since the 1950s, clinical trials of several other 

viruses were initiated, including the use of adenoviruses (Ads)11-13. Although tumour 

regression was reported in some cases, this mode of therapy was later abandoned due to 

its side effects, absence of significant anti-tumoural efficacy and failure to prolong 

survival. 

 

Improvements in our understanding of virus and tumour biology, together with 

advancements in recombinant DNA technology and molecular techniques, have led to 

the revival of oncolytic virotherapy. In 1991, a herpes simplex virus-1 (HSV-1) with 

deletion of its thymidine kinase UL23 gene was tested in the laboratory14, starting an era 

of genetically-engineered, replication-selective oncolytic virus. In 2005, an Ad with 

E1B 55K gene deletion (H101 or Oncorine; Shanghai Sunway Biotech, Shanghai, 

China) was approved in China as the world’s first oncolytic virus for head and neck 

cancer in combination with chemotherapy15.  

 

Selective intratumoural replication of virus leads to improved efficacy over non-

replicating agents due to the self-perpetuating nature of the treatment with virus 

multiplication, lysis of the infected tumour and spread to adjacent cells. The term 

‘oncolytic viruses’ applies to viruses that are able to replicate specifically in and destroy 

tumour cells, and this property is either inherent or genetically-engineered. Inherently 

tumour-selective viruses can specifically target cancer by exploiting the very same 

cellular aberrations that occur in these cells, such as surface attachment receptors, 

activated Ras and Akt, and the defective interferon (IFN) pathway (Figure 1.1). Some 

viruses have been engineered with specific gene deletion – these genes are crucial for 

the survival of viruses in normal cells but expendable in cancer cells (Figure 1.2). 

Deletion of the gene that encodes thymidine kinase, an enzyme needed for nucleic acid 

metabolism, results in dependence of viruses such as HSV and vaccinia virus on cellular 

thymidine kinase expression, which is high in proliferating cancer cells but not in 

normal cells. Vaccinia virus also produces the vaccinia growth factor (VGF) that binds 

to and activates EGFR, creating an environment that supports its replication. It follows 

that deletion of genes encoding for both thymidine kinase and VGF leads to further 

selectivity of vaccinia virus in cancers with an activated EGFR-Ras pathway16. Another 
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approach to conferring tumour selectivity is to restrict virus replication by its 

dependence on transcriptional activities that are constitutively activated in tumour cells 

(transcriptional targeting). This can be achieved by the insertion of a tumour-specific 

promoter driving the expression of a critical viral gene17-22. Other viruses either possess 

naturally (e.g. Coxsackievirus A2123 and measles virus (MV)24) or have been designed 

to have specific tropism based on the expression of cell surface receptors unique to 

cancer cells (transductional targeting)25-31. 

 

More recently, gene silencing by RNA interference technology has been utilised 

to confer tumour selectivity. MicroRNAs (miRNAs) or small interfering RNAs 

(siRNAs) regulate gene expression post-transcriptionally by translation block or 

cleavage of specific, complementary messenger RNA (mRNA) via the RNA-induced 

silencing complex (RISC). By inserting a complementary sequence next to a critical 

viral gene, it is possible to confine virus replication to tumour but not normal cells that 

express high levels of the corresponding miRNA. This has been demonstrated by 

several groups32-36. Gürlevik et al.37 developed a recombinant Ad that encodes multiple 

RNA-interfering transcripts under the control of a p53-responsive promoter. The 

transcripts can effectively silent a set of critical viral genes. As p53 is a transcription 

factor often lost or mutated in human malignancy, this virus can therefore replicate in 

cancer but not normal cells where functional p53 would lead to an anti-viral RNA 

interference. 
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Figure 1.1: Mechanisms of tumour selectivity of several oncolytic viruses. The 
IFN/double-stranded RNA (dsRNA)-activated protein kinase (PKR) pathway is a natural anti-
viral defense system. IFNs produced by infected cells result in the upregulation of PKR. On 
binding to viral dsRNA, PKR autophosphorylates, which in turn phosphorylates the α subunit of 
eukaryotic initiation factor-2 (eIF-2). Phosphorylated eIF-2α sequesters eIF-2B, a guanine 
nucleotide exchange factor. Without eIF-2B, the guanosine diphosphate (GDP) bound to eIF-2 
cannot be exchanged for guanosine triphosphate (GTP). As a result eIF-2 is unable to bring the 
initiator transfer RNA (tRNA) to the 40S ribosomal subunit, and the synthesis of viral proteins 
is inhibited. Inactivated IFN and activated Ras pathways are frequently found in cancer (the 
latter can inhibit PKR), and some naturally-found viruses can replicate selectively in cancer but 
not normal cells, including the Newcastle disease virus (NDV)38, reovirus39, vaccinia virus40 and 
vesicular stomatitis virus (VSV)41. The HSV infected cell protein (ICP)34.5 interacts with 
cellular phosphatase 1α to dephosphorylate eIF-2α, leading to synthesis of proteins needed for 
virus replication. Deletion of gene that encodes for ICP34.5 (RL1) results in selective replication 
in tumours with a defective IFN/PKR pathway42. The influenza virus NS1-deleted mutant is also 
dependent on this defective pathway43. Ads normally produce virus-associated (VA) RNAs to 
inhibit PKR. As such, engineered VAI-deleted Ad5 (dl331) can replicate selectively in tumours 
with an activated Ras pathway44. Epstein-Barr virus (EBV) also expresses RNAs similar to VA 
RNAs and these can complement dl331, resulting in selectivity in EBV-associated tumours45. 
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Figure 1.2: Engineered replication selectivity of oncolytic adenoviruses by gene 
deletion. Retinoblastoma protein (pRb) is normally hypophosphorylated and binds to the E2 
promoter-binding factor (E2F) transcription factor family to regulate the G1-to-S cell cycle 
checkpoint. Upon stimulation by mitogenic signals, upregulation of cyclins enables cyclin-
dependent kinases (CDKs) to phosphorylate pRb, releasing E2F that leads to the expression of 
proteins needed for DNA synthesis and thus cell cycle progression. E2F upregulates p14ARF, 
which inhibits Mdm2. Mdm2 normally results in p53 degradation. p53 is a transcription factor 
that is upregulated and activated by stress signals. It results in the expression of proteins that 
induce apoptosis (Bcl-2-associated X protein – Bax), cell cycle arrest (p21CIP1/WAF that inhibits 
CDK2) or DNA repair. p16INK4A is a tumour suppressor that inactivates CDK4/6. The adenoviral 
E1A proteins bind to pRb to release E2F, so that viral DNA can be replicated. E1A also 
promotes the acetylation of pRb by p300/CBP, causing pRb to associate with Mdm2 to inhibit 
p53. Because cancer cells are often in the S phase, E1A CR2-deleted Ad5 mutant (dl922-947) 
can selectively replicate in cancer but not normal resting cells46. E1B 19K binds to and inhibits 
Bax. The tumour selectivity of E1B 19K-deleted Ad2 (dl250) is due to multiple defects in the 
apoptotic pathways, where survival of the virus in normal cells would be limited owing to rapid 
apoptosis induction in the presence of tumour necrosis factor-α (TNF-α)47. E1B 55K interacts 
with the adenoviral E4 open reading frame 6 (E4 ORF6) protein to form an E3 ubiquitin ligase 
complex that targets p53 for degradation. It also induces the expression of cyclin E and 
simultaneously inhibits cellular mRNA export and promotes the export of late viral mRNAs. 
E1B 55K-deleted Ad can replicate in tumour selectively because of non-functioning p5348, 
cyclin E overexpression49, and E1B 55K-independent late viral RNA export in cancer but not 
normal cells50. 
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1.2 Human adenovirus 
Human Ads belong to the family Adenoviridae and were first isolated from 

human adenoid tissue, from which the name was derived. They are non-enveloped, 

icosahedral, double-stranded DNA viruses, about 70-90 nm in diameter, with a linear 

DNA of approximately 34-48 kb in size51. The capsid is composed of three major 

proteins – 240 hexons (protein II) making up the 20 equilateral triangular faces and the 

edges of the icosahedron, as well as 12 pentons (protein III) at the vertices with 

protruding fibres and terminal knobs (protein IV) (Figure 1.3). 54 serotypes have been 

identified so far, which are divided into species (also termed subgenera or subgroups) A 

to G, based on DNA homology, agglutination properties and serological profiles (Table 

1.1). The group B Ads have been further divided into two subgroups. 
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Figure 1.3: Structure of adenovirus (adapted from Russell WC, 200052). Proteins II 
(hexon), III (penton base) and IV (knobbed fibre) are major capsid proteins. Proteins IIIa, VI, 
VIII and IX are minor capsid proteins. The viral DNA is associated with the highly basic protein 
VII and small arginine-rich peptide μ. Protein V wraps this DNA-protein complex to 
structurally link it to the capsid via protein VI. Terminal proteins (TPs) are covalently attached 
to the 5’ ends of the DNA and facilitate its replication. 
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Table 1.1: Human adenovirus serotypes 

Subgroup Serotype 

A 12, 18, 31 

B1 3, 7, 16, 21, 50 

B2 11, 14, 34, 35 

C 1, 2, 5, 6 

D 8-10, 13, 15, 17, 19, 20, 22-30, 32, 33, 36-39, 42-49, 51, 53, 54 

E 4 

F 40, 41 

G 52 

 

 

Ad2 and Ad5 belong to the subgroup C. They normally cause mild diseases of 

the respiratory tract, tonsils and adenoids. They are genetically stable, non-integrating to 

the host cell genome, amenable to high-titre production and purification, as well as 

highly efficient in entering the cell and nucleus with resulting expression of gene of 

interest7. These characteristics have made them the most studied and characterised 

viruses used both as oncolytic agents and gene transfer vectors. 

 

1.2.1 Adenovirus genomic organisation and functions 

The adenoviral genome is conventionally represented as 100 map units (m.u.) (1 

m.u. = 360 bp) (Figure 1.4). In the nucleus the transcription of viral DNA occurs, and 

this can be divided into early and late events, occurring before and after DNA 

replication, respectively. Initially the immediate-early E1A gene is expressed, controlled 

by a constitutively active promoter. A transcriptional enhancer of adenoviral early 

genes, which binds to the transcription factors E2F and EF-1A (enhancer-binding factor 

to the E1A core motif; also known as E4TF1, guanine-adenine-binding protein (GABP), 

and nuclear respiratory factor-2 (NRF-2)), is located upstream of E1A53-56 and overlaps 

with the packaging (or encapsidation) sequence57, 58 (see below). E1A encodes three 

alternatively-spliced mRNAs, named 9S, 12S and 13S59. These are translated into 

proteins of 55, 243 and 289 residues, respectively. The latter two are identical except for 

an extra 46 amino acids in the larger product. 289R contains four conserved regions 

(CR1-4) whilst 243R lacks CR360. They are expressed throughout infection, whereas the 

expression of 55R only occurs in the late phase. The properties and functions of the 
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E1A proteins are diverse and complex61. Essentially they force quiescent cells into S 

phase so that viral DNA can be replicated, and induce the expression of delayed-early 

proteins encoded by E1B, E2, E3 and E4 transcriptional units62. They do not bind to 

DNA directly, but bind to key cellular proteins that control gene expression and cell 

growth. Of particular importance is the binding of E1A CR2 (through its leucine-X-

cysteine-X-glutamate (LXCXE) motif), and to a lesser extent CR1, to pRb. This 

interaction releases the transcription factor E2F, leading to cell cycle progression from 

G1 to S phase (Figure 1.2). This formed the basis of the E1A CR2-deleted Ad5 mutant, 

dl922-947, which has shown significant selectivity and potency in replicating cancer 

cells but not normal resting cells46. 

 

 

 
Figure 1.4: Genomic organisation of Ad5. Transcriptional units are shown with arrows 
indicating the directions of transcription. E1-4 and L1-L5 represent early and late genes, 
respectively. IX and IVa2 are intermediate genes. Proteins produced as precursors for cleavage 
by viral protease are prefaced by a ‘p’. See main text for further explanations. Abbreviations: 
ADP, adenovirus death protein; DBP, DNA-binding protein; MLP, major late promoter; pTP, 
pre-terminal protein; RID, receptor internalisation and degradation. 
 

 

The E1B 55K protein is able to bind and inactivate p53, an essential step for 

effective virus replication (Figure 1.2). It was thought that as most tumours have lost 

the functions of the p53 pathway, deletion of E1B 55K would enable the virus to 

selectively replicate in cancer but not normal cells48. However, the interaction between 

E1B 55K and p53 is more complex than originally thought, because this mutant virus 



 
26

can also replicate in some tumour cells that retain the wild-type p5363. It was later 

shown that tumour selectivity is determined not by p53, but by the export of late viral 

RNAs, a function requiring E1B 55K in normal but not in tumour cells50. Recent 

evidence also suggested that E1B 55K can regulate the cell cycle by inducing cyclin E, 

whereby cyclin E overexpression in cancer cells would allow for the efficient 

replication of the mutant virus49. 

 

The E1B 19K protein is a homologue of the cellular anti-apoptotic protein Bcl-2. 

It prolongs cell survival by inhibition of the death-receptor (extrinsic) and the 

mitochondrial (intrinsic) apoptotic signalling pathways. After the initiation of apoptosis 

by TNF-α, caspase-8 is activated, leading to BID (Bcl-2 homology 3 interacting domain 

death agonist) truncation which is then translocated to the mitochondrion where it binds 

to Bax, resulting in the release of cytochrome c and caspase-9 activation64. E1B 19K 

interacts with and inhibits the p53-inducible Bax protein65-67 (Figure 1.2). It can also 

prevent Fas-mediated apoptosis68. Replication of the mutant Ad2 with E1B 19K deletion 

(dl250) was significantly reduced in normal cells secondary to rapid apoptosis induction 

in the presence of TNF-α, whilst the opposite occurred in cancer cells due to multiple 

defects in the apoptotic pathways (e.g. p53 mutation, Bcl-2 overexpression)47. Virus 

replication, spread and anti-tumoural potency was significantly better than dl1520 (an 

Ad with E1B 55K and E3 deletion, see below) and wild-type Ad2. E1B 19K-deleted 

Ad5-infected cancer cells also expressed lower levels of EGFR and anti-apoptotic 

proteins69. 

 

The E3 gene is involved in immune-response evasion and virus release from 

cells. It is dispensable, meaning that it is not required for virus replication and survival, 

and is often deleted in recombinant Ads to allow for insertion of therapeutic genes 

(about 2 kb), although recent work has suggested that transgene expression is higher if 

gene was inserted at regions other than E3, such as L370. This is based on the 

observation that Ad5 can only package foreign DNA with size not more than 5% of the 

wild-type adenoviral genome (i.e. about 1.8 kb)71. Adenoviral E3 is normally divided 

into E3A and E3B. In Ad5, E3A encodes the 12.5K, 7.1K (6.7K in Ad2), gp19K and 

ADP (10.5K; 11.6K in Ad2) proteins, whilst E3B encodes for the proteins RIDα 

(10.4K), RIDβ (14.6K; 14.5K in Ad2) and 14.7K. E3 12.5K is a non-membrane protein 

localised in the nucleus and cytoplasm, whereas 7.1K is an endoplasmic reticulum (ER)-

localised integral membrane glycoprotein. Their functions are still not clearly defined. 
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E3 gp19K is an ER membrane glycoprotein that inhibits the transport of major 

histocompatibility complex (MHC) class I to the cell surface and also delays its 

expression to avoid killing by cytotoxic T lymphocytes (CTLs)72, 73. CTL evasion by 

tumour cells is well documented74 and therefore the function of gp19K is redundant in 

these cells. Deletion of this gene, however, would ensure normal cells infected with this 

virus will be eradicated, and this in effect confines virus replication only to tumour 

cells. gp19K can also inhibit natural killer (NK) cell activation75. Deletion of E3 7.1K 

and gp19K has been found to accelerate virus clearance in immunocompetent Syrian 

hamster model76. E3B proteins inhibit apoptosis mediated by Fas-ligand, TNF-related 

apoptosis-inducing ligand (TRAIL) and TNF77-79. In a murine model, deletion of E3B 

(dl309) was found to attenuate virus efficacy due to faster clearance at the tumour site 

by increased macrophage infiltration and expression of TNF and IFN-γ, whereas gp19K 

deletion (dl704) retains the potency of its wild-type form due to the activation of 

CTLs80, 81. Finally ADP facilitates late cytolysis of infected cells and causes efficient 

release of progeny viruses82. It is expressed at low levels in the early stages of infection 

but later splicing of the major late pre-mRNA occurs such that it is expressed at high 

levels83. Ads that overexpress ADP result in better cell lysis and spread84, 85. 

 

The E2 region is involved in viral DNA replication86, whilst E4 plays an 

auxiliary role in addition to other regulatory activities87. Each end of the genome is 

flanked by 100-150 bp of inverted terminal repeat (ITR) sequences needed for the 

initiation of DNA replication. Late transcription of L1-5, which encode for structural 

viral components, is under the control of the MLP. This results in five mRNAs that 

share a common 5’ non-translated region of 200 bp in length, spliced to the mRNA 

coding region88. This 5’ region is called the tripartite leader (TPL) as it is coded in three 

spatially separated segments of the viral DNA that are joined by splicing. MLP is in turn 

regulated by the intermediate gene products IX and IVa289, 90. The VA RNAs are RNA 

polymerase III transcripts that are obligatory for efficient translation of viral and cellular 

mRNAs by blocking PKR91, 92 (Figure 1.1). Lei et al.93 reported that VA RNAs may 

affect viral and cellular gene expression by modulation of RNA editing by antagonising 

the RNA-editing activity of ADAR (adenosine deaminase acting on RNA). VA RNA-1 

can also activate 2’,5’-oligoadenylate synthetase that could affect virus replication94, as 

well as suppress the activity of Dicer thus inhibiting RNA interference95. Because EBV 

also expresses similar RNAs (EBV-encoded RNAs – EBER1 and EBER2), they can 

complement VAI-deleted Ad5 (dl331), which has shown impressive oncolytic potency 
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and selectivity in EBV-associated tumours such as Burkitt’s lymphoma and 

nasopharyngeal carcinoma45. Interestingly, anti-tumoural efficacy in vitro and in vivo is 

superior to wild-type Ad5 and this might be the result of PKR-induced apoptosis, 

increased IFN-β production and the adenoviral E3B gene deletion. 

 

1.2.2 Adenovirus infectious cycle 

For the cellular entry of most Ads they must first bind to the Coxsackie and 

adenovirus receptor (CAR) on the surface membrane via the knob portions of their 

fibres96 (except for subgroup B Ads – see below. Ad37 is unusual because it can bind to 

CAR, CD46 and sialic acid but only uses the latter two as functional receptors97-99). The 

arginine-glycine-aspartate (RGD) motif on the penton base interacts with cellular 

integrins (αVβ1,3,5), resulting in clathrin-mediated endocytosis of the virus100, 101, a 

process dependent on the phosphatidylinositol-3-kinase (PI3K) signalling pathway that 

triggers the Rho family of GTPases and the polymerisation and reorganisation of 

actin102, 103. The penton-integrin interaction also contributes to the characteristic 

cytopathic effect (CPE) on infected cells104. The use of integrins for internalisation has 

been shown to occur with some Ads of species A, B, C and E105, whilst Ad40 and Ad41 

of subgroup F lack the RGD-αV integrin-binding motif resulting in inefficient uptake 

into A549 cells106. Cellular heparan sulfate proteoglycans (HSPGs) have also been 

shown to be a co-/receptor for Ad2, -3, -5 and -35107-109. Once internalised, acidification 

of the endosomes results in cytosolic penetration of the viruses, mediated by the fibre 

shafts110. Virus particles are dismantled in a stepwise manner111. The fibres are released, 

the penton base structures are dissociated, the structural proteins VI are degraded, and 

finally the minor capsid proteins are eliminated. The partially disrupted virus is 

transported to the nuclear membrane, a process involving p32, dynein and 

microtubules52. The genome is passaged through the nuclear pore and into the nucleus, 

where primary transcription events are initiated. 

 

Viral DNA replication begins at about seven hours post-infection83. A pre-

initiation complex is assembled at the origins of replication, consisting of DNA 

polymerase, the protein primer pTP, DBP and the cellular transcription factors nuclear 

factor I/CCAAT-binding transcription factor I (NFI/CTFI) and nuclear factor 

III/octamer-binding protein-1 (NFIII/Oct-1)86. DNA replication is initiated by DNA 

polymerase-mediated transfer of deoxycytidine monophosphate (dCMP) onto pTP. 

Elongation is catalysed by DNA polymerase and DBP in a strand displacement 
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mechanism. Cellular NFII is a type I topoisomerase that is required for elongation 

beyond approximately 10% of the genome112. 

 

Viral mRNAs are transported preferentially over cellular mRNAs from the 

nucleus, mediated by the E1B 55K, E4 ORF3 and ORF6 proteins87, 113. After protein 

synthesis, assembly of new virion begins with the formation of an empty procapsid, 

followed by the entry of the DNA molecule, in a polar fashion from left to right, guided 

by its packaging signal114. The proteins IVa2, L1 52/55K, L4 22K, 33K and 100K are 

all involved in virion assembly115. This begins at 20-24 hours post-infection. After two 

to three days, cell lysis and the release of progeny viruses occur, facilitated by the 

ADP82. 

 

1.2.3 Obstacles facing oncolytic adenovirus 

At present, the widespread use of oncolytic virotherapy for cancer is still far 

from reality. Promising laboratory results have not been translated to improved clinical 

outcomes, and this appears to be determined by the complex interactions between the 

tumour and its microenvironment, the virus, and the host immunity116 (Figure 1.5; refer 

to the Appendix for a more detailed review). 

 

dl1520 (ONYX-015; Onyx Pharmaceuticals, California, USA) is an oncolytic 

Ad2/Ad5 hybrid with deletion of its E1B 55K and E3B genes. This virus was the first 

engineered, replicating Ad to enter clinical trials for cancers including those of the head 

and neck117-119 and pancreas. In a phase I trial, ONYX-015 was administered via 

computed tomography (CT)-guided (22 patients) or intraoperative injection (one 

patient) into pancreatic primary tumours every four weeks until tumour progression120. 

Six patients showed 25-49% tumour regression, 11 were stable, and five showed tumour 

progression. Another phase I/II study of 21 patients was done to evaluate the use of 

endoscopic ultrasound-guided intratumoural injection of advanced pancreatic 

carcinomas with ONYX-015 and then in combination with systemic gemcitabine121. 

Two had partial progression, two had minor response, six had stable disease, and 11 

progressed or had to go off the study because of treatment toxicity. Disappointingly, 

virus replication was not detected on fine needle biopsy of the tumours, unlike other 

trials for head and neck cancer118, 119, 122 and liver metastases of colorectal carcinoma123. 

Whilst the virus has shown good tumour selectivity and safety122, the lack of durable 

objective responses with this virus as a single agent could be partly due to the loss of 
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other essential functions of the E1B 55K and E3B genes. Another important reason lies 

in the attachment receptor CAR. CAR is ubiquitously expressed in epithelial cells, but 

its expression is often downregulated in many cancer types due to the activation of the 

Raf-mitogen-activated protein kinase (MAPK) pathway124. The expression of the 

leucine-rich repeat containing 15 (LRRC15 or hLib) protein, frequently upregulated in 

tumour cells, can also result in the redistribution of CAR away from cell surfaces, thus 

impeding Ad infection125. As such high virus doses are required but would increase the 

risk of toxicity and immunogenicity. Furthermore CAR is a transmembrane component 

of tight junctions and may limit virus infection across epithelial surfaces126. Several 

approaches have been studied to direct Ads to tumour cells independent of CAR, 

including fibre modification (e.g. to target EGFR29 or αVβ6
27), the use Ad5 bearing the 

fibres of other adenoviral subgroups (chimeric viruses, e.g. Ad5/35127 to target CD46), 

mosaic viruses (e.g. combining the fibres of Ad3 and Ad5 in the same virus128), and 

bridging molecules (e.g. anti-fibre knob antibody fused with folate to target folate 

receptors)129. 

  

Intravenous virus delivery could be hindered by neutralising antibodies, 

complement activation, non-specific uptake by other tissues such as the liver and spleen, 

as well as poor virus escape from the vascular compartment. Numerous experiments 

have been done to modify the immune response in favour of virus replication and 

tumour lysis. One method is by using an immunosuppressive agent, such as 

cyclophosphamide, that has been shown to improve virus spread and anti-tumoural 

efficacy130. Various data suggest that pre-existing antibodies decrease virus spread after 

intravenous delivery131-133, but have a lesser effect on intratumoural injection118, 134. 

Although antibodies could prevent possible toxicity135, they could also reduce efficacy. 

Possible ways to circumvent this include plasmapheresis to deplete antibodies, the use 

of other viral strains with a lower prevalence of antibodies in the human population136-

138 and cell carriers to deliver the virus139-141. 

 

Adhesion to blood cells could also lead to therapeutic inhibition142-144. After 

intravenous delivery the liver, part of the reticuloendothelial system, is the predominant 

site of Ad sequestration145, 146. Accumulation in the liver sinusoids is thought to be the 

result of Ad-platelet binding144, 147. These are subsequently taken up by the Kupffer cells 

through scavenger receptors, complement receptors and immunoglobulin (Ig) Fc-

receptors148, 149. This causes the death of these cells150 and the excess Ads are able to 
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overcome this biological filter to transduce liver hepatocytes151. Ad5 is known to cause 

liver toxicity, and its use has raised some concerns after the death of Jesse Gelsinger in 

1999 from Ad5-based gene therapy injected directly into the hepatic artery152. It is now 

known that the binding of adenoviral hexon protein hypervariable regions (HVRs) to the 

blood coagulation factor X allows the virus to interact with HSPGs to mediate liver 

transduction153, 154. Ways to reduce liver uptake have been suggested by recent 

experiments performed by Barry et al. They studied the effect of Kupffer cell depletion 

(by pre-dosing mice with non-replicating Ad5) and warfarin treatment (to inhibit 

vitamin K-dependent coagulation factors) and found that this approach significantly 

increased the anti-tumoural effect of systemically delivered oncolytic Ad5 in nude 

mice155. Good results have also been demonstrated by coating Ad5 with high molecular 

weight polyethylene glycol156 or by genetic modification of the hexon protein to ablate 

blood factor binding157 for liver detargeting. 
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Figure 1.5: Obstacles to successful delivery of oncolytic viruses to tumour cells116. 
After intravenous injection, viruses are neutralised by pre-existing antibodies and complement 
activation. Ads also interact with blood cells. It is now known that Ad5 binds to erythrocytes via 
CAR and complement receptor 1 in the absence and presence of anti-Ad5 antibodies, 
respectively143. Other Ad serotypes interact with these cells via different cellular receptors158. 
Sequestration into other organs and the reticuloendothelial system is a particular problem, often 
with resulting toxicities. From the blood stream, viruses have to pass through a mixture of 
extracellular matrix and cells (including normal and immune cells) and high interstitial fluid 
pressure before reaching the tumour. They then have to attach to the cellular receptor (often 
trapped in tight junction), be internalised, translocate to the nucleus, replicate, produce structural 
and other proteins, lyse the cell and release their progenies – some of these steps could be 
inhibited by factors such as the natural host immune response, hypoxic environment, soluble 
factors and genetic changes in the tumour cell. Fibre molecules released from infected cells 
could also bind to receptors of nearby cells, limiting virus spread across the tumour159. 
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1.3 Adenovirus 11 
Ad11 was first isolated from a stool sample of a patient with poliomyelitis160. It 

belongs to subgroup B2, and can be classified into at least two strains – Ad11p 

(Slobitski strain) and Ad11a (BC34 strain). Ad11p, the prototype strain, was originally 

isolated from a patient with urinary tract infection that developed into a persistent renal 

infection, and has been found in Europe, America and Japan161-164. It has much better 

binding affinity than Ad11a in several human cell lines165. The less common Ad11a was 

recovered from a patient with acute respiratory tract infection and has been found in 

China, Spain and Latin America166-168. 

 

1.3.1 Genomic differences with Ad5 

The complete genome of Ad11 has been sequenced (GenBank accession 

numbers AF532578 and AY163756) and described separately by two groups (Figure 

1.6)169, 170. Some major differences of its genome and gene products with Ad5 are 

shown in Table 1.2. The genome of Ad11 is 1,141 bp shorter than Ad5’s, and they 

share 57% nucleotide identity. The highest and lowest amino acid identities are 85% 

and 24.6% for pTP and fibre, respectively. The packaging signal of Ad5 lies in the E1A 

transcriptional enhancer region55, 57, 58. This region of Ad11 shares only 67.4% 

nucleotide identity with that of Ad5, and does not contain binding sites for the EF-1A 

transcription factor169. The E3 of Ad11 cannot be divided into E3A and E3B due to the 

absence of a polyadenylation signal. The E3 20.3K (20.1K) and 20.6K (20.8K) genes are 

not present in Ad5 and could potentially be deleted to give additional space for foreign 

DNA insertion. The gene that encodes for ADP (10.5K) is absent in Ad11. Although 

there is a relatively high identity between the hexons of Ad5 and Ad11 (78.8%), 

pronounced differences were found in the seven HVRs171. Other major differences 

include the E1A proteins, the presence of only one VA RNA and L6 in Ad11. The latter 

encodes an unidentified putative protein of 169 amino acids. 
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Figure 1.6: Genomic organisation of Ad11 by (a) Mei et al.169 and (b) Stone et al170. Abbreviation: pol, polymerase. 
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Table 1.2: Some major genomic and gene product differences between Ad5 and 

Ad11169, 170 

                 Ad5                                           Ad11 

Whole genome             35,935 bp                                   34,794 bp 

57% nucleotide identity 

GC content              55.19%                                       48.87% 

Packaging signal 

   EF-1A binding sites 

67.4% nucleotide identity 

             Present                                        Absent 

E1A proteins 

   Number of amino acids 

                   (% identity) 

 

               289                  (35.9%)                262 

               243                  (36.4%)                231 

                55                   (14.3%)                 58 

E1B 55K 53.1% amino acid identity 

E3 

   20.3K and 20.6K 

   10.5K (ADP) 

         E3A and E3B                                      E3 

             Absent                                        Present 

             Present                                        Absent 

VA RNAs                 Two                                            One 

Late regions 

   L2 (penton) 

   L3 (hexon) 

   L5 (fibre) 

                L1-5                                           L1-6 

73.5% amino acid identity 

Pronounced differences in the HVRs 

                Long                                         Short 

24.6% amino acid identity 

 

 

1.3.2 Advantages over Ad5 as an oncolytic virus 

Ad11 has demonstrated great potential as a gene transfer vector172, 173. In 

contrast to other human Ads that utilise CAR as primary attachment receptors, most 

subgroup B Ads use CD46 (Ad11, -16, -21, -35, -50)174-176. This allows Ad11 to infect 

cancer cells expressing no or low levels of CAR172, 173, 177. CD46 (or membrane cofactor 

protein) is a complement regulatory protein that acts as a cofactor for factor I-mediated 

degradation of C3b/C4b complement, thus protecting the host cell from autologous 

complement attack178. It is a transmembrane glycoprotein that is ubiquitously expressed 

in all human nucleated cells (except erythrocytes) at a low level and exists in multiple 

isoforms179. It also acts as a receptor for several pathogens, including MV (Edmonston 
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strain)180, human herpesvirus 6181, group A Streptococci182 and Neisseria183. Although 

CAR expression is often downregulated in tumour cells124, 184, 185, CD46 expression, 

however, is upregulated in a number of tumour types, including breast, cervical, liver, 

lung, endometrial and haematological malignancies186-188. Several chimeric oncolytic 

Ad5 have been developed (with fibres derived from subgroup B Ads but the remainder 

of the particle from Ad5) to target CD46 and they all have shown encouraging results127, 

189-191. However, the use of intact subgroup B Ads as oncolytic agents is still 

underexplored but has great potential. They have different tropism and infectivity 

compared to chimeric viruses147, and are more beneficial in terms of a reduced 

propensity for neutralisation by pre-existing antibodies (see below). 

 

Several lines of evidence suggest that in contrast to other species B Ads, Ad11 

also attaches to receptor(s) other than CD46. After infecting the human hepatoma cell 

line HuH-7 with MV, which downregulated CD46, there was suppression of 

transduction by chimeric Ad5/35 (where the fibres were derived from Ad35) but not 

Ad5/11192. Incubation of HeLa and A549 cells with Ad11 fibre knobs completely 

blocked Ad5/35 and Ad5/11 infection, but Ad35 fibres were unable to do so for 

Ad5/11172. Some have suggested that the receptors are the immunomodulatory 

molecules CD80 (B7-1) and CD86 (B7-2)193, 194. However, Tuve et al.109, 176 disagreed, 

and have tentatively named this unidentified receptor ‘receptor X’. They reported that 

the subgroup B members Ad3, -7 and -14 only utilise this receptor, whilst Ad16, -21, -

35 and -50 exclusively use CD46. Ad11 on the other hand uses both CD46 and receptor 

X. They argued that CD80 and CD86 cannot be receptor X as they are mainly expressed 

on antigen-presenting cells and not on HeLa cells, which were permissive to Ad3, but 

not to Ad35 infection after siRNA knockdown of CD46. The binding of Ad11 to cancer 

cell lines is more efficient than to primary human fibroblasts and dendritic cells (DCs), 

suggesting that the expression of receptor X is lower in normal tissue. This receptor 

remains to be identified, but earlier studies have shown that Ad3 interacted with a 130-

kDa protein in a divalent cation-dependent manner195. The fact that Ad11 uses two 

receptors has important implications – Ad11 could potentially infect a wider range of 

tumour cells and overcome receptor downregulation; the latter is a known problem with 

Ad35 and CD46196. A recent and significant finding by Strauss et al.197 showed that Ads 

that utilise CAR or CD46 as primary attachment receptor failed to infect and lyse 

ovarian cancer cells of the epithelial phenotype, which are found in in situ tumours and 

tumour xenografts. These receptors are trapped in the tight junctions and therefore not 
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accessible to the virus. However, Ads that use receptor X (Ad3, -7, -11 and -14) could 

induce epithelial-mesenchymal transition (EMT) and result in efficient oncolysis. 

 

Although the RGD motif is also found in its penton base, internalisation of Ad11 

may occur through a RGD-independent pathway because it can efficiently infect some 

peripheral lymphocytes and haematopoietic cells, which contain few integrin 

receptors198, 199. αVβ3 and αVβ5 antibodies did not seem to affect Ad11 binding200. In 

fact, tropism and infectivity of Ad11 differ from those of Ad5/11 both in vitro and in 

vivo, suggesting a role played by hexon and penton147, 172. 

 

The prevalence of vector-neutralising antibodies within the human population is 

lower for Ad11 (10-31%) compared to Ad5 (45-90%), with no cross-reactivity between 

them172, 173, 201-203. These antibodies could reduce the efficacy of systemically-delivered 

virus for the treatment of metastatic diseases131-133. They are mainly directed against the 

viral hexon protein204, suggesting that the use of intact Ad11 virion may be better than 

chimeric Ad5/11. Lore et al.205 found that human DCs are more susceptible to Ad35 

transduction than Ad5, due to the presence of CD46 receptor, resulting in more effective 

antigen presentation to T cells. As Ad11 also transduces DCs with higher efficiency172, 

173, this is beneficial in terms of cancer immunotherapy whereby a stronger immune 

response could be elicited against an Ad11-encoded tumour-specific antigen. 

