
Adaptive filtering applications to satellite navigation
Zhahir, Md Amzari

 

 

 

 

 

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

 

 

For additional information about this publication click this link.

https://qmro.qmul.ac.uk/jspui/handle/123456789/364

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

https://qmro.qmul.ac.uk/jspui/handle/123456789/364


 1 

 
 
 
 

Adaptive Filtering Applications 

to Satellite Navigation 

 

 

 

by 

 

Md Amzari bin Md Zhahir 

 

2010 

 

 

 

 

1 
 

 

 

 

A thesis submitted as part of degree of Doctor of Philosophy, 

School of Engineering and Material Science, 

Queen Mary, University of London 



 2 

ABSTRACT 

Differential Global Navigation Satellite Systems employ the extended Kalman filter to 

estimate the reference position error. High accuracy integrated navigation systems have 

the ability to mix traditional inertial sensor outputs with navigation satellite based 

position information and can be used to develop high accuracy landing systems for 

aircraft.  

 

This thesis considers a host of estimation problems associated with aircraft navigation 

systems that currently rely on the extended Kalman filter and proposes to use a 

nonlinear estimation algorithm, the unscented Kalman filter (UKF) that does not rely on 

Jacobian linearisation. The objective is to develop high accuracy positioning algorithms 

to facilitate the use of GNSS or DGNSS for aircraft landing. Firstly, the position error in 

a typical satellite navigation problem depends on the accuracy of the orbital ephemeris. 

The thesis presents results for the prediction of the orbital ephemeris from a customised 

navigation satellite receiver's data message. The SDP4/SDP8 algorithms and suitable 

noise models are used to establish the measured data. Secondly, the differential station 

common mode position error not including the contribution due to errors in the 

ephemeris is usually estimated by employing an EKF. The thesis then considers the 

application of the UKF to the mixing problem, so as to facilitate the mixing of 

measurements made by either a GNSS or a DGNSS and a variety of low cost or high-

precision INS sensors. 

 

Precise, adaptive UKFs and a suitable nonlinear propagation method are used to 

estimate the orbit ephemeris and the differential position and the navigation filter 

mixing errors. The results indicate the method is particularly suitable for estimating the 

orbit ephemeris of navigation satellites and the differential position and navigation filter 

mixing errors, thus facilitating interoperable DGNSS operation for aircraft landing. 
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-312 mkg10585.1   
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rsC , rcC  Amplitudes of sine & cosine harmonics correction (short period) 

terms for semi-major axis of orbital radius (GPS ephemeris 

elements) 

usC , ucC  Amplitudes of sine & cosine harmonics correction (short period) 

terms for argument of latitude (GPS ephemeris elements) 

Nk ,

C    Estimate of the covariance of the innovation 

0C , iC    Carriers to the noise power spectral densities of a satellite signal 

iC2    Oblateness parameter (for i = 0, 2, by 
2

geor ) 

iC2

~
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Ib,D    Transformation from the inertial to the body fixed frame 
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L    Dimension of random variable w  

L  Total measurements are made between two successive code 

measurements 

1L , 2L  Output matrices for the range correction  ty1  and range rate 

correction  ty2  

M    Mean anomaly 

MP    Code multipath which is to be removed 

1MP , 2MP   Code multipath refering to the first and second carrier frequency 

N  Constant integer phase ambiguity (the whole number between the 

satellite and the receiver at initial time measurement) 

1N , 2N  Carrier integer ambiguity refering to the first and second carrier 

frequency 

P    atmospheric pressure P  



kP̂    Predicted state covariance matrix 

1kP    Previous state covariance matrix 

wwP    Covariance of random variable w  

f

kP , h

kP   Transformed covariance matrices 

fh

kP    Transformed cross-covariance matrix 

kQ    Covariance matrix associated with kw  

kQ , kR  Covariance matrices of the process and measurement noise 

sequence respectively 

 R    Exponential autocorrelation function 
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IR    Inertial acceleration of the origin of the body frame. 

MR , PR   Radii of curvature in the meridian and prime vertical at a given 

latitude 

0R̂    Estimation of the reference-to-satellite range 

iR0    Signal-to-noise ratio between two closely spaced antennae 

fS  Spectral amplitude associated with the white noise driving 

function cbu  

gS  Spectral amplitude associated with the white noise driving 

function cdu  

T    Orbital period of the planet 

T    Chip width in unit metres 

T    Temperature 

TEC    Total electron content along the signal path 

Toe  Time of the Ephemeris; Time of Ephemeris (GPS ephemeris 

elements); Time of the Ephemeris (GLONASS model) 

GDT    Satellite group delay differential (GPS ephemeris elements) 

T    Sampling interval 

2U    Earth’s gravitational perturbation potential 

VN, VE, VD  North, east and down velocities in the local tangent plane, with 

reference to a local geodetic frame often referred to as the 

navigation frame (n-frame) or north-east-down frame 

a    Semi-major axis 

a    Acceleration of the correction 

ia    Scalar acceleration measurements 

ma    Measured acceleration vector  

b   Measurement bias vector 

tREFb ,  Error caused from the imperfect knowledge of reference position 

at time t  

utb    User clock offset and bias 

1b , 2b    Measurement bias and drift vectors 

1b , 2b , 3b , 4b  First order Gauss-Markov drift and bias vectors 
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c    Filtered correction (i.e. pseudorange error) 

tc    Receiver clock bias difference 

atc  Total of combined errors of ionospheric and tropospheric 

propagation delays 

 ttc ion   Ionospheric delay 

 ttc trop   Tropospheric delay 

svtc    Residual reference satellite clock error 

0tc    Residual reference receiver clock error 

id    Range between the thi  navigational satellite and a user receiver 

dragdF    Drag acceleration on a satellite 

dn    Mean motion difference (GPS ephemeris elements) 

dt

dx
, 

dt

dy
, 

dt

dz
  First derivatives of zyx ,,  with respect to time  

dt

xd 
, 

dt

yd
, 

dt

zd
  Second derivatives of zyx ,,  with respect to time 

d

xd~
, 

d

yd~
, 

d

zd~
 Non-dimensional time derivatives (normalised) position 

components 

d

xd~
, 

d

yd~
, 

d

zd~
 Non-dimensional time derivatives (normalised) velocity 

components 

e    Eccentricity; Eccentricity (GPS ephemeris elements) 

e    Partial pressure of water vapour 

e  Difference between the rates of change of the code and carrier 

phase correction 

 tecm  Single term which collected all the common mode errors and the 

receiver clock bias  

f    Satellite carrier frequency 

UT
f , UT

h   Unscented transformations (UT) of the states 

g  Gravity vector 

h    Altitude  

0h , 1h , 2h   Typical Allan variance parameters 

i    Orbital inclination 



 21 

ki    Inclination at epoch k 

0i    Inclination (GPS ephemeris elements) 

i    Rate of inclination (GPS ephemeris elements) 

k    k th number of epoch elapsed, satellite, discrete time etc 

m   Mass of the satellite 

km̂  Second state of the Hatch filter, the current pseudorange error due 

to the multipath component 

)(tmp    Phase multipath error 

n   Measurement noise vector 

1n    Measurement white noise vector 

2n , 3n , 5n , 6n , White noise vectors driving the 1b , 2b , 3b , 4b  processes 

respectively 

p    Semi-latus rectum 

0q , s     Altitude parameters 

11q , 12q , 21q , 22q  Elements of kQ  covariance matrix 

q    Attitude quaternion 

r    Distance of the body centre of mass 

r    Radial distance from the centre of the Earth  

r  and    Heliocentric polar coordinates for the planet 

i
r  Position vector of the accelerometer location in the body fixed 

frame 

rB   Navigation satellite’s sight line vector at the current time  

cr , cr , cr  Range correction and its first two derivatives, excluding 

ionospheric effect 

geor    Length scale normalisation 

kr    Orbital radius at epoch k 

kr  Residual sequence 

sr    Radius at a surface point of the flattened Earth ellipsoid 

r0   Navigation satellite’s sight line vector at the initial reference time 

k

Rr̂  Computed distance between the satellite k  and a reference 

position using the broadcast ephemeris,  
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r~    Normalised orbital radius 

t    Time since periapsis (or perihelion if the Sun was the centre) 

kt    Time since the ephemeris 

kt    Discrete time 

oet , 0fa , 1fa , 2fa   Satellite clock corrections (GPS ephemeris elements) 

cbu    White noise driving function for cbx   

cdu    White noise driving function for cdx   

ku    Latitude at epoch k 

ku    known input vector, 

v    Rate of change of the correction 

 kv    Measurement noise 

w    Random variable 

w    Mean of random variable w  

kw    Discrete noise 

kcbw ,    Discrete white noise for kcbx ,  

kcdw ,    Discrete white noise for kcdx ,  

kw    Gaussian white noise 

kw , kv   uncorrelated Gaussian white noise sequences with zero means of 

process and measurement respectively 

zyx ,,    Position components in three-axis  

 kx    State of a system 

cbx    Clock bias state 

kcbx ,    Discrete clock bias state error 

cdx    Clock drift state 

kcdx ,    Discrete clock drift state error 

iii zyx ,,  Position vector of the satellite in an Earth-centred inertial (ECI) 

coordinate frame 

kx  Discrete state of the process; Discrete form of the clock error 

model 

kx    Parameter being simulated 
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kx     1n  state vector 

kx̂   State vector predicted from the previous corrected state vector  

1
ˆ

kx   Previous corrected state vector estimated  

svx , svy , svz   Known three-dimensional satellite position 

svx̂ , svŷ , svẑ   Estimation of a satellite positions in x , y , z  components 

ux , uy , uz  Unknown three dimensional user positions; User positions in x , 

y , z  in components 

000 ,, zyx  Position components in Cartesian ECEF coordinates (GLONASS 

model); Known precisely surveyed location of a reference 

receiver 

zyx  ,,    Velocity components in three-axis  

x~ , y~ , z~   Normalised position components 

x~ , y~ , z~   Normalised velocity components 

000 ,, zyx   Velocity components in Cartesian ECEF coordinates (GLONASS 

model) 

resresres zyx  ,,  Residual acceleration over the prediction interval, mainly due to 

the gravitational effects of the Moon and Sun in Cartesian ECEF 

coordinates (GLONASS model) 

y    Output of a nonlinear transformation function 

 ky    Output 

 ty1 ,  ty2   Range and range rate corrections respectively 

ky    Output vector at time k . 

k

ty 0,  Corrected and linearised single difference of carrier phase 

measurements from satellite k  at two successive epochs t  and 0  

z    Measurement matrix 

i
z    Direction of sensitivity of the i

th
 accelerometer 

kz     1m  measurement vector 

mz  Discrete measurement of the error in the difference of the phase 

differentials due to changes in the attitude 

1z , 2z , 3z , 4z   Observable variables 

diff of dat  Relative transit time, compared to the first satellite 
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const   Arbitrary selected constant to make pseudoranges positive 

finetime  Use for obtaining time resolution better than 200 ns 



1
   Time constant 

Γ    Input matrix 

DGPS̂    Basic range space differential correction (for each satellite) 

GPS̂    Broadcast corrections 

 tMP   Code multipath error 

N    Integer ambiguity difference 

P    Measured code pseudorange single difference between antennae  

 tSA    Selective availability error 

T    Sample time 

n    Additive error in the mean motion 

t    Interval between each step 

 ttion   Dispersive ionospheric errors 

 ttr    Receiver clock bias 

 ttsv    Satellite clock bias 

 ttir    Nondispersive tropospheric error 

0t    Bias in the reference receiver clock 

x    Corrected error state 

    Measured carrier phase single difference between antennae 

    Multipath error for carrier phase 

i0    Difference in carrier phase multipath error 

p    Receiver code noise difference 

    Receiver carrier phase noise difference 

Mp    Code pseudorange multipath error difference 

M    Carrier phase multipath error difference 

k

t
~  Residual correction errors and higher order modelling errors due 

to linearisation in addition to k

t  

    Range difference due to spatial separation between antennae  

i0    Difference in code multipath error 
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m    Difference in the measured phase differential 

    N
~

 Single difference of     N
~

, either two receivers tracking the 

same satellite or one receiver tracking two satellites 

    N
~

  Double difference of     N
~

 

     Hour angle of the vernal equinox 

Φ    System matrix 

1kΦ     nn  transition matrix 

    Right ascension of the ascending node 

0    Right ascension (GPS ephemeris elements) 

    Rate of right ascension (GPS ephemeris elements) 

k    Corrected longitude of the ascending node 

    Scaling parameter between 0 and 1 for UKF filter 

    Reflection coefficient 

    Correlation ratio 

0    Reflected signal relative phase at the reference antenna 

i    Reflected signal relative phase at antenna i  

    Latitude measured from x – y plane 

 tik    Short period correction of the inclination at epoch k 

 trk    Short period correction of the orbital radius at epoch k 

 tuk    Short period correction of the latitude at epoch k 

0,tx    Relative position of a receiver from the position at time 0  

 t    Random code measurement noise 

)(t    Random phase measurement noise 

  Single term by collecting carrier phase multipath, error in the 

calculated ephemeris and random measurement noise 

0    Reflected signal elevation 

0    Output of the complementary filter 

1 , 2    Outputs of System 1 and System 2 respectively 

    Secondary scaling parameter for UKF filter  

  Longitude measured from the long end of the body (15º west 

longitude in the case of the Earth) 
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    Wavelength corresponding to the carrier frequency f 

    Scaling parameter for UKF filter 

    Geodetic latitude 

s    Geocentric latitude 

    standard gravitational parameter ( GM ) 

kυ  Innovation sequence (A white Gaussian noise sequence with zero 

mean when the filter is optimal) 

mpiv   white noise process, representing the multipath component of the 

noise in the i
th

 code pseudorange measurement 

rcrv    Receiver random noise measurement 

mkv    First order Gauss-Markov multipath error 

v , mpv , pcv  Stationary white noise processes corresponding to 
kv̂ , km̂  and kv̂  

kv̂  Third state of the Hatch filter, the current complete pseudorange 

error state representing the Hatch filter 


kv̂  First state of the Hatch filter, the current pseudorange error due to 

ambiguity 

0v    Zero-mean white noise process, representing the receiver noise 

0    True anomaly 

    Elevation angle between the user receiver and the satellite 

    Earth-centered, Earth-fixed position vector of the aircraft 

    Actual magnitude of the pseudorange vector 

  Atmospheric density which is assumed to satisfy a power-law 

function 

̂    Estimation of the pseudorange  

~    Measurement of code pseudorange 

 imc    Measured thi  code pseudorange 

me    Estimate of the code pseudorange 

0    Reference value of the atmospheric density 

 kh
 ˆ    Noise of the smoothing code measurement 
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 , 
 imc  Standard deviations for the carrier phase measurement noise and 

the code-based measurement noise respectively 

2    Variance 

    Time normalisation 

    Period of integration 

a , M , i  Correlation times of the acceleration, multipath and ionospheric 

respectively 

    Filter time constant 

c̂    Multipath error for code 

  Common or geodetic latitude is the angle between the equatorial 

plane and a line that is normal to the reference ellipsoid 


~

   Measurement of the full carrier phase 

k    Argument of latitude at epoch k 

 km ,  1km   Measured carrier phase at epochs k  and 1k  respectively 

φ    State transition matrix of clock error bias model 

    Rate of change of longitude 

0    Reflected signal azimuth 

χ    Matrix of 12 L  sigma vector 

χ    Mean of the sigma points vector χ  

b    Body angular velocity vector 

    Argument of perigee 

 kω    Input 

ua  Rotational angular velocity of the Earth’s upper atmosphere, 

which is assumed to be fixed 

G    Angular velocity vector of the local geodetic frame or n frame 

m     Actual measured angular velocities 

s , s  Earth angular velocity in the local geodetic frame; Angular 

velocity of the Earth 

0    Argument of perigee (GPS ephemeris elements) 

k

t1    Line of sight vector to the satellite k  at time t  
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LIST OF NOTATIONS 

 

The following is the list of notational conventions, which has been used in this text. 

E   Expectation operator 

x   Non-boldfaced variables denote scalar 

x  Boldfaced variables denote vector or matrix quantities and also denote 

the actual value of x  

x̂   Denotes the estimated value of x  

x~   Denotes the measured value of x  

x   Denotes the mean value of x  
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CHAPTER 1 

INTRODUCTION 

 

Navigation is a very ancient science, which began with human travel. Literally, 

navigation can be described as to determine the exact position, orientation and velocity 

of a moving object based upon the previous position (which is also known as dead-

reckoning) or with the assistance of a map, celestial charts or any external information 

(termed as position-fixing) at a specified given time. 

 

Nowadays, space technology has advanced to a stage where humans can use a consumer 

satellite receiver to pinpoint his/her position at virtually any place in the world. This is 

thanks to navigation satellites, and the advantages of this technology will be extended 

even further as the modernisation of the Global Positioning Systems (GPS) takes place 

as scheduled and the full deployment of GLONASS and Galileo satellite constellations 

are completed according to time and roadmap.  

 

For civil aviation applications, more accurate and precise data are required. This is 

where augmentation systems are essential. One common problem faced by navigation 

satellite users for civil aviation purposes is availability. In order to increase the 

availability, this work proposes a way to interoperate between several Navigation 

Satellites, i.e. GPS, GLONASS and GALILEO, and possibly the Chinese 

COMPASS/Beidou and the Indian IRNSS. 

 

Basic ideas about interoperability and necessary navigation performance are discussed. 

Also, in this chapter, the motivation and aims of the research are duly explained. 

Finally, the organisation of the thesis is elaborated. 
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1.1 GLOBAL NAVIGATION SATELLITE SYSTEMS 

OVERVIEW 

 

An overview of Global Navigation Satellite Systems will be mentioned briefly before 

going into details in the following subsections. Simply abbreviated as GNSS, it provides 

autonomous geospatial positioning, navigation and timing (PNT) with worldwide 

coverage. A GNSS permits small electronic satellite receivers to determine their 

location (latitude, longitude and altitude or abbreviated as LLA) to within a few metres 

using electromagnetic signals transmitted along a line of sight by radio from the 

respective satellites. Fixed position receivers on the ground can be used to compute the 

precise time as a reference for scientific experiments such as study of earthquakes, and 

synchronisation of telecommunications networks. The International Committee on 

Global Navigation Satellite Systems (2007) or in short, ICG has identified and 

recognised four GNSSes as the current and planned systems providers, namely Global 

Positioning System (GPS), GLObal Navigation Satellite System (GLONASS), 

European Satellite Navigation System (Galileo) and COMPASS/BeiDou. 

 

1.1.1 GPS 

 

The GPS is currently the only fully functional GNSS in the world. It is officially 

named as NAVSTAR GPS, developed and operated by the United States Department 

of Defense (DoD), initially based on its predecessor, the TIMATION program which 

successfully launched two satellites named NST I and NST II (NST stands for 

Navigation Technology Satellite) in 1974 and 1977 respectively (Lasiter and 

Parkinson 1977; Easton 1980). These were the first satellites in the world to carry 

atomic clocks, a rubidium and caesium one in turn, and they are considered 

prototypes of its successor GPS satellites. The first GPS satellite was launched in 

February 1978. In 1993, initial operational capability (IOC) was formally declared. 

The constellation of 24 satellites in six orbital planes (Block I and Block II/IIA) was 



 

 

CHAPTER 1: INTRODUCTION  

 
 

 
 
 

31 

completed a few months later in 1994. In 1995, full operational capability (FOC) was 

declared with 24 BLOCK II/IIA satellites launched. 

 

GPS is a complex system divided into 3 segments, the space segment (SS), the 

control segment (CS), and the user segment (US). The space segment uses a 

constellation of 24 medium Earth satellites in six orbital planes. The six planes have 

an approximately 55° inclination (tilt relative to the Earth's equator) and are 

separated by 60° right ascension of the ascending node (angle along the equator from 

a reference point to the orbit's intersection). Each GPS satellite revolves 

approximately 2 complete orbits for each sidereal day. As of April 2007, there are 30 

actively broadcasting satellites in the GPS constellation. The additional satellites 

improve the precision of GPS receiver calculations by providing redundant 

measurements. With the increased number of satellites, the constellation was 

changed to a non-uniform arrangement. Such an arrangement was shown to improve 

reliability and availability of the system, relative to a uniform system, in the event of 

multiple satellite failure. Massatt and Brady (2002) argue extensively that a single 

satellite failure for a best six-plane uniform constellation suffered significant losses 

of accuracy. Although uniform constellation configuration are effective at 

maximising the number of satellite in view, they do not effectively provide the best 

geometry to minimise position-estimate errors and actually prevented accurate 

ranging. In a non-uniform arrangement during satellite outage, degradation in 

accuracy is less severe while maintaining the availability of the system. Moreover, 

this asymmetric constellation is less sensitive to satellite drift unlike the uniform 

configuration. 

 

GPS has a worldwide application as a navigation aid and has become a useful tool 

for map-making, land-surveying, hydrographic surveying, atmospheric modelling, 

and the latest application - aircraft structure health monitoring.  
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Figure 1.1 illustrates the formation of GPS constellation. Detail on the description of 

GPS is laid out in comparison to other systems as in Table 1.1. 

 

 

Figure 1.1 GPS constellation (Public Domain Image courtesy of National Executive 

Committee for Space-Based Positioning, Navigation and Timing (PNT) (2010).) 

 

1.1.2 GLONASS 

 

GLONASS is the former Soviet Union‟s GNSS answer to GPS and was developed 

for the Cold War in the 1960s. Nowadays, GLONASS is operated for the Russian 

government by the Russian Space Forces. 

 

The Russian Federation has proposed the world civil community to provide with a 

standard accuracy service through GLONASS and it has been officially accepted by 

the International Civil Aviation Organization (ICAO) and International Maritime 

Organization (IMO) in 1996. Apart from GPS, GLONASS plays it roles in providing 
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users with navigation service and precise timing. Although officially declared 

operational on September 24, 1993, IOC (Initial Operational Capability) by decree of 

the president of the Russian Federation (Prasad and Ruggieri 2005) and reaching full 

constellation of 24 satellites in 1995 (Alkan et. al. 2005), the GLONASS system was 

never brought to completion. This is mainly due to a lack of necessary funding after 

the collapse of the Soviet Union, while other reasons are insufficient motivation 

following the end of the Cold War, no solid prospect of civilian applications and 

related market opportunities. Currently, GLONASS is in the process of being 

restored to full operation. 

 

1.1.3 Galileo  

 

The Galileo positioning system is named after the Italian astronomer, Galileo Galilei. 

It is called Galileo to distinguish it from the United States GPS. Galileo will be the 

third GNSS in the world after GPS and GLONASS. Galileo is built by European 

Satellite Navigation Industries for the European Union (EU) and European Space 

Agency (ESA) and is expected to be fully operational by 2012. 

 

1.1.4 COMPASS/BeiDou 

 

China has stated the intention to expand its regional Beidou navigation system into a 

GNSS. It has been reported in Inside GNSS News (2008) that China is planning to 

launch 10 COMPASS satellites (Beidou-2) during the next two years in order to 

create a regional positioning, navigation, and timing (PNT) capability in the Asia-

Pacific region by 2010 and turn it into a full-fledged GNSS system within a few 

years. The system is designed to consist of 5 geosynchronous satellites and 30 MEO 

spacecraft. By 2020, it is anticipated that COMPASS will reach its Full Operational 

Capacity (FOC).  
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1.2 GPS/GLONASS/GALILEO SYSTEM COMPARISON 

 

The following Table 1.1 compares the characteristics of GPS, GLONASS and Galileo. 

 GPS GLONASS Galileo 

Country United States Russia European 

Carrier Frequencies 

(in MHz) 

L1: 1575.42 

L2: 1227.60 

L5: 1176.45 

L1: 1602 + 0.5625n 

L2: 1246 + 0.4375n 

n is the frequency 

channel number 

(n=0,1,…)  

E5a ,E5b: 1164-1215 

E6: 1215-1300 

E2-L1-E1: 1559-1592 

 

Channel Access 

Method 

CDMA FDMA (current) 

 CDMA (preliminary) 

CDMA 

Number of Satellites 

in the Constellation 

24 24 30 

Orbital Planes 6 3 3 

Orbit Inclination 55° 64.8° 56° 

Orbital Altitude 20200 km 19100km 23200 km 

Orbital Period 11 hours and 58 

minutes 

11 hour and 15 minutes 14 hour and 4 minutes 

Launch Vehicle Delta 2-7925 Proton K/DM-2 Ariane V, Proton, 

Soyuz etc. 

Coordinates system WGS84 PZ90 WGS84 

Number of 

Ephemeris Elements 

15 ephemeris + 1 

clock data + 5 clock 

correction elements 

9 ephemeris + 1 clock 

data elements 

- 

Intersatellite Links Yes GLONASS: No 

GLONASS-M, -K: Yes 

No 

Table 1.1 GPS, GLONASS and Galileo attribute comparison. 

 

The main difference between GLONASS compared with other GNSS systems is that 

GLONASS uses frequency division multiple access (FDMA) for channel access 

method, rather than code division multiple access (CDMA). FDMA gives users an 

individual allocation of one or several frequency bands or channels, while CDMA uses 

a special coding scheme (where each transmitter is assigned a code) to allow multiple 

users to be multiplexed over the same physical channel. Furthermore, CDMA is a form 

of spread-spectrum signalling where the modulated coded signal has a much higher data 

bandwidth than the data being communicated. The term „Multiple Access‟ is referring 

to the coordination access between multiple users. 
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According to Hein (2006), it is this difference “which hinders its full integration into a 

future Global Navigation Satellite System of Systems”. Since GPS, Galileo and 

COMPASS use the same signal access scheme; there is a huge possibility for 

integration at signal level, whereas, integration of these systems with GLONASS is only 

achievable at system level. 

 

 

1.3 NAVIGATION SATELLITE AUGMENTATION SYSTEMS 

 

The performance of a basic stand-alone GNSS receiver can be greatly enhanced by the 

technique of GNSS augmentation through the integration of external information into 

the calculation process. Several types of augmentation systems will be elaborated on 

this section.  

 

1.3.1 Differential Systems: DGPS Overview 

 

Differential Systems are supplementary navigation systems to the generic GNSS term 

for Differential GPS (DGPS) in that they use a network of fixed ground-based local 

reference stations to broadcast the correction between the instantaneous satellite 

systems positions and the precisely surveyed positions of the stations, which is then 

transmitted to user receivers. These stations broadcast the difference between the 

measured pseudoranges (calculated from relative pseudorange using the sampling 

frequency) and the actual pseudoranges (using the actual precise position of the 

station). The reference station computes differential corrections for its own location 

and time. The reference station will then remove the clock biases (satellite and 

receiver station clock) before transmitting the correction signal to user receivers. The 

distance between the users and the nearest station may be within 200 nautical miles 

radius (approximately 370 km), but as the distance increases, the accuracy of the 
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transmitted correction signal decreases. The problem becomes more cumbersome if 

both are not able to observe the same satellites.  

 

Due to wide coverage of GPS, Differential GPS (DGPS) are commonplace. Currently 

nearly all commercial GPS units available on the market offer DGPS data inputs, 

which provide better positional accuracy. 

 

1.3.2 Ground-based Augmentation Systems (GBAS) 

 

Ground-based augmentation systems (GBAS) is a localised reference system within 

20 km that supports navigation satellite augmentation through the use of terrestrial 

radio messages composed of an individual or a network of accurately surveyed 

ground stations, which take measurements concerning the GNSS, and one or more 

radio frequency signals, which transmit the information directly to the user receiver. 

 

One example of GBAS implementations is the United States Local Area 

Augmentation System (LAAS). It is important to note that GBAS is a generic term, 

while DGPS is a differential system specifically designed for GPS.  

 

1.3.3 Satellite-based Augmentation Systems (SBAS) 

 

A satellite-based augmentation system (SBAS) is an augmentation system which 

consists of the satellite and a network of multiple precisely surveyed ground-based 

stations that supplements navigation aid to a specific region through additional 

satellite by broadcast messages. The ground stations take measurements of the 

observed GNSS satellites, the satellite signals or other environmental factors, which 

may affect the signal received by the users. Later these measurements are used to 

create the information messages and are sent to one or more SBAS satellites for 

broadcast to the users. 
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A typical SBAS is normally a regional satellite system, which covers a regional area 

in comparison to a GNSS, which has a worldwide coverage. Several SBAS 

implementations namely according to International Committee on Global Navigation 

Satellite Systems (2007) are the United States‟ Wide Area Augmentation System 

(WAAS), the Russian Federation‟s System of Differential Correction and Monitoring 

(SDCM), the European Geostationary Navigation Overlay Service (EGNOS), the 

Indian GPS Aided GEO Augmented Navigation (GAGAN) system, Japan‟s Multi-

Functional Satellite Augmentation System (MSAS) system and Quasi-Zenith Satellite 

System (QZSS). 

 

1.3.4 Aircraft-based Augmentation Systems (ABAS) 

 

The concept of aircraft-based augmentation systems is an integration of information 

acquired with GNSS and onboard aircraft information. The augmentation systems 

blend additional information from satellite navigation systems and other navigation 

aids, i.e. Distance Measuring Equipment (DME), VHF Omnidirectional Range 

(VOR), LORAN-C, inertial navigation sensors and other navigation sensors. 

 

Mixing information between GPS and INS derived position and velocity can improve 

accuracy due to the fact that they have complementary characteristics. This simple 

scheme of combining deterministic signals is known as complementary filtering and 

feasible for ABAS. 
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1.4 INTEROPERABILITY 

 

The Institute of Electrical and Electronics Engineers (1990) defines interoperability as: 

 

The ability of two or more systems or components to exchange information and 

to use the information that has been exchanged. 

 

Also, Pridmore and Rumens (1989) define interoperability as  

 

The ability of systems, units or forces to provide services to and accept services 

from other systems, units or forces and to use the services so exchanged to enable them 

to operate together effectively. 

 

In the same text, Pridmore and Rumens (1989) also outline the Interoperability 

Requirements (IORs) as 

 

An operationally recognisable activity or sequence of activities that has a 

definable starting action, a definable concluding action, and which involves the 

exchange of information between two or more platforms. Such an information exchange 

may be interactive and may involve the use of more than one transfer medium, however, 

the information content on all transfer media must be definable. 

 

Hein (2006) categorises the interoperability terms into two specific definitions, namely 

system interoperability – where different GNSS systems provide the same answer, 

within the specified accuracy of each individual system, and signal interoperability – in 

which different GNSS systems transmit signals allowing them to combine in a “simple” 

receiver for a combined PNT solution.  

 

The research focus of this thesis is on the facilitation and integration of system 

interoperability. This work found that adaptive filtering provides the ability to operate in 
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the presence of uncertainties in the noise statistics of satellite-based positioning and 

consequently facilitates interoperability between various types of GNSS systems at a 

system level.  

 

1.5 ACCURACY VERSUS INTEGRITY 

 

For an aircraft to operate within a defined airspace, the aircraft must meet necessary 

navigation performance requirements or otherwise known as Required Navigation 

Performance (RNP). The International Civil Aviation Organization (ICAO) developed 

this approach in the early 1990s due to the strict necessities of aviation safety. These 

requirements are defined as follows (ICAO 1999): 

 

 Accuracy: The degree of conformance between the estimated or measured 

position and/or the velocity of a platform at a given time and its true position 

and/or velocity. Radio navigation performance accuracy is usually presented as a 

statistical measure of system error and is specified as: 

 Predictable: The accuracy of a position in relation to the geographic or 

geodetic coordinates of the Earth. 

 Repeatable: The accuracy with which a user can return to a position 

whose coordinates have been measured at a previous time with the same 

navigation system. 

 Relative: The accuracy with which a user can determine one position 

relative to another position regardless of any error in their true position. 

 

 Integrity: The ability of a system to provide timely warnings to users when the 

system should not be used for navigation. In particular, the system is required to 

deliver to the user an alert within the time to alert when an alert limit is 

exceeded. The alert limit is the maximum allowable in the user-computed 



 

 

CHAPTER 1: INTRODUCTION  

 
 

 
 
 

40 

position solution; the alert limit can be specified in horizontal alert limit (HAL) 

and vertical alert limit (VAL). 

 

 Continuity: The continuity of a system is the capability of the total system 

(including all elements necessary to maintain aircraft position within the defined 

airspace) to perform its function without non-scheduled interruptions during the 

intended operation. The continuity risk is the probability that the system will be 

unintentionally interrupted and will not provide guidance information for the 

intended operation. More specifically, continuity is the probability that the 

system will be available for the duration of a phase of operation, presuming that 

the system was available at the beginning of that phase of operation.  

 

 Availability: The availability of a navigation system is the percentage of time 

that the system is performing a required function under stated conditions. 

Availability is an indication of the ability of the system to provide a usable 

service within the specified coverage area. Signal availability is the percentage 

of time that the navigation signals transmitted from external sources are 

available for use. 

