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Abstract 
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Abstract 

 
In materials science, the traditional methodological framework is the 

identification of the composition-processing-structure-property causal pathways 

that link hierarchical structure to properties. However, all the properties of 

materials can be derived ultimately from structure and bonding, and so the 

properties of a material are interrelated to varying degrees. 

 

The work presented in this thesis, employed artificial neural networks (ANNs) to 

explore the correlations of different material properties with several examples in 

different fields. Those including 1) to verify and quantify known correlations 

between physical parameters and solid solubility of alloy systems, which were 

first discovered by Hume-Rothery in the 1930s. 2) To explore unknown cross-

property correlations without investigating complicated structure-property 

relationships, which is exemplified by i) predicting structural stability of 

perovskites from bond-valence based tolerance factors tBV, and predicting 

formability of perovskites by using A-O and B-O bond distances; ii) correlating 

polarizability with other properties, such as first ionization potential, melting 

point, heat of vaporization and specific heat capacity. 3) In the process of 

discovering unanticipated relationships between combination of properties of 

materials, ANNs were also found to be useful for highlighting unusual data 

points in handbooks, tables and databases that deserve to have their veracity 

inspected. By applying this method, massive errors in handbooks were found, 

and a systematic, intelligent and potentially automatic method to detect errors in 

handbooks is thus developed.  

 

Through presenting these four distinct examples from three aspects of ANN 

capability, different ways that ANNs can contribute to progress in materials 

science has been explored. These approaches are novel and deserve to be pursued 

as part of the newer methodologies that are beginning to underpin material 

research. 
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Introduction 

 1 

1.0 Introduction 
 
1.1 Aims and Objectives 

Artificial neural networks (ANNs) represent one type of data mining procedure 

and they have found acceptance in many subjects for modelling complex 

problems. They have been applied in materials science for more than one decade 

for finding the correlations between different materials parameters. The general 

aim of this work is to explore correlations that might exist between different 

properties in materials using ANN. Four distinct examples of their applications 

are presented.  

 

The objectives of this work are as follows: 

1. To test whether it is feasible to predict solid solubility limits by using Hume-

Rothery’s Rules. If the result is positive, then to find what is the relative 

importance of each rule, or to find the relative weighting and to assess how 

well the weighted rules work for a) copper and silver alloys; b) a wider range 

of alloys. If not, to find what other parameters are needed. 

 

2. To discover a systematic, intelligent and potentially automatic method to 

detect errors in handbooks and stop their transmission by using unrecognised 

relationships between materials properties. 

 

3. To make predictions of global instability index (GII) from bond-valence based 

tolerance factors tBV for perovskites and to make the predictions of the 

formability of perovskites by using A-O and B-O bond distance. 

 

4. To explore the correlations that might exist between different properties 

without knowing the direct structure-property relationships, and it is 

exemplified by analyzing the correlation between polarizability and other 

properties in detail. 



Introduction 

 2 

1.2 Approaches to Materials Science 

In materials science it is important to establish the general composition-

processing-structure-property-performance relationships (Flemings, 1999), and 

then allow the optimization of the processing parameters and compositions in 

order to achieve the desired combination of properties for any particular 

application (Malinov and Sha, 2003). These relationships can be obtained in the 

following ways: 

 

1) By experimental characterisation. The execution of well designed 

experiments make it possible to get precise results which help to establish 

structure-property relationship, but this is a time consuming and financially 

costly procedure. Recently, experimental characterisation has been accelerated 

by a method called combinatorial and high throughput materials development 

and the details of these methods are discussed in part 1.2.1. These developments 

result from a concern about the slow pace of conventional laboratory procedure. 

 

2) By physical and empirical models. As set out by Bhadeshia (1999), a 

theory can be judged by at least two criteria: 1) it must be able to describe a large 

number of observations with few arbitrary parameters; 2) it must be able to make 

predictions which can be verified or disproved. During the past decades, the 

developments of theory on materials have helped greatly in understanding the 

underlying phenomena. The further details are discussed in part 1.2.2. 

 

3) By mathematical modelling. In terms of functionality, these approaches 

can be classified into four categories: a) those which lead to unexpected 

outcomes that can be verified; b) those which are created or used in hindsight to 

explain diverse observations; c) existing models which are adapted or grouped to 

design materials or processes; d) models used to express data, reveal patterns, or 

for implementation in control algorithms (Bhadeshia, 2008; 2009). In terms of 

the tools, they can be further subdivided into two classes: i) physical modelling 

and ii) statistical modelling. Further details for physical modelling are discussed 

in part 1.2.3 and statistical modelling is discussed in part 1.2.4. 
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1.2.1 Combinatorial and High Throughput Methods 

At the early stages of “science”, that is, before relationships between chemical 

composition, crystal structure and material properties had been established, 

artificial materials (artefacts) was produced by trial and error, known as pure 

empiricism (Steurer, 1996). At present, the discovery of most new materials is 

still solidly based in experimentation, although some progress has been made in 

the ability to design or predict the properties of new materials. However, these 

experimental approaches for materials development are being to be automated by 

“high throughput” or “combinatorial” methods, which emerged as a response to 

the challenges of materials development in increasingly complex experimental 

spaces, i.e. the enormous number of possible combinations of composition, host 

structure, dopants, defects, interfaces, processing conditions and so on, in an 

attempt to increase the pace of materials development (Cawse, 2003). This kind 

of methods are based on the construction of a library which may be thick or thin 

film, continuous gradient, randomised or discrete (Dagani, 1999; Amis et al., 

2002; Zhao, 2006). Once a library has been created, it can be regarded as a 

capital asset upon which a multitude of properties can be measured. It not only 

make impressive successes in materials discovery, but also provide a new 

paradigm for advancing a central scientific goal – the fundamental understanding 

of structure-property relations of materials behaviour (Amis et al., 2002). Further, 

the information obtained from such experiments can be used for converting the 

data from high-throughput experimentation to high-throughput knowledge 

discovery (Evans et al., 2001; Rajan, 2008). 

 

The principle of this method can be traced to the 1960s when the groundbreaking 

experiments in the field were first published. Kennedy et al. (1965) used a 

ternary-alloy phase “library” produced by electron-beam co-evaporation 

techniques and analyzed by electron diffraction, to successfully demonstrate 

qualitative agreement between the phase diagram produced by combinatorial 

techniques and that determined by conventional methods. In 1967, Miller and 

Shirn (1967) analyzed the Au-SiO2 system by using a co-sputtering technique in 

which a film exhibiting a controlled composition gradient of Au/SiO2 was 

deposited on the substrate by aligning Au and SiO2 targets carefully. They then 

used this gradient library to measure the electrical resistivity of the system over 
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the full range of composition. In the following years, this “composition-spread” 

method was used to study transition-metal-alloy superconductors (Hanak et al., 

1969; Sawatzky and Kay, 1969; Hanak, 1970). 

 

Modern combinatorial chemistry appeared first in the 1980s in the 

pharmaceutical industry (Borman, 1997). Geysen et al. (1984) helped jump-start 

the field when his group developed a technique for synthesizing peptides on pin-

shaped solid supports; Richard (1985) developed a technique in which tiny mesh 

packets act as reaction chambers and filtration devices for solid-phase parallel 

peptide synthesis. After pioneering work done by Xiang et al. in 1995 (Xiang et 

al., 1995), the  interest in combinatorial materials sciences resurged. The work 

after that included the search of superconductors (Xiang et al., 1995; Xiang, 

1999; Amis et al., 2002), ferroelectrics (Schultz and Xiang, 1998; Murakami 

et al., 2004), catalysts (Senkan, 1998; Jandeleit et al., 1999), dielectric 

materials (Pullar et al., 2007a and 2007b) and for studying of phase diagrams 

and composition-structure-property relationships (Zhao, 2006). At present, it can 

be said that combinatorial methods not only make impressive successes in 

materials discovery but also provide a new paradigm for advancing a central 

scientific goal – the fundamental understanding of structure and property 

relationships of materials behaviour (Amis et al., 2002). 

 

However, it is also needs to be mentioned that this method is based on the 

philosophy of Baconian science. It is important to notice that the words from 

Francis Bacon (Bacon et al., 1905) were supposed to establish a philosophy of 

science but William Harvey, who was one of the greatest experimental scientists 

of that time, said that Bacon spoke of making observation, but omitted the vital 

factor of judgment about what to observe and what to pay attention to (Feynman, 

1969). As a result, essential analysis and judgments are needed after using the 

high throughput data mining method. 

 

1.2.2 Traditional Methodological Framework for Materials Science 

In materials science, after the most simple binary and ternary alloys have been 

studied, it becomes progressively more difficult, time consuming, and costly to 

create useful new materials by using only experimental studies, so people have 
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ambitions to predict material properties theoretically without experimentation 

(Kawazoe, 1999). The traditional methodological framework for materials 

science is the identification of the causal pathways that link composition and 

structure to properties. The historical success of this approach is unquestioned. 

 

The chemical composition is identifiable as the bulk elemental constituents as 

determined to within a few molar percent by a range of analytical methods. For 

some properties, ‘impurity’ or ‘dopant’ constituents which may be present at the 

parts per million level have an effect on properties that is far out of proportion to 

their concentrations. For example, in semiconductors and colorants, bulk 

properties are strongly influenced by dopants; in ceramics, ‘impurities’ have a 

pronounced effect on semiconduction and diffusion; conducting polymers can be 

obtained by doping; and conducting polymer-matrix composites can be obtained 

by the use of conducing fillers. 

 

The structure of a material usually relates to the arrangement of its internal 

components. Subatomic structure involves electrons within the individual atoms 

and interactions with their nuclei; then, on atomic level, structure encompasses 

the organization of atoms or molecules relative to one another; the next largest 

structural realm, which contains large groups of atoms that are normally 

agglomerated together is termed microscopic, which associated with grain 

boundaries and stacking faults, also include point, line and planar defects such as 

vacancies, substitutional and interstitial defects, dislocations, stacking faults, 

twin and grain boundaries; finally, structural elements that may be viewed with 

the naked eye are termed macroscopic, which includes pore size and fraction 

(Callister, 2003). 

 

Different levels of structures determine different kinds of properties: 

1. The subatomic structure determines the chemical characteristics of elemental 

materials (Mangonon, 1999).  

2. Atomic structure influences the deformability of crystalline materials, like 

metals and alloys. 

3. Comparing with others, microstructure has strong effects on a large number of 

material properties, such as I) Body centre cubic (BCC) structure is assumed 
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to be more stable at higher temperature than the face centre cubic (FCC) or 

hexagonal close packed (HCP) structure owing to its higher vibrational 

entropy (Steurer, 1996); II) Incipient melting of metals occurs first at the 

grain boundaries, which decreases the melting point; and grain boundaries 

also enhance the creep deformation at high temperatures; III) At low 

temperatures, the smaller the grain size of the material, the higher are its yield 

strength, fracture strength, and toughness; IV) Two basic diffusion 

mechanisms by which an atom moves in the structure are interstitial diffusion 

which results from the interstitial defects, and vacancy diffusion which results 

from substitutional defects or vacancies. Also, dislocations, grain boundaries 

can enhance atomic movement; V) Dislocations allow crystalline materials to 

be deformed into shapes, and make them more ductile compared with 

materials that do not have dislocations or have sites that block dislocations. 

4. Macroscopic structure, such as inclusions and cracks could influence transport 

properties; and the overall component shape and size determine strengths. 

 

The study of causation within the sequence composition-processing-structure-

properties is the traditional basis of the subject. Many of the successes in 

materials science have emerged from its careful implementation. Many examples 

of explaining properties from the structure are listed in textbooks. By using 

fundamental principles of physics and chemistry that govern the states and 

properties of condensed matter, as well as materials theory, it is possible to 

model the structure and functional properties of real materials quantitatively, and 

consequently to design and predict novel materials and devices with improved 

performance (Elsässer et al., 2001). 

 

1.2.3 Physical Modelling of Materials 

Although it can be admitted that the scientific community at present is closer to 

the realization of designing any material with given properties on the basis of 

improved understanding of structure-property relationships (Steurer, 1996), the 

development and processing of materials is complex, existing theories still lack 

predictive power, i.e. the current level of theoretical and empirical understanding 

of materials does not allow people to predict structures and hence the resulting 

properties of the materials completely (Disalvo, 1990). As mentioned by 
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Bhadeshia (1999), there remain many problems where quantitative treatments are 

dismally lacking; and this incapability specially happens in the prediction of 

mechanical properties, due to their dependence on large number of variables. 

Examples are elastic modulus, yield strength, tensile strength, toughness, creep 

strength, hardness and so on. 

 

It is possible to predict properties by physical modelling. This method has been 

characterized by multiscale; linking the simulation models and techniques across 

the micro-to-macro length and time scales with the goal of analyzing and 

controlling the outcome of critical materials processes. By combining different 

modelling methods, such as quantum mechanical calculations, Monte Carlo 

simulations, finite element analysis (FEA), the complex problems can be dealt 

with in a much more comprehensive manner than when the methods are used 

individually (Yip, 2005). These kinds of method are based on recognizing the 

relationships between a structure and its properties: if a structure can be 

calculated and optimized from given stoichiometries and connectivities, its 

properties can be calculated as well (Fey, 1999). 

 

Ab initio, or ‘first principles’ electronic structure calculations, is one typical 

method; and are based solely upon 1) the laws of quantum mechanics, 2) the 

masses and charges of electrons and atomic nuclei, and 3) the values of 

fundamental physical constants, such as the speed of light or Planck’s constant 

(Dorsett and White, 2000). The first ab initio calculation on a material was 

done by Wigner and Seitz in 1934 (Wigner and Seitz, 1934) following their 

previous paper, which is the first to apply the Schrödinger equation to the 

problem of bonding in metals (Wigner and Seitz, 1933). At present, there is a 

large number of commercial ab initio software packages available, such as 

GAMESS, Dalton, Gaussian, Spartan, Chem3D, Material Studio, VASP, WIEN, 

PWSCF, SIESTA, ADF, ABINIT, CPMD and Octopus. With these tools, the 

number of diverse problems to which ab initio calculations have been directed is 

very large (Cargnoni et al., 1998; Harrison et al., 1998; Milman et al., 2000; 

Li, 2004; Van de Walle and Neugebauer, 2004; Music et al., 2007). 
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Although ab initio calculations are theoretically the most rigorous, the techniques 

that have been developed for solving these equations are extremely 

computationally intensive (Yip, 2005). When large number of atoms (1023) and 

the many-body interactions to be treated, this method would place a considerable 

demand on computer resources (Kawazoe, 1999); and even when only a small 

number of atoms are of interest, each step of the calculation may take several 

hours on a multiprocessor machine (Chin et al., 2003). As mentioned by Pettifor 

(2003), even with the largest parallel computer, only about 1000 non-equivalent 

atoms can be simulated from first principles, which corresponds to a 3-D cell size 

of about 1nm; and assuming the atoms are held together by some valence force 

field or interatomic potential in order to simulate larger systems, only 1000 

million atoms can be treated using the largest parallel computer, which 

corresponds to a cell size of 0.1 μm. From comparing the highest computing 

power recorded for year 2003 and at present from TOP500 (TOP500 website), it 

is found that, even today, the cell size that can be treated is about 4 μm. However, 

for nanomaterials, the reduction in size towards nanometric scales together with 

the ever increasing computational power begin to allow direct application of ab 

initio calculations to realistic systems (Lannoo, 2001), such as the work done by 

Ordejón (2000). 

 

At present, accompanying increasing computing power, several other techniques 

have been developed for enhancing the resource efficiency and time for 

computation such as 1) coarsening most of the details of the atomic or molecular 

but retaining enough information for the essential physics to describe the 

phenomena of interest, 2) employing multiprocessor computers and efficient 

code parallelisation and 3) incorporating computational steering (Chin et al., 

2003). These make the simulation of systems that having length-scales of several 

million atoms and timescales of up to milliseconds possible (Klein and Shinoda, 

2008). Other examples for application of large-scale simulations that are free 

from finite size effects can be found for layered materials (Suter et al., 2007; 

Thyveetil et al., 2007; Suter et al., 2009). However, these simulations have the 

capability to study a system of large number of atoms, but are not as reliable as 

ab initio calculations (Dorsett and White, 2000; Yip, 2005).  
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1.2.4 Statistical Modelling of Materials 

When dealing with difficult problems where the physical models are not 

available or tedious to apply, it is helpful to correlate the results with chosen 

parameters by applying regression analysis, in which the data are best-fitted to a 

specified relationship that is usually linear. The result of linear regression is an 

equation, in which each of input xi is multiplied by a parameter ai; and the sum of 

all such products and a constant C then gives an estimate of the output 

 
i ii Cxay  (Bhadeshia, 1999). 

 

There are examples of applying linear regression method in materials sciences of 

the type (Bhadeshia, 1999; 2009): 

1) Cxaxaxay ii2211  ...               Equation 1.2.1 

 

This is a typical linear function and the idea is to predefined the function, then 

correlate the empirically determined results against chosen variables using 

regression analysis. One example for this kind of linear regression is the bainite 

reaction start temperature (BS) in steel which can be written as: 

 

  MoCrNiMnCS C83C70C37C90C270830CB    

 

where CC, CMn, CNi, CCr and CMo are the compositions of elements in wt.%, 

typically C, Mn, Ni, Cr and Mo (Stevens and Haynes, 1956). However, in this 

case, it needs to be pointed out that the physical model for BS has been found 

later and the dependence on concentration of added elements is not linear 

(Bhadeshia, 1981). 

 

2) Cxaxaxay i
i

2
21  ...               Equation 1.2.2 

 

Or the function can be like this, which is a pseudo-linear polynomial. The 

example in material science is the basic thermodynamic parameter – heat 

capacity at constant pressure (CP), which is expressed empirically as a function 

of the absolute temperature T as follows: 
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 2
42

321P T
aTaTaaC   

 

As stated by Reid and Sherwood (1958), the prediction is usually based on 

correlations of known information. These correlations can be classified as three 

different types: purely empirical, partly empirical but based on some theoretical 

concept, and purely theoretical. Within these, the first is often unreliable and may 

not be worthy, the third is seldom adequately developed. The most widely used 

correlations are of a form suggested in part by theory, with empirical constants 

based on experimental data. Both of above two examples belong to the second 

kind of correlations. 

 

However, as mentioned by Specht (1991) and Bhadeshia (1999), there are 

several difficulties associated with these general linear regression analysis: i) A 

predefined relationship has to be chosen before analysis; ii) the chosen 

relationship tends to be linear, or pseudo-linear with non-linear terms added 

together and iii) when the regression equation once derived, it applied across the 

entire span of the input space. However, it may not be a reasonable case; and so 

the accuracy of predictions for unseen data would be low, as has been examined 

in several people’s work (Bratchell et al., 1990; Barayani and Roberts, 1995; 

Sofu and Ekinci, 2007; Moghtased-Azar and Zaletnyik, 2009). 

 

Neural network, which falls in the statistical modelling category, can avoid the 

difficulties that regression methods have. The details are discussed in what 

follows. 
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1.3 Artificial Neural Networks (ANNs) 

1.3.1 Introduction to ANNs 

The human brain is able to process information rapidly and efficiently through a 

system of neural networks consisting of vast numbers of neurons. It has evolved 

to enable a greater awareness of itself and its actions within its environment 

(Amari, 2007). Compared with the programmed computing, in which (usually 

procedural) algorithms are designed and subsequently implemented using the 

currently dominant architecture, computation in the human brain is different in 

that I) the computation is massively distributed and parallel, i.e. the basis of 

biological computation is a small number of serial steps, each occurring on a 

massively parallel scale; II) learning replaces a priori program development 

(Schalkoff, 1997).   

 

Taking these cues from nature, the biologically motivated computing paradigm 

of artificial neural networks (ANNs) has arisen. Its appearance was determined 

by two factors: one is the principal stages of the development of modern 

elemental base technology that mainly determines the development of computer 

architecture, and the second is the practical requirement to solve specific 

problems in a faster and more economical manner. The main reason for the 

development of neural computing since the 1950s appeared as a development of 

the threshold logic which is in direct contrast to the classical development of the 

elemental base on the basis of AND, OR, NOT and so on (Galushkin, 2007).  

 

The ability to learn is a peculiar feature of intelligent systems. In artificial 

systems, learning is viewed as the process of updating the internal representation 

of the system in response to external stimuli so that it can perform a specific task. 

ANN learning includes modifying the network architecture, which involves 

incrementally adjusting the magnitude of the weights or, as it is known ‘synapse’ 

strength. This process is performed repetitively as the network is presented with 

training examples, which is similar to the way that people learn from experience. 

Then the ANN can generalize from the tasks it has learned to unknown cases 

(Basheer and Hajmeer, 2000). 
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Active research projects in the ANN field have been conducted by psychologists, 

mathematicians, computer scientists, engineers, and others. It is considered that if 

ANNs are to become a mature technology, the interfaces between existing 

technologies and application areas such as modelling and simulation, 

optimization theory, artificial intelligence, pattern recognition, and nonlinear 

systems must be identified and unified. Like many engineering and scientific 

disciplines, ANN system design often involves “trade-offs between exact 

solutions to approximate models and approximate solutions to exact models” 

(Schalkoff, 1997). 

 

1.3.2 Comparison with General Regression Analysis 

The comparison with general linear regression analysis can be illustrated by 

Figure 1.3.1. The neural network also can represent linear regression, as shown 

in Figure 1.3.1 (a). Here, each input xi is multiplied by a random weight ai and 

the products are summed together with a constant C to give the output y. The 

summation operates at the hidden node. Since initially, the weights ai and the 

constant C are chosen at random, the output generally is not a match with 

experimental data and so the weights are systematically changed, known as 

training, until a best-fit description of the output is obtained as a function of the 

inputs. 

 

In comparison with that, the non-linear representation of neural networks is 

shown in Figure 1.3.1 (b). In this case, the input data xi are multiplied by weights 
)(1

ia , and the sum of all these products forms the argument of a hyperbolic 

tangent: 







 

i

1
i

1
i Cxah )()(tanh , then )()( 22 Chwy  . The choice of the 

hyperbolic tangent function is due to its flexibility. The combination of more 

than one hyperbolic tangent transfer function permits the ANN to capture almost 

arbitrarily non-linear relationships; and the availability of a sufficiently complex 

and flexible function means that the analysis is not as restricted as in linear 

regression where the form of the equation has to be  specified before the analysis. 

The change of the exact shape of the hyperbolic tangent can be reached by 

altering the weights, that is, hyperbolic function varies with position in the input 
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space. Also, the neural network can capture interactions between the inputs 

because the hidden units are nonlinear (Bhadeshia, 1999). 

 

As a result, artificial neural networks are currently one of the most powerful 

modelling techniques based on statistical approaches and can be used to solve 

problems that are not amenable to conventional statistical methods (Malinov and 

Sha, 2003). The attractiveness of ANNs comes from the remarkable information 

processing characteristics of these methods which mimic biological systems such 

as nonlinearity, high parallelism, robustness, fault and failure tolerance, learning 

ability to handle imprecise and fuzzy information, and their capability to 

generalize (Jain et al., 1996). 

 

 

 

 

 

 

 

 

 

      (a)             (b) 

Figure 1.3.1 (a) A neural network representation of linear regression. (b) A 

non-linear network representation (Redrawn from Bhadeshia, 1999). 

 

Sometimes, artificial neural networks are described as a non-algorithmic, black-

box computational strategy, in which the internal computation is irrelevant, not 

understood, or defies quantification, but trainable. The intention is to train the 

black box to “learn” the correct response or output for each of the training 

examples, with the minimum required amount of a priori knowledge and detailed 

understanding of the internal system operation (Schalkoff, 1997). On the 
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contrary, some people think neural network is transparent, consisting of an 

equation and associated coefficients (the weights) and both the equation and the 

weights can be studied to reveal the relationships and interactions. Due to the 

nature of the interactions is implicit in the values of the weights and in some 

cases there exist more than just pairwise interactions, the problems are difficult 

to visualize from the examination of the weights. As a result, it is suggested that 

a better method is to actually use the network to make predictions and to see how 

these depend on various combinations of inputs (Bhadeshia, 1999). 

 

At present, neural networks have been treated as wonderful tools that permit the 

availability of quantitative expressions without compromising the known 

complexity of the problem (Bhadeshia, 2009).  

 

1.3.3 Types and Selection of ANNs 

There are some frequently used ANNs from which to select. They have their own 

characteristics and special applications: 

1. Backpropagation Networks (BPANNs): This kind of network is versatile 

and can be used in many fields such as data modelling, classification, 

forecasting, control, data and image compression and pattern recognition 

(Hassoun, 1995). 

2. Hopfield Network: This kind of network is a symmetrical fully connected 

two-layer recurrent network, which acts as a nonlinear associative 

memory and is especially efficient in solving optimization problems 

(Hopfield, 1984; Hopfield and Tank, 1986). 

3. Adaptive Resonance Theory (ART) Networks: ART networks consist of 

two fully interconnected layers, a layer that receives the inputs and a 

layer consisting of output neurons. Like Hopfield networks, ART 

networks can be used for pattern recognition, completion, and 

classification (Basheer and Hajmeer, 2000). 

4. Kohonen Networks: These networks are two-layer networks, which 

transform n-dimensional input patterns into lower-ordered data where 

similar patterns project onto points in close proximity to one another 

(Kohonen, 1989). In addition to pattern recognition and classification, 

Kohonen networks also can be used for data compression, i.e. high-
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dimensional data are mapped into a lower dimensional space while 

preserving their content. (Zupan and Gasteiger, 1991). 

5. Counterpropagation Networks: These networks, which are developed by 

Hecht-Nielsen (1988, 1990), are trained by hybrid learning to create a 

self-organizing look-up table useful for function approximation and 

classification (Zupan and Gasteiger, 1993). 

6. Radial Basis Function (RBF) Networks: These networks are a special 

case of a multiplayer feedforward error-backpropagation network with 

three-layers (Schalkoff, 1997). The choice between the RBF networks 

and the BPANNs is problem dependent (Pal and Srimani, 1996). RBF 

networks train faster than BPANNs but are not as versatile and are 

comparatively slower in use (Attoh-Okine et al., 1999). 

 

Within the vast number of networks that currently have been developed, the 

backpropagation networks (BPANNs) are the most widely used type of network 

and are considered as the work-horse of ANNs (Rumelhart et al., 1986). In 

BPANNs, the data are fed forward into the network without feedback, i.e., all 

links are unidirectional and there are no same layer neuron-to-neuron 

connections (Basheer and Hajmeer, 2000). 

 

The model is shown schematically in Figure 1.3.2 

 

 

 

 

Figure 1.3.2  A model of a feed-forward hierarchical artificial neural network. 

 

The reasons for selecting a particular ANN are now explained. As Basheer and 

Hajmeer (2000) mentioned, the decision depends strictly on the problem logistics. 

The Kohonen network is required by a clustering problem, BP or RBF networks 

can model mapping problems; but Hopfield networks can only solve some 

optimization problems. ANN selection also depends on the type of input 
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(Boolean, continuous or a mixture of these) and the speed of the network once it 

is trained. In the initial problem of simulating the process that Hume-Rothery 

used to derive his rules (in object 1) the output is ‘soluble/insoluble’, and in the 

prediction of the formation of perovskites (in object 3) the output is perovskite 

formable/not, they are a kind of classification problems, and so the probabilistic 

neural network (Specht, 1990; Vicino, 1998) is designed for use. This is a type 

of radial basis network suitable for classification problems. In other works, the 

problems all are mapping problems so backpropagation artificial neural networks 

(BPANNs) are used. 

 

1.3.4 Applications of ANNs in Materials Science 

The application of neural networks in materials science at present is wide and it 

has had a liberating effect on materials science by studying the diverse 

phenomena which are not yet accessible to physical modelling. As afore cited, 

the development and processing of materials is very complex and although 

scientific investigations on materials have reached greater understanding of the 

underlying phenomena, there still remain many problems where quantitative 

treatments are dismally lacking. The lack of progress in predicting some 

properties is because of their dependence on a large numbers of variables. Neural 

networks are extremely useful in circumstances where the complexity of the 

problem is overwhelming from a fundamental perspective and where 

simplification is unacceptable (Bhadeshia, 1999).  

 

There are some applications of neural networks in materials, and these 

applications can be classified into two categories: 1) process control problems; 2) 

materials properties prediction. 

 

(1) Use of ANNs for process control 

In Arkadan et al.’s work (1995), the location and shape of a crack were deduced 

from measured magnetic field values as input. Raj et al. (2000) used ANNs in 

metalworking to predict forging load in hot upsetting, cutting forces in 

machining and loads in hot extrusion. Guessasma and Coddet (2004) used an 

ANN to quantify the relationship between Automated Plasma Spraying process 

parameters and microstructural features of aluminium-titanium coatings. Nam 
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and Oh (1999) used a trained network to interpreted the output from sensors for 

tracking the weld seam, and then to control a welding robot.  

 

(2) Use of ANNs for materials properties prediction 

It is the potential uses for prediction of properties of matter that is interesting for 

materials scientists. The impact toughness of ferritic steel welds has been 

predicted from the welding process, chemical composition, test temperature and 

microstructure using neural networks (Bhadeshia et al., 1995). Homer et al. 

(1999) used physical properties such as molecular weight, number of bonds and 

temperature as input factors to predict the viscosity, density, enthalpy of 

vaporization, boiling point and acentric factors for pure, organic, liquid 

hydrocarbons over a wide range of temperatures (Treduced≈0.45-0.7). Huang et al. 

(2002) predicted the mechanical properties of a ceramic tool based on materials 

properties. Malinov and Sha (2004) used ANNs for correlation between 

processing parameters and properties in titanium alloys such as fatigue life and 

corrosion resistance. A three-layer backpropagation network ANN was applied to 

the formulation of BaTiO3 – based dielectrics and for analysis of the electrical 

properties of PZT (Guo et al., 2002; Cai et al., 2005). 

 

Artificial neural networks have also been used in ceramic casting (Martinez et 

al., 1994), to interpret ultrasonic NDT (Non-Destructive Testing) of adhesive 

joints (Bork and Challis, 1995), for modelling the cold rolling forces (Larkiola 

et al., 1996), to predict continuous-cooling transformation curves in steel from 

chemical composition (Gavard et al., 1996) and to predict time-temperature 

transformation diagrams for titanium alloys (Malinov et al., 2000). Bhadeshia et 

al. recently reviewed applications of neural networks in the context of materials 

science from their group and others (Bhadeshia, 1999; Bhadeshia, 2009; 

Bhadeshia et al., 2009). 
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1.4 Different Kinds of Scientific Methodologies 

The application of neural networks in materials science will lead us to question 

methodological procedures that are traditional in the discipline and which 

originate from quite specific and strongly held views about scientific method. It 

is appropriate, therefore to survey some of the principal positions in method in 

order to chart our position. 

 

The processes of evolution created neural networks in the brains of living 

creatures. By reaching a certain degree of complexity, these networks generate 

electrical phenomena in space and time called consciousness, volition and 

memory. Such human brains have the capability to analyse the input signals 

received from the world, in which they have their existence. One form of this 

analysis, called science, has proved to be especially effective in correlating 

modifying and controlling the sensory input data (Moore, 1972). 

 

One view of scientific method, which is called conventionalism, or abduction in 

logical terminology, states that the human mind created or invented certain 

"beautiful" logical structures that are firstly defined as laws of nature, and then 

devised some special ways of selecting sensory input data in order to fit into 

patterns ordained by the laws, which are called experiments. In this view, the 

scientists are like creative artists, working with the unorganized sensations from 

a chaotic world such as paints or marbles. Philosophers like Poincaré (Poincaré, 

1952), Eddington (Eddington, 1949), and Duhem (Duhem, 1985) support this 

view. 

 

A second view of science, which is called deductivism, also known as Popperian 

science (Popper, 1963), is based on the creative emergence of hypotheses or 

conjectures which gradually become well-trenched in the form of established 

theories as more supporting experimental evidence is sought and found. 

According to Popper’s definition (Popper, 1965), “Theories are nets cast to 

catch what we call ‘the world’: to rationalize, to explain, and to master it. We 

endeavor to make the mesh ever finer and finer.” In deductivists’ opinions, there 

is no valid aposteriori logic, since general statements can never be proved from 

particular instances. However, a general statement can be disproved by one 
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contrary particular instance. As a result, a scientific theory can never be proved, 

but it can be disproved. The role of an experiment is therefore to subject a 

scientific theory to a critical test (Moore, 1972). Popper therefore emphasis 

refutation to get around the problem of induction. 

 

Another view of science, inductivism, preceded Popper by 350 years and was the 

source of the problem Popper sought to solve. It is also known as Baconian 

science, in which large amounts of data are firstly collected, assembled into 

tables, surveyed and from which theories are devised. In his Novum Organum of 

1620 (Bacon et al., 1905), Sir Francis Bacon argued that this was the only proper 

scientific method. In fact, at that time, Bacon’s emphasis on observable facts was 

an important antidote to medieval reliance on a formal logic of limited 

capabilities. Although Bacon’s definition sounds close to the layman’s idea of 

what scientists do, many competent philosophers have also continued to support 

the essentials of inductivism, such as Russell (Russell, 1948) and Reichenbach 

(Reichenbach, 1963). 

 

A central debate in the history and philosophy of science focuses on the 

contrasting explanations of scientific method from Popperian and Baconian 

science, and Gillies (1996) has concisely articulated the contribution and impact 

of artificial intelligence to philosophy of science: “…just as earlier the use of 

instruments to assist observation altered the way in which science was done, so 

the current development of computers and artificial intelligence is also destined 

to change science, and in such a way that Baconian induction becomes a 

standard part of scientific procedure.” 
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1.5 Prediction, Causation and Inference 

1.5.1 Cause-Effect, Contingency and Apophenia 

The central aim of many studies in the physical, behavioural, social, and 

biological sciences is the elucidation of cause-effect relationships among 

variables or events. However, the appropriate methodology for extracting such 

relationships from data, or even from theories, has been fiercely debated. There 

are two fundamental questions of causality: I) What empirical evidence is 

required for legitimate inference of cause-effect relationships? II) Given that the 

causal information about phenomenon is willingly accepted, what inferences can 

be drawn from such information, and how? But the fact is that these two 

questions have been without satisfactory answers in part because people have not 

had a clear semantics for causal claims and in part because people have not had 

effective mathematical tools for casting causal questions or deriving causal 

answers (Pearl, 2000). 

 

David Hume, in taking an empiricist approach – that all knowledge can be 

derived from sense experience rather than mind – made an important distinction 

between statements that show the relationship between ideas (analytic) and those 

that describe matters of fact (synthetic). He held the idea that people can accept 

the idea of causality because it is a learnable habit of the imagination. The mind 

records constant conjunctions based on past observations (Hume, 1896). This led 

to the view that, when people say ‘A causes B’, it only means that A and B are 

constantly conjoined in observation, rather than that there is some necessary 

connection between them. He said that people have no other notion of cause and 

effect, but that of certain objects, which have been always conjoined, and they 

cannot penetrate further into the reason of the conjunction (Russell, 1996). 

Hume's ideas of causality therefore have particular relation to the behaviour of 

artificial neural networks whose main purpose is to find conjugations between 

observations in the form of parameters in the form of correlations but to remain 

silent on owning the mechanistic nature of the connection. 

 

Contingency, based on the wider conception of association, was used to 

substitute the idea of cause and effect. In the third edition of his book “The 

Grammar of Science”, Pearson (1911) treated the law of causation as a 
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conceptual figment extracted from phenomena, and not of their very essence. 

The correlation between two occurrences is actually located in a category that 

embraces different grades of association between two limits of absolute 

independence (i.e. variation of the cause produces no effect on the phenomenon) 

and absolute dependence (i.e. variation of the cause absolutely and alone varies 

the phenomenon). That is, when a cause varies, a phenomenon changes, but to a 

different extent; the less the variation in that change, the more nearly the cause 

defines the phenomena and the more closely people assert the association or the 

correlation to be. In this book, a contingency table was firstly used to analysis the 

degree of association between variables by calculating a number of correlation 

coefficients. Pearson believed the nature of the contingency table reflects the 

essence of the association between cause and effect and “…the ultimate scientific 

statement of description of the relation between two things can always be thrown 

back upon such a contingency table…”. Pearson thus denies the need for an 

independent concept of causal relation beyond correlation (Pearl, 2000). 

 

Apophenia, which has been implicated in vulnerability to schizophrenia, is 

defined as the tendency to perceive meaning in unrelated events. It is treated as a 

“pervasive tendency of human beings to see order in random configurations” 

(Brugger, 2001). However, whether it is a kind of over-mentalizing activity that 

involves the dysfunction in the assessment of causality, or is a consequence of a 

creative ‘hyper-associative style’ of intact causal reasoning still remains 

speculative (Fyfe et al., 2008).  

 

Apophenia can be treated as a behaviour that regards the coincidences of two 

events as having cause-effect association. A coincidence is defined as “…a 

surprising concurrence of events, perceived as meaningfully related, with no 

apparent causal connection”, and it is the observer’s psychology that makes it 

perceived, meaningful and apparent (Diaconis and Mosteller, 1989). Actually, 

the coincidence can be studied and analysed by using statistical techniques, and 

the possibility of coincidence occurring in random events can be precisely 

predicted with the laws of probability (Diaconis and Mosteller, 1989; Falk and 

Konold, 1997; Martin, 1998; Griffiths and Tenenbaum, 2001). In 1928, 

Ramsey had proved that every large structure, such as large set of numbers, 
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points or objects, contains a highly regular pattern, and complete disorder is an 

impossibility (Graham and Spencer, 1990). Also as mentioned by Martin 

(1998), the very nature of randomness assures that the combination of random 

data will yield previous unknown patterns; however, people only can use it as a 

hypothesis for investigating more data, but should never make a general 

conclusion from it. 

 

Also, apophenia can be treated as a powerful tool for creativity, in order to make 

sense of the world. For creativity, the highest level is the production of a new 

idea or theory which is completely distinct from and not conforming to or 

deducible from any existing paradigm, and which is able to explain a wider range 

of phenomena than any existing discovery. Historically, no discovery with great 

importance was made by logical deduction, or by strengthening the observational 

basis. As a result, random thinking is the most important element of creativity 

(Rao, 1997). Also as Max Born once said “Science is not formal logic – it needs 

the free play of the mind in as great a degree as any other creative art”. 

 

1.5.2 Causation, Common Response and Confounding 

When a strong association between variables is present, the conclusion that this 

association is due to a causal link between the variables is often elusive. Figure 

1.5.1 shows different underlying links between variables that can explain 

observed association. The dashed line represents an observed association 

between the variables x and y. Some association can be explained by a direct 

cause-and-effect link between the variables. In Figure 1.5.1 (a), an arrow running 

from x to y shows x “causes” y. 

 

When thinking about an association between two variables, lurking variables 

need to be considered. Figure 1.5.1 (b) illustrates common response, in which the 

observed association between the variables x and y should be explained by a 

lurking variable z; and both x and y change in response to changes in z. The 

common response creates an association even though there may be no direct 

causal link between x and y. 
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Figure 1.5.1 (c) shows confounding, in which both the explanatory variable x and 

the lurking variable z may influence the response variable y. Since the effect of x 

is confounded with the effect of z, the influence of x from the influence of z 

cannot be distinguished; also, it cannot be said how strong the direct effect of x 

on y is, it is even hard to tell if x influences y at all. This is the case in which two 

variables (whether explanatory variables or lurking variables) are confounded 

and their effects on a response variable are mixed together. Especially, when 

many variables interact with each other, confounding of several variables can 

prevent conclusions being drawn about causation. 

 

 

 

 

 

 

 

Figure 1.5.1 Some explanations for an observed association. The broken lines 

show an association. The arrows show a cause-and-effect link. The variables x 

and y are under observation, and z is a lurking variable (Redrawn from Moore 

and McCabe, 1999). 

 

In reality, many observed associations are at least partly explained by lurking 

variables. Both common response and confounding involve the influence of a 

lurking variable (or variables) on the response variable (or variables). As a result, 

it has to be admitted that even a very strong association between two variables is 

not, by itself, good evidence that there is a cause-and-effect link between the 

variables; common response and confounding, along with the number of 

potential lurking variables, make observed  associations misleading. In fact, the 

best method, which is the only fully compelling method, of establishing 

causation is to conduct a carefully designed experiment in which the effects of 

possible or identifiable lurking variables are controlled. (Moore and McCabe, 

1999). 

X Y Y Y X 

Z Z 

X 

Causation 
(a) 

Common response 
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Confounding 
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1.5.3 Correlation, Cause and Effect 

A functional relationship in mathematics indicates an exact and predictable 

relationship, with no “ifs or buts” about it; but in practice, it is useful so long as 

the “ifs and buts” are only tiny voices. If a set of points (x, y) are plotted and a 

trend can be found, then it can be said that the variable quantities x and y are 

correlated. By this, it means that although there is not a strictly functional 

relation between them, it is possible to make some sort of prediction of the value 

of y, given a knowledge of the value of x. Correlation is a powerful tool for 

measuring the association between two variables and for expressing the 

dependence of one variable on the other, it measures only linear association 

(Moore and McCabe, 1999). The degree of correlation can be measured by a 

parameter called product moment correlation coefficient, R, which is defined as 
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1    Equation 1.5.1 

where x  and y  are respectively the mean of all the x values and the mean of all 

the y values, and σx and σy are respectively the standard deviations of all the x 

values and all the y values. 

 

It is only when the correlation coefficient is very high that estimation can be at 

all precise. Sometimes when an investigation is carried out in the presence of 

many disturbing factors, it is found that there is no simple relation between the 

factors on which the experiment was based. When plotting graphs of one variable 

against another and finding that, instead of the clear functional relationships 

sought by the investigator, and instead of straight lines and elegant-looking 

curves, ‘plum puddings’ are obtained, that is to say the points in a graph are 

scattered very much at random, it means that the disturbing factors have been 

more important than had been hoped (Moroney, 1967). 

 

However, there is still the question of the significance of the correlation 

coefficient, even if it is high. It must be asked whether a high value of the 

correlation coefficient could easily have arisen by chance. Just as Whitehead 

(1911) said: “(But in truth with more complicated instances) there is no more 

common error than to assume that, because prolonged and accurate 
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mathematical calculations have been made, the application of the result to some 

fact of nature is absolutely certain”. Since the method of correlation analysis is 

primarily used in cases where it is not possible to control the experimental 

conditions, but such data as can be collected as they occur are analysed 

(Moroney, 1967). 

 

In the empiricist tradition, probabilistic relationships constitute the foundations 

of human knowledge, whereas causality simply provides useful ways of 

abbreviating and organizing intricate patterns of probabilistic relationships. 

Causal relationships can be taken to be the fundamental building blocks both of 

physical reality and of human understanding of that reality, and probabilistic 

relationships can be regarded as but the surface phenomena of the causal 

machinery that underlies and propels our understanding of the world (Pearl, 

2000). 

 

1.5.4 Causal and Analogical Connections 

As people have tried to get to know nature’s forces and laws, they often applied 

connections between different agents. These connections can be divided into two 

types: 1) causal, that is the generation of one force by the other, which has been 

mentioned above, and 2) analogical. While the causal connection links the forces 

more tightly, analogical connection is helpful in understanding these forces and 

in formulating theories. In history, both kinds of connections between electricity 

and heat were exploited by those studying these phenomena. Ideas about these 

connections were shaped by the changing concepts of the forces and by 

experimental evidence for their interaction. 

 

Ohm based his famous 1827 theory of the electric conduction of metals on 

Fourier’s 1822 theory of heat flow. His success in deriving analogous equations 

to those of Fourier for electric current indicated to him an “intimate connection” 

between the two phenomena. Others then shared Ohm’s view. This view 

stimulated Wiedemann and Franz to their discovery of an approximate constant 

relation between the conductivity of heat and electricity in 1853. In turn, their 

empirical law supported an assumption of the intimate connection between the 

two phenomena, whose exact mechanisms were a subject of speculation until 
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well after the discovery of the electron. Using a combination of empirical and 

theoretical arguments, Lorenz claimed in 1872 that the Wiedemann-Franz 

constant depends linearly on the temperature, a claim that he verified 

experimentally by 1881. The electron theory of Drude explained Lorenz’s 

relation on the assumption that both heat and electric currents in matter result 

from the motion of its electrons (Shaul, 2005). 