 

Because CD46 is only found in the testes of mice206, in vivo biodistribution 

studies of Ad11 have to be performed in transgenic mice that express human CD46. The 

expression profile closely mimics that observed in humans, although low levels of 

CD46 are present on the erythrocytes207. In this model, more Ad11 were sequestered in 

the lung, kidney and spleen after intravenous injection, but they were not detectable at 

72 hours147, 172. More importantly, there was an almost complete absence of liver 

transduction172 and toxicity137, secondary to its weak binding to factor X153. 

 

The advantages of Ad11 over Ad5 are summarised in Table 1.3. 
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Table 1.3: Advantages of Ad11 over Ad5 as an oncolytic virus 

 Ad5 Ad11 

Attachment receptor 
CAR – downregulated in 

cancer cells 

CD46 and receptor X – 

upregulated in cancer cells 

In situ epithelial cancer 
CAR trapped in tight 

junction 

Induces EMT – good 

infectivity and oncolysis 

Internalisation Integrin-dependent ?Integrin-independent 

Infectivity Variable 
Good across many cell 

types 

Prevalence of serum 

neutralising antibodies 
High (45-90%) Low (10-31%) 

DC transduction efficiency 

(for cancer 

immunotherapy) 

Low High 

Binding to factor X and 

hepatotoxicity 
High Low 
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1.4 Study aims and objectives 
Given the shortcomings of Ad5 and the benefits of Ad11, this project aims to 

assess and develop Ad11 as an alternative oncolytic virus to Ad5. The objectives are: 

 

1. To screen a panel of pancreatic and prostate carcinoma cell lines for CAR and 

CD46 expression levels. 

 

2. To compare the oncolytic potencies of Ad5 and Ad11 in these cancer cell lines 

in vitro. 

 

3. To confirm the oncolytic potency of Ad11 in vivo. 

 

4. To dissect the mechanisms involved if a weaker oncolytic potency of Ad11 was 

observed in CD46-expressing tumour cells. 

 

5. To construct a potent Ad11 and test this in vitro and in vivo. 
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CHAPTER 2 
Materials and methods 

 

2.1 Cell lines and cell culture 
All cells were cultured at 37 °C and 5% CO2, and were tested regularly for 

mycoplasma contamination. The human cancer cell lines used in the study are listed in 

Table 2.1.  

 

 

Table 2.1: Human cancer cell lines used 

Cell name Type Culture medium Source 

Capan-1 Exocrine pancreatic cancer DMEM + 10% FBS CR-UK 

Capan-2 Exocrine pancreatic cancer DMEM + 10% FBS ATCC 

Hs766T Exocrine pancreatic cancer DMEM + 10% FBS CR-UK 

MIA PaCa-2 Exocrine pancreatic cancer DMEM + 10% FBS CR-UK 

PANC-1 Exocrine pancreatic cancer DMEM + 10% FBS CR-UK 

PaTu 8988s Exocrine pancreatic cancer DMEM + 10% FBS CR-UK 

PaTu 8988t Exocrine pancreatic cancer DMEM + 10% FBS CR-UK 

SUIT-2 Exocrine pancreatic cancer DMEM + 10% FBS CR-UK 

22Rv1 Prostate cancer RPMI-1640 + 10% FBS CR-UK 

DU 145 Prostate cancer DMEM + 10% FBS CR-UK 

LNCaP Prostate cancer RPMI-1640 + 10% FBS DSMZ 

PC-3 Prostate cancer DMEM + 10% FBS ATCC 

MCF7 Breast cancer DMEM + 10% FBS CR-UK 

MDA-MB-231 Breast cancer DMEM + 10% FBS CR-UK 

MDA-MB-468 Breast cancer DMEM + 10% FBS CR-UK 

SK-BR-3 Breast cancer DMEM + 10% FBS CR-UK 

DLD-1 Colon cancer  RPMI-1640 + 10% FBS CR-UK 

HCT 116 Colon cancer DMEM + 10% FBS CR-UK 

HT-29 Colon cancer DMEM + 10% FBS CR-UK 

SW620 Colon cancer DMEM + 10% FBS CR-UK 
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A2780 Ovarian cancer RPMI-1640 + 10% FBS CR-UK 

IGROV1 Ovarian cancer DMEM + 10% FBS CR-UK 

OVCAR-3 Ovarian cancer DMEM + 10% FBS CR-UK 

A549 Non-small cell lung cancer DMEM + 10% FBS CR-UK 

Calu-1 Non-small cell lung cancer MEM EBSS + 10% FBS CR-UK 

HeLa Cervical cancer DMEM + 10% FBS CR-UK 

 
Cells were purchased from the American Type Culture Collection (ATCC), Virginia, USA; 
Cancer Research UK (CR-UK) Cell Services, Hertfordshire, UK; Deutsche Sammlung von 
Mikroorganismen und Zellkulturen (DSMZ), Braunschweig, Germany. Culture media used are 
the Dulbecco’s modified Eagle’s medium (DMEM) and Roswell Park Memorial Institute-1640 
(RPMI-1640), supplemented with foetal bovine serum (FBS) (PAA Laboratories, Pasching, 
Austria). Calu-1 cells were grown in minimum essential medium with Earle’s balanced salts 
(MEM EBSS) with 10% FBS, 2 mM L-glutamine, 1 mM sodium pyruvate and 1% non-essential 
amino acids (CR-UK Cell Services). 
 

 

The human embryonic kidney HEK-293 cell line, its subclone JH-293 (with 

slower growth rate), and the murine rectal carcinoma cell line CMT-93 (derived from 

the C57BL strain) (CR-UK Cell Services) were also used. The Syrian (golden) hamster 

cell lines used are: HaK (kidney; ATCC), HAP-T1 and HPD-1NR (exocrine pancreatic 

carcinoma; DSMZ). HPD-1NR was cultured in RPMI-1640 supplemented with 10% 

FBS. Other cell lines were grown in DMEM with 10% FBS. Normal human 

bronchial/tracheal epithelial cells and the bronchial epithelial cell growth medium 

(BEGM) were purchased from Lonza, Basel, Switzerland. Immortalised human 

pancreatic ductal epithelial cells208 are kind gifts from Ming-Sound Tsao (University of 

Toronto, Ontario, Canada), and were grown in keratinocyte serum-free medium 

supplemented with bovine pituitary extract and human epidermal growth factor 

(Invitrogen, California, USA).  

 

 

2.2 Viruses 
Ad5 (Adenoid 75 strain) is regularly used in the laboratory81. Ad11 (Slobitski 

strain) is a kind gift from Daniel Stone and André Lieber (University of Washington, 

Washington, USA). Ad35 (Holden strain) was purchased from ATCC. Large scale virus 

production was performed by Vipul Bhakta, Heike Muller and Jennelle Francis (Queen 
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Mary, University of London, London, UK) in HEK-293 cells. Concentrations and titres 

of the viruses used are shown in Table 2.2. 

 

 

Table 2.2: Concentrations and titres of Ad5, Ad11 and Ad35 used 

Virus Particles/ml PFUs/ml Particles/PFU 

Ad5 7.09 x 1011 7.94 x 1010 8.9 

Ad11 1.57 x 1011 4.25 x 109 36.9 

Ad35 1.02 x 1010 4.70 x 106 2170.2 

 
Abbreviation: PFU, plaque-forming unit. 

 

 

2.3 Flow cytometry for viral receptor expression 
3 x 105 cells were harvested and washed with cold buffer (phosphate-buffered 

saline (PBS), 2% FBS and 0.5 mM ethylenediaminetetraacetic acid (EDTA), pH 8.0). 

For CAR expression, cells were incubated in 100 μl of buffer with anti-CAR mouse 

monoclonal IgG1, clone RmcB (1:200) (Millipore, Massachusetts, USA), and goat 

serum (1:20) (Dako, Glostrup, Denmark). Mouse IgG1 (BD Biosciences, New Jersey, 

USA) was used in the negative controls. Incubation was performed in ice for an hour, 

with gentle mixing every 15 minutes. This was washed twice with buffer before 

incubation with fluorescein isothiocyanate (FITC)-conjugated polyclonal goat anti-

mouse antibody (1:30) (Dako), in ice and away from light for an hour. For CD46 

expression, cells were incubated with FITC-conjugated mouse anti-human CD46 IgG2a, 

κ (1:10) (BD Biosciences) in ice for an hour and away from light, with gentle mixing 

every 15 minutes. FITC-conjugated mouse IgG2a, κ isotype (BD Biosciences) was used 

in the negative controls. The cells were washed three times, resuspended in 300 μl of 

buffer with 0.5 μg/ml of propidium iodide (PI) (Sigma-Aldrich, Missouri, USA). Cells 

were processed through a BD FACSCalibur System flow cytometer and quantitated 

using BD CellQuest Pro software (BD Biosciences). 20,000 total events were recorded 

and gated for viability. Percentages of cells that expressed CAR and CD46 were 

obtained after correction for non-specific staining in the negative controls. 
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2.4 In vitro cell-killing assay 
1,000-4,000 cells per well (cell number depended on their growth rate and the 

aim was for them to become confluent on day six of infection) were seeded in 96-well 

plates in 90 μl of medium and 5% FBS. Viruses (in 10 μl of medium and 5% FBS) were 

added 18 hours later at nine 1:10 serial dilutions, together with positive (no virus added) 

and negative (no cells, just medium alone) controls. Six days following infection cell 

survival was determined using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay 

(CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay; Promega, Wisconsin, 

USA). MTS was mixed with phenazine methosulfate (PMS) at a ratio of 20:1. 20 μl of 

the resultant mixture was added to each well and incubated for one to three hours. 

Absorbance was measured at 490 nm using the Opsys MR 96-well microplate reader 

and Revelation Quicklink 4.04 software (Dynex Technologies, Virginia, USA). The 

optical density (OD) for each virus dilution was compared to those of positive (no cell 

killing) and negative (background reading, equivalent to 100% cell death) controls to 

calculate the percentage of cell killing. The concentration required to kill 50% of cells 

(half maximal effective concentration – EC50) was calculated by non-linear regression 

(sigmoidal dose-reponse curve) using GraphPad Prism (GraphPad Software, California, 

USA), utilising the following formula: 

                                     Y = bottom +              (top - bottom) 

                                                               1 + 10[(log
10 

EC
50 

– X) x Hill slope] 

Y is the response and starts at ‘bottom’ and goes to the ‘top’ in a sigmoidal fashion. 

 

 

2.5 Assessment of in vivo anti-tumoural efficacy 
1 x 107 PC-3 (in 100 μl of 50% PBS and 50% BD Matrigel Basement Membrane 

Matrix (BD Biosciences)) or MIA PaCa-2 cells (in 100 μl of PBS) were injected 

subcutaneously into the right flanks of four- to six-week-old BALB/c nude mice 

(Charles River Laboratories, Massachusetts, USA) and tumours were allowed to grow 

to approximately 6-8 mm. The mice were regrouped prior to treatment to ensure similar 

distribution of tumour sizes between the groups. 100 μl of PBS or Ads (1 x 1010 

particles, diluted in PBS) were injected intratumourally on days 0, 2 and 4. Tumour 

volume was measured twice weekly using the standard ellipsoid formula: (length x 

width2 x π)/6. The animals were euthanised when tumour dimension was more than 
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1.44 cm2 (in accordance with Home Office regulations) or three months have elapsed 

after treatment. 

 

To measure virus replication, tumours were grown as above and single doses of 

Ads were injected intratumourally. Tumours were harvested in triplicates at different 

time points post-injection. Each tumour was homogenised to a total volume of 2 ml in 

DMEM, then frozen and thawed three times in liquid nitrogen and at 37 °C, 

respectively. 200 μl of the resultant lysate was used for DNA extraction using the 

QIAamp DNA Blood Mini Kit (QIAGEN, Hilden, Germany) according to the 

manufacturer’s instructions, and eluted in 70 μl of Buffer AE. DNA concentration was 

determined using the NanoDrop ND-1000 Spectrophotometer (Nanodrop Technologies, 

Delaware, USA) and a fixed amount of DNA was used for quantitative real-time 

polymerase chain reaction (qPCR) (see 2.7). DNA copies were normalised against total 

DNA and results are displayed as arbitrary units with the highest value of each graph set 

to 100. Examination of infectious particle production was performed as in 2.9 with a 

starting dilution of 1:1,000. Results are displayed as PFUs/ng of total DNA, using the 

formula: 

            PFUs/ng of total DNA =                              PFUs/ml x 2 ml                   

                                                     DNA concentration (ng/μl) x 70 μl x 2 ml / 200 μl           

where 2 ml is the volume of cell lysate, 200 μl is the volume of cell lysate used for 

DNA extraction and 70 μl is the volume of Buffer AE used to elute DNA. 

 

 

2.6 Immunofluorescence 
100 μl of dimethyl sulfoxide (DMSO) (Thermo Fisher Scientific, Massachusetts, 

USA) was used to dissolve 1 mg of lyophilised Alexa Fluor 555 carboxylic acid, 

succinimidyl ester (Invitrogen), which was then added to 2 x 1010 virus particles in 2 ml 

of 0.1 M sodium bicarbonate, pH 8.4. This was foil-wrapped and mixed continuously 

for an hour at room temperature. The conjugated viruses were dialysed overnight at 4 

°C in a Slide-A-Lyzer 10K MWCO Dialysis Cassette (Thermo Fisher Scientific), with 

two changes of 1 L of dialysis buffer (0.1 M Tris-HCl, pH 7.8, 0.1 M MgCl2, 1.5 M 

NaCl and 10% glycerol). 2 x 104 cells per well were seeded in 4-well Lab-Tek II 

Chamber Slide Systems (Thermo Fisher Scientific). 48 hours later they were incubated 

at 4 °C for an hour before infection with the conjugated viruses, diluted to 1:10 in 300 

μl per well of serum-free medium. Viruses were allowed to attach at 4 °C for an hour, 
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and unbound viruses were washed away thrice with cold PBS. Virus internalisation and 

nuclear trafficking were achieved at 37 °C for an hour. Cells were fixed with ice-cold 

methanol. Cytoplasm was stained using 1:1,000 dilution of anti-α-tubulin monoclonal 

mouse antibody (Sigma-Aldrich) and Alexa Fluor 488 donkey anti-mouse IgG 

(Invitrogen). Slides were mounted with VECTASHIELD Mounting Medium with 4’,6-

diamidino-2-phenylindole (DAPI) (Vector Laboratories, California, USA). Images were 

taken using the Carl Zeiss LSM 510 laser scanning microscope (Carl Zeiss, 

Oberkochen, Germany). 

 

 

2.7 qPCR of viral DNA 
E1A primers were designed using the Primer Express Software for Real-Time 

PCR Version 3.0 (Applied Biosystems, California, USA): 

- Ad5 E1A forward: 5’-TGCCAAACCTTGTACCGGA-3’ 

- Ad5 E1A reverse: 5’-CGTCGTCACTGGGTGGAAA-3’ 

- Ad11 E1A forward: 5’-GAAGGCTGCCAATGTTGGTT-3’ 

- Ad11 E1A reverse: 5’-ACAGCCATGTCCAGGAAGCT-3’ 

 

These were purchased from Sigma-Aldrich. Probes were purchased from 

Applied Biosystems that have the FAM reporter dye (6-carboxyfluorescein) linked to 

the 5’ end, and the minor groove binder (MGB) and non-fluorescent quencher at the 3’ 

end: Ad5 (5’-TTACCTGCCACGAGGCTGGC-3’) and Ad11 (5’-

TCAGTTGGATTGCCC-3’). qPCR was performed in MicroAmp Optical 96-Well 

Reaction Plates using the 7500 Real-Time PCR System and the Sequence Detection 

Software Version 1.3 (Applied Biosystems). The following reagents (and final 

concentrations) were used: TaqMan Universal PCR Master Mix (Applied Biosystems) 

(1x), primers (900 nM each), probe (200 nM), DNA template (fixed amount between 

samples needed for comparison) and diethylpyrocarbonate (DEPC)-treated water (to a 

total volume of 25 μl per reaction). PCR conditions were: 95 °C (10 minutes) and [95 

°C (15 seconds), 60 °C (one minute)] 40 cycles. For quantitative analysis, viral genomes 

were purified using the QIAamp DNA Blood Mini Kit and quantified 

spectrophotometrically, then serially diluted to generate a standard graph that ranges 

from five to 5 x 108 genome copy numbers (one copy is contained in s x 1.096 x 10-21 g 

of genomic DNA, where s is the size of the genome, i.e. Ad5 – 35,935 bp; Ad11 – 

34,794 bp). DNA copy number of each sample was determined with reference to the 
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threshold cycle (Ct). Results are displayed as arbitrary units with the highest value of 

each graph set to 100. 

 

2.7.1 Virus attachment and nuclear entry 

2 x 105 cells in 100 μl of cold buffer (1% bovine serum albumin (BSA) (Sigma-

Aldrich) in PBS) were used for each reaction. Cells were incubated in ice for an hour 

before viruses (diluted in 100 μl of buffer) were added at 1,000 particles/cell and cells 

were left shaking for an hour at 4 °C for virus attachment. Cells were then washed twice 

to remove unbound viruses. For nuclear entry, cells were resuspended in 100 μl of 

buffer and incubated at 37 °C for 30, 60 and 120 minutes, respectively. Nuclear extracts 

were obtained using the NE-PER Nuclear and Cytoplasmic Extraction Reagents 

(Thermo Fisher Scientific) according to the manufacturer’s instructions. DNA was 

obtained using the QIAamp DNA Blood Mini Kit for qPCR. 

 

2.7.2 In vitro viral DNA amplification 

Cells were seeded in 6-well plates in medium with 10% FBS and infected with 

viruses when 70-80% confluency has been reached, at 100 particles/cell in serum-free 

medium. After two hours of incubation, this was replaced by medium supplemented 

with 5% FBS. At 24, 48, 72 and 96 hours cells and media were collected by scraping. 

DNA was extracted using the QIAamp DNA Blood Mini Kit for qPCR. 

 

 

2.8 Western blot 
2.8.1 Sample preparation and protein estimation 

Recipes for making up the solutions needed here are listed in the Appendix. 

Cells were seeded and infected as in 2.7.2, except with 200 particles/cell. Cells were 

washed with PBS and harvested at different time points post-infection with lysis buffer. 

Protein concentration was estimated based on the Bradford Protein Assay209. 5 μl of 

protein was mixed with 795 μl of water and 200 μl of Bio-Rad Protein Assay Dye 

Reagent Concentrate (Bio-Rad Laboratories, California, USA) in a cuvette. Following 

calibration with a blank sample (800 μl of water and 200 μl of reagent), the absorbance 

at 595 nm was determined using the DU 520 General Purpose UV/Vis 

Spectrophotometer (Beckman Coulter, California, USA). Protein concentration was 

determined by means of a standard graph, obtained by measuring the absorbance values 

of known quantities (1, 2, 4, 8, 16, 32 and 64 μg) of BSA. 
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2.8.2 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

100 μg of each sample was mixed with loading buffer and water to a total 

volume of 25 μl. This was heated at 95 °C for 10 minutes and then placed in ice. 10 μl 

of Full-Range Rainbow Molecular Weight Markers (GE Healthcare, Buckinghamshire, 

UK) was loaded alongside the protein samples in a 10% running gel (with 4% stacking 

gel). 

 

2.8.3 Western blotting and immunodetection 

Immobilon-PSQ polyvinylidene difluoride (PVDF) transfer membrane 

(Millipore) was pre-wet with methanol and then soaked in transfer buffer together with 

the gel and two Extra Thick Blot Papers (Bio-Rad Laboratories). These were moved to a 

Trans-Blot SD Semi-Dry Transfer Cell (Bio-Rad Laboratories) where protein transfer 

occurred at 20 V for 40 minutes. The membrane was soaked in methanol and 

subsequently air-dried. Primary antibodies used are: Ad goat polyclonal antibody 

(1:8,000) (Abcam, Cambridge, UK) for Ad5 hexon, Ad11 hexon rabbit polyclonal 

antibody (1:200) (raised against the amino acid sequence AKQKTTEQPNQKVE by 

GenScript, New Jersey, USA) for Ad11 hexon, and GABPA mouse monoclonal 

antibody (1:500) (Source BioScience AUTOGEN, Wiltshire, UK) for EF-1A. Equal 

loading of protein was checked using proliferating cell nuclear antigen (PCNA) mouse 

monoclonal antibody (1:1,000) (Santa Cruz Biotechnology, California, USA). Antibody 

dilution was done in 2% BSA in PBS and incubated at room temperature for an hour. 

Membrane was washed three times for 15 minutes each with Tris-buffered saline with 

Tween 20 (TBST) and then incubated with horseradish peroxidase (HRP)-conjugated 

secondary antibodies (Dako), diluted according to the manufacturer’s instructions in 

TBST. After further washes chemiluminescent detection was performed using the 

Amersham ECL Western Blotting Detection Reagents (GE Healthcare) according to the 

manufacturer’s instructions. Signals were visualised on Amersham Hyperfilm ECL (GE 

Healthcare). 

 

 

2.9 Virus replication assay 
Cells were seeded, infected and collected as in 2.7.2. The cells and media were 

frozen and thawed three times in liquid nitrogen and at 37 °C, respectively. 10,000 JH-

293 cells were seeded in each well of 96-well plates in 200 μl of DMEM with 5% FBS. 

Harvested cell lysates were used to infect the JH-293 at six 1:10 serial dilutions (starting 
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dilution of 1:1,000) down each row of the plate (the last row was left uninfected to act 

as a negative control). Inspection for CPE was performed 11 days later. The 50% tissue 

culture infective dose (TCID50) and number of PFUs/cell (cell count on the day of 

infection) were calculated using the Reed-Muench accumulative method (see 

Appendix). 

 

 

2.10 Reverse transcription PCR of E1A mRNA 
4 x 105 cells per well were seeded in 6-well plates and infected as in 2.7.2. Cells 

were harvested at two, eight and 24 hours post-infection using 1 ml of TRIzol Reagent 

(Invitrogen) divided equally between three wells. The plate was rocked gently for five 

minutes at room temperature, and each ml was transferred to a tube and mixed with 200 

μl of chloroform. The tube was shaken vigorously for 10 seconds before centrifugation 

for 15 minutes at 11,400 rpm and 4 °C. The upper aqueous layer was obtained and RNA 

was precipitated with 500 μl of cold isopropanol and incubated in ice for 30 minutes. 

This was then centrifuged at 11,400 rpm and 4 °C for 10 minutes. The supernatant was 

discarded and the RNA pellet was washed with 1 ml of 75% ethanol before 

centrifugation at 7,500 rpm and 4 °C for five minutes. The supernatant was removed 

and the RNA was allowed to air dry. 70-140 μl of DEPC-treated water (depending on 

pellet size) was added to dissolve the RNA and then quantified spectrophotometrically. 

Complementary DNA (cDNA) was produced using the TaqMan Reverse Transcription 

Reagents (Applied Biosystems). The following reagents (and final concentrations) were 

used: TaqMan reverse transcription buffer (1x), MgCl2 (5.5 mM), deoxynucleotide 

triphosphates (dNTPs) (500 μM of each dNTP), random hexamers (2.5 μM), RNase 

inhibitor (0.4 U/μl), Multiscribe reverse transcriptase (1.25 U/μl), 1 μg of template RNA 

and DEPC-treated water (to a total volume of 50 μl per reaction). Reaction conditions 

were: 25 °C (10 minutes), 48 °C (30 minutes) and 95 °C (five minutes), performed in a 

PTC-200 Peltier Thermal Cycler (MJ Research, Massachusetts, USA). qPCR was 

performed as in 2.7 except that 2 μl of cDNA template was used together with 1.25 μl of 

20x Eukaryotic 18S rRNA Endogenous Control (VIC/MGB Probe, Primer Limited; 

Applied Biosystems) for each reaction. Non-reverse transcription controls were used to 

rule out DNA contamination in the RNA samples. Results were normalised by 

subtracting the corresponding Ct value of 18S from the Ct value of each sample. RNA 

levels were determined with reference to the standard graph and results are displayed as 

arbitrary units with the highest value of each graph set to 100. 
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2.11 pGL3 vector construction 
2.11.1 Plasmids, primers, DNA electrophoresis and restriction digestion 

The wild-type Ad11 plasmid (pBGwtAd11) is a kind gift from Daniel Stone and 

André Lieber. The wild-type Ad5 plasmid (pTG3602) was provided by Daniel Öberg 

(Queen Mary, University of London). pGL3-Control Vector was purchased from 

Promega. To clone the adenoviral E1A upstream regions for insertion into pGL3, the 

following primers were designed (underlined are restriction enzyme recognition sites 

and the corresponding enzymes are stated on the right) and purchased from Sigma-

Aldrich: 

- Ad5-L: 5’-ATCagatctGGATCCGAATTCTTAATTAA-3’ (BglII) 

- Ad5-EP: 5’-ATCagatctACACAGGAAGTGACAATTTTCGCGC-3’ (BglII) 

- Ad5-P: 5’-ATCagatctTGGAGACTCGCCCAGGTGTTTTTCTC-3’ (BglII) 

- Ad5-R: 5’-ATCaagcttTTTCAGTCCCGGTGTCGGAGC-3’ (HindIII) 

- Ad11-L: 5’- ATCagatctAATTCGAATTCTTAATTA-3’ (BglII) 

- Ad11-EP: 5’-ATCagatctTTTTTCTCACGGAACTACTTAG-3’ (BglII) 

- Ad11-P: 5’-ATCagatctCGATTACCGTGTTTTTTACCTG-3’ (BglII) 

- Ad11-R: 5’- ATCaagcttTTTTTTATTATTAAACTGCCGGC-3’ (HindIII) 

 

DNA electrophoresis was performed on 1% agarose gel, prepared using 

Ultrapure Agarose (Invitrogen) in 1x tris-borate-EDTA (TBE) buffer with 0.5 μg/ml of 

ethidium bromide (Sigma-Aldrich). Samples were loaded in Blue/Orange Loading Dye 

(Promega). Lambda DNA/EcoRI + HindIII Markers (Promega) or 100 bp DNA Ladder 

(New England Biolabs (NEB), Massachusetts, USA) were used to verify band size. 

Restriction enzymes, buffers and BSA were purchased from NEB. Digestion was 

performed in a PTC-200 Peltier Thermal Cycler at 37 °C with the addition of its 

respective buffer and 0.1 μg/μl of BSA. 

 

2.11.2 Cloning and insertion of fragments into pGL3 

PCR was performed using the Phusion High-Fidelity DNA Polymerase (NEB). 

The following reagents (and final concentrations) were used: Phusion HF Buffer (1x), 

Deoxynucleotide Solution Mix (200 μM of each dNTP), primers (0.5 μM each), 

template DNA (300 ng), DMSO (3 μl), Phusion DNA Polymerase (0.02 U/μl) and 

DEPC-treated water to a total volume of 100 μl per reaction. PCR conditions were: 

initial denaturation (98 °C for 30 seconds), [denaturation (98 °C for 10 seconds), 

annealing (depended on the melting temperature of each primer, for 30 seconds), 
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extension (72 °C for 30 seconds/kb] 25 cycles, and final extension (72 °C for seven 

minutes). PCR was performed using the primers Ad5-L, Ad5-EP and Ad5-P with the 

reverse primer Ad5-R and pTG3602 as template, for “left end”, “enhancer-promoter” 

and “promoter”, respectively (Figure 6.2). pBGwtAd11 was used as a template for 

Ad11. DNA was extracted from gel using the QIAquick Gel Extraction Kit (QIAGEN) 

according to the manufacturer’s instructions. 

 

The resultant fragments and pGL3-Control Vector were digested with BglII and 

HindIII. Digested pGL3 was extracted using the QIAquick Gel Extraction Kit, whilst 

digested fragments were purified using the QIAquick Nucleotide Removal Kit 

(QIAGEN), according to the manufacturer’s instructions. Ligation of fragments to 

pGL3 was performed using the LigaFast Rapid DNA Ligation System (Promega), with 

an insert-to-vector ratio of 2:1. The resultant plasmids were transformed into One Shot 

TOP10 Chemically Competent Escherichia coli (Invitrogen). Plasmids and bacteria 

were mixed and incubated in ice for 20 minutes before heat shock treatment at 42 °C for 

one minute. This was immediately transferred back to ice and left for two minutes. 100 

μl of lysogeny broth (LB) was added and was left shaking at 37 °C for an hour. They 

were then spread on LB agar containing 100 μg/ml of ampicillin (Invitrogen) and 

cultured overnight at 37 °C. A few colonies were selected and expanded in 300 μl of 

ampicillin-containing LB each, left shaking at 37 °C for two hours. To confirm 

successful ligation, 2 μl of culture was used for PCR using the corresponding primers, 

in a total volume of 25 μl, and subsequently viewed by agarose gel electrophoresis. 

Correct cultures were then expanded and plasmids were purified using the QIAprep 

Spin Miniprep Kit (QIAGEN), according to the manufacturer’s instructions. The 

resultant plasmids were sent to the Genome Centre, Queen Mary, University of London 

for sequencing using RVprimer3 and GLprimer2 (Promega). 

 

 

2.12 Luciferase reporter assay 
7 x 104 cells per well were seeded in 24-well plates in medium supplemented 

with 10% FBS. Transfection was performed with 150 ng of recombinant pGL3 plasmid 

and 50 ng of pRL-SV40 Vector (Promega) per well, using the Effectene Transfection 

Reagent (QIAGEN) according to the manufacturer’s instructions. To assess the effect of 

virus infection, cells were first infected with viruses at 100 particles/cell in serum-free 
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medium for two hours, before being replaced by medium with 5% FBS. The cells were 

transfected as above after an additional two hours. 

 

18 hours after transfection, luciferase activity was detected using the Dual-

Luciferase Reporter Assay System (Promega) according to the manufacturer’s 

instructions. Luminescence was measured using the VICTOR3 1420-050 Multilabel 

Counter (PerkinElmer, Massachusetts, USA). Corrected luciferase activity was 

calculated using the following formula: 

              1000 x Luminescence from firefly luciferase (pGL3) 

                                     Luminescence from Renilla luciferase (pRL-SV40) 

 

 

2.13 Construction of recombinant Ad11 
2.13.1 DNA, plasmids and primers for recombinant Ad11 construction 

Ad5 and Ad11 DNA was purified from wild-type viruses using the QIAamp 

DNA Blood Mini Kit. pBGwtAd11 was also used. pSS was developed by Daniel Öberg. 

pUC18 was provided by Guozhong Jiang (Queen Mary, University of London). The 

following primers were purchased from Sigma-Aldrich to amplify different regions of 

the Ad5 and Ad11 genomes for the construction of recombinant Ad11 with Ad5 E1A 

enhancer and/or promoter (see Figure 7.2 for details): 

- pA1: 5’-ATCaagcttagatctGGAGACGGTCACAGCTTGTCTG-3’ (HindIII, BglII) 

- pA2: 5’-ATCtctagagcggccgcTAATTAAGAATTCGAATTAATTAATTC-3’ (XbaI, 

NotI) 

- pA3: 5’-ATCaagcttgcggccgcATCATCAATAATATACCTTATAG-3’ (HindIII, 

NotI) 

- pA4: 5’-ATCggatccgatatcAGCCTTTTTATGCGTCAC-3’ (BamHI, EcoRV) 

- pA5: 5’-AAAAATGAGAGATTTGCGATTTCTGC-3’ 

- pA6: 5’-ATCggatccctcgagCAAAGCGAACATAACAGTTC-3’ (BamHI, XhoI) 

- pA7: 5’-ATCaagctttacgtaACACAGGAAGTGACAATTTTCGCGC-3’ (HindIII, 

SnaBI) 

- pB1: 5’-ATCggatccgatatcAAACCTCCACGTAATGGGTCAAAGTC-3’ (BamHI, 

EcoRV) 

- pB2: 5’-ATCaagctttacgtaTGGAGACTCGCCCAGGTGTTTTTCTC-3’ (HindIII, 

SnaBI) 

- pAlinker: 5’-GCAGAAATCGCAAATCTCTCATTTTCAGTCCCGGTGTCGG 
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AGC-3’ 

 

2.13.2 Cloning of fragments from adenoviral genomes 

The following fragments were cloned as in 2.11.2 (and primers used) using 

pBGwtAd11 as template: A1A2 (pA1 and pA2), A3A4 (pA3 and pA4), A3B1 (pA3 and 

pB1) and A5A6 (pA5 and pA6). The fragments B2Linker (pB2 and pAlinker) and 

A7Linker (pA7 and pAlinker) were cloned from Ad5 genomic DNA. DNA was 

extracted from gel using the QIAquick Gel Extraction Kit. To obtain the chimeric 

fragment B2A6, PCR was performed as above (but using an annealing temperature of 

57 °C for two minutes) using B2Linker and A5A6 only. This was further amplified 

using the primers pB2 and pA6. A7A6 was obtained in the same way with A7Linker 

and A5A6, followed by amplification using pA7 and pA6.  

 

2.13.3 Insertion of fragments into pUC18 

pUC18, A3B1, A3A4, B2A6 and A7A6 were digested with HindIII and BamHI. 

pUC18 and A1A2 were digested with HindIII and XbaI. Digested pUC18 was run on 

agarose gel and extracted using the QIAquick Gel Extraction Kit, whilst digested 

fragments were purified using the QIAquick Nucleotide Removal Kit. Ligation to 

pUC18, transformation of bacteria, and confirmation of successful ligation by PCR and 

agarose gel electrophoresis were performed as in 2.11.2. The resultant plasmids 

(pUCA1A2, pUCA3B1, pUCA3A4, pUCB2A6 and pUCA7A6) were sent for 

sequencing using M13 forward and reverse primers. 

 

2.13.4 Production of shuttle vectors 

pUCA1A2, pUCA3B1 and pUCA3A4 were digested with NotI and BamHI. 

Digested pUCA1A2, A3B1 and A3A4 were extracted using the QIAquick Gel 

Extraction Kit. Ligation (pUCA1A2 with A3B1 or A3A4), culture, confirmation by 

PCR and agarose gel electrophoresis, and plasmid purification were performed as in 

2.11.2, to produce the plasmids pUCA1B1 and pUCA1A4. These plasmids and pSS 

were digested with BglII and EcoRV. 

 

To construct the shuttle vector for Ad11-Ad5-P (or Ad11-Ad5-EP), A1B1 (or 

A1A4) was ligated to pSS (selected using LB containing 50 μg/ml of chloramphenicol 

(Sigma-Aldrich)). The resultant pSSA1B1 (or pSSA1A4) and pUCB2A6 (or 
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pUCA7A6) were digested with SnaBI and XhoI. B2A6 (or A7A6) was then ligated to 

pSSA1B1 (or pSSA1A4) to produce pSSA1B1B2A6 (or pSSA1A4A7A6). 

 

2.13.5 Homologous recombination 

pSSA1B1B2A6 (or pSSA1A4A7A6) was digested with PmeI and extracted with 

the QIAquick Gel Extraction Kit. 1 μg of digested plasmid was mixed with 100 ng of 

pBGwtAd11 in 40 μl of BJ5183 Electroporation Competent Cells (Stratagene, 

California, USA). Transformation was done in electroporation cuvettes (Flowgen 

Bioscience, Nottingham, UK) using an electroporator (Gene Pulser II, Bio-Rad 

Laboratories) set at capacitance of 25 μF, resistance of 200 Ω and voltage of 2.5 kV. 