 

1.6 MOTIVATION AND AIMS OF RESEARCH 

 

The aim of this research is to develop differential satellite navigation reference station 

algorithms as well as mixing filter algorithms to facilitate interoperability. Two and 

three frequency reference station algorithms are developed that may be employed with 

any navigation satellite. The motivation behind the design of the algorithms has been 

the need for reference station algorithms that can deal with an interoperable system of 

navigation satellites to obtain high accuracy positioning information local to the roving 

vehicle. 
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The main focus of this research is to utilise adaptive extended Kalman filter and 

adaptive unscented Kalman filter to process a variety of satellites based on Method of 

Maximum Likelihood Estimation. (MMLE). The filters designed are tested with 

simulated GPS data by adding error models into the predicted pseudorange. Adaptive 

extended Kalman filtering can also be employed to estimate the ephemeris parameters 

of the orbiting satellites, while the adaptive unscented Kalman filter based mixing filters 

can be used to develop a high-precision kinematics satellite aided inertial navigation 

satellite with a modern receiver that incorporates carrier phase smoothing and ambiguity 

resolution.  

 

 

1.7 THESIS ORGANISATION 

 

This thesis is organised in 8 chapters. The chapters are summarised as follows:  

 

 In this chapter, several sections are presented, covering an overview of global 

navigation satellite systems, GPS/GLONASS/Galileo system comparison, 

navigation satellite augmentation systems, interoperability, accuracy versus 

integrity, motivation and aims of research, and finally the thesis organisation. 

 

 Chapter 2 starts with an introduction to orbital dynamics, discusses the issues 

related to the prediction and transformation of orbital ephemeris in real time and 

specific elaboration about NORAD TLE and NORAD SPACETRACK 

propagation models. 

 

 The emphasis of Chapter 3 is on estimating and measuring a position using 

satellite-based measurements. 
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 The focus of Chapter 4 is about error modelling and estimation for 

interoperability. 

 

 Chapter 5 discusses the selection of an appropriate orbit dynamics propagation 

model for the purpose of orbit estimation and solves the orbit filtering problem 

by applying the unscented Kalman filter. A host of fixed and adaptive UKF-

based orbit estimation methods are validated. 

 

 Chapter 6 is on enhanced accuracy algorithms, which is about the use of carrier 

phase measurements or real-time kinematics to increase navigational accuracy. 

 

 Chapter 7 covers the interoperable mixing filters whereby a generic satellite 

navigation system and INS measurement can be mixed to produce more 

accurate estimates of position and velocity. 

 

 Chapter 8 is the conclusion of the thesis, and includes a summary of the 

findings made during the course of this research, recommendation for future 

work and the principal contributions and achievements of the thesis.  
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CHAPTER 2 

REAL-TIME ORBIT PREDICTION AND 

PSEUDORANGE MEASUREMENT 

There are two ways in which the direction of this research can be taken. The first is by 

taking the navigation satellite data from a real satellite receiver and using this data to 

feed into a program which calculates its positions and velocities instantaneously. 

Secondly, a more profound way is to simulate the satellite orbit itself given a set of 

parameters. This research has selected the second way as the direction to go forward in 

predicting any catalogued satellite orbiting in real time. 

 

The purpose of this chapter is not to present an all-inclusive review of position location 

methods; rather it is to provide a basic understanding of orbital navigation techniques 

and how the theoretical aspect can be applied practically. 

 

 

2.1 INTRODUCTION TO ORBITAL DYNAMICS  

 

The first essential requirement in orbital determination is to establish the coordinate 

system and hence, defines its origin. In this work, since the satellites revolve around the 

Earth, the Earth’s centre is taken as the origin of the 3-axes Cartesian coordinate. 

 

Next comes the orientation of the object concerned. There are two ways to describe the 

orbit of a celestial body. Firstly, by using a state vector which has three parameters 

( zyx ,, ) for position and another three parameters ( zyx  ,, ) for velocity. Secondly, an 

orbit can have a set of parameters which describe the size and the shape of the orbit, the 
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plane and the direction of rotation, angle between the equatorial plane and the plane of 

rotation, the time or angle for one revolution. This set of parameters is called the orbital 

elements. This will be discussed further in the next section. 

 

 

2.2 ORBIT POSITION DETERMINATION: THE KEPLERIAN 

ELEMENTS 

 

The German astronomer Johannes Kepler [1571-1630] formulated three empirical laws 

of planetary motion based on astronomical data provided to him by the Danish 

astronomer Tycho Brahe in the late 1590’s. The laws were published over a period 

spanning a decade at about the same time as Galileo was making his landmark 

astronomical observations. The laws and its mathematical formulae are: 

 

i) The orbit of each planet is an ellipse with the Sun at one focus; 

cos1 e

p
r


           (2.1) 

where r  and   are heliocentric polar coordinates for the planet, p  is the semi-latus 

rectum, and e  is the eccentricity, which is less than one.  

 

ii) The line joining the Sun to the planet sweeps out equal areas in equal lengths of time; 

and finally, 

T

t
M




2

          (2.2) 

where M  is the mean anomaly, T  is the orbital period of the planet and t  is the time 

since periapsis (or perihelion if the Sun was the centre). 

 

iii) The squares of the orbital periods of the planets are proportional to the cubes of their 

mean distances from the Sun. 
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32 aT            (2.3) 

where T  is the orbital period of the planet and a  is the semi-major axis of the orbit. For 

satellites, whose mass is negligible compared to that of the Earth, the formula becomes 

2

3

2
gR

a
T            (2.4) 

where T  and a  are the same as in the previous equation, R  is the radius of Earth and g  

is the gravitational attraction at the surface of the Earth. 

 

Seven numbers, known as satellite orbital elements are required to define a satellite’s 

orbit about a planet. This set of seven numbers is called the satellite’s “Keplerian” 

orbital elements, or simply just elements. These numbers define an ellipse, its 

orientation about the planet and place the satellite on the ellipse at a particular time. In 

the Keplerian model, satellites orbit in an ellipse of constant shape and orientation. 

Uniquely associated with an ellipse are two foci and when these two foci coincide, the 

orbit is circular with a constant radius. The planet is at one focus of the ellipse, not the 

centre (unless the orbit ellipse is actually a perfect circle). The point on the orbit closest 

to this focus is the perigee while the farthest point is the apogee. The minimum 

separation between the satellite and the planet is said to be at periapse and the 

maximum at apoapse. The direction of a satellite or other body travelling in orbit can be 

direct, or prograde, in which the satellite moves in the same direction as the planet 

rotates, or retrograde, going in a direction opposite to the planet’s rotation.  

 

The primary orbital elements are numbers that: i) orient the orbital plane in space; ii) 

orient the orbital ellipse in the orbital plane; iii) specify its shape and size; iv) locate the 

satellite in the orbital ellipse. These elements are epoch, orbital inclination, right 

ascension of the ascending node, argument of perigee, eccentricity, mean motion, mean 

anomaly and drag, which will be defined in greater detail in subsequent paragraphs. The 

orbital elements is visualised by Figure 2.1. 
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Figure 2.1 Diagram of orbital elements. 

 

Epoch: A set of orbital elements is a snapshot, at a particular time, of the orbit of a 

satellite. Epoch is simply a number, which specifies the time at which the snapshot was 

taken. 

 

Orbital Inclination ( i ): The orbit ellipse lies in a plane known as the orbital plane. The 

orbital plane always goes through the centre of the planet, although it may be tilted at 

any angle relative to the equator. Inclination is the angle between the orbital plane and 

the equatorial plane. By convention, inclination is a number between 0 and 180 degrees. 

Orbits with inclination near 0 degrees are called equatorial orbits while orbits with an 

inclination near 90 degrees are called polar. The intersection of the planet’s equatorial 

plane (ecliptic plane) and the orbital plane is a line which is called the line of nodes. 

Nodes are points where an orbit crosses a plane. When an orbiting body crosses the 

ecliptic plane going north, the node is referred to as the ascending node, while it is 

known as the descending node when it is south bound. 
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Right Ascension of the Ascending Node ( ) is the second element that orients the 

orbital plane in space. Once the orbital inclination is defined there are an infinite 

number of orbital planes possible. Of the two nodes on the line of nodes one is the 

ascending node where the satellite crosses the equator going from south to north. The 

other is called the descending node where the satellite crosses the equator going from 

north to south. By convention, one specifies the location of the ascending node by the 

expression “right ascension of ascending node” which is an angle, measured at the 

centre of the planet, from the vernal equinox, a reference point in the sky where right 

ascension is defined to be zero, to the ascending node. It is an angle measured in the 

equatorial plane from the vernal equinox. 

 

Argument of Perigee ( ): Argument is yet another word for angle. Once the orbital 

plane is oriented in space, it is essential to orient the orbit ellipse in the orbital plane. 

This is done by a single angle element known as the argument of perigee. 

 

Eccentricity ( e ): In the Keplerian orbit model, the satellite orbit is an ellipse. 

Eccentricity tells us the “shape” of the ellipse. When e = 0, the ellipse is a circle. As e 

approaches 1, so the ellipse becomes longer and narrower. So far the orbital elements 

define the orientation of the orbital plane, the orientation of the orbit ellipse in the 

orbital plane, and the shape of the orbit ellipse. One still needs to define the “size” of 

the orbit ellipse. 

 

Mean motion is usually given in units of revolutions per day. Kepler's third law of 

orbital motion gives us a precise relationship between the speed of the satellite and its 

distance from the planet. So by specifying the speed of the satellite or its mean motion, 

it is possible to define the size of the orbit. Sometimes the semi-major axis ( a ) is 

specified instead of mean motion. The semi-major axis is one-half the length (measured 

the long way) of the orbit ellipse, and is directly related to mean motion by a simple 

equation. It now remains to specify exactly where the satellite is on this orbit ellipse at a 

particular time. 
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Mean anomaly is simply an angle that marches uniformly in time from 0 to 360 degrees 

during one revolution. It is defined to be 0 degrees at perigee, and therefore is 180 

degrees at apogee. It is related to the true anomaly, 0  which is often employed as an 

alternate element. It is a term used to describe the locations of various points in an orbit. 

It is the angular distance of a point in an orbit past the point at periapsis, the point on the 

orbit referred to as the perigee, measured in degrees at the focus nearer to the perigee, 

which is also where the planet’s centre is located. For example, a satellite might cross a 

planet’s equator at 30° true anomaly, which defines where the satellite is on this orbit 

ellipse at a particular time. 

 

There is one important, but optional secondary element: the drag. The drag orbital 

element defines the rate at which mean motion is changing due to drag or other related 

effects. 

 

2.2.1 Transformation to Position and Velocity 

 

If the six Keplerian orbital elements ( a , e , i ,  ,  , and 0 ) and the standard 

gravitational parameter   of a celestial body are available, the orientation 

representation can be transformed to a state vector consisting of position ( x , y , and 

z ) and velocity ( x , y , and z ) and vice-versa. The method used here is 

transformation from Keplerian orbital elements to Geocentric-Equatorial frame or 

ECI via the Perifocal frame. 

 

 21 eap           (2.5) 
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2.2.2 The GPS Ephemeris 

 

A GPS satellite transmits 16 ephemeris elements and 5 satellite clock correction 

elements. These elements are then used to define the position of a satellite at a certain 

time. Table 2.1 lists GPS ephemeris and clock correction elements into two separate 

categories. 
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GPS Ephemeris Elements GPS clock correction elements 

Inclination ( 0i ) 

Right Ascension ( 0 ) 

Argument of Perigee ( 0 ) 

Time of Ephemeris (Toe ) 

Eccentricity ( e ) 

Mean Anomaly ( 0M ) 

Amplitudes of sine & cosine harmonics 

correction (Short Period) terms for:- 

 Semi-major axis ( a ) of orbital 

radius ( rsC , rcC ); 

 of inclination ( isC , icC ); 

 of argument of latitude ( usC , ucC );  

Mean Motion Difference ( dn ) 

Rate of Right Ascension ( ) 

Rate of Inclination ( i) 

Satellite group delay differential 

( GDT ) 

Satellite clock correction ( oet ) 

Satellite clock correction ( 2fa ) 

Satellite clock correction ( 1fa ) 

Satellite clock correction ( 0fa ) 

Table 2.1 GPS ephemeris and clock correction elements. 

 

 

2.3 ORBIT PREDICTION: ERROR MODELLING 

 

Although the Keplerian elements allow for the accurate modelling of the orbit of a 

planetary satellite, they ignore all perturbation effects and the standard approach to 

include these effects is defined by the Lagrange Planetary equations. There are several 

forms of these equations in use but the primary form is the one that may be employed 

for both short term and long term orbit predictions.  

 

Solutions to the Lagrange Planetary equations, applied to navigation satellites, have a 

generic structure. Thus errors to the Keplerian elements may be expressed by a set of 

equations as follows. The argument of the latitude is defined as: 

kk             (2.11) 
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The latitude, the orbit radius and the inclination may be expressed as the sum of the 

slowly varying and short period terms as:  

 tuu kkk            (2.12) 

   trEear kkk  cos1          (2.13) 

     trttitii kkk  00
         (2.14) 

where the short period corrections are given by, 

      kuskuck utCutCtu 2sin2cos        (2.15) 

      krskrck utCutCtr 2sin2cos        (2.16) 

      kiskick utCutCti 2sin2cos        (2.17) 

 

Finally, the corrected longitude of the ascending node may be expressed as, 

    tttt ekk  00
        (2.18) 

where the time since the ephemeris is given by, Toettk   and 

15 srad102921151467.7 e , is the mean rotation rate of Earth. 

 

Such a model reflects the fact that the slowly varying elements consist of the Keplerian 

terms, secular terms which are linear in t , and the long period variations which are 

modelled in terms of the time varying coefficients. Along with the additive error in the 

mean motion, n , and the time of the ephemeris, Toe , one has a set of 16 elements 

defining the orbit in this model. It is the primary model adopted in a GPS system where 

the GPS ephemeris (the 16 elements), for each satellite, is the core of the navigation 

message provided to the user at regular time intervals to facilitate the computation of the 

satellite’s orbits. It constitutes one of the early error prediction models adopted for 

navigation satellite position prediction. It is important to note that the error prediction 

model must be compatible with the way the element sets are defined and therefore not 

easy to convert from one type of an error prediction model to another without further 

physical consideration. This issue will be discussed with an example in a later section. 
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2.4 SHORT TERM PREDICTION: THE GLONASS 

APPROACH 

 

The GLONASS system, which was first established by the erstwhile Soviet Union, 

follows a totally different approach to the issue of error prediction modelling. The 

GLONASS satellites operate in a middle Earth orbit - a 19,100 km circular orbit, 64.8° 

inclination and a period of 11 hours and 15 minutes. Yet the error model used for these 

satellites was derived from the motions of satellites in the highly eccentric Molniya 

orbits which exhibit peculiar mean-motion behaviours. This is due to perturbations 

resulting from the Earth’s oblateness. Satellites in a Molniya orbit are in a 2-to-1 mean-

motion resonance with the Earth’s spin, they follow the same ground track on each 

orbit, with two alternating geostationary perigees, separated by 180 degrees of terrestrial 

longitude, over the southern hemisphere. Although the peculiarities of the Molniya 

orbits are absent in the GLONASS satellites as they follow a circular orbit, the Molniya 

type error model was adopted for the GLONASS satellites and it is different in nature to 

the GPS ephemeris. The GLONASS navigation message consists, besides some other 

information, of 9 ephemeris states:  

000 ,, zyx : Position components in Cartesian Earth Centred Earth Fixed frame (ECEF), 

000 ,, zyx  : Velocity components in Cartesian ECEF coordinates,  

resresres zyx  ,, : Residual acceleration over the prediction interval, mainly due to the 

gravitational effects of the Moon and Sun in Cartesian ECEF coordinates and Toe is the 

reference time of ephemeris. 

 

A broadcast message as described above is based on a dynamic model for the 

acceleration, referenced in an ECEF frame. In addition to the normal central force field 

and the acceleration components, the dynamics account for the primary Earth oblateness 

represented by the 20C coefficient. The equations of motion are then expressed as: 

xdtdx  , ydtdy  , zdtdz  ,       (2.19) 
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where   is the gravity parameter. These equations are integrated numerically to obtain 

the orbit parameters. However there are two difficulties with the GLONASS error 

model in the context of interoperability. Firstly, the equations are not in a form that is 

easily integrable in real time. The orbit equations are fundamentally nonlinear and 

singular at certain points in the domain. It is often essential to predict and propagate a 

state vector where the initial data is relatively unbalanced. In such cases the numerical 

prediction is facilitated by a suitable scaling transformation of the state variables. As the 

equations are nonlinear, scaling has a dissimilar effect on each of the variables being 

propagated and appropriate scaling facilitates the prediction of the states with relatively 

uniform and small errors in all of them. Secondly the error model is inconsistent with 

other error models. Yet it is indeed possible to address both issues. 

 

The solution to the inconsistency problem is to introduce the full Earth gravity model. 

The longitudinal variations of the Earth’s gravitational perturbation potential are 

expressed by its tesseral coefficients. Because the resonance is 2-to-1, only the 

coefficients of even azimuthal numbers cause secular changes in mean motion. These 

coefficients, to a good approximation, describe an ellipsoidal, or “triaxial” potential, 

that is, one which may be described by three axes, two of which lie in the equatorial 

plane. The long axis of this geoidal model of the Earth lies along 15º west longitude and 

165º east longitude. Introducing the Earth’s full gravitational perturbation potential 

(refer to Appendix G), the last three equations in the GLONASS error model are 

expressed as, 
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The Earth’s gravitational perturbation potential can be expressed as, 
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where r  is the distance of the body centre of mass,   is the latitude measured from x – 

y plane, and   is the longitude measured from the long end of the body (15º west 

longitude in the case of the Earth). In Cartesian coordinates the potential may be 

expressed as, 
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where 222 zyxr  , 
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y
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i

i

e
x

y
t tan  and 

 iii zyx ,,  is the position vector of the satellite in an Earth-centred inertial (ECI) 

coordinate frame. 

 

To facilitate the easy numerical integration of these equations in real time, a length scale 

and a time normalisation defined by, 
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          (2.28) 

te           (2.29) 

are introduced. The length scale geor  is the resonance radius where the point mass 

gravitational attraction of the Earth equals centripetal acceleration with the satellite 

rotating at the Earth’s rotation rate. The time parameter   is equivalent to the rotation 
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angle of the Earth, with one full rotation every 2  radians. By normalising the 

distances by the resonance radius, geor , the velocities by geoer  and the oblateness 

parameters iC2 , for i = 0, 2, by 2

geor , and by employing   as the independent variable, 

the equations may be written in terms of the normalised position and velocity 

coordinates as, 

xdxd ~ , ydyd ~ , zdzd ~       (2.30) 
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where, 
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The oblateness coefficients, iC2 , are also related to the principal moments of inertia of 

the Earth and could be expressed in terms of alternate relationships to the standard zonal 

harmonic coefficients, J2 = 1.082616  10
-3

, J3 = – 2.53881  10
-6

, J4 = –1.65597 10
-6

 

and to J21 = 0, J22 = 1.86 10
-6

, J31 = 2.1061 10
-6

. This standard zonal harmonics 
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coefficients in the generic term, Jn reflect the mass distribution of the Earth independent 

of the longitude and dominates the gravitational pertubative influences of the Earth. 

These coefficients have mainly be determined from the motion of Earth-orbiting 

spacecraft (Fortescue, Stark and Swinerd 2003, pg. 95-96). More definition of the 

standard zonal harmonics and Earth’s gravitational function is described in Appendix G. 

 

MATLAB simulations of the above equations indicate that they are now in a form 

suitable for numerical integration. The period of integration is usually in the range of 

about, 2.001.0  . 

 

 

2.5 NORAD METHOD FOR ORBIT PROPAGATION 

 

In the United States, it is the responsibility of North American Aerospace Defense 

(NORAD) Command to maintain general perturbation element sets on all resident space 

vehicles. These Two-Line-Element (TLE) data sets for a specific satellite each consist 

of two 69-character lines of data. These element sets are periodically updated so as to 

maintain a reasonable prediction capability on all space vehicles. In turn, these element 

sets are made available to others, providing them with a means of propagating these 

element sets in time to obtain a position and velocity of a specific space vehicle of 

particular interest by applying the relevant NORAD SPACETRACK propagation 

models.  
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2.5.1 NORAD TLE 

 

A typical TLE set can be obtained from the celestrak website (Kelso 2006). For 

example, a TLE for a GPS BII-09 (PRN 15) acquired on 4
th

 October 2006 (Day 277) 

at 10:50 UTC is shown in Table 2.2. 

 

'1 20830U 90088A   06275.19442019  .00000034  00000-0  10000-3 0  9887' 

'2 20830  54.7397 262.1253 0097535 156.4284 204.0294  2.00565857117480' 

Table 2.2 A typical NORAD TLE element set. 

Kelso (1998a) interpreted in detail the variable names of each data element contained 

in the two-line element set. Instead of using generic characters to describe them, here, 

an example of a two-line element data set is presented in Table 2.2. Each line of a 

NORAD two-line element set consists 69-character lines of data which is used 

together with NORAD SGP4/SDP4 orbital propagation model to determine the 

position and velocity of the respective satellite. The first line of this element set is 

interpreted as follows: 

 

1   First line number of the element data set 

20830  Satellite number 

U   Unclassified data, publicly available 

90  International Designator (Last two digits of launch year, i.e. this 

satellite is launched in year 1990) 

088   International Designator (Launch number of the year) 

A   International Designator (Piece of the launch) 

06   Epoch Year (Last two digits of year) 

275.19442019 Epoch (Day of the year and fractional portion of the day) 

.00000034  First Time Derivative of the Mean Motion 

00000-0  Second Time Derivative of Mean Motion (starting from decimal 

point ) 

10000-3 BSTAR drag term (starting from decimal point) 
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0   Ephemeris type 

988   Element number 

7  Checksum (Modulo 10), other than number, minus signs = 1, 

letters, blanks, period or plus sign = 0 

 

Epoch Year and epoch corresponds to 2th of Octotber, 2006 and the fraction part 

corresponds to the hour, minute and second of the UTC time of that day.The second 

line of the NORAD element set as presented by Table 2.2 is interpreted as follows, 

 

2   second line number of the element data set 

20830  satellite number 

54.7397  Satellite inclination(degrees)  

262.1253  Right Ascension of the Ascending Node (degrees) 

0097535  Eccentricity (starting from decimal point) 

156.4284  Argument of Perigee (degrees) 

204.0294  Mean Anomaly (degrees) 

2.00565857  Mean Motion (revolutions per day) 

11748  Revolution number at epoch (revolution) 

0   Checksum (Modulo 10) 

 

However, the element sets maintained by NORAD are “mean” values obtained by 

removing periodic variations by certain specific methods and in a particular way. In 

addition to the 6 Keplerian elements the NORAD TLE includes the first and second 

time derivatives of the mean motion, the reference time of the epoch, and a drag 

related parameter. It is possible to always reconstruct these periodic variations from 

the base element sets. In order to obtain good predictions, these periodic variations 

must necessarily be reconstructed in exactly the same way they were removed by 

NORAD and by employing methods that are compatible with the methods employed 

to remove them in the first place. Hence, employing the NORAD element sets with a 

different prediction model, no matter how representative and accurate it may be, will 
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result in erroneous predictions. The NORAD element sets must be used with one of 

the prediction models described in the SPACETRACK Report No. 3 by Hoots and 

Roehrich (1980) in order to retain maximum prediction accuracy. This is, 

undoubtedly, an issue that has to be addressed carefully, particularly if NORAD 

TLEs are employed for interoperable navigation satellite orbit predictions as these 

element sets cannot be employed with just any prediction model. 

 

2.5.2 NORAD SPACETRACK Propagation Models 

 

For navigation applications it is also important to recognise that all space vehicles are 

classified by NORAD as near-Earth (orbital period less than 225 minutes) or deep-

space (orbital period greater than or equal to 225 minutes) (Hoots and Roehrich 

1980). Depending on the period, the NORAD element sets are automatically 

generated with the near-Earth or deep-space models and the associated prediction 

methods. Most navigation satellites fulfill the criteria of a deep-space object, and thus 

this type of model is more appropriate for them. Thus, almost exclusively, the 

navigation satellites should be dealt with by employing the prediction models for the 

deep-space objects. 

 

Although five models for prediction of satellite position and velocity are available for 

use with the NORAD TLE sets, the first and second of these are specifically for near 

Earth satellites. The first one of these, SGP, was developed by Hilton and Kuhlman 

(1966) based on a simplification of the work of Kozai (1959) for its gravitational 

model and a linear model for the drag effect on mean motion while the second model, 

SGP4, employs the extensive analytical theory of Lane and Cranford (1969), which 

uses the solution of Brouwer (1959) for its gravitational model and a power density 

function for its atmospheric model. The SGP8 model for near-Earth satellites is 

obtained by simplification of an extensive analytical theory of Hoots (1980), which 

uses the same gravitational and atmospheric models as Lane and Cranford but 

integrates the differential equations by a different method. The models SDP4 and 
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SDP8 are extensions of SGP4 and SGP8 for deep-space satellites. The deep-space 

equations for the SDP4 model were developed by Hujsak (1979). The deep-space 

equations model the gravitational effects of the Moon and Sun, which contribute 

mainly to the secular rates and long periodics, as well as certain sectoral and tesseral 

Earth harmonics, which are of particular importance for half-day and one-day period 

orbits, an issue which was discussed in the previous section. The deep-space effects 

are modelled in SDP8 with the same equations used in SDP4. Further details of the 

evolution of the models may be found in Hoots et al. (2004). 

 

One method for real-time prediction of the position and velocity of a satellite or any 

Earth-orbiting object, is by using the NORAD TLE set. Every NORAD TLE set can 

be used with a NORAD orbital model algorithm (namely SGP, SGP4, SDP4, SGP8 

and SGP8) to predict and determine the position and velocity of the corresponding 

satellite. Each satellite has its own TLE set, which is generated by NORAD and likely 

to change on an as-needed basis rather than according to an established timetable 

(Kelso 1998b). The method of orbit propagation models used with suitable 

modification in this research is SDP4, which is discussed in Appendix A. The 

suitable modification of this method is presented in section 4.4. 
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2.6 POSITION DETERMINATION FUNDAMENTAL 

 

The position of a point can be measured relative to some known positions. A simple 

way to show and, hence, prove this is by an illustration of a two-dimensional case as 

shown in Figure 2.2. 

 

 

Figure 2.2 Two-dimensional user position and three satellites positions. 

 

The above figure shows that three known satellites are required at that particular 

instance. If a single satellite is used, the trace of a point with constant distance to the 

fixed point is a circle in two-dimensional space. Two satellites will have two circles, 

which intersect at two points. With three satellites S1, S2 and S3, the user position U can 

be uniquely determined from three distances x1, x2 and x3, as presented in Figure 2.2. 

This method of determining the relative positions of the receiver using the geometry of 

triangles is known as trilateration. The trilateration method forms the basis of satellite 

position determination. 

 

The same logic applies in three-dimensional space; the user will require four satellites to 

determine his/her position. This does not, however, account for the offset and bias 

errors; if these are included, a further (fifth) satellite is required. Practically, four 
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satellites are sufficient; since one of the solutions will be near to the surface of the Earth 

and the other one is somewhere in space approximately twice the orbital radius of the 

satellites further away from Earth. Normally, the user is near to the surface of the Earth, 

which means the user position can be determined uniquely with four satellites, after 

including offset and bias errors. 

 

2.6.1 Satellite Signals Flow through a Receiver 

 

 

Figure 2.3 A simplified flowchart of signals flow through a receiver. 

 

Figure 2.3 shows a simplified flowchart of satellite signals flow through a receiver. 

Firstly, the input signals are detected and digitised. Signal acquisition follows, 

whereby the necessary parameters, that is, the beginning of the code period and the 

carrier frequency of the input signals, are obtained. These parameters will then be 

passed to the signal tracking process. Once signal tracking is achieved, then the 
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navigation data can be obtained, each message subframe is then matched, whereby 

the ephemeris data are acquired, the parity checked and pseudoranges of each satellite 

and user receiver are determined. In turn, the satellites’ positions and the user 

receiver position are calculated. The user receiver position can then be adjusted in the 

user’s desired coordinate frame. 

 

2.6.2 Signal Tracking 

 

 

Figure 2.4 Carrier and code tracking loops [adapted from Tsui 2000, pg. 174]. 

 

ADC  Analog-to-Digital Converter 

MA   Moving Average filter 

sqrt   square root process 

    summation 

e/d select  selecting outputs to their proper connectors 
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lpf   low pass filter 

osc   oscillator 

arctan  arctangent comparator 

90    90  phase shift 

 

A GPS signal is a bi-phase coded signal (Tsui 2000, pg. 173) and likewise, 

generically, all GNSS signals are bi-phase coded signals. Due to the continuous 

relative motions of the corresponding satellite and receiver, the Doppler effect alters 

both carrier and code frequencies. In order to track the GNSS signal, the code 

information must be separated from the carrier signal. As shown in Figure 2.4, these 

two-phase-locked loops are needed to track the GNSS signal; the code loop tracking 

the GNSS code signal information, and the carrier loop tracking the carrier frequency. 

These two loops are coupled together.  

 

The code loop generates three outputs, i.e. an early code, a prompt code and a late 

code. The prompt code is fed into a multiplier, which strips off the GNSS code signal 

from the bi-phase coded signal and hence produces an output of a continuous wave 

(cw) without the GNSS code signal. This cw signal with phase transition caused only 

by the navigation data is applied as the input to the carrier loop. Similarly, the cw 

with the carrier frequency produced from the carrier loop is fed into a multiplier 

which strips off the GNSS carrier frequency from the bi-phase coded signal and 

produces the GNSS code signal. The output from this multiplier, which is a signal 

with only a GNSS code and no carrier frequency, becomes the input to the code loop.  

 

This process of signal tracking is then achieved and the navigation data can be 

obtained. 
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2.6.3 Code-based Measurement 

 

The code-based pseudorange measurement is a measurement of the distance between 

the navigation satellite and the user receiver measuring the time taken by the signal to 

travel from the satellite to the receiver. It uses the leading edge of TLM word in the 

GNSS signal message as the reference point for initial alignment purpose.  

 

A satellite receiver generates an internal replica of the signal similar to the GNSS 

signal that it receives. However, as the signal reaches the receiver, the internally 

generated replica of the signal has advanced and the two do not properly line up with 

each other. The delay in the signal received in relation to the internal replica is the 

time required for the signal to reach the receiver. The distance between the satellite 

and the receiver is estimated by multiplying this delay by the speed of 

propagation.Later, the position of the satellite can be obtained from the ephemeris 

and, hence, the user position can be determined.  

 

2.6.4 Carrier Phase Measurement (Real Time Kinematics) 

 

The carrier phase measurement, also referred to as Real Time Kinematics (RTK) is a 

generic term to describe the technique using the carrier phase of the GNSS signal 

instead of the navigation data encoded on the signal (as in code pseudorange 

measurement) where a single, local reference station broadcast the PNT corrections in 

real time to a stationary or a roving receiver. The system is known as Carrier Phase 

Enhancement (CPGPS) when referring to GPS. This technique is widely used in map-

making, land-surveying, hydrographic surveying and atmospheric modelling  

 

The range measurement accuracy of the carrier phase is about 1% of one bit-width. A 

GPS civilian coarse-acquisition (C/A) code signal transmits a bit for every 0.98 

microsecond, which gives the receiver and accuracy about 0.01 microsecond or 
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roughly 3 metres in distance. For the military-only P(Y) signal which is 10 time faster 

than its civilian counterpart, the receiver range measurement accuracy is about 30 cm. 

 

Unlike the code-based measurement, the carrier phase was not initially designed to 

measure the distance between the satellite and the receiver. The cycles of the carrier 

phase do not contain any reference point for alignment, hence the difficulty in 

properly aligning the signal received and the internal replica of the signal. This 

problem is known as integer ambiguity. However, a complex statistical method can 

reduce this problem as presented in Appendix E, although it cannot eliminate the 

problem altogether. 

 

 

2.7 MEASUREMENT OF PSEUDORANGE 

 

The navigational satellite receiver depends on accurate range measurements in order to 

determine the precise position of the user. Ideally, the range between a navigational 

satellite and a user receiver is simply as follows, 

     222

usvusvusvi zzyyxxd        (2.37) 

where id  is the geometric distance between the thi  navigational satellite and the user 

receiver; ( svx , svy , svz ) is the known three-dimensional satellite position (in meters); 

and ( ux , uy , uz ) is the unknown three dimensional user position (in meters).  

 

However, due to the delay in the timing measurement of the propagation, receiver clock 

offset from the satellite time (the receiver clock is generally not synchronised with GPS 

system time (Brown and Hwang 1997; and Kline 1997)) and bias (due to time drift); 

extra terms have to be incorporated to these errors. Hence, the term is pseudorange 

rather than range because of the erroneous range measurement, which is expressed as: 

      utusvusvusvi cbzzyyxxd 
222

     (2.38) 
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where c  is the speed of light, utb  is the user clock offset and bias, and the remaining 

parameters are as defined as in the previous equation. However, the clock errors are not 

the only errors which affect the accuracy of the satellite-user range. There are several 

other errors, which can affect the performance of a navigational satellite receiver. This 

will be explained further in the next chapter. 

 

Dilution of Precision (DOP) describes the imprecision in measuring the user position. 

DOP is an estimate through a least squares adjustment procedure, the receiver position 

and the clock offset are not computed accurately enough. DOP is a function of satellite 

geometry only. If there are a lot of visible satellites and the user is spoilt for choices, 

then, the lowest DOP value should be as small as possible to obtain the greatest user 

position accuracy  

 

2.7.1 Measurement Errors in Code-based Measurement 

 

Measurement errors in code-based measurement can be due to several factors, i.e. 

clock biases (satellite and receiver), intentional dithering of the clock by the 

respective GNSS services (selective availability, anti-spoofing and possibly selective 

deniability), error in the calculated ephemeris (satellite orbital position error), signal 

propagation errors (differences in propagation speed through vacuum, ionosphere and 

troposphere), code multipath error and random code measurement (thermal) noise.  