 

From this brief historically view, analogical connection is another kind of 

association, which should be distinguished from causative associations. 
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1.6 Developments and Applications of Hume-Rothery’s Rules 

Hume-Rothery’s Rules, in the Baconian tradition, occupy a central space at the 

heart of metallurgy. In the 1920’s, after surveying the available solubility data, 

Hume-Rothery distinguished the factors that influence compound formation and 

control alloying behaviour. There exists a connection between solubility, atomic 

size, crystal structure and a particular concentration of valence electrons in an 

alloy (Hume-Rothery, 1926; Massalski, 2000). Later, Hume-Rothery added 

other ideas, and developed concepts which are now known collectively as Hume-

Rothery’s Rules (Hume-Rothery et al., 1934; Reynolds and Hume-Rothery, 

1937; Hume-Rothery, 1967). There are already detailed reviews of Hume-

Rothery’s Rules, such as the work done by Massalski and King (1963), 

Massalski and Mizutani (1978), Massalski (1996, 2000) and as described in 

biographical sketches about Hume-Rothery (Pettifor, 2000a). Following the 

hugely significant work by Hume-Rothery and his colleagues on the prediction 

of solid solubility in alloys, many researchers contributed in different ways to the 

prediction of solid solubility in terms of a soluble/insoluble criterion. The details 

are discussed in part 1.6.1 and 1.6.2.  

 

As cautioned by Pettifor (2000a), because different rules were expressed or 

stressed by Hume-Rothery at different times, it is sometimes difficult to define  

what constitutes ‘Hume-Rothery Rules’ and this confusion is extant. There is 

general agreement that, in order of importance, the atomic size factor is first, 

followed by the electronegativity effect. The importance of the electron 

concentration (e/a ratio) in determining solid solubility boundaries is recognised 

in some cases but other factors are rarely discussed in sufficient detail. Surveying 

metallurgical and physical science publications in general, different sources 

express Hume-Rothery’s ideas using terms such as: “effects”, “principles”, 

“factors” or “parameters” (Massalski, 2000). 

 

Researches on Hume-Rothery’s Rules blossomed in the 1930s-1980s but the 

prediction of solubility was gradually superseded by calculation of phase 

diagrams (CALPHAD), and the details are discussed in part 1.6.3. However, the 

simplicity and generality of Hume-Rothery’s Rules still make them one of the 

most important cornerstones in materials science. As mentioned by Watson and 
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Weinert (2000), most of these rules are still useful today as in Hume-Rothery’s 

time. 

 

1.6.1 Early Formation and Revision of Hume-Rothery’s Rules 

In 1926, after examining phase diagrams of the noble and related metals (i.e. Cu, 

Ag and Au), especially those alloyed with the B-subgroup elements (including Li, 

Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, Zn, Ga, Ge, As, Se, Br, Cd, In, Sn, Sb, 

Te, I, Hg, Tl, Pb, Bi), Hume-Rothery published a paper on the topic of compound 

formation in several alloy systems (Hume-Rothery, 1926). In it, Hume-Rothery 

predicted the β phase of Cu3Al would have the bcc structure because it satisfied 

an electron per atom ratio of 3/2, which was confirmed one month later by 

Westgren and Phragmén (1925). 

 

In the 1930s, Hume-Rothery shifted his attention to characterisation of atomic 

size by nearest neighbour distance instead of volume (Hume-Rothery, 1930). At 

that time, two of the Hume-Rothery rules controlling solid solubility were 

discovered: 1) the first Hume-Rothery rule, the atomic size factor, said that if the 

atomic diameters of the solvent and solute differ by more than about 14-15% 

then the primary solid solubility will be very restricted; 2) the second rule 

emphasised the importance of the electron concentration (or electron per atom 

ratio) in determining the phase boundary. Both of these rules are presented in his 

classical paper in 1934 (Hume-Rothery et al., 1934). 

 

In 1937, after studying the silver-rich antimony-silver alloy system with 

Reynolds (Reynolds and Hume-Rothery, 1937), Hume-Rothery became aware 

of a third factor restricting solid solubility, that is, electrochemical factor; 

maximum solid solubility reduced as the electronegativity difference between 

solute and solvent increased because of the competition to form intermetallic 

compounds. 

 

The relative valence rule was mentioned in the 1934 paper, and the importance of 

this rule was stressed by Hume-Rothery in early editions of his famous book The 

Structure of Metals and Alloys (Hume-Rothery, 1936). However, in his later 

versions of this book, it is stated ‘more detailed examination has not confirmed 
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this and, in its general form, the supposed principle must now be discarded’ 

(Hume-Rothery and Raynor, 1962; Hume-Rothery et al., 1969). 

 

1.6.2 Further Developments and Applications of Hume-Rothery’s Rules 

The development of Hume-Rothery’s Rules can be classified into two categories: 

one is the development within each rule, and the other is the development of 

anamorphoses or alternatives of these rules as a whole in order to get more 

powerful and precise predictions.  

 

1.6.2.1 Development and Application of Each Rule 

Atomic Size Factor 

The atomic size factor rule is usually presented in the following way (Hume-

Rothery et al., 1934): “if the atomic diameters of the solute and solvent differ by 

more than 14%, the solubility is likely to be restricted because the lattice 

distortion is too great for substitutional solubility.” When the size factor is 

unfavourable, the primary solid solubility will be restricted; when the size factor 

is favourable, other factors limit the extent of solid solubility and it is of 

secondary importance. The size factor rule has been explained by using elastic 

theory. It has be shown that (Friedel, 1954; Eshelby, 1956; Mott, 1962; 

Cottrell, 1975), the ensuing total strain energy E in both solvent matrix and 

solute can be estimated as  

     23
08  rE                Equation 1.6.1 

where μ is the shear modulus and r0 and (1+ε)r0 are the unstrained radii of the 

solvent and solute atoms. Taking ε as 0.14 (as the size factor rule declares) or 

0.15, and 3
0r =0.7 eV, this gives TkE B4  at 1000 K. Darken and Gurry (1953) 

proved that at temperature T, the primary solid solubility would be restricted to 

below about 1 at.% when the energy of solution exceeds 4kBT per atom, where 

kB is Boltzmann’s constant. Although elastic theory cannot be applied strictly at 

the atomic level, this gives a simple explanation of Hume-Rothery’s size factor 

rule. Also, Mott (1962) provided a quantum mechanical basis for this elastic 

theory based on the Wigner-Seitz wave function ψ0(r), for an electron in the 

lowest state in a Wigner-Seitz cell.  
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The validity of the size factor has been debated since the rule was proposed. 

Hume-Rothery et al. themselves (1934) pointed out that the exact “atomic 

diameter” of an element is always difficult to define. They defined the atomic 

diameter as given by the nearest-neighbour distance in a crystal of the pure metal. 

However, this diameter cannot necessarily be transferred to the alloy because 1) 

the ‘radius’ of an atom is probably affected by coordination number. Except for 

the heavy elements, elements of the B sub-groups tend to crystallize with 

coordination number 8-N, where N is the group to which the element belongs. 

This is due to the partly covalent nature of the forces in these crystals and, except 

in Group IV B, results in the atoms having two sets of neighbours at different 

distances in the crystal. 2) In some structures there are great variations in the 

closest distance between pairs of atoms at their closest distance of approach, 

depending on the position and direction in the lattice. 3) On forming a solid 

solution, the ‘sizes’ of individual atoms may change according to the nature and 

degree of local displacements. In the case of anisotropic or complex structures or 

where the coordination numbers are low, the closest distance of approach does 

not adequately express the size of the atom when in solid solution (Massalski, 

1996). Furthermore, atomic spacing increases or decreases as the composition 

changes and so differences appear between the lattice spacing in alloys and the 

estimated atomic sizes. 

 

There are some attempts to derive the atomic size, such as extrapolating the size 

variance trend of an element in the alloy towards the pure element to give a  

hypothetical size (Axon and Hume-Rothery, 1948). Massalski and King (1963) 

pointed out that in finding the atomic size factor, it is usually the volume per 

atom that matters, not the distance between nearest neighbours, so they used the 

change in volume per atom to obtain hypothetical dimensions.  

 

The atomic dimensions can be calculated by using pseudopotential theory, such 

as the work done by Hayes et al. (1968) on Li-Mg, Inglesfield (1969a; 1969b; 

1969c) on Hg, Cd and Mg alloys, Hayes and Young (1970) on alkali alloys, 

Stroud and Ashcroft (1971) for Cu-Al, Li-Mg and Cu-Zn, Meyer et al. (Meyer 

and Young, 1969; Meyer et al., 1971a; Meyer et al., 1971b) on analyzing the 

diffusion thermopowers of dilute alkali metal alloys, on calculating the lattice 
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spacings and compressibilities of non-transition element solids and for analyzing 

residual resistivities in silver and gold and Singh and Young (1972) on enthalpies 

of solution at infinite dilution. They can also be obtained from the free-electron 

model developed by Brooks (1963) and have been used by Magnaterra and 

Mezzetti (1971; 1974). 

 

The actual individual atomic sizes can also be estimated from static distortions in 

a solid solution by modulation in diffuse X-ray scattering (Warren et al., 1951; 

Roberts, 1954) or from weakening of the interference maxima analogous to 

thermal effects (Huang, 1947; Herbstein et al., 1956; Borie, 1957; Borie, 1959). 

 

From the analyses cited above, and as Cottrell (1998) suggested, the concept of a 

characteristic size, which suggests hard spheres butted together is doubtful and 

allocating a single atomic diameter for each element, independent of its 

environment, and valences of solvent and solute is too simplistic an approach 

(Hume-Rothery et al., 1969). At present, the importance of the size factor, of 

course, extends far beyond primary solubility. Many intermetallic compounds 

owe their existence to size-factor effects. 

 

Relative Valence Factor 

An early discovery by Hume-Rothery was that a metal of lower valence is more 

likely to dissolve one of higher valence than vice versa. However, more 

extensive investigation has not confirmed the generality of this rule. An example 

is that monovalent silver can dissolve about 20% aluminium but trivalent 

aluminium dissolves about 24% silver. However, for high valence, covalently 

bonded components, the relative valence factor applies well. For example, 

copper dissolves about 11% of silicon but silicon dissolves negligible copper 

(Cottrell, 1998). This rule seems to be valid only when monovalent metals 

copper, silver or gold are alloyed with the B-subgroup elements of the Periodic 

Table which have higher valences. This is variously attributed to the partial 

electron filling of the Brillouin zones in noble metals, the interaction of  Fermi 

surfaces and Brillouin zones in B-subgroup elements (Massalski, 1996) and 

long-range charge oscillations around the impurity atoms (Hume-Rothery, 

1961). Gschneidner (1980) implies that the relative valence effect is limited in 
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applicability; when two high valence elements are alloyed it is not always 

possible to predict which will form the more extensive solid solution with the 

other. 

 

Besides, the valencies of transition metals are variable and complex, as analysed 

by Hume-Rothery et al. (1951) and Cockayne and Raynor (1961). Cottrell’s 

book (1998) points out that due to the valency complication caused by partly 

filled d orbitals, the transition metal alloys generally do not follow the rule. 

Gschneidner (1980) revised the relative valence rule to suggest that the solubility 

will be low if a metal in which d orbitals strongly influence the valence 

behaviour is alloyed with a ‘sp metal’. The solubility is likely to be higher in the 

d metal than the reverse. 

 

Electronegativity Factor 

The scale for electronegativity as given by Mulliken is based on the equation: 

     AI* 
2
1           Equation 1.6.2 

where I is the ionization energy, A is electron affinity, and *  is Mulliken 

electronegativity. Dividing by 2.8, gives approximately Pauling’s empirical scale. 

Watson and Bennett (1978) point out that in the case of transition metals, the 

partly filled d states at energies near the Fermi energy influence electronegativity. 

They produced an electronegativity scale for transition metals, which matches 

Pauling’s scale, and could be scaled by 2.8 to bring it to Mulliken’s scale. 

 

As discussed by Hume-Rothery (1961), stable intermetallic compounds are prone 

to form as the more electronegative is the solute and the more electropositive is 

the solvent metal, or vice versa. Due to the lower free energy that can be 

obtained when the system adopts a mixture of solid solution and compound, 

solute atoms partition to form the stable compound rather than to enter solid 

solutions. Further, as stated by Pearson (1972), in some binary alloy systems, if 

one component is very electropositive relative to the other, there would be a 

strong tendency for them to form compounds of considerable stability in which 

valence rules are satisfied. This is the strongest effect in determining the 

constitution of alloys, which dominates all other effects. 
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Recently, Li and Xue (2006), on the basis of an effective ionic potential that is 

defined in terms of ionisation energy and ionic radius, calculated the 

electronegativities of 82 elements in different valence states and with the most 

common coordination numbers, and pointed out that ‘although electronegativity 

is often treated as an invariant property of an atom, as in Pauling’s scale, it 

actually depends on the chemical environment of the atom, e.g. valence state, 

coordination number and spin state’. 

 

1.6.2.2 Mapping and Derivatives of Hume-Rothery’s Rules 

While extensive efforts have been made to work out the theory behind the H-R 

rules, it is very useful if the solubility of the materials can be mapped 

diagrammatically on a Cartesian system. Thus researchers can simply calculate 

the coordinate of the element to predict the solubility using such a diagram. This 

direction started from Darken and Gurry (1953), followed by Chelikowsky 

(1979), Gschneidner (1980), Alonso et al. (Alonso and Simozar, 1980; Alonso 

et al., 1982), and Zhang and Liao (1999a; 1999b) among others. 

 

Darken-Gurry Method 

In 1953, Darken and Gurry (1953) proposed a diagrammatic method to describe 

the solid solubility of fifty alloy systems (DG method). They used the size factor 

as abscissa and electrochemical factor (electronegativity) as ordinate to plot 

solubilities of each alloy system and then draw an ellipse to separate the soluble 

elements from the insoluble elements, which is shown in Figure 1.6.1. The 

solubility is characterized qualitatively as “extensive” or “limited”, inside the 

ellipse or outside the ellipse, respectively. 

 

Waber et al. (1963) examined the universality of the Hume-Rothery size rule and 

the DG method for predicting solid solubilities. After analyzing 1455 binary 

alloy systems, they confirmed Hume-Rothery’s size factor and showed that the 

electronegativity is an important consideration in the formation of solid solutions. 

 

In 1980, Gschneidner (1980) again applied the DG method to create a 

soluble/insoluble classification by introducing the effect of crystal structure 

(electronic-crystal structure Darken-Gurry method, ECSDG). Applying the 
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ECSDG rules to ten solvents (Mg, Al, Fe, Ge, Pd, Ag, Cd, La, W and Pb), an 

improvement in the prediction of extensive solid solubility compared with DG 

method was found. 

 

Recently, Gschneidner and Verkade (2004) presented the complete details of 

their semi-empirical approach (called electronic and crystal structure, size model, 

ECS2), and pointed out that their method should also be quite good at predicting 

the extent of another element in a binary compound. In compounds, i) the 

compatibility of the crystal structure of the solute with either or both of the 

components of the intermetallic phase is regarded as a critical factor; ii) the 

valence of the solute compared with the components is also decisive iii) if the 

above two criteria are favourable, then atomic size factor would be the final 

decisive issue and because of the less elastic nature of compounds compared with 

elemental metals, a ±10% limitation on atomic size should be applied. 

 

 
Figure 1.6.1 The electronegativity vs. the metallic radius for a coordination 

number of 12 (Darken-Gurry) map for Ta as the solvent. (Taken from 

Gschneidner and Verkade, 2004). 
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Chelikowsky’s Method 

In the 1970s, two events occurred to remove the barriers for understanding solid 

solubility in intermetallic alloys (Chelikowsky, 1979). 1) Miedema and 

collaborators predicted and classified enthalpies of formation for regular 

intermetallic alloys which is predominantly determined by the electronegativity 

difference ( * ) and the difference in electron density at the boundary of the 

Wigner-Seitz cell ( WSn ) of pure metals (Miedema, 1973; Miedema et al., 1973; 

Miedema et al., 1975; Miedema, 1976a; Miedema, 1976b). 2) Kaufmann and 

co-workers developed ion-implantation techniques and conducted ion-

implantation to provide a wide range of new and unique metastable alloy systems, 

unobtainable by conventional metallurgical procedures (Kaufmann, 1977; 

Kaufmann and Vianden, 1977; Kaufmann et al., 1977) which led to 

subsequent efforts to study solid solubility in alloys (Lopez and Alonso, 1982a; 

Alonso and Lopez, 1982; Zhang, 1987; Zhang and Tan, 1988). 

 

In 1979, Chelikowsky introduced a graphical procedure similar to the Darken-

Gurry method to analyse solid solubility in the case of divalent hosts. In his work, 

a different pair of coordinates were introduced: the electron density at the 

boundary of bulk atomic cells, WSn , and the electronegativity * . As mentioned 

before, these two coordinates are the fundamental parameters in a successful 

semi-empirical theory of enthalpies of alloy formation developed by Miedema 

and co-workers (Miedema, 1973; Miedema et al., 1973; Miedema et al., 1975; 

Miedema, 1976a; Miedema, 1976b; Chelikowsky, 1979). In his new kind of 

plot, Chelikowsky was able to give more reliable predictions. One example of 

Chelikowsky plots and a comparison with Darken-Gurry plots are shown in 

Figure 1.6.2. 

 

From 1.6.2(b) and other results in his paper, most of the metals which are soluble 

in a given host are bounded by the ellipse and this is so even if the precise 

location varies from host to host. This higher accuracy of prediction can be 

interpreted by the relation between the Miedema coordinates and more 

elementary descriptions of alloy formation, as developed by others (De Chatel 

and Robinson, 1976; Chelikowsky and Phillips, 1978; Alonso and Girifalco, 
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1979; Alonso et al., 1979; Alonso and Girifalco, 1978; Hodges, 1977; Hodges, 

1978; Pettifor, 1979; Varma, 1979; Williams et al., 1980; Chelikowsky, 1982; 

Gonzalez and Alonso, 1983; Lopez and Alonso, 1983; Lopez and Alonso, 

1985; Gokcen et al., 1993). Recently, the Miedema parameters were used to 

predict the formation of quasicrystals (Wang et al., 2003; Gui et al., 2006). 

 
     (a) 

 
(b) 

Figure 1.6.2 (a) Darken-Gurry map for Mg as host metal. (b) Chelikowsky 

method for Mg as host metal (Taken from Chelikowsky, 1979). 
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Although higher accuracy has been established, some exceptions remain. These 

exceptions suggest that Chelikowsky’s method is still susceptible to some 

improvement (Alonso and Simozar, 1980). 

 

Alonso’s Method 

In the 1980s, from analysis of both Darken-Gurry and Chelikowsky methods, 

Alonso and Simozar (1980) proposed a scheme containing all three coordinates 

(atomic size, electronegativity, electron cell-boundary density). The suggestion 

was also proposed by Miedema and De Chatel (1980). By incorporating a size 

factor in a new graphical method, they improved on the original Miedema 

coordinate scheme proposed by Chelikowsky. In their analysis, each chemical 

element is characterized by three parameters: the atomic volume V , the 

electronegativity * , and the electron density at the boundary of bulk atomic 

cells bn . *  and wsn  (the difference of electronegativity and electron density 

at the boundary of bulk atomic cells) combined into a new parameter, CH , the 

enthalpy of formation of an equi-atomic compound (Miedema et al., 1973; 

Miedema, 1976b; Miedema et al., 1977). Then, the two parameters CH  and 

V  (expressed as Wigner-Seitz radius, RW) are used to construct a two-

dimensional map. In this map, the chemical elements insoluble in a given host 

are neatly separated from the soluble ones by a straight line. The examples and 

the comparisons with Chelikowsky’s plot are shown in Figure 1.6.3 (a) and (b). 

Later, Alonso et al. applied this method to the prediction of solid solubility in 

noble metals, transition metals and sp metal based alloys (Alonso et al., 1982; 

Lopez and Alonso, 1982). Jones has applied this method to the solid solubility 

of two light metals, magnesium and aluminium (Jones, 1983). 

 

After Miedema, the enthalpies of formation of different binary alloys have also 

been predicted successfully from both first-principles and semi-empirical 

methods (Maarleveld et al., 1986; Wei et al., 1987; Terakura et al., 1987; 

Takizawa et al., 1989; Johnson, 1989; Ackland and Vitek, 1990; Johnson, 

1990; Lu et al., 1991; Bozzolo and Ferrante, 1992; Bozzolo et al., 1992; 

Sluiter and Kawazoe, 2002; Ouyang et al., 2003). During the last twenty years 

and based on calculated enthalpies of formation of alloys and semi-empirical 
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theories with parameters such as electronegativity difference, atomic diameter 

and number of covalent bonds, a large number of predicted maximum solid 

solubilities of alloys, design of alloy systems or formation of compounds have 

appeared (Wei et al., 1990; Mohri et al., 1991; Ito et al., 1993; Singh et al., 

1993; Turchi et al., 1994; Lu et al., 1995; Pasturel et al., 1995; Colinet et al., 

1997; Bacalis et al., 1997; Ozolins et al., 1998; Bozzolo et al., 1999; Teles et al., 

2000; Fang et al., 2002a; Zhou et al., 2003a; Zhou et al., 2003b; Wang et al., 

2004; Deibuk et al., 2005; Zhang et al., 2005a; Abe et al., 2006; Hatano et al., 

2007; Liu and Zunger, 2008). This indicates these methods still have vitality in 

the prediction of alloy formation even though nearly thirty years has passed.  

 

 

 
(a) 
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(b) 

 
Figure 1.6.3 (a) Chelikowsky’s plot for the analysis of solid solubility in Fe; (b) 

Alonso plot for analysis of solid solubility in Fe, the two continuous lines 

separate the insoluble elements from the rest (Taken from Alonso and Simozar, 

1980). 

 

Zhang BW Method 

Zhang and his co-workers used graphical methods with various 

parameters/coordinates to predict the formation of amorphous alloys and solid 

solutions.  

 

In 1983 (Zhang, 1983), they applied Miedema’s coordinates to the prediction of 

binary amorphous alloy formation and found that this method worked quite well. 

The ranges of formable and non-formable binary amorphous alloys can be 

separated by a straight line. Of the total 157 alloys studied, the overall accuracy 
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was 77.7%. These results compared well with the work done by Shi et al. (1979) 

using bond-parametric diagrams, which had a prediction accuracy of 80%. 

 

Taking the parameters used in Miedema’s coordinates without the size factor, 

Zhang (1985a) combined the two chemical coordinates *  and 3/1
wsn  into one: 

     1/13910 3/1*  wsny                         Equation 1.6.3 

and using the radius difference of elements 
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               Equation 1.6.4 

as the other coordinate to constructed a two-dimensional map. From this, the 

definition of conditions for formation of binary amorphous alloys was improved. 

The separation of the formable and non-formable regions was given by 
75.105.0  xy . Of the total 157 alloys studied in that work, the overall accuracy 

was 83.4%. It is found that the prediction accuracy for the formation of 

amorphous alloys is improved when the size factor is added to the original 

Miedema coordinates criterion. 

 

Zhang and co-workers proposed another graphical method, which combined 

bond parameters KrZ /  and COVrZ /  as an electron factor (where Z  is atomic 

valence, Kr  is atomic kernel radius, equal approximately to the positive ionic 

radius not including the valence electrons and COVr is covalent radius). Then, 

together with a size factor to provide two coordinates for the study of solid 

solubility, they described the formation of amorphous alloys (Zhang, 1981). The 

two coordinates are expressed by (1) bond-parametric function 
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, where Px  is the Pauling electronegativity; (2) half of 

the empirical interatomic distance R respectively. When the coordinate point of a 

host element is represented in the chart, the closer is the point of a solute element 

to it, the smaller the differences of the electron factors and of the size factors 

between the solute element and the host element. Zhang (1987b) applied this 

method to 1080 binary and got a prediction accuracy of 93%. 
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Zhang also used a modified electron factor 
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  as abscissa to search for solid solubilities at room 

temperature in 2460 binary alloys. In this work the transition metals of the fourth, 

fifth and sixth long periods and 18 non-transition metals are studied. For each 

host element, a parabolic curve 2bxay   can be drawn to separate the soluble 

elements from the insoluble ones with a criterion of 0.5 at.% solubility at room 

temperature. The overall reliability of this equation approached 90% for 2460 

alloys. Also, it has been found that the values of a for each host metal are 

proportional to its cohesive energies E, and b values are proportional to 3
0RE , 

where μ is the shear modulus of solvent element, and R0 is the atomic radius of 

the solvent (Zhang, 1985b). 

 

In 1996, Zhang and Liao (1996) applied this method to study the solid 

solubilities for the binary alloy systems based on 13 rare earth metals, and found 

the soluble elements can be separated from the insoluble ones by a parabola 
2
11 bxay  , where x1 is defined in equation 1.6.4 and, y1 is defined in equation 

1.6.5 or an elliptical curve 
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where Rx 2  and 

   
PP

K

x
r
Zx

r
Zy 


















3
2

3
1

cov
2

             Equation 1.6.7 

For the solid solubilities in 897 binary alloys, the prediction accuracy was 89.2% 

for the parabolic separation, and 92.8% for the elliptical separation. Also, in the 

elliptical equation, constants m and n were dependent on the coordinates 2x  and 

2y , c  was proportional to   2/13 R  and d was proportional E. 

 

In 1999, Zhang and Liao (1999a; 1999b) summarized different methods used by 

themselves and others and made a comparison in terms of prediction accuracy. 

Those results are shown in Table 1.6.1. 
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The ECS2 method, as well as Hume-Rothery’s rule and the Darken-Gurry 

method, are for predicting solid solubility without considering Gibbs energy. 

These methods are easy to use – needing only the physical parameters (radii, 

electronegativity, structure) of two elements (Gschneidner and Verkade, 2004). 

The extent of primary solid solubility can be derived by using first principle 

calculations. Following work done by others (Olesinski and Abbaschian, 1986; 

Zunger et al., 1990; Ansara I. et al., 1998; Fries and Jantzen, 1998; Yan and 

Chang, 2000; Wolverton et al., 2002; Colinet, 2003), Shin et al. (2008) 

described the Cu-Si system thermodynamically as an example of higher order 

systems (i.e. solute elements in compounds) with first-principles calculations of 

the ε-Cu15Si4 phase and solid solution phases. By considering the enthalpy of 

mixing and Gibbs energies of individual phases in the Cu-Si binary system, it 

was found that the existence of intermetallic compounds would strongly affect 

solubility limits. Predictions of solid solubility of other alloy systems using first 

principles can be found elsewhere (Fuks et al., 1975; Udovskii and Ivanov, 

1977; Martin and Carstensen, 1981; Yamamoto et al., 1993; Luo et al., 1994; 

Hallemans et al., 1994; Duschanek et al., 1995; Sluiter et al., 1996; 

Flandorfer et al., 1997; Ding et al., 1999; Grobner et al., 1999; Ghosh et al., 

2002; Fang et al., 2002b; Song et al., 2003; Stuparevic, 2004; Van de Walle et 

al., 2004; Tokunaga et al., 2006; Sluiter et al., 2006; Hallstedt and Kim, 2007; 

Ghosh and Asta, 2007; Cao et al., 2008; Teyssier et al., 2008). 
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Table 1.6.1 Comparison of the prediction of solid solubilities by different methods (redrawn from Zhang and Liao, 1999b) 
No. of alloy systems and the prediction accuracy  

Total No. Prediction accuracy % 
Hume-Rothery’s rule (size factor only) 1423 67.6 

D-G Method 1455 76.6 
Chelikowsky Method 192 82 

Alonso Method 342 90 
Zhang BW Method (parabola separation) 3864 87.2 
Zhang BW Method (ellipse separation) 3864 90.3 
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1.6.3 Calculation of Phase Diagrams (CALPHAD) 

Phase diagrams offer the most basic and important information on materials 

systems, such as alloy systems. Traditionally, phase diagrams were determined 

through doing experiments. For determination of the phase boundaries, the 

specimens were heated over a sufficiently long time at an intended temperature 

to achieve equilibrium. However, the problem is that the diffusivity of atoms is 

generally not high enough at temperatures below half of the absolute Tm. 

Therefore, it is not actually possible to conduct experiments on the phase 

equilibrium below that temperature. On the other hand, special devices for 

temperature control and atmosphere adjustment are required in experiments 

conducted at extremely high temperatures. For these reasons, an explanation of 

the entire phase diagram only from experimental work is rather difficult (Ohtani 

and Ishida, 1998). 

 

CALPHAD is an acronym for the CALculation of PHAse Diagrams, which aims 

to couple the phase diagrams and thermochemical properties attempting 

explicitly to characterise all of the possible phases in a system (Kaufman, 1998). 

In detail, it is based on the well known thermodynamic law that a system with a 

given composition, temperature and pressure attains the state of lowest Gibbs 

energy under these given conditions; and if the Gibbs energy is known for the 

individual phases, it is possible to calculate the equilibrium state by an energy 

minimization procedure (Agren, 1996). The procedures of doing CALPHAD can 

be illustrated as Figure 1.6.4. 

 

The calculation of phase diagrams was started a century ago by Van Laar (1908a, 

b) in which he calculated a great number of prototype binary phase diagrams 

using ideal and regular solution models and then demonstrated the relationship of 

the characteristic features of a binary phase diagram in terms of the relative 

thermodynamic stabilities of the phases involved (Chang et al., 2004). This 

situation remained unchanged for nearly half a century (Saunders and 

Miodownik, 1998) before an alternative more physical approach based on band-

structure calculations (which stressed the electronic origin of solubility limits 

only) was employed (Hume-Rothery et al., 1940). In the 1950s, Meijering 

extended Van Laar’s methodology to higher order systems and calculated phase 
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diagrams for ternaries using a regular solution model (Meijering, 1950; 1951; 

Meijering and Hardy, 1956; Meijering, 1957; Meijering, 1960). Subsequently, 

people started to calculate phase diagrams for real alloy systems, mostly for 

binaries, using calculating machines, and then computers with software made by 

themselves (Hillert, 1968; Pelton and Schmalzried, 1973; Sharma and Chang, 

1979; Hillert, 1981; Lukas et al., 1982; Schmid, 1983; Chuang et al., 1985; 

Chuang et al., 1986; Gabriel et al., 1987; Chuang and Chang, 1987; Chen et 

al., 1989; Kattner et al., 1992; Murray et al., 1992; Chen and Chang, 1993). 

 

Nowadays, the calculation of phase diagrams (CALPHAD) has been recognized 

widely as a powerful tool that enables calculation of both stable and metastable 

phase equilibria. Kaufman used a simple solution model to describe alloy phases 

and systematically calculated phase diagrams for a large number of real alloy 

systems, including binaries and some ternaries (Kaufman and Cohen, 1958; 

Kaufman, 1959; Kaufman et al., 1963; Kaufman, 1969; Kaufman and Nesor, 

1976; Kaufman, 1978; Kaufman and Nesor, 1978a, b, c, d; Kaufman, 1979a, 

b; Kaufman and Tanner, 1979; Smith et al., 1980; Kaufman et al., 1981; 

Kaufman and Tanner, 1984; Kaufman et al., 1984; Bouwstra et al., 1986; 

Kaufman, 1991). Many of his early published results are summarised in the 

monograph Computer Calculation of Phase Diagrams (Kaufman and Bernstein, 

1970). Recently, more alloy systems have been evaluated (Lim et al., 1995; 

Yang et al., 1995a; Zakulski and Moser, 1995; Yang et al., 1995b; Du and 

Clavaguera, 1996; Gomez-A, 1998; Cui and Jin, 1999; Du et al., 1999; Du 

and Yang, 2000; Ohnuma et al., 2000; Du et al., 2000; Liu et al., 2001; Fries 

et al., 2001; Luo et al., 2001; Uhland et al., 2001; Kaufman et al., 2001; 

Arroyave et al., 2002; Xiong et al., 2004; He et al., 2006; Guo et al., 2008; 

Borzone et al., 2009). 
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Figure 1.6.4 The CALPHAD or phenomenological approach used to obtain a 

thermodynamic description of a multicomponent system (Redrawn from Chang 

et al., 2004). 

 

Experimental and “first principles” total energy information 
(thermochemical and phase equilibrium data) 

Select thermodynamic models for each phase 

Optimize model parameters 

Obtain Gibbs energy functions for each phase in the system 
(Thermodynamic description) 

Reproduce the experimental 
diagrams of the lower order 
systems, normally binaries 
and ternaries (Describe 
known diagrams) 

More importantly – extrapolate the 
Gibbs energies of lower order alloy 
phases to those of higher order alloy 
phases (Predict unknown higher order 
multicomponent diagrams) 
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1.7 Errors in Handbooks and Databases 

1.7.1 Error as a Fundamental Dimension of Data 

Physical and chemical handbooks, some having long pedigrees and an increasing 

number of databases are trusted for veracity of the data they contain. For a 

database to have scientific value, it must meet criteria of completeness and 

accuracy. However, as mentioned by Chrisman (1991), “error is inescapable, and 

it should be recognized as a fundamental dimension of data”. The data entry 

mistakes, faulty sensor readings or even more malicious activities provide a large 

number of erroneous data sets, and then propagate these errors in each successive 

generation of data (Hernández and Stolfo, 1998). As mentioned by Redman 

(1997), error rates between 1% and 75% have been reported, and it is suggested 

that unless extraordinary efforts are taken, dataset field error rates of 1-5% are 

typically expected. Later it is reported that the error rates in the data acquisition 

are generally about 5% or more (Orr, 1998; Redman, 1998). Another study 

shows that as much as 40% of all collected data is dirty in one aspect or another 

(Fayyad et al., 2003). 

 

The collections in handbooks are assembled from other sources or manually 

transcribed from earlier handbooks and the amount is always large. Errors (most 

are typographical) are anticipated (Allen, 1998) and these errors are passed on, 

rather like genetic mutations, into subsequent editions and newly written 

handbooks and databases.  

 

1.7.2 Existing Outlier Detection Methodologies 

Outliers are defined as objects that do not comply with the general behaviour or 

model of the data, and have different characteristic from or are inconsistent with 

the remaining set of data (Agyemang et al., 2006; Han and Kamber, 2006).  

 

In one aspect, outliers are treated as error or noise that must be removed. There 

are various outlier-detection procedures to detect, and where appropriate, to 

remove anomalous observations, such as contaminated data and errors (Hodge 

and Austin, 2004). They have been applied to text data (Pollock and Zamora, 

1984; Pfeiffer et al., 1996; Dalcin, 2005; Fan et al., 2008) and numerical data 

(Walczak and Massart, 1998; Chalk et al., 2001). All of them need known 
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functional correlations or dependencies. Presently, with the greatly enhanced 

computing power available, several robust regression methods have been used to 

detect and reject outliers (Liang and Kvalheim, 1996; Rousseeuw and Leroy, 

2003; Colliez et al., 2006; Ortiz et al., 2006). Notably, in the materials science 

field, statistical methods have been developed to estimate the veracity of material 

properties (Ashby, 1998; Bassett et al., 1998). They seek out deviations from 

predefined data ranges, correlations or fit the data to a function through 

regression, and their performance is compared with the method used in this work 

(part 4.3.4). In the other aspect, outlier detection also can be used to find rare and 

interesting patterns for decision making, such as work done by Provost and 

Aronis (1996), Chan et al. (1999), Liu et al. (2001), Shekhar et al. (2001), 

Yamanish and Takeuchi (2002), He et al. (2002), Zhao et al. (2003), Petrovskiy 

(2003), Kou et al. (2004), Jung and Jo (2004). 

 

Milleer (1993), Bishop (1994), Markou and Singh (2003a, b), Hodge and Austin 

(2004), Ben-Gal (2005), Maletic and Marcus (2005), Agyemang et al. (2006) and 

Hand and kamber (2006) have surveyed different methods (e.g. statistical, neural 

network, machine learning), used for outlier detection in different fields. 

 

1.7.3 Policing and Correction of Errors by Exploring Correlations between 

 Properties 

In this work, the procedure that has been devised is general for collections of 

data in which hidden relationships can be found. It started out to see if ANNs can 

discover unanticipated relationships between combinations of properties of 

materials which might help identify potential compositional spaces for materials 

discovery (part 1.9 and 6.0) and in doing so, discovered that the ANN is very 

good at highlighting unusual data points in handbooks, tables and databases that 

deserve to have their veracity inspected. It is also quite good at pointing an 

accusing finger at the culpable values in a line-up of suspect data from different 

sources. The outcome is a method of sifting large amounts of data to screen out 

suspect values and the method could potentially be built into databases to form 

an immune system providing the community with self-policing databases. The 

method is based on the hypothesis that the data contains as-yet unknown 

relationships which can be discovered by the ANN; established relationships are 
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not essential. This work shows how correct data can be identified. Estimates can 

easily be found for suspect data but this is quite unethical: as mentioned before, 

outliers can act as a prompt for new discoveries. As mentioned by Han and 

Kamber (2006), “In general, users must check that each outlier…is indeed a 

‘real’ outlier.” 

 

It is well known that both the boiling point and enthalpy of vaporization are very 

important thermodynamic properties, which are required in processes involving 

liquid and vapour phase transitions such as distillation, vaporization and drying 

(Cachadiña and Mulero, 2007); as the result, the quality and veracity of these 

data in handbooks play important roles for scientific community and industry.  

 

In this work, a procedure was established, based on artificial neural networks 

(ANNs), which finds remarkable levels of error in the records of properties of the 

elements. Table 1.7.1 and 1.7.2 show examples of incorrect boiling point and 

enthalpy of vaporization values discovered by ANN in elemental data; errors that 

have persisted undetected into the 21st century. The representation of 

abbreviations in tables are as follow: CDH: Chemistry Data Handbook (Stark 

and Wallace, 1982); LAG: Lange’s Handbook of Chemistry (Speight, 2005); 

ELE: The Elements (Emsley, 1998); TPC: Tables of Physical and Chemical 

Constants (Kaye and Laby, 1995); CRC: CRC Handbook of Chemistry and 

Physics (David, 2000). 

 

In Table 1.7.2, some sources of error are self-evident when inconsistent data are 

thus assembled: the difference in enthalpy of vaporization of Ho is about 4 times, 

suggesting a missing conversion from calories to Joules; enthalpy of vaporization 

of Ag and Al from TPC are 10 times smaller than the data from other sources, 

implying a decimal point was incorrect. Sulphur and phosphorous are polyatomic 

molecules, so the enthalpies of vaporization differ by a factor of 4. 
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Table 1.7.1 Examples of inconsistent boiling point in handbooks and correct 

values are underlined /K. 

Materials CDH LAG ELE TPC CRC (Max-Min)/Min 
Rh 4773 4773 4000 3973 3968 20.3% 
Zr 3853 3853 4650 4673 4682 21.5% 

C (graphite) 5103 5103 5100 - 4098 24.5% 
Ir 5573 5573 4403 4703 4701 26.6% 
Pd 4253 4253 3413 3233 3236 31.5% 
Si 2633 2633 2628 3533 3538 34.6% 
Nb 3573 3573 5015 4973 5017 40.4% 

Table 1.7.2  Examples of inconsistent enthalpy of vaporization in handbooks, and 

correct values are underlined /kJ mol-1. 

Materials CDH LAG ELE TPC CRC (Max-Min)/Min 
Te 49.8 114 50.6 50.6 114 129% 
Ir 636 231.8 564 564 - 174% 
Sb 195 193 67.9 67.9 - 187% 
Ho - 71 251 251 - 253% 

P (White) 12.4 12.4 51.9 - 12.4 319% 
S (monoclinic) 10 45 9.62 - 45 368% 

Se 14 95.5 26.3 26.3 95.5 582% 
Al 284 294 294 29.1 294 910% 
Ag 254 258 255 25.5 - 912% 
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1.8 The Prediction of Structural Stability and Formation of ABO3-type 

 Perovskite compounds 

1.8.1 Crystal Structure Determination 

Crystal-structure and materials properties are intimately linked together, so 

obtaining information on crystal structures continues to be an area of ongoing 

research. Presently, crystallographic information is a prerequisite for any 

extensive materials modeling and so knowledge of crystal structures is a practical 

and pressing quest (Morgan and Ceder, 2005) 

 

There are three main approaches for determination of crystal structures. (1) 

Experimental determination: such work began in 1911 by von Laue and his 

colleagues (Friedrich et al., 1912); and Bragg (1913). The experimental 

approach is expensive despite the emergence of high throughput automation 

(Kennedy et al., 1965; Xiang et al., 1995), as mentioned before. (2) The 

evolution of high-speed computers and the derivation of one-electron potentials, 

which greatly simplify many-body interactions, make it possible to predict 

structures using quantum mechanics principles, as demonstrated by Wolverton et 

al. (2002), Asta et al. (2001), Blum and Zunger (2004) and Curtarolo et al. 

(2005). These modelling efforts have made computational materials design a real 

possibility but difficulties still exist: i) As Chelikowsky (2004) wrote: “Although 

the interactions in … compounds are well understood, it is not an easy task to 

evaluate the total energy of solids … As the energy of an isolated atom is in the 

order of about 106 eV, but the cohesive energy only in the order of about 1-10 

eV/atom, one must have a method that is accurate to one part on 106, or better.” ii) 

The number of particles involved complicates the situation of evaluating the 

cohesive energy and makes such computations less accurate than experiment 

(Villars, 2000). (3) With the help of databases of known structures or models 

which have physical meaning, certain regularities, such as laws, rules, principles, 

factors, tendencies or patterns, might be found to help predict unknown 

structures. This approach, known as structure mapping, is one of the more 

successful non-experimental methods for crystal structure prediction and has 

been reviewed by Burdett and Rodgers (1994), Villars (2000) and Pettifor 

(2000b). Examples of structure mapping include Mooser-Pearson Maps (1959), 

Zunger Maps (1980), and Villars Maps (1983, 1984a, b), but the best known are 
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Pettifor Maps (1984, 1986). This method orders the very large database into 

domains of different structure types and can be used as an initial guide in the 

search for new compounds with a required structure type. 

 

1.8.2 Data Mining Methods in Crystal Structure Prediction 

The data mining (DM) method has become a powerful tool in different branches 

of materials science offering the possibility of making descriptive and even 

quantitative predictions in many areas where traditional approaches have had 

limited success. Generally, predictions are made through constitutive relations, 

that is, derived mathematically from basic laws of physics; however, in many 

cases, the problems are so complex that constitutive relations either cannot be 

derived or are too approximate or intractable for practical quantitative use. The 

data mining method is based on the assumption that the useful constitutive 

relations exist, and can be derived primarily from data rather than from basic 

laws of physics (Morgan and Cerbrand, 2005). 

 

Because there is no generally reliable and tractable method to predict structure, 

and taking into account that a lot of structural data exist in crystallographic 

databases such as ICSD (Bergerhoff et al., 1983), Linus Pauling files (Villars et 

al., 1998), CRYSTMET (White et al., 2002), and others as mentioned in the 

review paper by Allen (1998), crystal structure prediction is an area well suited 

for data mining. Examples include works by Woodley et al. (1999), Curtarolo et 

al. (2003), Fischer et al. (2006), Kazius et al. (2006) and, in particular, Morgan 

et al. (2003), who developed a clustering algorithm to automate the construction 

and testing of Pettifor maps based on data from a materials crystal structure 

database. 