Immediately after electroporation, 600 μl of LB was added and the mixture was shaken 

at 37 °C for an hour. Bacteria were then grown on LB agar with ampicillin and 

chloramphenicol. Small- or medium-sized colonies were selected, expanded in 300 μl of 

ampicillin and chloramphenicol-containing LB for two hours at 37 °C. To confirm 

successful recombination, PCR was performed using the primer pairs pA1 and pA6, and 

pA1 and pALinker. Correct cultures were expanded, the plasmids were extracted and 

subsequently used to transform One Shot TOP10 Electrocomp E. coli (Invitrogen) using 

an electroporator. After further expansion and extraction of plasmids, they were 

confirmed by digestion with NotI, SwaI or EcoRV and SnaBI, and checked by 

electrophoresis. 

 

2.13.6 Removal of antibiotic resistance gene 

6 μg of homologously-recombined Ad11 plasmids were digested with SwaI at 

37 °C overnight, in 100 μl of reaction volume. 300 μl of DEPC-treated water was added 

to the sample and 400 μl of phenol:chloroform:isoamyl alcohol 25:24:1 (saturated with 

10 mM Tris, pH 8.0, 1 mM EDTA; Sigma-Aldrich) was added. This was mixed 

thoroughly and centrifuged at maximum speed for five minutes. The upper aqueous 

phase was collected and mixed with 1/10th volume of 3 M sodium acetate, pH 5.2. Ice-

cold ethanol (2.5x volume) was added and this was placed in -80 °C for 20 minutes. 

Centrifugation was performed at maximum speed and 4 °C for five minutes. The 

supernatant was removed and DNA pellet was washed with 70% ethanol. The pellet 

was subsequently allowed to air dry before resuspension in 12 μl of DEPC-treated 

water. Ligation of plasmid was done prior to transformation of One Shot TOP10 

Electrocomp E. coli, selected by ampicillin. Correct colonies were identified by PCR 

using the primer pairs of pA1 and pA6, pA3 and pAlinker, and pA3 and pA6. After 
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expansion and plasmid extraction, further confirmation was done by digestion with NotI 

or EcoRV and SnaBI. 

 

2.13.7 HEK-293 transfection and virus production 

7 μg of plasmid was linearised with NotI at 37 °C overnight and purified as in 

2.13.6. Transfection was performed using 400 ng of DNA and the Effectene 

Transfection Reagent per well, on 40-80% confluent HEK-293 cells in a 6-well plate. 

No DNA was added for mock-transfected negative controls. Transfection was 

performed in DMEM supplemented with 2% FBS. When CPE was noted in the 

plasmid-transfected cells, they were collected with the medium, frozen and thawed three 

times in liquid nitrogen and at 37 °C, respectively. Larger scale virus production was 

performed sequentially by infecting HEK-293 cells with the cell lysate in a T175 flask 

before stepping up to a Nunc Cell Factory 10 chamber (Sigma-Aldrich). Four T175 

flasks of HEK-293 were needed to seed one chamber. When cells were > 75% confluent 

as indicated by a parallel culture, 8 ml of lysate from the previous T175 culture was 

used to infect the chamber. At full CPE, detached cells and medium were collected and 

centrifuged for 10 minutes at 2,000 rpm and 4 °C. The supernatant was discarded and 

the cells were washed with 15 ml of PBS, by centrifugation at 1,000 rpm and 4 °C for 

10 minutes. The resultant pellet was resuspended with 12 ml of cold Tris-HCl, pH 8.0. 

This was stored at -80 °C until caesium chloride (CsCl) banding. 

 

2.13.8 Virus purification 

Recipes for making up the solutions needed here are listed in the Appendix. The 

above cell suspension was frozen and thawed as before. This was centrifuged at room 

temperature and 6,000 rpm for 10 minutes, and the supernatant layered onto a CsCl 

gradient (10 ml of 1.25 g/ml and 7.6 ml of 1.4 g/ml) in a 25 x 89 mm Ultra-Clear 

Centrifuge Tube (Beckman Coulter). Centrifugation was performed in an Optima LE-

80K Ultracentrifuge (Beckman Coulter) for two hours at 25,000 rpm and 15 °C. Three 

layers were noted from top to bottom – cellular debris, empty virus particles, and 

successfully encapsulated infectious particles. The lowest band was extracted using a 

needled syringe and layered onto 3 ml of 1.35 g/ml CsCl in a 13 x 51 mm Ultra-Clear 

Centrifuge Tube (Beckman Coulter). This was centrifuged for > 15 hours at 40,000 rpm 

and 15 °C in an Optima LE-80K Ultracentrifuge. The virus band was harvested as 

before and the volume made up to 12 ml with TSG buffer. 
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The viruses were injected into a Slide-A-Lyzer 3.5K MWCO Dialysis Cassette 

(Thermo Fisher Scientific) and dialysed for 24 hours in 2 L of dialysis solution. The 

purified viruses were retrieved, aliquoted and stored at -80 °C. 

 

2.13.9 Determination of virus concentration 

For the determination of particle count, tubes listed in Table 2.3 were prepared 

with 2x lysis buffer (2 ml of 10% SDS, 0.8 ml of 1 M Tris-HCl, pH 7.5, 17.2 ml of 

water) and dialysis buffer (Appendix). 

 

 

Table 2.3: Reaction mixtures for the determination of particle count 

 #1 #2 #3 #4 

Virus 100 μl 200 μl - - 

Dialysis buffer 100 μl - 100 μl + 100 μl 200 μl 

2x lysis buffer 200 μl 200 μl 200 μl 200 μl 

 

 

These were mixed and incubated for 10 minutes at 56 °C. The volume in each 

tube was made up to 1 ml with water. The absorbance at 260 nm was measured thrice 

for each tube. Tube #3 was read first (blank reading; should be about 0.002-0.012), 

followed by tube #1. This was repeated for tubes #4 and #2. 

 

The particle count formula is: OD260 x dilution factor x 1.12 x 1012 = 

particles/ml, where samples #1 and #2 have dilution factors of 10 and 5 respectively. To 

calculate the particle count: 

      (Average OD260 #1 - average OD260 #3) x 10 x 1.12 x 1012 = A 

       (Average OD260 #2 - average OD260 #4) x 5 x 1.12 x 1012 = B 

Therefore, particle count = (A+B) / 2. 

 

For the determination of the number infectious particles, limiting dilution assay 

using JH-293 cells was performed as described in 2.9. The TCID50 and number of 

PFUs/ml were calculated. 
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2.13.10 Sequencing of recombinant Ad11 

For Ad11-Ad5-P, primers that amplify the region from approximately 150 bp 

upstream of Ad11 E1A promoter to the first 150 bp of E1A were designed and 

purchased from Sigma-Aldrich: 

- forward: 5’-TGAGGTAGTTTTGACCGGAT-3’ 

- reverse: 5’-ATCATACAGTTCCTGAAGCG-3’ 

PCR was performed on the DNA of Ad11-Ad5-P and wild-type Ad11 (control). The 

fragments were obtained using the QIAquick Gel Extraction Kit, prior to sequencing 

using the forward primer. 

 

As the region upstream of Ad11 E1A enhancer is very close to the virus 5’-ITR, 

primers that bind to this area cannot be used reliably for sequencing of Ad11-Ad5-EP. 

The following primers were designed (with the introduction of restriction sites) and 

purchased from Sigma-Aldrich to amplify the region near the start of the E1A enhancer 

(to avoid the ITR) and the first 58 bp of E1A, for subsequent insertion into pUC18: 

- 5’-ATCaagcttGCAAGTTGTCGCGGGAAATGTG-3’ (HindIII) 

- 5’-ATCtctagaTTTCATTTCCAGTCTCAGCA-3’ (XbaI) 

PCR was performed and DNA was extracted using the QIAquick Gel Extraction Kit. 

Fragments were digested with HindIII and XbaI and subsequently inserted into pUC18. 

Confirmation of colonies was done by PCR as in 2.11.2. The resultant plasmids were 

sent for sequencing using M13 forward and reverse primers. 

 

2.13.11 Purity check of recombinant Ad11 

To rule out contamination of the recombinant Ad11 by Ad5 or wild-type Ad11, 

the following primers were purchased from Sigma-Aldrich for PCR: 

- 5P-F: 5’-TGGAGACTCGCCCAGGTGTTTTTC-3’ 

- 5P-R: 5’-ATTTTCAGTCCCGGTGTCGGAGC-3’ 

- 11P-F: 5’-CGATTACCGTGTTTTTTACCTG-3’ 

- 11P-R: 5’-CTCAAAAAGCTGCACAGGTGG-3’ 

- 5H-F: 5’-AGTTACCTCCAATGGCATGCTTG-3’ 

- 5H-R: 5’-ATGCAAAGGAGCCCCGTACTTTAG-3’ 

- 5E-F: 5’-ATTTTCGCGCGGTTTTAGGC-3’ 

- 11E-F: 5’-ACGGAACTACTTAGTTTTCCCACG-3’ 
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PCR was performed using the primer pairs 5P-F and 5P-R (Ad5 E1A promoter 

to just immediately before E1A), 11P-F and 11P-R (Ad11 E1A promoter to part of 

E1A), 5H-F and 5H-R (region within the Ad5 hexon-coding sequence), 5E-F and 5P-R 

(Ad5 E1A enhancer to just immediately before E1A), 11E-F and 11P-R (Ad11 E1A 

enhancer to part of E1A) on the purified DNA of Ad5, Ad11, Ad11-Ad5-P and Ad11-

Ad5-EP. 

 

 

2.14 Statistical analysis 
Statistical analyses were performed using GraphPad Prism and data are 

displayed as means ± standard errors of the mean (SEM). Pair-wise comparisons were 

done using the unpaired, two-tailed Student’s t-test. Progression-free percentages were 

analysed by the Kaplan-Meier method and the logrank test. 
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 CHAPTER 3 
Expression levels of receptors for Ad5 and Ad11 in 

human cancer cell lines and oncolytic potencies in vitro 
 

Ad5’s infectivity in many cancer types has been limited due to the 

downregulation of its attachment receptor CAR124, 184, 185. In contrast, Ad11 binds to 

CD46 and its expression has been reported to be upregulated in malignant diseases186-

188. In this chapter, the expression levels of CAR and CD46 were analysed in a panel of 

human cancer cell lines by flow cytometry. This is followed by the comparison of 

oncolytic potencies of these two viruses in vitro. 

 

3.1 Human pancreatic and prostate cancer cell lines express 

significantly higher levels of CD46 compared to CAR 
CAR and CD46 expression levels in eight human pancreatic and three prostate 

cancer cell lines were determined by flow cytometric analysis using FITC-conjugated 

antibodies. Cells were analysed in triplicates and corrected for non-specific staining by 

means of isotype control antibodies. Dead cells were excluded by their permeability to 

PI. All the cell lines tested have shown significantly higher levels of CD46 compared to 

CAR (Figure 3.1). CAR was barely detectable in the pancreatic cancer cell lines 

Hs766T and Capan-2 but was the highest in PANC-1. CAR was nearly absent in the 

prostate cancer cell line PC-3 but about 90% of DU 145 cells expressed CAR. In 

contrast, CD46 expression was found in ≥ 90% of most cancer cells, with the exception 

of Hs766T where only 14% were CD46-positive. 
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Figure 3.1: CAR and CD46 expression levels in a panel of human pancreatic and prostate cancer cell lines. Results represent means of triplicate 
readings ± SEM from flow cytometric analysis and were corrected for non-specific staining using control antibodies. Dead cells were excluded by PI staining. *** P 
< 0.001. 
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3.2 In vitro oncolytic potencies of Ad5 and Ad11 
3.2.1 Oncolytic potency of Ad11 does not correlate with CD46 expression 

Given that all the cancer cell lines tested have higher levels of CD46 expression 

compared to CAR, one might expect Ad11 to be more effective than Ad5 in killing 

these cells. The oncolytic potencies of Ad5 and Ad11 were compared in vitro. Cells 

were seeded in 96-well plates prior to infection. On day six after infection, MTS was 

first mixed with PMS, an electron coupling reagent, before it was added to the cells. 

MTS was bioreduced into an aqueous soluble formazan product by dehydrogenase 

enzymes found in metabolically active cells. The quantity of formazan product, 

measured by the amount of absorbance at 490 nm, is directly proportional to the number 

of living cells. The dose-response curves are shown in Figure 3.2, where 0 and 100% 

cell death correspond to mock infection and medium only, respectively. 

 

The EC50 (doses required for 50% cell killing) were calculated and are 

summarised in Figure 3.3, with lower values indicating better cell killings. In spite of 

the abundant expression of CD46, not all of these cells were more sensitive to Ad11 

cytotoxicity. Ad11 was more effective than Ad5 in killing five of the 12 cancer cell 

lines tested (Hs766T, Capan-1, Capan-2, PaTu 8988s and PC-3). PaTu 8988t, MIA 

PaCa-2, SUIT-2, PANC-1, DU 145 and LNCaP were sensitive to Ad5 but less so with 

Ad11. There was no difference between Ad5 and Ad11 in 22Rv1. Although Capan-2 

and PC-3, which have significantly higher levels of CD46, were more sensitive to 

Ad11, receptor expression alone could not explain the failure of Ad11 to effectively kill 

cell lines such as MIA PaCa-2 and LNCaP. 
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Figure 3.2: Dose-response curves of Ad5 and Ad11 cytotoxicities in a panel of 
human pancreatic and prostate cancer cell lines. Pancreatic (Hs766T, Capan-1, Capan-
2, PaTu 8988s, PaTu 8988t, MIA PaCa-2, SUIT-2 and PANC-1) and prostate (DU 145, LNCaP, 
PC-3 and 22Rv1) cancer cell lines were infected in 96-well plates. Cell viability was measured 
on day six after infection by the MTS assay. Data represent means ± SEM from duplicate 
experiments (with each concentration of virus in sextuplicates). 
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Figure 3.3: EC50 of Ad5 and Ad11 in a panel of human pancreatic and prostate cancer cell lines. A lower EC50 indicates better cell killing. Data are 
presented as means ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001, n.s – not significant. 
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3.2.2 Ad11 is less potent than Ad5 in most other cancer cell lines 

The in vitro oncolytic potencies of Ad5 and Ad11 were further tested on a 

number other cancer cell lines, including cancers of the breast, colon, ovary and lung 

(Figures 3.4 and 3.5). Only four of the 13 tested were more sensitive to Ad11. Ad11 

was more potent than Ad5 in killing the majority of breast cancer cell lines (MCF7, 

MDA-MB-468 and SK-BR-3) and the HT-29 colon cancer cell line. Ad5 was still 

superior to Ad11 against MDA-MB-231 (breast), SW620, HCT 116, DLD-1 (colon), 

A2780, OVCAR-3, IGROV1 (ovary), Calu-1 and A549 (lung). 
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Figure 3.4: Dose-response curves of Ad5 and Ad11 cytotoxicities in a panel of 
human breast, colon, ovarian and lung cancer cell lines. MCF7, MDA-MB-468, SK-
BR-3, MDA-MB-231 (breast), HT-29, SW620, HCT 116, DLD-1 (colon), A2780, OVCAR-3, 
IGROV1 (ovary), Calu-1 and A549 (lung) were infected in 96-well plates. Cell viability was 
measured on day six after infection by the MTS assay. Data represent means ± SEM from 
duplicate experiments (with each concentration of virus in sextuplicates). 
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Figure 3.5: EC50 of Ad5 and Ad11 in a panel of human breast, colon, ovarian and lung cancer cell lines. A lower EC50 indicates better cell killing. 
Data are presented as means ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001. 
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3.3 Summary of Chapter 3 
All the 11 human cancer cell lines tested expressed significantly higher levels of 

the Ad11 attachment receptor CD46 compared to CAR, the receptor for Ad5 (Figure 

3.1). This suggests that Ad11 would have a much higher infectivity than Ad5 in these 

cells. However, there are some limitations to this finding. Firstly, the levels obtained 

here only represent the number of cells that expressed these receptors. Determination of 

receptor density would also be important, as is the analysis of other cell surface 

molecules implicated in virus attachment and internalisation, such as CD80, CD86, 

αVβ3 and αVβ5 integrins100, 101, 193, 194. Secondly, CAR and CD46 receptors are often 

trapped in the tight junctions in in situ tumours197, whereas the flow cytometric analysis 

was performed on detached cells. This makes the results difficult to translate into the in 

vivo setting. 

 

Despite the higher levels of CD46 expression, only nine out of the 25 (36%) 

human cancer cell lines tested were more sensitive to Ad11-mediated cytotoxicity. Ad5 

and Ad11 showed similar efficacy in killing the 22Rv1 prostate cancer, but Ad5 was 

still superior in the other cell lines (60%) (Figures 3.3 and 3.5). Therefore receptor 

expression alone could not explain the variability in the oncolytic potencies of Ad5 and 

Ad11. The mechanisms involved are discussed in Chapter 5. 
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CHAPTER 4 
In vivo oncolytic efficacies of Ad5 and Ad11 

 

 As shown in Chapter 3, some of the human cancer cell lines tested were more 

sensitive to Ad11-mediated cytotoxicity in vitro (36%), whilst the majority (60%) were 

more effectively killed by Ad5. To test their in vivo efficacies, two subcutaneous human 

cancer xenograft models in BALB/c nude mice were used, namely PC-3 (prostate 

cancer – Ad5-insensitive) and MIA PaCa-2 (pancreatic cancer – Ad5-sensitive). 

 

4.1 Ad11 is more effective than Ad5 in treating Ad5-insensitive PC-3 

human prostate cancer xenografts 
The potent in vitro activity of Ad11 against the Ad5-insensitive PC-3 prostate 

cancer cell line prompted further evaluation of this virus in vivo. A subcutaneous 

xenograft model in BALB/c nude mice was established by the injection of 1 x 107 PC-3 

cells in 100 μl of 50% PBS and 50% BD Matrigel Basement Membrane Matrix into the 

right flanks. Established tumours were injected with three 1 x 1010 virus particles or 100 

μl of PBS on alternate days. Tumours were monitored for three months and mice were 

euthanised when tumour dimension was more than 1.44 cm2 in accordance with Home 

Office regulations. Significant growth suppression was observed in the Ad11-treated 

group compared to Ad5, together with improved number of progression-free mice 

(logrank P < 0.01) (Figures 4.1a and b). 

 

To measure virus replication, tumours were injected with single doses of Ads 

and harvested at various time points. These were homogenised in DMEM and then 

frozen and thawed three times in liquid nitrogen and at 37 °C, respectively, to lyse the 

cells to release intracellular virus particles. After DNA extraction, qPCR was performed 

using Ad-specific E1A primers and probes. The lysates were also used to infect an 

indicator cell line, the Ad-sensitive JH-293, in 96-well plates at six 1:10 serial dilutions. 

The presence of infectious Ads would result in CPE or plaque formation of the JH-293 

(Figure 4.2). The TCID50 and number of PFUs were calculated using the Reed-Muench 

accumulative method (see Appendix). Higher levels of Ad11 DNA amplification and 

infectious virus production (at 96 hours) were observed (Figures 4.1c and d). 
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Figure 4.1: Anti-tumoural efficacies of Ad5 and Ad11 in a PC-3 subcutaneous 
xenograft model. (a) Established tumours in BALB/c nude mice were given three 
intratumoural injections of PBS (100 μl), Ad5 or Ad11 (1 x 1010 particles/injection). Tumours 
were measured until the first mouse in each group has a tumour dimension of > 1.44 cm2. Data 
represent means ± SEM (n = 8 per group). On day 32, significant difference was noted between 
the Ad-treated groups (P < 0.001). (b) Percentage of progression-free mice using the Kaplan-
Meier method (logrank P < 0.01 between Ad5 and Ad11). (c) Established tumours were injected 
once with 1 x 1010 particles of Ad5 or Ad11. At the stated time points, tumours were harvested 
in triplicates, homogenised in 2 ml of DMEM, frozen and thawed three times in liquid nitrogen 
and at 37 °C, respectively prior to DNA extraction. qPCR was performed using E1A primers 
and probes. Results are presented as average arbitrary units ± SEM, normalised against total 
DNA, with the highest value arbitrarily set to 100. (d) The above cell lysates were used to infect 
an indicator cell line, JH-293, in 96-well plates at six 1:10 serial dilutions. The cells were 
inspected for CPE 11 days later. The TCID50 and number of PFUs were calculated using the 
Reed-Muench accumulative method. Results are presented as PFUs/ng of total DNA ± SEM. * 
P < 0.05, ** P < 0.01, *** P < 0.001. 
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a)                                                           b) 
 

    
 
 
 
c)                                                           d) 

 

   
 

 
 

 
Figure 4.2: Cytopathic effects of adenoviruses on JH-293 cells (40x magnification). (a) 
Normal, confluent JH-293. (b) to (d) Progressive CPEs with plaque formation, cell detachment 
and lysis.  
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4.2 Ad11 is less effective than Ad5 in treating Ad11-insensitive MIA 

PaCa-2 human pancreatic cancer xenografts 
To compare the in vivo anti-tumoural activities of Ad5 and Ad11 in an Ad11-

insensitive cancer cell line, a subcutaneous MIA PaCa-2 human pancreatic cancer 

xenograft model was used (Figure 4.3). 1 x 107 MIA PaCa-2 cells in 100 μl of PBS 

were injected into the right flanks of BALB/c nude mice. Established tumours were 

treated as described in 4.1. As expected, tumour growth and the number of progression-

free mice were significantly better in the Ad5-treated group compared to Ad11 (P < 

0.05). 
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Figure 4.3: Anti-tumoural efficacies of Ad5 and Ad11 in a MIA PaCa-2 
subcutaneous xenograft model. (a) Established tumours in BALB/c nude mice were given 
three intratumoural injections of PBS (100 μl), Ad5 or Ad11 (1 x 1010 particles/injection). 
Tumours were measured until the first mouse in each group has a tumour dimension of > 1.44 
cm2. Data represent means ± SEM (n = 8 per group). On day 35, there was significant difference 
between the Ad-treated groups (P < 0.05). (b) Percentage of progression-free mice using the 
Kaplan-Meier method (logrank P < 0.05 between Ad5 and Ad11).  
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4.3 Summary of Chapter 4 
Consistent with the in vitro results in Chapter 3, Ad11 showed superior efficacy 

in treating the Ad5-insensitive PC-3 human prostate cancer cell line in a subcutaneous 

xenograft model (Figures 4.1a and b). Higher levels of Ad11 DNA were found in the 

tumours from six to 96 hours after a single intratumoural virus injection, indicating that 

its DNA replicated more efficiently than that of Ad5 (Figure 4.1c). Although a fixed 

amount of DNA was used for qPCR and the results were normalised against total DNA, 

the use of an internal control, such as the housekeeping gene of glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), would further improve the accuracy of the results. 

Despite the high viral DNA levels, a significantly higher number of infectious Ad11 

particles were only observed at 96 hours (Figure 4.1d). This could be due to a delay in 

Ad11 protein synthesis, as demonstrated in vitro in Chapter 5. 

 

Treatment of the Ad11-insensitive MIA PaCa-2 human pancreatic cancer 

xenografts with Ad11 resulted in faster tumour growth compared to Ad5 (Figure 4.3), 

although this was less than expected given the more remarkable in vitro result (Figure 

3.2). The reason for this is unknown, although it could be explained by the slower 

clearance of Ad11 in nude mice where CAR, but not CD46, is expressed. 
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CHAPTER 5 
Mechanisms of Ad11’s attenuated oncolytic potency in 

insensitive cancer cell lines 
 

As shown in Chapter 3, there appears to be no correlation between viral receptor 

expression in cancer cells and their sensitivity to killing by Ad5 and Ad11. In particular, 

Ad11 was not always more effective than Ad5 despite the abundant expression of CD46 

compared to CAR. Other factors must be involved. Dissection of the Ad infectious 

cycle is therefore needed, which generally involves the following steps: attachment of 

virus to the cellular receptor followed by internalisation, trafficking of the virus to the 

nucleus, expression of early gene products, cell entry into S phase and viral DNA 

amplification, viral structural protein synthesis, virion assembly, cell death and release 

of progeny viruses. For this, the cancer cell lines Capan-2, PC-3 (both Ad11-sensitive), 

MIA PaCa-2 and LNCaP (both Ad5-sensitive) were studied in more detail. 

 

5.1 Ad11 has higher infectivity than Ad5 in cancer cell lines 
Equal amounts of Ad5 and Ad11 were incubated with the fluorophore Alexa 

Fluor 555 carboxylic acid, succinimidyl ester, which bound to primary amines on 

adenoviral coat proteins. Excess dye was removed by dialysis. The conjugated viruses 

were used to infect cells, seeded in Lab-Tek II Chamber Slide Systems, at 4 °C for an 

hour to allow attachment to surface receptors but not internalisation. Unbound viruses 

were washed away with PBS, and this was followed by incubation at 37 °C for an hour 

which resulted in virus internalisation and trafficking to the nuclei. Cells were 

subsequently fixed with methanol, stained with anti-α-tubulin mouse antibody and 

Alexa Fluor 488 donkey anti-mouse IgG (cytoplasmic tubulins), and DAPI (nuclei). 

Images were then taken using a confocal microscope (Figure 5.1). In separate 

experiments, unlabelled Ads were used to infect suspended cells (in cold buffer of 1% 

BSA in PBS) at 1,000 particles/cell. Cells were infected at 4 °C for an hour 

(attachment), and after washing away unattached viruses, incubated at 37 °C for 30, 60 

and 120 minutes, respectively. DNA was obtained from cellular nuclear extracts for 

qPCR using E1A primers and probes (Figure 5.1). Consistent with CAR and CD46 

expression levels, significantly more Ad11 than Ad5 were found to attach to the 

pancreatic cancer cell lines Capan-2 and MIA PaCa-2 (Figures 5.1a and b), as well as 
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the prostate cancer cell lines PC-3 and LNCaP (Figures 5.1c and d). The attached 

Ad11 were effectively trafficked to the nuclei of these cells. Fluctuations seen in nuclear 

localisation were likely the result of multiphasic nuclear transport of Ads210. As Ad11 

was much more infective than Ad5 even in the Ad11-insensitive cell lines (MIA PaCa-2 

and LNCaP), downstream events are therefore responsible for its attenuated oncolytic 

potency. 
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b) MIA PaCa-2 (Ad5-sensitive) 
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c) PC-3 (Ad11-sensitive) 
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d) LNCaP (Ad5-sensitive) 
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Figure 5.1: Infectivities of Ad5 and Ad11 in Capan-2, MIA PaCa-2, PC-3 and 
LNCaP. The pancreatic cancer cell lines (a) Capan-2 (Ad11-sensitive) and (b) MIA PaCa-2 
(Ad5-sensitive), and the prostate cancer cell lines (c) PC-3 (Ad11-sensitive) and (d) LNCaP 
(Ad5-sensitive), were used. Representative confocal microscopy images are shown for virus 
attachment (4 °C) and trafficking 60 minutes after unbound viruses were washed off (37 °C). 
Cells were seeded and infected in Lab-Tek II Chamber Slide Systems. Adenoviral capsids were 
labelled with Alexa Fluor 555 prior to infection (red). Nuclei were stained blue by DAPI and 
cytoplasmic α-tubulins were stained green by Alexa Fluor 488. The graphs show qPCR results 
of viral DNA using E1A primers and probes, for viruses attached to the cellular membrane (4 
°C) and those in the nuclei at 30, 60 and 120 minutes post-attachment (37 °C). Cells (suspended 
in 1% BSA in PBS) were infected with viruses at 1,000 particles/cell. Results represent means 
of triplicate experiments and are shown in arbitrary units ± SEM, with the highest value in each 
graph set to 100. ** P < 0.01, *** P < 0.001. 
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5.2 Ad11 DNA amplification is attenuated in Ad11-insensitive cell 

lines 
To measure the amount of viral DNA in infected cells, MIA PaCa-2, LNCaP, 

Capan-2 and PC-3 were first infected with Ads in serum-free medium for two hours, 

which was then replaced by medium with 5% FBS. The cells and media were harvested 

at 24, 48, 72 and 96 hours post-infection. DNA was extracted and the amount of viral 

DNA was determined by qPCR using E1A primers and probes. Despite the presence of 

more Ad11 in MIA PaCa-2 and LNCaP (Figures 5.1b and d), their DNA levels were 

significantly lower than those of Ad5 (Figure 5.2a). Ad11 DNA amplified to a much 

greater extent than Ad5’s in the Ad11-sensitive cell lines Capan-2 and PC-3 (Figure 

5.2b).  
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Figure 5.2: Ad5 and Ad11 DNA amplification in (a) MIA PaCa-2, LNCaP, (b) 
Capan-2 and PC-3. Cells were infected in 6-well plates with viruses at 100 particles/cell in 
serum-free medium. After two hours, this was replaced by medium with 5% FBS. At the stated 
time points post-infection, cells and media were collected and DNA was extracted for qPCR 
using E1A primers and probes. Results represent means of triplicate experiments and are shown 
in arbitrary units ± SEM, with the highest value in each graph set to 100. * P < 0.05, ** P < 
0.01, *** P < 0.001. 
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5.3 Ad11 hexon protein synthesis is reduced in Ad11-insensitive cell 

lines 
Hexon is a major constituent of the adenoviral capsid and is transcribed late in 

the infectious cycle. To analyse its expression, Western blotting was performed on 

infected cell lysates using Ad goat polyclonal antibody (for Ad5 hexon) or Ad11 hexon 

rabbit polyclonal antibody (for Ad11 hexon). Equal loading was checked using anti-

PCNA antibody. As expected from the DNA amplification results (Figure 5.2), Ad11 

hexon expression was lower in the Ad11-insensitive LNCaP and was hardly detectable 

in MIA PaCa-2 (Figure 5.3a). In the Ad11-sensitive Capan-2, more Ad11 hexon was 

expressed, certainly from 48 hours post-infection (Figure 5.3b). Curiously in PC-3, 

Ad5 hexon appears to be expressed at a higher level than that of Ad11 at 48 hours, 

although they became similar at 72 hours (Figure 5.3b). This could be due to a delay in 

Ad11 protein synthesis despite a high viral DNA level (see below). 
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Figure 5.3: Western blots of adenoviral hexon proteins in infected (a) MIA PaCa-2, 
LNCaP, (b) Capan-2 and PC-3. Cells were infected in 6-well plates with viruses at 200 
particles/cell in serum-free medium. After two hours, this was replaced by medium 
supplemented with 5% FBS. At the stated time points post-infection, cells were harvested with 
lysis buffer. Proteins were separated by SDS-PAGE and blotted onto PVDF transfer membrane. 
Immunodetection was performed using Ad goat polyclonal antibody or Ad11 hexon rabbit 
polyclonal antibody. The hexon band is located between the 102 and 150-kDa markers. Equal 
loading was checked using anti-PCNA antibody. 
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5.4 Lower amounts of infectious Ad11 particles are produced in 

Ad11-insensitive cell lines 

The final step of the Ad life cycle is the production of encapsulated, infectious 

progeny viruses. To examine this, cells were first infected with Ads in serum-free 

medium for two hours, which was then replaced by medium with 5% FBS. The cells 

and media were harvested at 24, 48, 72 and 96 hours post-infection. These were frozen 

and thawed three times in liquid nitrogen and at 37 °C, respectively. The resultant 

lysates were used to infect the JH-293 indicator cells in 96-well plates at six 1:10 serial 

dilutions. Inspection for CPE was performed 11 days post-infection and the TCID50 and 

number of PFUs/cell (cell count on the day of infection) were calculated using the 

Reed-Muench accumulative method. Consistent with the results from viral DNA 

amplification and hexon protein expression, cells that were sensitive to Ad5 but not to 

Ad11 (MIA PaCa-2 and LNCaP) showed much higher levels of Ad5 production 

compared to Ad11 (Figure 5.4a). Ad11 replicated much better than Ad5 in Capan-2 

(Figure 5.4b). Although Ad11 DNA replicated better than Ad5’s in PC-3 from 24 hours 

post-infection, this was only reflected in infectious virus production from 72 hours 

(Figure 5.4b). Similar findings have also been found for the breast and pancreatic 

cancer cell lines MCF7 (Figure 5.5) and PaTu 8988s (Figure 5.8b), respectively. This 

has several explanations. Firstly, complex intracellular events post-DNA replication 

such as structural protein synthesis and virion assembly have to be considered. The 

delay in Ad11 hexon expression compared to Ad5 in PC-3 cells seems to support this 

(Figure 5.3b). Secondly JH-293, the indicator cell line used in the virus replication 

assay, was less sensitive to Ad11 killing than to Ad5 (Figure 5.6; EC50 of 0.02676 and 

0.5982 virus particles/cell for Ad5 and Ad11, respectively; P < 0.01). Thirdly, Ad5 and 

Ad11 each produces different cytopathic appearances on JH-293 cells, which might 

contribute to the results seen. 
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Figure 5.4: Production of infectious Ad5 and Ad11 by (a) MIA PaCa-2, LNCaP, 
(b) Capan-2 and PC-3. Cells were infected in 6-well plates with viruses at 100 particles/cell 
in serum-free medium. After two hours, this was replaced by medium with 5% FBS. At the 
stated time points post-infection, cells and media were collected, frozen and thawed three times 
in liquid nitrogen and at 37 °C, respectively. These were used to infect an indicator cell line, JH-
293, in 96-well plates at six 1:10 serial dilutions. The cells were inspected for CPE 11 days 
later. The TCID50 and number of PFUs/cell (cell count on the day of infection) were calculated 
using the Reed-Muench accumulative method. Results represent means of triplicate experiments 
± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001. 
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Production of infectious particles 
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Figure 5.5: Ad5 and Ad11 DNA amplification and production of infectious 
particles in MCF7. Experiments and analyses were performed as described in Figures 5.2 
and 5.4. Results represent means of triplicate experiments ± SEM. ** P < 0.01, *** P < 0.001. 
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Figure 5.6: Dose-response curves of Ad5 and Ad11 cytotoxicities in JH-293. Cells 
were infected in 96-well plates. Cell viability was measured on day six after infection by the 
MTS assay. Data represent means ± SEM from duplicate experiments (with each concentration 
of virus in sextuplicates). 
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5.5 Ad11-insensitive cell lines have lower levels of Ad11 E1A mRNA 
It is now evident that events after virus entry to the nucleus, but prior to viral 

DNA replication, are responsible for the attenuated potency of Ad11 in the insensitive 

cell lines MIA PaCa-2 and LNCaP. One such event is the expression of the adenoviral 

E1A gene. E1A proteins force quiescent cells into S phase and induce the expression of 

delayed-early proteins encoded by the E1B, E2, E3 and E4 transcriptional units, most of 

which are crucial for subsequent viral DNA replication. 

 

To examine the levels of E1A mRNA, RNAs of virus-infected MIA PaCa-2, 

LNCaP, Capan-2 and PC-3 were extracted and cDNA was obtained by reverse 

transcription. qPCR was performed using E1A primers and probes, and 18S rRNA was 

used as an endogenous control. In the Ad11-insensitive MIA PaCa-2 and LNCaP, Ad11 

E1A mRNA levels were significantly lower than those of Ad5 from eight hours post-

infection (Figure 5.7a). The higher levels for Ad11 at two hours were probably due to 

the presence of more Ad11 in the nuclei (Figures 5.1b and d). In contrast, the Ad11-

sensitive Capan-2 and PC-3 have more Ad11 E1A mRNAs throughout (Figure 5.7b). 

Attempts have been made to analyse the expression of Ad11 E1A proteins by Western 

blotting but there was no specific antibody available, and the proteins could not be 

detected by antibodies raised against Ad2 or Ad5 E1A (results not shown). 

