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Abstract
This thesis is on the topic of integration of Information Retrieval (IR) and Databases (DB), with
particular focuses on improving efficiency and scalability of integrated IR and DB technology
(IR+DB). The main purpose of this study is to develop efficient and scalable techniques for
supporting integrated IR and DB technology, which is a popular approach today for handling
complex queries over text and structured data.

Our specific interest in this thesis is how to efficiently handle queries over large-scale text
and structured data. The work is based on a technology that integrates probability theory and
relational algebra, where retrievals for text and data are to be expressed in probabilistic logi-
cal programs such as probabilistic relational algebra or probabilistic Datalog. To support effi-
cient processing of probabilistic logical programs, we proposed three optimization techniques
that focus on aspects covered logical and physical layers, which include: scoring-driven query
optimization using scoring expression, query processing with top-k incorporated pipeline, and
indexing with relational inverted index.

Specifically, scoring expressions are proposed for expressing the scoring or probabilistic se-
mantics of implied scoring functions of PRA expressions, so that efficient query execution plan
can be generated by rule-based scoring-driven optimizer. Secondly, to balance efficiency and
effectiveness so that to improve query response time, we studied methods for incorporating top-
k algorithms into pipelined query execution engine for IR+DB systems. Thirdly, the proposed
relational inverted index integrates IR-style inverted index and DB-style tuple-based index, which
can be used to support efficient probability estimation and aggregation as well as conventional
relational operations.

Experiments were carried out to investigate the performances of proposed techniques. Ex-
perimental results showed that the efficiency and scalability of an IR+DB prototype have been
improved, while the system can handle queries efficiently on considerable large data sets for a
number of IR tasks.
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Chapter 1

Introduction

1.1 Research Background of the Thesis

Information retrieval (IR) has being recognised as one of the most popular research topics in

the field of information management. Originally born as a pure librarian management technol-

ogy, IR has been developed as a main technology to retrieve information from free-text docu-

ments. Though in the modern information retrieval [Baeza-Yates and Ribeiro-Neto, 1999a], IR

technologies have evolved to handle not only text but also other data formats such as multimedia

data (e.g. image, video, speech etc.), nevertheless, text retrieval still remains as a main research

area of IR.

In particular, with rapid growth of the Internet, the amount of text available on the Web

explosively increased, which catalysed IR to develop competent techniques to handle massively

large-scale data efficiently. Moreover, new research agendas for IR to handle complex queries

have also been called out. For example, several challenges to IR research for enterprise search

are discussed in [Hawking, 2004], in which versatility and customisability of IR engines became

one of the main concerns to tackle the challenges led by complex search space.

On the other hand, as another major field that dedicates in information management systems,

database (DB) community had been driven by very different discipline from IR in the past (e.g.

see [Rijsbergen, 1979]): DB focused on data models, structured data (records), deduction, and

artificial query languages (e.g. SQL); whereas IR focused on ranking models, unstructured data

(free-text), induction, and natural query language (e.g. keywords). However, the situation is
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radically different today. As it was pointed out in [Chaudhuri et al., 2005]:

“Virtually all advanced applications need both structured data and text documents,

and information fusion is a central issue. Seamless integration of structured data and

text is at the top of the wish lists of many enterprises.”

Actually, researchers had foreseen similar demands in early 1980s with regards to integrating

structured data and text into information management systems, e.g. see [Schek and Pistor, 1982].

In recent years, demands on the integration of IR and DB technologies keep growing, which can

be seen from both research agendas and industrial developments:

• For IR community, the search engine giant Google developed a DB-like structured

storage called BigTable [Chang et al., 2006], while other similar systems including

HBase/Hadoop1, and SimpleDB2 by Amazon.

• For DB community, the Lowell report (2003) [Abiteboul et al., 2003] and Claremont re-

port (2008) [Agrawal et al., 2008] on database research self assessment continuously con-

sidered integration of DB and IR as highly interested topic; the call for special issue on

integration of DB&IR by VLDB journal [Croft and Schek, 2008] emphasises DB’s inter-

est; and related publications to the topic frequently appeared in several top-tier DB confer-

ences.

This thesis studies the techniques for integrating IR and DB technologies, with specific focus

on improving efficiency and scalability for one of the approaches, named IR+DB. In the rest of

this chapter, we will have a glance at the integration technologies, and will address the outline of

the thesis.

1.1.1 Integration of Information Retrieval and Databases at a Glance

“Search engines are structurally similar to database sys-

tems” [Zobel and Moffat, 2006]

Information Retrieval (IR) and Database (DB) are currently separated technologies with re-

spect to information management, however, they have similar research goals in principle, which

1http://wiki.apache.org/hadoop/Hbase
2http://aws.amazon.com/simpledb/
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is to answer queries of information need. On the one hand, researches in the two fields had been

driven by the two communities towards relatively different directions: IR technology mainly

handles keyword-based queries in natural languages over unstructured data, whereas DB tech-

nology mainly handles logical queries in artificial languages over structured data; IR retrieves

relevant information based on similarity between queries and information items, whereas DB re-

trieves records based on matching between queries and data; IR benchmarks focus on measuring

effectiveness, whereas DB benchmarks focus on measuring efficiency.

Nevertheless, the situation of considering IR and DB as totally apart areas have been changed,

because modern information applications require information management systems to be capable

to handle both text and structured data efficiently and effectively. As a result, integrating IR and

DB technologies became a popular topic for research, because integrated IR and DB systems

may take advantages from both fields.

For example, considering the following scenarios:

1. An intranet search engine in a large corporation. The engine supports keyword-based query

and manipulates retrieval among corporation’s internal web sites, resource databases, em-

ployee forum, mailing lists. Therefore, the searchable data sources including web pages,

database records, discussion lists, and emails. The intranet search engine should be able to

handle different data sources and merge ranked results. In addition, the engine should be

sufficiently efficient for employees.

2. A book search Web service. The Web Service is powered by a search engine which in-

corporates with libraries, book sellers and readers/editors reviewing web sites. The search

engine indexes text and metadata of books, web pages of various sources. The service

accepts keyword-based query with additional indication of intentions, e.g. looking for

reference or buy books, and returns a ranked list of books.

3. A price monitoring agent of online shops. The agent is based on an automatic crawler

periodically crawling competitors’ web sites, and it can compare the prices of commodities

of competitors to the shop’s own prices in database, and then ranks competitors’ web sites

based on their degree-of-competitive.

Based on different architectures, various approaches for the integration of IR and DB have

been proposed; while IR+DB is one of the approaches that look interesting to us, because it
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takes a thorough view of the problems with regards to text and structured data retrieval, so that it

tends to absorb the most necessary and effective techniques from IR and DB, while it avoids the

functionality of existing systems that could be overloaded for integrated IR and DB systems.

1.1.2 Motivation of Research

The motivation of our studies is to investigate suitable techniques to tackle the efficiency and

scalability problems restricting IR+DB technology to be applicable for very large data sets.

On the one hand, both IR and DB have developed very successful techniques for efficiently

handling very large and ever growing data sets; in other words, both mainstream IR engines and

commercial DB systems have been developed to be efficient and scalable based on respective

criteria.

On the other hand, because of different business or application models, the criteria of being

efficient and scalable for IR and DB systems are quite different. For instance, a de facto standard

for Web search engines in nowadays to be acceptable for casual users is to respond queries in

sub-seconds; whereas for database management systems (DBMS) in banks, it would be sufficient

enough for DBMS to process transactions in several hours.

Therefore, in terms of the applied areas of IR+DB systems, we consider more IR-oriented

applications which do not involve traditional DB criteria such as ACID (Atomicity, Consistency,

Isolation, Durability) for transaction, while these applications may benefit from relational opera-

tions (such as in DB) in combining multiple sources or evidences.

As a result, our motivation is to improve the efficiency and scalability of IR+DB systems

supporting probabilistic relational algebra (PRA) [Fuhr and Roelleke, 1998] as a query language,

especially to speed up the query processing in such systems for complex queries involving ex-

pensive (in terms of time consumption) PRA expressions.

1.2 Research Problems

This research hypothesis of this thesis is as follow:

Hypothesis. IR and DB integrated systems can be speeded up and scaled up by adapting and

evolving existing techniques in information retrieval and databases.

This thesis answers the following three research questions.
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1. How to optimize probabilistic relational algebra expressions so that to generate logical or

physical query plans that can be processed efficiently?

2. How to incorporate top-k processing mechanisms into generic query execution engine of

IR+DB systems or infrastructures.

3. How to adapt IR-style indexing methods into an IR+DB platform, so that to provide effi-

cient accessibility to statistics that are needed for flexible scoring and ranking, and how to

design and implement such index that is scalable for large-scale data?

1.3 Outline of the Proposed Techniques in the Thesis

In this thesis, we propose and investigate three main techniques for improving the efficiency

and scalability of IR+DB system, which cover three main aspects (layers) with regards to logical

query optimization, physical query processing, and storage and indexing method (see Figure 1.1).

The three techniques aim to improve the processing performance with regards to efficiency and

scalability of IR+DB system from two angles: on the one hand, we proposed a scoring-driven

optimization method from a logical optimization point of view; on the other hand, we proposed

a top-k incorporated pipeline and a relational inverted index from a physical optimization point

of view. Though our starting point is to optimize the query evaluation for probabilistic relational

algebra (PRA) expressions, but these techniques may also benefit a broader range of IR+DB

systems.

Storage and Index Layer

Physical Processing Layer

Logical Abstraction Layer
SCX : SCoring eXpression

TIP : Top-k Incorporated Pipeline

RIX : Relational Inverted Index

Figure 1.1: Proposed techniques in the layers of an IR+DB system

The features of the three techniques are outlined in the following subsections.
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1.3.1 Scoring-Driven Optimization

A scoring-driven optimization is a new class of query optimization for PRA which can be applied

in parallel with other two types of techniques: algebraic optimization and cost-driven optimiza-

tion.

Algebraic optimization and cost-driven optimization are two main state-of-the-art query op-

timizations that widely applied in database systems, where the former rewrites relational algebra

expressions (or relational expressions for short) into other transformations based on algebraic

equivalence, whereas the latter tries to optimize the mapping from logical query plan to physical

execution plan, which aims to choose the least expensive implementations based on pre-defined

cost models.

Scoring-driven optimization can be categorised into logical optimization such as algebraic

optimization, but it is substantially different from algebraic optimization by focusing on the as-

pect of scoring functions that is not considered by algebraic optimization. Because a traditional

relational algebra (RA) does not involve scoring functions, so that an algebraic optimization for

RA only need to consider relational equivalence. However, a probabilistic relational algebra

(PRA, see e.g. [Fuhr and Rölleke, 1997, Roelleke et al., 2008]) incorporates scoring functions

internally, so that logical optimization for PRA expressions is more complicated, because an

optimizer needs to consider not only relational semantics but also scoring semantics.

The introduced scoring-driven optimization technique articulates scoring function for PRA

expression using scoring expression (SCX): first of all, it interprets scoring semantics of PRA

expressions while considering relational semantics as well; while optimizer finds the scoring

function implied by a PRA expression based on extensional semantics is incompatible to inten-

sional semantics (based on possible worlds model, see Section 2.4), the method adjusts articulat-

ing scoring expression and aligns it to intensional semantics; in addition, the technique helps to

verify algebraic equivalent PRA expressions based on scoring equivalence (see Section 3.3.2).

In a word, scoring-driven optimization may becomes a new direction of research of logical

optimization for IR+DB systems.

1.3.2 Top-k Incorporated Pipeline

Top-k processing is a query processing method aims to shorten query response time, which has

been widely applied in both IR search engines and database systems. The basic idea is that to
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only compute the results from the most likely relevant data and try to stop the process as soon as

enough results have been produced. To employ top-k mechanisms in IR+DB, we investigate how

to integrate top-k algorithms into a pipelined query execution engine for IR+DB systems, and we

proposed a top-k incorporated pipeline (TIP) for the purpose.

In a pipelined query execution engine for IR+DB, complex queries can be viewed as as-

semblies of multiple common query blocks, while a query block is a form of a Select-Estimate-

Aggregate (SEA) query (see Section 4.3.1), which means a list of ranked result is computed by

common physical operations of selection, probability estimation and probability (or score) ag-

gregation, so that top-k algorithms can be incorporated into (physical) probability estimators and

probability aggregators.

Applicability of a well-known top-k algorithm named threshold algorithm (TA) and its vari-

ants had been investigated, where variants based on no random access (NRA) algorithm and

combined algorithm (CA) were considered in an conceptual design of TIP (see Section 4.3.2).

Moreover, NRA-style top-k limits allotting strategies were investigated for tf -idf model, where

three different strategies based on uniform allotment and IDF were studied. In addition, in or-

der to estimate the performances tradeoff with respect to efficiency versus effectiveness, an ideal

measuring method was introduced to estimate the tradeoff points of top-k processing (see Sec-

tion 4.3.3). Experiments were carried out for investigating the performances tradeoff while top-

k mechanism applied.

In short, a generic top-k integrated query processing engine is highly intriguing for integrated

IR and DB systems.

1.3.3 Relational Inverted Index

A relational inverted index (RIX) was proposed specifically for IR+DB systems. It employs

special index structure that combines IR-style inverted index (i.e. inverted files) and DB-style

TID-list index (i.e. tuple-identifier-based index).

By utilising inverted lists for indexing basic IR statistics such as term frequencies and docu-

ment frequency, RIX provides similar facilities as those for conventional IR systems to IR+DB

systems, so that efficient retrieval for frequently used statistics is enabled to IR+DB query en-

gine; in other words, RIX supports efficient processing for queries applying popular IR ranking

models and retrieval strategies.

Moreover, RIX integrates TID-lists index to support relational operations on IR+DB sys-
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tems. Comparing to dedicated IR systems, to be flexible to combine multiple data (of infor-

mation) sources is one of the main advantages of integrated IR and DB systems, and TID-lists

index is widely used in traditional databases to speed up query processing of relational algebra

expressions.

Because PRA combines probability theory and relational model, so that users can implement

scoring functions by formulizing PRA expressions. On the other hand, it is desired by a PRA

query engine for a versatile and efficient indexing method, which can provide flexible and scal-

able infrastructures to support and speed up the processing procedures of probability estimation,

aggregation, and relational operations.

For RIX, we will discuss the index structures and construction methods; in addition, we will

discuss indexing algorithms that aims to reduce the overhead of I/O operations; in particular, we

will investigate several building strategies for different scales of source data in order to achieve

a sub-optimal constructing performance; and moreover, we will introduce the accessing and

retrieval methods.

1.4 Overview of the Thesis

The remainder of this thesis is organised as follows:

Chapter 2: Integration of Information Retrieval and Databases The chapter reviews the state-

of-the-art technologies of information retrieval and databases, in particular, it pays specific atten-

tions to the techniques that are related to the integration of IR and DB. It introduces backgrounds

such as ranking models of IR, ranked databases, probabilistic databases and various integrating

approaches of IR and DB.

Chapter 3: Scoring-Driven Query Optimization with Scoring Expression The chapter dis-

cusses a logical query optimization technique which is driven by scoring functions that are as-

sociated to probabilistic relational algebra (PRA) expressions. It addresses the specifications of

scoring expression (SCX), and it discusses the details of applying SCX to conduct scoring-driven

query optimization for PRA expressions.

Chapter 4: Query Processing with Top-k Incorporated Pipeline The chapter introduces top-

k incorporated pipeline (TIP) which is to be employed in a physical query execution engine; in

addition, it investigates the performances tradeoff while applying NRA-style top-k mechanisms

for executing PRA queries for tf -idf model.
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Chapter 5: Indexing with Relational Inverted Index The chapter presents a relational inverted

index for IR+DB systems, in which it discusses the indexing structures, constructing algorithms,

and retrieval modes of the index.

Chapter 6: Summary and Conclusion The chapter concludes this thesis, where it discusses

some other potential techniques that are mature and popular but have not yet been considered

and investigated in this thesis; furthermore, it also takes a prospective view on potential future

work.

Appendix A: Getting Started with Birdie This appendix gives a quick start guide for the

IR+DB prototype named Birdie in which the proposed techniques of this thesis were imple-

mented. In addition, the appendix also presents in short the inside architecture of the prototype.

Appendix B: Full MagazineCorpus Table This appendix illustrates a table for a toy magazine

corpus.
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Chapter 2

Integration of Information Retrieval and Databases

2.1 Introduction

In this chapter, we introduce concepts and backgrounds of the integration of Information Re-

trieval (IR) and Databases (DB), in which we introduce state-of-the-art technologies and systems,

and in particular, address some known issues with regard to efficiency and scalability.

Traditionally, IR and DB are distinguished technologies under the same taxonomy of infor-

mation management. Though the two have very similar aim namely satisfying information need

of query, they have been developed toward different directions:

• IR is expert on handling unstructured data such as text, special indexing techniques were

proposed to support efficient search over text data; whereas DB is mastered on dealing with

structured data record, various data models were developed to support complex queries,

and DB indexes allow efficient query evaluation (i.e. query processing) using relational

operations.

• IR developed dedicated techniques and search optimization for specific application do-

mains respectively, while flexibility and customisability were usually less considered;

whereas DB is interested in data models, high level abstraction and controllable query

optimization, and flexibility and customisability are highlighted features to be emphasised.

• IR retrieves documents (traditionally), and it defines retrieval effectiveness based on rel-

evance of retrieved document to query; whereas DB retrieves data records, and it defines
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retrieval quality by if matches of data records against query were found. IR benchmarks

mainly (and almost only) focus on effectiveness (e.g. TREC and INEX); whereas DB

benchmarks are varied (e.g. TPC benchmarks), but in most benchmarks efficiency is an

important aspect to be tested following a cost-performance model (e.g. Debit/Credit).

Today situations have changed. Since any advanced application today uses both text docu-

ments as well as databases, either community (IR or DB) has to confront a territory it was not

familiar before. As a result, the demands on information systems which can search on both text

and record effectively and efficiently provoked great enthusiasm on research and development of

integrating IR and DB technologies.

The authors of [Chaudhuri et al., 2005] reviewed the issues on integrating IR&DB deeply

and widely. They pointed out the shortages of processing queries on different types of data of

IR and DB: in short, there is no query optimization for advanced queries in the IR world, and

insufficient text support in the DB world. There have been existing built-from-scratch DB+IR

systems such as QUIQ [Kabra et al., 2003] aim to handling structured data and text fields and

supporting scoring for similarity search, but they were designed to be domain-oriented systems

rather than universal infrastructure. Nevertheless, it is glad to see efforts on building generic

integrated IR&DB platforms had been carried out.

Although motivations for integrating IR and DB might be varied, but benefits of integrated

IR&DB technologies could be summarised as the follows:

• Flexibility and customisability: it offers expressive declarative query languages for imple-

ment ranking functions and retrieval strategies while developing IR related applications.

• Easy development and maintenance: from an engineering perspective, the advantages

of using high level declarative languages include shortening development circles, easing

source code maintenance, reducing difficulties and risks, and tolerant for changes.

• Handling complex queries: the underlying (probabilistic) relational model of database pro-

vide computing powers to handle queries involving complex relationships and conditions,

which is usually missing in traditional IR systems.

• Seamlessly handling queries over multi-format data sources: unstructured data (e.g. text)

and structured data (e.g. record) are integrated naturally, therefore, queries over multi-

format data sources could be processed seamlessly on an integrated framework.
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In the remainder of this chapter, we review the state of the art techniques on text retrieval

and efforts of integrating scoring or ranking functions into databases. In particular, we recall

essential concepts and theories behind probabilistic databases and take a detailed look at the

query evaluation technique on probabilistic database.

2.2 A Brief Review of Information Retrieval

In short, the task of IR is to look for information items (e.g. documents) from a collection (e.g. a

corpus) that relate to given queries, where if an information item in the collection is related to a

query, then it is called relevant information for the query, otherwise is called irrelevant informa-

tion. In the words, IR aims to retrieve information that are about queries, which is different from

traditional DB task that aims to retrieve information (i.e. data records) that match queries.

In this section, we review basic IR procedures for traditional text retrieval with an example,

and then revisit some dominant retrieval models that are applied by IR systems.

2.2.1 Basic Procedures of Information Retrieval

In general, there are five basic procedures in a typical IR system, which are:

• preprocessing: to prepare input for indexing. The procedure may include several sub-

processes, for instance, parsing of documents, i.e. extract words from documents; casefold,

i.e. change uppercase letters to lowercase; stopword removal, e.g. remove pronouns and

prepositions; and stemming, i.e. to cut off suffixes of plural, the past tense, or the present

continuous tense, etc..

• indexing: to construct either meta-index or full-text index. A meta-index contains meta

data of indexed collection and provides accessing methods to original documents, whereas

a full-text index is an additional representation of the original collection with extra statistics

included.

• query processing: to retrieve lists of ranked relevant documents with regard to given

queries. This procedure conducts the cored function of an IR system, i.e. for a given

query, it retrieves a list of candidate relevant documents, and then ranks the candidates

based on predefined ranking model(s). Note that extra sub-processes could be employed

before conducting main retrieval process. For example, determining if a query is a list of

terms (words) or a phrase, or deploying query expansion.



2.2. A Brief Review of Information Retrieval 28

• result preparation: prepares final results for presentation. Usually, retrieval result (raw

result) contains a list of unique identifiers of retrieved documents, which are very likely

meaningless to end users of an IR system. Therefore, raw results have to be transformed

to a form that is more meaningful to human users, for example, showing original docu-

ment titles, including a summary for each document, or displaying thumbnail images of

documents.

• evaluation: assesses the effectiveness of retrieved results. Typical evaluation methods

include precision and recall, in which precision measures the percentage of relevant doc-

uments that are retrieved, whereas recall measures the percentage of retrieved documents

that are relevant. Several benchmarks have been proposed for evaluating retrieval effective-

ness, for instance, TREC1 for text retrieval and INEX2 for XML (structured documents)

retrieval.

IndexingQuery Processing

Preprocessing

Documents

Collection

Retrieved

Documents

Query

Result Preparation

Evaluation

Rendered

Result

Parsed

Documents

Index

Figure 2.1: Basic procedures of Information Retrieval

In summary, the basic procedures could be assembled in an IR system as Figure 2.1.

1http://trec.nist.gov/
2http://inex.is.informatik.uni-duisburg.de/



2.2. A Brief Review of Information Retrieval 29

Here we introduce an example of document collection for demonstration. A toy magazine

corpus is given in Figure 2.2, in which contains two documents, one named ‘fortune’ and the

other named ‘time’. This toy corpus will be referred by most of later discussions where an

example collection is needed.

FORTUNE
13 Test Drive
Hybrid wars heat up, as Honda pushes into the fray with the gas-electric Insight.
BY ALEX TAYLOR III

46 Bavaria’s Next Top Model
With its new GT, BMW hopes to expand the definition of a luxury touring car.
But down the road it has to figure out what consumers want in a premium green automobile.
BY ALEX TAYLOR III

TIME
Hybrid vs. Hybrid: How the cars of the future compare
THE PRIUS - TOYOTA
The original hybrid uses both gas and electric engines to get the best fuel economy of any car
in the U.S. today - and it costs less than the Volt’s target price.
WHAT’S NEXT
Future versions will be plug-ins, but are unlikely to have the Volt’s all-electric range.

THE VOLT - GENERAL MOTORS
The Volt is an extended-range electric vehicle: it’s powered by electricity, with what amounts
to a gasoline-fueled electric generator for longer drivers.
A QUESTION OF COST
Critics love the Volt technology - but they wonder if the car will be affordable.
BY BRYAN WALSH

Figure 2.2: A magazine corpus

Though structure is one of the inherent features of real-life documents, but in traditional text

retrieval, documents are viewed as bag-of-words, where structures are usually ignored. Hence

when the magazine corpus is to be preprocessed as a collection of non-structured documents,

its documents are parsed into bag-of-words while structures information (if there are any) are

discarded during the procedure. As aforementioned, several sub-processes could be employed

besides parsing. For instance, terms are usually case-folded where upper case letters are replaced

by lower case letters. In addition, stopwords such as “the” and “of” should be removed if they

are not parts of phrases. Optionally, stemming could be applied to cut off semantic suffixes of

words, e.g. change “cars” to “car”. Moreover, hyphens of composed words could be removed as

well, for example, breaking down “gas-electric” to “gas” and “electric”. Furthermore, different

abbreviations that refer to the same concept could be unified, for example, since both “U.S.” and

“U.S.A” refer to “United States of America” so that they would be replaced by “usa”. In the end
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of preprocessing, a possible output of bags-of-words may look like Figure 2.3.

#DocID=1
fortune 13 test drive hybrid war heat honda push fray gas electric insight alex taylor iii 46
bavarias next top model new gt bmw hope expand definition luxury touring car down road
figure out consumer want premium green automobile alex taylor iii
#DocID=2
time hybrid hybrid car future compare prius toyota original hybrid use gas electric engine
best fuel economy car usa today cost volt target price next future version plug in unlikely
volt all electric range volt general motor volt extended range electric vehicle power electricity
amount gasoline fuel electric generator longer driver question cost critic love volt technology
wonder car affordable bryan walsh

Figure 2.3: A possible appearance of the magazine corpus after preprocessing as bags-of-words

On the other hand, structured document retrieval (e.g. XML retrieval) has also been well

studied in IR. As Figure 2.2 shows, text are organised in groups such as paragraphs or sections

or chapters, while some groups may include titles to indicate the contents of the groups, in which

titles might be written in special formats such as highlighted or enlarged. In addition, references

or bibliographies are common parts of documents, which appear in web pages as “anchor text

+ hyperlink”. Figure 2.4 shows a possible appearance of the magazine corpus in XML format.

Without doubts, structured documents are more informative than plain text documents, while the

computational cost of structured document retrieval is also expected to be more expensive.

2.2.2 Retrieval Models

Retrieval model (or ranking model) is one of the foundations of IR and the most important

building block of query processing. To review the dominant IR models, we distinguish mainly

two classes: non-probabilistic and probabilistic models. On the non-probabilistic side, Vector

Space Model (e.g. see [Baeza-Yates and Ribeiro-Neto, 1999b]), tf -idf and BM25 family (e.g.

see [Robertson and Walker, 1994, Robertson et al., 2004]) are the dominant models; and on the

probabilistic side, Binary Independent Retrieval (BIR) model and Language Modelling (LM) are

the main candidates. Non-probabilistic models are mainly based on heuristics, whereas proba-

bilistic models come with a theory background and some heuristics.

Probabilistic models date back to [Maron and Kuhns, 1960], which try to estimate

the probability of a document being judged relevant to a particular query, this is de-

noted as the probability of relevance P(d|q). Because there is no direct quantita-

tive method to estimate the relevance probability, there are various methods to esti-

mate the relevance probability. In late 1970s, [Robertson and Sparck Jones, 1976] pre-
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<doc id=“1” name=“fortune”>
<title id=“1”>FORTUNE</title>
<chapter id=“1”>
<title id=“1” font=“bold”>13 Test Drive</title>
<section id=“1”>
<para id=“1”>
<link id=“1” refDocId=“2” refDocName=“time”>Hybrid wars</link>
heat up, as Honda pushes into the fray with the gas-electric Insight.
</para>
</section>
<author id=“1” font=“italic”>BY ALEX TAYLOR III</author>
</chapter>
<chapter id=“2”>
<title id=“1” font=“bold”>46 Bavaria’s Next Top Model</title>
<section id=“1”>
<para id=“1”>
With its new GT, BMW hopes to expand the definition of a luxury touring car.
</para>
<para id=“2”>
But down the road it has to figure out what consumers want in a premium green automobile.
</para>
</section>
<author id=“1” font=“italic”>BY ALEX TAYLOR III</author>
</chapter>
</doc>
<doc id=“2 name=“time”>
<title id=“1”>TIME</title>
<chapter id=“1>
<title id=“1” font=“bold”>Hybrid vs. Hybrid: How the cars of the future compare</title>
<section id=“1”>
<title id=“1” font=“smallcaps”>The Prius - Toyota</title>
<para id=“1”>
The original hybrid uses both gas and electric engines to get the best fuel economy of any car
in the U.S. today - and it costs less than the Volt’s target price.
</para>
<title id=“2” font=“smallcaps”>What’s Next</title>
<para id=“2”>
Future versions will be plug-ins, but are unlikely to have the Volt’s all-electric range.
</para>
</section>
<section id=“2”>
<title id=“1” font=“bold”>The Volt - General Motors</title>
<para id=“1”>
The Volt is an extended-range electric vehicle: it’s powered by electricity, with what amounts
to a gasoline-fueled electric generator for longer drivers.
</para>
<title id=“2” font=“smallcaps”>A Question of Cost</title>
<para id=“2”>
Critics love the Volt technology - but they wonder if the car will be affordable.
</para>
<author id=“1” font=“italic”>BY BRYAN WALSH</author>
</section>
</chapter>
</doc>

Figure 2.4: A possible appearance of the magazine corpus in XML format
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sented BIRM. In the middle to end 1980s, [van Rijsbergen, 1986] initiated approaches to

model IR as the probability P(d → q) of a non-classical implication between documents

and queries. Early 1990s brought the inference network model [Turtle and Croft, 1990],

Middle 1990s contributed the P(d → q) framework [Wong and Yao, 1995], and late 1990s

to early 2000s brought LM (e.g. see [Ponte and Croft, 1998, Berger and Lafferty, 1999,

Zhai and Lafferty, 2002, Lafferty and Zhai, 2003]) and Divergence from Randomness (DFR)

[Amati and van Rijsbergen, 2002].

In probabilistic IR models, an important aspect is how to estimate the term weight with proba-

bility of relevance. Without relevant information we can estimate the term weight via idf (inverse

document frequency), For examples, [Croft and Harper, 1979, Yu et al., 1982, Robertson, 1981]

etc. have investigated idf heuristics against the probabilistic model.

More recently, [Hiemstra, 2000, Robertson, 2004, Roelleke and Wang, 2006] highlighted re-

lationships between the three main classes of models: tf -idf, BIR, and LM. The work on relation-

ships of models isolates the common components (probability estimations) in models that are the

basic ingredients for modelling IR models.

2.2.2.1 Dominant Non-probabilistic Models

Following the convention in [Roelleke and Wang, 2008], we apply similar notions as they are

shown in Table 2.1 to demonstrate the IR models.

nD(t) number of documents in a collection in which t occurs
ND number of documents in a collection
nL(t,x) number of locations in sequence x in which t occurs, if x is not given

then it is the number of locations t occurs in a collection
NL(x) number of locations in sequence x in which t occurs, if x is not given

then it is the number of locations in a collection

Table 2.1: Notions

Basic TF-IDF The basic tf -idf model defines as following:

RSVT F-IDF(d,q) := ∑
t∈d∩q

tf(t,d) · idf(t) (2.1)

tf(t,d) :=
nL(t,d)
NL(d)

(2.2)

df(t) :=
nD(t)
ND

(2.3)
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idf(t) := − log
nD(t)
ND

(2.4)

BM25 Family Traditional BM25 [Robertson and Walker, 1994] is a 2-Poisson based retrieval

function. The relevance status value (RSV) score of a document calculated by BM25 is given as:

RSVBM25(d,q) := ∑
t∈d∩q

nL(t,d) · (k1 +1)

nL(t,d)+ k1 ·
(
(1−b)+b dl

avdl

) · idfRSJ(t) (2.5)

idfRSJ(t) = log
ND−nD(t)+0.5

nD(t)+0.5
(2.6)

where tf(t,d) is the within-document term count (raw frequency) of the term, k1 and b are

free parameters, dl is document length, avdl is average document length across the collection,

and idfRSJ(t) is the Robertson-Sparck-Jones idf weighting formula.

BM25F [Robertson et al., 2004] is an extension of the BM25, where a document can be mod-

eled as having a number of fields, where different fields may be of different importance. For

example, the title of a document may be one such field. A term occurring in the title field then

can be given higher importance to if the term occurred in the body of the document.

In BM25F different weights wi are assigned to the different fields (i.e., reflecting importance).

Although the parameter k1 may also be chosen specifically for the different fields, the study of

[Robertson et al., 2004] has shown that field-specific b is more useful. The definition of BM25F

is given by (the subscript f indicates field-specific variables):

RSVBM25F(d,q) := ∑
t∈ f∩q, f⊂d

∑ f w f
nL(t, f )

B f

k1 +∑ f w f
nL(t, f )

B f

· idfRSJ(t) (2.7)

B f = (1−b)+b · fl
avfl

(2.8)

2.2.2.2 Dominant Probabilistic Models

Binary Independent Retrieval The BIR [Robertson and Sparck Jones, 1976] model is a theo-

retical pillar of probabilistic retrieval. The BIR defines the RSV as follows:

The BIR defines the RSV as follows:

RSVBIR(d,q) := ∑
t∈d∩q

[
log

PD(t|q,r)
PD(t̄|q,r)

− log
PD(t|q, r̄)
PD(t̄|q, r̄)

]
(2.9)
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Language Modelling Language modelling linearly combines the probability PL(t) (probability

that term t occurs in collections) and the probability PL(t|d) (probability that term t occurs in

document d). These probabilities are estimated in the tuple space.

The RSV of LM is defined as follows:

PL(t|d) := tf(t,d) (2.10)

PL(t) :=
nL(t)
NL

(2.11)

mixture = λ ·PL(t|d)+(1−λ ) ·PL(t) (2.12)

RSVLM(d,q) := ∑
t∈d∩q

log
(

1+
λ

1−λ
· PL(t|d)

PL(t)

)
(2.13)

The mixture parameter λ is to be set: It can be term-dependent, query-dependent, or

background-dependent.

2.3 Integrating Ranking into Relational Databases

As we have seen in the previous section, producing ranked result is an iconic characteristic of IR

systems. On the other hand, though yielding ranked result was not a priority interest to relational

databases at the first place, but this situation changed when applications for multimedia and

decision-support emerged, in which internal support of processing top-k queries inside databases

was deemed to be necessary and beneficial. Note that the researches on handling top-k queries

within DB extensively impact later efforts of integrating ranking into RDBMS.

The theoretical studies on bring ranking into databases had been carried out since late 1980s,

which aimed to establish a probabilistic framework for handling imprecise information and vague

queries, for example, see [Cavallo and Pittarelli, 1987, Fuhr, 1990]. During mid 1990s, object-

relational database (e.g. [Stonebraker and Moore, 1996]) systems became popular in databases

research, while such systems (e.g. [Chaudhuri and Gravano, 1996, Fagin, 1996]) were used for

managing multimedia data types such as text and images. In a typical multimedia application, a

database usually sits at the back-end and manages storage and retrieval, whereas a middleware

system was built upon database to provide actual functionality of the application. Since multime-

dia predicates often involve approximate matching, for example, measuring similarities of differ-

ent shapes, colours or textures, which is logically similar to IR of estimating relevant documents

to queries. As a result, such systems often need to answer fuzzy queries (e.g. [Fagin, 1996]) such
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as “show me ten images in the database that look the most like an example”.

Around the same period, another applied area that caught many interest in DB community

was decision-support and data warehousing system. Ranking and cardinality limits are com-

monly needed by business analysts (e.g. [Kimball and Strehlo, 1995]). In such systems, queries

about, for example, the top n% of retailed commodities in terms of gross sales revenues, are often

asked.

DB researchers were aware that databases at that time did not produce top-k results directly,

which means databases always yielded full results and left the jobs of getting top-k answers to

middleware. As a result, old databases wasted time on working out unwanted answers. Therefore,

database’s engine could stop, or in other words, early terminate, the processing when answering

top-k queries if database could get notice of how many tuples are desired in the results.

The requirements provoked researches to implement new operators and algorithms (e.g.

[Fagin, 1996, Carey and Kossmann, 1997, Carey and Kossmann, 1998]) into database’s query

engine, and to extend SQL (e.g. [Carey and Kossmann, 1997]) for supporting such extensions

so that top-k queries could be expressed in declarative language. In particular, a family of

top-k algorithms were proposed and caught a lot of attentions: Ronald Fagin introduced a

Fagin Algorithm in [Fagin, 1996] in 1996, and then a well-known Threshold Algorithm (TA)

(which is an extension of the Fagin Algorithm) was proposed respectively by Nepal and Ra-

makrishna [Nepal and Ramakrishna, 1999], Güntzer et al. [Güntzer et al., 2000], and Fagin et al.

[Fagin et al., 2001]. More details about TA algorithm and related work about top-k processing

will be addressed later in the Chapter 4.

The knowledge gained from fuzzy query processing on multimedia applications were soon

spread and impact other applied domains of databases, in which ranking was found beneficial

to solve some other problems of DB, such as the empty answers problem when queries are

too selective, or the many answers problem while queries are not selective enough. In addi-

tion, ranking of query results is also helpful to applications where schema of databases are

invisible to users (including application developers and casual end users), this might due to

security restrictions while exposing database schema would lead to unauthorised information

leak, or ordinary users should not be bothered to handle complicated schema. As a result,

ranking of query results became desirable to keyword-based and schema-free search. Systems

built for similar purposes could be found, e.g. in [Agrawal et al., 2002, Agrawal et al., 2003,
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Hristidis and Papakonstantinou, 2002, Hristidis et al., 2003, Chaudhuri et al., 2004]. In their

early works, though neither [Agrawal et al., 2002] nor [Hristidis and Papakonstantinou, 2002]

discussed exactly how ranking is applied, however, the subsequent works of both studies adopt

IR-like scoring functions. For instance, [Agrawal et al., 2003] introduced an idf -like ranking

strategy called QF Similarity, which collaborates data frequencies with workload characteristic,

while [Hristidis et al., 2003] employed BM25-style scoring strategy for ranking.

It is worth noting that along with the research of ranking for databases, DB researchers

also made valuable contributions to rank-aware query optimization. Since new operators (in-

cluding logical and physical) such as rank-join had been introduced with the emergence of

top-k algorithms like TA, it had been noticed that query optimization techniques needed to be

evolved for the new candidates. In consequence, various algebraic optimization methods as well

as query scheduling had been proposed. For example, [Donjerkovic and Ramakrishnan, 1999]

introduced probabilistic optimization of top-k queries with histogram, and [Ilyas et al., 2003]

studied optimization for supporting top-k join queries, while [Ilyas et al., 2004] discussed rank-

aware query optimization, and [Li et al., 2005] proposed a query algebra called RankSQL along

with its algebraic optimization for relational top-k queries. On the studies of query scheduling,

[Mutsuzaki et al., 2007] introduced top-k query evaluation with probabilistic guarantees which

utilises probabilistic estimation of the lower-bound of candidate scores, while [Bast et al., 2006]

IO-Top-k discussed the scheduling of IO access on candidate joined lists. More related works

about query optimization will be discussed later in the Chapter 3.

In a word, despite the aforementioned researches aimed at studying generic ranking meth-

ods that are suitable for RDBMS, but no doubt their works are important progresses towards

integrating DB and IR technologies.

2.4 Probabilistic Databases

Traditional relational databases base on a relational data model made by Codd [Codd, 1970],

in which data are considered to be certain that they are either in or not in the databases. In

other words, the relational data model supports a binary Boolean logic where the existence of

data within databases could be only one of true or false. On the other hand, in order to handle

uncertain data and vague or “fuzzy” information in relational databases, efforts had been carried

out to extend the traditional relational data model.
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Researches on probabilistic databases could date back as early as 1980s. As one of the

earliest efforts, [Cavallo and Pittarelli, 1987] proposed a probabilistic data model based on in-

tensional semantics, in which traditional relational model could be viewed as a generalisation of

the probabilistic model, and reconstruction of relational algebra by considering dependent prob-

abilities was discussed. In addition, [Bosc et al., 1988] proposed to extend relational and object

oriented data models using fuzzy set and possibility theory. Furthermore, the notion of quality

of databases and its estimation using a probabilistic approach was discussed in [Motro, 1988].

Moreover, [Fuhr, 1990] studied a probabilistic learning model for vague queries and imprecise

information in databases, and [Fuhr, 1993, Fuhr and Rölleke, 1997] introduced a probabilistic

relational algebra (PRA) extended traditional (deterministic) relational algebra by incorporating

probabilities aggregation with relational operations. Note that the query evaluation of aforemen-

tioned works are based on intensional semantics of the possible worlds model of knowledge.

In recent, researches on the query evaluation based on extensional semantics have been car-

ried out extensively. For instance, [Dalvi and Suciu, 2004, Re et al., 2007] introduced a safe-plan

evaluation method for conjunctive query plans, which basically pushes probabilistic projection

into join3. Alternatively, [Benjelloun et al., 2006a] introduced an evaluation technique employ-

ing auxiliary tables, which is so-called lineage that traces the elemental relations (contain only

independent events) involved in complex relations (of complex events).

Various prototypes of probabilistic databases have been developed, for example, HySpirit

(see e.g. [Fuhr and Roelleke, 1998, Fuhr et al., 1998, Rölleke et al., 2001]), MystiQ (see

e.g. [Dalvi and Suciu, 2005, Boulos et al., 2005]), Trio (see e.g. [Benjelloun et al., 2006b,

Mutsuzaki et al., 2007]), and MayBMS (see e.g. [Antova et al., 2007a, Antova et al., 2007b,

Antova et al., 2007c]).

2.4.1 Possible Worlds Model

First of all, we informally describe the underlying model of probabilistic databases. In short,

probability assignment in a probabilistic database complies with the possible worlds model (see

e.g. [Cavallo and Pittarelli, 1987, Fagin and Halpern, 1994]), in which a relation R, i.e. including

table and view, is considered to be a world s, and a tuple τ is viewed as an event e; while a

probability p is assigned to τ when τ is in relation R, which indicates the possibility of event e

3As we will discuss in the later sections, the results obtained from this method is a way to reflect
complex event probabilities, but the results do not present the actual complex events indicated by the
intensional semantics.
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occurs in world s. Furthermore, the probability of event e could be in the whole world Ω is the

summation of probabilities of e in all possible worlds.

For example, assume we have a Car database which contains relations in the Table 2.2, where

“eco-car” means “ecological car” or “environmental friendly car”, and “HV” stands for “hybrid

vehicle” 4, while “ICE” for “internal combustion engine”, and “EM” for “electric motor”.

CarCategory
ID P(e) Class CarType
a1 0.7 Eco-car HV

(a) CarCategory

CarPropulsionSystem
ID P(e) EngineType VehicleType
b1 0.6 ICE HV
b2 0.8 EM HV

(b) CarPropulsionSystem

Table 2.2: A Car database containing probabilistic relations

The CarCategory table is for car classification, while the CarPropulsionSystem table tells

what type of engine could be used for propelling a certain type of vehicle. The schema of the

tables are given as follows:

CarCartegoy(Class, CarType)
CarPropulsionSystem(EngineType, VehicleType)

In addition, a probability P(e) is given to each tuple identified by tuple ID. For instance,

P(a1) = 0.7, P(b1) = 0.6 and P(b2) = 0.8, which might be explained as, e.g. 70% eco-cars are

hybrid cars, and 60% hybrid cars have internal combustion engine, while 80% HVs installed

electric motor.

The implied possible worlds of the Car database are illustrated in Figure 2.5, where it shows

which worlds that each event may drop, while a corresponding possible worlds database is given

in Figure 2.6. While assuming a world wi consists of only independent events e j, which is

called elemental events, and the probability of the world is the conjunction of probabilities of all

possible events. For instance, in the world w2 where events a1, b1 and b2 occurs, i.e. w2 = a1∩

b1∩b2, so that the probability of the world is computed as P(w2) = 0.7 ·0.6 · (1−0.8) = 0.084.

4E.g. see [Chan, 2002], “A hybrid vehicle is a vehicle that uses two or more distinct power sources
to move the vehicle”. Fuels for HVs include gasoline/diesel, gaseous fuels, biofeuls, synthetic fuels,
hydrogen, in which different fuels could be mixed in ways that to be consumed by internal combustion
engines (ICE), or the fuels are used to generate electricity, i.e. through electric generators or fuel-cell
(an electrochemical conversion device), to power electric motors (EM). Other power sources for HV may
include, for example, solar or compressed air, which could be either transformed into electricity for EMs
or directly used by special propulsion systems. In particular, the “Hybrid Electric Vehicle” (HEV) (e.g.
see [Gao et al., 2005]) is a type of HVs which is characterised by having both EM and ICE, in which the
EM and ICE collaborate in certain powertrain to propel the car.
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Figure 2.5: Possible worlds

Moreover, if an event is derived from two or more elemental events, for example, let event

e = a1 ∩ (b1 ∪ b2), and let P(e) be the probability of e in all worlds. Because a1 ∩ (b1 ∪ b2) =

a1 ∩ (b1∩b2), therefore P(e) = P(a1) · (1−P(b1) ·P(b2)) = 0.7 · (1− 0.4 · 0.2) = 0.644. On

the other hand, P(e) could also be obtained by summing the probabilities of all worlds where

e might occur. In this case, for e to occur then a1 must occur and at least one of b1 and b2

must occur. In other words, the worlds that satisfy e could only be w1,w2 and w3, hence we get

P(e) = P(w1)+P(w2)+P(w3) = 0.644, which is the same result as directly computing from the

probabilities of elemental events.

possible world instance probability of world instance
w1 = {a1,b1,b2} P(w1) = 0.7 ·0.6 ·0.8 = 0.336
w2 = {a1,b1,b2} P(w2) = 0.7 ·0.6 · (1−0.8) = 0.084
w3 = {a1,b1,b2} P(w3) = 0.7 · (1−0.6) ·0.8 = 0.224
w4 = {a1,b1,b2} P(w4) = 0.7 · (1−0.6) · (1−0.8) = 0.056
w5 = {a1,b1,b2} P(w5) = (1−0.7) ·0.6 ·0.8 = 0.144
w6 = {a1,b1,b2} P(w6) = (1−0.7) ·0.6 · (1−0.8) = 0.036
w7 = {a1,b1,b2} P(w7) = (1−0.7) · (1−0.6) ·0.8 = 0.096
w8 = {a1,b1,b2} P(w8) = (1−0.7) · (1−0.6) · (1−0.8) = 0.024

W =
⋃8

i=1 wi ∑
8
i=1 P(wi) = 1

Figure 2.6: An example of a probabilistic database based on possible worlds (intensional seman-
tics)

Now we define probabilistic database formally.

Definition 2.4.1. Probabilistic Database. A probabilistic database D is a set of relations that

D= {R1, . . . ,Rn}. A relationR is a quadruple thatR= (X,∆, f,p), where X is the schema ofR

which is a non-empty set of distinct symbols called attributes, for a relation R having schema X
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is denoted asRX; and ∆ is a set of tuples {τ1, . . . ,τn} called domain, where ∀τ ∈ ∆,τ 7→X; while

f is a function f(R′
Y)→RX that yields relation R; and p is an event expression that computes

the event probability P(e = τ|τ ∈ ∆) where P(e)→ [0,1].

Here a relation in Definition 2.4.1 is similar to a traditional viewpoint in non-probabilistic

databases where tuples are considered as mappings from attributes’ names to values in the do-

mains of the attributes; on the other hand, it extends conventional definition by introducing event

expression p, which computes event probabilities and assigns the probabilities to tuples; in other

words, a probabilistic weighting is attached to each of the mappings from names to values.

Definition 2.4.2. Elemental Relation. An elemental relation in a probabilistic database is a rela-

tion that contains only independent events; furthermore, elemental relations are independent of

each others.

Definition 2.4.3. Complex Relation. A complex relation in a probabilistic database is a relation

that is derived from one or several other elemental or complex relations through certain combi-

nation of operations of Cartesian product, projection and selection.

Given the above definitions, as a result, traditional (deterministic) relational databases can be

viewed as a specialisation of probabilistic database, where the event expression of any relation

always computes P(e) = 1 and assigns probability one to tuples. Next, the possible worlds model

is defined as follow:

Definition 2.4.4. Possible Worlds. Let e be a probabilistic event, given an event space E =

{e1, . . . ,en} in which all events are independent, i.e. ∀ei,e j ∈ E where i 6= j, there is P(e j|ei) =

P(e j) ·P(ei); the possible worldsW is a set of instances of worlds thatW = {w1, . . . ,wm|m = 2n},

in which a world instance w consists of conjunctive events that w =
⋂n

i=1 ei, and the probability

of a world instance P(w) = ∏
n
i=1 ei, where ei 7→ ek∨ek, k = i and ek ∈ E . The world instances are

disjoint events of each others, the summation of the probabilities of all world instances is 1, i.e.

∑
m
i=1 P(wi) = 1.

Furthermore, the relationship between probabilistic database and possible worlds model is

given by Theorem 2.4.1.

Theorem 2.4.1. Let D be a probabilistic database andW be the implied possible worlds of D,

∀R ∈ D, the event probability P(e = τ|τ ∈R) is equivalent to the summation of probabilities of
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a set of implied world instances {w} ⊂W , i.e. P(e = τ|τ ∈ R) = ∑
k
i=1 P(wi), where ∀w ∈ {w}

τ ` w.

Proof. Assume E = {e1, . . . ,en} is an event space andW = {w1, . . . ,wm} is the implied possible

worlds of E where m = 2n. For a complex event e′ = (ei ∩ e j)∪ (ei ∩ ek) = ei ∩ (e j ∪ ek), the

implied world instances are {w}= {{ei,e j,ek},{ei,e j,ek},{ei,e j,ek}}, while

⋃
∀w∈{w}

w ⇔ eie jek∪ eie jek∪ eie jek

⇔ ei∩ (e jek∪ e jek∪ e jek)
⇔ ei∩ (e j ∩ (ek∪ ek)∪ e jek)
⇔ ei∩ (e j ∪ e jek)
⇔ ei∩ (e j ∪ ek)
⇔ e′

The above equivalence always holds for any conjunctive complex event where {e}⊆ E . Thus

the statement of Theorem 2.4.1 is necessary and sufficient, and therefore Theorem 2.4.1 is sound.

Proved.

2.4.2 Probabilistic Relational Algebra

In [Cavallo and Pittarelli, 1987], the probabilistic database is defined only based on intensional

semantics (i.e. the possible worlds model), in other words, there are not complex relations

within the database. Different from [Cavallo and Pittarelli, 1987], [Fuhr, 1990, Fuhr, 1993] de-

fined probabilistic database based on extensional semantics, in which the tuples of tables (i.e.

materialised relations) are viewed as independent events; whereas the query evaluation on such

database is based on intensional semantics, which complies to the possible worlds model.

In a subsequent work of [Fuhr, 1993], a probabilistic relational algebra (PRA) was proposed

in [Fuhr and Rölleke, 1997], which integrates probability aggregations with relational algebra,

where five basic operators (σ ,Π,./,∪,−) for selection, projection, join, union, and difference

respectively were redefined.

Based on [Fuhr and Rölleke, 1997] and the probabilistic database defined in Definition 2.4.1,

the formal definitions of the five basic operators of PRA are given as follows.

Definition 2.4.5. Selection. Given a relation R′
X ∈ D and a set of predicates Θ = {=, 6=,<,≤

,>,≥,≈}, the selection operator σ is defined as:
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σµ:XΘx(R′
X)→RX

⇒ if ∃τ ∈R′
X that µ(τ) is true, then σµ:XΘx(τ) 7→ τ where τ ∈RX

(2.14)

and the event probability is given by:

P(e = τ|τ ∈RX) := P(e = τ|τ ∈R′
X) (2.15)

For instance, taking an example from the Car database in Table 2.2, a PRA expression as

σEngineType=′ICE′(CarPropulsionSystem) yields:

σEngineType=′ICE′(CarPropulsionSystem)
P(e) EngineType VehicleType

0.6 ICE HV

Definition 2.4.6. Projection. Given a relation R′
X ∈ D and X is the algebraic closure of X, the

projection operator Π is defined as:

ΠX(R′
X)→RX

⇒ if ∃{τ ′} ⊆R′
X and ∀τ ′ ∈ {τ ′} that [τ ′X] = τ, then ΠX({τ ′}) 7→ τ where τ ∈RX

(2.16)

and the event probability is given by:

P(e = τ|τ ∈RX) :=
⋃

∀τ ′:[τ ′
X
]=τ

P(e = τ
′|τ ′ ∈R′

X) (2.17)

⇒ 1− ∏
∀τ ′:[τ ′

X
]=τ

(1−P(e = τ
′|τ ′ ∈R′

X))

Note that the projection also does duplicate removal for results, in other words, the tu-

ples in the results must be distinct. Similarly, an example PRA expression of projection as

ΠVehicleType(CarPropulsionSystem) yields:

ΠVehicleType(CarPropulsionSystem)
P(e) VehicleType
0.92 HV

Definition 2.4.7. Natural Join. Given two relations AX,BY ∈ D and a set of predicates Θ = {=

, 6=,<,≤,>,≥,≈}, while X and Y are the algebraic closures of X and Y respectively, the natural

join operator ./ is defined as:



2.4. Probabilistic Databases 43

AX ./
µ:XΘY BY→RZ, where Z = X∪Y = (X+Y)

⇒AX×σ
µ:XΘY(BY)→RZ

⇒ if ∃τa ∈ AX ∃{τb} ⊆ BY and ∀τb ∈ {τb} that µ(τa,τb) = [τa,X]Θ[τb,Y] is true,

then τa×{τb} 7→ τ where τ ∈RZ

(2.18)

Here the schema of join result is defined by a recursive regular expression Z = X∪Y (denoted

as X + Y), where concatenated attributes X + Y must occur at least once. In addition, the event

probability is given by:

P(e = τ|τ ∈RZ) :=
⋃

∃τa∃{τb}:µ(τa,τb)

(
P(e = τa|τa ∈ AX)

⋂
P(e = τb|τb ∈ BY)

)
(2.19)

⇒ P(e = τa|τa ∈ AX)
⋂ ⋃

∃τa∃{τb}:µ(τa,τb)

P(e = τb|τb ∈ BY)


⇒ P(e = τa|τa ∈ AX) ·

(
1− ∏

∃τa∃{τb}:µ(τa,τb)
(1−P(e = τb|τb ∈ BY))

)

The join operator of PRA performs an algebraic manipulation that often causes confusions.

Because join’s definition is based on intensional semantics, according to formula 2.18 in which

the output of the product between τa and set {τb} would be mapped to a distinct tuple τ that

represents an complex event, which is invisible from an extensional semantics point of view,

where only elemental relations that contain independent events could be presented. However, we

may “peek” at the results by employing a traditional RA projection Π′ that only does duplicate

removal (i.e. does not do aggregation) after join. By using this method, the event probabilities

of tuples obtained by join can be displayed under the extensional semantics, but be aware that a

result set displayed in such way does not represent the actual complex events under the inten-

sional semantics. For example, to obtain the actual complex events with join we can write a PRA

expression Actual = CarCategory ./CarType=VehicleType CarPropulsionSystem, and to “peek” at

the computed event probability we can write Π′
Class(Actual). Both results are illustrated in the

following tables.