 

1.8.3 Structural Stability and Formation of ABO3-type Perovskite 

 Compounds 

The physical and chemical properties of perovskite and perovskite-related 

materials are diverse and can be applied in a variety of fields, so it is useful to 

discover the regularities that govern the formation of perovskite-type compounds 

in order to guide the exploration of new materials in the huge compositional 

spaces available (Zhang et al., 2007). 
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The study of ABO3 compounds has a long history. Megaw (1946) accurately 

determined the structure of a number of doubled perovskites by examining high-

angle lines on X-ray powder photographs. Salinas-Sanchez et al. (1992) 

introduced a parameter called the global instability index (GII), which can be 

used to determine the overall structural stability of perovskites. Giaquinta and 

Loye (1994) later predicted the perovskite structure for a number of compounds 

based on the combination of ionic radii and bond ionicities, predicting the 

structure of InMO3 (M = Mn, Fe) with this method. Reaney and Ubic (1999) 

reviewed the relationship between the tolerance factor (t) and the temperature 

coefficient of permittivity (τε) (and therefore resonant frequency, τf) in 

perovskites and also discussed the effect on τε of changing t in the perovskite-

related solid solution series Ba6-3xNd8+2xTi18O54. Lufaso and Woodward (2001) 

used a bond-valence model to calculate ideal A – X and B – X bond distances in 

order to calculate the bond-valence based tolerance factor (tBV) which they 

proposed as a new criterion of the structural stability of ABO3-type perovskite 

compounds. Ye et al. (2002) applied a pattern recognition method and found 

some regularities in the formation and the lattice distortion of perovskites. Li et 

al. (2004) used rA – rB structure maps to study the perovskite formability of 197 

ABO3 compounds and then, with the knowledge of the importance of the 

octahedral factor (rB/rO) and tolerance factor (
)(2 OB

OA

rr
rr


 ), another structure 

map was constructed to predict the perovskite formability. Jiang et al. (2006) 

investigated the regularities governing lattice constant of ABX3-type compounds 

by a statistical regression method and found a good correlation among lattice 

constant, the estimated bond length between ion B and ion X (rB + rX) and the 

ionic-radii tolerance factor tIR; however, they used ionic radii of all ions A, B and 

X appropriate for sixfold coordination, which are inappropriate for A and X. 

Ubic (2007) later used a different approach based solely on ionic size and 

derived a simpler and more accurate empirical relationship between ionic size 

and lattice constant. In 2007, Zhang et al., based on the bond-valence model 

(BVM) and structure-map technology, investigated the structural stability and 

formability of ABO3-type perovskite compounds, established new criteria for the 

structural stability of such compounds, and created new structure maps that can 

be used for exploring novel perovskite-related compounds. In that work, the 
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calculated global instability indices GIIs are compared with bond-valence based 

tolerance factors tBVs for 232 ABO3-type perovskite compounds, and the results 

are shown in Figure 1.8.1.  From this result, they found the GII values are close 

to 0 when tBV values approach 1, and all GII values are less than 1.2 v.u. for 

ABO3-type perovskite compounds. Also, it was found that the structural stability 

of ABO3-type perovskite compounds follows the order A1+B5+O3-type > 

A2+B4+O3-type > A3+B3+O3-type, which agrees with the experimental 

measurements. In 2008, Feng et al. (2008) used a method similar to that of Li et 

al. (2004) to predict the formability of ABO3 cubic perovskite using the 

octahedral factor and tolerance factor. Recently, Verma et al. (2008) developed 

an equation to predict lattice constant values for cubic perovskites by using the 

product of ionic charges and average radii of ions A, B and X, but the results are 

much less accurate than those of either Lufaso and Woodward (2001) or Ubic 

(2007). 

 

This work is based on the structural stability and formability data of ABO3-type 

perovskites used by Zhang et al. (2007) and makes use of the neural network 

data-mining method i) to test whether it is possible to use a backpropagation 

neural network to make the prediction of GII from tBV within each ABO3-type 

perovskite subclass (i.e., in A1+B5+O3 type, A2+B4+O3 type, and A3+B3+O3 type), 

and within the whole ABO3-type perovskite; ii) to test whether using a 

probabilistic neural network could improve the prediction accuracy for 

perovskite formability based on the ideal A-O and B-O bond distances (dA-O and 

dB-O) compared to the work done by Zhang et al. (2007). 
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Figure 1.8.1 Global instability indices (GII) versus bond-valence based 

tolerance factors (tBV) for ABO3-type perovskite compounds. (Redrawn from 

Zhang et al., 2007). 
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1.9 Exploring Multiple Correlations of Properties using Artificial Neural 

 Networks 

Materials Science and Engineering, “is concerned with the generation and 

application of knowledge relating the composition, structure, and processing of 

materials to their properties and uses” as defined in The Summary Report of the 

Committee on the Survey of Materials Science and Engineering (COSMAT) of 

the United States National Academy of Sciences (1974), or “the study of 

substances from which something else is made or can be made; the synthesis, 

properties, and applications of these substances.” in European White Book on 

Fundamental Research in Materials Science (2001). As mentioned in part 1.2.2, 

it is an axiom that the properties of a material are causally related to the structure 

at a hierarchy of scales, that is, the properties of a material depend on the 

chemical nature of its atoms, its structure at the atomic or molecular level, its 

microstructure and macrostructure. The traditional methodological framework 

for materials science is the identification of the composition-processing-

structure-property causal pathways that link hierarchical structure to properties, 

and many successes in materials science have emerged from its careful 

implementation. 

 

People are introduced to the materials sciences through a methodology 

predicated on discovery of the relationships between composition and structure 

on the one hand and properties on the other. Once these relationships are in place, 

it will be possible to both understand why existing materials behave as they do 

and predict how materials can be chosen and modified to behave as we want. 

Nevertheless, the quantitative inference of properties from structures is very 

complex; many levels of structure must be considered; low levels of impurity or 

imperfection sometimes have an overwhelming influence on properties. Partly 

because of the slow progress in the predictive capacity of materials science as 

conceived in terms of structure-property relationships, alternative methodologies 

have emerged, such as high throughput experimental methods and computational 

methods, as discussed in part 1.2.1 and 1.2.3. 
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1.9.1 Are different material properties related? 

As observed by Ashby (1998), all the properties of materials can be derived 

ultimately from structure and bonding or can be considered to have their ultimate 

origin in Schrödinger’s equation. This means that the properties of a material are, 

to varying degrees, interrelated. This can be schematically shown in Figure 1.9.1. 

A few such correlations are well known because they arise from the same 

structural level. The relationship between permittivity and refractive index at the 

level of electronic polarisation is a good example. A journey into materials 

science that explores correlations of properties is rather unconventional but the 

considerable success of Ashby’s property mapping (Ashby, 1989, 1999; CES 

EduPack 2008) suggests that it could provide a way of identifying 

compositional zones that are worthy of more detailed exploration and therefore 

narrow the hugely complex space that confronts the discovery of new materials. 

This part of work participates in this journey. 

 

 

 
Figure 1.9.1 Schematic arrangement of causation in materials science. 

 

As shown in Figure 1.5.1 and the discussions made in part 1.5.2, there are three 

types of connection between variables that can explain a correlation between x 

and y (Moore and Notz, 2006): direct causation, common response, or 

confounding. An observed relationship can be used for prediction without 

worrying about causation as long as the patterns found in past data continue to 
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hold true. The purpose of exploring a correlation is to make predictions, which 

are usually based on correlation of known information, with interpolation or 

extrapolation as required. 

 

1.9.2 Examples of Known Correlations between Properties 

The idea of exploring property-property relationships rather than structure-

property relationships seems less unconventional when it is noticed that 

examples of binary correlations among materials properties abound. In most 

cases there is a sound mechanistic connection and the scientific practitioner uses 

a well-trenched circumferential path in Figure 1.9.1 while being barely conscious 

of the two radii that relate them. Examples include: 

 

(i) The specific heat and atomic/molecular mass: specific heat is a measure of the 

heat energy required to increase the temperature of a unit mass of a substance by 

a unit temperature. The heat energy arises, partly due to the number of atoms or 

molecules that are vibrating and if a substance has a lower molar mass, then each 

unit mass has more atoms or molecules available to store heat energy.  

 

(ii) Specific heat and density in solids: they are related because atoms differ 

greatly in mass but little in size, and so the density of a solid is mainly 

determined by its atomic weight and to a lesser degree by atom size and the way 

in which they are packed (Ashby et al., 2007). Because of this correlation 

between density and atomic weight and the correlation between atomic weight 

and specific heat capacity, there is a strong, inverse correlation between solid 

density and specific heat. 

 

(iii) Melting and boiling temperatures: they can be correlated with the depth of 

the energy well (Van Vlack, 1989) as shown in Figure 1.9.2. Atoms have 

minimum energy (at the bottom of the well) at a temperature of absolute zero. 

Increased temperatures raise the energy until atoms are able to separate from one 

another. 
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Figure 1.9.2 The interatomic distance – potential energy curve. 

 

(iv) Electrical and thermal conductivity in metals provides another example. In 

1827, Ohm, based on Fourier’s 1822 theory of heat flow (Fourier, 1822), 

derived theory of the electric conduction of metals (Ohm, 1827). His success in 

deriving analogous equations to those of Fourier for electric current indicated to 

him an “intimate connection” between the two phenomena. This view stimulated 

Franz and Wiedemann to their discovery of an approximate constant relation 

between the conductivity of heat and electricity in 1853 (Franz and 

Wiedemann, 1853). Using a combination of empirical and theoretical arguments, 

Lorenz claimed in 1872 that the Wiedemann-Franz constant depends linearly on 

the temperature (Lorenz, 1872), which was verified experimentally in 1881 

(Lorenz, 1881a, 1881b). The electronic theory of Drude explained Lorenz’s 

relation on the assumption that both heat and electric currents in matter results 

from the motion of its electrons (Drude, 1900a, 1900b). According to Drude’s 

theory, the value of the temperature-dependent Wiedemann-Franz constant (i.e. 

the Lorenz number) is (Wilson, 1953; Kittel, 2005): 
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L               Equation 1.9.1 

where L is Lorenz number,   is thermal conductivity,   is electrical 

conductivity, T is temperature, k is Boltzmann’s constant, and   is the charge of 

an electron. Rosenberg (1988) has mentioned that this relationship holds 

remarkably well; the only exception is in very pure specimens at intermediate 

temperatures, where small angle phonon scattering is important, and it is not very 

satisfactory. 
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However, it should be mentioned that although modern electron theory succeeds 

in explaining the Wiedemann-Franz constant and the Lorenz number, closer 

studies of the conduction of heat and electricity through metals showed that this 

simple theory, which only considered the electrons to move freely through metals, 

was unable to explain the manifold and complicated phenomena in a satisfactory 

way, such as in the alkali metals where the ratio of  /  is extremely low 

(Hornbeck, 1913). In general, the Lorenz number L, while roughly constant, is 

not exactly the same for all materials; Kittel (2005) gives some values of L 

ranging from L = 2.23 × 10-8 W Ω K-2 for Cu at 0 ºC to L = 3.2 × 10-8 W Ω K-2 

for W at 100 ºC.  

 

(v) Thermal expansion coefficients of materials with comparable atomic packing 

vary inversely with their melting temperatures (Van Vlack, 1989). This indirect 

relationship exists because the higher-melting-point materials have deeper and 

therefore more symmetrical energy wells. Thus, the mean interatomic distances 

of more strongly bonded materials increase less with a given change in thermal 

energy. 

 

(vi) Hardness and melting point are related because hardness is related to the 

stress required to separate atoms during dislocation motion (Van Vlack, 1989). 

Since larger interatomic forces of attraction imply deeper energy wells, materials 

with high melting points are the harder materials, such as diamond, Al2O3 and 

TiC. The correlation holds for materials with weaker bonds.  However, there are 

exceptions to these generalizations when more than one type of bond is present, 

such as graphite and polyethylene. 

 

(vii) The melting point and bulk modulus are related since both the melting 

temperature, Tm, and the elastic modulus, E, relate to the bonding energy (Van 

Vlack, 1989). 

 

Other binary correlations exist between dielectric constant and refractive index, 

toughness and hardness, an inverse correlation between dielectric loss and 

dielectric strength and in porous materials, the mechanical strength and the 

dielectric strength (Kishimoto et al., 1991). In functional ceramics, a dielectric 



Introduction 

 61 

which has high loss at low temperature may show ionic conduction at a higher 

temperature, in oxides, a change of colour may be associated with electrical 

conduction. 

 

Ashby notes (Ashby, 1998) that some correlations have a simple theoretical basis 

while others can be found by empirical methods by an appropriate search routine. 

Generally, the correlations derived in a direct way from the nature of the atomic 

bonding and structure are strong, such as modulus and melting point, or specific 

heat and density; while those derived from properties which depend on defects in 

the structure are less strong, such as strength and toughness and are weakest 

when interaction with the environment is involved, such as corrosion and wear. 

 

1.9.3 Methods for Exploring Property Correlations 

Exploration of property correlations can be classified into three types: I) purely 

empirical, II) partly empirical but based on some theoretical concept, III) and 

purely theoretical (Reid and Sherwood, 1958). In this work, we use artificial 

neural networks to explore property correlations not only for binary, but also for 

ternary and more complex systems. 

 

Examples of applying neural networks to explore property correlations include 

Egolf and Jurs (1993) who used both regression and neural network techniques to 

predict boiling points of organic heterocyclic compounds using the molecular 

weight, dipole moment, 1st order molecule connectivity and other structure 

descriptors. Michon and Hanquet (1997) used methods of quantitative structure 

property relationships (QSPR) and neural networks to find non-linear relations 

between chemical and rheological properties. Homer et al. (1999) developed 

ANN with equilibrium physical properties and structural indicators for prediction 

of viscosity, density, heat of vaporization, boiling point and Pitzer’s acentric 

factor for pure organic liquid hydrocarbons at Treduced over 0.45-0.7 range. 

Boozarjomehry et al. (2005) developed a set of ANNs to predict basic properties 

(including critical temperature, acentric factor and molecular weight) of pure 

compounds and petroleum fractions based on their normal boiling point and 

liquid density at 293 K. Strechan et al. (2006) obtained correlations between the 

enthalpy of vaporization, the surface tension, the molar volume and the molar 
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mass of a substance using ANNs. Mohammadi and Richon (2007) used ANN to 

predict the enthalpy of vaporization of hydrocarbons, especially heavy 

hydrocarbons and petroleum fractions, from the specific gravity and normal 

boiling temperatures. Karabulut and Koyuncu (2007) developed neural network 

models to establish correlation of thermal conductivity with temperature and 

density for propane. Recently, Giordani et al. (2009) used ANN for multiple 

correlation of the mechanical properties of modified natural rubber. 

 

The difference between these approaches and method used in this work is that all 

of them needed prior knowledge to select the properties that are perceived to be 

significant for the prediction. In this work, it is hoped to prepare the ground for a 

wider scope which makes use of the remarkable information processing 

characteristics of the computer to find the correlation between specific properties 

drawn from a large number of different properties. The physical principles 

behind multiple correlations found by ANNs might be deduced post facto but the 

primary aim of this work is to accelerate the pace for discovering new materials 

by narrowing down the compositional spaces for subsequent search either by 

high throughput methods or molecular modelling. 
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2.0 Methods for Construction of Neural Networks (BPANN 

 and PNN) 
For each case, there are two main works included: one is the data collection, and 

the other is the neural network construction. The collected data are trained on the 

constructed neural network and then this neural network is used to predict the 

result based on the known parameters. In this part, the constructions of neural 

network are described. The collection of data and the determination of inputs and 

outputs are described separately in chapters for each case. In the work, two 

different neural networks are used: one is the backpropagation neural network 

(BPANN), and the other is probabilistic neural network (PNN). (Appendix 1) 

 
2.1 Selection of Architecture of Neural Networks (BPANN) 

2.1.1 Selection of the Number of Hidden Layers 

It has been said that in most function approximation problems, one hidden layer 

is sufficient to approximate continuous functions (Hecht-Nielsen, 1990; 

Basheer, 2000); two hidden layers must generally be necessary for learning 

functions with discontinuous (Masters, 1994). Any functional relationship 

between inputs and outputs, as mentioned in the neural networks user’s guide 

(Mathworks), can be represented by the two-hidden layers sigmoid/linear 

network, if the sigmoid layer has enough neurons. As the result, a two-hidden 

layer network, with tan-sigmoid transfer function in the first hidden layer and a 

linear transfer function in the second hidden layer, is adopted. 

 
2.1.2 Selection of the Number of Neurons in Hidden Layers 

The size, i.e. the number of neurons, in the second hidden layer is constrained by 

the number of outputs required by the problem. The outputs of the network in all 

these works are always one, so there is one neuron in the second hidden layer. 

 
The choice of number of neurons in the first hidden layer is up to the designer. 

The optimum number of neurons in the first hidden layers may be a function of 

(1) input/output vector size, (2) size of training and testing sub-sets and, more 

importantly, (3) the problem of non-linearity (Basheer and Hajmeer, 2000). 

The optimum number can be found by trial and error by placing a different 

number of neurons in the first hidden layer for the same dataset.  
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2.2 Selection of the Methods for Improving Generalization (BPANN) 

One of the problems that occur during neural network training is called 

overfitting. This happens when the error on the training set is driven to a very 

small value, but the error is large when new data is presented to the network. 

This is the case at which the network has memorized the training examples, but it 

has not learned to generalize to new situations. 

 
One method for improving network generalization is to use a network that is just 

large enough to provide an adequate fit. The larger a network used, the more 

complex the functions the network can create. If a small enough network is used, 

then the network will not have enough power to overfit the date. However, it is 

hard to know beforehand how large a network should be for a specific 

application. 

 
There are two other methods for improving generalization that have been 

implemented in the Neural Network Toolbox: one is Bayesian Regularization 

and the other is Early Stopping (Mathworks). 

 Bayesian Regularization: regularization involves automatically setting the 

optimal performance function, which is normally chosen to be the sum of 

squares of the network errors on the training set, to achieve the best 

generalization. The improvement of generalization is reached by modifying 

the performance function through adding a term that consists of the mean of 

the sum of squares of the network weights and biases. In Bayesian 

regularization framework, the weights and biases of the network are 

supposed as random variables with specified distributions. Then, the 

regularization parameters are estimated using statistical techniques, which 

are related to the unknown variances associated with these distributions 

(Mackay, 1992a; 1992b). 

 Early Stopping: in this technique the available data is divided into three 

subsets. The first subset is the training set, which is used for computing the 

gradient and updating the network weights and biases. The second subset is 

the validation set. The error on the validation set is monitored during the 

training process. The validation error will normally decrease during the 

initial phase of training, as does the training set error. However, when the 
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network begins to overfit the data, the error on the validation set will 

typically begin to rise. When the validation error increases for a specified 

number of iterations, the training is stopped, and the weights and biases at 

the minimum of the validation error are returned. 

 
Bayesian Regularization tends to provide better generalization performance than 

Early Stopping in training function approximation networks, specially when the 

size of the data set is small (Mathworks). As a result, Bayesian Regularization, 

in combination with Levenberg-Marquardt training, is used for improving 

generalization.  

 

2.3 Partitioning of the Database (BPANN) 

The generalizing ability of the network depends on the training database size 

(Basheer and Hajmeer, 2000). Although ANN can be obtained from a training 

database of any size, like other empirical models, generalization of these models 

outside the model domain is adversely affected. Since ANN are required to 

generalize for the unseen data, data used for training should be large enough to 

cover the possible known variation in the problem domain. 

 

The development of an ANN based on Bayesian Regularization requires 

partitioning of the parent database into two sub-sets: training and testing. 

Currently, there are no definitive rules for determining the required sizes of the 

data sub-sets. Rules of thumb derived from experience and analogy between 

ANN and statistical regression exist (Basheer and Hajmeer, 2000). Following 

the method suggested by MATLAB (Mathworks), the sets are picked as equally 

spaced points throughout the original data. Ratio 4:1 is selected, i.e., partitioning 

the whole data set into five groups, four groups being used for training, while one 

group is used for testing. The size of the training set and testing set are thus 

determined, but the choice of testing set still plays a crucial role, because the 

training set should include all the data belonging to the problem domain. In the 

problems of materials science, it is always that the data size is small and the 

problem domains are not clear, so referring to Malinov and Sha’s work (2003), a 

loop program was used to redistribute the database in order to make the training 

set cover the problem domain. The distribution was selected on the basis of 
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regression coefficient R (R = 1 corresponds to prefect correlation) for both 

training set and testing set. It is desirable that the R values for both training and 

testing are as close to 1 as possible, and the difference between them are as close 

to zero as possible. However, where M, the slope of the linear regression line, is 

smaller than 0.9, the regression coefficient provides an unreliable criterion, and 

so the selection was at the beginning based on φ = 
max

)(
B

BR11M   where 

B is the intercept on ‘A’ axis and Bmax is the maximum property value. The ideal 

value of this parameter is zero. In section 3.0 (i.e. Revisiting Hume-Rothery’s 

Rules with Artificial Neural Networks), the distribution is selected on the basis 

of φ for the testing set. 

 

Later, considering the slope M could determine the value of intercept B, and also 

in order to find the closest and highest performance for both training and testing 

sets, the criterion has been improved to 2
testing

2
training  , where  = 

)R1(1M  , and the smallest value of   is chosen. This criterion applied in 

other three applied examples. 

 

2.4 Data Normalization (BPANN) 

It has been suggested by Basheer and Hajmeer (2000) that, the data should be 

normalized (scaled) within a uniform range (e.g., [0 1] or [-1 1]) in order to i) 

prevent larger numbers from overriding smaller ones, ii) prevent premature 

saturation of the neurons of hidden layers, which would impede the learning 

process. 

 
There are two functions for scaling the inputs and targets of networks that have 

been implemented in the Neural Network Toolbox: 

 PREMNMX: which is used to scale inputs and targets so that they fall in 

the range [-1, 1]; 

 PRESTD: which normalizes the inputs and targets so that they will have 

zero mean and unity standard deviation. 

As the transfer functions employed in these works are tan-sigmoid transfer 

function and linear function, PREMNMX is adopted. 
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In all of these four applied examples, the size of dataset is not very large. 

Nevertheless, there are many situations where materials scientists would like to 

benefit from ANNs in situations where the data set has inherent limitations. It has 

been proved that ANN methods provide an efficient tool for experimental data 

analysis even when the database size is small (Guessasma et al., 2003). 

 
2.5 Construction of Probabilistic Neural Network (PNN) 

2.5.1 Partitioning of the Database for PNN 

Probabilistic neural network (PNN) is a type of radial basis network suitable for 

classification problems (Specht, 1990; Vicino, 1998). As for BPANN, the 

generalizing ability of PNN depends on the training database size. It is necessary 

to generalize for the unseen data, so the data set used for training should be large 

enough to cover the possible known variation in the problem domain. The parent 

database here is partitioned into two sub-sets: training and testing. Following the 

method used in construction of BPANN, as discussed previously, the sets are 

picked as equally spaced points throughout the original data. The whole data set 

is partitioned into five groups, four groups being used for training, and one group 

is used for testing. Also due to the problem domain is not clear, a loop program is 

used to redistribute the database in order to make the training set cover the 

problem domain. One way that can be used to view the results is a confusion 

matrix, where matrix element mij gives the number of times a sample belonging 

in class Ci was assigned to Cj. As a result, the distribution was selected on the 

basis of the total number of samples incorrectly placed into the class  ijm  

(false positives). The ideal value of  ijm  should be zero. 

 

2.5.2 Choice of Spread for PNN 

The spread of radial basis functions in PNN needs to be chosen. As mentioned in 

MATLAB (Mathworks), if the spread is near zero, the network acts as a nearest 

neighbour classifier; as spread becomes larger, the designed network takes into 

account several nearby design vectors. In this work, a looped program, referring 

to Malinov and Sha’s work (2003), is used in order to find the best combination 

of database distribution and value of spread. 
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3.0 Revisiting Hume-Rothery’s Rules with Artificial Neural 

 Networks 
 
3.1 Special Experimental Details 

3.1.1 Data Collection 

 Solubility Limit Collection: the solid solubility limits (at.%) for silver, copper 

and gold alloys are recorded from Massalski et al. (1987), Moffatt (1994) and 

ASM Handbook Vol. 3, Alloy Phase Diagrams (1992). (Listed in Appendix 2) 

 Physical Parameters Collection: the physical parameters, radii (Å), valences 

and electrochemical factors (electronegativity) of solvent and solute atoms are 

taken from Stark and Wallace (1982) and from Aylward and Findlay (1998). 

The valences of elements, which were mentioned by Hume-Rothery in 1934, 

follow his representation (Hume-Rothery, 1934). Radii of Al, Ga, and α-Fe 

also followed Hume-Rothery’s representations (Hume-Rothery, 1961). The 

structure parameter is taken from ASM Handbook Vol. 3, Alloy Phase 

Diagrams (1992). (Listed in Appendix 2) 

 
The whole dataset is used in three different ways: i) the 60 silver and copper 

alloy systems, which were first mentioned by Hume-Rothery in 1934, are used 

for training the neural network and testing whether the Hume-Rothery’s Rules 

work in this range of alloy systems; ii) all the 408 silver and copper alloy 

systems collected are used to represent the process, and then to test the effect of 

introduced melting point of both solvent and solute iii) all the 566 silver, copper 

and gold alloy systems are used to test the effect of melting point of both solvent 

and solute, as well as for Hume-Rothery’s Rules for wider range of alloy systems. 

 

3.1.2 Determination of Inputs and Outputs 

Determination of Input Parameters 

The network input parameters are the physical parameters including i) atomic 

size parameter, ii) valence parameter, iii) electrochemical parameter, i.e. 

electronegativity, and iv) structure parameter of solvent and solute atoms, which 

were not mentioned in 1934 by Hume-Rothery, but were introduced in 1948 

(Axon and Hume-Rothery, 1948) concerning the detailed examination of 

Vegard’s law (Vegard, 1921) in the case of metallic solid solutions. 
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Three different expressions of these parameters are used: 

1. The raw data that Hume-Rothery used. Details are discussed below. 

2. The original collected values for each parameter of solvent and solute atoms. 

3. The original collected parameters are converted into functionalized values 

before putting them into the networks: 

 

a) For Size Factor: The difference between the atomic diameters of solvent 

and solute atoms divided by the diameter of the solvent atom is used. 

 

b) For Valence Factor: These are integers and the original values are used, 

leaving the neural network to decide the relations between valence of 

solvents and solutes. 

 

c) For Electrochemical Factor: The difference between that of the solvent and 

solute atoms is used. 

 

d) For Structure Parameter: The expressions of the structures can be put in 

terms of numbers 1-14 for the Bravais lattices, but this revealed little effect 

of structure. They can also be expressed in three sets of numbers 

representing primitive cell dimensions, angles and systems. This allows 

some similarities to be explored. The three sets are i) unit cell length (a=b=c; 

a=b≠c; a≠b≠c), ii) axes angles (α=β=γ=90º; α=β=90º, γ=120º; α=β=γ≠90º; 

α=γ=90º≠β; α≠β≠γ≠90º) and iii) crystal system (simple; base-centred; face-

centred; body-centred). 

 

Later, we were curious if more rules are needed to extend Hume-Rothery’s 

principle into quantitative solubility prediction of a wider range of alloy systems 

using ANN. As the result, one new parameter was introduced: 

e) Melting point (Tm): It is well known that the solubility of many solids 

depends on temperature. As a result, it is reasonable to consider improving 

the performance of prediction by introducing temperature as a parameter. 

The melting temperature (Tm, in the unit of ºC), above which two metals are 

miscible in any proportions, was proposed as an additional parameter. 
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Determination of Output Parameters 

In Hume-Rothery’s Rules, a soluble/insoluble criterion is described (The 

quantitative maximum solid solubilities of Zn, Ga, and Ge in copper, Cd, In and 

Sn in silver can be predicted from electron concentration of 1.4, but this is not a 

general case). However, it would be more advantageous to attempt to predict the 

original value of solubility. The output parameters, which are the solubility limits 

of each alloy system, are therefore expressed in two ways: 

 

1) Following the specified criterion: if the solubility of solute metal in solvent 

metal exceeds 5 at.% (Hume-Rothery, 1969; Zhang and Liao, 1999a), then 

it is said that this solute metal is soluble in the solvent metal. 

 

2) Original maximum solubility limits of each alloy system are used. 

 

3) Tmax, under which the maximum solubility is reached, is always associated 

with the maximum solubility values. As a result, it is interesting to see 

whether Tmax can be predicted as well, without knowing the maximum 

solubility values. So, Tmax (in the unit of ºC) is also used as an output 

parameter. 
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3.2 Results 

Here, the results are shown as follows: i) The first 60 alloy systems mentioned by 

Hume-Rothery in 1934, are used as a start; ii) The whole 408 alloy systems are 

then used to test whether Hume-Rothery’s Rules work for copper and silver alloy 

systems in general; iii) Relative importance of the rules; iv) Introduction of the 

melting points for both solvent and solute to test their effect on the solid 

solubility prediction; v) Testing both the melting point effect and Hume-

Rothery’s Rules for a wider range of alloy systems (copper, silver and gold). 

  

3.2.1 Testing Hume-Rothery’s Rules within 60 Alloy Systems 

Of the four parameters, the size factor, the electrochemical factor and the relative 

valency factor were those used by Hume-Rothery in 1934, so these are used in 

initial tests for predicting solubility. 

 

Following the Method that Hume-Rothery’s Definition Suggests 

During this trial, the following criteria are used: 

1. If the atomic diameters differ by more than 14%, then it means that size factor 

is “unfavourable”, and the input number for this parameter is zero, or it is one. 

 

2. If the valency of solvent atom is lower than that of solute atom, then the input 

number for this parameter is one, or else the number is zero. 

 

3. If the difference of the electronegativity of solvent and solute atom is more 

than 0.4, mentioned by Darken and Gurry (1953) and Zhang and Liao (1999a), 

then the input number for this parameter is zero, or else it is one. 

 

4. If the solubility of solute metal in solvent metal exceed 5 at.%, then the output 

number is one, or else it is zero. 

 

In this case, the problem to be solved is a classification problem, so a 

probabilistic neural network was designed for use. The modified criterion of 15% 

for the diameter difference mentioned by Darken and Gurry (1953) is used in the 

next trial, also with soluble/insoluble as output and both results are listed in 

Table 3.2.1 in terms of the percentage of all the sixty predictions that are wrong. 
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Comparing these results, a slight difference is found: the percentage error of 

predicted results based on experimental results for the whole dataset using the 

15% criterion is slightly lower than that for 14%. This result shows the 

consistency with the modified criterion of size factor, although Hume-Rothery 

stated in his later work (1966) “the 14% difference does give a better correlation 

with solubility data than the commonly accepted 15%”. 

 

Using the same approach and including the 15% criterion, the structure 

parameter is introduced next in terms of whether the structure of solvents and 

solutes are the same or not (i.e. 1 same, 0 not same). The results are listed in the 

last row of Table 3.2.1. Comparing these results with the previous one, there is 

no improvement in correlation. This indicates that the structure parameter does 

not play a very important role in solubility when the 5 at.% solubility limit is 

selected as the threshold. Zhang and Liao (1999a) commented that taking the 5 

at.% threshold at any temperature is not precise enough and solubility limits are 

not accurately predicted when the rules are deployed in this way. 

 

Table 3.2.1 Testing Hume-Rothery’s Rules with 60 alloy systems using his 

criterion (14% variation), the later suggestion of 15% and the 15%  criterion with 

structural identity (same or not). 

Choice Error of Prediction (%) 
Testing        Whole Data 

14%        8.3                    15 
15%        8.3                    13 

Structure Parameter        8.3                    13 
 

Using the Exact Collected Values 

In the next trial, the original values of input parameters and of output original 

solubility values are used and structure parameter is incorporated by using an 

integer for each of the 14 Bravais lattices. From this trial to the end of this part, 

all the problems modelled are mapping problems, so backpropagation artificial 

neural networks (BPANNs) are adopted throughput. The separate results are 

shown in Figure 3.2.1 in which the training set (a) is distinguished from the 

testing set (b). For the training set, the regression coefficient R is 0.996 and slope 
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M is 0.984. However, the prediction for the testing data from the trained network 

in this case is very poor (M is 0.193 and R is 0.383) and this clearly indicates that 

although the network trains satisfactorily on the actual values of input data it is 

unable to use these for prediction. 
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Figure 3.2.1 Prediction of solubility using original values of input parameters 

for the 60 alloy system dataset: atomic size, valency and electronegativity and 

structure. a) Training set, b) Testing set, c) Whole set. 

 

Using Functional Parameters 

In the next trial, input variables are based on functionalized values, structure 

parameter is omitted and the results are shown in Figure 3.2.2. The values of M, 

B and R for the training set are 0.977, 0.23 and 0.993 respectively and for the 

testing set they are 0.962, -1.19 and 0.992 respectively. This demonstrates 

reasonable correlation (the ideal values are M=1, B=0 and R=1). 
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Figure 3.2.2 Prediction of solubility using 3 functionalized parameters for the 

60 alloy system dataset: atomic size, valency and electronegativity. a) Training 

set, b) Testing set, c) Whole set. 

 

The functionalized structural parameter described above is then incorporated in 

place of the Bravais lattice number are the results are shown in Figure 3.2.3. 

Comparing this with Figure 3.2.2, the difference is not great, nor can it be said 

that one is superior to the other. This could imply that the structure parameter 

does not play a very important role, and indeed Hume-Rothery did not include it 

in 1934. 
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Figure 3.2.3 Prediction of solubility using 4 functionalized parameters for the 

60 alloy systems: atomic size, valence, electronegativity and structure. (a) 

Training set, (b) Testing set, (c) Whole set. 

 

There are several ways to evaluate the performance of neural network predictions. 

The first and simplest is based on the value of the linear regression coefficient R 

for the plot of predicted vs. experimental output. A problem occurs when R is 

low (<0.9) and the slope, M, is close to unity or vice versa. Under these 

circumstances slope, M, and R can be combined to give one parameter 

φ=
max

)(
B

BR11M   as defined in section 2.3 which should be as close as 

possible to zero. This has the advantage of providing a single value that can be 

used as a criterion for parameter selection in a looped optimization program. 

However, in this composite parameter, the contribution of each of M and R is 

treated as equal whereas a weighting might be preferable. An alternative method 

is to consider the mean error of the predicted value from experimental value. 

There are three ways in which this error can be calculated: (i) the mean true error 

having the same unit as target values, (ii) the mean modulus of error again 

having the same unit as target and (iii) the percentage error (as modulus) based 

a b 

c 
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on the experimental value. The problem of (i) is that a zero mean error can be 

obtained from large deviations from the line and the problem with (iii) is that 

when many experimental values are zero or close to zero, the percentage is 

infinite or very high respectively, such as in this case. Thus, here (ii) provides the 

best criterion and furthermore the standard deviation of this modulus of error 

gives a measure of spread and hence, if large, indicates that the error is not 

systematic. So in assessing the correlation two parameters are used: the 

correlation coefficient R and the average absolute deviation between theory and 

prediction (mean modulus of error). The two are plotted in Figure 3.2.4 for all 

data sets and show a good correlation at high R: at R=1, the mean modulus of 

error is zero. 

 

 
Figure 3.2.4 The correlation between R-values and mean modulus of error. 

 

These criteria are compared in the first two data rows of Table 3.2.2 for the 

testing set and whole set of the 60 alloy system from plots of predicted solubility 

against experimental solubility. The first thing to notice about this table is that 

the four ways of assessing the accuracy of prediction (testing set) concur. As the 

linear regression coefficient decreases, the parameter φ increases much more 
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dramatically and can be regarded as a more sensitive indicator for this reason. 

Also a simple calculation of the mean deviation of the predicted values from the 

best fit line (mean modulus of error) gives an estimate of the accuracy of 

prediction. This follows the trend of increasing φ and reduced R. The standard 

deviation for this error is an indicator that the error is random rather than 

systematic and if so, the standard deviation is expected to increase with the mean 

as it, in fact, does. The ratio of standard deviation of error to mean error is, in all 

but one case, greater than unity. This trends in the assessment criteria are 

consistent for both the testing set and the whole set. 

 

The best predictive results for the network are obtained by using the 

functionalized values of atomic size, valence and electronegativity to predict 

original values of solubility for the 60-alloy dataset used by Hume-Rothery 

himself and the data are plotted in Figure 3.2.2. Inclusion of the structural factor 

using the parameter described above weakens the predictive power of the 

network (Figure 3.2.3). The reason for this slightly counter-intuitive finding is 

that crystallographic compatibility is likely to become more important at higher 

solubility levels, being essential for continuous solubility. However, the majority 

of data are at the low solubility end where substitutional atoms are at low co-

ordination number. Another reason is that the number used to represent structure 

actually conceals crystallographic similarities as discussed in more detail below 

and there is not enough training data for the network to establish these 

similarities by itself. The structure parameter is used to assess the criterion for 

solubility that “the same crystal structure for the two elements favours a wide 

solubility range” (Wyatt and Dew-Hughes, 1974). This makes it a kind of 

classification problem, not completely the same as a mapping problem and it 

could be argued that including it in this type of network is inappropriate. 

 

3.2.2 Testing Hume-Rothery’s Rules within 408 Alloy Systems 

From the results for the 60 alloy systems, it is clear that using the 3 

functionalized values of  parameters provides better results, so the same approach 

is adopted for testing the 408 alloy systems. This represents a nearly exhaustive 

set of known silver and copper alloys. The results, shown in the last row of Table 

3.2.2 and plotted in Figure 3.2.5, use the same format of inputs as those used for 
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the 60 alloys set. When this method (omitting structural parameter) is applied to 

the larger 408 alloys dataset, the regression coefficient is low (less than 0.9) and 

the comparison between different regression coefficient values has less meaning. 

Calculation of the mean modulus of error gives a less ambiguous estimate of the 

accuracy of prediction. The mean error of the prediction (testing set) increases by 

a factor of three and the linear regression coefficient drops well below 0.9. The 

mean error for the testing set and the whole set becomes closer showing that this 

set does not train well whereas for the 60 alloy set, the whole set errors are much 

lower than the testing set errors. It is an inevitable conclusion that the wider 

application of the rules introduces difficulties some of which are discussed below.  
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Figure 3.2.5 Prediction of solubility using 3 functionalized parameters for the 

408 alloy systems: atomic size, valency and electronegativity. (a) Training set, (b) 

Testing set, (c) Whole set. 
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Table 3.2.2 Comparison of criteria for predicting solubility using different combinations of parameter groups. 

Test Set Whole Set 

Conditions* 
R φ 

Mean 
modulus 
of error 
/atom % 

S.D. of 
modulus 
of error 
/atom % 

R φ 

Mean 
modulus 
of error 
/atom % 

S.D. of 
modulus 
of error 
/atom % 

Size, Valence, 
Electronegativity 

(60 alloys) 
0.992 0.0579 2.46 3.21 0.992 0.0422 1.65 1.94 

Size, Valence, 
Electronegativity, 

Structure (60 
alloys) 

0.976 0.168 6.98 4.58 0.975 0.0851 3.21 3.21 

Size, Valence, 
Electronegativity 

(408 alloys) 
0.695 0.662 7.01 14.1 0.768 0.631 6.30 12.7 

  * Using functionalized parameters 
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3.2.3 Relative Importance of the Rules 

It is interesting to enquire which of the four parameters, i.e. atomic size, valence, 

structure and electronegativity, is the most influential parameter assuming that 

they are independent of each other. The importance of structural parameter has 

been tested and found not to play a very important overall role, although of 

course it does influence the possibility of continuous solubility. 

 

The relative importance of size factor, valence and electronegativity is shown 

from Figure 3.2.6 to Figure 3.2.8, and compared in Table 3.2.3. Using the same 

procedure (functionalized parameters including structure), the network is run 

with one parameter omitted at a time on the set of 60 systems.  

 

In general, mean error (data columns 3 and 7) varies inversely with regression 

coefficient (data columns 1 and 5) and the standard deviation of error is between 

1.1 and 1.8 times higher than the mean error. Using the mean error of the testing 

set as main criterion for accuracy of prediction, the parameters atomic size, 

valence and electronegativity provide the strongest prediction of solubility and of 

these, atomic size has the strongest effect because when omitted the error is 

highest (data row 2). Electronegativity appears to have a stronger influence than 

valence (data row 3 and 4). In fact, these parameters are not wholly independent 

of each other. This is a confounding case, as shown in Figure 1.5.1(c), in which 

the effect of each parameter is confounded with others. As mentioned by Hume-

Rothery, they are related and their interplay makes the determination of solubility 

very difficult (Hume-Rothery et al., 1934). As a result, the determination of 

relative importance of each parameter is not easy; it can only be said 

descriptively that the atomic size and electronegativity play more important roles 

than the valence and structural parameters. 
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Figure 3.2.6 Prediction of solubility using 3 functionalized parameters for the 

60 alloy systems: valency, electronegativity and structure. (a) Training set, (b) 

Testing set, (c) Whole set. 
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Figure 3.2.7 Prediction of solubility using 3 functionalized parameters for the 

60 alloy systems: size, electronegativity and structure. (a) Training set, (b) 

Testing set, (c) Whole set. 
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Figure 3.2.8 Prediction of solubility using 3 functionalized parameters for the 

60 alloy systems: size, valence and structure. (a) Training set, (b) Testing set, (c) 

Whole set. 
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Table 3.2.3 Comparison of criteria for predicting solubility using different combinations of three parameters. 
Test Set Whole Set 

Conditions* 
R φ 

Mean 
modulus 
of error 
/atom % 

S.D. of 
modulus 
of error 
/atom % 

R φ 

Mean 
modulus 
of error 
/atom % 

S.D. of 
modulus 
of error 
/atom % 

Size, Valence, Electronegativity (60 
alloys) 0.992 0.0579 2.46 3.21 0.992 0.0422 1.65 1.94 

Valence, Electronegativity, Structure (60 
alloys) 0.867 0.308 8.19 11.7 0.924 0.197 4.20 6.34 

Size, Structure, Electronegativity (60 
alloys) 0.93 0.365 3.17 4.19 0.968 0.142 3.46 3.66 

Size, Valence, Structure (60 alloys) 0.569 0.477 7.73 13.8 0.761 0.613 7.07 11.0 
* Using functionalized parameters 
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In the next stage, pairs of parameters are selected to predict solubility: (1) atomic 

size and valence factors, (2) atomic size and electronegativity factors, (3) atomic 

size and structural factors, (4) valence and electronegativity factors, (5) valence 

and structural factors and (6) structure and electronegativity factors. The results 

are shown from Figure 3.2.9 to Figure 3.2.14, and the comparisons are shown in 

Table 3.2.4. The first thing to notice is that most of the mean errors are increased 

compared to the three input tests reported in Table 3.2.3. The correlation 

coefficient for the testing set is generally higher than that for the whole set 

because the partitioning procedure described above selects minimum φ for the 

testing set as criteria rather than for the training set, as mentioned in section 2.3. 

An ideal procedure would be to find the correlation for both sets for each 

partition and select the distribution that gives the closest and highest R-values as 

described by Malinov and Sha (2003). When the correlation is poor however, as 

for the effects of valence and structure, the value of R has little meaning. Table 

3.2.4 confirms the deductions from the three-parameter tests that atomic size has 

the strongest effect on solubility and the structural parameter the least effect. 

However some ambiguity attends the relative role of electronegativity and 

valence which are reversed in this assessment of ranking. As mentioned in 

section 1.6.2.1, Pearson states (1972) that “when one component in a binary alloy 

is very electronegative relative to the other, there is a strong tendency for them to 

form compounds of considerable stability in which valence rules are satisfied. 

Such alloys are said to exhibit a strong electrochemical factor and this is the 

strongest effect in determining the constitution of alloys, and one which 

dominates all other effects such as energy band or geometrical factors”. 
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Figure 3.2.9 Prediction of solubility using 2 functionalized parameters for the 

60 alloy systems: size, valence. (a) Training set, (b) Testing set, (c) Whole set. 
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Figure 3.2.10 Prediction of solubility using 2 functionalized parameters for the 

60 alloy systems: size, electronegativity. (a) Training set, (b) Testing set, (c) 

Whole set. 
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Figure 3.2.11 Prediction of solubility using 2 functionalized parameters for the 

60 alloy systems: size, structure. (a) Training set, (b) Testing set, (c) Whole set. 
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Figure 3.2.12 Prediction of solubility using 2 functionalized parameters for the 

60 alloy systems: valence, electronegativity. (a) Training set, (b) Testing set, (c) 

Whole set. 
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Figure 3.2.13 Prediction of solubility using 2 functionalized parameters for the 

60 alloy systems: valence, structure. (a) Training set, (b) Testing set, (c) Whole 

set. 
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Figure 3.2.14 Prediction of solubility using 2 functionalized parameters for the 

60 alloy systems: structure, electronegativity. (a) Training set, (b) Testing set, (c) 

Whole set. 
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Table 3.2.4 Comparison of criteria for predicting solubility using different combinations of two parameters.  