 

These results suggest that the level of E1A mRNA is a major determinant of 

Ad11’s replicative ability and oncolytic potency. Attenuated E1A transcription could be 

responsible for the subsequent reduction in viral DNA amplification, structural protein 

synthesis and the production of infectious virus particles. These findings have been 

further extended to the Ad11-insensitive and -sensitive pancreatic cancer cell lines 

PANC-1 and PaTu 8988s, respectively (Figure 5.8) Further understanding of this is 

crucial and could have important implications for the future development of oncolytic 

Ad11. 
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Figure 5.7: Ad5 and Ad11 E1A mRNA levels in (a) MIA PaCa-2, LNCaP, (b) 
Capan-2 and PC-3. Cells were infected in 6-well plates with viruses at 100 particles/cell in 
serum-free medium. After two hours, this was replaced by medium with 5% FBS. At the stated 
time points post-infection, RNAs were extracted using TRIzol Reagent, chloroform and 
isopropanol precipitation. cDNA was obtained by reverse transcription, followed by qPCR 
using E1A primers and probes. Results represent means of triplicate experiments normalised 
against 18S rRNAs and are shown in arbitrary units ± SEM, with the highest value in each 
graph set to 100. * P < 0.05, *** P < 0.001. 
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Production of infectious particles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) PaTu 8988s (Ad11-sensitive) 
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DNA amplification 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Production of infectious particles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.8: Ad5 and Ad11’s infectivities, E1A mRNA levels, DNA amplification 
and infectious particle production in (a) PANC-1 and (b) PaTu 8988s. These are 
pancreatic cancer cell lines that are insensitive and sensitive to Ad11, respectively. Experiments 
and analyses were performed as described in Figures 5.1, 5.2, 5.4 and 5.7. Results represent 
means of triplicate experiments ± SEM. ** P < 0.01, *** P < 0.001. 
 
 
 

 

 

 

 

 

24 48 72 96
0.01

0.1

1

10

100

1000
Ad5
Ad11

Time (hours)

Ar
bi

tra
ry

 u
ni

ts

***

***

***
***

24 48 72 96
0.1

1

10

100

1000

10000
Ad5
Ad11 **

**

Time (hours)

PF
U

s/
ce

ll

**



 
104

5.6 Summary of Chapter 5 
The higher expression of CD46, as demonstrated in Chapter 3, is consistent with 

the much greater infectivity of Ad11, with significantly more virus particles attaching to 

the cellular membrane and entering the nucleus. In Figure 5.1, it was assumed that the 

fluorophore used had no effect on the normal functioning of the viruses. However, this 

could be tested quite simply by comparing labelled and unlabelled viruses in activities 

such as virus replication and cell killing. It has been reported that after internalisation 

into the cell, certain subgroup B Ads (Ad3, -7 and -35) accumulate in lysosomes 

whereas subgroup C viruses (Ad2 and Ad5) traffic rapidly to the nuclear envelope, 

because the former group requires a lower pH in the endosomal compartments to escape 

into the cytosol211-214. Surprisingly, results in Figures 5.1 and 5.8 appear to suggest that 

a significant number of Ad11 can enter the nucleus as early as 30 minutes post-

infection. It is likely that the percentage of nuclear entry relative to the total membrane-

associated viruses is lower for Ad11 compared to Ad5, but the absolute number of Ad11 

in the nucleus is still much higher.  

 

E1A transcription is the first event to occur after virus entry into the nucleus, and 

the E1A proteins are important at inducing the expression of E1B, E2, E3 and E4, most 

of which are crucial for virus replication. In cells that were insensitive to Ad11 

cytotoxicity and in spite of its higher infectivity (Figures 5.1b, d and 5.8a), Ad11 E1A 

mRNA levels were much lower than those of Ad5 (Figures 5.7a and 5.8a), producing a 

negative effect on viral DNA amplification (Figures 5.2a and 5.8a), structural protein 

synthesis (Figure 5.3a), progeny production (Figures 5.4a and 5.8a) and cell killing 

(Figure 3.2). Cells that were sensitive to Ad11 cytotoxicity showed higher levels of 

E1A mRNA after Ad11 infection (Figures 5.7b and 5.8b). This suggests that the 

regulation of E1A transcription in cancer cells is related to the ability of Ad11 to 

replicate and kill these cells. This has important implications for the optimisation of 

Ad11 for cancer therapy and warrants further investigations. 
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CHAPTER 6 
E1A upstream transcriptional regulatory regions of 

Ad5 and Ad11 
 

Results in Chapter 5 demonstrated that Ad11 has much higher infectivity than 

Ad5 in human cancer cell lines. Stepwise investigations of the virus life cycle revealed 

that the levels of E1A mRNA have a direct effect on subsequent virus replication and 

killing of cancer cells by Ad11. The adenoviral E1A proteins have a crucial role of 

pushing quiescent cells into S phase and induce the expression other early viral genes so 

that its DNA can be replicated. In cells insensitive to Ad11-mediated cytotoxicity, low 

levels of E1A mRNA were observed despite the presence of a high number of Ad11 in 

the nuclei. Conversely, cells that were sensitive to Ad11 showed higher levels of E1A 

mRNA after Ad11 infection. Cell-dependent regulation of E1A transcription is likely to 

be involved. This chapter examines the transcription-enhancing activities of regions 

upstream of the E1A gene in cells sensitive and insensitive to Ad11, respectively. 

 

6.1 EF-1A expression is not a major regulator of Ad11 E1A 

transcription 
An E1A transcriptional enhancer region is known to be located between 194 and 

358 bp of the Ad5 genome55, 56. The transcription factor EF-1A binds to this enhancer 

and further upstream regions54. When the enhancer region was compared to the 

corresponding region in Ad11, Mei et al.169 found little similarity in the EF-1A binding 

sites. Analysis of the entire sequence upstream of E1A using the Transcription Element 

Search System (TESS; www.cbil.upenn.edu/cgi-bin/tess/tess)215 also revealed 

significantly more EF-1A binding sites in Ad5 compared to Ad11 (data not shown). 

 

To determine if differences in EF-1A expression could explain the variability in 

E1A mRNA levels, Western blotting was performed using GABPA mouse monoclonal 

antibody and equal loading was checked using anti-PCNA antibody (Figure 6.1). No 

definite pattern in EF-1A expression between Ad11-sensitive and -insensitive cancer 

cell lines was observed before and after Ad infection. The lack of EF-1A in Capan-2 

could explain this cell’s preference to transcribe Ad11 E1A over Ad5’s, although this 

did not apply to the other Ad11-sensitive cell line PC-3 (Figure 6.1b). 
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Figure 6.1: EF-1A expression in (a) MIA PaCa-2, LNCaP, (b) Capan-2 and PC-3. 
Cells were infected in 6-well plates with viruses at 100 particles/cell in serum-free medium. 
After two hours, this was replaced by medium with 5% FBS. At the stated time points post-
infection, cells were harvested with lysis buffer. Uninfected cells and HeLa cells (positive 
control) were also included. Proteins were separated by SDS-PAGE and blotted onto PVDF 
transfer membrane. Immunodetection was performed using GABPA mouse monoclonal 
antibody. EF-1A is approximately 60 kDa in size. Equal loading was checked using anti-PCNA 
antibody. 
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6.2 Transcription-regulating activities of regions upstream of E1A 

by luciferase reporter assay 
6.2.1 Luciferase plasmid construction 

The coding sequences of E1A (from the ATG start codons) begin at 560 and 568 

bp relative to the left ends of the Ad5 and Ad11 genomes, respectively. Besides the 

promoter sequence situated immediately upstream of this, the E1A transcriptional 

enhancer region is located between 194 and 358 bp in Ad555, 56. 

  

To test the contribution of these regions in regulating E1A transcription, six 

plasmids were constructed. Sequences were inserted between the BglII and HindIII 

restriction sites in the firefly (Photinus pyralis) luciferase-encoding pGL3-Control 

Vector, replacing the SV40 promoter (Figure 6.2). p5-L and p11-L each contains the 

entire region upstream of the E1A-coding sequence (up to and including 559 and 567 bp 

for Ad5 and Ad11, respectively) (“left end”); p5-EP and p11-EP each has the sequence 

from 195 bp up to the E1A-coding sequence (“enhancer-promoter”); p5-P and p11-P 

each contains the region immediately after the adenoviral packaging signal up to the 

E1A-coding sequence, i.e. from 378 and 393 bp for Ad5 and Ad11, respectively 

(“promoter”). 
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Figure 6.2: Modification of pGL3 with regions upstream of E1A driving luciferase 
expression. (a) Six plasmids were constructed by replacing the SV40 promoter in pGL3-
Control Vector (between BglII and HindIII restriction sites) with the following sequences from 
Ad5 and Ad11 genomes: (b) “left end” is the entire region upstream of the E1A-coding 
sequence (up to and including 559 and 567 bp for Ad5 and Ad11, respectively); “enhancer-
promoter” is taken from 195 bp up to the E1A-coding sequence; “promoter” is the region 
immediately after the adenoviral packaging signal up to the E1A-coding sequence, i.e. from 378 
and 393 bp for Ad5 and Ad11, respectively. Abbreviations: ampr, ampicillin resistance; luc+, 
firefly luciferase reporter gene; ori, origin of replication; poly(A), polyadenylation; SV40, 
Simian vacuolating virus 40. 
 

 

Using primers described in 2.11.1, the required fragments were cloned from 

pBGwtAd11 (wild-type Ad11 plasmid) and pTG3602 (wild-type Ad5 plasmid) (Figure 

6.3) and subsequently digested with BglII and HindIII. pGL3-Control Vector was also 

digested with BglII and HindIII, releasing its SV40 promoter (Figure 6.4). Fragments 

were ligated to pGL3 followed by transformation of chemically competent E. coli. 

Bacterial colonies were screened by PCR using the same primers (Figure 6.5). Correct 

plasmids were purified and confirmed by sequencing (performed by the Genome 

Centre; results not shown). 
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b)                              100 bp 
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Figure 6.3: PCR-amplified fragments of E1A upstream regions. (a) “Left ends” of 
Ad5 (5-L – 579 bp) and Ad11 (11-L – 585 bp). (b) “Promoters” (5-P – 182 bp; 11-P – 175 bp) 
and “enhancer-promoters” (5-EP – 365 bp; 11-EP – 372 bp) of Ad5 and Ad11. These fragments 
were extracted and ligated to pGL3. 
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                            + HindIII Markers         pGL3 
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Figure 6.4: Digestion of pGL3-Control Vector. Digestion was done using BglII and 
HindIII. The upper band of linearised plasmid (5,047 bp) was extracted. The lower band (209 
bp) is the released SV40 promoter. 
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Figure 6.5: Confirmation of successful ligation of E1A upstream regions to pGL3. 
Primers listed in 2.11.1 were used. (a) “Left end”-ligated p5-L and p11-L were confirmed by 
PCR-amplified fragments of 579 and 585 bp, respectively. (b) “Promoter”-ligated p5-P and 
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p11-P (fragments of 182 and 175 bp, respectively) and “enhancer-promoter”-ligated p5-EP and 
p11-EP (fragments of 365 and 372 bp, respectively). All colonies showed the correct inserts. 
Further confirmation was done by DNA sequencing using RVprimer3 and GLprimer2. 
 

 

6.2.2 Ad5 E1A upstream regions have higher transcription-enhancing activities 

than Ad11’s 

The constructed p5-L, p11-L, p5-EP, p11-EP, p5-P and p11-P plasmids were 

used to cotransfect MIA PaCa-2, LNCaP, Capan-2 and PC-3, with pRL-SV40 Vector. 

The sequences of E1A upstream regions would result in different expressions of the 

firefly luciferase enzyme, which oxidises luciferin to produce luminescence. To control 

for variability such as transfection efficiency and cell number, the cotransfected pRL-

SV40 acted as an internal control. pRL-SV40 produces luciferase from Renilla 

reniformis (sea pansy), driven by the SV40 enhancer/promoter. Luciferase reporter 

assays were performed using the Dual-Luciferase Reporter Assay System. 18 hours 

after transfection, luminescence produced by the firefly luciferase was measured first. 

This reaction was then quenched, followed by the quantitation of luminescence from 

Renilla luciferase. Results were normalised by dividing firefly luminescence by Renilla 

luminescence. 

  

Generally, the longest sequence (i.e. “left end”) has the highest transcription-

enhancing activity. The “enhancer-promoter” sequence has slightly higher or similar 

activity compared to the “promoter”. As expected, Ad5 E1A upstream regions have 

higher activities than Ad11’s in the Ad5-sensitive cell lines MIA PaCa-2 and LNCaP 

(Figure 6.6a). Surprisingly, the Ad11-sensitive Capan-2 and PC-3 also showed similar 

results (Figure 6.6b). 
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PC-3
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Figure 6.6: Luciferase reporter assays of E1A upstream regions in (a) MIA PaCa-
2, LNCaP, (b) Capan-2 and PC-3. Cells in 24-well plates were cotransfected with plasmids 
described in Figure 6.2 and the pRL-SV40 control plasmid. Luciferase reporter assays were 
performed 18 hours later. Luciferase activity was normalised by dividing firefly luminescence 
by Renilla luminescence of pRL-SV40. Results represent means of triplicate experiments ± 
SEM. 
 

 

6.2.3 Transcription-enhancing activity of Ad11 E1A upstream region increases 

after Ad11 infection in Capan-2 but not PC-3 

To determine if Ad infection could affect the E1A regulatory region, MIA PaCa-

2, LNCaP, Capan-2 and PC-3 were infected with Ad5 or Ad11 and left for four hours 

prior to transfection with p5-L or p11-L. Luciferase reporter assays were performed 18 

hours after transfection. As shown in Figure 6.7, Ad infection upregulated the 

transcription-enhancing activities of E1A upstream regions compared to mock infection. 

Expectedly, Ad5 infection has a greater effect than Ad11 on both Ad5’s and Ad11’s 

regulatory regions in MIA PaCa-2 and LNCaP (Figure 6.7a). In Capan-2, although the 

baseline activity of Ad11 E1A upstream region was weaker than that of Ad5, this 

increased dramatically after Ad11 infection. This level was higher than that of Ad5 after 

Ad5 infection, although this was not statistically significant (P = 0.1612) (Figure 6.7b). 

The fact that the infectivity of Ad11 was much higher in this cell line (Figure 5.1a) 

could be the reason behind the higher levels of E1A mRNA observed (Figure 5.7b). 

Nevertheless in PC-3, the activity of Ad5’s regulatory region was still much higher than 

that of Ad11 after infection (Figure 6.7b), even though more Ad11 E1A mRNAs were 

found (Figure 5.7b). The reason is unknown at present, although factors such as 
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differences in E1A mRNA stability and regulatory feedback by E1A proteins (a time-

dependent event) could be involved.  

 

 This luciferase reporter experiment was also performed on the Ad11-insensitive 

and -sensitive pancreatic cancer cell lines PANC-1 and PaTu 8988s. The results of 

PANC-1 were similar to those of MIA PaCa-2 and LNCaP (Figure 6.8a). The results of 

PaTu 8988s, however, were distinctive from Capan-2 and PC-3 (Figure 6.8b). Ad11 

E1A upstream regions have significantly higher activities compared to Ad5’s with or 

without infection. This could explain the observation that PaTu 8988s showed the 

greatest difference amongst the Ad11-sensitive cell lines in its Ad5 and Ad11 E1A 

mRNA levels (Figures 5.7b and 5.8b). 
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a) Ad11-insensitive cell lines 
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b) Ad11-sensitive cell lines 
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Figure 6.7: Luciferase reporter assays of E1A upstream regions in (a) MIA PaCa-
2, LNCaP, (b) Capan-2 and PC-3 after infection. Cells in 24-well plates were infected 
with viruses at 100 particles/cell, or mock infected, in serum-free medium. After two hours, this 
was replaced by medium with 5% FBS. Cotransfection with p5-L or p11-L and pRL-SV40 was 
performed after an additional two hours. Luciferase reporter assays were performed 18 hours 
later. Luciferase activity was normalised by dividing firefly luminescence by Renilla 
luminescence of pRL-SV40. Results represent means of triplicate experiments ± SEM. 
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a) PANC-1 (Ad11-insensitive) 
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b) PaTu 8988s (Ad11-sensitive) 
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Figure 6.8: Luciferase reporter assays of E1A upstream regions in (a) PANC-1 and 
(b) PaTu 8988s with or without infection. Experiments and analyses were performed as 
described in Figures 6.6 and 6.7. Results represent means of triplicate experiments ± SEM. 
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6.3 Summary of Chapter 6 
A transcriptional enhancer of E1A is known to be located between 194 and 358 

bp of the Ad5 genome55, 56. The transcription factor EF-1A binds to this enhancer and 

further upstream regions54. In contrast to Ad5, the E1A enhancer region of Ad11 does 

not contain binding sites for EF-1A. Cellular EF-1A expression alone, however, could 

not completely explain the variation in E1A mRNA levels seen. As shown in Figure 

6.1, the absence of EF-1A in the Ad11-sensitive Capan-2 could explain this cell’s 

preference to transcribe Ad11 E1A to Ad5’s. This was not shown in the Ad11-sensitive 

PC-3, where EF-1A expression was similar to those of the Ad5-sensitive MIA PaCa-2 

and LNCaP. 

 

The transcription-enhancing activities of regions upstream of E1A were 

examined by the inserting these sequences into pGL3 (Figure 6.2) and measuring the 

firefly luciferase activity of transfected cells. As expected, Ad5 E1A upstream regions 

have higher transcription-enhancing activities than Ad11’s in the Ad5-sensitive cell 

lines (Figures 6.6a, 6.7a and 6.8a). Surprisingly except for PaTu 8988s (Figure 6.8b), 

the regions upstream of Ad5 E1A appear to have higher activities than that of Ad11 

even in cells that showed higher levels of Ad11 E1A mRNA (i.e. Capan-2 and PC-3) 

(Figures 6.6b). After Ad11 infection in Capan-2, the activity of Ad11 E1A upstream 

region became similar or possibly higher than that of Ad5 after Ad5 infection, although 

this was not the case for PC-3 (Figure 6.7b). Perhaps the Ad5 E1A regulatory region 

was indeed more active than that of Ad11 in PC-3, but there was a difference in E1A 

mRNA stability and its rate of degradation. Nonetheless, as discussed in more detail in 

Chapter 9, this luciferase reporter assay has its limitations as it is only a surrogate 

measure of activities of the E1A regulatory regions. It is known that the E1A proteins 

can enhance or repress their own expression in a time-dependent manner216. Moreover, 

region within the E1A protein-coding sequence also has a regulatory role217. These 

complex and interacting factors make the luciferase reporter results difficult to interpret. 
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CHAPTER 7 
Production of recombinant Ad11 with Ad5 E1A enhancer 

and/or promoter 
 

 As shown in Chapter 5, the levels of E1A mRNA appear to determine the 

replicative ability and potency of Ad11 in cancer cell lines. This is particular important 

in cells insensitive to Ad11-mediated cytotoxicity where despite its high infectivity, the 

levels of Ad11 E1A mRNA were significantly lower than that of Ad5. As such, it was 

hypothesised that Ad11’s oncolytic potency in the insensitive cancer cells could be 

improved by increasing E1A transcription. Because the region upstream of Ad5 E1A has 

higher transcription-enhancing activity (see Chapter 6), this region was used in place of 

Ad11’s to drive the expression of E1A. This chapter describes the construction of two 

Ad11 mutants – Ad11-Ad5-P has the Ad11 E1A promoter replaced by that of Ad5, 

whilst Ad11-Ad5-EP has the whole Ad5 E1A enhancer and promoter substituting the 

corresponding region of Ad11 (Figure 7.1). 

 

7.1 Shuttle plasmid construction and homologous recombination 
As described earlier, the Ad5 E1A transcriptional enhancer region is located 

between 194 and 358 bp of the Ad5 genome55, 56. However, the adenoviral packaging 

sequence, needed to direct the encapsidation of the viral DNA, also lies within this 

region (240-377 bp in Ad5 and 249-392 bp in Ad11, respectively)57, 58, 169, 170. As a 

small number of mutations in part of this region could dramatically reduce the 

packaging efficiency, it is probable that this domain is not compatible across the two 

species58. For this reason, the virus Ad11-Ad5-P was designed to have only the region 

downstream of the packaging signal up to the E1A-coding sequence replaced by the 

corresponding region from Ad5 (Figure 7.1a). The region from 195 bp up to the E1A-

coding sequence (559 bp) of Ad5 was used to replace the corresponding region in Ad11 

to produce Ad11-Ad5-EP. (Figure 7.1b) 
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a) 

 

 

 

 

b) 

 

 
Figure 7.1: Construction of recombinant Ad11 with Ad5 E1A enhancer and/or 
promoter. (a) The region between Ad11 packaging signal (PS) and the start of E1A-coding 
sequence (393-567 bp) was replaced by the corresponding region of Ad5 (378-559 bp) to 
generate Ad11-Ad5-P. (b) The Ad5 E1A enhancer region up to the start of E1A-coding 
sequence (195-559 bp) was used to replace the corresponding region in Ad11 (196-567 bp) to 
produce Ad11-Ad5-EP. 
 

 

7.1.1 Cloning of fragments and ligation to pUC18 

The primers described in 2.13.1 were used to amplify different fragments from 

the wild-type Ad11 plasmid (pBGwtAd11) and Ad5 DNA (Figure 7.2). 
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d)                                            
                                           100 bp 
                                            ladder        B2A6       A7A6 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.2: Cloning of fragments for recombinant Ad11 construction. Fragments 
needed for the construction of (a) Ad11-Ad5-P and (b) Ad11-Ad5-EP were amplified by PCR 
from pBGwtAd11 and Ad5 DNA. ‘0’ represents the start of the adenoviral genome and ATG is 
the start of the E1A-coding sequence. The primers pA1-7 and pB1-2 and their directions are 
shown. The primer pAlinker has half of its sequence complementary to the 21 bp immediately 
before Ad5 E1A, and the other half to the 22 bp of Ad11 E1A. (c) Agarose gel electrophoresis 
showing the correct fragment sizes: A1A2 (405 bp), A3B1 (423 bp), A5A6 (566 bp), A3A4 
(226 bp), B2Linker (219 bp) and A7Linker (402 bp). A1A2 and A3B1, and A1A2 and A3A4 
were obtained separately (instead of using pA1 and pB1, and pA1 and pA4, respectively) in 
order to introduce a NotI restriction site. B2Linker and A7Linker contain the Ad5 E1A promoter 
and enhancer-promoter, respectively. (d) To join B2Linker and A7Linker to the left end of 
Ad11 E1A-coding sequence (A5A6), they were each placed in a PCR reaction with A5A6 only. 
The resultant mixtures were further amplified using pB2 or pA7 with pA6, to generate B2A6 
(759 bp) and A7A6 (943 bp). 
 

 

All fragments were extracted and subsequently digested as follows: A1A2 

(HindIII and XbaI), A3B1, A3A4, B2A6 and A7A6 (HindIII and BamHI). These were 

ligated to HindIII and XbaI- and HindIII and BamHI-digested pUC18, respectively, to 

produce pUCA1A2, pUCA3B1, pUCA3A4, pUCB2A6 and pUCA7A6. These were 

used to transform chemically competent E. coli and verified by PCR (Figure 7.3). The 

correct plasmids were confirmed by sequencing using M13 forward and reverse primers 

(performed by the Genome Centre; results not shown). 
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                  100 bp    A1A2_      A3B1  _        A3A4   _        B2A6   _        A7A6   _ 
                   ladder   1    2     3    4     5     6    7     8     9    10   11    12   13   14 
 
 
 
 
                 
 
 
 
 
 
 
 
 
 
Figure 7.3: Confirmation of successful ligation of adenoviral DNA fragments to 
pUC18. Colonies of transformed chemically competent E. coli were picked and PCR was 
performed using the corresponding primer pairs for each fragment. The correct sizes are: 405 bp 
(A1A2), 423 bp (A3B1), 226 bp (A3A4), 759 bp (B2A6) and 943 bp (A7A6). Cultures of 
clones shown in lanes 1, 3, 6, 11 and 13 were selected. The plasmids were extracted and sent for 
sequencing. 
 

 

7.1.2 Shuttle vector production using pSS 

pUCA1A2 was digested with NotI and BamHI. A1A2 was then joined with the 

fragments A3B1 and A3A4 (released from pUCA3B1 and pUCA3A4 by NotI and 

BamHI digestion), producing the plasmids pUCA1B1 and pUCA1A4 (Figure 7.4). This 

produced the ‘left arms’ for subsequent homologous recombination, containing the 

regions -373-392 bp (A1B1) and -373-195 bp (A1A4) of pBGwtAd11, with a NotI site 

introduced at position ‘0’ (Figures 7.2a and b). 
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a) 

 
 
 
b)                        100 bp 
                             ladder                A1B1       _                 A1A4       _ 
 
 
        500/517 bp 
 
 
 
 
 
Figure 7.4: Ligation of A3B1 and A3A4 to pUCA1A2. (a) pUCA1A2, pUCA3B1 and 
pUCA3A4 were digested with NotI and BamHI. Ligation produced the plasmids pUCA1B1 and 
pUCA1A4. A NotI site was introduced at the start of the Ad11 genomic sequence. (b) After 
transformation of competent E. coli, successful ligation was confirmed by PCR using pA1, pB1 
and pA4 primers. All colonies showed the correct inserts: 802 (A1B1) and 605 bp (A1A4). 
 

 

 A1B1 and A1A4 were inserted into linearised pSS (1,904 bp in size) after 

digestion with BglII and EcoRV, producing pSSA1B1 and pSSA1A4, respectively 

(Figure 7.5). 
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a) 

 
 
 
 
 
b)                    100 bp              A1B1                             A1A4               
                        ladder  1    2   3    4   5   6    7    8   9  10  11 12  13 14    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.5: Ligation of A1B1 and A1A4 to pSS. (a) pSS, pUCA1B1 and pUCA1A4 were 
digested with BglII and EcoRV. Ligation produced the plasmids pSSA1B1 and pSSA1A4. (b) 
After transformation of competent E. coli, successful ligation was confirmed by PCR using 
pA1, pB1 and pA4 primers. All colonies showed the correct inserts: 802 (A1B1) and 605 bp 
(A1A4). Abbreviation: chlrr, chloramphenicol resistance. 
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To join the “right arm” and “left arm” to the pSS shuttle vector, B2A6 (from 

pUCB2A6) was inserted into pSSA1B1 after digestion with SnaBI and XhoI. This 

produced the shuttle plasmid pSSA1B1B2A6 (for Ad11-Ad5-P), with the 

chloramphenicol resistance gene separating the two arms (Figure 7.6). Confirmation of 

successful ligation was performed by restriction digestions using SnaBI and XhoI (to 

release B2A6) and BglII and EcoRV (to release A1B1). Similarly, pSSA1A4A7A6 (for 

Ad11-Ad5-EP) was produced from pSSA1A4 and pUCA7A6 (Figure 7.7). 
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b)                   
                 100 bp    pSSA1B1B2A6 #1     pSSA1B1B2A6 #2   Lambda 
                  ladder  Intact  SnaBI  BglII   Intact  SnaBI  BglII   DNA/EcoRI +  
                                        XhoI   EcoRV            XhoI   EcoRV  HindIII Markers 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.6: Ligation of B2A6 to pSSA1B1. (a) pSSA1B1 and pUCB2A6 were digested 
with SnaBI and XhoI. Ligation produced the plasmid pSSA1B1B2A6. (b) After transformation 
of competent E. coli, two colonies were expanded and the plasmids were extracted. These were 
run on an agarose gel either intact (3,375 bp), digested with SnaBI and XhoI (742 bp of B2A6), 
or with BglII and EcoRV (784 bp of A1B1). Both colonies showed the correct inserts. 
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a) 

 
 
 

b) 
                100 bp    pSSA1A4A7A6 #1     pSSA1A4A7A6 #2    Lambda 
                 ladder  Intact  SnaBI   BglII  Intact   SnaBI  BglII   DNA/EcoRI +  
                                       XhoI   EcoRV             XhoI   EcoRV  HindIII Markers 
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Figure 7.7: Ligation of A7A6 to pSSA1A4. (a) pSSA1A4 and pUCA7A6 were digested 
with SnaBI and XhoI. Ligation produced the plasmid pSSA1A4A7A6. (b) After transformation 
of competent E. coli, two colonies were expanded and the plasmids were extracted. These were 
run on an agarose gel either intact (3,361 bp), digested with SnaBI and XhoI (925 bp of A7A6), 
or with BglII and EcoRV (587 bp of A1A4). Both colonies showed the correct inserts. 
 

 

7.1.3 Homologous recombination in BJ5183 cells 

pSSA1B1B2A6 was digested with PmeI before transforming the electroporation 

competent BJ5183 E. coli, together with the wild-type Ad11 plasmid pBGwtAd11. 

BJ5183 contains the enzyme recombinase A (RecA) needed for homologous 

recombination, i.e. the pairing between a DNA molecule (pSSA1B1B2A6) and a 

homologous sequence in another DNA molecule (pBGwtAd11). As such the region 

between the ‘left’ and ‘right’ arms from pSSA1B1B2A6 (containing the 

chloramphenicol resistance gene and Ad5 E1A promoter) would replace the 

corresponding region in pBGwtAd11 (Figure 7.8). Transformed cells were selected by 

ampicillin (from pBGwtAd11) and chloramphenicol resistance and checked by PCR 

(Figure 7.8b). Plasmid was extracted from the correct BJ5183 culture and used to 

transform One Shot TOP10 electrocompetent E. coli before further expansion as 

undesirable recombination might occur if left a long time in BJ5183. Subsequent 

confirmation was done by restriction digestions (Figure 7.8c). 

 

Homologous recombination of pSSA1A4A7A6 (containing the Ad5 E1A 

enhancer-promoter) with pBGwtAd11 was done in the same way (Figure 7.9). 
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c) 
                 Lambda DNA/EcoRI                                          EcoRV    
                   + HindIII Markers   Intact      NotI      SwaI      SnaBI 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.8: Homologous recombination of pSSA1B1B2A6 with pBGwtAd11. (a) 
pSSA1B1B2A6 was digested with PmeI and underwent homologous recombination in BJ5183 
E. coli with pBGwtAd11 at -373-392 and 568-1,115 bp. The region between 392 and 568 bp 
was replaced by the chlrr gene and Ad5 E1A promoter. Transformed cells were selected by 
ampicillin (from pBGwtAd11) and chloramphenicol. (b) Confirmation of successful 
recombination by PCR using the primer pairs pA1 and pA6 (A1A6 – 2,462 bp) and pA1 and 
pAlinker (A1L – 1,922 bp). All three colonies showed the correct bands. (c) Further 
confirmation of selected culture by digestions with NotI (linearised plasmid), SwaI, and EcoRV 
and SnaBI (releasing the 919 bp chlrr gene). 
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a) 
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c) 
                Lambda DNA/EcoRI                                          EcoRV    
                  + HindIII Markers    Intact      NotI      SwaI     SnaBI 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.9: Homologous recombination of pSSA1A4A7A6 with pBGwtAd11. (a) 
pSSA1A4A7A6 was digested with PmeI and underwent homologous recombination in BJ5183 
E. coli with pBGwtAd11 at -373-195 and 568-1,115 bp. The region between 195 and 568 bp 
was replaced by the chlrr gene and Ad5 E1A enhancer-promoter. Transformed cells were 
selected by ampicillin (from pBGwtAd11) and chloramphenicol. (b) Confirmation of successful 
recombination by PCR using the primer pairs pA1 and pA6 (A1A6 – 2,449 bp) and pA1 and 
pAlinker (A1L – 1,908 bp). All three colonies showed the correct bands. (c) Further 
confirmation of selected culture by digestions with NotI (linearised plasmid), SwaI, and EcoRV 
and SnaBI (releasing the 919 bp chlrr gene). 
 

 

7.1.4 Removal of chloramphenicol resistance gene 

 The recombinant Ad11 plasmids were digested with SwaI to remove the 

chloramphenicol resistance genes. The plasmids were religated and used to transform 

electrocompetent E. coli. Correct colonies were identified by PCR and further 

confirmation of the plasmids was performed by restriction digestions (Figures 7.10 and 

7.11). 
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a) 
            Lambda DNA/EcoRI             1          _              2                                        
              + HindIII Markers  A1A6   A3L  A3A6  A1A6   A3L  A3A6 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
           Lambda DNA/EcoRI                                       
             + HindIII Markers        A          B          C           D          E 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.10: Removal of chloramphenicol resistance gene from pBGwtAd11-Ad5-
E1A-promoter. (a) After the removal of the chlrr gene by SwaI digestion, the plasmid was 
religated and transformed into electrocompetent E. coli. Correct colonies were identified using 
the primer pairs pA1 and pA6 (A1A6 – 1,543 bp), pA3 and pAlinker (A3L – 624 bp), and pA3 
and pA6 (A3A6 – 1,164 bp). Both samples showed the correct bands. (b) Confirmation of chlrr 
gene removal by restriction digestions. Lanes A and B are pBGwtAd11 and pBGwtAd11-Ad5-
E1A-promoter-chlrr, respectively. pBGwtAd11-Ad5-E1A-promoter with the chlrr gene removed 
(lane C) was digested with NotI (linearised, lane D), and EcoRV and SnaBI (no 919 bp band of 
the chlrr gene seen, lane E). 
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a) 
            Lambda DNA/EcoRI                1          _                2                                   
              + HindIII Markers    A1A6   A3L   A3A6  A1A6    A3L   A3A6 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
                Lambda DNA/EcoRI                                       
                  + HindIII Markers       A         B         C         D         E 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.11: Removal of chloramphenicol resistance gene from pBGwtAd11-Ad5-
E1A-enhancer-promoter. (a) After the removal of the chlrr gene by SwaI digestion, the 
plasmid was religated and transformed into electrocompetent E. coli. Correct colonies were 
identified using the primer pairs pA1 and pA6 (A1A6 – 1,530 bp), pA3 and pAlinker (A3L – 
610 bp), and pA3 and pA6 (A3A6 – 1,151 bp). Both samples showed the correct bands. (b) 
Confirmation of chlrr gene removal by restriction digestions. Lanes A and B are pBGwtAd11 
and pBGwtAd11-Ad5-E1A-enhancer-promoter-chlrr, respectively. pBGwtAd11-Ad5-E1A-
enhancer-promoter with the chlrr gene removed (lane C) was digested with NotI (linearised, lane 
D), and EcoRV and SnaBI (no 919 bp band of the chlrr gene seen, lane E). 
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7.2 Virus production after transfection of HEK-293 cells 
The above plasmids were linearised by NotI digestion prior to transfection of 

HEK-293 cells, as described in 2.13.7. The presence of CPE indicated the production of 

infectious virus particles and this occurred about seven days post-transfection (a 

negative control was also set up whereby no DNA was added during the transfection 

process, as sometimes the transfection reagent alone could produce CPE) (Figure 7.12). 

Large scale virus production and determination of concentration are described in 2.13.7 

to 2.13.9. Concentrations and titres of Ad11-Ad5-P and Ad11-Ad5-EP are shown in 

Table 7.1. 

 

 

a) 

 

 

 

 

b) 

 

 



 
138

c) 

 

 

 
Figure 7.12: Production of recombinant Ad11 using HEK-293 cells (40x 
magnification). (a) Normal, confluent HEK-293 after mock transfection. (b) to (c) Progressive 
CPEs after transfection with recombinant Ad11 plasmid. 
 