 

2.7.2 Measurement Errors in Carrier Phase Measurement 

 

Measurement errors in carrier phase measurement are due to all the factors mentioned 

in section 2.7.1 plus integer ambiguity. Instead of code multipath error and random 

code measurement (thermal) noise, carrier phase measurement suffers from similar 

forms of error called carrier multipath error and random carrier measurement 

(thermal) noise respectively. 
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CHAPTER 3 

PSEUDORANGE ERROR MODELLING 

FOR POSITION ESTIMATION 

Previous chapters have discussed, navigation satellites and their augmentation systems 

(chapter one) and the real-time orbit prediction models of these satellites and the 

pseudorange measurement (chapter two). Thus, the basis for satellite-based position 

estimation and measurement has been laid out. 

 

This chapter will continue from where the work has left off so far. Knowing the orbital 

propagation models used and simulated for positioning prediction, the next step is to 

convert the signals received from the satellites into useable information, in this case the 

unknown user position. Simultaneously, measurement errors and biases must be 

modelled and estimated to get an accurate estimation of the position of the satellite from 

the measurement. By acquiring this processed information, therefore, the unknown user 

position can be estimated.  

 

This chapter is devoted to pseudorange error modelling for position estimation. It is 

arranged in a sequence, starting from the pseudorange error model; modelling and 

simulation of pseudorange errors; and finally estimation and prediction of pseudorange. 
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3.1 PSEUDORANGE ERROR MODELS 

 

The satellite-based positioning of the user is modelled by code pseudorange and full 

phase carrier measurement. The measurement of code pseudorange ~  by a user 

receiver can be accurately modelled as Brown and Hwang (1997), Farrel and Barth 

(1999), and Farrel and Givargis (2000) show, as follows, 

 

            

         ttcttctEtSAttc

ttMPttczzyyxx

trionsv

rusvusvusv



 
5.0222

ˆˆˆ~
  (3.1) 

where 

svx̂ , svŷ , svẑ  satellite estimate positions in x , y , z  components 

ux , uy , uz  user positions in x , y , z  in components 

c   speed of light 

 ttr   receiver clock bias 

 ttsv   satellite clock bias 

 tSA   selective availability error 

 tE   error in the calculated ephemeris 

 ttion  dispersive ionospheric error 

 ttir   nondispersive tropospheric error 

 tMP  code multipath error 

 t   random code measurement noise 

 

Meanwhile, the measurement of the full carrier phase 
~

 can be accurately modelled as, 

            

           ttcttctEtSAttct

tmpttczzyyxxN

trionsv

rusvusvusv








5.0222

ˆˆˆ
~

   (3.2) 

where 

fc  wavelength corresponding to the carrier frequency f; 
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)(tmp   phase multipath error; 

)(t   random phase measurement noise; 

N  constant integer phase ambiguity (the whole number between the satellite 

and the receiver at initial time measurement). 

 

The interesting fact about the carrier signal is that the phase multipath )(tmp  and phase 

random measurement noise )(t  are approximately 100 times smaller than the 

corresponding errors in code pseudorange, ie code multipath )(tMP  and random code 

measurement noise )(t  (Farrel and Barth 1999). This is the reason why carrier phase 

measurement is used for sub-metre accuracy for precision positioning. However, this 

equation is rendered useless if the constant integer phase ambiguity N is not properly 

estimated. 

 

Also, a significant difference between the measurements of code pseudorange and 

carrier phase is the ionosphere effect, where the code signal transmission delays while 

the phase signal transmission advances. The effect on code and phase measurements 

have the same amount but opposite sign. Therefore, in equation 3.1 (measurement of the 

code pseudorange), the ionospheric term is positive but in equation 3.2 (measurement of 

the carrier phase), the ionospheric term is negative.  

 

If a precisely surveyed location ( 000 ,, zyx ) of a reference receiver is known, this 

information can be used to estimate the reference-to-satellite range (Farrel and Givargis 

2000) 

       5.02

0

2

0

2

00
ˆˆˆˆ zzyyxxR svsvsv        (3.3) 

Hence, the basic range space differential correction (for each satellite) is determined by 

differencing the estimated and measured reference-to-satellite ranges (Farrel and 

Givargis 2000) 

~ˆˆ
0  RDGPS          (3.4) 

              ttMPttctEtSAttcttc asv  0     (3.5) 
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where 0t  represents the bias in the reference receiver clock and atc  is a total of 

combined errors of ionospheric and tropospheric propagation delays. 

 

The broadcast corrections should be corrected to remove the reference receiver and 

satellite clock errors. Therefore, the broadcast corrections will take the form (Farrel and 

Givargis 2000) 

    ~ˆˆ
00  ttcttcR svGPS        (3.6) 

              ttMPttctEtSAttcttc asv   0     (3.7) 

where 0tc and svtc  represent the residual reference receiver and satellite clock errors. 

 

To summarise, the error terms in both equations above can be classified into two 

categories, as presented in Table 3.1. 

 

Common Mode Errors Receiver Dependant Errors 

satellite clock bias receiver clock bias 

selective availability error code and phase multipath errors 

error in the calculated ephemeris random measurement noise 

dispersive ionospheric delay constant integer phase ambiguity 

nondispersive tropospheric delay  

Table 3.1 Pseudorange error classification. 

 

Further scrutinising Table 3.1, the clock biases for the receiver and the satellite, which 

belong to different categories use the same model but different values for certain 

parameters. The clock bias errors, receiver dependent errors and common mode errors 

are deliberated in the following sections.  

 

Also, an important note to be discussed here is that all error models used might not be 

the best models, which are normally computationally complex, but most of them are 

easy and simple algorithms available from various literatures.  

 

These two categories of pseudorange errors will be elaborated on further in the next 

three sections. 
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3.2 CLOCK BIAS ERRORS 

 

This section will concentrate on receiver and satellite clock bias errors. Although 

satellite clock bias is a common mode error and receiver clock bias is a receiver 

dependent error, both errors have the same error model and, thus, it is imperative to deal 

with them in one section.  

 

In this research, the model of the clock bias error is based on the one derived by Brown 

and Hwang (1997). The two-state clock model can be represented as in Figure 3.1. 

 

 

Figure 3.1 General two-static model describing clock errors. 

 

In continuous form, the clock errors can be modelled as follows  
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        (3.8) 

where  

cbx   clock bias state 

cdx   clock drift state 

cbu   white noise driving function for cbx   

cdu   white noise driving function for cdx   
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From the continuous form equation, the State Transition Matrix (STM) can be derived 

as 








 


10

1 t
φ           (3.9) 

where t is the interval between each step. 

 

The discrete state of the process at time kt  is described as 











kcd

kcb

k
x

x

,

,
x           (3.10) 

where kcbx , and kcdx ,  are the respective discrete clock bias and drift state errors. kcbx ,  

will contribute to the pseudorange error model. The discrete noise can be defined as 

follows 











kcd

kcb

k
w

w

,

,
w           (3.11) 

where kcbw , and kcdw , are the respective discrete white noise for kcbx ,  and kcdx , . In this 

work, a normally distributed random number is used for this discrete white noise driving 

function. Therefore, in discrete form, the clock error model can be described as 

11   kkk wφxx          (3.12) 

The covariance matrix associated with kw  is denoted as kQ . The relationship between 

kw is described as kQ  as follows 

 









ki

ki
E

kT

ik
,0

,Q
ww         (3.13) 

Hence, Brown and Hwang (1997) define kQ as  





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


















tS
tS

tStS
tS

g

g

gg

f

k

2

23
2

23

Q        (3.14) 

where fS  and gS  are the respective spectral amplitudes associated with the white noise 

driving functions cbu  and cdu  Both are defined as, 
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02hS f   

2

28  hSg   

The parameters of 0h  and 2h  will be defined later, after the alternative kQ covariance 

error model is formulated. Alternatively, kQ can be defined as 











2221

1211

qq

qq
kQ          (3.15) 

where 
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2
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2
2

2
ththt

h
q           (3.16) 

2

2

2

12112 ththqq            (3.17) 
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2

1

0

22
3

8
4

2
         (3.18) 

The parameters of 0h , 1h and 2h  are typical Allan variance parameters. The values for 

these parameters are shown in Table 3.2. 

 

Timing Standard h0 h-1 h-2 

Crystal 19102   21107   20102   

Ovenised Crystal 20108   21102   23104   

Rubidium 20102   24107   29104   

Table 3.2 Typical Allan variance parameters for various timing standards (Brown and 

Hwang 1997). 

 

The values of 0h , 1h and 2h  determined the type of clock bias and drift errors. For the 

user receiver clock, the inexpensive crystal and ovenised crystal are used, while the 

satellite clock uses the more accurate Rubidium and Caesium. 

 

Langley (1993) notes that the linear combinations of between-receivers (or between- 

satellites) differences could generate new observables with significantly reduced errors. 

The illustration can be referred to Figure 3.2. 
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Figure 3.2 Linear combinations of satellites and receivers (Langley 1993). 

 

The single difference of two receivers tracking the same satellite is able to eliminate the 

satellite clock bias. Hence, the full carrier phase measurement (equation 3.2) becomes 

          
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5.0222

ˆˆˆ
~

  (3.19) 

 

The single difference of one receiver tracking two satellites is able to eliminate the 

receiver clock bias. Hence, equation 3.2 becomes 

          

           ttcttctEtSAttct

tmpzzyyxxN

trionsv

usvusvusv








5.0222

ˆˆˆ
~

   (3.20) 

 

The double difference of either equation 3.19 or 3.20 will eliminate both satellite and 

receiver clock biases. Hence, the equation now becomes 

          

         ttcttctEtSAt
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usvusvusv








5.0222

ˆˆˆ
~

  (3.21) 
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3.3 RECEIVER DEPENDENT ERRORS 

 

This section will concentrate on receiver dependent errors, which have been listed in 

Table 3.1 apart from the receiver clock bias, i.e. multipath error (for code pseudorange 

model) and phase multipath error (for full carrier phase pseudorange model), signal 

strength and noise (random measurement noise) and constant integer bias. 

 

3.3.1 Multipath Error Model 

 

Multipath modelling is not easy but an assumption can be made, i.e. multipath being 

a more or less slowly varying bias (Wolf 2000). Multipath can be modelled as Gauss-

Markov processes or white noise. These processes have an exponential 

autocorrelation function with variance, 2  and time constant, 


1
 (Brown and Hwang 

1997; and Rankin 1994). 

  t
e





 2

R          (3.22) 

 

The Gauss-Markov terms are modelled by 

kk

t

k e wxx  



*

1

         (3.23) 

where kx  is the parameter being simulated, kw  is the Gaussian white noise, and T  

is the sample time. The standard deviation,  , and time constant, 


1
, are listed in 

Table 3.3 for the Gauss-Markov multipath noise terms (Rankin 1994). 

 

Error Parameter Std. Dev. (meters) Time (sec) 

C/A standard 5.0 600 

C/A narrow 0.25 600 

P 1.0 600 

L1 0.048 600 

Table 3.3 Parameters for Gauss-Markov multipath error source. 
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3.3.2 Signal Strength and Noise 

 

Signal strength and noise, otherwise known as the receiver random noise 

measurement, rcrv , is the accuracy with which the code or carrier can be tracked 

(Rankin 1994). Table 3.4 lists the approximations of measurement noise parameters. 

 

Error Parameter Std. Dev. (meters) 

C/A standard 3.0 

C/A narrow 0.1 

P 03 

L1 carrier 0.0019 

Table 3.4 Measurement noise parameters. 

 

3.3.3 Constant Integer Phase Ambiguity 

 

Constant integer phase ambiguity is normally shortened to integer ambiguity. Integer 

ambiguity is a problem for carrier phase measurement and does not affect code 

pseudorange. Unlike the code pseudorange signals, which are intentionally encoded 

so that they can be aligned easily with the internally generated copy of the same 

signal within the user receiver, each carrier phase cycle is identical to one another. 

There is no way to identify them, thus making it extremely difficult to properly align 

the signals with the signal copy generated internally. As a result of this „improper‟ 

alignment of the carrier phase signal, integer ambiguity error is introduced in 

multiples of 20 cm. 

 

To resolve this problem, a complex statistical method is presented in appendix E.2 

ambiguity resolution. 
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3.4 COMMON MODE ERRORS 

 

This section will concentrate on common mode errors, which have been listed in Table 

3.1, apart from the satellite clock bias, namely nondispersive ionospheric error model, 

dispersive tropospheric error model, selective availability and errors in the calculated 

ephemeris. 

 

3.4.1 Ionospheric Delay 

 

Satellite navigation radio signals traveling through the ionosphere are dispersive. This 

affects the code and phase measurements in the opposite sense. The ionospheric 

effects are dependent on carrier frequency and can be sufficiently modelled to first 

order as 

  TEC
f

ttc ion 2

3.40
         (3.24) 

where TEC  is the total electron content along the signal path and, f  is the satellite 

carrier frequency.  

 

Wolf (2000) uses a good approximation of the nominal TEC  distribution using a 

Chapman Profile as shown in Figure 3.3. 
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Figure 3.3 Chapman Profile of the ionosphere (Wolf 2000). 

 

Normally a navigation satellite orbiting altitude is between 15,000 km and 35,000 km 

from Earth, i.e. GLONASS orbits the Earth at an altitude of 19,100 km, GPS orbiting 

altitude is approximately 20,200 kilometres and Galileo orbital altitude is 

approximately 23,222 km.  

 

From Figure 3.3, TEC  can be obtained by integrating the area enclaved by the 

altitude of the satellite. The area of the graph can be divided into several smaller 

areas, and each of these areas can be calculated. 

   cmxxF log          (3.25) 

  cmxxF 10          (3.26) 
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Wolf (2000) also notes that “The error of the model has been assumed to be 50%. 

This value is added to the observation variance”, which will be included into the 

overall ionospheric error model. 

 

A simpler model as shown by Rankin (1994) using Gauss-Markov process is listed in 

Table 3.5. 

 

Error Parameter Std. Dev. (meters) Time (sec) 

Ionosphere 5.0 1800 

Table 3.5 Parameter for Gauss-Markov ionosphere error source. 

 

3.4.2 Improved Modelling of the Ionosphere 

 

Improved modelling of the ionosphere, and thus better prediction of the TEC , is by 

using the established models, either the two widely used empirical models 

(International Reference Ionosphere (IRI) model or NeQuick model), the broadcast 

model (Klobuchar model) or GPS data driven models (Global Ionospheric Maps 

(GIMs)) (Orús, Hernández-Pajares, Juan, Sanz. and García Fernández 2002). 

 

The International Reference Ionosphere (IRI) is an international project sponsored by 

the Committee on Space Research (COSPAR) and the International Union of Radio 

Science (URSI) (International Reference Ionosphere 2009 and Coïsson, Radicella and 

Nava 2002). These organisations formed a Working Group in the late sixties to 

produce an empirical standard model of the ionosphere, based on all available data 

sources. Several steadily improved editions of the model have been released. For 

given location, time and date, IRI provides monthly averages of the electron density, 

electron temperature, ion temperature, and ion composition in the altitude range from 

50 km to 2000 km as well as TEC  to the same altitude. The IRI-2001 and IRI-2007 

source codes and software are available on the website (International Reference 

Ionosphere 2009). 
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The NeQuick model is a quick-run model based on the DGR profiler concept (Di 

Giovanni and Radicella 1990). It is derived from models developed under the 

European Commission, COST 238 and COST 231 and developed at Abdus Salam 

International Centre for Theoretical Physics (ARPL-ICTP) of Trieste, Italy and 

University of Graz, Austria (Coïsson, Radicella and Nava 2002). The output is the 

vertical or slant profile of electron density and the corresponding total electron 

content to any given height up to 20,000 km (Hochegger, Nava, Radicella and 

Leitinger 2000; Radicella and Leitinger, 2001). 

 

Abdullah, Awang-Mat, Mohd-Zain, Abdullah and Nik-Zulkifli (2007) conclude that 

the ionospheric models (IRI2001 and NeQuick) are suitable in predicting the value of 

TEC  during normal quiet day, but during the occurrences of a phenomenon called 

the Travelling Ionospheric Disturbance, or TID for short (IPS Radio and Space 

Services 2008), which is a „wavelike‟ motion in the ionosphere that can cause the 

focusing and defocusing of radio waves due to solar activity, the value of TEC  

differs greatly (with other methods used for measuring the TEC ).  

 

The Klobuchar model is an ionospheric broadcast model for single-frequency user as 

described by Klobuchar (1987). Although two frequency and even three frequency 

receivers have became more widely available, the Klobuchar model is included here 

due to its simplicity in terms of its computational requirement and the Klobuchar 

algorithm itself. Klobuchar (1987) concluded that 50% rms ionospheric error 

reduction can be obtained with this algorithm. 

 

GPS data driven models include the Global Ionospheric Maps (GIMs) and Real-time 

US-Total Electron Content (Liu, Skone, Gao and Komjathy 2005). GIMS was 

provided and developed by the Center for Orbit Determination in Europe (CODE) 

while Real-time US-Total Electron Content was evolved through a collaboration 

between the Space Weather Prediction Center (SWPC), the National Geodetic Survey 
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(NGS), the National Geophysical Data Center (NGDC), and the Global Systems 

Division (GSD) National Geophysical Data Center 2009). 

 

GIMs are generated at 2-hour intervals and 13 snapshots are available to users each 

day. The GIMs are usually provided in two formats: IONosphere Map Exchange 

format (IONEX) (Schaer and Gurtner 1998). and Bernese ION format. The map file 

in IONEX format can be directly employed at user locations to estimate TEC  values 

for a given satellite-receiver line-of-sight interpolation method, while the latter 

format is specifically for users of Bernese software.  

 

Real-time US-Total Electron Content products include maps of vertical TEC  over 

continental US, estimate uncertainties, recent trends based on the past 10 days of 

TEC  information and ASCII data files for both vertical and slant TEC  in near real 

time (Space Weather Prediction Center 2009). This technique is driven by data from 

ground-based Global Positioning System (GPS) dual frequency receivers. The 

primary data stream comes from the Maritime and Nationwide Differential GPS 

(M/NDGPS) real time network of stations operated by the US Coast Guard (USCG), 

and is provided to SWPC by the NGS continuously operating reference stations 

(CORS) network. Secondary data streams are provided by the GPS/Met network 

(meteorological application of GPS data) and the Real Time IGS (International GNSS 

Service) network. Currently, there are about 80 CORS, 30 GPS/Met, and 15 IGS 

stations ingested into the model. This number has been gradually increasing and will 

be augmented by Federal Aviation Administration/Wide Area Augmentation System 

(FAA/WAAS) data in the future (National Geophysical Data Center 2009). The 

ionospheric products are computed by a Kalman-based data assimilation algorithm 

called “MAGIC” (Spencer, Robertson and Mader 2004). 

 

Orus et. al. (2002) also conclude that the best performance amongst the three types of 

models on a global scale is using GPS data driven models, which present an error of 

24% of the rms with respect to TOPEX TEC, instead of the 41% of error of IRI 

climatological model and an 54% of error using the GPS broadcast model. 
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Further derivation of the improved modelling of the ionosphere is mentioned in detail 

in Appendix B.  

 

3.4.3 Tropospheric Delay 

 

Unlike the ionosphere, GNSS signals travelling through the tropospheric region are 

not dispersive. Hence, the error model used is much simpler compared to the 

ionospheric error model. Navigation satellites do not transmit any ephemeris data 

regarding tropospheric correction.  

 

Tsui (2000) presents a fairly simple tropospheric delay in meters as shown below: 

 
0.0121sin

47.2





ttc trop         (3.28) 

where   is the elevation angle between the user receiver and the satellite. 

 

Wolf (2000) utilises the Saastamionen tropospheric model which is presented as 

follows: 
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where the notations used in this model is similar to the preceding model. Other 

variables defined as the atmospheric pressure P , temperature T  and partial pressure 

of water vapour e . A 20% residual error is added into the model. 

 

A simpler Gauss-Markov process model as shown by Rankin (1994) is listed in Table 

3.6. 

 

Error Parameter Std. Dev. (meters) Time (sec) 

Troposphere 2.0 3600 

Table 3.6: Parameter for Gauss-Markov troposphere error source. 
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A more complete, yet complex model presented by Penna, Dodson and Chen (2001) 

is included in Appendix C. 

 

3.4.4 Selective Availability 

 

The purpose of selective availability is to degrade the performance of the GPS. The 

signal degradation is achieved by dithering the satellite clock frequency and 

providing only a coarse description of the satellite ephemeris (Tsui 2000). 

 

On May 1, 2000, President Clinton (Office of the Press Secretary 2000) decreed: 

 

“My March 1996 Presidential Decision Directive included in the goals for GPS to: 

“encourage acceptance and integration of GPS into peaceful civil, commercial and 

scientific applications worldwide; and to encourage private sector investment in and 

use of U.S. GPS technologies and services.” To meet these goals, I committed the 

U.S. to discontinuing the use of SA by 2006 with an annual assessment of its 

continued use beginning this year…The decision to discontinue selective availability 

is the latest measure in an ongoing effort to make GPS more responsive to civil and 

commercial users worldwide…This increase in accuracy will allow new GPS 

applications to emerge and continue to enhance the lives of people around the world.” 

 

President Clinton‟s decree effectively rendered selective availability obsolete, 

especially emerging technology such as anti-jamming techniques, selective 

deniability and modernisation of GPS become available. As decreed, in the year 

2006, selective availability was switched off completely. 

 

Selective availability can be accurately modelled by the following Table 3.7 (Rankin 

1994): 
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Error Parameter Std. Dev. (meters) Time (sec) 

Selective Availability 30.0 180 

Table 3.7 Parameters for Gauss-Markov selective availability error source. 

 

If selective availability is included (or switched on), the total correlated noise will be 

dominated by selective availability. 

 

To widen the coverage and increase position accuracy of GPS, Differential GPS 

(DGPS) are commonplace. Now, nearly all commercial GPS units available on the 

market offer DGPS data inputs, which provide better positional accuracy. 

 

3.4.5 Errors in Ephemeris 

 

Errors in calculated ephemeris (satellite orbital position error) represent some error 

contribution towards pseudorange error modelling. An example of an error source is 

from calculating eccentric anomaly E  from mean anomaly M  and eccentricity e .  

EeME sin          (3.30) 

This equation is normally evaluated in an iterative nested loop which computationally 

contributes a minor, but significant error in the calculated ephemeris. 

 

In this work, errors in calculated ephemeris are considered as non-existent since the 

simulation does not use ephemeris to calculate the satellite position, yet these errors 

are worth mentioning.  

 

This error can still be modelled as presented by Rankin (1994), which is shown in the 

following Table 3.8. 

 

Error Parameter Std. Dev. (meters) Time (sec) 

Error in Ephemeris  3.0 1800 

Table 3.8 Parameters for Gauss-Markov ephemeris error source. 
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3.5 SIMULATION OF PSEUDORANGE ERRORS 

 

All the required pseudorange error models have been defined in previous sections. In 

fact, the total pseudorange errors have been formulated in equations 3.4, 3.5, 3.6 and 

3.7. Receiver and satellite clock biases simulation is shown as in the following Figure 

3.4: 

 

 

Figure 3.4 Graph of receiver and satellite clock bias errors. 
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Selective availability and multipaths are shown as in the following Figures 3.5 and 3.6:  

 

Figure 3.5 Graph of selective availability and multipath errors. 

 

Figure 3.6 Graph of selective availability and multipath errors (zoomed-in). 
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Ionospheric delay models are shown as in the following Figure 3.7: 

 

Figure 3.7 Graph of ionospheric models based on Chapman Profile and Gauss-Markov. 

 

Several tropospheric delay models are presented in the following Figure 3.8: 

 

Figure 3.8 Graph of troposheric delay models against elevation angle. 
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Figure 3.9 Pseudorange errors without selective availability. 

 

Figure 3.10 Pseudorange errors with selective availability. 
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The pseudorange errors with and without selective availability are based on equation 

3.5. These can be represented as in Figures 3.9 and 3.10. The magnitudes of 

pseudorange errors with selective availability are higher than those with selective 

availability switched off. 

 

 

3.6 ESTIMATION AND PREDICTION OF PSEUDORANGE 

 

Tsui (2000, pg. 202-209) explains in detail on finding pseudorange. In short, the 

pseudorange can be measured only in a relative way because there is no absolute time 

reference, the only time reference being the sampling frequency, while the clock bias of 

the receiver is an unknown quantity. The sampling frequency is 5 Mhz, hence the 

interval between individual data is 200 ns. The beginning point of subframe 1 of each 

satellite under observation is used as a reference point and is transmitted at the same 

time except for the clock correction terms of each satellite. As an example, assume that 

there are four satellites under observation, which have the relative times (diff of dat – 

the relative transit time, compared to the first satellite) 0, 35935, 47222 and -15232 

(each is in unit of 200 ns). The pseudorange   can be found using 

 finetimet diff of daconst c        (3.31) 

where c is the speed of light (c = 299792458 m/s), 

finetime is not included in this example (finetime = 0). finetime is used to obtain time 

resolution better than 200 ns. 

const is an arbitrary selected constant to make pseudoranges positive. 

 

For this example, let us take const = 75 milliseconds. Hence the four relative 

pseudoranges can be calculated as 

 31075299792458   seconds 

 93 10200359351075299792458    seconds 
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 93 1020047221075299792458    seconds 

 93 10200152321075299792458    seconds 

 

In this research work, the estimation and prediction of a given navigational satellite 

position and velocity are obtained using an algorithm based on NORAD 

SPACETRACK REPORT NO. 3. The original C++ program was written by Michael F. 

Henry (Henry 2005) and has subsequently been translated and ported into MATLAB 

with suitable modification as part of this work. The MATLAB program has been 

verified by comparing the output with TrakStar version 2.65 written by Dr. T.S. Kelso 

(Kelso 2000) and the results for the MATLAB program with the same set of inputs 

matched exactly with TrakStar. 

 

If a precisely surveyed location of an observer is known, then the reference-to-satellite 

range (equation 3.3) can be calculated. This value will then become the pseudorange by 

adding the clock bias of the receiver. 
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CHAPTER 4 

DIFFERENTIAL CORRECTION 

ESTIMATION FOR INTEROPERABILITY 

In the preceding chapter, the dynamic model of the satellite position was developed. 

Thus by using suitable and proper error models, the position of the unknown user can be 

estimated. 

 

Following on from the previous chapter, it can be assumed that the position of the user 

is now already known, although it may not be precise enough. Hence, the differential 

corrections are introduced with the purpose of enhancing the precision of the user 

position. Another issue, which arises, is the interoperability of the different navigation 

satellite systems currently in use and how signals arising from them can be utilised to 

work together or interoperate at either the system or the signal levels. Finally, the 

feasibility of the solution for the interoperability problem is envisaged by using adaptive 

Kalman filter. 

 

 

4.1 STANDARD DIFFERENTIAL SATELLITE NAVIGATION 

REFERENCE STATION ALGORITHMS 

 

Differential satellite navigation reference station has the same basis as Differential GPS 

(DGPS) but it is a more generic term, which is used for any type of navigation satellite 

systems. A differential satellite navigation reference station has its location precisely 

surveyed and this becomes the local reference. For a reference station to emit a 
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broadcast correction signal, it is essential to remove the reference receiver and satellite 

clock errors. This has been described by equations 3.6 and 3.7.  

 

If the position of an stationary observer or a roving vehicle is unknown, its position can 

be found by calculating its pseudorange and carrier phase measurements. 

Simultaneously, the reference station receives navigation satellite signals and estimates 

pseudorange and carrier phase measurements before transmitting the broadcast 

corrections to another receiver (stationary or roving vehicle). Since the position of the 

reference station is accurately known, the station calculates the timing of the travel time 

of the navigation satellite signals and compares it with the actual travel time. The 

difference is transmitted as differential correction, sans receiver and satellite clock 

errors. The differential correction prior to transmitting is called broadcast ephemeris 

correction, which is then sends to other receivers to correct the user receivers’ own 

position. Effectively, this improved the user position accuracy. The reference station 

transmits a correction signal transmission using radio broadcast, typically in UHF or 

VHF band. 

 

 

4.2 KALMAN FILTER OF THE DIFFERENTIAL 

CORRECTION 

 

Kalman filter is an optimal recursive data processing algorithm which requires the 

estimated state from previous time step and the current measurement to compute the 

estimate for the current state. It does not require any history of estimates or 

measurements.  

 

Kalman filter can be used for differential correction. Farrel and Givargis (1999 and 

2000) have reviewed several existing algorithms and also proposed two new algorithms 

for DGPS reference station design, all of which are based on Kalman filtering 
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methodology. The propagation model for implementing the Kalman filter is assumed to 

be of the form: 

     kkk ΓωΦxx 1       kkk vHxy       (4.1) 

 

The first (existing) algorithm calculates reference station correction by passing the basic 

correction (equation 3.6) through a three state Kalman filter with  Tavcx  where 

c  is the filtered correction (i.e. pseudorange error), v  is the rate of change of the 

correction and a  is the acceleration of the correction. The state-space model is 

parameterised by: 
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Φ  and  001H       (4.2) 

The second (existing) algorithm is based on a four state filter  Teavcx  where 

c , v , and a  are defined as in the previous algorithm and e  is the difference between 

the rates of change of the code and carrier phase correction. The state-space model is 

parameterised by: 
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and: 













2010

0001
H          (4.4) 

 

Farrel and Givargis (2000) noted that the first algorithm (equations 4.1-4.2) filter is 

suboptimal since it neglects the time correlation in the multipath errors which have been 

modeled as measurement noise while the second algorithm (equations 4.3-4.4) does not 

model the code multipath as a separate state, instead including the code multipath in the 
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term. Therefore, the term has significant time correlation violating the standard Kalman 

filter assumptions. Farrel and Givargis (2000) developed and designed two algorithms 

for reference station, namely Single and Two Frequency Reference Station algorithms.  

 

Single Frequency Reference Station algorithm has the following properties: 

 Taccc NIMPrrr x        (4.5) 

where the first three state variables are the range correction and its first two derivatives, 

excluding ionospheric effect, MP  is the code multipath which is to be removed, aI  is 

the ionospheric effects and N  is the carrier integer ambiguity. The measurement 

matrices 1H  and 2H  for the two observable variables 1z  and 2z  are defined as follows,  

   ttz xH11  ,  







 01001
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2
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f

f
H     (4.6) 

   ttz xH22  , 
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


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
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1
000

1

21

2


H     (4.7) 

The output matrices 1L  and 2L  for the range correction  ty1  and range rate correction 

 ty2  is presented as follows, 

   tty xL11  ,  





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f

f
L     (4.8) 

   tty xL22  ,  0000102 L      (4.9) 

Hence, the state-space model for the single frequency system is 
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      (4.10) 

where a , M and i  are the correlation times of the acceleration, multipath and 

ionospheric respectively. 
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The Two Frequency Reference Station algorithm has the following properties: 

 Taccc NNIMPMPrrr 2121
x      (4.11) 

where all the states are similar to the one defined in equation 4.5, with some variant 

states, 1MP , 2MP , 1N  and 2N  where the number of the subscript of the states refers to 

the first and second carrier frequency. Apart from the measurement matrices 1H  and 

2H , and the two observable variables 1z  and 2z  defined is equations 4.6 and 4.7, the 

additional measurement matrices 3H  and 4H  for the extra two observable variables 3z  

and 4z  are expressed as follows,  
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Now, the output matrices 1L  and 2L  for the range correction  ty1  and range rate 

correction  ty2  is presented as follows, 

   tty xL11  ,    
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
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f

f
tL    (4.14) 

   tty xL22  ,    000000102 tL     (4.15) 

Hence, the state-space model the two frequency system is 
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where a , M and i  are the correlation times of the acceleration, multipath and 

ionospheric respectively. 

 

These two algorithms proposed by Farrel and Givargis (2000) and the two other basic 

existing algorithms mentioned much earlier will be analysed and subsequently serve as 

a basis for the new two and three frequency reference station algorithms which are 

potentially expected to be able to deal with an interoperable system of navigation 

satellites. 

 

 

4.3 INTRODUCING INTEROPERABILITY 

 

Interoperability is an idea of using signals from several systems in order to enhance the 

quality of ephemeris data acquired where there might be significant disturbances and 

also to provide improved global coverage at the user receiver level. Prasad and Ruggieri 

(2005), using GALILEO, explain the concept of interoperability by defining it into three 

grades: coexistence or compatibility (i.e. absence of interoperability), alternative use, 

and combined use (full interoperability). Coexistence means that one system will not 

degrade the services of another system. Alternative use means that there is integration at 

the user receiver level between systems; the user can use the same receiver for several 

systems or even use several systems to have new or similar services with enhanced 

performance. Combined use means there is full integration at the system level between 

two or more systems. Prasad and Ruggieri (2005) continue that interoperability between 

GALILEO and other systems can be considered in three frames: interoperability with 

other satellite navigation systems, interoperability with terrestrial navigation systems 

and interoperability with non-navigation systems. 