Test Set Whole Set 

Conditions* R φ 

Mean 
modulus 
of error 
/atom % 

S.D. of 
modulus 
of error 
/atom % 

R φ 

Mean 
modulus 
of error 
/atom % 

S.D. of 
modulus 
of error 
/atom % 

Size, Valence (60 alloys) 0.852 0.470 4.47 2.50 0.496 1.36 9.52 14.3 
Size, Electronegativity (60 alloys) 0.679 0.860 6.99 4.83 0.495 1.36 10.3 13.8 

Size, Structure (60 alloys) 0.675 0.889 10.2 6.42 0.441 1.50 10.7 14.4 
Valence, Electronegativity (60 alloys) 0.91 0.153 7.31 10.1 0.925 0.184 4.54 6.06 

Valence, Structure (60 alloys) 0.459 1.02 12.4 11.9 0.662 0.886 9.82 11.3 
Structure, Electronegativity (60 alloys) 0.607 1.30 11.3 21.1 0.524 1.35 9.00 14.5 

* Using functionalized parameters 
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3.2.4 The Effect of Temperature Parameters 

Based on the 408 alloy systems used before, Tm is introduced, and the results are 

shown in Figure 3.2.15, in which the circles represent the training data set and 

stars represent the testing data set. Comparison of this result with Figure 3.2.5 (c) 

shows there is little improvement. On further consideration of the problem, it can 

be seen that for the systems with complete solubility (i.e., 100 at.%) or complete 

insolubility (0 at.%) the solubility stays as 100 at. % or 0 at. % within the whole 

temperature range of the solid phase. That is, the solid solubility in the solid 

phase temperature range is independent of temperature. For this reason, the 

introduction of temperature does change the performance of the prediction for 

100 at.% and 0 at.%, and so the regression coefficient cannot be improved. As a 

result, for the following tests, which aim to test the effect of introducing 

temperature parameters, the systems that have 100 at.% or 0 at.% solubility were 

eliminated.  

 

In the following tests, the whole data set was used in two different ways: (1) 155 

silver and copper alloy systems, which were generated from the 408 alloy 

systems used in previous work but excluding the systems with 100 at.% or 0 at.% 

solubility; (2) to introduce 76 gold alloy systems in. A total of 231 alloy systems 

including silver, copper and gold were used. 
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Figure 3.2.15 Prediction of solubility of 408 silver and copper alloy systems 

using 3 functional parameters: atomic size, valence and electronegativity and 

melting point of solvents and solutes. 
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Testing Extended Hume-Rothery’s Rules with the 155 Alloy Systems 

At first, the functionalized values of atomic size, valence and electronegativity 

were used to make the prediction of original solubility limits within the 155 alloy 

systems (without using melting point, in order to compare the melting effect 

later). The result is shown in Figure 3.2.16 (a). 

 

Next, the melting point Tm of both solvents and solutes were included to make 

another prediction. The result is shown in Figure 3.2.16 (b). From comparison of 

Figure 3.2.16 (b) with Figure 3.2.16 (a), the performance has been greatly 

improved (the regression coefficient increases from 0.79 to 0.963). This 

improvement indicates the melting point Tm plays a significant role in the 

prediction. The reasons will be discussed later and the statistical analysis are 

listed in 1st and 2nd rows of Table 3.2.5. 

 

Testing the Extended Hume-Rothery’s Rules with 231 Noble Metal (Au, Ag, 

Cu) Alloy Systems 

Figure 3.2.17 (a) and (b) show the prediction of solubility for 231 noble metal 

alloy systems. The statistical analysis results are shown in 3rd and 4th rows in 

Table 3.2.5. The same trend of improvements can be found, confirming the 

effects of melting point of solutes and solvents. From these results, it can be seen 

that melting point has a great effect on the solubility prediction. It is interesting 

to unveil the mechanism of this effect, and the details are shown in discussion 

part. 
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(b) 

Figure 3.2.16 Prediction of solubility for 155 silver and copper alloy systems 

using: (a) 3 functional parameters: atomic size, valence and electronegativity; (b) 

melting points of solvents and solutes plus parameters used in (a). 
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(b) 

Figure 3.2.17 Prediction of solubility for 231 noble metal alloy systems using: a) 

3 functionalized parameters: atomic size, valence and electronegativity; b) 

melting points of solvents and solutes plus parameters used in a). 
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Table 3.2.5 Statistical analysis of the results shown for Figure 3.2.16 and Figure 3.2.17. 

Test set Whole set  
Results R Mean of error modulus 

/at. % 
SD of error modulus 

/at. % R Mean of error modulus 
/at. % 

SD of error modulus 
/at. % 

(a) 0.653 5.00 4.19 0.790 5.07 5.47 
Figure 3.2.16 

(b) 0.926 4.45 4.66 0.963 1.71 2.88 

(a) 0.480 6.58 7.16 0.559 8.14 9.20 
Figure 3.2.17 

(b) 0.643 6.86 9.89 0.902 3.18 5.67 
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3.2.5 Prediction of Tmax 

Testing for the 155 alloy systems 

As before, at the beginning, the functionalized values of atomic size, valence and 

electronegativity were used to make the prediction of Tmax. The result is shown in 

Figure 3.2.18 (a). 

 

Next, the melting points Tm of both solvents and solutes were added to make the 

prediction. The result is shown in Figure 3.2.18 (b). From comparison of these 

two figures, the performance has been dramatically improved (the regression 

coefficient increases from 0.214 to 0.881). This improvement confirms the 

significant contribution of melting point to the maximum solubility. 

 

Further, it is interesting to see the sole effects of melting points to Tmax, since all 

of them are temperature parameters. The result is shown in Figure 3.2.18 (c). 

From this result, it can be found that the melting points alone play very important 

role in the prediction of Tmax. The statistical analyses for all these three cases are 

listed in Table 3.2.6, from 1st to 3rd rows. In these cases, the experimental values 

are far greater than zero, the percentage error therefore can be adopted for 

evaluating the performance of neural network predictions. 

 

Testing for the 231 alloy systems 

The same procedure applied to the 231 noble metal systems. The results are 

shown in Figure 3.2.19, and the statistical analysis results are shown in Table 

3.2.7 from 4th to 6th rows. 
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Figure 3.2.18 Prediction of Tmax for 155 silver and copper alloy systems using a) 

3 functionalized parameters: atomic size, valence and electronegativity; b) 

melting points of solvents and solutes plus parameters used in a); c) melting 

points of solvents and solutes only. 
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Figure 3.2.19 Prediction of Tmax for 231 silver and copper alloy systems using a) 

3 functionalized parameters: atomic size, valence and electronegativity; b) 

melting points of solvents and solutes plus parameters used in a); c) melting 

points of solvents and solutes only. 
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Table 3.2.6 Statistical analysis of the results shown for Figure 3.2.18 and Figure 3.2.19. 

Test set Whole set 

Results R 

Mean of 
error 

modulus 
/ºC 

SD of 
error 

modulus 
/ºC 

Mean of 
percentage 

error modulus 
/% 

SD of 
percentage 

error 
modulus 

/% 

R 

Mean of 
error 

modulus 
/ºC 

SD of 
error 

modulus 
/ºC 

Mean of 
percentage 

error modulus 
/% 

SD of 
percentage 

error 
modulus 

/% 
(a) 0.205 205 193 40.1 70.6 0.214 209 190 57.5 263 
(b) 0.775 133 125 16.2 12.7 0.881 88.2 104 12.3 17.7 Figure 

3.2.18 (c) 0.752 137 108 17.6 14.3 0.78 130 122 22.2 42.9 

(a) 0.336 213 260 35.5 73.6 0.168 219 205 51.1 216 
(b) 0.744 156 203 42.8 108 0.86 98.5 123 17.4 50.7 

Figure 
3.2.19 

(c) 0.82 110 108 18.8 38.8 0.793 134 126 20.5 31.4 
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3.3 Discussion 

It is important to recognize that there are four different factors that limit the 

predictive capability of the networks: (i) imperfections in the network 

configuration which we have attempted to minimize through design, (ii) paucity 

of learning data which has been mentioned in section 2.0, (iii) the generality of 

Hume-Rothery’s Rules which were conceived as guidelines and (iv) the fact, 

recognized by Hume-Rothery and co-authors, that the available data are subject 

to inexactitudes. 

 

3.3.1 The Reliability of Input Parameters 

Hume-Rothery et al. (1934) themselves made it clear that the exact “atomic 

diameter” of an element is always difficult to define. Their definition of atomic 

diameter, as given by the nearest-neighbour distance in a crystal of the pure 

metal, was used here but the “radius” of an atom is probably affected by 

coordination number. Except for the heavy elements, elements of the B sub-

groups tend to crystallize with coordination number 8-N, where N is the group to 

which the element belongs. This is due to the partly covalent nature of the forces 

in these crystals, and except in Group IV B (diamond structure) results in the 

atoms having two sets of neighbours at different distances in the crystal. Cottrell 

(1998) suggests that the concept of a characteristic size, which suggests hard 

spheres butted together, is doubtful. Allocating a single atomic diameter for each 

element, independent of its environment, and valences of solvent and solute is 

too simplistic an approach (Hume-Rothery et al., 1969). Furthermore, within the 

408 alloy systems, the metallic radius of some elements could not be found and 

covalent radius used instead. These factors contribute to the errors for the 

prediction of solid solubility limit and are to be distinguished from intrinsic 

weakness of the ANN. 

 

An early discovery by Hume-Rothery was that a metal of lower valence is more 

likely to dissolve one of higher valence than vice versa. However, more detailed 

examination has not confirmed this. As mentioned before, silver dissolves about 

20% aluminium but aluminium dissolves about 24% silver. For high valence, 

covalently bonded components, the relative valence factor applies. For example, 

copper dissolves about 11% of silicon, which behaves as a 4-valent metal in 
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forming Cu-Si electron phase alloys, but the solubility of copper in covalently 

bonded silicon is negligible (Cottrell, 1998). As a result, although Hume-

Rothery (Hume-Rothery et al., 1969) accepted that it is still a general principle 

that the solubility in the element of lower valency is of greater extent when 

dealing with alloys of univalent metals copper, silver and gold with metals with 

higher valency, in its general form, this principle must be treated with caution. 

 

Also, the valencies of transition metals are variable and complex and have been 

analyzed by Hume-Rothery et al. (1951) and Cockayne and Raynor (1961). As 

suggested by Cottrell (1998), due to the valency complication caused by partly-

filled d shells, the transition metal alloys generally do not follow the rule. 

Gschneider (1980) modified the relative valence rule so that the solubility is low 

when a metal in which d orbitals strongly influence the valence behaviour, is 

alloyed with a simple ‘sp metal’, but that the solubility is likely to be better in the 

d metal than the reverse. 

 

The electronegativity rule needs a scale, such as that given by Mulliken, based on 

the equation  AI
2
1

 , where I is the ionization energy, A is electron affinity 

and χ is Mulliken electronegativity. When divided by 2.8, this scale matches the 

empirical scale of Pauling reasonably well. In the case of transition metals, as 

emphasized by Watson and Bennett (1978), the partly-filled d states of transition 

metals at energies near the Fermi energy influence electronegativity. Watson and 

Bennett presented an electronegativity scale for transition metals that matched 

Pauling’s scale, and could be scaled by 2.8 to bring it to Mulliken’s scale of χ 

values. Most importantly, Li and Xue (2006) recently have mentioned that 

“although electronegativity is often treated as an invariant property of an atom, 

as in Pauling’s scale, it actually depends on the chemical environment of the 

atom, e.g. valence state and coordination number”, which was also mentioned in 

Hume-Rothery et al. (1969). The electronegativity values adopted in this part of 

work are based on Pauling’s work, so the above effects are not entirely taken into 

account. 
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The method adopted for expressing structure parameter has some limitations. 

Firstly, the expressions used to distinguish different crystal structures can 

conceal similarities. For unit cell length, a=b=c and a=b≠c are distinguished but 

can have considerable similarity. Secondly, from this expression, the face 

centered cubic (FCC) and the hexagonal close packed (HCP) systems are 

expressed as quite distinct sets but there are some similarities between these two 

structures. They are both close packed systems and stacking faults can blur the 

difference. Indeed the Cu and Zn systems demonstrate high solubility even 

though one component, Zn, is HCP and the Cu is FCC. The Ag and α-Li system 

is a similar case. Thirdly, there are several complex structural systems that 

cannot be distinguished from other systems by using this expression, such as α-

Mn, whose structure is cI58, and β-Mn, whose structure is cP20. These all affect 

the ability of the structure parameter to contribute to predicting the solubility. 

 

3.3.2 The Effect of Melting Point 

The melting point effect actually has been interpreted from some aspects by 

Hume-Rothery et al. (Buckley and Hume-Rothery, 1963; Hume-Rothery, 

1965). The solid solubility of an alloy system can be treated as the capability to 

stabilize in the solid phase at that solubility value of added elements, under a 

certain temperature and this is the competition between the liquid and solid phase 

for these conditions (certain solubility values and temperature) under free energy 

minimisation routine. Hume-Rothery et al. assessed the stabilizing power of 

liquid and solid phase in terms of the free energy difference (ΔG), which is the 

free energy of transfer one mole of solute from the solid to the liquid phase, and 

includes the melting point effect and other effects (such as atomic diameters, 

electronic effects, etc.). This can be written as  

      FmpfG               Equation 3.3.1 

where the  mpf  is the melting point effect, and F is the effect due to atomic 

diameters, electronic effects and so on.  

 

From Equation 3.3.1, it can be seen that the stability of one phase can be 

interpreted in terms of size effects, electronic effects, melting points etc. The 

effects that contribute to F  actually are the parameters in Hume-Rothery’s 
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Rules, as mentioned in a previous paper (Zhang et al., 2008); and the melting 

point effect is the extra effect. For detail, the melting point effect  mpf can be 

expressed as TSF  , where FS  is the entropy of freezing of solute element, 

and T is the difference between T and the melting point of the pure solute. 

 

The above equation explains the effect of melting points of solutes and the 

temperature at which the stable phase is obtained. This is why the performance of 

solubility prediction can be improved by introducing the melting point of solutes 

and the temperature at which the maximum solubility is attained. 

 

3.3.3 The Generality of Hume-Rothery’s Rules 

Hume-Rothery and co-workers state: “In general, the solubility limit is mainly 

determined by these factors, and it is their interplay that makes the results so 

complex” (Hume-Rothery et al., 1934). For the 60 alloy systems mentioned by 

Hume-Rothery in 1934, and using some of the parameter values that can be 

found in Hume-Rothery’s paper or his book and others that follow his 

representations, the results for prediction of solid solubility limit are satisfactory. 

 

However, from theory as analyzed by others in later work (Zhang and Liao, 

1999a, b; Cottrell, 1998; Miedema, 1973), and also from the attempts to predict 

solid solubility limit of the 408 alloy systems, it can be said that Hume-Rothery’s 

Rules work properly in a certain range of alloy systems, but cannot be treated as 

general principles. Also it needs to be said that despite using Hume-Rothery’s 

Rules, one cannot predict the solid solubility limits accurately. However, these 

rules are still useful guidelines for judging the solubility of alloy systems.  

 

Further, the introduction of the melting temperatures of both solvents and solutes 

has a significant effect for the prediction of solid solubility values and its related 

parameter Tmax. 
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4.0 The Policing and Correction of Handbooks and Databases 

 by Artificial Neural Networks 
 
4.1 Data Collection 

In this work, the properties of the elements were used as a test dataset for 

scrutiny by the ANN since these data were expected to be very reliable. Only 

elements with short half lives were excluded. The majority were taken from 

Chemistry Data Handbook (CDH) (Stark and Wallace, 1982). When suspects 

were identified, more handbooks were called upon including The Lange’s 

Handbook of Chemistry (LHC) (Speight, 2005), The Elements (ELE) (Emsley, 

1998), Tables of Physical and Chemical Constants (TPC) (Kaye and Laby, 1995) 

and CRC Handbook of Chemistry and Physics (CRC) (David, 2000). 

 
4.2 General Steps for Policing/Correction of Errors and Results 

This process involves four different stages. 

Stage 1: A dataset is examined for internal relationships and inconsistent data-

points are identified. In one example, the ANN was used to explore the indirect 

relationship between boiling point and enthalpy of vaporization using data from 

CDH (Table 4.1.1 and Figure 4.1.1). The best linear fit equations have regression 

coefficients R=0.973 and 0.972. On this basis, the correlation hypothesis was 

raised that the correlation applies to all elements. However, some data points fall 

well away from the line: e.g. Ho, Se, S, Te, I, As (α), Nb, P, Cd and Pd for which 

there are two possible causes. The first is that the correlation hypothesis is 

violated for these special cases; and the second is incorrect handbook data. So at 

this stage, data from other sources (ELE, TPC and CRC), if available, are 

brought in (Table 4.1.2 and 4.1.3). 

 
Table 4.1.1 The dataset used to train the ANN shown in Figure 4.1.1. Majority 

were taken from Chemistry Data Handbook (CDH, 1982) without judgement. A 

few data unavailable in CDH were taken from LAG and ELE. (BP: Boiling Point; 

ΔHV: Enthalpy of Vaporization). 

Elements BP /K ΔHv  
/kJ mol-1 Elements BP /K ΔHv 

/kJ mol-1  Elements BP /K ΔHv 
/kJ mol-1 

Ag 2483 254 H 21.15 0.90 Pt 4803 510 
Al 2743 284 He 4.150 0.08 Rb 961.2 69.0 
Ar 87.20 6.53 Hf 5673 648 Re 5903 636 

As (grey) 886.2 32.4 Ho 2873 71.0 Rh 4773 531 
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Au 3243 342 I (I2) 457.2 22.0 Ru 5173 619 

B 4203 540 In 2273 225 S 
(mono.) 718.2 10.0 

Ba 1913 149 Ir 5573 636 Sb 1653 195 
Be 2750 309 K 1047 79.1 Sc 3003 310 
Bi 1833 179 Kr 121.2 9.04 Se 958.2 14.0 
Br 331.7 30.0 La 3743 400 Si 2633 300 
C 

(graphite) 5103 715 Li 1603 136 Sm 2173 165 

Ca 1760 153 Lu 3603 414 Sn 2543 290 
Cd 1038 100 Mg 1383 132 Sr 1653 141 
Ce 3743 398 Mn 2373 225 Ta 5693 753 
Cl 238.5 20.4 Mo 5833 536 Tb 3073 293 
Co 3173 390 N 77.15 5.58 Te 1263 49.8 
Cr 2755 347 Na 1163 101 Ti 3533 427 
Cs 963.2 66.1 Nb 3573 694 Tl 1733 162 
Cu 2868 305 Nd 3303 289 Tm 2003 247 
Dy 2873 280 Ne 27.15 1.80 V 3273 444 
Er 3173 280 Ni 3003 379 W 6203 774 
Eu 1713 176 O 90.15 6.82 Xe 165.2 12.6 
F 85.15 6.32 Os 5273 678 Y 3203 390 
Fe 3273 354 P (white) 553.2 12.4 Yb 1703 159 
Ga 2673 256 Pb 2017 177 Zn 1180 115 
Gd 3273 301 Pd 4253 380 Zr 3853 502 
Ge 3103 330 Pr 3403 331    
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         (a)      (b) 

Figure 4.1.1 Prediction of a) enthalpy of vaporization from boiling point; b) 

boiling point from enthalpy of vaporization; using data from CDH , LHC and 

ELE. 
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Table 4.1.2 List of boiling points from five handbooks (acronyms as in text). 

Dataset does not have exclusions based on judgement. The elements are sorted in 

ascending (Max.-Min.)/Min. 

Elements CDH LAG& ELE TPC CRC (Max-Min)/Min 
SeI 958.2 958.2 958.1 958.2 958.2 0.01% 

O 90.15 90.15 90.19 90.19 90.2 0.06% 

S (monoclinic)I 718.2 718.2 717.8 717.8 717.8 0.06% 

Hg 630.2 630.2 629.7 629.8 629.9 0.08% 

I (I2)I 457.2 457.2 457.5 457.2 457.6 0.09% 

Ge 3103 3103 3103 3103 3106 0.10% 
Br 331.7 332 331.9 332.1 332 0.12% 

TeI 1263 1263 1263 1263 1261 0.16% 

F 85.15 85.15 85.01 85.05 85.03 0.16% 
Ca 1760 1760 1757 1757 1757 0.17% 
Ar 87.15 87.15 87.29 87.29 87.3 0.17% 
Rb 961.2 961.2 961 963.2 961.2 0.23% 
Sr 1653 1653 1657 1653 1655 0.24% 
Zn 1180 1180 1180 1183 1180 0.25% 
Cl 238.5 238.5 239.2 239.2 239.1 0.29% 
Ne 27.15 27.15 27.1 27.07 27.07 0.30% 
N 77.15 77.15 77.4 77.35 77.36 0.32% 
La 3743 3743 3730 3733 3737 0.35% 
Cd 1038 1038 1038 1043 1040 0.48% 
Pb 2017 2017 2013 2023 2022 0.50% 
OsI 5273 5273 5300 5273 5285 0.51% 
ReI 5903 5903 5900 5873 5869 0.58% 

P (White)I 553.2 553.2 553 550.2 553.7 0.64% 
Xe 165.2 165.2 166.1 165.1 165 0.67% 
Ti 3533 3533 3560 3563 3560 0.85% 

NaI 1163 1163 1156 1153 1156 0.87% 
Tl 1733 1733 1730 1743 1746 0.92% 
Li 1603 1603 1620 1613 1615 1.06% 

KrI 121.2 121.2 120.9 120 119.9 1.08% 
Cu 2868 2868 2840 2833 2835 1.24% 
Er 3173 3173 3136 3133 3141 1.28% 
Nd 3303 3303 3341 3343 3347 1.33% 
CeI 3743 3743 3699 3693 3716 1.35% 
Dy 2873 2873 2835 2833 2840 1.41% 
K 1047 1047 1047 1033 1032 1.45% 

As (grey)** 886.2 886.2 889 883.2 876.2 1.46% 
Mg 1383 1383 1363 1363 1363 1.47% 
Co 3173 3173 3143 3203 3200 1.91% 
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AlI 2743 2743 2740 2793 2792 1.93% 
Lu 3603 3603 3668 3663 3675 2.00% 
Cs 963.2 963.2 951.6 943.2 944.2 2.12% 
AgI 2483 2483 2485 2433 2435 2.14% 
Ta 5693 5693 5698 5833 5731 2.46% 
BiI 1833 1833 1883 1833 1837 2.73% 
HoI 2873 2873 2968 2973 2973 3.48% 
In 2273 2273 2353 2343 2345 3.52% 
Sc 3003 3003 3104 3103 3109 3.53% 
H 21.15 21.15 20.28 20.28 20.28 4.29% 
Au 3243 3243 3080 3123 3129 5.29% 
He 4.15 4.15 4.216 4.37 4.22 5.30% 
SmI 2173 2173 2064 2063 2067 5.33% 
Mn 2373 2373 2235 2333 2334 6.17% 
W 6203 6203 5930 5823 5828 6.53% 
Cr 2755 2755 2945 2943 2944 6.90% 
Ga 2673 2673 2676 2473 2477 8.21% 
Fe 3273 3273 3023 3133 3134 8.27% 
Gd 3273 3273 3539 3533 3546 8.34% 
Ni& 3003 3003 3005 3263 3186 8.66% 
BI 4203 4203 3931 4273 4273 8.70% 
Eu 1713 1713 1870 1873 1802 9.34% 

TmII 2003 2003 2220 2223 2223 11.0 % 
PrII 3403 3403 3785 3783 3793 11.5% 
VII 3273 3273 3650 3673 3680 12.4% 
YII 3203 3203 3611 3613 3618 13.0% 
SnII 2543 2543 2543 2893 2875 13.8% 
BaII 1913 1913 1910 2173 2170 13.8% 
TbIII 3073 3073 3396 3493 3503 14.0 % 
SbIII 1653 1653 1908 1860 1860 15.4% 
YbII 1703 1703 1466 1473 1469 16.2% 
HfIII 5673 5673 5470 4873 4876 16.4% 

Pt  & 4803 4803 4100 4093 4098 17.4% 
BeII 2750 2750 3243* 2743 2744 18.2% 

MoIII 5833 5833 4885 4913 4912 19.4% 
RhII 4773 4773 4000 3973 3968 20.3% 
ZrIII 3853 3853 4650 4673 4682 21.5% 
Ru 5173 5173 4173 4423 4423 24.0 % 

C (Graphite)II 5103 5103 5100** - 4098** 24.5% 
IrIII 5573 5573 4403 4703 4701 26.6% 
PdII 4253 4253 3413 3233 3236 31.6% 
SiIII 2633 2633 2628 3533 3538 34.6% 
NbII 3573 3573 5015 4973 5017 40.4% 
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*  Under pressure 

**  Sublimation 

&  the boiling point is different in different tables of LAG. For example, Nickel (Ni) is 

2884C in Page 1.43 (Table 1.3) and 2730C in page 1.125 (Table 1.19). We selected 

most of the boiling points from the later table.  

  The variation of boiling points of Pt and Ru are greater than 10% but here due to 

shortage of data in range of 3603.15 to 5693.15 K in Category IV, they were classified 

into Category IV by identifying the closest value from the literature to reduce the 

uncertainty in that range (Arblaster, 2005; 2007). 

I. Category I: The data of boiling point for these elements are consistent in different 

handbooks but that of enthalpy of vaporization are not. 

II. Category II: The data of enthalpy of vaporization for these elements are consistent in 

different handbooks but that of boiling point are not. 

III. Category III: The data of neither boiling point nor enthalpy of vaporization for these 

 elements are consistent in different handbooks 
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Table 4.1.3 List of enthalpies of vaporization from five handbooks (acronyms 

as in text). Dataset does not have exclusions based on judgement. The elements 

are sorted in ascending (Max.-Min.)/Min. 

Elements CDH LAG ELE TPC CRC (Max-Min)/Min 

TmII - 247 247 - - 0.00% 
YbII - 159 159 - - 0.00% 

O 6.82 6.82 6.82 6.82 6.82 0.00% 

Eu - 176 176 176 - 0.00% 
Cl 20.4 20.4 20.4 20.4 20.4 0.00% 

Cd 100 99.9 99.9 99.9 99.9 0.10% 
N 5.58 5.57 5.58 5.59 5.57 0.36% 

La 400 402 400 400 - 0.50% 
C (Graphite)II 715 - 711 - - 0.56% 

PrII - 331 333 333 - 0.60% 
Ga 256 254 256 256 254 0.79% 

Xe 12.6 12.6 12.7 12.6 12.6 0.79% 
Ti 427 425 429 425 - 0.94% 

NbII 694 690 697 690 - 1.01% 
Ge 330 334 334 334 334 1.21% 

Br 30 30 30 29.6 30 1.35% 
Ar 6.53 6.43 6.53 6.52 6.43 1.56% 

As (grey) 32.4 - 31.9 - - 1.57% 

Cu 305 300 305 301 - 1.67% 
Pb 177 180 179 178 180 1.69% 

Hg 58.2 59.1 59.2 59.1 59.1 1.72% 
Nd - 289 284 284 - 1.76% 

Tl 162 165 162 162 - 1.85% 
Ni 379 378 372 378 - 1.88% 

SnII 290 296 290 290 - 2.07% 
H 0.9 - 0.92 0.9 0.9 2.22% 

Mn 225 221 220 220 - 2.27% 
Cr 347 340 349 340 - 2.65% 

Ta 753 733 753 737 - 2.73% 
K 79.1 76.9 77.5 76.9 - 2.86% 
Sr 141 137 139 137 - 2.92% 
In 225 232 226 226 - 3.11% 

Mg 132 128 129 128 - 3.13% 

Ca 153 155 150 155 - 3.33% 
VII 444 459 459 447 - 3.38% 
Lu - 414 428 - - 3.38% 

Gd - 301.3 311.7 311.7 - 3.45% 
BeII 309 297 309 298 - 4.04% 
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Fe 354 340 351 350 - 4.12% 
W 774 807 799 806 - 4.26% 

Co 390 377 382 373 - 4.56% 
Er - 280 293 293 - 4.64% 

Dy - 280 293 - - 4.64% 
F 6.32 6.62 6.55 6.54 6.62 4.75% 

He 0.084 0.083 0.082 0.08 0.08 5.00% 
Ne 1.8 1.71 1.74 1.77 1.71 5.26% 

Au 342 324 324 324 324 5.56% 
Cs 66.1 63.9 65.9 67.8 - 6.10% 

RhII 531 494 495 495 - 7.49% 
YII 390 365 393 393 - 7.67% 

Zn 115 124 115 115 - 7.83% 
BaII 149 140 151 140 140 7.86% 

PdII 380 362 393 393 - 8.56% 
Li 136 147 135 147 - 8.89% 

Pt 510 469 511 511 - 8.96% 
Ru 619 592 568 568 - 8.98% 

Sc 310 333 305 305 - 9.18% 
Rb 69 75.8 69.2 69.2 - 9.86% 

KrI 10 9.08 9.05 9.03 9.08 10.7% 
ReI 636 704 707 707 - 11.2% 
BI 540 480 539 508 480 12.5% 

NaI 101 97.4 89 97.4 - 13.5% 
MoIII 536 617 594 590 - 15.1% 

HfIII 648 571 661 661 - 15.8% 
SmI - 165 192 192 - 16.4% 

OsI 678 738 628 628 - 17.5% 
ZrIII 502 573 582 591 - 17.7% 

BiI 179 151 179 187 151 23.8% 
CeI - 398 314 314 - 26.8% 

SiIII 300 359 383 359 - 27.7% 
TbIII - 293 391 - - 33.5% 

I (I2)I 22 41.6 41.7 41.9 41.6 90.5% 
TeI 49.8 114 50.6 50.6 114 129% 

IrIII 636 232 564 564 - 174% 
SbIII 195 193 67.9 67.9 - 187% 

HoI - 71 251 251 - 254% 
P (White)I 12.4 12.4 51.9 - 12.4 319% 

S (monoclinic)I 10 45 9.62 - 45 368% 
SeI 14 95.5 26.3 26.3 95.5 582% 

AlI 284 294 294 29.1 294 910% 
AgI 254 258 255 25.5 - 912% 
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I. Category I: The data for boiling point for these elements are consistent in different 

handbooks but those for enthalpy of vaporization are not. 

II. Category II: The data for enthalpy of vaporization for these elements are consistent in 

different handbooks but those of boiling point are not. 

III. Category III: The data for neither boiling point nor enthalpy of vaporization for these 

 elements are consistent in different handbooks 

 

Stage 2: This involves the selection of a conformity criterion. Remarkably, there 

were 21 elements having inconsistent boiling point at the 10% level or above; 

and 23 elements having inconsistent enthalpy of vaporization at the 10% level or 

above in these five handbooks. These are not trivial numbers in only 82 elements 

inspected and this is far above Chapman’s 1-5% field error rate (Chapman, 

2005). Elements were then classified into four categories on the basis of a 10% 

variation between minimum and maximum values (a full list of categories is in 

Table 4.1.4 – 4.1.7):  

 

I) boiling points of the elements are consistent but enthalpy of vaporization 

are inconsistent; 

 

II) enthalpy of vaporization are consistent but boiling points are inconsistent; 

 

III) both boiling point and enthalpy of vaporization are inconsistent and; 

 

IV) both boiling point and enthalpy of vaporization are consistent. 

 

Consistency across the five handbooks does not imply accuracy (all could have 

been copied from the same incorrect source) but the ANN may still detect a 

deviation from the correlation line. 
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Table 4.1.4 List of Category I elements: boiling points of the elements are 

consistent but enthalpy of vaporization are inconsistent. 
Enthalpy of vaporization /kJ mol-1  Elements Boiling point 

/K CDH LAG ELE TPC CRC (Max-Min)/Min 
Ag 2483 254 258 255 25.5 - 912% 
Al 2743 284 294 294 29.1 294 910% 
B 4203 540 480 539 508 480 12.5% 
Bi 1833 179 151 179 187 151 23.8% 
Ce 3743 - 398 314 314 - 26.8% 
Ho 2873 - 71 251 251 - 254% 

I (I2) 457.2 22 41.6 41.7 41.9 41.6 90.5% 
Kr 121.2 10 9.08 9.05 9.03 9.08 10.7% 
Na 1163 101 97.4 89 97.4 - 13.5% 
Os 5273 678 738 628 628 - 17.5% 

P (white) 553.2 12.4 12.4 51.9 - 12.4 319% 
Re 5903 636 704 707 707 - 11.2% 
S 718.2 10 45 9.62 - 45 368% 
Se 958.2 14 95.5 26.3 26.3 95.5 582% 
Sm 2173 - 165 192 192 - 16.4% 
Te 1263 49.8 114 50.6 50.6 114 129% 

Average       231% 
 

 

Table 4.1.5 List of Category II elements: enthalpies of vaporization are 

consistent but boiling points are inconsistent. 

 

Boiling point /K  
Elements 

Enthalpy of 
vaporization 

/kJ mol-1 CDH LAG ELE TPC CRC (Max-
Min)/Min 

Ba 149 1913 1913 1910 2173 2170 13.8% 
Be 309 2750 2750 3243 2743 2744 18.2% 
C 

(graphite) 715 5103 5103 5100 - 4098 24.5% 

Nb 694 3573 3573 5015 4973 5017 40.4% 
Pd 380 4253 4253 3413 3233 3236 31.6% 
Pr 331 3403 3403 3785 3783 3793 11.5% 
Rh 531 4773 4773 4000 3973 3968 20.3% 
Sn 290 2543 2543 2543 2893 2875 13.8% 
Tm 247 2003 2003 2220 2223 2223 11.0% 
V 444 3273 3273 3650 3673 3680 12.4% 
Y 390 3203 3203 3611 3613 3618 13.0% 

Yb 159 1703 1703 1466 1473 1469 16.2% 
Average       18.9% 
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Table 4.1.6 List of Category III elements: both boiling point and enthalpy of vaporization are inconsistent. 
Boiling point /K Enthalpy of vaporization  /kJ mol-1 Elements CDH LAG ELE TPC CRC CDH LAG ELE TPC CRC 

Tb 3073 3073 3396 3493 3503 - 293 391 - - 
Hf 5673 5673 5470 4873 4876 648 571 661 661 - 
Ir 5573 5573 4403 4703 4701 636 232 564 564 - 

Mo 5833 5833 4885 4913 4912 536 617 594 590 - 
Sb 1653 1653 1908 1860 1860 195 193 67.9 67.9 - 
Si 2633 2633 2628 3533 3538 300 359 383 359 - 
Zr 3853 3853 4650 4673 4682 502 573 582 591 - 
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Table 4.1.7 List of Category IV elements: both boiling point and enthalpy of 

vaporization are consistent. 

Elements 
Boiling 
point 

/K 

Enthalpy of 
vaporization 

/kJ mol-1 
Elements 

Boiling 
point 

/K 

Enthalpy of 
vaporization 

/kJ mol-1 
Ar 87.15 6.53 K 1047 79.1 
As 886.2 32.4 La 3743 400 
Au 3243 342 Li 1603 136 
Br 331.7 30.0 Lu 3603 414 
Ca 1760 153 Mg 1383 132 
Cd 1038 100 Mn 2373 225 
Cl 238.5 20.4 N 77.15 5.58 
Co 3173 390 Nd 3303 289 
Cr 2755 347 Ne 27.15 1.90 
Cs 963.2 66.1 Ni 3003 379 
Cu 2868 305 O 90.15 6.82 
Dy 2873 280 Pb 2017 177 
Er 3173 280 Pt 4100 510 
Eu 1713 176 Rb 961.2 69.0 
F 85.15 6.32 Ru 4423 619 
Fe 3273 354 Sc 3003 310 
Ga 2673 256 Sr 1653 141 
Gd 3273 301 Ta 5693 753 
Ge 3103 330 Ti 3533 427 
H 21.15 0.90 Tl 1733 162 
He 4.15 0.0840 W 6203 774 
Hg 630.2 58.2 Xe 165.2 12.6 
In 2273 225 Zn 1180 115 

 

Stage 3: This uses the data falling into Category IV to train a second set of ANNs. 

ANN1 is used to predict enthalpy of vaporization; ANN2 is used to predict 

boiling point. The constructions for these two ANNs are given in Table 4.1.8 and 

4.1.9 and it is supposed that these to have been trained on “consistent” data 

providing a robust correlation against which the consistency of other data can be 

judged. The performance of the ANNs (ANN1 and ANN2) using consistent data 

is improved dramatically. The general correlation performance has been 

increased and the values of M and R are greater being M=0.990, R=0.994 and 

M=0.993, R=0.995 (Figure 4.1.2), which is greater than the case in Figure 4.1.1 

which are M=0.96, R=0.973 and M=0.953, R=0.972.  
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Table 4.1.8 The weights and biases of the network ANN1. 

 

 

 

 

 

 

 

 

 
Weights Biases Weights Biases 

w1,1 0.232 b1,1 0.0228 w2,1 0.2376 b2,1 0.1465 
w1,2 0.232 b1,2 0.0228 w2,2 0.2376   
w1,3 -0.9475 b1,3 0.3703 w2,3 -0.9277   
w1,4 0.232 b1,4 0.0228 w2,4 0.2376   
w1,5 -0.232 b1,5 -0.0228 w2,5 -0.2376   
w1,6 -0.232 b1,6 -0.0228 w2,6 -0.2376   
w1,7 -0.232 b1,7 -0.0228 w2,7 -0.2376   
w1,8 -0.232 b1,8 -0.0228 w2,8 -0.2376   

 

 

Table 4.1.9 The weights and biases of the network ANN2. 

 

 

 

 

 

 

 

 

 

Weights Biases Weights Biases 
w1,1 0.9919 b1,1 -0.9737 w2,1 1.2827 b2,1 -0.0252 
w1,2 0.3945 b1,2 -0.0551 w2,2 0.5929   
w1,3 -0.3945 b1,3 0.0551 w2,3 -0.5929   
w1,4 4.6083 b1,4 -0.162 w2,4 1.2808   
w1,5 2.1463 b1,5 0.2939 w2,5 -1.8117   
w1,6 2.1463 b1,6 0.2939 w2,6 -1.8117   
w1,7 4.4243 b1,7 1.5236 w2,7 1.2084   
w1,8 0.3945 b1,8 -0.0551 w2,8 0.5929   
w1,9 -1.2974 b1,9 -1.3249 w2,9 -1.4823   
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                              (a)                                                                (b) 

Figure 4.1.2 Prediction of a) enthalpy of vaporization from boiling point; b) 

boiling point from enthalpy of vaporization; using “consistent” data.  

 

Stage 4: The consistent values are used to identify inconsistent data. First, the 

robust ANN1 predicts the enthalpies of vaporization of elements in Category I 

using their consistent boiling point as inputs. The outputs are compared with the 

handbook data to isolate suspect enthalpy of vaporization data. After this, most 

of the differences between the predicted and the closest recorded values of 

enthalpy of vaporization are less than 10%. The average error for enthalpy of 

vaporization in Category I decreased from 231% (Table 4.1.4) to 8.8% (Table 

4.1.10). 

 

The second part of stage 4 is to use consistent enthalpies of vaporization as input 

values for ANN2 to predict boiling points of elements in Category II, which are 

then used to isolate the suspect boiling point data in that set. Predicted and 

closest recorded values of boiling points for most of the samples now differ by 

less than 10% (Table 4.1.11). The average error of boiling point in Category II 

decreased from 18.9% (Table 4.1.5) to 6.43% (Table 4.1.11).  So among a set of 

inconsistent data, the ANN is able to find which are the most likely to be correct. 

Indeed, the predicted value might even be more accurate in the case of 

experimentally difficult measurements but the ethics of data correction preclude 

its use. 
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Table 4.1.10 List of Category I elements with predicted and selected correct 

values of enthalpy of vaporization and difference percentage. 

Elements Boiling point 
/K 

Predicted enthalpy 
of vaporization 

/kJ.mol-1 

Selected enthalpy of 
vaporization 

/kJ.mol-1 
Difference percentage 

Na 1163 97.6 97.4 0.21% 
Al 2743 281 284 1.06% 
B 4203 499 508 1.77% 
Os 5273 664 678 2.06% 
Kr 121.2 8.8 9.03 2.55% 
Ag 2483 246 254 3.15% 
Te 1263 107 114 6.14% 
Bi 1833 168 179 6.15% 
Re 5903 752 707 6.36% 
Ce 3743 427 398 7.29% 
Sm 2173 207 192 7.81% 
I2 457.2 35.1 41.6 15.6% 

P (white) 553.2 43 51.9 17.2% 
Se 958.2 78.4 95.5 17.9% 
Ho 2873 299 251 19.1% 
S 718.2 57 45 26.7% 

Average    8.81% 
 

 

 

Table 4.1.11 List of Category II elements with predicted and selected correct 

values of boiling point and difference percentage. 

Elements 
Enthalpy of 
vaporization 

/kJ mol-1 

Predicted boiling 
point 

/K 

Selected boiling point 
/K Difference percentage 

Pd 380 3221 3233 0.37% 
Nb 694 5078 5017 1.22% 
Yb 159 1671 1703 1.88% 
Rh 531 4137 4000 3.43% 
Y 390 3317 3203 3.56% 
C 

(graphite) 715 5326 5103 4.37% 

Be 309 3100 3243 4.41% 
Sn 290 3060 2893 5.77% 
V 444 3939 3680 7.04% 
Pr 331 3081 3403 9.46% 
Ba 149 1600 1910 16.2% 
Tm 247 2655 2223 19.4% 

Average    6.43% 
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The data in Category III are treated as follows. It is supposed that if one of the 

inconsistent values in one property is correct, it might be used to predict a value 

close to one of the inconsistent values in the other property. For example, for Si, 

it has a very wide range of handbook boiling points of 2633 K, 2628 K, 3533 K 

and 3538 K and handbook enthalpies of vaporization of 300, 359 and 383 kJ/mol. 

So its possible boiling points were predicted using all three enthalpies of 

vaporization and ANN2 obtaining 3091K, 3096 K, and 3250 K respectively. The 

differences of predicted boiling points with handbook data can be calculated (12 

different combinations). The minimum difference is 8 % between 3533 K 

(handbook) and 3250 K (predicted from enthalpy of vaporization 383 kJ/mol). So 

a possible pair is obtained: 3533 K and 383 kJ/mol. Then the ANN1 was used to 

predict possible enthalpies of vaporization using four handbook boiling points, 

giving another 12 combinations. The minimum difference corresponds to the pair 

3533 K and 383 kJ/mol again (predicted enthalpy of vaporization 395 kJ/mol 

gives a 3% difference with 383 kJ/mol). This points to the correct boiling point 

of Si as 3533 K and enthalpy of vaporization, 383 kJ/mol. 

 

The case of silicon may have been lucky – the same pair was obtained in both 

prediction directions and identification is easily. In some cases the pairs are 

different in different prediction directions. For iridium, the two pairs are 4701 K 

and 564 kJ/mol, and 4403 K and 636 kJ/mol. In the first pair, the predicted 

enthalpy of vaporization is 577 kJ/mol (2.4% difference from 564 kJ/mol) 

predicted from 4701 K. But in the reverse direction, the prediction of boiling 

point from 564 kJ/mol is 4158 K, which has 12% difference with 4701 K. In the 

second pair, the predicted boiling point 4510 K has the smallest difference with 

4403 K (2.4%), but in the reverse direction, the difference is 16.6%. It is difficult 

to point out which pair is more favourable and it looks as though a lengthy 

indagation of the original sources is inevitable; a quest made problematic 

because many handbooks are now silent about sources. There is however one 

other trick that sometimes works. 