 

Table 7.1: Concentrations and titres of Ad11-Ad5-P and Ad11-Ad5-EP 

Virus Particles/ml PFUs/ml Particles/PFU 

Ad11-Ad5-P 1.01 x 1012 5.90 x 109 171.2 

Ad11-Ad5-EP 2.10 x 1011 1.30 x 109 161.5 
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7.3 Sequence confirmation of recombinant Ad11 
 To confirm that the correct sequence has been inserted into Ad11-Ad5-P, 

primers were designed to amplify the region from approximately 150 bp upstream of 

Ad11 E1A promoter to the first 150 bp of E1A (see 2.13.10). PCR was performed on the 

DNA of Ad11-Ad5-P and wild-type Ad11 (control) (Figure 7.13). The fragments were 

sent to the Genome Centre for sequencing using the forward primer. Result for the 

Ad11-Ad5-P fragment is shown in Figure 7.14. 

 

 

 
                                  100 bp 
                                   ladder  Ad11-Ad5-P             Ad11 
 
 
 
 
             500/517 bp 
 
 
 
 
 
 
 
Figure 7.13: Amplification of Ad11-Ad5-P fragment by PCR for sequencing. 
Primers were designed to amplify the region from approximately 150 bp upstream of Ad11 E1A 
promoter to the first 150 bp of E1A. Both bands (Ad11-Ad5-P – 494 bp; Ad11 – 475 bp) were 
extracted and sent for sequencing. 
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Figure 7.14: Sequencing result of Ad11-Ad5-P fragment. Nucleotides < 113 – right part 
of the first 392 bp of the Ad11 genome (see Figure 7.2a); 113-132 – EcoRV, SwaI and SnaBI 
restriction sites; 133-314 – Ad5 E1A promoter; > 314 – start of the Ad11 E1A-coding sequence. 
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As the region upstream of Ad11 E1A enhancer is very close to the virus 5’-ITR, 

primers that bind to this area cannot be used reliably for sequencing. As such primers 

were designed to amplify the region near the start of the E1A enhancer (to avoid the 

ITR) and the first 58 bp of E1A (see 2.13.10). These primers have the restriction sites 

HindIII and XbaI, respectively, introduced. The amplified fragments of Ad11-Ad5-EP 

and wild-type Ad11 were digested with HindIII and XbaI and inserted into pUC18. 

Transformation of chemically competent E. coli was done and colonies were identified 

by PCR using the same primers (Figure 7.15). Plasmids were extracted and sent to the 

Genome Centre for sequencing using M13 forward and reverse primers. Results for the 

Ad11-Ad5-EP fragment are shown in Figure 7.16. 

 

 

 
                                     100 bp   
                                      ladder   Ad11-Ad5-EP_       Ad11     _    
 
 
 
 
 
             500/517 bp 
 
 
 
 
 
 
 
 
Figure 7.15: Amplification of Ad11-Ad5-EP fragment by PCR for sequencing. 
Primers that amplify the region near the start of the E1A enhancer and the first 58 bp of E1A 
were used, with the introduction of HindIII and XbaI restriction sites, respectively. The 
fragments were ligated to pUC18. After transformation of chemically competent E. coli, 
colonies were identified by PCR using the same primers. Both colonies from each group 
showed the correct bands (Ad11-Ad5-EP – 490 bp; Ad11 – 485 bp). 
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Figure 7.16: Sequencing results of Ad11-Ad5-EP fragment inserted into pUC18. (a) Sequence obtained using M13 forward primer. Nucleotides 28-47 – 
EcoRV, SwaI and SnaBI restriction sites; 48-412 – Ad5 E1A enhancer-promoter; 413-470 – start of the Ad11 E1A-coding sequence, interrupted by an XbaI 
restriction site at 471-476 where the fragment was inserted into pUC18. (b) Sequence obtained using M13 reverse primer. Nucleotides < 449 – part of Ad5 E1A 
enhancer-promoter; 449-468 – SnaBI, SwaI and EcoRV restriction sites; 469-505 – right part of the first 195 bp of the Ad11 genome (see Figure 7.2b), interrupted 
by a HindIII restriction site at 506-511 where the fragment was inserted into pUC18. 
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7.4 Recombinant Ad11 preparations are not contaminated by Ad5 

nor by wild-type Ad11 
To rule out contamination of the recombinant Ad11-Ad5-P and Ad11-Ad5-EP 

by Ad5 and Ad11, PCR was performed on the extracted DNA of these viruses. The 

primers are listed in 2.13.11. The primer pairs used are: 5P-F and 5P-R (Ad5 E1A 

promoter to just immediately before E1A), 11P-F and 11P-R (Ad11 E1A promoter to 

part of E1A), 5H-F and 5H-R (region within the Ad5 hexon-coding sequence), 5E-F and 

5P-R (Ad5 E1A enhancer to just immediately before E1A), 11E-F and 11P-R (Ad11 

E1A enhancer to part of E1A). The expected fragment sizes are shown in Table 7.2. In 

the latter pair, fragment sizes between Ad11 and Ad11-Ad5-P are different due to the 

slightly larger size of Ad5 E1A promoter in Ad11-Ad5-P. Figure 7.17 shows no 

contamination of these viruses. 

 

 

Table 7.2: Expected sizes of PCR fragments for recombinant Ad11 purity check 

 Ad5 Ad11 Ad11-Ad5-EP Ad11-Ad5-P 

5P-F 

5P-R 
184 bp - 184 bp 184 bp 

11P-F 

11P-R 
- 298 bp - - 

5H-F 

5H-R 
472 bp - - - 

5E-F 

5P-R 
352 bp - 352 bp - 

11E-F 

11P-R 
- 487 bp - 506 bp 
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Figure 7.17: Purity check of Ad11-Ad5-P and Ad11-Ad5-EP. The primer pairs listed in 
Table 7.2 were used: (1) 5P-F and 5P-R (Ad5 E1A promoter), (2) 11P-F and 11P-R (Ad11 E1A 
promoter), (3) 5H-F and 5H-R (Ad5 hexon), (4) 5E-F and 5P-R (Ad5 E1A enhancer), and (5) 
11E-F and 11P-R (Ad11 E1A enhancer). 5, 11, EP and P are the DNA of Ad5, Ad11, Ad11-
Ad5-EP and Ad11-Ad5-P, respectively. All samples showed the expected bands. 
 

 

7.5 Summary of Chapter 7 
To test the hypothesis that increasing Ad11 E1A transcription would result in 

better oncolytic potency in Ad11-insensitive cancer cells, two recombinant Ad11 were 

constructed. Ad11-Ad5-P has the Ad11 E1A promoter region substituted by that of Ad5, 

conserving its own packaging signal and enhancer region. Ad11-Ad5-EP on the other 

hand has the whole Ad5 E1A enhancer (including the packaging signal) and promoter 

replacing the corresponding region of Ad11 (Figure 7.1). These two viruses were 

successfully produced (Table 7.1), their sequences confirmed (Figures 7.14 and 7.16) 

and contamination with other viruses ruled out (Figure 7.17). 
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CHAPTER 8 
Oncolytic potencies of Ad11-Ad5-P and Ad11-Ad5-EP 

 

 Results from the previous chapters have shown that Ad11 has significantly 

higher infectivity than Ad5 in human cancer cell lines. However in some cells, low 

levels of Ad11 E1A mRNA appear to have a negative effect on subsequent on viral 

DNA amplification, structural protein synthesis, infectious particle production and cell 

killing. To test the hypothesis that Ad11’s oncolytic potency in these cells could be 

improved by increasing E1A transcription, two recombinant Ad11 were produced (see 

Chapter 7). Ad11-Ad5-P has the Ad11 E1A promoter region replaced by that of Ad5, 

whilst Ad11-Ad5-EP has the whole Ad5 E1A enhancer (including the packaging 

sequence) and promoter substituting the corresponding region of Ad11. In this chapter, 

the oncolytic potencies of these two viruses were tested in vitro and in vivo in 

comparison to Ad5 and Ad11. 

 

8.1 Infectivities of Ad11-Ad5-P and Ad11-Ad5-EP are better than 

Ad5’s but similar to that of wild-type Ad11 
In order to check that infectivities of the recombinant viruses were unaltered by 

genetic manipulations, MIA PaCa-2 cells were tested. As described in detail in 5.1, cells 

were infected with viruses and analysed by qPCR using E1A primers and probes. 

Because the particle-to-PFU ratios of Ad11-Ad5-P (171.2 particles/PFU) and Ad11-

Ad5-EP (161.5 particles/PFU) are much higher than those of Ad5 (8.9 particles/PFU) 

and Ad11 (36.9 particles/PFU), infection was done using 100 PFUs/cell instead of 

particle count. The particle-to-PFU ratio is the proportion of the total number of virus 

particles to encapsulated, infectious particles. Receptor attachment was performed for 

an hour at 4 °C, whilst nuclear trafficking was done at 37 °C for 30, 60 and 120 

minutes, respectively. Consistent with results demonstrated earlier (Figure 5.1b), Ad11, 

Ad11-Ad5-P and Ad11-Ad5-EP attached and translocated to the nuclei more efficiently 

than Ad5 (P < 0.001) (Figure 8.1). No significant differences were noted between the 

recombinant viruses and wild-type Ad11. 
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Figure 8.1: Infectivities of Ad5, Ad11, Ad11-Ad5-P and Ad11-Ad5-EP in MIA 
PaCa-2. Experiments and analyses were performed as in Figure 5.1, except that cells were 
infected with viruses at 100 PFUs/cell. Results represent means of triplicate experiments ± 
SEM. 
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8.2 In vitro oncolytic potencies of Ad11-Ad5-P and Ad11-Ad5-EP 
Oncolytic potencies of the recombinant viruses were compared to those of Ad5 

and Ad11 in Capan-2, MIA PaCa-2, PANC-1, PaTu 8988s (pancreas), LNCaP and PC-3 

(prostate) cancer cell lines using the MTS assay. The dose-response curves are shown in 

Figure 8.2 and the EC50 are summarised in Figure 8.3a. In the Ad11-insensitve MIA 

PaCa-2, PANC-1 and LNCaP, there was a statistically significant improvement in cell 

killing by Ad11-Ad5-EP compared to Ad11. Ad5 remains the most potent virus in these 

cells. Surprisingly, Ad11-Ad5-EP was more efficient than Ad11 in killing the Ad11-

sensitive Capan-2, PaTu 8988s and PC-3. The potency of Ad11-Ad5-P was variable 

compared to that of Ad11, but was considerably weaker in Capan-2. 

 

 As described in 8.1, the particle-to-PFU ratios of Ad11-Ad5-P and Ad11-Ad5-

EP are much higher than of Ad5 and Ad11. When corrections were made such that cells 

were infected using PFUs rather than virus particles, further improvements in oncolytic 

potencies of the recombinant viruses were observed (Figure 8.3b). Ad11-Ad5-EP was 

still significantly more potent than Ad11 in all the cell lines, and was even better than 

Ad5 in killing MIA PaCa-2. Ad11-Ad5-P was similar (in Capan-2) or more potent than 

Ad11, but less so when compared to Ad11-Ad5-EP. 
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Figure 8.2: Dose-response curves of Ad5, Ad11, Ad11-Ad5-P and Ad11-Ad5-EP 
cytotoxicities in Capan-2, MIA PaCa-2, PANC-1, PaTu 8988s, LNCaP and PC-3. 
Cells were infected in 96-well plates. Cell viability was measured on day six after infection by 
the MTS assay. Data represent means ± SEM from duplicate experiments (with each 
concentration of virus in sextuplicates). 
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Figure 8.3: EC50 of Ad5, Ad11, Ad11-Ad5-P and Ad11-Ad5-EP in Capan-2, MIA PaCa-2, PANC-1, PaTu 8988s, LNCaP and PC-3. (a) EC50 in 
virus particles/cell. (b) EC50 adjusted to PFUs/cell by dividing the EC50 in (a) with the particle-to-PFU ratios of each of the viruses. A lower EC50 indicates better cell 
killing. Data are presented as means ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001. 
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 The potencies of these viruses were further tested on other cancer cell lines, 

namely MCF7, MDA-MB-231 (breast), HT-29, HCT 116 (colon), OVCAR-3 (ovary) 

and A549 (lung) (Figures 8.4 and 8.5a). There was a significant improvement in EC50 

with Ad11-Ad5-EP compared to Ad11. Ad11-Ad5-EP was even more potent than Ad11 

in the Ad11-sensitive MCF7 and HT-29. There were no significant differences between 

Ad11-Ad5-EP and Ad5 in MDA-MB-231 and HCT 116. Ad11-Ad5-EP was slightly 

better than Ad11 in OVCAR-3, but Ad5 remains the most potent. Interestingly A549 

was most sensitive to Ad11-Ad5-EP, with its EC50 nearly 30 times less than that of Ad5. 

Ad11-Ad5-P was largely comparable to Ad11 in its potency, except that it was much 

less effective against MCF7 and MDA-MB-231. 

 

 Again, when the EC50 in virus particles/cell were adjusted to PFUs/cell, there 

were further improvements in oncolytic potencies of the recombinant viruses (Figure 

8.5b). Ad11-Ad5-EP was still significantly more potent than Ad11, and was more 

effective than Ad5 in killing MDA-MB-231 and HCT 116. The potency Ad11-Ad5-P 

was variable, being more potent than Ad11 in most cells but still weaker in MCF7. 
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Figure 8.4: Dose-response curves of Ad5, Ad11, Ad11-Ad5-P and Ad11-Ad5-EP 
cytotoxicities in MCF7, MDA-MB-231, HT-29, HCT 116, OVCAR-3 and A549. 
Cells were infected in 96-well plates. Cell viability was measured on day six after infection by 
the MTS assay. Data represent means ± SEM from duplicate experiments (with each 
concentration of virus in sextuplicates). 
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Figure 8.5: EC50 of Ad5, Ad11, Ad11-Ad5-P and Ad11-Ad5-EP in MCF7, MDA-MB-231, HT-29, HCT 116, OVCAR-3 and A549. (a) EC50 in 
virus particles/cell. (b) EC50 adjusted to PFUs/cell by dividing the EC50 in (a) with the particle-to-PFU ratios of each of the viruses. A lower EC50 indicates better cell 
killing. Data are presented as means ± SEM. * P < 0.05, ** P < 0.01, *** P < 0.001, n.s – not significant. 
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8.3 Ad11-Ad5-EP has the highest DNA amplification independent of 

its E1A mRNA level but this does not always correlate with its 

oncolytic potency 
Results so far have demonstrated that Ad11-Ad5-EP is a more potent virus than 

Ad11-Ad5-P and Ad11. It was even more effective than Ad11 in killing the Ad11-

sensitive cancer cell lines (e.g. Capan-2, PC-3, MCF7, HT-29). Its effects on the Ad11-

insensitive cell lines were variable, for it was either weaker (e.g. MIA PaCa-2), similar 

(e.g. MDA-MB-231, HCT 116), or stronger (e.g. A549) than Ad5. To understand this, 

MIA PaCa-2, PC-3 and A549 were examined further by the stepwise analysis described 

in Chapter 5, namely the determination of E1A mRNA levels, DNA amplification, 

structural protein synthesis and production of infectious particles. 

 

In MIA PaCa-2, E1A mRNA levels from Ad11-Ad5-EP were higher than those 

of Ad11 and lower than those of Ad5, respectively (Figure 8.6). This is consistent with 

the luciferase reporter results (Figures 6.6a and 6.7a), indicating that the Ad5 E1A 

enhancer has a higher transcription-enhancing activity than Ad11’s. The Ad5 E1A 

promoter alone did not enhance E1A transcription, as shown by its lower mRNA levels 

from Ad11-Ad5-P. Unexpectedly, Ad11-Ad5-EP DNA amplified at the highest level, 

even greater than that of Ad5 for which MIA PaCa-2 cells were most sensitive to. Thus 

there appears to be no direct correlation between E1A mRNA levels and the ability of 

viral DNA to replicate, contradicting the results shown previously (Figures 5.2 and 

5.7). Despite the higher amount of DNA, hexon protein synthesis and the number of 

infectious Ad11-Ad5-EP produced were less than Ad5 (Figure 8.6), leading to the 

observed MTS result (Figure 8.2). 
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Production of infectious particles 
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Figure 8.6: E1A mRNA levels, DNA amplification, hexon expression and 
production of infectious particles in MIA PaCa-2 after Ad5, Ad11, Ad11-Ad5-P or 
Ad11-Ad5-EP infection. Cytotoxicities from the MTS assay are Ad5 > Ad11-Ad5-EP > 
Ad11 > Ad11-Ad5-P. Experiments and analyses were performed as in Figures 5.2-5.4 and 5.7. 
Graph results represent means of triplicate experiments ± SEM. * P < 0.05, *** P < 0.001. 
 

 

E1A mRNA levels of Ad11-Ad5-EP in PC-3 were the highest, followed by 

Ad11’s, resulting in higher levels of viral DNA and infectious particle production 

(Figure 8.7). Again, this could be explained by the higher transcription-enhancing 

activity of Ad5 E1A enhancer, as demonstrated by the luciferase reporter assays 

(Figures 6.6b and 6.7b). Although the high E1A mRNA levels from Ad11-Ad5-EP and 

Ad11 corresponded to subsequent DNA amplification, this did not apply to Ad11-Ad5-

P. Its E1A mRNA levels were similar to or lower than those of Ad5, yet significantly 

more Ad11-Ad5-P DNA, hexon protein and infectious particles were produced (Figure 

8.7). 
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Figure 8.7: E1A mRNA levels, DNA amplification, hexon expression and 
production of infectious particles in PC-3 after Ad5, Ad11, Ad11-Ad5-P or Ad11-
Ad5-EP infection. Cytotoxicities from the MTS assay are Ad11-Ad5-EP > Ad11-Ad5-P > 
Ad11 > Ad5. Experiments and analyses were performed as in Figures 5.2-5.4 and 5.7. Graph 
results represent means of triplicate experiments ± SEM. * P < 0.05, ** P < 0.01, *** P < 
0.001. 
 

 

The results for A549 cells are of particular interest. In disagreement with results 

from other cell lines tested, Ad11 E1A mRNA levels were the highest, even though it 

was much less sensitive to Ad11 killing compared to Ad5 (Figure 8.8). Ad11 DNA 

amplified to a greater extent than Ad5’s, yet similar to Ad11-Ad5-EP in MIA PaCa-2, 

events post-DNA replication, such as a decrease in hexon protein synthesis, resulted in 

lower amounts of infectious Ad11 particles produced. In contrast, Ad11-Ad5-EP E1A 

mRNA levels were lower than those of Ad11, yet its DNA replicated most efficiently. 

More hexon and infectious Ad11-Ad5-EP particles were subsequently produced 

resulting in efficient cell killing. The drop in infectious Ad11-Ad5-EP particles at 96 

hours occurred because all the cells were dead, limiting any further virus replication. 
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Production of infectious particles 
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Figure 8.8: E1A mRNA levels, DNA amplification, hexon expression and 
production of infectious particles in A549 after Ad5, Ad11, Ad11-Ad5-P or Ad11-
Ad5-EP infection. Cytotoxicities from the MTS assay are Ad11-Ad5-EP > Ad5 > Ad11 > 
Ad11-Ad5-P. Experiments and analyses were performed as in Figures 5.2-5.4 and 5.7. Graph 
results represent means of triplicate experiments ± SEM. * P < 0.05, ** P < 0.01, *** P < 
0.001. 
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8.4 Ad11-Ad5-EP is as effective as Ad5 in treating MIA PaCa-2 

human pancreatic cancer xenografts 
The in vivo efficacies of Ad11-Ad5-P and Ad11-Ad5-EP were compared to 

those of Ad5 and Ad11 in a MIA PaCa-2 human pancreatic cancer subcutaneous 

xenograft model. Establishment of tumours and virus injections were conducted as 

described in Chapter 4. As shown in Figure 8.9a, Ad11-Ad5-EP was as effective as 

Ad5 in reducing tumour growth, culminating in similar progression-free rates that were 

significantly better than the Ad11-treated group (logrank P < 0.05) (Figure 8.9b). 

Ad11-Ad5-P was comparable to Ad11. In vivo DNA amplification and production of 

infectious Ad11-Ad5-EP were significantly higher than Ad11 (Figures 8.9c and d). 

Reflective of the in vitro findings (Figure 8.6), Ad11-Ad5-EP showed the highest 

amount of viral DNA but came second to Ad5 in virus production (Figures 8.9c and d). 
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Figure 8.9: Anti-tumoural efficacies of Ad5, Ad11, Ad11-Ad5-P and Ad11-Ad5-EP 
in a MIA PaCa-2 subcutaneous xenograft model. (a) Tumour growth in BALB/c nude 
mice after three intratumoural injections of PBS (100 μl) or viruses (1 x 1010 particles/injection). 
Tumours were measured until the first mouse in each group has a tumour dimension of > 1.44 
cm2. Data represent means ± SEM (n = 8 per group). On day 35, significant difference was 
observed between the Ad11-treated group and the Ad5- or Ad11-Ad5-EP-treated group (P < 
0.05). (b) Percentage of progression-free mice using the Kaplan-Meier method (logrank P < 
0.05 between Ad5 or Ad11-Ad5-EP and Ad11). (c) Established tumours were injected once 
with 1 x 1010 virus particles. At the stated time points, tumours were harvested in triplicates, 
homogenised in 2 ml of DMEM, frozen and thawed three times in liquid nitrogen and at 37 °C, 
respectively prior to DNA extraction. qPCR was performed using E1A primers and probes. 
Results are presented as average arbitrary units ± SEM, normalised against total DNA, with the 
highest value arbitrarily set to 100. (d) The above cell lysates were used to infect an indicator 
cell line, JH-293, in 96-well plates at six 1:10 serial dilutions. The cells were inspected for CPE 
11 days later. The TCID50 and number of PFUs were calculated using the Reed-Muench 
accumulative method. Results are presented as PFUs/ng of total DNA ± SEM. * P < 0.05. 
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8.5 Summary of Chapter 8 
The oncolytic potencies of the Ad11 mutants Ad11-Ad5-P (with the Ad11 E1A 

promoter replaced by that of Ad5) and Ad11-Ad5-EP (with the Ad5 E1A enhancer and 

promoter substituting the corresponding region of Ad11) were compared to those of 

Ad5 and Ad11. Ad11-Ad5-EP was significantly more potent than Ad11 in all the cancer 

cell lines tested, even in those that were already sensitive to Ad11 (Figures 8.3 and 

8.5). There was a vast improvement in cytotoxicity of Ad11-Ad5-EP over Ad11 in all 

the Ad11-insensitive cell lines. In two of these, MDA-MB-231 and HCT 116, Ad11-

Ad5-EP was as efficacious as Ad5, although Ad5 remains the most potent in MIA 

PaCa-2, PANC-1, LNCaP and OVCAR-3. Strikingly, the lung carcinoma cell line A549 

was nearly 30 times more sensitive to Ad11-Ad5-EP than to Ad5. The potency of Ad11-

Ad5-P was variable in comparison to Ad11, but was always weaker than Ad11-Ad5-EP. 

Considering the high particle-to-PFU ratios of Ad11-Ad5-P and Ad11-Ad5-EP, their 

potencies were even much greater if cells were infected using PFUs instead of particles. 

However, due to the toxicity and immunogenicity of both infectious and non-infectious 

particles, particle counts rather than PFUs are normally used for experiments and 

clinical trials of Ads. 

 

 Ad11-Ad5-EP was as effective as Ad5, but significantly better than Ad11, in 

treating MIA PaCa-2 tumour xenografts (Figures 8.9a and b). This occurred despite 

the production of more Ad5 compared to Ad11-Ad5-EP (Figure 8.9d). This could be 

due to a faster clearance of Ad5 in nude mice where CAR, but not CD46, is expressed. 

 

 Results from Figures 8.6 to 8.8 demonstrated that increased E1A mRNA level is 

important but not the sole factor required to improve Ad11 DNA replication. Higher 

expression of other early genes such as E1B, E2 and E4, mediated both by E1A and the 

enhancer region, is likely to be involved. In some cell lines (e.g. Ad11-Ad5-EP in MIA 

PaCa-2, Ad11 in A549), events post-DNA replication become the limiting steps for 

effective virus production and cell killing. Regardless of the mechanisms involved, 

recombinant Ad11 with the Ad5 E1A enhancer-promoter is a more potent virus than its 

wild-type counterpart and should be used in the future development of oncolytic Ad11. 
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CHAPTER 9 
Discussion and future direction 

 

9.1 Assessment of Ad11 as a potential oncolytic virus 
The failure of Ad5 in the treatment of pancreatic cancer prompted the search of 

an alternative oncolytic virus that could overcome some of the limitations associated 

with Ad5, such as the low expression and inaccessibility of its binding receptor CAR124-

126, 184, 185, 197, high prevalence of neutralising antibodies172, 173, 201, 202 and significant 

liver uptake and toxicity137. Whilst Ad11172, 173, 177, 218 and the chimeric Ad5/11192, 219-221 

have already been shown to be promising gene transfer vectors secondary to their high 

infectivity across many cell types, this study aimed to assess in detail the potential of 

Ad11 as an oncolytic virus. 

 

During the timeframe of this project, three papers have reported the use of Ad11 

as an oncolytic virus. Sandberg et al.136 developed a recombinant Ad11 by the insertion 

of a cytomegalovirus (CMV) promoter-driven green fluorescent protein (GFP) with an 

SV40 enhancer into the Ad11 genome. They showed that this virus effectively 

transduced, replicated and lysed the PC-3 prostate cancer cell line in vitro and in vivo. 

Oncolytic capacity was independent of p53 status. However, no comparison was made 

with the commonly used Ad5. Shashkova et al.137 compared the oncolytic efficiencies 

of Ad5, -6, -11 and -35 on a panel of human cancer cell lines in vitro as well as the DU 

145 human prostate cancer cell line in vivo. In the latter, Ad5, -6 and -11 have similar 

anti-cancer activities after intratumoural or intravenous treatment, whereas Ad35 was 

not efficacious. Importantly they demonstrated that hepatotoxicity only developed with 

Ad5 in CD46-transgenic C57BL/6 mice but not with the other serotypes. Both of these 

studies found that the expressions of CAR and CD46 correlated with the in vitro 

cytotoxicities of different Ads in most but not all cell lines, although no molecular 

mechanism has been determined. More recently, Senac et al.138 compared Ad5, -6, -11, 

-26, -35, -40, -41 and -48 in the infection and killing of multiple myeloma cells. They 

found that although Ad11 and Ad35 were more infective than other serotypes, their 

DNA failed to replicate, resulting in weak oncolytic abilities. 

 

 This study started by determining the expression levels of CAR and CD46 in 

eight human pancreatic cancer cell lines, as well as the prostate cancer cells DU 145, 
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LNCaP and PC-3, the latter two are known to be very sensitive and insensitive to Ad5 

cytotoxicity, respectively. Although all the cell lines tested expressed significantly 

higher levels of CD46 compared to CAR (Figure 3.1), no correlation between receptor 

expression and cytotoxicity was observed (Figure 3.3). In fact Ad11 was less potent 

than Ad5 in the majority of cancer cell lines tested in vitro (Figures 3.3 and 3.5). In 

vivo, Ad11 showed superior efficacy in treating the Ad5-insensitive PC-3 cells (Figure 

4.1). Treatment of the Ad11-insensitive MIA PaCa-2 human pancreatic cancer 

xenografts showed faster tumour growth with the Ad11-treated group compared to Ad5 

(Figure 4.3), although this was less than one would expect given the more remarkable 

in vitro result (Figure 3.2). A similar result was demonstrated by Shashkova et al.137 

with the Ad11-insensitive DU 145. The reason for this is unknown, although it could be 

explained by the slower clearance of Ad11 in nude mice where CAR, but not CD46, is 

expressed. Repeating the experiment on CD46-transgenic nude mice might shed some 

light to this. 

 

The higher expression of CD46 is consistent with the much greater infectivity of 

Ad11, with significantly more virus particles attaching to the cellular membrane and 

entering the nucleus (Figures 5.1 and 5.8). It has been reported that after internalisation 

into the cell, certain subgroup B Ads (Ad3, -7 and -35) accumulate in lysosomes 

whereas subgroup C viruses (Ad2 and Ad5) traffic rapidly to the nuclear envelope, 

because the former group requires a lower pH in the endosomal compartments to escape 

into the cytosol211-214. Although it is likely that the percentage of nuclear entry relative 

to the total membrane-associated viruses is lower for Ad11 compared to Ad5, this is 

perhaps of little significance given that the absolute number of Ad11 in the nucleus is 

still much higher.  

 

In cells that were insensitive to Ad11 cytotoxicity and in spite of its higher 

infectivity (Figures 5.1b, d and 5.8a), Ad11 E1A mRNA levels were much lower than 

those of Ad5 (Figures 5.7a and 5.8a), producing a negative effect on viral DNA 

amplification (Figures 5.2a and 5.8a), structural protein synthesis (Figure 5.3a), 

progeny production (Figures 5.4a and 5.8a) and cell killing (Figure 3.2). This is 

summarised in Figure 9.1 and appears to be the case for three cancer cell lines (MIA 

PaCa-2, PANC-1 and LNCaP. A549, however, as discovered later, does not fit into 

this). E1A transcription is the first event to occur after virus entry into the nucleus, and 

the E1A proteins are important at inducing the expression of E1B, E2, E3 and E4, most 
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of which are crucial for virus replication. Cells that were sensitive to Ad11 cytotoxicity 

showed higher levels of E1A mRNA after Ad11 infection (Figures 5.7b and 5.8b).  

 

 

 

 
 

 
Figure 9.1: Mechanisms of attenuated potency of Ad11 in MIA PaCa-2, PANC-1 
and LNCaP. Ad11 has higher infectivity than Ad5 but the transcription of its E1A gene is 
significantly reduced, resulting in less DNA amplification, virus production and subsequent cell 
killing.  
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9.2 Adenovirus E1A transcriptional regulation 
In eukaryotes, protein-coding genes are transcribed by the enzyme RNA 

polymerase II. For the initiation of transcription, RNA polymerase II and transcription 

factors have to form a complex at the promoter region. The most highly conserved 

element of these promoters has the sequence TATAAA, called the TATA box, located 

about 25 bp upstream of the transcription start site. An enhancer is a sequence that 

increases the rate of transcription in an orientation- and location-independent manner. 

 

The regulation of adenoviral E1A transcription is a complex issue. In Ad5, an 

enhancer region of E1A was originally identified by Hearing and Shenk in 198355. This 

was estimated to be located between 194-358 bp relative to the left end of the viral 

genome, although this was later refined to 194-308 bp56. Deletion of this sequence could 

decrease transcription by a factor of 20 during the early but not late phase of infection. 

This region composes of element I (repeated at 200 and 300 bp), which specifically 

enhances E1A transcription, and element II (250-280 bp), which modulates in cis of all 

early viral transcriptional units56. A third enhancer element, the E2F binding site, is 

repeated at 212-219 and 275-282 bp53. The adenoviral packaging signal is located 

within the enhancer region57, 58. The 230-235 bp region appears to have the greatest 

effect on E1A transcription222. The transcription factor EF-1A was found to bind to both 

copies of element I and related sequences in the enhancer (200-205, 230-235 and 298-

303 bp), further upstream (113-118 and 156-161 bp), as well as the E4 enhancer 

region54. In contrast to Ad5, the E1A enhancer region of Ad11 does not contain binding 

sites for EF-1A. Cellular EF-1A expression alone, however, could not completely 

explain the variation in E1A mRNA levels seen. As shown in Figure 6.1, the absence of 

EF-1A in the Ad11-sensitive Capan-2 could explain this cell’s preference to transcribe 

Ad11 E1A to Ad5’s. This was not shown in the Ad11-sensitive PC-3, where EF-1A 

expression was similar to those of the Ad5-sensitive MIA PaCa-2 and LNCaP. EF-1A is 

a tetrameric protein complex composed of two α and two β subunits. The former 

contains the DNA-binding domain whilst the latter has the transcription-activation 

domain223. The β subunit can exist in different isoforms, but it must associate with the α 

subunit to interact with its target genes. Furthermore their expressions are highly 

concordant even when their genes are located at unlinked chromosomal loci224. 

Therefore, even though the antibody used in this study only detects the α subunit, it is 

believed that little extra information would be gained by using β-specific antibodies. 
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Besides the regulation of other early viral genes, the E1A proteins have also 

been found to regulate their own expression. Tibbetts et al.216 found that E1A has both 

positive and negative effects in a temporal manner. They suggested that E1A acts to 

amplify E1A early in infection but represses transcription at later time. This is possibly 

related to the enhancer region225 although no specific targets have been identified226. 

The E1A protein 243R is a repressor of transcription whereas 289R is a bifunctional 

activator-repressor227. Cogan et al.228 showed that the 289R transactivating activity and 

the responsiveness of E1A promoter differ between adenoviral species. A transcriptional 

control region has also been found within the protein-coding sequence of Ad5 E1A. 

Osborne et al.217 demonstrated that a single-base deletion 399 bases downstream from 

the E1A cap site suppressed transcription to only 2% of the wild-type rate, although 

Hearing et al.226 found that a cellular α-globin gene substituted for E1A could also be 

positively regulated by E1A. All these factors could have played a part in the observed 

luciferase reporter assay results. Except for PaTu 8988s (Figure 6.8b), the region 

upstream of Ad5 E1A appears to have higher transcription-enhancing activity than that 

of Ad11, even in cells that showed higher levels of Ad11 E1A mRNA (Figures 5.7b 

and 6.6b). Interestingly after Ad11 infection in Capan-2, the activity of Ad11 E1A 

upstream region became similar or possibly higher than that of Ad5 after Ad5 infection 

(Figure 6.7b), possibly due to the transactivating activity of E1A proteins produced by 

infected cells. Nevertheless, this was not the case for PC-3, which has higher levels of 

Ad11 E1A mRNA even though its upstream region still has a much weaker activity than 

that of Ad5 after infection (Figures 5.7b and 6.7b). The reason is unknown but there 

are several possibilities. Perhaps this was due a higher rate of Ad5 E1A mRNA 

degradation compared to Ad11’s in PC-3. As mentioned earlier the transcriptional 

activity of E1A is a time-dependent event and that the E1A sequence itself could play a 

role in its regulation. Furthermore, the higher levels of Ad11 E1A in PC-3 after 

infection could have negatively regulated the transcription of the luciferase reporter 

gene. Instead of infection, one could perhaps overcome this issue by transfecting cells 

with an equal amount of Ad5 or Ad11 E1A DNA, and measure the luciferase reporter 

activity at different time points. The translation of E1A mRNA can be downregulated by 

the E3 10.4K and 14.5K proteins229, and hence it is equally important to develop an 

antibody against Ad11 E1A proteins so that they can be analysed by Western blotting. 

They could not be detected by the currently available antibodies raised against Ad2 or 

Ad5 E1A (results not shown). An antibody raised against the Ad11 E1A amino acid 

sequence with the highest surface probability (DGFPPSDEEDHEKE; produced by 
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GenScript) had been tested but showed significant non-specific binding even in 

uninfected cells (results not shown). 

 

A previous study has shown that low levels of E1A are sufficient to initiate Ad5 

replication in HeLa cells, and it was suggested that Ad5 normally produces E1A in 

excess of that required230. In an attempt to clarify this, Zheng et al.231 found that high 

E1A levels produced by a mutant Ad5 with its E1A driven by the strong CMV promoter 

could not always enhance cytotoxicity in cancer cells. However, this work was only 

done on viruses lacking the E1B 55K gene, which has a major role in virus replication. 