 



 

CHAPTER 4: DIFFERENTIAL CORRECTION ESTIMATION FOR 

INTEROPERABILITY 

 
 

 
 
 

98 

In this research, one proposed method of implementing interoperability is to convert 

navigation systems ephemeris into a unified standard format. The conversion process is 

shown in the following Figure 4.1. 

 

 

Figure 4.1 Navigation satellite orbital determination and ephemeris conversion 

processes. 

 

Since our main focus is on interoperability, an extension of the NORAD TLE set is 

proposed so both GLONASS, GPS and possibly Galileo satellite ephemerides can be 

computed, thus facilitating the use of any of these navigation satellites for position and 

velocity estimation. (The space segment of Galileo is intended to consist of a total of 30 

satellites in mean Earth circular orbits configured as a Walker constellation, i.e. 

distributed over three orbital planes at an altitude of 23,616 km, with an inclination of 

56º.) Our extension is simply to append the residual acceleration vectors, resx , resy , 

resz , to the standard NORAD TLE after the last element, the ballistic drag term, *B . 
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The residuals are assumed not to include any gravitational or atmospheric drag effects. 

With the extended TLE one may compute the user’s correct position, employing data 

from any navigation satellite or any DGPS ground station. Even if one does not intend 

to use the extended TLE it provides a basis for interoperable computations of the 

satellite and user positions. 

 

 

4.4 EPHEMERIS CONVERSION FOR INTEROPERABILITY 

 

A typical TLE set can be obtained from the celestrak website (Kelso 2006). For an 

example, a TLE for a GPS BII-09 (PRN 15) acquired on 4
th

 October 2006 at 10:50 UTC 

is shown in Table 2.2 as follows, 

'1 20830U 90088A   06275.19442019  .00000034  00000-0  10000-3 0  9887' 

'2 20830  54.7397 262.1253 0097535 156.4284 204.0294  2.00565857117480' 

Table 2.2 (revisit) A typical NORAD TLE element set. 

 

Using the NORAD SPACETRACK algorithms written in MATLAB code during the 

course of this research, the outputs of TLE in Table 2.2, over a period of 1440 minutes 

or, put more simply, one day, are obtained and shown in Table 4.1. The positions and 

velocities of any satellites listed in celestrak.com (Kelso 2006) can be adjusted to 

predict the respective satellite positions by employing the “TimeAdjust” parameter.  

 

The “TimeAdjust” parameter is estimated by employing the equation,  

TimeAdjust = ((Julian date at 0hr. UTC) – Epoch time of the satellite)   24 hours   60 

mins. 
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T in 

(mins) 

X 

(km) 

Y 

(km) 

Z 

(km) 

Xdot 

(km/s) 

Ydot 

(km/s) 

Zdot 

(km/s) 

0 -3671.68 -26544.4 0.46745 2.198751 -0.28789 3.134585 

360 3218.612 26122.26 -559.604 -2.24698 0.225574 -3.18997 

720 -3408.83 -26574.5 387.685 2.207771 -0.2207 3.134051 

1080 2949.769 26144.71 -953.509 -2.25528 0.155846 -3.18789 

1440 -3144.88 -26596.5 774.9553 2.21614 -0.1534 3.132528 

Table 4.1 Real-time prediction (SDP4) of GPS BII-09 starting at epoch time (time=0). 

 

The “TimeAdjust” parameter provides the bias for the time variable and should be added 

to the “Times” parameter in the iterative process of the algorithm. It is important that 

this parameter is estimated accurately as it influences the secular contributions to the 

elemental values. From this example, it was found that some calculated values of the 

SDP4 algorithm can be used to generate the GPS ephemeris, provided the “TimeAdjust” 

parameter can be estimated accurately. For example, the reference time at 4
th

 October 

2006, 0:00 UTC can be estimated as follows: 

Julian date of the reference time = 2454012.5 days 

Epoch of the satellite (GPS BII-09 (PRN 15)) = 2454010.69442019 days 

Hence, TimeAdjust will be 2600.034926310182 minutes. 

 

The outputs, for a recurring duration of 360 minutes, since 4
th

 October 2006 at 0:00 

UTC are as in the Table 4.2. 

T in 

(mins 

X 

(km) 

Y 

(km) 

Z 

(km) 

Xdot 

(km/s) 

Ydot 

(km/s) 

Zdot 

(km/s) 

0 -8183.74 19947.05 -15354.2 -1.9575 -2.49021 -2.25341 

360 7862.894 -20559.7 15029.67 1.955353 2.444961 2.258546 

720 -8417.41 19638.86 -15630.2 -1.93637 -2.5421 -2.21223 

1080 8096.158 -20256.9 15306.58 1.935484 2.497396 2.219023 

1440 -8648.46 19324.37 -15901.2 -1.91466 -2.59315 -2.17033 

Table 4.2 Real-time prediction of satellite GPS BII-09 starting at 

4
th

 October 2006, 0:00 UTC. 

 

From this example, it was found that, some calculated values of the SDP4 algorithm 

could be used to generate the GPS ephemeris. The process is briefly illustrated here and 
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to begin with, the elements of the GPS ephemeris are classified into several categories, 

as shown in Table 4.3. 

 

Group Name GPS Ephemeris Elements 

SDP4 calculated values Inclination ( 0i ) 

Right Ascension ( 0 ) 

Argument of Perigee ( 0 ) 

Derived elements Time of Ephemeris (Toe ) 

Eccentricity ( e ) 

Mean Anomaly ( 0M ) 

Semi-Major Axis ( a ) 

Amplitudes of sine & cosine harmonics 

correction (Short Period) terms 
of orbital radius ( rsC , rcC ); 

of inclination ( isC , icC ); 

of argument of latitude ( usC , ucC ); 

Secular terms 

(These components are zero at Epoch) 
Mean Motion Difference ( dn ) 

Rate of Right Ascension ( ) 

Rate of Inclination ( i) 
Table 4.3 Classification of GPS ephemeris. 

 

From Table 4.3, it is seen that GPS ephemeris elements can be classified into 3 

categories, i.e. direct SDP4 calculated values, derived elements and time-varying or 

secular elements. Direct SDP4 calculated values are taken directly from SDP4 program 

and all ephemeris of the time-varying elements category are equated to zero as the 

computation is assumed to be at Epoch after adjustment employing the “TimeAdjust” 

parameter. As for derived elements, this requires some degree of mathematical 

manipulation to acquire these values. 

 

Starting with the time of ephemeris, Toe , let us take the reference date to be the same as 

the previous example (4
th

 October 2006, 0:00 UTC = 2454012.5 days = 212026680000 

seconds). The most significant aspect of the computation of the GPS ephemeris is to 

recognise that the argument of the latitude is defined differently in the GPS ephemeris 

navigation message and in the SDP4 procedure. This would enable one to establish the 

relationships between the short period correction terms in SDP4 and the sine and cosine 
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correction terms in the GPS ephemeris navigation message. The results of our 

computation are illustrated in Table 4.4 for the satellite (GPS BII-09 (PRN 15)) starting 

on 4
th

 October 2006 at 0:00 UTC.  

 

 SDP4 computation of GPS ephemeris  (for different epochs in mins) 

GPS Ephemeris Element 0 360 720 1080 1440 

SDP4 calculated values      

Inclination (i0) 0.95504 0.95504 0.95503 0.95503 0.95503 

Right Ascension (
0 ) 4.57366 4.57348 4.57330 4.57311 4.57293 

Argument of Perigee (
0 ) 2.72954 2.72962 2.72969 2.72977 2.72984 

Derived elements      

Time of Ephemeris (Toe) (in secs) 129600 151200 172800 194400 216000 

Eccentricity (E) 9.83965E-03 9.83965E-03 9.83968E-03 9.83974E-03 9.83982E-03 

Mean Anomaly (M0) 1.20535 4.35589 1.22324 4.37378 1.24114 

Semi-Major Axis (a) 26560.15695 26560.15695 26560.15695 26560.15695 26560.15695 

Cosine correction of orbital radius 

(Crc) 

2.76164E-01 2.76164E-01 2.76164E-01 2.76164E-01 2.76164E-01 

Sine correction of orbital radius (Crs) 1.18348E-02 1.18352E-02 1.18356E-02 1.18359E-02 1.18362E-02 

Cosine correction of inclination (Cic) 2.20556E-05 2.20556E-05 2.20556E-05 2.20556E-05 2.20556E-05 

Sine correction of inclination (Cis) 9.45177E-07 9.45208E-07 9.45236E-07 9.45262E-07 9.45284E-07 

Cos correction of arg. of latitude (Cuc) 2.03159E-01 -1.09566E+03 1.20403E-01 9.56505E+01 8.56407E-02 

Sine correction of arg. of latitude (Cus) -1.07323E-02 -3.15232E+00 -1.07607E-02 -3.15402E+00 -1.08033E-02 

Time-varying elements      

Mean Motion Difference (dn) 0 0 0 0 0 

Rate of Right Ascension ( dot ) 0 0 0 0 0 

Rate of Inclination (idot) 0 0 0 0 0 

Table 4.4 SDP4 computation of approximated GPS ephemeris elements (for GPS BII-

09, PRN 15) starting on 4
th

 October 2006 AT 0:00 UTC. 

[The values have been truncated for clarity and presentation purposes] 

 

Applying these approximated GPS ephemeris values into a standard GPS calculation, 

the result of the computation can be shown as in Table 4.5. In the same table, the 

different outputs between both models (direct SDP4 outputs and SDP4-based GPS 

ephemeris computation) are compared. The comparisons indicate a very close match. In 

fact, the calculation errors are in the order of micrometers (10
-6

). 
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 Time (mins) 0 360 720 1080 1440 

SDP4 Model 

outputs 

X (km)  -8183.7398 7862.8943 -8417.4140 8096.1577 -8648.4647 

Y(km)  19947.0451 -20559.6598 19638.8581 -20256.9300 19324.3650 

Z (km)  -15354.1707 15029.6682 -15630.2318 15306.5809 -15901.2327 

SDP4-based 

GPS 

ephemeris 

computation 

X (km)  -8183.7398 7862.8943 -8417.4140 8096.1577 -8648.4647 

Y (km)  19947.0451 -20559.6598 19638.8581 -20256.9300 19324.3650 

Z (km)  -15354.1707 15029.6682 -15630.2318 15306.5809 -15901.2327 

Positional 

Differences 

X  (km) 4.3401E-09 -3.4397E-09 3.7599E-09 -3.0095E-09 -2.6102E-09 

Y  (km) 2.7976E-09 2.1028E-09 8.0036E-10 7.0213E-10 -3.0996E-09 

Z  (km) 4.3001E-09 -3.6998E-09 1.7008E-09 2.0991E-09 3.0013E-10 

Table 4.5 Comparison between direct SDP4 outputs, SDP4-based GPS ephemeris 

computation for satellite GPS BII-09 (PRN 15) and the differences. 

[The values have been truncated for clarity and presentation purposes] 

 

Further improvements are currently being made by a proper inclusion of the secular 

corrections to increase the accuracy of the computed ephemeris. These clearly show that 

interoperable differential navigation satellite reference stations have the potential to 

convert different types of ephemerides to cater for various end user receivers. This 

implies that a GPS user is potentially able to receive an ephemeris from a GLONASS 

satellite for instance, after the interoperable stations process the message conversion.  

 

 

4.5 ENSURING CONSISTENCY OF ERROR MODELS FOR 

INTEROPERABILITY 

 

One of the major requirements for ensuring interoperability is to ensure consistency of 

the error models. While the GPS error models can be derived from the NORAD deep-

space equations (refer appendix A), it is apparent that the GLONASS error model (refer 

section 2.4) and the NORAD deep-space model are not consistent with each other. On 

the other hand, the GLONASS model is strikingly simple and so the choice is between 

simplicity and consistency. In order to enhance consistency, it was decided to include a 
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drag model and the effects of the gravitation of the Moon and Sun as enunciated in the 

deep-space equations, into the GLONASS model. The influence of atmospheric drag 

results in one of the most significant perturbations to a satellite in low Earth orbit, 

especially below 400-600 km but does not generally influence navigation satellites. 

 

Taking into account the rotation of the upper atmosphere with the Earth, the drag 

acceleration on a satellite is: 

relrelDnnssrrdrag AvCFFFd veeeF 
2

1
      (4.17) 

where DC  is the drag coefficient, A  is the projected satellite area,   is the atmospheric 

density which is assumed to satisfy a power-law function,  

rzuarel reevv   ,         (4.18) 

and ua  is the rotational angular velocity of the Earth’s upper atmosphere, which is 

assumed to be fixed. ( DC  is the drag coefficient, which depends to a very large extent 

on the shape and surface of the satellite. For a sphere it is less than 2.2 and for a 

cylinder it is about 3. The drag coefficient, DC , is not as trivial to evaluate as it may 

seem. Since atmospheric density is very low at the altitudes of satellite orbits, even low 

Earth orbits, the ordinary continuum-flow theory of conventional aerodynamics does 

not apply and the appropriate regime is that of free-molecule flow). The last element in 

the NORAD TLE, the ballistic drag term, *B , is employed for the computation of the 

drag coefficient DC  according to the formula: 

A

mB
CD

0

*4


           (4.19) 

where 0  is the reference value of the atmospheric density, A is the average cross-

sectional or projected area of the satellite of mass m. At an altitude of 450 km, the 

approximate density is given by:  

-312 mkg10585.1          (4.20) 

 



 

CHAPTER 4: DIFFERENTIAL CORRECTION ESTIMATION FOR 

INTEROPERABILITY 

 
 

 
 
 

105 

The deep-space power law model for the density variations with the altitude is adopted 

in this thesis and is given by: 

     4

00 srsq           (4.21) 

where r  is the radial distance from the centre of the Earth and 0q  and s  are altitude 

parameters defining the model. Assuming a circular orbit and neglecting terms of the 

order of  2
nua  it can be shown that, 

  innav uarel cos1  , 0rF ,       (4.22) 

     nuasuaDnnss ininnAaCFF eeee  cossincos1
2

1 2    (4.23) 

 

With these models incorporated into the GLONASS error model, the residuals, resx , 

resy , resz , are not to be interpreted in the usual sense but must be assumed not to include 

any gravitational or atmospheric drag effects. When this is done the computations of the 

errors cannot be carried out by employing the standard GLONASS model but by 

following the methods outlined here. 

 

 

4.6 ADAPTIVE KALMAN FILTER 

 

The discrete Kalman filter, (outlined for example by Brown and Huang 1997) is the 

basis for developing the adaptive Kalman filter algorithm. Consider a linear discrete 

time model representing the error correction states of a generic differential satellite 

navigation system given by: 

111   kkkk wxΦx                   (4.24a) 

kkkk vxHz  ,                  (4.24b) 

where kx  is a  1n  state vector, 1kΦ  is a  nn  transition matrix, kz  is a  1m  

measurement vector and kH  is a  nm  state to measurement distribution matrix. 
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Variables kw  and kv  are uncorrelated Gaussian white noise sequences with zero 

means:  

    0 kk EE vw          (4.25) 

and covariance matrices defined by: 

  0T

ikE vw  and   0T

ikE ww ,                (4.26a) 

  0T

ikE vw  for ki  ,                 (4.26b) 

and 

  k

T

kkE Qww  ,   k

T

kkE Rvv                  (4.26c) 

where E  is the expectation operator. The parameters, kQ  and kR  are the covariance 

matrices of the process noise sequence, kw  and the measurement noise sequence, kv  

respectively.  

 

The state and covariance prediction equations defining the Kalman filter (KF) are: 

11
ˆˆ

 kkk xΦx                    (4.27a) 

1111
ˆ



  k

T

kkkk QΦPΦP                  (4.27b) 

where kx̂  is the state vector predicted from the corrected state vector 1
ˆ

kx  estimated at 

the end of the previous epoch, 

kP̂  is the corresponding predicted state covariance 

matrix and 1kP  is the corresponding predicted state covariance matrix at the end of the 

previous epoch. The measurement correction or update equations defining the KF are: 

  1
ˆˆ


  k

T

kkk

T

kkk RHPHHPK                 (4.28a) 

   kkkkkk xHzKxx ˆˆˆ                  (4.28b) 

   kkkk PHKIP ˆˆ                   (4.28c) 

where kK  is the optimal Kalman gain, which defines the correction that must be added 

to the predicted state vector in order to obtain the estimate. The correction is a function 

of the innovation sequence, kυ  expressed by: 

  kkkk xHzυ ˆ .         (4.29) 
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The innovation sequence is a white Gaussian noise sequence with zero mean when the 

filter is optimal. Moreover the observation error and state estimation error are 

orthogonal to each other. The innovation sequence is different from the residual which 

is defined as: 

   kkkkkkkk xxHvxHzr ˆˆ  .      (4.30) 

Thus employing equation 4.30 one could express the measurement noise kv  as a linear 

combination of two independent components, the residual, kr  and the optimal error in 

the estimate. Eliminating the measurements the innovation sequence may be expressed 

as: 

  kkkkk vxxHυ  ˆ         (4.31) 

and the covariance of the innovation is,  

  k

T

kkk

T

kkE RHPHυυ  ˆ .        (4.32) 

 

Assuming that the models are linear but with predicted states and measurements 

corrupted by some additive Gaussian noise with known variance of the type described 

in equations 4.24, then it is known that the KF converges to the steady state regardless 

of the initial conditions. The adaptive KF therefore assumes that the magnitudes of the 

covariance matrices of the additive Gaussian noises are unknown and seeks to estimate 

the noise covariance matrices kQ  and kR  pertaining respectively to the process and the 

measurement noise models. The adaptive KF is thus a method of self-tuning for 

adapting the covariance matrices, kQ  and kR , of the process and measurement noise 

model sequences. It is achieved by making the statistics of the KF innovation sequences 

consistent with their theoretical covariances. This principle was established by Mehra 

(1972) and can be employed to tune both kQ  and kR . An estimate of the covariance of 

the innovation is obtained by averaging the previous innovation sequence over a 

window length N : 





k

Nkj

T

kk

Nk

N 1

, 1
υυC          (4.33) 
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and the covariance of the measurement noise sequence may be updated in principle by 

employing the relation: 

T

kkk

Nk

k HPHCR
 ˆˆ ,

         (4.34) 

Assuming a fixed window length, the covariance matrix may be recursively updated by 

employing the recursive relation: 

 
N

T

NkNk

T

kkNkNk 1111,,1  


υυυυ
CC        (4.35) 

One could also directly estimate kR  from the measurement residual. In this case it has 

been shown by Mohamed and Schwarz (1999) that one has: 

T

kkk

Nk

rk HPHCR
 ˆˆ ,         (4.36) 

where, 





k

Nkj

T

jj

Nk

r
N 1

, 1
rrC .         (4.37) 

 

The covariance of the process noise satisfies the equation (rearrange from equation 

4.27b and substitute for equation 4.28c): 

T

kkkkk 1111
ˆ





  ΦPΦPQ      

T

kkkkkkkk 1111
ˆˆ





  ΦPΦPPHKQ       (4.38) 

 

Recognising that the state estimate is an optimal estimate and considering the 

covariance of the state correction: 

  Tkk

k

Nkj

kk

Nk

x
N







   xxxxC ˆˆˆˆ
1

1

,    




 
k

Nkj

TNk

x
N 1

, 1
xxC ,        (4.39) 

where 

   kkkk xxxxx ˆˆ   .        (4.40) 
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Calculating the covariance of x  and recognising that the corrected error is orthogonal 

to the predicted error, and substitutes for   kkkkk PHKPP ˆˆˆ  (rearrange from equation 

4.28c),it may be expressed as: 





   kkkkk

k

Nkj

TNk

x
N

PHKPPxxC ˆˆˆ1

1

, .     (4.41) 

The covariance of the state correction, which is linearly related to the innovation, may 

also be expressed as: 

T

k

Nk

k

k

Nkj

TNk

x
N

KCKxxC
,

1

, 1
 



 .       (4.42) 

This relationship between the covariance matrices suggests that the update of kR  could 

be done by employing the covariance of the residual while the update of kQ  could be 

done by employing the covariance of the state correction. Hence the equation for 

updating the covariance of the process noise may be expressed in principle as: 

T

kkkk

Nk

xkk 111

,

11
ˆˆ

  ΦPΦPCQQ .               (4.43a) 

In some references (see for example Myers and Tapley, 1976; Blanchet, Frankignoul 

and Cane, 1997) an unbiased estimator is employed for the covariance of the state 

correction and equation 4.43a is expressed as: 

T

kkkk

Nk

xk
N

N
111

,

1
ˆ

1
 


 ΦPΦPCQ .               (4.43b) 

 

 

4.7 FILTERING FOR INTEROPERABILITY 

 

Standard Kalman filter is designed for linear problems and is not suitable for 

nonlinearity. Therefore, suitable types of filter design must be employed for, one; 

processing ephemerides from a variety of satellites and two; the processed ephemerides 

output must be filtered with the orbital errors. 
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However, most dynamic models employed for purposes of estimation or filtering of 

pseudorange errors or orbit ephemeris errors are generally not linear. To extend and 

overcome the limitations of linear models, a number of approaches such as the EKF 

have been proposed in the literature for nonlinear estimations using a variety of 

approaches. Unlike the KF, the EKF may diverge, if the consecutive linearisations are 

not a good approximation of the linear model over the entire uncertainty domain. Yet 

the EKF provides a simple and practical approach to dealing with essential nonlinear 

dynamics. The model takes the form: 

  111   kkkk wxfx          (4.44) 

  kkkk vxhz  .         (4.45) 

Given the Jacobians: 

 
1111

ˆ
 

kkkk xfΦ ,         (4.46) 

and 

 
k

kkk

 xhH ˆ ,         (4.47) 

the state prediction equation defining the EKF is: 

 11
ˆˆ



  kkk xfx          (4.48) 

while the covariance prediction equation is: 

1111
ˆ



  k

T

kkkk QΦPΦP .        (4.49) 

The measurement correction equations defining the EKF are: 

  1
ˆˆ


  k

T

kkk

T

kkk RHPHHPK        (4.50) 

    kkkkkk xhzKxx ˆˆˆ         (4.51) 

   kkkk PHKIP ˆˆ .         (4.52) 

Equations 4.49, 4.50 and 4.52 are identical to equations 4.27b, 4.28a and 4.28c 

respectively. 

 

For the purpose of interoperability, the EKF approach was adopted to estimate 

pseudorange errors using an adaptive approach. The methods of adapting the parameter 
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matrices, kQ  and kR , defined earlier for the case of the linear discrete model may be 

employed. 

 

 

4.8 UNSCENTED KALMAN FILTERING 

 

The Unscented Kalman Filter, or UKF in short, gets its name from the unscented 

transformation, which is a method of calculating the mean and covariance of a random 

variable undergoing nonlinear transformation  wfy  . Although it is a derivative-free 

approach, it does not really address the divergence problem. In essence the method 

constructs a set of sigma vectors and propagates them through the same nonlinear 

function. The mean and covariance of the transformed vector are approximated as a 

weighted sum of the transformed sigma vectors and their covariance matrices.  

 

Consider a random variable w  with dimension L  which undergoes the nonlinear 

transformation,  wfy  . The initial conditions are that w  has a mean w  and a 

covariance wwP . To calculate the statistics of y , a matrix χ  of 12 L  sigma vectors is 

formed. Sigma vector points are calculated according to the following conditions: 

wχ 0                    (4.53a) 

  
iwwi L Pwχ  , Li ,,2,1  ,               (4.53b) 

  
iwwi L Pwχ  , LLLi 2,,2,1  ,             (4.53c) 

where 

  LL   2  is a scaling parameter,   is a scaling parameter between 0 and 1 and 

  is a secondary scaling parameter.   
iwwL P  is the i

th
 column of the matrix 

square root. This matrix square root can be obtained by Cholesky factorisation. The 

weights associated with the sigma vectors are calculated from the following: 

     LW m

0                   (4.54a) 
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       2

0 1LW c                 (4.54b) 

      LWW c

i

m

i 21 , Li 2,,2,1  ,              (4.54c) 

where   is chosen as 2 for Gaussian distributed variables. The mean, covariance and 

cross-covariance of y  calculated using the UT are given by: 

 ii χfy   Li 2,,2,1  ,                (4.55a) 

 



L

i

i

m

iW
2

0

yy   Li 2,,2,1  ,               (4.55b) 

   Ti

L

i

i

c

iyy W yyyyP 


2

0

 Li 2,,2,1  ,             (4.55c) 

   Ti

L

i

i

c

ixy W yyχχP 


2

0

 Li 2,,2,1  ,             (4.55d) 

where χ  is the mean of the sigma points vector χ ,  m

iW  and  c

iW  are the set of weights 

defined in a manner so approximations of the mean and covariance are accurate up to 

third order for Gaussian inputs for all nonlinearities, and to at least second order for 

non-Gaussian inputs. The sigma points in the sigma vectors are updated using the 

nonlinear model equations without any linearisation.  

 

Given a general discrete nonlinear dynamic system in the form: 

  kkkk wuxfx  ,1 ,    kkk vxhy       (4.56) 

where n

k Rx  is the state vector, r

k Ru  is the known input vector, m

k Ry  is the 

output vector at time k . kw  and kv  are, respectively, the disturbance or process noise 

and sensor noise vectors, which are assumed to Gaussian white noise with zero mean. 

Furthermore kQ  and kR  are assumed to be the covariance matrices of the process noise 

sequence, kw  and the measurement noise sequence, kv  respectively. The unscented 

transformations (UT) of the states are denoted as: 

 kk

UTUT
uxff , ,  k

UTUT
xhh         (4.57) 

while the transformed covariance matrices and cross-covariance are respectively 

denoted as: 
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 kk

f

k

f

k uxPP ,ˆ ,  k

h

k

h

k xPP ˆ                 (4.58a) 

and  

 kk

fh

k

fh

k uxPP ,ˆ .                  (4.58b) 

 

Equations 4.57 and 4.58a unscented transformation can be visualised as dimensions in 

set topological form as illustrated in Figure 4.2. This illustration also shows that UT 

estimates better and more accurate posterior mean and covariance to the second order, 

while EKF accuracy is up to the first order. 

 

 

Figure 4.2 An example of filtering a Gaussian prior propagated through an highly 

nonlinear function (Yuan 2004). 

 

The UKF estimator can then be expressed in a compact form. The state time-update 

equation, the predicted covariance, the Kalman gain, the state estimate and the corrected 

covariance are respectively given by: 

 11
ˆ



  k

UT

kk xfx                   (4.59a) 

11
ˆ



  k

f

kk QPP                   (4.59b) 
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  1
ˆˆ


  k

h

k

fh

kk RPPK                  (4.59c) 

    k

UT

kkkkk xhzKxx ˆˆˆ                  (4.59d) 

  T

kk

h

kkkk KRPKPP
1

ˆˆˆ


  .                (4.59e) 

Thus higher order nonlinear models capturing significant aspects of the dynamics may 

be employed to ensure that the KF algorithm can be implemented to effectively estimate 

the states in practice. 

 

For these purposes, the UKF approach was adopted to estimate orbit parameters using 

an adaptive approach. The methods of adapting the parameter matrices, kQ  and kR , 

defined earlier for the case of the linear discrete model may be employed. 

 

 

 



 

 

CHAPTER 5: ADAPTIVE ORBIT ESTIMATION FOR INTEROPERABILITY 

 
 

 
 
 

115 

CHAPTER 5 

ADAPTIVE ORBIT ESTIMATION FOR 

INTEROPERABILITY 

The navigation problems associated with terminal aircraft guidance refers to position 

determination of an individual vehicle with respect to some point local to the 

environment, as is the case with aircraft landing systems. 

 

In this chapter, the main consideration is the issue of corrections to the orbiting satellites 

ephemeris. One of the major requirements that must be met in order to establish generic 

interoperable systems is to employ independent and yet consistent error models to 

ensure that the ephemerides employed by the different systems can be easily converted 

from one to another. In fact there is a need to use a standard ephemeris to identify a 

satellite in an orbit. Currently different satellite navigation systems, such as GPS, 

GLONASS, and Galileo, use different methods for orbit estimation, correction and 

prediction. Moreover the error dynamics models used are extremely complex (see for 

example Hoots et. al. 2004). Thus the aim is to develop an interoperable orbit estimation 

method that bears a direct straightforward relationship to the various methods currently 

in use. The method of modelling the nonlinear propagation dynamics was chosen after 

considering a number of methods such as the Lagrange Planetary Equations, NORAD 

SGP/SDP family of methods, rotating Cartesian coordinate dynamics and the 

Kustanheimo-Stiefel four-parameter method. This work also explores the application of 

various adaptive Kalman filters, including the UKF, to the orbit estimation problem.  

 

This chapter presents results for a relative navigation filter that achieves CAT3-level 

precision from a customised navigation satellite receiver's data message and the 

SDP4/SDP8 algorithms to establish the measured data and a precise, robust Unscented 
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Kalman Filter (UKF) using a suitable nonlinear propagation method. The results 

indicate the method is particularly suitable for estimating the orbit ephemeris of 

navigation satellites facilitating interoperable differential GNSS operation. 

 

 

5.1 THE ORBIT ESTIMATION PROBLEM 

 

This research work has extensively studied the problem of modelling of orbit mechanics 

for purposes of applying the UKF methodology. Firstly, the application of the UKF to 

the family of methods established by NORAD for the computation of the orbit position 

and velocity from the two-line elements (SGP4, SDP4 etc.) was investigated. These are 

essentially a transformation of the two-line element data, albeit a dynamic one, and are 

not suitable for applying the unscented transformation (UT), which is the basis for the 

UKF. Secondly, the orbit dynamics were modelled by applying the Lagrange planetary 

equations. Here again it was found that the UT could not be successfully applied 

because of inherently nonlinear transformations such as Kepler’s equation and inverse 

trigonometric functions coupled with the modulus function. The transformed covariance 

matrices were generally unrealistic and not positive definite because of the presence of 

singularities and it was generally not possible to apply the UKF approach. Thirdly, the 

regularisation approach involving the Kustanheimo-Stiefel four-parameter method was 

considered. This transformation not only involves a quaternion like representation of the 

orbit parameters but also a transformation of the time variable (see for example Stiefel 

and Scheifele 1971). The presence of this latter transformation made it difficult to apply 

the unscented transformation without linearising the transformation of the independent 

variable. The final method considered was based on using Cartesian coordinates in a 

rotating frame of reference, which is discussed further below. In all these cases the 

measurements were assumed to be provided by the pseudorange and the Cartesian 

coordinates of the satellite’s position. 
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The most commonly employed model in navigation theory is based on the Lagrange 

planetary equations for the Keplerian orbital elements which is the basis for a variety of 

satellite error models; see for example Filipski and Varatharajoo (2006). However these 

equations, that are patently nonlinear, may not provide the best parameterisation of the 

orbit for purposes of orbit estimation. 

 

 

5.2 ORBIT DYNAMIC PROPAGATION MODELS 

 

Several orbit dynamic propagation models have been extensively studied for the 

purpose of interoperable orbit estimations. These few candidate models are the orbit 

modelling in the rotating Cartesian coordinate dynamics (Earth-Centered, Earth-Fixed 

coordinate) known as the Euler-Hill frame, Hill-Clohessy-Wiltshire equations and the 

Lagrange Planetary equations.  

 

The HCW equation is valid for circular and near-circular orbits for two close-orbiting 

satellites. The HCW equations are considered, but not used in this work due to the fact 

that it is an orbit dynamic propagation about a linearised circular orbit. These equations 

are mentioned and derived extensively because of the similarity used in this work, and 

can be considered as an extension to the HCW equations. 

 

The Lagrange planetary equations of motion (LPE) are considered for orbit dynamics 

propagation in this course of research. However, during this research, several trials 

applying Unscented Kalman Filter (UKF) onto LPE have been made, but were 

unsuccessful. The problem lies in the fact that LPE can not be approximated by second 

order, which UKF assumes any measurement can be approximated to second or third 

order. Unfortunately, approximating LPE to second or third order estimation does not 

yield any useful results. 
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Finally, after comparing the Lagrange Planetary Equations in terms of the Keplerian 

elements and the Cartesian coordinate formulations in a rotating frame, the latter 

formulation was preferred. 

 

Further details and derivations of these orbit dynamic propagation models are discussed 

in Appendix D. 

 

 

5.3 UKF-BASED ORBIT ESTIMATION 

 

In the case of the classical linear KF, which is not only an optimal filter but also an 

asymptotically stable filter, the filter estimates can be expected to follow the 

measurements closely even when the states of the process or plant model are unstable. 

However, in the above orbit model, it is not possible to apply the linear KF and, for this 

reason, the UKF is chosen. This is demonstrated in Figures 5.9 and discuss in the last 

section of this chapter. 

 

The UKF is based on approximating the probability distribution function rather than on 

approximating a nonlinear function as in the case of EKF. The state distributions are 

approximated by a Gaussian probability density, which is represented by a set of 

deterministically chosen sample points. The nonlinear filtering using the Gaussian 

representation of the posterior probability density via a set of deterministically chosen 

sample points is the basis for the UKF. Thus, it is based on statistical linearisation of the 

state dynamics rather than analytical linearisation (as in the EKF). The statistical 

linearisation is performed by employing linear regression using a set of regression 

(sample) points. The mean and covariance at the sigma points represent the true mean 

and covariance of the Gaussian density. When transformed to the nonlinear systems, 

they represent the true mean and covariance accurately only to the second order of the 

nonlinearity. Thus this can be a severe limitation of the UKF unless the nonlinearities 

are limited to the first and second order in the process model. 
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One of the difficulties that one encounters repeatedly while using the UKF algorithm is 

the fact the matrix wwP  in equations 4.53a and 4.53b is not positive definite. 