 

In such cases, a comprehensive minimum of difference can be calculated. For the 

general situation, m boiling points Boi (i=1,2…m), and n enthalpies of 

vaporization Hoj (j=1,2…n) from handbooks are available. The ANN will predict 
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n boiling point Bpj (j=1,2…n) from those n enthalpy of vaporization, and predict 

m enthalpy of vaporization Hpi (i=1,2…m) from m boiling point. The percentage 

errors of boiling point prediction, X={xij}, where 
oi

pj
ij B

B
x  1 , i=1,2…m, 

j=1,2…n, and the percentage errors of enthalpy of vaporization prediction, 

Y={yij}, where 
oj

pi
ij H

H
y  1 , i=1,2…m, j=1,2…n. 

 

The comprehensive error of the pair is 22 )()( ijijijijij yxyxe  . The pair 

corresponding to the minimum eij is treated as the correct pair. In this way, two 

criteria are considered. The sum of the differences (xij+yij) should be as small as 

possible to assess overall performance. Secondly the margin (xij-yij) should be 

minimised to compromise. The parameter eij is used to select the correct pair. In 

a few cases, there may be several similar minima and it is likely that resort must 

be made to an original literature search (Results are shown in Table 4.1.12). 

 

Further inspection of data showed that although the pairs are different in different 

prediction directions, this difference is often very small. For example, Tb has two 

pairs 391 kJ/mol and 3396 K, and 391 kJ/mol and 3493 K. Actually the 

difference between 3396 K and 3493 K is very small and the two pairs are really 

just one. 

 

Finally, an ANN was trained with the “consistent” values inserted and the result 

is shown in Figure 4.1.3, the statistics are given in the third and fourth row of 

Table 4.1.13. The general correlation performance has been increased and the 

values of M and R are greater being M=0.99, R=0.994 and M=0.993, R=0.995 

(for forward and backward predictions respectively) than the case in Figure 4.1.1 

which are M=0.96, R=0.973 and M=0.963, R=0.972, and the statistics are shown 

in the first and second row of Table 4.1.13. 
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Table 4.1.12 List of Category III elements with predicted and selected correct values and difference percentage (only the corrected pairs are 

shown). 

Elements 
Predicted enthalpy of 

vaporization 
/kJ mol-1 

Selected enthalpy of 
vaporization 

/kJ mol-1 

Difference 
percentage 

Predicted boiling 
point 

/K 

Selected boiling 
point 

/K 

Difference 
percentage 

Hf 604 648 6.79% 4610 4876 5.46% 
Ir 530 564 6.03% 4158 4403 5.56% 

Mo 605 617 1.94% 4375 4885 10.4% 
Sb 176 193 8.81% 1968 1908 3.14% 
Si 395 383 3.13% 3250 3533 8.01% 
Tb 374 391 4.35% 3328 3396 2.00% 
Zr 569 591 3.72% 4236 4650 8.90% 

 

 

Table 4.1.13 Statistical analysis for ANN performance in Figures 4.1.1, Figure 4.1.3 and Figure 4.1.5. 
Test set Whole set 

Conditions 
(Figures) M R 

Mean of 
error 

modulus 

SD of 
error 

modulus 

Mean of 
percentage 

error modulus 
/% 

SD of 
percentage 

error modulus 
/% 

M R 
Mean of 

error 
modulus 

SD of 
error 

modulus 

Mean of 
percentage 

error modulus 
/% 

SD of 
percentage 

error modulus 
/% 

4.1.1(a) 0.991 0.943 38.1  
kJ mol-1 

44.1  
/kJ mol-1 35.4 57.2 0.96 0.973 32.4  

kJ mol-1 
36.9 

kJ mol-1 114 720 

4.1.1 (b) 0.982 0.954 409 K 354 /K 36.9 64.1 0.963 0.972 269 K 284 K 45.9 139 

4.1.3 (a) 0.986 0.995 18.1  
kJ mol-1 

14.8  
/kJ mol-1 10.1 6.38 0.99 0.994 16.7  

kJ mol-1 
15.7  

kJ mol-1 48.5 308 

4.1.3(b) 1 0.986 196 K 167 /K 35.9 109 0.993 0.995 119 K 108 K 14.7 50.5 

4.1.5 (a) 0.974 0.94 55.0  
kJ mol-1 

65.4  
/kJ mol-1 48.4 121 0.944 0.964 35.3  

kJ mol-1 
42.7  

kJ mol-1 202 1342 

4.1.5 (b) 0.99 0.956 294 K 368 /K 74.1 201 0.964 0.974 231 K 278 K 30.0 98.8 
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4.3 Discussion 

4.3.1 Comparisons of ANN Curves 

In this work, error detection and correction is based on the binary correlation 

between properties, so it is possible to interpret the results visually by drawing a 

2-D diagram. The interpretation is shown in Figure 4.1.4, which is constructed as 

follows: 

 

1. The boiling point is placed on the abscissa and enthalpy of vaporization 

on the ordinate for both ANNs.  

2. The data in Category IV are plotted directly and are shown as blue dots. 

For these data, the boiling point values are within the range 0 K –7000 K; 

while the enthalpy of vaporization values are within the range 0 kJ mol-1– 

800 kJ mol-1. 

3. The ANN1 was fed with artificial boiling point data from 0 to 7000 

(taking 1 as interval) to predict corresponding enthalpy of vaporization. 

Those data were used to draw a complete curve 1.  This curve is shown as 

the green dot-dash line. 

4. Similarly, the ANN2 was fed with artificial enthalpy of vaporization 

prediction from 0 to 800 (taking 0.02 as interval) to predict the 

corresponding boiling point. These data were used to draw curve 2. This 

curve is shown as a red solid line. 

5. The data in Category IV have up to 10% variation between minimum and 

 maximum values so it is reasonable to put ±10% bounds for each curve to 

 show the uncertainty of the prediction. For curve 1, the enthalpy of 

 vaporization was multiplied by 110% and 90%, and for curve 2, the 

 boiling point was multiplied by 110% and 90%. The boundaries are 

 shown as green or red dotted lines. 
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        (a)         (b)   

Figure 4.1.3 Prediction of a) enthalpy of vaporization from boiling point; b) 

boiling point from enthalpy of vaporization; using “consistent” data. 
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Figure 4.1.4 Neural network fitting curves with ±10% boundaries for both 

boiling point and enthalpy of vaporization prediction of the Category IV dataset. 

 

In Figure 4.1.4, almost all the elements in Category IV are located within the 

acceptable zone, which indicates the trained neural networks capture the 

correlation that exists between boiling point and enthalpy of vaporization for 
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Category IV elements. This enhanced the confidence in using the trained network 

derived from stage 3 to identify inconsistent data in stage 4. 

 

If the ideal equation between enthalpy of vaporization and boiling point was 

found by the ANN then curves 1 and 2 should be identical. However, curves 1 

and 2 are different in shape and this means the neural networks found two 

different equations to represent the correlation between boiling point and 

enthalpy of vaporization. The reasons for that could be a) noise from the data; b) 

other unknown properties influence enthalpy of vaporization and/or boiling point. 

As a result, the neural network cannot find an exact function but a correlation. It 

minimizes the estimate uncertainty of one quantity, when given a value for the 

other.  The uncertainty makes the two curves different. 

 

Although the ANN found that curve 1 is the best prediction for enthalpy of 

vaporization, it is interesting to test whether curve 2 performs better on the 

prediction of enthalpy of vaporization; and vice versa. Here, the sum of the 

squared residuals (SSE) in both boiling point and enthalpy of vaporization for 

each curve were used as a criterion, which is the same criterion used in 

regression analysis. When curve 1 is used to predict the enthalpy of vaporization, 

the sum of the squares of discrepancies is 3.75×104 kJ2 mol-2, and when curve 2 

is used to do the same prediction, the value is 5.75×104 kJ2 mol-2. Similar, when 

the curve 2 is used to predict the boiling point, the value is 1.02×106 K2 and 

when curve 1 is used, the value is 1.99×106 K2.  

 

From comparison of these values, it can be found that for enthalpy of 

vaporization, the SSE calculated from curve 1 is smaller, but not significantly so, 

than the value calculated from curve 2; and for boiling point, the SSE calculated 

from curve 2 is smaller, but not significantly so, than the value calculated from 

curve 1. As the result, it can be said curve 1 is better for predicting the enthalpy 

of vaporization, and curve 2 is better for predicting the boiling point, and the 

neural network found the right one for each. Also, from the comparison made 

above, the difference in each case is not great, which suggests both of the fitting 

curves are sensible. 
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To illustrate the relationship between the curve and the inconsistent data, the data 

of some elements were drawn in Figure 4.1.4. Clearly, the correct values should 

be the points close to the curves. 

 

4.3.2 Measurement Methods for Boiling Points and Enthalpy of 

 Vaporization 

It is important to remember that these two properties are not directly related. 

They are based on the Clausius-Clapeyron equation: that is 

vvp

v

v

vvp

ZPRT
H

VT
H

dT
dP









)/( 2 , which in its integrated form gives, 







 

RT
HiP v

vp exp . The boiling point is the temperature at which Pvp reaches 

ambient but the pre-exponential coefficient is not included in the ANN making 

the relationship indirect. 

 

Boiling point is the temperature at which the vapour pressure of a liquid is equal 

to the external pressure; and when the external pressure equals 1 atmosphere, the 

boiling point is called the normal boiling point, which is the meaning in this 

work. 

 

The enthalpy of vaporization of materials is not a property which can be 

measured directly as can boiling point. In Poling et al.’s book (2000), three 

categories of method to estimate the enthalpy of vaporization are summarised: 1) 

Based on the Clausius-Clapeyron equation 
vvp

v

v

vvp

ZPRT
H

VT
H

dT
dP









)/( 2 , 

dT
dPvp  

is found from a vapour-pressure temperature correlation, and then vH  can be 

obtained after the estimation of vZ , which is the difference in compressibility 

factor of saturated vapour and saturated liquid; 2) Use of the principle of 

corresponding states to make the estimation, such as the equations developed by 

Pitzer et al. (1955), Fish and Lielmezs (1975), Nath (1979), Sivaraman et al. 

(1984), Meyra et al. (2004), Malagoni et al. (2005), Cachadiña and Mulero 

(2007); 3) In the case of estimating vH  from normal boiling point, there are 

some additional techniques available, such as Giacalone’s equation which was 
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first developed in 1951 and with improved accuracy by Fishtine and Klein 

(Poling et al., 2000), the Riedel method (1954), McCurdy and Laidler (1963), 

the Chen method (1965), the Vetere method (1973), and also some others done 

by Fedors (1974), Lawson (1980), Guthrie and Taylor (1983), Hoshino et al. 

(1983), Ma and Zhao (1993), Constantinou and Gani (1994), Tu and Liu (1996). 

 

For most of the correlations in these three categories,  critical constants Tc and Pc 

are required either directly or indirectly. As a result, it is reasonable to say that 

there is a correlation, which is a confounding association, between the boiling 

point and enthalpy of vaporization, although the function is not known exactly. 

This is an example of the situation in which the ANN can be applied. 

 

4.3.3 Original Sources of Property Values 

To verify the method, original sources were consulted where possible 1) to check 

whether the refined values were sensible, 2) to reveal and analyse the origin of 

the differences between handbook data and 3) to find whether the neural network 

can give values closer to the original literature. Representative examples are 

shown below. Some errors are attributable to incorrect unit conversions, some to 

different reference conditions.  

 

Table 4.1.10 indicates that predicted and closest recorded values of enthalpy of 

vaporization for most elements differ by less than 10% after removal of incorrect 

data. The exceptions are I2 (15.5%), P (17.1%), Se (17.9%), Ho (19.0%) and S 

(26.7%). Data for elements I2, P and S depend on the polyatomic nature of these 

molecules and this accounts for the differences as shown in Table 4.1.3 but 

handbooks do not always state how the value is normalised. In these cases, where 

the substances always exist in their molecular forms, the corresponding enthalpy 

of vaporization should be accounted for molecular form. From Table 4.1.10, the 

corrected values are reasonable choices, although the differences are still greater 

than 10%. The detailed investigations of Ho and Se are shown below. These 

results show that the ANNs can predict more reliable data. 
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For holmium (Ho), there are two sources of discrepancy. Original sources for 

stvH , offer 71910 cal mol-1 (Hultgren et al., 1973), 69500 cal mol-1 (White et 

al., 1961), 75040 cal mol-1 (Trulson et al., 1961),  81150 cal mol-1 (Hultgren et 

al., 1973) and 70600 cal mol-1  (Wakefield et al., 1967). Clearly these results 

indicate the enthalpy of vaporization of holmium is around 71 kcal mol-1, 

corresponding to 297 kJ mol-1, rather than the 71 kJ mol-1 recorded in Lange’s 

Handbook of Chemistry and the source of error is transcription of units. Indeed in 

the earlier 12th edition of Lange’s Handbook Chemistry (Dean, 1979), the value 

was 60 kcal mol-1, placing it in the correct range. 

 

The selected handbook value of 251 kJ mol-1 still differs by more than 10% from 

the ANN predicted value of 299 kJ mol-1. The second source of discrepancy is 

the reference temperature. All the above values are corrected to standard 

temperature. However the Category IV values used for training ANNs 1 and 2 

are all referenced to normal boiling point (with the exception of four elements). 

Values for the enthalpy of vaporization of Ho at normal boiling point are 

available: 67 kJ mol-1 corresponding to 280 kJ mol-1 (Daane, 1961) and 64.7 
1molcal   corresponding to 270 kJ mol-1 (Wakefield et al., 1967). These values 

are close to the value predicted by the ANN and this demonstrates the 

remarkable discernment of the ANN in detection of errors and identification of 

true values. 

 

The case of selenium is different. The handbook values are 14, 26.3 and 95.5 kJ 

mol-1 and the ANN predicts 78.4 kJ mol-1 from the well-established boiling point 

of 958 K (as a fixed point in International Temperature Scale) (De Selincourt, 

1940; Brooks, 1952). The source for 95.5 kJ mol-1 can be found (Brooks, 1952), 

in which Brooks used the Bourdon gage method and Clapeyron equation 

T
BAPVP ln , and determined the enthalpy of vaporization for Se at the normal 

boiling point which is 22.02 ± 0.02 kcal/mol and corresponds to 95.48 ± 0.08 

kJ/mol. This is supported by Hutlgren et al. (1973) who gives a value at 625 K 

where, of the eight chemical allotropes for gaseous Se, Se6 predominates 

(Bagnall, 1966). The value of 13.8 kJ mol-1 for atomic Se corresponds to 82.8 kJ 
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mol-1 for Se6 (Hultgren et al., 1973). This may explain the handbook value of 14 

kJ mol-1, if that value be for atomic Se. The handbook value of 26.3 kJ mol-1 

begins to look like a transcription of units error of x4.18 J cal-1. The selected 

value of 95.5 kJ mol-1 still deviates by more than 10% from the ANN predicted 

value 78.4 kJ mol-1. A possible reason for this, as discussed by Bagnall (1966) 

and Reid et al. (1987), is associated with constants in the Clapeyron equation and 

is described in the part 4.3.5. 

 

4.3.4 Comparison with the Method used by Ashby 

The ANN technique was also used to double-check the statistical approach 

(Ashby, 1998; Bassetti et al., 1998) used for CES software (previously 

Cambridge Materials Selector, CMS). The CES data was used to train an ANN 

and it gave correlation coefficients of 0.964 and 0.974 compared with 0.994 and 

0.995 when using the “consistent” data (shown in Figure 4.1.5, and statistical 

analysis as shown in fifth and sixth row of Table 4.1.13). For example, consider 

the enthalpy of vaporization for Se. The value taken from CES Software is 207 

kJ mol-1 but other sources give 14, 26.3 and 95.5 kJ mol-1. The value for enthalpy 

of vaporization for phosphorous (P, white) in CES software is 316 kJ mol-1, 

while the values quoted by Dainton and Kimberley (1950) and other sources is 

12.4 kJ mol-1 for ¼ P4 or 51.9 kJ mol-1 for P4. These are large discrepancies for 

elemental data. 
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         (a)        (b) 

Figure 4.1.5 Prediction of a) enthalpy of vaporization from boiling point; b) 

boiling point from enthalpy of vaporization using dataset all recorded from CES 

2008. 

 

4.3.5 Factors that Affect the Accuracy of the Prediction 

In this part, several factors that affect the accuracy of prediction are discussed. 

1. The determination of the constant after Clausius-Clapeyron integration. 

As mentioned in Reid et al. (1987), it is not easy to trace the origin of many 

experimental enthalpies of vaporization. A few were determined from 

calorimetric measurements, but in a large number of cases the values were 

obtained directly from Clausius-Clapeyron equation
v

vvp

ZR
H

Td
Pd





)/1(

ln
, in which 

the vZ  were determined separately using various techniques, and dTPd vp /)ln(  

was found by numerical differentiation of experimental vapour pressure data or 

by differentiating some Pvp – T correlation analytically. The constants in one 

equation may be optimized for correlating vapour pressures, but it does not 

necessarily follow that these same constants give the best fit for computing 

slopes. For this reason, uncertainty is present in using any analytical vapour 

pressure – temperature equation to obtain accurate values of slopes dTPd vp /)ln( . 

 

2. Enthalpy of vaporization varies with temperature. vH  is always treated 

as a weak function of temperature, and an assumption is made that this value 
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does not vary with temperature (Reid et al., 1987; De Podesta, 2001) during the 

integration of Clausius-Clapeyron equation. However, it is not true for each 

element (Hultgren et al., 1973). For some elements, the variation is narrow, such 

as Ga (from 260 kJ mol-1 at normal boiling point to 273 kJ mol-1 at room 

temperature, 5% difference), Zr (from 58.4 kJ mol-1 at normal boiling point to 

61.3 kJ mol-1 at room temperature, 5.0% difference), W (from 827 kJ mol-1 at 

normal boiling point to 852.6 kJ mol-1 at room temperature, 3.1% difference) and 

others, the variation is wide, and the value of vH  decreases with rising 

temperature, such as Ba (from 142 kJ mol-1 at normal boiling point to 182.7 kJ 

mol-1 at room temperature, 28.7%), Tm (from 191.5 kJ mol-1 at normal boiling 

point to 233 kJ mol-1 at room temperature, 21.7%). The data for enthalpies of 

vaporization are recorded in most of handbooks (such as CDH, LAG, ELE, TPC) 

in a mixed fashion without mention of the temperatures to which the values 

apply. This introduces uncertainties in finding the correlation and reduces the 

accuracy of predictions. After comparing the values in Category IV with the 

values recorded in Selected Values of the Thermodynamic Properties of the 

Elements (Hultgren et al., 1973), which tabulates enthalpies of vaporization over 

a temperature range, it is found that all but four (Dy, Eu, Gd and Lu) are 

recorded at normal boiling points. Thus, Pb (Category IV) for example, has a 

value 175 kJ mol-1 at boiling point and 192 kJ mol-1 at room temperature 

(Hultgren et al., 1973) and so it is infered that 177 kJ mol-1 is enthalpy of 

vaporization at normal boiling point. Thus neural networks (ANN1 and ANN2) 

have found the correlation between normal boiling points and enthalpy of 

vaporization under normal boiling points.   

 

3. The Clausius-Clapeyron equation is not the only equation for estimating 

enthalpies of vaporization. Other methods such as Pitzer’s acentric factor 

correlation, Riedel’s method, Chen’s method and Vetere’s method are also used. 

More accurate estimates may be obtained when specific correlations are 

employed and demand a recourse to original sources (Reid et al., 1987).  

 

These factors mean that differences between predicted and corrected values 

cannot be avoided. The 1st and 3rd factors account for small differences (<10%) 



The Policing and Correction of Handbooks and Databases by ANNs 

 128 

since these just affect the accuracy of the enthalpies of vaporization. The large 

deviations (>10%) may be attributed to the 2nd factor. For Category I, the 

problems of the 2nd factor do not attend the records of boiling point so the 

prediction of enthalpy of vaporization for these elements from the consistent 

boiling point can be treated as reliable. However, the 2nd factor affects 

predictions for the elements in Category II and so enthalpies of vaporization used 

for these elements were rechecked with the values recorded in Selected Values of 

the Thermodynamic Properties of the Elements (Hultgren et al., 1973) and 

another set of predictions based on the enthalpies of vaporization referenced to 

normal boiling point was made. The results are shown in Table 4.1.14. 

 

Table 4.1.14 List of Category II elements with predicted and selected correct 

values of  boiling point and difference percentage (with reference to normal 

boiling point). 

Elements 
Enthalpy of 
vaporization 

/kJ mol-1 

Predicted boiling 
point 

/K 

Selected boiling point 
/K Difference percentage 

Yb 129 1460 1466 0.41% 
Nb 682 4944 4973 0.58% 
Y 363 3111 3203 2.87% 
C 

(graphite) 709 5254 5103 2.96% 

Tm 191 1943 2003 3.00% 
Rh 493 4144 4000 3.60% 
Pd 358 3093 3233 4.33% 
Be 292 3068 3243 5.40% 
Sn 296 3081 2893 6.50% 
V 451 3995 3680 8.56% 
Pr 297 3084 3403 9.37% 
Ba 142 1551 1910 18.8% 

Average    5.53% 
 

From comparison of the results in Table 4.1.11 with Table 4.1.14, it can be seen 

that most of the boiling points are the same, except Yb and Tm. As a result, it is 

interesting to analyse which prediction is more sensible. 

 

For Yb, 159 kJ mol-1 is corresponding to the value recorded under the room 

temperature according to Hultgren et al. on page 564 (Hultgren et al., 1973), 

which gives 129 kJ mol-1 at normal boiling point and 152 kJ mol-1 at room 

temperature. A higher value of enthalpy of vaporization at normal boiling point 

corresponds to a higher value of normal boiling point, so 159 kJ mol-1 was used 
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to predict boiling point giving the higher value of boiling point for Yb. Two 

factors need to be considered: 1) For different elements, those having higher 

normal boiling points always have higher enthalpies of vaporization at the 

normal boiling point; 2) For a given element, the enthalpy of vaporization varies 

inversely with temperature. For Yb, the boiling point is higher than ambient and 

so the enthalpy of vaporization at boiling point is lower than the value at 

ambience. Previously, the enthalpy of vaporization at room temperature was used 

to predict boiling point, and the first factor means the boiling point was over-

estimated. Now the enthalpy of vaporization at normal boiling point is employed 

and the boiling point prediction is correct. Using 129 kJ mol-1, the corresponding 

boiling point is 1460 K, which is closer to 1466 K (within 0.40%), and this value 

is confirmed by the work of Habermann and Daane (Habermann and Daane, 

1964). In their work, the vapour pressures of the rare-earth metals were measured 

by the Knudsen effusion technique using a quartz-fibre microbalance, and then a 

combination of Second and Third Law methods were used to calculate the 

normal boiling point for each rare-earth metal, and for Yb this value is 1466 

(±5)K.  

 

For Tm, 247 kJ mol-1 is the value corresponding to ambient temperature, 

according to Hultgren et al. on page 533 (Hultgren et al., 1973), which gives 

191 kJ mol-1 at normal boiling point and 232 kJ mol-1 at room temperature and is 

greater than the value recorded at  normal boiling point which is about 191 kJ 

mol-1. For similar reasons, 247 kJ mol-1 was used to predict boiling point 

producing a higher value. Using the value of 191 kJ mol-1, it is found the boiling 

point is 1943 K, which is closer to 2003K (within 3.00%), and is consistent with 

the value obtained by Spedding et al. after purifying this element at the Ames 

Laboratory of the U. S. Atomic Energy Commission (Spedding et al., 1957), 

which was 2000 K. 

 

From this analysis, the prediction of boiling point in these cases is more 

justifiable, than before. So it emerges that although there are several factors, 

especially the 2nd, that may mislead the neural network method, when care is 

taken and critical surveys are employed, it turns out to be robust and reliable. 
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4.3.6 The Generality and Limitations of This Method 

Generality 

In a general situation, there may be more than two properties correlated. All that 

is required is sufficient correlation, as established by the ANN, to give 

demarcation between a majority of well correlated data-points and an outlying 

minority. If more than two properties are correlated, a similar procedure can also 

be applied. In the following, the mathematical expressions for use when three 

properties are correlated and given. The situation for more properties is derived 

by analogy with this. 

 

The first step is to find a database of consistent records of all three properties 

(Category I in Table 4.1.15). Those data will be used to train three ANNs (i.e., 

ANN1, the prediction of C using A and B, ANN2, the prediction of B using A 

and C, and ANN3, the prediction of A using B and C). The other records are 

classified into categories 2-8 according to the number of inconsistent properties. 

 

Table 4.1.15 Systematic methodology for error checking in handbooks. 
Categories A B C Methodology 

1 1 1 1 Used to train three ANNs. 
2 1 1 0 
3 1 0 1 
4 0 1 1 

Method 1 

5 0 0 1 
6 0 1 0 
7 1 0 0 

Method 2 

8 0 0 0 Method 3 
 

1 = property records are consistent in different handbooks 

0 = property records are inconsistent in different handbooks 

 

 

The Methods 1, 2 and 3 listed in Table 4.1.15 can be described as follows: 

 

Method 1: Take Category 2 as an example. Inconsistent properties C can be 

predicted directly from properties A and B by using ANN1. 
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Method 2: Take Category 5 as an example. For a general situation, we may have 

l records of property A {A(o)i, i = 1, 2, … l}, m records of property B {B(o)j, j = 1, 

2, … m) from handbooks. 

 

The ANN3 will predict m property A {A(p)j, j = 1, 2, … m} from m property B 

and the correct property C. The percentage errors of property A prediction are 

X={xij}, where xij =  

 io

jp

A
A

1 , i = 1, 2, …l, j = 1, 2, … m. 

 

Similarly, ANN2 will predict l property B {B(p)i, i = 1, 2, … l} from l property A 

and the correct property C. The fractional errors of property B prediction are 

Y={yij}, where yij =  

  jo

ip

B
B

1 , i = 1, 2, …l, j = 1, 2, … m. 

 

The comprehensive error of each pair is 22 )()( ijijijijij yxyxe  . The 

correct properties are the pair which presents minimum eij. 

 

Method 3: Suppose we have l different records of property A {A(o)i, i = 1, 2, … 

l}, m different records of property B {B(o)j, j = 1, 2, … m}, and n different 

records of property C {C(o)k, k = 1, 2, … n} from handbooks. The ANN3 will 

predict m × n records of property A {A(p)jk, j = 1, 2, … m, k = 1, 2, … n} from m 

property B and n property C. The fractional errors of property A prediction are 

X={xijk}, where xijk =  

 io

jkp

A
A

1 , i = 1, 2, …l, j = 1, 2, … m, k = 1, 2, … n. 

 

Similarly, ANN2 will predict l × n records of property B {B(p)ik, i = 1, 2, … l, k = 

1, 2, … n} from l property A and n property C. The fractional errors of property 

B prediction are Y={yijk}, where yijk =  

  jo

ikp

B
B

1 , i = 1, 2, …l, j = 1, 2, … m, k = 

1, 2, … n. 
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Again, ANN1 will predict l × m records of property C {C(p)ij, i = 1, 2, … l, j = 1, 

2, … m} from l property A and m property B. The fractional errors of property C 

prediction are Z={zijk}, where zijk =  

 ko

ijp

C
C

1 , i = 1, 2, …l, j = 1, 2, … m, k = 1, 

2, … n. 

The comprehensive error of each group is  

       2222
ijkijkijkijkijkijkijkijkijkijk zxzyyxzyxe   

 

The combination corresponding to the minimum eijk is the correct combination. 

 

Limitation of this method and improvement  

Although the method developed here is a powerful method, there are still some 

limitations. Error pairs may be difficult to detect if: 

(1) both single source data are wrong but obey the relationship by coincidence, 

then they cannot be detected.  

 

(2) both single source data are wrong but do not obey the relationship, they can 

be detected but we cannot identify which is wrong or if both are wrong 

(Examples are the enthalpy of vaporization of elements of Yb and Tm which 

have been discussed in part 4.3.5) 

 

However, both of those two limitations could be overcome by introducing more 

properties into the correlation, based on an assumption that the probability that 

all data are wrong but still obey the relationship by coincidence is very low. 
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5.0 The Prediction of Structural Stability and Formability of 

 ABO3-type  Perovskite Compounds using Artificial Neural 

 Networks 
 
5.1 Special Experimental Details 

5.1.1 Data Collection 

This part of work is based on the work done by Zhang et al. (2007), the values of 

global instability indices (GII), bond-valence based tolerance factor (tBV), and A-

O and B-O bond distances (dA-O and dB-O) are recorded. These data are taken 

from their supplementary data (Reference: BS5049) and can be accessed from 

the Acta Crystallographica Section B journal site. 

 

5.1.2 Determination of Input and Output Parameters 

This part of work is composed of two different parts: 1) prediction of the global 

instability indices (GII) from bond-valence based tolerance factor (tBV) using 

backpropagation neural network (BPANN); 2) prediction of the perovskite 

formability based on the ideal A-O and B-O bond distances (dA-O and dB-O) bond 

distances using probabilistic neural network (PNN). 

 

In part 1, the bond-valence based tolerance factor (tBV) and global instability 

indices (GII) are input and output of BPANN, respectively; in part 2, the inputs 

are A-O (dA-O) and B-O (dB-O) bond distances, and the output are the formability 

of perovskites. 
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5.2 Results and Discussion 

5.2.1 Prediction of GII from bond tBV 

From the three curves in Figure 1.8.1, it is interesting to see whether there is a 

correlation between GII and tBV, that is, can one of them, say tBV, be used to 

predict the other (GII in this case)? The results of using tBV to predict GII for 

A1+B5+O3 type perovskites, A2+B4+O3 type perovskites and A3+B3+O3 type 

perovskites are shown in Figures 5.2.1(a) to 5.2.1(c) in which the blue circles 

represent the training datasets and the purple stars represent the testing datasets. 

The best linear fit equations and regression coefficients, R, show that they give 

sensible correlations; R=0.999 for Figure 5.2.1(a), R=0.997 for Figure 5.2.1(b) 

and R=0.999 for Figure 5.2.1(c). These three results indicate that correlations 

exist between the tolerance factor (tBV) and global instability index (GII) for each 

subclass of perovskites (i.e., A1+B5+O3, A2+B4+O3, A3+B3+O3). The reasons will 

be discussed later. 

 

It is also interesting to know whether a uniform correlation between the tolerance 

factor (tBV) and global instability index (GII) exists for the whole class of ABO3 

perovskites. In order to address this question, a similar procedure is used to make 

predictions of GII from tBV. The result is shown in Figure 5.2.1(d). By 

comparing the best linear fit equation and regression coefficient, R, in this figure 

(R=0.949) with the results shown in Figure 5.2.1(a-c), it is found that a 

correlation between GII and tBV for all ABO3 perovskites exists, but is not as 

straightforward as those shown for the individual classes. 
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Figure 5.2.1 (a) Prediction of global instability indices (GII) from bond-valence 

based tolerance factors (tBV) for A1+B5+O3. 
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Figure 5.2.1 (b) Prediction of global instability indices (GII) from bond-valence 

based tolerance factors (tBV) for A2+B4+O3. 
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Figure 5.2.1 (c) Prediction of global instability indices (GII) from bond-valence 

based tolerance factors (tBV) for A3+B3+O3. 
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Figure 5.2.1 (d) Prediction of global instability indices (GII) from bond-valence 

based tolerance factors (tBV) for all type of ABO3 perovskite compounds. 
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Now the correlations between the tolerance factor and the overall structural 

stability are explained. The overall structural stability, referred to as the global 

instability index (GII), is determined by comparing the calculated atomic bond-

valence Vi(calc.) and formal valence Vi(OX), as used by Zhang et al. (2007), 
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NdGII
N

i
i               Equation 5.2.1 

where N is the number of atoms in the asymmetric unit, and  

  )()( calciOXii VVd  ,    
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ijcalci sV )(             Equation 5.2.2 

and  

  






 


B
dR

s ijij
ij exp                Equation 5.2.3 

where dij is the cation-anion bond distance; Rij is empirically determined for each 

cation-anion pair based on a large number of well-determined bond distances for 

the cation-anion pair in question, and has been tabulated; and B is an empirically 

determined universal constant with a value of 0.37. 

 

The bond-valence based tolerance factor, tBV, shown in Equation 5.2.4, is 

calculated like the tolerance factor (
)(2 OB

OA

rr
rr


 ), but substituting rA+rO and 

rB+rO with bond distances A-O (dAO) and B-O (dBO) calculated from the bond-

valence model. 

   
BO

AO

d
d
2

 BVt                Equation 5.2.4 

 

From the analysis above, it can be found that both the global instability index 

(GII) and bond-valence tolerance factor (tBV) are calculated fundamentally from 

dij and other parameters, and so there is a common response, as indicated in 

Figure 1.5.1 (b), between GII and tBV. This can explain the results for each ABO3 

type (A1+B5+O3, A2+B4+O3, A3+B3+O3) shown in Figure 5.2.1 (a)-(c); however, for 

the whole range of ABO3-type perovskites, the correlation is rather poor, which 

indicates that there is no unified relationship between tBV and GII for all the 

types of ABO3 perovskite. However, if each GII value in Figure 1.8.1 were 
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normalized by the valence of A-site cations, a unified correlation would emerge. 

The result is shown in Figure 5.2.2. Again, ANN was used to make the prediction 

of GII values from tBV and the valences of A-site cations, and the result is shown 

in Figure 5.2.3. 
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Figure 5.2.2 Global instability indices (GII) normalised by the valences of A-

site cations versus bond-valence based tolerance factors (tBV) for ABO3-type 

perovskite compounds. 

 

5.2.2 Prediction of Perovskite Formation 

Here, a probabilistic neural network (PNN) is used to simulate the work done by 

Zhang et al. (2007) to predict the likelihood zone of perovskite compounds being 

formed, based on the same parameters they used, i.e., ideal A-O and B-O bond 

distances derived from bond-valence model (BVM). The predictions are made 

for each type of perovskite (A1+B5+O3, A2+B4+O3 and A3+B3+O3) and also for all 

ABO3-type perovskites collectively. The results are shown in Figure 5.2.4 (a)-(d). 

 

Figure 5.2.4 (a) shows that six A1+B5+O3 structures are located in the wrong zone 

(six non-perovskites locate in perovskite zone), whereas in Zhang et al.’s (2007) 

work, seven such structures are located in the wrong zone. Similarly, Figure 

5.2.4 (b) shows nine incorrect A2+B4+O3 perovskite assignments, whereas Zhang 
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et al.’s (2007) have seventeen incorrect predictions; and Figure 5.2.4 (c) shows 

five incorrect A3+B3+O3 perovskite assignments where Zhang et al. (2007) shows 

two, but all no non-perovskite assignment. 

 

From these three comparisons, it is found that in the first two cases, the neural 

network performs a bit better in terms of predictive accuracy; however, in Zhang 

et al.’s work (2007), the boundaries for separating perovskite and non-perovskite 

zones are regular, which helped them to point out the conditions that determine 

the formability of ABO3-type perovskite compounds. In the third case, Zhang et 

al. (2007) made all the predictions of non-perovskite structures correct but made 

two incorrect predictions of perovskites, while the neural network makes 

predictions of all perovskites correctly, but makes four false predictions of non-

perovskites. 
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Figure 5.2.3 Prediction for perovskite formability of all ABO3-type compounds 

from tBV and valences of A ions by ANN. 
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Figure 5.2.4 (a) Prediction for perovskite formability of the A1+B5+O3 by ANN. 
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Figure 5.2.4 (b) Prediction for perovskite formability of the A2+B4+O3 by ANN.
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Figure 5.2.4 (c) Prediction for perovskite formability of the A3+B3+O3 by ANN. 
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Figure 5.2.4 (d) Prediction for perovskite formability all type of ABO3 by ANN. 
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6.0 Exploring unknown Cross-Properties Multiple 

 Correlations using ANNs 
 
6.1 Specific Experimental Details 

6.1.1 Data Collection 

Whole datasets of physical properties of solid elements were collected from 

handbooks, including Chemistry Data Handbook (CDH) (Start and Wallace, 

1982), The Lange’s Handbook of Chemistry (LHC) (Speight, 2005), The 

Elements (ELE) (Emsley, 1998), Table of Physical and Chemical Constants 

(TPC) (Kaye and Laby, 1995) and CRC Handbook of Chemistry and Physics 

(CRC) (David, 2000). The properties were collected for the same pressure (0.1 

MPa), over a small temperature range (293~298 K) and in the solid state. The 

sixteen properties collected were i) normal melting point, ii) normal boiling point, 

iii) heat of fusion under normal melting point, iv) heat of vaporization under 

normal boiling point, v) molar heat capacity, vi) specific heat capacity, vii) 

thermal conductivity, viii) electrical conductivity, ix) photoelectric work function, 

x) linear thermal expansion coefficient, xi) atomic weight, xii) density, xiii) 

electronegativity (Pauling), xiv) first ionization potential, xv) polarizability and 

xvi) atomic volume. The minor exceptions are mentioned in Tables A1 to A16 

(Appendix 3). The elements for which data was collected satisfied two criteria: 1) 

they are in solid state under 293~298 K and 0.1 MPa pressure; 2) they have a full 

record of all sixteen properties from above five handbooks. The reason for those 

criteria is: phase present, temperature and pressure are factors that would affect 

some kinds of properties. However, introducing these three parameters would 

weaken the generality of correlation between different properties due to the 

common response of composition, structure and bonding. In total, 75 elements 

are included. 

 

From section 4, it has been found that there are always incorrect data in 

handbooks. As a result, it is necessary to have an idea about the uncertainty of 

the correctness for the data that is used and hence the uncertainty in the 

correlation explored from using these data. 
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The details of the data recorded from five different handbooks are listed in 

Tables A1-A16 and are sorted with ascending levels of variability of property P; 

(Pmax-Pmin)/Pmin. The data used for exploring property correlations are marked in 

bold and were converted to SI units before being input.  Most of the elements 

have consistent values across the five handbooks and these values can be treated 

as reliable. Data clustered in a narrow range can be treated as correct since they 

are obtained from different sources. Identical data could have been copied. 

Outliers are treated as incorrect due to incorrect unit conversions, decimal point 

misplacements, different reference conditions or other reasons. Median values of 

each property from five different recordings were treated as correct. The neural 

network method developed in section 4 can be used to identify errors and select 

correct values. 

 

6.1.2 Pre-treatment of the Data 

It is well known that the materials properties vary over considerable ranges and 

are generally logarithmically distributed (Ashby, 1998; Bassetti et al., 1998; 

Ashby et al., 2007). Sha (2008) noted that the network can be misled by a few 

data far away from the average when training neural networks with skewed data 

because, unlike linear regression, neural network training does not have a 

definitive starting formula. For the neural network, logarithmic pre-treatment for 

properties that are logarithmically distributed is needed. 

 

The pre-treatment of the data was as follows. Electrical resistivity was converted 

to electrical conductivity. From observation of these figures, it can be found that 

the distribution of 1) atomic volume, 2) polarizability, 3) linear thermal 

expansion coefficient, 4) electrical conductivity, 5) thermal conductivity, 6) 

specific heat capacity and 7) heat of fusion are skewed. So these data need 

logarithmic pre-treatment. However, from the data listed in Table A11 and 

shown in Figure A1 (xi) (Appendix 4), the electrical conductivity disperses over 

such a large range that taking logarithmic pre-treatment cannot normalize the 

distribution. Further, some data can be interpreted as sensitive to impurities (e.g. 

Si, Ge), and this introduces uncertainties for extracting a general correlation 

between properties. As a result, electrical conductivity was not introduced for 

exploration of property relationships. Figures A2 (i)-(vi) show the distribution of 
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these six properties after taking logarithms. From Figure A2 (i)-(vi), the values 

for atomic volume, polarizability, linear thermal expansion coefficient and heat 

of fusion become uniformly distributed; while for thermal conductivity and 

specific heat capacity, the distributions are enhanced. 

 

As a result, the whole group of property values are 1) melting point (original 

value), 2) boiling point (original value), 3) atomic volume (logarithmic value), 4) 

polarizability (logarithmic value), 5) first ionization potential (original value), 6) 

electronegativity (original value), 7) density (original value), 8) atomic weight 

(original value), 9) linear thermal expansion coefficient (logarithmic value), 10) 

photonic work function (original value), 11) thermal conductivity (logarithmic 

value), 12) specific heat capacity (logarithmic value), 13) molar heat capacity 

(original value), 14) heat of vaporization (original value), 15) heat of fusion 

(logarithmic value). All or part of these property values constitute inputs for the 

neural network. Each of them in turn is also used as an output. When property 

values were used for output, the original values were adopted, because the neural 

network training is based on minimization of the difference between predicted 

values and experimental values. And small differences in logarithmic values 

correspond to large differences in original values. 

 

6.1.3 Determination of Input and Output Parameters 

Of all sixteen properties, one is taken as the property to be predicted (as an 

output of the neural network) in turn, and all other properties left constitute a 

whole set. Within the whole set, different numbers of properties with different 

combinations were chosen to form property groups used for predicting the named 

property (as input parameters of the neural networks). This process was repeated 

by taking each of sixteen properties one by one as a property to be predicted. 

Finally, when some properties values can be reasonably predicted from groups of 

other properties, then we can say that all of these properties are correlated. 

 

When considering how to find the closest and highest performance for both 

training and testing sets, a distribution was selected on the basis of 
2
testing

2
training  , where  = )R(M  11 , and the smallest value of   was chosen.
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6.2 Results 

In recent years, the range of applications of electric polarizabilities and hyper-

polarizabilities has expanded dramatically (Bonin and Kresin, 1997; Maroulis, 

2006; Maroulis and Hohm, 2009). As a result, in this work, examples of the 

predictions of polarizability from other 14 different properties are taken to show 

the process of using this method to explore correlations between diverse 

properties without employing the structure-property arrow of causation. 

 

This starts with the prediction of polarizability from each of 14 properties in 

order to separate out the properties that present strong predictability for 

polarizability when using each of them individually. That is, to investigate if 

polarizability has direct correlation with each of them. The other properties are 

treated as properties that have weak or no direct correlation with polarizability. 

However, this does not exclude the possibility that for these properties a 

combination of them or a combination with previously separated properties can 

make a prediction, or even can improve the predictability compared with the 

cases in which they are excluded. 

 

As the square of the correlation coefficient, R2, is the proportion of the variation 

in the values of y that is explained by the least-squares regression of y on x and 

ignores the distinction between explanatory and response variables, the R2 in our 

case, can be used to represent the proportion of the variation in the experimental 

values that is explained by the straight-line tie between predicted values and 

experimental values. When R = 0.9, R2 = 0.81 and about 80% of the variation is 

accounted for by the straight-line relationship. Here, we use the criterion of R = 

0.9, and determine the correlations with R values greater than 0.9 as being 

significant. Figures 6.2.1 (a)-(d) show the results of prediction of polarizability 

with R values greater than 0.9 and the Table 6.2.1 lists the statistical analysis for 

results shown in Figure 6.2.1 
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       (c)                                                         (d) 

Figure 6.2.1 Results of prediction for polarizability with R values greater than 

0.9, a) Prediction from atomic weight; b) Prediction from first ionization 

potential; c) electronegativity; d) work function. 
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Table 6.2.1 Statistical analysis for the results shown in Figure 6.2.1. 

Test set Whole set 
Conditions M R MME 

/10-30m3 
SDME 
/10-30m3 

MPME 
/% 

SDPME  
/% M R MME 

/10-30m3 
SDME 
/10-30m3 

MPME  
/% 

SDPME 
/% 

(a) 1.01 0.980 1.15 1.29 13.7 19.1 0.970 0.980 1.49 1.80 15.1 19.6 
(b) 1.04 0.860 5.40 5.22 36.0 39.5 0.925 0.920 3.21 3.53 27.3 35.0 
(c) 0.912 0.937 2.64 1.90 28.9 21.2 0.883 0.940 2.90 2.80 25.4 24.7 
(d) 0.852 0.920 3.78 3.12 42.8 76.9 0.830 0.913 3.45 3.39 38.2 65.7 

  
MME: Mean of error modulus 

SDME: Standard deviation of error modulus 

MPME: Mean of percentage error modulus 

SDPME: Standard deviation of percentage error modulus 

 
 
Table 6.2.2 Statistical analysis for the results shown in Figure 6.2.2. 