As described in Chapter 5, mRNA levels of Ad11 E1A appear to correlate with viral 

DNA amplification. Perhaps in most cancer cells, Ad11 E1A expression does not reach 

its critical level and that by increasing this, combined with the higher of infectivity of 

Ad11, could result in improved virus replication and subsequent killing of cells 

insensitive to Ad11. 
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9.3 Recombinant Ad11 with Ad5 E1A enhancer and/or promoter 
Given the observation that higher levels of Ad11 E1A mRNA are associated 

with better virus replication, it was hypothesised that its oncolytic potency in Ad11-

insensitive cancer cells could be improved by increasing E1A transcription. Because the 

region upstream of Ad5 E1A has higher transcription-enhancing activity, this region 

was used in place of Ad11’s to drive the expression of E1A. Ad11-Ad5-P is a 

recombinant Ad11 with its E1A promoter region replaced by that of Ad5, conserving its 

own packaging signal and enhancer region. Ad11-Ad5-EP on the other hand, has the 

whole Ad5 E1A enhancer (including the packaging signal) and promoter substituting the 

corresponding region of Ad11 (Figure 7.1). Contrary to the initial assumption, Ad5 

packaging signal appears to work as well as its Ad11 counterpart when placed in the 

Ad11 backbone. The high homology of L1 52/55K between Ad5 and Ad11 might be the 

reason behind this169, as it has been shown that the serotype specificity of adenoviral 

DNA packaging is mediated by this protein232. 

 

The universally-strong CMV promoter was not used to drive Ad11 E1A 

expression for a number of reasons. Firstly, Ad11-Ad5-P and Ad11-Ad5-EP were 

constructed to test the hypothesis that these Ad5 E1A regulatory regions were more 

active in the Ad5-sensitive cancer cell lines, given the higher levels of E1A mRNA 

observed after Ad5 infection (Figures 5.7a and 5.8a). Secondly the CMV promoter, 

unlike the E1A enhancer region, would not be able to modulate the expression of other 

early genes needed for effective virus replication. Thirdly, combining the genetic 

materials of two very different viruses would have safety concerns when used in future 

clinical studies. 

 

 Considering the high particle-to-PFU ratios of Ad11-Ad5-P (171.2 

particles/PFU) and Ad11-Ad5-EP (161.5 particles/PFU) in comparison to Ad5 (8.9 

particles/PFU) and Ad11 (36.9 particles/PFU), their potencies were even much greater 

if cells were infected using PFUs instead of particles (Figures 8.3 and 8.5). This ratio 

represents the proportion of the total number of virus particles to encapsulated, 

infectious particles. Due to the toxicity and immunogenicity of both infectious and non-

infectious particles, particle counts rather than PFUs are normally used for experiments 

and clinical studies of Ads. Even when particle counts were used, the oncolytic potency 

of Ad11-Ad5-EP was significantly better than that of Ad11 in all the cancer cell lines 

tested, even in those that were already sensitive to Ad11 (Figures 8.3 and 8.5). There 
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was a vast improvement in cytotoxicity of Ad11-Ad5-EP over Ad11 in all the Ad11-

insensitive cell lines. In two of these, MDA-MB-231 and HCT 116, Ad11-Ad5-EP was 

as efficacious as Ad5, although Ad5 remains the most potent in MIA PaCa-2, PANC-1, 

LNCaP and OVCAR-3. Strikingly, the lung carcinoma cell line A549 was nearly 30 

times more sensitive to Ad11-Ad5-EP than to Ad5. The potency of Ad11-Ad5-P was 

variable in comparison to Ad11, but was always weaker than Ad11-Ad5-EP. 

Preliminary results with a mutant Ad11 with the Ad5 E1A enhancer and the human 

telomerase reverse transcriptase (hTERT) promoter driving E1A has failed to reproduce 

the remarkable oncolytic potency of Ad11-Ad5-EP (data not shown). This suggests that 

both the enhancer and promoter regions must be present for maximum efficiency.  

 

In the Ad11-insensitive MIA PaCa-2, the E1A mRNA levels are Ad5 > Ad11-

Ad5-EP > Ad11 > Ad11-Ad5-P (identical to the oncolytic potencies) (Figures 8.2 and 

8.6). The reason behind the higher levels of E1A mRNA with Ad5 compared to those of 

Ad11-Ad5-EP, despite the better infectivity of the latter, is unknown. Perhaps this was 

due to the stronger transactivating activity of Ad5 E1A proteins on its own enhancer as 

well as region further upstream (Figure 6.7a). Intriguingly despite this, Ad11-Ad5-EP 

DNA amplified much more efficiently than that of Ad5 (Figures 8.6). As mention 

earlier, the E1A enhancer contains an element II that can increase the expression all 

adenoviral early transcriptional units56. It is possible that the small increase in Ad11 

E1A proteins (which are needed for the expression of these early genes), together with 

the strong enhancing activity of Ad5 element II, led to a significant elevation of E1B, 

E2 and E4 proteins, all of which are important for viral DNA replication. As such, 

analysis of these proteins would be essential to determine the mechanisms involved. 

The subsequent production of infectious Ad11-Ad5-EP, and therefore its oncolytic 

potency, was however limited by events post-DNA amplification in this cell line 

(Figure 8.6). Western blot showed that the amount of hexon protein was significantly 

reduced. 

 

The results with Ad11-Ad5-EP in the Ad11-sensitive cell lines Capan-2, PC-3, 

PaTu 8988s, MCF7 and HT-29 were unexpected (Figures 8.3 and 8.5). In PC-3, the 

oncolytic potency rankings are Ad11-Ad5-EP > Ad11-Ad5-P > Ad11 > Ad5 (consistent 

with viral DNA amplification and production of infectious particles), but the E1A 

mRNA levels are Ad11-Ad5-EP > Ad11 > Ad5 = Ad11-Ad5-P (Figures 8.2 and 8.7). 

The Ad11 E1A enhancer should theoretically be stronger given the mRNA levels 
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observed after Ad5 and Ad11 infections (Figure 5.7b). But based on the luciferase 

reporter assay results (Figures 6.6b and 6.7b), it is probable that the Ad5 E1A enhancer 

was indeed more active in PC-3, but there was a higher rate of Ad5 E1A mRNA 

degradation compared to Ad11’s. Possibly by a combination of good infectivity, more 

stable Ad11 E1A mRNAs, strong Ad5 E1A enhancer coupled with the higher 

transactivating activity of Ad11 E1A proteins, Ad11-Ad5-EP managed to achieve the 

highest DNA amplification and virus production. The reason behind the higher 

replication of Ad11-Ad5-P compared to Ad11, despite its lower E1A mRNA levels, is 

unknown (Figure 8.7). It is possible that in PC-3, a moderate amount of Ad11 E1A was 

sufficient for maximum virus replication, and that the Ad5 E1A promoter has 

transcription-enhancing activity of other early viral genes.  

 

Results with the A549 lung cancer cell line are more complicated. The oncolytic 

potency rankings are Ad11-Ad5-EP > Ad5 > Ad11 > Ad11-Ad5-P (Figure 8.4). The 

E1A mRNA and viral DNA levels are in the order of Ad11 > Ad5 > Ad11-Ad5-EP > 

Ad11-Ad5-P, and Ad11-Ad5-EP > Ad11 > Ad11-Ad5-P > Ad5, respectively (Figure 

8.8). The E1A mRNA levels could be the result of the complex interactions between the 

different transactivating activities of E1A proteins and the regions at which they bind to. 

Also it is not known if the mRNA levels were reflective of the E1A protein levels. The 

highest level of Ad11-Ad5-EP DNA again was probably due to the effect of Ad5 

element II on other viral early gene expression. Nevertheless, unlike in MIA PaCa-2 

cells, Ad11-Ad5-EP still produced the highest number of infectious particles. This is in 

contrast to Ad11 and Ad11-Ad5-P, which despite having more viral DNA than Ad5, 

lower amounts of infectious particles were produced. Western blot showed that the 

synthesis of hexon protein was significantly reduced with these two viruses (Figure 

8.8). The reason for this is unknown. It is possible that differential expressions of the 

E1B 55K protein, controlled by E1A and the enhancer region, might have affected the 

export of viral RNAs and subsequent protein translation233. Another probable 

explanation is the different packaging signals – perhaps the less efficient packaging of 

Ad11 and Ad11-Ad5-P resulted in rapid degradation of the empty adenoviral capsids. 

The adenoviral packaging domain consists of seven functional units called the A repeats 

because of their AT-rich nature57, 58. Other cellular and viral proteins can regulate the 

packaging of viral DNA, as observed by Grable and Hearing234, where the activity of 

Ad5 packaging domain could be competed in trans by unlinked copies of packaging 

sequences. It is now known that the viral proteins IVa2, L1 52/55K and L4 22K bind to 
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this domain and play a key role in virion assembly235-237. The chicken ovalbumin 

upstream promoter-transcription factor (COUP-TF), Oct-1 and CCAAT displacement 

protein (CDP) are some of the cellular proteins that bind to the packaging elements238, 

239, although later studies have suggested that they are unlikely to be involved in 

packaging function240. Other yet unidentified proteins could well be involved57, 237. As 

the packaging signal is located within the enhancer region, regulatory proteins that bind 

to the enhancer could also have a dual role in transcription as well as packaging. This is 

an area of interest and warrants further studies. 

 

 In summary, increased E1A mRNA level is important, though not the sole factor, 

in improving viral DNA replication. Higher expression of other early genes such as 

E1B, E2 and E4, mediated by the enhancer region, is likely to be involved. In some cell 

lines (e.g. Ad11-Ad5-EP in MIA PaCa-2, Ad11 in A549), events post-DNA replication 

become the limiting steps for effective virus production and cell killing. Regardless of 

the mechanisms involved, recombinant Ad11 with the Ad5 E1A enhancer-promoter is a 

more potent virus than its wild-type counterpart and should be used in the future 

development of oncolytic Ad11. 
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9.4 Safety issues of Ad11 
Having demonstrated that Ad11 is a promising oncolytic virus, the safety 

concerns of Ad11 need to be addressed. Ad11 is a recognised cause of urinary tract 

infection, haemorrhagic cystitis and acute haemorrhagic conjunctivitis. Infection results 

in mild symptoms in healthy individuals but could be more severe in 

immunocompromised patients241-243. Rarely, cases of acute respiratory disease, caused 

by Ad11a (BC34 strain) have been reported166-168. There is no evidence of Ad11 

oncogenicity in humans, allaying any concerns over its transforming potential172, 244. 

The ubiquitous presence of CD46 in humans suggests that it could infect any cell in the 

body. In human CD46-transgenic mice, Ad11 sequestration was higher than Ad5 in the 

lung, kidney and spleen 30 minutes after intravenous delivery, but this was not 

detectable at 72 hours172. It was rapidly cleared from the liver with no Ad11 vector-

mediated transduction of hepatocytes.  

 

The effects of Ad11 in the induction of inflammatory reactions are poorly 

understood. Compared to Ad5, some subgroup B Ads (Ad16 and Ad35) have been 

found to reduce cytokine production (interleukin (IL)-1, -6 and -12) by human 

peripheral blood mononuclear cells stimulated with IFN-γ and lipopolysaccharide245. 

This appears to be the result of fibre-CD46 interaction leading to the inhibition of 

CCAAT-enhancer-binding protein β (C/EBPβ) transcription factor expression. 

However, study by the same group also showed that these viruses preferentially induce 

Toll-like receptor-9 (TLR-9)-mediated events such as NF-κB (nuclear factor κ-light-

chain-enhancer of activated B cells) activation and IFN-β expression in HeLa cells, 

despite the lower frequency of stimulatory cytosine-phosphate-guanine (CpG) motifs in 

their genomes compared to Ad5246. In CD46-transgenic mice, Ad11 induced more pro-

inflammatory cytokines and chemokines (IL-6 and monocyte chemoattractant protein-1) 

than Ad5 after intravenous injection, although this was lower with the chimeric 

Ad5/11147. However, doses used are comparatively much higher (4 x 1012 particles/kg, 

assuming a mouse weighs 25 g) than those of Ad5 used in clinical trials (maximum 

doses of 2.5-7.5 x 1010 particles/kg, assuming a human weighs 80 kg), where it has been 

well tolerated122, 247-249.  
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9.5 Disadvantages of Ad11 
The particle-to-PFU ratios of wild-type and mutant Ad11 are higher than that of 

Ad5. For example, the viruses used in this study have the following ratios: Ad5 (8.9 

particles/PFU), Ad11 (36.9 particles/PFU), Ad11-Ad5-P (171.2 particles/PFU) and 

Ad11-Ad5-EP (161.5 particles/PFU). This is a drawback in terms of high-titre 

production. Importantly, immune responses are activated by both infectious and non-

infectious particles and therefore a low particle-to-PFU ratio is desirable. Nonetheless, 

one could argue that the use of JH-293 cells in determining this ratio may not be most 

suitable for Ad11. JH-293 has been shown to be less sensitive to Ad11 than to Ad5 

(Figure 5.6). Furthermore, plaques formed by Ad11-infected cells are less transparent 

than those caused by Ad5. These could have led to an overestimation of the ratio. 

 

 Although Ad11 has benefit over Ad5 in terms of the lower prevalence of serum 

neutralising antibodies, CD4+ helper and cytotoxic T cells against one human Ad 

serotype may cross-react with other serotypes, resulting in virus clearance and limiting 

its therapeutic efficacy250, 251. The significance of this is unknown but it could actually 

be beneficial. Evidence suggests that although the innate immune response plays an 

important role in virus clearance, T cell-mediated responses are largely responsible for 

the anti-tumoural effect81, 148, 252-254. It is therefore possible that the presence of Ad11 

antigens on infected tumour cells would be recognised by pre-existing CTLs and result 

in better tumour eradication. 

 

In CD46-transgenic mice, Ad11 was found to bind to blood cells and persist 

much longer in the circulation than Ad5 after intravenous injection147, 172. This was 

likely to be mediated by the hexon and/or penton proteins rather than fibres, as the 

chimeric Ad5/11 did not show the same level of association. Binding to blood cells may 

decrease access of the virus to extravascular targets and thus reduce its therapeutic 

activity. In a study conducted by Lyons et al.142, samples from a patient to whom Ad5 

was administered in a clinical trial showed that > 98% of viral genomes in the blood 

were cell-associated, whereas nearly all viral DNA in murine blood was free in the 

plasma. It is therefore reasonable to conclude that the comparison between Ad5- and 

Ad11-blood cell association in CD46-transgenic mice cannot be extrapolated to clinical 

contexts. It is possible that the levels of such association may be similar between these 

viruses in humans. Clearly this requires additional investigation. 
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9.6 Comparison with Ad35 
Ad35 was first isolated from a renal transplant recipient with interstitial 

pneumonia255, and like Ad11 is mainly associated with infections of the urinary tract 

and in immunocompromised patients. It is a much better gene transfer vector than 

Ad5202. Ad11 and Ad35 both bind to CD46175 and they have comparable prevalence of 

neutralising antibodies in the human population (7-25% and 10-31% for Ad35 and 

Ad11, respectively)172, 173, 201, 202, 256, 257. Both belong to subgroup B2 and have an 

overall DNA homology of > 98%, but the majority of base pair mismatches lie within 

the hexon and fibre genes170. This might explain why Ad11 is able to bind to receptor(s) 

other than CD46. Surprisingly Ad5/35 seems to have a higher infectivity than Ad5/11 in 

a number of cancer cell lines192, 219. The reason for this is unknown. With regards to 

safety, blood clearance of Ad35 was much quicker and but has significantly higher 

levels of sequestration in the lung and spleen of CD46-transgenic mice after intravenous 

injection. The levels of pro-inflammatory cytokines induced were probably similar to 

those of Ad11147, so were its affinity to factor X153 and liver toxicity137.  To compare the 

oncolytic potencies of Ad11 and Ad35, MIA PaCa-2, PANC-1 (pancreatic) and PC-3 

(prostate) cancer cell lines were tested (Figure 9.2). Ad35 caused significantly less 

cytotoxicity than Ad11, although this was likely due to the high particle-to-PFU ratio of 

Ad35 (2170.2 particles/PFU). In vivo efficacy of Ad35 in treating a DU 145 tumour 

model was reported to be the weakest in comparison to Ad5, -6 and -11137. Given these 

findings the assessment of Ad35 as an oncolytic virus was abandoned. 
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Figure 9.2: Dose-response curves of Ad11 and Ad35 cytotoxicities in MIA PaCa-2, 
PANC-1 and PC-3. Cells were infected in 96-well plates. Cell viability was measured on day 
six after infection by the MTS assay. Data represent means ± SEM from duplicate experiments 
(with each concentration of virus in sextuplicates). 
 

 

 

 

 

 

 

 



 
185

9.7 Future direction 
The potential of Ad11 as an effective oncolytic virus cannot be ignored. The 

much better infectivity of Ad11 compared to Ad5 means that inserted therapeutic genes 

would have much higher levels of expression. A variety of anti-cancer genes can be 

exploited, such as tumour suppressor, pro-apoptotic and anti-angiogenic genes, but for a 

better systemic response, immunomodulatory genes should be considered. Arming 

Ad11 with tumour-specific antigen is also an attractive option, given that it is more 

effective in transducing DCs172, 173 and could result in a stronger immune response. 

Deletion of Ad11 genes such as E3 18.5K (18.4K; equivalent to E3 gp19K of Ad5), 

20.3K (20.1K) and 20.6K (20.8K) (possibly involved in immune-response evasion and 

therefore dispensable)169, 170, 258 could provide additional space for transgene insertion. 

This study has also shown that the oncolytic potency of Ad11 could be improved by 

replacing its E1A enhancer-promoter region with that from Ad5. It is believed that this 

should form the backbone of any future oncolytic Ad11 mutants. 

 

Tumour selectivity is of particular importance due to the ubiquitous expression 

of CD46. Although CD46 was reported to be upregulated in a number of 

malignancies186-188, its level in immortalised human pancreatic ductal epithelium was 

similar to those in the pancreatic cancer cell lines (Figures 3.1 and 9.3). Ad11 also 

replicated better than Ad5 in primary human epithelial cells (Figure 9.4). Approaches to 

improve its tumour selectivity include the deletion of the pRb-binding region of E1A, 

E1B 55K or E1B 21K (20K; equivalent to Ad5 E1B 19K)169, 170. As listed in Table 1.3, it 

has benefits over Ad5 in terms of attachment receptor, prevalence of neutralising 

antibodies and liver toxicity. It is conceivable that after achieving tumour selectivity, 

Ad11 would be a much safer and effective alternative to Ad5 when given intravenously 

to treat local and metastatic diseases. The Ad5 10.5K (ADP) gene, responsible for 

efficient lysis and release of progeny viruses from infected cells82, is absent in Ad11169. 

As overexpression of this gene in Ad5 was found to increase cell lysis and virus 

spread84, 85, this could be done for Ad11 as well. 
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Figure 9.3: CAR and CD46 expression levels in immortalised human pancreatic 
ductal epithelium. Results represent means of triplicate readings ± SEM from flow 
cytometric analysis and were corrected for non-specific staining using control antibodies. Dead 
cells were excluded by PI staining. *** P < 0.001. 
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Figure 9.4: Production of infectious Ad5 and Ad11 in normal bronchial/tracheal 
epithelial cells. Cells were infected in 6-well plates with viruses at 100 particles/cell in 
BEGM. After two hours, this was replaced by fresh BEGM. At the stated time points post-
infection, cells and media were collected, frozen and thawed three times in liquid nitrogen and 
at 37 °C, respectively. These were used to infect an indicator cell line, JH-293, in 96-well plates 
at six 1:10 serial dilutions. The cells were inspected for CPE 11 days later. The TCID50 and 
number of PFUs/cell (cell count on the day of infection) were calculated using the Reed-
Muench accumulative method. Results represent means of triplicate experiments ± SEM. ** P < 
0.01. 
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In contrast to Ad2 and Ad5, the biology of Ad11 is less well understood. Many 

of its properties need to be elucidated before its full potential could be taken advantage 

of. These include its interactions with the host cell, e.g. the identity of receptor X, virus 

entry and trafficking, regulation of gene expression and virus replication. Greig et al.259 

recently demonstrated that in addition to internalisation via CD46, the presence of 

physiological levels of factor X can enhance Ad35 entry secondary to interaction with 

HSPGs. However, intracellular trafficking appears to be hindered by this HSPG 

pathway compared to the CD46 pathway (i.e. with no factor X added). It is not known if 

this also applies to Ad11. As shown in this study, events post-DNA replication such as 

virion assembly and mode of cell killing are worth exploring given that they appear to 

govern its oncolytic potency in some cell lines. Some Ad11 genes are of unknown 

function and certainly need investigating, i.e. 20.3K (20.1K), 20.6K (20.8K) and L6169, 

170 . Its in vivo characteristics also require further clarification, preferably in an animal 

species closer to humans. Intravenous injections of chimeric Ad5/35 and Ad5/11 have 

been tested in baboons, in which they showed less uptake by most organs and lower 

levels of pro-inflammatory cytokine production (IL-6 and TNF-α) than Ad5, with the 

latter causing widespread endothelial damage and inflammation260. 

 

A major hurdle for the study of Ad11 is the lack of a suitable immunocompetent 

model. The use of non-human primates (such as gorillas, which unlike baboons but 

similar to humans, do not have CD46 on their erythrocytes261), although ideal, is often 

difficult and not practical. CD46 is widely expressed in humans, but in mice it is only 

found in the testes, and the homology between human and rodent CD46 is low206, 262. It 

follows that murine cells and tumours would be resistant to Ad11 infection and 

cytotoxicity, as shown in Figure 9.5 with the C57BL strain-derived CMT-93 rectal 

carcinoma cell line. One possible method to circumvent this problem is to use human 

CD46-transgenic mice together with tumours engineered to express this molecule. Not 

only could Ad11 be tested with an intact immune system by this method, but with a 

CD46 expression more reflective of humans, its biodistribution and toxicity profile 

could be examined as well. A further improvement to this would be the use of 

immunodeficient CD46-transgenic mice reconstituted with human bone marrow cells 

(humanised mice)263, 264. However, the fact that Ad11 could enter a CD46-expressing 

murine cell does not mean that it could support virus replication, a phenomenon well 

known with Ad547, 265, 266. Thomas et al.267 reported in 2006 the use of Syrian hamster as 

a permissive immunocompetent model for Ad5. For this, three Syrian hamster cell lines 
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have been tested, namely HaK (kidney), HAP-T1 and HPD-1NR (pancreatic 

carcinoma), but minimal cytotoxicity was observed with Ad11 in comparison to Ad5 

(Figure 9.5). Again this is likely to be related to CD46. Transfecting these cell lines 

with CD46 is a possibility, although the use of CD46-transgenic Syrian hamsters has yet 

to be reported. 
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Figure 9.5: Dose-response curves of Ad5 and Ad11 cytotoxicities in murine and 
Syrian (golden) hamster cell lines. The murine CMT-93 (rectal carcinoma), the Syrian 
hamster HaK (kidney), HAP-T1 and HPD-1NR (exocrine pancreatic carcinoma) cell lines were 
infected in 96-well plates. Cell viability was measured on day six after infection by the MTS 
assay. Data represent means ± SEM from duplicate experiments (with each concentration of 
virus in sextuplicates). 
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APPENDIX 
 

i. Reed-Muench accumulative method for TCID50 determination268 
 
Example of a 96-well plate (+ indicates well with evidence of CPE): 
Dilution                         % with CPE 

10-3 + + + + + + + + + + + + 100% 
10-4 + + + + + + + + + + + + 100% 
10-5 + + + + + + + + + + + + 100% 
10-6  + +   +  +    + 42% 
10-7             0% 
10-8             0% 
10-9             0% 

Negative controls 
 
• Calculate the proportionate distance: (% next above 50% - 50%) / (% next above 

50% - % next below 50%) = (100% - 50%) / (100% - 42%) = 0.86 
• Calculate the 50% end point: log10 (dilution in which position is next above 50%) = 

log10 10-5 = -5 
• Combine the values to obtain log10 TCID50 = -5 - 0.86 = -5.86 
• TCID50 titre = 10-5.86 (or 1 in 7.24 x 105 dilution of the amount added to the top 

row). As 22 μl (0.022 ml) was added to the top row, TCID50/ml = 7.24 x 105 / 0.022 
= 3.29 x 107 

• Multiply by a constant: 3.29 x 107 x 0.69 = 2.27 x 107 PFUs/ml  
• For PFUs/cell, multiply the above with the volume of virus added to each well of 

the 6-well plate (2 ml) and divide by the cell count on the day of infection (e.g. 2.4 x 
105): (2.27 x 107 x 2) / 2.4 x 105 = 189 PFUs/cell 
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ii. Solutions for virus purification 
 
a) TD solution (diluent for CsCl) 

Component Amount (g/L) Final concentration (mM) 

NaCl 0.8 14 

KCl 0.38 5 

Na2HPO4 0.1 0.7 

Tris base 3 25 
pH was adjusted to 7.5 by addition of HCl and the solution made up to 1 L. 
 
b) CsCl solutions 

Density (g/ml) g/100 ml of TD solution 

1.25 36.16 

1.35 51.2 

1.4 62 
 
c) TSG buffer 

Solution A Final concentration (mM) 

900 ml water - 

8 g NaCl 137 

0.1 g Na2HPO4 0.7 

0.3 g KCl 4 
Solution B  

100 ml water - 

2 g MgCl2 98 

2 g CaCl2 136 
TSG buffer was made up as follows: 700 ml solution A + 3.5 ml solution B + 300 ml 
glycerol. The mixture was then heated by microwave and filter sterilised. 
 
d) Dialysis solution 

Component Volume (ml) Final concentration 

1 M Tris-HCl, pH 7.5 20 10 mM 

1 M MgCl2 2 1 mM 

5 M NaCl 60 150 mM 

Glycerol 200 10% 

Water 1718 - 
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iii. Reagents for SDS-PAGE and Western blotting 
 
a) 10% running gel 

Reagent Volume 

ProtoGel (30%) (National Diagnostics, Georgia, USA) – 
30% (w/v) acrylamide/methylene bisacrylamide solution 
(37.5:1 ratio) 

2.3 ml 

ProtoGel Resolving Buffer (4x) (National Diagnostics) 
– 1.5 M Tris-HCl, 0.4% SDS, pH 8.8 

1.75 ml 

Water 2.842 ml 

TEMED (Sigma-Aldrich) 7 μl 

10% ammonium persulfate (Sigma-Aldrich) 70 μl 
 
b) 4% stacking gel 

Reagent Volume 

ProtoGel (30%) 0.39 ml 

ProtoGel Stacking Buffer (4x) (National Diagnostics) – 
0.5 M Tris-HCl, 0.4% SDS, pH 6.8 

0.75 ml 

Water 1.83 ml 

TEMED 3 μl 

10% ammonium persulfate 15 μl 
 
c) Lysis buffer: 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% Nonidet P-40 (Sigma-
Aldrich), one Complete Protease Inhibitor Cocktail Tablet (Roche, Basel, Switzerland) 
– made in 50 ml volume. 
 
d) 5x SDS-PAGE loading buffer: 2.25 ml 1 M Tris-HCl, pH 6.8, 5 ml glycerol, 0.5 g 
SDS, 5 mg bromophenol blue, 2.5 ml 1 M dithiolthreitol. 
 
e) 10x SDS-PAGE running buffer: 30.3 g Tris base, 144 g glycine, 10 g SDS, 1 L water. 
Diluted to 1x prior to use. 
 
f) 1x transfer buffer: 28.8 g glycine, 6.04 g Tris base, 200 ml methanol, water (to a final 
volume of 2 L). 
 
g) 1x TBST: 8.8 g NaCl, 0.2 g KCl, 3 g Tris base, 500 μl Tween 20, water (to a final 
volume of 1 L and pH adjusted to 7.4). 
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iv. Peer-reviewed publications on pancreatic cancer and oncolytic virus 
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Pancreatic cancer: molecular pathogenesis 
and new therapeutic targets
Han H. Wong and Nicholas R. Lemoine

Abstract | Patients with pancreatic cancer normally present with advanced disease that is lethal and 
notoriously difficult to treat. survival has not improved dramatically despite routine use of chemotherapy  
and radiotherapy; this situation signifies an urgent need for novel therapeutic approaches. Over the past 
decade, a large number of studies have been published that aimed to target the molecular abnormalities 
implicated in pancreatic tumor growth, invasion, metastasis, angiogenesis and resistance to apoptosis. This 
research is of particular importance, as data suggest that a large number of genetic alterations affect only a 
few major signaling pathways and processes involved in pancreatic tumorigenesis. Although laboratory results 
of targeted therapies have been impressive, until now only erlotinib, an epidermal growth factor receptor 
tyrosine kinase inhibitor, has demonstrated modest survival benefit in combination with gemcitabine in a 
phase iii clinical trial. whilst the failures of targeted therapies in the clinical setting are discouraging, lessons 
have been learnt and new therapeutic targets that hold promise for the future management of the disease are 
continuously emerging. This review describes some of the important developments and targeted agents for 
pancreatic cancer that have been tested in clinical trials.

wong, H. H. & Lemoine, N. r. Nat. Rev. Gastroenterol. Hepatol. 6, 412–422 (2009); published online 9 June 2009; doi:10.1038/nrgastro.2009.89

Introduction 
Pancreatic cancer remains an important health problem. 
Known risk factors for the disease include cigarette 
smoking, chronic and hereditary pancreatitis, late-
onset diabetes mellitus and familial cancer syndromes. 
Pancreatic cancer is one of the most difficult conditions 
to treat, although it only accounts for 3% of all cancers; 
5-year survival is about 5% in patients with the disease 
and this figure has remained largely unchanged over 
the past 25 years.1 The majority of patients present 
with locally advanced or metastatic disease, and such 
indivi duals have a median survival of 6–10 months and 
3–6 months, respectively.2 Although 10–15% of patients 
have potentially resectable tumors, many experience 
recurrence of disease following surgery. Gemcitabine is 
the standard chemotherapeutic drug for patients with 
advanced pancreatic cancer, after a phase III trial in 1997 
demonstrated a modest survival advantage of this agent 
over 5-fluorouracil (median survival 5.65 months versus 
4.41 months, P = 0.0025), and improved allevia tion of 
disease-related symptoms.3 Given the limited effect  
of conventional therapies, however, a desperate need for 
improved diagnostic and treatment modalities remains. 
Considerable resources have been channeled to the 
development of novel therapies that target the mol ecular 
aberrations of the disease (Table 1). These targeted thera-
pies are designed to disable the cell ular pathways that 
are essential for cancer to survive. Targeted therapies 
could also be used in a multimodal treatment regimen 

in combination with standard radiotherapy and chemo-
therapy to improve outcomes and overcome drug resis-
tance. In 2008, detailed, global, genomic analyses found 
that a large number of genetic alterations (an average 
of 63) affect only a core set of 12 signaling pathways 
and processes that are genetically altered in 67–100% of 
cases of pancreatic cancer.4 These data suggest that treat-
ments for pancreatic cancer should target these complex 
and overlapping signaling pathways, rather than just 
the products of a single gene (Figure 1). This Review 
describes some of the important developments in thera-
pies for pancreatic cancer that have been tested both in 
the laboratory and, most importantly, in subsequent  
clinical trials.

Targeted therapies in clinical trials 
Signal-transduction pathways 
The Ras pathway 
KRAS is a member of the Ras family of genes, which 
encode membrane-bound GTP-binding proteins. When 
activated by signaling partners, such as the epidermal 
growth factor receptor (EGFR), Ras proteins release GDP 
in exchange for GTP, which converts the Ras protein to 
the ‘on’ state and activates downstream signaling events, 
such as the Raf, MAP2K, MAPK and the PI3K–Akt cas-
cades (Figure 2). These events are usually short-lived by 
virtue of the intrinsic GTPase activity of Ras proteins, 
which switches these proteins’ effects ‘off ’. Mutations of 
KRAS, mostly at codon 12 but also sometimes at codons 
13 and 61, are exceptionally frequent in patients with 
pancreatic cancer.5 Mutations in KRAS result in impaired 
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GTPase function, which causes KRas to be locked in  
the GTP-bound ‘on’ state. This malfunction triggers a 
variety of cellular processes, including transcription, 
translation, cell-cycle progression, enhanced cell survival 
and motility. oncogenic KRAS is involved in the initiation  
or early phase of pancreatic tumorigenesis.

A peptide vaccine that aims to stimulate immunity 
against cancer cells with mutant Ras proteins has been 
tested as an adjuvant treatment in patients with pancre-
atic cancer.6 An extension to this research investi gated the 
effects of combination therapy with mutant Ras peptide 
plus granulocyte–macrophage colony- stimulating 
factor7 or interleukin (Il)-2.8 outcomes seemed to be 
favorable in these phase I–II trials, albeit only in indivi-
duals who mounted an immune response (about half of  
the patients).