Consequently one needs to choose kQ  and kR  in equations 4.59 to be sufficiently 

positive definite so as to prevent wwP  from becoming negative definite. This imposes an 

undue and unrealistic constraint on the nature of the noise sequences, which would no 

longer represent the true statistics of the process and sensor noise vectors.  

 

To avoid the problem in computing the square root of wwP , which is not positive 

definite, this research employs the method of singular value decomposition (SVD) and 

then replaces the singular values by their absolute values. This is a perfectly valid 

alternative in computing the sigma points and there is then no need to choose kQ  and 

kR  in equations 4.59 to be sufficiently positive definite so as to prevent wwP  from 

becoming negative definite. This modification of the UKF algorithm results in a 

remarkable improvement in the performance of the UKF. 

 

 

5.4 ADAPTIVE UKF-BASED ORBIT ESTIMATION 

 

In order to employ the UKF when precise statistics of the process and measurement 

noise vectors are not available, the adaptive filter method proposed by Song, Qi and 

Han (2006) is used to estimate the orbit parameters. The covariance matrixes of 

measurement residuals are recursively updated in the UKF. The measurement and state 

noise covariance matrices, in the case of the UKF, may be expressed as: 

 h

k

Nk

k PCR ˆˆ ,

 ,          (5.1a) 

f

kk

Nk

xk 1

,

1
ˆˆ

  PPCQ         (5.1b) 
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which are analogous to equation 4.34 and the right hand side of equation 4.43. 

Correspondingly, following equation 4.36 we may express the measurement noise 

covariance as, 

h

k

Nk

rk PCR ˆˆ ,             (5.2) 

which involves the further computation of h

kP̂ , by applying the unscented nonlinear 

transformation,  k

UT
xh ˆ  to the state estimate, kx̂ . The measurement noise covariance 

may be updated in principle by employing the equation 5.1a.  

 

The nonlinear relationships between the covariance matrices also suggests that the 

update of kR  could be done by employing the covariance of the residual equation 5.2 

while the update of kQ  could be done by employing the covariance of the state 

correction equation 5.1b. However, the simultaneous adaptation of both kQ  and kR  is 

not considered robust, as discussed by Blanchet, Frankignoul and Cane, 1997. For this 

reason we restrict our attention to kQ  adaptation as it is the process statistics that are 

really unknown. Furthermore it was observed that the magnitudes of the filter gains 

were relatively small and for this reason equation 5.1b was approximated as: 

Nk

xk

,

1
ˆ

  CQ .            (5.3) 

 

 

5.5 SIMULATIONS AND VALIDATION 

 

Differential Global Position System (DGPS) is a mode of operation of the Global 

Positioning System (GPS) satellite based positioning system that employs a reference 

station at a known location to calculate and broadcast corrections that could be applied 

to the pseudorange by users in the vicinity of the receiver station. This approach is 

known to increase positional accuracy. In the literature, several algorithms have been 

developed that are designed to remove the effects of the so-called common mode errors 

in all receivers in the vicinity of the reference station. These algorithms are based on the 
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concepts of optimal filtering in general and on the Extended Kalman Filter (EKF) in 

particular, developed along the lines suggested by Farrell and Givargis (2000) and 

Farrell, Givargis and Barth (2000). 

 

In an aircraft landing system, not only does the pilot need to know his accurate position, 

but also the reference station, which require a preliminary estimate of his position. In 

this case, the IDGPS (Inverted DGPS) would be more suitable than DGPS. In IDGPS, a 

vehicle sends its GPS position information, usually in NMEA format, to the reference 

station and the differential correction is made at the reference station, not at the GPS 

receiver in the vehicle. However, in contrast to a standard IGPS system, which does not 

require an RTCM transmission to the vehicle, the pilot requires an update on his 

position from the reference station. Thus this situation can be handled provided the 

aircraft itself is treated as a roving virtual reference centre. The objective in using 

multiple reference stations in a network for GPS corrections is to model and correct for 

distance-dependent errors that reduce the accuracy of conventional Real Time 

Kinematic (RTK) or DGPS positions in proportion to the distance from a rover to its 

nearest reference station. It is well known that the most significant sources of error 

affecting precise GPS positioning are the ionosphere, troposphere and satellite orbits. 

The influence of the ionospheric error on different frequencies in the L-band used by 

satellite navigation systems is well understood. The ionosphere, which is subject to 

rapid and localised disturbances, is the main restriction on the station density in a 

reference network. The troposphere and orbit errors have an equal effect on all ranging 

signals used by current satellite-based global navigation systems. The aim of a reference 

network is to model and estimate these error sources and provide this network 

correction information to the roving vehicle so that they may derive positions with a 

higher degree of accuracy than with conventional RTK.  

 

In an earlier paper, Vepa and Zhahir (2008) discuss the development of two and three 

frequency reference station algorithms that may be employed with any navigation 

satellite. The motivation behind the design of the algorithms has been the need for 
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reference station algorithms that can deal with an interoperable system of navigation 

satellites to obtain high accuracy positioning information local to the roving vehicle. In 

order to achieve interoperability we provided for additional satellite orbit corrections 

that will ensure the consistency of satellite orbit predictions. To account for the fact that 

we are now dealing with a variety of satellites, we made no assumptions of the error 

covariance matrices and adopted an adaptive filter based on the Method of Maximum 

Likelihood Estimation (MMLE), a technique applied to the EKF by Mehra (1970). 

However, corrections of the orbiting satellite’s ephemeris are assumed to be 

independent of the other common mode errors and were not considered. 

 

 

 

Figure 5.1a GLONASS satellite 

position prediction normalised to orbit 

radius. 

 

Figure 5.1b GLONASS satellite 

normalised velocity prediction. 
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Equations 2.30-2.33 can be numerically integrated and compared with the position and 

velocity data for a typical GLONASS navigation satellite independently generated from 

the NORAD TLE data set from the celestrak website (2008), by using the SDP4 

method, (Hoots et. al. 2004) with the position normalised to a mean altitude of 25,490 

km, and the velocity to the mean circular velocity of 3.9545 km/sec. These position and 

velocity responses are shown in Figures 5.1a-5.1d respectively. 

 

 

 

Figure 5.1c GLONASS satellite 

normalised position prediction error. 

 

Figure 5.1d GLONASS satellite 

normalised velocity prediction error. 

 

These results are obtained by using the GLONASS error model which only includes 

20C  term and not the 22C  term in the equations 2.30-2.33. The results indicate that the 

simulated response follows the measured position and velocity data quite accurately. 

However, looking very closely at the figures, one may observe that the simulated 

responses drift very slowly away from the measurements due to the presence of secular 

terms, thus establishing the need for filtering. While the drift can be eliminated by using 
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the Lagrange planetary equations (LPEs), which is equivalent to including both the 20C  

term and the 22C  term in the equations 2.30-2.33, the order of the errors are typical of 

all the simulation methods with the exception of the regularisation approach involving 

the Kustanheimo-Stiefel four-parameter method.  

 

 

Figure 5.2a GLONASS satellite 

normalised position prediction error 

obtained by using the Lagrange 

equations. 

 

Figure 5.2b GLONASS satellite 

normalised velocity prediction error 

obtained by using the Lagrange 

equations. 

 

The position and velocity errors obtained by using the LPEs are shown in Figures 5.2a 

and 5.2b. It is also observed that the simulations correctly predict the harmonic 

responses, which are absent in the responses obtained from the Hill-Clohessy-Wiltshire 

type linearised equations of motion. 
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In Figures 5.3 and 5.4 the state estimates for the position and velocity errors and the 

error in the measurement estimate are shown for the same satellite as in Figures 5.1. The 

propagation model used was also the same as the one used to obtain Figures 5.1. 

 

 

Figure 5.3a GLONASS satellite UKF-

based normalised position estimate 

error. 

 

Figure 5.3b GLONASS satellite UKF-

based normalised velocity estimate 

error. 

 

The measurement vector consists of six independent simulations of the position and 

velocity as well actual measurements of the pseudorange. The maximum predicted error 

in the pseudorange is thus less than 10m relative to the data generated for the 

GLONASS satellite. It is clear that the estimates tend to follow the states of the plant 

model and the measured position and velocity data. Moreover the observed drift rates in 

the simulations are reduced. However there is a need for some caution in applying the 

UKF due to its limitations.  
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Figure 5.4 GLONASS satellite UKF-based pseudorange estimate error. 

 

In Figures 5.5 and 5.6 the state estimates for the position and velocity errors and the 

error in the measurement estimate are shown for the same satellite as in Figures 5.3 and 

5.4, where the estimates are now obtained by the modified UKF. 

 

Figure 5.5a GLONASS satellite 

modified UKF-based normalised 

position estimate error. 

 

Figure 5.5b GLONASS satellite 

modified UKF-based normalised 

velocity estimate error. 

 

The maximum predicted error in the pseudorange is now reduced to less than 1mm 

relative to the data generated for the GLONASS satellite. Moreover it is clear that the 
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estimated error is considerably more uniform in Figure 5.7 than it is in Figure 5.5, 

where it is quite visibly sinusoid and biased. Thus, with the use of the proposed 

modification in place it is possible to substantially improve the performance of the 

UKF, because it facilitates the use of the most appropriate approximations for the noise 

statistics. 

 

Figure 5.6 GLONASS satellite modified UKF-based pseudorange estimate error. 

 

We also observe from Figure 5.6 that the magnitude of the measurement error is still 

biased. This is to be expected as we are only seeking to estimate the orbital errors, 

which contribute exclusively to the errors in the satellite’s ephemeris. 

 

The results of applying the adaptation scheme, with the additional modification in 

computing the square root of the covariance matrices by employing SVD as discussed 

in the preceding section, are illustrated in Figures 5.7 and 5.8. These results clearly 

demonstrate the usefulness of the adaptive modified UKF. The results also indicate that 

the bias and drift in the estimate produced by the adaptive UKF, as it approaches steady 

state, are of the same order as the modified UKF. Moreover it takes at least an hour to 

approach steady state. 
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Figure 5.7a GLONASS satellite 

adaptive UKF-based normalised 

position estimate error. 

 

 

Figure 5.7b GLONASS satellite 

adaptive UKF-based normalised 

velocity estimate error. 

 

Figure 5.8 GLONASS satellite adaptive UKF-based pseudorange estimate error. 

 

It is observed that the UKF is tracking the true orbit over the entire time frame. The 

performance of the UKF is generally better than either the conventional KF or the EKF. 

The main reason for the better performance of the UKF is that the UT approximates the 

mean and the covariance to third order, which is better than linearisation. Furthermore 
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the modified UKF facilitates the use of arbitrary realistic models of the process and 

measurement noise statistics and thus gives a very good estimate of a navigation 

satellite’s pseudorange. 

 

 

 

Figure 5.9a GLONASS satellite 

normalised position prediction 

comparison using UKF and EKF filters. 

 

Figure 5.9b GLONASS satellite 

normalised velocity prediction comparison 

using UKF and EKF filters. 

 

 

As mentioned before in section 5.3, it is not possible to apply the linear KF to the 

selected orbit model using the Cartesian coordinate formulations in a rotating frame 

and, for this reason, the UKF is chosen. This orbit estimation problem is patently 

nonlinear. The result of using the traditional Extended Kalman filter (EKF) is included 

and compared with UKF in Figures 5.9. The high error estimate accuracy obtained with 

the UKF was not surprising as the estimation was based on simulated measurements 

(for repeatability of results) which were corrupted by predictable Gaussian noise. The 

UKF is particularly well suited for orbit estimation as the nature of the leading 
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nonlinearities is primarily quadratic (with a relatively smaller cubic contribution) 

although the noise may not always be perfectly Gaussian. 

 

In most orbit predictions, there is little a priori information about the state and 

measurement noise inputs. For this reason, adaptive filtering is appropriate as it allows 

for the interoperable operation of the orbit estimator, as it permits one to switch from 

one satellite model to another. Thus, the adaptive UKF serves to generate pseudorange 

corrections in an interoperable differential GNSS application. Moreover, the 

performance of the adaptive UKF is almost as accurate as the modified UKF. 

 

Although the standard UKF was initially a promising alternative feature of the orbital 

dynamics, which has led to the belief that the standard UKF must be employed with 

appropriate restrictions on the noise covariance statistics to facilitate the calculation of 

the sigma points, it nonetheless has a number of shortcomings, in particular, being not 

positive definite. In order to address some of these, a modified approach to the UKF is 

proposed. The proposed modified UKF uses singular value decomposition rather than 

Cholesky decomposition to estimate the sigma points. Moreover, the singular values are 

replaced by their absolute values in the decomposition. Thus, this work presents the 

results of the application of the modified approach to the UKF to orbit estimation to 

demonstrate its superiority over the standard approach. 

 

Precise, adaptive UKFs and a suitable nonlinear propagation method are used to 

estimate the orbit ephemeris and the differential position and the navigation filter 

mixing errors. The presented results indicate the method is particularly suitable for 

estimating the orbit ephemeris of navigation satellites and the differential position and 

navigation filter mixing errors, thus facilitating interoperable DGNSS operation for 

aircraft landing. 
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CHAPTER 6 

ENHANCED ACCURACY ALGORITHMS 

 

In previous chapters, the emphasis of the work is based on code pseudorange 

measurement. Differential GNSS using code-correlating techniques allow the unknown 

user position to be determined at accuracies of up to 2-3 metres, if the user receiver is 

static and 5-10 metres if the user receiver is in motion. Enhanced accuracy of 

positioning at the centimetre or even millimetre scale can be achieved by using 

differential carrier phase measurement. By making the filter algorithms adaptive, any 

GNSS observable can be applied interchangeably by the base reference station, hence 

making it interoperable with enhanced positional accuracy. 

 

The introduction of carrier phase measurements has led to the development of a new 

breed of satellite navigation receivers, which are able to combine carrier phase 

measurement and code based measurement of the pseudorange. In chapter seven, the 

application of such receivers to the problem of inertial navigation will be examined. For 

that reason, some of the processes that have been implemented in the modern satellite 

navigation receivers are explained here, so the receiver outputs can be characterised 

appropriately. 

 

 

6.1 INTRODUCTION 

 

When first initiated, positions determination algorithms in GPS and GLONASS were 

designed by using binary code sequences modulated onto the respective carrier but did 

not account for carrier phase measurement (Forsell 1997). Later, the carrier phase 



 

 

CHAPTER 6: ENHANCED ACCURACY ALGORITHMS  
 

 
 
 

132 

measurements were included to obtain centimetre scale accuracy. Integration of carrier 

phase measurements is viable for high accuracy positioning, which, however, brings in 

the problem of integer phase ambiguity cycles determination. This problem is due to the 

fact that the user receiver cannot directly measure the number of carrier cycles between 

the receiver and the corresponding satellite, but the change in the number of carrier 

cycles is measurable. The straightforward solution to this problem is limited to static 

user receivers or to limited spatial corrections between a roving user and the base 

reference station. 

 

Revisiting equation 3.2, the carrier-phase observable is given as: 

            

           ttcttctEtSAttct

tmpttczzyyxxN

trionsv

rusvusvusv








5.0222

ˆˆˆ
~

   (3.2) 

 

Now, since selective availability has been switched off completely by decree of 

President Clinton (Office of the Press Secretary 2000) starting year 2006, the  tSA  

term can be dropped. If all the common mode errors and the receiver clock bias can be 

collected into a single term; say  tecm , and taking the actual pseudorange as 

       5.0222
ˆˆˆ

usvusvusv zzyyxxρ  , then equation 3.2 becomes: 

       ttmpteρN cm  
~

       (6.1) 

 

 

6.2 SOLUTION TO INTEGER PHASE AMBIGUITY 

 

There are two ways to solve the problem of integer phase ambiguity, either by 

eliminating the constant integer ambiguity by differencing the carrier-phase 

measurement across each time epoch or estimating the constant integer ambiguity. The 

former uses the Doppler carrier-phase processing method and the latter, the integer 

ambiguity resolution method. Carrier Phase Differential works on the principle of the 

Doppler phenomenon. To avoid the need for differential implementation time 
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differencing of the phase is done thus getting rid of the integer ambiguity and 

facilitating the direct estimation of velocity (further details are found in Farrell and 

Barth (1999)). Meanwhile, the integer ambiguity resolution method has two stages; the 

first stage is the initial estimate of ambiguity, which will be used as an initialisation for 

the second stage, the integer search algorithm, which determines the value of the integer 

ambiguity. 

 

Forsell (1997) compares two methods for real-time ambiguity resolution. The first, 

wide-laning is a method using frequency differences between two suitably spaced 

carriers (Forsell 1995), and secondly, tone-ranging, which uses modulation signals on 

one carrier (Hatch 1996). 

 

Hatch (2000) categorises ambiguity resolution techniques into two types: Geometry 

Independent, which are insensitive to tropospheric refraction, have a greater degree of 

freedom and require simple verification; and Geometry Dependent, which are the total 

opposite to the description of Geometry Independent. For Geometry Independent, the 

most common technique is ambiguity resolution in measurement space, which uses 

smoothed code for wide-lane ambiguity resolution, followed by estimating wide-lane 

resolved values to step to narrow-lane. Two Geometry Dependent techniques are 

ambiguity resolution in position space, which utilises Counselman’s ambiguity function, 

and ambiguity resolution in ambiguity space, which searches for minimum residuals as 

a function of ambiguity combinations. 

 

Further details and discussion are included in Appendix E. 
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6.3 CARRIER PHASE SMOOTHING APPLIED TO DGPS: 

THE HATCH FILTER 

 

The carrier-smoothed code processing is based on the concept that estimating the bias in 

the integrated carrier phase measurement is essential in order to convert it into an 

absolute measurement of range. Although the carrier phase can be very accurately 

measured, the integrated carrier phase information cannot be directly mixed with the 

pseudorange since there is a phase ambiguity between the receiver and the satellite, 

which is equal to an integral multiple of two times pi. However, the change in the 

pseudorange between observations at different points of time (epochs) approximately 

equals the change in the integrated carrier phase. The change in the integrated carrier 

phase can, though, be determined with far more accuracy than the change in 

pseudorange. Carrier-smoothed code processing uses the carrier phase information to 

correct the code phase tracking loop to reduce multipath and receiver noise on the 

pseudoranges. Navigation equipment with a high precision requirement (e.g. aircraft 

autopilot for aircraft landing) and satellite navigation reference stations for differential 

correction (e.g. LAAS) are two examples. The smoothing of pseudorange observations 

using carrier phase observations has been elaborated by Hatch (1982), who introduced a 

recursive algorithm known as the Hatch filter. The Hatch filter is a simple one-

dimensional filter that uses the carrier-phase measurement to recursively update the 

pseudorange. 

 

The multipath error, mkv  may be modelled as a first order Gauss-Markov process and 

hence can be considered to be the output of the process defined by,  

  mpikmmmk vvav  1 . 

where ma  is the measured acceleration vector and mpiv  is a white noise process, 

representing the multipath component of the noise in the i
th

 code pseudorange 

measurement. 
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In most modern receivers, the Hatch filter is a single-frequency carrier-smoothing filter, 

which can be modelled as a mixing filter of code-based and carrier phase measurements. 

If a total of L  measurements are made between two successive code measurements, 

the Hatch filter output at epoch k  can be expressed in terms of the filter’s output at 

epoch 1k  in the form: 

          imckmkmkhkh
LL

L




 1
ˆ

1
ˆ

11 


       (6.2) 



 


T

L            (6.3) 

where  km  and  1km  are the measured carrier phase at epochs k  and 1k  

respectively,  imc  is the measured thi  code pseudorange,   is the filter time constant 

and T  is the sampling interval. 

 

After smoothing, the noise of the smoothing code measurement can be described by 

Hwang and McGraw (1998) as follows:  

   

22
ˆ

2

1
imckh L





           (6.4) 

where   and 
 imc  are the standard deviations for the carrier phase measurement 

noise and the code-based measurement noise respectively. 

 

 

6.4 MODELLING THE HATCH FILTER 

 

In this work, it is assumed that the code-based measurement is used to initialise N , due 

to the integer cycle ambiguity of the carrier phase, which causes a very poor initial 

position. Consequently, it is also assumed that the ambiguity error in the measured 

carrier phase is initially estimated, corrected and eliminated within the receiver. This 

assumption will enable the carrier phase ambiguity to be assumed as a carrier phase 
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noise. Thus the effect of the Hatch filter is only to reduce the noise and the Hatch filter 

may be equivalently modelled as: 
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 (6.5) 

where L  and ma  have been described in previous equations, the first state 
kv̂  is the 

current pseudorange error due to ambiguity, the second state km̂  is the current 

pseudorange error due to the multipath component and the third state kv̂  is the current 

complete pseudorange error state representing the Hatch filter and their white noise 

processes are corresponding to v , mpv  and pcv .  

pokme vv  ˆ          (6.6) 

where me  is the estimate of the code pseudorange may be expressed in terms of the 

actual magnitude of the pseudorange vector   and 0v  is a zero-mean white noise 

process, representing the receiver noise. In the above filter, the additional assumption is 

made that the white noise processes v , mpv  and pcv are stationary. This is due to the 

fact that these white noise processes are modelled as first order zero-mean Gauss-

Markov processes and these processes are invariant after a translation of time. 

 

 

6.5 SINGLE AND MULTI-FREQUENCY FILTERS 

 

Tropospheric and ionospheric delays are significant, requiring accurate evaluation to 

implement a stable Hatch filter. The ionosphere advances the phases and delays the 

codes on a carrier signals in equal magnitude. Although tropospheric delays are 

independent of frequency, the magnitude of the ionospheric delay is inversely 

proportional to the square of the carrier frequency. The relationship is used to form an 

ionospheric independent observable using dual and triple frequency phase and code 

observations. The ionospheric error at a single frequency could be estimated adaptively 
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using a method outlined by Kim, Walter and Powell (2007). As the ionospheric error is 

dependent on the carrier frequency, several multi-frequency methods have also been 

presented for eliminating the ionospheric errors.  

 

Recent developments in satellite navigation include GPS modernisation and the 

development of the European GALILEO system, which have led to the development of 

new algorithms. Following the GPS modernisation scheme, a third GPS frequency, L5 

centred at 1176.45 MHz is being transmitted from Block IIF satellites, the first of which 

was launched in 2005 (Fontana et. al. 2001). Using the three frequency observations, a 

number of linear combinations are possible with characteristics such as longer 

wavelength, long ionospheric delay, less measurement noise and retention of the integer 

property of phase ambiguities. 

 

Revisiting equation 3.24: 

  TEC
f

ttc ion 2

3.40
          (3.24) 

which is a generalisation for both single and dual frequency receivers. 

 

Enhancements in accuracy can be made by using three carrier frequency receivers as 

proposed by Forssell, Martin-Neira and Harris (1997) called the Wavelength-Gap-

Bridging method as illustrated in Figure 6.1.  
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Figure 6.1 The Wavelength-Gap-Bridging method (Forssell et. al. 1997). 

 

The same technique as in appendix E.1 is applied but using two stages, where the first 

stage estimates the super wide-lane ambiguity integer. The output of the first stage then 

becomes the input for the second stage, which is to estimate the wide-lane ambiguity 

integer. Further accuracy of integer ambiguity resolution can be done via an integer 

search as explained in appendix E.2  

 

 

6.6 MULTIPATH ESTIMATION 

 

Two issues associated with the Hatch filter are multipath and ionospheric error induced 

divergence of the Hatch filter. Several modifications of the Hatch filter have been 

proposed to mitigate the effect of multipath and ionospheric error. Ray, Cannon and 

Fenton (2001) have proposed a multi-antenna method for mitigation of multipath effect. 

The process flowchart can be illustrated as in Figure 6.2. 
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Figure 6.2 The process flowchart for multipath mitigation. 

 

The interest of this research is the description of the Kalman filter as presented in the 

flowchart, which eventually leads to the estimation of code and carrier phase multipath 

errors. Details of the multipath mitigation process can be retrieved from the text.  

 

Ray et al (2001) identify that code-range, carrier phase and signal-to-noise ratio (SNR) 

measurements are all affected by multipath. These three measurements can be 

parameterised and developed as state variables for the Kalman filters. The five unknown 

parameters or the state variables are given as follows, 
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The single difference code and carrier phase measurements are free from atmospheric 

delay errors, satellite orbital errors and satellite clock errors. These can be expressed 

respectively as follows: 

iMpipiii tcP 0,0,000          (6.8) 

iMiiiii Ntc 0,0,0000         (6.9) 

where P  is the measured code pseudorange single difference between antennae in unit 

metres, 

  is the measured carrier phase single difference between antennae in unit metres, 

  is the range difference due to spatial separation between antennae in unit metres, 

tc  is the receiver clock bias difference in unit metres, 

N  is the integer ambiguity difference in unit cycles, 

p  is the receiver code noise difference in unit metres, 

  is the receiver carrier phase noise difference in unit metres, 

Mp  is the code pseudorange multipath error difference in unit metres and 

M  is the carrier phase multipath error difference in unit metres. 

If the receivers are driven by a common clock and their code range and carrier phase 

measurements corrected for the antennae’s spatial separations, then the single difference 

code range and carrier phase measurements are reduced to: 

iMpipiP 0,0,0           (6.10) 

iMiii N 0,0,00           (6.11) 

Then, the integer cycles can be easily removed, as the carrier phase multipath and noise 

combined are smaller in comparison to the carrier wavelength. Hence, equation 6.11 is 

further reduced and becomes: 

iMii 0,0,0            (6.12) 
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Omitting receiver code and carrier phase noises yield: 

iMpii P 0,00            (6.13) 

iMii 0,00          (6.14) 

where i0  is the difference in code multipath error and 

i0  is the difference in carrier phase multipath error. 

 

Both differences in multipath errors (code and carrier phase) are at two closely spaced 

antennae and are assuming the reflected signal strength or the reflection coefficient is 

the same for both antennae. The difference in code multipath error, i0 , can also be 

expressed as:  
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where 

T is the chip width in unit metres and 

i  is the reflected signal relative phase at antenna i . 

Likewise, the difference in carrier phase multipath error i0  can be expressed as: 
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The SNR, iR0 , between two closely spaced antennae, assuming the noise power spectral 

density for both antenna is the same, is given as: 
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Let us further assume the bandwidth of the two receivers to be the same and that 0C  

and iC  are the carriers to the noise power spectral densities of a satellite signal; the 

SNR now becomes: 
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In m  closely spaced antennae, if one of the antennae in the  1m  antenna pairs is 

common, then the number of measurements would be  1m  single difference code 

range measurements,  1m  single difference carrier phase measurements and  1m  

SNRs. Hence, the measurement matrix becomes: 

 Tmmm RRz 1,01,01,01,01,01,0       (6.19) 

The relationship between the state variables and the measurements is contained in the 

design matrix. The relationship is nonlinear, therefore the partial derivatives with 

respect to the unknown parameters must be computed. The resulting design matrix is:  
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    (6.20) 

 

The state variables in the Kalman filter are described as simple first-order Gauss-

Markov processes. The correlation time was selected to be about 1 minute and an 

appropriate process noise was selected for each of the state variables. 

 

This Kalman filter is used to estimate the unknown parameters for a particular satellite. 

These filter estimates refer to composite multipath, since the parameters based on the 

measurements are affected by multipath from all sources in the environment. After the 

parameters are estimated, multipath errors for code, c̂ , and carrier phase,  , can be 

estimated using the following equations: 
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6.7 WAAS CORRECTION ALGORITHMS 

 

One way to enhance the accuracy of the carrier phase measurements is by applying the 

WAAS correction algorithm (Kim et. al. 2007). Presenting equation E.3 (refer 

Appendix E): 

                
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~

  (E.3) 

 

Dropping the frontal   sign, assuming that there is no cycle slip and collecting carrier 

phase multipath, error in the calculate ephemeris and random measurement noise terms 

into a single term  , the equation can now be expressed as: 

          ttcttcttcttcr trionsvr

~
     (6.23) 

which differs slightly from equation 6.1. A single difference of carrier phase 

measurements from a satellite k  at two successive epochs, t  and 0 , is given as follows:  
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Applying WAAS satellite clock-ephemeris error corrections and tropospheric error 

correction, linearising the terms with respect to a reference position, with a short base 

line, equation 6.24 becomes: 
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    (6.25) 

where k

Rr̂  is the computed distance between the satellite k  and a reference position 

using the broadcast ephemeris,  
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k

t1  is a line of sight vector to the satellite k  at time t , 

0,tx  is the relative position of a receiver from the position at time 0 ,  

tREFb ,  is an error caused from the imperfect knowledge of reference position at time t , 

k

t
~  includes residual correction errors and higher order modelling errors due to 

linearisation in addition to k

t . 

 

 

6.8 ADAPTIVE FILTERING FOR INTEROPERABILITY 

 

The concept of adaptive filtering for interoperability is implemented by a switching 

mechanism. Assuming the satellite navigation system currently in used is GPS an in 

order to switch from GPS to another system, say, GLONASS, a transition period for the 

switchover is required, so that there will be an overlap between the two systems. This 

uses a soft-switching technique and, therefore, is not an abrupt change, with a gradual 

switching and graceful changeover to another system. The complete system itself can 

either run the entire three GNSS in parallel or provide a lead-time in between two 

systems before the switching is committed. 

 

The switching mechanism involves switching between two GNSS systems (inter-system 

switching), and not between individual satellites. Even though switching between 

individual GPS and Galileo satellites (intra-system switching) is possible due to the use 

of the same channel access method, there is a need to test the integrity and accuracy of 

the data repeatedly. Hence, this work only considers the inter-system switching 

mechanism. 

 

As stated above, both systems must be in operation for some time. While adaptive 

filtering systems are suitable for such soft-switching, it is important to establish a 

sequence of initialisation algorithms which will facilitate the soft-switching. The data 

for this soft-switching algorithm will depend largely on the differences in performance 
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of the GPS, GLONASS, Galileo and other such GNSS systems. However, it is possible 

in principle to establish soft-switching algorithms based on adaptive UKF filters. 

 

Hence, adaptive UKF provides the basic framework for the design of such interoperable 

systems.  

 

 

6.9 INTEGRATION AND SYSTEM DESIGN 

 

In order that pseudorange errors (or carrier-phase measurement errors) and orbital errors 

can be broadcast and applied by a rover, computation and consolidation of errors must 

be done. In this section, approaches to composite error estimation are presented. Later, 

the switching mechanism for the interoperable system is presented. Finally, the 

complete architecture of the system is laid out.  

 

6.9.1 Approaches to Composite Error Estimation 

 

In this work, two approaches have been devised for the composite error estimation. 

The first approach is the parallel approach (see Figure 6.3) and the second approach 

is the serial approach (see Figure 6.4). 

 

In the parallel approach, an adaptive extended Kalman filter (AEKF) used for 

estimating pseudorange errors with an initially fixed kQ  (process noise) covariance 

matrix is set up in parallel with an adaptive unscented Kalman filter (AUKF) used for 

estimating orbital errors with an initially fixed kR  (measurement noise) covariance 

matrix. The outputs of the AEKF are the estimated pseudorange errors and kR  

covariance matrix while the outputs of the AUKF are the estimated orbital errors and 

kQ  covariance matrix. All these four outputs will be added into the mixing Kalman 

filter, which will process and produce the composite error estimation as the output. 
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In the serial approach, an AEKF is connected in series with an AUKF. The AEKF has 

pseudorange errors and an initially fixed kQ  covariance matrix as its input and 

produces an estimated pseudorange error and an asymptotically adapted kR  

covariance matrix. These two outputs along with orbital errors will be the input to the 

AUKF. The composite error estimation is the output for the whole process. 

 

 

Figure 6.3 Parallel approach to composite error estimation. 

 

 

Figure 6.4 Serial approach to composite error estimation. 

 

Similarly, carrier-phase measurement errors are used in place of code pseudorange 

errors. Generally it is assumed that the process and measurement covariance matrices 
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are unknown. This particularly true if one is switching between GLONASS, GPS and 

other satellite systems. The need for extended Kalman filtering arises as the equations 

are generally nonlinear and are linearised prior to applying the filtering algorithm. In 

this work, the equations were concurrently linearised during the derivation of the 

error equations. 

 

 

6.9.2 Interoperable System: The Switching Mechanism 

 

As described in section 6.8, the concept of adaptive filtering for interoperability is 

implemented by a switching mechanism. In this subsection, the switching mechanism 

is presented as in Figure 6.5. 

 

Figure 6.5 A switching mechanism for interoperability. 

 

Each of the navigation satellite receivers has its own adaptive UKF, which estimates 

the error covariance matrix and other statistical data of each system, taking into 
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account the availability of the signals and the least magnitude of error estimates by 

each adaptive UKF, and compares in the Compare block. The Compare block 

chooses which system is optimal and activates the switch to connect to the 

corresponding system. The default system in use is GPS. 

 

For the switching to occur, a minimum of two systems must be available and 

operational at all times to ensure smooth interoperability. The switching mechanism 

is readily extensible by adding Compass/Beidou receivers and/or future GNSS 

receiver blocks in the above diagram. 

 

6.9.3 The Complete System Architecture 

 

The full operation of the system can be illustrated as in Figure 6.6. 