Test set Whole set 
Results M R MME 

/10-30m3 
SDME 
/10-30m3 

MPME 
/% 

SDPME  
/% M R MME 

/10-30m3 
SDME 
/10-30m3 

MPME  
/% 

SDPME 
/% 

Melting point (Tm), Heat of 
vaporization (ΔHV), specific 
heat capacity (CP) and first 

ionization potential (EI) 

1.01 0.97 1.66 1.35 15.3 15.2 0.994 0.995 0.808 0.893 6.80 8.95 
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Thus we have located four properties that have relatively strong correlations with 

polarizability and separated the other ten properties that have relative weak or 

even no correlations with polarizability. In the next step, based on these four 

properties, systematically to introduce other properties to see if continuous 

improvements in the prediction results, and thus to find the effect of each 

property on the prediction. However, the properties are obtained from different 

levels of structure, or even combinations of different levels of structure, and so 

these properties can be treated as confounding effects of different levels of 

structure, as shown in Figure 1.5.1(c). It needs to be clarified that the correlations 

between structures and properties are direct cause-effect, while those between 

different levels of structure and properties may be confounding. As a result, the 

correlations between the properties that are used for making prediction may also 

be confounding. As mentioned in section 1.5.2, since the effects of properties are 

confounded together, the influence of one property cannot be distinguished from 

the influence of other properties; also, it cannot be said how strong the effect of 

one property on polarizability is. This leads to some properties, which cannot 

make a prediction alone, having an effect or even a strong effect on the 

prediction when combined with other properties. 

 

So, in this step, it focus on the results that show a high degree of correlation 

between polarizability and different combinations of other properties, and then 

from these results, try to find the underlying physical principles and the reasons 

why different combinations of properties can have similar prediction 

performance. The criterion used here is R2 = 99%, which corresponding to R = 

0.995 and the slope M equal to or greater than 0.99. In total, there are 665 

combinations of different numbers of different kinds of properties. These 

different combinations are treated as having the same capability for prediction of 

polarizability. Due to the confounding effect mentioned before, it is still difficult 

to employ a systematic method. In this work, it started from the analysis of the 

results for the prediction using a combination of the minimum number of 

properties, namely the prediction of polarizability from melting point, heat of 

vaporization, specific heat capacity and first ionization potential. The results are 

shown in Figure 6.2.2, and the statistical analysis for these results are shown in 

Table 6.2.2. 
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Figure 6.2.2 Result of prediction of polarizability using melting point, heat of 

vaporization, specific heat capacity and first ionization potential. 

 

The following analysis for these five results (shown in Figures 6.2.1 and 6.2.2) 

includes the following stages: 1) Exploration of underlying physical principles 

for results shown in Figure 6.2.1, in order to verify the feasibility of adopting this 

method to explore cross-property relationships; 2) Analysis of the result shown 

in Figure 6.2.2, and comparison of this result with other results to explore the 

possible confounding effect of different properties; 3) Exploration of the possible 

mathematical equations that can formulate and generalize these correlations. 
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6.3 Discussion 

6.3.1 Exploring Underlying Physical Principles 

The polarizability in this work is the average static electric dipole polarizability 

(expressed as a polarizability volume by dividing 4πε0, where ε0 is the 

permittivity of vacuum). The polarizability of an atom or molecule is a 

coefficient for describing the response of the electron cloud to an external 

electric field having low power, which is a measure of the ease with which its 

electron cloud can be pulled away from the nucleus. 

 

Correlation between polarizability and atomic weight 

From the results shown in Figure 6.2.1(a), the correlation between polarizability 

and atomic weight is the strongest compared with other combinations, so it is 

interesting to find the underlying physical principles. It has been known that the 

polarizability increases with atomic weight for elements in the same family 

because the atomic size increases, which has been shown by many people’s work, 

such as Debye (1929), Clark (1934), Denbigh (1940), Atoji (1956), Pauling 

(1960) and Ghanty and Ghosh (1996); and decreases with increasing atomic 

weight for elements in the same row of the periodic table as the outer-shell 

orbitals are being increasingly filled (Yang, 2003). From that, it is easily to think 

of the trends that exist in the periodic table and so it is natural to draw these two 

properties together and to see whether there is a trend.  

 

Expressing these two properties on a Cartesian coordinate system, as shown in 

Figure 6.3.1, it can be easily found that these two properties follow a periodic 

trend.  
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Figure 6.3.1 Variation of polarizability with atomic weight. 

 

Correlation between polarizability and first ionization potential 

Comparing the polarizability, which measures the response of an atomic system 

to an external electric field, the first ionization potential measures the extraction 

energy of the outermost electron of the atom. Dmitrieva and Plindov (1983) 

pointed out the correlation between first ionization potential (IP) and 

polarizability (α) follows α1/3 = 1.09/IP. Fricke (1986) also argued that an 

increasing first ionization potential implies a decreasing polarizability, and they 

obey direct IP ~ 1/α correlation when plotted on a double-logarithmic scale. 

Schwerdtfeger (2006) stated the relationship is in the form of α ~1/IP2. However, 

for all the above three cases, the trends are visible, but the two quantities are not 

correlated strongly in a general way for all the elements. These are explained by 

the fact that the structure of the valence electrons of each element is very 

different, and the relativistic effects that exist change the trend in polarizability 

within a Group of the periodic table. The result shown in Figure 6.2.1(b) is 

consistent to the above explanations. 

 

Correlation between polarizability and electronegativity 

The correlation between polarizability and electronegativity has also been 

explored. Komorowski (1987) applied an electrodynamical equation to the 
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chemical potential by analogy and got an inverse relationship between 

polarizability and electronegativity; Van Genechten et al. (1987) applied the 

electronegativity equalization method to calculate values of average 

electronegativity and related these values to the polarizability: large 

electronegativity is consistent with a low polarizability. However, in these two 

works, the correlations are not explored in detail. Nagle (1990) employed the 

concept of valence electron density (Gorbunov and Kaganyuk, 1986; 

Gorbunov and Filippov, 1988), and got a function of the number of valence 

electrons divided by polarizability, n/α. Then, the cube root of this ratio, (n/α)1/3, 

can be used for calculating the electronegativity χ: χ = 1.66 (n/α)1/3 + 0.37 for s- 

and p-block elements, and it also can be applied to d- and f-block elements if the 

number  of “valence” electrons for these elements can be determined from a 

careful analysis of their atomic spectra. Further proofs can be derived from the 

facts that there are correlations existing between atomic radii and polarizability, 

and also between atomic radii and electronegativity, such as the work done by 

Ghanty and Ghosh (1996). So, the polarizability and electronegativity can be 

treated as common responses from atomic radii, as shown in Figure 1.5.1(b). The 

discussion in the above cases describes the relationship between polarizability 

and electronegativity from a physical perspective, and also states there is no 

direct relationship between them. In order to make a comprehensive and general 

prediction, other parameters must be introduced. 

 

Correlation between polarizability and work function 

The electron work function ø is a measure of the minimum energy required to 

extract an electron from the surface of a solid, which was first pointed out by 

Lester (1916). It can be measured from thermionic, photoelectric or contact 

potential methods. Different methods are applied in different conditions. As 

mentioned by Michaelson (1977), the thermionic method cannot give the 

absolute value for polycrystalline or other patchy surfaces, while the 

photoelectric method does not yield the true work function for semiconductors 

because the emission contains contributions of both volume and surface origin. 

The critical review of different measurement methods and the rationale for 

selecting preferred values are discussed by Rivière (1969). 
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Like most of the chemical properties of the elements, the work function is a 

periodic function of atomic number when the values are carefully selected 

(Morecroft, 1936; Klein and Lange, 1938; Scarpa, 1940 and 1941). 

Michaelson (1950, 1977) used representative values; either the unweighted mean 

of the values obtained from using different measurement methods for each 

element, or the values for polycrystalline solids, to plot a figure of work function 

vs. atomic number. For both of these cases, even though the data were less 

reliable in 1950, the periodic trend can be observed. As a result, the work 

function has a correlation with atomic number, which is the same trend as the 

variations of polarizability. 
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Figure 6.3.2 Plots of work function versus atomic number (Drawn from the 

values shown in Michaelson, 1950). 
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Figure 6.3.3 Relation of experimental values of the work function to the 

periodic system of the elements. (Drawn from the values shown in Michaelson, 

1977). 

 

Further proof can be found from the facts that 1) the empirical correlation 

between work functions and atomic weights has been derived by Rother and 

Bomke (1933); 2) Bedreag (1946) pointed out the correlation between work 

function and first ionization potential that exists within alkali metals. From 

before, we have got the periodic correlation between polarizability and atomic 

weight and so there is indeed some correlation existing between polarizability 

and the work function. 

 

However, from the Figure 6.2.1(d) shown, this correlation is not very strong. The 

reasons are as follow: 

 

1) The values used in this work are single values (polycrystalline, or unweighted 

mean values for all facets), taken from handbooks. However, the choice of 

preferred single values is complicated by the variations produced from the purity 

of the specimen, the measurement method and the surface distribution of crystal 
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facets (Michaelson, 1977). Firstly, the measurements of work function are 

extremely sensitive to the presence of surface impurities, such as oxides and 

gases (Michaelson, 1950). When the measurement is not carried out under 

ultrahigh vacua, the result is affected by trace impurities (Michaelson, 1977). An 

example is the value for Be. It has been accepted that the value is 5 eV, as 

employed in this work, as determined first by Dixon and Lott (1969) and 

confirmed later by Gustafsson et al. (1974). However, the previously accepted 

value is about 3.9 eV, as recorded in Table of Physical and Chemical Constants 

(as shown in Table A10), which is due to mercury vapour contamination. Further, 

the anisotropy (Martin, 1939; Smoluchowski, 1941), allotropy (Goetz, 1929; 

Wahlin, 1942) and temperature dependence (Potter, 1940; Seely, 1941; Smith, 

1949; Markham and Miller, 1949) complicate the values of work functions, 

although the difference is not great. The data recorded in handbooks have these 

uncertainties. 

 

2) For semiconductor elements, variations, although not great, exist among the 

values obtained from different methods of measurement (Condon, 1938; Apker 

et al., 1948). Also, for the data for As (Raisin and Pinchaux, 1975), Te 

(Williams and Polanco, 1974) and Se (Williams and Polanco, 1974), which 

belong to semiconductors, are derived from photoelectric methods. It is stated 

before that the photoelectric method cannot yield the true work function for 

semiconductors. Actually, these values cannot be confirmed by measurements 

made with ultrahigh vacuum techniques. So, as suggested by Michaelson (1977), 

these values are only to be treated as possibly valid but of unknown reliability, 

and only can be accepted simply as being the best available and not necessarily 

as absolute physical quantities. 

 

3) The periodic trend found by Michaelson (1950, 1977), as shown in Figures 

6.3.2 and 6.3.3, is obvious, but not rigorous. As mentioned by him, in each 

period, the work function value tends to rise with increasing atomic number, as 

electron shells and subshells gradually become filled; however, the relation 

becomes complex in the intervals occupied by the transition metals. 
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6.3.2 Exploring Possible Confounding Effects of Different Properties 

The results shown in Figure 6.2.2 indicate the confounding effect of melting 

point, heat of vaporization, specific heat capacity and first ionization potential on 

polarizability. It is desirable to see the relative importance of each input property 

on the prediction of polarizability. Before that, in order to see the effect on the 

prediction from different input properties separately, the correlations between 

each of these four properties are investigated by running the neural network to 

predict each of the properties from one of others; in total there are six pairs. It is 

found that there is a strong correlation between melting point and heat of 

vaporization, but there is no correlation between each other for the other five 

pairs (shown in Table 6.3.1, only melting point and heat of vaporization have 

high R and M values which indicate a strong correlation. All of the others, have 

very low R and M values which indicate a very weak correlation). As a result, it 

can be said that the predictability of polarizability comes from three distinct parts: 

1) first ionization potential, 2) specific heat capacity and 3) melting point and/or 

heat of vaporization. 

 

Table 6.3.1 Correlations between input properties. A strong correlation only 

exists between melting point and heat of vaporization. 

Conditions 
Predicted property Input property M R 

Melting point Heat of vaporization 0.886 0.912 
Heat of vaporization Melting point 0.854 0.914 

Melting point Specific heat capacity 0.48 0.472 
Specific heat capacity Melting point 0.275 0.541 

Melting point First ionization potential 0.4 0.665 
First ionization potential Melting point 0.111 0.326 

Heat of vaporization Specific heat capacity 0.0606 0.251 
Specific heat capacity Heat of vaporization 0.592 0.665 

Heat of vaporization First ionization potential 0.562 0.669 
First ionization potential Heat of vaporization 0.697 0.724 

Specific heat capacity First ionization potential 0.00108 0.132 
First ionization potential Specific heat capacity 0.463 0.638 
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In the following stage, the relative importance of each property is explored. 

Based on the result shown in Figure 6.2.2, the relative importance of each 

property is compared by running the network with one input property omitted at 

a time and the results are shown in Table 6.3.2. From observing all the 

parameters for these four different cases, it can easily be found that the relative 

importance of each property for the prediction of polarizability follows a 

descending order: first ionization potential, melting point, heat of vaporization 

and specific heat capacity. That is, the predictability of polarizability mostly 

comes from the first ionization potential, then smaller parts from melting point 

and heat of vaporization (also, melting point contributes more than heat of 

vaporization), and the smallest part comes from specific heat capacity. 

 

The strong correlation between polarizability and first ionization potential has 

been discussed in the previous section. The correlations between polarizability 

and the other three properties (i.e. melting point, heat of vaporization and 

specific heat capacity) are compared in Table 6.3.3. From looking at these results, 

it can easily be found that the correlation between polarizability and these three 

properties are weak, following the order of degree of weakness: heat of 

vaporization, melting point and specific heat capacity. From this, it can be seen 

that although these properties have weak correlations with polarizability, the 

predictability can be improved when confound with the other two properties; 

notably, the melting point makes more contribution to the predictability of 

polarizability than heat of vaporization, when confound with the other two 

properties, although the predictability is weaker than heat of vaporization when 

used alone. 

 

In the next stage, pairs of parameters are selected to predict polarizability: (1) 

melting point and heat of vaporization; (2) melting point and specific heat 

capacity; (3) heat of vaporization and specific heat capacity; (4) specific heat 

capacity and first ionization potential; (5) heat of vaporization and first ionization 

potential and (6) melting point and first ionization potential. They are shown in 

Table 6.3.4. 
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Table 6.3.2 Comparison of the criteria for predicting polarizability using different combinations of three parameters. 

Test set Whole set 
Conditions M R MME 

/10-30m3 
SDME 
/10-30m3 

MPME 
/% 

SDPME  
/% M R MME 

/10-30m3 
SDME 
/10-30m3 

MPME  
/% 

SDPME 
/% 

Tm, ΔHV, and CP 0.0674 0.314 9.80 7.17 84.6 86.2 0.0619 0.291 9.16 6.73 94.3 96.3 
ΔHV, CP, and EI 0.913 0.932 3.28 3.18 25.7 29.6 0.902 0.947 2.59 2.82 23.6 31.4 
Tm, CP, and EI 0.995 0.948 2.24 1.68 24.4 23.1 0.961 0.978 1.71 1.79 15.4 20.2 

Tm, ΔHV, and EI 1.01 0.963 2.21 2.32 17.8 25.0 0.98 0.983 1.61 1.50 16.0 18.6 
 

 

 

Table 6.3.3 Comparison of the criteria for predicting polarizability using melting point, heat of vaporization, and specific heat capacity 

respectively. 

Test set Whole set 
Conditions M R MME 

/10-30m3 
SDME 
/10-30m3 

MPME 
/% 

SDPME  
/% M R MME 

/10-30m3 
SDME 
/10-30m3 

MPME  
/% 

SDPME 
/% 

Tm 0.210 0.482 6.80 5.31 84.6 145 0.247 0.523 7.86 6.35 90.0 132 
ΔHV 0.682 0.695 9.71 7.05 85.9 78.4 0.615 0.735 6.37 5.09 65.1 76.9 
CP 0.158 0.279 7.62 5.36 158 192 0.155 0.415 8.00 7.31 93.1 118 
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Table 6.3.4 Comparison of the criteria for predicting polarizability using different combinations of two parameters. 

Test set Whole set 
Conditions M R MME 

/10-30m3 
SDME 
/10-30m3 

MPME 
/% 

SDPME  
/% M R MME 

/10-30m3 
SDME 
/10-30m3 

MPME  
/% 

SDPME 
/% 

Tm, ΔHV 0.0253 0.206 9.66 9.78 80.6 69.7 0.0304 0.203 9.56 6.57 103 113 
Tm, CP 0.0277 0.319 11.6 10.4 103 106 0.0511 0.277 9.28 6.67 94.7 91.3 

ΔHV, CP 0.0919 0.273 8.04 4.89 102 125 0.0693 0.285 9.28 6.53 100 107 
CP, EI 0.901 0.913 2.65 4.26 28.4 53.2 0.887 0.936 2.70 3.18 25.8 36.5 

ΔHV, EI 0.909 0.874 3.24 3.98 32.7 55.1 0.874 0.927 3.04 3.26 28.9 42.1 
Tm, EI 0.958 0.966 2.12 2.23 25.2 39.8 0.900 0.948 2.59 2.75 24.4 34.5 
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From observing these results, it can be found that the combination of melting 

point and heat of vaporization has the weakest predictability. The reason is that, 

as mention before, the predictability of polarizability comes from three parts and 

due to the correlation that exists between melting point and heat of vaporization, 

the effect of melting point and heat of vaporization can be treated as the same 

one part and this single part cannot make the prediction better. Then from the 

second and third row, the role of specific heat capacity is introduced, and the 

performance is improved and from these two results, it is also found that when 

confounded with specific heat capacity, the heat of vaporization has better 

prediction performance than melting point, which is consistent with the trend 

when using melting point or heat of vaporization alone. From looking at rows 4 

to 6, the first ionization potential is introduced, which has a single correlation 

with polarizability and the performance is improved further. Observing these 

three rows confirms the ascending effect of specific heat capacity, heat of 

vaporization and melting point on the prediction of polarizability when confound 

with polarizability as discussed before. 

 

From the discussions made above, it can be concluded that: within the group of 

properties consisting of melting point, heat of vaporization, specific heat capacity 

and first ionization potential, the first ionization potential plays the most 

important part, the melting point and heat of vaporization play a similar role and 

the second most important effect while the specific heat capacity plays the least 

important part. For melting point and heat of vaporization, the heat of 

vaporization has higher predictability for polarizability when testing each of 

them alone, or confounding each with specific heat capacity. However, when 

confound with first ionization potential, the melting point has a higher 

performance. For all the inputs that do not adopt the property of first ionization 

potential, the correlations with polarizability are very weak; however, when they 

are confounded with first ionization potential, the performance is improved a lot 

(from M=0.925, R=0.92 to M=0.994, R=0.995). 
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6.3.3 Exploration of Possible Mathematical Equations that can Formulate 

 Correlations 

To extend these ideas, it would be more interesting to find possible mathematical 

functions that can describe the correlations found by the neural network. 

Recently this has been demonstrated by Schmidt and Lipson (2009), who used 

genetic programming to extract Hamiltonians and other laws by automatically 

searching motion-tracking data captured from chaotic double-pendula. So it will 

be possible to find mathematical equations from these correlations in the future. 

However, in the method proposed by  Schmidt and Lipson (2009), researchers 

still need to identify mathematical building blocks such as algebraic operators, 

analytical functions, etc. So, it is reasonable to speculate some building blocks by 

visualizing the functional relationship which is captured by the neural network, 

in order to see the variance of polarizability in terms of the input properties. 

However, for the result shown in Figure 6.2.2, the neural network captured the 

correlation between polarizability and the other four different properties (i.e. 

melting point, heat of vaporization, specific heat capacity and first ionization 

potential); it is very difficult for us to visualize this kind of functional correlation, 

which locates within a 5-D space. 

 

In order to visualize the functional relationship that the neural network captured, 

we analyzed the result for the prediction of polarizability from two other 

properties. Within all the results of prediction of polarizability from two 

properties, the prediction from atomic weight and electronegativity performs best, 

which has M=0.994, R=0.994, as shown in Figure 6.3.4. As a result, we analyze 

the variance of polarizability in terms of two input properties on this result. 

 

Now in this case, it is possible to interpret the results visually by drawing a 3-D 

diagram. The interpretation is shown in Figure 6.3.5, which is constructed as 

follows: 

 

1. The atomic weight AW is placed on x-axis, electronegativity χ is placed on y-

axis, and polarizability α is placed on z axis.  

2. The property data for 75 elements are plotted directly. The training set and 

testing set are shown as red and green dots respectively. For these data, the 
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atomic weight values are within the range of 0.0069 kg mol-1 – 0.238 kg mol-1; 

while the electronegativity values are within the range of 0.7 – 2.5. 

3. The ANN, which was constructed from the training set (red dots), was fed 

with artificial atomic weights from 0.0069 to 0.238 (50 equally spaced data 

points) and artificial electronegativity from 0.7 to 2.5 (50 equally spaced data 

points) to predict corresponding polarizability. Those data were then used to 

draw the surface, which is shown in Figure 6.3.5 as a semi-transparent net. 

 

From Figure 6.3.5, it can be found that, from the training set, the neural network 

has captured a functional surface and nearly all the testing set are located on this 

surface. This means the choice of the training set covers the problem domain, 

and the neural network captured the complex functional correlationships. 

 

It is not immediately obvious what Figure 6.3.5 signifies, nor what it might 

signify if this methodology were applied, not to the elements, but to a class of 

materials with continuously varying composition.  

 

The surface in Figure 6.3.5 is a map of property correlations upon which most of 

the elements repose. However the correlation is also valid for elements that do 

not and cannot exist. The surface predicts the polarizability of these imaginary 

elements in terms of their atomic weight and electronegativity. If it were possible 

to change the electronegativity of an element while keeping its atomic weight 

constant, Figure 6.3.5 predicts its new polarizability.  

 
Designation of the elements arises from a discrete variable; atomic number. 

However, materials which are a mixture of 2 to n components are defined by 

composition which is a continuous variable and moreover, have properties which 

are measured in continuous variables. The derivation of such a map as Figure 

6.3.5 for materials of wide-ranging composition therefore offers the possibility of 

enormous predictive power in which compositional space can be selected for the 

enhancement of properties on the basis of a map that could result from property-

property correlations. Thus Figure 6.3.5 provides one of the strongest cases yet in 

support of the hypothesis that property correlations can be used to predict the 

properties of new materials. 
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Section 6.3.1 discusses the correlation between polarizability and atomic weight, 

which follows the periodic trend; and the correlation between polarizability and 

electronegativity, which follows the inverse correlation. From observing Figure 

6.3.1, it can be speculated that the polarizability is the sum of a function of 

atomic weight f(AW) and a function of electronegativity g(χ). From the 

perspective along the electronegativity (χ) axis, the variance of polarizability in 

terms of atomic weight (AW) follows the periodic trend; while from the 

perspective along the atomic weight (AW) axis, the variance of polarizability in 

terms of electronegativity (χ) follows the inverse correlation. As a result, the 

mathematical function between polarizability, atomic weight and 

electronegativity may be a sum of two functions  = f(Aw) + g(χ), where f(Aw) is 

a kind of periodic function, and g(χ) is a kind of inverse function. 
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Figure 6.3.4 Result of prediction of polarizability using atomic weight and 

electronegativity. 
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Figure 6.3.5 Variation of polarizability as a function of atomic weight and 

electronegativity. 

 

Before further exploration of mathematical functions using Schmidt and Lipson’s 

method, a function was speculated using a trial and error method. From looking 

at some typical functional curves, the type of periodic function may be similar to 

a type of curve that describes oscillation with increasing amplitude in case of 

resonance (von Kármán and Biot, 1940) plus a straight line, as shown in Figure 

6.3.6, and the equation found from this approach is: 

 

f(Aw) = 476085993003012053 0305 .A.)).A(sin(e. WW
).A( W      Equation 6.3.1 

 

and the type of inverse function can be stimulated from the discussion in section 

6.3.1, as a type of power function with the power of -3, such as the one shown in 

Figure 6.3.7,  

 

g(χ) = 317                     Equation 6.3.2 

Training set 

Testing set 
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Figure 6.3.6 Free vibration with damping curve. 
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Figure 6.3.7 Inverse function curve.
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The sum of functions shown in Figure 6.3.8  

 

 = f(Aw) + g(χ) = 

476085993003012053 0305 .A.)).A(sin(e. WW
).A( W   + 317     

Equation 6.3.3 

 

which is very similar to Figure 6.3.5 (redrawn in Figure 6.3.9 from the same 

viewpoint and with same coloured). At present, it is necessary to check whether 

the speculated functions can describe the functional relationship between 

polarizability, atomic weight and electronegativity. Substituting the values of 

atomic weight and electronegativity into the speculative function, which is  = 

f(Aw)+g(χ) = 476085993003012053 0305 .A.)).A(sin(e. WW
).A( W    + 317   , 

the accuracy of prediction is not very high; it has mean error of modulus 5.25 and 

mean error percentage 59%. This means the coefficients of f(Aw) and g(χ) still 

have scope for improvement, and that the real function may have a relatively 

more complex format of combination from f(Aw) and g(χ). However, from 

Equation 6.3.3, it is possible to give some of the mathematical building blocks 

for genetic programming and use that to get a more reasonable equation.  

 

It is arguable that this visualization method is only workable with one to one or 

two to one correlations. For higher dimensions, it’s not possible to visualize the 

equation in 3D representations. However, it is possible to fix values of some 

properties and show only two or three properties in a series of lower dimensional 

pictures, which are equivalent to projections of the higher dimensions onto two 

or three dimensions. For example, in the case of section 6.3.2, polarizability is 

well predicted through the confounding effect of melting point, heat of 

vaporization, specific heat capacity and first ionization potential. It is not 

possible to visualize those five properties in three dimensions. By fixing two of 

the properties and varying the other two in three levels respectively, 54 figures 

were drawn using a similar method to that mentioned earlier in the construction 

of Figure 6.3.5, which are listed in Figure A3 in Appendix 5. 
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Figure 6.3.8 Plot of speculated function as shown in Equation 6.3.3. 

Figure 6.3.9 Redrawn of Figure 6.3.5 from the same viewpoint and with the 

same coloured as Figure 6.3.8. 



Exploring Unknown Cross-Properties Multiple Correlations using ANNs 

 170 

From the discussions in section 6.3.2, specific heat cP has smallest effect on the 

prediction of polarizability while first ionization potential EI has the biggest 

effect on it. In Figure A3 (43), (44), (45), Tm is fixed at 4003 K and cP is fixed at 

113, 279 and 3390 J kg-1 K-1, which correspond to minimum, mean and 

maximum respectively. These three figures are very similar, which confirms that 

the cP has a small effect. By drawing more figures between minimum and 

maximum, it is possible to speculate some simple equations.  In contrast, in 

Figure A3 (1), (2) and (3), cP is fixed at 113 J kg-1 K-1 and EI is fixed at  376, 691 

and 1086 kJ mol-1, which also correspond to minimum, mean and maximum. 

Those three figures are very different, which verifies the strong effect of EI on 

the prediction of polarizability. In this situation, it is very difficult to speculate on 

a fitting equation. The other figures in Figure A3 can be examined in a similar 

way.  

 

By inspection some of the pictures, for example Figure A3 (3), (6), (43), (44), 

(45) and (51), the surface is similar to a hyperbolic paraboloid surface, which has 

a function defined as 

 

2

2

2

2

b
Y

a
XZ                    Equation 6.3.4 

 

In summary, equations in the prediction from two properties can be simply 

speculated through a 3D surface found by ANN. For prediction from more than 

two properties, part of the properties can be fixed to leave two properties only to 

draw 3D surfaces. Then from observing the 3D surfaces, the formats of equations 

can be speculated; and then the mathematical building blocks can be identified 

from that. By applying these building blocks, the real mathematical functions can 

be possibly found by using the genetic programming methodology as proposed 

by Schmidt and Lipson. 

 

6.3.4 The Validity of Exploring Cross-properties relationship by using 

ANNs 

The prediction of properties from structures are commonly used, but the 

interactions between different levels of structure make the problems very 
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complex. In this work, apply the principle that the properties of a material are 

determined by (or are a common response from) composition and structure, to 

explore correlation between different properties by using artificial neural 

networks. However, the interactions between input properties still exist. In neural 

networks, the nature of the interactions is implicit in the values of the weights. In 

cases like this work, there exist more than just pairwise interactions. As a result, 

it is difficult to visualize from the examination of the weights. As suggested by 

Bhadeshia (1999), the better method is to use the network to make predictions 

and to see how these depend on various combinations of inputs. In this work, it is 

tried to use the underlying physical principles to explain the different results and 

found employing neural network to explore the cross-properties relationship is 

reasonable. 
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7.0 The Feasibility of using ANN Methods 
 
7.1 The Validity of ANN Models 

From all of the works presented above, it can be concluded that: the ANN, as a 

method, can be treated as feasible although it cannot be relied on definitively and 

others also have reiterated this. It may be regarded as a useful tool for cautious 

use in materials science but the choice of the right ANN plays a critical role in its 

success especially when the dataset is restricted as is often the case in materials 

science. 

 

7.2 The Effect of Number of Layers 

Basheer and Hajmeer (2000) indicate that the choice of the number of hidden 

layers and the number of neurons in the hidden layers are among the most 

important choices in ANN design. Most of the works presented in this work are 

function approximation problems. It is often claimed that in most function 

approximation problems, one hidden layer is sufficient to approximate 

continuous functions (Hecht-Nielsen, 1990; Basheer, 2000); two hidden layers 

must generally be necessary for learning functions with discontinuities (Masters, 

1993). In this work, the kind of function is not clear. Also the neural network 

user’s guide (Mathworks) suggested that a two-hidden layers sigmoid/linear 

network can represent any function of input/output relationship. On these bases 

and looking at the results produced from all of the works, it can be seen that the 

choice of two-hidden layer network is a sensible choice. 

 

7.3 The Effect of Size of Layer 

The choice of size of the first hidden layer is critical in the ANN design. There 

are several rules of thumb available in the literature relating hidden layer size to 

the number of nodes in input (NINP) and output (NOUT) layers: 

 Hecht-Nielsen (1990) used the Kolmogrov theorem to prove that NHN≤NINP 

+1. 

 Widrow and Lehr (1990) according to (NW/NOUT)≤NTRN≤(NW/NOUT) 

Log2(NW/NOUT). 

 Upadhaya and Eryureka (1992) related NHN to NTRN (via the total number 

of weights, NW) according to NW = NTRN Log2(NTRN). 
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 Masters (1994) suggests that the ANN architecture should resemble a 

pyramid with NHN≈(NINP * NOUT)1/2. 

 Lachtermacher and Fuller (1995) suggest the NHN for a one-output ANN 

with no biases be determined from 0.11 NTRN≤NHN(NINP +1)≤0.30 NTRN. 

 Jadid and Fairbairn (1996) called for an upper bound on the number of hidden 

nodes (NHN) equal to NTRN/[R+(NINP + NOUT)], where NTRN is the number of 

training patterns and R=5-10. 

 

As Basheer and Hajmeer (2000) suggested, the most popular way to find the 

optimal number of hidden nodes is by trial and error with one of those rules as a 

starting point. However, facing exotic problems with high nonlinearity and 

hysteresis such as shown in Basheer’s work (Basheer, 1998; 2000), these ‘rules 

of thumb’ may need to be abandoned. There is some value in beginning with a 

small number of hidden nodes and building up iteratively to attain the accuracy 

required. This method is adopted in all of the works through implementation of 

the programs. 
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8.0 Conclusions 
 
1. Revisiting Hume-Rothery’s Rules 

 Selection of Input Parameters 

In this work, the input parameters initially chosen for the network include (1) 

atomic size parameter, (2) valence parameter, (3) electrochemical parameter, i.e. 

electronegativity and (4) structure parameter of solvent and solute atoms. Three 

different expressions of these parameters were used to examine which gave the 

best performance: 

 

1. The raw data that Hume-Rothery used. 

2. The original collected values for each parameter of solvent and solute 

 atoms. 

3. The functionalized parameters. 

 

When the raw data were used, uncertainty is the atomic size difference: some 

researchers believe the threshold is 14% and others believe it is 15%. The 

performance of ANN using the 15% criterion is slightly higher than that for 14% 

which implies 15% is a better threshold in the size factor. Using this same 

approach and including the 15% criterion, the structure parameter was introduced 

in terms of whether the structure of solvents and solutes are the same or not. 

There was no improvement in correlation. This indicates that the structure 

parameter employed in this way, does not play a very important role in solubility. 

 

When the original values of input parameters are used, the training performance 

of the ANN is quite good but the prediction of the testing set is poor, and this 

clearly indicates that although the network trains satisfactorily on the actual 

values of input data it is unable to use these for prediction. 

 

When the functionalized values were used as input parameters, both the training 

and testing set of the ANN gave good performances. Through a search of all 

combinations of those parameter formats, the best format of input parameters 

was determined as the functionalized values. 
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 Selection of Output Parameters 

From Hume-Rothery’s Rules, only the possibility of whether a component is 

soluble or insoluble can be predicted. However, it would be more advantageous 

to attempt to predict the original value of solubility. The output parameters are 

expressed in two ways:  

1) Follow a specialized criterion: if the solubility of solute metal in solvent 

metal exceeds 5 at. %, then it is said that this solute metal is soluble in the 

solvent metal; or it is not. 

2) Original maximum solubility limits of each alloy system are used: the results 

of the prediction show the ANN can predict the solubility quantitatively with 

small mean modulus errors for 60 alloy systems. 

 

 Testing Hume-Rothery’s Rules for 60 Alloy Systems 

When the 60 alloy systems, which were used by Hume-Rothery, are tested, the 

rules really work well as demonstrated by the ANN correlations. These indicate 

the Hume-Rothery’s general principles work well in several alloy systems, and 

can be used to estimate solid solubility. 

 

 Extension of Hume-Rothery’s Rules for 408 Alloy Systems 

The wider application of the same approach to a set of 408 silver, copper and 

gold alloys is less successful, and the predictability is poor. This is consistent 

with the inherent simplifications of the rules which are already documented by 

many people.  

 

 The Effect of Melting Point 

Within a wider range of alloy systems, the introduction of melting point provides 

the capability for improving the predictability: it can be treated as a new 

parameter for solid solubility prediction. The prediction of Tmax, under which the 

maximum solubility is reached, also confirms the effect of melting point. 

 

 Determination of the Relative Importance of Each Rule 

In this work, the performance of the ANN, based on 60 alloy systems, was 

evaluated when some of the parameters were deliberately omitted. Using the 
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mean error of the testing set as the main criterion for accuracy of the prediction, 

atomic size has the strongest effect. Electronegativity has a stronger influence 

than valence. When pairs of parameters are omitted, the performance of the 

prediction became worse. Omission of the structure parameter only had small 

effect on the performance of the ANN, which implies that the structure parameter 

does not play a very important role. However, these parameters are not wholly 

independent of each other; their interplay makes the determination of solubility 

very difficult. 

 

2. The Policing and Correction of Handbooks and Databases 

In this work, it is found there were 21 elements having inconsistent boiling point 

recording at the 10% level or above; and 23 elements having inconsistent 

enthalpy of vaporization at the 10% level or above in five handbooks. These are 

not trivial numbers in only 82 elements inspected.  

 

Employed both boiling points and enthalpies of vaporization that having 

consistent recording to train two ANNs (ANN1 and ANN2) provides a robust 

correlation against which the consistency of other data can be judged. Applying 

ANN1 to predict the enthalpies of vaporization of elements that have consistent 

recordings of boiling points, made the average error decrease from 231% to 8.8%. 

Then applying ANN2 to predict boiling points of elements that have consistent 

recordings of enthalpy of vaporization made the average error decrease from 

18.9% to 6.43%. For the elements that have inconsistent records of both boiling 

point and enthalpy of vaporization, possible pairs have been found. 

 

Compared with the statistical method adopted by Ashby et al., the method 

developed locates more inconsistencies. 

 

Extending the developed method to the more general situations (that is, more 

than two properties correlated), a systematic, intelligent and potentially 

automatic protocol has been developed to discover errors in handbooks. It could 

be imported as an immune system. It involves the collection of data and 

automatic exploration of indirect correlations within the data using ANNs.  
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3. The Prediction of Structural Stability and Formability of ABO3-type 

Perovskite Compounds 

In this part of work, 1) a neural network modelling method is used to make 

predictions of global instability index GII from bond-valence based tolerance 

factors tBV for 232 ABO3-type perovskite compounds and it is found that 

correlations exist between these two parameters within each subclass of ABO3-

type perovskite compounds; for the general ABO3-type perovskite, this kind of 

correlation is not obeyed. However, it was found that the valence of A-site 

cations can be treated as another parameter to induce a unified correlation. 2) 

Neural networks have also been used to make predictions of formability of 

perovskites by using A-O and B-O bond distances in order to find the possibility 

of improving prediction accuracy. It was found that, in terms of the prediction 

accuracy, neural networks can yield better performances, although it is difficult 

to give simple and physically meaningful explanations. 

 

4. Correlation between Polarizability and Other Properties 

In this work, the general correlations that exist between different properties are 

explored by employing artificial neural network methods. The example of 

prediction of polarizability from combinations of other properties is analyzed in 

detail. Through this work, a systematic method for exploring general correlations 

that exist between different properties for different type of materials is provided. 

 

1) It has been found that there are four properties that have single relatively 

strong correlations with polarizability. They are atomic weight, first ionization 

potential, electronegativity and work function. The underlying physical 

principles have been discussed individually. 

 

2) The correlation between polarizability and combinations of melting point, heat 

of vaporization, first ionization potential and specific heat has been found, and 

the possible confounding effects are systematically analysed. 

 

3) The prediction of polarizability from atomic weight and electronegativity is 

analysed as an example to visualize the functional relationship that neural 

network captured, and the surface that describes the variation of polarizability as 
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a function of atomic weight and electronegativity has been schematically shown. 

The possible mathematical equation that formulates and generalizes the 

correlation has been explored by a trial and error method, which could provide 

building blocks for generic programming. 

 

4) For the case mentioned in 2), the neural network captured the correlation 

between polarizability and another four different properties. However, it is 

difficult for people to visualize this kind of functional correlation directly, which 

is located within a 5-D space. By fixing two of the properties and varying the 

other two in three levels respectively, a series of figures have been drawn in 

order to visualize this high dimensional function from its projection within a 3-D 

space. Also, relative impact of each parameter was verified. 
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9.0 Suggestions for Future Work 
 
1. Verifying and Testing Hume-Rothery’s Rules 

Although Hume-Rothery’s rules were tested at the beginning of this project to 

prove the ability of ANNs in finding known correlations in materials science, a 

few interesting directions have been identified from this section which can be 

investigated in future: 

 

 A better way to express structures of elements for the input parameters of 

ANNs should be explored, for example, 1) find expressions that can reveal the 

similarities between FCC and HCP; 2) get some special expressions that can 

describe complex structures. These will help not only the proof of H-R rules 

but also other areas that use crystal structures as input parameters in materials 

science by using artificial intelligence.  

 

 From the handbooks as mentioned in this work, such as the ASM Handbook, 

Alloy Phase Diagrams, Binary Phase Diagrams and Chemistry Data Book, it 

would be possible to draw together solubilities and physical parameters for 

more alloy systems for training and testing Hume-Rothery’s Rules. 

 

 It would be constructive and valuable to try to find other parameters that may 

affect the solid solubility of alloy systems and then to introduce them to the 

neural network for predicting the solid solubility limit of alloy systems. This 

could be done by introducing other properties such as pressure, cooling rate, 

and then use a combinatorial search of those properties by ANNs. 

 

2. Policing Data with more than Two Correlating Properties 

In this part of the work, a systematic method has been proposed to detect errors 

in handbooks. Following this trend, more properties should be progressively 

introduced to verify this general methodology. The method should then be 

applied for a wider range of databases. This forms a natural part of the project in 

investigating the cross property correlation method of discovery for without 

reliable data the correlations could not be discovered, and once the correlations is 

discovered, the outliers can be screened by ANNs. 
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3. Prediction of formability of ABO3-type perovskite compounds by using 

more input parameters 

Neural networks have the ability to make predictions in high dimensional spaces, 

i.e., they can have more than two inputs to make the prediction. For the 

prediction of formability of ABO3-type perovskite compounds, as mentioned by 

Zhang et al. (2007), besides the A-O and B-O bond distances, other factors also 

contribute to the formation of ABO3-type perovskite compounds, such as i) 

bond-valence based tolerance factor tBV, ii) temperature and iii) pressure; 

therefore, these parameters can be incorporated into future work in order to 

improve the accuracy of predictions, which can be used for practical applications. 

 

4. Exploration of Cross Property Correlations with more data  

The method applied in the exploration of cross-property correlations depends 

strongly on the available data. At present, the advent of e-science has meant that 

scientific communication can employ media not previously recognized. Data can 

be made accessible globally so that many geographically dispersed groups can 

analyze raw data according to their own skills. As a result, the sharing of data in 

raw form rather than through the highly processed medium of refereed journals is 

now possible. This means that the construction of global shared databases is a 

reality and it follows from that, multi-property data can be put up and shared. 

There are varieties of databases available, such as the ones listed by Wawrousek 

et al. (1989). Nowadays, more and more of these databases can be accessed via 

the internet (Westbrook et al., 1995; Abrate, 2000). One recent example is the 

functional ceramic materials database developed by Scott et al. (2008). 