Definition 2.4.8. Union. Given two relations AX,BY ∈D where [X ] = [Y ], the union operator ∪

is defined as:
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CarCategory ./CarType=VehicleType CarPropulsionSystem
P(e) (Class,CarType,EngineType,VehicleType)

0.644 ((Eco-car, HV) ∩ (ICE, HV))
∪ ((Eco-car, HV) ∩ (EM, HV))

(a) Actual

Π′
Class(Actual)

P(e) Class
0.644 Eco-car

(b) Peek

AX∪BY→RX

⇒ if ∃{τa} ⊆ AX ∃{τb} ⊆ BY that [{τa}] 6= [{τb}], then {τa}∪{τb}→ {τ}= {{τa},{τb}},

else if ∃{τa} ⊆ AX ∃{τb} ⊆ BY that [{τa}] = [{τb}], then {τa}∪{τb}→ {τ ′}= {τa},

where {τ}∩{τ ′}= ∅ and {τ}∪{τ ′}=RX

(2.20)

and the event probability is given by:

P(e = τ|τ ∈RX) := P(e = τ|τ ∈ AX)
⋃

P(e = τ|τ ∈ BY) (2.21)

⇒ 1− (1−P(e = τ|τ ∈ AX)) · (1−P(e = τ|τ ∈ BY))

⇒


P(e = τ|τ ∈ AX) if τ ∈ AX∩BY

P(e = τ|τ ∈ BY) if τ ∈ AX∩BY
1− (1−P(e = τ|τ ∈ AX)) · (1−P(e = τ|τ ∈ BY)) if τ ∈ AX∩BY

The union operation should be applied when we need to combine relations (from the same

database or other databases) of additional knowledge. For example, assuming there is another

table CarClassification which has a schema that is equivalent to CarCategory:

CarClassi f ication
P(e) SuperClass SubClass

0.4 Eco-car HV
0.6 Eco-car EV

To combine the two tables, we use union CarCategory∪CarClassi f ication, and the expres-

sion yields:

CarCategory∪CarClassi f ication
P(e) Class CarType
0.82 Eco-car HV
0.6 Eco-car EV

Definition 2.4.9. Difference. Given two relations AX,BY ∈ D where [X ] = [Y ], the difference

operator − is defined as:
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AX−BY→RX

⇒ if ∃{τa} ⊆ AX ∃{τb} ⊆ BY that [{τa}] = [{τb}], then AX−BY→{τ}=RX,

where {τ} ⊆ AX and {τ}∩{τa}= {τ ′} and ∀τ ′ ∈ {τ ′} P(e = τ ′|τ ′ ∈RX) > 0

(2.22)

and the event probability is given by:

P(e = τ|τ ∈RX) := P(e = τ|τ ∈ AX)
⋂

P(e = τ|τ ∈ BY) (2.23)

⇒ P(e = τ|τ ∈ AX) · (1−P(e = τ|τ ∈ BY))

⇒
{

P(e = τ|τ ∈ AX) if τ ∈ AX∩BY
P(e = τ|τ ∈ AX) · (1−P(e = τ|τ ∈ BY)) if τ ∈ AX∩BY

In contrast to union, the difference operator of PRA removes or degrades knowledge from

a relation with respect to other relations. The operator differs from a traditional (deterministic)

relational algebra in a way that it does not eliminate a tuple from the first relation (i.e. the left

operand of −) unless the tuple’s event probability is downgraded to zero, whereas a traditional

RA would delete the tuple if it finds a match from the second relation. For instance, a PRA

expression CarClassi f ication−CarCategory yields:

CarClassi f ication−CarCategory
P(e) SuperClass SubClass
0.12 Eco-car HV
0.6 Eco-car EV

2.4.3 Query Evaluation Techniques for Conjunctive Queries

Here we compare varied query evaluation techniques on probabilistic databases. In general, an

evaluation method could be categorised by whether it is based on intensional semantics or based

on extensional semantics.

[Fuhr and Rölleke, 1997] discussed an evaluation technique based on intensional semantics,

where it shows for the PRA expressions that do not involve conjunctive queries could be eval-

uated by means of simple evaluation, which is equivalent to extensional semantics and has the

same computational complexity as traditional RA evaluation; whereas for conjunctive queries,

PRA performs equivalently to deduct the implied possible worlds of the probabilistic database,

which guarantees correct probabilities could be obtained but it has to be more expensive. The

way to construct possible worlds has been demonstrated in the previous section 2.4.1.
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On the other hand, [Dalvi and Suciu, 2004] proposed a method that is fully based on exten-

sional semantics. In order to compute correct probabilities for conjunctive queries, it rewrites

query plan by projecting out dependent attributes of joined relations, in which a Safe-Plan algo-

rithm is performed respectively to the first (i.e. left-hand-side) and second (i.e. right-hand-side)

relations of join operands.

The Safe-Plan method introduced in [Dalvi and Suciu, 2004] could be interpreted5 as fol-

lows. LetRX and SY be two relations, for conjunctive queries in a form of ΠX+Y(RX ./XΘY SY).

Let Z = X+Y, then to find a safe plan for the type of conjunctive queries is to find an equivalent

query plan ΠZ(R′
X ./XΘY S ′Y) that satisfies:

Z,R′
X,XΘY → {A1, . . . ,An}

Z,S ′Y,XΘY → {A1, . . . ,Am}
[{A1, . . . ,An}] = [{A1, . . . ,Am}] (2.24)

To explain, now assume X = (A,B,C) and Y = (G,H), then the following inferences can be

obtained:

R.A,R.B,R.C → RX

S.G,S.H → SY

RX → R.A,R.B,R.C

SY → S.G,S.H

Given a conjunctive query plan ΠA(RX ./C=H SY), we can examine if the plan is a safe plan

according to the formula 2.24, and we obtain:

ΠA(RX ./C=H SY) → (R.A,RX,C = H)∪ (R.A,SY,C = H)
R.A,RX,C = H → R.A,R.B,R.C,S.H

R.A,SY,C = H → R.A,R.C,S.G,S.H

[{R.A,R.B,R.C,S.H}] 6= [{R.A,R.C,S.G,S.H}]

Since there are no equivalent sets of attributes could be deducted from the two operands of

joins, hence the original query plan is not safe. Because the attribute of the outer projection

belongs to RX, so that try to project out independent attributes (in other words, project on de-

5The original Safe-Plan algorithm is to look for a split of attributes of original query that forms safe
sub-plans, and then the algorithm is performed recursively to transform the entire plan into safe plan.
Alternatively, we noticed the method could be also explained as to deduct equivalent attribute sets of join
operands, where independent attributes are directly projected out, which might seem to be more intuitive
to demonstrate the dependencies of attributes during query plan rewriting.
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pendent attribute H) from SY, i.e. let S ′Y = ΠH(SY), and a substituted plan could be obtained as

ΠA(RX ./C=H S ′Y). Now let us test it again to see if a safe plan has been achieved:

ΠA(RX ./C=H S ′Y) → (R.A,RX,C = H)∪ (R.A,S ′Y,C = H)
R.A,RX,C = H → R.A,R.B,R.C,S ′.H
R.A,S ′Y,C = H → R.A,R.C,S ′.H

[{R.A,R.B,R.C,S ′.H}] 6= [{R.A,R.C,S ′.H}]

Again, the obtained attribute sets are not equivalent, which is because there is still an inde-

pendent attributeR.B fromRX. So let us project out the independent attributes of both relations,

and let R′
X = ΠA,C(RX), S ′Y = ΠH(SY), then we got ΠA(R′

X ./C=H S ′Y), and re-examine the

plan:

ΠA(R′
X ./C=H S ′Y) → (R′.A,R′

X,C = H)∪ (R′.A,S ′Y,C = H)
R′.A,R′

X,C = H → R′.A,R′.C,S ′.H
R′.A,S ′Y,C = H → R′.A,R′.C,S ′.H

[{R′.A,R′.C,S ′.H}] = [{R′.A,R′.C,S ′.H}]

Finally, the obtained attribute sets become equivalent, and the original plan is to be replaced

by the rewritten safe plan.

In fact, the key of the Safe-Plan is to look for dependent attributes in conjunctive queries,

in which independent attributes should be projected out, so that tuples (i.e. probabilistic events)

could be aggregated before to be involved into complex correlation such as join. Note that the

dependencies of attributes are indicated by join predicates, i.e. the operands of Θ are indeed

dependent attributes, which could be easily found out so that early aggregations could be per-

formed.

Moreover, another alternative evaluation technique that employing data lineage has been in-

troduced in [Benjelloun et al., 2006a]. This method applies auxiliary tables called lineage of

data, which is used for tracing the origins (elemental relations) of complex relations. With regard

to evaluating conjunctive queries, it complies to the intensional semantics but computes probabil-

ities in a smart way, which has been demonstrated in Definition 2.4.7 of join in the equation 2.19

at the last implication.
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2.5 Integrated IR and DB Technologies

Intuitively, an integrated IR and DB technology is desirable because modern applications require

capabilities to handle both text and structured data, and neither state-of-the-art search engines

nor traditional databases were developed towards this goal. On the one hand, most (if there is

a few exceptions) IR search engines are developed as problem-oriented or application-specific

systems which implement (hard-coded) certain ranking models inside. Since very few of them

consider flexibility and high level query optimization as necessary features, hence it is unlikely to

adapt such systems for different applications without significant engineering efforts that could be

as much as implementing brand new systems. On the other hand, databases have been evolved

as generic information management systems that provide customisable and scalable solutions

for wide range of applications, however, conventional RDBMS lacks built-in text engine that

could handle text retrieval efficiently, which makes IR applications built upon DBs unlikely to be

scalable. Similar observation and analysis have been discussed in [Chaudhuri et al., 2005].

In general, an integrated IR and DB technology or system is found attractive in the following

aspects:

• Relatively short development circles for diverse IR applications requiring text and struc-

tured data handling capability.

• Flexible to combine multi-origin data sources for probabilistic inference including induc-

tion and deduction.

• Customisability for scoring and ranking functions and supporting high level query opti-

mization methods.

Above all, we shortly review the state of the art of integrated DB and IR technologies.

2.5.1 State-of-the-Art

One of the most fundamental efforts can be found in [Grossman et al., 1997,

Grossman and Frieder, 2004]. In this work, they utilise the classical relational model to

achieve high level integration of structured data and text using strictly unchanged standard

SQL, to perform keyword searches; specifically, they implement relevance ranking models for

document retrieval such as Boolean retrieval, proximity searches and vector space model. To be

noticed, the work discussed, on the one hand, several benefits of implementing IR applications
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upon DB engines, for instance, shortening development circles and combining multiple sources

(as we have mentioned), and save costs and risks for developing brand new information systems;

on the other hand, it was aware that a high levelled integrated DB and IR approach inevitably

suffers efficiency drawback compared to specially built IR systems, however, they argued

that this disadvantage could be overcome by parallel processing that was widely available in

commercial databases.

Similarly, [Grabs et al., 2001, Grabs et al., 2004] introduce the PowerDB-IR system that

maps IR strategies to SQL for document and structured data retrievals, in which it implements

a TF-IDF-based model in SQL. Moreover, it investigated parallel processing for ad hoc query

and online update based on database clusters with 2n, where n = 1,2,4,8,16, nodes (machines)

respectively. All systems mentioned above are based on mapping scoring or ranking functions of

IR strategies to SQL

Instead of developing IR models directly in SQL, an alternative approach is to

utilise databases as a storage layer and then to implement IR functionality as mid-

dleware, while such approach is especially preferable for the retrieval of semistruc-

tured data such as XML. For instance, a good example for this category is the TopX

[Theobald et al., 2005b, Theobald et al., 2005c] search engine, which employs the threshold al-

gorithm (TA) [Fagin et al., 2001, Güntzer et al., 2000, Nepal and Ramakrishna, 1999] for top-

k processing specifically focuses on XML data, while more details about TopX will be dis-

cussed later in Section 4. In this approach, data are stored in database’s tables that act as in-

verted indexes6, while the middleware may fetch data from indexes by issuing simple Select

statements of SQL with top-k constraint, in which sophisticated and judicious index accessing

schedules are normally expected. The middleware differs from the approach of directly mapping

IR on SQL in a sense that the scoring functions of IR models, or more precisely, the aggre-

gations of computing scores for ranked results, are (partially or totally) external of database

systems. Therefore, the middleware developers are more responsible for the system perfor-

mance with regards to efficiency. Other systems fall into this category include, for example,

[Hiemstra, 2002, Weigel et al., 2004, Weigel et al., 2005a, Weigel et al., 2005b].

Another theoretically possible but impractical approach is to deploy IR engine as back-

bone and let text retrieval methods to be called by built-upon database, ADTs and APIs

6Note that some commercial databases even support index-as-table data organisation using vanilla
B+-tree index, for instance, the index organized table (IOT) in Oracle database.
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should be available to access the underlying IR functionality. Such architecture was mentioned

by [Chaudhuri et al., 2005] and referred as IR-via-ADTs, while it has been considered to be un-

popular because it is rather complicated and inflexible but brings little benefit for integrated IR

and DB applications.

So far as we can see, with respect to integration approaches, neither IR-on-SQL nor middle-

ware provides an IR and DB integrated solution that could offer some benefits without compro-

mising other aspects. To be specific, IR-on-SQL offers great flexibility but loses too much on

efficiency, even if parallel processing is available, there is still a big gap to fill while comparing

to dedicated IR systems; on the other hand, middleware approach solves efficiency problem to

some extent, but it actually leaves less flexibility to application developers, because the scoring

functions are usually coded within the middleware, which is in the end similar to dedicated IR

systems.

In order to develop an integrating technology that could adapt the most of advantages of IR

and DB without having to compromise useful features, logical layers have been developed to

connect IR concepts to data models that could be adapted to the relational model which is relied

on by databases, so that seamless integration of IR and DB may become practical. For instance,

a Matrix framework for IR was introduced in [Roelleke et al., 2006], where a wide range of IR

methods, such as IR concepts, frequencies or statistics, retrieval models, evaluation metrics, and

so on, could be represented in a few standard matrix operations; in addition, a carefully chosen

notation was proposed in the framework for allowing consistent meanings of frequencies in event

spaces, which is readily applicable as building blocks for IR applications in common matrix op-

eration libraries. In particular, an integrated DB&IR system, named parameterised search system

(PSS) [Cornacchia and de Vries, 2006, Cornacchia and de Vries, 2007, Cornacchia et al., 2008],

built upon an array database, the MonetDB [Boncz et al., 2006], has been developed by utilising

the matrix framework [Roelleke et al., 2006].

Finally, an ultimate DB and IR integrated system may be built from scratch, which means

much more efforts have to be paid, but on the other hand, a judiciously designed retrieval sys-

tem that is specific for text and structured data is more likely to achieve the best of all desirable

features such as flexibility, versatility, efficiency and scalability. Such system was named DB+IR

in [Chaudhuri et al., 2005], and a good example is the QUIQ system [Kabra et al., 2003] for cus-

tomer support applications. However, QUIQ was questioned by [Chaudhuri et al., 2005] that it
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was not designed to be a generic infrastructure, so whether the system could be easily extended

for wider applied domains is the main concern.

Different from QUIQ, the HySpirit [Fuhr and Rölleke, 1997, Roelleke and Fuhr, 1996] plat-

form has been being built as a universal framework for text and structured data since mid

1990s, it bases on a probabilistic relational algebra (PRA) that integrates probabilistic theory

and relational algebra, and several other high level abstraction layers such as probabilistic SQL

(PSQL) [Roelleke et al., 2008], probabilistic Datalog (PD) [Fuhr, 2000, Wu et al., 2008a], and

probabilistic object-oriented logic (POOL) [Roelleke, 1999, Fuhr et al., 1998] had been built

upon the PRA platform. In additional, a new logical operator, the relational Bayes, has been

proposed in [Roelleke et al., 2008] to support the modelling of IR-style probability estimations

in PRA, where relations in a database could be then freely transformed between probabilistic and

non-probabilistic, as a result, the modelling of IR strategies in PRA is to be more elegant than

standard SQL.

To summarise, the state-of-the-art approaches for integrating DB and IR for supporting ap-

plications that need to handle retrievals of both text and structured data can be classified as the

follows, in which a similar categorisation has also been used in [Chaudhuri et al., 2005]:

• IR-on-DB (IR-on-SQL): The IR scoring functions or ranking models to be mapped into

standard SQL.

• Middleware: Databases are used as storage and indexes, whereas IR scoring functions or

ranking models are coded in middleware system.

• IR-via-ADTs: Logically DB and IR are separated and parallel engines, where the DB

engine utilises the IR engine through ADTs for text retrieval capabilities.

• RISC, or DB+IR/IR+DB: The idea of RISC is that IR layer is on top of a relational stor-

age engine, where special designed declarative (query) languages or algebra provides the

expressiveness for modelling IR strategies. If built-from-scratch DB+IR/IR+DB systems

actually adapting techniques such as those in relational storage engine, then these could be

viewed as in the same class as RISC.

Despite that different approaches have been proposed to integrate DB and IR, but there are

several common features could be recognised in all approaches, in which these features might be

supported in different degrees. These features are:
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• High-levelled abstraction query languages are provided, e.g. declarative languages such as

(probabilistic) SQL or expressive algebra such as PRA, for modelling retrieval strategies

and scoring/ranking functions over sets or lists of tuples.

• Sophisticated designed query processing methods, e.g. top-k mechanism, for handling

very large amount of data efficiently; and employing scalable solutions for handling con-

tinuously growing data, e.g. parallel machines or distributed computing.

• Rule-based query execution optimizations are provided, e.g. manipulations based on alge-

braic equivalence or cost-driven optimizations, for allowing application developers to tune

the query execution engine for efficiently processing queries of certain applications.

However, so far there are no existing benchmarking methodologies for integrated DB and

IR systems that measure all listing aspects as above. Despite of various benchmarks have been

proposed respectively by IR community and DB community, while each benchmark has specific

focus on either effectiveness or efficiency, none of them have quantitatively studied the correlated

effects such as effectiveness versus efficiency.

The most used benchmark in IR for text retrieval is TREC7, which provides testing collections

in various scales from hundreds of megabytes to hundreds of gigabytes; in addition, it provides

sets of queries and varied retrieval tasks, e.g. ad hoc or filtering, for evaluation; in recent years, it

also proposed a number of tracks for specific application domains, e.g. web search or enterprise

search. For evaluating retrievals over semi-structural documents, INEX8 benchmark is used,

which provides a number of XML collections as well as query sets, tasks, and assessment metrics.

On the DB side, the TPC-H9 benchmark is made for decision support , which evalu-

ates the efficiency of databases of handling complex SQL queries. In addition, a TEX-

TURE [Ercegovac et al., 2005] benchmark was proposed for measuring the efficiency of database

queries over text fields.

Nevertheless, comprehensive benchmarks for integrated DB and IR systems are desirable,

which may eventually evolve from combining and adapting mature DB and IR benchmarking

methods, and this is believed to be an interesting area for future studies.

7http://trec.nist.gov/
8http://inex.is.informatik.uni-duisburg.de/
9http://www.tpc.org/tpch/
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2.5.2 Modelling IR Strategies in Declarative Languages

In this section, we introduce modelling IR concepts and retrieval strategies in declarative lan-

guages, and thereby demonstrate how IR methods could be implemented in a DB and IR inte-

grated paradigm.

As an example, let MagColl be a relation storing the toy magazine corpus in Figure 2.2,

which schema is as given as:

MagColl(Term, DocId)

The common frequencies that will be discussed in the following section are illustrated in

Table 2.3.

MagColl
Term DocId
hybrid 1
car 1
honda 1
bmw 2
green 2
car 2
hybrid 3
hybrid 3
car 3
prius 3
volt 3

(a) Original table

P C t
score Term
0.273 hybrid
0.273 car
0.091 honda
0.091 bmw
0.091 green
0.091 prius
0.091 volt

(b) PC(t) or tf(t)

P C t d
score Term DocId
0.33 hybrid 1
0.33 car 1
0.33 honda 1
0.33 bmw 2
0.33 green 2
0.33 car 2
0.4 hybrid 3
0.2 car 3
0.2 prius 3
0.2 volt 3

(c) PC(t|d) or tf(t,d)

df t
score Term
0.67 hybrid
1.0 car

0.33 honda
0.33 bmw
0.33 green
0.33 prius
0.33 volt

(d) df(t)

Table 2.3: Example table of a toy magazine corpus for document retrieval

2.5.2.1 The Basics

First of all, the basic idea is to store and manage data, which includes unstructured, semi-

structured and structured data such as text, XML and record, within a paradigm that bases on

relational model.

In practice, a relation in database sense is either a set or a multiset. A multiset (e.g.

see [Blizard, 1989]) can be formally defined as a pair (S,m) where S is some set and m : S→ N

is a function from S to the set N = {1,2,3, . . .} of positive natural numbers. The set S is the

underlying set of elements of (distinct) tuples. For each tuple s in S the multiplicity of s is the

number m(s). For example, let relation R to be a multiset {a,a,b} in which a and b are tuples,

so thatR is defined as ({a,b},{(a,2),(b,1)}). Therefore, the concept of set is a specialisation of

the concept of multiset, where a set can be defined as ({t1, t2, . . . , tn},{(t1,1),(t2,1), . . . ,(tn,1)}).
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However, for the convenience of discussion, while referring multiset we stipulate that there is at

least one tuple in the underlying set of elements satisfies multiplicity m(si) > 1.

In order to reflect the characteristic given by multiset and set, we use an α adornment tech-

nique10, where α is either m or s, to indicate the essence of relation. Respectively, Rm means

relation R is a multiset containing duplicate tuples, whereas Rs stands for relation R is a set

containing only distinct tuples. Now we can define the cardinality of relations, which is needed

for connecting common IR concepts with relational model and it is given in Table 2.4.

Notation Description
|Rα | or #Rα the cardinality of relationR, where adornment α specifies whetherR

is a set (with adornment s) or a multiset (with adornment m) of tuples
|R(A1, . . . ,Ak)α | the cardinality of result obtained from projecting on attributes A1, . . . ,Ak
or ofR, where adornment α specifies whether the result is a set (with
#R(A1, . . . ,Ak)α adornment s) or a multiset (with adornment m) of tuples

Table 2.4: Notation of cardinality

With respect to Table 2.4, two points are worth clarifying. First, if adornment α is not

specified forR, then in defaultR is considered to be a multiset, i.e. R=Rm. Second, be aware

of the position of α: if it is adorning R, then it is immediately after R, e.g. |Rα |; else if it

is adorning the result of projection, then it follows the closed parenthesis of attributes list, e.g.

|R(A1, . . . ,Ak)α |.

Let us define some common IR frequencies with the above notation. By considering con-

ventional IR notation and the notation proposed in [Roelleke et al., 2006], three widely used

frequencies, i.e. within-collection term/location frequency, within-document term/location fre-

quency, and document frequency, are defined as follows.

In [Roelleke et al., 2006], term frequency is also referred as location frequency (lf ), which

means the number of locations that a term occurs in a given space, for instance, within a collec-

tion or within a document. Here conventional name of tf is used but it is exchangeable with lf.

First, the term frequency based on collection is defined as follow.

Definition 2.5.1. Within-Collection Term Frequency. Denoted as tf(t) and its definition is given

by:

tf(t) :=
|R(t)m|
|Rm|

(2.25)

10Similar adorning technique had been applied to magic-set transformations, e.g. see [Ullman, 1988,
Mumick et al., 1990a], which are for evaluation of Datalog rules, whereas here it is only used for the
purpose of disambiguation.



2.5. Integrated IR and DB Technologies 55

If R is viewed as a sampling space of an event space, where the total number of events is

|Rm|, while for a random event t which occurs |R(t)m| times, hence tf(t) can be explained as

probability PR(t), where the subscription of P indicates the sampling space. If we specify the

relation as a collection, then we can use C in the subscription as PC(t):

|R(t)m|
|Rm|

= PR(t)

= PC(t) (2.26)

Second, the term frequency based on document is defined as follow.

Definition 2.5.2. Within-Document Term Frequency. Denoted as tf(t,d) and its definition is

given by:

tf(t,d) :=
|R(t,d)m|
|R(d)m|

(2.27)

Note that tf(t,d) can be explained as a conditional probability of t given d. Similarly, consid-

eringR as sampling space, in which tf(t,d) can be viewed as a division of conjunctive probability

PR(t,d) and unconditional probability PR(d). Similarly, if we specify the relation as a collection,

we use C in the subscription as PC(t|d):

|R(t,d)m|
|R(d)m|

=
|R(t,d)m|/|Rm|
|R(d)m|/|Rm|

=
PR(t,d)
PR(d)

= PR(t|d)
= PC(t|d) (2.28)

In [Roelleke et al., 2006], document frequency is defined upon document space. Given R,

the document space is the underlying set of elements, i.e. distinct tuples, of R. Hence, the

definition of df is given as follow:

Definition 2.5.3. Document Frequency. Denoted as df(t) and its definition is given by:

df(t) :=
|R(t,d)s|
|R(d)s|

(2.29)
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From an IR point of view, df(t) is computed on a different event space from the tf s with

respect to probability estimation: if we call the event space for estimating tf s as tuple space,

i.e. events are either 1-tuples (i.e. within-collection tf as 〈term〉) or 2-tuples (i.e. within-

document tf as 〈term,doc〉), then the event space for estimating df is called document space

(see [Roelleke et al., 2006]), which means the space consists of distinct documents. In fact, we

may extend the concept from document to wider subjects without losing generalisation, and call

such event space as subject space.

2.5.2.2 An Extended PRA for Modelling IR

Previously, PRA [Fuhr and Rölleke, 1997] has been discussed in Section 2.4.2 within probabilis-

tic databases paradigm, however, at least two constraints exist in this early version of PRA:

1. Probabilistic events are restricted to be independent only, which hardly satisfies most of

real-life IR applications.

2. It only discusses probability aggregations with basic relational operators, whereas how

initial probabilities could be obtained, i.e. probability estimation, has not been mentioned.

In order to extend the expressiveness of PRA for representing wider concepts of

IR and supporting internal probability estimation, and extended PRA was introduced

in [Roelleke et al., 2008]. One of the main contributions of [Roelleke et al., 2008] is that a

new operator, the relation Bayes, was proposed for enabling probability estimation inside PRA.

With the Bayes operator, conventional non-probabilistic relation can be “estimated” based on

specified context or semantics, so that a non-probabilistic relation can be converted to prob-

abilistic relation by assigning initial probabilities to its tuples. Unlike previous works such

as [Fuhr, 1990, Fuhr and Rölleke, 1997, Dalvi and Suciu, 2004, Benjelloun et al., 2006a] that

rely on external estimator for obtaining initial probabilities, the Bayes operator incorporates such

function within a probabilistic database framework, which pushes the integration of DB and IR

one step forward.

Here we briefly review the extended version of PRA discussed in [Roelleke et al., 2008].

First of all, the syntax of PRA is given in Figure 2.7.

For probability aggregation, three basic assumptions for indicating the relationship of each

two tuples are consider, which are independent, disjoint, and subsumed. The relationships of two

tuples under certain assumption is illustrated in Figure 2.8.



2.5. Integrated IR and DB Technologies 57

prae := Selection | Projection | Join | Union | Subtraction | Bayes | Relation
Selection := ‘SELECT’ ‘[’ EMPTY | praCondition ‘]’ ‘(’ prae ‘)’
Projection := ‘PROJECT’ assumption ‘[’ EMPTY | varList ‘]’ ‘(’ prae ‘)’
Join := ‘JOIN’ probAssumption ‘[’ EMPTY | praCondition ‘]’ ‘(’ prae ‘,’ prae ‘)’
Union := ‘UNITE’ assumption ‘(’ prae ‘,’ prae ‘)’
Subtraction := ‘SUBTRACT’ probAssumption ‘(’ prae ‘,’ prae ‘)’
Bayes := ‘BAYES’ probAssumption ‘[’ EMPTY | varList ‘]’ ‘(’ prae ‘)’
Relation := NAME
assumption := ‘DISTINCT’ | ‘ALL’ | probAssumption
probAssumption := ‘DISJOINT’ | ‘INDEPENDENT’ | ‘SUBSUMED’ |

‘SUM LOG’ | ‘MAX LOG’
predicate := ‘=’ | ‘!=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’
var := ‘$’NAME
value := STRING | NUMBER
varList := var [‘,’ varList]
praCondition := var predicate (var | value) [‘,’ praCondition]

Figure 2.7: Syntax of extended PRA

In general, different aggregation functions are applied to PRA operators while aggregate

probabilities, which depend on the given assumptions in PRA expressions. The aggregation

functions for certain assumptions are demonstrated in Figure 2.9.

(a) Independent (b) Disjoint (c) Subsumed

Figure 2.8: Assumptions: independent, disjoint, and subsumed

The aggregation functions and assumptions are complements to the previous definitions of

basic PRA operators in Section 2.4.2.

For probability estimation, a relational Bayes operator is applied. Informally, Bayes estimates

tuple probability in the following two ways depending on if the input relation is non-probabilistic

or probabilistic:

• If the input relation is non-probabilistic, Bayes counts the number of tuples grouped by

evidence attribute A, and then assigns to each tuple a probability of 1.0/|R(A)α |;
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P(τi∨ τ j) :=


P(τi)+P(τ j)−P(τi) ·P(τ j) if independent
P(τi)+P(τ j) if disjoint
max({P(τi),P(τ j)}) if subsumed

P(τi∧ τ j) :=


P(τi) ·P(τ j) if independent
0 if disjoint
min({P(τi),P(τ j)}) if subsumed

P(τi∧¬τ j) :=


P(τi) · (1−P(τ j)) if independent
P(τi) if disjoint
P(τi)−P(τ j) if subsumed and P(τi) > P(τ j)
0 if subsumed and P(τi)≤ P(τ j)

Figure 2.9: Assumptions and probability aggregations: independent, disjoint, and subsumed

• If the input relation is probabilistic, then Bayes sums the probabilities of tuples grouped by

evidence attribute A, and the assigns to each tuple a probability of 1.0/∑
n
i=0 P(τi), where

P(τ) is tuple probability, and n = |R(τ)α | which is the number of tuples for a specified

value of attribute A.

2.5.2.3 Examples of Modelling Probability Estimations

Here, examples of modelling probability estimations for some common IR frequencies (see Sec-

tion 2.5.2.1) with declarative languages are given. In terms of modelling, it means to write queries

representing scoring and ranking functions in a declarative language, e.g. SQL queries or PRA

queries, to yield weighted and ranked results. On the one hand, we demonstrate the modelling

of within-collection tf, within-document tf, and df in standard SQL and PRA. On the other hand,

the examples also show that modelling similar IR concepts or retrieval strategies in PRA could

be more elegant than modelling in standard SQL.

Modelling with standard SQL Modelling probability estimations in standard SQL involves

composing complex queries. According to [Grossman et al., 1997], complex SQL queries are

queries containing two or more query blocks. For instance, if a SELECT . . .FROM . . .WHERE

statement contains embedded SELECT . . .FROM . . .WHERE statement(s) then it is a complex

query, whereas a single SELECT . . .FROM . . .WHERE statement involving multiple joins is not

a complex query.

The following SQL statement simulates the Bayes operation of PRA while has not been given

evidence key (attribute):
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SELECT Term , MagColl . DocId , e v e n t S p a c e . we ig h t
FROM MagColl , (SELECT 1 . 0 /COUNT( ∗ ) AS we ig h t

FROM MagColl ) AS e v e n t S p a c e ;

The following SQL statement simulates the Bayes operation while has been given DocId as

evidence key (attribute):

SELECT Term , MagColl . DocId , e v e n t S p a c e . we ig h t
FROM MagColl , (SELECT DocId , 1 . 0 /COUNT( ∗ ) AS we ig h t

FROM MagColl GROUP BY DocId ) AS e v e n t S p a c e
WHERE MagColl . DocId = e v e n t S p a c e . DocId ;

An SQL statement for getting within-collection tf is given as follow:

SELECT Term , SUM( e v e n t S p a c e . we igh t ) AS P C t
FROM MagColl , (SELECT 1 . 0 /COUNT( ∗ ) AS we ig h t

FROM MagColl ) AS e v e n t S p a c e
GROUP BY Term ;

An SQL statement for getting within-document tf is given as follow:

SELECT Term , MagColl . DocId ,
SUM( e v e n t S p a c e . we igh t ) AS P C t d
FROM MagColl ,

(SELECT DocId , 1 . 0 /COUNT( ∗ ) AS we ig h t
FROM MagColl GROUP BY DocId ) AS e v e n t S p a c e

WHERE MagColl . DocId = e v e n t S p a c e . DocId
GROUP BY Term , MagColl . DocId ;

An SQL statement for getting df is given as follow:

SELECT docSpace . term , docSpace . we i gh t / e v e n t S p a c e . w e i gh t AS d f t
FROM (SELECT DISTINCT Term , COUNT( DISTINCT DocId ) AS we ig h t

FROM MagColl GROUP BY Term ) AS docSpace ,
(SELECT COUNT( DISTINCT DocId ) ∗ 1 . 0 AS we ig h t

FROM MagColl ) As e v e n t S p a c e
GROUP BY docSpace . Term , docSpace . weight , e v e n t S p a c e . w e i gh t ;

Modelling with PRA The following PRA expression demonstrates the Bayes operation while

has not been given evidence key (attribute):

we ig h t = BAYES DISJOINT [ ] ( MagColl ) ;

The following PRA expression demonstrates the Bayes operation while has been given DocId

as evidence key (attribute):

we ig h t = BAYES DISJOINT [ $DocId ] ( MagColl ) ;

The following PRA expression yields results with within-collection tf :

P C t = PROJECT DISJOINT [ $Term ] (
BAYES DISJOINT [ ] ( MagColl ) ) ;

The following PRA expression yields results with within-document tf :

P C t d = PROJECT DISJOINT [ $Term , $DocId ] (
BAYES DISJOINT [ $DocId ] ( MagColl ) ) ;
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The following PRA expressions yield results with df :

d C o l l = PROJECT DISTINCT ( MagColl ) ;

docSpace = BAYES [ ] (
PROJECT DISTINCT [ $DocId ] ( MagColl ) ) ;

termDoc = PROJECT [ d C o l l . $Term , d C o l l . $DocId ] (
JOIN [ d C o l l . $DocId = docSpace . $DocId ] ( dCol l , docSpace ) ) ;

d f t = PROJECT DISJOINT [ $Term ] ( termDoc ) ;

2.6 Summary

In this chapter, we reviewed the state-of-the-arts of information retrieval and database technolo-

gies, in which we focused on some specific areas that are related to the integration of IR and DB

technologies.

To summarise, we covered four main fields in the previous discussions: First, we reviewed

several interesting topics in traditional IR research, which include the general architecture of IR

systems, conventional IR tasks, and popular IR models. Second, we reviewed previous studies

aiming to integrate ranking into relational databases. Third, we discussed the details of proba-

bilistic databases, where we addressed the theory and techniques behind probabilistic databases,

which include the underlying possible worlds model (of conventional probabilistic database), a

probabilistic relational algebra, and query evaluation techniques for conjunctive queries based

on extensional semantics. Final, we introduced related research specific to the integration of IR

and DB technologies, where we reviewed various integrated solutions and architectures, while

in particular, we focused on one of the approaches called IR+DB and discussed some important

background and features; for example, an extended version of PRA, and modelling IR strategies

in declarative languages.
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Chapter 3

SCX: Scoring-Driven Query Optimization

with Scoring Expression

3.1 Introduction

Rule-based query optimization is one the most important techniques in databases technology. At

the moment, most of the approaches could be mainly categorised into two broad folders: algebra

optimization, cost-driven optimization. The first one bases on the laws of algebraic equivalence

and conducts through algebraic manipulations, in which an algebra expression might be rewritten

into another one or several transformation(s) that yield(s) equivalent result. While not changing

logical expressions, the second approach attempts to choose the least expensive implementations

in hand for logical operators, this could be achieved by enumerating the candidates (i.e. physical

operators) space through dynamic programming, in which, necessarily, certain predefined cost

models for estimating the costs of considered implementations are deployed. In addition, there

is a less general, comparing to the first two, yet could be very effective method that optimizes

queries based on semantics. Although semantic optimization is usually employed in ad hoc

manners, but along with sophisticated techniques, for instance, ontology or abstract semantic

graphs, it is possible to design a rule-based semantics-driven optimizer for databases and IR+DB

systems.

In this chapter, we propose a scoring-driven optimization technique for probabilistic rela-

tional algebra (PRA). In particular, we introduce scoring expression (SCX), which is employed

for articulating the semantics of scoring functions that are implied in PRA expressions.
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In short, the idea behind scoring-driven optimization is to analyse the semantics of PRA ex-

pressions that are represented in SCX, so that supplying additional semantic information to PRA

execution engine about how scores or probabilities could be or should be computed. For instance,

PRA expressions for estimating varied kind of probabilities (see Section 2.5) could be therefore

linked to ordinary aggregations such as counting and summing, which in a way provides possibil-

ities to PRA execution engine to utilise statistic-materialised indexes such as a relational inverted

index (RIX) that will be discussed later (see Chapter 5). For another instance, SCX could be ma-

nipulated and turned into different transformations based on rules and probabilistic assumptions,

and it provides an additional choice to [Dalvi and Suciu, 2004] and [Benjelloun et al., 2006a] for

query evaluation on probabilistic database based on extensional semantics. In fact, SCX fills the

gap between intensional evaluation and extensional evaluation by visualising how probabilities

are aggregated.

Observably, a scoring-driven optimization is based on semantic equivalence of scoring func-

tions, whereas an algebraic optimization is based on algebraic equivalence. However, the actual

purpose of scoring-driven optimization is to achieve algebraic equivalence. Here we discuss

informally the various equivalence and the difference of algebraic equivalence on traditional

(non-probabilistic) relational algebra (RA) and PRA.

An algebraic equivalence requires different transformations of RA expressions yields the

same set of results. Whereas for PRA it is even stricter to achieve algebraic equivalence amongst

transformations, because it needs PRA expressions not only comply to the requirements for tradi-

tional RA, but also the results of different transformations should satisfy scoring equivalence, i.e.

the computed scores for tuples in the results of PRA transformations should be identical. How-

ever, the classic law of algebraic manipulations is for traditional RA, which does not contain any

semantics of scoring methods that are included in PRA, which poses uncountable difficulties for

a rule-based optimizer to find equivalent PRA transformations. In addition, note that traditional

equivalence of RA expressions does not imply same order of results, whereas order might need

to be considered while investigating equivalence in a ranking paradigm such as PRA. In other

words, ordering could pose additional complication for proving equivalence of PRA expressions.

The differences of algebraic equivalence between traditional RA and PRA are illustrated in Fig-

ure 3.11. As a result, we were motivated to develop a method that is able to express the semantics

1It is worth clarifying that Figure 3.1 and Figure 3.2 are illustrations rather than procedure flow charts.
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of the underlying scoring functions of PRA expressions, and it leads us to the proposal of scoring

expression.
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(a) RA equivalence
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Figure 3.1: Algebraic equivalence of traditional RA and PRA expressions

In order to decide whether two PRA expressions are algebraic equivalent, one has to scruti-

nise the scoring functions of the PRA expressions, if and only if the implied scoring functions

produce same scores for all corresponding tuples in respective results, i.e. to be scoring equiva-

lent, one of the requirements of algebraic equivalence for PRA expressions could be satisfied. By

utilising SCX, scoring equivalence of PRA transformations could be verified if and only if their

interpreted scoring expressions are semantically equivalent (see Figure 3.2). In other words,

the SCX provides a necessary and comprehensive mechanism for the verification of algebraic

equivalence of PRA expressions.

Outline of Chapter First, traditional optimization techniques for databases are reviewed in Sec-

tion 3.2; second, the syntax and semantics of scoring expression (SCX) are discussed in Sec-

tion 3.3; third, the methods of scoring-driven optimization are addressed in Section 3.4; more-

over, experiments and experimental results are presented in Section 3.5; finally, the chapter is

summarised in Section 3.6



3.2. Query Optimizations for Databases 64

Figure 3.2: Scoring equivalence of PRA expressions

3.2 Query Optimizations for Databases

Query optimizations in databases can be categorised into two folds: logical optimiza-

tion and physical optimization. In general, logical optimization focuses on manipulat-

ing algebra expressions, where expensive expressions are replaced by equivalent transfor-

mations (e.g. [Yan and Larson, 1995, Cherniack and Zdonik, 1998]). In particular, magic-sets

(e.g. [Mumick et al., 1990b, Beeri and Ramakrishnan, 1991]) is a special RA reformulating

method that adds constraint to algebra expressions, so that limits intermediate results.

On the other hand, physical optimization focuses on mapping the logical algebra to a

physical algebra, and follows a divide-and-conquer strategy that generates a least-cost ex-

ecution plan using dynamic programming (e.g. [Cole and Graefe, 1994]). Physical imple-

mentations include, for example, join algorithms (e.g. [Li et al., 2002], materialised views

(e.g. [Goldstein and Larson, 2001]), index selection (e.g. [Agrawal et al., 2000]), and top-k pro-

cessing (e.g. [Fagin et al., 2003b]). In particular, rank-aware optimizations [Ilyas et al., 2004,

Li et al., 2005] are proposed to handling special rank-joins (e.g. [Natsev et al., 2001]).

In [Dalvi and Suciu, 2004], an efficient query evaluation technique on probabilistic databases

was proposed. Their method is to replace expensive intensional query plan by less expensive

extensional plan. However, an extensional plan may lead to incorrect scores where scores bigger

than one are computed, which breaks the correctness of probabilistic semantics. Their solution

is to search and exploit the “safe” extensional plans only. It is worth mentioning that this work is

the most close method to our scoring-driven approach.
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There has been extensive work in query processing and optimization since the early 70s. It is

hard to capture the breadth and depth of this large body of work in a short section. On the other

hand, it is one of the fundamentals of databases world, hence it is a compulsory topic in almost

every database text book, e.g. see [Ullman, 1989].

The synonym of query processing in DB is query evaluation. In [Graefe, 1993], the author

reviews wide range of state-of-the-art query evaluation techniques for large databases, such as

sorting and hashing, disk access, aggregation, various join algorithms, query execution, parallel

algorithms, complex query plan, and so on.

Among several specific research topics of evaluation, studying efficient join algorithms

caught many interests (e.g. see [Shapiro, 1986, Mishra and Eich, 1992]), because join is one

of the expensive operations (and maybe is the ’most expensive’ one). As we known, the nested-

loop-join is a ’naive’ physical implementation of join, it concatenates the tuples from two rela-

tions within a nested loop, and then produces a new relation. More advanced algorithms have

been proposed based on hashing (hash join, e.g. see [Mokbel et al., 2004]) and sorting (merge

join, e.g. see [Graefe, 1994, Li et al., 2002, Dittrich et al., 2002]). The reason that join is expen-

sive is because it takes two relations as input and produces a new relations. In addition, in the

case of there are aggregations in the branches of a join then extra difficulties are added to the ma-

nipulation. Another operation that also produces intermediate result and involves aggregations is

union, thus, interests were caught as well (e.g. see [Galil and Italiano, 1991]).

Apart from the physical operations that related to the relational operators, there is one other

physical operations that do not have a relational counterpart but generated interest as well, which

is the sort operation. Sorting algorithms are categorised to memory sort and external sort. The

data of memory sort are all held in memory while sorting, however, if data size is larger than

memory size, the external sort should be applied instead. [Estivill-Castro and Wood, 1992] in-

troduces various sorting algorithms that include memory sort and external sort. In [Graefe, 2006],

the author reviews the well-known sorting algorithms that have been implemented in databases.

The two key components of query evaluation of a SQL database are the query opti-

mizer and the query execution engine. The query execution engine implements a set of

physical operators, and the query optimizer is responsible for generating the input (with

low cost) for the execution engine. An overview of query optimization in relational sys-

tems is given by [Chaudhuri, 1998]. In particular, cost model [Chaudhuri and Shim, 1995,
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Chaudhuri and Shim, 1996] is applied to assign an estimated cost to any partial or com-

plete plan. Other important techniques for implementing query optimizer include dy-

namic programming [Graefe and Ward, 1989, Cole and Graefe, 1994] and use of interesting or-

ders [Chaudhuri, 1998]. Alone the line, research have been carried on the algebraic optimization,

i.e. to study different transformations of algebra expressions in order to find out the efficient but

equivalent expressions of queries. A study of equivalence of the Project-Select-Join queries is

given by [Yang and Larson, 1987]. [Yan and Larson, 1995] studies the transformations of aggre-

gations. Note that [Chaudhuri, 1998] points out that “transformations do not necessarily reduce

cost and therefore must be applied in a cost-based manner by the enumeration algorithm to

ensure a positive benefit”.

Another technology that worth paying attention is the processing of views. A view is a re-

lation that represented by a query, i.e. the intermediate result of an algebra expression, it is also

called intensional relation [Ullman, 1988]. The evaluation of some views could be extremely

expensive, because they are obtained by evaluating complex queries while we cannot build in-

dex to facilitate the processing. During past decades, the materialised view was proposed (e.g.

see [Goldstein and Larson, 2001]), so that view can be processed as ordinary tables.

3.2.1 Algebraic Manipulation

For a canonical relational algebra (RA) that bases on sets, an RA expression could have one

or more transformations as long as they comply to the laws of algebraic manipulations (e.g.

see [Ullman, 1989]). The basic idea behind the algebra optimization is that since these RA

transformations have the same expressive power, in other words, the result sets yielded by the

transformations should be identical, hence, there might exist one of the transformations that is

superior than the others in terms of executive efficiency while it is under certain circumstances.

Different extensions had been made to the canonical RA and equivalence of these extensions

had been studied. For instance, including predicates which leads to multisets; including aggregate

functions into relational calculus and RA (see [Klug, 1982]); integrating probabilistic theory

and set theory leads to PRA (see [Fuhr and Rölleke, 1997, Roelleke, 1994]); introducing rank

predicate leads to RankSQL (see [Li et al., 2005]). Nonetheless there are various extensions of

RA, the basic laws of algebraic manipulations are applicable to both canonical RA and its variants

or extensions.

Here we introduce the laws of algebraic manipulations for algebra optimization, where com-
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patible notations to Section 2.4 are used.

Law 3.2.1. Commutative laws for joins and products. For relations AX and BY, while giving

predicate function µ : XΘY, then

AX ./
µ:XΘY BY ≡ BY ./

µ:XΘY AX

AX×BY ≡ BY×AX

Law 3.2.2. Associative laws for joins and products. For relations AX, BY and CZ, while giving

predicate functions µ1 : XΘY and µ2 : YΘZ, then

(AX ./
µ1:XΘY BY) ./

µ2:YΘZ CZ ≡ AX ./
µ1:XΘY (BY ./

µ2:YΘZ CZ)
(AX×BY)×CZ ≡ AX× (BY×CZ)

Law 3.2.3. Cascade of projections. For a relation RX, projected attributes X1 and X2, where

X1 ⊆ X2, then

ΠX1

(
ΠX2

(RX)
)
≡ ΠX1

(RX)

Law 3.2.4. Cascade of selections. For a relationRX, predicate functions µ1 : XΘy and µ2 : XΘz,

then

σµ1:XΘy
(
σµ2:XΘz(RX)

)
≡ σµ1:XΘy ∧ µ2:XΘz(RX)

Since µ1∧µ2 = µ2∧µ1, it could be concluded immediately that selections can be commuted,

which is

σµ1:XΘy
(
σµ2:XΘz(RX)

)
≡ σµ2:XΘz

(
σµ1:XΘy(RX)

)
Law 3.2.5. Commuting selections and projections. In a condition that if predicate function

µ : XΘx involves only projected attributes X, then

ΠX

(
σµ:XΘx(RX)

)
≡ σµ:XΘx (ΠX(RX))

Law 3.2.6. Commuting selection with Cartesian product.

σµ:XΘx(AX×BY) ≡ σµ:XΘx(AX)×BY
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σµ1:XΘx ∧ µ2:Y Θy(AX×BY) ≡ σµ1:XΘx(AX)×σµ2:Y Θy(BY)
σµ1:XΘx ∧ µ2:Y Θy(AX×BY) ≡ σµ2:Y Θy

(
σµ1:XΘx(AX)×BY

)
Law 3.2.7. Commuting selection with a union.

σµ:XΘx(AX∪BX) ≡ σµ:XΘx(AX)∪σµ:XΘx(BX)

Law 3.2.8. Commuting selection with a set difference.

σµ:XΘx(AX−BX) ≡ σµ:XΘx(AX)−σµ:XΘx(BX)

Law 3.2.9. Commuting selection with natural join – special case.

σµ:(X∪Y)Θz(AX ./ BX) ≡ σµ:XΘz(AX) ./ σµ:Y Θz(BY)

Law 3.2.10. Commuting a projection with a Cartesian product.

ΠX∪Y(AX×BY) ≡ ΠX(AX)×ΠY(BY)

Law 3.2.11. Commuting a projection with a union.

ΠX(AX∪BX) ≡ ΠX(AX)∪ΠX(BX)

3.3 Scoring Expression

3.3.1 Discovering the Scoring Semantics of PRA Expressions

We discussed the definitions of PRA operators in previous sections (see Section 2.4.2 and Sec-

tion 2.5.2.2), attentive readers may have noticed that there are two kinds of semantics have been

addressed in the definitions, which are relational semantics and scoring semantics.

With respect to relational semantics, PRA is equivalent to conventional non-probabilistic

relational algebra; in addition, PRA incorporates scoring semantics, or to be precise, probabilistic

semantics, within its operators. Therefore, this is why traditional algebraic manipulation cannot

be applied to optimize PRA expressions without extra considerations with regards to their scoring

semantics. In fact, the laws of algebraic manipulations (see Section 3.2.1) could be no longer

applicable to a relational algebra while considering sorts of scoring semantics: there are few
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algebraic equivalences can be found. Several earlier studies have encountered similar problems,

for instance, in the SALT algebra proposed by [Chaudhuri et al., 2005].

Mapping scoring functions to relational algebra already poses difficulties to query optimiza-

tion while the mapping between relational operators and scoring functions is a bijection, and if

the mappings are one-to-many mappings such as the ones in PRA, where which scoring function

is chosen to be mapped to an operator also depends on an applied (probabilistic) assumption,

then it is impossible for a query optimizer based on algebraic equivalences can be practical.

To tackle the problem of very few algebraic equivalence can be found for scoring-based rela-

tional algebra such as PRA, scoring expression (SCX) was proposed to articulate scoring seman-

tics of PRA expressions. In addition, a scoring-driven optimization technique shows how SCX

can be transformed to alternative scoring expressions, or so-called interpreted SCX. The contri-

butions of this technique, which explicitly presents the scoring semantics of PRA expressions,

are two folds:

• It helps with detecting algebraic equivalence of PRA expressions. Since it is a tool for de-

scribing scoring functions which can be understandable by both human user and machine,

on the one hand, it is necessary for human user (e.g. application developer) to understand

the scoring semantics in order to discover equivalent PRA expressions; and on the other

hand, it is also necessary for a rule-based query optimizer to analyse the scoring semantics

in order to trigger pre-set manipulations.

• It helps with implementing other optimizations such as specialised operations and index

selections. In other words, it is necessary for developing RISC-like physical operators

for common scoring functions. For example, tf is a common frequency that is applied

in several popular ranking models, e.g. BM25 and LM (see Section 2.2.2), hence using

a dedicated operator for tf rather than executing a complex SQL query (e.g. see 2.5.2.3)

on-the-fly is more practical while considering efficiency and scalability.

3.3.2 Equivalence of PRA Expressions

Algebraic equivalence is the cornerstone of optimization for relational expressions, as it is

pointed out in [Ullman, 1989]:

“Before we can ‘optimize’ expressions we must understand clearly when two ex-

pressions of relational algebra are equivalent.”
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Similarly, we must understand clearly when two expressions of probabilistic relational alge-

bra [Fuhr and Rölleke, 1997, Roelleke et al., 2008] (or PRAE for short) are equivalent before we

can optimize them. So far we have discussed the definition of relations in probabilistic database

(see Section 2.4.1), which employs a viewpoint that is also shared in conventional databases,

where a relation is a set of mappings from a set of attribute names to values (i.e. names for

columns); whereas it is different from traditional relation in a sense that a probabilistic weighting

is attached to each of these mappings (tuples), which is so-called tuple probability (or tuple score

in a broad sense).

Before we discuss formally what criteria are necessary for PRAEs to be equivalent, let us

first recall the definition of canonically algebraic equivalence of non-probabilistic relational ex-

pressions: A relational expression taking relationsR1,R2, . . . ,Rk as operands defines a function

whose domain is k-tuples of relations (r1,r2, . . . ,rk), each ri being a relation of the arity ap-

propriate to Ri. The outcome of the function is a relation which is the result of evaluating the

expression by substituting each ri for Ri. Two relational expressions RE1 and RE2 are equiva-

lent, written RE1 ≡ RE2, if they represent the same mappings, which means when substituting

the same relations for identical names in the two expressions, we obtain the same result.

In order to define equivalence for PRAE, we also need to consider how event probabilities are

computed by an expression. Moreover, since it is discussed in [Roelleke et al., 2008], probability

estimations could be performed to transform non-probabilistic relations into probabilistic rela-

tions, which means the intermediate results of probability estimations could be scored with some

sort of weightings which could be not yet probabilities. On the other hand, from and IR point

of view, it would be appropriate to discuss algebraic equivalence under a broad sense of weight-

ings rather than restricting ourselves to probabilistic weightings only. Therefore, we loosen the

previous definition on probabilistic relation, and define scored relation as follow:

Definition 3.3.1. Weighted Relation. Let a scored relationR be a 4-tuple of (X,∆, f,s), where X

is a schema that is a set of attributes A1,A2, . . . ,Ak, so a relation R having schema X is denoted

as RX; and ∆ is a set of domains {D1,D2, . . . ,Dk}, in which a domain contains a set of values

{υ}; the Cartesian product (or just product) of all domains, written D1×D2×·· ·×Dk, is the set

of all k-tuples (υ1,υ2, . . . ,υk), denoted as τ , such that υ1 is in D1, υ2 is in D2, and so on; and f

is a function that performs mappings from attribute names X to values τ , i.e. f(X′)→ τ ′, which

yields any subset of the Cartesian product of one or more domains; and s is a scoring function
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that computes weightings to assign to every mappings produced by f.

With this definition of scored relation, now we are able to discuss the definition of equivalence

of PRA expressions. There are two considerations for two PRAEs to be equal: firstly, they must

yield the same result with respect to the values of tuples (or just tuples for short), which is

the same consideration as equivalence for conventional relational expressions; and secondly, the

weightings computed by either PRAE must be the same. Since both criteria are important to

verify equivalence of PRAEs, we call the first criterion relational equivalence and the second

weighting equivalence.

Since relational equivalence has been established for decades, we do not repeat its discus-

sions, and move on to the issues with regard to weighting equivalence: what does it mean exactly

the same weighting? Firstly, we assume that “weightings are equivalent” as long as “the scores

representing for weights are equal”, in other words, scoring equivalence. So let us consider the

following examples in Figure 3.3.

Term DocId
0.9 prius doc1
0.8 volt doc1

Term DocId
0.45b prius doc1
0.4b volt doc1

Figure 3.3: Example 1 of soft scoring equivalence

Let b be a parameter, so are the above two relations scoring equivalent? A cautious answer is

“perhaps”, because if b = 2 then they are equal with respect to scores. Moreover, let us consider

another example in Figure 3.4.

Term DocId
0.9 prius doc1

0.85 volt doc1

Term DocId
0.89999 prius doc1
0.84999 volt doc1

Figure 3.4: Example 2 of soft scoring equivalence

So are they scoring equivalent? Again, it depends on the allowed precision of scores and

whether rounding would be taken into account. Actually, we can go even further and have another

example in Figure 3.5.

Term DocId
0.9 prius doc1
0.8 volt doc1

Term DocId
0.7 prius doc1
0.5 volt doc1

Figure 3.5: Example of strict ranking equivalence
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This time one might say immediately: “No, they are absolutely not scoring equivalent!”.

However, if our interest is not on the exact scores but the relative importance of the tuples,

then those two results actually tell the same, so they could be about the same at all. If we can

tolerate differences on exact tuple scores but put more emphasis on the order of tuples based on

weightings, then we can relax the concept of scoring equivalence to ranking equivalence.

However, we have not yet covered all the issues, because one have to expect some “odd”

weightings to be yielded by IR strategies, for instance, can someone tell if the lists of results in

Figure 3.6 and Figure 3.7 could be ranked the same?