For Ras to function, it must undergo post- translational 
modification so that it can attach to the cell membrane. 
one essential step involves the addition of a 15-carbon 
isoprenoid chain, mediated by farnesyltransferase. 
The therapeutic use of tipifarnib, a farnesyltransferase 
inhibitor (FTI), in combination with gemcitabine was 
disappointing in a phase III trial (Table 2).9 This finding 
could be partly explained by the fact that KRas can be 
alternatively prenylated by the addition of a 20-carbon 
isoprenoid moiety mediated by the enzyme geranyl-
geranyltransferase. Moreover, FTIs work largely by 
inhibi tion of the cell cycle, but gemcitabine needs cell-
cycle progression to be effective. To this end, a dual 
inhibitor of farnesyltransferase and geranylgeranyl-
transferase (l-778123) was tested in a phase I trial in 
combina tion with radiotherapy for locally advanced 
pancreatic cancer.10 Inhibition of farnesylation and 
sensi tivity to radiotherapy was demonstrated in a 
patient-derived cell line. Further development of this 
drug was, nevertheless, halted owing to adverse cardiac 
effects. other compounds that are in early phases of 
clinical testing after yielding promising laboratory 
results include romidepsin, a histone deacetylase inhibi-
tor that inhibits Ras-mediated signal transduction and 
thus causes cell-cycle arrest,11 and farnesylthiosalicyclic 
acid (salirasib), which disrupts Ras from its membrane-
binding site.12 These compounds seem to have clinical 
activity in combination with gemcitabine and further 
studies are warranted.

other strategies that target the Ras signaling pathway 
include the use of RnA-directed gene-silencing strate-
gies, such as antisense therapy and RnA interference. 
Antisense therapy involves the use of oligonucleotides 
that have sequences complementary to a specific target 
messenger RnA (mRnA), which, therefore, block its 
translation to protein. In a phase II trial of patients with 
locally advanced and metastatic pancreatic cancers, 
the antisense inhibitor of another member of the Ras 
family (HRas), IsIs 2503, showed a response rate of 
10.4% and a median survival of 6.6 months in combina-
tion with gemcitabine.13 However, initial enthusiasm for 
this approach is diminishing following the failures of 

Key points

Pancreatic cancer has high morbidity and mortality and is resistant to  ■
conventional treatment; therefore, an unmet need for novel therapeutic 
approaches exists

important molecular pathways and components involved in pancreatic  ■
carcinogenesis have been targeted with therapeutic intent, including ras, 
eGFr, veGF, gastrin and matrix metalloproteinases

Good results from novel therapies have been demonstrated  ■ in vitro and in 
animal models, but results from the limited number of clinical trials are less 
encouraging

erlotinib, an eGFr tyrosine kinase inhibitor, is the only agent so far that has  ■
shown a significant (albeit small) survival benefit in a phase iii clinical trial

Potential therapeutic targets that warrant further investigation include other  ■
signal-transduction and embryonic pathways, telomerase, microrNAs and 
cancer stem cells

Future development of targeted treatments should focus on inhibition of  ■
multiple signaling pathways, or blockade of one signaling pathway at multiple 
levels

antisense inhibitors, such as IsIs 2503 and oblimersen 
in lung cancer and melanoma, respectively. An alter-
native method is RnA interference, which involves the 
manufacture of small interfering RnAs (siRnAs) that 
are specific for a particular target mRnA. These siRnAs 
bind to a complex of several proteins, including endo-
ribonucleases, which is then termed the RnA-induced 
silencing complex. This complex identifies comple-
mentary mRnA and effects its cleavage or translational 
block. This technology is highly specific but has yet to 

Table 1 | important therapeutic targets in pancreatic cancer

target Frequency of mutation  
or expression in 
pancreatic cancer (%)

Cholecystokinin B and gastrin receptor32 95

ras5 95

Telomerase114 95

vascular endothelial growth factor37 93

Gastrin precursors and gastrin32 23–91

Cyclo-oxygenase 267 90

Hepatocyte growth factor receptor80 78

Notch3106,107 70

sHH97 70

src85 70

epidermal growth factor receptor20 69

β-Catenin108 65

insulin-like growth factor i receptor85 64

Activated Akt49 59

sMAD475 50

Focal adhesion kinase91 48

AKT248 20

TGFBR2 (transforming growth factor β receptor ii)75 4

TGFBR1 (transforming growth factor β receptor i)75 1
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enter clinical trials, although in vitro and in vivo studies 
have been promising.14,15

MAP2K, the principal downstream component of Ras 
signaling, has also been the subject of targeted inhibition. 
In a phase II trial, the inhibitor CI-1040 (PD184532) did 
not demon strate enough antitumor activity to justify 
further development.16 nevertheless, combined inhibi-
tion of MAP2K and other kinases (such as EGFR) has 
been effective in pre clinical studies, which suggests 
that this approach might still have a role in therapy for  
pancreatic cancer.17,18

The epidermal growth factor receptor pathway 
EGFR is a transmembrane receptor tyrosine kinase of the 
ErbB family. upon binding to its ligands, homodimeriza-
tion or heterodimerization with other members of the 
ErbB family occurs, which leads to phosphorylation of 
tyrosine residues in its intracellular domain. This process 
recruits intracellular proteins that cause downstream sig-
naling events through MAPK, PI3K–AKT, and the sTAT 

family of proteins (Figure 2). sTAT proteins have roles in 
cell proliferation, survival, motility, invasion and adhe-
sion. Mechanisms that lead to inappropriate activation of 
EGFR include receptor overexpression, activating muta-
tions, overexpression of receptor ligands, and/or loss of 
their negative regulatory pathways. overexpression  
of EGFR and its ligands EGF and TGF-α are frequently 
observed in pancreatic cancer.19,20

In a phase III trial in combination with gemcitabine, 
erlotinib, an orally active small molecule that binds to 
the ATP-binding site of EGFR, has demonstrated a small 
but significant increase in the survival of patients with 
advanced pancreatic cancer (Table 2).21 In 2005, erlotinib 
was the first targeted therapy approved by the FDA for 
pancreatic cancer. However, its clinical relevance has 
been criticized and its cost-effectiveness has been ques-
tioned.22 other EGFR tyrosine kinase inhibitors that 
have been tested in early-phase clinical trials include 
gefitinib23–25 and lapatinib.26,27

Although EGFR inhibitors have shown promising 
results, inhibition of EGFR with the monoclonal anti-
body cetuximab was ineffective in a phase III trial in 
patients with locally advanced and metastatic pancreatic 
cancers (Table 2).28 no objective responses were seen in 
phase II trials of cetuximab in combination with gem-
citabine and intensity-modulated radiotherapy or cis-
platin.29,30 A phase II trial of cetuximab in combination 
with docetaxel and irinotecan is ongoing.31

Gastrin–cholecystokinin B receptor pathway 
The peptide hormone gastrin is secreted by G cells  
in the gastric antrum and duodenum, and it can act as a 
growth factor for gastric, colonic and pancreatic cancers. 
CCK-BR (the gastrin and cholecystokinin B receptor), 
gastrin precursors and the fully amidated gastrin are 
expressed in 95%, 55–91% and 23% of pancreatic cancers, 
respectively.32 A selective CCK-BR antagonist, gastrazole, 
was tested in two small, randomized, controlled trials 
in patients with advanced pancreatic cancer (Table 2).33 
Gastrazole was superior to placebo, but not to 5-fluoro-
uracil. Another inhibitor, the orally active Z-360, has 
demonstrated promising laboratory results34 and is toler-
ated well by patients in combination with gemcitabine.35 
A phase III trial of Z-360 is being planned. An alternative 
approach to blockade of this pathway involves the use of 
gastrimmune, an immuno gen that stimulates the forma-
tion of anti bodies against gastrin 17 and its precursors. 
This agent was, however, not successful in a phase III 
trial (Table 2).36

Angiogenesis 
Angiogenesis is essential for solid tumor growth, and 
is principally mediated by the vEGF family of proteins 
and receptors (Figure 2). stimuli that upregulate vEGF 
expression include hypoxia, other growth factors and 
oncogenic proteins (for example, TGF-β, EGF and Ras). 
vEGF is overexpressed in >90% of pancreatic cancers37 
and is, therefore, an appealing target for therapy.
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Figure 1 | The pathways and processes involved in pancreatic carcinogenesis. 
entities involved in these signal-transduction pathways have diverse roles in the 
promotion of tumor growth, resistance to apoptosis, invasion, metastasis and 
angiogenesis. reactivation of physiological, embryonic development pathways is 
also frequently observed in pancreatic cancer. MMPs are important for tumor 
invasion and neovascularization. Telomerase is involved in the maintenance of 
telomeres and is activated in the majority of pancreatic cancers. The mirNAs 
regulate gene expression post-transcriptionally and can be either oncogenic or 
tumor suppressive. Cancer stem cells have been implicated in tumor progression, 
resistance to chemotherapy and radiotherapy and in disease relapse. 
Abbreviations: mirNA, microrNA; MMP, matrix metalloproteinase. 
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Bevacizumab is a humanized antibody against vEGF 
and is approved for use in patients with colorectal  
cancer. However, a phase III trial in advanced pancre-
atic cancer failed to show any survival benefit for bevaci-
zumab in combination with gemcitabine (Table 2).38 
The AvITA (Bo17706) phase III study of patients with 
metastatic pancreatic cancer reported that the addition 
of bevacizumab to gemcitabine and erlotinib did not 
significantly prolong overall survival, although a signifi-
cant improvement in progression-free survival was seen 
(Table 2).39 A number of other trials are being conducted 
to examine bevacizumab in combination with other 
agents or treatment modalities for pancreatic cancer; 
however, this agent seems unlikely to confer sufficient 
benefit to justify its licensing for this condition.

The failure of bevacizumab in therapeutic trials for 
pancreatic cancer highlighted the need for angiogenic 
inhibitors that could target other non-vEGF path-
ways and have better access to the tumor environment 
than an antibody. sorafenib is a multitargeted kinase 
inhibitor that inhibits the vEGF receptor (vEGFR), 

platelet-derived growth factor receptor (PDGFR), sCFR 
(formerly c-KIT), Raf1 and FlT3, which are all impli-
cated in tumor growth and angiogenesis. sorafenib was 
approved in 2005 for the treatment of advanced renal-cell 
carcinoma. However, a phase II study concluded that, 
although well-tolerated, it was inactive in patients with 
advanced pancreatic cancer.40 Axitinib at high concen-
trations is an orally active inhibitor of both vEGFR and 
related tyrosine kinase receptors. A median survival of 
6.9 months was reported for axitinib combined with 
gemcitabine compared with 5.6 months for gemcit-
abine alone in a phase II trial in patients with advanced 
pancreatic cancer, but this finding was not significant.41 
Phase III trials of axitinib combined with gemcitabine are 
currently in progress. Aflibercept, a recombinant fusion 
protein that functions as a soluble decoy receptor and 
thereby inhibits vEGF, is another novel agent being tested 
in a phase III trial of patients treated with gemcitabine  
for metastatic pancreatic cancer.

Integrin receptors on the cell surface interact with 
the extracellular matrix and mediate various signaling 
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pathways (Figure 2). These receptors are involved in many 
neoplastic processes, including tumor survival, invasion 
and metastasis. The αvβ3 and αvβ5 integrins induce angio-
genesis, principally via basic fibroblast growth factor and 
vEGF, respectively. Cilengitide inhibits these integrins, 
but in a phase II trial in patients with advanced pancreatic 
cancer it did not show significant benefit compared to 
gemcitabine alone.42 other anti-integrin agents, including 
an antibody against α5β1 (volociximab)43 and an inhibitor 
of α2 (E7820),44 are in early-phase clinical trials.

Matrix metalloproteinases 
Matrix metalloproteinases (MMPs) are a family of zinc-
dependent proteolytic enzymes that degrade the extra-
cellular matrix and are essential for tumor spread and 
neovascularization. Imbalance between MMPs and their 
natural inhibitors is unsurprisingly, therefore, a frequent 
event in pancreatic cancer. Despite promising laboratory 
results, MMP inhibitors have failed to live up to their 
initial therapeutic expectation in three phase III clini-
cal trials (Table 2),45–47 although critics argued that the 
trials included a large number of patients with metastatic 
disease, which contradicts the rationale of exploiting the 
cytostatic effect of MMP inhibitors.

Other potential therapeutic targets 
Signal-transduction pathways 
The PI3K–Akt pathway
upon activation by Ras or EGFR, PI3K activates Akt, 
which in turn has multiple downstream targets, includ-
ing the mammalian target of rapamycin (mToR) and the  
transcription factor nFκB (Figure 2). mToR and nFκB 
have a variety of roles in cell proliferation, survival, resis-
tance to apoptosis, angiogenesis and invasion. AKT2 is 
amplified and the PI3K–Akt pathway is activated in 
20% and 59% of pancreatic cancers, respectively.48,49 
Deregulation of this pathway through aberrant expres-
sion of PTEn (phosphatase and tensin homolog, a 
natural antagonist of PI3K) is frequently observed in 
pancreatic cancer.50 Furthermore, an architectural trans-
cription factor, HMGA-1, is overexpressed in pancreatic 
cancer.51 This transcription factor activates PI3K–Akt 
signaling and seems to mediate resistance to gemcit-
abine,52 which, therefore, provides another target for 
inhibition therapy.53,54

Temsirolimus is an mToR inhibitor approved for the 
treatment of renal-cell carcinoma, but use of this agent 
in pancreatic cancer has been limited.55 other agents, 
including everolimus and sirolimus, are currently being 

Table 2 | Completed phase iii clinical trials of targeted therapies for pancreatic cancer 

trial Disease  
stage

Number  
of patients

treatments 
investigated

Mechanism  
of treatment

Median 
survival 
(months)

1-year 
survival 
(%)

PFS 
(months)

CR or 
PR (%)

Patients 
achieved 
stable 
disease (%)

Bramhall et al. 
(2001)45

Unresectable 414 Marimastat vs 
gemcitabine

MMPi 3.4–4.1
5.5

14.0–
20.0
19.0

1.8–1.9a

3.8a

2.8
25.8

n/a
n/a

Bramhall et al. 
(2002)46

Unresectable 239 Marimastat + gemcitabine 
vs gemcitabine

MMPi 5.4
5.4

18.0
17.0

3.0
3.1

11.0
16.0

50.0
56.0

NCiC CTG 
(2003)47

Advanced 277 Tanomastat vs 
gemcitabine

MMPi 3.74a

6.59a

10.0
25.0

1.68a

3.5a

0.9
5.2

28.7
53.9

van Cutsem 
et al. (2004)9

Advanced 688 Tipifarnib + gemcitabine 
vs gemcitabine

rAs FTi 6.3
6.0

27.0
24.0

3.7
3.6

6.0
8.0

53.0
52.0

shapiro et al. 
(2005)36

Advanced 394 G17DT + gemcitabine vs 
gemcitabine

induction of 
antibodies against 
gastrin-17

5.8
6.6

n/a
n/a

3.9
3.9

32.0
36.0

n/a
n/a

Chau et al. 
(2006)33

Advanced Trial A: 18
Trial B: 98

Gastrazole vs placebo
Gastrazole vs 
5-fluorouracil

Gastrin receptor 
antagonist

7.9a

4.5a

3.6
4.2

33.0a

11.0a

13.2
26.2

n/a
n/a
2.3
2.7

n/a
n/a
0.0
4.8

n/a
n/a
28.3
28.6

CALGB 80303 
(2007)38

Advanced 602 Bevacizumab +  
gemcitabine vs 
gemcitabine

Anti-veGF antibody 5.7
6.0

n/a
n/a

4.8
4.3

13.1
11.3

40.7
35.7

NCiC CTG 
(2007)21

Advanced 569 erlotinib + gemcitabine vs 
gemcitabine

eGFr tyrosine 
kinase inhibitor

6.24a

5.91a

23.0a

17.0a

3.75a

3.55a

8.6
8.0

48.9
41.2

swOG s0205 
(2007)28

Advanced 766 Cetuximab + gemcitabine 
vs gemcitabine

Anti-eGFr antibody 6.5
6.0

n/a
n/a

3.5
3.0

12.0
14.0

n/a
n/a

AviTA/
BO17706 
(2008)39

Metastatic 607 Bevacizumab + erlotinib  
+ gemcitabine vs 
erlotinib + gemcitabine

Anti-veGF antibody 
and eGFr tyrosine 
kinase inhibitor

7.1
6.0

n/a
n/a

4.6a

3.6a

13.5
8.6

n/a
n/a

asignificant. Abbreviations: CALGB, Cancer and Leukemia Group B; Cr or Pr, complete or partial response; eGFr, epithelial growth factor receptor; FTi, farnesyltransferase inhibitor; MMPi, 
matrix metalloproteinase inhibitor; n/a, not applicable; NCiC CTG, National Cancer institute of Canada Clinical Trials Group; PFs, progression-free survival; swOG, southwest Oncology Group; 
veGF, vascular endothelial growth factor.  
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studied in phase II clinical trials.56 A combination of an 
mToR inhibitor with other standard or targeted thera-
pies might be needed,57,58 as mToR expression does not 
correlate with survival of patients.59

Curcumin, which is derived from the spice turmeric, 
can inhibit nFκB and, therefore, the expression of 
regulated gene products, such as Bcl2, BclXl, CoX2, 
cyclin D1 and survivin, which all have a role in the sur-
vival of pancreatic cancer cells.60,61 Curcumin can also 
alter the expression of miRnAs (microRnAs, see below) 
in pancreatic cancer cells.62 Phase II trials of curcumin 
with and without gemcitabine showed that it was well-
tolerated and might have some biological activity in 
patients with pancreatic cancer.63,64 The oral inhibitor of 
nFκB–sTAT3, RTA 402, is being examined in a phase I–II 
trial. Bortezomib is a proteosome inhibitor that prevents 
the degradation of IκBβ, which in turn is an endogenous 
inhibitor of nFκB (Figure 2). Bortezomib is licensed 
for the treatment of refractory multiple myeloma, but 
unfortunately it failed to show any benefit—either alone 
or in combination with gemcitabine—in a phase II trial.65 
This finding could be related to the fact that proteosome 
inhibi tion paradoxically activates other antiapoptotic and 
mitogenic sig naling pathways in pancreatic cancer.66

The cyclo-oxygenase pathway 
The CoX enzymes have principal roles in the conversion 
of arachidonic acid into prostaglandins. CoX1 is consti-
tutively expressed and has a homeostatic role. CoX2 is 
inducible by growth factors, cytokines and tumor pro-
moters, and its expression is upregulated in 90% of 
pancre atic cancers.67 The mechanisms of CoX-mediated 
and prostaglandin-mediated pancreatic cancer develop-
ment are complex; they involve multiple mitogenic sig-
naling pathways and molecules that mediate resistance 
to apoptosis, cell migration, invasion, angiogenesis, 
immuno suppression, the production of free radicals and 
peroxidation of pro carcinogens to carcinogens.68 Inhibition 
of CoX2 by nsAIDs has suppressed proliferation of 
pancre atic cancer cells and angiogenesis, both in vitro and 
in vivo.68,69 Interestingly, Chang and colleagues reported 
in 2008 that the antitumor activity of celecoxib does not 
correlate with its inhibition of CoX2, which suggests the 
involvement of alternative mechanisms.70 nonetheless, 
phase II trials of gemcitabine in combination with cele-
coxib 400 mg twice daily have been conducted, but results 
were inconclusive. For 20 evaluable patients with meta-
static pancreatic cancer, the reported median survival 
was 6.2 months and survival at 3 months was 72%.71 For 
patients with locally advanced or metastatic disease, one 
study showed an median survival of 9.1 months and overall 
clinical response of 54.7%,72 but another study concluded 
that the addition of celecoxib had no significant benefit.73 
The combination of celecoxib, gemcitabine and irino tecan 
resulted in a median survival of 13 months and 1-year 
survival of 64%, and was associ ated with improvement of 
pain and quality of life.74 A phase III trial of gemcitabine, 
celecoxib and curcumin is in progress.

The TGF-β–SMAD4 pathway 
TGF-β is a cytokine secreted by epithelial, endo thelial, 
hematopoietic and mesenchymal cells. Binding of TGF-β 
forms a heteromeric complex with the type I and type II 
TGFBR triggers the phosphorylation of cytoplasmic 
sMAD2 and sMAD3. In turn, these sMAD proteins 
form a complex with sMAD4, which translocates into 
the nucleus to activate gene transcription (Figure 2). 
TGF-β can also signal via sMAD-independent path-
ways that involve Ras, PI3K and MAPK. TGF-β medi-
ates a wide range of physiological processes, such as 
embryonic development, tissue repair, angiogenesis 
and immunosuppression. TGF-β also has a complex 
role in tumorigenesis, as it is tumor-suppressive in epi-
thelial cells, but promotes invasion and meta stasis during 
the late stages of cancer progression. Mutations of the 
TGFBR1, TGFBR2 and SMAD4 genes are found in about 
1%, 4% and 50% of patients with pancreatic cancers, 
respectively.75 Inactivation of sMAD4 abolishes TGF-β-
mediated tumor-suppressive functions while it main-
tains some tumor-promoting TGF-β responses, such as 
epithelial–mesenchymal transition, which makes cells 
migratory and invasive.76

TGF-β-based therapeutic strategies are currently 
in development, including inhibitors of TGFBR1 and 
TGFBR2.77,78 AP 12009, an antisense oligonucleotide spe-
cific to TGF-β2, is currently being tested in a phase I–II 
study of malignant melanoma, pancreatic cancer and 
colorectal carcinomas. one patient with advanced 
pancre atic cancer was still alive 128 weeks after complete 
regression of liver metastases.79

The hepatocyte growth factor receptor pathway 
The MET oncogene encodes the receptor for hepato-
cyte growth factor (HGF) and is overexpressed in 78% 
of pancreatic cancers.80 HGF is normally produced by 
mesenchymal cells and acts on epithelial cells to promote 
tissue regeneration. In hypoxic conditions, however, 
tumor-associated fibroblasts produce HGF, which 
stimulates angiogenesis, tumor growth, cell motility and 
extracellular matrix breakdown and leads to invasion 
and metastasis (Figure 2). Targeting the HGF pathway 
with use of a synthetic competitive antagonist of HGF81,82 
and an antibody against the MET receptor83 has yielded 
encouraging results in the laboratory setting. ARQ 197 is 
a MET receptor tyrosine kinase inhibitor that is currently 
being tested in a phase II trial. A phase I study showed 
that it was tolerated well by patients.84

The insulin-like growth factor pathway
The insulin-like growth factor I (IGF-I) receptor, a trans-
membrane receptor tyrosine kinase, is overexpressed in 
64% of pancreatic cancers.85 The IGF-I receptor has anti-
apoptotic and growth-promoting effects and acts via multi-
ple signaling cascades, including the PI3K–Akt, MAPK 
and sTAT pathways (Figure 2). Inhibition of the IGF-I 
receptor by the tyrosine kinase inhibitor nvP-AEW541, 
a dominant-negative mutant and RnA interference have 
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all been shown to reduce the growth of pancreatic cancer 
cells in vitro and in vivo, and increase chemotherapy-
induced or radiation- induced apop tosis.86,87 Concomitant 
inhibition of KRas increases the thera peutic effect of this 
inhibitor.88 Human anti-IGF-I receptor antibodies have 
been reported to increase the antitumor effects of gemcit-
abine and EGFR inhibition in vivo.89,90 As a result of these 
findings, phase I–II trials of cixutumumab and MK-0646 
with gemcitabine and erlotinib have now commenced for 
pancreatic cancer.

The focal adhesion kinase pathway 
Focal adhesion kinase (FADK) is a cytoplasmic non-
receptor tyrosine kinase that mediates functions involved 
in cell motility and survival and is closely related to the 
integrin signaling pathway (Figure 2). 48% of pan creatic 
cancers91 express FADK and, importantly, it shares a 
common pathway with IGF-I receptor.92 The dual IGF-I 
receptor–FADK inhibitor nvP-TAE226 has shown 
signifi cant tumor-suppressive activity in vivo.93

The Src pathway
src is one of nine members of the src family of non-
receptor protein tyrosine kinases. In normal conditions, 
src is maintained in a phosphorylated and inactive form, 
but is activated in a number of malignancies, including in 
70% of pancreatic cancers.85 src has diverse roles in cell 
proliferation, survival, motility, invasiveness, resistance 
to chemotherapy and angiogenesis. This protein acts via 
multiple signaling pathways and, therefore, is an ideal 
target for therapeutic intervention (Figure 2). src kinase 
inhibitors have been effective in suppressing pancreatic 
tumor growth and metastasis in vivo.94–96 Dasatinib is an 
orally active multitargeted kinase inhibitor of src, BCR–
ABl, PDGFR, ephrin type A receptor 2 and sCFR, and is  
licensed for the treatment of chronic myelogenous and 
acute lymphoblastic leukemias. Dasatinib is being exam-
ined in a phase II trial in patients with metastatic pancreatic  
cancer, as is the related compound saracatinib. 

embryonic signaling pathways 
The hedgehog pathway
Three mammalian hedgehog homolog proteins have 
been identified—DHH, IHH and sHH. These proteins 
are secreted and specify the organization and structure of 
many tissues during embryonic development. Activation 
of the hedgehog signaling pathway is controlled by two 
transmembrane proteins, the tumor-suppressor PTC1 
protein and the oncogenic sMo protein (Figure 2). 
PTC1 normally suppresses sMo, but mechanisms, such 
as an inactivating mutation of PTC1 and the binding 
of hedgehog proteins to PTC1, relieves this inhibi-
tion, which leads to sMo activation of transcriptional 
responses. sHH is expressed in 70% of human pancreatic 
adeno carcinomas.97 IHH expression is increased 35-fold 
in pancreatic cancer cells compared with in normal 
tissues.98 Mechanisms of tumorigenesis include the 
effects of hedgehog proteins on the cell-cycle regulators, 

protection from apoptosis via PI3K–Akt signaling and 
stabilization of Bcl2 and BclXl and collaboration with 
activated KRas and angio genesis. The hedgehog signaling 
pathway can be inhibited by cyclopamine, which binds to 
sMo. laboratory work has demonstrated the effective-
ness of cyclopamine in a wide range of digestive-tract 
tumors, including pancre atic cancer.99 Cyclopamine can 
enhance sensitivity to radiotherapy and chemotherapy 
and suppress metastatic spread100,101 as well as improv-
ing anti tumor activity when combined with an EGFR 
inhibitor.102 A downstream target of the sHH pathway, 
the trans cription factor GlI1, can also be inhibited  
by miRnA.103

The Notch pathway
The four known human notch genes encode hetero-
dimeric transmembrane receptors, which are impor-
tant in the development of organs, tissue proliferation, 
differentiation and apoptosis. Activation of the notch 
signaling pathway leads to proteolytic cleavage of the 
trans membrane receptors by γ-secretase; the released 
cytoplasmic domain then migrates to the nucleus and 
binds to transcription factors, which leads to the expres-
sion of a variety of genes (Figure 2). notch signaling 
occurs downstream of Ras, EGFR and TGF-β signal-
ing in pancreatic tumorigenesis and promotes tumor 
vasculariza tion. Downregulation of notch 1 with siRnA 
or curcumin (owing to the crosstalk between notch and  
nFκB signaling pathways) can inhibit cell growth 
and induce apoptosis in pancreatic cancer cell lines 
in vitro.104,105 notch 3 is expressed in around 70% of 
pancreatic cancers and can be inhibited by siRnA and 
γ-secretase inhibitors (GsI and l-685,458).106,107

The Wnt pathway
19 human Wnt genes each encode a lipid-modified 
secreted glycoprotein. Wnt signaling is involved in normal 
embryonic development and homeostatic self-renewal 
of a number of adult tissues. There are three Wnt sig-
naling cascades, namely the canonical Wnt–β-catenin, 
the planar- cell polarity, and the Wnt–Ca2+ pathways. The 
former is the best known and has been implicated in a 
variety of cancers, including liver, colo rectal, breast, pros-
tate, renal and hematological malignancies. normally, 
β-catenin is phosphorylated and targeted for degradation. 
However, binding of Wnt proteins results in activa tion of 
intracellular pathways that cause β-catenin to enter the 
nucleus, where its inter action with the T-cell factor and 
lymphoid enhancer factor families of transcription factors 
leads to targeted gene expression (Figure 2). Any gain-of-
function mutation of activators or loss-of-function muta-
tion of inhibitors of Wnt signaling could lead to aberrant 
activa tion of these signaling pathways, which could result 
in carcino genesis and progression. Aberrant activation 
occurs in 65% of pancreatic cancers.108 Inhibition of Wnt 
signaling to reduce prolifera tion and increase apoptosis 
of pancreatic cancer cells has been achieved in the labora-
tory setting by a variety of methods, including the use 
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of β-catenin-interacting protein 1, a dominant-negative 
mutant of lymphoid enhancer factor, and siRnA against 
β-catenin or extracellular sulfatases.109,110 Wnt signal-
ing is positively regulated by the hedgehog and sMAD4 
sig naling pathways,109,111 which could be targets for a  
combined inhibitory therapeutic strategy.

The CXC-chemokine receptor 4 (CXCR 4) and its 
ligand, sDF-1 have a role in tumor growth, angiogenesis 
and, in particular, metastatic spread. In vitro blockade of 
CXCR 4 could inhibit pancreatic cancer growth through 
inhibition of the canonical Wnt pathway.112 Furthermore, 
plerixafor, an antagonist of CXCR 4, reduces metastasis 
by pancreatic cancer cells that are positive for the markers 
CXCR 4 and CD133 (the latter is a marker of pancreatic 
cancer stem cells) in vivo.113

telomerase 
The telomeres located at the end of chromosomes nor-
mally shrink with each cell division and thereby impose 
a finite lifespan on the cell. Most malignant cells have 
detectable activity of telemerase, a reverse transcriptase 
that contains an RnA template and acts to elongate 
telomeres. Telomerase is overexpressed in 95% of pancre-
atic cancers114 which provides a rationale for the develop-
ment of antitelomerase agents. Gv1001 is a telomerase 
peptide vaccine that has shown some promising results 
in phase I/II studies.115,116 This vaccine is being tested in 
the large (>1,000 patients), phase III, Telovac trial with 
gemcitabine and capecitabine in locally advanced and 
metastatic pancreatic cancers.

MicroRNAs 
The miRnAs are small, endogenous, noncoding RnA 
molecules that regulate gene expression and are impor-
tant for developmental and physiological processes. 
These molecules all negatively regulate gene expression 
post-transcriptionally and can be either oncogenic or 
tumor-suppressive, depending on their target mRnAs.117 
Expression profiling showed that at least 100 miRnA 
precursors are aberrantly expressed in pancreatic cancer 
or desmoplasia.118,119 Anticancer miRnA-based therapy 
has the theoretical advantage of having multiple targets 
that are controlled by an individual miRnA by virtue of 
its post-transcriptional modulation. Therapeutic strate-
gies include the reconstitution of tumor-suppressive 
miRnAs and the knockdown of oncogenic miRnAs 
by coding vectors or anti-miRnA oligonucleotides. 

studies of these treatment approaches have been limited  
in pancreatic cancer but have yielded promising results in  
breast cancer and glioma.

Cancer stem cells 
Cancer stem cells possess important properties associ-
ated with their normal counterparts, namely the ability 
for self-renewal and differentiation. Pancreatic cancer 
stem cells are identified by their surface markers, such 
as CD133, CD44, CD24 and flotillin 2 epithelial-specific 
antigen. Evidence suggests that such cells form a small 
subset in the heterogenous tumor population, and con-
tribute to neoplastic progression, metastasis and resis-
tance to chemotherapy and radiotherapy.113,120 For this 
reason, cancer stem cells are thought to be responsible for 
relapse of disease after clinical remission. Dysregulation 
of various signaling cascades, including the PTEn, sHH, 
notch and Wnt pathways, are frequently observed in 
cancer stem cells, which provides further rationale for 
use of these pathways as a target for therapeutic pur-
poses. Further studies are still needed to understand the 
genetic and biological properties of cancer stem cells for 
the development of effective treatment modalities.

Conclusions 
Although targeted therapies for pancreatic cancer have 
yielded encouraging results in vitro and in animal models, 
these findings have not been translated to improved out-
comes in clinical trials. Reasons for this failure might 
include an incomplete understanding of the biology of 
pancreatic cancer, the selection of poor active agents, 
problems with trial design (such as inappro priate thera-
peutic end points or patient selection) and the rapidity 
with which agents move into randomized, controlled 
trials without the extensive early testing neces sary to 
optimize treatment regimens. Furthermore, pre clinical 
studies performed on mouse models do not always 
recapitulate the human condition, which is a particular 
problem with human pancreatic cancer xenografts in 
immunodeficient mice. Despite these setbacks, lessons 
have been learnt, and our collective effort has generated 
a substantial platform of knowledge from which further 
work could spring. Genetically engineered immuno-
competent mice, such as those with KRAS or TP53 muta-
tions, have been developed and they hold promise for the 
future studies of the disease.121 The bio availability of com-
pounds such as antisense oligo nucleotides and siRnAs in 

Table 3 | Ongoing phase iii clinical trials of targeted therapies for pancreatic cancer

treatment target Disease stage

erlotinib, capecitabine and gemcitabine eGFr Locally advanced or metastatic 

Curcumin, celecoxib and gemcitabine NFκB and COX2 Locally advanced or metastatic 

Axitinib and gemcitabine veGF receptor and other tyrosine kinases Locally advanced or metastatic 

sorafenib and gemcitabine veGF receptor and other tyrosine kinases Locally advanced or metastatic

Gv1001, capecitabine and gemcitabine Telomerase Locally advanced or metastatic 

Aflibercept and gemcitabine veGF Metastatic
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humans remains a big hurdle, which will require further 
improvement of gene-delivery strategies.

The individualization of therapy for patients is pos-
sible if factors that predict treatment response, such as 
biological markers, could be determined accurately. 
Alternatively, resected tumors could be grown in labora-
tory mice and treated with a series of drugs, and the most 
effective agent subsequently administered to the patient. 
This concept is currently being tested in a phase II trial 
at Johns Hopkins Hospital, MD, us. until this strategy 
is proven effective in the clinical setting, multimodal 
approaches will remain the mainstay of treatment for 
advanced pancreatic cancer. These approaches are likely 
to comprise a mixture of targeted agents in combina-
tion with conventional chemotherapy and radiotherapy. 
For a clinically relevant effect to be achieved, treatment 
strategies should either be in the form of a ‘horizontal’ 
approach, in which several oncogenic pathways are 
inhibited, or a ‘vertical’ approach, whereby multiple 
levels of a major pathway are targeted. one example 
currently being investigated in a phase III trial is the 
treatment combination of celecoxib, curcumin and 
gemcitabine for advanced pancreatic cancer. Besides the 

synergistic antiproliferative and proapoptotic effects of 
curcumin and celecoxib,122 these agents also potentiate 
the anti tumor activity of gemcitabine.123,124 Combination 
therapies, together with improved diagnostic tools and 
predictive markers, are ultimately hoped to improve the 
bleak outlook for patients diagnosed with pancreatic 
cancer. For now, the results of a number of phase III trials 
are eagerly awaited (Table 3).
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American society of Clinical Oncology and the American 
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searched. No exclusion criteria were used. Articles were 
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were identified from their reference lists. The National 
Cancer institute website was searched for ongoing 
clinical trials.
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Abstract: Targeted therapy of cancer using oncolytic viruses has generated much interest 

over the past few years in the light of the limited efficacy and side effects of standard cancer 

therapeutics for advanced disease. In 2006, the world witnessed the first government-

approved oncolytic virus for the treatment of head and neck cancer. It has been known for 

many years that viruses have the ability to replicate in and lyse cancer cells. Although 

encouraging results have been demonstrated in vitro and in animal models, most oncolytic 

viruses have failed to impress in the clinical setting. The explanation is multifactorial, 

determined by the complex interactions between the tumor and its microenvironment, the 

virus, and the host immune response. This review focuses on discussion of the obstacles that 

oncolytic virotherapy faces and recent advances made to overcome them, with particular 

reference to adenoviruses. 
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1. Introduction 

Cancer is a major cause of death globally. Although treatments for the disease have improved 

significantly, conventional chemotherapy or radiotherapy still have limited effects against many forms 

of cancer, not to mention a plethora of treatment-related side effects. This situation signifies a need for 

novel therapeutic strategies, and one such approach is the use of viruses. The ability of viruses to kill 

cancer cells has been recognized for more than a century [1]. They achieve this by a number of 

mechanisms, including direct lysis, apoptosis, expression of toxic proteins, autophagy and shut-down 

of protein synthesis, as well as the induction of anti-tumoral immunity. Although clinical trials of 

several naturally-occurring oncolytic viruses were started back in the 1950s, it was only in 1991 that a 

herpes simplex virus-1 (HSV-1) with deletion of its thymidine kinase UL23 gene became the first 

genetically-engineered, replication-selective oncolytic virus to be tested in the laboratory [2]. In 2005, 

an adenovirus (Ad) with E1B 55K gene deletion (H101(Oncorine); Shanghai Sunway Biotech, 

Shanghai, China) was approved in China as the world’s first oncolytic virus for head and neck cancer 

in combination with chemotherapy [3]. However, until now the widespread use of oncolytic 

virotherapy is still far from reality. Promising laboratory results have not been translated to improved 

clinical outcomes, and this appears to be determined by the complex interactions between the tumor 

and its microenvironment, the virus, and the host immunity. There are already a number of reviews on 

oncolytic viruses for cancer treatment but this article will focus on the obstacles facing oncolytic 

virotherapy, with particular reference to Ads, and the recent advances made to overcome these hurdles. 

Mechanisms of tumor selectivity 

The term ‘oncolytic viruses’ applies to viruses that are able to replicate specifically in and destroy 

tumor cells, and this property is either inherent or genetically-engineered. Inherently tumor-selective 

viruses can specifically target cancer by exploiting the very same cellular aberrations that occur in 

these cells, such as surface attachment receptors, activated Ras and Akt, and the defective interferon 

(IFN) pathway (Figure 1). Some viruses have been engineered with specific gene deletion – these 

genes are crucial for the survival of viruses in normal cells but expendable in cancer cells (Figure 2). 