 

Figure 6.6 Complete system architecture. 

 

The switching mechanism and the composite error estimation subsystems have been 

elaborated on subsections 6.9.1 and 6.9.2. The output of the latter is combined with 

the broadcast correction signal of the local differential satellite navigation reference 
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station, and these are fed into the smoothing filter. The smoothing filter processes 

several coupled states in parallel and estimates the user position. 

 

 

6.10 RECOMMENDATIONS ON IMPLEMENTATION 

 

These algorithms are intended for implementation in a variety of applications for 

unmanned aerial vehicles, airborne survey and gravimetry, and remote sensing by direct 

geo-referencing of aerial imagery. It is expected that the enhanced accuracy algorithms 

would facilitate the development of aircraft landing systems based exclusively on 

satellite navigation receivers. The enhanced accuracy algorithms may be employed with 

the UKF to the mixing problem, so as to facilitate the mixing of measurements made by 

either a GNSS or a DGNSS and a variety of low-cost or high-precision INS sensors, as 

illustrated in the next chapter. 
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CHAPTER 7 

ADAPTIVE MIXING FILTERS FOR 

INTEROPERABILITY 

Mixing navigation information can result in improved navigation positional accuracy. 

Furthermore, applying an unscented Kalman filter as an adaptive mixing filter will 

enable navigation observables to be used as measurements for estimating the 

pseudorange. This customised, interoperable pseudorange is „mixed‟ with INS 

information produced by adaptive mixing filters for simultaneous interoperability, 

which is the main theme of this chapter. 

 

 

7.1 PRINCIPLES OF THE MIXING FILTER 

 

The basic idea of a mixing filter is a system, which accepts two or more inputs and 

gives improved output accuracy without compromising the overall system performance. 

Consider two different methods of measuring the same physical attribute concurrently, 

for example, using two different satellite navigation sensors to measure the 

instantaneous position or velocity of a particular vehicle. Although having two satellite 

navigation sensors can be considered as redundant, there are some benefits associated 

with this implementation, which will be explained as follows.  

 

Assuming that one of the measurements is corrupted or one of the satellite navigation 

systems is down, by continuously observing the observables of both systems, there is a 

possibility of determining which of the systems is misbehaving. Even the faulty system 

can be identified with inertial navigation system (INS) information. This benefit is 

called integrity monitoring. However, if only one system is being used, there is no way 
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to monitor the system integrity and, hence, to determine which one of the systems is 

misbehaving.  

 

In case one of the signals becomes temporarily unavailable, the estimation of that 

attribute can still be made possible by the other signal. This benefit is called availability, 

which continually provides the user with necessary navigational information without 

disruption, even during the downtime of one of the systems.  

 

A well known example of mixing information is an INS vertical channel mixed with 

barometric height. This method has been proven to improve vertical accuracy of the 

vehicle. A widely used implementation of mixing filters is the complementary filter. An 

example of a complementary filter can be best illustrated as in Figure 7.1. 

 

 

Figure 7.1 Schematic form of a complementary filter. 

 

In the above figure, System 1 produces an output of 1 , which has low noise content 

and a fast response, but it is subjected to drift rate. System 2 produces an output of 2 , 

which has high noise content, but has a good long-term accuracy and bounded error 

estimation. The output of this complementary filter 0 , in respect of weighted gain K  

can be formulated as follows: 

 

dtK   )( 0210          (7.1) 
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In this research, the inputs to the mixing filter are obtained from a generic satellite 

navigation system and INS. The majority of the satellite navigation systems currently in 

use are GPS based, although there are also other types of satellite navigation systems 

like GLONASS in use. Galileo and COMPASS, when operational, are also considered 

to be in this category. However, for the sake of generalisation, in this text, the term 

“satellite navigation” will be used to refer to any generic global satellite navigation 

system. The integrated satellite navigation-INS implementation based on the mixing 

filter concept is known to improve navigational performance. 

 

In the next section, the mixing of satellite navigation-INS outputs using adaptive 

filtering for interoperability will be further elaborated. 

 

 

7.2 ADAPTIVE SATELLITE NAVIGATION-INS MIXING 

FILTERS 

 

With the availability of additional measurements, a host of Kalman filter based fusion 

algorithms have been developed (see Adam, Rivlin and Rotstein (1999) for an example) 

to compensate for misalignment and IMU errors (Waldmann, 2007). The Kalman filter 

is itself a two-stage process involving both state propagation and error correction. 

Kalman filter-based approaches have been proposed to integrate imaging vision sensors 

to provide for multi-sensor inertial navigation and alignment (see for example 

Hafskjold, Jalving, Hagen and Gade
 
(2000), Roumeliotis, Johnson and Montgomery

 

(2002) and Wang, Garratt, Lambert, Wang, Han, and Sinclair
 
(2008)). One popular 

approach is to combine measurements made by GPS receiver with the traditional 

strapped down navigation system measurements (Eck and Geering
 
(2000), Vik and 

Fossen (2001), Wagner and Wienecke (2003)). When no rate gyro measurements are 

made and it is still possible to make other measurements using satellite navigation aids 

such as GPS, which can provide estimates of the pseudorange or of carrier smoothed 

pseudorange and the carrier phase differentials, the algorithms for the computation of 
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the navigation position and orientation can be greatly simplified. While errors may still 

be classified as coning errors that arise because finite rotations do not commute, sculling 

errors that are due to incorrect thrust velocity computation as coordinate frames rotate 

between data samples, and as scrolling errors arising from velocity and position updates 

occurring at distinctly different rates, the relative contributions of these error sources to 

the total navigation error can be significantly different when a sensor fusion approach is 

adopted. 

 

GPS aided INS development has progressed in two distinct directions. In the first case, 

there have been substantial efforts to develop high fidelity navigation systems for 

attitude and position estimation. These include high accuracy systems for both geomatic 

and navigation applications (see for example Mohamed
 
(1999), Grejner-Brzezinska and 

Wang
 
(1998), Qin, Zhang, Zhang and Xu (2006), Liu, Tian and Huang

 
(2001) and 

Farrell, Givargis and Barth
 
(2000)). These systems recommend the use of either highly 

sophisticated angular rate sensors or carrier phase and differential carrier phase 

measurement systems to achieve the improved accuracy. For navigation applications 

Rios and White
 
(2000), Bye, Hartmann and Killen

 
(1998) and Salychev, Voronov, 

Cannon, Nayak and Lachapelle
 
(2000) have considered the development of low cost 

GPS aided inertial navigation systems. Nordlund
 
(2000), Wan, E.A., and van der Merwe

 

(2001) have recommended the use of nonlinear estimation algorithms as a matter of 

course. 

 

In order for interoperable satellite navigation-INS mixing filters to be presented, an 

overview of INS is introduced, followed by strapdown INS, gyro-free strapdown INS, 

high precision INS, process modelling with gyro-free acceleration measurements, 

process modelling with carrier phase measurements, customised satellite navigation 

measurement modelling, and finally the formulation of the satellite navigation-INS 

mixing filter.  
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7.2.1 Overview of INS 

 

An Inertial Navigation System (INS) is a standard navigation aid that uses a computer 

and accelerometers to continuously compute the position, velocity, acceleration and 

orientation of a vehicle in motion whether as a stand-alone or with external aiding 

systems. 

 

Two main types of INS, according to Farrel and Barth (1999), are the mechanised-

platform approach and the strapdown approach. Farrel and Barth (1999) define the 

mechanised-platform approach as driving a set of actuators to maintain the alignment 

of the platform with the coordinate axes of a desired navigation coordinate system 

independent of the motion of the vehicle relative to the navigation frame. Farrel and 

Barth (1999) go on to define the strapdown approach, which mounts the instrument 

platform directly on the vehicle chassis and transforms the inertial measurements to 

the navigation frame computationally.  

 

High accuracy integrated navigation systems based on carrier-phase satellite 

navigation systems such as the Global Positioning System (GPS) and Inertial 

Navigation System (INS) are under development for a variety of applications in 

unmanned aerial vehicles (UAVs), airborne survey and gravimetry and remote 

sensing by direct geo-referencing of aerial imagery (Farrell and Barth, 1999; Farrell, 

Givargis and Barth, 2000; Yang, Farrell and Tan, 2001a, 2001b). With the 

availability of several fully operational satellite navigation systems, it has been 

recognised that an optimal combination of one or more satellite navigation systems 

with inertial navigation has a number of advantages over stand-alone inertial or 

satellite navigation. Each satellite contributes its high accuracy and stability over 

time, enabling continuous monitoring of inertial sensor errors. Implementation of 

closed-loop INS error calibration allows continuous and adaptive error updates, 

which limits INS errors within a certain boundary, leading to increased estimation 

accuracy. Thus the satellite navigation aiding information is used to reduce the 

estimate errors in the INS state and to continuously calibrate the inertial sensors. This 
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results in improved INS accuracy. On the other hand, INS contributes immunity from 

satellite outages. During periods when signals from some or all of the satellites 

become unavailable, the INS continues to provide vehicle state information. The INS 

also provides for continuous attitude monitoring, and the reduction of the carrier 

phase ambiguity search volume/time. Using a carrier phase-based and calibrated 

satellite navigation system, high to medium accuracy inertial system, attitude 

accuracy in the range of 10-30 arcsec can be achieved in principle [Grejner-

Brzezinska and Wang, 1998]. Therefore, the integrated approach has been shown to 

result in improved reliability, latency, bandwidth, and update rate improvements 

relative to the satellite navigation only approach. 

 

7.2.2 Strapdown INS  

 

The strapdown INS is preferable compare to the mechanised-platform due to smaller 

size, less expensive, requires less power. The strapdown system eliminates the need 

of gimbals. Furthermore, the strapdown has a higher update rate of about 2000 Hz, in 

comparison to the gimballed system that normally has update rates of 50-60 Hz. This 

higher rate is required to keep the maximum angular measurement within a practical 

range for real rate gyroscopes. Nowadays, strapdown systems are mass produced due 

to cheap, fast and reliable digital computers and are more practical to use compared 

to the gimbals. 

 

7.2.3 Gyro-free Strapdown INS  

 

The concept of gyro-free measurement of angular acceleration using linear 

accelerometers was proposed by Schuler, Grammatikos and Fegley (1967) more than 

forty years ago. Subsequently, Padgoanker, Krieger and King (1975) and Mital and 

King (1979) considered the computation of rigid body rotations from measurements 

of linear acceleration obtained from body fixed linear accelerometers. Moreover, it 

was felt that to obtain stable outputs of rotational motion a minimum of nine 
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accelerometers are necessary. However Chen, Lee and DeBra
 
(1994) were able to 

show that six accelerometers are quite adequate to measurement rigid body rotations. 

Since their work, a few alternate schemes using nine accelerometers have emerged, 

such as the one proposed by Wang, Ding and Zhao
 
(2003). In most of these proposals 

the six accelerometer unit was considered as an independent sensor but was not fully 

integrated into a strapped down navigation system. 

 

Figure 7.2 shows a six linear accelerometers configuration for a Gyro-free strapdown 

INS. 
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Figure 7.2 The GYROCUBE: A sensor for inertial measurements; the directions of 

the arrows indicates the direction of sensitivity of the accelerometers. 

 

7.2.4 High Precision INS  

 

Although there have been several studies of the integration of satellite navigations 

systems with inertial navigation systems (see for example Wang, Lachapelle and 

Cannon, 2004), most of these have been restricted to low cost solutions. With the low 

cost solutions, it is practically impossible to obtain accurate estimates of the attitude. 

Most of the low cost solutions use a complement of solid state accelerometers and do 

not use the more expensive rate or even attitude gyros required for precise attitude 

estimation. Accurate estimation of the attitude will require an independent 

measurement of the attitude or even the attitude and angular velocity vector. 
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Compared to a low cost solution, the development of a high precision integrated 

system would involve fibre-optic gyro-based angular velocity measurements (Bye, 

Hartmann and Killen, 1998) and multiple-antenna based attitude measurements. 

 

In addition to the pseudorange measurement, a carrier phase measurement is usually 

provided in many modern satellite navigation receivers. Two types of measurement 

are available from a typical satellite navigation system (Hatch 1982). The relative 

phase between the received reconstructed carrier phase and the receiver clock phase 

at a particular epoch may be measured. This measurement is a fine measurement of 

pseudorange in terms of the non-integer number of cycles with the integer number or 

whole cycles deleted. Another form of carrier related measurement that is more 

common is obtained by integrating the rate of change of relative phase over a specific 

time interval as determined by the receiver clock. To complement the angular 

velocity and/or attitude measurements either of the carrier phase measurements are 

used in several high precision satellite navigation applications to recursively smooth 

and improve code-based range measurements via the use of an embedded filter and 

an embedded fast ambiguity resolution method. 

 

The well known observable for satellite aided attitude determination is the difference 

in the carrier phase between a master antenna and slave antenna located at two 

different positions on an aircraft. If the integer ambiguity can be resolved, the carrier 

phase difference measurement is the only addition measurement required for attitude 

determination. The phase difference can be shown to be a function of the 

pseudorange difference and the differential ambiguity. The bias and noise in this 

measurement could be eliminated by taking the difference of two independent 

measurements of the phase difference, a process known as double differencing. The 

double difference is a linear combination of four phase measurements obtained from 

two different satellite navigation spacecraft at the two antennae of the receiver. 

Satellite navigation receivers have been built to provide such measurements directly 

but are more expensive than the simpler code phase receivers. Provided such 

measurements are available, the accuracy of the translation and angular velocities 
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could be substantially improved. This aspect involves the measurement of attitude 

using multiple GPS antenna as well as attitude estimation, which has been discussed 

by Vepa (2010) and is included for high precision and Doppler-aided high precision 

applications.  

 

7.2.5 Process Modelling with Gyro-free Acceleration Measurements  

 

The basic navigation equations have been derived by Farrell and Barth
 
(1999). These 

are summarised here for completeness: 
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where VN, VE and VD are the north, east and down velocities in the local tangent 

plane, with reference to a local geodetic frame often referred to as the navigation 

frame (n-frame) or north-east-down frame. The last three equations relate these 

velocities to the rate of change of the geodetic latitude ( ), the rate of change of 

longitude ( ) and the altitude ( h ). AN, AE and AD are the north, east, down 

components of the measured acceleration in the n-frame which must be compensated 

for by adding the acceleration due to gravity g, in down direction, s  is the angular 

velocity of the Earth, MR  and PR  are the radii of curvature in the meridian and prime 

vertical at a given latitude. Unit vectors in the n-frame are related to the unit vectors 

in the Earth-centred inertial frame according to the relations: 
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where   is the hour angle of the vernal equinox. The vector of the north, east, down 

components of the measured acceleration in the n-frame is related to the body 

components of the measured acceleration, by the transformation: 

bodybnNED ADA , ,          (7.4) 

where the transformation of the measured body acceleration components to the north, 

east, down components in the n-frame bn,D , satisfies the differential equation: 

bbnbnGbn  ,,, DDD  .        (7.5) 

 

In equation 7.5 the matrix G  is obtained from the components of the angular 

velocity vector of the local geodetic frame or n frame. The angular velocity vector of 

the local geodetic frame or n frame may be expressed in terms of the Earth angular 

velocity in the local geodetic frame s  as: 



























sin

cos







sG   with 



























sin

0

cos

ss .     (7.6) 

 

Given a vector,  T321  ,   is defined by the relation: 
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Then G  is defined as  GG  . Similarly b  is defined as  bb   where b  

is the body angular velocity in the body fixed frame. 

 

In principle, the scalar acceleration measurements may be expressed as: 

 iiia rrRz Ii   , 6....3 ,2 ,1i      (7.8) 

where i
z , is the direction of sensitivity of the i

th
 accelerometer, i

r  is the position 

vector of the accelerometer location in the body fixed frame, b   and IR  is the 
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inertial acceleration of the origin of the body frame. With six accelerometers it is, in 

principle, possible to express: 

     


,, ii

i

I
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R
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,   (7.9) 

where 

   ii

if rzrz
ii  ,, .       (7.10) 

It follows that: 
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Defining the vectors id  as: 

     iiiiiiiiiiiiiiiiii

i zzzrzrzrzrzrzrz 321211213313223   zrzd  (7.12) 

equation 7.9 may be expressed as: 

  FARD I 
TTT  ,        (7.13) 

where  TTTTTTT

654321 ddddddD  ,  Taaaaaa 654321A , 

and  Tffffff 654321F . 

 

Equation 7.13 may be expressed as: 
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 .   (7.14) 

 

At this stage it is important to recognise that the definition of the functions 

 ,, ii
rzif , must be modified after considering that measurements of acceleration 

must be compensated by adding the local acceleration due to gravity. Furthermore, 

the definition of the acceleration of gravity generally includes the centripetal 

acceleration due to the Earth‟s induced rotation rate vector, s . For this reason, one 

defines: 
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and the equation 7.14 may now be expressed as: 
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   nbFGAD0I
1

33  
 m33 ,     (7.16) 

and the body components of the measured acceleration are: 

    nbFADI0A
1

33  

 mbody 33 ,     (7.17) 

where G is the gravitational component of the acceleration in the body frame: 

 Tffffff 654321 F , b is a measurement bias vector and n is a 

measurement noise vector. It is possible to choose the location i
r , and the direction 

of the measurements i
z , such that, in equation 7.16: 

  0GD0I
1

33 

33 .        (7.18) 

 

Hence it follows that: 

   nbFAD0I
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 m33 ,      (7.19) 

and: 

    nbFADI0DA
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When the accelerometers are located on the faces of a rectangular cuboid, as shown 

in Figure 7.2, the vectors i
z and i

r  may be expressed as: 
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,        (7.21) 

 







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






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
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2

2
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2

3

1

3

1

65432

0000

0000

0000

rr

rr

rr

rrrrrr
1 .   (7.22) 

Equation 7.19 may now be integrated, in principle to obtain the body angular velocity 

vector, b  . The attitude quaternion is then computed from the equations: 
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 q
2

1
q   ,  


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







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


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




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0
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123









 , 



















3

2

1







 ,    (7.23) 

where the quaternion is subject to the constraint 1qq T . Once the solution for the 

quaternion is known, the transformation from the inertial to the body fixed frame 

Ib,D is computed from: 

 

   

   

    
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
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,

22
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qqqqqqqqqqqq

qqqqqqqqqqqq

qqqqqqqqqqqq

Ib qD . (7.24) 

and its inverse is obtained using the same equation by changing the sign of 4q . The 

required transformation bn,D  may then be computed without matrix inversion from 

1

,,



IbIn DD , the transformations from the inertial to the n-frame and the inverse 

transformation from the inertial to the body fixed frame. Alternately bn,D  may be 

computed directly from the associated quaternion, representing the relative attitude of 

the navigation from relative to the body frame. 

 

7.2.6 Process Modelling with Carrier Phase Measurements  

 

The process modelling with carrier phase measurement follows the same models as 

presented by equations 7.2 – 7.8. The departure of both process modelling starts off 

following equation 7.8. Assuming that all accelerometers are co-located and with 

three independent accelerometer measurements it is, in principle, possible to express:  

        ,,rzrzrzrzRz iI

i

i

i

i

iii faa  
 ,  (7.25) 

where i
rr   

   rzrz
i   i

if ,, .        (7.26) 
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Equation 7.26 is similar to equation 7.10, with slight differences in notation and 

equation 7.26 is a more general form to equation 7.10. It follows that: 

       3322
2
3

2
111223312211

2
2

2
31,, rrrzrrrzf ii

i  ii
rz  

  3
2
1

2
22231133 rrrz i   .      (7.11) 

 

Defining the vectors id  as:  

     iiiiiiiiiiiiiiiiii

i zzzrzrzrzrzrzrz 321211213313223   zrzd  (7.12) 

     iiii
i zzz 321 zd         (7.27) 

equation 7.25 may be expressed as: 

  DFrDARD I   
 ,        (7.28) 

where  TTTT
321 dddD  ,  Taaa 321A ,  

and 
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

F .  

 

Equation 7.28 may be expressed as: 

  FrADR
1

I  
  .        (7.29) 

 

At this stage it is important to recognise that the definition of the function vector F 

must be modified considering that measurements of acceleration must be 

compensated by adding the local acceleration due to gravity. Furthermore, the 

definition of the acceleration of gravity generally includes the centripetal acceleration 

due the Earth‟s rotation rate vector, s . For this reason, one defines: 

    rrF   ss .       (7.30) 

 

Equation 7.30 is similar to equation 7.15, with slight differences in notation and 

equation 7.30 is a more general form to equation 7.15. The equation 7.29 gives the 

body components of the acceleration as: 
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  FnbGADA
1  

11m
T
body ,      (7.31) 

where G is the gravitational component of the acceleration in the body frame, mA  is 

the actual measured acceleration vector obtained from a triad of pendulous 

accelerometers, 1b  is a measurement bias and drift vector and 1n  is a measurement 

white noise vector. The north, east and down accelerations are: 

  FnbGADDA
1  

11, mbn
T
NED , 1

,,,

 IbInbn DDD .   (7.32) 

 

The north, east and down accelerations may be expressed in terms of the measured 

north, east and down components of the acceleration and north, east and down 

components of the gravity vector as:  

NEDNED
T
NED GAA  ,        (7.33) 

where  

  FnbADDA
1  

11, mbnNED ,               (7.34a) 

and 

   TbnNED g00,  
GDDG

1 .                (7.34b) 

 

The WGS-84 model of the local acceleration due to gravity is defined as, 

    







 2

2

22

0

3
21

2
1 h

a
hfsmf

a
sgg , sins , 

   86422

0 0000000007.00000001262.00000232718.00052790414.01 sssssg a  

where 2sec7803267715.9 ma   is equatorial acceleration due to gravity, which is 

corrected for latitude variations and altitude h , variations 0

22 GMbam s  which is 

evaluated as, 03080034497860.0m , from estimates of 0GM  which is the product 

of the universal gravitation constant and the Earth mass, and s which is the Earth‟s 

sidereal rate,   is the common or geodetic latitude is the angle between the equatorial 

plane and a line that is normal to the reference ellipsoid. Depending on the flattening, 

f , it may be slightly different from the geocentric (geographic) latitude, which is the 
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angle between the equatorial plane and a line from the centre of the ellipsoid. The 

Earth flattening factor, f  is defined as, 

a

ba
f


 . 

It may also be obtained from the eccentricity e  and is related to it by, 

   22 112 fffe  . 

The WGS-84 parameters used for Earth‟s semi-major axis a , semi-minor axis b  and 

f  are respectively given by, m6378137a , m426356752.31b and 

563298.257223f . However since the same gravity model in used in the 

simulation and measurement, it cancels out and the results are quite independent of 

the model. 

 

The drift and bias vectors are assumed to be first order Gauss-Markov processes 

given by: 

2nbb  21
  , 32 nb          (7.35) 

where 2n  and 3n , are a white noise vector driving the processes. 

The body angular velocity vector, b  , is assumed to be measured by a triad of 

fibre optic laser gyros. Thus the measure angular velocity vector is assumed to be 

related to the body angular vector: 

43 nbL  mb           (7.36) 

where L is the matrix of the three directions of sensitivity of the fibre-optic laser 

gyros, m  the actual measured angular velocities, 2b  is a measurement bias and drift 

vector and 3n  is a measurement white noise vector. Following Savage (1998a) and 

Savage (1998b) the bias and drift vector is assumed to be a first order Gauss-Markov 

process given by:  

543 nbb  , 64 nb          (7.37) 

where 5n  and 6n , are a white noise vector driving the processes. 
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It is assumed that there is no need to scale either the acceleration or angular velocity 

measurements as the sensors are assumed to be calibrated. Thus, no provision is made 

for scaling the measurements. Furthermore, when the three accelerometer 

measurement axes and fibre-optic gyro measurement axes coincide with the body 

axes, it can be assumed that nominally, 33 ILD . 

 

Similarly, as in subsection 7.2.5, Process Modelling with Carrier Phase 

Measurements, the attitude quaternion is then computed from the equations: 

 q
2

1
q   ,  
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 ,    (7.23) 

where the quaternion components are subject to the constraint 1 2
4

2
3

2
2

2
1 qqqq . 

Once the solution for the quaternion is known, the transformation from the inertial to 

the body fixed frame Ib,D is computed from: 
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Ib qD .  (7.24) 

and its inverse is obtained from the same equation by changing the sign of 4q . The 

required transformation bn,D  may then be computed without matrix inversion from 

1

,,



IbIn DD , the transformations from the inertial to the n-frame and the inverse 

transformation from the inertial to the body fixed frame. Alternatively, bn,D  may be 

computed directly from the associated quaternion, representing the attitude of the 

navigation relative to the body frame. 
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7.2.7 Customised Satellite Navigation Measurement Modelling  

 

The satellite-based position estimation and measurement has been sufficiently 

modelled and elaborated in full detail in chapter three. Re-visiting equation 3.1 as 

follows, the measured code pseudorange, ~  is given: 

            

         ttcttctEtSAttc

ttMPttczzyyxx

trionsv

rusvusvusv



 
5.0222

ˆˆˆ~
  (3.1) 

 

The actual magnitude of the pseudorange vector  , can be expressed as: 

       5.0222
ˆˆˆ

usvusvusv zzyyxx       (7.38) 

 

Thus the estimate of the pseudorange ̂  may be expressed in terms of the actual 

magnitude of the pseudorange vector  , as: 

             ttcttctEtSAttctMPttc trionsvr   ~ˆ            (7.39a) 

 t ˆ                   (7.39b) 

 

The actual pseudorange vector is related to the geodetic latitude  , geocentric 

latitude s , longitude   and altitude h, by the relations: 































sinsin

sincossincos

coscoscoscos

hr

hr

hr

ss

ss

ss

        (7.40) 

where   is the Earth-centered, Earth-fixed position vector of the aircraft, sr  the 

radius at a surface point of the flattened Earth ellipsoid and s are defined in terms of 

the flattening f and the equatorial radius eR  as: 

   tan1arctan
2

fs          (7.41) 

and 

   ses fRr 222 sin1111  .      (7.42) 
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The change in attitude of an aircraft over a period of time can be observed by 

comparing the current measured phase differential with the initial phase differential 

measured at some initial reference time. Thus, this difference in the measured phase 

differential could be expressed as: 

  0rrd  Bm





2
        (7.43) 

where rB is the navigation satellite‟s sight line vector at the current time and r0 is the 

navigation satellite‟s sight line vector at the initial reference time. The navigation 

satellite‟s sight line vector rB could be expressed in terms of the satellite‟s body 

coordinates. However, since the body attitude may be defined in terms of the 

quaternion, the transformation relating the estimate of current sight line vector r̂  in 

the inertial coordinates to the current sight line vector rB in body coordinates may be 

expressed in terms of the quaternion components. Hence: 

 rqDr ˆ
,IbB  .          (7.44) 

 

An estimate of current sight line vector r̂  in the orbiting coordinates can generally be 

obtained by an independent Kalman filter or by employing an algorithm such as 

NORAD‟s SDP4, SDP8 or SGP4 methods (Hoots et. al.
 
2004). It therefore follows 

that the difference in the measured phase differential could be expressed as: 

      0rrdrIqDd  ˆ
2

ˆ
2

,







 Ibm ,      (7.45) 

and using the constraint on the components of the quaternion, 1 2
4

2
3

2
2

2
1 qqqq , 

we may write,   IqD Ib,  as: 
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IbIb qDIqD  (7.46) 

which is a homogeneous quadratic function of the components of the quaternion. 

Thus, a discrete measurement of the error in the difference of the phase differentials 

due to changes in the attitude can be expressed as: 
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       







 vkz Ibmm  rqDdrrd 0

ˆ
2

ˆ
2

,     (7.47) 

where v  is an additive Gaussian random variable representing a white noise or delta-

correlated stochastic process. For three-axis measurement of the attitude one would 

require three independent measurements, which may be expressed as: 

       iIbiimimi vkz 







  rqDdrrd 0

ˆ
2

ˆ
2

, , 3 2, ,1i .  (7.48) 

 

To complement these pseudorange measurements we assume that we also have 

independent measurements of the altitude and east geodetic longitude. This is 

necessary as the altitude and longitude kinematics have been included in the process 

model. Measurements of the altitude may be obtained from a radar altimeter while 

there are a variety of ways to obtain the east geodetic longitude. Alternatively the 

longitude kinematics may be deleted from the process model. 

 

7.2.8 Formulation of the Satellite Navigation-INS Mixing Filter 

 

Consider a random variable w  with dimension L  which is going through the 

nonlinear transformation,  wfy  . The initial conditions are that w  has a mean w  

and a covariance wwP . To calculate the statistics of y , a matrix  of 12 L  sigma 

vectors is formed. We have chosen to use the scaled unscented transformation 

proposed by Julier
 
(2002), as this transformation gives one the added flexibility of 

scaling the sigma points to ensure that the covariance matrices are always positive 

definite. 

 

Given a general discrete nonlinear dynamic system in the form: 

  kkkkk wuxfx  ,1 ,   kkkk vxhy        (7.49) 

where n
k Rx  is the state vector, r

k Ru  is the known input vector, m
k Ry  is the 

output vector at time k. kw  and kv  are, respectively, the disturbance or process noise 

and sensor noise vectors, which are assumed to Gaussian white noise with zero mean. 
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Furthermore kQ  and kR  are assumed to be the covariance matrices of the process 

noise sequence, kw  and the measurement noise sequence, kv  respectively. The 

unscented transformations of the states are denoted as: 

 kk

UT

k

UT

k uxff , ,  k

UT

k

UT

k xhh          (7.50) 

while the transformed covariance matrices and cross-covariance are respectively 

denoted as: 

 kk

ff

k

ff

k uxPP ,ˆ ,    k

hh

k

hh

k xPP ˆ                 (7.51a) 

and 

 kk

xh

k

xh

k uxPP ,ˆ   .                 (7.51b) 

 

The UKF estimator can then be expressed in a compact form. The state time-update 

equation, the propagated covariance, the Kalman gain, the state estimate and the 

updated covariance are respectively given by: 

 1xfx 
  k

UT
kk

ˆˆ
1                   (7.52a) 

11
ˆ



  k

ff

kk QPP                   (7.52b) 

  1
ˆˆ


  k

hh

k

xh

kk RPPK                  (7.52c) 

    k
UT
kkkkk xhzKxx ˆˆˆ                  (7.52d) 

  T

kk

hh

kkk KRPKPPk

1
ˆˆˆ


  .                (7.52e) 

 

Equations 7.52a-e are in the same form as the traditional Kalman filter and the 

extended Kalman filter. Thus higher order nonlinear models capturing significant 

aspects of the dynamics may be employed to ensure that the Kalman filter algorithm 

can be implemented to effectively estimate the states in practice. Hence, the set of 

equations 4.56-4.59 and the set of equations 7.49-7.52 are identical.  

 

In order to employ the UKF when precise statistics of the process and measurement 

noise vectors are not available, the adaptive filter method proposed by Song, Qi and 

Han (2006) is used to estimate the orbit parameters. The covariance matrixes of 
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measurement residuals are recursively updated in the UKF. The measurement noise 

covariance matrices, in the case of the UKF, may be expressed as: 

hh

k

Nk

rk PCR ˆˆ  ,           (7.53) 

where Nk

r

 ,
C  is defined in terms of the sample size N and the residual kr  as: 





k

Nkj

T
jj

Nk
r

N 1

 , 1
rrC ,    kkkkkkk xxHvxHzr k

ˆˆ  .    (7.54) 

 

Equation 7.53 involves the further computation of hh

kP̂ , by applying the unscented 

nonlinear transformation,  k

UT

k xh ˆ  to the state estimate, kx̂ . The measurement noise 

covariance may be updated in principle by employing equation 7.53. The nonlinear 

relationship between the covariance matrices also suggests that the update of kR  

could be done by employing the covariance of the residual. 

 

In the application considered in this work, the adaptation of kQ  is implemented, as it 

is the process statistics that is often unknown or may be considered to vary. It was 

observed that the magnitudes of the filter gains were relatively small and for this 

reason the exact expression for an estimate of kQ : 

ff

kk

Nk

xk 1

 ,

1
ˆˆ

  PPCQ                   (7.55a) 

was approximated as: 

Nk

xk

 ,

1
ˆ

  CQ                   (7.55b) 

where Nk

x

 ,

C  is defined as: 





   kkkkk

k

Nkj

TNk
x

N
PHKPPxxC ˆˆˆ1

1

 , ,                (7.56) 

and 

   kkkk xxxxx ˆˆ   .                  (7.57) 
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7.3 APPLICATION OF THE ADAPTIVE UKF TO SATELLITE 

NAVIGATION-INS MIXING FILTERS 

 

The process model for applying the adaptive UKF is given by equations 7.2, 7.19 and 

7.23. For low-cost solution, NEDA  vector in equation 7.2 is given by equations 7.20, 

7.24 and 7.3, while for high precision and Doppler-aided high precision mechanisation, 

the NEDA  vector in equations 7.2 is given by equations 7.32-7.34, 7.24 and 7.3. In using 

equation 7.23 with the UKF it is important to ensure that the constraint which the 

quaternion must satisfy is met by the estimates. This is ensured by repeated application 

of the method proposed by Vepa (2010) where the quaternion normalisation is 

considered as a nonlinear transformation and performed by applying the unscented 

transformation sequentially. The measurement model for the low-cost solution is given 

by equations 7.39 to 7.42, while the measurement model for high precision and 

Doppler-aided high precision mechanisation is given by equations 6.5 and 6.6 and their 

carrier phase measurement model is given by equations 7.46 to 7.48. 