Term DocId
1.0 prius doc1

0.99999 volt doc1

Term DocId
1.0 volt doc1
1.0 prius doc1

Figure 3.6: Example 1 of soft ranking equivalence

Term DocId
0.9 prius doc1
0.8 volt doc1

Term DocId
0.9 prius doc1
0.8 volt doc1
0.0 range-rover doc1

Figure 3.7: Example 2 of soft ranking equivalence

As what have been demonstrated, it is necessary to specify the circumstances when weight-

ings can be considered to be equivalent. In fact, we can have the following four situations:

Figure 3.8: Coordinate of equivalences

Based on these four circumstances, we define equivalence with respect to the weightings

yielded by PRAEs.

Definition 3.3.2. Strict Scoring Equivalence. Two PRA expressions are strictly scoring equiva-

lent if they yield identical tuple scores for the same list of tuples.
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Definition 3.3.3. Soft Scoring Equivalence. Two PRA expressions are softly scoring equivalent

if the tuple scores yielded by them for the same list of tuples satisfy either one of the following

conditions: 1) a common factor exists between the two lists of scores; that is, once the scores

in one list multiply the common factor then two lists of scores become identical; or 2) the two

lists of scores would be identical under a common agreement about the precision of numbers and

approximation methods.

Definition 3.3.4. Strict Ranking Equivalence. Two PRA expressions are strictly ranking equiva-

lent if they yield the same list of tuples in identical order.

Definition 3.3.5. Soft Ranking Equivalence. Two PRA expressions are soft ranking equivalent if

they yield the same list of tuples in identical order when approximation is allowed.

With these definitions of scored relation and various scoring or ranking equivalence, now we

are able to define the algebraic equivalence for PRA expressions:

Definition 3.3.6. Algebraic Equivalence of PRA expressions. Two PRA expressions are strictly

algebraic equivalent, written PRAE1 ≡ PRAE2, if they present the same mappings with identi-

cal weightings; that is, when the same relations are substituted for identical names in the two

expressions, we get the same result whose tuples are weighted by identical scores.

3.3.3 Ideas and Principles of Design

Previous discussions (see Sections 3.1 and 3.3.1) had motivated us to apply or develop an appro-

priate method for representing the scoring semantics of PRA expressions.

First of all, we wanted to see if there are existing methods or declarative languages

that may provide the expressiveness. Possible candidates include, for instance, the SRAM

language introduced in [Cornacchia and de Vries, 2007] which follows comprehension syn-

tax [Buneman et al., 1994], and the SALT algebra in [Chaudhuri et al., 2005] which aims for

expressing scoring or ranking functions over lists and text. What was found out is that all of

these languages satisfy the requirement of modelling scoring functions. However, although they

are inspiring, but they are still impossible to be applied to PRA for the aforementioned purpose

of representing scoring semantics, this is because:

1. All of these (declarative) languages are relationally complete algebra which are about the

same level as PRA in terms of abstraction and expressiveness. It is possible to transform
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a PRA expression into one of these languages so that to obtain an indication of its finally

implied scoring function, but it is impractical to interpret the scoring semantics of every

single steps (or sub-expressions) of a PRA expression with any of these languages.

2. None of these languages distinguish the types of scores. For instance, how to determine if a

score is an ordinary weighting or a probability? Knowing the types of scores not only helps

to verify the correctness of modelling but also helps to develop rule-based optimization

strategies for queries.

3. It is unclear whether these languages can be manipulated. Some of these languages, for

instance SRAM, are actually translated into SQL to be processed, which means the re-

sponsibility of query optimization is bypassed. Although it might be reasonable to rely on

underlying DB optimizer, but it is unclear how an optimizer can utilise the knowledge of

scoring functions.

Therefore, a carefully designed representation for scoring functions is needed, and to over-

come the shortcomings of previous works, the formalisation should have the following charac-

teristics;

• It should be along side with PRA as a complement representation of scoring semantics, but

not to be a duplicate or a replacement of PRA.

• It should be expressive for representing scoring functions, including differentiation of types

of scores.

• It should be able to be manipulated by query optimizer or providing useful knowledge for

optimization.

As discussed, such representation of scoring function is firstly a technique of annotation; and

secondly, it is part of a query optimizer, directly or indirectly. The annotating functionality is

illustrated in Figure 3.9. As a result, SCX was proposed. While annotating PRA expression,

SCXs are affiliated to every operators of an expression (i.e. query plan) to present the scor-

ing functions of an annotated sub-expression, therefore, they contain information such as how

scoring functions are built up and how scores are propagated.

In the next section, we discuss the syntax and semantics of SCX.
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Figure 3.9: Annotating scoring functions of PRA sub-expressions

3.3.4 Syntax and Semantics

In general, a scoring expression is a hybrid of arithmetic-style or logic-style expression, which

consists of instant constant, parameter, scoring variables, operators, and (symbols of) functions.

Here we introduce separately the parts of SCX and then discuss how these parts are to be assem-

bled. Above all, the syntax of SCX is given in Figure 3.10, and a summary of the semantics of

SCX is given in Table 3.1.

3.3.4.1 Instant Constant and Parameter

Both instant constant and parameter are constants, the difference is that instant constants directly

appear in SCX as numeric numbers, whereas parameters are names or alias with assigned con-

stant values. In general, to use instant constant or parameter is purely depending on specific

situations and convenience.

3.3.4.2 Variable

A scoring variable represents a class of tuple scores that have the same properties, which are

indicated by different segments of a variable. A variable consist of one or up to three segments

that are separated by dots, and each segment represents one of the properties of the ownership of

scores, the aggregation and grouping, and the type of scores. In general, a variable is formulized

in the following form:

〈ownership o f score〉.〈schema o f grouping〉.〈type o f score〉

While the properties are explained as follows:

Ownership of Score First of all, the ownership of score property tells what entity owns score,

which can be tuples in a relation, or an accumulator. If the owner is a relation, then the owner-

ship is represented by relation property, which consists of a mandatory alias of relation and an
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<scx> ::= <geScx> | <inScx>
<geScx> ::= [‘this’ ‘.’ ‘s’ ‘=’] <scoTypeProp> | <eveExpr> | <artExpr>
<inScx> ::= ‘R’ <id> [‘.’ <grpProp>] ‘.’ <scoTypeProp> ‘=’ <artExpr>
<paramAssign> ::= <param> ‘=’ ‘c’ ‘[’ <decimal number> ‘]’
<id> ::= <unsigned integer>
<name> ::= <letter> | <name> (<letter> | <digit> | ‘ ’)
<score> ::= <decimal number>
<param> ::= <name>
<relAlias> ::= ‘R’ <id> | ‘this’
<accProp> ::= ‘acc’
<ownProp> ::= <relAlias> [‘[’ <name> ‘]’]
<attrAlias> ::= ‘$’ (<name> | <number> | ‘∗’) | ‘%’ <name> ‘%’
<attrList> ::= <attrAlias> [‘,’ <attrList>]
<grpProp> ::= ‘[’ <attrList> ‘]’
<scoTypeAlias> ::= ‘s’ | ‘w’ | ‘p’ | ‘c’
<scoTypeProp> ::= <sctAlias> [‘[’ <score> ‘]’]
<var> ::= (<ownProp> | <accProp>) [‘.’ <grpProp> ] ‘.’ <scoTypeProp>
<artOpr> ::= ‘+’ | ‘−’ | ‘∗’ | ‘/’
<eveOpr> ::= ‘!’ | ‘ˆ’ | ‘v’
<stdFuncOpr> ::= ‘log’ | ‘ln’ | ‘pow’ | ‘exp’
<baseArg> ::= <score> | <var> | <param>
<stdArg> ::= <score> | <var> | <param> | <artExpr>
<stdFunc> ::= <stdFuncOpr> ‘(’ (<stdArg> | <baseArg> ’,’ <stdArg>) ‘)’
<conFunc> ::= ‘(’ (‘<’ | ‘>’) ‘?’ <stdArg> ‘:’ <stdArg> ‘)’
<aggSym> ::= ‘COUNT’ | ‘SUM’ | ‘MAX’ | ‘MIN’ | ‘AVG’
<aggProp> ::= <attrAlias> | ‘[’ <attrList> [‘|’ <attrList>] ‘]’
<aggFunc> ::= <aggSym> ‘(’ [‘DISTINCT’] <relAlias> [ ‘.’ <aggProp> ] ‘)’
<artOperand> ::= <score> | <scoProp> | <var> | <stdFunc> | <conFunc> | <aggFunc>
<artExpr> ::= <artOperand> | ‘(’ <artOperand> <artOpr> <artExpr> ‘)’
<eveExpr> ::= <var> | ‘(’ <eveOpr> <var> ‘)’ | ‘(’ <var> <eveOpr> <eveExpr> ‘)’
<digit> ::= [0-9]
<letter> ::= [a-zA-Z]
<sign> ::= ‘+’ | ‘−’
<unsigned integer> ::= <digit> | <digit> <unsigned integer>
<decimal fraction> ::= ‘.’ <unsigned integer>
<number> ::= [1-9] [<unsigned integer>]
<decimal number> ::= [<sign>] <unsigned integer> [<decimal fraction>]

Figure 3.10: Syntax (BNF) of Scoring Expression (SCX)
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Symbol or Expression of SCX Remark of Semantics
(1.1) R2 (1.1) a relation alias with a unique id ‘2’
(1.2) R2.p (1.2) event probability P(τ), τ ∈ R2
(1.3) !R2.p (1.3) the complement of P(τ), ∀τ ∈ R2, 1−P(τ)
(1.4) R2.s (1.4) arbitrary score of tuple τ , τ ∈ R2
(1.5) !R2.s (1.5) not applicable, throw a semantic error
(1.6) ‘R2.$term’ or ‘R2.%term%’ (1.6) an attribute named ‘term’ of R2
(1.7) R2[MagColl].$1 (1.7) the first attribute of R2, R2 named ‘MagColl’
(1.8) R2.[$term].p (1.8) similar to (1.2) but group P(τ) by $term
(1.9) R2.[$term].s (1.9) similar to (1.4) but group scores by $term
(1.10) this (1.10) a relation itself, (1.1) to (1.9) are applicable
(3.1) ˆR2.p ∃τi ∈ R2 where i = 1, . . . ,k and k ≤ |R2|,
(3.2) vR2.p (3.1)

∧k
i=1 P(τi)

(3.3) this.s = (acc.s ∗ R2.s) (3.2)
∨k

i=1 P(τi)
(3.4) this.s = (1 − (acc.s ∗ (1 − R2.s))) (3.3), (3.5), (3.7) are the arithmetic representations
(3.5) this.s = (acc.s ∗ R2.s) of (3.1), applicability depends on assumption
(3.6) this.s = (acc.s + R2.s) (3.4), (3.6), (3.8) are the arithmetic representations
(3.7) this.s = (<? acc.s : R2.s) of (3.2), applicability depends on assumption
(3.8) this.s = (>? acc.s : R2.s) (3.3), (3.4) are applicable if independent

(3.5), (3.6) are applicable if disjoint
(3.7), (3.8) are applicable if subsumed
(3.3) defined as ∏

m
i=1 R2.ti

(3.4) defined as 1−∏
m
i=1(1−R2.ti)

(3.5) defined as ∏
m
i=1 R2.ti

(3.6) defined as ∑
m
i=1 R2.ti

(3.7) defined as for all given R2.t min{R2.t}
(3.8) defined as for all given R2.t max{R2.t}
for (3.3), (3.4), (3.7), initial acc.s = 1
for (3.5), (3.6), (3.8), initial acc.s = 0

(4.1) R1.t ˆ R2.t ∃τi ∈ R1 ∃τ j ∈ R2,
(4.2) R1.t v R2.t (4.1) P(τi)∧P(τ j)

(4.2) P(τi)∨P(τ j)
(3.3) to (3.8) are applicable for similar situations

(5.1) COUNT(R2) all expressions manipulate on relation R2
(5.2) COUNT(DISTINCT R2) (5.1) count the number of tuples
(5.3) COUNT(R2.$term) (5.2) similar to (5.1) but count distinct tuples
(5.4) COUNT(R2.[$term, $doc]) (5.3) count the number of values of $term
(5.5) COUNT(DISTINCT R2.$term) (5.4) similar to (5.3) but count paired values
(5.6) COUNT(DISTINCT R2.[$term, $doc]) (5.5) count the number of distinct values of $term
(5.7) COUNT(R2.[$doc | $term]) (5.6) similar to (5.5) but count distinct paired values
(5.8) COUNT(DISTINCT R2.[$doc | $term]) (5.7) count the number of values of $doc and

results are grouped by $term
(5.8) similar to (5.7) but count distinct values

aggOpr = ‘SUM’ | ‘MAX’ | ‘MIN’ | ‘AVG’ all expressions (try to) manipulate on relation R2
(6.1) aggOpr(R2) (6.1) not applicable, throw a semantic error
(6.2) aggOpr(R2.$distance) (6.2) compute summation, maximum, minimum or
(6.3) aggOpr(R2.[$price | $cid]) average of values of $distance, note that the

‘DISTINCT’ constraint has no effect
(6.3) similar to (6.2) but compute the values of
$price and results are grouped by $cid

Table 3.1: Semantics of Scoring Expression
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optional name of relation. An alias of relation is either composed of an uppercase ‘R’ followed

by a numerical ID, or just composed of a word ‘this’ for a relation itself. A name of relation

is the same to the name of a table or a view, and it is written between a pair of square brackets

following immediately after alias of relation. For example, R2 for a relation property without

name, or R2[MagColl] or this[MagColl] for a property with name.

In addition, if the owner is an accumulator, then the ownership is represented by accumulator

property, which is simply composed of an abbreviation ‘acc’. The use of accumulator will be

discussed later in this section.

Schema of Grouping Secondly, grouping schema indicates how scores are grouped in owner

relation. The schema is a list of attribute(s) separated by commas, and the property can be applied

while knowing the score is obtained from conventional aggregations such as counting.

There are two ways to formulize an attribute. The first way is to use a dollar sign (i.e. ‘$’)

followed by an attribute name (i.e. a term) or a column number, and the second way is to write

the attribute name between a pair of percentage signs (i.e. ‘%’). The difference between the

first and the second ways is that the latter allows phrase (or space separated terms) to be used as

attribute name. For example, an attribute can be formulized as $CarType, $2 or %Car Type%.

To formulize grouping schema, we place a comma separated attribute list between a pair of

closed square brackets such as [$CarType,$Carmaker]. Especially, if a grouping is based on all

attributes of a relation, then an anonymous formalisation can be applied, which is composed of a

dollar with an asterisk, i.e. ‘[$∗]’.

What grouping means is that it indicates relational aggregations (including duplicate re-

moval) have been performed on the given attribute(s), in other words, tuples are firstly grouped

by the given attribute(s), and then for each group tuples would be aggregated or duplicates would

be removed, while a score would be assigned to the (single) resulting tuple, which could be

an aggregated weight (from scoring aggregation on the original tuples scores in the group) or a

judiciously specified constant.

Types of Score Finally, the type of score classifies variables into four types based on different

characteristics of the values of scores. The four applied types are: unspecified weighting, denoted

by ‘s’ for score; normal weighting, denoted by ‘w’ for weight; probabilistic weighting, denoted

by ‘p’ for probability; and constant weighting, denoted by ‘c’ for constant.

In particular, the value of a score can be specified if the score is a constant weighting, in
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this case, a value is placed between a closed square brackets and affiliated to the ‘c’ type. For

example, for scores constantly equal one, one can formulize the scores as c[1.0].

To wrap up, variables are operands of SCX, and the properties supply necessary information

to formulize score (or probability) estimation and aggregation, which are the bases for present-

ing and interpreting scoring functions. Finally, we give examples for all three types of variables

as follows: 1) to present tuple scores of an unweighted relation, e.g. MagColl, one can for-

mulize a variable with constant score 1.0, i.e. R0[MagColl].c[1.0]; 2) to present normal weight-

ings grouped by an attribute $CarType, one can formulize a variable as R2.[$CarType].w; 3) to

present probabilistic weightings grouped by attributes $Term and $DocId, one can formulize a

variable as R3.[$Term,$DocId].p.

3.3.4.3 Operators

There are two types of operators, i.e. arithmetic operators and event operators. All arithmetic

operators are binary operators and they can be used for computations of all types of scores (i.e.

the four types of weightings), whereas event operators could be unary or binary and they are only

feasible for probabilistic weighting.

Arithmetic Operators Four ordinary arithmetic operators, i.e. ‘plus’ as ‘+’, ‘minus’ as ‘−’,

‘multiply’ as ‘∗’, and ‘divide’ as ‘/’, are used, in which corresponding mathematical meanings

are applied.

Event Operators Event operators are Boolean logical operators, three operators including log-

ical ‘not’ as ‘!’ (same as ‘¬’), logical ‘and’ as ‘ˆ’ (same as ‘∧’), and logical ‘or’ as ‘v’ (same as

‘∨’). For operator ‘!’, it is an unary operator which operand must be a variable with score type

as probabilistic weighting; it stands for complement of probability, for instance, !R2.p means

1−R2.p. Different from operator ‘!’, both operators ‘ˆ’ and ‘v’ can have one or two operands,

and the exact mappings to arithmetic operations depending on certain probabilistic assumptions.

The reasons of having event operators will be discussed later together with event-based expres-

sions.

3.3.4.4 Functions

SCX allows two types of functions, i.e. actual functions and symbolic functions, to be embedded

in arithmetic expressions2, in which actual functions include standard functions and conditional

selection, whereas symbolic functions include aggregate symbols. In general, for each type of

2For event expressions, they will be eventually interpreted into arithmetic expressions.
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functions, three aspects will be discussed: 1) why a type of functions is included in SCX, 2) what

argument(s) is/are taken or allowed to be taken by functions, and 3) the semantics of specific

functions.

Standard Functions We have been being cautious to introduce standard mathematical func-

tions into SCX. The reasons are, first, SCX was designed for representing purpose of scoring

semantics of PRA expressions, so the expressiveness of SCX should be just enough for this aim;

and secondly, the names of some standard functions such as ‘max’ and ‘min’ are overlapped with

(DB’s) aggregate functions, so in order not to introduce unnecessary ambiguity these functions

are not included in standard functions but have been classified into another type, i.e. conditional

selection.

Currently there are four functions in this class, which are logarithm as ‘log’, natural logarithm

as ‘ln’, power as ‘pow’, and exponentiation as ‘exp’. Moreover, two kinds of arguments are

allowed: value of score and variable of scores. For functions ‘log’ and ‘pow’ two arguments are

expected: the first as base and the second as parameter. For instance, log(2,R1.w) stands for

log2 R1.w and pow(R2.w,2) means R2.w2. While for functions ‘ln’ and ‘exp’ one argument is

expected for parameter.

Conditional Selection As aforementioned, conditional selection functions are applied to act

as the ‘max’ and ‘min’ standard functions and to avoid naming overlapping with aggregate

functions. The syntax of conditional selection looks like 〈predicate〉?〈 f irstArg〉 : 〈secondArg〉,

where predicate is either ‘less than’ (i.e. ‘<’) or ‘greater than’ (i.e. ‘>’), and allowed arguments

include variable of scores and unary event expressions taking variable as operand.

Readers who are familiar with C programming language may find that it is very similar to

the conditional evaluation or assignment statement in C, in fact, it is taken from the C syntax but

slightly modified. The conditional selection means comparing the first argument to the second

argument with a given predicate, i.e. less than or greater than, then take the first argument if

the predicate is true or take the second if it is false. For example, >? R1.w : R2.w stands for if

R1.w > R2.w then take R1.w otherwise take R2.w.

Aggregate Symbols Aggregate symbols are symbolic functions, which do not actually compute

or manipulate scores at all, so they are only ‘annotations’ of corresponding aggregate functions

such as counting or summing. There are five aggregate symbols in SCX, which are: ‘COUNT’

denotes counting, ‘SUM’ denotes summing, ‘MAX’ denotes maximising, ‘MIN’ denotes min-
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imising and ‘AVG’ denotes averaging. In general, aggregations are bridges between conventional

relations and weighted (including probabilistic) relations, hence the aggregate symbols are used

to represent probability estimations (see Section 2.5.2) in conventional aggregations. In other

words, they indicate how scores are generated from counting or computing on tuples or attribute

values of relations.

In general, the formulation of aggregate symbols is given as follow:

〈aggregation〉(〈constraint〉 〈relation alias〉.[〈target list〉 | 〈group list〉])

in which aggregation is one of the five aggregate symbols; and the only constraint, which is

‘DISTINCT’ constraint, is optional; while relation alias is similar to the ownership property

of scoring variable, which indicates where aggregated tuples come from; and target list is an

attribute(s) list that is varied to different aggregations, which will be discussed later; similarly,

group list is also an attribute(s) list, but it indicates a grouping operation which is comparable to

the function of ‘GROUP BY’ statement in SQL.

Depending on whether scores are computed by counting or by mathematical operations, the

five symbols can be categorised into two groups, where ‘COUNT’ is in a group with itself, and

the other aggregations are in another.

Firstly, the ‘COUNT’ symbol indicates scores are computed by counting on tuples or on at-

tribute values, in which obtained score(s) might be grouped or ungrouped by certain attribute

values. While ‘DISTINCT’ constraint is not applied, the result of counting tuples is equiv-

alent to the result of counting attribute values. For instance, COUNT (R2.$term) means the

same to COUNT (R2.$∗), and similarly, COUNT (R2.[$Term | $DocId]) stands for the same to

COUNT (R2.[$ ∗ | $DocId]). Specially, to count the total number of tuples in a relation, the at-

tribute lists (including target list and group list) can be save, i.e. one can just write COUNT (R2).

Next, calculation-based aggregations indicate taking attribute values for the production of

scores. Therefore, a target list containing a single attribute has to be provided, which data type

must be numeric. For example, SUM(R2.[$Price]) or SUM(R2.[$Cost | $CarModel]).

It is important to note that one can always find compatible SQL statements to certain formal-

isation of aggregate functions in SCX.



3.3. Scoring Expression 82

3.3.4.5 Expressions

In SCX, there are two types of formulations that can be applied to express scoring functions.

Depending on whether source relations are probabilistic or not, a formulation may base on

arithmetic-style expression or logic-style expression. In addition, while collaborating SCX with

PRA expressions to demonstrate scoring semantics, for each sub-expression, an ‘intuitive’ SCX

is generated at first, such SCX is called generated SCX; and then a ‘heuristic’ SCX is produced

bases on generated SCX and other supplied knowledge, and this SCX is call interpreted SCX. A

syntax of SCX complying with Backus Naur Form (BNF) is given in Figure 3.10.

Arithmetic-style Expression The most commonly used expressions are arithmetic-style expres-

sions. To get started, we demonstrate the SCXs of three IR models, including basic tf -idf, BM25

and LM (see Section 2.2.2), with a toy MagColl relation (see Section 2.5.2 and Table 2.3).

Example 3.3.1. Basic tf -idf (see Formula 2.1, page 32)

Assuming there are two views (i.e. intermediate relations) named P C t d and df t which

tuples contain scores associated respectively to within-document tf and document frequency.

Let R3 be alias of P C t d and R7 be alias of df t, the following arithmetic expression presents

Formula 2.1 (see page 2.1) in an external form when using scoring expression in self-defined

mode:

P C t d ∗ log(1 / df t)

whereas an internal arithmetic expression would be generated by an optimizer as the follow-

ing form:

R3[P C t d].[$Term, $DocId].p ∗ log(1 / R7[df t].[$Term].w)

This expression tells:

• Tuple scores from R3 are probabilistic weightings which have been grouped by attributes
$Term and $DocId, which means the scores are obtained from aggregation;

• Tuple scores from R7 are normal weightings which have been grouped by attribute $Term,
which also indicates aggregation has been used to compute the scores;

• Scores from R3 are to be multiplied to negative logarithm of scores from R7.
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Example 3.3.2. Saturation function of BM25 (see Formula 2.5, page 33)

In BM25, the within-document tf is to be normalised by document length, which is obtain

from a view named DocLen. In addition, assuming the average document length is given by a

view named AvgDL. Apart from variables, BM25 introduces k and b parameters to adjust the

levering effect of normalisation, which could be also reflected in a SCX. Here three variables

are included in a SCX, which means corresponding relational algebra may involve three-way (or

multiway) join (see e.g. [Ullman, 1989], Chapter 11, Section 11.8).3 The following arithmetic

expression in external mode demonstrates the saturation function:

(n L t d ∗ (k1 + 1)) / (n L t d + (k1 * (1 − (b + (b ∗ (DocLen / AvgDL)) )) ))

While similarly, the following internal arithmetic expression could be generated by opti-

mizer:

(R3[n L t d].[$Term, $DocId].p ∗ (k1 + 1)) / (R3[n L t d].[$Term, $DocId].p

+ (k1 * (1 − (b + (b ∗ (R5[DocLen].[$DocId].w / R9[AvgDL].w)) )) ))

Readers may refer to Example 3.3.1 for the meanings of scoring variables. Besides, k1 and b

correspond to BM25 parameters (assignments are not shown).

Example 3.3.3. Linear Mixture of Language Modelling (see Formula 2.12, page 34)

The following external scoring expression formulizes the linear mixture of language mod-

elling:

lambda ∗ P C t + (1 − lambda) ∗ P C t d

While the following internal arithmetic expression could be generated by optimizer:

(lambda ∗ R3[P C t d].[$Term, $DocId].p) + ((1 − lambda) ∗ R6[P C t].[$Term].p)

Where lambda is LM’s parameter, and relation P C t provides tuple scores of within-

collection tf.

As they have been shown, arithmetic-style expressions not only look similarly to mathemati-

cal expressions but also comply with straightforward mathematical semantics, which on the one

3For relational algebra do not include multiway join, BM25 can be implemented by multiple two-way
joins, which can be interpreted by SCX that includes multiple aggregate functions.
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hand, are readable and understandable by human users, while on the other hand, are able to be

processed by programs for calculating scores.

Furthermore, arithmetic-style SCX can present various aggregate expressions along with a

special variable: accumulator (i.e. ‘acc’). Based on recursion, aggregations for summation,

multiplication, maximisation and minimisation are given as follows.

Definition 3.3.7. Aggregate summation of scores, denoted as ∑() and formulized in SCX as

acc.s+R.s, is the addition of a set of scores; the result is their sum or total. The SCX formulation

means the result is obtained from recursive addition.

∑() = acc.s+R.s

=def
(

acc.s = 0
acc.s = acc.s+R.s

)

Be aware of the ‘+’ operator not only compute the sum of two operands, but also inputs the

result to acc.s.

Definition 3.3.8. Aggregate multiplication of scores, denoted as ∏() and formulized in SCX as

acc.s∗R.s, is to scale integer 1 by a set of numbers (scores); the result is their product. The SCX

formulation means the result is obtained from recursive multiplication:

∏() = acc.s∗R.s

=def
(

acc.s = 1
acc.s = acc.s∗R.s

)

Similarly, the ‘∗’ operator not only compute the multiplication of two operands, but also

inputs the result to acc.s.

Definition 3.3.9. Aggregate maximisation of scores, denoted as max() and formulized in SCX

as >? acc.s : R.s, is to select the maximum score of a set of scores; the result is their maximum.

The SCX formulation means the result is obtained from recursive maximisation:

max() = >? acc.s : R.s

=def
(

acc.s = R.s
acc.s = (>?acc.s : R.s)

)
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Definition 3.3.10. Aggregate minimisation of scores, denoted as min() and formulized in SCX

as <? acc.s : R.s, is to select the minimum score of a set of scores; the result is their minimum.

The SCX formulation means the result is obtained from recursive minimisation:

min() = <? acc.s : R.s

=def
(

acc.s = R.s
acc.s = (<? acc.s : R.s)

)

Be aware of the difference between aggregate expressions and aggregate symbols: the former

are aggregations specific for tuple scores, whereas the latter represents (conventionally) relational

aggregations on tuples or attribute values. Nevertheless, there are connections could be drawn

between the two kind of aggregations, which will be discussed later in the section.

Logic-style Expression The second form of SCX is logic-style expression. A logic-style SCX

cannot be used for direct computation of score, but it indicates certain scoring function for proba-

bilistic events while probabilistic assumption is missing or has not yet been considered, therefore,

the scoring variables of logic-style SCX must be probabilistic weightings.

The reason of using logic-style expression is to accurately reflect the intensional semantics of

PRA expressions for conjunctive queries which apply distributive law for aggregating probabilis-

tic events. For example, for independent events A, B and C, event expressions for conjunctive

queries in the form of A∧ (B∨C) but would be processed as (A∨B)∧ (A∨C), which applies

intensional evaluation for processing event expressions (see Section 2.4). On the other hand, to

meet requirements of efficiency and scalability, probabilistic databases process queries basing on

extensional semantics, where pipelined processing or data (tuples) streaming is deployed. How-

ever, extensional evaluation does not comply to intensional semantics (which is carried by event

expressions) while aggregating scores so that incorrect scores are to be yielded.

As a result, logic-style expression is utilised to tackle the incompatible problem between

intentional semantics and extensional evaluation. How does it work would be discussed later in

this section, and here an example is given for illustrating logic-style SCX:

Example 3.3.4. Conjunctive query

Assuming both R1 and R2 representing intensional relations that contain probabilistic scores,

a logic-style SCX for a conjunctive query is demonstrated as follow:
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v(R1.p ˆ R2.p)

Here R1.p and R2.p are event probabilities of tuples of R1 and R2 respectively. The expres-

sion says to aggregate conjunctive events made from tuples of R1 and R2.

3.3.5 Generated SCX and Interpreted SCX

Before we explain how to use SCX to present scoring functions of PRA, let us first discuss gener-

ated SCX and interpreted SCX. As mentioned in the previous section, generated SCX intuitively

explains scoring semantics that bases on extensional semantics; whereas interpreted SCX is an

alternative representation while considering intensional semantics and propagated information

including aggregations.

One of the main features of PRA is its capability for internal probability estimations for IR

models, which is achieved by deploying a composed operator, the relational Bayes (see 2.5.2.2

and 2.5.2.3). On the other hand, it is possible to implement similar functionality (i.e. inter-

nal probability estimations) in traditional SQL, for example, by combining aggregate functions,

arithmetic functions, and joins (e.g. see [Grossman et al., 1997, Grossman and Frieder, 2004]).

Especially, counting based function is the basis for obtaining various frequencies needed by

probability estimations.

Theoretically, counting is implemented as a counter, which includes an accumulator and an

iterator, and a counting process usually consists of following two steps. Step one, initialisation:

the accumulator is set to zero when counting is started, and the iterator is placed at the starting

position (of a list of tuples). Step two, iteration: the iterator is moved one step forward to the next

position, while the accumulator is increased by one; repeatedly moving iterator and increasing

accumulator until the iterator is moved forward from the last tuple. Therefore, the accumulator

records how many steps that the iterator has been moved, which is equivalent to aggregately sum

up a set of tuple scores that all are constant ones.

In order to relate counting functions to scoring aggregations, the following theorems are

introduced. For the convenience of discussion, descriptions of certain patterns of variables and

their remarks of indication are given in Table 3.2.

Theorem 3.3.1. Let R be an unweighted relation, then the result of counting for the total number

of tuples in the relation is equal to the result of aggregate summation for an accumulative score

by given tuple scores of R with constant-ones.
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Pattern of variable Description Remark of Indication
R.c[1.0] tuple score of R with for all tuples in R which tuple scores are

constant-one all constant-ones
R.w, or tuple score of R for all tuples in R which tuple scores are
R.p arbitrary
R.[X ].c[1.0] grouped tuple score with duplicate removal has been performed on

constant-one based on X R based on attribute(s) X , which results
of R the tuple scores of remained distinct tuples

to be constant-ones
R.[X ].w, or grouped tuple score an (relational) aggregate function has been
R.[X ].p based on X of R performed on R based on attribute(s) X ,

which results the tuple scores of remained
distinct tuples to be aggregated scores

acc.w accumulative score a score is to be accumulated within an
accumulator

acc.[X ].c[1.0] grouped-and-accumulative scores are produced for duplicate removal
score with constant-one based on X , which results R.[X ].c[1.0]
based on X eventually

acc.[X ].w, or grouped-and-accumulative scores are grouped and accumulated based
acc.[X ].p score based on X on X , which results R.[X ].w or R.[X ].p

eventually

Table 3.2: Patterns of variables, descriptions, and remarks of indications

COUNT (R) = acc.w+R.c[1.0]

=def
(

acc.w = 0
acc.w = acc.w+R.c[1.0]

)

Proof. Let |R| be its cardinality, then a count of the number of tuples in R equals to ∑
|R|
1 1.0; let

s be an arbitrary score of the tuple in R, then aggregate summation of all tuples scores equals

∑
|R|
i=1 si. Let us assume ∑

|R|
i=1 si 6= ∑

|R|
1 1.0, then it must exist at least one tuple score si where

si 6= 1.0, but this is impossible according to the premise of Theorem 3.3.1, which says R is

unweighted so that all of its tuple scores are deemed to be constant-ones. As a result, there are

no inequations are hold for all s where ∑
|R|
i=1 si 6= ∑

|R|
1 1.0. Thus, Theorem 3.3.1 is sound.

Lemma 3.3.2. Let R be an unweighted relation, then the result of counting for the number of

values of attribute(s) X in the relation without given grouping constraint is equal to the result of

aggregate summation for an accumulative score by given tuple scores of R with constant-ones.
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COUNT (R.[X ]) = acc.w+R.c[1.0]

=def
(

acc.w = 0
acc.w = acc.w+R.c[1.0]

)

Proof. While grouping constraint is given, counting for the number of values of attribute(s) X

yields the same result as counting for the number of tuples in the relation. Therefore, according

to Theorem 3.3.1, Lemma 3.3.2 is sound.

Theorem 3.3.3. Let R be an unweighted relation, then the results of counting for the number of

values of attribute(s) Xa with given grouping constraint of attribute(s) Xb is equal to the results

of aggregate summation for grouped-and-accumulative scores based on Xb by given tuple scores

of R with constant-ones.

COUNT (R.[Xa|Xb]) = acc.[Xb].w+R.c[1.0]

=def
(

acc.[Xb].w = 0
acc.[Xb].w = acc.[Xb].w+R.c[1.0]

)

Proof. Let R to be partitioned into n groups (i.e. sub-relations) Gk based on the (distinct) values

of attribute(s) Xb, let |Gk| be the cardinality of the kth group, where k = 1, . . . ,n, and
⋂n

k=1 Gk = ∅,

and
⋃n

k=1 Gk = R. Therefore, within each group of all groups, according to Theorem 3.3.1,

we have ∑
|Gk|
i=1 si = ∑

|Gk|
1 1.0, where si is the ith tuple score in a group; moreover, according to

Lemma 3.3.2, we conclude that COUNT (Gk.[Xa]) = acc.[Xb].w + Gk.c[1.0], where a grouped-

and-accumulative score acc.[Xb].w accumulates a tuple score specific for group Xb. Because this

equation is held for all groups, thus Theorem 3.3.3 is sound.

Theorem 3.3.4. Let R be an arbitrary relation, then the result of counting for the number of dis-

tinct values of attribute(s) X without given grouping constraint is equal to the result of aggregate

summation for an accumulative score by given grouped tuple scores with constant-ones based on

X of R.

COUNT (DIST INCT R.[X ]) = acc.w+R.[X ].c[1.0]

=def
(

acc.w = 0
acc.w = acc.w+R.[X ].c[1.0]

)
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Proof. Let RXb be an intensional relation consists of distinct values of attribute(s) Xb, and let |RXb |

be the cardinality of distinct values of attribute(s) X . In other words, a count of distinct values of

attribute(s) X yields |RX |. According to Table 3.2, R.[X ].c[1.0] indicates that duplicate removals

are performed to remove redundant values of attribute(s) X , while constant-ones are assigned as

tuple scores to the results (tuples) of removals. As a result, the aggregate summation computes

∑
|RX |
1 1.0, which is equal to |RX |. Thus, Theorem 3.3.4 is sound.

Theorem 3.3.5. Let R be an arbitrary relation, then the result of counting for the number of

distinct values of attribute(s) Xa with given grouping constraint of attribute(s) Xb is equal to

the result of aggregate summation for grouped-and-accumulative scores based on Xb by given

grouped tuple scores with constant-ones based on Xa of R.

COUNT (DIST INCT R.[Xa|Xb]) = acc.[Xb].w+R.[Xa].c[1.0]

=def
(

acc.[Xb].w = 0
acc.[Xb].w = acc.[Xb].w+R.[Xa].c[1.0]

)

Proof. Let RXb be an intensional relation consists of distinct values of attribute(s) Xb, and let R to

be partitioned into n groups (i.e. sub-relations) GkXb
based on the (distinct) values of attribute(s)

Xb, while let |GkXb
| be the cardinality of distinct values of attribute(s) X in the kth group, where

k = 1, . . . ,n, and
⋂n

k=1 GkXb
= ∅, and

⋃n
k=1 GkXb

= RXb . Therefore, within each group of all groups,

according to Theorem 3.3.4, we have COUNT (DIST INCT GkXb
.[Xa]) = acc.[Xb].w+GkXb

.c[1.0],

where a grouped-and-accumulative score acc.[Xb].w accumulates a tuple score specific for group

Xb. Because this equation is held for all groups, thus Theorem 3.3.5 is sound.

While presenting scoring aggregations of PRA, SCXs are generated base on formulations

of recursive accumulation, i.e. with accumulator. By applying the above Theorems, generated

SCXs can be interpreted by SCXs employing relational aggregate functions. For example, the

arithmetic-style SCX in Example 3.3.1 can be interpreted by the following interpreted SCX:

(COUNT(R0.[$* | $Term, $DocId]) / COUNT(R0.[$Term | $DocId]))

∗ log((1 / (COUNT(DISTINCT R0.[$Term, $DocId | $Term])

/ COUNT(DISTINCT R0.[$DocId])) ))
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while the score of average document length, i.e. R9[AvgDL].w, in Example 3.3.2 can be

presented by an interpreted SCX as follow:

(R3[n L t d].[$Term, $DocId].p ∗ (k1 + 1)) / (R3[n L t d].[$Term, $DocId].p

+ (k1 ∗ (1 − (b + (b ∗ (R7[DocLen].[$DocId].w

/ (COUNT(R0) / COUNT(DISTINCT R0.[$DocId])) )) )) ))

In short, the purpose of interpreting accumulator-based SCXs by aggregate-function-based

SCXs is to supply information for indexes selection in scoring-drive optimization, in which more

details will be discussed later in the rest of this chapter.

3.4 Scoring-Driven Optimization

So far, what have been discussed about SCX mainly focus on its logical designs including con-

cepts, syntax, and semantics. From now on, we start to introduce how SCX is to be employed in

the optimization of query processing of PRA expressions. The technique is called scoring-driven

optimization, which utilises scoring expressions to direct query processing techniques such as

logical-physical mapping of PRA operations and exploitation of indexes.

In this section, the discussions would be focused on the following issues: 1) how to SCX is

generated for PRA; 2) how SCX can be manipulated and transformed; 3) how scoring semantics

can be analysed; 3) how scoring semantics of PRA expressions are interpreted; and 4) how to

direct query processing after scoring semantics has been acquired.

3.4.1 Generating SCX for PRA

Above all, let us discuss how SCXs are generated and associated to PRA operators. As previ-

ous discussions in Section 2.4.2 and Section 2.5.2.2, PRA extends traditional relational algebra

by incorporating probability aggregations and estimations within its operators, in order words,

scoring functions (for probability aggregations and estimations) are implied and applied while

relational operations are performed. Therefore, SCXs are generated to articulate the implied

scoring functions of PRA operations.

Generating SCX for PRA means to produce scoring expressions based on pre-defined se-

mantics, and then each generated SCX is mounted to (or mapped to) a particular PRA operator.

Since PRA supports probability estimations from traditional non-probabilistic (or unweighted)

relations, hence the generation of SCX is addressed according to the characteristics of input
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relation(s) taken by PRA operators, where three kinds of inputs will be discussed including un-

weighted input, weighted but non-probabilistic input and probabilistic input. For each type of

input, generated SCX(s) is/are assigned to an associated PRA operator where difference may be

applied depending on a given (probabilistic) assumption.

First, the generated SCXs for PRA operators taking unweighted relation(s) are given in Ta-

ble 3.3, in which example relations are employed for demonstration purposes only4.

PRA Expression Assumption Generated SCX
MagColl N/A c[1.0]
SELECT N/A R0[MagColl].c[1.0]

[$1=‘car’](MagColl)
PROJECT assumption N/A R0[MagColl].c[1.0]
(MagColl) DISTINCT acc.[$*].c[1.0] + R0[MagColl].c[1.0]

SUM acc.[$*].w+R0[MagColl].c[1.0]

BAYES assumption N/A or R0[MagColl].c[1.0]
[](MagColl) DISJOINT / (acc.w + R0[MagColl].c[1.0])

BAYES assumption N/A or R0[MagColl].c[1.0]
[$doc](MagColl) DISJOINT / (acc.[$doc].w+R0[MagColl].c[1.0])

JOIN assumption N/A c[1.0]
[$1=$1](QTerm, MagColl)

UNITE assumption N/A or DISTINCT c[1.0]
(MagColl, BookColl) or ALL

SUBTRACT assumption N/A c[1.0]
(MagColl, BookColl)

Table 3.3: Generated SCX for PRA operators with unweighted input(s)

Here, a convention is applied for articulating unweighted relations, which is that the tuple

scores of unweighted relations are always constant-ones. For instance, given a relation named

MagColl, then its generated SCX is c[1.0], in which c is its scoring type, and c[1.0] means scores

are 1.0. Note that the generated SCX for a relation does not require alias of ownership, which

means the relation itself owns the scores.

Next, the generated SCX for Select operator is very simple, assuming R0 is the relation alias

of MagColl, then tuple scores of selection is R0[MagColl].c[1.0]. The only difference is the

ownership of scores is specified, so other users know that the scores can be taken from MagColl.

Then for Project operator, generated SCXs depend on a given assumption. While there is no

assumption, then the SCX for projection is the same to selection. Whereas if the assumption is

4E.g. MagColl for magazine collection, BookColl for book collection, and QTerm for query terms,
the same convention is applied in later discussions unless further clarified.
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distinct, which means the projection also performs duplicate removal of tuples, in consequence,

the tuple scores of results should be constant-ones. To articulate duplicate removal, a generated

SCX is given as acc.[$*].c[1.0]+R0[MagColl].c[1.0], where an accumulator groups tuple scores

by $* 5 and a constant-one is assign to each group (also see Section 3.3.5). Furthermore, if an

assumption SUM is given, then scores are aggregated in groups, which the generated SCX is

given by acc.[$*].w+R0[MagColl].c[1.0]. It is similar to duplicate removal, but the property of

type of score is replaced by w, which shows scores are obtained from aggregations instead of

pre-set constants.

And then for Bayes operator, we separate the situations where evidence key(s) (see Sec-

tion 2.5.2.2) is/are provided or not. In general, Bayes operator implies division is involved.

For cases where evidence key(s) are ignored (i.e. not given), then Bayes estimates probabilities

for tuple scores based on whole relation, in which the denominator of division is obtained by

accumulating scores without grouping preference, for example, R0[MagColl].c[1.0]/(acc.w +

R0[MagColl].c[1.0]). On the other hand, if evidence key(s) are provided, then Bayes esti-

mates probabilities based on the values of evidence, where group-based denominators are ac-

cumulated and applied for division, for another example, R0[MagColl].c[1.0]/(acc.[$doc].w +

R0[MagColl].c[1.0]), where attribute $doc is an evidence key. It is worth noting that a default

assumption, i.e. disjoint, for probability estimation is applied.

At last, for the three binary operators of PRA, i.e. Join, Unite and Subtract, their generated

SCXs are the same if their dual inputs are both unweighted relations, which are simply articulated

as c[1.0]. Because these PRA operators yield results which tuple scores can be traced elsewhere,

so the views (i.e. intermediate relations) they are generating are the owners of scores.

Second, the generated SCXs for PRA operators taking ordinarily weighted relation(s) are

given in Table 3.4.

As they are illustrated, the generated SCXs for relation itself, Select, Project and Bayes

operators are very similar to the counterparts for unweighted relation, in which changes are

reflected from input tuples scores, i.e. scores of constant-ones are replaced by normal weightings

w, while accumulators for aggregations remain the same.

However, changes are more significant for binary operators. For Join, tuple scores are rep-

resented by arithmetic multiplication as R1[QTerm].w ∗R2[wColl].w. Whereas for Unite, scor-

5Grouping attribute list changes accordingly to projecting attribute(s).
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PRA Expression Assumption Generated SCX
MagColl N/A w
SELECT N/A R1.w

[$1=‘car’](wColl)
PROJECT assumption N/A R1.w

(wColl) DISTINCT acc.[$*].c[1.0] + R1.w
SUM acc.[$*].w + R1.w

BAYES assumption N/A or R1.w / (acc.w + R1.w)
[](wColl) DISJOINT

BAYES assumption N/A or R1.w / (acc.[$doc].w + R1.w)
[$doc](wColl) DISJOINT

JOIN assumption N/A R1[QTerm].w ∗ R2[wColl].w
[$1=$1](QTerm, wColl)

UNITE assumption N/A or DISTINCT c[1.0]
(wColl1, wColl2) ALL w

SUM (acc.[$*].w + R1.w)
+ (acc.[$*].w + R2.w)

SUBTRACT assumption N/A R1[wColl1].w − R2[wColl2].w
(wColl1, wColl2)

Table 3.4: Generated SCX for PRA operators with weighted but non-probabilistic input(s)

ing expressions are based on assumption: while no assumption is given, distinct is deployed

as default, and pre-set constant scores c[1.0] is applied (i.e. the same to the situation of un-

weighted relation); while assumption all is used, then its generated SCX is w; and if assump-

tion sum is employed, then accumulators are used for indicating aggregations, where a SCX is

generated as (acc.[$*].w + R1.w) + (acc.[$*].w + R2.w), which means an aggregation is sepa-

rated into two steps: firstly, accumulations are applied to either input respectively, and then an

addition is performed to finalise the aggregation. Moreover for Subtract, a SCX is given as

R1[wColl1].w−R2[wColl2].w according to the definition of the operator.

Third and final, the generated SCXs taking probabilistic relation(s) are given in Table 3.5,

which demonstrates how probabilities are aggregated with PRA operators by given probabilistic

assumptions.

Initially, SCXs for probabilistic relations and selections performed upon probabilistic rela-

tions are similar to their counterparts for normally weighting relations, for instance, a relation is

articulated as p, and a selection is formulized as R0[MagColl].p. While for other PRA operators,

their generated SCXs are a bit more complicated, because these operators are applied either for

probability aggregations or for probability estimations. In both situations, generated SCXs could

be presented in either event (logic-style) expressions or arithmetic expressions (with probabilistic
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assumptions given); in cases where probabilistic assumptions have not been explicated, default

assumptions would be applied.

PRA Expression Assumption Generated SCX
MagColl N/A p
SELECT N/A R0[MagColl].p

[$1=‘car’](MagColl)
PROJECT assumption N/A v R0[MagColl].[$*].p

(MagColl) INDEPENDENT 1 − (acc.[$*].p ∗ (1 − R0.p))
DISJOINT acc.[$*].p + R0.p
SUBSUMED >? acc.[$*].p : R0.p

BAYES assumption N/A R0[MagColl].p / (v R0[MagColl].p)
[](MagColl) INDEPENDENT R0.p / (1 − (acc.p ∗ (1 − R0.p)))

DISJOINT R0.p / (acc.p + R0.p)
SUBSUMED R0.p / (>? acc.p : R0.p)

BAYES assumption N/A R0[MagColl].p
[$doc](MagColl) / (v R0[MagColl].[$doc].p)

INDEPENDENT R0.p / (1−(acc.[$doc].p ∗ (1−R0.p)))
DISJOINT R0.p / (acc.[$doc].p + R0.p)
SUBSUMED R0.p / (>? acc.[$doc].p : R0.p)

JOIN assumption N/A R1[QTerm].p ˆ R0[MagColl].p
[$1=$1](QTerm, MagColl) INDEPENDENT R1.p ∗ R0.p

DISJOINT c[0.0]
SUBSUMED <? R1.p : R0.p

UNITE assumption N/A R0[MagColl].[$*].p
(MagColl, BookColl) v R2[BookColl].[$*].p

INDEPENDENT 1 − ((v R0.[$*].p) ∗ (v R2.[$*].p))
DISJOINT (v R0.[$*].p) + (v R2.[$*].p)
SUBSUMED >? (v R0.[$*].p) : (v R2.[$*].p)

SUBTRACT assumption N/A R0[MagColl].p ˆ (!R2[BookColl].p)
(MagColl, BookColl) INDEPENDENT R0.p ∗ (1 − R2.p)

DISJOINT R0.p
SUBSUMED R0.p − R2.p (if R0.p > R2.p)

c[0.0] (if R0.p ≤ R2.p)

Table 3.5: Generated SCX for table or PRA operators with probabilistic input(s)

Firstly, projection is the most commonly used aggregate function for probabilistically

weighted tuples, which logic-style SCX is written as, for example, v R0[MagColl].[$*].p6. All

arithmetic-style SCXs for Project employ accumulators, respectively, SCXs are generated based

on Project’s definition, which are, for instance, 1− (acc.[$*].p ∗ (1− R0.p)) for independent

events, and acc.[$*].p+R0.p for disjoint events, and >? acc.[$*].p : R0.p (i.e. taking the maxi-

mum probability) for subsumed events. In default, assumption disjoint would be applied.

Moreover, while estimating probabilities upon probabilistic relations, Bayes is applied, which
6Similarly, grouping attribute list changes accordingly to projecting attribute(s).
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logic-style SCXs are given by, for example, R0[MagColl].p/(v R0[MagColl].p) where evidence

key(s) is/are not given and R0[MagColl].p/(v R0[MagColl].[$doc].p) in which an evidence key

is available. For arithmetic-style expressions based on specific assumptions, different formula-

tions are used for denominator while the formulations of numerator remain the same. Be aware

that Bayes is a composed operator of projections, hence the denominator (of generated SCX)

could be articulated as aggregations as those in projection’s. Similarly, disjoint is used as the

default assumption.

Next, Join is used for computing the probabilities of conjunctive events, which a logic-style

SCX is formulized as e.g. R1[QTerm].p ˆ R0[MagColl].p. In default, conjunctive events are

considered to be obtained from independent events, where a joint probability is computed by

multiplication of independent events, which is, e.g. in arithmetic-style SCX, R1.p ∗R0.p. Be-

cause the conjunction of disjoint events yields zero probability, hence while articulated in SCX,

a constant-zero is applied, i.e. c[0.0]. In addition, the joint probability of subsumed events is to

take the minimum probability from all event, so that the SCX for subsumption is generated as

<? R1.p : R0.p.

Furthermore, since Unite (i.e. union) is used for aggregating two probabilistic relations,

for example MagColl and BookColl, so that its generated SCX in logic-style is written as

R0[MagColl].[$*].p v R2[BookColl].[$*].p: the grouping properties appeared in both inputs

should be identical, which indicate the aggregated scores should be obtained firstly based on

either relation (e.g. by deploying projections), and then a second aggregation yields the final

score for a united tuple. Here generated SCXs could be presented in a mixed style of logic-

based and arithmetic-based expressions for assumption specific situations. For instance, 1−

((v R0.[$*].p)∗ (v R2.[$*].p)) for independent assumption, while (v R0.[$*].p)+(v R2.[$*].p)

for disjoint assumption, and >? (v R0.[$*].p) : (v R2.[$*].p) for subsumed assumption.

Finally, the generated SCX for Subtract, which is rarely used for modelling IR strategies,

is given as e.g. R0[MagColl].p ˆ (!R2[BookColl].p). In addition, the arithmetic-style repre-

sentations are: R0.p ∗ (1−R2.p) for assumption as independent, R0.p for assumption as dis-

joint, and R0.p−R2.p or c[0.0] for assumption as subsumed (see Table 3.5 for details, also see

Seciton 2.5.2.2 and Figure 2.9 for definitions).
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3.4.2 Principles of SCX Manipulation

The data structure for implementing SCX could be based on binary tree, which is similar to

operator tree for relation algebra (including PRA) or so called query plan. Similarly, the imple-

mentation structure of SCX is called SCX operator tree.

In general, there are two kind of nodes in an operator tree: inner-node and leaf-node. An

inner-node may not have a parent, but it must have either a child or two children. In contrast, a

leaf-node must not have any child, but similarly, it may not have a parent either. Therefore, the

root-node of an operator tree could be either an inner-node or a leaf-node.

Generated SCX Interpreted SCX

/

*

pow

log

COUNT(DISTINCT R0.[$Term,$DocId | $Term])

-1

COUNT(R0.[$* | $Term,$DocId])

COUNT(R0.[$Term | $DocId])

/

COUNT(DISTINCT R0.[$DocId])

Figure 3.11: SCX operator trees for tf -idf model

In a SCX operator tree, an inner-node must be either arithmetic operators, or event operators,

or actual functions (i.e. standard functions and conditional selection); whereas a leaf-node must

be one of scoring variables, parameters, scores, and symbolic functions (i.e. aggregate symbols).

Note that bottom-up evaluation is applied for processing SCX operator tree, but it is also possible

to adapt the methods to a top-down evaluating manner.

For instance, Figure 3.11 illustrates the SCXs for tf -idf model in Example 3.3.1 (and see

Section 3.3.5 for its interpreted SCX). Furthermore, it also demonstrates the basic ideas of trans-

forming SCX for scoring-driven optimization. First, a generated SCX operator tree are built for

certain PRA operator simply based on initial settings (for that PRA operator), which details have

been discussed in Section 3.4.1; second, a rule-based SCX interpreter analyses the scoring se-

mantics of generated SCX as well as its associated PRA sub-expression, and if possible, then the
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interpreter manipulates an intensional semantics based (sub) SCX into an extensional semantics

based transformation, which details will be addressed in Section 3.4.4.

Before we discuss how SCX is to be collaborated with PRA, let us have a look at the manip-

ulations of SCX operator tree, which is performed as rotations around a chosen SCX operator.

And then, we investigate the rules of SCX transformations based on mathematical or logical

equalities.

3.4.2.1 Rotation-Based Manipulations

Rotation is a basic manipulation to transform a binary SCX operator (sub) tree into another form

of (sub) tree. The method of rotations are illustrated in Figure 3.12.

Rotating Original Rotating Direction
Centre Subtree Clockwise � Anticlockwise 	

Left-child

Right-child

Figure 3.12: Rotating binary SCX operator (sub) tree

To perform rotation on an operator tree, first is to choose a rotated node and its rotating

centre, and second is to rotate the node around the rotating centre clockwise or anticlockwise.

Let us take examples from Figure 3.12. Let op1 to be selected as rotated node to rotate around its

child op2 (i.e. rotating centre). Initially, op1 is the parent of op2. In general, a rotation swaps the

parent-child relationship of the rotated node and its rotating centre, and it also rearranges other

related nodes accordingly.

Firstly, let op2 be the left-child of op1: to rotate op1 clockwise, op1 becomes the right-child

of op2, and the original right-child of op2 (i.e. node C) becomes the left-child of op1; whereas

to rotate op1 anticlockwise, then op1 becomes the left-child of op2, while the original left-child

of op2 (i.e. node B) becomes the left-child of op1.

Similarly, let op2 be the right-child of op1: to rotate op1 clockwise, op1 becomes the right-
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child of op2, and the original right-child of op2 (i.e. node C) becomes the right-child of op1;

whereas to rotate op1 anticlockwise, then op1 becomes the left-child of op2, while the original

left-child of op2 (i.e. node B) becomes the right-child of op1.

An algorithm to perform clockwise rotation is given in Figure 3.13, while an algorithm for

anticlockwise rotation is shown in Figure 3.14.