 

After the data sharing is in place, the computational processes for mining the 

relationships are needed. Methods are required to develop for identifying how the 

measurement of properties a, b and c can be used to estimate the likely 

magnitude of property d. This will considerable narrow down the likely sample 

space for high throughput methods for d and, as the global database grows this 

cross-correlation may produce a new area of materials science that allows the 

scientific world to home in on new materials at a rate previously thought 

impossible. Where high throughput methods have compressed laboratory time, 

multi-property mapping might compress the history of science. 
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Appendix 1 General Programming Codes of Neural Networks (on which 

the programmes for special cases are based) 

 
1 BPANN Program 
 
[TotalDataBaseRead,TotalElements]=xlsread('Properties','A2:Q76');  
% Read Property Data In 
[rowofwholeproperties,columnofwholeproperties]=size(TotalDataBaseRead); 
for i=1:columnofwholeproperties  
% Output Property (Property to be predicted) One by One in Turn 
    PropertiesOut=TotalDataBaseRead(:,i); 
    if i==1 
        j=(2:columnofwholeproperties); 
    elseif i==columnofwholeproperties 
        j=(1:(columnofwholeproperties-1)); 
    else 
        j=[1:(i-1),(i+1):columnofwholeproperties]; 
    end 
    PropertiesInWhole=TotalDataBaseRead(:,j); % Decide Input Property Family 
    Groups=combnk(1:(columnofwholeproperties-1),7)';  

% Doing Combinatorial Calculation 
    [rowofGroups,columnofGroups]=size(Groups); 
    for iii=1:columnofGroups % 2 (can run part to part) 
        clc 
        clear TotalDataBaseN 
        clear TotalDataBaseNFinal 
        clear index 
        clear mrand1 
        clear brand1 
        clear rrand1 
        clear mrand2 
        clear brand2 
        clear rrand2 
        clear PropertiesIn 
        clear EvaluateFun1 
        clear EvaluateFun2 
        clear EvaluateFun 
        clear MinEvaluateFunoftime 
        clear indexoftime 
        clear PropertiesInIndex 
  
        PropertiesInIndex=Groups(:,iii); 
        PropertiesIn=PropertiesInWhole(:,PropertiesInIndex); 
        TotalDataBaseO=[PropertiesIn PropertiesOut]; 
        [row,column]=size(TotalDataBaseO); 
        TrainingNumber=round(row*4/5); 
        NNHLMax=fix((TrainingNumber-1)/(column+1));  

% Number of Possible Maximum Neurons in Hidden Layer 
        NDistribu=30; % Number of data redistribution 
        TotalDataBaseN=zeros(row,column,NDistribu,NNHLMax);  
        mrand1=zeros(NDistribu,NNHLMax); brand1=zeros(NDistribu,NNHLMax); 

rrand1=zeros(NDistribu,NNHLMax); 
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mrand2=zeros(NDistribu,NNHLMax); brand2=zeros(NDistribu,NNHLMax); 
rrand2=zeros(NDistribu,NNHLMax); 

         
OutCell=cell(76,16); 

  
        EvaluateFun=zeros(NDistribu,NNHLMax); 

MinEvaluateFunoftime=zeros(1,NNHLMax);             
        indexoftime=zeros(1,NNHLMax); 
        index=zeros(row,1,NDistribu,NNHLMax);  
        for k=1:NNHLMax % Search of Number of Neurons in Hidden Layer 
            for kk=1:NDistribu  

% Search of Distribution of Data for the Training set to Cover Problem Domain 
                if k==1 
                    AddNumber=rand(row,1); % Redistribute Data 
                    [AddNumberNew,index(:,1,kk,k)]=sort(AddNumber); 
                    TotalDataBaseN(:,:,kk,k)=TotalDataBaseO(index(:,1,kk,k),:); 
                end 
                TotalDataBaseN(:,:,kk,k)=TotalDataBaseN(:,:,kk,1); 
                index(:,:,kk,k)=index(:,:,kk,1); 
                PropertiesInNew=TotalDataBaseN(:,(1:(column-1)),kk,k)'; 
                PropertiesOutNew=TotalDataBaseN(:,column,kk,k)'; 
  
                [PropertiesInNewn,PropertiesInNews]= mapminmax(PropertiesInNew); 
                [PropertiesOutNewn,PropertiesOutNews]=mapminmax(PropertiesOutNew);  
                iitst=3:5:row; % Testing set 
                iitr=[1:5:row 2:5:row 4:5:row 5:5:row]; % Training set 
                test.P=PropertiesInNewn(:,iitst);test.T=PropertiesOutNewn(:,iitst); 
                ptr=PropertiesInNewn(:,iitr);ttr=PropertiesOutNewn(:,iitr); 
                net=newff(minmax(ptr),[k 1],{'tansig' 'purelin'},'trainbrs'); 
                net.trainParam.epochs = 800; 
                net.trainParam.goal = 1e-8; 
                net=init(net); 
                [net,tr]=train(net,ptr,ttr,[],[],[],test); 
                PropertiesOutSimulatenTr=sim(net,ptr); 
                PropertiesOutSimulatents=sim(net,test.P); 
  
                clear net 
                
PropertiesOutSimulateTr=mapminmax('reverse',PropertiesOutSimulatenTr,PropertiesOu
tNews); 
                
PropertiesOutSimulatets=mapminmax('reverse',PropertiesOutSimulatents,PropertiesOut
News); 
                
[mrand1(kk,k),brand1(kk,k),rrand1(kk,k)]=postregnopic(PropertiesOutSimulateTr,Prope
rtiesOutNew(:,iitr)); 
                
[mrand2(kk,k),brand2(kk,k),rrand2(kk,k)]=postregnopic(PropertiesOutSimulatets,Proper
tiesOutNew(:,iitst)); 
                if isnan(rrand1(kk,k)) 
                    rrand1(kk,k)=0; 
                elseif rrand1(kk,k)==Inf 
                    rrand1(kk,k)=0; 
                elseif rrand1(kk,k)==-Inf 
                    rrand1(kk,k)=0; 
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                end 
                if isnan(rrand2(kk,k)) 
                    rrand2(kk,k)=0; 
                elseif rrand2(kk,k)==Inf 
                    rrand2(kk,k)=0; 
                elseif rrand2(kk,k)==-Inf 
                    rrand2(kk,k)=0; 
                end 
  
                EvaluateFun(kk,k)=((abs(mrand1(kk,k)-1)+(1-

rrand1(kk,k)))+(abs(mrand2(kk,k)-1)+(1-
rrand2(kk,k))))/2+abs((abs(mrand1(kk,k)-1)+(1-
rrand1(kk,k)))-(abs(mrand2(kk,k)-1)+(1-rrand2(kk,k)))); 

            end 
            [MinEvaluateFunoftime(k),indexoftime(k)]=min(EvaluateFun(:,k)); 

 % Get minimum value of criterion within Different Distributions 
        end 
        [MinEvaluateFunofNeurons,indexofneuron]=min(MinEvaluateFunoftime(:)); 

 % Get minimum value of criterion within Different Number of Neurons 
  
           
TotalDataBaseNFinal=TotalDataBaseN(:,:,indexoftime(indexofneuron),indexofneuron); 
 PropertiesInNewFinal=TotalDataBaseNFinal(:,(1:(column-1)))'; 
 PropertiesOutNewFinal=TotalDataBaseNFinal(:,column)'; 
  
           
[PropertiesInNewFinaln,PropertiesInNewFinals]=mapminmax(PropertiesInNewFinal); 
           
[PropertiesOutNewFinaln,PropertiesOutNewFinals]=mapminmax(PropertiesOutNewFin
al); 
           iitstFinal=3:5:row; 
           iitrFinal=[1:5:row 2:5:row 4:5:row 5:5:row]; 
           testFinal.P=PropertiesInNewFinaln(:,iitstFinal); 

testFinal.T=PropertiesOutNewFinaln(:,iitstFinal); 
           ptrFinal=PropertiesInNewFinaln(:,iitrFinal); 

ttrFinal=PropertiesOutNewFinaln(:,iitrFinal); 
           netFinal=newff(minmax(ptr),[indexofneuron 1],{'tansig' 'purelin'},'trainbrs'); 
           netFinal.trainParam.epochs = 800; 
           netFinal.trainParam.goal = 1e-8; 
           netFinal=init(netFinal); 
           [netFinal,trFinal]=train(netFinal,ptrFinal,ttrFinal,[],[],[],testFinal); 
           PropertiesOutNewFinalSimulatenTr=sim(netFinal,ptrFinal); 
           PropertiesOutNewFinalSimulatents=sim(netFinal,testFinal.P); 
           clear netFinal 
             
PropertiesOutNewFinalSimulateTr=mapminmax('reverse',PropertiesOutNewFinalSimul
atenTr,PropertiesOutNewFinals); 
           
PropertiesOutNewFinalSimulatets=mapminmax('reverse',PropertiesOutNewFinalSimula
tents,PropertiesOutNewFinals); 
  
           PropertiesOutNewFinalTr=PropertiesOutNewFinal(:,iitrFinal); 
           PropertiesOutNewFinalts=PropertiesOutNewFinal(:,iitstFinal); 
           Erroroftesting=PropertiesOutNewFinalts-PropertiesOutNewFinalSimulatets; 
           ErroroftestingPercentage=Erroroftesting./PropertiesOutNewFinalts; 
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           FinalProperty=[PropertiesOutNewFinalTr PropertiesOutNewFinalts]; 
           FinalSimulate=[PropertiesOutNewFinalSimulateTr 

PropertiesOutNewFinalSimulatets]; 
           Errorofwhole=FinalProperty-FinalSimulate; 
           ErrorofwholePercentage=Errorofwhole./FinalProperty; 
           % Testing 
           MeanErroroftesting=mean(abs(Erroroftesting)); 
           StdvErroroftesting=std(abs(Erroroftesting)); 
           MeanErroroftestingPercentage=mean(abs(ErroroftestingPercentage)); 
           StdvErroroftestingPercentage=std(abs(ErroroftestingPercentage)); 
           % Whole 
           MeanErrorofwhole=mean(abs(Errorofwhole)); 
           StdvErrorofwhole=std(abs(Errorofwhole)); 
           MeanErrorofwholePercentage=mean(abs(ErrorofwholePercentage)); 
           StdvErrorofwholePercentage=std(abs(ErrorofwholePercentage)); 
           % Find Names 
           strPI=cell(rowofGroups,1); 
           for jjj=1:rowofGroups 
               switch j(Groups(jjj,iii)) 
                   case 1 
                       strPI(jjj)={'MP'}; % Melting Point 
                   case 2 
                       strPI(jjj)={'BP'}; % Boiling Point 
                   case 3 
                       strPI(jjj)={'H of F'}; % Heat of Fusion 
                   case 4 
                       strPI(jjj)={'H of V'}; % Heat of Vaporization 
                   case 5 
                       strPI(jjj)={'MHC'}; % Molar Heat Capacity 
                   case 6 
                       strPI(jjj)={'SHC'}; % Specific Heat Capacity 
                   case 7 
                       strPI(jjj)={'TC'}; % Thermal Conductivity 
                   case 8 
                       strPI(jjj)={'EC'}; % Electrical Conductivity 
                   case 9 
                       strPI(jjj)={'WF'}; % Work Function 
                   case 10 
                       strPI(jjj)={'LTherExC'}; % Linear Thermal Expansion Coeff. 
                   case 11 
                       strPI(jjj)={'AW'}; % Atomic Weight 
                   case 12 
                       strPI(jjj)={'D'}; % Density 
                   case 13 
                       strPI(jjj)={'Electronega.'}; % Electronegativity 
                   case 14 
                       strPI(jjj)={'Fir. Ioni. En.'}; % First Ionization Energy 
                   case 15 
                       strPI(jjj)={'Polari.'}; % Polarizability 
                   case 16 
                       strPI(jjj)={'AV'}; % Atomic Volumn 
               end 
           end 
           switch i 
               case 1 
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                   strPO='MP'; 
               case 2 
                   strPO='BP'; 
               case 3 
                   strPO='H of F'; 
               case 4 
                   strPO='H of V'; 
               case 5 
                   strPO='MHC'; 
               case 6 
                   strPO='SHC'; 
               case 7 
                   strPO='TC'; 
               case 8 
                   strPO='EC'; 
               case 9 
                   strPO='WF'; 
               case 10 
                   strPO='LTherExC'; 
               case 11 
                   strPO='AW'; 
               case 12 
                   strPO='D'; 
               case 13 
                   strPO='Electronega.'; 
               case 14 
                   strPO='Fir. Ioni. En.'; 
               case 15 
                   strPO='Polari.'; 
               case 16 
                   strPO='AV'; 
           end 
           
[m3,b3,r3]=postregsfinal(PropertiesOutNewFinalSimulateTr,PropertiesOutNewFinalSi_ 

mulatets,PropertiesOutNewFinalTr,PropertiesOutNewFinalts);  
% Draw Figure of Whole set 
           FigureCrit=abs(1-m3)+(1-r3); 
           ElementIndex=index(:,1,indexoftime(indexofneuron),indexofneuron); 
           ElementIndexFinal=ElementIndex([iitrFinal,iitstFinal],:); 
           FinalElements(:,:)=TotalElements(ElementIndexFinal,:); 
           Evaluateofaway(:,:)=abs(Errorofwhole); 
  
           dv=0.8*max([PropertiesOutNewFinalTr PropertiesOutNewFinalts])/60; 
           for iiii=1:75 
               if abs(Errorofwhole(iiii))/FinalProperty(iiii)>=0.3 
                  xposition=FinalProperty(:,iiii)+dv; 
                  yposition=FinalSimulate(:,iiii)-dv; 
                  Elementsmarker=FinalElements(iiii,:); 
                  text(xposition,yposition,Elementsmarker) 
               end 
           end 
  
           nameoffileTr=['(',num2str(FigureCrit),')',' ','Predict',' ',strPO,' ','from',' 

',char(strPI(1)),',',char(strPI(2)),',',char(strPI(3)),',',char(strPI(4)),',',
char(strPI(5)),',',char(strPI(6)),',',char(strPI(7)),' ','(training)','.fig'];  
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nameoffileTs=['(',num2str(FigureCrit),')',' ','Predict',' ',strPO,' ','from',' 

',char(strPI(1)),',',char(strPI(2)),',',char(strPI(3)),',',char(strPI(4)),',',char(st
rPI(5)),',',char(strPI(6)),',',char(strPI(7)),' ','(testing)','.fig'];  

           
 nameoffileWhole=['(',num2str(FigureCrit),')',' ','Predict',' ',strPO,' ','from',' 

',char(strPI(1)),',',char(strPI(2)),',',char(strPI(3)),',',char(strPI(4)),',',ch
ar(strPI(5)),',',char(strPI(6)),',',char(strPI(7)),' ','(whole set)','.fig'];     

           
 nameoffile2=['(',num2str(FigureCrit),')',' ','Predict',' ',strPO,' ','from',' 

',char(strPI(1)),',',char(strPI(2)),',',char(strPI(3)),',',char(strPI(4)),',',char(st
rPI(5)),',',char(strPI(6)),',',char(strPI(7)),'.xls']; 

            
h3=gcf; 

           saveas(h3,nameoffileWhole,'fig') 
           delete(h3) 
           

[m1,b1,r1]=postreglabel(PropertiesOutNewFinalSimulateTr,PropertiesOutNewFi 
_nalTr); % Draw Figure of Training set 

            
h1=gcf; 

           saveas(h1,nameoffileTr,'fig') 
           delete(h1) 
            

[m2,b2,r2]=postreglabel(PropertiesOutNewFinalSimulatets,PropertiesOutNewFi 
_nalts);   % Draw Figure of Testing set 

           h2=gcf; 
           saveas(h2,nameoffileTs,'fig') 
           delete(h2)          
  
           OutCell(1,:)={'Predicted Error of Testing','Percentage Error of Testing','Predicted 

Error of Whole Set','Percentage Error of Whole Set','Mean Error 
of Testing (modul)','Error Standard Deviation of Testing 
(modul)','Mean Percentage Error of Testing (modul)','Percentage 
Error Standard Deviation of Testing (modul)','Mean Error of 
Whole (modul)','Error Standard Deviation of Whole 
(modul)','Mean Percentage Error of Whole (modul)','Percentage 
Error Standard Deviation of Whole (modul)','Number of Neurons 
in Hidden Layer','Real Values','Values from 
Predictioin','Elements'}; 

           OutCell(2:16,1)=num2cell(Erroroftesting)'; 
           OutCell(2:16,2)=num2cell(ErroroftestingPercentage)'; 
           OutCell(2:76,3)=num2cell(Errorofwhole)'; 
           OutCell(2:76,4)=num2cell(ErrorofwholePercentage)'; 
           
OutCell(2,5:13)={MeanErroroftesting,StdvErroroftesting,MeanErroroftestingPercentage
,StdvErroroftestingPercentage,MeanErrorofwhole,StdvErrorofwhole,MeanErrorofwhole
Percentage,StdvErrorofwholePercentage,indexofneuron}; 
           OutCell(2:76,14)=num2cell(FinalProperty)'; 
           OutCell(2:76,15)=num2cell(FinalSimulate)'; 
           OutCell(2:76,16)=FinalElements(:,:); 
           xlswrites(nameoffile2,OutCell,'A1:P76') % Write Results in 
  
    end 
end 
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2 PNN Program 

 
[TotalDataBaseRead00,TotalCompounds00]=xlsread('Whole','A2:E377');  
% Read Property Data in 
TotalDataBaseRead=TotalDataBaseRead00'; 
TotalCompounds=TotalCompounds00'; 
PerovskiteJudge=TotalDataBaseRead(4,:); % Decide Output 
Parameters=TotalDataBaseRead(1:2,:);  % Decide Input 
  
TotalDataBaseO=[Parameters;PerovskiteJudge]; 
[row,column]=size(TotalDataBaseO); 
NDistribu=100; % Number of Data Redistribution 
Spread=10; % Decide maximum value of spread 
TotalDataBaseN=zeros(3,column,NDistribu,10); index=zeros(1,column,NDistribu,10);  
EvaluateFun=zeros(NDistribu,10);MinEvaluateFunoftime=zeros(1,10); 
indexoftime=zeros(1,10); 
ft=zeros(column); 
for k=1: Spread 
    for kk=1:NDistribu 
        if k==1 
            AddNumber=rand(1,column); % Redistribute Data 
            [AddNumberNew,index(1,:,kk,k)]=sort(AddNumber); 
            TotalDataBaseN(:,:,kk,k)=TotalDataBaseO(:,index(1,:,kk,k)); 
        end 
        TotalDataBaseN(:,:,kk,k)=TotalDataBaseN(:,:,kk,1); 
        index(:,:,kk,k)=index(:,:,kk,1); 
        ParametersNew=TotalDataBaseN(1:2,:,kk,k);  
        PerovskiteJudgeNew=TotalDataBaseN(3,:,kk,k); 
        iitst=3:5:column; 
        iitr=[1:5:column 2:5:column 4:5:column 5:5:column]; 
        ptr=ParametersNew(:,iitr); ttr=PerovskiteJudgeNew(:,iitr); 
        pts=ParametersNew(:,iitst); 
        net=newpnn(ptr,ind2vec(ttr),k/10); 
        SimulatePredict=sim(net,ParametersNew); 
        DeviationofPrediction=abs(PerovskiteJudgeNew-vec2ind(SimulatePredict)); 
        EvaluateFun(kk,k)=sum(DeviationofPrediction); 
    end 
    [MinEvaluateFunoftime(k),indexoftime(k)]=min(EvaluateFun(:,k)); 
end 
[MinEvaluateFunofSpread,indexofSpread]=min(MinEvaluateFunoftime(:)); 
TotalDataBaseNFinal=TotalDataBaseN(:,:,indexoftime(indexofSpread),indexofSpread); 
ParametersNewFinal=TotalDataBaseNFinal(1:2,:); 
PerovskiteJudgeNewFinal=TotalDataBaseNFinal(3,:); 
iitstFinal=3:5:column; 
iitrFinal=[1:5:column 2:5:column 4:5:column 5:5:column]; 
  
ptrFinal=ParametersNewFinal(:,iitrFinal); ttrFinal=PerovskiteJudgeNewFinal(:,iitrFinal); 
ptsFinal=ParametersNewFinal(:,iitstFinal); 
netFinal=newpnn(ptrFinal,ind2vec(ttrFinal),indexofSpread/10); 
p1=2.0:0.05:3.6; 
p2=1.3:0.05:2.5;  
[P1,P2]=meshgrid(p1,p2); 
pp=[P1(:) P2(:)]'; 
aa=sim(netFinal,pp); 
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aa=full(aa); 
m=mesh(P1,P2,reshape(aa(1,:),length(p2),length(p1))); 
set(m,'facecolor','yellow','linestyle','none'); % Non-perovskite 
hold on 
m=mesh(P1,P2,reshape(aa(2,:),length(p2),length(p1))); % Perovskite 
set(m,'facecolor','green','linestyle','none'); 
plot3(TotalDataBaseRead(1,1:144),TotalDataBaseRead(2,1:144),ones(1,144)+0.1,'x','ma

rkersize',7)  
plot3(TotalDataBaseRead(1,145:376),TotalDataBaseRead(2,145:376),ones(1,232)+0.1,'

diamond','markersize',7)  
bb=sim(netFinal,TotalDataBaseRead(1:2,:)); 
bb=full(bb); 
for i=1:column 
    ft(i)=isequal(vec2ind(bb(:,i)),TotalDataBaseRead(4,i)); 
    if ft(i)==0 
        
text(TotalDataBaseRead(1,i),TotalDataBaseRead(2,i)+0.01,1.1,TotalCompounds(1,i),'fo
ntsize',8); 
    end 
end 
axis([2.0 3.6 1.3 2.5])  
hold off 
view(2) 
title('The Classification of Perovskites and Non-Perovskites') 
xlabel('A-O Bond Distance') 
ylabel('B-O Bond Distance') 
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Appendix 2           

1.   Silver and Copper Alloy Systems        
     

1.The valences of elements which were mentioned by Hume-Rothery in 1934 followed by him     

 (Cu=1, Ag=1, Au=1, Be=2, Ga=3, Sn=4, Ge=4, Sb=5, As=5, Tl=3, Pb=4, Cd=2)      

2.The Ag alloy Solid Solubility Limit are recorded from "Binary Phase Diagram Vol.1 Thaddeus B. Massalski 1987 second printing (copyright 1986)"  

3.The Cu alloy Solid Solubility Limit are recorded from "Binary Phase Diagram Vol.1 Thaddeus B. Massalski 1987 second printing (copyright 1986)"  

4.Physical parameters are recorded from "Chemistry Data Book 2nd Edition in SI. J G Stark, H G Wallace 1984 reprinted (1982 edition)"   

            

Binary Solvent Solute Solubility Limits Size(solvent) Size(Solute) Valence Valence Electrochemical Electrochemical Structure(2) Structure(2) 

System   (Atoms %) Radii in (Angstronms) Solvent Solute Factors(Solvent) Factors(Solute) (Solvent) (Solute) 

Ag-Be Ag Alfa-Be 0.3 1.44 1.12 1 2 1.9 1.5 cF4 hP2 

  Alfa-Be Ag 0.048 1.12 1.44 2 1 1.5 1.9 hP2 cF4 

  Ag Beta-Be 0.3 1.44 1.12 1 2 1.9 1.5 cF4 cI2 

  Beta-Be Ag 0 1.12 1.44 2 1 1.5 1.9 cI2 cF4 

Ag-Zn Ag Zn 40.2 1.44 1.33 1 2 1.9 1.6 cF4 hP2 

  Zn Ag 5 1.33 1.44 2 1 1.6 1.9 hP2 cF4 

Ag-Cd Ag Cd 42.2 1.44 1.49 1 2 1.9 1.7 cF4 hP2 

  Cd Ag 7 1.49 1.44 2 1 1.7 1.9 hP2 cF4 

Ag-Hg Ag Hg 37.3 1.44 1.52 1 2 1.9 1.9 cF4 hR1 

  Hg Ag 0 1.52 1.44 2 1 1.9 1.9 hR1 cF4 

Ag-Al Ag Al 20.4 1.44 1.35(4) 1 3 1.9 1.5 cF4 cF4 
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  Al Ag 23.5 1.43 1.44 3 1 1.5 1.9 cF4 cF4 

Ag-Ga Ag Ga 18.8 1.44 1.325(4) 1 3 1.9 1.6 cF4 oC8 

  Ga Ag 3 1.22(4) 1.44 3 1 1.6 1.9 oC8 cF4 

Ag-In Ag In 20 1.44 1.51 1 3 1.9 1.7 cF4 tI2 

  In Ag 0 1.66 1.44 3 1 1.7 1.9 tI2 cF4 

Ag-Sn Ag Alfa-Sn 11.5 1.44 1.62 1 4 1.9 1.8 cF4 cF8 

  Alfa-Sn Ag 0 1.62 1.44 4 1 1.8 1.9 cF8 cF4 

  Ag Beta-Sn 11.5 1.44 1.47 1 4 1.9 1.8 cF4 tI4 

  Beta-Sn Ag 0.088034(2) 1.62 1.44 4 1 1.8 1.9 tI4 cF4 

Ag-Pb Ag Pb 2.8 1.44 1.6 1 4 1.9 1.8 cF4 cF4 

  Pb Ag 0.19 1.75 1.44 4 1 1.8 1.9 cF4 cF4 

Ag-Cu Ag Cu 14.07(2) 1.44 1.28 1 1 1.9 1.9 cF4 cF4 

  Cu Ag 4.87(2) 1.28 1.44 1 1 1.9 1.9 cF4 cF4 

Ag-Sb Ag Sb 7.2 1.44 1.45(3) 1 5 1.9 1.9 cF4 hR2 

  Sb Ag 0 1.45(3) 1.44 5 1 1.9 1.9 hR2 cF4 

Ag-Bi Ag Bi 2.615(2) 1.44 1.7 1 5 1.9 1.9 cF4 hR2 

  Bi Ag 0 1.7 1.44 5 1 1.9 1.9 hR2 cF4 

Ag-As Ag As 7.8 1.44 1.25(3) 1 5 1.9 2 cF4 hR2 

  As Ag 0 1.25(3) 1.44 5 1 2 1.9 hR2 cF4 

Cu-Au Cu Au 100 1.28 1.44 1 1 1.9 2.4 cF4 cF4 

  Au Cu 100 1.44 1.28 1 1 2.4 1.9 cF4 cF4 

Cu-Be Cu Alfa-Be 16.5 1.28 1.12 1 2 1.9 1.5 cF4 hP2 

  Alfa-Be Cu 9.5 1.12 1.28 2 1 1.5 1.9 hP2 cF4 
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  Cu Beta-Be 16.5 1.28 1.12 1 2 1.9 1.5 cF4 cI2 

  Beta-Be Cu 17.3 1.12 1.28 2 1 1.5 1.9 cI2 cF4 

Cu-Mg Cu Mg 6.93 1.28 1.6 1 2 1.9 1.2 cF4 hP2 

  Mg Cu 0.013 1.6 1.28 2 1 1.2 1.9 hP2 cF4 

Cu-Zn Cu Zn 38.3 1.28 1.33 1 2 1.9 1.6 cF4 hP2 

  Zn Cu 2.8 1.33 1.28 2 1 1.6 1.9 hP2 cF4 

Cu-Cd Cu Cd 2.14 1.28 1.49 1 2 1.9 1.7 cF4 hP2 

  Cd Cu 0 1.49 1.28 2 1 1.7 1.9 hP2 cF4 

Cu-Al Cu Al 19.7 1.28 1.35(4) 1 3 1.9 1.5 cF4 cF4 

  Al Cu 2.48 1.43 1.28 3 1 1.5 1.9 cF4 cF4 

Cu-Ga Cu Ga 20 1.28 1.325(4) 1 3 1.9 1.6 cF4 oC8 

  Ga Cu 0 1.22(4) 1.28 3 1 1.6 1.9 oC8 cF4 

Cu-Si Cu Si 11.25 1.28 1.17* 1 4 1.9 1.8 cF4 cF8 

  Si Cu 0 1.17* 1.28 4 1 1.8 1.9 cF8 cF4 

Cu-Ge Cu Ge 12 1.28 1.23(3) 1 4 1.9 1.8 cF4 cF8 

  Ge Cu 0 1.23(3) 1.28 4 1 1.8 1.9 cF8 cF4 

Cu-Sn Cu Alfa-Sn 9.1 1.28 1.62 1 4 1.9 1.8 cF4 cF8 

  Alfa-Sn Cu 0 1.62 1.28 4 1 1.8 1.9 cF8 cF4 

  Cu Beta-Sn 9.1 1.28 1.47 1 4 1.9 1.8 cF4 tI4 

  Beta-Sn Cu 0 1.62 1.28 4 1 1.8 1.9 tI4 cF4 

Cu-Pb Cu Pb 0.09 1.28 1.6 1 4 1.9 1.8 cF4 cF4 

  Pb Cu 0.023 1.75 1.28 4 1 1.8 1.9 cF4 cF4 

Cu-Sb Cu Sb 6.1 1.28 1.45(3) 1 5 1.9 1.9 cF4 hR2 
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  Sb Cu 0 1.45(3) 1.28 5 1 1.9 1.9 hR2 cF4 

Cu-Bi Cu Bi 0.003 1.28 1.7 1 5 1.9 1.9 cF4 hR2 

  Bi Cu 0 1.7 1.28 5 1 1.9 1.9 hR2 cF4 

Cu-Hg Cu Hg 5 1.28 1.52 1 2 1.9 1.9 cF4 hR1 

  Hg Cu 0 1.52 1.28 2 1 1.9 1.9 hR1 cF4 

Ag-Au Ag Au 100 1.44 1.44 1 1 1.9 2.4 cF4 cF4 

  Au Ag 100 1.44 1.44 1 1 2.4 1.9 cF4 cF4 

Ag-B Ag B 0(1) 1.44 0.8* 1 3 1.9 2 cF4 hR105 

  B Ag 0(1) 0.8* 1.44 3 1 2 1.9 hR105 cF4 

Ag-Ba Ag Ba 0 1.44 2.17 1 2 1.9 0.9 cF4 cI2 

  Ba Ag 0 2.17 1.44 2 1 0.9 1.9 cI2 cF4 

Ag-Ca Ag Alfa-Ca 0 1.44 1.97 1 2 1.9 1 cF4 cF4 

  Alfa-Ca Ag 0 1.97 1.44 2 1 1 1.9 cF4 cF4 

  Ag Beta-Ca 0 1.44 1.97 1 2 1.9 1 cF4 cI2 

  Beta-Ca Ag 0 1.97 1.44 2 1 1 1.9 cI2 cF4 

Ag-Ce Ag Alfa-Ce 0.05 1.44 1.83(3) 1 3** 1.9 1.1 cF4 cF4 

  Alfa-Ce Ag 0 1.83(3) 1.44 3** 1 1.1 1.9 cF4 cF4 

  Ag Beta-Ce 0.05 1.44 1.83(3) 1 3** 1.9 1.1 cF4 hP4 

  Beta-Ce Ag 0 1.83(3) 1.44 3** 1 1.1 1.9 hP4 cF4 

  Ag Gama-Ce 0.05 1.44 1.83(3) 1 3** 1.9 1.1 cF4 cF4 

  Gama-Ce Ag 2 1.83(3) 1.44 3** 1 1.1 1.9 cF4 cF4 

  Ag Delta-Ce 0.05 1.44 1.83(3) 1 3** 1.9 1.1 cF4 cI2 

  Delta-Ce Ag 2 1.83(3) 1.44 3** 1 1.1 1.9 cI2 cF4 
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Ag-Co Ag Epsilon-Co 0.81 1.44 1.25 1 2** 1.9 1.8 cF4 hP2 

  Epsilon-Co Ag 0 1.25 1.44 2** 1 1.8 1.9 hP2 cF4 

  Ag Alfa-Co 0.81 1.44 1.25 1 2** 1.9 1.8 cF4 cF4 

  Alfa-Co Ag 0 1.25 1.44 2** 1 1.8 1.9 cF4 cF4 

Ag-Cr Ag Cr 0 1.44 1.25 1 3** 1.9 1.6 cF4 cI2 

  Cr Ag 0 1.25 1.44 3** 1 1.6 1.9 cI2 cF4 

Ag-Cs Ag Cs 0 1.44 2.62 1 1 1.9 0.7 cF4 cI2 

  Cs Ag 0 2.62 1.44 1 1 0.7 1.9 cI2 cF4 

Ag-Dy Ag Alfa'-Dy 1.3 1.44 1.75(3) 1 3 1.9 1.1 cF4 oC4 

  Alfa'-Dy Ag 0 1.75(3) 1.44 3 1 1.1 1.9 oC4 cF4 

  Ag Alfa-Dy 1.3 1.44 1.75(3) 1 3 1.9 1.1 cF4 hP2 

  Alfa-Dy Ag 0 1.75(3) 1.44 3 1 1.1 1.9 hP2 cF4 

  Ag Beta-Dy 1.3 1.44 1.75(3) 1 3 1.9 1.1 cF4 cI2 

  Bety-Dy Ag 0 1.75(3) 1.44 3 1 1.1 1.9 cI2 cF4 

Ag-Er Ag Er 3.6 1.44 1.73(3) 1 3 1.9 1.2 cF4 hP2 

  Er Ag 0 1.73(3) 1.44 3 1 1.2 1.9 hP2 cF4 

Ag-Eu Ag Eu 0 1.44 1.99(3) 1 2 1.9 1.1 cF4 cI2 

  Eu Ag 0 1.99(3) 1.44 2 1 1.1 1.9 cI2 cF4 

Ag-Fe Ag Delta-Fe 0.0065 1.44 1.26 1 2** 1.9 1.8 cF4 cI2 

  Delta-Fe Ag 0.017 1.26 1.44 2** 1 1.8 1.9 cI2 cF4 

  Ag Gama-Fe 0.0065 1.44 1.26 1 2** 1.9 1.8 cF4 cF4 

  Gama-Fe Ag 0.022 1.26 1.44 2** 1 1.8 1.9 cF4 cF4 

  Ag Alfa-Fe 0.0065 1.44 1.24(4) 1 2** 1.9 1.8 cF4 cI2 
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  Alfa-Fe Ag 0.0002 1.24(4) 1.44 2** 1 1.8 1.9 cI2 cF4 

Ag-Gd Ag Alfa-Gd 0.95 1.44 1.79(3) 1 3 1.9 1.1 cF4 hP2 

  Alfa-Gd Ag 0 1.79(3) 1.44 3 1 1.1 1.9 hP2 cF4 

  Ag Beta-Gd 0.95 1.44 1.79(3) 1 3 1.9 1.1 cF4 cI2 

  Beta-Gd Ag 0 1.79(3) 1.44 3 1 1.1 1.9 cI2 cF4 

Ag-Ge Ag Ge 9.6 1.44 1.23(3) 1 4 1.9 1.8 cF4 cF8 

  Ge Ag 0 1.23(3) 1.44 4 1 1.8 1.9 cF8 cF4 

Ag-Ho Ag Ho 1.6 1.44 1.74(3) 1 3 1.9 1.2 cF4 hP2 

  Ho Ag 0 1.74(3) 1.44 3 1 1.2 1.9 hP2 cF4 

Ag-Ir Ag Ir 0 1.44 1.35 1 4 1.9 2.2 cF4 cF4 

  Ir Ag 0 1.35 1.44 4 1 2.2 1.9 cF4 cF4 

Ag-K Ag K 0 1.44 2.31 1 1 1.9 0.8 cF4 cI2 

  K Ag 0 2.31 1.44 1 1 0.8 1.9 cI2 cF4 

Ag-La Ag Alfa-La 0 1.44 1.88 1 3 1.9 1.1 cF4 hP4 

  Alfa-La Ag 0 1.88 1.44 3 1 1.1 1.9 hP4 cF4 

  Ag Beta-La 0 1.44 1.88 1 3 1.9 1.1 cF4 cF4 

  Beta-La Ag 0 1.88 1.44 3 1 1.1 1.9 cF4 cF4 

  Ag Gama-La 0 1.44 1.88 1 3 1.9 1.1 cF4 cI2 

  Gama-La Ag 0 1.88 1.44 3 1 1.1 1.9 cI2 cF4 

Ag-Li Ag Alfa-Li 60.87(2) 1.44 1.52 1 1 1.9 1 cF4 hP2 

  Alfa-Li Ag 0(2) 1.52 1.44 1 1 1 1.9 hP2 cF4 

  Ag Beta-Li 60.87(2) 1.44 1.52 1 1 1.9 1 cF4 cI2 

  Beta-Li Ag 9.14(2) 1.52 1.44 1 1 1 1.9 cI2 cF4 
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Ag-Lu Ag Lu 5.8 1.44 1.72(3) 1 3 1.9 1.2 cF4 hP2 

  Lu Ag 0 1.72(3) 1.44 3 1 1.2 1.9 hP2 cF4 

Ag-Mg Ag Mg 29.3 1.44 1.6 1 2 1.9 1.2 cF4 hP2 

  Mg Ag 3.83 1.6 1.44 2 1 1.2 1.9 hP2 cF4 

Ag-Mn Ag Alfa-Mn 47 1.44 1.29 1 2** 1.9 1.5 cF4 cI58 

  Alfa-Mn Ag 0 1.29 1.44 2** 1 1.5 1.9 cI58 cF4 

  Ag Beta-Mn 47 1.44 1.29 1 2** 1.9 1.5 cF4 cP20 

  Beta-Mn Ag 1 1.29 1.44 2** 1 1.5 1.9 cP20 cF4 

  Ag Gama-Mn 47 1.44 1.29 1 2** 1.9 1.5 cF4 cF4 

  Gama-Mn Ag 3.4 1.29 1.44 2** 1 1.5 1.9 cF4 cF4 

  Ag Delta-Mn 47 1.44 1.29 1 2** 1.9 1.5 cF4 cI2 

  Delta-Mn Ag 1.5 1.29 1.44 2** 1 1.5 1.9 cI2 cF4 

Ag-Mo Ag Mo 0.15(2) 1.44 1.36 1 4** 1.9 1.8 cF4 cI2 

  Mo Ag 0 1.36 1.44 4** 1 1.8 1.9 cI2 cF4 

Ag-Na Ag Na 0 1.44 1.86 1 1 1.9 0.9 cF4 cI2 

  Na Ag 0 1.86 1.44 1 1 0.9 1.9 cI2 cF4 

Ag-Nd Ag Alfa-Nd 0.2 1.44 1.81(3) 1 3 1.9 1.2 cF4 hP4 

  Alfa-Nd Ag 1.3 1.81(3) 1.44 3 1 1.2 1.9 hP4 cF4 

  Ag Beta-Nd 0.2 1.44 1.81(3) 1 3 1.9 1.2 cF4 cI2 

  Beta-Nd Ag 3.5 1.81(3) 1.44 3 1 1.2 1.9 cI2 cF4 

Ag-Ni Ag Ni 1.28(2) 1.44 1.24 1 2** 1.9 1.8 cF4 cF4 

  Ni Ag 0.99(2) 1.24 1.44 2** 1 1.8 1.9 cF4 cF4 

Ag-Os Ag Os 0 1.44 1.34 1 4 1.9 2.2 cF4 hP2 
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  Os Ag 0 1.34 1.44 4 1 2.2 1.9 hP2 cF4 

Ag-Pd Ag Pd 100 1.44 1.38 1 2 1.9 2.2 cF4 cF4 

  Pd Ag 100 1.38 1.44 2 1 2.2 1.9 cF4 cF4 

Ag-Pr Ag Alfa-Pr 0.05 1.44 1.32(3) 1 3** 1.9 1.1 cF4 hP4 

  Alfa-Pr Ag 1.3 1.32(3) 1.44 3** 1 1.1 1.9 hP4 cF4 

  Ag Beta-Pr 0.05 1.44 1.32(3) 1 3** 1.9 1.1 cF4 cI2 

  Beta-Pr Ag 3.5 1.32(3) 1.44 3** 1 1.1 1.9 cI2 cF4 

Ag-Pt Ag Pt 40.62(2) 1.44 1.38 1 2 1.9 2.2 cF4 cF4 

  Pt Ag 22.16(2) 1.38 1.44 2 1 2.2 1.9 cF4 cF4 

Ag-Pu Ag Alfa-Pu 0 1.44 1.51(3) 1 3** 1.9 1.3 cF4 mP16 

  Alfa-Pu Ag 0 1.51(3) 1.44 3** 1 1.3 1.9 mP16 cF4 

  Ag Beta-Pu 0 1.44 1.51(3) 1 3** 1.9 1.3 cF4 mC34 

  Beta-Pu Ag 0 1.51(3) 1.44 3** 1 1.3 1.9 mC34 cF4 

  Ag Gama-Pu 0 1.44 1.51(3) 1 3** 1.9 1.3 cF4 oF8 

  Gama-Pu Ag 0 1.51(3) 1.44 3** 1 1.3 1.9 oF8 cF4 

  Ag Delta-Pu 0 1.44 1.51(3) 1 3** 1.9 1.3 cF4 cF4 

  Delta-Pu Ag 0 1.51(3) 1.44 3** 1 1.3 1.9 cF4 cF4 

  Ag Delta'-Pu 0 1.44 1.51(3) 1 3** 1.9 1.3 cF4 tI2 

  Delta'-Pu Ag 0 1.51(3) 1.44 3** 1 1.3 1.9 tI2 cF4 

  Ag Epsilon-Pu 0 1.44 1.51(3) 1 3** 1.9 1.3 cF4 cI2 

  Epsilon-Pu Ag 5 1.51(3) 1.44 3** 1 1.3 1.9 cI2 cF4 

Ag-Rb Ag Rb 0 1.44 2.44 1 1 1.9 0.8 cF4 cI2 

  Rb Ag 0 2.44 1.44 1 1 0.8 1.9 cI2 cF4 
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Ag-Rh Ag Rh 0.4(1) 1.44 1.34 1 2 1.9 2.2 cF4 cF4 

  Rh Ag 17.2(1) 1.34 1.33 2 1 2.2 1.9 cF4 cF4 

Ag-Ru Ag Ru 0(1) 1.44 1.33 1 3** 1.9 2.2 cF4 hP2 

  Ru Ag 0(1) 1.33 1.44 3** 1 2.2 1.9 hP2 cF4 

Ag-S Ag Alfa-S 0.14 1.44 1.04* 1 -2 1.9 2.5 cF4 oF128 

  Alfa-S Ag 0 1.04* 1.44 -2 1 2.5 1.9 oF128 cF4 

  Ag Beta-S 0.14 1.44 1.04* 1 -2 1.9 2.5 cF4 mP48 

  Beta-S Ag 0 1.04* 1.44 -2 1 2.5 1.9 mP48 cF4 

Ag-Sc Ag Alfa-Sc 10.4 1.44 1.6 1 3 1.9 1.3 cF4 hP2 

  Alfa-Sc Ag 0 1.6 1.44 3 1 1.3 1.9 hP2 cF4 

  Ag Beta-Sc 10.4 1.44 1.6 1 3 1.9 1.3 cF4 cI2 

  Beta-Sc Ag 0 1.6 1.44 3 1 1.3 1.9 cI2 cF4 

Ag-Se Ag Se 0 1.44 1.16(3) 1 -2 1.9 2.4 cF4 hP3 

  Se Ag 0 1.16(3) 1.44 -2 1 2.4 1.9 hP3 cF4 

Ag-Si Ag Si 0 1.44 1.17* 1 4 1.9 1.8 cF4 cF8 

  Si Ag 0 1.17* 1.44 4 1 1.8 1.9 cF8 cF4 

Ag-Sm Ag Alfa-Sm 1 1.44 1.79(3) 1 3 1.9 1.2 cF4 hR3 

  Alfa-Sm Ag 0 1.79(3) 1.44 3 1 1.2 1.9 hR3 cF4 

  Ag Beta-Sm 1 1.44 1.79(3) 1 3 1.9 1.2 cF4 hP2 

  Beta-Sm Ag 0 1.79(3) 1.44 3 1 1.2 1.9 hP2 cF4 

  Ag Gama-Sm 1 1.44 1.79(3) 1 3 1.9 1.2 cF4 cI2 

  Gama-Sm Ag 0 1.79(3) 1.44 3 1 1.2 1.9 cI2 cF4 

Ag-Sr Ag Alfa-Sr 0 1.44 2.15 1 2 1.9 1 cF4 cF4 
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  Alfa-Sr Ag 0 2.15 1.44 2 1 1 1.9 cF4 cF4 

  Ag Beta-Sr 0 1.44 2.15 1 2 1.9 1 cF4 cI2 

  Beta-Sr Ag 0 2.15 1.44 2 1 1 1.9 cI2 cF4 

Ag-Tb Ag Alfa-Tb 1.1 1.44 1.76(3) 1 3 1.9 1.2 cF4 oC4 

  Alfa-Tb Ag 0 1.76(3) 1.44 3 1 1.2 1.9 oC4 cF4 

  Ag Alfa'-Tb 1.1 1.44 1.76(3) 1 3 1.9 1.2 cF4 hP2 

  Alfa'-Tb Ag 0 1.76(3) 1.44 3 1 1.2 1.9 hP2 cF4 

  Ag Beta-Tb 1.1 1.44 1.76(3) 1 3 1.9 1.2 cF4 cI2 

  Beta-Tb Ag 0 1.76(3) 1.44 3 1 1.2 1.9 cI2 cF4 

Ag-Te Ag Te 0 1.44 1.43(3) 1 -2 1.9 2.1 cF4 hP3 

  Te Ag 0 1.43(3) 1.44 -2 1 2.1 1.9 hP3 cF4 

Ag-Th Ag Alfa-Th 0 1.44 1.8(3) 1 3** 1.9 1.3 cF4 cF4 

  Alfa-Th Ag 0 1.8(3) 1.44 3** 1 1.3 1.9 cF4 cF4 

  Ag Beta-Th 0 1.44 1.8(3) 1 3** 1.9 1.3 cF4 cI2 

  Beta-Th Ag 0 1.8(3) 1.44 3** 1 1.3 1.9 cI2 cF4 

Ag-Ti Ag Alfa-Ti 5 1.44 1.46 1 2** 1.9 1.5 cF4 hP2 

  Alfa-Ti Ag 4.7 1.46 1.44 2** 1 1.5 1.9 hP2 cF4 

  Ag Beta-Ti 5 1.44 1.46 1 2** 1.9 1.5 cF4 cI2 

  Beta-Ti Ag 15.5 1.46 1.44 2** 1 1.5 1.9 cI2 cF4 

Ag-Tl Ag Alfa-Tl 7.5 1.44 1.56 1 3 1.9 1.8 cF4 hP2 

  Alfa-Tl Ag 0 1.71 1.44 3 1 1.8 1.9 hP2 cF4 

  Ag Beta-Tl 7.5 1.44 1.56 1 3 1.9 1.8 cF4 cI2 

  Beta-Tl Ag 0 1.71 1.44 3 1 1.8 1.9 cI2 cF4 
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Ag-Tm Ag Tm 4.57 1.44 1.72(3) 1 3 1.9 1.2 cF4 hP2 