 

In this work, three types of filters are tested, namely the low cost satellite navigation-

INS mixing filter, high precision satellite navigation-INS mixing filter and the Doppler-

aided high precision satellite navigation-INS mixing filter. Each of the filters‟ output 

simulation is compared with standard UKF estimation and adaptive UKF estimation. 

This choice of filters selected, is dependent on the nature and availability of auxiliary 

sensors and hardware. There are several other possibilities but only these three were 

considered for purposes of comparison. In the low cost case, no gyroscopic sensors 

were used, while in the Doppler-aided case it was assumed that velocity measurements 

are available with the kind of accuracy associated with Doppler measurements. 

 

To test the filters‟ performance, rather than subject it to realistic accelerations over an 

extended period of time, the system is subjected to intense accelerations and sustained 

rotations over a short time frame. The initial altitude of the vehicle was assumed to be 



 

 

CHAPTER 7: ADAPTIVE MIXING FILTERS FOR INTEROPERABILITY  
 

 
 
 

173 

10,000 metres while the initial location was assumed to be above London Heathrow. 

The exact kQ  adaptation algorithm-based UKF was initially compared with the non-

adaptive (standard) UKF and it was found that it outperforms the standard UKF in every 

department as presented in the following subsections. Further results are now included 

to provide supporting evidence for the conclusions. 

 

 

7.3.1 Low Cost Satellite Navigation-INS Mixing Filter 

 

It must be recognised at the outset that the process error covariance is relatively quite 

large as the accelerometers being used are generally low cost MEMS type sensors. 

The implication of the use of these accelerometers, which are characterised by a 

relatively large standard deviation in the measured acceleration, is that the 

pseudorange measurement error correction, due to the availability of the additional 

accelerometer measurements, is expected to be relatively small in comparison with 

the total user equivalent range error. The real issue is that that the navigation mixing 

filter is able to deal with the large uncertainties associated with low grade 

accelerometers. Bearing this in mind, the UKF is first implemented as a mixing filter 

to facilitate GPS-INS integration and these results are discussed in the first instance. 

Furthermore, as no measurements of attitudes are deemed to be available, the 

estimates of the attitude quaternion are not expected to be unique or consistent. Yet 

the associated direction cosine matrix is expected to be uniquely estimated. 
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Figure 7.3a Estimates of the latitude, longitude and altitude (LLA) compared with 

the corresponding simulations. 

 

The rotation rate of the vehicle is assumed to consist of two components oscillating at 

different frequencies. In the first instance, the north, east and down velocity equations 

and the angular velocity equations were each subjected to three independent slowly 

varying biases and the corresponding 19 states of the filter were estimated by 

applying the UKF algorithm. Figure 7.3a shows the estimates of the latitude, 

longitude and attitude over a typical epoch of 60 seconds (= 3   10
4
 time steps) and 

compared with the corresponding simulations. The time step for implementing the 

estimator was chosen as, 002.0t  seconds. Figure 7.3b presents the corresponding 

velocities in the north, east and down directions, while while Figures 7.3c and 7.3d 

shows the estimated horizontal and vertical velocities compare with the 

corresponding simulations respectively. Figure 7.3e presents the angular velocities 

that the system is subjected to. The user position error is depicted in Figure 7.3f and 

the pseudorange measurement estimate error is illustrated in Figure 7.3g. 
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Figure 7.3b Estimates of the north, east and down (NED) velocities compared with 

the corresponding simulations. 

 

 

Figure 7.3c Estimates of the horizontal velocities compared with the corresponding 

simulations. 
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Figure 7.3d Estimates of the vertical velocities compared with the corresponding 

simulations. 

 

 

Figure 7.3e Estimates of the body angular velocities, in body coordinates, compared 

with the corresponding simulations. 

 



 

 

CHAPTER 7: ADAPTIVE MIXING FILTERS FOR INTEROPERABILITY  
 

 
 
 

177 

 

Figure 7.3f Estimate of the user position error. 

 

 

Figure 7.3g Estimate of the pseudorange measurement error. 
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Although this estimate is relatively very small, as expected, the estimated velocities 

in the north, east and down directions shown in Figure 7.3b and one of the angular 

velocity components shown in Figure 7.3e are apparently drifting away from the 

simulated values. To remedy the situation the biases introduced into some of the 

north, east and down velocity equations, as well as into some of the angular velocity 

equations, are also assumed to drift slowly at slowly varying rates. While these 

modifications improved the performance of the filter marginally, the north velocity 

and the yaw angular rate components continued to drift at an unacceptably fast rate. 

However, changing the process noise covariance matrix did have a dramatic effect on 

the drift rate and the performance of the filter, which improved significantly.  

 

For this reason, at this stage and in subsequent subsections, it was decided to update 

the process covariance matrix adaptively.  

 

 

Figure 7.4a Comparison of the latitude, longitude and altitude (LLA) obtained by 

simulation, standard UKF estimation and adaptive UKF estimation. 
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Figure 7.4b Comparison of the north, east and down (NED) translational velocities 

obtained by simulation, standard and adaptive UKF estimation. 

 

 

Figure 7.4c Comparison of the horizontal velocities obtained by simulation, standard 

and adaptive UKF. 
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Figure 7.4d Comparison of the vertical velocities obtained by simulation, standard 

and adaptive UKF. 

 

 

Figure 7.4e Comparison of the body angular velocities, in body coordinates, obtained 

by simulation, standard and adaptive UKF. 
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Figure 7.4f Comparison of user position errors obtained by simulation, standard and 

adaptive UKF. 

 

 

Figure 7.4g Comparison of pseudorange measurement errors obtained by simulation, 

standard and adaptive UKF. 
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The results of applying the adaptation of kQ  exactly (equation 7.55a) are shown in 

Figures 7.4 over an epoch of 60 seconds (= 3   10
4
 time steps with the time step for 

implementing the estimator was chosen as, 002.0t  seconds). It is clear from 

these figures that the exact kQ  adaptation algorithm outperforms the standard UKF in 

every department. Similar results were obtained by applying the approximate kQ  

adaptation algorithm (equation 7.55b).  

 

The rapid variations in the estimated angular velocities in Figure 7.4e are due to the 

estimator attempting to follow the rapid rotations of the body. It must be noted that 

the tests that were carried out have been done with exceptionally high translational 

and angular velocities. In reality a low-cost satellite-aided inertial navigation system 

would never be subjected to such extremes. The user position and pseudorange 

estimate error remains within the bounds shown in Figure 7.4f and 7.4g. 

 

7.3.2 High Precision Satellite Navigation-INS Mixing Filter 

 

It must be recognised at the outset that the process error covariance is relatively quite 

low as both the accelerometers and rate gyros being used are high precision type 

sensors. The implication of the use of these accelerometers, which are characterised 

by a relatively low standard deviation in the measured acceleration, is that the 

pseudorange measurement error correction, due to the availability of the additional 

accelerometer measurements, is expected to be relatively of the same order in 

comparison with the total user equivalent range error. The real issue is that the 

navigation mixing filter is not only able to deal with the uncertainties associated with 

the sensors, but also be able to estimate the user position to a desired level of 

accuracy. Bearing this in mind, the UKF is first implemented as a mixing filter to 

facilitate GPS-INS integration, and these results are discussed in the first instance. 

Furthermore, although no measurements of attitudes are deemed to be available, the 

estimates of the attitude quaternion are expected to be unique or consistent, due to the 
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presence of the rate gyro measurements, and the associated direction cosine matrix is 

expected to be uniquely estimated. 

 

The simulations as shown figures 7.5a, 7.5b, 7.5c, 7.5d and 7.5e and it is observed 

that it outperforms the standard UKF in every department. The comparison is made 

over a typical epoch of the first 4 seconds (= 2   10
4
 time steps) as the UKF filters 

converge to a steady state well before the end of this time frame and the filter‟s 

response is compared with the corresponding simulations. The time step for 

implementing the estimator was chosen as, 0002.0t  seconds. The number of 

visible satellites is assumed to be 3. 

 

Figure 7.5a Comparison of simulated and UKF estimated navigation positions (LLA 

- latitude, longitude and attitude) over 20000 time steps (equivalent to a time frame of 

4 seconds). 

 

In the first instance the north, east and down velocity equations and the angular 

velocity equations were each subjected to three independent slowly varying biases 

and the corresponding 31 states of the filter were estimated by applying the UKF 

algorithms. 
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Figure 7.5b Comparison of simulated and UKF estimated navigation velocities 

(north east and down) over 20000 time steps (equivalent to a time frame of 4 

seconds). 

 

Figure 7.5c Comparison of simulated and UKF estimated body attitude quaternion 

components over 20000 time steps (equivalent to a time frame of 4 seconds). 
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Figure 7.5d Errors in the UKF estimated pseudorange for three satellites over 20000 

time steps (equivalent to a time frame of 4 seconds). 

 

Figure 7.5e Errors in the UKF estimated three-axis user position components over 

20000 time steps (equivalent to a time frame of 4 seconds). 

 



 

 

CHAPTER 7: ADAPTIVE MIXING FILTERS FOR INTEROPERABILITY  
 

 
 
 

186 

 

Figure 7.6a Comparison of simulated and adaptive UKF estimated navigation 

positions (LLA - latitude, longitude and attitude) over 20000 time steps (equivalent to 

a time frame of 4 seconds). 

 

In Figure 7.6a, just the adaptive UKF estimates of the latitude, longitude and attitude 

are compared with the corresponding simulations. In Figure  7.6b are presented the 

corresponding velocities in the north, east and down directions. It should be noted 

that in the standard UKF and adaptive UKF comparisons, the simulated responses are 

slightly different due to differences in the disturbances. However they are of the same 

orders of magnitude thus facilitating the comparison of errors. It may be observed 

that the errors in the horizontal velocity components (north and east) are relative high. 

This is due to the fact that there is no information in the measurements that will help 

separate the components of velocity in the horizontal plane. For this reason the case 

with additional three axis Doppler measurements is considered in the next subsection.  

Figures 7.6c and 7.6d compares the estimated and simulated components of the 

velocity in the horizontal and vertical planes which shows almost an insignificant 

error in these two components. Thus the difficulty is in resolving the velocity in the 

horizontal plane into its north and east component. Figure 7.6e present the 
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corresponding body attitude quaternion components. The pseudorange measurement 

estimate error is illustrated in Figure 7.6f. The user position error is depicted in 

Figure 7.6g. 

 

Figure. 7.6b Comparison of simulated and adaptive UKF estimated navigation 

velocities (north, east and down) over 20000 time steps (equivalent to a time frame of 

4 seconds). 

 

Figure 7.6c Comparison of simulated and adaptive UKF estimated navigation 

horizontal velocities over 20000 time steps (equivalent to a time frame of 4 seconds). 
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Figure 7.6d Comparison of simulated and adaptive UKF estimated navigation 

vertical velocities over 20000 time steps (equivalent to a time frame of 4 seconds). 

 

Figure 7.6e Comparison of simulated and adaptive UKF estimated body attitude 

quaternion components over 20000 time steps (equivalent to a time frame of 4 

seconds). 
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Figure 7.6f Errors in the adaptive UKF estimated pseudorange for three satellites 

over 20000 time steps (equivalent to a time frame of 4 seconds). 

 

Figure 7.6g Errors in the adaptive UKF estimated three-axis user position 

components over 20000 time steps (equivalent to a time frame of 4 seconds). 
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The pseudorange estimate error in the Figure 7.6f and the user position errors in 

Figure 7.6g remain within certain limits.  

 

7.3.3 Doppler-Aided High Precision Satellite Navigation-INS Mixing 

Filter 

 

Although all the estimated errors are relatively very small as expected, only the 

estimated north and east velocity components shown in figure 7.6b differed slightly 

from the simulated components. To remedy the situation additional Doppler aided 

measurements of the velocities were assumed to be available. These additional 

measurements improved the performance of the filter. 

 

 

Figure 7.7a Comparison of simulated and adaptive Doppler-aided UKF estimated 

navigation velocities (north, east and down) over 20000 time steps (equivalent to a 

time frame of 4 seconds). 
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Figure 7.7b Comparison of simulated and adaptive Doppler-aided UKF estimated 

body attitude quaternion components over 20000 time steps (equivalent to a time 

frame of 4 seconds) 

 

The results of applying the adaptation of kQ  exactly (equation 7.55a) on the velocity 

and quaternion components are shown in Figures 7.7a and 7.7b over an epoch of the 

first 4 seconds (= 2   10
4
 time steps).  All the other estimate errors behave quite 

similarly to those shown in figure 7.6a-7.6g and are not shown. Moreover the 

pseudorange estimate and the user position estimate errors remain within the bounds 

shown in Figures 7.6f and 7.6g and are not shown. It is observed that the accuracy of 

the estimate of components of the quaternion is maintained in spite of considerable 

variations in their magnitude. Generally it was observed that the most inaccurate 

component of the quaternion was in fact the one with the lowest magnitude. This 

error is due to the fact that both the simulated quaternion and the estimated 

quaternion are being forced to satisfy the normalisation constraint 

1 2

4

2

3

2

2

2

1 qqqq  exactly. Consequently the errors in the major components of 

the quaternion cause a significant error in the component with the lowest magnitude. 
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In practice it may be essential to trade-off the error in the component with the lowest 

magnitude by allowing a small normalisation error. 

 

It is observed that the performance of the adaptive UKF based estimations has 

improved when the addition Doppler measurements were made available to the filter, 

particularly in resolving the velocity ion the horizontal plane to its north and east 

components. It must be noted that the tests that were carried out have been done with 

exceptionally high translational and angular velocities. In reality a satellite aided 

inertial navigation system would be subjected to such extremes only on certain rare 

occasions.  

 

Finally to demonstrate the efficacy adaptive UKF estimator over a relatively long 

period of the time, the filter is run over a 30 seconds time frame and the results over 

the last 4 seconds compared with the simulations in Figures 7.8a-7.8g. 

 

 

Figure 7.8a Comparison of simulated and adaptive UKF estimated navigation 

positions (LLA - latitude, longitude  and attitude in metres) over the last 20000 time 

steps (equivalent to the last 4 seconds in a 30 seconds time frame). 
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Figure 7.8b Comparison of simulated and adaptive UKF estimated navigation 

velocities (north, east and down) over the last 20000 time steps (equivalent to the last 

4 seconds in a 30 seconds time frame). 

 

 

Figure 7.8c Comparison of simulated and adaptive UKF estimated navigation 

horizontal velocities over the last 20000 time steps (equivalent to the last 4 seconds in 

a 30 seconds time frame). 
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Figure 7.8d. Comparison of simulated and adaptive UKF estimated navigation 

vertical velocities over the last 20000 time steps (equivalent to the last 4 seconds in a 

30 seconds time frame). 

 

 

Figure 7.8e Comparison of simulated and adaptive UKF estimated body attitude 

quaternion components over the last 20000 time steps (equivalent to the last 4 

seconds in a 30 seconds time frame). 
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Figure 7.8f Comparison of errors in the UKF and adaptive UKF estimated 

pseudoranges for three satellites over the last 20000 time steps (equivalent to the last 

4 seconds in a 30 seconds time frame). 
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Figure 7.8g Comparison of errors in the UKF and adaptive UKF estimated three-axis 

user position components over the last 20000 time steps (equivalent to the last 4 

seconds in a 30 seconds time frame). 

 

It is particularly interesting to observe that the adaptive UKF estimator is able to 

predict the north, east and down velocity components without any assistance from the 

Doppler measurements. Moreover it is able to predict the body attitude accurately 

over the entire time frame, even though the aircraft seems to have been reduced to a 

state of sustained rotations at the end of the 30 second time frame and the body 

attitude components are continuously changing. 
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7.4 INTEROPERABLE SATELLITE NAVIGATION-INS 

MIXING FILTERS 

 

In this thesis, the feasibility of implementing an adaptive unscented Kalman filter-based 

mixing filter, which is used to develop a low-cost satellite-aided inertial navigation 

system and a high accuracy satellite-aided inertial navigation system, with and without 

Doppler-aided techniques have been demonstrated. 

 

For the low-cost solution, the measurements were assumed to be made by six low-cost 

ADXL203, type two, axis accelerometers and a low-cost altimeter. While the estimates 

of the pseudorange using a standard UKF were of acceptable accuracy, it was also 

found the estimates of the north, east and down velocities and the body axis angular 

velocities did not converge over a long time frame. For this reason the adaptive UKF 

algorithm was used with the process covariance matrix updated recursively. When the 

adaptive UKF algorithm was used there was a dramatic 200% minimum reduction in the 

errors in the estimated north, east and down velocities, and a 60% minimum reduction 

in the errors in the estimated body angular velocities at the end of the time frame. 

Moreover, when additional measurements of the true airspeed and vertical airspeed 

were available the estimated velocities were seen to converge to the simulated values.  

 

For high precision applications, the acceleration and angular velocity measurements 

were assumed to be made by three high accuracy accelerometers and three fibre-optic 

ring-laser rate gyros. As with to the low-cost solution, the estimates of the pseudorange 

using a standard UKF were of acceptable accuracy, but it was also found the estimates 

based on adaptive UKF algorithm provided extremely accurate estimates of the 

positioning variables and reasonably accurate estimates of the body quaternion 

components. Moreover, when additional Doppler-aided measurements of the velocity 

components were available, the estimated velocities were seen to converge to the 

simulated values even more rapidly.  
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The methodology may be developed as a stand-alone system or employed in 

conjunction with a traditional strapped down inertial navigation system for purposes of 

initial alignment. Moreover, the feasibility of employing adaptive mixing facilitates the 

possibility of using the system in an interoperable fashion with satellite navigation 

measurements. 

 

It is important to note that any generic satellite navigation system observables can be 

used as a measurement of pseudoranges for the satellite navigation-INS filter. This is 

due to the adaptive nature of the UKF, which will adapt according to the error 

covariance matrices; therefore the adaptive mixing filter presented here is interoperable. 
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CHAPTER 8 

CONCLUSIONS 

In this chapter, a summary of findings is presented, followed by the contributions and 

achievements. Finally, recommendations for future works are presented. 

 

 

8.1 SUMMARY OF FINDINGS 

 

With the availability of several fully operational satellite navigation systems, it has been 

recognised that an optimal combination of the output of one or more satellite navigation 

systems with the output of an inertial navigation system has a number of advantages 

over a stand-alone inertial or satellite navigation system. The use of adaptation 

facilitates interoperable mixing of the outputs of any satellite navigation system with the 

output of an inertial navigation system. Similar advantages could be gained by the 

application of the UKF-based estimation methods to the various components of the 

differential GNSS (DGNSS) reference station error estimation algorithms. Furthermore, 

the application of adaptive UKF-based estimation could, in principle, facilitate 

interoperability.  
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8.2 THESIS CONTRIBUTION AND ACHIEVEMENTS 

 

The main contributions of this research work so far are as follows: 

 

 Implementing the NORAD SPACETRACK SDP4 and SGP4 algorithms with 

suitable modifications so that they can be employed for navigation satellites in 

MATLAB code. If a precisely surveyed location of an observer is known, then 

the reference-to-satellite range of that observer to the corresponding satellite can 

be calculated. By adding the receiver clock biases to the reference-to-satellite 

range, the pseudoranges of the user receiver with its respective satellites can be 

simulated. 

 

 Proposed and validated a method of converting NORAD TLE for GPS 

operational satellites into GPS 16 element ephemeris. 

 

 Further improvements are made by a proper inclusion of the secular corrections 

to increase the accuracy of the ephemeris. These clearly show that an 

interoperable differential navigation satellite reference station has the potential 

to convert different types of ephemerides to cater for various end user receivers. 

This implies that a GPS user is potentially able to receive an ephemeris from a 

GLONASS satellite, for instance, after the interoperable stations process the 

message conversion at the system level. 

 

 Although the standard UKF was initially a promising alternative, features of the 

orbital dynamics led to the conclusion that the standard UKF must be employed 

with appropriate restrictions on the noise covariance statistics, to facilitate the 

calculation of the sigma points. The superiority of the UKF over the EKF is 

clearly and unambiguously demonstrated in Chapter 5, where it was possible to 

implement both methods as it was possible to linearise the governing dynamical 

equations. This finding is in conformance with the examples that have been 
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demonstrated in the literature by Julier and Uhlmann (2004).  The fundamental 

advantage of the UKF is that it is a derivative free method.  To address some of 

the shortcomings of the standard UKF, a modified approach to the UKF is 

proposed. The proposed modified UKF uses singular value decomposition 

(SVD) rather than Cholesky decomposition to estimate the sigma points. 

Moreover, the singular values are replaced by their absolute values in the 

decomposition. Thus, this work presents the results of the application of the 

modified approach to the UKF to orbit estimation to demonstrate its superiority 

over the standard approach. This modification of the UKF algorithm resulted in 

a remarkable improvement in the performance of the UKF. 

 

The main achievements of this research work so far are as follows:  

 

 The results indicate the method used is particularly suitable for estimating the 

orbit ephemeris of navigation satellites and the differential position and 

navigation filter mixing errors, thus facilitating interoperable DGNSS operation 

for aircraft landing.  

 

 This thesis has demonstrated the feasibility of implementing an adaptive 

unscented Kalman filter-based mixing filter which is used to develop a low-cost 

satellite-aided inertial navigation system or/and a high-accuracy satellite-aided 

inertial navigation system with and without Doppler-aided techniques. In both 

cases, the output performance of the adaptive unscented Kalman filter exceeded 

that of the standard, non-adaptive equivalent for the same test case. 
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8.3 RECOMMENDATIONS FOR FUTURE WORK 

 

Several recommendations for future work are suggested below: 

 

 Apart from the notably successful implementation of adaptive unscented 

Kalman filters used in this research, the direction of this work could be 

progressed further by applying several potential filters for interoperable 

algorithms. The filters proposed for further consideration are the particle, 

polynomial and high-gain filters. 

 

 This thesis concentrates mainly on designing and simulating models of the 

interoperable algorithms on MATLAB. Further testing of the interoperable 

algorithms using a suitable test bed is necessary for verification of the system. 

 

 Testing using real-time data acquired from a standard GNSS receiver, both 

stationary and roving vehicle, is highly desirable. 

 

 Further research is needed to fine-tune the interoperable algorithms and thus, 

facilitated interoperable DGNSS operation for safe aircraft landing. 
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APPENDIX 

Details of certain models and derivations are given and discussed in the appendices. 

 

 

APPENDIX A: THE SDP4 MODEL 

 

The SDP4 model is one of the propagation models of NORAD element sets based on 

Hoots and Roehrich (1980). The main SDP4 algorithm is listed here in detail. 

 

The NORAD mean element sets can be used for prediction with SDP4. The original 

mean motion ( 0n  ) and semi-major axis ( 0a  ) are first recovered from the input elements 

by the equations: 
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For perigee between 98 kilometers and 156 kilometers, the value of the constant s  used 

in SDP4 is changed to: 
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  Easeas  00

* 1        (A.7) 

For perigee below 98 kilometers, the value of s  is changed to: 

EaXKMPERs  20*
        (A.8) 

If the value of s  is changed, then the value of  4

0 sq   must be replaced by: 
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Then, calculate the constants (using the appropriate values of s  and  4

0 sq  ): 
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At this point SDP4 calls the initialisation of DEEP routine, which calculates all 

initialised quantities needed for the deep-space perturbations. 

 

The secular effects of gravity are included by: 

 00 ttMMM DF                      (A.21) 

 00 ttDF                        (A.22) 

 00 ttDF                       (A.23) 

where  0tt  is time since epoch. The secular effect of drag on longitude of ascending 

node is included by: 

 2

012

0

2

0

20

2

21
ttC

a

kn
DF 









                  (A.24) 

Next, SDP4 calls the secular section of DEEP, which adds the deep-space secular 

effects and long-period resonance effects to the six classical orbital elements. The 

secular effects of drag are included in the remaining elements by: 

  2011 ttCaa DS                     (A.25) 

 04

* ttCBee DS                      (A.26) 
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where DSa , DSe , DSM , DS , and DS , are the values of 0n , 0e , DFM , DF , and   

after deep-space secular and resonance perturbations have been applied. 

 

Here SDP4 calls the periodics section of DEEP, which adds the deep-space lunar and 

solar periodics to the orbital elements. From this point on, it will be assumed that n , e , 
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I ,  ,  , and M  are the mean motion, eccentricity, inclination, argument of perigee, 

longitude of ascending node, and mean anomaly after lunar-solar periodics have been 

added. 

 

Add the long-period periodic terms: 
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Solve Kepler‟s equation for  E  by defining: 
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and using the iteration equation: 
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and 

  UE  1                      (A.37) 

The following equations are used to calculate preliminary quantities needed for short-

period periodics: 
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The short-period periodics are added to give the osculating quantities: 
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k                      (A.56) 
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Then unit orientation vectors are calculated by: 
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Then position and velocity are given by: 
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APPENDIX B: IONOSPHERIC MODELS 

 

A better method of predicting the TEC, rather than using the logarithmic scale of the 

Chapman Profile, which varies with the altitude without considering variations in other 

parameters, is by using either of the two widely used empirical models (International 

Reference Ionosphere (IRI) model or NeQuick model), the broadcast model (Klobuchar 

model) or GPS data driven models (Global Ionospheric Maps (GIMs)) to predict and 

hence estimate the value of TEC. (Orús, Hernández-Pajares, Juan, Sanz. and García 

Fernández 2002).  

 

B.1 Empirical Models 

 

IRI and NeQuick models are two widely used empirical models. For IRI models, 

International Reference Ionosphere (2009) provides the resources (source code, 

online computation etc.) for IRI-2001 model and the latest IRI-2007 model. Here, 

only the NeQuick 2 (Nava, Coïsson and Radicella 2008) is presented.  

 

The basic inputs of the NeQuick model are position, time and solar flux (or solar 

number); the output is the electron concentration at the given location and time.  

 

The NeQuick 2 analytical formulation 

 

Before describing the NeQuick 2 in detail, recall that an Epstein layer (Rawer 1982) 

is expressed by: 
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  (B.1) 

where maxN  is the layer peak electron density, maxh  is the layer peak height and 

B  is the layer thickness parameter. 
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The bottomside formulation 

 

Using the expressions  2124.0 foENmE  ,  21124.01 foFNmF  , 

 22124.02 foFNmF   for E , 1F  and 2F  layer peak electron densities (in 

31110 m ), respectively, hmE , 1hmF  and 2hmF  for the E , 1F  and 2F  layer peak 

heights (in km), respectively, and BE , 1B  and 2B  for the E , 1F  and 2F  layer 

thickness parameters (in km), respectively the bottomside of the NeQuick 2 can be 

expressed as a sum of semi-Epstein layers as follows: 

       hNhNhNhN FFEbot 21        (B.2) 

where 

 

 

 






 

















 


 h
BE

hmEh

h
BE

hmEh

ENm
hN E 



exp

exp1

4
2

*

   (B.3) 

 

 

 






 

















 


 h
B

hmFh

h
B

hmFh

FNm
hN F 


1

1
exp

1

1
exp1

14
2

*

1    (B.4) 

  






 

















 



2

2
exp

2

2
exp1

24
22

B

hmFh

B

hmFh

NmF
hN F     (B.5) 

with 

   hmENhmENNmEENm FF 21
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is a function that ensures a “fadeout” of the E  and 1F  layers in the vicinity of the 

2F  layer peak in order to avoid secondary maxima around 2hmF . In accordance 

with the behaviour of the 1F  layer, expressions (B.6) and (B.7) can be slightly 

modified. The thickness parameters take different values for the bottomside and for 



 

 

APPENDIX 
 

 
 
 

211 

the topside of each layer ( botBE  and topBE  for the E  layer, botB1  and topB1  for the 

1F  layer, botB2  and topB2  for the 2F  layer). 

 

The topside formulation 

 

The model topside is represented by a semi-Epstein layer with a height thickness 

parameter H : 
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where the constant parameters 

100r                      (B.12) 

125.0g                      (B.13) 

are used to control the increase of H . 

 

Parameter modelling of peak heights 

 

The heights in km of the E , 1F  and 2F  layer maximum densities are given by: 
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and 

  23000 FMM                      (B.19) 

 

Parameter modelling of thickness 

 

The semi-thickness parameters botBE  and topBE  (for the E  layer), botB1  and topB1  

(for the 1F  layer) and botB2  and H  for the 2F  layer) are given in km and expressed 

by the following relations: 
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Expression (B.24) depends on the value of the maximum of the electron density 

derivative with respect to height. The maximum is computed from 2foF  and 

  23000 FM  values, using the empirical relation (Mosert de Gonzales and Radicella 

1990) given as: 
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where dhdN  is in  13910  kmm  and 2foF  in (MHz). Expression (B.25) is the 

same as (B.11) with botkBH 20  . The parameter k , which appears in equation 

(B.25) is given by Coïsson, Radicella, Leitinger and Nava (2006): 

1200257.0
2

2
113.0200664.020538.022.3 R

B

hmF
hmFfoFk

bot

              (B.27) 

where 2hmF  (km), 2foF  (MHz), are the 2F  layer peak parameters, botB2  (km) the 

thickness of the 2F  bottomside and 12R  the smoothed sunspot number. As inferred 

from the experimental data analysis, the restriction 1k  is applied to the model. 

 

Parameter modelling of critical frequency and propagation factor 

 

Taking into account the fact that the NeQuick model has been designed mostly for 

trans-ionospheric propagation applications, the representation of the lower part of the 

ionosphere has been kept as simple as possible. The Titheridge model for foE  

(Leitinger, Titheridge, Kirchengast and Rothleitner 1995; Titheridge 1996) has been 

adopted. It is based on the seasonal relationship between the solar zenith angle   and 

foE  given as: 

      6.022
cos107 effe FafoE                    (B.28) 

where ea  is the seasonal term represented in Table B.1, 107F  is the 10.7 cm solar 

radio noise flux and eff  is the solar zenith angle: 

 

ea  Month North Month South 

1.131 1,2,11,12 5,6,7,8 

1.112 3,4,9,10 3,4,9,10 

1.093 5,6,7,8 1,2,11,12 

Table B.1 Seasonal term to compute foE  in the Titheridge‟s model (equation B.28) 

for the northern and southern hemisphere (Nava, Coïsson and Radicella, 2008). 
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 23.86 wheneff                   (B.29) 

   23.862.020exp24.090  wheneff                (B.30) 

where equation B.29 is used during daytime and equation B.30 during night time. An 

exponential day-night transition is used to ensure the continuity of foE  and its first 

derivative at the solar terminator.  

 

Following Leitinger, Zhang and Radicella (2005), 1foF  is related to foE  by: 

















285.04.14.185.0

20

24.1

1

foFfoEiffoE

foEif

foEiffoE

foF                (B.31) 

 

 

B.2 Broadcast Model 

 

The Klobuchar model is an ionospheric broadcast model for single-frequency user as 

described in Klobuchar (1987). The notations used for the Klobuchar model are the 

user approximate geodetic latitude ( u ,), longitude ( u ), elevation angle ( E ), and 

azimuth ( A ) to the particular GPS satellite for which you wish to calculate the 

ionospheric time delay. The coefficients n  and n  are transmitted as part of the 

satellite message. All angles are in units of semi-circle and time is in seconds.  

 

The algorithms are as follows: 

 

1. Calculate the Earth-centred angle: 

 ssemicircle
E

022.0
11.0

0137.0



                  (B.32) 

2. Compute the sub-ionospheric latitude:  

AuI cos                     (B.33) 

If 416.0 I , then 416.0 I . If 416.0 I , then 416.0 I . 



 

 

APPENDIX 
 

 
 
 

215 

3. Compute the sub-ionospheric longitude: 

I

uI

A




cos

sin
                     (B.34) 

4. Find the geomagnetic latitude: 

 617.1cos064.0  IIm                    (B.35) 

5. Find the local time: 

(sec)1032.4 4 timeGPSt I                     (B.36) 

If 86400t , then 86400 tt . If 0t , add 86400. 

6. Compute the slant factor: 

 353.00.160.1 EF                    (B.37) 

7. Compute the ionospheric time delay: 


















 




3

0

42
9

242
1105

n

n

mnIONO

xx
FT                  (B.38) 

where 

 









3

0

504002

n

n

mn

t
x




 

Note: IONOT  is referred to the 1L  frequency. If the user requires the ionospheric time-

delay correction on the 2L , the correction term must be multiplied by a constant of 

1.65. 

 

 

B.3 GPS Data Driven Models 

 

Global Ionospheric Maps (GIMs) and Real-time US-Total Electron Content are two 

products of GPS data driven models. For the latter, the Space Weather Prediction 

Center (2009) provides Vertical and Slant TEC over the Continental US (CONUS) in 

near real-time. Here, only the GIMs using the IONEX format (Schaer and Gurtner 

(1998)) is presented. 
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Three different procedures to compute the TEC E as a function of geocentric latitude 

 , longitude   and universal time t, when TEC maps   niTEE ii ,.2,1,   at 

disposal: 

 

1. Simply take the nearest TEC map  ii TEE   at epoch iT : 

    ,,, iEtE                     (B.39) 

where min iTt . 

2. Interpolate between two consecutive TEC  ii TEE   maps and  11   ii TEE : 

      ,,,, 1

11

1















 i

ii

i

i

i

i E
TT

Tt
E

TT

tT
tE                 (B.40) 

where 1 ii TtT . 