Algorithm: RotateClockwise
Input: SCX operator (sub) tree, rotated node, rotating centre
Output: SCX operator (sub) tree

1 begin
2 i f R o t a t i n g C e n t r e i s Node−>L e f t C h i l d
3 tmpNode = Node−>L e f t C h i l d ;
4 Node−>L e f t C h i l d = tmpNode−>R i g h t C h i l d ;
5 e l s e i f R o t a t i n g C e n t r e i s Node−>R i g h t C h i l d
6 tmpNode = Node−>R i g h t C h i l d ;
7 Node−>R i g h t C h i l d = tmpNode−>R i g h t C h i l d ;
8 e n d i f
9 tmpNode−>R i g h t C h i l d−>P a r e n t = Node ;

10 tmpNode−>R i g h t C h i l d = Node ;
11 i f Node i s Node−>P a r e n t−>L e f t C h i l d
12 Node−>P a r e n t−>L e f t C h i l d = tmpNode ;
13 e l s e i f Node i s Node−>P a r e n t−>R i g h t C h i l d
14 Node−>P a r e n t−>R i g h t C h i l d = tmpNode ;
15 e n d i f
16 tmpNode−>P a r e n t = Node−>P a r e n t ;
17 Node−>P a r e n t = tmpNode ;
18 end

Figure 3.13: Rotate clockwise

3.4.2.2 Transformations of SCX

In principle, SCX transformations comply with mathematical equalities or logical equivalences,

and they are performed (achieved) by SCX manipulation(s) on operator tree such as rotation and

substitution. Though whether a transformation is applicable to interpret a specific PRA expres-

sion also depending on certain circumstances, for instance, the features of actual relation(s), and

the conditions applied for PRA (sub) expression, and also if input views (i.e. intensional relation

or intermediate relations) can be derived from the same extensional relation(s).

Nevertheless, leaving along specific PRA expressions and discussing independently SCX

transformations would still make sense, because scoring expressions only focus on aggregations

and calculations of tuple scores, which are independent from relational operations (of PRA). On

the other hand, since the transformations of SCX can be articulated, then developing rule-based

interpretations of scoring semantics in SCX for PRA expressions becomes practical. Therefore,



3.4. Scoring-Driven Optimization 99

Algorithm: RotateAnticlockwise
Input: SCX operator (sub) tree, rotated node, rotating centre
Output: SCX operator (sub) tree

1 begin
2 i f R o t a t i n g C e n t r e i s Node−>L e f t C h i l d
3 tmpNode = Node−>L e f t C h i l d ;
4 Node−>L e f t C h i l d = tmpNode−>L e f t C h i l d ;
5 e l s e i f R o t a t i n g C e n t r e i s Node−>R i g h t C h i l d
6 tmpNode = Node−>R i g h t C h i l d ;
7 Node−>R i g h t C h i l d = tmpNode−>L e f t C h i l d ;
8 e n d i f
9 tmpNode−>L e f t C h i l d−>P a r e n t = Node ;

10 tmpNode−>L e f t C h i l d = Node ;
11 i f Node i s Node−>P a r e n t−>L e f t C h i l d
12 Node−>P a r e n t−>L e f t C h i l d = tmpNode ;
13 e l s e i f Node i s Node−>P a r e n t−>R i g h t C h i l d
14 Node−>P a r e n t−>R i g h t C h i l d = tmpNode ;
15 e n d i f
16 tmpNode−>P a r e n t = Node−>P a r e n t ;
17 Node−>P a r e n t = tmpNode ;
18 end

Figure 3.14: Rotate anticlockwise

here we introduce SCX transformations while not yet consider specific PRA semantics, but we

discuss the possible circumstances where a transformation could be applicable.

Transformation 3.4.1. Swapping the order of multiplication and division. This is based on the

associative law of multiplication and division, i.e. a · (b/c) = (a · b)/c. The transformation is

demonstrated in Figure 3.15, which is performed by an anticlockwise rotation, where operator

‘∗’ (i.e. multiply) is the parent and rotated node, and division operator ‘/’ is the right-child of ‘∗’

and rotating centre.

Representation Original SCX Transformed SCX

Expression R1.s∗ (R2.s/R3.s) (R1.s∗R2.s)/R3.s

Operator tree

Figure 3.15: From Division-Multiplication to Multiplication-Division

Informally speaking, because the above transformation involves at least one Join7, hence an

7It would involve one join operation in PRA but could involve two joins in conventional RA.
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essential feature of the transformation is that the order of calculations can be swapped while given

a premise that the tuples (i.e. the owner of scores) of different inputs can be always matched up.

Transformation 3.4.2. Simplifying multiplication which one of the multiplier is constant one.

This is based on equality of 1 ·a = a. The transformation is demonstrated in Figure 3.16, which

is by replacing the multiplication sub-tree to one of its children which could be either a non-

constant-one variable, or a judiciously selected variable.

Representation Original SCX Transformed SCX

Expression (R1.c[1.0]∗R2.s)/R3.s R2.s/R3.s

Operator tree

Figure 3.16: Simplifying multiplication with one

Transformation 3.4.3. Reformulating accumulation of unit fractions to ordinary fraction. A

unit fraction is the reciprocal of positive integer, where the numerator is one and the denominator

is a positive integer, i.e. 1
n , where n ∈ N is a positive natural number. The transformation is

based on equality of ∑
k
1

1
n = ∑

k
1 1
n . The transformation is demonstrated in Figure 3.17, which is

performed by an anticlockwise rotation, where operator ‘+’ (i.e. plus) is the parent and rotated

node, and division operator ‘/’ is the right-child of ‘+’ and rotating centre.

Representation Original SCX Transformed SCX

Expression acc.s+(R1.c[1.0]/R2.s) (acc.s+R1.c[1.0])/R2.s

Operator tree

Figure 3.17: From Division-Accumulation to Accumulation-Division

Transformation 3.4.4. Swapping the order of conjunction and disjunction. This is based on the

distributive law of logical conjunction and disjunction, i.e. a∨ (b∧ c) = (a∨ b)∧ (a∨ c). The
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transformation is demonstrated in Figure 3.18, which is performed by a clockwise rotation or an

anticlockwise rotation, where operator ‘v’ (i.e. logical OR) is the parent and rotated node, and

logical AND operator ‘ˆ’ is the right-child of ‘v’ and rotating centre.

Representation Original SCX Transformed SCX (CW ) Transformed SCX (ACW )

Expression v (R1.p ˆ R2.p) R1.p ˆ (v R2.p) (v R1.p) ˆ R2.p

Operator tree

Figure 3.18: From Conjunction-Disjunction to Disjunction-Conjunction

Transformation 3.4.4 describes a special case of logic-style SCX: firstly, for a logical expres-

sion does not have a left-hand-side operand, i.e. a passive operand, a SCX operator tree builder

insert a probability accumulator (i.e. for probability aggregation) to the left-child node position

of the logical operator, such as they are shown in Figure 3.18; secondly, the transformation can

be performed in two rotating directions, i.e. clockwise or anticlockwise, while each direction

should be applied is depending on the relational semantics of a PRA expression.

3.4.3 Automatic Analysis for SCX

Here we discuss how to automatically analyse generated SCXs by utilising semantic graph. A

semantic graph tool for text and image analysis was introduced in [Hébert, 2006], which is based

on conceptual graphs (or semantic networks) proposed earlier in [Sowa, 1984]. However, our

purposes are much simpler and more focused, which only aims to automatically analyse gener-

ated SCX for interpretation. Therefore, we adapted the technique addressed in [Hébert, 2006]

and developed a simplified variant for scoring semantics analysis.

The elements that make up a semantic structure include entity, relationship and direction. An

entity is a vertex of a graph, while a relationship and a direction must appear together in a graph

to form a directed link, which is also an edge of a graph. Here an example shows a semantic

structure of division operation by articulating the relationships between operator and operands,

where numerator is a passive operand of division, whereas denominator is an active operand:

[numerator]← (PASOPD)← [DIV]→ (ACTOPD)→ [denominator]
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Table 3.6 summarises the constituent elements and the symbols for representing a semantic struc-

ture in either textual format or graphic format.

Element Type Symbols
Textual Format Graphic Format

entity vertex square brackets: [. . .] rectangle
relationship edge parentheses: (. . .) ellipse
direction edge arrow: → or← arrow

Table 3.6: Elements of a semantic graph for SCX

Currently nine symbols corresponding to nine possible relationships between every two en-

tities are applied, which are demonstrated and explained in Table 3.7. Among them, most rela-

tionships (8 out of 9) are applied to form a template of the semantic graph for analysing SCX,

whereas ‘(MEANS)’ (i.e. means) would be deployed dependently to actual entities.

In addition, Table 3.8 depicts the meanings of semantic structures formed by entities and

directed links, in which the roles of entities in a structure are clarified.

Now we are ready to discuss how to analyse scoring expressions using semantic graphs.

As aforementioned in Section 3.4.2, a SCX would be implemented in a binary operator tree,

and only inner nodes are needed to be analysed. During analysis, an analyser investigate the

semantics of every inner nodes in the SCX operator tree from bottom-up, while manipulations

would be triggered when pre-defined conditions are satisfied.

In general, the semantic graphs for SCX operators are created by using a template shown in

Figure 3.19; for different type of entities, Table 3.9 describes their meaning and usage.

To explain how does semantic analysis work in short, an analyser program enters a graph

from an entry point, which could be either from the generalised SCX operator or from the score

(i.e. from different point of views), and traverses through the graph following directed links.

With regard to how to choose and entry point, the analyser enters from the operator viewpoint to

analyse an operator, whereas it enters from the score viewpoint to analyse the inputted variable(s)

of an operator.

To walk through a graph from the operator entry, analyser examines: 1) what is the spe-

cialised operation of the operator; 2) what is its active operand and does it have an passive

operand as well? 3) what is the expected result (goal) and what is actually obtained (effect)? 4)

is there any manipulation would be triggered if certain effect occurs?

Similarly, while analysing from the score entry, analyser checks: 1) how the resulting scores
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Symbol Meaning Definition
(SPEC) specialisation the specialisation of an entity
(PASOPD) passive operand the passive operand of an operator
(ACTOPD) active operand the active operand of an operator
(GOAL) goal expected result or sought effect
(EFFECT) effect actual result or consequence
(CLASS) class an element of a class
(PROP) property attribute or characteristic
(REC) receiver entity that receives a transmission
(MEANS) means means used, instrumental

Table 3.7: Symbols of relationships

[a specialised element] ← (SPEC) ← [a generalised element]
[a passive operand of the operator] ← (PASOPD) ← [operator]
[an active operand of the operator] ← (ACTOPD) ← [operator]

[element of desired result] ← (GOAL) ← [operator]
[element of actual result or effect] ← (EFFECT) ← [operator]

[element of class] ← (CLASS) ← [element being classified]
[specific characteristic] ← (PROP) ← [element to which the property is given]

[element that receives the result] ← (REC) ← [result being transmitted]
[element being used] ← (MEANS) ← [element to which the means is applied]

Table 3.8: Meanings of entities and directed links in a semantic structure

arg:operation

scx operator

ACTOPD

GOAL

PROP

SPEC

PASOPD

EFFECT

REC

CLASS

opt:operand arg:operand

opt:action

score

arg:resultarg:goal

arg:weightCLASS

Figure 3.19: A template of semantic graph for analysis
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Form of Entity Description Remark
<name> static entity analysing entry
arg:<name> mandatory argument pre-defined, setting based on operations
opt:<name> optional argument pre-defined, setting based on operations and rules

Table 3.9: Forms of entity in a SCX semantic graph

of an operator can be classified: i.e. are they normal weightings, or constants, or probabilities;

2) is there other property that further describes the characteristics of scores, e.g. for scores to be

recognised as fractions or unit fractions.

The template could be implemented in any potential data structure. A portable (and flexible)

option is to store this template in an XML format as follow, while in-memory data structure of

graph can be built during analysis.

<scxsg>
<scxopr>
<spec>arg:operation</spec>
<pasopd>opt:operand</pasopd>
<actopd>arg:operand</actopd>
<goal>arg:goal</goal>
<effect>arg:result</effect>

</scxopr>
<score>
<class>arg:weight</class>
<prop>arg:result</prop>

</score>
<arg>
<operation></operation>
<operand></operand>
<goal></goal>
<result></result>
<weight></weight>

</arg>
<opt>
<operand></operand>
<action></action>

</opt>
</scxsg>

Pre-defined rules will be discussed in the next section, while more examples for analysing

SCX with semantic graphs are given in Appendix A.

3.4.4 Commencing Scoring-Driven Optimization

So far we have addressed the preliminary techniques that are necessary for interpreting scoring

semantics of PRA expressions, so that we are now ready to discuss the procedures of scoring-

driven optimization. In this sub-section, we discuss the related algorithms for a rule-based opti-
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mizer; and then, how to interpret generated SCXs so that (logical) query plan can be mapped to

(physical) execution plan utilising sophisticated index; moreover, how to adjust scoring functions

based on intensional semantics for physical operators; and final, how to verify scoring equiva-

lence for PRA expressions.

3.4.4.1 Algorithm and Rules

Figure 3.20: Flowchart for the procedure of rule-based optimizer

In general, a scoring-driven optimizer takes PRA expressions as input and output query plans

articulated by scoring expressions, a flowchart in Figure 3.20 illustrates the procedures of the

optimization. In short, a binary plan tree (or PRA operator tree) is built at first for a given PRA

expression, where unique identifiers would be assigned to every nodes in the plan tree; and then,

an algorithm performs a bottom-up traversal to visit every nodes throughout the plan tree in

order to articulate the scoring functions of PRA operators in SCXs; at the end of the traversal,

all nodes in the query plan would have been marked by an interpreted SCX and the optimization

procedure finishes. The output of the optimization, which is called articulated query plan, would

be passed to another process, where logical plans are mapped to execution plans; though how
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to exploit interpreted SCXs in the mappings of logical-physical operators depends on the actual

implementation of a query engine, but we will address later how scoring information could be

used.

Algorithm: ScxArticulate
Input: PRA operator tree
Output: Articulated PRA operator tree

1 /∗ V i s i t nodes o f PRA o p e r a t o r t r e e i n pos t−o r d e r t r a v e r s a l ∗ /
2 f u n c t i o n P o s t T r a v e r s e ( PNode )
3 begin
4 i f PNode−>Type i s n o t TABLE
5 P o s t T r a v e r s e ( PNode−>L e f t C h i l d ) ;
6 P o s t T r a v e r s e ( Node−>R i g h t C h i l d ) ;
7 e n d i f
8 PNode = A r t i c u l a t e ( PNode ) ;
9 end

11 /∗ A r t i c u l a t e s c o r i n g s e m a n t i c s i n SCX f o r a PRA o p e r a t o r node ∗ /
12 f u n c t i o n A r t i c u l a t e ( PNode )
13 begin
14 c r e a t e i n i t i a l SCX f o r PNode and s e t PNode−GenScx ;
15 s e t PNode−>I n t e r S c x = PNode−>GenScx ;
16 i f PNode−>Type i s n o t TABLE
17 i f PNode−>Valency e q u a l s one
18 r e p l a c e t h e s c o r i n g v a r i a b l e o f PNode−>I n t e r S c x by PNode−>

L e f t C h i l d−>I n t e r S c x ;
19 e l s e i f PNode−>Valency e q u a l s two
20 r e p l a c e c o r r e s p o n d i n g s c o r i n g v a r i a b l e s o f PNode−>I n t e r S c x by

PNode−>L e f t C h i l d−>I n t e r S c x and PNode−>R i g h t C h i l d−>I n t e r S c x ;
21 e n d i f
22 c r e a t e s e m a n t i c g raph ( s ) f o r PNode−>I n t e r S c x ;
23 a n a l y s e and m a n i p u l a t e PNode−>I n t e r S c x ;
24 i f t h e number o f owners o f s c o r i n g v a r i a b l e s o f PNode−>I n t e r S c x

i s g r e a t e r t h a n PNode−>Valcency
25 PNode−>I n t e r S c x = PNode−>GenScx ;
26 e n d i f
27 e n d i f
28 re turn PNode ;
29 end

Figure 3.21: Articulating scoring function for PRA operators with SCX

The procedure of articulating a PRA operator contains several steps: first, a pre-defined

SCX would be generated following the rules in Section 3.4.1, note that initially a generated SCX

would include no more than two non-accumulator scoring variables8; second, if the PRA operator

is not an extensional relation (i.e. table), then the procedure substitutes every non-accumulator

scoring variable of the generated SCX by an interpreted SCX of that variable, which could be

found from a corresponding child node of the PRA operator; third, one or several semantic
8Because the maximum valency of a PRA operator is binary.
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graph(s) (see Section 3.4.3) would be created for the SCX; fourth, analysis is carried out based

on semantic graphs, while various manipulations (see Section 3.4.2) for SCX could be triggered;

final, if the owners of all non-accumulator variables in the SCX are extensional relations only,

then the procedure keeps the SCX as an interpreted SCX for the PRA operator, otherwise it

rewinds the original generated SCX (i.e. before scoring variable substitution) for interpretation.

To summarise, an algorithm for the articulating procedure, called ScxArticulate, is shown in

Figure 3.21

For analysing SCX, an analyser applies semantic graphs (see Section 3.4.3) and follows be-

low rules:

1. Substitute SCX sub-expressions (e.g. see Section 3.3.5) of aggregate summation (i.e. with

accumulator) by symbolic functions (i.e. COUNT etc) when it is applicable.

2. Manipulate the new SCX operator tree (after variable-subtree substitution) based on the

transformations in Section 3.4.2. While rotation is to be performed then takes the root-

node of the new SCX tree as rotated node, and the root-node of substituting subtree as

rotating centre.

Moreover, all manipulations of SCX must comply to a conflict free principle, which is defined

as follow:

Definition 3.4.1. Conflict Free SCX Manipulation. Any manipulations to be applied for SCXs

must not conflict to the relational semantics of PRA expressions; that is, if a transformation of

SCX indicates different cardinality of result to the articulating PRA expression, then the transfor-

mation is in conflict to the relational semantics of the PRA expression, and a SCX manipulation

applying the transformation must not be performed. For a manipulation applying a transforma-

tion to conflict free, the SCXs in a transformation must satisfy the following two criteria:

1. the number of scores indicated by the SCXs in a transformation must indicate the same

cardinality of resulting relation;

2. the mappings of scores to tuples indicated by the two SCXs in a transformation must

identical.

Next, we demonstrate the analysis and manipulations with examples.
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3.4.4.2 Assisting Index Selection

In principle, index selection technique can be employed in IR+DB systems, where different types

of index are implemented and deployed for supporting efficient processing for complex queries.

Similar techniques have been widely used in the applications of databases such as decision

support systems and data warehouse systems (e.g. see [Golfarelli et al., 2002]). Generally, multi-

ple types of index would be implemented in databases, such as Tuple-ID-based index (or TID-List

index) and Bitmap index, and then a broker program decides what type of index would benefit

the most for specific queries. so that the broker needs sophisticated algorithms for it to perform

selection. For example, a broker program may depend on pre-defined cost models, so it can es-

timate the cost of a given physical operation while using a candidate index; by investigating all

possible options (indexes), then the broker can nominate an index for the operation.

Though we do not discuss index selection for IR+DB systems in this thesis, which could be

one of the most interesting topics for future work, but we explain what information provided by

SCXs that may assist index selection in principle.

Previously, we presented in Section 2.5.2 the basic statistics for modelling popular IR strate-

gies, because these statistics, including within-collection or within-document tf and document-

based frequencies, can be obtained from counting-based aggregations in IR+DB systems. On the

other hand, PRA does not apply counting as its basic operation; instead, it uses an equivalent ac-

cumulative summation, which acts as the same as counting when inputs are all ones. Therefore,

when modelling IR strategies in PRA, it is unable to distinguish basic frequencies (and statistics

from computing frequencies) from probabilities, which poses difficulties for a query execution

engine to utilise indexes. By employing SCX to articulate counting in PRA, this problem can be

solved: Table 3.10 demonstrates how aggregations can be represented in symbolic functions of

counting so that they can be associated to IR statistics (see Section 2.5.2.1 for notions).

As they are shown, each symbolic function in Table 3.10 maps to an IR statistic concept,

which means IR-style inverted index can be employed in IR+DB systems. Though one can “sim-

ulate” IR-style inverted index by vanilla B+-tree index in conventional databases, but because

inverted index has never been viewed as the first citizen in DB, therefore it is impossible to em-

ployed popular IR indexing techniques in databases without significantly re-engineering DB’s

query engine. On the other hand, in order to allow an IR+DB query engine to utilise IR-style

inverted index, such as an relation inverted index (RIX) which will be introduced in the next
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Symbolic Function for Aggregation Notion Description
COUNT(R) |Rm| the (total) number of tuples
COUNT(DISTINCT R.[$Term]) |R(t)s| the number of distinct terms
COUNT(DISTINCT R.[$DocId]) |R(d)s| the number of distinct documents
COUNT(R.[$* | $Term, $DocId]) |R(t,d)m| within-document term count
COUNT(R.[$* | $Term) |R(t)m| within-collection term count
COUNT(R.[$Term | $DocId]) |R(d)m| document length
COUNT(DISTINCT |R(t,d)s| document frequency

R.[$Term, $DocId | $Term])

Table 3.10: Symbolic functions in SCX and corresponding IR statistics

chapter (see Chapter 5), a method is needed to set up communications between logical PRA and

execution engine, while SCX provides the methods to allow query engine to select proper indexes

to do the job.

We use the PRA modelling examples from Section 2.5.2.3 to explain further. Here let us first

clarify some conventions: when articulating scoring functions with SCXs, a SCX is written in

a textual form of <head> = <body>, where the head is a scoring variable that corresponds to

the score viewpoint (see Section 3.4.3) in a semantic graph, and the body is a scoring expression

representing a scoring function. To initialise a generated SCX for a PRA node, the head is always

given by an anonymous variable “this.s”, then at the end of an interpretation, the head will be

replaced by an articulated variable whose ownership of scores and type of scores are specified.

During an interpretation process, it is the scoring expression of body which will be built into a

SCX operator tree for analysis and manipulation. These conventions will be complied for all of

the later discussions.

Within-collection term frequency PC(t). Firstly, let us have look at an example of articulating

PRA expression for within-collection term frequency (i.e. PC(t), also see Definition 2.5.1).

The process for PC(t) is illustrated in Figure 3.22, in which Figure 3.22a recall the PRA

expression, while Figure 3.22b is a query plan tree built for evaluation, and Table 3.22c demon-

strates the interpretation procedure and shows the (initial) generated SCXs and the (final) inter-

preted SCXs. Let the query plan to be referred as the P C t plan, at the bottom of the plan is an

unweighted extensional relation called MagColl (see “original table” in Table 2.3) and it is the

input of the query, while at the top of the plan is the output which is a probabilistic view called

P C t.

To perform bottom-up traversal to articulate the P C t plan, the leaf-node at the bottom, i.e.
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R0, is to be visited at first. Because R0 is an unweighted table, thus an initial SCX is generated

as this.s = c[1.0]; to interpret, the program specifies the ownership of scores and the name of the

owner of the scoring variable in the body, which becomes R0[MagColl].c[1.0]; while the scoring

variable in the head is replaced by R0.c.

P C t = PROJECT DISJOINT [$Term] (BAYES DISJOINT [] (MagColl));

(a) PRA expression for PC(t)

Query Plan Tree

(b) PRA operator tree

Plan Tree Node Generated SCX Interpreted SCX
R3 (P C t) this.s = R2.p R3.p = COUNT(R0.[$* | $Term])

/ COUNT(R0)
R2 (PROJECT) this.s = acc.[$Term].w + R1.p R2.p = COUNT(R0.[$* | $Term])

/ COUNT(R0)
R1 (BAYES) this.s = R0.c[1.0] / (acc.w R1.p = R0.c[1.0] / COUNT(R0)

+ R0.c[1.0])
R0 (MagColl) this.s = c[1.0] R0.c = R0[MagColl].c[1.0]

(c) Articulating scoring functions with SCX (read bottom-up)

Figure 3.22: Scoring expression for Project-Bayes PRA expression for PC(t)

Next, the traversal algorithm moves one level up to R1 from the leaf-node, where it finds

out it is a Bayes operator, which means a probability estimation is performed here. To articu-

late Bayes, the process checks the probabilistic assumption, which is disjoint, and the evidence

attributes, which is empty, and then a SCX is generated accordingly (see Section 3.4.1 and Ta-

ble 3.3); according to Theorem 3.3.1, the denominator of the division can be substituted by

symbolic function COUNT (R0); since there is no further SCX manipulation can be performed,

so the process finalises the interpreted SCX of R1 by specifying its head variable as R1.p, which

indicates the scores obtained from Bayes are probabilities.

And then, the process move up again to R2, which is a projection on attribute $Term

while given a probabilistic assumption as disjoint. The generated SCX is created as this.s =
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acc.[$Term].w+R1.p, in which an accumulator indicates that an aggregation is performed by ac-

cumulative summation while aggregated scores are grouped by attribute $Term. After the input

variable R1.p is replaced by its interpreted SCX, i.e. R0.c[1.0]/COUNT (R0), we obtain a SCX

as acc.[$Term].w+(R0.c[1.0]/COUNT (R0)), which would be found by a semantic analyser that

its pattern matches the original SCX (see Transformation 3.4.3), so an anticlockwise rotation is

perform to give a transformed SCX as (acc.[$Term].w+R0.c[1.0])/COUNT (R0); and then fur-

thermore, the accumulative summation sub-tree is eligible to be replaced by a symbolic function

of counting according to Theorem 3.3.3, that is, COUNT (R0.[$* |$Term])/COUNT (R0); the

final step set the head variable to R2.p, because the projection is after Bayes and it is given a

probabilistic assumption, therefore it is deemed to yield probabilities.

In the end, the traversal reaches the root-node of the P C t plan, which is R3. For the node,

the articulating process is simple, which only need to replace the body by the interpreted SCX of

R2.p, and then the articulation is finished.

Because the articulating process involves a SCX transformation, we must guarantee it is a

conflict free manipulation (see Definition 3.4.1) for the P C t plan.

Theorem 3.4.1. SCX Transformation 3.4.3 is a conflict free manipulation for Project-Bayes

queries of PRA while disjointness is given as probabilistic assumptions for Project and Bayes.

Let RX be a relation as the input of a Project-Bayes query, and let |R| be its cardinality. Let

Xe be a list of evidence attributes of Bayes, where Xe ⊆ X ; and let Xp be a list of attributes which

would be projected, and Xp ⊆ X . For a Project-Bayes query which is performed for probability

estimation, it is certain that aggregations would be performed.

Proof. Because the cardinality of the result of a Project-Bayes query is decided by the projection,

given Xp as projected attributes, where Xp ≥ 1, we obtain the cardinality of the result is |R(Xp)s|

(see Section 2.5.2.1 and Table 2.4 for notion).

In general, the original SCX for a Project-Bayes query can be written as acc.[Xp].p +

(R1.c[1.0]/R2.[Xe].w), which represents the original scoring semantics of Project-Bayes query:

first, Bayes aggregates the scores for denominator(s) based on the evidence attributes Xe, so there

would be |R(Xe)s| number of distinct denominators, while the cardinality of the intermediate re-

sult yielded by Bayes is the same to the cardinality of R, i.e. |R|. Second, Project aggregates

the result of Bayes and it groups the result by attribute(s) Xp, in other words, |R(Xp)s| scores are

mapped to |R(Xp)s| number of distinct tuples.
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Moreover, for a probability estimation to be eligible, the scores, denoted as s, yielded by

a Project-Bayes query must satisfy s ∈ [0,1]; as a result, we can obtain that Xe ⊆ Xp must be

satisfied, and thus |R(Xe)s| ≤ |R(Xb)p|.

On the other hand, the transformed SCX can be formulized as (acc.[Xp].p +

R1.c[1.0])/R2.[Xe].w, which indicates that aggregations would be performed before division. Be-

cause of Xe ⊆ Xp and |R(Xe)s| ≤ |R(Xp)s|, we can conclude the scores are grouped by attribute(s)

Xp and the mappings of scores to tuples would be |R(Xp)s| number of scores for the same number

of distinct tuples, which is the same to the situation give by original SCX.

As a result, manipulations applying Transformation 3.4.3 are conflict free for articulating

Project-Bayes queries, thus Theorem 3.4.1 is sound.

Within-document term frequency PC(t|d). Similarly, a SCX articulation for the PRA expres-

sion modelling within-document term frequency (i.e. PC(t|d), also see Definition 2.5.2) is given

in Figure 3.23.

P C t d = PROJECT DISJOINT [$Term, $DocId] (BAYES DISJOINT [$DocId](MagColl));

(a) PRA expression for PC(t|d)

Query Plan Tree

(b) PRA operator tree

Plan Tree Node Generated SCX Interpreted SCX
R3 (P C t d) this.s = R2.p R3.p = COUNT(R0.[$* | $Term, $DocId])

/ COUNT(R0.[$* | $DocId])
R2 (PROJECT) this.s = acc.[$Term, $DocId].w R2.p = COUNT(R0.[$* | $Term, $DocId])

+ R1.p / COUNT(R0.[$* | $DocId])
R1 (BAYES) this.s = R0.c[1.0] / (acc.[$DocId].w R1.p = R0.c[1.0]

+ R0.c[1.0]) / COUNT(R0.[$* | $DocId])
R0 (MagColl) this.s = c[1.0] R0.c = R0[MagColl].c[1.0]

(c) Articulating scoring functions with SCX (read bottom-up)

Figure 3.23: Scoring expressions for Project-Bayes PRA expression for PC(t|d)

In principle, the analysis procedure for articulating the PRA expression for PC(t|d) performs
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almost the same to the analysis for PC(t), whereas there are there differences: the first is an

evidence attribute $DocId is given to Bayes for probability estimation; the second is that there

are two projected attributes instead of one, which are $Term and $DocId; and the third is that

replacements of accumulative summations by symbolic functions, including the one for aggregat-

ing denominator in Bayes and the one for aggregation in projection, are based on Theorem 3.3.3.

In addition, Theorem 3.4.1 is also applicable to support Transformation 3.4.3 to be employed

as a conflict free manipulation for interpreting the scoring semantics of the PRA expression for

modelling PC(t|d).

Document Frequency df(t). Both previous modelling of tf s in PRA involves the same Project-

Bayes query, now let us discuss another pattern of PRA expression that involves Project-Join-

Bayes query. Here an example of modelling document frequency (i.e. df(t), also see Defini-

tion 2.5.3) in PRA and articulating in SCX is given in Figure 3.24.

First of all, let us recap some concepts from the discussions in Section 2.5.2.1, that is, both tf s

are to be estimated based on tuple space, which can be usually taken from extensional relations;

whereas df is to be estimated based on a different event space from the tf s’ called document space

(or subject space), in which events are distinct documents. Therefore, different from tf s which

can be estimated directly from extensional relations, to compute df, we have to generate docu-

ment space before estimation can be taken place. As a result, the modelling of df in PRA can be

divided into several sub-queries (see Figure 3.24a) where each sub-query yields an intermediate

result different concepts including a document space and other related contexts. To combine the

sub-queries into a single query plan, which is referred as the df D t plan and it is shown in Fig-

ure 3.24b, then similarly, the df D t plan can be articulated by SCX for interpretation of scoring

semantics.

Let us walk through the df t plan with bottom-up traversal. Since a Join operation taking

two sub-queries as inputs forms two branches in a plan tree, a post-order traversal would visit

the left branch at first, and then the right branch at second, and then the Join operator at last.

In addition, the order of the visiting for articulation can also be found out from the aliases with

unique identifiers of the nodes (i.e. R0 - R7).

We skip node R0, because it is the same to the previous discussions, and get started from

node R1. It is found that a distinct projection is performed and no projected attributes are

specified, so according to Section 3.4.1 (also see Table 3.3), an initial SCX is generated as
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dColl = PROJECT DISTINCT(MagColl);
docSpace = BAYES DISJOINT [](PROJECT DISTINCT [$DocId](MagColl));
termDoc = PROJECT [dColl.$Term, dColl.$DocId](

JOIN [dColl.$DocId = docSpace.$DocId](dColl, docSpace));
df t = PROJECT SUM [$Term](termDoc);

(a) PRA expression for df(t)

Query Plan Tree

(b) PRA operator tree

Plan Tree Node Generated SCX Interpreted SCX
R7 (df t) this.s = R6.w R7.w = COUNT(DISTINCT

R0.[$Term, $DocId | $Term])
/ COUNT(DISTINCT R0.[$DocId])

R6 (PROJECT) this.s = acc.[$Term].w R6.w = COUNT(DISTINCT
+ R5.p R0.[$Term, $DocId | $Term])

/ COUNT(DISTINCT R0.[$DocId])
R5 (JOIN) this.s = R1.c ∗ R4.p R5.p = R0.[$Term, $DocId].c[1.0]

/ COUNT(DISTINCT R0.[$DocId])
R4 (BAYES) this.s = R3.c[1.0] / (acc.w R4.p = R0.[$DocId].c[1.0]

+ R3.c[1.0]) / COUNT(DISTINCT R0.[$DocId])
R3 (PROJECT) this.s = acc.[$DocId].c[1.0] R3.c = R0.[$DocId].c[1.0]

+ R2.c[1.0]
R2 (MagColl) this.s = c[1.0] R2.c = R0[MagColl].c[1.0]
R1 (PROJECT) this.s = acc.[$*].c[1.0] R1.c = R0.[$Term, $DocId].c[1.0]

+ R0.c[1.0]
R0 (MagColl) this.s = c[1.0] R0.c = R0[MagColl].c[1.0]

(c) Articulating scoring functions with SCX (read bottom-up)

Figure 3.24: Scoring expressions for Project-Join-Bayes PRA expressions for df(t)
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this.s = acc.[$∗].c[1.0]+ R0.c[1.0] to indicate duplicate removal (but not aggregation); to inter-

pret this case, the process would specify the projected attributes by taking all attribute names from

the schema of R0, and then to re-formulize the body of the SCX by R0.[$Term,$DocId].c[1.0],

which means the projection yields unweighted intermediate result whose tuples originally come

from R0 and are grouped by the specified attributes; in addition, the head of the SCX is replaced

by R1.c to announce the characteristic of scores.

And then, traversal algorithm moves articulating process to R2, which is again a table;

but moreover, it is the same to R0, therefore, the interpreting process remarks the node with

R0[MagColl].c[1.0], which is the same interpreted SCX as node R0. Level up, the process visits

node R3, which performs a distinct projection on attribute $DocId. Because the articulation here

is similar to node R1, hence we skip this node and move on to node R4.

Specially, node R4 contains a Bayes operation which is performed to produce a document

space for computing df(t). Initially, a generated SCX is created as R3.c[1.0]/(acc.w+R3.c[1.0]);

and then the interpreter substitutes the scoring variable of R3.c[1.0] by its interpreted SCX

R0.[$DocId].c[1.0], so that the SCX becomes R0.[$DocId].c[1.0]/(acc.w+R0.[$DocId].c[1.0]);

furthermore, the accumulative summation for denominator of the division can be replaced by a

symbolic function; that is, according to Theorem 3.3.4, the body of the interpreted SCX is trans-

formed into R0.[$DocId].c[1.0]/COUNT (DIST INCT R0.[$DocId]), while the head of the SCX

is specified as R4.p.

After interpreting the branches of Join, the articulating process reaches node R5. Here

the result of sub-query dColl (i.e. the result of R1) would be combined with the result

of docSpace (i.e. the result of R4), which means on the one hand, the tuples of two

intermediate results would be concatenated, and on the other hand, while given a prob-

abilistic assumption as independent, the tuples scores of either intermediate results are to

be combined by multiplication. Therefore, a generated SCX for R5 is given as R1.c ∗

R4.p. To replace the variables by their interpreted SCXs, the SCX is transformed into

R0.[$Term,$DocId].c[1.0] ∗ (R0.[$DocId].c[1.0]/COUNT (DIST INCT R0.[$DocId])), which

matches the original form of Transformation 3.15. Let us leave the discussion for con-

flict free manipulation later, but apply the transformation by now. So by deploying an anti-

clockwise rotation as suggested by Transformation 3.15, we get (R0.[$Term,$DocId].c[1.0] ∗

R0.[$DocId].c[1.0])/COUNT (DIST INCT R0.[$DocId]). And then, the obtained SCX matches
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another transformation, i.e. Transformation 3.4.2, where a judiciously chosen variable may

replace the multiplication sub-tree. Again, let us choose R0.[$Term,$DocId].c[1.0] and

leave the explanation later. In the end, the interpreted SCX for R5 is given by R5.p =

R0.[$Term,$DocId].c[1.0]/COUNT (DIST INCT R0.[$DocId]).

Next, articulating process is moved up to node R6, which is an projection given a projected

attribute $Term and aggregated assumption as sum. Hence, according to Table 3.4, we obtain a

generated SCX as acc.[$Term].w+R5.p, which means scores would be grouped by distinct val-

ues of attribute $Term; and then, to replace R5.p by its interpreted SCX, we get acc.[$Term].w+

(R0.[$Term,$DocId].c[1.0]/COUNT (DIST INCT R0.[$DocId])), which is accumulation of unit

fractions and it matches the original form of Transformation 3.4.3. Again, let us leave the verifi-

cation of conflict free later and accept a manipulation applying the transformation. So the SCX

becomes (acc.[$Term].w + R0.[$Term,$DocId].c[1.0])/COUNT (DIST INCT R0.[$DocId]),

while according to Theorem 3.3.5, the accumulation of constant-ones can be replace by

COUNT (DIST INCT R0.[$Term,$DocId | $Term]), so that the body of the interpreted SCX is

finished, and the head is given as R6.w.

At last, the traversal process reaches the root-node of the df D t plan and finalise the articu-

lation.

For now, let us verify if the transformations used above are conflict free manipulations. Sim-

ilar settings are applied, where let RX for relation, |R| for cardinality, Xe for evidence attributes

of Bayes, Xp for projected attributes of Project, Θ for Join predicate where Θ = {=, 6=,<,≤,>

,≥,≈}, and µ : XΘY for Join condition. The transformations articulate two kinds of PRA ex-

pressions: 1) Join-Bayes queries; and 2) Project-θ -Bayes queries, where θ could be any PRA

operator except for aggregated projection and Bayes. Firstly, Theorem 3.4.2 is given with respect

to the swapping of multiplication-division transformation.

Theorem 3.4.2. SCX Transformation 3.4.1 is a conflict free manipulation for Join-Bayes queries

of PRA while independence is given as a probabilistic assumption for Join.

Proof. The cardinality of the result of Join-Bayes query is decided by the Join condition, while

a Cartesian product instead of a Join is applied, the cardinality of result is given by |RX | · |RY |,

where RX is the first input and RY is the second input. Moreover, let RY also be the event space

for Bayes operator, then the original SCX of Transformation 3.4.1 can be written in a specialised

form as R1.s ∗ (R2.[Ye].c[1.0]/R2.[Ye].w), while the cardinality of the result of a Join-Bayes
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query is
∣∣∣R(X)α

µ:XΘY

∣∣∣ · ∣∣∣R(Y )α ′
∣∣∣, where the adornment of relation for both inputs are not re-

stricted, which means they can be either based on set or multiset.

After Transformation 3.4.1 is applied, a specialised form of the original SCX becomes

(R1.s ∗ R2.[Ye].c[1.0])/R2.[Ye].w, which means a Join would be performed before a Bayes. In

this case, the cardinality of the result of Join is still
∣∣∣R(X)α

µ:XΘY

∣∣∣ · ∣∣∣R(Y )α ′
∣∣∣, while the cardinality

of the result of Bayes depends on the number of scores (tuples) of numerator, which means the

final cardinality of the result is the same to the original SCX of the transformation. Moreover,

the mappings of scores are guaranteed by Join condition. Therefore, manipulations applying

Transformation 3.4.1 for Join-Bayes queries of PRA are conflict free, and thus Theorem 3.4.2 is

sound.

In addition, there is another Theorem which is suitable and necessary for Join-Bayes queries.

Theorem 3.4.3 specifies the applicability of Transformation 3.4.2, which is actually a further

manipulation after Transformation 3.4.1, hence in many cases these two transformation would

be applied together.

Theorem 3.4.3. For multiplication applying SCX Transformation 3.4.2 where both inputs of the

multiplication are scoring variables of constant-ones, the manipulation is conflict free for Join-

Bayes queries of PRA if: 1) both inputs for Join are distinct relations; and 2) the scoring variable

with more grouping attributes is chosen as the replacement.

Proof. If the inputs of a Join are distinct relations, then the cardinality of the Join result fully

depends on the input which has more arity, i.e. has more attributes (or columns); on the other

hand, the arity of a distinct relation can be reflected from the grouping attributes of a scoring

variable.

For Theorem 3.4.3, the original SCX of Transformation 3.4.2 can be specialised into the

form of (R1.[X ].c[1.0] ∗R2.[Ye].c[1.0])/R2.[Ye].w, which indicates the cardinality of the result

is |R(β )s
µ:βΘγ

| where β = max(X ,Ye),γ = min(X ,Ye). According to Theorem 3.4.3, the trans-

formed SCX is R.[β ].c[1.0]/R2.[Ye].w, which indicates the same cardinality of the result as the

original SCX. In addition, the mappings of scores can be guaranteed by Join condition. There-

fore, manipulations applying Transformation 3.4.2 for Join-Bayes queries of PRA are conflict

free, and thus Theorem 3.4.3 is sound.
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Moreover, Theorem 3.4.4 is given to support conflict free manipulations to be performed for

PRA expressions in a form of Project-θ -Bayes query.

Theorem 3.4.4. For PRA expressions in a form of Project-θ -Bayes query, where θ is any PRA

operator except for aggregated projection and Bayes, and disjointness is given as probabilistic

assumptions to Project and Bayes, a SCX manipulation applying Transformation 3.4.3 is conflict

free.

Proof. If SCXs are generated for PRA expressions of Project-θ -Bayes queries, the scoring func-

tion implied by the unspecified PRA operator θ must become a part of the numerator of a division

(generated from Bayes) and it must indicate constant-ones. Because the cardinality of the final

result is decided by the projection: let Rθ be the intermediate result yielded by operator θ , so that

its cardinality is |Rθ |; and let Xp be the projected attributes, so the cardinality of the projection

result is Rθ (Xp)s.

Here, the original SCX of Transformation 3.4.3 can be specialised as acc.[Xp].w +

(Rθ .[Ye].c[1.0]/R.[Ye].w), so that the transformed SCX is (acc.[Xp].w + Rθ .[Ye].c[1.0])/R.[Ye].w,

both SCXs indicate the number of scores are decided by the number of groups of accumula-

tions, which is equal to Rθ (Xp)s, and the mappings of scores to tuples are the same. As a result,

Theorem 3.4.4 is sound.

So far, we have verified the manipulations on SCX for interpreting the df D t plan are conflict

free according to Theorem 3.4.2, Theorem 3.4.3 and Theorem 3.4.4.

To summarise how scoring-driven optimization assists index selection, the interpreted SCXs

for tf s and df articulate exactly how IR statistics (see Table 3.10) are modelled in PRA expres-

sions, therefore, a query engine may exploit interpreted SCXs as one of the considerations while

mapping logical PRA operators to physical implementations.

3.4.4.3 Aligning Scoring Function under Extensional Semantics

The query evaluation for conjunctive queries (or more precisely, for disjunctive-conjunctive com-

bined queries) in PRA is an problem with respect to both efficiency and effectiveness. As pre-

viously discussed, because PRA was originally proposed under intensional semantics and prob-

abilistic events are considered as independent events only (see [Fuhr and Rölleke, 1997], also

see Section 2.4.2). However, it had been known that intensional evaluation of PRA expressions

(or in general, for relational expressions on probabilistic databases) for conjunctive queries are
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inefficient and impractical for processing large-scale data set.

Being aware of the problems, further work was completed by [Roelleke et al., 2008], which

pushes the research of PRA a few steps forward and proposes several extensions on PRA: besides

a Bayes operator for probability estimation, it also suggests using extensional evaluation for PRA

expressions while given probabilistic assumptions. Such attempt is supported by the researches

of IR theory on ranking models, where nearly all popular and well-performing (in terms of ef-

fectiveness) IR models suggest that terms in documents should not be viewed as independent

events, in other words, either reoccurred terms or different terms exist some kind of dependen-

cies. In addition, by employing probabilistic assumptions, [Roelleke et al., 2008] shows that the

efficiency and scalability of a PRA query engine can be improved dramatically.

retrieved = PROJECT INDEPENDENT [$Class] (
JOIN INDEPENDENT [$CarType = $VehType] (CarCat, ProSys));

(a) PRA expression for a conjunctive query

Query Plan Tree

(b) PRA operator tree

Plan Tree Node Generated SCX Interpreted SCX
R4 (retrieved) this.s = R3.p R4.p = 1 − (acc.[$Class].p ∗ (R0.p ∗ (1

− (acc.[$VehType].p ∗ (1 − R1.p)))))
R3 (PROJECT) this.s = v R2.p R3.p = 1 − (acc.[$Class].p ∗ (R0.p ∗ (1

− (acc.[$VehType].p ∗ (1 − R1.p)))))
R2 (JOIN) this.s = R0.p ˆ R1.p R2.p = R0.p ∗ R1.p
R1 (CarProSys) this.s = p R1.p = R1[ProSys].p
R0 (CarCat) this.s = p R0.p = R0[CarCat].p

(c) Articulating scoring functions with SCX (read bottom-up)

Figure 3.25: Scoring expressions for conjunctive Project-Join PRA expression

From the DB community, [Dalvi and Suciu, 2004] proposed a safe-plan query evaluation

technique on probabilistic database based on extensional semantics, in which tuples are viewed

as independent events only. Moreover, they argued that unsafe query plans for conjunctive-

disjunctive combined queries, i.e. queries include a join inside a projection, compute incorrect
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probabilities.

Except for the safe-plan technique proposed by [Dalvi and Suciu, 2004] and the usage of

lineage technique introduced by [Benjelloun et al., 2006a], another potential research direc-

tion is to study the differences of the rankings produced by approximate methods (such as

[Roelleke et al., 2008]) and accurate functions (such as [Dalvi and Suciu, 2004]). However, the

studies on ranking equivalence (see Section 3.3.2) would be a direction of future work. On the

other hand, instead of studying ranking equivalence, SCX may also apply to adjust scoring func-

tions for evaluating conjunctive queries in PRA.

For instance, an example is given in Figure 3.25, in which both CarCat and ProSys are the

aliases of probabilistic relations in Table 2.2, where CarCat is an alias of table CarCategory and

ProSys is an alias of table CarPropulsionSystem. The PRA expression of the query is shown

in Figure 3.25a, while Figure 3.25b illustrates a query plan which is referred as the conjunctive

plan, and a bottom-up articulating process is demonstrated in Figure 3.25c.

The articulating process follows the rules in Table 3.5 to generate initial SCXs for nodes

R0 and R1, which both represents probabilistic relations. The next visiting node is R2 when

following post-order traversal, while articulating process generates a logic-style SCX for the

node because it is a Join operations for two probabilistic scores, which indicates a conjunctive

query for joint probability, and the SCX is initialised as R0.p ˆ R1.p; furthermore, because an

independence assumption is given to the Join, hence the logic-style SCX is interpreted by an

arithmetic-style SCX as a multiplication of independent event probabilities, i.e. R0.p∗R1.p.

And then the process moves up to node R3, where it encounters a projection for aggrega-

tion while given an independence assumption. Initially, an generated SCX is produced using

logic-style SCX again as vR2.p. Specially, since the child-node of R3 is a conjunctive query,

so that R3 indicates a disjunctive-conjunctive combined query. In order to reflect the inten-

sional semantics of the scoring function of R3, the process replaces R2.p by its initial logic-

style SCX instead of interpreted SCX as usual, so that it obtains a SCX as v(R0.p ˆ R1.p),

which exactly presents the intensional semantics; in the next step, interpreting algorithm aligns

the scoring function (based on intensional semantics) to extensional semantics by manipulat-

ing SCX operator tree applying Transformation 3.4.4; as the transformation suggests, an SCX

tree can be rotated towards either clockwise or anticlockwise, here because the projected at-

tribute is $Class, so a clockwise rotation should be performed, and we will explain more details
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later, while a transformed SCX is obtained as R0.p ˆ (v R1.p). For now, the interpreter algo-

rithm is about to convert the logic-style SCX into arithmetic-style SCX, and aforementioned, a

probability accumulator would be appended to the left-child node for a left-hand-side operand

missing logical operator, and similarly an accumulator would be added into an arithmetic-style

SCX as well. Because independence assumption is applied, an interpreted SCX is formulized as

1− (acc.[$Class].p∗ (R0.p∗ (1− (acc.[$VehType].p∗ (1−R1.p))))), and this is obtained in the

following steps:

1. replace the logic-style SCX sub-tree acc.p v R1.p by 1− (acc.[$VehType].p∗!R1.p);

2. replace !R1.p by 1 − R1.p, which converts the previous SCX sub-tree into 1 −

(acc.[$VehType].p∗ (1−R1.p));

3. replace the logical AND operator (i.e. ˆ) in the previous SCX tree, i.e. R0.p ˆ (1−

(acc.[$VehType].p ∗ (1−R1.p))), to multiplication (i.e. ∗), which transforms the SCX

tree into R0.p∗ (1− (acc.[$VehType].p∗ (1−R1.p)));

4. create new arithmetic SCX tree for probability aggregation based on independence as-

sumption, append the previous SCX to the new SCX tree, so that the final interpreted SCX

tree is obtained.

3.4.4.4 Verifying Scoring Equivalence

Previously, in Section 3.3.2 we addressed the definitions of equivalence of PRA expressions,

where for PRA expressions to be equivalent, they must satisfy relevance equivalence and one

type of equivalence with respect to scoring semantics or ranking semantics equivalence. In this

part, we discuss how to exploit SCX to verify whether PRA expressions are equivalent under

strict scoring semantics.

Let us consider the following two PRA expressions: the first one has already been discussed

extensively in previous paragraphs and section, which is a PRA modelling for within-document

term frequency (tf(t,d));

PROJECT DISJOINT [ $Term , $DocId ] (
BAYES DISJOINT [ $DocId ] ( MagColl ) ) ;

while the second one is very similar to the first expression, the only major change is the order

of Bayes and Project has been swapped. A question is that are they equivalent PRA expressions?
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BAYES DISJOINT [ $DocId ] (
PROJECT SUM [ $Term , $DocId ] ( MagColl ) ) ;

A question is that are they equivalent PRA expressions? So let us articulate the second PRA

expression with SCX and find out. The articulating procedure is illustrated in Figure 3.26.

BAYES DISJOINT [$DocId] (PROJECT SUM [$Term, $DocId](MagColl));

(a) PRA expression

Query Plan Tree

(b) PRA operator tree

Plan Tree Node Generated SCX Interpreted SCX
R2 (BAYES) this.s = R1.w / (acc.[$DocId].w R2.p = COUNT(R0.[$* | $Term, $DocId])

+ R1.w) / COUNT(R0.[$* | $DocId])
R1 (PROJECT) this.s = acc.[$Term, $DocId].w R1.w = COUNT(R0.[$* | $Term, $DocId])

+ R0.c[1.0]
R0 (MagColl) this.s = c[1.0] R0.c = R0[MagColl].c[1.0]

(c) Articulating scoring functions with SCX (read bottom-up)

Figure 3.26: Scoring expressions for Bayes-Project PRA expression of a tf(t,d) equivalence

Let us quickly start from node R1, which is a projection given projected attributes

$Term and $DocId for aggregation with assumption sum; according to SCX generat-

ing rule for unweighted relation (see Table 3.3), an initial SCX is created as this.s =

acc.[$Term,$DocId].w + R0.c[1.0]; next, based on Theorem 3.3.3, the SCX is interpreted to

be R1.w = COUNT (R0.[$* |$Term,$DocId]) which uses of symbolic function.

And then, articulating procedure moves up to node R2 for Bayes operator, where a gen-

erated SCX is initialised as suggested in Table 3.4, which is R1.w/(acc.[$DocId].w + R1.w);

then next, R1.w is substituted by its interpreted SCX which transforms the previous SCX into

COUNT (R0.[$* |$Term,$DocId])/(acc.[$DocId].w + COUNT (R0.[$* |$Term,$DocId]). By

now, we introduce a new theorem to support the interpretation, which is given by Theorem 3.4.5

as follow.

Theorem 3.4.5. Let RX be an unweighted relation, where X is the schema of R; let Xa be a list of

attribute whose values are to be considered for counting; let both Xb and Xb be lists of grouping
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attributes, where Xb ⊆ Xb ⊆ X; so that the result of counting the number of values of attribute Xa

with given grouping attributes Xb is equal to the result of aggregate summation for grouped-and-

accumulative scores for the result of counting the number of values of attribute Xa with given

grouping attributes Xb.

COUNT (R.[Xa|Xb]) = acc.[Xb].w+COUNT (R.[Xa|Xb])

=def
(

acc.[Xb].w = 0
acc.[Xb].w = acc.[Xb].w+COUNT (R.[Xa|Xb])

)

Theorem 3.4.5 addresses the situation when a result of counting can be represented as an

accumulative summation of another result of counting.

Proof. Let RXb and RXb
be the results of aggregations based on projection, where Xb and Xb are

projected attributes respectively. Let RXb to be split into n partitions, and in the ith partition of

RXb , denoted as Ri
Xb

, there exists a many-to-one mapping from Ri
Xb

to RXb
, that is, for all tuple

values in Ri
Xb

with respect to attributes Xb can only be mapped to one tuple with identical values

in RXb
, i.e. ∑

m
i=1 1 = ∑

n
i=1 ∑

k
j=1 1 where m = ∑

n
i=1 k. Thus Theorem 3.4.5 is sound.

Finally, an interpreted SCX is obtained which is identical to the one articulating the original

PRA expression for modelling tf(t,d).

3.5 Experiments and Results

In this section, we present the experiments for evaluating runtime performance of a IR+DB pro-

totype called Birdie (see Appendix A), in which the proposed scoring-driven optimization mech-

anism was implemented and applied.

At the moment, we noticed that there are no existing benchmarks which are specific for

measuring the performances of integrated IR and DB systems. Some previous researches chose

to examine integrated IR and DB experimental systems by the TPC-H (e.g. see [TPC, 2005]

(for decision support applications)) database benchmark, which might be suitable for assess-

ing the efficiency of applied systems based on IR-on-DB or middleware architectures (see Sec-

tion 2.5.1). On the the hand, traditional IR benchmarking methods tend to apply real-world data
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(e.g. TREC9 and INEX10) which better reflect the characteristics of textual data, which is in con-

trast to database convention that prefer synthetic data set. Hence, we conducted the experiments

with self-defined but carefully considered measurements.

In addition, the query execution engine of Birdie is tuned to utilise relational inverted in-

dex (RIX) that will be discussed later in Chapter 5, while the experiments mainly demonstrated

the retrieval efficiency of Birdie while applying scoring-driven optimization for assisting index

selection (see Section 3.4.4.2). Therefore, though RIX plays an important role in speeding up

retrieval performance, but the proposed scoring-driven optimization is a critical technique that

automatically drives query execution engine to choose wisely physical operations and indexes.

3.5.1 Specifications and Setup

First of all, let us introduce the experimental specifications and setup.

Systems The testing bed is an IR+DB prototype named Birdie (see Appendix A). The computer

hardware and software specifications of hosting Birdie are as follows:

• Hardware: Dell XPS M1330 Laptop, equipped Intel11(R) Core12(TM)2 Duo CPU T6400

at frequency 2.00GHz, 3.00 GB of RAM at frequency 1.20 GHz.

• Operating System: Windows XP Professional, version 2002, Service Pack 3.