Deletion of the gene that encodes thymidine kinase, an enzyme needed for nucleic acid metabolism, 

results in dependence of viruses such as HSV and vaccinia virus on cellular thymidine kinase 

expression, which is high in proliferating cancer cells but not in normal cells. Vaccinia also produces 

the vaccinia growth factor (VGF) that binds to and activates the epidermal growth factor receptor 

(EGFR), creating an environment that supports its replication. It follows that deletion of genes 

encoding for both thymidine kinase and VGF leads to further selectivity of vaccinia virus in cancers 

with an activated EGFR-Ras pathway [4]. Another approach in conferring tumor selectivity is to 

restrict virus replication by its dependence on transcriptional activities that are constitutively activated 

in tumor cells. This can be achieved by the insertion of a tumor-specific promoter driving the 

expression of a critical gene [5-11]. Others viruses either possess naturally (e.g., Coxsackievirus 

A21 [12] and measles virus (MV) [13]) or have been designed to have specific tropism based on the 

expression of cell surface receptors unique to cancer cells [14-20]. 
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Figure 1. Mechanisms of tumor selectivity of several oncolytic viruses. The interferon 

(IFN)/double-stranded RNA-activated protein kinase (PKR) pathway is a natural anti-viral 

defense system. IFNs produced by infected cells result in the upregulation of PKR. On 

binding to viral double-stranded RNA (dsRNA), PKR autophosphorylates, which in turn 

phosphorylates the  subunit of eIF-2. Phosphorylated eIF-2 sequesters eIF-2B, a 

guanine nucleotide exchange factor. Without eIF-2B, the GDP bound to eIF-2 cannot be 

exchanged for GTP. As a result eIF-2 is unable to bring the initiator transfer RNA (tRNA) 

to the 40S ribosomal subunit, and the synthesis of viral protein is inhibited. Inactivated IFN 

and activated Ras pathways are frequently found in cancer (the latter could inhibit PKR), 

and some naturally-found viruses can replicate selectively in cancer but not normal cells, 

including the Newcastle disease virus (NDV) [21], reovirus [22], vaccinia virus [23], and 

vesicular stomatitis virus (VSV) [24]. The herpes simplex virus (HSV) protein ICP34.5 

interacts with cellular phosphatase 1 to dephosphorylate eIF-2, leading to synthesis of 

proteins needed for virus replication. Deletion of gene that encodes for ICP34.5 (RL1) 

results in selective replication in tumors with a defective IFN/PKR pathway [25]. The 

influenza virus NS1-deleted mutant is also dependent on this defective pathway [26]. 

Adenoviruses normally produce virus-associated (VA) RNAs to inhibit PKR. As such, 

engineered VAI-deleted adenovirus (dl331) could replicate selectively in tumors with an 

activated Ras pathway [27]. Epstein-Barr virus (EBV) also expresses RNAs similar to VA 

RNAs and these can complement dl331, resulting in selectivity in EBV-associated 

tumors [28]. 
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Figure 2. Engineered replication selectivity of oncolytic adenoviruses (Ads) by deletion of 

the E1A, E1B 19K or E1B 55K gene. Retinoblastoma protein (pRb) is normally 

hypophosphorylated and binds to transcription factors of the E2F family to regulate the 

G1-to-S checkpoint of the cell cycle. Upon stimulation by mitogenic signals, upregulation 

of cyclins enables cyclin-dependent kinases (CDKs) to phosphorylate pRb, releasing E2F 

that leads to the expression proteins needed for DNA synthesis and thus cell cycle 

progression. E2F upregulates p14ARF, which inhibits Mdm2. Mdm2 normally results in p53 

degradation. p53 is a transcription factor that is upregulated and activated by stress signals 

such as virus infection or DNA damage. It results in the expression of proteins that induce 

apoptosis (Bax), cell cycle arrest (p21CIP1/WAF via its inhibition of CDK2) or DNA repair. 

p16INK4A is a tumor suppressor that inactivates CDK4/6. The adenoviral E1A proteins bind 

to pRb to release E2F, so that viral DNA could be replicated. E1A also promotes the 

acetylation of pRb by p300/CBP, causing pRb to associate with Mdm2 to inhibit p53. 

Because cancer cells are often in the S phase, E1A CR2-deleted Ad5 mutant (dl922-947) 

could selectively replicate in and destroy replicating cancer cells but not normal resting 

cells [29]. E1B 19K binds to and inhibits Bax. The tumor selectivity of E1B 19K-deleted 

Ad2 (dl250) is due to multiple defects in the apoptotic pathways, where survival of the 

virus in normal cells would be limited owing to rapid apoptosis induction in the presence 

of tumor necrosis factor- (TNF-) [30]. E1B 55K interacts with the adenovirus E4 open 

reading frame 6 (E4orf6) protein to form an E3 ubiquitin ligase complex that targets p53 

for degradation. It also induces the expression of cyclin E as well as simultaneously 

inhibits cellular mRNA export and promotes the export of late viral mRNAs. E1B 55K-

deleted Ad could replicate in tumor selectively because of non-functioning p53 [31], cyclin 

E overexpression [32], and E1B 55K-independent late viral RNA export in cancer but not 

normal cells [33].  
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More recently, gene silencing by RNA interference technology has been utilized to confer tumor 

selectivity. MicroRNAs (miRNAs) or small interfering RNAs (siRNAs) regulate gene expression post-

transcriptionally by translation block or cleavage of specific, complementary mRNA via the RNA-

induced silencing complex (RISC). By inserting a complementary sequence next to a critical viral 

gene, it is possible to confine virus replication to tumor but not normal cells that express high levels of 

the corresponding miRNA. This has been demonstrated by several groups [34-38]. Gürlevik et al. [39] 

developed a recombinant Ad that encodes multiple RNA-interfering transcripts under the control of a 

p53-responsive promoter. The transcripts could effectively silence a set of critical viral genes. As p53 

is a transcription factor often lost or mutated in human malignancy, this virus could therefore replicate 

in cancer but not normal cells where functional p53 would lead to an anti-viral RNA interference. 

Optimizing oncolytic viruses for improved anti-tumoral potency 

Gene-manipulated oncolytic viruses such as Ad, herpes virus and vaccinia virus are being 

developed as a new class of anti-tumoral agent [23,40,41]. Selective intratumoral replication of the 

virus may lead to improved efficacy over non-replicating agents due to the self-perpetuating nature of 

the treatment with virus multiplication, lysis of the infected tumor and spread to adjacent cells. One 

potential limitation of this approach, however, is that gene deletions resulting in tumor selectivity also 

frequently result in reduced oncolytic potency. For example, dl1520 (ONYX-015; Onyx 

Pharmaceuticals, California, USA) is an oncolytic Ad2/Ad5 hybrid with deletion of its E1B 55K and 

E3B genes. The E1B 55K protein is involved in p53 inhibition, viral mRNA transport and host cell 

protein synthesis shut-off [42] (Figure 2), whilst E3B proteins are important for immune avoidance 

(see below). This virus was the first engineered, replicating Ad to enter clinical trials for cancers 

including those of the head and neck [43-45] and pancreas [46,47]. Whilst the virus has shown good 

tumor selectivity and safety [48], durable objective responses with this virus as a single agent have 

been limited and this could be partly due to the loss of other essential functions of the E1B 55K and 

E3B genes. A recent finding by Thomas et al. [49] revealed that dl1520 was less efficient in lysing 

cells infected in the G1 phase of the cell cycle due to a reduced rate of late viral protein synthesis, and 

this appears to be a result of the adenoviral gene product encoded by open reading frame 1 of early 

region 4 (E4orf1). As such there is a need to increase the potency of these viruses by identifying 

mutations that result in tumor selectivity but not those that result in attenuated virus replication and 

oncolysis. Since the first generation of replication-selective Ads was tested in pre-clinical experiments 

and clinical trials, several advances have been made to improve potency by dissecting the functions of 

different genes of Ad. 

The adenoviral E1A is the earliest gene to be transcribed after virus entry into the host cell [50]. 

E1A normally interacts with the retinoblastoma protein (pRb) (the latter is important in regulating the 

G1-to-S cell-cycle checkpoint), and this pushes quiescent cells into S phase to allow for virus 

replication (Figure 2). Therefore, dl922-947, the mutant Ad with specific deletion of the E1A CR2 

region (pRb binding site), was unable to replicate in quiescent normal cells but was able to do so in 

cancer cells with defective G1-to-S checkpoint. This virus has demonstrated superior anti-tumoral 

activity in vivo compared to dl1520 after intratumoral and intravenous injections [29], although it 

might also target proliferating non-malignant cells. In addition to its effect on virus release and 
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spread [51,52], adenoviral E1B 19K is a functional homolog of Bcl-2 and is able to bind to Bax 

 [53-55] and also prevent Fas-mediated apoptosis [56]. Replication of the mutant Ad2 with E1B 19K 
deletion (dl250) was significantly reduced in normal cells secondary to rapid apoptosis induction in the 

presence of tumor necrosis factor- (TNF-), whilst the opposite occurred in cancer cells due to 

multiple defects in the apoptotic pathways (e.g., p53 mutation, Bcl-2 overexpression) [30] (Figure 2). 

Virus replication, spread and anti-tumoral potency was significantly better than dl1520 and wild-type 

Ad2. E1B 19K-deleted Ad5-infected cancer cells also expressed lower levels of EGFR and anti-

apoptotic proteins [57]. 

Ads also produce the virus-associated (VA) RNAs. These are RNA polymerase III transcripts that, 

amongst other functions, are obligatory for efficient translation of viral and cellular mRNAs by 

blocking the double-stranded RNA-activated protein kinase (PKR) [58,59], a natural host anti-viral 

defense system (Figure 1). We have shown that VAI-deleted Ad5 (dl331) was able to selectively target 

Epstein-Barr virus (EBV)-associated tumors such as Burkitt’s lymphoma and nasopharyngeal 

carcinoma [28]. This is because EBV expresses the RNAs EBER1 and EBER2, whereby EBER1 could 

complement dl331 to enable the synthesis of viral proteins. Interestingly, anti-tumoral efficacy in vitro 

and in vivo was superior to wild-type Ad5 and this might be the result of PKR-induced apoptosis, 

increased IFN- production, and the adenoviral E3B gene deletion. 

Gene products encoded by the adenoviral E3 region could also affect its oncolytic potency. These 

include the E3 11.6K (or adenovirus death protein – ADP), which facilitates late cytolysis of infected 

cells and release of progeny viruses [60]. Ads that overexpress ADP showed better cell lysis and 

spread [61,62]. The effects of E3B and E3 gp19K genes on the potency of oncolytic adenovirus will be 

discussed later.   

Arming oncolytic viruses with therapeutic genes 

The discovery of the genetic basis of malignancy has in part promoted the development of cancer 

gene therapy, which involves the introduction of exogenous nucleic acid to restore, express or inhibit a 

particular gene of interest. Viruses are at present the most efficient gene delivery system. A well-

known example is Gendicine (Shenzhen SiBiono GeneTech, Shenzhen, China), an Ad5 vector 

encoding the human TP53 gene that was approved in 2004 by China’s State Food and Drug 

Administration for the treatment of head and neck cancer [63]. Although developed for safety reasons, 

one major shortcoming of using non-replicating vectors such as Gendicine (by virtue of its E1A gene 

deletion) is that infectivity is limited to only one cycle. In contrast, oncolytic viruses can replicate and 

spread in cancer cells resulting in longer transgene expression. Together with tumor lysis this would 

lead to better therapeutic efficacy. Arming oncolytic viruses with anti-cancer genes has been a major 

focus in cancer virotherapy, and transgenes exploited include tumor suppressor, pro-apoptotic, anti-

angiogenic, “suicide”, and immunomodulatory genes.  

Like Gendicine, oncolytic viruses could be armed with tumor suppressor or pro-apoptotic genes that 

are frequently lost in cancer. One example is by the use of p16INK4A-armed oncolytic Ad, which has 

shown good inhibition of gastric tumor xenografts [64]. Wang et al. [65] developed an Ad in which the 

E1A gene is regulated by the human telomerase reverse transcriptase (hTERT) promoter and hypoxia 

response element, together with p53 under the strong cytomegalovirus (CMV) promoter. This virus 
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showed tumor selectivity with efficient p53 expression and oncolysis. Nonetheless, targeting a single 

gene is unlikely to have a major impact on survival, given that in cancer a large number of genetic 

alterations affect only a core set of signaling pathways and processes, as has been recently described 

for pancreatic cancer [66]. Hence there should be a move from targeting these genes individually to 

targeting cancer signaling pathways, such as arming oncolytic Ad with an engineered transgene that 

encodes transforming growth factor (TGF)- receptor II fused with the human Fc IgG1, as studied by 

Hu et al. [67]. Anti-tumoral effects were observed with a replication-selective (but not replication-

deficient) virus encoding this gene, highlighting the importance of virus replication. Viruses that 

enhance the apoptotic pathways have also been studied. Jin et al. [68] and Chen et al. [69] utilized the 

chimeric Ad5/35 carrying the gene encoding the TNF-related apoptosis-inducing ligand (TRAIL) to 

promote receptor-independent infection (see below) and apoptosis of leukemic and gastric cancer cells, 

respectively. Zhang et al. [70] treated pancreatic cancer cells by replacing the gene for human 

somatostatin receptor 2 (lost in 90% of pancreatic cancers) and introducing the gene for TRAIL by 

means of an oncolytic Ad, with good results in vivo. A reciprocal approach is to ablate the function of 

oncogenes post-transcriptionally by arming oncolytic Ad with small hairpin RNA (shRNA). Recent 

work includes those targeting hTERT [71], Ki-67 [72], Survivin [73], and Apollon [74], all of which 

have shown efficient anti-tumoral effects in vitro and in vivo. 

The tumor microenvironment plays a critical role in promoting malignant cell growth and 

progression, as well as restricting virus spread. One important issue is tumor angiogenesis. A recent 

finding by Ikeda et al. [75] suggested that the replication-selective Ad OBP-301, in which the E1 

genes are under the control of the hTERT promoter, could stimulate peripheral blood mononuclear 

cells (PBMCs) to produce IFN- that has anti-angiogenic properties, resulting in reduced tumor 

vascularity and slowed growth in immunocompetent mice. However, Kurozumi et al. [76] also showed 

that intratumoral treatment of rat glioma with oncolytic HSV could promote neovascularization of the 

residual tumor, and this was associated with a significant increase in the angiogenic factor CYR61. 

This could have an impact on subsequent tumor growth and the observation suggests that a 

combination of oncolytic virus with anti-angiogenic transgene might be needed; for this we refer the 

reader to our recent article for a more comprehensive review [77]. Recent work includes the use of the 

anti-angiogenic factors endostatin/angiostatin [78-80], interleukin-18 (IL-18) [81,82], canstatin [83], 

and trichostatin A [84], as well as arming viruses with genes that inhibit pro-angiogenic molecules 

such as IL-8 [85] and vascular endothelial growth factor (VEGF) [86,87]. Kang et al. [88] made use of 

a transcriptional repressor based on zinc-finger protein to target the VEGF promoter. An oncolytic Ad 

armed with this gene significantly reduced vessel density and tumor size of human glioblastoma 

xenografts in mice. The matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that 

degrade the extracellular matrix and are essential for tumor spread and neovascularization. Oncolytic 

viruses armed with genes that encode MMP inhibitors have shown encouraging results in delaying 

tumor growth and angiogenesis [89,90]. 

Gene-directed prodrug activation therapy (or suicide gene therapy) involves the delivery of a gene 

that would lead to the expression of an enzyme, followed by the administration of a prodrug that is 

activated selectively by this enzyme. One example is the HSV thymidine kinase (HSV-TK)-

ganciclovir method, whereby HSK-TV is able to monophosphorylate ganciclovir, which is 

subsequently converted by cellular kinases to the triphosphorylated forms, blocking DNA synthesis 
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and inducing cell death. Most publications have described the use of replication-deficient viruses with 

this approach, but recent studies that demonstrated its efficacy using replication-selective oncolytic 

Ads include treatment for prostate [91], gallbladder [92], and liver [93] cancers. Alternative 

combinations include nitroreductase with the prodrug CB1954 (converted into an alkylating 

agent) [94], and cytosine deaminase (CD) with 5-fluorocytosine, which is converted into the cytotoxic 

and radiosensitizing 5-fluorouracil [95,96]. An Ad5 with E1B 55K deletion, ADP overexpression and 

CD/TK fusion gene expression is currently in a phase III trial in combination with radiotherapy for 

patients with prostate cancer. 

The tumor environment and oncolytic viruses 

Viruses are naturally larger than other anti-cancer agents such as chemicals and antibodies (for 

example 90 nm and 300 nm for Ad and vaccinia virus, respectively). After intratumoral injection, 

effective virus spread could be impaired by the extracellular matrix, areas of fibrosis and necrosis, and 

surrounding normal cells in the tumor bed, although Kolodkin-Gal et al. [97] found that the 

extracellular components collagen and mucin could restrict HSV-1 infectivity in normal colon, but 

these molecules were expressed in lesser amounts in colonic carcinoma, facilitating its spread. Ganesh 

et al. [98] studied the co-administration of the enzyme hyaluronidase with oncolytic Ads during 

intratumoral injection. This degraded the major constituents of the extracellular matrix, hyaluronan, 

resulting in enhanced virus spread in vivo. Induction of cancer cell death with an apoptosis-inducing 

agent prior to injection of oncolytic HSV could also produce channels for effective virus spread [99]. 

Elevated interstitial hydrostatic pressure as a result of fibrosis and vessel abnormalities poses another 

physical barrier to successful virus delivery and this effect increases with tumor volume [100]. Injected 

viruses could escape back through the injection site or by drainage into the circulation, resulting in 

reduced efficacy and increased risk of systemic toxicities. Bazan-Peregrino et al. [101] examined the 

retention of Ad5 in MDA-231 and ZR75.1 human breast carcinoma xenografts after intratumoral 

injection. For MDA-231, occlusion of injection sites with surgical adhesives and the use of small 

injected volumes resulted in significantly higher virus retention within the tumors. ZR75.1, however, 

took up more Ad than MDA-231 when identically infected, suggesting a role of tumor type in virus 

retention. Recently, tumor-associated stromal cells have been shown to play a role in either enhancing 

or reducing the efficacy of oncolytic Ads, depending on the tumor type [102]. Hypoxia, a common 

feature in tumor tissues, has been found to reduce the replicative and oncolytic potential of Ads despite 

the unaltered expression of surface receptors [103,104]. In this regard there might be a role for the 

development of oncolytic viruses in which replication is not attenuated by hypoxia, such as vaccinia 

virus [105] or HSV [106,107]. 

For viruses that have reached the immediate vicinity of the tumor, cellular genetic changes could 

prevent successful virus entry into the cells. For cellular entry of most Ads (those in subgroups A, C, 

D, E and F – which include the commonly used Ad5), they must first bind to the Coxsackie and 

adenovirus receptor (CAR) on the surface membrane via the knob portions of their fibers, followed by 

internalization mediated by the viral penton proteins and cellular integrins. CAR is ubiquitously 

expressed in epithelial cells, but its expression is often downregulated in many cancer types due to 

activation of the Raf-MAPK pathway [108]. Recent work has shown that the molecule leucine-rich 
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repeat-containing protein 15 (LRRC15 or hLib), frequently overexpressed in tumor cells, could result 

in the redistribution of CAR away from cell surfaces, thus impeding Ad infection [109]. In contrast, 

most subgroup B Ads bind to CD46 [110], a receptor often upregulated in a number of tumor types, 

including breast, cervical, liver, lung, endometrial and hematological malignancies [111-113]. Several 

chimeric oncolytic Ad5 have been developed to contain the fiber tropism of subgroup B Ads and they 

all have shown encouraging results [68,69,114-117]. The use of intact subgroup B Ads as oncolytic 

agents is still under-explored but has great potential [118,119]. They have different tropism and 

infectivity compared to chimeric viruses [120], and are more beneficial in terms of a reduced 

propensity for neutralization by pre-existing antibodies (see below). Besides CD46, evidence suggests 

that the subgroup B Ad, Ad11, also utilizes another unidentified receptor [121,122], tentatively named 

‘receptor X’ by Tuve et al. [123]. They also discovered that the other subgroup B Ads, Ad16, -21, -35 

and -50 exclusively use CD46, whereas Ad3, -7 and -14 use ‘receptor X’ but not CD46. It is possible 

that Ad11 could infect a wider range of tumor cells and overcome receptor downregulation; the latter 

is a known problem with Ad35 and CD46 [124]. Strauss et al. [125] showed that Ads that utilize CAR 

or CD46 as primary attachment receptors failed to infect and lyse ovarian cancer cells of the epithelial 

phenotype, which are found in in situ tumors and tumor xenografts. These receptors are trapped in the 

tight junctions and therefore not accessible to the virus. However, Ads that use receptor X (Ad3, -7, -

11 and -14) could induce epithelial-mesenchymal transition and result in efficient oncolysis. 

Cellular signaling pathways can also affect virus infectivity. Recently our group [126] has shown 

that certain pancreatic cancer cell lines overexpress the carcinoembryonic antigen–related cell 

adhesion molecule 6 (CEACAM6), which antagonizes the Src signaling pathway, downregulates 

cancer cell cytoskeleton proteins, and blocks Ad trafficking to the nucleus. Knockdown of CEACAM6 

by siRNA significantly enhanced the anti-tumoral potency of oncolytic Ad5. For virus that has 

successfully entered the cell, it needs to replicate for efficient cell lysis and virus spread. The protein 

p21CIP1/WAF normally inhibits cyclin-dependent kinase 2 (CDK2) (Figure 2) and blocks the progression 

of the cell cycle from G1 to S phase. Shiina et al. [127] showed that siRNA knockdown of p21CIP1/WAF 

increased Ad replication and oncolysis. It was suggested that this could be due to the inhibition of SET 

and proliferating cell nuclear antigen (PCNA) by p21CIP1/WAF, whereby SET and PCNA normally 

increase viral DNA replication. In the case of vaccinia virus, recent work has suggested that cells with 

activated c-Jun NH2-terminal kinase (JNK) signaling cascade could activate PKR (Figure 1), thus 

reducing virus replication [128]. 

Cancer stem cells form part of the heterogenous tumor population. They not only contribute to 

neoplastic progression and metastasis, but also to resistance to chemotherapy and radiotherapy. 

Evidence has shown that oncolytic Ads are able to destroy these cells [129-131]. Zhang et al. [132] 

have recently demonstrated that a telomerase-specific oncolytic Ad armed with a gene that encodes the 

apoptotic TRAIL was able to preferentially target stem-like esophageal cancer cells and prolong the 

survival of mice bearing tumors composed of these cells. Whilst this is of interest, cancer stem cells 

only form a small subset of the tumor mass and the value of targeting them specifically will remain an 

issue to be resolved. 
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Modification of the host immune response in favor of oncolytic viruses 

Most studies of oncolytic viruses have been done, by necessity, on human tumor xenografts in 

immunodeficient mice – far from reflective of the human condition. Unsurprisingly, data from these 

studies have not been predictive for clinical trial results. The effects of the host immune response on 

the efficacy of oncolytic viruses are complex. When stimulated, immune cells could result in virus 

clearance but might also induce specific and non-specific anti-tumoral activities. It appears that the 

innate immune response plays an important role in virus clearance, whereas T cell-mediated responses 

are largely responsible for the anti-tumoral effect [133-137]. 

For the treatment of metastatic or hematological malignancies, intravenous virus delivery could be 

hindered by neutralizing antibodies, complement activation, non-specific uptake by other tissues such 

as the liver and spleen, as well as poor virus escape from the vascular compartment (Figure 3). For Ad, 

adhesion to blood cells could also lead to therapeutic inhibition [138]. Numerous experiments have 

been done to modify the immune response in favor of virus replication and tumor lysis. One method is 

by using an immunosuppressive agent, such as cyclophosphamide, that has been shown to improve 

virus spread and anti-tumoral efficacy [139-145]. Kurozumi et al. [146] found that single doses of the 

angiostatic and anti-inflammatory cyclic peptide of arginine-glycine-aspartic (cRGD), given before an 

oncolytic HSV, resulted in reduced tumor vessel permeability, leukocyte infiltration and IFN-, 
leading to increased survival of rats with intracranial gliomas. Various data suggest that pre-existing 

antibodies decrease virus spread after intravenous delivery [147-149], but have a lesser effect on 

intratumoral injection [44,150,151]. Although antibodies could prevent possible toxicity [152], they 

could also reduce efficacy. Possible ways to circumvent this include plasmapheresis to deplete 

antibodies and the use of other viral strains with a lower prevalence of antibodies in the human 

population. One example is Ad11 [118,119], with a reported antibody prevalence of 10-31% compared 

to 45-90% for Ad5 [122,153-155]. These antibodies are mainly directed against the viral hexon 

proteins [156], suggesting that the use of Ad11 virion might be better than chimeric Ad5/11, where the 

fibers are derived from Ad11 but the rest, including hexon, belong to Ad5. A caveat to this is that for 

unknown reasons, Ad11 appears to induce more pro-inflammatory cytokines and chemokines than Ad5 

or Ad5/11 in mice after systemic injection [120]. 

Instead of injecting naked virions, using cells as delivery vehicles could hide the viral antigen from 

antibodies and complements. This so-called “Trojan horse” strategy involved infecting the body’s cells 

in vitro and administering these cells back systemically, which would then carry the oncolytic virus to 

the tumor environment. Cells that have been tested include mesenchymal stem cells [157-159], 

monocytes [160], outgrowth endothelial cells [160], tumor cells [161-163], T cells [164-166], and 

dendritic cells (DCs) [165]. Ong et al. [167] showed that MV-infected T cells could facilitate tumoral 

delivery in low, but not high antibody concentration. Power et al. [168] tested a number of carrier cells 

including solid tumor and leukemic cells, and demonstrated that the efficacy of oncolytic vesicular 

stomatitis virus (VSV) was significantly improved compared to naked virion injection. Interestingly, 

Zhu et al. [169] demonstrated that mice pre-immunized with HSV exhibited reduced growth of S-180 

tumor after intratumoral treatment with HSV. PBMCs from seropositive mice showed greater 

cytotoxicity in vitro compared to naïve mice, with higher IFN- induction. It is not known if this also 

applies to intravenous virus delivery or to other oncolytic viral species. Whilst the cell carrier approach 
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has yielded promising data in vivo, numerous issues must be considered before clinical application, 

including the best cell type to use, ease of infection, tumor-targeting capabilities, protection of virus 

from the host immune response, virus delivery, and tumorigenicity. Recently Kangasniemi et al. [170] 

have demonstrated that silica gel-encapsulated Ads allowed for extended release of the viruses and 

slightly delayed the development of anti-Ad antibodies. This method has anti-tumoral activity, but 

comparison with other methods of administration was not performed. 

After intravenous delivery the liver, part of the reticuloendothelial system, is the predominant site of 

Ad5 sequestration with significant hepatocyte transduction [171,172]. Ad5 is known to cause liver 

toxicity, and its use has raised some concerns after the death of Jesse Gelsinger in 1999 from Ad5-

based gene therapy injected directly into the hepatic artery [173]. A landmark study by Waddington et 
al. [174] showed that liver transduction is mediated by interaction of the adenoviral hexon protein with 

the blood coagulation factor X. This provides a further rationale for the development of other Ad 

serotypes for oncolytic therapy, such as Ad11 and Ad35 as they bind weakly to factor X compared to 

Ad5 [118] or other Ad5 chimera. In CD46 transgenic mice, Ad11 persisted much longer in the 

circulation after intravenous delivery compared to Ad5 together with the absence of liver 

transduction [120,122]. As for Ad5, ways to reduce liver uptake include recent experiments performed 

by Barry et al. They studied the effect of Kupffer cell depletion (by pre-dosing mice with non-

replicating Ad5) and warfarin treatment (to inhibit vitamin K-dependent coagulation factors) and 

found that this approach significantly increased the anti-tumoral effect of systemically delivered 

oncolytic Ad5 in nude mice [175]. Good results have also been demonstrated by coating Ad5 with high 

molecular weight polyethylene glycol [176] or by genetic modification of the hexon protein to ablate 

blood factor binding [177] for liver detargeting. 

A plethora of immunostimulatory genes have been inserted into the genome of oncolytic viruses 

with the aim of stimulating effective anti-tumoral immune responses. Recent examples include the heat 

shock proteins [179,180], chemokine (C-C motif) ligand 5 (CCL5)  [181], IFN  [182], granulocyte 

macrophage colony-stimulating factor (GM-CSF)  [183-185], IL-12  [186], IL-18  [81,82], and  

IL-24 [187,188]. Vaccinia virus normally expresses a number of type I IFN-inhibiting proteins to 

counteract the cellular IFN anti-viral response. Because cancer cells frequently have an inactivated IFN 

pathway, anti-IFN gene-deleted vaccinia could selectively replicate in these cells. Kirn et al. [189] 

utilized this mutant and inserted a gene that encodes IFN- (which itself has anti-proliferative, anti-

angiogenic, and immunomodulatory anti-tumoral effects), and demonstrated enhanced tumor 

selectivity and potency in vivo. Shashkova et al. [190] used a four-pronged approach by co-infecting 

cancer cells with a replicating oncolytic Ad with ADP overexpression and IFN- expression, given 

together with a non-replicating virus encoding the gene for TRAIL, with impressive results. The 

currently used oncolytic MVs were derived from the attenuated Edmonston tag (Edmtag) strain. 

Significantly, they lack antagonizing activity against the host anti-viral IFN immune response, thus 

inhibiting virus spread. Recombinant MV encoding the measles phosphoprotein (P) gene product from 

wild-type MV, an IFN antagonist, has been found to exhibit reduced IFN sensitivity and better 

oncolytic potency in vivo [191]. A recombinant VSV vector which expresses a gene from human CMV 

has been found to have increased anti-tumoral activity in vivo [192]. The expressed protein inhibited 

the natural killer (NK) cell-activating ligand CD155, resulting in decreased accumulation of NK and 

NKT cells at the infected tumor site and elevated virus replication. 
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Figure 3. Obstacles to successful delivery of oncolytic viruses to tumor cells. After 

intravenous injection, viruses are neutralized by pre-existing antibodies and complement 

activation. Adenoviruses (Ads) also interact with blood cells. Recent work has revealed 

that Ad5 binds to erythrocytes via the Coxsackie and adenovirus receptor (CAR) and 

complement receptor 1 (CR1) in the absence and presence of anti-Ad5 antibodies, 

respectively [178]. Sequestration into other organs and the reticuloendothelial system is a 

particular problem, often with resulting toxicities. From the blood stream, viruses have to 

pass through a mixture of extracellular matrix, cells (including normal and immune cells) 

and high interstitial fluid pressure before reaching the tumor. They then have to attach to 

the cellular receptor (often trapped in tight junction), be internalized, translocate to the 

nucleus, replicate, produce structural and other proteins, lyse the cell and release their 

progenies – some of these steps could be inhibited by factors such as the natural host 

immune response, hypoxic environment, soluble factors, and genetic changes in the tumor 

cell. 

 
 

Antigen-specific activation and proliferation of lymphocytes are regulated by interaction of the 

peptide-antigen-major histocompatibility complex (MHC) with the T cell receptor, as well as both 

positive and negative signals from co-stimulatory molecules expressed on antigen-presenting cells 

(APCs). The most important of the APCs are the DCs. DCs are capable of capturing antigens secreted 

or shed by tumor cells and upon maturation, present the peptides to T cells. Endo et al. [193] showed 

that virus replication led to the production of uric acid in cancer cells, which stimulated DCs to 
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produce IFN- and IL-12. IFN- subsequently induced the expression of the proteosome activator 

PA28, which functions to generate tumor antigenic peptides required for MHC class I presentation, 

resulting in the induction of cytotoxic T lymphocytes (CTLs) against tumor cells. Lapteva et al. [194] 

and Ramakrishna et al. [195] demonstrated that increased DC migration and maturation by oncolytic 

Ad encoding β-defensin-2 or macrophage inflammatory protein 1α (MIP-1α) and Fms-like tyrosine 

kinase-3 ligand (Flt3L) significantly enhanced anti-tumoral immune responses. Chuang et al. [196] 

used another approach whereby tumor-bearing mice were first primed with DNA encoding a highly 

immunogenic foreign antigen ovalbumin (OVA), followed by intratumoral injection of vaccinia virus 

encoding the same antigen. The DNA vaccination served to generate OVA-specific CTLs against 

infected cancer cells, and the virus resulted in further oncolysis. A study by Diaz et al. [135] revealed 

that depletion of regulatory T cells reduced the efficacy of oncolytic VSV, due to the relief of anti-viral 

immune response suppression. Anti-tumoral immune activity could be improved by adoptive T cell 

transfer or incorporation of tumor-associated antigen into the virus. Huang et al. [197] utilized an 

oncolytic Ad armed with IL-12 and 4-1BB ligand, and demonstrated impressive results in mice bearing 

B16-F10 melanoma tumors. Amongst other functions, 4-1BB ligand (expressed on DCs) enhances T 

cell proliferation and IL-12 promotes their differentiation. The anti-tumoral effect was even greater 

when the virus was given together with DCs. 

The E3 region of the adenoviral genome is divided into E3A (encodes the 12.5K, 6.7K, gp19K and 

11.6K proteins) and E3B (10.4K, 14.5K and 14.7K proteins) and is involved in immune response 

evasion and virus release from cells. Because it is dispensable, this region is frequently deleted in 

many adenoviral mutants to provide more space for therapeutic gene insertion, although recent work 

has suggested that transgene expression was higher if gene was inserted at regions other than E3, such 

as L3 [198]. Deletion of the whole E3B region, however, could attenuate the virus oncolytic potency 

by increasing macrophage infiltration and expression of TNF and IFN- [51,133]. Potency could be 

restored by selective deletion of E3 gp19K whilst retaining other E3 regions [133,199]. In addition to 

the inhibition of NK cell activation [200], gp19K is an endoplasmic reticulum membrane glycoprotein 

that inhibits the transport of MHC class I to the cell surface and delays its expression to avoid killing 

by CTLs [201,202]. CTL evasion is common in tumor cells and therefore the function of gp19k is 

redundant in these cells. Deletion of this gene, however, would ensure normal cells infected with this 

virus are eradicated, and in effect this confines virus replication to tumor cells. 

Conclusions 

The field of oncolytic virotherapy is expanding and viruses continue to hold promise as effective 

treatments in combination with chemotherapy or other therapeutic modalities. As continuing work is 

being done to improve the currently available oncolytic viruses, novel viral species are also emerging 

and worth exploring, for example the porcine Seneca Valley virus [203], myxoma virus [204], Sindbis 

virus [205], and Semliki Forest virus [206]. Viruses have unique properties in comparison to small 

molecular drugs. They can replicate and spread in addition to carry anti-tumoral therapeutic genes. 

However, during the course of evolution the human body has developed ways to overcome infection 

and this has imposed a significant barrier towards achieving maximum therapeutic efficacy of 

oncolytic viruses. Recent advances in our understanding of tumor biology and virology have helped to 
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overcome some of these hurdles, and different groups have successfully targeted features that varied 

from virus delivery to altering the host immune response. It is hoped that this collective effort will 

finally pave way for the development of effective and safe viruses for cancer therapy. 
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