3. Interpolate between consecutive rotated TEC maps: 

     11

11

1 ,,,, 



 








 ii

ii

i

ii

i

i E
TT

Tt
E

TT

tT
tE                 (B.41) 

where 1 ii TtT  and  ii Tt   . The TEC maps are rotated by  iTt   around 

the Z-axis in order to compensate to a great extent the strong correlation between the 

ionosphere and the Sun‟s position. Note that method (B.39) can be refined 

accordingly by taking the nearest rotated map:      ,,, iEtE . 
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APPENDIX C: EGNOS TROPOSPHERIC CORRECTION 

MODEL 

 

Another tropospheric error model under consideration is that proposed by Penna, 

Dodson and Chen (2001) for EGNOS tropospheric correction model. The total 

tropospheric delay for a receiver-to-satellite range at elevation angle   using: 

     MFddttc wetdrytrop         (C.1) 

where dryd  is the zenith „dry‟ (hydrostatic) delay, 

wetd  is the zenith „wet‟ delay, and 

 MF  is the mapping function to „map‟ the zenith total delay to the appropriate 

receiver-to-satellite elevation angle. 

 dR

g

T

H
zd drydry 








 1         (C.2) 

 
1

1

1


















 dR

g

T

H
zd wetwet         (C.3) 

g  is the gravitational attraction at the surface of Earth (m/s
2
)  

H  is the height of the receiver above mean sea level (m), 

T  is the temperature at mean sea level (K), 

  is the temperature lapse rate (K/m), 

J/kg/K 054287.  Rd  , 

k  is the water vapour lapse rate (dimensionless), 

dryz  is the zenith `dry' delay at mean sea level, 

wetz  is the zenith `wet' delay at mean sea level. 

m

d

dry
g

PRk
z 1

610

          (C.4) 

  T

e

Rg

Rk
z

dm

d

wet 





 1

10 2

6

        (C.5) 
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where K/mbar 604771 .  k  , 

P  is the pressure at mean sea level (mbar), 

m/s 9.784  gm  , 

/mbarK 382000 2

2   k  , 

e  is the water vapour pressure at mean sea level (mbar). 

 

The average values and seasonal variations for the five meteorological parameters are 

given in Table C.1. Using the values detailed in Table C.1, each meteorological 

parameter value ( ) may then be computed using: 

     
 








 


25.365

2
cos, min

0

DD
D


      (C.6) 

where u is the receiver's latitude, 

D  is the day-of-year (starting with 1 January), 

28min D  for northern latitudes, 

211min D  for southern latitudes, 

0  and   are the average and seasonal variation respectively for the particular 

parameter at the receiver's latitude. 
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Average 

Latitude (°) P0 (mbar) T0 (K) e0 (mbar) β0 (K/m) λ0 

≤15 1013.25 299.65 26.31 6.30E-03 2.77 

30 1017.25 294.15 21.79 6.05E-03 3.15 

45 1015.75 283.15 11.66 5.58E-03 2.57 

60 1011.75 272.15 6.78 5.39E-03 1.81 

≥75 1013.00 263.65 4.11 4.53E-03 1.55 

 

Seasonal Variation 

Latitude (°) ΔP (mbar) ΔT (K) Δe (mbar) Δβ (K/m) Δλ 

≤15 0.00 0.00 0.00 0.00e-00 0.00 

30 -3.75 7.00 8.85 0.25e-03 0.33 

45 -2.25 11.00 7.24 0.32e-03 0.46 

60 -1.75 15.00 5.36 0.81e-03 0.74 

≥75 -0.50 14.50 3.39 0.62e-03 0.30 

Table C.1 Average and seasonal variation values of the five meteorological parameters 

used by the EGNOS model (Penna et al 2001). 

 

The mapping function (  MF ) is expressed as: 

 



2sin002001.0

001.1


MF        (C.7) 

 

The mapping function is not valid for elevation angles of less than 5 degrees (RTCA 

1999). 
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APPENDIX D: ORBIT DYNAMIC PROPAGATION MODELS 

 

Several orbit dynamic propagation models have been extensively studied for the 

purpose of interoperable orbit estimations. These few candidate models are the orbit 

modelling in the rotating Cartesian coordinate dynamics (Earth-Centered, Earth-Fixed 

coordinate) known as the Euler-Hill frame, Hill-Clohessy-Wiltshire equations and the 

Lagrange Planetary equations. 

 

D.1 Perturbation Forces: The Euler-Hill Frame  

 

Orbital dynamics has been classically expressed in terms of Cartesian position and 

velocity coordinates in inertial and in rotating coordinate frames. The Euler-Hill 

frame, also known as the Clohessy-Wiltshire frame, is a rotating Cartesian frame 

orbiting with the satellite around the Earth, as shown in Figure D.1. 

 

Figure D.1 Relative motion rotating Euler-Hill reference frame (Kasdin and Gurfil 2004). 

 

This coordinate frame, denoted by  , is defined by unit vector x̂ , ŷ , ẑ ; with the 

satellite at its origin. 1r  is the relative position of Satellite 1 from Earth, 2r  is the 

relative position of Satellite 2 from Earth and r  is the relative position of Satellite 2 

from Satellite 1. The angle between 1r  and r  is denoted by  . The origin is set at the 

reference point (either satellite, but in this illustration, just Satellite 1) on the circular 
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reference orbit plane, the positive x̂ -axis ( X̂ ) directed radially outwards along the 

extrapolation of the local radius vector, the positive ŷ -axis ( Ŷ ) pointed along the 

direction of motion and the ẑ -axis ( Ẑ ) completes the final orthogonal axis, which 

are normal to the reference orbit plane. This coordinate frame, as mentioned earlier, 

rotates with mean motion of 
3a

n


  where   is the standard gravitational constant. 

The slanted thick circular line is the orbit for Satellite 2. 

 

D.2 Hill-Clohessy-Wiltshire Equations  

 

The Hill-Clohessy-Wiltshire (HCW) is a method that can be used for linear orbit 

theory, specifically in analysing equations of motion between two satellites, which 

orbit near to each other. Figure D.1 is useful in order to explain how these equations 

can be derived. 

 

Firstly, the equation of motion for Satellite 1 is defined: 

3

1

1
1

r

r
r


           (D.1) 

Next, the equation of motion for Satellite 2 is defined. Assuming a rendezvous is 

required, thrusting is included. Other forces such as drag for lower orbiting satellites 

or solar radiation pressure for higher orbiting satellites is added. Hence, the equation 

of motion for Satellite 2 becomes: 

F
r

r 
3

2

2
2

r


          (D.2) 

The relative range vector, r  from Satellite 1 to Satellite 2 can be found as follows: 

12 rrr                      (D.3a) 

Differentiating yields: 

12 rrr                       (D.3b) 

Differentiating once again gives: 
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12 rrr                       (D.3c) 

Substituting the two-body equations of motion, (D.1) and (D.2) into (D.3c) gives: 

3

1

1

3

2

2

rr

r
F

r
r


          (D.4) 

Re-arranging equation (D.3a) for Satellite 2:  

rrr  12  

The position vector of Satellite 2 can be obtained by dividing the position of Satellite 

2, 2r  with its magnitude cubed, 3

2r . Also, the cosine law is applied to the magnitude 

of the vector of the Satellite 2 cubed, on the denominator of the right-hand side of the 

equation. Hence: 

232

1

2

1

1

3

2

2

)2( rrr 




rr

rrr
 

Assuming that the magnitude of the relative vector, 2r  is smaller than 2

1r , 

( 0222

1  rrr ) reduces the above equation to : 

23

1

2

1

1

3

2

2

)2( rr

rrr






rr
 

Factoring out the 2

1r  term yields: 
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3

1

1
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2

2

2
1

1










 





r

rr rr

rrr
 

Simplify the above equation by using binomial series on the dot-product terms. The 

binomial series has the form: 





!2

)1(
1)1(

2xnn
nxx n  

where x is replaced by the dot-product term of the denominator. Hence: 
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Substituting this result into equation (D.4): 
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3
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1
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1
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1
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 
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
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














 



   

Expanding and removing terms of opposite signs and keeping first-order terms while 

omitting higher-order terms yields: 

F
rrr

r
rrr

r 
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
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





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
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
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 


2

1

1

2

1

11

3

1

2

2

32

2

3

rrr


  

Assume the third term in the bracket, 








 
2

1

12

2

3

r

rrr
, is small enough and can be 

dropped; hence the equation is further reduced to: 

Fr
rrr

r 















 


1

1

1

1
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1

2

2

3

rrr


  

Introducing X
r ˆ

1

1 
r

 and xrX̂  into the equation, which brings: 

  FrXr  ˆ3
3

1

x
r


         (D.5) 

 

This equation expresses the relative acceleration of Satellite 2 with respect of Satellite 

1 in an inertial frame, which is adequate for a fixed, non-rotating time-invariant 

frame. However, since the coordinate system of Satellite 1 is rotating and changes 

with time, an extension to the above equation with rotation transformation for 

acceleration is required. The relationship between the inertial acceleration vector, 

Inera  and the rotating acceleration vector, Rota  is expressed generically as follows: 

OriginRotIRIRRotIRRotIRRotIner arΩΩrΩvΩaa  )()(2    (D.6) 

where IRΩ  and IRΩ  represent the angular velocity and the rate of angular velocity 

of the Euler-Hill reference frame with respect to the inertial frame respectively. The 

second term on the right-hand side of equation (D.6), )(2 RotIR vΩ  , is Coriolis 

acceleration, followed by the tangential acceleration, RotIR rΩ  , which is equal to 

zero for a circular orbit, and the fourth term, )( RotIRIR rΩΩ  , represents the 
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centrifugal acceleration. The final term, Origina , is the origin acceleration, which, in 

this case, simply equals zero since Satellite 1‟s coordinate frame is not accelerating. 

By shifting Rota  to the left-hand side and Inera  to the right-hand side of the 

expression, the relative acceleration vector equation becomes: 

)()(2 RotIRIRRotIRRotIRInerRot rΩΩrΩvΩaa      (D.7) 

Writing equation (D.7) so as to comply with this section convention, it will then 

becomes: 

)()(2 RotIRIRRotIRRotIRInerRot rωωrωrωrr      (D.8) 

 

Assuming the orbit of Satellite 1 is circular, then the angular rate is equal to the mean 

motion of Satellite 1, 
3

1

3
r





 n

a
n . Generally, the angular rate is defined 

as follows: 4

1r

p
  , for any type of orbits. In xyz Euler-Hill frame reference 

components: 
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Differentiating twice for the rotating position vector yields: 
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
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Now, expanding the second, third and forth terms of equation (D.8) in Euler-Hill 

reference frame respectively: 
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Collecting these three terms into equation (D.8) and substituting the first term of 

equation (D.8) Inerr  with equation (D.5) as rr Iner
 , hence equation (D.8) becomes: 

  )ˆˆ()ˆˆ()ˆˆ(2ˆ3 22

3

1

YXYXYXFrXr yxxyxyx
r

Rot 


   

           (D.9) 

as ZYXrr ˆˆˆ zyxRot   and assuming the orbit of Satellite 1 is circular, 
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Separating each vector component and introducing 
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D.3 The Lagrange Planetary Equations 

 

The Lagrange planetary equations of motion (LPE) came from a variation of 

parameters (VOP) because the orbital elements, which are constant in a two-body 

equation (unperturbed system), are now changing (due to perturbation). Knowing the 
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solution for the unperturbed system is the key to solving the perturbed system (a 

three- or more-body equation). 

 

In a two-body system, the six Keplerian orbital elements plus the time (as described 

earlier in section 2.2) are constant. Altering the two-body system with a relatively 

small perturbation force in comparison to either of the two-body forces, the new 

equations of motion will comprise the original two-body systems‟ equation of motion 

and the time-varying change of the osculating elements. In other words, the six 

Keplerian orbital elements, which were constants, are now varied with respect to time 

– this is the gist of VOP. If c  is the matrix form of the Keplerian orbital elements, 

then the time-varying elements can be describes as follows: 

),( tf
dt

d
c

c
                    (D.12) 

The derivation of Lagrange‟s VOP (please see Vallado 2007 for derivation) gives rise 

the LPE, which can either be in the Lagrangian form of VOP as follows: 
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which accounts for conservative forces only. This form of LPE is regularly used in 

the analysis of non-Keplerian orbits due to the fact that most perturbation forces are 

conservative. The other derivation of VOP produces the Gaussian form, which can 

handle conservative and non-conservative forces. The equations are as follows: 
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where XF , YF  and, ZF are the perturbing resultant force components resolved in the 

xyz Euler-Hill rotating reference frame. 

 

D.4 Orbit Modeling in Earth-Centred Cartesian Coordinates 

 

In a rotating reference frame, a dynamic model for the acceleration is obtained by 

including the effects of normal central force field and the primary disturbance effect 

due to the Earth‟s equatorial bulge and flattening at the poles. The Earth‟s equatorial 

bulge and flattening at the poles is a result of the Earth‟s oblateness and is 

represented by two coefficients, iC2 , where i = 0 and 2. 

 

A length scale and a time normalisation defined by: 

  312

nsr   , tn , 

are introduced, where n  is the angular velocity of the rotating frame. The equations 

of motion are then expressed in terms of non-dimensional Cartesian coordinates, x~ , 

y~ , z~ , as: 

xdxd ~~  , ydyd ~~  , zdzd ~~  ,              (D.15a) 
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where, 132  snn r , 222 ~~~~ zyxr  ,   is the gravity parameter, and resx~  , 

resy~  , resz ~  are the residual accelerations mainly due to the gravitational effects of the 

Moon and Sun. These are generally modelled as the sum of biases and periodic terms 

including secondary harmonics. 

 

The Earth‟s gravitational perturbation potential can be expressed as: 
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where r  is the distance from the body‟s centre of mass,   is the latitude measured 

from the equatorial plane, and   is the longitude measured from the long end of the 

body (about 15º west longitude in the case of the Earth). In Earth-fixed Cartesian 

coordinates, with the x-y plane in the Earth‟s equatorial plane, the potential may be 

approximately expressed as: 
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where 222 zyxr  . 

 

In terms of the normalised Earth-fixed  eee zyx ~,~,~  and rotating  zyx ~,~,~  coordinates, 

assuming that the reference x-y plane is inclined to the Earth‟s equatorial plane by a 

fixed angle, the gradients of the non-dimensional Earth‟s gravitational perturbation 

potential, 2U , in rotating coordinates are: 
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                   (D.18a) 
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 rere yixx  sincoscos , 

 rere yixy  cossincos ,  

r is the relative angular velocity of the satellite to the Earth fixed frame, i is the 

inclination orbit to the Earth‟s equatorial plane and 2

22

~
sii rCC  . The oblateness 

coefficients, iC2 , are also related to the principal moments of inertia of the Earth and 

could be expressed in terms of alternate relationships to the zonal harmonic coefficients, 

J2 = 1.082616  10
-3

, J3 = – 2.53881  10
-6

, J4 = –1.65597 10
-6

 and to J21 = 0, J22 = 

1.86 10
-6

, J31 = 2.1061 10
-6

. The orbit is defined by equations D.15 and D.18. 
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APPENDIX E: AMBIGUITY ESTIMATION AND 

RESOLUTION 

 

There are two ways to solve the integer phase ambiguity, either by eliminating the 

constant integer ambiguity by differencing the carrier-phase measurement across each 

time epoch, or by estimating the constant integer ambiguity. The former uses the 

Doppler carrier-phase processing method and the latter, the integer ambiguity resolution 

method. The integer ambiguity resolution method has two stages; the first stage is the 

initial estimate of ambiguity, which will be used as an initialisation for the second stage. 

The second stage is the integer search algorithm, which determines the value of the 

integer ambiguity. 

 

Forsell (1997) compares two methods for real-time ambiguity resolution. Firstly, wide-

laning is a method using frequency differences between two suitably spaced carriers 

(Forsell 1995) and secondly, tone-ranging, which uses modulation signals on one carrier 

(Hatch 1996). 

 

Hatch (2000) categorises ambiguity resolution into Geometry Independent, which is 

insensitive to tropospheric refraction, has greater degree of freedom and simple 

verification; and Geometry Dependent, which is totally opposite to the description of 

Geometry Independent. For Geometry Independent, the technique used is ambiguity 

resolution in measurement space, which uses smoothed code for wide-lane ambiguity 

resolution, then wide-lane resolved value to step to narrow-lane. There exist two 

techniques for Geometry Dependent, ambiguity resolution in position space, which 

utilises Counselman‟s ambiguity function and ambiguity resolution in ambiguity space, 

which searches for minimum residuals as a function of ambiguity combinations. 

 

 



 

 

APPENDIX 
 

 
 
 

231 

E.1 Ambiguity Estimation 

 

An accurate estimation of carrier-phase integer ambiguities will give a reliable and 

precise relative positioning using differential GPS. By measuring the relative phase 

shift of the carrier frequency used, the positioning accuracy can reach up to 

centimetre scale, and even to millimetre scale. This technique of measurement can 

eliminate clock and atmospheric errors when applied in differential mode of 

operation. If the user carrier phase measurement (as in equation 3.2) is corrected with 

the reference base station, the differential phase can be written as follows: 

    0

~~~
                  (E.1a) 

          0000   mpmpNNxxh               (E.1b) 

where 0

~
  is the phase measurement of the reference base station, h  is the vector 

between the antenna and the satellites,  0xx   is the linearised position, and all other 

remaining terms are the same as before. Similarly, the differential correction of 

equation 3.2 becomes: 
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using   to indicate differences of an expression and taking: 
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    equation E.2 becomes: 
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 (E.3) 

Apart from ionospheric delay error, all other common-mode errors have been 

eliminated through differential mode of operation. Hence, equation E.3 becomes: 

          ttmpttcrN ion  
~

    (E.4) 

Dividing both sides by , the equation becomes: 
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now, substitute equation 3.25 for the ionospheric delay,  ttc ion  into equation E.5: 
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Assuming two carrier frequencies, 1f  and 2f , where 21 ff  , the difference in 

frequency, 12f is given by: 
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where c is the velocity of propagation. 

Hence, the wide-lane wavelength is defined as follows: 
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In contrast, a similar argument applied for a narrow-lane wavelength is defined as the 

velocity of propagation divided by the frequency summation of the two suitably 

spaced carriers, which is given by: 
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The phase measurements for equation E.6 for a single satellite at carrier frequencies 

1f and 2f , can be represented as: 
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substituting equations E.10 with
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A summation of equations E.11 yields: 
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While the difference of equations E.11 yields: 
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Replacing terms in equations E.12 with, respectively, the wide-lane equation (E.8) 

and the narrow-lane equation (E.9) gives:  
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Re-arranging equations E.13 respectively can be written as: 
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Similarly, the code measurements for equation E.6 for a single satellite measuring at 

carrier frequencies 1f and 2f , can be represented as: 
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A summation of equations E.15 yields: 
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While the difference of equations E.14 yields: 
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Re-arranging equations E.16 respectively: 
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Revisiting equation E.14b: 
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The term  21 NN   in equation E.14b can be further reduced to 

    21020121 NNNNNNNN  . 

The right-hand sides of equation E.17a and equation E.14b are comparable. Hence, 

the difference between the two equations will result in: 
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From equation E.18, the estimation of the wide-lane integer,  21 NN   can be done. 

The correct integer phase ambiguity is expected to be within three integers of the 

estimate. For an accurate integer ambiguity resolution, an integer search is required. 

 

E.2 Ambiguity Resolution 

 

After the initial estimate of the ambiguity, the next stage is the integer search for the 

correct ambiguity. A stepwise algorithm commences with ambiguity convergence of 

the combination with the longest wavelength, low ionosphere content and low noise. 

Once resolved, the ambiguities in combinations with shorter wavelengths may be 

estimated with greater reliability. Such an algorithm has been proposed for three-
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frequency relative positioning (Hatch 1996). The concept of stepwise ambiguity 

resolution has facilitated simultaneous code and carrier update (CCU). Hwang (1991) 

introduced the concept of carrier phase riding (CPR), as one is able to update the 

integer ambiguity provided it is initial known, given incremental measurements or 

rate of change of the relative carrier phase. Teunissen (1994) has also presented a 

method for ambiguity resolution based on transforming and reparameterising the 

integer ambiguity. Forsell, Martin-Neira and Harris (1997) have proposed a method 

that uses the measurements at all three carrier frequencies. Henderson, Raquet and 

Maybeck (2002) have presented a multi-filter approach to ambiguity resolution. 

 

This work uses the technique presented by Yang, Hatch and Sharpe (2002) based 

upon the concept of residual sensitivity matrix proposed by Hatch and Sharpe (2001), 

which relates the search integer ambiguity set to each carrier phase residual directly. 

The technique uses the singular value decomposition of the residual sensitivity matrix 

to find the minimum search space. This technique not only improves the calculation 

efficiency and ambiguity resolution time, but also improves the reliability. The search 

space is minimised by selecting only those combinations of possible ambiguity values 

which are consistent with the satellite geometry and the measurement residuals. 

 

Equation E.1b terms can be collected and re-written as: 

   n
N


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










x
h                   (E.19) 

where   is the differential carrier phase, h  is the vector between the receiver 

antenna and the satellites, x  is the linearised position, N  is the differential integer 

ambiguity and n  is the total differential phase noise, the sum of the multipath error 

 0mpmp  and the carrier phase noise  0  . The resolution of integer ambiguity 

N  can be accomplished by solving the integer ambiguity with special search and 

hypothesis testing techniques and validating the result to ensure the integer ambiguity 

solution is unique and correct.  
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Equation E.19 can be re-written as: 

   nN  hx                   (E.20) 

For n  number of satellites in view, all the measurements can be written in array 

format as: 

  φnHxNΦ                     (E.21) 

where  Tn  ,,, 2 1Φ  is the differential carrier phase measurement vector 

formed by each satellite,  TnNNN  ,,, 2 1N  is the differential integer 

ambiguity vector formed by each satellite,  TnhhhH 1 ,,, 2   is the measurement 

vector matrix from user to satellites with ih  being the h  of the ith satellite and 

 T
n

nnn  ,,,
21
φn  is the carrier phase measurement noise vector formed by each 

satellite.  

 

The calculated initial ambiguity 0N̂  can be estimated by rounding off using either the 

pseudorange or carrier phase smoothed pseudorange. Assuming the search width of 

each satellite as N , the total candidate set number is 1nN  with n  being the 

number of satellites used. As an example, if 4N  and 7n , the total number of 

search is 409646   candidate set. For each candidate set, the real set is: 

   NNΦRHHRHx  

0

111 ˆˆ TT                 (E.22) 

where 
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R  is the measurement covariance matrix formed by the 

differential carrier phase noise, i  is the standard deviation of satellite i  differential 

carrier phase noise,  TnNNN  ,,, 2 1N   is the integer ambiguity vector formed 

from search width N  for each satellite. 

 

The residual sensitivity matrix, S , for a weighted least square can be described as in 

Hatch and Sharpe (2001): 
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  111  RHHRHIS
TT                   (E.23) 

where I  is an identity matrix. The S  matrix has the following properties,  

i. Symmetric 

ii. Zero sum of each row and column 

iii. Positive semidefinite 

iv. Equal idempotent:  32
SSS  

v. Rank equal to kn  :   knrank S  (with 4k  for single differential GPS 

and 3k  for double differential GPS)  

vi. SVD calculation efficiency of S  matrix: for SVD of T
UXVS  , one of the 

solution of V  is equal to the eigenvector of S . The eigenvalue of S  is either 

1 or 0, and its eigenvectors are all real.  

 

The calculated phase range residual vector is:  

  xHNN0
ˆˆ  δ                  (E.24) 

         NNRHHRHHI 0 δTT   ˆ111  

       NNS 0 δ ˆ                   (E.25) 

The estimated phase standard deviation for candidate set N̂  is: 

    
kn

T




 

 N̂|
                (E.26) 

with k  being the real state number of x  ( 4k for single differential GPS and 3k  

for double differential GPS). The ambiguity search target is to find the unique and 

correct candidate set with smallest 
N̂|

 . Since   is a vector, minimising 
N̂|

  is 

equal to minimise the absolute value of each term of  . 

 

The initial phase range residual vector can be defined as: 

 0NS ˆ
0

                   (E.27) 

minimising the absolute value of   in equation E.25 is equal to estimate N  that 
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0
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 δδ                 (E.28) 

with 0r  being the initial phase range residual vector in unit of cycle. 

 

Since S  is not full rank, S  can be re-written using Singular Value Decomposition 

(SVD) as: 

T
UXVS                      (E.29) 

where  

 nuuuU 21                   (E.30) 
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with iu  are orthogonal vectors and U  having full rank n : 



























kkknk

kkn

kns

s

00

0
X

)(

)(

1

0

0







                 (E.31) 

with 11  knss   for matrix S ; and 

 nvvvV 21                   (E.32) 

with 
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with iv  are orthogonal vectors and V  having full rank n . 

 

Now, estimate S , so that 0rNS δ , which leads to: 
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Equation E.33 can be re-written as: 

 


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                 (E.34) 

112211 rNANA  ff  

 
ff 2211

1

11 NArAN  
                 (E.35) 

  fround 2211

1

11 NArAN  
 

 21 DNCN  round                   (E.36) 

with 012 r , 11

1

1 rAC
 , and 2

1

1 AAD
 . 

 

Equation E.36 relates two integer ambiguity subsets, which will reduce the search 

space from searching around n  satellites for both 1N  and 2N  to searching around k  

satellites for 2N  only. 

 

After calculating the integers 1N  and 2N , substituting 1N  and 2N  into equation E.34 

gives: 

 221111 NANArr                    (E.37) 

which is the residual corresponding to integer set 1N  and 2N . 

 

Further calculation for improvement of this technique is referred to by Yang, Hatch 

and Sharpe (2002). Instead of using SVD as introduced in equation E.29, a better way 

to implement the space search reduction for S  is by manipulating the properties of S . 
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APPENDIX F: KALMAN FILTER VARIANTS 

 

This appendix presents the standard Kalman filter algorithms and its two commonly 

known variants, namely the extended Kalman filter and unscented Kalman filter.  

 

F.1 Standard Kalman Filter 

 

The standard Kalman filter (KF) is a linear optimal recursive predictor-corrector. A 

discrete–time Kalman filter as presented by Grewal and Andrews (2001) is presented 

here. 

 

System dynamic model: 

111   kkkk wxΦx         (F.1) 

with  kk N Qw ,0~ . 

Measurement model: 

kkkk vxHz           (F.2) 

with  kk N Rv ,0~ . 

Initial conditions: 

00 x̂xE            (F.3) 

000
~~ PxxE T          (F.4) 

Independence assumption: 

0T

jk vwE  for all values of k  and j .     (F.5) 

State estimation extrapolation: 

     11
ˆˆ

kkk xΦx         (F.6) 

Error covariance extrapolation: 

    1111   k

T

kkkk QΦPΦP        (F.7) 

State estimate observational update: 
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       xHzKxx ˆˆˆ
kkkkk        (F.8) 

Error covariance update: 

      kkkk PHKIP         (F.9) 

Kalman gain matrix: 

     1
 k

T

kkk

T

kkk RHPHHPK                 (F.10) 

 

The basic steps of computational procedure for the discrete-time Kalman estimator: 

1. Compute  kP  using  1kP , 1kΦ , and 1kQ . 

2. Compute kK  using  kP  (computed in step 1), kH  and kR . 

3. Compute  kP  using kK  (computed in step 2) and  kP  (from step 1). 

4. Compute successive values of  kx̂  recursively using the computed values of 

kK  (from step 3), given the initial estimate 0x̂  and the input data kz . 

 

F.2 Extended Kalman Filter 

 

The extended Kalman filter (EKF) is a nonlinear optimal recursive predictor-

corrector variant to the linear Kalman filter. A discrete–time EKF as presented by 

Grewal and Andrews (2001) is presented here: 

 

Nonlinear dynamic model: 

  111   kkkk f wxx                   (F.11) 

with  kk N Qw ,0~ . 

Measurement model: 

  kkkk h vxz                     (F.12) 

with  kk N Rv ,0~ . 

Nonlinear implementation equations: 

1. Computing the predicted state estimate: 
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      11
ˆˆ

kkk f xx                   (F.13) 

2. Computing the predicted measurement: 

   kkk h xz ˆ                    (F.14) 

Linear approximation equations: 

 

 







kxx

k

k
x

f

ˆ

1

1Φ                    (F.15) 

Conditioning the predicted estimate on the measurement: 

     kkkkk zzKxx ˆˆˆ                   (F.16) 

 

 







kxx

k
k

x

h

ˆ

1

1H                    (F.17) 

The next three equations are similar to equations F.7, F.9 and F.10. 

 

Computing the a priori covariance matrix: 

       
1

1

11

1

1   k

T

kkkk QΦPΦP                  (F.18) 

Computing the Kalman gain: 

           1111 
 k

T

kkk

T

kkk RHPHHPK                 (F.19) 

Computing the a posteriori covariance matrix: 

       kkkk PHKIP
1                   (F.20) 

 

F.3 Unscented Kalman Filter 

 

Julier and Uhlmann (2004) propose and develop the unscented Kalman filter (UKF), 

while realising the limitations of EKF, which has been shown to be difficult to 

implement, difficult to tune, and only reliable for systems that are almost linear on the 

time scale of the updates. Julier and Uhlmann (2004) summarise the general 

formulation of the unscented Kalman filter, which uses the unscented transformation 

described as follows. 
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Firstly, the set of sigma points is created by applying a sigma point selection 

algorithm. Then, the transformed set is given by instantiating each point through the 

process model: 

    ],[ˆ
,, n

i

na

i

na uxfx                     (F.21) 

The predicted mean is computed as: 

   i
na

p

i

i

na ,

0

,
ˆˆ xWμ 



                    (F.22) 

The predicted covariance is computed as: 

       T

na

i

na

p

i

na

i

na

i

na ,,

0

,,,
ˆˆˆ μxμxWK 



                (F.23) 

Instantiate each of the prediction points through the observation model: 

    ],[ˆ
, n

i

na

i

n uxgy                     (F.24) 

The predicted observation is calculated by: 

   



p

i

i

n

i

n

0

ˆˆ yWy                    (F.25) 

The innovation covariance is: 

       
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ˆˆˆˆˆ yyyyWS                  (F.26) 

The cross covariance matrix is determined by: 

       



p

i

T

n

i

nn

i

n

ixy

n

0

ˆˆˆˆˆ μxμxWK                 (F.27) 

Finally, the update can be performed using the normal Kalman filter equations: 

nnnn  W ˆ                   (F.28a) 

T

nnnnn WSWKK ˆˆ                  (F.28b) 

nnn yy ˆ                  (F.28c) 

1ˆ  n

xy

nn SKW                  (F.28d) 
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APPENDIX G: THE EARTH’S GRAVITATIONAL 

POTTENTIAL 

 

The full gravitational potential function is expressed as follows: 

 

        
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R

r
rU 


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            (G.1) 

where: 

r - Distance from geo center to object 

  - Geocentric latitude of object 

  - Longitude of object 

R  - Equatorial radius magnitude of Earth. 

 

When the order n equals 0 (m = 0), the coefficients are referred to as zonal harmonics. 

When n = m, the coefficients are referred to as sectorial. Sectorial harmonics account 

for the gravitational field variation in longitude. The coefficients are referred to as 

tesseral harmonics when m n 0. 

 

The gravitational potential field originating from a satellite‟s planetary host is the source 

of the main external force affecting an orbiting satellite. The Earth is not uniformly 

spherical, as it is an oblate spheroid, nor is the mass distribution homogeneous and 

uniform. The associated non-spherical gravitational field may be expressed in terms of 

Legendre and associated Legendre polynomials, the distance r  of the satellite from the 

Earth‟s centre, the longitude L of the satellite, measured from the Greenwich meridian 

and positive eastward, the latitude l  of the satellite taken to be positive towards north 

and the equatorial Earth radius, km 16.6378eR  as (Deutsch 1963), 
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where, 

   n
n

n

nn x
dx

d
xP 1

!2

1 2  ,      xP
dx

d
xxP nm

mm

nm  2
21 . 

Jn, Jnm and Lmn are constants characterising the Earths mass distribution. Jn are the zonal 

harmonics related to the Earth‟s oblateness and the later constants are associated with 

the tesseral harmonics related to the ellipticity of the equator which results in a 150m 

difference between the Earth‟s major and minor axes. 

 

The principal perturbation to orbital elements, in the GPS orbit is due to the Earth's 

flattening given by J2 in the expression for the total potential energy possessed by a 

satellite by virtue of the Earth‟s gravitational field. The effect of the J2 perturbation can 

be computed from the Lagrange planetary equations. For the Earth, J2 = 1.08284x10
-3

, 

J3 = -2.56x10
-6

, J4 = -1.58x10
-6

 and J2 is at least about 1000 times larger, in magnitude, 

than all other Jn, for n >4. For the Earth, J21 = 0, J22 = 1.86x10
-6

, J31 = 2.1061x10
-6

 and 

all other Jnm are at most equal to 1.0x10
-6

. 

 

The Earth‟s gravitational potential may also be expressed as, 
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    (G.3) 

with  1522L . As a geostationary satellite orbits the Earth along the equator, the 

latitude,   , from the equatorial plane is always zero and since 1rRe , the Earth‟s 

gravitational potential may be simplified. 
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