Test Collection We used TREC-3 [Harman, 1994] document corpus as the testing collection.

Its original data size is about 2.1 GB. In addition, the titles of TREC topics 151-200 were used

as queries, where the average query length is 3.64 terms.

Setup The original text documents were pre-processed and stored in a relational table to be

used by Birdie, and the schema of the table is given as follow:

CREATE TABLE trec3 (term VARCHAR, docid VARCHAR);

The data size of the table is about 4.02 GB, and the table consists of 202 254 542 tuples

(i.e. over 202 million), in which includes 715 649 distinct terms (keys) and 741 647 documents

(groups). A RIX index is built by given the attribute “term” as primary indexed key, while the

index size is about 3.97 GB.
9http://trec.nist.gov/

10http://inex.is.informatik.uni-duisburg.de/
11Intel is a registered trademark of Intel Corporation.
12Core is a trademark of Intel Corporation.
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To execute the queries, we implemented scoring strategies for PC(t|d), PC(t), df, tf -idf model

(see Formula 2.1 in page 32), and language modelling (see Formula 2.13 in page 34) in PRA. For

the actual PRA expressions implementing tf -idf and LM which were used in the experiments,

interested readers can refer Section A.3.2 in Appendix A.

A table qterm was defined to store the query terms which schema is given as follow:

CREATE TABLE qterm (term VARCHAR, qid VARCHAR);

The 50 queries (each query consists of several terms) were inserted into table qterm during

query time, and the scoring strategies and IR models were executed repeatedly for every queries.

3.5.2 Methodology

In the experiment, we investigated the effectiveness of scoring-driven optimization (SDO) based

on SCX from two angles. Firstly, we measured the query processing time while utilising SDO

in the query engine of Birdie, where 50 TREC queries were executed in a batch mode and the

retrieval times while applying different scoring models were recorded. Secondly, in order to

demonstrate how SDO may improve the efficiency of query processing, we disabled SDO from

the query engine and re-executed the queries, and the retrieval runs without SDO is marked by

Non-SDO. The query processing time of SDO runs and Non-SDO runs are compared based on

the selectivity of queries.

Range of Selectivity Number of Queries

< 10 000 6
10 000 − 99 999 15
1000 000 − 199 999 11
200 000 − 299 999 10
> 300 000 8

Table 3.11: Selectivity of the 50 TREC queries

Here selectivity is defined as following:

Sel(q) :=
n

∑
i=1
|R(ti)m|, ti ∈ q (3.1)

where q stands for a query that consists of a number of terms t, and |R(ti)m| is the cardinality

of term ti in relation R (see Section 2.5.2.1), i.e. the total number of occurrences in the whole

collection, so that the selectivity of a query, i.e. Sel(q), is defined as the summation of the

cardinality of all query terms.



3.5. Experiments and Results 126

While SDO is disallowed from Birdie, the query engine can still utilises TID index, however,

the performance of query processing would decrease sharply. Therefore, to execute all 50 queries

is impractical and unnecessary for demonstration purpose. As a result, we handpicked four

queries from the query set that the selectivity of the chosen queries increments gradually. Some

statistics of selectivity for the 50 TREC queries and the handpicked queries are demonstrated

in Table 3.11 and Table 3.12 respectively. In particular, query 190 has the maximum selectivity

628 185.

Query ID Marked Selectivity Actual Selectivity

151 4 000 3 927
178 6 000 6 084
199 8 000 8 325
162 10 000 10 587

Table 3.12: Selectivity of the handpicked queries

Though efficiency is the main focus in the experiment, while the results were evaluated ac-

cording to TREC13 evaluation, where precision scores of the retrieval results are reported.

3.5.3 Results

The results of 50 TREC queries using title only is presented in Table 3.13. Although the selec-

tivity of the 50 queries range from 3 927 to 628 185, but Birdie was able to process these queries

efficiently while SDO was enabled. For instance, the average runtime for computing PC(t) and

df are both 0.002 seconds only, while the average runtime for estimating PC(t|d), tf -idf, and LM

are 2.669, 4.258 and 4.75 respectively, which are all in acceptable range while considering the

size of data and computer hardware specifications. Moreover, the retrieval effectiveness using

tf -idf model are MAP 0.1192 and P@10 0.212, while the effectiveness while applying LM are

MAP 0.1873 and P@10 0.362.

In addition, the results of SDO runs versus Non-SDO runs with handpicked queries are given

in Table 3.14 and Figure 3.27. The results demonstrate that scoring-driven optimization improved

the query processing efficiency with a number of orders of magnitude for estimating popular IR

models based on a very large data set.

Figure 3.27 illustrates the retrieval time for using relatively less selective queries. On the one

hand, Figure 3.27a indicates Birdie is able to handle such queries in sub-seconds when SDO is

13http://trec.nist.gov/



3.6. Summary 127

Scoring Retrieval Time (sec) Effectiveness
Model avg min max MAP P@10

PC(t|d) 2.669 0.141 9.344 − −
PC(t) 0.001 0 0.047 − −
df 0.001 0 0.047 − −
tf -idf 4.258 0.219 14.766 0.1192 0.212
LM 4.75 0.203 16.016 0.1873 0.362

Table 3.13: Retrieval time and effectiveness of Birdie with scoring-driven optimization, 50
queries, TREC topics 151-200 using title only

Scoring Retrieval Time (sec)
Model SDO Non-SDO

avg min max avg min max

PC(t|d) 0.246 0.141 0.328 1056 524 1612
PC(t) 0.012 0 0.047 299 162 439
df 0.012 0 0.047 1171 587 1784
tf -idf 0.332 0.219 0.422 2396 1138 3869
LM 0.319 0.203 0.469 1431 669 2403

Table 3.14: Retrieval time of Birdie, SDO vs. non-SDO, four handpicked queries, TREC topics
151, 178, 199 and 162 using title only

enabled. On the other hand, Figure 3.27b shows that retrieval time increases dramatically when

SDO is switched off.
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Figure 3.27: Retrieval performances based on selectivity, SDO vs. non-SDO

3.6 Summary

In summary, in this chapter we introduced a scoring-driven optimization technique based on

scoring expression (SCX) for probabilistic relational algebra (PRA). Because PRA incorporates
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probability estimation and aggregation capabilities along with relational operations (such as tra-

ditional relational algebra), hence in order to optimize logical PRA expressions, a practical op-

timization technique must consider the probabilistic or scoring semantics as well as relational

semantics of PRA expressions.

Therefore, this chapter contributes in the following aspects which were neglected by the state-

of-the-art optimization techniques for conventional non-probabilistic databases, these aspects

are:

• In order to include scoring and ranking semantics to be considered by optimization tech-

niques for PRA or similar variants, we proposed scoring equivalence and ranking equiv-

alence, which extends traditional relational equivalence that is relied on by conventional

algebraic optimization techniques for databases.

• We proposed scoring expression (SCX) which can be used for articulating scoring seman-

tics of PRA expressions. We introduced a set of comprehensive syntax for SCX so that

the semantics of SCX can be easily understood and handled by either machines or human

users.

• We proposed a scoring-driven optimization technique based on SCX. Specifically, we not

only introduced the methods for designing a rule-based and automatic scoring-driven op-

timizer for PRA, but also discussed the how to utilise the optimization to assist index

selection, align implied scoring function of PRA between intensional and extensional se-

mantics, and verify scoring equivalence of PRA expressions.

In addition, experiments were performed to evaluate the optimization technique, where re-

spectable results showed that it is capable to speed up the runtime performance of processing

PRA queries.
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Chapter 4

TIP: Query Processing with Top-k Incorporated Pipeline

4.1 Introduction

Top-k query processing is a fundamental building block for information retrieval and databases,

and it has been considered as a crucial technique for the integration of IR and DB. In short, top-

k processing aims to provide an early stop or early response functionality for ranked retrieval

with a little and acceptable retrieval effectiveness (quality) loss. In general, top-k methods are

necessary for modern retrieval systems from two points of views. On the one hand, from a

system-centric point of view, the size of data sets in general, e.g. the Web or corporate databases,

have being grown geometrically; while handling very large data sets, retrieval systems are likely

to return too many answers if there were not any effective “cut-off” methods. On the other hand,

from a user-centric point of view, it has become a de facto standard for modern IR systems to

be able to response within sub-second; especially, for those IR applications that involves human

users’ interactions, efficiency is the first criterion that decides whether a retrieval system would

be competitive.

Therefore, various top-k methods or algorithms had been proposed by researchers from either

IR community or DB community during past decades. Without losing generalisation, we may

roughly categorise top-k mechanisms in two groups: 1) methods to be performed during indexing

or preprocessing; and 2) algorithms to be applied during on-the-fly query processing. For the

first category, methods usually perform (static) index pruning based on sophisticated settings,

where tails of (very) long posting lists (see e.g. Chapter 5, Section 5.1.2) of indexes would be
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deliberately discarded, and only those relatively likely relevant items (i.e. top-k items) would

be kept. While for the second category, algorithms were designed to obtain weighted items that

with the highest scores by aggregations or certain ranking functions, where processes could be

terminated as long as top-k items were yielded.

In the chapter, we mainly focus on methods belong to the second category, in which we

study how top-k algorithms could be incorporated into a pipelined query processing engine of

IR+DB system. Specifically, we investigate whether a well-known family of algorithms, i.e. the

family of threshold algorithm (TA) (see e.g. [Fagin et al., 2001, Nepal and Ramakrishna, 1999,

Güntzer et al., 2000]), or its variants could be applied during pipelined query evaluation. Note

that previous studies on TA or its variants were based on middleware systems (see Section 2.5.1),

where TA (or other families) were implemented in an external layer of databases; while it is

desirable to incorporate TA algorithms into a generic query processor of IR+DB system (see e.g.

[Chaudhuri et al., 2005]).

Outline The remainder of the chapter is organised as follows: Section 4.2 reviews the back-

grounds of top-k processing, which include the computational model with an example, and an

introduction about TA and the variants, plus a range of other related work. In Section 4.3, we

address a conceptual design of top-k incorporated pipeline, and an investigation on performance

tradeoff with respect to efficiency and effectiveness. Moreover, the experiments and results will

be presented in Section 4.4. Finally, the chapter is summarised in Section 4.5.

4.2 Background

4.2.1 Computational Model

Here we review a well-known family of top-k algorithms. As aforementioned, the threshold al-

gorithm (TA) [Nepal and Ramakrishna, 1999, Güntzer et al., 2000, Fagin et al., 2001] is the best

known general-purpose algorithm for evaluating top-k queries, and several variants of classical

TA (under weak assumptions) were proposed for specific applications or retrieval under certain

circumstances. To get started, we first introduce the original TA, and then our focus would be on

the approximate top-k algorithms that were dedicated for IR applications.

First of all, the general settings while applying TA algorithm and its families are discussed,

which include computational model, accessing modes, and a typical scenario.
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Data Model Consider a Cartesian product space D1× . . .×Dm over domains D1, . . . ,Dm, and a

data setD ⊆D1× . . .×Dm of m-dimensional data items. Data items could be structured records,

semistructured or text documents, which contain a set of attribute values or terms that produce

an m-dimensional space. Each tuple of structured record or term-document pair is associated

with a numeric score (i.e. weighted tuple) that represents the relevance of the data item with

regards to the value or term; in other words, for each domain Di there is a similarity function

fi : Di×Di → [0,+∞), i.e. scores are positive real numbers that could be either raw weights,

(normalised) frequencies, or probabilities. Top-k queries are essentially partial-match queries

on the m-dimensional Cartesian product space: queries are in the form of m-tuples (q1, . . . ,qm)

where i = 1, . . . ,m, qi ∈ Di if the query matches the ith dimension value or qi = ∗ if the ith

dimension value is not considered; then let N be the total matches that can be found for a query, so

a top-k query is to find at most k matches from the space where 1 < k≤N (usually k�N). In this

case, conditions are given for matching values from the space against queries, and approximate

matching is allowed while certain mechanisms are available to guarantee the quality of query

result. Moreover, the aggregations or ranking functions are often assumed to be monotonic.

Aggregate or ranking functions would be applied to compute the scores of result of conjunc-

tive queries, which aggregate domain-specific similarities, i.e. s : (D1×Dm)× (D1×Dm)→

[0,+∞), and with s(x,y) = agg{si(xi,yi)|i = 1, . . . ,m}. A aggregate function could be as simple

as a summation, or applying sophisticated normalisation such as the saturation function in BM25

(e.g. see Section 2.2.2). For instance, while deploying summation then the aggregated similarity

is given by s(x,y) = ∑
m
i=1 si(xi,yi).

Accessing Modes In [Fagin et al., 2001], the authors suggest two types of access to data, which

are random access (RA) and sorted access (SA). The former mode requires an accessing key to be

available, so that a tuple could be retrieved from a list of tuples instantly by probing the list using

the key; whereas the latter performs a sequential scan on a sorted list, if there are more than one

list, then SA would also be able to scan multiple lists in parallel. Moreover, [Fagin et al., 2003a]

proposed no random access (NRA) for the settings of text retrieval where random accesses are

unavailable or too expensive to be practical with respect to processing costs.

Query Processing The query processing of top-k algorithms may perform single accessing

mode to data, for instance, to employ SA only. Alternatively, some algorithms may apply mixed

accessing modes while sophisticated scheduling strategies could be used to switch among dif-



4.2. Background 132

ferent modes. For example, the Fagin’s Algorithm (FA) [Fagin, 1999] and TA schedule data

accessing mode between SA and RA.

During top-k query processing, certain bookkeeping methods would be used to remember

have seen yet items and possible candidates. Without loss of generality, let us consider values

υ in domain Di, i ∈ 1, . . . ,m as indexed keys, there is an associated list of tuples τ that can be

retrieved by each key. Usually, the following notations are used to denote scores for bookkeeping

and termination of the algorithm.

• s(τ): denoting the score of tuple τ , which is the final score of τ by aggregating its different

tuple weights in different lists;

• E(τ,L): denoting the tuple weights of τ that have been seen yet, where L = {`i} and

i∈ {1, . . . ,m} are the lists where the weights are seen, whereas L denotes the lists in which

the weights of τ have not yet been seen;

• s(τ, `): denoting the tuple weight of τ in list `;

• sworst(τ): denoting the worst score of tuple τ , which is the aggregated score of τ that

obtained from the yet have seen tuple weights, i.e. sworst(τ) = ∑`i∈L s(τ, `i);

• shigh(`, p): denoting the highest score in list ` at position p, which is obtained while per-

forming NRA on list ` when a scanning iterator reaches position p;

• sbest(τ): denoting the best score of τ that can be reached, which is obtained by sworst(τ)+

∑shigh(`i, p) where i ∈ {1, . . . ,m} and `i ∈ L;

• sunseen(p): denoting the upper bound of aggregated score at position p of all lists, which is

obtained by ∑
m
i=1 shigh(`i, p).

4.2.2 Typical Scenario and Example

A typical scenario in IR is to aggregate the within-document tf of multiple query terms, which is

addressed as follow:

Example 4.2.1. Given three query terms “hybrid”, “car” and “fuel”, where each term associates

to an inverted document list, which contains a list of DocIDs representing the documents in which

the term occurs; and for each DocID, there is a corresponding (normalised) score that indicates
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the within-document tf of the term; moreover, the lists have been sorted in descending order by

tf. The inverted document lists are illustrated in Figure 4.1. Assuming summation is applied as

the aggregate function, try to retrieve the top k documents from the lists where k = 2, and stop

the process as soon as possible.

Term = “hybrid”
pos PC(t|d) DocID

1 0.9 d78
2 0.8 d23
3 0.8 d10
4 0.4 d1
5 0.2 d88
6 0.2 d14
7 0.2 d25
8 0.1 d83
9 0.1 d17

. . .

(a) List One

Term = “car”
pos PC(t|d) DocID

1 0.8 d64
2 0.8 d23
3 0.7 d10
4 0.7 d1
5 0.3 d25
6 0.2 d45
7 0.2 d14
8 0.1 d12
9 0.1 d78

. . .

(b) List Two

Term = “fuel”
pos PC(t|d) DocID

1 0.9 d10
2 0.9 d78
3 0.8 d64
4 0.2 d99
5 0.1 d34
6 0.1 d22
7 0.05 d18
8 0.05 d35
9 0.02 d67

. . .

(c) List Three

Figure 4.1: Sorted lists of probabilities

Example 4.2.1 specifies a 2-dimensional space of two domains, i.e. D ⊆ Dt ×Dd , where Dt

represents a domain of terms (i.e. keywords) while Dd stands for a domains of documents. The

result should contain two documents (DocIDs) with the highest similarity score of sim(q,d).

A naive way to answer the query in the above example is to process all lists and obtain a list of

documents with aggregated scores, then sort the list of documents in descending order according

to their aggregated scores, and then select the two documents at the highest two positions from

the list. Apparently, such naive method fails to meet the requirement “stop the process as soon

as possible”, and it is hardly scalable if the size of input lists are very large. Notice that the

input lists have already been organised in certain order, therefore, sophisticated algorithms have

been designed to take advantage of sorted input lists so that to achieve more efficient ways for

processing top-k queries. In the next section, we review a successful family of algorithms for

top-k processing, and demonstrate how these algorithms can handle queries such as the one in

Example 4.2.1.

4.2.3 Family of Threshold Algorithms

In this subsection, we review some well-known algorithms for on-the-fly top-k processing.

Some of the algorithms were originally proposed for database middleware systems for multi-

media applications, for example, the FA and the TA (see e.g. [Nepal and Ramakrishna, 1999,
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Güntzer et al., 2000, Fagin et al., 2001]); some were for cases where random accesses are either

impossible or expensive relative to sorted access such as for text retrieval, while NRA and a com-

bined algorithm (CA) of NRA and TA were introduced (see e.g. [Fagin et al., 2003b]); and some

were designated for IR applications such as XML retrieval, for instance, approximate top-k with

probabilistic guarantees and IO-Top-k (e.g. see [Theobald et al., 2004, Theobald et al., 2005b,

Bast et al., 2006]).

Fagin’s Algorithm First of all, the FA can be described as the following steps:

1. Do sorted assess in parallel to each of the m sorted lists `i, aggregate the tuple weights of

the same items, continue the process until for each of the m lists there are at least k items

have been seen, meanwhile bookkeeping for candidates would be performed;

2. For each of the k candidates, assuming an arbitrary item τ has been seen in lists L= {`i},

do random access to lists L= {` j} (where ∀` j ∈ E(τ,L), ` j 6∈ E(τ,L)) to retrieve the tuple

weights of item τ and aggregate the score for s(τ);

3. Return the top k items that their scores, and then FA halts;

In general, FA separates the process into two phases, the first phase does sorted access only,

while the second phase does random access only.

Threshold Algorithm Different from FA, TA interleaves SA and RA, so that The algorithm is

described as follows:

1. Do sorted assess in parallel to each of the m sorted lists `i where i = 1, . . . ,m. Once an

item τ is seen under sorted access in a list, do random access to other lists and aggregate

the tuple weights of the item for s(τ). Keep the item’s identifier to bookkeeper;

2. If the number of top candidates is less than top k limit, then add the item to candidates;

otherwise, if the item’s final score is greater than the minimum score of candidates, then

replace the minimum candidate by the item;

3. While sorted access is at position j of the m sorted lists, compute the upper bound

score (threshold) of unseen items as sunseen(p j) = ∑
m
i=1 shigh(`i, p j). Stop sorted access

if sunseen(p j) is less than the minimum score of top k candidates;

4. Return the top k items and their score, and then TA halts;
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To demonstrate the algorithm, we use Example 4.2.1 and explain the process. Because SA

would be performed in parallel, in other words, TA visits each list in a round-robin manner and

retrieves an item at the same relative position from a list. For explanation, the pseudo codes of

TA is given in Figure 4.2.

Algorithm: TA
Input: Multiple sorted lists
Output: A list of top-k items with highest aggregated scores

1 begin
2 s e t i t e r = 0 ; /∗ i n i t i a l i s e s o r t e d a c c e s s i t e r a t o r ∗ /
3 s e t uppe r = 0 ; /∗ i n i t i a l i s e upper bound ∗ /
4 s e t s een = new HashTable ( ) ; /∗ s een t u p l e s ∗ /
5 s e t c a n d i d a t e s = new P a i r L i s t ( t u p l e , s c o r e ) ; /∗ t o p c a n d i d a t e s ∗ /
6 foreach l i s t in l i s t s
7 /∗ do s o r t e d a c c e s s on l i s t ∗ /
8 i t em = l i s t [ i t e r ]−> t u p l e ;
9 upper += i tem−>we ig h t ;

10 i f seen−>C o n t a i n s ( i t em ) i s f a l s e
11 seen−>Add ( i t em ) ;
12 seen [ i t em]−> s c o r e = i tem−>we ig h t ;
13 e n d i f

15 /∗ do random a c c e s s f o r i t e m t o a l l o t h e r l i s t s ∗ /
16 foreach o t h e r L i s t in l i s t s where o t h e r L i s t i s n o t e q u a l l i s t
17 seen [ i t em]−> s c o r e += o t h e r L i s t [ i t e r ]−>we ig h t ; /∗ a g g r e g a t e ∗ /
18 endforeach

20 /∗ up da t e t h e lower bound o f t o p c a n d i d a t e s ∗ /
21 i f c a n d i d a t e s−>Count i s l e s s t h a n l i m i t
22 c a n d i d a t e s−>Add ( i tem , seen [ i t em]−> s c o r e ) ;
23 e l s e i f s een [ i t em]−> s c o r e i s g r e a t e r t h a n c a n d i d a t e s−>MinScore
24 c a n d i d a t e s−>ReplaceMinI tem ( i t em ) ;
25 e n d i f

27 /∗ up da t e s o r t e d a c c e s s p r o p e r t i e s or t e r m i n a t e TA ∗ /
28 i f uppe r i s l e s s t h a n c a n d i d a t e s−>MinScore
29 break ; /∗ done ∗ /
30 e l s e
31 upper = 0 ; /∗ r e s e t upper bound o f unseen i t e m s ∗ /
32 i t e r ++; /∗ move down s o r t e d a c c e s s i t e r a t o r ∗ /
33 e n d i f
34 endforeach
35 re turn c a n d i d a t e s ;
36 end

Figure 4.2: Threshold Algorithm

Here query terms “hybrid” “car” and “fuel” correspond to lists one, two and three respec-

tively. In the first round, the process sorted accesses items at position 1 of every lists. For

instance, “d78” is retrieved from list one, and then random accesses would be issued to lists two



4.2. Background 136

and three to retrieve the tuple weights of “d78” on these lists, so the aggregated score of “d78”

is computed as s(d78) = 0.9 + 0.1 + 0.9 = 1.9. Similarly, “d64” and “d10” would be retrieved

in the same manner and their scores could be obtained, which are s(d64) = 0.8 + 0.8 = 1.6 and

s(d10) = 0.8 + 0.7 + 0.9 = 2.4. Moreover, the process also computes the upper bound of the

achievable score at position 1, which is sunseen(1) = 0.9 + 0.8 + 0.9 = 2.6. After the first round,

the top 2 candidates are “d10” and “d78” so that they would be kept in memory; whereas for

“d64”, because its score cannot be greater than the minimum top item that has been seen so far,

so that it can be discarded since now. Meanwhile, because the upper bound of unseen scores is

greater than the lower bound of the current top 2 items, thus the process will be continued.

Similar procedures are repeated till the fourth round while SA is retrieving the lists at position

4, where the upper bound of unseen scores is sunseen(4) = 0.4+0.7+0.2 = 1.3, which is less than

the lower bound of the top candidates, i.e. s(d78) = 1.9. In other words, the aggregated scores

of remaining items cannot exceed the lower bound of the current top candidates, so that the top

2 items have been obtained by now and TA halts.

No Random Access and Combined Algorithm In the cases where random accesses are impos-

sible or too expensive to be performed, [Fagin et al., 2003b] introduced no random access (NRA)

for such situations. In fact, this is a very common situation in dedicated IR systems, where in-

dexed terms (keywords) may associate to very long posting lists (of inverted documents), in

which RA could be either impossible or impractical.

Informally, a no random access algorithm can be described as follows1:

1. Do sorted assess in parallel to each of the m sorted lists `i where i = 1, . . . ,m. For each seen

item τ , first remember the list `i where τ was discovered into E(τ,L), and then compute

(or aggregate) two scores of τ , i.e. a) sworst(τ), and b) sbest(τ) (see Section 4.2.1). In

addition, also calculate the upper bound at position p for aggregated scores of unseen

items sunseen(p);

2. Keep SA until the following situation appears: there are at least k items whose sworst(τ)

are the highest scores, and minimum sworst(τ) is greater than the sbest(τ) of an item which

has not yet been considered as the top k candidates but its sbest(τ) is the maximum score

among the seen-but-not-candidate items. Stop the scanning process;
1Note that our description is based on our understanding and we considered its feasible for the set-

tings of IR applications, but it may be slightly different from the original description that introduced
in [Fagin et al., 2003b].
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3. Return the top k candidates and their score, and then NRA halts;

In the worst case, NRA has to scan the entire lists in order to deliver the top-k items.

On the other hand, in cases while RA is not impossible but relatively expensive than SA,

[Fagin et al., 2003b] suggested a combined algorithm that balances the usage of SA and RA. In

short, cost models are applied to estimate the costs of sorted accesses and random accesses, for

example, let cS be the cost of SA and let cR be the cost of RA, compute a ratio h = bcR/cSc,

so that h is the number of rounds for sorted access to be performed, and then random accesses

would be deployed for selective top k items to discovered required s(τ, `i) where `i 6∈ E(τ,L)

before RA rounds.

Moreover, the pseudo codes of NRA algorithm is given in Figure 4.3.

Approximate Top-k Processing with Probabilistic Guarantees If we consider the previous

algorithms (i.e. FA, TA, NRA and CA) as exact top-k algorithms, which means they would

retrieve “exactly top-k” results for queries while certain k limits are specified. On the other hand,

IR applications are usually less concern about the exact limits of k results, but they would prefer

to retrieve approximate k (or k percent of all) results instead. That is because a basic idea of IR

models is to estimate the similarities between information items and queries, hence the accuracy

of retrieved results is heuristic anyway.

Based on similar consideration, [Theobald et al., 2004] suggested that the aforementioned

TA and its variants are overly conservative with regards to stopping criteria. On the contrary,

[Theobald et al., 2004] proposed applying SA only algorithms while stopping top-k processes

based on the distributions of tuple (data item) weights, in which the terminating point of a pro-

cess would be estimated by probabilistic score prediction. In this method, the lower bound of

top k candidates could be approximated by dynamic programming or histogram. In addition,

an XML retrieval system named TopX [Theobald et al., 2005b] was developed by applying the

approximate top-k mechanisms with probabilistic guarantees.

Top-k Query Optimizations Based on Scheduling Since the data accessing methods of TA

related algorithms must involve sequential (sorted) accesses, and random accesses might be ap-

plied depending on availability or cost. Therefore, when RA is allowed, the optimization issues

for top-k processing becomes a scheduling problem for balancing SA and RA.

In [Bast et al., 2006], the authors of the work took an integrated view of the scheduling issues

for IR-style long posting lists, where (scheduling) strategies based on a Knapsack-related opti-
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Algorithm: NRA
Input: Multiple sorted lists
Output: A list of top-k items with highest aggregated scores

1 begin
2 s e t i t e r = 0 ; /∗ i n i t i a l i s e s o r t e d a c c e s s i t e r a t o r ∗ /
3 s e t uppe r = 0 ; /∗ i n i t i a l i s e upper bound ∗ /
4 s e t s een = new HashTable ( ) ; /∗ s een t u p l e s ∗ /
5 s e t c a n d i d a t e s = new P a i r L i s t ( t u p l e , s c o r e ) ; /∗ t o p c a n d i d a t e s ∗ /
6 foreach l i s t in l i s t s
7 /∗ do s o r t e d a c c e s s on l i s t ∗ /
8 i t em = l i s t [ i t e r ]−> t u p l e ;
9 upper += i tem−>we ig h t ;

10 i f seen−>C o n t a i n s ( i t em ) i s f a l s e
11 seen−>Add ( i t em ) ;
12 seen [ i t em]−>w o r s t S c o r e = i tem−>we ig h t ;
13 e l s e
14 seen [ i t em]−>w o r s t S c o r e += i tem−>we ig h t ;
15 e n d i f
16 seen [ i t em]−>seenFromLis t−>Add ( l i s t ) ;

18 /∗ compute t h e upper bound o f c u r r e n t i t e m ∗ /
19 seen [ i t em]−>b e s t S c o r e = 0 ;
20 foreach o t h e r L i s t in l i s t s where s een [ i t em]−>seenFromLis t−>

C o n t a i n s ( o t h e r L i s t ) i s f a l s e
21 seen [ i t em]−>b e s t S c o r e += o t h e r L i s t [ i t e r ]−>we ig h t ;
22 endforeach
23 seen [ i t em]−>b e s t S c o r e += seen [ i t em]−>w o r s t S c o r e ;

25 /∗ up da t e t h e lower bound o f t o p c a n d i d a t e s ∗ /
26 i f c a n d i d a t e s−>Count i s l e s s t h a n l i m i t
27 c a n d i d a t e s−>Add ( i tem , seen [ i t em]−>w o r s t S c o r e ) ;
28 e l s e i f s een [ i t em]−>w o r s t S c o r e i s g r e a t e r t h a n c a n d i d a t e s−>

MinScore
29 c a n d i d a t e s−>ReplaceMinI tem ( i t em ) ;
30 e n d i f

32 /∗ up da t e s o r t e d a c c e s s p r o p e r t i e s or t e r m i n a t e NRA ∗ /
33 i f uppe r i s l e s s t h a n c a n d i d a t e s−>MinScore
34 break ; /∗ done ∗ /
35 e l s e i f foreach c a n d i d a t e in c a n d i d a t e s where c a n d i d a t e−>

seenFromLis t−>c o u n t i s e q u a l l i s t s −>c o u n t
36 break ; /∗ done ∗ /
37 e l s e
38 upper = 0 ; /∗ r e s e t upper bound o f unseen i t e m s ∗ /
39 i t e r ++; /∗ move down s o r t e d a c c e s s i t e r a t o r ∗ /
40 e n d i f
41 endforeach
42 re turn c a n d i d a t e s ;
43 end

Figure 4.3: No Random Access Algorithm
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mization for sequential accesses and a cost model for random accesses were developed, which

are shown to be outperformed than other less sophisticated scheduling methods.

The basic idea of the a scheduling scenario introduced by [Bast et al., 2006] may be sum-

marise in short as follows:

1. Employ CA-like top-k algorithm, and start with sorted accesses to all lists at the beginning;

2. After a few rounds of SA and based on the yet have seen top candidates, stop sorted

accessing on some lists but only continue SAs on the selected lists;

3. Continue dedicated SAs for the most likely top candidates while keep estimating the ac-

cessing costs of SA and RA based on a cost model and be ready to switch: for a top

candidate, while the estimated cost of RA is less than SA, stop SA and perform RA to

retrieve the remaining weights;

4. The process halts after RA rounds.

We may also employ Example 4.2.1 to demonstrate the scheduling.

The process is similar to a conventional combined algorithm, where SAs are performed to

the posting lists of query terms “hybrid” “car” and “fuel” in parallel and a round-robin manner,

while the lower and upper bounds of aggregated scores of every discovered items and the upper

bound of unseen items are computed. For instances, after the first round of sorted accesses, we

obtain 〈sworst(d78) = 0.9,sbest(d78) = 2.6〉, 〈sworst(d64) = 0.8,sbest(d64) = 2.6〉, 〈sworst(d10) =

0.9,sbest(d10)〉, and the upper bound of unseen items at position 1 is sunseen(1) = 2.6.

After four rounds of SA, the seen items and their worst and best scores are (in

3-tuple 〈DocId,sworst ,sbest〉): 〈d10,2.4,2.4〉, 〈d78,1.8,2.5〉, 〈d64,1.6,2.0〉, 〈d23,1.6,1.8〉,

〈d1,1.1,1.3〉, 〈d99,0.2,1.3〉; and the upper bound of unseen items are sunseen(4) = 1.3. Be-

cause on the list three (i.e. the posting list of “fuel”), the tuple weight drops dramatically, hence

a judiciously scheduling strategy may decide to stop scanning on this list. In addition, because

the highest scored item is d10, which has been seen in all lists; and the second largest item is

d78, which has not yet been seen in the list two only. Therefore, a scheduled SA may perform

a few more steps on the list two; and if it still has not been seen after the additional SA, then

an RA will be performed to retrieve the score. In the end, the process is able to find the top 2

items 〈d10,2.4〉 and 〈d78,1.9〉 while saving considerable costs on sorted accesses and random

accesses.
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4.2.4 Pipelined Top-k Operators in Relational Databases

Apart from the studies of algorithms, another line of research regarding top-k processing focus

on engine level integration of top-k operators within relational databases. One of the purposes of

such tight coupling approaches is to support pipelining in query processing (e.g. see []), which

is a widely used technique in modern database systems for minimising retrieval response time.

Previous research include new physical operators (e.g. Rank-Join [Ilyas et al., 2003] and ranking

aggregate [Li et al., 2006]), rank-oriented logical algebra (e.g. [Li et al., 2005]), and rank-aware

optimization (e.g. [Ilyas et al., 2004] and [Li et al., 2005]).

In [Ilyas et al., 2003], the authors introduced a Rank-Join algorithm and a physical imple-

mentation Hash Rank-Join Operator (HRJN) based on this algorithm. The Rank-Join algorithm

is similar to NRA [Fagin et al., 2003b] in a way that both algorithms perform only sorted access

to get tuples from each data sources, while Rank-Join is different from NRA that it maintains the

scores of the completely seen join combinations only, whereas NRA also maintains incomplete

scores of partially seen tuples. As a result, the Rank-Join algorithm reports exact scores, whereas

the NRA reports bounds on tuples’ scores. With regard to implementation, the HRJN is a vari-

ant of Ripple Join (e.g. see [Haas and Hellerstein, 1999]) that utilises two hash tables on both

inputs and a priority queue, therefore it can be interleaved with other conventional operators in

relational databases.

Other examples of pipelined top-k join operators include the NRA-RJ opera-

tor [Ilyas et al., 2002], and the J∗ algorithm [Natsev et al., 2001].

In addition to physical join operators, aggregation is another operation that could be involved

in rank-oriented execution plan. For example in [Li et al., 2006], the work studies rank-aware

query operators work under top-k aggregation, in which introduces two fundamental principles:

one is Group-Ranking, and the other is Tuple-Ranking. The Group-Ranking principle dictates

the order in which groups are probed during top-k processing. In short, during a procedure of

incremental consuming tuples from the groups, some groups that are prioritised if they are more

likely to achieve possible maximum aggregate values, and some groups could be excluded at

some points if their chances for being in top groups are unlikely. Moreover, the Tuple-Ranking

principle dictates the order in which tuples should be accessed from each group, where tuples are

chosen based on tuple orders.

To reflect the ranking requirements in a query algebra, the RankSQL is proposed in
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[Li et al., 2005] that views the ranking of queries as a logical property, similar to the conven-

tional membership property. RankSQL extends traditional relational algebra by interleaving

ranking into relational operators such that the orders of intermediate relations are considered.

In addition, the work introduces logical query optimization for the algebra, which extends con-

ventional dynamic programming plan enumeration algorithm, where the order property is taken

into account in addition to the membership property as enumeration dimensions.

While treating ranking requirements as a physical property of query execution plan, previ-

ous work in [Ilyas et al., 2006, Ilyas et al., 2004] study rank-aware query optimization, in which

interesting physical order (such as join order) and cost estimation for execution plans using con-

ventional operators or rank-aware operators are investigated.

It is worth mentioning that the TIP technique shares the same perspective with the above tech-

niques, the difference is that the previous studies mainly focused on score aggregation, whereas

TIP not only considers score/probability aggregation but also takes into account probability esti-

mation.

4.2.5 Other Related Work

A recent survey [Ilyas et al., 2008] summarises a wide range of top-k processing techniques,

which also introduces a taxonomy to classify related techniques based on multiple design di-

mensions including query model, data access methods, implementation level, data and query

uncertainty, and ranking function. Accordingly, our previous discussions on generic algorithms

and pipelined operators cover the mostly featured techniques of top-k processing that relate to the

TIP technique, while there are some other related work are also interesting and worth mentioning.

While top-k processing methods are implemented at middleware level, the techniques can be

classified into Filter-Restart methods and Indexes/Materialised Views methods.

Filter-Restart techniques limits the number of retrieved results which formulate top-k queries

as range selections queries, where the limitation is indicated by an estimated cut-off thresh-

old. Incorrect estimation of cut-off threshold leads to either insufficient answers or too

many answers. A probabilistic approach to estimate cut-off threshold was proposed in

[Donjerkovic and Ramakrishnan, 1999], where a top-k query based on an attribute X is mapped

into a selection predicate σX>T , where T is the estimated cut-off threshold. Another exam-

ple [Xin et al., 2006b] introduces a ranking cube approach.

Different from the DB’s approaches that apply dynamic estimation, the problem of cut-off
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threshold is studied as static index pruning techniques in information retrieval systems. For

example, see [Soffer et al., 2001, Büttcher and Clarke, 2006, de Moura et al., 2005].

On the other hand, techniques to utilise specialised indexes and materialised views were

proposed to improve query response time where extra storage are relatively inexpensive. Exam-

ples of specialised top-k indexes such as the Onion indices [Chang et al., 2000, Xin et al., 2006a]

and the Ranked Join indices [Tsaparas et al., 2003]. Moreover, research studied deploying

materialised views for top-k processing, which provide efficient assess to scoring and order-

ing information that is expensive to gather at runtime, for example in [Hristidis et al., 2001,

Hristidis and Papakonstantinou, 2004], and in [Das et al., 2006].

In addition, top-k processing methods have been studied in the contexts of specific applying

fields.

For instance, the Upper and Pick algorithms [Bruno et al., 2002, Marian et al., 2004] are pro-

posed in the context of Web-accessible sources, such processing methods belong to the category

applying sorted access with controlled probes, which assume that at least one source provides

sorted access, while random accesses are performed only when necessary. Moreover, controlling

the number of random accesses is necessary for efficient query processing, which can be achieved

by optimizing the number of times the ranking predicates are invoked. Related efforts have

been discussed in [Chang and won Hwang, 2002] and [won Hwang and Chang, 2007], which in-

troduced a Minimal Probing (MPro) algorithm that adopts a concept of “necessary probes” to

minimise the predicate evaluation cost.

For another instance, top-k processing in XML data has gained more attention from both DB

and IR communities, examples include the TopX system [Theobald et al., 2005b], the XRank

system [Guo et al., 2003], and [Marian et al., 2005].

Furthermore, applying parallel and distributed computing for very large data to improve effi-

ciency and scalability of query processing becomes more and more popular, hence the methods

for calculating top-k queries over distributed networks have been also studied, for example, see

[Cao and Wang, 2004, Yu et al., 2005].

Finally, most earlier work focus on minimising the processing costs to reach a target result

quality, while a recent work [Shmueli-Scheuer et al., 2009] tried to tackle a different top-k prob-

lem where query processing is given a limited budget in terms of time or access costs. Such

consideration could become more and more popular while mobile applications and real-time
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analytics keep increasing fast.

4.3 Top-k Incorporated Pipeline

In this section, we discuss and investigate the issues relate to integrated top-k mechanisms into a

pipelined query execution engine of IR+DB system. First of all, we introduce the preliminaries

of query evaluation and execution with respects to common forms of queries, designs of physical

operators, and pipelined execution plans. And then, we address a conceptual design of top-

k incorporated pipeline (TIP) that intends to incorporate top-k algorithms into query execution

plan. Then next, we propose a method for estimating the performances tradeoff with regards to

efficiency and effectiveness and we investigate several strategies for NRA-style top-k methods.

4.3.1 Preliminary of Execution Plan in Databases and IR+DB Systems

4.3.1.1 Common Query Block

In conventional databases, a typical query block usually consists of selections, projections and

joins, which is called Select-Project-Join (SPJ) queries; while a complex DB query may be

composed by multiple SPJ queries.

Let RX and RY be two relations whose schema (i.e. a list of attribute names) are X and Y

respectively; and let X be an arbitrary header (i.e. a list of attributes) for conditions or projections,

where X⊆ X. Then a SPJ query is given in a form as follow:

ΠX∪Y(RX ./XΘY RY)

Because selections (come from join conditions) and projections could be pushed into a join,

so that a SPJ query can be actually written as the following algebraic expression:

ΠX(σxΘX(RX)) ./XΘY ΠY(σyΘY(RY))

Moreover, multiple SPJ query blocks can be further combined by join operations.

Similarly, while writing queries in PRA (see Chapter 2) for modelling scoring functions or

ranking models, there is also a common form of query blocks: because probability estimation and

aggregation are two basic operations for yielding ranked results with scores (including weights

and probabilities), hence we call each PRA query block as a Select-Estimate-Aggregate (SEA)
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query.

Both probability estimation and aggregation are composed operations: usually, a PRA ex-

pression for probability estimation can be formulated in a patterned expression Project-Bayes,

while for probability estimation one can be written in a pattern using Project-Join.

Let ε be a probability estimation operator, for instance, the Bayes operator in PRA, and let

the other notations and settings the same as those for SPJ queries, then a SEA is given as follow:

ΠX∪Y(εX(RX) ./XΘY εY(RY))

Similarly to SPJ query, an alternative formulation of a SEA query can be also written by:

ΠX(εX(σxΘX(RX))) ./XΘY ΠY(εY(σyΘY(RY)))

To combine or aggregate SEA queries, we may employ multiple join or union operations.

Since complex queries can be always divided into sub-queries formed by common query

blocks, therefore, with regards to queries we always mean SEA queries in our later discussions.

4.3.1.2 Physical Operators and Pipelined Execution Plan

In traditional databases and IR+DB systems built from scratch, physical operators are the im-

plementations of logical operators (of logical algebra), where the relationships between physical

and logical operators are relationships of many-to-one mappings (e.g. see [Graefe, 1993]).

An execution plan is a sequence of physical operators, where a physical operator consists

of one or more elementary operations. If we denote an elementary operation as EOP (i.e. El-

ementary Operator), then an operation in an execution plan can be categorised into one of the

following three classes (see e.g. [Golfarelli et al., 2002]), which depends on its relationship with

other operations:

• Starter: EOP→, which delivers output to other physical operations;

• Linker:→EOP→, which receives and consumes input from other operations, and delivers

output to other operations;

• Terminator: → EOP, which receives input and consumes from other operations.

An operator that consists of more than one elementary operations is denoted by a set of EOPs,
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i.e. (EOP1,EOP2, . . . ,EOPn), in which elementary operations would be executed in a sequential

order.

Because intermediate results are passed from one operator to another one, hence an execution

plan can be viewed as a pipeline of processes (i.e. operators) and intermediate or final results (i.e.

data). Furthermore, some operators may be tuned to deliver (partial) intermediate results as soon

as possible, and in such case an execution plan is called a pipelined plan.

4.3.2 Conceptual Design of TIP

For now let us discuss the design of top-k incorporated pipeline for query execution plan. Al-

though to implement a practical TIP processor requires substantial engineering efforts, however,

it is worthy of discussions on a conceptual and algorithmic level of TIP. Here we investigate two

aspects: first, what physical operators are involved; and second, how top-k algorithms can be

incorporated into an execution plan.

4.3.2.1 Physical Operators

Based on the previous discussions about SEA query (see Section 4.3.1), we propose three (classes

of) physical operators: index access for selection, probability estimator for probability estima-

tion, and probability aggregator for probability aggregation.

Index Access An index could be accessed in two modes. Operator XS stands for index scan

and corresponds to sequential access mode, which could be deployed for retrieving tuples (or

data items) in the posting lists of an index; in addition, if the posting lists of an index are sorted

by certain weights, then XS is the operation should be called to perform sorted access to a lists of

tuples. This is a starter operator in an execution plan, and it can be formulated as follow:

XS(index)→{(τ,weight)}

which means by given a certain index, XS retrieves a set of weighted tuples of τ .

In addition, operator XRA is proposed to allow random access functionality. Different from

XS, XRA requires an accessing key in order to retrieve a weighted tuple from a given index. As a

result, this is a linker operator in an execution plan, and the operator is given as follow:

key→ XRA(index)→ (τ,weight)
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Note that a given index must support random access so that XRA can be deployed.

Probability Estimator Probabilistic tuples are generated from unweighted tuples or tuples with

different kind of weightings, while the process is performed by physical probability estimators

denoted by PE, in which certain estimation model is applied. A general form of an operator-data

pipeline of PE is given as follow:

{(τX,weight)}→ PE(model)→{(τX,score)}

For instance, an PE could be an assembly of the physical implementations of Bayes and

Project operators such as follow:

{(τX,weight)}→ (Bayes,Pro ject)→{(τX,score)}

In addition, an implementation of PE may be designed to take more than one inputs data

streams such as follow:

({(τX1 ,weight)}, . . . ,{(τXn ,weight)})→ PE(model)→{(τX′ ,score)}

where in the above case, X
′ ⊆ X1 ∪ . . .∪ Xn, and an probability estimation process could

incorporate top-k mechanisms to delivery probabilistic results as soon as possible.

Probability Aggregator Different from probability estimator which is used to assign initial

probabilities to tuples, probability aggregator or PA removes duplicate tuples that contain the

same (attribute) values and aggregate the probabilities of duplicate tuples in certain ways based

on given probabilistic assumptions; while similarly to PE, an aggregation model (or method)

should be given to a PA. The operator-data pipeline is demonstrated as follow:

({(τX1 ,weight)}, . . . ,{(τXn ,weight)})→ PA(model)→ (τX′ ,score)

where X
′ ⊆ X1∪ . . .∪Xn. For instance, a PA could be assembled by a combined operations

of Join and Project such as follow:

({(τX1 , . . . ,weight)}, . . . ,{(τXn ,weight)})→ (Join,Pro ject)→ (τX′ ,score)
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Without loss of generality, one may expect the implementation of join are based on one of the

existing algorithms such as nested-loop-join or hash join while applying suitable top-k methods

4.3.2.2 Incorporating Top-k Algorithms

As we have mentioned (see Section 4.3.1), scoring functions or ranking models can be composed

in a SEA query or a combination of multiple SEA queries in an IR+DB system. This is different

from a conventional middleware architecture, where the entire middleware layer is indeed a com-

plicated probability aggregator, while probability estimator could be either hard-coded as part of

the probability aggregator or it is not necessary at all, because the probabilities of data items (e.g.

tf and idf ) have already been calculated materialised during indexing.

The basic idea to incorporate top-k algorithms into a pipelined procedures of query execution

is to allow top-k mechanisms in SEA query blocks so that flexibility remains (because scoring

functions can be still implemented in high-levelled abstraction languages such as PRA or proba-

bilistic Datalog [Fuhr, 2000], also see Section 2.5.2) while improving the efficiency of an IR+DB

system.

Let us use an example shown in Figure 4.4 to illustrate and explain the concept of top-

k incorporated pipeline.

Figure 4.4a illustrates an execution sub-tree, in which a probability estimator (i.e. PE) takes

two index accessing operators (i.e. XA) for retrievals from a posting list of document length and a

posting list of within-document term count. While the output of PE are tuples with probabilistic

weightings of P(t|d), i.e. the within-document term frequency. Note that both posting lists store

statistics based on raw term weight: the list of document length is sorted in ascending order,

while the list of within-document term count is sorted in descending order. The PE estimates

the probabilities of tuples by a given function, which is by Formula 2.28 (see page 55, also see

Section 2.5.2.1) in this case.

The main problem of top-k incorporated PE is that the accessed data have multiple dimen-

sions while the tuple weights of a candidate must be able to be accessed by PE from all dimen-

sions, otherwise the final score of a seen item cannot be computed. For instance, the weightings

of document length and the weightings of within-document term count belong to two different

dimensions, and the P(t|d) score of an item can be yielded if and only if the tuple weights of the

items are seen from both lists. As a result, if random accesses are available for both lists, then the

original TA may be adapted to PE; however, if only sorted accesses are allowed, then an RNA
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(a) Probability estimation with top-k adapted (b) Probability aggregation with top-k adapted

(c) Pipelined execution plan for SEA query

Figure 4.4: Top-k incorporated pipeline
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algorithm may still be adapted but the final scores of top candidates would be approximate.

Figure 4.4b illustrates a probability aggregator (i.e. PA) aggregates the intermediate results

yielded by PE which are grouped by the attribute values of terms (i.e. keywords). In this case, a

physical implementation of PA could perform the two steps:

1. For every terms (or keywords), request PE for a list of top candidates;

2. Aggregate the top candidates of every terms (or keywords) by the values of another at-

tribute, for example, the document IDs (DocID).

Finally, figure 4.4c illustrates an example of how XA, PE and PA (or conventional aggregation

AG) may form a SEA execution plan tree.

In a top-k incorporated pipeline, one crucial problem to be investigated is that when

a pipelined top-k SEA query yields exact top-k results and when a query yields only ap-

proximate results. The same consideration have been addressed in [Ilyas et al., 2003] and

[Theobald et al., 2005a]. In general, if a SEA query block is not embedded with another SEA

query block, then performing top-k processing for the SEA query yields exact top-k results. This

is because a PE delivers exact top-k results (note that its bound XA is supporting random ac-

cess), and a onward PA implements similar algorithms as the Rank-Join [Ilyas et al., 2003] and

the Rank-Aggregate [Li et al., 2006], which always computes scores/probabilities based on com-

pletely seen tuples’ combinations. Therefore, top-k processing on non-nested SEA query blocks

yields exact top-k results. On the other hand, if a SEA query is embedded with another SEA

query, i.e. an outer SEA query uses the output of an inner SEA query, then performing top-k pro-

cessing for the query yields only approximate results. This is because the probability estimator

PE in the outer SEA cannot yield exact results based on a partial intermediate relation. A poten-

tial solution to improve retrieval precision for top-k processing on nested SEA queries could be

increasing top-k budgets (see next Section 4.3.3) in the inner SEA query blocks.

4.3.3 An Investigation of Performances Tradeoff of NRA-Style Top-k Strategies

Here we introduce a concept of ideal performances tradeoff measurement, which helps to esti-

mate the tradeoff point of efficiency versus effectiveness. In addition, we simulate NRA-style

top-k strategies using PD and PRA, where we investigate the effect of different strategies which

allot budget constraints (e.g. see [Shmueli-Scheuer et al., 2009]) for sorted accesses from posting

lists.
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4.3.3.1 Ideal Performances Tradeoff Measurement

While applying top-k mechanisms to speed-up query processing for IR applications, the tradeoff

of efficiency versus effectiveness is an important measurement that is used to estimate and bal-

ance the losses of retrieval quality and the gains of response time. In previous work, for instance,

[Hawking, 1998], graphs of time and effectiveness are plotted against optimization methods (e.g.

top-k methods in used), and then by inspecting the graphs, an optimum tradeoff point can be

selected. The method was used for measuring document retrieval, while similar studies had

also been carried out for XML retrieval. For example, [Fuhr and Gövert, 2006] investigated the

tradeoff for interactive XML retrieval while focusing on effectiveness, where retrieval qualities

for those processes with and without top-k mechanisms were compared against the retrieval re-

sponse time (measured or predicted).

Notice that the tradeoff point of efficiency against effectiveness was estimated by “inspec-

tion” in the previous studies, where effectiveness was assessed and then plotted on certain time

span. On the other hand, the studies about tradeoff in the previous work were based on empirical

experiments without formal definitions, but it would be highly intriguing to have a comprehensive

formulation for performance tradeoff.

Though we realise the difficulties of formally defining the efficiency and effectiveness trade-

off, but it is still reasonable to discuss a theoretically comprehensive formulation. Here, we

propose a formulation defining the tradeoff of precision versus retrieval time for a given query,

which is given as follow:

IPT (q) :=
Precisiontop(q,k)

Precisionall(q)
· log

(
Timeall(q)

Timetop(q,k)

)
(4.1)

In Formula 4.1, IPT (q) stands for ideal performances tradeoff of a query q, while the sub-

scriptions top and all indicates retrieval modes; in particular, a parameter k represents the limit of

the number of results to be retrieved in a top-k mode. The right hand side of the formula contains

two ratios. One is the ratio of precisions Precisiontop(q,k)
Precisionall(q)

, where Precisionall(q) is the optimal

precision that can be achieved and Precisiontop(q,k) is the precision achieved in top-k process-

ing, hence the ratio indicates the percentage of optimal precision. Similar measure has also been

used in [Shmueli-Scheuer et al., 2009]. The other one is the ratio of runtime Timeall(q)
Timetop(q,k)

, where

Timeall(q) is the runtime to achieve the optimal precision and Timetop(q,k) is the runtime of top-

k processing, thus the ratio represents the number of times that processing efficiency is speeded
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up. In other words, the precision ratio indicates effectiveness loss and the runtime ratio indicates

efficiency gains while running queries in top-k processing mode.

(a) Precision Ratio (b) Runtime vs. Retrieved Ratio (c) Runtime Ratio

(d) Logarithm over Runtime Ratio (e) IPT

Figure 4.5: Ratio and Ideal Performances Tradeoff

Moreover, let us discuss how the precision ratio and the runtime ratio should be interleaved

in order to represent the performance tradeoff IPT. Let precision to be defined as the ratio of

precision := |Ra|
|A| , where |A| stands for the number of retrieved results in the answer set, while

|Ra|means the number of relevant results in the answer set. Assuming a monitoring program can

compute the precision repeatedly at a constant interval during top-k retrieval. Let precision(t)

be the real-time precision at time t, and let δp = precision(ti)−precision(t j), where i− j = 1 be

the increment of a real-time precision in one interval. Empirical experiences show that precision

tends to increase relatively fast during early runtime and δp drops quickly towards zero until

precisiont reaches the optimal precision. Therefore, the precision ratio Precisiontop(q,k)
Precisionall(q)

can be

illustrated as Figure 4.5a. On the other hand, assuming the retrieval engine supports pipelined

delivery of results, then theoretically the number of results is in proportional to runtime, such

as it is shown in Figure 4.5b. In order words, the runtime ratio Timeall(q)
Timetop(q,k)

can be illustrated

as Figure 4.5c. However, the real-time precision does not approach the optimal precision in a

linear manner but in a logarithmic kind, thus such feature should be reflected from the runtime,

so that applying logarithm over the runtime ratio would be reasonable, which is illustrated in

Figure 4.5d, where the logarithm of runtime ratio decreases faster and faster when the ratio
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get closer to 1. Finally, the IPT could be obtained by multiplying the precision ratio and the

logarithmic runtime ratio. Note that while runtime increases, the precision ratio is a monotonic

increasing function with saturation at an optimal precision, and the logarithmic runtime ratio is

a monotonic decreasing function. As one can imagine, the IPT becomes negative when the top-

k runtime exceeds the runtime needed for achieving the optimal precision. To demonstrate, the

IPT could look like Figure 4.5e. In other words, the IPT illustrates the balance of precision gains

and runtime expenditures.

4.3.3.2 Modelling NRA-Style Top-k in Declarative Languages

In the previous discusses we have introduced modelling retrieval strategies in declarative lan-

guages such as probabilistic Datalog (PD) and probabilistic relational algebra (PRA) (see e.g.

Chapter 2, especially, Section 2.5.2). Here we discuss how to simulate NRA-style top-k queries

that composed in PD and PRA, and we demonstrate the modelling for tf -idf model (see Sec-

tion 2.2.2.1, also see Formula 2.1 in page 32).

wqterm ( T ,Q) :−
qterm ( T ,Q) & i d f ( T ) .

r e t r i e v e (D) :−
wqterm ( T ,Q) & t f ( T ,D) .

(a) PD rules

wqterm= P r o j e c t [ $Term , $Qid ] (
Join [ $Term=$Term ] ( qterm , i d f ) ) ;

r e t r i e v e = P r o j e c t SUM[ $DocId ] (
Join [ $Term=$Term ] ( wqterm , t f ) ) ;

(b) PRA expressions

Figure 4.6: PD and PRA for tf -idf model

A conventional modelling for tf -idf are illustrate in Figure 4.6b, where Figure 4.6a shows

a modelling in PD, while Figure 4.6b shows an equivalent translation (of PD) in PRA. For the

modelling in PRA, a join operation in the first expression assigns an idf(t) score to each query

term, and a projection is performed to yield a list of weighted query terms (i.e. wqterm). As-

suming a probability estimation for tf(t,d) has been done in advance and the intermediate results

are stored in a view (intensional relation) called t f , so that in the second PRA expression, where

a join for wqterm and t f not only combines the tuples of the two relations but also implies a

multiplication of idf(t) · tf(t,d), and then finally a projection is used to aggregate tf -idf scores of

different query terms.

To simulate NRA-style top-k strategy in PRA, an example is demonstrated in Figure 4.7. As

they are shown, budgets are specified in selection statements for query terms, which indicates the

maximum number of tuples (data items) is allowed to be retrieved from the associated posting

lists of query terms. Moreover, the union statements (i.e. Unite) generate an intermediate relation
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t e rm0 = S e l e c t [ $Term= ’ h y b r i d ’ ] ( t f ) : 1 0 0 0 ;
te rm1 = S e l e c t [ $Term= ’ c a r ’ ] ( t f ) : 1 5 0 0 ;
te rm2 = S e l e c t [ $Term= ’ f u e l ’ ] ( t f ) : 1 2 0 0 ;
t o p T f = term0 ;
t o p T f = Unite ALL( topTf , te rm1 ) ;
t o p T f = Unite ALL( topTf , te rm2 ) ;
r e t r i e v e = P r o j e c t SUM[ $DocId ] ( Join [ $Term=$Term ] ( wqterm , t o p T f ) ) ;

Figure 4.7: Simulating NRA-style top-k strategy in PRA

topTf, which contains the top candidates of relevant items of all query terms. And then finally,

only the top items are joined with wqterm which carrying the idf(t) scores, while an aggregation

for final scores will be performed as usual.

4.3.3.3 Allotting Strategies for Budgets

In previous subsection (see Section 4.3.2) we introduced SEA query and discussed the concept of

incorporating top-k mechanisms into this type of queries. In practice, a strategy developer (who

model scoring strategies in PD or PRA) wants to deploy top-k functionality in s/he’s queries,

s/he only needs to specify (explicitly or implicitly) a budget constraint for the final results; on

the other hand, to process a pipelined and top-k incorporated execution plan, the internal engine

should determine the local budget for sub-query plans.

Now let nbudget be a budget constraint for the final result, and let Nqterm be the number query

terms; then a naive strategy is to deploy directly the budget to every sub-queries, for example, to

the PE operations; hence, the actual total number of tuples to be retrieved is denoted as Nbudget ,

which is called global budget, and could be estimated as follow:

Nbudget = nbudget ·Nqterm (4.2)

Note that Nbudget is also the maximum number of tuples that need to be retrieved from storage,

while the actual number of tuples to be fetched could be less than that.

In fact, different strategies can be applied to allot local budgets of sub-queries, here we intro-

duce three allotment strategies based on either intuition or heuristic.

• Uniform allotment of budgets: intuitively, a global budget Nbudget is to be allotted evenly

among every query terms, where the allotment is given by Formula 4.3, in which top(q) is

the local budget of query term τq. This is equivalent to directly deploying the budget for

final result (i.e. nbudget) to individual sub-queries.
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top(τq) =
Nbudget

Nqterm
= nbudget (4.3)

• Static IDF-based allotment of budgets: heuristically, a global budget Nbudget can be allot-

ted among query terms based on their idf values, where the allotment is formulated by

Formula 4.4. As it is shown, the allotment for a query term τq is based on the proportion

of its idf value against the sum of the idf values of all query terms.

top(τq) = Nbudget ·
− logdf(τq)

∑
Nqterm
i=1 (− logdf(τi))

(4.4)

• Dynamic IDF-based allotment of budgets: also by heuristic, a dynamic version of the IDF-

based allotment for local budgets not only considers the idf values of individual query

terms, but also uses the up-to-date global budgets. In this strategy, assuming a local

budget top(τq) is assigned to query term τq, but the actual retrieved number of tuples

is f etched(τq) where f etched(τq)≤ top(τq), so for the next query term, the global budget

would reduced by removing the number of retrieved tuples m, i.e. ∑
m
i=1 f etched(τi). The

formulation of the allotment is given by Formula 4.5.

top(τq) =

(
Nbudget −

m

∑
j=1

f etched(τ j)

)
·

− logdf(τq)

∑
Nqterm
i=m+1 (− logdf(τi))

(4.5)

Furthermore, we can view each selection statement as a data source (i.e. the documents re-

trieved for a term); and then, the top-k processing strategy can be related to database selection.

e.g. see [Fuhr, 1999a, Fuhr, 1999b]. The idea of database selection is to consider more docu-

ments from data sources that are more likely to deliver relevant documents, since such strategies

would minimise the costs to find and read relevant documents. On the other hand, a reasonable

budgetary allotment strategy minimises the costs to achieve a retrieval quality close to what full

retrieval would deliver. The uniform budgetary allotment (see Formula 4.3) reflects a baseline

where no prior knowledge is available, while the IDF-based strategies (see Formula 4.4 and 4.5)

exploit the global term statistics.

Finally, the proposed allotment strategies share a similar goal with those budget-

aware scheduling strategies introduced in [Shmueli-Scheuer et al., 2009], while our work

are different from theirs in two main aspects. Firstly, the implementation level of
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[Shmueli-Scheuer et al., 2009] aims at middleware systems, whereas ours aims at query engine

supporting pipelining. Secondly, also as a result of the first aspect, the scheduling methods in

[Shmueli-Scheuer et al., 2009] consider both sorted access and random access, while random ac-

cess is unsuitable for pipelined operators, hence the proposed allotment strategies consider sorted

access only.

4.4 Experiments and Results

In this section, we present the experiments, which were designed for the following purposes:

• To demonstrate the tradeoff of efficiency versus effectiveness while applying NRA-style

top-k mechanisms in an IR+DB system;

• To demonstrate using ideal performances tradeoff (IPT) measurement for estimating the

tradeoff points of top-k processing;

• To evaluate the effectiveness of the introduced allotting strategies for internal budget as-

signments in pipelined query execution processes.

Next, we address the experimental specifications and results.

4.4.1 Specifications and Setup

Systems HySpirit [Fuhr and Roelleke, 1998, Fuhr et al., 1998, Rölleke et al., 2001] was used

as the experimental platform, which was hosted on a Linux server with the following specifica-

tions: Fedora 8 Linux 64 bits operating system, eight AMD Opteron2(TM) Dual-Core CPUs at

frequency 3.00 GHz, 32 GB of RAM. Note that HySpirit was neither optimized towards 64 bits

operating system nor parallel computing with multiple CPUs machine.

Test Collection TREC-3 were used as the testing collection and our experiments were run with

50 queries, i.e. topics 151-200, provided by TREC3. The original documents in TREC-3 were

parsed and stored in a DB-style relational table named TermDoc with data schema (Term,

DocID), while the data size of relation TermDoc is 5.0 GB. In addition, another table named

TermDocTF was produced that materialises the within-document term frequency weightings, i.e.

PC(t|d), of tuples, and the data of table TermDocTF is 3.88 GB. Examples of the two tables are

2Opteron is a trademark of Advanced Micro Devices, Inc..
3http://trec.nist.gov/
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illustrated in Figure 4.8 which shows the snapshots of the storage. In addition, indexes were built

on attribute Term.

1(torch,“AP890101-0001”)
1(generation,“AP890101-0001”)
1(filmmakers,“AP890101-0001”)
1(grew,“AP890101-0001”)
1(platoon,“AP890101-0001”)
1(running,“AP890101-0001”)
1(empty,“AP890101-0001”)
1(mississippi,“AP890101-0001”)
1(burning,“AP890101-0001”)

(a) TermDoc

0.00153374(passed,“AP890101-0001”)
0.00920245(platoon,“AP890101-0001”)
0.00613497(running,“AP890101-0001”)
0.00460123(burning,“AP890101-0001”)
0.00306748(brought,“AP890101-0001”)
0.00153374(passage,“AP890101-0001”)
0.00306748(believe,“AP890101-0001”)
0.01380370(vietnam,“AP890101-0001”)
0.00613497(people,“AP890101-0001”)

(b) TermDocTF

Figure 4.8: Snapshot of HySpirit storage for TREC-3 collection

Setup Experiments were set to run in batch mode for the 50 queries with tf -idf strategy, which

is modelled in PRA as it was discussed in Section 4.3.3.2. The baseline is a full retrieval run

without deploying top-k mechanisms, in which the retrieval time of the 50 queries were recorded,

and the retrieval results were assessed by TREC evaluation tool. In addition, Table 4.1 shows the

results of the baseline runs, including average retrieval time, mean average precision (MAP), and

precision at ten (P@10).

t (ms) MAP P@10

7003 0.1989 0.456

Table 4.1: Full run retrieval time vs. precision (baseline)

4.4.2 Methodology

For comparison, we investigate query processing in a TIP-style4 manner retrieval with HySpirit,

in which the simulating method is as described in Section 4.3.3.2, while the global budget allot-

ting strategies discussed in Section 4.3.3.3 would be investigated. The ratio of comparing values

recorded in a top-k run and a full retrieval run would be computed as rtop := vtop
vall

, so that the gain

or loss (GOLtop) of a top-k measurement could be obtained by GOLtop := 1− rtop.

Based on the settings of HySpirit, the posting lists of terms (keywords) were ordered by

document IDs (but not term-based statistics), and the experiments were set off in two groups. In

4Precisely, we simulate the conceptual design (see Section 4.3.2) of TIP with HySpirit.
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the first group, the global budgets were scaled from 1 000 to 10 000 tuples with one thousand

tuples per increment, where runtime (every queries and the average), MAP and P@10 were

recorded; meanwhile, the ideal performances tradeoff (IPT) (see Section 4.3.3.1) of each run

would be computed as well. In the second group, the global budgets were scaled from 10 000 to

50 000 tuples with ten thousand tuples per increment while the other settings remained the same.
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(c) IDFStatic 1k-10k runtime
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(d) IDFStatic 1k-10k precision
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(e) IDFDynamic 1k-10k runtime
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(f) IDFDynamic 1k-10k precision

Figure 4.9: Top-k retrieval time vs. precision (global budgets 1k - 10k)
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4.4.3 Results

Now we present the experimental results. For the first experimental group, i.e. global budgets

scaled from 1 000 to 10 000 tuples, the results of the three strategies are plotted in Figure 4.9

while the comparisons of average performances are given in Table 4.2.

Budget Uniform IDFStatic IDFDynamic—
t (ms) MAP P@10 t (ms) MAP P@10 t (ms) MAP P@10

1k 96 0.0475 0.27 98 0.0583 0.264 95 0.059 0.26
2k 129 0.0704 0.32 126 0.0743 0.324 128 0.0767 0.318
3k 162 0.0799 0.326 158 0.0826 0.322 165 0.0927 0.338
4k 194 0.0919 0.348 186 0.095 0.352 196 0.1065 0.36
5k 238 0.1016 0.362 214 0.1056 0.372 227 0.1167 0.388
6k 263 0.1174 0.376 247 0.1209 0.384 255 0.1263 0.39
7k 294 0.122 0.37 272 0.1278 0.376 287 0.1337 0.38
8k 326 0.128 0.378 302 0.1329 0.384 318 0.1379 0.394
9k 359 0.1356 0.39 330 0.1382 0.39 347 0.1424 0.402
10k 399 0.1411 0.4 359 0.1421 0.398 388 0.1466 0.414

Table 4.2: Retrieval time vs. precision with global budgets 1k - 10k

In a runtime plot corresponding to efficiency, for instance, Figure 4.9a, the y-axis is retrieval

time in milliseconds, while the x-axis is budget scale; the curve named “average” stands for the

average runtime of 50 testing queries, while the error bar named “range” indicates the range

between minimum and maximum runtime of the queries. In addition, there is a precision plot

for each strategy as well, which represents the effectiveness against global budget scales. For

instance, Figure 4.9b shows the precision of MAP, P@5, P@10, P@15 and P@20 for different

global budgets. Numerical comparisons of average precision are shown in Table 4.2, though the

findings are not very significant: it shows that with average runtime grows nearly linearly, the

MAPs of the three strategies increase considerably from 1k to 2k and then gradually increase

after that, and the P@10s appear to increase smoothly for all strategies. While comparing to the

baseline run, the gain or loss (see Section 4.4.1) of the three strategies of budgets at 10k tuples

are estimated using ratio as topk run value
full run value :

• Uniform at 10k: runtime ratio: 0.057 (i.e. 94.3% gain), MAP ratio: 0.709 (i.e. 29.1%
loss), P@10 ratio: 0.877 (i.e. 12.3% loss)

• IDF static at 10k: runtime ratio: 0.051 (i.e. 94.9% gain), MAP ratio: 0.714 (i.e. 28.6%
loss), P@10 ratio: 0.873 (i.e. 12.7% loss)

• IDF dynamic at 10k: runtime ratio: 0.055 (i.e. 94.5% gain), MAP ratio: 0.737 (i.e. 26.3%
loss), P@10 ratio: 0.908 (i.e. 9.2% loss)



4.4. Experiments and Results 159

Moreover, the IPTs of the strategies were calculated and given in Table 4.3. As they were

shown, the general trends of the IPTs for all strategies appear to be growing, where higher values

of IPTs achieved while more budgets were allowed; though there is an exception for static IDF

strategies, but it does not contradict to the growing trends for later budget examination points.

In fact, all strategies appear to achieve a relatively high IPTs at 5k or 6k check points while

compared to their respective maximum IPTs in the experimental group.

Budget Uniform IDFStatic IDFDynamic
IPT MAP IPT P@10 IPT MAP IPT P@10 IPT MAP IPT P@10

1k 2.6742 6.6304 3.2761 6.4709 3.3232 6.3878
2k 3.8592 7.6514 4.0803 7.761 4.2082 7.6102
3k 4.2876 7.6305 4.4431 7.555 4.9663 7.8984
4k 4.8477 8.007 5.0321 8.1327 5.6144 8.278
5k 5.257 8.17 5.5195 8.4811 6.0642 8.7943
6k 6.014 8.4014 6.2312 8.6328 6.4897 8.7409
7k 6.1814 8.177 6.5265 8.3755 6.7918 8.4199
8k 6.4196 8.2691 6.7159 8.464 6.933 8.6402
9k 6.7346 8.4487 6.9225 8.521 7.0971 8.7392
10k 6.933 8.5728 7.0573 8.6217 7.2246 8.8992

Table 4.3: Ideal performances tradeoff with global budgets 1k - 10k

For the second experimental group, i.e. global budgets scaled from 10 000 to 50 000 tu-

ples, the results are plotted in Figure 4.10 and the average performances are given in Table 4.4.

From the plots in Figure 4.10 we can see that the runtime increase almost linearly while budgets

increased, but precision values have been already very close to their highest achievable values

at 20k and hardly increase any more (some even appear to be decreasing after 20k). Though

most strategies appear to achieve the highest precision values at 50k (with one exception only),

but when we compare the gain and loss values at 20k and 50k to the baseline to illustrate the

differences. First, the 20k checkpoints are obtained as follows:

• Uniform at 20k: runtime ratio: 0.096 (i.e. 90.4% gain), MAP ratio: 0.859 (i.e. 14.1%
loss), P@10 ratio: 1.0 (i.e. 0% loss)

• IDF static at 20k: runtime ratio: 0.085 (i.e. 91.5% gain), MAP ratio: 0.881 (i.e. 11.9%
loss), P@10 ratio: 0.987 (i.e. 1.3% loss)

• IDF dynamic at 20k: runtime ratio: 0.09 (i.e. 91% gain), MAP ratio: 0.889 (i.e. 11.1%
loss), P@10 ratio: 0.982 (i.e. 1.8% loss)

And then, the 50k checkpoints are given as follows:

• Uniform at 50k: runtime ratio: 0.193 (i.e. 80.7% gain), MAP ratio: 0.914 (i.e. 8.6% loss),
P@10 ratio: 0.996 (i.e. 0.4% loss)
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• IDF static at 50k: runtime ratio: 0.17 (i.e. 83% gain), MAP ratio: 0.932 (i.e. 6.8% loss),
P@10 ratio: 1.018 (i.e. 101.8% gain)

• IDF dynamic at 50k: runtime ratio: 0.2 (i.e. 80% gain), MAP ratio: 0.932 (i.e. 6.8% loss),
P@10 ratio: 1.004 (i.e. 100.4% gain)

Budget Uniform IDFStatic IDFDynamic
t (ms) MAP P@10 t (ms) MAP P@10 t (ms) MAP P@10

10k 399 0.1411 0.4 359 0.1421 0.398 388 0.1466 0.414
20k 673 0.1709 0.456 597 0.1752 0.45 632 0.1768 0.448
30k 911 0.1789 0.456 769 0.1811 0.46 879 0.1810 0.45
40k 1137 0.1814 0.464 945 0.183 0.456 1169 0.1847 0.456
50k 1350 0.1818 0.454 1189 0.1854 0.464 1400 0.1854 0.458

Table 4.4: Retrieval time vs. precision with global budgets 10k - 50k

Budget Uniform IDFStatic IDFDynamic
IPT MAP IPT P@10 IPT MAP IPT P@10 IPT MAP IPT P@10

10k 6.933 8.5728 7.0573 8.6217 7.2246 8.8992
20k 7.9485 9.2507 8.2541 9.2473 8.2778 9.149
30k 8.0475 8.9472 8.3012 9.1971 8.1742 8.8644
40k 7.9578 8.8786 8.198 8.9105 8.0771 8.6981
50k 7.8187 8.5166 8.0922 8.8337 7.9392 8.5546

Table 4.5: Ideal performance tradeoff of with global budgets 10k - 50k

Here we can observe some interesting phenomena. First, the retrieval times at 50k are about

twice as much as the runtime at 20k, but the improvements of precision are relatively small

while more tuples are retrieved. Second, some strategies even achieve as good results as the

full retrieval run baseline for precision P@10 while global budget at 20k. Third, some strategies

achieve a little better results than the baseline for precision P@10 while global budget at 50k. In

other words, these observations suggest that top-k processing may not always lead to losses in

terms of retrieval quality.

While considering the possibly best tradeoff points, we compute the IPTs for the comparing

strategies at the checkpoints, which are given in Table 4.5. As they were highlighted, most

strategies reach the best tradeoff point for P@10 at 20k checkpoint; Though only IDF dynamic

reaches the best tradeoff point for MAP at 20k, but the IPTs of the other two at 20k are actually

not far from the turning points (which appear at 30k) at all.
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(a) Uniform 10k-50k runtime
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(b) Uniform 10k-50k precision

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

50k40k30k20k10k0

re
tr

ie
va

l t
im

e 
(m

ill
is

ec
on

ds
)

top limit (thousand tuples)

average
range

(c) IDFStatic 10k-50k runtime
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(d) IDFStatic 10k-50k precision
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Figure 4.10: Top-k retrieval time vs. precision (global budgets 10k - 50k)
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4.5 Summary

To summarise this chapter, we have discussed and investigated the usage of top-k processing in

an IR+DB environment. The main contributions are three folds. Firstly, we introduced (concep-

tually) a physical query execution mechanism named top-k incorporated pipeline (TIP), which

aims to employ and adapt popular top-k algorithms such as TA families into a generic IR+DB

processing engine, this is essentially different from the previous studies, which applied TA or

its variants in a middleware architecture of database applications. Secondly, we attempted defin-

ing mathematically a measurement for performances tradeoff with respect to efficiency versus

effectiveness, where we proposed ideal performances tradeoff (IPT) which can be used to esti-

mate the tradeoff points of top-k processing. Third, to perform (or simulate) query executions

in a TIP-style manner, we discussed three allotting strategies for global budgets; in addition, we

investigated the allotting strategies with a TREC collection in experiments, in which we also

applied IPT measurement to estimate the tradeoff points of different scales of global budgets.

The intent of this study is not to propose brand new top-k algorithms, but to adapt and in-

corporate originally external top-k methods into a generic query execution engine of IR+DB

systems. In other words, we developed an algebraic version of top-k processing mechanisms

while compared to conventional IR search engines, hence certain flexibility would be allowed

in IR applications while efficiency requirements can still be met. On the other hand, similar

demands of developing top-k incorporated query execution engine had already been called out

by researchers from DB community (e.g. see [Chaudhuri et al., 2005]), so that our work can be

viewed as one step forward comparing to previous studies focused on middleware architectures.
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Chapter 5

RIX: Indexing with Relational Inverted Index

5.1 Introduction

In this chapter, we will discuss an indexing technique for IR+DB systems. Various ac-

cessing methods have been developed to support efficient search and retrieval on IR sys-

tems and databases. In IR, indexing methods over text collections include suffix ar-

rays [Manber and Myers, 1990], inverted files or inverted indexes [Moffat and Zobel, 1996,

Witten et al., 1994], and signature files [Faloutsos and Christodoulakis, 1984]. In particular, in-

verted index variants have been widely used as a default structure in modern IR applications. For

example, Web IR [Brin and Page, 1998, Arasu et al., 2001], XML retrieval [Weigel et al., 2004],

and Book Search [Wu et al., 2008b]. Furthermore, commercial search engine had achieved sub-

second query response times by using an inverted index. In DB, indexes are chosen between

tuple-based index or TID-lists index (or tuple-Id index) and Bitmap index. DB indexes are incor-

porated into query optimization to support efficient query evaluation. For example, for typical

Select-Project-Join (SPJ) queries, aggregations (with GROUP BY clause), and sorting (with OR-

DER BY clause).

5.1.1 Motivation

Our intention on developing an indexing method is to support efficient probability estimation and

context augmentation on IR+DB systems. Because both operations are expensive in terms of I/O

intensive and compute intensive.
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On estimating probabilities To estimate probability for a raw table is to assign initial proba-

bilities (see Section 2.5.2.1 for different types of initial probability) to its tuples. In short, an

estimation without utilising index involves table scanning and on-the-fly value aggregation: an

entire table scan is inevitable in order to determine the size of event space(s), where grouping

and counting are performed to separate sub event spaces (e.g. documents or segments) as well

as to obtain the occurrences of distinct events. For very large data set, temporary files might be

needed to store intermediate results while main memory is not big enough to hold all data.

In IR, grouping and counting are saved by inverted indexes, because they are part of index

constructing procedure and statistic values are materialised in the index. Therefore, the cost to

obtain initial probabilities is mainly bounded by I/O. On the other hand in databases, one can

exploit TID index to speed up aggregations by explicitly including indexed (key) attributes in a

GROUP BY clause in SQL. In this case, intensive on-the-fly grouping is replaced by relatively

less expensive I/O access, but in-memory counting has to be performed and its computation cost

is still considerable.

On context augmentation Context augmentation [Lalmas and Roelleke, 2002, Roelleke, 1999]

is an IR concept that is applicable to many IR tasks. For example, for link-based re-

trieval [Craswell et al., 2001] or XML retrieval [Fuhr and Großjohann, 2004]. Its underlying

principle is term weight propagation toward associated items. In general, augmentation con-

sists of a combination of comparisons and aggregations, which could be also implemented by

running SQL queries with Select-Project-Join or Select-Project-Unite in databases.

It is known in both communities that such augmentation is extremely expensive to compute

on-the-fly, therefore either IR or DB came out with their own but in principle similar solutions. IR

would build multiple inverted indexes in which each index represents one context. For example to

apply tf -boosting on the Web search [Craswell et al., 2001], building one index for web pages in

the form of 〈Term,Doc〉 and another index for anchor text in the form of 〈Term,Re f Doc〉, thus

while propagating term weight from anchor text to referenced web pages (so-call tf -boosting)

becomes a task of fetching postings from two inverted indexes and summing up term weights of

matching documents. On the other hand, database introduced materialised view to store inter-

mediate results of SQL queries, so that term weights under different contexts are instantiated in

materialised views or auxiliary tables, e.g. see [Theobald et al., 2005b]. As a result, SQL queries

for augmentation could be processed quite efficiently.
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In general, TID index sustains maximum flexibility and provides feasible support to relational

operations, while considering the total costs (I/O and compute) for running IR ranking models,

inverted index is superior than TID index. Therefore, we intend to adapt and integrate inverted

index and TID index for IR+DB systems to allow efficient aggregation for ranking and retain

flexibility for relational manipulation.

5.1.2 Inverted Indexes

Traditionally in IR, an inverted index was usually referred to inverted document index. In gen-

eral, documents contain terms (words), so that given a document we know what terms occur in

documents. On the contrary, there is a pair-wise relationship 〈term,document〉 between terms

and documents, so that if given a term then the term’s occurring documents could be retrieved,

and this is the basic principle of inverted document index. If the concept of document is to be

extended to bag-of-words, then inverted index is applicable to all kinds of text retrieval with or

without considering document structure. For example, for passage retrieval or for XML retrieval.

Basically, there are two main components in an inverted index: a keys (terms) lookup facility,

which could be implemented by B-tree or hash table; and posting data (or just posting), which

are inverted lists associated to indexed keys. An inverted list is a series of 〈document,value〉

pairs (document-level), where the value could be some statistic of the term against the document,

for instance, within-document term frequency (tf ). While building a full-text index for docu-

ments (word-level), the locations of a term in an document would be included as well, thus an

inverted unit becomes 〈document,value, locations〉, where locations is a list of offsets of words1

〈l1, l2, . . . , lt f 〉.

For illustrating, we demonstrate with the toy magazine corpus in Section 2.2.1 (see Fig-

ure 2.2). The inverted list for term “hybrid” in the trimmed corpus (see Figure 2.3) without

including locations look like:

〈doc1,1〉,〈doc2,3〉

While including locations, then it looks like:

1Using word-offset but not character-offset is because in this way proximity between terms could be
computed, thus phrase could be found out.
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〈doc1,1,4〉,〈doc2,3,42,43,50〉

While including location information into inverted index, index size increased dramatically.

Therefore, [Witten et al., 1994, Moffat and Zobel, 1996] discussed compression coding method

using d-gaps. In this method, instead of including the absolute position in inverted lists, it records

the incremental gap between locations, i.e. 〈l1,δ2, . . . ,δt f 〉. For instance, the inverted list for

“hybrid” using d-gaps coding becomes:

〈doc1,1,4〉,〈doc2,3,42,1,7〉

The advantage of d-gaps coding is that locations could be represented in small integer: nor-

mally, an integer uses four Bytes, but two Bytes would be sufficient while coding in d-gaps.

In recent years, ideas of using payload in indexing Web pages were addressed, e.g.

see [Arasu et al., 2001, Melnik et al., 2001]. In Web IR, retrieval strategies may treat the same

term differently, for example, displayed in large font size to be more important than displayed in

normal font size, or in bold face to be more important than in other font faces. Therefore, payload

is proposed to stored additional information regarding to different locations, i.e. location list be-

comes a list of 〈location, payload〉 pairs2. Similarly, compressed coding methods are employed

to ensure storage and retrieval to be space and runtime efficient.

5.1.3 Outline

In fact, the data structure of word-level inverted index is very similar to TID-index, because the

locations in posting lists of inverted index is comparable to the tuple IDs of TID-index. Therefore,

it is possible to integrate these two types of indexes and adapt to an IR+DB environment.

In this chapter, we present a relational inverted index (RIX) that takes advantages of both

inverted index and TID-index. RIX speeds up probabilities estimation and context augmenta-

tion for text retrieval and remains supportable to relational operations for data retrieval, which

smoothly balances flexibility, scalability and efficiency required in IR+DB systems. In the fol-

lowing sections, the technical details of RIX will be discussed in Section 5.2, while experiments

2Note that payload is not restricted to one value but could be arbitrary number of values.
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and experimental results will be presented in Section 5.3, and finally this chapter will be sum-

marised in Section 5.4.

5.2 Relational Inverted Index

In this section, we introduce a relational inverted index (RIX). The purpose of proposing RIX

is to support efficient query processing on IR+DB systems. As we discussed in the previous

chapter (see Chapter 2), text is loose in structure and schema, so that the best way to represent

text is to keep everything in a knowledge-base. However, in order to obtain information from

known knowledge including text and structured data, schema is necessary to define relationships

amongst text and attributes. Therefore, an index for integrated text and data retrieval systems

such as IR+DB should consider flexibility as well as efficiency and scalability.

To satisfy query processing involving text and data, an intuitive solution is to implement

both inverted index and TID index into an IR+DB system, but the disadvantages of this simply-

put-together approach are twofold. First, it makes query optimization and index selection more

difficult. Because a query engine has to manage different index structures, and the search space

for query optimizer is getting bigger, so that the complexity of estimating costs of using different

indexes is increased. Second, a less sophisticated integration does not optimize space usage.

Consuming more space would cost more, but it also affects the scalability and efficiency of a

retrieval system, because more I/O overhead means more index construction time as well as

more data fetching time during search.

In next sections, we start from comparing the data structures of inverted index and TID

index, and then move on to the details of RIX which inherits the advantages of both indexes. In

our discussions, all examples are based on a toy table (see Table B.1) in Appendix B for a toy

magazine corpus demonstrated in Section 2.2.1 (also see Figure 2.2 and Figure 2.4).

5.2.1 Logical Designs of Indexing Structures

5.2.1.1 Inverted Index versus TID Index

Figure 5.1 illustrates an inverted document index built on the attributes Term and DocID3. In ad-

dition to the key (term) lookup, usually there is a document lookup built on DocIDs in which con-

3In the illustrations, the attribute values of DocID and RefDocID have been added a prefix “doc”, this
is only for the convenience of narration, while in our RIX implementation these values are the same as
they are in the associated table.
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tains global document statistic such as document length. Note that documents are pre-processed

one by one, therefore tuples in a table are automatically grouped by DocIDs. In the example

inverted index, the posting data of a document includes the starting offset (TID) of the document

and the length of the document (the number of tuples with the same DocID).

Figure 5.1: Data structure of traditional inverted document index

Figure 5.2 illustrates an TID index built on the attribute Term. The posting data of a key is

a list of TIDs which can be used to directly access tuples in a table. Though additional statistic

may be included, for example, the number of TIDs in a posting list. The advantage of this index

is it provides shortcuts to access source data.

In principle, a document-level inverted index materialises aggregations group by Term and

DocID, whereas a TID index can be viewed as a materialisation of aggregation group by Term

only. If a key is allowed to have two posting lists, one for inverted documents and one for TIDs,

then an index equivalent to a word-level inverted index could be built. Different from a word-

level inverted index, inverted lists and TID lists (for locations information) are stored separately,

which allows the index to be flexible; and only necessary posting list would be fetched for search

also reduces I/O overhead. Allowing multiple posting lists associated to the same key becomes
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the basic idea of RIX.

Figure 5.2: Data structure of traditional TID index

5.2.1.2 Structures of RIX

A RIX consists of two lookup facilities, one for primary key (on terms) and the other for primary

group. The only requirement to be a primary group attribute is that tuples in the indexed table are

grouped by the attribute. For example, in the case of document retrieval, the primary group would

be document. In a light version of RIX (RixLite), as it is shown in Figure 5.3, each key associates

with two posting lists, one for inverted groups and the other for TIDs. An inverted group unit is a

pair 〈groupID, in-groupT F〉. Because a RixLite is a straightforward combination of traditional

inverted index and TID index, hence there are not direct connections between inverted group list

and TID list, so the inverted group list is standalone.

However, if connections could be made from inverted groups to TIDs, then the index would

be very useful for supporting relational operations with aggregation. For example, while inverted

group lists are sorted by in-group tuple frequencies, tuples in a table could be visited in group

order. With this thought in mind, an additional field is added to each inverted group unit to
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record a TID offset on the same key’s TID list. This comes out to be the standard version of RIX

(RixStd) which is illustrated in Figure 5.4. Similarly, RixStd has two posting lists, one called

TID-mapped inverted group list, and another is TID list. Instead of containing pair values in an

inverted group unit, a unit consists of a triple 〈groupID, in-groupT F,T IDo f f set〉. Because the

values in TID list are automatically organised in groups, so that the TIDs belonging to the same

group are adjacent; and because the in-group tuple frequency is known, so in order to get all

of the TIDs of a group, we only need to remember the position of the first TID in the TID list.

Note that once posting lists were finished, performing sorting on TID-mapped inverted group

lists would not impact their mapping against TID lists.
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Figure 5.3: Data structure of light RIX: RixLite

For instance, the inverted group list of “hybrid” contains two inverted units, the group with

ID “doc1” has one tuple, and its corresponding TID on the TID list is at position 0 in which value

is 4. Similarly, the group “doc2” has three tuples, and the associating TIDs are the three adjacent

values on the TID list starts from position 1, which are 42, 43, and 50.
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Furthermore, a key may associate with more than one inverted group list. Although per

RIX allows only one primary group, but additional inverted group lists could be added to satisfy

aggregations on other attributes. Therefore, an extended RIX (RixExt) allows per key to have

one TID-mapped inverted group list, one TID list, and several standalone inverted group lists,

see Figure 5.5 for instance. In the figure, a standalone inverted group list is built on the attribute

RefDocID (standing for referenced document)4. The reason to have several inverted group lists

is because some IR strategies apply context augmentation on different groups, having multiple

inverted group lists ready for augmentation would speed up query processing.
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Figure 5.4: Data structure of standard RIX: RixStd

For example, while applying tf -boosting for link-based retrieval, terms appearing in anchor

text are considered to have boosting effect to referenced documents, thus building an additional

inverted group list for RefDocID would serve the purpose for augmentation. Because these

additional inverted group lists do not map to the implicitly grouped TID lists, therefore they are
4The term “car” does not have any associated tuples falling into the RefDocID group, and an empty

list was not shown in the figure.
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standalone lists.
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Figure 5.5: Data structure of extended RIX: RixExt

5.2.2 Architecture of RIX Indexer

Above all, the construction of RIX is performed by an indexer or index builder. In general, an

indexer consists of several sub components, in which each of them in charge of a part of the

indexing job while incorporating with each others.

For instance, Given a table to be indexed, tuples are read from the table by a fetcher under

control of a scheduler, while the scheduler works based on rules or predefined cost models,

so that sub-optimal constructing plans could be issued depending on different workload and

resources. For example, given different table size or the number of tuples to be processed, and

memory allowance. To conduct controls, a tuple validator is employed, and validation might also

incorporate with traditional IR techniques such as stopwords removal. Validated tuples would

be processed by other sub components, where accumulations to be performed, posting lists to be
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Figure 5.6: Architecture of RIX Indexer

constructed, and lookup facilities to be built. In particular, because memory is limited, therefore

indexer need to flush partial built posting lists to disk so that memory could be released, and this

is controlled by certain flushing policy. In addition, in order to provide better I/O performance for

searching and retrieving on the index, partial lists should be merged and might be sorted at a later

stage of indexing. An overview of the architecture of a RIX indexer is illustrated in Figure 5.6.

Because index size is often much bigger than main memory size, and the memory usage

allowance of an indexer could be restricted by users as well, hence it is often unrealistic to

construct a complete index in the memory for large-scale data. Therefore, an indexing job

could be partitioned into several sub-jobs when it is necessary, where each sub-job completes

a part of the index, and the entire index is obtained by merging all sub-parts. Previous re-

searches on inverted index have studied different partitioning strategies for index construction

(e.g. see [MacFarlane, 2000, Arasu et al., 2001, Melnik et al., 2001]). To build an inverted in-

dex for a very large text collection, partitioning could be based on term (i.e. key) or document

(and i.e. primary group), while similar strategies are applicable to RIX. Some previous research

(e.g. [MacFarlane, 2000]) on parallel and distributed building inverted indexes suggested that

partitioning based on documents performs better than partitioning based on terms. However, be-

cause our current aim is to build RIX on standalone systems, and because the mapping between

inverted group lists and TID lists requires indexer to trace down incremental offsets, therefore, al-

gorithms applying key-based (terms) partitioning is more simple than group-based (documents)

partitioning, and the algorithmic complexity of key-based strategy is also less than its group-

based counterpart. Moreover, by exploiting a cost-based construction scheduling method, index
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building process could be very efficient as well. More details will be discussed in the next a few

subsections.

5.2.3 Abstract Data Types and Data Structures

Generally, when implementing indexes on external storage, because information could only to be

stored in linear data structures, hence the abstract data types (ADTs) for external index need to be

dedicated and optimized towards linear stored procedures and accessing methods. For RIX, the

ADTs could be classified into either basic ADTs or operational ADTs. Basic ADTs are atomic

data structures to store the entry of data or the exact data; whereas operational ADTs handle

stored procedures and retrieved operations, in which each operational ADT contains a lists of

certain basic ADT. Here we introduce these ADTs and their coding.

5.2.3.1 Basic ADTs

There are five basic ADTs to form RIX, which could be categorised into two classes: for data

entries, or for posting data.

Key Entry A key entry contains a key (term), tuples count (TC) of the key (i.e. comparable

to within-collection/global term frequency), groups count (GC) of the key (i.e. comparable to

document frequency df ), an address for posting TID list (PTA), an address for posting TID-

mapped inverted group list (PMGA), and optionally a number of addresses for posting standalone

inverted group lists (PSGA). A Key Entry looks like the follow:

〈Key,TC,GC,PTA,PMGA [,PSGA1, . . . ,PSGAn]〉

The field for key may store original data, or store a numeric ID. For simplification, we take

original data in our implementation. All other fields are numeric types, where TC and GC use

double precision float (8 bytes), and addresses use long integer (8 bytes).

Group Entry A group entry is for storing the global statistic of primary group, which contains

a primary group identifier (GID), an address of the first tuple in a table5, and a tuple count of the

group, i.e. group length (GL). The component is as the follow:

〈GID,Address,GL〉
5We use absolute on-disk address in our implementation, another option could be using relative tuple

offset.



5.2. Relational Inverted Index 175

Similarly, GID could be original data or numeric ID, and here we use original data as well.

Address is long integer, and GL is double precision float.

Posting TID Unit A TID unit contains only one type of field, which is for on-disk address of a

tuple, and it is using 8 bytes long integer.

〈Address〉

Posting TID-mapped Inverted Group Unit A unit contains three fields, a group identifier

(GID), an in-group tuple count (IGTC) of a key, and a TID offset on a posting TID list. The

IGTC is a double precision float, and Offset is a long integer.

〈GID, IGTC,O f f set〉

Posting Standalone Inverted Group Unit It is similar to its TID-mapped counterpart, only

without a field for TID offset, and the data types of its fields are the same as TID-mapped unit.

〈GID, IGTC〉

5.2.3.2 Operational ADTs

Logically, there are two types of operational ADTs, which are hash lookup table and posting

list. Hash based lookup allows the search for data entry to be completed in constant time (i.e.

with computational complexity O(1)), therefore, hash lookup is usually preferred than B-tree

on IR systems for text retrieval. The bucket collision problem of hash table is handled with a

chain list strategy, where data entries share the same hash bucket would be chained together in

a linear list, and a collided bucket stores the head of the list. To gain better I/O performance

during construction, the hash lookup is partitioned and implemented with a hybrid hash algo-

rithm [DeWitt et al., 1984]. The hash lookup and (chained) entry lists are stored in linear struc-

tures on disk respectively. In other words, search for the posting lists of a key needs two random

accesses to obtain its data entries.

For example, assuming that hash value 2 was computed by both terms “hybrid” and “car”,

which cause a collision on hash lookup table. The entries of the terms would be chained together

during construction, and stored linearly in an entry list, as it is shown in Figure 5.7. At retrieval,
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while given a query term whose hash value was computed to be 2, we could obtain an address to

access the entry list to get two entries, and then comparisons were made between the query term

and the entries to determine which posting data should be retrieved.

Hybrid Hash Lookup A hash lookup table contains a list of buckets, and a bucket includes two

fields: entry count (EC) and address. The entry count tells how many entries could be retrieved

from this bucket, and the address gets access to associated chained entries, which is a segment of

the entry list. A hash bucket looks as the follow:

〈EC,Address〉

An EC is a small integer (2 bytes), and an address is a long integer (8 bytes). A hash lookup

consists of a list of buckets.

〈Bucket1, . . . ,Bucketn〉

Entry List An entry list contains a list of entry, where entry could be either Key Entry or Group

Entry.

〈Entry1, . . . ,Entryn〉

Posting List Similarly, a posting list a set of the same type of units, in which the type is either

Posting TID Unit, or Posting TID-mapped Inverted Group Unit, or Posting Standalone Inverted

Group Unit.

〈Unit1, . . . ,Unitn〉



5.2. Relational Inverted Index 177

5.2.4 Theoretical Analysis

5.2.4.1 Overall Analysis

Here we analyse the theoretical performance of index construction of standard RIX (RixStd) on

standalone machines. There are three kinds of overhead during indexing.

1. Pre-processing for source data. There are mainly two costs, which include I/O cost, e.g.

read files from repository or read tuples from table; and compute cost, e.g. parsing source

file or extracting values from tuples.

2. Internal computational cost of main constructing process, which includes building internal

data structures, internal search and comparison, aggregation, merging, and sorting.

3. I/O cost of main constructing process, which include read and write of partial posting data,

write of completed posting data, and write of external (on-disk) searching facilities.

For RIX, the pre-processing is to read tuples from a table and extract values of attributes.

In a table, tuples have already been organised (grouped) by primary group attribute, which is

usually document ID (DocID). While indexer sequentially scans a given table, tuples would be

read group by group, so that the indexer needs to extract the values of DocID to be aware of

changes of groups. Because the cost of extracting tuples is too small so that it is ignorable, thus

the cost of pre-processing is mainly disk read.

Similarly, the cost of the main constructing process is dominated by disk I/O. Considering

internal process consists of the following sub-processes:

• Memory allocations for internal data structures and value assignments

• Internal search for KeyID based on hash-based lookup table

• Aggregation, mainly counting and accumulation

• Merging of partial posting data by concatenating sub-posting lists

• Internal sorting based on quick sort or radix sort, and external sorting based on merge sort

Except internal sorting, all other sub-processes could be implemented with algorithms having

either constant complexity (i.e. O(1)) such as search over lookup tables, or linear complexity (i.e.

O(n)) such as constructing internal data structures, aggregation and merging. Note that none of
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the internal sub-processes need intensive computation, and quick sort or radix sort could be

accomplished fast enough with today’s CPU and main memory. On the other hand, disk transfer

rate had been improved very slowly over past decades. Comparing to CPU and main memory,

disk I/O rate is the biggest bottleneck of indexing for large scale data.
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Figure 5.8: Transfer rate against transfer size on varied sizes of partitions

5.2.4.2 Disk I/O Characteristics

To gain some comprehensive understanding about the features of disk I/O, we run a disk bench-

mark with a utility called ATTO Disk Benchmark (version 2.34). The testing hard disk was

partitioned into varied sizes of partitions, and all partitions were formatted by the NTFS format

with page (or cluster) size in 4.0 KB (4 096 bytes). The benchmark was performed by write/read

a fixed length of data to/from a partition using different transfer (i.e. data block) sizes. Experi-

ments were run in direct I/O (i.e. without buffering) and overlapped I/O (i.e. for example, two 2.0

KB data blocks would be filled into one 4.0 KB page). Table 5.1 shows the experimental results,

while Figure 5.8 illustrates I/O rates of different transfer size over different size of partitions.

What can be learned from the benchmarking results is that a few characteristics of hard disk

directly or potentially impact the efficiency of index construction and retrieval.

• Transfer Size: It had been known that transferred data size could directly affect I/O rate,

especially when transfer size is smaller than page/cluster size then I/O rate drops dramat-

ically, and the results show transfer rate is about in proportion to transfer size. Note that

transfer rate has not reached maximum yet when transfer size is the same to page/cluster

size, and it would continuously increase sub-linearly against transfer size until transfer size

is about page/cluster size to the power of 2 or 3, and then transfer rate remains at a peak
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Transferred Transfer Rate (MB/Sec)
Data Block Drive Size 10 GB Drive Size 50 GB Drive Size 100 GB
Size (KB) Read Write Read Write Read Write
0.5 4.151 6.400 3.968 5.007 4.992 4.724
1.0 8.575 11.825 11.434 7.349 6.352 8.491
2.0 19.770 24.717 19.456 24.901 19.311 24.212
4.0 35.750 44.281 35.750 43.008 33.457 43.704
8.0 52.851 64.093 58.370 60.532 52.076 52.461
16.0 66.444 66.941 61.286 60.831 52.461 54.226
32.0 66.444 68.611 61.972 62.266 56.357 55.404
64.0 69.868 69.288 61.680 61.972 56.375 56.496
128.0 70.089 69.722 61.680 61.536 56.013 53.828
256.0 69.905 69.813 61.680 61.536 56.496 56.133
512.0 69.905 70.179 61.709 61.851 56.751 56.394
1024.0 69.633 69.273 62.282 61.147 56.992 56.512
2048.0 69.996 69.723 62.137 61.426 56.512 56.394
4096.0 70.455 69.273 61.851 61.426 56.512 55.692
8192.0 70.179 69.273 62.282 60.928 56.751 56.992

Table 5.1: Disk I/O transfer rates on SATA Hard Disk (5400 rpm), Windows XP Professional
OS, drive formatted by NTFS format, page/cluster size 4.0 KB (4 096 bytes), testing data length
256 MB, disk benchmarking utility ATTO Disk Benchmark v2.34, testing mode on Direct I/O
and Overlapped I/O

value even transfer size keep increasing.

To gain sub-optimal transfer rate during RIX construction, it is important to keep the trans-

fer size of each I/O operation (write or read) at proper amount. As a result, not only data

entries and posting data should be transferred in batch mode, but also each (partial) posting

list should be tried its best to pack into adjacent pages/clusters. Therefore, sophisticated

buffering and flushing policies should be considered.

• Drive Size: It is interesting to see that drive size affects transfer rate while transfer size

is bigger than page/cluster size. As a result, drive size potentially affects the maximum

transfer rate that can be obtained during indexing, and it also directly restricts index size.

This observation also implies parallelism and data distribution for building RIX is worth

studying in future work.

• Different Read/Write Rates: Read rate is less than write rate unless transfer size is greater

than two or three times of page/cluster size. This indicates that if partial posting lists are too

short and too many then read operation is a considerable bottleneck while merging them;

and if there are too many short posting lists then retrieval efficiency would be affected too.
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5.2.4.3 I/O Cost Models for Building RIX

Regarding the construction cost of RIX we mean specifically the building time, but not the hard-

ware or software costs of machine for running the program.

Variable Description
B page/cluster size (bytes)
Vθ I/O transfer rate (bytes/sec) while transfer size equals to B
vθ estimated I/O transfer rate (bytes/sec)
tθ estimated I/O transfer time per page (sec)
λθ levering coefficient for I/O operation

Table 5.2: System I/O variables

Variable Description
Nt the total number of tuples to be indexed
Nk the total number of (distinct) keys
Ng the total number of (distinct) groups
nt,k the number of tuples associated to a key
nt,g the number of tuples in a group (i.e. group length)
nt,k,g the number of tuples associated to a key in a group
ng,k the number of (distinct) groups that a key associates
S transfer size (bytes)
st average tuple size (bytes) of source table
sk (average) data size of a key entry (bytes)
sg (average) data size of a group entry (bytes)
sb data size of a hash bucket (bytes)
spt data size of a posting TID unit (bytes)
spm (average) data size of a posting TID-mapped inverted group unit (bytes)
sps (average) data size of a posting standalone inverted group unit (bytes)
M total memory buffer size (bytes)
Mt tuples buffer size (bytes)
Mk key entry buffer size (bytes)
Mg group entry buffer size (bytes)
Mpt posting TID list buffer size (bytes)
Mpm posting TID-mapped inverted group list buffer size (bytes)
T RIX construction time (sec)

Table 5.3: Data and indexing variables

The system I/O variables are introduced in Table 5.2, where page/cluster size B is usually

4 096 bytes in default. Though larger B allows better I/O rate for large data, but more disk space

would be wasted if data are stored in lots of unpaged fragments. The connections of v, t and λ

are defined in formula 5.1, in which if v is given then t can be obtained by inverse v and adjusted

by λ .
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tθ =
1
vθ

=
λθ

Vθ

, where θ is either read (r) or write (w). (5.1)

Now let S be transfer size, so that the levering coefficient λ in equation 5.1 (also see Table 5.2)

could be defined as follows:

λ =


2(B/S) if 1≤ S < B;

1/ logB S if B≤ S≤ B2;

1/2 if S > B2.

(5.2)

As what equation 5.1 suggests, given transfer rate Vθ where S = B, transfer time per page tθ

for any size of S could be approximated by adjusting coefficient λ .

Some common data and indexing variables for I/O cost models are introduced in Table 5.3.

In general, N indicates a total count of certain objects or contexts, n stands for a respective count

of specified objects or contexts, s refers data size counted in bytes of components, M is for buffer

size counted in bytes in main memory, and T is the cost in terms of building time. Different

subscriptions are used for indicating specific objects or contexts. For instance, t for tuple, k for

key, g for group, b for hash bucket, pt for posting TID unit, pm for posting TID-mapped inverted

group unit, and ps for posting standalone inverted group unit.

Ideally, if main memory size could be unlimited then all data, including input and output,

could be held in memory during construction, and the finally completed index would be mate-

rialised to disk with just one write operation. In this case, to obtain the I/O cost of index con-

struction is to sum up the I/O costs of fetching tuples from source table (Tf etch), dumping posting

lists (Tposting, including posting TID lists and posting inverted lists), dumping data entries (Tentry,

including entry lists and lookups).

The I/O cost of fetching source tuples is given in equation 5.3. As aforementioned, tr is

average read time of one page size of data, st is average tuple size, Nt is the total number of

tuples, and B is the page size. The ceiling of the division tells how many pages are there of

source tuples, and the result of the multiplication of average read time per page and total pages

gives the total read time of tuples, which is the fetching cost.

Tf etch = tr ·
⌈

st ·Nt

B

⌉
(5.3)

Next are dumping costs. To look at posting lists at first, we need to estimate how many pages
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are used totally for posting lists, and the total size of postings could be computed by summing up

posting lists size key by key. Hence for each key, the size of a posting TID unit is spt and there

are nt,k TID units; similarly, the (average) size of a TID-mapped inverted group unit is spm and

there are ng,k inverted units. Therefore, the I/O cost of dumping all posting data for Nk keys is to

write all posting lists to disk, which is given in formula 5.4.

Tposting = tw ·

⌈
Nk

∑
i=1

spt ·nt,ki + spm ·ng,ki

B

⌉
(5.4)

The other dumping cost is for data entries. To recap, there are two kinds of instance of data

entries, one for keys and the other for primary groups (see Section 5.2.1.2); each instance of data

entries consists of a hash-based lookup and an entry list (see Section 5.2.3). Let the size of a

hash bucket is sb, the size of a key entry is sk, and the size of a primary group entry is sg, and

it is known there are Nk keys and Ng primary groups, thus I/O cost of dumping data entries is

calculated by formula 5.5.

Tentry = tw ·
⌈

(sb + sk) ·Nk +(sb + sg) ·Ng

B

⌉
(5.5)

Finally, the ideal total I/O cost could be obtained by formula 5.6.

T = Tf etch +Tposting +Tentry

= tr ·
⌈

st ·Nt

B

⌉
+ tw ·

⌈
Nk

∑
i=1

spt ·nt,ki + spm ·ng,ki

B
+

(sb + sk) ·Nk +(sb + sg) ·Ng

B

⌉
(5.6)

However, main memory is limited in reality, and in most real-life applications it is impossible

to construct an integrity of index in memory before materialising it to disk. Now assume an

indexer has total M bytes memory usage allowance, and the allowance is allotted to different

sub-processes, in which Mt for buffering fetched tuples, Mk for key entries, Mg for primary group

entries, Mpt for posting TID lists, and Mpm for posting TID-mapped inverted lists. The buffer

allocations is shown in formula 5.7.

M = Mt +Mk +Mg +Mpt +Mpm (5.7)

In general, the indexer has to dump memory periodically to a temporary file, in which dumped

data include key entry lists, group entry lists, fragments of posting TID lists and fragments of

posting TID-mapped inverted lists. Note that internal data entry lookups would be released as
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soon as entry lists were swapped out. Given buffering allowance Mt for tuples, the fetching cost

is computed as formula 5.8.

Tf etch = tr ·
⌈

Mt

B

⌉
·
⌈

st ·Nt

Mt

⌉
(5.8)

As a result of using temporary file for uncompleted posting data, extra I/O cost has to be paid.

Let Ttmp be the cost of dumping temporary data, while the cost of loading these intermediate data

would be taken into account later in Tposting. Since dumping fragments of posting lists are always

performed in batch mode, where candidate lists for swap-out would be written to disk as big

chunks of data in order to gain maximum write rate. Therefore, the cost of dumping posting

data fragments to temporary file is similar to the cost of dumping completed posting lists in ideal

situation, but the difference is the amount of data for swap-out are restricted to Mpt and Mpm. In

other words, the upper bound of the number of pages used for posting TID fragments of every

swap-out is
⌈

Mpt
B

⌉
, and

⌈
∑

Nk
i=1 ·spt ·nt,ki

Mpt

⌉
number of swap-outs are needed for posting TID lists of

all keys. Similarly, the counterparts of posting TID-mapped inverted lists could be measured in

the same way. Combining both costs for TID lists and inverted lists, the final cost for dumping

posting fragments is given by formula 5.9.

Ttmp = tw ·

(⌈
Mpt

B

⌉
·

⌈
∑

Nk
i=1 ·spt ·nt,ki

Mpt

⌉
+
⌈

Mpm

B

⌉
·

⌈
∑

Nk
i=1 spm ·ng,ki

Mpm

⌉)
(5.9)

Once all associated tuples of a key have been processed, then the posting data fragments (i.e.

TID list fragments and inverted list fragments) of the key are ready to be merged into single

posting lists. Generally, the I/O costs of merging posting fragments involves two parts: 1) cost of

read posting fragments from temporary file; and 2) cost of write merged posting lists to index file.

Since the lengths of posting lists of different keys are different6, and the lengths of fragments of

a posting list could be varied too, hence the read rates of posting fragments depend on individual

cases. For the posting TID list of a key, let n′pt be the number of fragments in temporary file,

mt,k be the number of TID units of a fragment, t ′r be a read rate while loading a fragment, then⌈
spt ·mt,k

B

⌉
is the number of pages used for the fragment, and by multiplying the read rate and the

number of pages of the fragment we could obtain the read cost of the fragment. Summing up read

costs of all fragments of the key then the total read cost is obtained. Let t ′w be the write rate while

dumping final posting TID list of the key, and
⌈ spt ·nt,k

B

⌉
be the number of pages used for merged

6While comparing the same type of lists, i.e. either TID lists or TID-mapped inverted group lists.
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TID list, and then the write cost of the posting TID list of the key could be also computed. While

the total I/O cost of merging posting TID data is calculated by adding up the read cost of TID

fragments and write cost of completed list. Let n′′pm be the number of fragments of inverted group

list, mg,k be the number of inverted group units of a fragment, spm be the average size of inverted

group unit, t ′′r be a read rate of a fragment, t ′′w be a write rate of final posting inverted list, and

then the I/O cost of merging posting inverted group data could be computed similarly to the TID

counterpart. Finally, the cost for all posting data is computed by formula 5.10.

Tposting =
Nk

∑
i=1

 n′
pt

∑
j=1

t ′r j
·

⌈
spt ·mt,ki

j

B

⌉
+ t ′w ·

⌈spt ·nt,ki

B

⌉
+

n′′
pm

∑
j=1

t ′′r j
·

⌈
spm ·mg,ki

j

B

⌉
+ t ′′w ·

⌈spm ·ng,ki

B

⌉
(5.10)

Next, the costs for data entries are similar to the ideal situation, but swap-outs have to be

taken into account. The I/O cost for posting entries is given in formula 5.11.

Tentry = tw ·
(⌈

Mk

B

⌉
·
⌈

(sb + sk) ·Nk

Mk

⌉
+
⌈

Mg

B

⌉
·
⌈

(sb + sg) ·Ng

Mg

⌉)
(5.11)

At last, the total I/O cost of constructing RIX with limited memory allowance is obtained by

summing up all sub-costs, which is given in formula 5.12.

T = Tf etch +Ttmp +Tposting +Tentry (5.12)

Although the total I/O cost T depends on all sub-costs, but as previously analysed, fetching

source tuples, dumping batch posting fragments and entry lists involve sequential disk accesses,

where maximum transfer rates could be obtained; whereas while merging posting fragments,

transfer rates were bounded by frequent random I/O accesses, which becomes serious bottleneck

during RIX construction. Therefore, to shorten indexing time it is important to reduce the Tposting

cost.

By reviewing formula 5.10, it is easily found that the less number of fragments of a post-

ing list the more efficient merging of fragments could be performed. Thus the lower bound of

merging cost of a posting list reaches when the list has only one fragment, i.e. the fragment is an

entire list itself; whereas the upper bound of merging cost occurs when each fragment contains

one only posting unit. As a result, we have the following inequalities:
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t ′r ·
⌈spt ·nt,k

B

⌉
≤

n′
pt

∑
j=1

t ′r j
·

⌈
spt ·mt,k

j

B

⌉
≤

nt,k

∑
j=1

t ′r j
·
⌈spt

B

⌉
(5.13)

and

t ′′r ·
⌈spm ·ng,k

B

⌉
≤

n′′
pm

∑
j=1

t ′′r j
·

⌈
spm ·mg,k

j

B

⌉
≤

ng,k

∑
j=1

t ′′r j
·
⌈spm

B

⌉
(5.14)

In general, there are two options to reduce the number of fragments of posting lists, one

is to increase memory size and buffer allowance for posting lists, and the other is to employ

partitioning strategies. No doubt the first option is straightforward but less scientific value, and

eventually there is an upper bound of memory, hence it is necessary to study the second option

and design sophisticated constructing algorithms.

Note that usually there are two kinds of partitioning strategies, one is to partition by keys (e.g.

TermID), and the other is by primary groups (e.g. DocID). Different from inverted (document)

indexes, for standard RIX, the problem of group-based partitioning is that offset values of posting

TID-mapped inverted group lists (see Section 5.2.3 for posting TID-mapped inverted group unit)

have to be updated during merging. The disadvantages are multi-folds: on the one hand, it makes

indexing algorithms more complicated and introduces extra computational cost; on the other

hand and more important, it does not solve the frequent random access problem causing by too

many posting fragments, because group-based partitioning produces short posting lists, which

leads merging to confront the same problem as against fragmented posting lists.

5.2.5 Construction Procedures

5.2.5.1 Outline and Data Flow

In this subsection, we discuss the index construction of RIX. Among the three structures that

have been addressed previously, since RixStd (see Figure 5.4) costs only one extra field more

than RixLite (see Figure 5.3) but provides more functionality, therefore RixStd is the structure

would be built in default. In addition, some address fields for marking posting list entries would

be left empty in the key’s look-up, so that RixStd could be extended to RixExt (see Figure 5.5)

after initial construction run.

Currently, our methods only focus on building RIX with single machine, where all techniques

and algorithms were designed to make RIX construction to be efficient and scalable in standalone

environment. However, we were fully aware of other available techniques, such as parallel or dis-
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tributed computing, and their capability of speeding up and scaling up index construction. Since

parallelism and data distribution are mature techniques for constructing indexes, especially on

building inverted indexes for Web IR, where commercial Web search engines have being utilised

massive number of parallel commercial machines7. Previous studies on parallel index construc-

tion include, e.g. [MacFarlane, 2000, Arasu et al., 2001, Melnik et al., 2001]. Therefore, paral-

lelism and distributed computing are enabling techniques to improve the efficiency and scalability

of existing standalone algorithms, but a premise is that counterpart standalone techniques do ex-

ist. At our best knowledge, there are no other indexes act similarly as RIX, and this is the first

time that a standalone construction technique of RIX would be discussed. Hence, the standalone

methods that are going to be described here could be a baseline for possible parallel methods in

the future.

Description Amounts of Data
of Data Size Bytes Tuples Keys Primary Groups
Small < 1 GB < 100 million < 50 thousand < 10 thousand
Medium < 5 GB < 1 billion < 100 thousand < 100 thousand
Large < 10 GB < 10 billion < 1 million < 1 million
Very Large ≥ 10 GB ≥ 10 billion ≥ 1 million ≥ 1 million

Table 5.4: Approximate description of data size

With regards to data size, rather than referring the size of original corpus (document collec-

tions) such as in IR, we mean the size of tables such as in DB, specifically, the size of tables to

be indexed. In Table 5.4, some approximate descriptions about data size are clarified in terms of

different measurements.

From the indexer architecture shown in Figure 5.6, we distil and illustrate the data flow in

a Data Flow Diagram in Figure 5.9. Among these procedures, tuple fetching and validation are

managed by building schedules, where three scheduling algorithms named Naive Build, Adaptive

Build and Analytical Build will be discussed. Before that, there are several common processes

of construction will be studied at first, which include accumulating for semi-finished postings,

making posting lists, flushing policy during tuple insertion phase, and merging and sorting of

fragments of posting lists during finalised phase. In general, construction could be divided into

three phases: insertion phase, merging phase, and finalising phase. Posting lists are built in the
7Using low-cost commercial machines instead of expensive servers is to obtain the best cost-and-

gain ratio when considering building parallel network contains tens of thousands of notes. As far as
we know, a machine cluster at Google’s data centre could contain at least 10 000 notes. For example,
see [Dean and Ghemawat, 2004].
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Figure 5.9: Data Flow Diagram of general procedures

former two phases, and external lookups is built in the last phase. In addition, a flowchart of the

insertion phase is shown in Figure 5.10.

5.2.5.2 Building Algorithms

The common algorithms for the constructing procedures illustrated in Figure 5.9 and Figure 5.10

are discussed in detailed. Here we analyse algorithmic complexities of the construction proce-

dures, in which we show internally constructing process has sublinear computational complexity.

In addition, constructing algorithms were proposed while sophisticated scheduling methods were

employed, for instance, to consider memory allowance and data size and to balance buffering and

flushing. To get started, let us have a look at the algorithm for accumulating semi-finished posting

data.

Accumulating semi-finished postings Before posting lists for TIDs and inverted groups could

be made, statistics of keys based on primary groups are accumulated, in which keys’ in-group

tuple counts (i.e. comparable to within-document tf ) are computed and associated TIDs are

gathered. This procedure is on the left-hand-side of the flowchart in Figure 5.10. An accumulator

has a small hash table8 for fast lookup for accumulating items of keys. Accumulating items are

semi-finished postings which would be ingredients of posting units for making posting lists.

The algorithm Accumulate is given in Figure 5.11, which includes a loop for processing

received tuples. The first job is to extract Key (e.g. TermID), GroupID (e.g. DocID) and TID

(i.e. TupleID, which could be on-disk address or offset of the tuple) from tuples (see line 3). If

8It is much smaller than the KeyLookup of RIX and it needs not to be materialised
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Algorithm: Accumulate
Input: Tuples
Output: Semi-finished postings (accumulated Items in Accumulator)

1 r e c e i v e T up le s ;
2 foreach t u p l e in Tu p l e s
3 e x t r a c t Key , GroupID and TID from t u p l e ;
4 i f GroupID i s n o t e q u a l t o LastGroupID
5 send GroupID and Accumulator−>I t e m s t o P o s t i n g L i s t s B u i l d e r ,

r e s e t Accumulator , Las tGroupID = GroupID ;
6 e n d i f
7 i f Accumula tor−>I t e m s does n o t c o n t a i n Key
8 TupleCount = 0 , TIDArray = new Array ( ) ;
9 I tem = new I tem ( TupleCount , TIDArray ) ;

10 Accumulator−>I tems−>Add ( Key , I tem ) ;
11 e n d i f
12 Accumulator−>I t e m s [ Key]−>TupleCount ++;
13 Accumulator−>I t e m s [ Key]−>TIDArray−>Add ( TID ) ;
14 endforeach

Figure 5.11: Accumulating semi-finished postings

each tuple is stored in bytes array and a schema of tuple (same schema as a source table) is given,

then extracting values from tuple needs to convert bytes to specified types of data. Next jobs

include creating accumulated items for Keys (i.e. lines 7 to 11) and updating accumulated values

of Keys (i.e. lines 12 and 13). All of these jobs should be processed and computed very fast on

today’s machines. The complexity of the algorithm is in proportion to the number of tuples to be

processed. If let n be the size of the loop, then the complexity is expressed as O(n).

Making Posting Lists Semi-finished postings or semi-postings based on primary groups are

sent to posting lists builder to make posting lists. This is on the right-hand-side of the flowchart in

Figure 5.10. Semi-postings of keys are processed one by one to make posting units to insert into

corresponding posting lists. Meanwhile, work-in-progressed fragments of posting lists would be

dumped to disk periodically in order to release main memory.

The algorithm is given in MakePostingLists as shown in Figure 5.12. For each item (rep-

resented as <Key, item> pair) in semi-posting items, if the Key is not in KeyLookup then a

KeyEntry is created (see lines 3 to 7), otherwise corresponding KeyEntry will be found. To up-

date TID-mapped inverted group list of a KeyEntry, the TID mapping offset would be assigned

at first (see line 8), which is the tuple count (before updated), and then a TID-mapped inverted

group unit will be created and appended to the end of the list (see lines 9 and 10). Next, TID

units will be created and added to the end of TID list (i.e. lines 11 to 14). At last, global statistics

of the KeyEntry will be updated (i.e. lines 15 and 16).
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Algorithm: MakePostingLists
Input: GroupID and semi-finished postings
Output: Fragments of posting lists or full posting lists

1 r e c e i v e GroupID and I t e m s of semi−f i n i s h e d p o s t i n g s ;
2 foreach <Key , Item> p a i r in I t e m s
3 i f KeyLookup does n o t c o n t a i n Key
4 TIDLis t = new TIDLis t ( ) , G r o u p L i s t = new G r o u p L i s t ( ) ;
5 KeyEntry = new KeyEntry ( Key , TIDLis t , G r o u p L i s t ) ;
6 KeyLookup−>Add ( Key , KeyEntry ) ;
7 e n d i f
8 O f f s e t = KeyLookup [ Key]−>TupleCount ;
9 GroupUni t = new GroupUni t ( GroupID , Item−>TupleCount , O f f s e t ) ;

10 KeyLookup [ Key]−>GroupLis t−>Add ( GroupUni t ) ;
11 foreach TID in I tem−>TIDArray
12 TIDUnit = new TIDUnit ( TID ) ;
13 KeyLookup [ Key]−>TIDLis t−>Add ( TIDUnit ) ;
14 endforeach
15 KeyLookup [ Key]−>TupleCount += Item−>TupleCount ;
16 KeyLookup [ Key]−>GroupCount ++;
17 endforeach
18 w r i t e p o s t i n g l i s t s by F l u s h C o n t r o l ;

Figure 5.12: Make posting lists

In the algorithm, the size of the outer loop is equal to the number of keys in a primary group,

whereas the sizes of the inner loop are varied to each key. However, the overall size of all inner

loops (i.e. summation of all inner loop sizes) is equal to the number of tuples given primary group

(i.e. the group length). Therefore, the complexity of the algorithm is a sum of complexities of

making TID-mapped inverted group lists and TID lists. Let m be the number of keys and n be

the number of TIDs, then the complexity for updating inverted lists is O(m) and for TID lists is

O(n), and the overall algorithmic complexity is O(m+n).

Flushing Control Here we discuss the flushing policy for posting lists while memory usage

exceeding allowance. In general, there are two principles for flushing: 1) lists to be flushed

should be as longer as possible, and 2) lists should be flushed as later as possible. The principles

are based on a hypothesis that if swapping out a few longest lists may relieve memory pressure,

then flushing of other lists could be postponed until those shorter lists become longer. Both

principles aim to reduce the number of fragments of posting lists caused by memory swapping.

Memory dumping is triggered when buffer usage of posting lists exceeding allowance. De-

pending on real-time memory pressures so that different levels of actions are to be performed.

Actions for three different memory pressure levels are:

1. If memory pressure is greater than or equal to level one but less than level two, then swap
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out the longest N posting lists (applicable to both TID lists and inverted lists);

2. If memory pressure is greater than or equal to level two but less than level three, then swap

out those lists that are longer than a threshold. The threshold is usually set to a multiple of

page/cluster size of system;

3. If memory pressure is greater than or equal to level three (the maximal level), then swap

out all posting lists in memory.

Figure 5.13 shows an algorithm FlushControl for conducting the flushing policy.

Algorithm: FlushControl

1 a s s e s s b u f f e r usage ;
2 i f b u f f e r usage i s g r e a t e r t h a n a l l o w a n c e
3 i f memory p r e s s u r e i s g r e a t e r t h a n or e q u a l t o l e v e l t h r e e
4 w r i t e a l l p o s t i n g l i s t s ;
5 e l s e i f memory p r e s s u r e i s g r e a t e r t h a n or e q u a l t o l e v e l two
6 w r i t e p o s t i n g l i s t s l o n g e r t h a n t h r e s h o l d ;
7 e l s e i f memory p r e s s u r e i s g r e a t e r t h a n or e q u a l t o l e v e l one
8 w r i t e l o n g e s t N p o s t i n g l i s t s ;
9 e n d i f

10 r e a s s e s s b u f f e r usage and u p d a t e memory p r e s s u r e l e v e l ;
11 e n d i f

Figure 5.13: Flushing policy

To find out the longest N posting lists for level one flushing, a small array is used to register

the pointers (i.e. in-memory addresses) of candidate lists, and the array is kept updated while

inserting posting units to posting lists. An algorithm for updating the register array is given in

Figure 5.14. First of all, when the register array is not full, then pointers of posting lists will

be directly added to the array (see lines 6 and 7); otherwise, if a posting list has been registered

before and its length is greater than the list one position ahead of it, then swap the positions of

those two pointers in the array (i.e. lines 10 to 16); else if a posting list has not been registered

before but its length is greater than the list at the last position in the array, then reset the array’s

last value to the new pointer (i.e. lines 17 to 19).

Algorithm RegisterTopLists (Figure 5.14) does not maintain exact orders of longest lists, but

it increases the chances of longer lists to stay in the register, whereas shorter lists would be

soon replaced by longer lists. Since linear search is used for finding pointers within register, let

m be the size of register, the average complexity for looking up a pointer is O(m
2 ); for total n

keys where each key has two posting lists, the average complexity for updating the register is
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Algorithm: RegisterTopLists

1 /∗ i n i t i a l i s e R e g i s t e r when t u p l e i n s e r t i o n s t a r t s
2 R e g i s t e r = new Array [N ] ;
3 ∗ /
4 r e c e i v e Key and KeyEntry ;
5 P o i n t e r = &KeyEntry−>P o s t i n g L i s t ; /∗ P o s t i n g L i s t i s e i t h e r T I D L i s t

or G r o u p L i s t ∗ /
6 i f R e g i s t e r−>Length i s l e s s t h a n N
7 R e g i s t e r−>Add ( P o i n t e r ) ;
8 e l s e
9 IsFound = f a l s e ;

10 foreach p o s i t i o n i in R e g i s t e r
11 i f R e g i s t e r [ i ] i s e q u a l t o P o i n t e r and R e g i s t e r [ i ]−>Length i s

g r e a t e r t h a n R e g i s t e r [ i − 1]−>Length
12 Swap ( R e g i s t e r [ i ] , R e g i s t e r [ i − 1 ] ) ;
13 IsFound = t r u e ;
14 break ;
15 e n d i f
16 endforeach
17 i f I sFound i s f a l s e and R e g i s t e r [N − 1]−>Length i s l e s s t h a n

P o i n t e r−>Length
18 R e g i s t e r [N − 1] = P o i n t e r ;
19 e n d i f
20 e n d i f

Figure 5.14: Register longest N posting lists

O(m
2 · n · 2) = O(m · n). Therefore, in order to minimise the overhead of updating register, it is

important to keep register size very small, e.g. set m at most to one hundred.

Merging Fragments of Posting Lists Fragments of posting lists are merged at the end of a tuple

insertion run9. In this phase, a merger reads posting fragments from a temporary file, and con-

catenates the fragments of a posting list into one whole list. The merger performs merging key by

key until all posting lists of keys have been finished. To support top-k processing during retrieval,

inverted group lists could be sorted by IGTC (i.e. in-group tuple count, see Section 5.2.3) before

finalised and written to RIX file.

A merging algorithm MergePostingLists is given in Figure 5.15. For each key, fragments

of TID-mapped inverted group list are merged at first (see lines 2 to 9), and then fragments of

TID list are merged as well (see lines 10 to 17). Since each posting fragment contains an on-

disk address of its previous fragment, so to read fragments one by one that an entire posting list

could be restored, and merged lists will be materialised into RIX. With regards to computational

complexity of merging, the size of the outer loop is decided by the number of keys in KeyLookup;

9Depending on building schedules, a RIX construction process may consist of one or several tuple
insertion runs.
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Algorithm: MergePostingLists
Input: Fragments of posting lists
Output: Full posting lists

1 foreach Key in KeyLookup
2 Address = KeyLookup [ Key]−>GroupLis t−>P r e v i o u s ;
3 whi le Address i s n o t empty
4 Fragment = Read ( Address ) ;
5 GroupFragment = new G r o u p L i s t ( Fragment ) ;
6 KeyLookup [ Key]−>GroupLis t−>MergeSor t ( GroupFragment ) ;
7 Address = GroupFragment−>P r e v i o u s ;
8 endwhi le
9 Wri t e ( KeyLookup [ Key]−>G r o u p L i s t ) ;

10 Address = KeyLookup [ Key]−>TIDLis t−>P r e v i o u s ;
11 whi le Address i s n o t empty
12 Fragment = Read ( Address ) ;
13 TIDFragment = new TIDLis t ( Fragment ) ;
14 KeyLookup [ Key]−>TIDLis t−>Merge ( TIDFragment ) ;
15 Address = TIDFragment−>P r e v i o u s ;
16 endwhi le
17 Wri t e ( KeyLookup [ Key]−>TIDLis t ) ;
18 endforeach

Figure 5.15: Merge fragments of posting lists

whereas the sizes of the two inner loops are varied, which depend on the number of fragments

produced in the insertion phase. Let n be the number of processed keys, and m be the number

of processed tuples, then in the best case, each key has one group list fragment and one TID

list fragment, thus the best complexity is O(2n) = O(n); whereas in the worst case, each key

has
⌈m

n

⌉
number of group list fragments and the same number of TID list fragments, so that the

worst complexity O
(
n · m

n ·2
)

= O(2m) = O(m). In summary, the computational complexity of

merging is between in proportion to the number of keys and the number of processed tuples.

Build External Hash Lookup In the finalising phase, in-memory lookup for keys and lookup

for groups would be materialised to disk; meanwhile, key entry list and group entry list would

be reorganised when corresponding external lookup is built. An algorithm BuildExternalLookup

for building external hash-based lookup is given in Figure 5.16.

In general, the on-disk linear structure of a hash lookup would be constructed in memory and

then dumped to disk. Therefore, an external lookup would be stored in an array during construc-

tion. Collided entries (i.e. data entries sharing the same hash bucket) would be chained into lists.

In algorithm BuildExternalLookup, an array is initialised for hash lookup at the beginning (i.e.

line 3); then a given entry list is processed to fill up the hash lookup (see lines 4 to 8), in which

direct accessing BucketIDs are computed from EntryIDs by a hash function (i.e. line 5), and
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Algorithm: BuildExternalLookup
Input: EntryList
Output: Reorganised EntryList and external Lookup

1 begin
2 /∗ an E n t r y L i s t i s e i t h e r a K e y E n t r y L i s t or a G r o u p E n t r y L i s t ∗ /
3 Lookup = new Array ( ) ;
4 foreach E n t r y in E n t r y L i s t
5 BucketID = HashFunc t ion ( Ent ry−>ID ) ;
6 Lookup [ BucketID]−>C o l l i d e d E n t r y−>Add ( E n t r y ) ;
7 Lookup [ BucketID]−>Ent ryCoun t ++;
8 endforeach
9 foreach p o s i t i o n i in Lookup

10 Lookup [ i ]−>Address = Wr i t e ( Lookup [ i ]−>C o l l i d e d E n t r y ) ;
11 endforeach
12 foreach p o s i t i o n i in Lookup
13 Wri t e ( Lookup [ i ]−>EntryCount , Lookup [ i ]−>Address ) ;
14 endforeach
15 end

Figure 5.16: Build external hash lookup

entries are inserted to buckets with assigned BucketID (i.e. line 6), while an EntryCount variable

of each bucket is updated (i.e. line 7) to record the number of entries sharing the bucket; in the

next step, chains of entries in the lookup array are written to disk, while accessing addresses for

entries in the lookup would be updated (see lines 9 to 11); in the last step, the lookup array is

materialised to disk (i.e. lines 12 to 14). The computational complexity of the algorithm is in

proportion to the length of given entry list, let n be the number of entries, so the complexity is

O(3n) = O(n).

5.2.5.3 Scheduling Algorithms

So far we have discussed the common building algorithms for sub-processes needed for con-

structing RIX. To enable RIX construction to be scalable, we investigate different building sched-

ules, in which a naive algorithm is firstly introduced, and then an adaptive algorithm and a ana-

lytical algorithm are proposed.

Figure 5.17 illustrate the flowcharts of three scheduling procedures. Next, we discuss the

details of scheduling algorithms.

Naive Build First of all, if the three building phases, i.e. insertion, merging and finalising, are

run sequentially, then a constructing schedule of the base line is obtained, and this is the simplest

building schedule and called the naive schedule. Figure 5.18 shows an algorithm NaiveBuild for

naive scheduling.
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(a) Naive Build (b) Adaptive Build (c) Analytical Build

Figure 5.17: Flowcharts of building schedules

Algorithm: NaiveBuild
Input: Table
Output: RixStd

1 begin
2 T up le s = Read ( Tab le ) ;
3 whi le Tu p l e s i s n o t empty
4 V a l i d T u p l e s = V a l i d a t e ( Tu p l e s ) ;
5 Accumulate ( V a l i d T u p l e s ) ;
6 T up le s = ReadNext ( Tab le ) ;
7 endwhi le
8 M e r g e P o s t i n g L i s t s ( ) ;
9 B u i l d E x t e r n a l L o o k u p ( K e y E n t r y L i s t ) ;

10 B u i l d E x t e r n a l L o o k u p ( G r o u p E n t r y L i s t ) ;
11 d e l e t e t e m p o r a r y f i l e ;
12 end

Figure 5.18: Constructing RIX with naive scheduling
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As demonstrated in Section 5.2.4, RIX construction by naive scheduling cannot be scalable

for large data, this is due to I/O cost exponentially increases that led by frequent random accesses

for small posting fragments.

Because posting fragments are caused by limited memory allowance for buffering, therefore,

one of the solutions is to reduce indexed tuples. For example, stopwords removal could be

performed by a tuple validator, and similar techniques have been applied in IR systems or search

engines. Empirically, such techniques are pragmatic and useful.

Adaptive Build However, if the size of source data is very large and even applying stopwords

removal cannot reduce the amount of posting fragments, additional techniques such as data par-

titioning or job partitioning could be employed.

Algorithm: AdaptiveBuild
Input: Table
Output: RixStd

1 begin
2 S k i p P o i n t = 0 , RunCount = 0 ;
3 whi le S k i p P o i n t i s s e t
4 RunCount ++;
5 T up le s = Read ( Table , S k i p P o i n t ) ;
6 u n s e t S k i p P o i n t ;
7 whi le Tu p l e s i s n o t empty
8 foreach t u p l e in Tu p l e s
9 i f V a l i d a t e ( t u p l e ) i s t r u e ;

10 V a l i d T u p l e s−>Add ( t u p l e ) ;
11 e l s e i f S k i p P o i n t i s u n s e t
12 S k i p P o i n t = t u p l e−>TID ;
13 e n d i f
14 endforeach
15 Accumulate ( V a l i d T u p l e s ) ;
16 T up le s = ReadNext ( Tab le ) ;
17 endwhi le
18 M e r g e P o s t i n g L i s t s ( ) ;
19 Wr i t e ( K e y E n t r y L i s t ) , r e l e a s e memory and r e s e t KeyLookup ;
20 i f RunCount i s e q u a l t o 1
21 Wri t e ( G r o u p E n t r y L i s t ) , r e l e a s e memory ;
22 e n d i f
23 d e l e t e t e m p o r a r y f i l e ;
24 endwhi le
25 B u i l d E x t e r n a l L o o k u p ( K e y E n t r y L i s t ) ;
26 B u i l d E x t e r n a l L o o k u p ( G r o u p E n t r y L i s t ) ;
27 end

Figure 5.19: Constructing RIX with adaptive scheduling

As we have mentioned, data partitioning has been well studied in parallel and distributed in-

dexing (e.g. see [MacFarlane, 2000, Arasu et al., 2001, Melnik et al., 2001]). On the other hand,
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job partitioning is suitable for RIX construction on standalone machines. Hence, an adaptive

scheduling method is to partition tuples insertion into several runs based on real-time memory

usage, an algorithm AdaptiveBuild for adaptive scheduling is demonstrated in Figure 5.19.

In AdaptiveBuild, the Validate (i.e. line 9) function not only performs stopwords removal,

but also rejects tuples when certain threshold has been exceeded. For example, a threshold could

be set to the number of acceptable keys in a run, which could be a fixed value or an adaptive

value. In addition, a variable SkipPoint is used to remember the address of a tuple that is firstly

skipped in a run (see line 12), so that scanning on the source table in the next run could be started

at the SkipPoint (see line 5). Note that constructing of GroupEntryList could be accomplished in

the first run (i.e. lines 20 to 22), where the allotted buffer for GroupEntryList would be released

after the list is dumped to disk, so that more memory would be available for other components in

following runs.

In summary, adaptive scheduling relies on dynamic buffer management to reduce posting

fragments, while it needs one or more scans on source table which might require extra sequential

I/O cost. However, because sequential I/O rate is several times greater than random I/O rate, thus

adaptive scheduling intends to balance sequential I/O and random I/O thus to achieve shorter

overall construction time.

Analytical Build Different from adaptive scheduling that dynamically plans insertion runs, an-

alytical scheduling decides insertion plans before the formal construction is started. Because

posting lists of keys are not even lengths, hence dynamic scheduling may not use the best of

available memory allowance but tend to request more sequential runs than it really needs. On the

other hand, analytical scheduling performs a previewed scanning on source table to obtain statis-

tics on the number of keys and the number of tuples that associated to keys, and then it estimates

runtime costs of insertion runs by dynamic programming. By collecting statistical knowledge of

source data, analytical scheduling could produce superior insertion plans than adaptive schedul-

ing by better balancing sequential I/O and random I/O.

Previewed Scanning A previewed scanning on source table is performed beforehand to

obtain knowledge about indexed keys, an algorithm BuildPreview for the process is given in

Figure 5.20. The procedure produces a semi-finished KeyEntryList (i.e. SemiKeyEntryList) and

a GroupEntryList. Different from a normal insertion phase, it only accumulates for each key the

total tuple count and group count (see lines 14 to 21), but it would not produce semi-finished
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postings for building posting lists; in addition, statistic of primary group is collected as well (see

lines 7 to 13). Note that intermediate flushing is not required usually, because it is possible to

hold all accumulated results in main memory. At the end of the process, the semi-finished key

entries are sorted by the tuple counts of keys. Both group entry list and semi-finished key entry

list are dumped to disk in the end.

Algorithm: BuildPreview
Input: Table
Output: GroupEntryList, sorted SemiKeyEntryList

1 begin
2 r e s e t LastGroupID , GroupLength = 0 ;
3 T up le s = Read ( Tab le ) ;
4 whi le Tu p l e s i s n o t empty
5 foreach t u p l e in Tu p l e s
6 e x t r a c t Key and GroupID ;
7 i f LastGroupID i s e q u a l t o GroupID
8 GroupLength ++;
9 e l s e

10 GroupEnt ry = new GroupEnt ry ( GroupID , GroupLength ) ;
11 G r o u p E n t r y L i s t−>Add ( GroupEnt ry ) ;
12 GroupLength = 1 ;
13 e n d i f
14 i f KeyLookup does n o t c o n t a i n Key
15 KeyEntry = new KeyEntry ( Key , NULL, NULL) ;
16 KeyLookup−>Add ( Key , KeyEntry ) ;
17 e n d i f
18 KeyLookup [ Key]−>KeyEntry−>TupleCount ++;
19 i f KeyLookup [ Key]−>KeyEntry−>GroupCount has n o t been u p d a t e d
20 KeyLookup [ Key]−>KeyEntry−>GroupCount ++;
21 e n d i f
22 endforeach
23 T up le s = ReadNext ( Tab le ) ;
24 endwhi le
25 Wri t e ( G r o u p E n t r y L i s t ) ;
26 foreach KeyEntry in KeyLookup
27 SemiKeyEnt ryLis t−>Add ( KeyEntry ) ;
28 endforeach
29 SemiKeyEnt ryLis t−>S o r t ( ) ; /∗ S o r t by KeyEntry−>TupleCount ∗ /
30 Wri t e ( SemiKeyEn t ryL i s t ) ;
31 end

Figure 5.20: Build preview

Let n be the number of source tuples, m be the number of keys, the complexity of accumu-

lation is O(n); if Quicksort [Hoare, 1961, Knuth, 1973] is applied for sorting semi-finished key

entry list, then the average complexity of producing the list is O(m + m · logm) = O(m · logm),

and the total computational complexity of algorithm BuildPreview is O(n+m · logm).
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Algorithm: AnalyticalSchedule
Input: Sorted SemiKeyEntryList
Output: UpperBounds

1 begin
2 UpperBounds = new Array ( ) , bound = 0 ;
3 r e s e t Cost , L a s t C o s t and V a r i a n c e ;
4 RemainedTuples = SemiKeyEnt ryLis t−>TupleCount , C u r r e n t T u p l e s = 0 ;
5 foreach KeyEntry in SemiKeyEn t ryL i s t
6 C u r r e n t T u p l e s = C u r r e n t T u p l e s + KeyEntry−>TupleCount ;
7 RemainedTuples = RemainedTuples − KeyEntry−>TupleCount ;
8 Cos t = C u r r e n t C o s t ( C u r r e n t T u p l e s ) + RemainedCost ( RemainedTuples ) ;
9 V a r i a n c e = ComputeVar iance ( Cos t − L a s t C o s t ) ;

10 i f Cost i s l e s s t h a n L a s t C o s t o r V a r i a n c e i s l e s s t h a n t h r e s h o l d
11 bound ++;
12 L a s t C o s t = Cos t ;
13 e l s e
14 UpperBounds−>Add ( bound ) ;
15 C u r r e n t T u p l e s = 0 , r e s e t Cos t and L a s t C o s t ;
16 e n d i f
17 endforeach
18 end

Figure 5.21: Analytical scheduling

Analytical Scheduling and Cost Model Once a preview of source data is built, then insertion

schedules could be generated based on the preview. In order to apply dynamic programming for

computing schedules, a cost model is needed for estimating costs of planned runs. As it is given

in formula 5.15, the estimated cost of RIX construction is indicated by I/O time, where the total

I/O time Ttotal is summation of current I/O time Tcurrent and remained I/O time Tremained . Current

I/O time is estimated by giving certain number of keys and tuples in a run, whereas remained I/O

time is estimated by remained number of keys and tuples.

Ttotal = Tcurrent +Tremained (5.15)

Rather than using exact sizes of posting fragments (which is impossible to obtained) for

computing, we use average sizes of posting TID fragments and posting inverted group fragments

instead. Let Savg denote average transfer size, then the average read transfer size of TID fragments

and group fragments are given in formula 5.16, where nk is the number of keys to be processed

in a run, and other variables are as defined in Table 5.3.

Savg
pt =

spt ·∑nk
i=1 nt,ki

nk
, Savg

pm =
spm ·∑nk

i=1 ng,ki

nk
(5.16)
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The I/O costs of current run and remained runs are estimated as formula 5.12, in which

Tf etch, Ttmp and Tentry are computed as formulas 5.8, 5.9 and 5.11 respectively, whereas Tposting is

calculated by formula 5.17.

Tposting = t ′r ·
⌈

Savg
pt

B

⌉
+ t ′w ·

⌈
spt ·∑nk

i=1 nt,ki

B

⌉
+ t ′′r ·

⌈
Savg

pm

B

⌉
+ t ′′w ·

⌈
spm ·∑nk

i=1 ng,ki

B

⌉
(5.17)

A dynamic programming algorithm AnalyticalSchedule for scheduling insertion runs is

shown in Figure 5.21. Let n be the total number of keys, so the complexity of the algorithm

is O(n).

Analytical Build Algorithm A building algorithm AnalyticalBuild that applies analytical

scheduling is given in Figure 5.22.

Algorithm: AnalyticalBuild
Input: Table
Output: RixStd

1 begin
2 SemiKeyEn t ryL i s t = B u i l d P r e v i e w ( Tab le ) ;
3 UpperBounds = A n a l y t i c a l S c h e d u l e ( SemiKeyEn t ryL i s t ) ;
4 I t e r a t o r = 0 ;
5 foreach bound in UpperBounds
6 whi le I t e r a t o r i s l e s s t h a n bound
7 Key = SemiKeyEn t ryL i s t [ I t e r a t o r ]−>Key ;
8 KeyEntry = SemiKeyEn t ryL i s t [ I t e r a t o r ]−>KeyEntry ;
9 KeyLookup−>Add ( Key , KeyEntry ) ;

10 I t e r a t o r ++;
11 endwhi le
12 T up le s = Read ( Tab le ) ;
13 whi le Tu p l e s i s n o t empty
14 foreach t u p l e in Tu p l e s
15 i f KeyLookup c o n t a i n s t u p l e−>Key
16 V a l i d T u p l e s−>Add ( t u p l e ) ;
17 e n d i f
18 endforeach
19 Accumulate ( V a l i d T u p l e s ) ;
20 T up le s = ReadNext ( Tab le ) ;
21 endwhi le
22 M e r g e P o s t i n g L i s t s ( ) ;
23 Wr i t e ( K e y E n t r y L i s t ) , r e l e a s e memory and r e s e t KeyLookup ;
24 d e l e t e t e m p o r a r y f i l e ;
25 endforeach
26 B u i l d E x t e r n a l L o o k u p ( K e y E n t r y L i s t ) ;
27 B u i l d E x t e r n a l L o o k u p ( G r o u p E n t r y L i s t ) ;
28 end

Figure 5.22: Constructing RIX with analytical scheduling
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A seen drawback of the analytical building algorithm is that it introduces extra overheads in

order to obtain statistics of source data and producing building schedules. However, experiments

show that these additional overheads are worthy because overall building time will be consider-

ably shorten comparing to naive and adaptive building algorithms. Note that an important gain

from previewed statistics is that short posting lists could be directly written to RIX file since we

have known those lists have been completed and do not need to be merged. In other words, a lot

of I/O spent on temporary file are therefore saved.

Finally, an interesting question might be asked is that whether building schedules could be

based on approximate statistics rather than based on thorough statistics? This is a topic worth

studying but we will leave it to future work and do not discuss further in this thesis.

5.2.6 Retrieval Procedures

In this subsection, we address the retrieval procedures that are supported by RIX. In general,

users may employ one of the implementations of RIX, i.e. RixLite, RixStd or RixExt, to support

physical operators or operations for query processing. Specifically, a RIX instance could be used

for the following purposes:

• To support conventional relational operations of database systems such as selection and

indexed join

• To support special operations of IR+DB systems such as probability estimation and prob-

ability aggregation

• To support data accessing methods deployed by top-k algorithms such as sorted access and

random access

Though varied RIX instances are slightly different with regards to the data structure of post-

ing lists, nevertheless, they can be retrieved by similar searching and fetching methods. The rest

of the section introduces the common methods for retrieving the instances of RIX, and describes

in short how RIX can be used to support physical operators and operations.

5.2.6.1 Accessing Methods for Search and Fetch

To access the ADTs addressed in Section 5.2.3, there are three types of methods that can be used

for search (i.e. looking-up) or fetch (i.e. retrieving) from RIX instances. In particular, Contain

methods are applied for looking up existing data entries, while Get methods and Next methods are
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employed for retrieving posting data. Implementations of a certain type of methods can access

to RIX in a similar behaviour.

Contain Methods In general, a Contain method may perform two actions. First, it attempts to

look for a data entry from a RIX instance while given an accessing key, and then it acknowledges

the calling process whether a look-up is successful or not. Second, it reads a found data entry

into memory so that to prepare for forthcoming fetch. Note that a read of data entry would be

always performed after a look-up, and it would be only issued if the look-up is successful. With

regards to associated ADTs, Contain methods are related to search facilities of RIX, which at the

moment are hash tables (i.e. Hybrid Hash Lookup). Therefore, respective Contain methods are

implemented for looking up indexed terms (keys) and indexed document IDs (GIDs).

Get Methods Get methods belong to a common type of accessing method for retrieving indexed

data items and statistics, and there are implementations to access information from all kinds of

ADTs including data entries and posting lists. After a data entry has been found (by a certain

Contain method), then Get methods can be used (with a specified accessing key) not only to

retrieve a list of indexed items such as a list of TID units or a list of inverted group units, but

also to retrieve single statistics such as tuples count (TC), or groups count (GC), or group length

(GL), etc..

While indexing documents (in IR applications), because the posting lists of RIX could be

extremely long, hence the Get methods for retrieving posting lists (including TIDs and inverted

groups) can be set to return a limited portion of an entire list, for instance, the first one hundred

items of a list; while a stopping position is recorded for further fetching, which would be taken

over by another type of fetching methods, i.e. Next methods.

Next Methods A Next method can be called to fetch more data items from a posting list if a

Get counterpart was deployed to retrieve the first part of the same list. Similarly to Get methods,

Next methods return a portion of a posting list with a pre-set number of items to be retrieved per

fetch; at the mean time, the stopping position would be updated at the end of a fetch. Therefore,

to retrieve an entire posting list, a calling process just needs to repeatedly deploy a Next method

until no more data are returned.

5.2.6.2 Supporting Physical Operators and Operations

Here let us discuss what physical operators and operations can be supported by RIX in practice.

Giving the three types of accessing methods as aforementioned, we relate specific methods to
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the ADTs containing in RIX and introduce three situations where certain RIX instances can

be applied, specifically, for supporting conventional relational operators, composed and special

operations, and top-k related operations. To demonstrate, some available implementations of

fetching methods are given in Table 5.5.

Get Methods Next Methods Retrieved Data Corresponding IR Concepts

GetPTID NextPTID posting tuple-IDs N/A
GetPTC N/A posting tuples count within-collection tf of term
GetPGC N/A posting groups count df of term
GetPIGTC NextPIGTC posting in-group tuples count within-document tf of term
GetAvgPIGTC N/A average posting IGTC average tf
GetMinPIGTC N/A minimum posting IGTC minimum tf
GetMaxPIGTC N/A maximum posting IGTC maximum tf
GetGL N/A group length document length
GetAvgGL N/A average group length average document length
GetMinGL N/A minimum group length minimum document length
GetMaxGL N/A maximum group length maximum document length
GetTC N/A global tuples count total number of

terms (i.e. Nt)
GetKC N/A global keys count total number of

distinct terms
GetGC N/A global groups count total number of

documents (i.e. Nd)

Table 5.5: Specific accessing methods of RIX

For Relational Operators First of all, all RIX instances including RixLite, RixStd and RixExt

support TID-index-based relational operators such as selection and indexed join. Given a primary

accessing key, e.g. an indexed term, GetPTID and NextPTID methods can be used to retrieve a

list of corresponding tuple Identifiers, which give direct access to the tuples in a table where the

term can be found.

For Composed IR+DB Operations Secondly, all RIX instances support composed operations

for probability estimation and probability aggregation. In an IR+DB system, special inverted-

index-based operations can be implemented as general purposed probability estimators and ag-

gregators (e.g. see Section 4.3), which produce weighted tuples based on pre-defined scoring

functions. Most of the accessing methods in Table 5.5 retrieve statistics associated to certain IR

concepts, which are required for modelling IR ranking models.

Moreover, the accessing methods for statistics can be related to the scoring driven opti-

mization technique that bases on scoring expressions (SCX) (see Chapter 3, also see e.g. Sec-
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tion 3.4.4). An IR+DB query execution engine could exploit RIX to support queries formulating

scoring functions such as those given in Table 3.10.

For Top-k Related Operations Thirdly, all RIX instances support top-k algorithms based on

no random access (NRA). As posting inverted group lists can be sorted by in-group tuples count

(IGTC) or document IDs (GID), the GetPIGTC and NextPIGTC methods together provide a

sequential (sorted) access functionality to posting lists, which is the accessing mode required by

NRA-style algorithms in a top-k incorporated pipeline (see Section 4.3).

On the other hand, with respect to random access to posting inverted group lists, current RIX

instances (i.e. RixLite, RixStd and RixExt) do not provide accessing support for such purpose.

However, it is possible to extend the current implementations so that to allow random accesses

for posting data, while related studies will be left to future work.

5.2.7 Update Procedure

In general, index update is an important aspect for information management systems. Especially

for databases, efficient methods for ad hoc update and incremental update are always popular

research topics. However, data update is a relative expensive manipulation comparing to data

insertion, therefore, when an index is out of date, many practical IR systems would rather recon-

structing a new index than updating an existing one.

Because RIX is proposed for supporting text retrieval for applications involving both text and

structured data, hence updating inverted group lists of RIX would be as expensive as conventional

inverted document lists in traditional IR systems. Therefore, by following similar consideration

of most IR systems, RIX instances allow very few update functionality. In RIX, ad hoc update

would not be provided, while incremental update is allowed if indexed table grows as long as

the original data in the table are not changed. In contrast, if tuples in a table are changed, then a

corresponding RIX has to be rebuilt in order to keep the index up-to-date.

5.3 Experiments and Results

In this section, we present experiments that evaluate the performance of RIX with regards to

index construction. While with respect to retrieval performance, which has been demonstrated

in Section 3.5 of Chapter 3 where we investigated the runtime performances of processing PRA

queries while utilising scoring-driven optimization and RIX.



5.3. Experiments and Results 205

5.3.1 Specifications and Setup

Above all, the specifications and experimental setup are given as follows.

Systems An IR+DB prototype Birdie A was used as the testing bed, in which the RIX instances

have been implemented. The configurations of Birdie are:

• page size: 4 KB

• memory allowance for buffering data: 40 MB

• total memory allowance for indexing process: 512 MB (including the 40 MB for buffering)

• memory allowance for retrieval process: 512 MB

To measure the performances of index construction and retrieval, we used a standalone PC

which specifications are as follows: Dell XPS M1330 Laptop. Intel10(R) Core11(TM)2 Duo

CPU T6400 at frequency 2.00GHz, 3.00 GB of RAM at frequency 1.20 GHz. Windows XP

Professional OS, version 2002, Service Pack 3. The capacity of disk partition where indexes are

stored is 100 GB, and the page size is 4KB.

Test Collection Similarly to previous chapters, TREC-312 was used as the testing collection,

and the original collection was pre-processed and loaded into a relational table in Birdie. The

schema of the indexed table is as follow.

CREATE TABLE trec3 (term VARCHAR, docid VARCHAR);

Readers may refer to previous chapters and sections (e.g. see Section 3.5.1) for the specifi-

cations of the TREC collection.

Setup To create RIX indexes, Birdie employs a SQL-style data definition language (DDL),

which can be used as follows:

CREATE INDEX trec3_rxl RXL ON trec3(term) GIVEN EVIDENCE (docid);
CREATE INDEX trec3_rxs RXS ON trec3(term) GIVEN EVIDENCE (docid);

For instance, the first line defines an RIX index named “trec3 rxl”, while “RXL” declares

the index type to be RixLite; secondly, the RixLite index is built on table “trec3” on the attribute

named “term”, which is the primary indexed key; and thirdly, the “GIVEN EVIDENCE” clause

defines an “evidence” attribute for probability estimation, which is used as a secondary key for

10Intel is a registered trademark of Intel Corporation.
11Core is a trademark of Intel Corporation.
12http://trec.nist.gov/
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grouping operation, and its values are used as the identifiers of the posting inverted groups, while

in this case, the attribute “docid” is given as the evidence. In addition, the “RXS” keyword can

be used for the declaration of building a RixStd index.

Since RixExt can be viewed as a mixture of RixLite and RixStd, therefore we skipped the

investigations of RixExt but only measured RixLite and RixStd in the experiments.

The data size of the indexed table and the indexes are as follows: table size 4.02 GB (i.e.

4 216 908 bytes); the total number of tuples in the table is 202 254 542, the total number of keys

(i.e. distinct terms) is 715 649, and the total number of groups (i.e. documents) is 741 647; the

index size of RixLite is 3.97 GB (i.e. 4 168 713 bytes), while the index size of RixStd is 4.83 GB

(i.e. 5 066 937 bytes).

5.3.2 Methodology

The experiments focused on investigating the efficiency of RIX construction and retrieval. First,

we measured the performances of constructing RixLite and RixStd. Second, we conducted dif-

ferent fetching tasks in different conditions to evaluate the retrieval performances.

Despite efficiency is the main interest for us, we also measured the retrieval effectiveness

when exploiting different indexes, so that to validate the correctness of the constructing and

fetching algorithms.

Construction Performance To investigate the index construction performance, we conducted

the adaptive build and the analytical build algorithms for constructing RixLite and RixStd, and

the experimental methods are given as the follows:

1. Adaptive Build: Investigates the construction of RixLite and RixStd on a PC while apply-

ing adaptive building schedule.

The three phases of adaptive build are insertion, merging and finalising. By applying

adaptive scheduling, it adjusts the number of keys (e.g. distinct terms) to be accepted in

the insertion phase, where the maximum limit of accepted keys is called cap or keys cap.

Once the number of inserted keys (i.e. seen keys) reaches the cap, then indexer would only

process the tuples with seen keys and skip those with unseen keys. In addition, if skips

happen in a scanning run, the position in scanned table where the first skip occurs is called

skip start point and would be recorded. Merging is performed after insertion. And then
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indexer rewind table scan to the skip start point and restart insertion if skips happened in

the previous scanning run, otherwise it finalises the construction.

This experiment demonstrates how keys cap is adjusted in scanning runs and the time

consumption of different phases, where initial cap is set to 65 536 (i.e. 216) keys. and the

same criteria are used to investigate the performances of building RixLite and RixStd.

2. Analytical Build: Investigates the construction of RixLite and RixStd on a PC while ap-

plying analytical building schedule.

There are four phases during indexing while applying analytical build, which are analysis,

insertion, merging and finalising. Different from adaptive build, in analytical build the keys

cap would be estimated and pre-computed during analysis, and re-scans always restart from

the beginning of indexed table. Apart from that, the other settings of analytical build are

the same to adaptive build.

This experiment demonstrates an analytical building schedule; and similarly, the time con-

sumption of different phases of indexing for RixLite and RixStd.

3. Time Measurement: The indexing time are measured based on several constructing phases,

and the overall indexing time are obtained and investigated.

Two types of time measurements are considered, which are the elapsed time (denoted by

Elapsed) and the process time (denoted by Process). The former is the observed indexing

time, whereas the latter is the actual CPU time used by indexing process; the difference

between the elapsed time and the process time indicates the amount of waiting time for I/O

operations.

Retrieval Performance To investigate the index retrieval performance, we considered different

fetching manners such as sequential access and random access while retrieving from different

components of RixLite and RixStd. In addition, because the indexes would be integrated with

query engine, hence we also studied the performances of different indexes while they are applied

in a query engine.

1. By Sequential Access: Investigates the performances of retrieving posting lists such as TID

List and Inverted Group List.
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The TID lists and the Inverted Group list are the two main types of posting lists in RIX

instances, which are retrieved through sequential access. The experiment investigates the

fetching rates of different posting lists in different RIX instances, where the retrieval time

were recorded incrementally for per 10 000 tuples (posting items) were retrieved. Consid-

ering the caching effect of operating system, we always performed the same run twice, so

that the first run represents the performance from a “cold start”, whereas the second run

represents the performance from a “hot start”. The performances of RixLite and RixStd

were evaluated respectively.

2. By Random Access: Investigates the performances of retrieving entries such as Key Entry

and Group Entry.

The Key Entry and the Group Entry are based on external hash table so that can be retrieved

by random access. The experiment investigates the lookup rates of different data entries in

different RIX instances, where the lookup time were recorded incrementally for per 1 000

different keys (for Group Entries are group IDs) were issued and corresponding entries

were retrieved. Similarly to the experiments of sequential access, the same retrieval run

were always conducted twice with a “cold start” and a “hot start”. The performances of

RixLite and RixStd were evaluated respectively.

3. By Integrating with Query Engine: Investigates the performances while integrated with

query engine for running different retrieval models.

In practical, the indexes are utilised by the query engine where both sequential access and

random access to the indexes would be applied. The experiment investigates the overall

retrieval time when utilising different RIX instances, where the retrieval time for different

retrieval models were recorded. The performances of RixLite and RixStd were evaluated

respectively.

5.3.3 Results

5.3.3.1 Construction Performance

Here we present the experimental results of construction performances while building RixLite

and RixStd by adaptive build and analytical build respectively.
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Adaptive Build Respectively, the adaptive build result for RixLite is shown in Table 5.6, and

the result for RixStd is given in Table 5.7, while the overall performances of RixLite and RixStd

are compared in Table 5.8.

Scan Adjustment of Keys Cap Final Keys Skip Start
Run Adjusted Cap Time Stamp Scanned Cap Point

1 40 041 00:00:34 1.36% 40 041 2 805 690

2 190 972 02:18:52 5.8% 174 231 30 962 032174 231 02:20:06 15.23%

3

155 169 02:32:08 20.33%

197 674 94 917 350
193 735 02:33:55 37.12%
196 226 02:35:04 46.64%
197 087 02:35:05 46.78%
197 674 02:35:06 46.93%

4

138 985 02:41:54 54.53%

246 253 196 106 487
206 021 02:43:12 67.55%
242 743 02:45:18 88.08%
246 810 02:46:10 96.05%
246 253 02:46:16 96.96%

5 − − − 65 536 −
(a) Adaptive Scheduling for RixLite

Scan Insertion Time Stamp and Span (sec) Merging Time Stamp and Span (sec)
Run Elapsed Process Elapsed Process

Stamp Span Stamp Span Stamp Span Stamp Span
1 00:44:37 2 677 00:43:47 2 627 02:18:23 5 626 00:56:57 790
2 02:30:34 731 01:08:17 680 02:31:34 60 01:08:56 39
3 02:40:50 556 01:17:37 521 02:41:06 16 01:17:53 16
4 02:46:36 330 01:23:21 328 02:46:50 14 01:23:35 14
5 02:47:07 17 01:23:52 17 02:47:08 1 01:23:53 1

Total (sec) − 4 311 − 4 173 − 5 717 − 860
Wait (sec) 138 4 857

(b) Timing of Insertion and Merging for RixLite

Table 5.6: Scheduling and timing of RixLite construction with adaptive build

First of all, let us explain the adaptive scheduling for RixLite. In Table 5.6a, where the

procedures of adaptive scheduling are shown. At the beginning of each scanning run, the keys cap

is reset to initial value 65 536, while the cap would be adjusted during insertions. For instance,

during the first scanning run, the cap was adjusted to 40 041 after 34 seconds when the indexing

was started, and the adaptation happened while the process had scanned 1.36% of the indexed

table. In addition, the skip start point records the first skipped tuple, which is at position 2 805 690

(this is a sequential position, i.e. the 2 805 690th tuple counted from 0) in the table. Moreover,

indexer adjusted the cap only once in the first run, whereas it adjusted the cap twice in the second

run, and five times in the third run, and so on so forth; while in the last run, i.e. the fifth run, there
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is not a adjustment because scanning was completed before any adjustment might be required,

hence the cap remained its initial value 65 536.

Next, let us have a look at the timing of insertion and merging for RixLite, which is given

in Table 5.6b. As it is shown, each scan run consist f an insertion phase and a merging phase,

and the timings of both phases in all runs were recorded, where a time stamp (or just stamp) is

the time clocked, whereas a time span (or just span) is the duration. Since our actual interest

is duration, therefore when we say “time” in our following discussions, we usually mean “time

span” unless further clarify. For instance in the first run, the elapsed time of insertion is 2 677

seconds (i.e. 44 minutes and 37 seconds, or 44m 37s in short) and the process time is 2 627

seconds (43m 47s), whereas the elapsed time of merging is 5 626 seconds (1h 33m 46s) and the

process time is 790 seconds (13m 10s). Similarly, the insertion and merging timing of subsequent

runs are shown. Moreover, the total duration of insertion and merging are obtained by summing

up respective timings in every runs, in which for insertion the total elapsed time is 4 311 seconds

(1h 11m 51s) and the process time is 4 173 seconds (1h 9m 33s), whereas for merging the total

elapsed time is 5 717 seconds (1h 35m 17s) and the process time is 860 seconds (14m 20s).

What can be found from Table 5.6 include:

• Though there is a very small portion of keys to be inserted in the first run than the sub-

sequent runs, but those keys associate to very large amount of tuples; while reflecting in

timing, the first run spent more than 80% of the overall indexing time. On the other hand,

this observation also reflects the characteristics of text documents, i.e. a relatively small

amount of common terms occurs in much larger amount of documents.

• With respect to the difference between elapsed time and process time, it can be seen that

the gap is dramatic in the merging phase of the first run (4 857 sec, i.e. 1h 20m 57s),

whereas the gaps are insignificant for all insertion sub-phases and the subsequent merging

sub-phases. As aforementioned, the gap between the two timings represents the waiting

duration for I/O operations, and the observation indicates a large amount of random disk

I/O could be applied in the merging phase of the first scanning run.

Furthermore, we address the result of RixStd in Table 5.7. Overall, the procedure is similar

to RixLite, though there are two casual events were observed.

First, it can be seen that the keys cap was adjusted to 35 165 during the first scanning run,

which is a few thousand keys less than RixLite, but a skip start point was obtained exactly the
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same to the one in RixLite, which seems to be impossible. Because each inverted group unit

in RixStd contains one more field than a counterpart in RixLite (see Section 5.2.3.1), hence the

adaptation function tends to tune the indexer to accept less keys so that to preserve memory

allowance for posting lists. However, situations such as here can still happen because the cap

is adjusted after inserting a group of tuples, while in our experiments a group corresponds to a

document. As a result, although a smaller final cap was issued, but the actual accepted keys were

the same to those in RixLite.

Scan Adjustment of Keys Cap Final Keys Skip Start
Run Adjusted Cap Time Stamp Scanned Cap Point

1 35 165 00:00:35 1.36% 35 165 2 805 690

2 200 203 02:39:26 5.76% 159 140 32 219 686159 140 02:40:57 15.92%

3

108 086 02:54:53 21.42%

196 598 96 667 477191 043 02:55:50 29.04%
197 973 02:58:16 47.01%
196 598 02:58:23 47.79%

4 29 963 03:05:45 50.93% 29 963 103 012 546

5
133 841 03:11:16 60.82%

233 863 −200 979 03:12:49 76.85%
233 863 03:14:44 95.46%

(a) Adaptive Scheduling for RixStd

Scan Insertion Time Stamp and Span (sec) Merging Time Stamp and Span (sec)
Run Elapsed Process Elapsed Process

Stamp Span Stamp Span Stamp Span Stamp Span
1 00:46:37 2 797 00:46:12 2 772 02:38:46 6 729 01:01:00 888
2 02:53:05 859 01:12:34 694 02:54:10 65 01:13:17 43
3 03:05:03 653 01:22:00 523 03:05:21 18 01:22:18 18
4 03:10:17 296 01:27:00 282 03:10:19 2 01:27:02 2
5 03:15:15 296 01:31:58 296 03:15:28 13 01:32:10 12

Total (sec) − 4 901 − 4 567 − 6 827 − 963
Wait (sec) 334 5 864

(b) Timing of Insertion and Merging for RixStd

Table 5.7: Scheduling and timing of RixStd construction with adaptive build

Second, an occasional situation was occurred in the fourth run, where the final cap is unusu-

ally small so that the first skip happened much earlier than expected. The indexing log indicates

the actual memory usage does not match the indexer’s internal record, where the actual usage

was shown to be exceeding the allowance, but the indexer’s record shows it did not used much

memory. Considering a flushing operation had performed not long before, a possible explana-

tion is that there was a lag somehow happened for memory recollection procedure13, so that the

13In short, the memory management in C# depends on a mechanism called Garbage Collector (GC),
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released memory had not been recollected in time. As a result, the indexer was forced to start

skipping earlier than usual. Nevertheless, scheduling was back to normal in the fifth run, though

a few more minutes had to spend to process the tuples which could have been done in the fourth

run. Apart from that, other observations are similar to the constructing procedure of RixLite.

Similarly, merging posting lists in the first run for adaptive build RixStd appear to be suffering

from a significant delay led by awaiting disk I/O.

Phase RixLite Build Time (sec) RixStd Build Time (sec)
Elapsed Process Elapsed Process

Insertion 4 311 4 173 4 901 4 567
Merging 5 717 860 6 827 963
Finalising 37 29 37 29
Total (sec) 10 065 5 062 11 765 5 559
(hh:mm:ss) 02:47:45 01:24:22 03:16:05 01:32:39
Wait (sec) 5 003 6 206
(hh:mm:ss) 01:23:23 01:43:26

Table 5.8: Building time with adaptive build, RixLite vs. RixStd

In addition, the overall comparison for the indexing procedures of RixLite and RixStd using

adaptive build is illustrated in Table 5.8. From the table we can see that during indexing over

99.5% time is spent on constructing posting data, while less than 0.5% time is used for con-

structing searching facility. Awaiting I/O is a considerable problem affecting indexing efficiency,

for instance, it took the indexing process for RixLite more than one hour and twenty minutes in

waiting, while for RixStd it took even twenty minutes more than RixLite.

Analytical Build Next, the results of analytical build are given in the following tables, where

Table 5.9 demonstrates the results for building RixLite, while Table 5.10 illustrates the result for

constructing RixStd, and the overall performances of both indexes are given in Table 5.11.

Let us first discuss the result of RixLite. As stated, indexer applying analytical build deploys

a previewed scan on the indexed table, and then analyses the indexing workload based on a

knapsack-style algorithm collaborating with a predefined cost model. While the scheduling result

came out of analysis is given in Table 5.9a, in which shows the table scanning for insertion

had been scheduled into three runs. For instance, the first run would process 3 421 keys which

associate to over 150 million tuples, while the second run involves 82 873 keys, and so on. The

analysing phase spent 13 minutes and 51 seconds, and then the insertion phase was started.

which collects released memory for reallocation. Similar mechanism is also utilised in other programming
language such as Java.
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Scan Analytical Schedule
Run Keys Cap Tuples Scheduled

1 3 421 150 552 295
2 82 873 49 156 770
3 629 355 2 545 477

Total 715 649 202 254 542

(a) Analytical Scheduling for RixLite

Scan Insertion Time Stamp and Span (sec) Merging Time Stamp and Span (sec)
Run Elapsed Process Elapsed Process

Stamp Span Stamp Span Stamp Span Stamp Span

1
00:44:46

1 855
00:42:55

1 793 01:30:40 2 754 00:52:14 559(starts at (starts at
00:13:51) 00:13:02)

2 01:53:45 1 385 01:14:28 1 334 02:14:03 1 218 01:18:14 226
3 02:27:25 802 01:30:50 756 02:27:31 6 01:30:55 5

Total (sec) − 4 042 − 3 883 − 3 978 − 790
Wait (sec) 159 3 188

(b) Timing of Insertion and Merging for RixLite

Table 5.9: Scheduling and timing of RixLite construction with analytical build

Furthermore, the processing time of insertion and merging are illustrated in Table 5.9b. For

instance, the elapsed time of the first run insertion is 1 855 seconds (i.e. 30m 55s), and the elapsed

time of the first run merging is 2 754 seconds (45m 54s). To sum the timing of all sub-phases up,

we obtained the total elapsed and process time of insertion are 4 042 seconds (1h 7m 22s) and

3 883 seconds (1h 4m 43s) respectively, while the total elapsed and process time of merging are

3 978 seconds (1h 6m 18s) and 790 seconds (13m 10s).

There are at least two findings can be seen from Table 5.9:

• Although analytical build spends some extra overhead on analysing phase, but it earns

worthy pay-back that the overall performance can be dramatically improved.

• Comparing to adaptive scheduling, analytical scheduling improves the elapsed time of

insertion slightly by shortening the time for about four and a half minutes (4 042 sec vs.

4 311 sec), but it improves the elapsed time of merging dramatically by reducing the time

by 42 minutes (3 188 sec vs. 5 717 sec). This can be achieved largely because analytical

scheduling breaks down the waiting time during merging, for example in this case, 3 188

seconds for analytical versus 4 857 seconds for adaptive, which leads to a difference of

over 27 minutes.

Now let us move on to the result of RixStd, which is addressed in Table 5.10. As expected,
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Scan Analytical Schedule
Run Keys Cap Tuples Scheduled

1 2 564 140 274 631
2 58 146 58 235 571
3 654 939 3 744 340

Total 715 649 202 254 542

(a) Analytical Scheduling for RixStd

Scan Insertion Time Stamp and Span (sec) Merging Time Stamp and Span (sec)
Run Elapsed Process Elapsed Process

Stamp Span Stamp Span Stamp Span Stamp Span

1
00:43:58

1 824
00:42:09

1 756 01:20:00 2 162 00:51:29 560(starts at (starts at
00:13:34) 00:12:53)

2 01:45:00 1 500 01:15:43 1 454 02:14:35 1 775 01:20:34 291
3 02:28:30 835 01:33:40 786 02:29:02 32 01:34:06 26

Total (sec) − 4 159 − 3 996 − 3 969 − 877
Wait (sec) 163 3 092

(b) Timing of Insertion and Merging for RixStd

Table 5.10: Scheduling and timing of RixStd construction with analytical build

because the data structure of RixStd is different from RixLite, we obtained a slightly different

scanning schedule for insertion as it is shown in Table 5.10a. Although there are still three

allotted runs, but the keys caps had been even restricted for the first two runs comparing to the

schedule for RixLite.

Moreover, the result of insertion and merging phases is given in Table 5.10b. Amazingly,

the RixStd indexer handled the two phases very well that it can even match the counterpart for

RixLite. Because the index size of RixStd is larger than RixLite, hence it is reasonable that

the indexer would spend a little bit more time on insertion, for example, in this case it is 4 159

seconds (1h 9m 19s) for RixStd versus 4 042 seconds (1h 7m 22s) for RixLite. However, what is

really impressive is that the elapsed time of merging for RixStd is as good as RixLite (actually,

it is even 9 seconds better than RixLite), which means the analytical scheduling method works

effectively to minimise the waiting duration of merging process.

Finally, the overall performances of constructing RixLite and RixStd with analytical schedul-

ing is shown in Table 5.11. In which we can see that the total indexing time (i.e. elapsed time)

of the two types of RIX are almost the same and both duration are less than two and a half

hours. Bearing in mind the fact that the index size of RixStd is about 20% larger than RixLite,

which reflects that reducing the cost of random accesses is an important principle for improving

the construction efficiency of indexing. While comparing to adaptive scheduling, analytical build
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Phase
RixLite Build Time (sec) RixStd Build Time (sec)
Elapsed Process Elapsed Process

Analysis 831 782 814 773
Insertion 4 042 3 883 4 159 3 996
Merging 3 978 790 3 969 877
Finalising 30 27 35 29
Total (sec) 8 881 5 482 8 977 5 675
(hh:mm:ss) 02:28:01 01:31:22 02:29:37 01:34:35
Wait (sec) 3 399 3 302
(hh:mm:ss) 00:56:39 00:55:02

Table 5.11: Building time with analytical build, RixLite vs. RixStd

appears to be superior to an adaptive counterpart in minimising the overhead of random accesses.

5.3.3.2 Retrieval Performance

Here we present the experimental results of retrieval performances while accessing RixLite and

RixStd by sequential access and random access, as well as the runtime performances of query

engine when utilising different RIX instances for processing retrieval models.

By Sequential Access In this set of experiments, the runs were performed by selecting two

query terms, which are “be” and “from”14, where the term “be” has the longest posting TID

list containing 1 726 429 TID units, (there are 416 782 units in its Inverted Group list), and the

other term “from” has the longest posting Inverted Group list including 442 777 units, (there are

1 369 818 units in the term’s TID list). In the experiment, tuples (i.e. posting units) were re-

trieved from the list incrementally, and the retrieval time (including the incremental time and the

accumulative time) of every 10 000 tuples were recorded. The results are presented in Table 5.12

and Table 5.13 respectively.

The results are organised according to the settings which can be easily found out from the

headers. In particular, the header inc stands for incremental time and total means accumulative

time. For instance, in Table 5.12, the retrieval time on RixLite for the first 10k (10 000) TID units

are 31 milliseconds with a cold start and 15 milliseconds with a hot start. There are zeros in the

table is because the elapsed time is too short to be recorded by a monitoring timer. Each table

contains the first ten results out of one hundred. From Table 5.12 one can see that the retrieval

from a posting TID list are very efficient.

Similarly, Table 5.13 demonstrates the first ten results of the retrieval from a posting Inverted

Group list. The retrieval time with different settings show that the processes are very efficient on

14The stopwords had been deliberately reserved for experimental purposes such as these.
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Number of Retrieval Time (milliseconds)
Retrieved RixLite RixStd
TID Units Cold Start Hot Start Cold Start Hot Start

inc total inc total inc total inc total

10k 31 31 15 15 15 15 0 0
20k 0 31 0 15 0 15 0 0
30k 0 31 0 15 15 31 15 15
40k 15 46 0 15 0 31 0 15
50k 0 46 15 31 0 31 0 15
60k 0 46 0 31 15 46 15 31
70k 15 62 0 31 0 46 0 31
80k 0 62 15 46 0 46 0 31
90k 0 62 0 46 15 62 0 31
100k 0 62 0 46 0 62 15 46

Table 5.12: Retrieval time of sequential accesses on posting TID lists of RixLite and RixStd

both RixLite and RixStd. However, to launch the retrieval from a cold start costs slightly more

than a hot start at the beginning, which indicates the underlying caching function of operating

system has shown positive effect to the retrieval.

Number of Retrieval Time (milliseconds)
Retrieved RixLite RixStd
Inverted Cold Start Hot Start Cold Start Hot Start
Group Units inc total inc total inc total inc total

10k 187 187 31 31 62 62 15 15
20k 62 250 0 31 15 78 15 31
30k 203 453 15 46 31 109 15 46
40k 31 484 15 62 31 140 15 62
50k 31 515 15 78 15 156 15 78
60k 78 593 15 93 15 171 15 93
70k 78 671 15 109 15 187 15 109
80k 93 765 15 125 15 203 15 125
90k 93 859 15 140 15 218 15 140
100k 93 953 15 156 15 234 31 171

Table 5.13: Retrieval time of sequential accesses on posting Inverted Group lists of RixLite and
RixStd

In addition, the full results of retrieving posting lists are illustrated in Figure 5.23. The

naming convention of the labels is 〈AccessMode〉−〈RixType〉−〈Component〉−〈LaunchMode〉.

For example, the label SA-RXL-TID-COLD stands for conducting sequential access on a TID

list of RixLite by cold start. The following discussions comply to the same convention.

Overall, Figure 5.23a and Figure 5.23b show that sequential-access-based retrieval on the
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Figure 5.23: Performance of sequential accesses for retrieving posting lists

posting lists of RixLite and RixStd has linear computational complexity, and the cost for re-

trieving a large quantity of posting data is very low. Therefore, both RixLite and RixStd can be

competent for retrieval tasks that involve very long posting lists.

By Random Access Next, we investigate the performances of random access facilities in RIX

indexes. In a RIX instance, Key Entries and Group Entries are stored in external hash tables so

that can be retrieved by random accesses. Therefore, the experimental runs were to retrieve Key

Entries and Group Entries by using random keys and group IDs.

In total, there are 715 649 distinct keys (terms) and 741 647 distinct group IDs (document

IDs). Firstly, we measured the time for retrieving Key Entries, where the incremental time and

accumulative time for every 1 000 entries were recorded. And then a similar experiment was

repeated for retrieving Group Entries. The first ten results are demonstrated in Table 5.14 and

Table 5.15, in which the retrieval performances of random accessing Key Entries and Group

Entries were shown respectively.

The results confirmed that random accesses are expensive operations. For example, the total

retrieval time for the first 1k (1 000) Key Entries on RixLite is 11 812 milliseconds (see Ta-

ble 5.14), which is several orders of magnitude greater than sequential accesses. On the other

hand, the caching mechanism of operating system could play a significant role and dramatically

improve the lookup performances. For instance, the retrieval time for the first 1k Key Entries on

RixLite from a hot start is only 31 milliseconds.

To compare the results in Table 5.14 and Table 5.15, one can see that the incremental retrieval

time decrease along with more data entries were retrieved, while the incremental time of retriev-

ing Group Entries always decrease faster than the counterpart of retrieving Key Entries. This
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Number of Retrieval Time (milliseconds)
Retrieved RixLite RixStd
Key Entries Cold Start Hot Start Cold Start Hot Start

inc total inc total inc total inc total

1k 11 812 11 812 31 31 9 875 9 875 31 31
2k 7 671 19 484 15 46 6 828 16 703 31 62
3k 6 437 25 921 31 78 6 000 22 703 15 78
4k 4 515 30 437 15 93 4 406 27 109 31 109
5k 4 343 34 781 31 125 3 578 30 687 15 125
6k 3 156 37 953 15 140 2 781 33 468 31 156
7k 2 640 40 593 31 171 2 531 36 000 15 171
8k 2 187 42 781 15 187 2 140 38 140 31 203
9k 2 171 44 953 31 218 1 890 40 031 15 218
10k 1 812 46 765 31 250 1 765 41 796 31 250

Table 5.14: Retrieval time of random accesses for Key Entries of RixLite and RixStd

indicates that OS caching had showed positive effect earlier in batch random accesses for Group

Entries than in batch random accesses for Key Entries. Considering the format of document IDs

in TREC collection, one possible explanation for this observation could be there are more col-

lisions in the external lookup table of Group Entries, because collided entries are chained and

stored in the same block, and OS caching could reduce the accessing cost when the same block

is accessed repeatedly.

Number of Retrieval Time (milliseconds)
Retrieved RixLite RixStd
Group Cold Start Hot Start Cold Start Hot Start
Entries inc total inc total inc total inc total

1k 11 968 11 968 46 46 11 796 11 796 46 46
2k 7 140 19 109 46 93 7 062 18 859 46 93
3k 4 812 23 921 31 125 4 906 23 765 15 109
4k 2 906 26 828 31 156 2 937 26 703 31 140
5k 1 812 28 640 31 187 1 843 28 546 31 171
6k 1 250 29 890 31 218 1 046 29 593 15 187
7k 1 093 30 984 15 234 828 30 421 31 218
8k 375 31 359 31 265 375 30 796 15 234
9k 187 31 546 31 296 234 31 031 31 265
10k 125 31 671 15 312 140 31 171 31 296

Table 5.15: Retrieval time of random accesses for Group Entries of RixLite and RixStd

Moreover, the full results of random accesses for data entries are illustrated in Figure 5.24.

Both results (see Figure 5.24a and Figure 5.24b) show that when applying a large amount of

random accesses on RixLite and RixStd could be very expensive at the beginning, while the
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costs could be reduced dramatically later. On the other hand, the overall costs of retrievals from

hot starts are much lower than the overall costs from cold starts, which suggests “warm-up”

operations could be very helpful for retrieving data entries by random accesses.
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Figure 5.24: Performances of random accesses for retrieving entries

In summary, the results have shown that the random access facilities of RixLite and RixStd

could effectively benefit from OS caching, which indicate the data structures of RixLite and

RixStd are properly designed and are capable to handle random accesses efficiently in retrieval

tasks.

By Integrating with Query Engine Finally, we measured the retrieval performances of query

processing when utilising RIX indexes in a query engine. Though the experiment mainly focused

on investigating the efficiency while effectiveness measurements in precision are also given. The

experiment is similar to the previous experiment in Section 3.5, while here we studied the engine

performance using different indexes for the scoring models.

In the experiment, five scoring models are applied to the 50 queries of TREC topic 151-200

using title only, retrieval time are measured respectively while utilising RixLite and RixStd. The

results are given in Table 5.16.

The results show that the performances of retrieval using different RIX indexes with regards

to efficiency are very similar, where both indexes can support efficient query processing for

popular IR models. In addition, the MAP for tf -idf model is 0.1192 and P@10 is 0.212, and the

MAP for LM model is 0.1873 and P@10 is 0.362.
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Scoring RixLite RixStd
Model Retrieval Time (sec) Effectiveness Retrieval Time (sec) Effectiveness

avg min max MAP P@10 avg min max MAP P@10

PC(t|d) 2.669 0.141 9.344 − − 2.642 0.141 9.234 − −
PC(t) 0.001 0 0.047 − − 0.001 0 0.047 − −
df 0.001 0 0.047 − − 0.001 0 0.047 − −
tf -idf 4.258 0.219 14.766 0.1192 0.212 4.32 0.234 14.781 0.1192 0.212
LM 4.75 0.203 16.016 0.1873 0.362 4.8 0.219 16.11 0.1873 0.362

Table 5.16: Retrieval time for the queries of TREC topics 151-200, using title only

5.4 Summary

To summarise this chapter, we studied indexing methods that are suitable for IR+DB system,

where the main contributions include: we proposed a relational inverted index (RIX) architecture

and studied three types RIX instance, i.e. RixLite, RixStd and RixExt, and their construct-

ing methods; in particular, we studied varied RIX constructing algorithms based on different

scheduling methods, which include naive build, adaptive build and analytical build; moreover,

we investigated the retrieval performances of the RIX indexes while considering several aspects.

To evaluate the indexing performances for building the proposed RIX instances with cer-

tain scheduling methods, we conducted experiments using a multi-gigabyte TREC collection on

standalone PCs. Experimental results indicate that the proposed indexing methods are capable

to construct RIX instances on standalone commodity machines efficiently, while the retrieval

performances of different RIX instances are sufficient to be applied in a IR+DB query engine.

For future work, one of the interesting directions is to investigate the construction methods

for building RIX instances in parallel or distributed environments, so that to scale up the indexing

for very large data sets.
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Chapter 6

Conclusion

6.1 Main Contributions

To conclude, this thesis presents three techniques for improving efficiency and scalability for

IR+DB systems, which include scoring-driven optimization with scoring expression (SCX), top-

k incorporated pipeline (TIP), and relational inverted index (RIX). The main contributions can

be summarised as the following aspects:

• We discussed the criteria for PRA expressions to be equivalent, which is different from

the traditional criterion required in conventional databases: to verify equivalence for PRA

expressions, logical optimization methods not only need to prove relational equivalence,

but also need to consider scoring or ranking factors.

• We proposed scoring expression for articulating scoring functions for PRA expressions.

This is necessary in order to interpret the scoring semantics implied by PRA expressions,

so that the scoring or ranking features of PRA expressions can be testified.

• We proposed scoring-driven optimization utilising scoring expressions, which aims to sup-

port efficient query processing from different angles, which include assisting index selec-

tion, aligning scoring functions with intensional semantics, and verifying algebra equiva-

lence of PRA expressions. As a result, based on scoring or ranking equivalence of PRA ex-

pressions, judicious query (execution) plan could be generated for processing PRA queries

efficiently.
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• We proposed (conceptually) top-k incorporated pipeline for executing PRA queries. While

developments for a full-fledged pipelined query execution engine is ongoing, we simu-

late TIP on HySpirit, which is a IR+DB prototype, where we investigated performances

tradeoff with regards to efficiency versus effectiveness, and found sophisticatedly designed

top-k mechanisms can dramatically speed up response time for queries but only cause tol-

erable losses in retrieval qualities.

• We proposed relational inverted index specifically for IR+DB systems. In particular, three

RIX instances were designed to combine IR-style inverted index and DB-style TID-index

(tuple-based index) in different degrees. As a result, RIX can be utilised not only for

supporting efficient query processing for popular IR models and retrieval strategies that

implemented in PRA, but also for supporting efficient execution for conventional relational

operators in PRA that are used to model complex queries.

• We designed sophisticated constructing algorithms of RIX instances, in particular, we pro-

posed three construction scheduling methods. Experiments showed that RIX indexer is

capable to index several gigabytes of data efficiently on inexpensive commodity machines

with limited memory allowance; especially, the adaptive and analytical scheduling algo-

rithms may enable RIX indexer to be scalable for even larger data sets (tens of gigabytes).

In addition, we developed the proposed techniques (with a few work in progress) into

an IR+DB prototype Birdie, which is not only a contribution of engineering efforts, but

also an attempt of rethinking and redesign for suitable infrastructures (such as suggested

in [Chaudhuri et al., 2005]) for future IR and DB integrated applications.

6.2 Statement on Research Questions

At the beginning of this thesis, we described three research questions that are interesting in the

area of integrating IR and DB technologies, while here we discuss how the contributions in this

work may satisfy these questions.

How to optimize probabilistic relational algebra expressions so that to generate logical or phys-

ical query plans that can be processed efficiently? The proposed scoring-driven optimization

based on scoring expressions is one of the solutions for the problem. Although we did not study

how to optimize PRA expressions directly such as it is suggested in the question, however, the
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proposed technique satisfies the main aim of logical query optimization, which is to improve the

processing efficiency of PRA expressions. In particular, one of the advantages of scoring-driven

optimization is to generate efficient execution plans, which utilise sophisticated designed physi-

cal operators and special indexes such as RIX, thus the processing performances for probability

estimation and aggregation can be improved.

How to incorporate top-k processing mechanisms into generic query execution engine of

IR+DB systems or infrastructures. We studied from a conceptual point of view of how

to integrate top-k incorporated pipeline into a query engine for processing PRA expressions.

In addition, we implemented externally from the query processing engine a top-k process-

ing method based on budgetary constraint. In general, the current work partly satisfies the

above research question. It is worth mentioning that similar efforts have been made for inte-

grating pipelined top-k operators into DBMS, the results of a number of previous work such

as [Ilyas et al., 2003, Li et al., 2006, Li et al., 2005] can be inspiring for implementing physical

TIP into IR+DB systems.

How to adapt IR-style indexing methods into an IR+DB platform, so that to provide efficient

accessibility to statistics that are needed for flexible scoring and ranking, and how to design

and implement such index that is scalable for large-scale data? The contribution on RIX

indexing technique is a competent candidate for answering the above question. First of all, RIX

has been designed to exploit IR-style indexing structures, and it also adapts conventional tuple-

based indexing structures of databases, so that requirement of efficient accessibility can be fully

satisfied. Secondly, a number of constructing algorithms for building RIX have been studied, in

which sophisticated scheduling methods are proposed to index very large data set. Thirdly, the

performances of different RIX instances have been carefully investigated, where experimental

results have shown that the indexing technique is capable for Gigabytes of data on standalone

PCs.

Research Hypothesis The hypothesis of this thesis states that the efficiency of IR and DB in-

tegrated systems can be improved by adapting and evolving state-of-the-art techniques in IR and

DB, the contribution of this work have shown that the hypothesis is held. For instance, the work

on scoring-driven optimization evolves traditional logical optimization for relational algebra, and

proposed an optimization technique that is based on manipulates the scoring property of PRA,

which can be seen as a step forward of conventional query optimizations in relational retrieval
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systems. In addition, the top-k incorporated pipeline adapts the concept of top-k processing

from both IR and DB communities, and the pipelined top-k operators is also a popular topic in

databases. Moreover, the origin of relational inverted index is from the well-studied inverted files

in IR, and note that indexed indexes had also been used in early years in databases. Therefore,

integrating inverted index and tuple-based index has solid theoretical and practical backgrounds.

In a word, for improving the efficiency and scalability of IR+DB systems, it is reasonable and

effective to integrate related solutions from IR and DB.

6.3 Future Work

There are a number of potential areas in the field with respect to efficiency and scalability re-

lated technologies that would be interesting and worthy for further investigations and studies.

However, there is one particular technology that we were especially interested, but have not been

able to spend efforts on the topic because of limited resources and time. Therefore, we would

like to outline this for the future work, which is parallel and distributed computing technol-

ogy. Moreover, considering scoring-driven optimization could be another interesting orientation

for optimizing probabilistic relational algebra or other similar variants in addition to algebraic

optimization and cost-driven optimization, we would also like to state some notes for further

research.

Exploiting Parallel and Distributed Computing Powers In this thesis, the techniques have been

introduced should be able to handle several gigabytes (could be up to a few tens of gigabytes)

of data on a single standalone PC, however, this is far not enough for real-world applications in

nowadays which usually involves several terabytes or even petabytes of data. In order to develop

IR+DB systems that could be competent enough for ever growing data, parallel and distributed

computing is an enabling and well-established technology that should be exploited.

In both DB and IR community, parallel computing has been widely applied in practical sys-

tems, where parallel databases (e.g. see [DeWitt and Gray, 1992]) and IR search engines (e.g.

see [Dean and Ghemawat, 2004]) provide useful examples for developing parallel IR+DB sys-

tems. Especially, when distributed computing being introduced to the more general public under

the concept of “Cloud” in recent, parallelism became a popular topic “again”, and recent develop-

ments of MapReduce [Dean and Ghemawat, 2004] also caught notices from the DB community



6.4. Summary 225

(e.g. see notes posted by David DeWitt and Michael Stonebraker 1).

Some potential research directions could be parallel constructing algorithms for RIX, and

parallel query processing technique incorporating top-k mechanisms. Another interesting and

critical aspect should be carefully considered while applying parallelism relates to probability

estimation and aggregation. For instance, whether probability estimation must to be based on

global statistics? Shall aggregation to be performed for aggregating tuple frequency or tuple

probability? These could be some potential questions when considering to apply parallelism

under probabilistic paradigm, and more similar questions could be waiting for us to answer.

Scoring and Ranking Driven Optimization In this thesis, we discussed a scoring-driven op-

timization method based on strict scoring equivalence, but whether a PRA query could be pro-

cessed efficiently fully depends on if certain special implementations for particular manners of

probability (or score) estimation or aggregation are available. In other words, if a query engine

has been implemented only generic operators, i.e. there are no special probability (or score) esti-

mator and aggregator available, then it might not be able to benefit from the advantages provided

by a scoring-driven optimizer.

Therefore, it is intrinsically interesting to investigate optimization methods that are based on

soft scoring equivalence or even ranking equivalence. For example, given an complicated PRA

expression which could be time consuming to execute, a optimizer could rewrite a PRA expres-

sion which is less expensive than the original expression, while the rewritten expression satisfies

relational equivalence, and the tuples in the result are in similar order but not thoroughly identical

order comparing to the original result. Similar optimization technique would greatly increase the

chances for a generic query engine to execute any arbitrary PRA expressions efficiently.

6.4 Summary

This thesis enters the field of integrated information retrieval and database technologies with a

broad view, while focuses on three specific techniques for improving the efficiency and scalability

of IR+DB infrastructure. If this study can be viewed as a quest for the goal as it is stated in the

title, then the adventure has not yet finished but rather just has begun.

As it has been addressed by many researchers in the area of integrated IR and DB technolo-

gies, IR and DB have been developed separately for decades, but both communities have started

1http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/ , and
http://databasecolumn.vertica.com/database-innovation/mapreduce-ii/
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to realise that the two fields have a number of aspects in common in terms of research interests

and technologies. The proposed techniques in the thesis may be examples of how to bring tech-

nologies from either sides to tackle problems that are interested by both communities, while in

our case, it is to provide efficient and scalable solutions for managing and searching structured

and unstructured data for modern information applications.
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Appendix A

Getting Started with Birdie

A.1 Introduction

Birdie, named from the acronym of Bayesian (probabilistic) Information Retrieval and Database

Integrated Engine, is an IR+DB prototype that is implemented in C#.

Birdie was at the beginning to be developed as a lightweight version of another IR+DB

prototyping system HySpirit [Fuhr and Roelleke, 1998, Fuhr et al., 1998, Rölleke et al., 2001]

for the purpose of studying optimization methods for probabilistic relational algebra

(PRA) [Fuhr and Roelleke, 1998], in which only core functionality such as PRA execution en-

gine had been redesigned and re-engineered, whereas many other constituent parts of HySpirit

such as various abstraction layers (e.g. probabilistic Datalog (PD) [Fuhr, 2000], probabilistic

four-valued Datalog (FVPD) [Fuhr and Roelleke, 1998] and probabilistic object-oriented logic

(POOL) [Roelleke, 1999]) and data processing toolkits had not been included.

At the moment, several new functionality with respect to the techniques for improving the

efficiency and scalability for IR+DB technology had been implemented into Birdie: firstly, a

rule-based optimizer for PRA based on a scoring-driven optimization method discussed in the

previous chapter (see Chapter 3); in addition, various indexers for building relational inverted

indexes based on different RIX structures (see Chapter 5); moreover, several special physical

operators for efficient probability estimation and aggregation had also been implemented; in

addition, physical operators incorporating top-k mechanisms have been proposed, while currently

the developing status is work in progress.
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In the remainder of this chapter, we present a quick start guide for the readers who might be

interested in Birdie, and some inside overview of the underlying architecture of the system.

A.2 Quick Start Guide

A.2.1 Commands

Currently three commands are provided for calling Birdie functionality, which are given in Ta-

ble A.1. Command setup should be executed only once for setting up working directories such

as knowledge-bases and temporary directory. An “INI file” is a program configuration file which

specify program parameters. The option “-c” for “Birdrix” is a verification mode, which could

be applied to verify correctness of RIX indexes after construction.

Executable Command Usage Description
Setup.exe “Setup” initialise working directories and

configuration file, execute only once
Bird.exe “Bird <INI file> [source file]” calling for main engine functionality
Birdrix.exe “Birdrix <INI file> <table name> [-c]” a shell for examining RIX indexes

Table A.1: Birdie commands and usage

A.2.2 Setup and Configuration

System Configuration The system can be set up by called the “Setup” command, which creates

a system configuration file named “Birdie.cfg”. A configuration file looks like the follow:

[Paths]
home="F:/Demo/Birdie/MyDir"
kb_home="F:/Demo/Data/KBase"
tmp_home="F:/Demo/Data/Temp"

[Settings]
# 4 KB
page_size="4096"
# 32 KB
block_size="32768"
# 40 MB
buffer_size="41943040"
read_limit="1000"
schema_file_format="XML"
bulk_insert_chunk_limit="1000"

Users can modify the values to configure the parameters of the system.
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Program Configuration In addition, an INI file is necessary for calling Bird engine or Birdrix

shell, while a template of INI file looks like the follow:

[CONFIG FILE]
sys_config_file="system config file name"

[ACTION="create"|"insert"|"index"|"retrieve"]
action="one of the four actions"

[KNOWLEDGE BASE]
kb="a knowledge name"

[LANGUAGE="PRA"]
language="query language name"

[SOURCE FILE (optional)]
source_file="a source file name"

In default, the “sys config file” parameter is set to ”Birdie.cfg”. There four actions would be

allowed and handled by Bird engine: “create” is used to create table or define indexes; “insert” is

used to load data into tables; “index” is used to start indexing; and “retrieve” is used for running

retrieval. At the moment, Birdie only supports PRA, but more query languages such as PD and

PSQL may be supported in the future. Different source files could be used for different actions.

For instance, users may put table definitions in a “create.txt” file, while a retrieval strategy in an

“tfidf.txt” file.

A.2.3 Defining Knowledge-Bases

Firstly, users can create a new knowledge-base, table, or index, users can use “CREATE” clause.

The syntax is given as the follow:

CREATE KB <knowledge-base name>;

CREATE TABLE <table_name> (attribute_name, data_type [...]);

CREATE INDEX <index_name> <index_type> ON <table_name> (attribute_name)
[GIVEN EVIDENCE (attribute_name)];

Examples are given as the follows:

CREATE KB test;
CREATE TABLE trec3 (term VARCHAR, docid VARCHAR);
CREATE INDEX trec3_rxl RXL ON trec3(term) GIVEN EVIDENCE (docid);
CREATE INDEX trec3_rxs RXS ON trec3(term) GIVEN EVIDENCE (docid);

An INI file for creation may look like the follow:

[CONFIG FILE]
sys_config_file="birdie.cfg"
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[ACTION="create"|"insert"|"index"|"retrieve"]
action="create"

[KNOWLEDGE BASE]
kb=test

[SOURCE FILE (optional)]
source_file="create.txt"

A.2.4 Loading Data

To load data into a table, users may use “BULK INSERT” clause, which syntax is given as the

follow:

BULK INSERT <table_name> FROM <bulk_file_type> <bulk_file_path>;

For instance:

BULK INSERT trec3 FROM MDS ‘F:/Collections/MDS/trec3/term.mds’;

An INI file for bulk insertion may look like the follow, where “insertion soft limit” or “inser-

tion hard limit” can be set to limit the number of tuples to be inserted. To set a soft limit would

allow insertion to finish tuples with the same “evidence attribute”, whereas a hard limit would

stop insertion as soon as limitation is reached.

[CONFIG FILE]
sys_config_file="birdie.cfg"

[ACTION="create"|"insert"|"index"|"retrieve"]
action="insert"

[KNOWLEDGE BASE]
kb=test

[INSERTION_LIMIT]
insertion_soft_limit=1000000
#insertion_hard_limit=1000000

[EVIDENCE_ATTRIBUTE]
evidence_attribute="docid"

[SOURCE FILE (optional)]
source_file="bulkins.txt"

A.2.5 Building Indexes

To start indexer and build a defined index, “BUILD INDEX” is the clause should be used. The

syntax is given as the follow:
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BUILD INDEX <table_name> <index_name>;

For example:

BUILD INDEX trec3 trec3_rxl;
BUILD INDEX trec3 trec3_rxs;

In addition, the INI file for indexing may look like the follow:

[CONFIG FILE]
sys_config_file="birdie.cfg"

[ACTION="create"|"insert"|"index"|"retrieve"]
action="index"

[KNOWLEDGE BASE]
kb=test

[SOURCE FILE (optional)]
source_file="buildidx.txt"

A.2.6 Running Queries

To run a PRA query, users should write retrieval strategies in a source file and execute Bird

command as suggested in Table A.1, while an INI file for retrieval may look like the follow:

[CONFIG FILE]
sys_config_file="birdie.cfg"

[ACTION="create"|"insert"|"index"|"retrieve"]
action="retrieve"

[KNOWLEDGE BASE]
kb=test

[LANGUAGE="PRA"|"PD"|"PSQL"]
language="PRA"

[SOURCE FILE (optional)]
source_file="tfidf.txt"

[EXECUTION="true"|"false"|"on"|"off"]
execution="on"

[VERBOSE="true"|"false"|"on"|"off"]
verbose="on"

[OPTIMIZATION SWITCH="true"|"false"|"on"|"off"]
algebra_optimization="on"
score_driven_optimization="on"
cost_driven_optimization="on"

[BATCH_MODE SWITCH="true"|"false"|"on"|"off"]
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batch_mode="on"
batch_queries_dir="F:/Documents/Data/queries"
batch_queries_format="MDS"

# batch queries must be tied to a table with MRT
# (Memory-Resident Table) type
batch_queries_tied_table="qterm"

If “execution” is set to “on”, then a given strategies would be actually executed, otherwise

the engine would only show generated and interpreted scoring expressions corresponding to PRA

operators. If “batch mode” is set to “on”, then the engine may execute batch queries, while the

parameter “batch queries tied table” should be specified as well.

A.3 Inside Birdie

A.3.1 Storage Management

Figure A.1 illustrates the architecture of storage management in Birdie. In general, the storage

management components in Birdie can be categorised into three layers: a logical layer and two

physical layers.

Query Processing Engine

Knowledge-Base

MDSX RIX
Temporary 

Files
MRT

UDB

Disk

Storage

Management
Logical

Management

Component

High-level

Physical

Management

Components

Low-level

Physical

Management

Component

Figure A.1: Storage architecture of Birdie

In the logical layer, there is only one component named Knowledge-Base that manages the

repositories of data. A repository is called a “knowledge-base”, which contains the schema of

tables and indexes and provides accessing entries of user-defined data to the query processing

engine.



A.3. Inside Birdie 249

Moreover, the physical layers are subdivided into a high-level layer and a low-level layer.

Firstly, the high-level physical layer consists of components for storing tables, indexes and tem-

porary files. In particular, table could be stored externally or in-memory only. External storage

of table uses Multi-Dimensional Space Extension (MDSX) file that is similar to the row-based

tables in conventional databases; while in-memory storage of table uses Memory Residential

Table (MRT), where a table is loaded at run-time only according to a predefined data schema.

Secondly, the low-level physical layer contains a stored procedure named Universal Data Block

(UDB), which is used by all high-level physical components that require external storage.

Next, we give some more details of the storage components.

Knowledge-Base A knowledge-base is where tables and indexes reside in, and the component

manages these residents through data schema. A schema of a table or an index contains metadata

which is a list of attributes that define the entity. The schema of a table is stored in an XML file

using the same name as the table with a different file extension. For example, the schema of a

table “trec3” for collection TREC-3 is could be:

<table name="trec3" path="F:/Demo/Data/KBase/test" type="MDSX" weight="False">
<attribute name="term" type="VARCHAR" />
<attribute name="docid" type="VARCHAR" />
<index name="trec3_rxs" type="RXS" primaryKey="term" evidentKey="docid" />
</table>

Multi-Dimensional Space Extension An Multi-Dimensional Space Extension (MDSX) file is

an enhanced version of text MDS file, where text MDS files are used to store materialised tables

in HySpirit [Rölleke et al., 2001]. A text MDS file uses row-based format to store tuples, where a

row consists of a tuple and the tuple’s score. The MDS format treats the score as a natural feature

of a tuple where it coexists with the tuple, which is different from conventional database systems

where the score is treated as a normal user-defined attribute. However, since the MDS format

does not specify physical stored procedures, and MDS files are stored as delimiter-separated text

files, which lacks the capability for efficient data access. For example, reading tuples from text

MDS file always involve parsing; random access tuples from text MDS file is impossible; it is

difficult to apply compression for text MDS file.

As a consequence, the shortcomings of text MDS file motivate us to develop a much more

I/O efficient storage method, which inherits the logical design of MDS format while improves

the physical stored procedures. MDSX enhances the original MDS from the following aspects:

• It stores data in binary format and parsing is not needed;
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• It supports multiple basic data types including text types and numeric types, whereas MDS

is type-insensitive and treats data as text strings;

• It supports random access for tuples;

• Compression methods could be applied on the text fields of tuples.

Memory Residential Table Memory Residential Table (MRT) is used to store dynamic tables

that are loaded only at run-time. MRT is useful when a retrieval strategy is needed to be executed

repeatedly with different query terms, for instance, running queries in batch mode.

Defining a table to be MRT is similar as defining an MDSX table, where a schema file would

be generated as well. However, there are two differences: 1) a MRT table does not have an

external storage in the knowledge-base, the tuples of the table would be dynamically loaded at

run-time; and 2) indexes cannot be created for a MRT table. Therefore, MRT table is only used

for tiny tables that can be entirely resided in memory.

Relational Inverted Index (RIX) More details refer to Chapter 5.

Temporary Files Temporary files are used by query execution engine for various purposes,

for instance, to be used as buffers that materialise intermediate results, or to be used by certain

algorithms such as hybrid hash join and aggregation.

Universal Data Block Universal Data Block (UDB) provides the basic I/O functionality for

storing and retrieving data from external storage. A UDB includes a header area and a data

area, and schema is required to access the data area. The header area contains a number of meta

information about the block, such as the number of data fields and the length of the block; while

the data area contains varied length n-tuples, where n could be one or many. In short, the UDB

provides a flexible format and common interfaces for high-level storage types including MDSX,

RIX and temporary files.

A.3.2 Query Language

At the moment, Birdie only supports a variant of probabilistic relational algebra (PRA) as query

language. For example, the PRA expressions for modelling tf -idf model and language modelling

in Section 3.5 are given in below.

The follow is the retrieval strategy for tf -idf model:
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# tf-idf
# p_C_t_d
tfCollSpace = BAYES DISJOINT [$2](trec3);
p_C_t_d = PROJECT DISJOINT [$1,$4](

JOIN[$1=$1](qterm, PROJET DISJOINT [$1,$2](tfCollSpace)));

# idf
{ idf = log(1 / df_t) };

dColl = PROJECT DISTINCT [](trec3);
docSpace = PROJECT DISTNCT [$2](trec3);
wDocSpace = BAYES DISJOINT [](docSpace);

termDoc = PROJECT [$1,$2] (
JOIN [$2=$1](dColl, wDocSpace));

idf_t = PROJECT idf [$3](
JOIN [$1=$1](qterm, PROJECT DISJOINT [$1](termDoc)));

retrieve = PROJECT DISJOINT [$2](
JOIN [$1=$1](idf_t, p_C_t_d));

?- retrieve;

The follow is the retrieval strategy for language modelling:

# lm - language modelling
{

lambda = 0.8,
lm = log (1 + (lambda / (1 - lambda)) * (p_q_d / p_q_c))

};

p_C_t = PROJECT DISJOINT [$1](BAYES [](trec3));
p_q_c = PROJECT [$1](JOIN [$1=$1](qterm, p_C_t));

p_C_t_d = PROJECT DISJOINT [$1,$2](BAYES [$2](trec3));
p_q_d = PROJECT [$1,$4](JOIN [$1=$1](qterm, p_C_t_d));

retrieve = PROJECT DISJOINT [$3](JOIN lm [$1=$1](p_q_c, p_q_d));

?- retrieve;

A.3.3 Query Execution Engine

For implementing the query execution engine, we adopted pipelined execution engine architec-

ture such as in conventional database (e.g. see [Graefe, 1993]); in addition, we also developed

special probability estimator for the Bayes operator in logical PRA, and probability aggregators

for other corresponding logical PRA operators.
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A.3.4 Query Optimizer

Semantic graphs are generated by query optimizer to analyse the semantics of scoring expres-

sions. For example, the semantic graph for unit fraction (a fraction which has constant one in

numerator) is illustrated in Figure A.2.
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GOAL
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EFFECT
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opt:action
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MEANS

PROPREC

score arg:weightCLASS

Figure A.2: Semantic graph formed for unit fraction

On the other hand, the semantic graph can be represented in XML so that to be handled by

analysis program. For instance, the above graph can be represented in the following XML:

<scxsg>
<scxopr>
<spec>arg:operation</spec>
<pasopd>opt:operand</pasopd>
<actopd>arg:operand</actopd>
<goal>arg:goal</goal>
<effect>arg:result</effect>

</scxopr>
<score>
<class>arg:weight</class>
<prop>arg:result</prop>

</score>
<arg>
<operation>
<name>DIV</name>

</operation>
<operand>
<name>denominator</name>
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<prop>not zero integer</prop>
</operand>
<goal>
<name>real number</name>
<means>not zero</means>

</goal>
<result>
<name>unit fraction</name>
<class>arg:goal</class>
<rec>score</rec>

</result>
<weight>
<name>probability</name>

</weight>
</arg>
<opt>
<operand>
<name>numerator</name>
<prop>constant integer 1.0</prop>

</operand>
<action></action>

</opt>
</scxsg>
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Appendix B

Full MagazineCorpus Table

MagazineCorpus
TID Term DocID ChapID TitleID SecID AuthID ParaID LinkID RefDocID Font
0 fortune 1 null 1 null null null null null null
1 13 1 1 1 null null null null null bold
2 test 1 1 1 null null null null null bold
3 drive 1 1 1 null null null null null bold
4 hybrid 1 1 null 1 null 1 1 2 null
5 wars 1 1 null 1 null 1 1 2 null
6 heat 1 1 null 1 null 1 null null null
7 honda 1 1 null 1 null 1 null null null
8 pushes 1 1 null 1 null 1 null null null
9 fray 1 1 null 1 null 1 null null null
10 gas-electric 1 1 null 1 null 1 null null null
11 insight 1 1 null 1 null 1 null null null
12 alex 1 1 null null 1 null null null italic
13 taylor 1 1 null null 1 null null null italic
14 iii 1 1 null null 1 null null null italic
15 46 1 2 1 null null null null null bold
16 bavarias 1 2 1 null null null null null bold
17 next 1 2 1 null null null null null bold
18 top 1 2 1 null null null null null bold
19 model 1 2 1 null null null null null bold
20 new 1 2 null 1 null 1 null null null
21 gt 1 2 null 1 null 1 null null null
22 bmw 1 2 null 1 null 1 null null null
23 hopes 1 2 null 1 null 1 null null null
24 expand 1 2 null 1 null 1 null null null
25 definition 1 2 null 1 null 1 null null null
26 luxury 1 2 null 1 null 1 null null null
27 touring 1 2 null 1 null 1 null null null
28 car 1 2 null 1 null 1 null null null
29 down 1 2 null 1 null 2 null null null

(a) Table MagazineCorpus Part One
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Table MagazineCorpus continues

MagazineCorpus
TID Term DocID ChapID TitleID SecID AuthID ParaID LinkID RefDocID Font
30 road 1 2 null 1 null 2 null null null
31 figure 1 2 null 1 null 2 null null null
32 out 1 2 null 1 null 2 null null null
33 consumers 1 2 null 1 null 2 null null null
34 want 1 2 null 1 null 2 null null null
35 premium 1 2 null 1 null 2 null null null
36 green 1 2 null 1 null 2 null null null
37 automobile 1 2 null 1 null 2 null null null
38 alex 1 2 null null 1 null null null italic
39 taylor 1 2 null null 1 null null null italic
40 iii 1 2 null null 1 null null null italic
41 time 2 null 1 null null null null null null
42 hybrid 2 1 1 null null null null null bold
43 hybrid 2 1 1 null null null null null bold
44 cars 2 1 1 null null null null null bold
45 future 2 1 1 null null null null null bold
46 compare 2 1 1 null null null null null bold
47 prius 2 1 1 1 null null null null smallcaps
48 toyota 2 1 1 1 null null null null smallcaps
49 original 2 1 null 1 null 1 null null null
50 hybrid 2 1 null 1 null 1 null null null
51 uses 2 1 null 1 null 1 null null null
52 gas 2 1 null 1 null 1 null null null
53 electric 2 1 null 1 null 1 null null null
54 engines 2 1 null 1 null 1 null null null
55 best 2 1 null 1 null 1 null null null
56 fuel 2 1 null 1 null 1 null null null
57 economy 2 1 null 1 null 1 null null null
58 car 2 1 null 1 null 1 null null null
59 usa 2 1 null 1 null 1 null null null
60 today 2 1 null 1 null 1 null null null
61 costs 2 1 null 1 null 1 null null null
62 volts 2 1 null 1 null 1 null null null
63 target 2 1 null 1 null 1 null null null
64 price 2 1 null 1 null 1 null null null
65 next 2 1 2 null null null null null bold
66 future 2 1 null 1 null 2 null null null
67 versions 2 1 null 1 null 2 null null null
68 plug-ins 2 1 null 1 null 2 null null null
69 unlikely 2 1 null 1 null 2 null null null
70 volts 2 1 null 1 null 2 null null null
71 all-electric 2 1 null 1 null 2 null null null
72 range 2 1 null 1 null 2 null null null
73 volt 2 1 1 2 null null null null bold
74 general 2 1 1 2 null null null null bold
75 motors 2 1 1 2 null null null null bold
76 volt 2 1 null 2 null 1 null null null
77 extended-range 2 1 null 2 null 1 null null null
78 electric 2 1 null 2 null 1 null null null
79 vehicle 2 1 null 2 null 1 null null null
80 powered 2 1 null 2 null 1 null null null

(a) Table MagazineCorpos Part Two
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Table MagazineCorpus continues

MagazineCorpus
TID Term DocID ChapID TitleID SecID AuthID ParaID LinkID RefDocID Font
81 electricity 2 1 null 2 null 1 null null null
82 amounts 2 1 null 2 null 1 null null null
83 gasoline-fueled 2 1 null 2 null 1 null null null
84 electric 2 1 null 2 null 1 null null null
85 generator 2 1 null 2 null 1 null null null
86 longer 2 1 null 2 null 1 null null null
87 drivers 2 1 null 2 null 1 null null null
88 question 2 1 2 2 null null null null smallcaps
89 cost 2 1 2 2 null null null null smallcaps
90 critics 2 1 null 2 null 2 null null null
91 love 2 1 null 2 null 2 null null null
92 volt 2 1 null 2 null 2 null null null
93 technology 2 1 null 2 null 2 null null null
94 wonder 2 1 null 2 null 2 null null null
95 car 2 1 null 2 null 2 null null null
96 affordable 2 1 null 2 null 2 null null null
97 bryan 2 1 null null 1 null null null italic
98 walsh 2 1 null null 1 null null null italic

(a) Table MagazineCorpus Part Three

Table B.1: An example MDSX table MagazineCorpus for a toy magazine corpus
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Glossary

ACID Atomicity, Consistency, Isolation, Durability.

These are criteria for transaction-based process-

ing in databases, 12

ADT Abstract Data Type, 167

BNF Backus-Naur Form, 67

CA Combined Algorithm, 128

DBMS Database Management System, 12

FA Fagin’s Algorithm, 126

FVPD Four-Valued Probabilistic Datalog, 238

INEX INitiative for the Evaluation of XML Retrieval,

44

IPT Ideal Performances Tradeoff, 141

MDSX Multi-Dimensional Space Extension, 244

MRT Memory Residential Table, 245

NRA No Random Access, 128

PA Probability Aggregator, 138

PD Probabilistic Datalog, 238

PE Probability Estimator, 137
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POOL Probabilistic Object-Oriented Logic, 238

PRA Probabilistic Relational Algebra, 33

RDBMS Relational Database Management System, 27

RIX Relational Inverted Index, 158

RixExt Extended version of RIX, 162

RixLite Lite version of RIX, 161

RixStd Standard version of RIX, 162

SCX Scoring Expression, 53

SEA Select-Estimate-Aggregate, 135

SPJ Select-Project-Join, 135

TA Threshold Algorithm, 125

TID Tuple Identifier or Tuple ID, 159

TIP Top-k Incorporated Pipeline, 134

TREC Text REtrieval Conference, 44

UDB Universal Data Block, 245

XML Extensible Markup Language, 23

XRA Random Index Access, 137

XS Index Scan, 137



259

Index
tf -idf, 25

top-k incorporated pipeline, see TIP

algebraic equivalence, see equivalence

augmentation, 156

binary independent retrieval, see BIR

BIR, 26

Birdie, 238

BM25, 25

BM25F, 26

context augmentation, see augmentation

DB+IR, 43

document frequency, 47

equivalence, 61–64

ranking equivalence, 63, 65

relational equivalence, 62

scoring equivalence, 63, 64

soft ranking equivalence, 65

soft scoring equivalence, 64

strict ranking equivalence, 65

strict scoring equivalence, 64

weighting equivalence, 62

indexing, 155

indexing structures, 159

integrated IR and DB, 40

inverted index, 157, 159

IR+DB, 43

IR-on-DB, 43

IR-on-SQL, 43

IR-via-ADTs, 43

language modelling, see LM

LM, 26

modelling IR strategies, 45, 50

optimization, see query optimization

possible worlds, 30–33

PRA, 34–37, 48, 49

probabilistic databases, 29

query evaluation, 38, 39

probabilistic relational algebra, see PRA

query optimization, 56–58, 82

algebraic manipulation, 58–60

relational inverted index, see RIX

retrieval models, 23

RISC, 43

RIX, 158

architecture, 165

construction procedures, 178

accumulating posting data, 180

adaptive build, 189

analytical build, 191–194

build hash lookup, 186

building algorithms, 180

cost model for scheduling, 192
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data flow, 178

flushing control, 183, 184

making posting lists, 182

merging of posting lists, 185

naive build, 187

previewed scanning, 191

scheduling algorithms, 187

experiment, 198

indexer, 165

retrieval procedures, 195

accessing methods, 195

Contain methods, 195

fetch, 195

for top-k related operations, 197

for composed IR+DB operations, 197

for relational operators, 197

Get methods, 196

Next methods, 196

physical operators and operations,

196

search, 195

RIX abstract data types, 167

basic ADTs of RIX, 167

entry list, 169

group entry, 167

hybrid hash lookup, 169

key entry, 167

operational ADTs of RIX, 168

posting list, 169

posting standalone inverted group

unit, 168

posting TID unit, 168

posting TID-mapped inverted group

unit, 168

RIX ADT, see RIX abstract data types

RixExt, 162

RixLite, 161

RixStd, 162

structures, 161

theoretical analysis, 170

cost model for RIX, 173–178

disk characteristics, 171

disk I/O, 171

update procedure, 198

scoring expression, see SCX

SCX, 53, 60, 61, 65

automatic analysis, 93, 94, 96

conflict free SCX manipulation, 99

experiments, 115

generated SCX, 77–85, 87

ideas, 65, 66

interpreted SCX, 77–81

manipulation, 88

anticlockwise rotation, 89, 90

clockwise rotation, 89, 90

rotation, 89

principles of design, 65, 66

scoring-driven optimization, 82, 96–99

aligning semantics, 110–113

index selection, 99–105, 107–110

verification, 113, 115

semantics, 67, 70–81
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syntax, 67

aggregate symbol, 72, 73

arithmetic operators, 71

arithmetic-style expression, 74

conditional function, 72

constant, 67

event operators, 71

expression, 73, 74, 77

function, 71–73

logic-style expression, 77

operator, 71

ownership of score, 67

parameter, 67

schema of grouping, 70

scoring variable, 67

standard function, 71

type of score, 70

transformations, 90

logical OR and logical AND, 92

multiplication, 92

multiplication and division, 91

unit fraction, 92

TA, 125

combined algorithm, 128

Fagin’s algorithm, 126

IO-Top-k, 129

no random access algorithm, 128, 129

original threshold algorithm, 126

probabilistic guarantees, 129

threshold algorithm, see TA

TID index, 159

TIP, 121, 135

algorithms, 139

alloting strategies, 145

dynamic IDF-based allotment, 145

static IDF-based allotment, 145

uniform allotment, 145

common query block, 135

select-estimate-aggregate, 135

select-project-join, 135

computational model, 122–124

conceptual design, 137

ideal performances tradeoff, 141

index access, 137

modelling NRA-style top-k, 144

physical operators pipeline, 136

probability aggregator, 138

probability estimator, 137

random index access, 137

tuple-Id index, see TID index

within-collection term frequency, 46

within-document term frequency, 47