  Tm Ag 0 1.72(3) 1.44 3 1 1.2 1.9 hP2 cF4 

Ag-U Ag Alfa-U 2.3 1.44 1.39(3) 1 3** 1.9 1.7 cF4 oC4 

  Alfa-U Ag 0 1.39(3) 1.44 3** 1 1.7 1.9 oC4 cF4 

  Ag Beta-U 2.3 1.44 1.39(3) 1 3** 1.9 1.7 cF4 tP30 

  Beta-U Ag 0 1.39(3) 1.44 3** 1 1.7 1.9 tP30 cF4 

  Ag Gama-U 2.3 1.44 1.39(3) 1 3** 1.9 1.7 cF4 cI2 

  Gama-U Ag 0 1.39(3) 1.44 3** 1 1.7 1.9 cI2 cF4 

Ag-V Ag V 0(1) 1.44 1.31 1 3** 1.9 1.6 cF4 cI2 

  V Ag 0(1) 1.31 1.44 3** 1 1.6 1.9 cI2 cF4 

Ag-Y Ag Alfa-Y 1.31 1.44 1.8 1 3 1.9 1.2 cF4 hP2 

  Alfa-Y Ag 0 1.8 1.44 3 1 1.2 1.9 hP2 cF4 

  Ag Beta-Y 1.31 1.44 1.8 1 3 1.9 1.2 cF4 cI2 

  Beta-Y Ag 0 1.8 1.44 3 1 1.2 1.9 cI2 cF4 

Ag-Yb Ag Alfa-Yb 1.92 1.44 1.94(3) 1 2 1.9 1.1 cF4 hP2 

  Alfa-Yb Ag 0 1.94(3) 1.44 2 1 1.1 1.9 hP2 cF4 

  Ag Beta-Yb 1.92 1.44 1.94(3) 1 2 1.9 1.1 cF4 cF4 

  Beta-Yb Ag 0 1.94(3) 1.44 2 1 1.1 1.9 cF4 cF4 

  Ag Gama-Yb 1.92 1.44 1.94(3) 1 2 1.9 1.1 cF4 cI2 

  Gama-Yb Ag 0 1.94(3) 1.44 2 1 1.1 1.9 cI2 cF4 

Ag-Zr Ag Alfa-Zr 0.11 1.44 1.57 1 4 1.9 1.4 cF4 hP2 

  Alfa-Zr Ag 1.1 1.57 1.44 4 1 1.4 1.9 hP2 cF4 

  Ag Beta-Zr 0.11 1.44 1.57 1 4 1.9 1.4 cF4 cI2 
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  Beta-Zr Ag 20 1.57 1.44 4 1 1.4 1.9 cI2 cF4 

Cu-As Cu As 6.7 1.28 1.25(3) 1 5 1.9 2 cF4 hR2 

  As Cu 0 1.25(3) 1.28 5 1 2 1.9 hR2 cF4 

Cu-B Cu Alfa-B 0 1.28 0.8* 1 3 1.9 2 cF4 hR12 

  Alfa-B Cu 0 0.8* 1.28 3 1 2 1.9 hR12 cF4 

  Cu Beta-B 0 1.28 0.8* 1 3 1.9 2 cF4 hR105 

  Beta-B Cu 0 0.8* 1.28 3 1 2 1.9 hR105 cF4 

Cu-Ba Cu Ba 0 1.28 2.17 1 2 1.9 0.9 cF4 cI2 

  Ba Cu 0 2.17 1.28 2 1 0.9 1.9 cI2 cF4 

Cu-C Cu C 0.052884(2) 1.28 0.77* 1 4** 1.9 2.5 cF4 hP4 

  C Cu 0(2) 0.77* 1.28 4** 1 2.5 1.9 hP4 cF4 

Cu-Ca Cu Alfa-Ca 0 1.28 1.97 1 2 1.9 1 cF4 cF4 

  Alfa-Ca Cu 0 1.97 1.28 2 1 1 1.9 cF4 cF4 

  Cu Beta-Ca 0 1.28 1.97 1 2 1.9 1 cF4 cI2 

  Beta-Ca Cu 0 1.97 1.28 2 1 1 1.9 cI2 cF4 

Cu-Ce Cu Alfa-Ce 0 1.28 1.83(3) 1 3** 1.9 1.1 cF4 cF4 

  Alfa-Ce Cu 0 1.83(3) 1.28 3** 1 1.1 1.9 cF4 cF4 

  Cu Beta-Ce 0 1.28 1.83(3) 1 3** 1.9 1.1 cF4 hP4 

  Beta-Ce Cu 0 1.83(3) 1.28 3** 1 1.1 1.9 hP4 cF4 

  Cu Gama-Ce 0 1.28 1.83(3) 1 3** 1.9 1.1 cF4 cF4 

  Gama-Ce Cu 0 1.83(3) 1.23 3** 1 1.1 1.9 cF4 cF4 

  Cu Delta-Ce 0 1.28 1.83(3) 1 3** 1.9 1.1 cF4 cI2 

  Delta-Ce Cu 0 1.83(3) 1.28 3** 1 1.1 1.9 cI2 cF4 



Appendix 2 

 251 

Cu-Co Cu Alfa-Co 8 1.28 1.25 1 2** 1.9 1.8 cF4 cF4 

  Alfa-Co Cu 20 1.25 1.28 2** 1 1.8 1.9 cF4 cF4 

  Cu Epsilon-Co 8 1.28 1.25 1 2** 1.9 1.8 cF4 hP2 

  Epsilon-Co Cu 0.4 1.25 1.28 2** 1 1.8 1.9 hP2 cF4 

Cu-Cr Cu Cr 0.89 1.28 1.25 1 3** 1.9 1.6 cF4 cI2 

  Cr Cu 0.2 1.25 1.28 3** 1 1.6 1.9 cI2 cF4 

Cu-Cs Cu Cs 0 1.28 2.62 1 1 1.9 0.7 cF4 cI2 

  Cs Cu 0 2.62 1.28 1 1 0.7 1.9 cI2 cF4 

Cu-Dy Cu Alfa'-Dy 0 1.28 1.75(3) 1 3 1.9 1.1 cF4 oC4 

  Alfa'-Dy Cu 0 1.75(3) 1.28 3 1 1.1 1.9 oC4 cF4 

  Cu Alfa-Dy 0 1.28 1.75(3) 1 3 1.9 1.1 cF4 hP2 

  Alfa-Dy Cu 0 1.75(3) 1.28 3 1 1.1 1.9 hP2 cF4 

  Cu Beta-Dy 0 1.28 1.75(3) 1 3 1.9 1.1 cF4 cI2 

  Beta-Dy Cu 0 1.75(3) 1.28 3 1 1.1 1.9 cI2 cF4 

Cu-Er Cu Er 0 1.28 1.73(3) 1 3 1.9 1.2 cF4 hP2 

  Er Cu 0 1.73(3) 1.28 3 1 1.2 1.9 hP2 cF4 

Cu-Eu Cu Eu 0 1.28 1.99(3) 1 2 1.9 1.1 cF4 cI2 

  Eu Cu 0 1.99(3) 1.28 2 1 1.1 1.9 cI2 cF4 

Cu-Fe Cu Alfa-Fe 4.64 1.28 1.24(4) 1 2** 1.9 1.8 cF4 cI2 

  Alfa-Fe Cu 1.94 1.24(4) 1.28 2** 1 1.8 1.9 cI2 cF4 

  Cu Gama-Fe 4.64 1.28 1.26 1 2** 1.9 1.8 cF4 cF4 

  Gama-Fe Cu 11.61 1.26 1.28 2** 1 1.8 1.9 cF4 cF4 

  Cu Delta-Fe 4.64 1.28 1.26 1 2** 1.9 1.8 cF4 cI2 
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  Delta-Fe Cu 6.74 1.26 1.28 2** 1 1.8 1.9 cI2 cF4 

Cu-Gd Cu Alfa-Gd 0 1.28 1.79(3) 1 3 1.9 1.1 cF4 hP2 

  Alfa-Gd Cu 1.8 1.79(3) 1.28 3 1 1.1 1.9 hP2 cF4 

  Cu Beta-Gd 0 1.28 1.79(3) 1 3 1.9 1.1 cF4 cI2 

  Beta-Gd Cu 0 1.79(3) 1.28 3 1 1.1 1.9 cI2 cF4 

Cu-Hf Cu Alfa-Hf 0.39442(2) 1.28 1.57 1 4 1.9 1.3 cF4 hP2 

  Alfa-Hf Cu 0.8381(2) 1.57 1.28 4 1 1.3 1.9 hP2 cF4 

  Cu Beta-Hf 0.39442(2) 1.28 1.57 1 4 1.9 1.3 cF4 cI2 

  Beta-Hf Cu 4.37(2) 1.57 1.28 4 1 1.3 1.9 cI2 cF4 

Cu-In Cu In 11 1.28 1.51 1 3 1.9 1.7 cF4 tI2 

  In Cu 0 1.66 1.28 3 1 1.7 1.9 tI2 cF4 

Cu-Ir Cu Ir 8 1.28 1.35 1 4 1.9 2.2 cF4 cF4 

  Ir Cu 1.3 1.35 1.28 4 1 2.2 1.9 cF4 cF4 

Cu-K Cu K 0 1.28 2.31 1 1 1.9 0.8 cF4 cI2 

  K Cu 0 2.31 1.28 1 1 0.8 1.9 cI2 cF4 

Cu-La Cu Alfa-La 0 1.28 1.88 1 3 1.9 1.1 cF4 hP4 

  Alfa-La Cu 0 1.88 1.28 3 1 1.1 1.9 hP4 cF4 

  Cu Beta-La 0 1.28 1.88 1 3 1.9 1.1 cF4 cF4 

  Beta-La Cu 0 1.88 1.28 3 1 1.1 1.9 cF4 cF4 

  Cu Gama-La 0 1.28 1.88 1 3 1.9 1.1 cF4 cI2 

  Gama-La Cu 0 1.88 1.28 3 1 1.1 1.9 cI2 cF4 

Cu-Li Cu Alfa-Li 22 1.28 1.52 1 1 1.9 1 cF4 hP2 

  Alfa-Li Cu 0 1.52 1.28 1 1 1 1.9 hP2 cF4 



Appendix 2 

 253 

  Cu Beta-Li 22 1.28 1.52 1 1 1.9 1 cF4 cI2 

  Beta-Li Cu 0 1.52 1.28 1 1 1 1.9 cI2 cF4 

Cu-Mn Cu Alfa-Mn 100(2) 1.28 1.29 1 2** 1.9 1.5 cF4 cI58 

  Alfa-Mn Cu 0.26(2) 1.29 1.28 2** 1 1.5 1.9 cI58 cF4 

  Cu Beta-Mn 100(2) 1.28 1.29 1 2** 1.9 1.5 cF4 cP20 

  Beta-Mn Cu 0.43(2) 1.29 1.28 2** 1 1.5 1.9 cP20 cF4 

  Cu Delta-Mn 100(2) 1.28 1.29 1 2** 1.9 1.5 cF4 cI2 

  Delta-Mn Cu 12.52(2) 1.29 1.28 2** 1 1.5 1.9 cI2 cF4 

  Cu Gama-Mn 100(2) 1.28 1.29 1 2** 1.9 1.5 cF4 cF4 

  Gama-Mn Cu 100(2) 1.29 1.28 2** 1 1.5 1.9 cF4 cF4 

Cu-Mo Cu Mo 0 1.28 1.36 1 4** 1.9 1.8 cF4 cI2 

  Mo Cu 0 1.36 1.28 4** 1 1.8 1.9 cI2 cF4 

Cu-Na Cu Alfa-Na 0 1.28 1.86 1 1 1.9 0.9 cF4 hP2 

  Alfa-Na Cu 0 1.86 1.28 1 1 0.9 1.9 hP2 cF4 

  Cu Beta-Na 0 1.28 1.86 1 1 1.9 0.9 cF4 cI2 

  Beta-Na Cu 0 1.86 1.28 1 1 0.9 1.9 cI2 cF4 

Cu-Nb Cu Nb 0 1.28 1.41 1 5 1.9 1.6 cF4 cI2 

  Nb Cu 1.2 1.41 1.28 5 1 1.6 1.9 cI2 cF4 

Cu-Nd Cu Alfa-Nd 0 1.28 1.81(3) 1 3 1.9 1.2 cF4 hP4 

  Alfa-Nd Cu 0 1.81(3) 1.28 3 1 1.2 1.9 hP4 cF4 

  Cu Beta-Nd 0 1.28 1.81(3) 1 3 1.9 1.2 cF4 cI2 

  Beta-Nd Cu 0 1.81(3) 1.28 3 1 1.2 1.9 cI2 cF4 

Cu-Ni Cu Ni 100 1.28 1.24 1 2** 1.9 1.8 cF4 cF4 
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  Ni Cu 100 1.24 1.28 2** 1 1.8 1.9 cF4 cF4 

Cu-Pd Cu Pd 100 1.28 1.38 1 2 1.9 2.2 cF4 cF4 

  Pd Cu 100 1.38 1.28 2 1 2.2 1.9 cF4 cF4 

Cu-Pr Cu Alfa-Pr 0 1.28 1.32(3) 1 3** 1.9 1.1 cF4 hP4 

  Alfa-Pr Cu 0 1.32(3) 1.28 3** 1 1.1 1.9 hP4 cF4 

  Cu Beta-Pr 0 1.28 1.32(3) 1 3** 1.9 1.1 cF4 cI2 

  Beta-Pr Cu 0 1.32(3) 1.28 3** 1 1.1 1.9 cI2 cF4 

Cu-Pt Cu Pt 100 1.28 1.38 1 2 1.9 2.2 cF4 cF4 

  Pt Cu 100 1.38 1.28 2 1 2.2 1.9 cF4 cF4 

Cu-Pu Cu Alfa-Pu 0(2) 1.28 1.51(3) 1 3** 1.9 1.3 cF4 mP16 

  Alfa-Pu Cu 0(2) 1.51(3) 1.28 3** 1 1.3 1.9 mP16 cF4 

  Cu Beta-Pu 0(2) 1.28 1.51(3) 1 3** 1.9 1.3 cF4 mC34 

  Beta-Pu Cu 0(2) 1.51(3) 1.28 3** 1 1.3 1.9 mC34 cF4 

  Cu Gama-Pu 0(2) 1.28 1.51(3) 1 3** 1.9 1.3 cF4 oF8 

  Gama-Pu Cu 0(2) 1.51(3) 1.28 3** 1 1.3 1.9 oF8 cF4 

  Cu Delta-Pu 0(2) 1.28 1.51(3) 1 3** 1.9 1.3 cF4 cF4 

  Delta-Pu Cu 0(2) 1.51(3) 1.28 3** 1 1.3 1.9 cF4 cF4 

  Cu Delta'-Pu 0(2) 1.28 1.51(3) 1 3** 1.9 1.3 cF4 tI2 

  Delta'-Pu Cu 0(2) 1.51(3) 1.28 3** 1 1.3 1.9 tI2 cF4 

  Cu Epsilon-Pu 0(2) 1.28 1.51(3) 1 3** 1.9 1.3 cF4 cI2 

  Epsilon-Pu Cu 4.5** 1.51(3) 1.28 3** 1 1.3 1.9 cI2 cF4 

Cu-Rb Cu Rb 0 1.28 2.44 1 1 1.9 0.8 cF4 cI2 

  Rb Cu 0 2.44 1.28 1 1 0.8 1.9 cI2 cF4 
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Cu-Rh Cu Rh 100 1.28 1.34 1 2 1.9 2.2 cF4 cF4 

  Rh Cu 100 1.34 1.28 2 1 2.2 1.9 cF4 cF4 

Cu-S Cu S 0 1.28 1.04* 1 -2 1.9 2.5 cF4 oF128 

  S Cu 0 1.04* 1.28 -2 1 2.5 1.9 oF128 cF4 

Cu-Se Cu Se 0 1.28 1.16(3) 1 -2 1.9 2.4 cF4 hP3 

  Se Cu 0 1.16(3) 1.28 -2 1 2.4 1.9 hP3 cF4 

Cu-Sm Cu Alfa-Sm 0 1.28 1.79(3) 1 3 1.9 1.2 cF4 hR3 

  Alfa-Sm Cu 0 1.79(3) 1.28 3 1 1.2 1.9 hR3 cF4 

  Cu Beta-Sm 0 1.28 1.79(3) 1 3 1.9 1.2 cF4 hP2 

  Beta-Sm Cu 0 1.79(3) 1.28 3 1 1.2 1.9 hP2 cF4 

  Cu Gama-Sm 0 1.28 1.79(3) 1 3 1.9 1.2 cF4 cI2 

  Gama-Sm Cu 0 1.79(3) 1.28 3 1 1.2 1.9 cI2 cF4 

Cu-Sr Cu Alfa-Sr 0 1.28 2.15(3) 1 2 1.9 1 cF4 cF4 

  Alfa-Sr Cu 0 2.15(3) 1.28 2 1 1 1.9 cF4 cF4 

  Cu Beta-Sr 0 1.28 2.15(3) 1 2 1.9 1 cF4 cI2 

  Beta-Sr Cu 0 2.15(3) 1.28 2 1 1 1.9 cI2 cF4 

Cu-Te Cu Te 0 1.28 1.43(3) 1 -2 1.9 2.1 cF4 hP3 

  Te Cu 0 1.43(3) 1.28 -2 1 2.1 1.9 hP3 cF4 

Cu-Th Cu Alfa-Th 0 1.28 1.8(3) 1 3** 1.9 1.3 cF4 cF4 

  Alfa-Th Cu 0 1.8(3) 1.28 3** 1 1.3 1.9 cF4 cF4 

  Cu Beta-Th 0 1.28 1.8(3) 1 3** 1.9 1.3 cF4 cI2 

  Beta-Th Cu 0 1.8(3) 1.28 3** 1 1.3 1.9 cI2 cF4 

Cu-Ti Cu Alfa-Ti 8 1.28 1.46 1 2** 1.9 1.5 cF4 hP2 
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  Alfa-Ti Cu 1.6 1.46 1.28 2** 1 1.5 1.9 hP2 cF4 

  Cu Beta-Ti 8 1.28 1.46 1 2** 1.9 1.5 cF4 cI2 

  Beta-Ti Cu 13.5 1.46 1.28 2** 1 1.5 1.9 cI2 cF4 

Cu-Tl Cu Alfa-Tl 0.275 1.28 1.56 1 3 1.9 1.8 cF4 hP2 

  Alfa-Tl Cu 0 1.71 1.28 3 1 1.8 1.9 hP2 cF4 

  Cu Beta-Tl 0.275 1.28 1.56 1 3 1.9 1.8 cF4 cI2 

  Beta-Tl Cu 0 1.71 1.28 3 1 1.8 1.9 cI2 cF4 

Cu-U Cu Alfa-U 0 1.28 1.39(3) 1 3** 1.9 1.7 cF4 oC4 

  Alfa-u Cu 0 1.39(3) 1.28 3** 1 1.7 1.9 oC4 cF4 

  Cu Beta-U 0 1.28 1.39(3) 1 3** 1.9 1.7 cF4 tP30 

  Beta-U Cu 0 1.39(3) 1.28 3** 1 1.7 1.9 tP30 cF4 

  Cu Gama-U 0 1.28 1.39(3) 1 3** 1.9 1.7 cF4 cI2 

  Gama-U Cu 0 1.39(3) 1.28 3** 1 1.7 1.9 cI2 cF4 

Cu-V Cu V 0.1 1.28 1.31 1 3** 1.9 1.6 cF4 cI2 

  V Cu 7.5 1.31 1.28 3** 1 1.6 1.9 cI2 cF4 

Cu-Y Cu Alfa-Y 0.04 1.28 1.8 1 3 1.9 1.2 cF4 hP2 

  Alfa-Y Cu 0.14 1.8 1.28 3 1 1.2 1.9 hP2 cF4 

  Cu Beta-Y 0.04 1.28 1.8 1 3 1.9 1.2 cF4 cI2 

  Beta-Y Cu 0 1.8 1.28 3 1 1.2 1.9 cI2 cF4 

Cu-Yb Cu Alfa-Yb 0 1.28 1.94(3) 1 2 1.9 1.1 cF4 hP2 

  Alfa-Yb Cu 0 1.94(3) 1.28 2 1 1.1 1.9 hP2 cF4 

  Cu Beta-Yb 0 1.28 1.94(3) 1 2 1.9 1.1 cF4 cF4 

  Beta-Yb Cu 0.03 1.94(3) 1.28 2 1 1.1 1.9 cF4 cF4 
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  Cu Gama-Yb 0 1.28 1.94(3) 1 2 1.9 1.1 cF4 cI2 

  Gama-Yb Cu 0 1.94(3) 1.28 2 1 1.1 1.9 cI2 cF4 

Cu-Zr Cu Alfa-Zr 0.12(2) 1.28 1.57 1 4 1.9 1.4 cF4 hP2 

  Alfa-Zr Cu 0.2(2) 1.57 1.28 4 1 1.4 1.9 hP2 cF4 

  Cu Beta-Zr 0.12(2) 1.28 1.57 1 4 1.9 1.4 cF4 cI2 

  Beta-Zr Cu 3.13(2) 1.57 1.28 4 1 1.4 1.9 cI2 cF4 

            

 Resource: Binary Phase Diagram Vol.1 Thaddeus B. Massalski 1987 second printing (copyright 1986)    

  The Handbook of Bianary Phases Diagrams Vol. 1. Moffatt, W. G. 11/8/1994.     

  ASM Handbook Vol.3, Alloy Phase Diagrams, 1992       

  SI Chemical Data 4th Edition, Gordon Aylward & Tristan Findlay. 1998(4th edition)    

  Chemistry Data Book  2nd Edition in SI. J G Stark, H G Wallace 1984 reprinted (1982 edition)    

 * Use Covalent Radius from "Chemistry Data Book 2nd Edition in SI."      

 ** Unsure Values         

 (1) The Handbook of Binary Phases Diagrams Vol.1 Moffatt,W.G.11/8/1994     

 (2) ASM Handbook Vol.3, Alloy Phase Diagrams, 1992       

 (3) SI Chemical Data 4th Edition, Gordon Aylward & Tristan Findlay. 1998(4th edition)    

 (4) W.Hume-Rothery. Elements of Structural Metallurgy.        

  London: Institute of Metals Monograph and Report Series No. 26, The Institute of Metals 1961    
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2. Introducing Temperature Parameters 
 
Solvent Solute Tm Tm  Solvent Solute Tm Tm  Solvent Solute Tm Tm  Solvent Solute Tm Tm 

  (Solvent) (Solute)    (Solvent) (Solute)    (Solvent) (Solute)    (Solvent) (Solute) 

Ag Alfa-Be 961.93 1289  Ag Alfa-Ca 961.93 842  Ag Delta-Mn 961.93 1246  Ag Te 961.93 449.57 

Alfa-Be Ag 1289 961.93  Alfa-Ca Ag 842 961.93  Delta-Mn Ag 1246 961.93  Te Ag 449.57 961.93 

Ag Beta-Be 961.93 1289  Ag Beta-Ca 961.93 842  Ag Mo 961.93 2623  Ag Alfa-Th 961.93 1755 

Beta-Be Ag 1289 961.93  Beta-Ca Ag 842 961.93  Mo Ag 2623 961.93  Alfa-Th Ag 1755 961.93 

Ag Zn 961.93 419.58  Ag Alfa-Ce 961.93 798  Ag Na 961.93 97.8  Ag Beta-Th 961.93 1755 

Zn Ag 419.58 961.93  Alfa-Ce Ag 798 961.93  Na Ag 97.8 961.93  Beta-Th Ag 1755 961.93 

Ag Cd 961.93 321.108  Ag Beta-Ce 961.93 798  Ag Alfa-Nd 961.93 1021  Ag Alfa-Ti 961.93 1670 

Cd Ag 321.108 961.93  Beta-Ce Ag 798 961.93  Alfa-Nd Ag 1021 961.93  Alfa-Ti Ag 1670 961.93 

Ag Hg 961.93 -38.84  Ag Gama-Ce 961.93 798  Ag Beta-Nd 961.93 1021  Ag Beta-Ti 961.93 1670 

Hg Ag -38.84 961.93  Gama-Ce Ag 798 961.93  Beta-Nd Ag 1021 961.93  Beta-Ti Ag 1670 961.93 

Ag Al 961.93 660.452  Ag Delta-Ce 961.93 798  Ag Ni 961.93 1455  Ag Alfa-Tl 961.93 304 

Al Ag 660.452 961.93  Delta-Ce Ag 798 961.93  Ni Ag 1455 961.93  Alfa-Tl Ag 304 961.93 

Ag Ga 961.93 29.7741  Ag Epsilon-Co 961.93 1495  Ag Os 961.93 3033  Ag Beta-Tl 961.93 304 

Ga Ag 29.7741 961.93  Epsilon-Co Ag 1495 961.93  Os Ag 3033 961.93  Beta-Tl Ag 304 961.93 

Ag In 961.93 156.634  Ag Alfa-Co 961.93 1495  Ag Pd 961.93 1555  Ag Tm 961.93 1545 

In Ag 156.634 961.93  Alfa-Co Ag 1495 961.93  Pd Ag 1555 961.93  Tm Ag 1545 961.93 

Ag Alfa-Sn 961.93 231.968  Ag Cr 961.93 1863  Ag Alfa-Pr 961.93 931  Ag Alfa-U 961.93 1135 

Alfa-Sn Ag 231.968 961.93  Cr Ag 1863 961.93  Alfa-Pr Ag 931 961.93  Alfa-U Ag 1135 961.93 

Ag Beta-Sn 961.93 231.968  Ag Cs 961.93 28.39  Ag Beta-Pr 961.93 931  Ag Beta-U 961.93 1135 
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Beta-Sn Ag 231.968 961.93  Cs Ag 28.39 961.93  Beta-Pr Ag 931 961.93  Beta-U Ag 1135 961.93 

Ag Pb 961.93 327.502  Ag Alfa'-Dy 961.93 1412  Ag Pt 961.93 1769  Ag Gama-U 961.93 1135 

Pb Ag 327.502 961.93  Alfa'-Dy Ag 1412 961.93  Pt Ag 1769 961.93  Gama-U Ag 1135 961.93 

Ag Cu 961.93 1084.87  Ag Alfa-Dy 961.93 1412  Ag Alfa-Pu 961.93 640  Ag V 961.93 1910 

Cu Ag 1084.87 961.93  Alfa-Dy Ag 1412 961.93  Alfa-Pu Ag 640 961.93  V Ag 1910 961.93 

Ag Sb 961.93 630.755  Ag Beta-Dy 961.93 1412  Ag Beta-Pu 961.93 640  Ag Alfa-Y 961.93 1522 

Sb Ag 630.755 961.93  Bety-Dy Ag 1412 961.93  Beta-Pu Ag 640 961.93  Alfa-Y Ag 1522 961.93 

Ag Bi 961.93 271.442  Ag Er 961.93 1529  Ag Gama-Pu 961.93 640  Ag Beta-Y 961.93 1522 

Bi Ag 271.442 961.93  Er Ag 1529 961.93  Gama-Pu Ag 640 961.93  Beta-Y Ag 1522 961.93 

Ag As 961.93 808  Ag Eu 961.93 822  Ag Delta-Pu 961.93 640  Ag Alfa-Yb 961.93 819 

As Ag 808 961.93  Eu Ag 822 961.93  Delta-Pu Ag 640 961.93  Alfa-Yb Ag 819 961.93 

Cu Au 1084.87 1064.43  Ag Delta-Fe 961.93 1538  Ag Delta'-Pu 961.93 640  Ag Beta-Yb 961.93 819 

Au Cu 1064.43 1084.87  Delta-Fe Ag 1538 961.93  Delta'-Pu Ag 640 961.93  Beta-Yb Ag 819 961.93 

Cu Alfa-Be 1084.87 1289  Ag Gama-Fe 961.93 1538  Ag Epsilon-Pu 961.93 640  Ag Gama-Yb 961.93 819 

Alfa-Be Cu 1289 1084.87  Gama-Fe Ag 1538 961.93  Epsilon-Pu Ag 640 961.93  Gama-Yb Ag 819 961.93 

Cu Beta-Be 1084.87 1289  Ag Alfa-Fe 961.93 1538  Ag Rb 961.93 39.48  Ag Alfa-Zr 961.93 1855 

Beta-Be Cu 1289 1084.87  Alfa-Fe Ag 1538 961.93  Rb Ag 39.48 961.93  Alfa-Zr Ag 1855 961.93 

Cu Mg 1084.87 650  Ag Alfa-Gd 961.93 1313  Ag Rh 961.93 1963  Ag Beta-Zr 961.93 1855 

Mg Cu 650 1084.87  Alfa-Gd Ag 1313 961.93  Rh Ag 1963 961.93  Beta-Zr Ag 1855 961.93 

Cu Zn 1084.87 419.58  Ag Beta-Gd 961.93 1313  Ag Ru 961.93 2334  Cu As 1084.87 603 

Zn Cu 419.58 1084.87  Beta-Gd Ag 1313 961.93  Ru Ag 2334 961.93  As Cu 603 1084.87 

Cu Cd 1084.87 321.108  Ag Ge 961.93 938.3  Ag Alfa-S 961.93 115.22  Cu Alfa-B 1084.87 2092 

Cd Cu 321.108 1084.87  Ge Ag 938.3 961.93  Alfa-S Ag 115.22 961.93  Alfa-B Cu 2092 1084.87 
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Cu Al 1084.87 660.452  Ag Ho 961.93 1474  Ag Beta-S 961.93 115.22  Cu Beta-B 1084.87 2092 

Al Cu 660.452 1084.87  Ho Ag 1474 961.93  Beta-S Ag 115.22 961.93  Beta-B Cu 2092 1084.87 

Cu Ga 1084.87 29.7741  Ag Ir 961.93 2447  Ag Alfa-Sc 961.93 1541  Cu Ba 1084.87 729 

Ga Cu 29.7741 1084.87  Ir Ag 2447 961.93  Alfa-Sc Ag 1541 961.93  Ba Cu 729 1084.87 

Cu Si 1084.87 1414  Ag K 961.93 63.71  Ag Beta-Sc 961.93 1541  Cu C 1084.87 3826 

Si Cu 1414 1084.87  K Ag 63.71 961.93  Beta-Sc Ag 1541 961.93  C Cu 3826 1084.87 

Cu Ge 1084.87 938.3  Ag Alfa-La 961.93 918  Ag Se 961.93 221  Cu Alfa-Ca 1084.87 842 

Ge Cu 938.3 1084.87  Alfa-La Ag 918 961.93  Se Ag 221 961.93  Alfa-Ca Cu 842 1084.87 

Cu Alfa-Sn 1084.87 231.968  Ag Beta-La 961.93 918  Ag Si 961.93 1414  Cu Beta-Ca 1084.87 842 

Alfa-Sn Cu 231.968 1084.87  Beta-La Ag 918 961.93  Si Ag 1414 961.93  Beta-Ca Cu 842 1084.87 

Cu Beta-Sn 1084.87 231.968  Ag Gama-La 961.93 918  Ag Alfa-Sm 961.93 1074  Cu Alfa-Ce 1084.87 798 

Beta-Sn Cu 231.968 1084.87  Gama-La Ag 918 961.93  Alfa-Sm Ag 1074 961.93  Alfa-Ce Cu 798 1084.87 

Cu Pb 1084.87 327.502  Ag Alfa-Li 961.93 180.6  Ag Beta-Sm 961.93 1074  Cu Beta-Ce 1084.87 798 

Pb Cu 327.502 1084.87  Alfa-Li Ag 180.6 961.93  Beta-Sm Ag 1074 961.93  Beta-Ce Cu 798 1084.87 

Cu Sb 1084.87 630.755  Ag Beta-Li 961.93 180.6  Ag Gama-Sm 961.93 1074  Cu Gama-Ce 1084.87 798 

Sb Cu 630.755 1084.87  Beta-Li Ag 180.6 961.93  Gama-Sm Ag 1074 961.93  Gama-Ce Cu 798 1084.87 

Cu Bi 1084.87 271.442  Ag Lu 961.93 1663  Ag Alfa-Sr 961.93 769  Cu Delta-Ce 1084.87 798 

Bi Cu 271.442 1084.87  Lu Ag 1663 961.93  Alfa-Sr Ag 769 961.93  Delta-Ce Cu 798 1084.87 

Cu Hg 1084.87 -38.84  Ag Mg 961.93 650  Ag Beta-Sr 961.93 769  Cu Alfa-Co 1084.87 1495 

Hg Cu -38.84 1084.87  Mg Ag 650 961.93  Beta-Sr Ag 769 961.93  Alfa-Co Cu 1495 1084.87 

Ag Au 961.93 1064.43  Ag Alfa-Mn 961.93 1246  Ag Alfa-Tb 961.93 1356  Cu Epsilon-Co 1084.87 1495 

Au Ag 1064.43 961.93  Alfa-Mn Ag 1246 961.93  Alfa-Tb Ag 1356 961.93  Epsilon-Co Cu 1495 1084.87 

Ag B 961.93 2092  Ag Beta-Mn 961.93 1246  Ag Alfa'-Tb 961.93 1356  Cu Cr 1084.87 1863 
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B Ag 2092 961.93  Beta-Mn Ag 1246 961.93  Alfa'-Tb Ag 1356 961.93  Cr Cu 1863 1084.87 

Ag Ba 961.93 729  Ag Gama-Mn 961.93 1246  Ag Beta-Tb 961.93 1356  Cu Cs 1084.87 28.39 

Ba Ag 729 961.93  Gama-Mn Ag 1246 961.93  Beta-Tb Ag 1356 961.93  Cs Cu 28.39 1084.87 

Cu Alfa'-Dy 1084.87 1412  Cu Pt 1084.87 1769  Cu Gama-La 1084.9 918  Cu Alfa-Th 1084.87 1755 

Alfa'-Dy Cu 1412 1084.87  Pt Cu 1769 1084.87  Gama-La Cu 918 1084.9  Alfa-Th Cu 1755 1084.87 

Cu Alfa-Dy 1084.87 1412  Cu Alfa-Pu 1084.87 640  Cu Alfa-Li 1084.9 180.6  Cu Beta-Th 1084.87 1755 

Alfa-Dy Cu 1412 1084.87  Alfa-Pu Cu 640 1084.87  Alfa-Li Cu 180.6 1084.9  Beta-Th Cu 1755 1084.87 

Cu Beta-Dy 1084.87 1412  Cu Beta-Pu 1084.87 640  Cu Beta-Li 1084.9 180.6  Cu Alfa-Ti 1084.87 1670 

Beta-Dy Cu 1412 1084.87  Beta-Pu Cu 640 1084.87  Beta-Li Cu 180.6 1084.9  Alfa-Ti Cu 1670 1084.87 

Cu Er 1084.87 1529  Cu Gama-Pu 1084.87 640  Cu Alfa-Mn 1084.9 1246  Cu Beta-Ti 1084.87 1670 

Er Cu 1529 1084.87  Gama-Pu Cu 640 1084.87  Alfa-Mn Cu 1246 1084.9  Beta-Ti Cu 1670 1084.87 

Cu Eu 1084.87 822  Cu Delta-Pu 1084.87 640  Cu Beta-Mn 1084.9 1246  Cu Alfa-Tl 1084.87 304 

Eu Cu 822 1084.87  Delta-Pu Cu 640 1084.87  Beta-Mn Cu 1246 1084.9  Alfa-Tl Cu 304 1084.87 

Cu Alfa-Fe 1084.87 1538  Cu Delta'-Pu 1084.87 640  Cu Delta-Mn 1084.9 1246  Cu Beta-Tl 1084.87 304 

Alfa-Fe Cu 1538 1084.87  Delta'-Pu Cu 640 1084.87  Delta-Mn Cu 1246 1084.9  Beta-Tl Cu 304 1084.87 

Cu Gama-Fe 1084.87 1538  Cu Epsilon-Pu 1084.87 640  Cu Gama-Mn 1084.9 1246  Cu Alfa-U 1084.87 1135 

Gama-Fe Cu 1538 1084.87  Epsilon-Pu Cu 640 1084.87  Gama-Mn Cu 1246 1084.9  Alfa-u Cu 1135 1084.87 

Cu Delta-Fe 1084.87 1538  Cu Rb 1084.87 39.48  Cu Mo 1084.9 2623  Cu Beta-U 1084.87 1135 

Delta-Fe Cu 1538 1084.87  Rb Cu 39.48 1084.87  Mo Cu 2623 1084.9  Beta-U Cu 1135 1084.87 

Cu Alfa-Gd 1084.87 1313  Cu Rh 1084.87 1963  Cu Alfa-Na 1084.9 97.8  Cu Gama-U 1084.87 1135 

Alfa-Gd Cu 1313 1084.87  Rh Cu 1963 1084.87  Alfa-Na Cu 97.8 1084.9  Gama-U Cu 1135 1084.87 

Cu Beta-Gd 1084.87 1313  Cu S 1084.87 115.22  Cu Beta-Na 1084.9 97.8  Cu V 1084.87 1910 

Beta-Gd Cu 1313 1084.87  S Cu 115.22 1084.87  Beta-Na Cu 97.8 1084.9  V Cu 1910 1084.87 
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Cu Alfa-Hf 1084.87 2231  Cu Se 1084.87 221  Cu Nb 1084.9 2469  Cu Alfa-Y 1084.87 1522 

Alfa-Hf Cu 2231 1084.87  Se Cu 221 1084.87  Nb Cu 2469 1084.9  Alfa-Y Cu 1522 1084.87 

Cu Beta-Hf 1084.87 2231  Cu Alfa-Sm 1084.87 1074  Cu Alfa-Nd 1084.9 1021  Cu Beta-Y 1084.87 1522 

Beta-Hf Cu 2231 1084.87  Alfa-Sm Cu 1074 1084.87  Alfa-Nd Cu 1021 1084.9  Beta-Y Cu 1522 1084.87 

Cu In 1084.87 156.634  Cu Beta-Sm 1084.87 1074  Cu Beta-Nd 1084.9 1021  Cu Alfa-Yb 1084.87 819 

In Cu 156.634 1084.87  Beta-Sm Cu 1074 1084.87  Beta-Nd Cu 1021 1084.9  Alfa-Yb Cu 819 1084.87 

Cu Ir 1084.87 2447  Cu Gama-Sm 1084.87 1074  Cu Ni 1084.9 1455  Cu Beta-Yb 1084.87 819 

Ir Cu 2447 1084.87  Gama-Sm Cu 1074 1084.87  Ni Cu 1455 1084.9  Beta-Yb Cu 819 1084.87 

Cu K 1084.87 63.71  Cu Alfa-Sr 1084.87 7769  Cu Pd 1084.9 1555  Cu Gama-Yb 1084.87 819 

K Cu 63.71 1084.87  Alfa-Sr Cu 769 1084.87  Pd Cu 1555 1084.9  Gama-Yb Cu 819 1084.87 

Cu Alfa-La 1084.87 918  Cu Beta-Sr 1084.87 769  Cu Alfa-Pr 1084.9 931  Cu Alfa-Zr 1084.87 1855 

Alfa-La Cu 918 1084.87  Beta-Sr Cu 769 1084.87  Alfa-Pr Cu 931 1084.9  Alfa-Zr Cu 1855 1084.87 

Cu Beta-La 1084.87 918  Cu Te 1084.87 449.57  Cu Beta-Pr 1084.9 931  Cu Beta-Zr 1084.87 1855 

Beta-La Cu 918 1084.87  Te Cu 449.57 1084.87  Beta-Pr Cu 931 1084.9  Beta-Zr Cu 1855 1084.87 
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3. Gold Alloy Systems 
 

Solvent Solute Solubility Limits Size(solvent) Size(Solute) Valence Valence Electrochemical Electrochemical Tm Tm 

  (Atoms %) Radii in (Angstronms) Solvent Solute Factors(Solvent) Factors(Solute) (Solvent) (Solute) 

Au B 5 1.44 0.8 1 3 2.4 2 1064.43 2092 

Au Alfa-Be 0.2 1.44 1.12 1 2 2.4 1.5 1064.43 1289 

Alfa-Be Au 0.25 1.12 1.44 2 1 1.5 2.4 1289 1064.43 

Au Beta-Be 0.2 1.44 1.12 1 2 2.4 1.5 1064.43 1289 

Au Zn 33.5 1.44 1.33 1 2 2.4 1.6 1064.43 419.58 

Zn Au 7.5 1.33 1.44 2 1 1.6 2.4 419.58 1064.43 

Au Cd 32.5 1.44 1.49 1 2 2.4 1.7 1064.43 321.108 

Cd Au 3.5 1.49 1.44 2 1 1.7 2.4 321.108 1064.43 

Au Hg 19.8 1.44 1.52 1 2 2.4 1.9 1064.43 38.836 

Au Al 84 1.44 1.43 1 3 2.4 1.5 1064.43 660.452 

Al Au 0.048 1.43 1.44 3 1 1.5 2.4 660.452 1064.43 

Au Ga 12.4 1.44 1.22 1 3 2.4 1.6 1064.43 29.7741 

Au In 12.7 1.44 1.51 1 3 2.4 1.7 1064.43 156.634 

Au Alfa-Sn 6.8 1.44 1.62 1 4 2.4 1.8 1064.43 13.05 

Au Beta-Sn 6.8 1.44 1.47 1 4 2.4 1.8 1064.43 231.9681 

Beta-Sn Au 0.2 1.62 1.44 4 1 1.8 2.4 231.9681 1064.43 

Au Sb 1.2 1.44 1.45 1 5 2.4 1.9 1064.43 630.755 

Au Alfa-Ca 1.8 1.44 1.97 1 2 2.4 1 1064.43 842 

Au Beta-Ca 1.8 1.44 1.97 1 2 2.4 1 1064.43 842 
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Beta-Ca Au 4.5 1.97 1.44 2 1 1 2.4 842 1064.43 

Au Epsilon-Co 23 1.44 1.25 1 2 2.4 1.8 1064.43 1495 

Au Alfa-Co 23 1.44 1.25 1 2 2.4 1.8 1064.43 1495 

Alfa-Co Au 2.5 1.25 1.44 2 1 1.8 2.4 1495 1064.43 

Au Cr 47 1.44 1.25 1 3 2.4 1.6 1064.43 1863 

Cr Au 3 1.25 1.44 3 1 1.6 2.4 1863 1064.43 

Au Alfa-Dy 2.3 1.44 1.75 1 3 2.4 1.1 1064.43 1412 

Au Beta-Dy 2.3 1.44 1.75 1 3 2.4 1.1 1064.43 1412 

Au Er 5.7 1.44 1.73 1 3 2.4 1.2 1064.43 1529 

Au Alfa-Fe 74.1 1.44 1.26 1 2 2.4 1.8 1064.43 1538 

Alfa-Fe Au 3.2 1.24 1.44 2 1 1.8 2.4 1538 1064.43 

Au Gama-Fe 74.1 1.44 1.26 1 2 2.4 1.8 1064.43 1538 

Game-Fe Au 8.1 1.26 1.44 2 1 1.8 2.4 1538 1064.43 

Au Delta-Fe 74.1 1.44 1.24 1 2 2.4 1.8 1064.43 1538 

Delta-Fe Au 2.4 1.24 1.44 2 1 1.8 2.4 1538 1064.43 

Au Alfa-Gd 0.7 1.44 1.79 1 3 2.4 1.1 1064.43 1313 

Au Beta-Gd 0.7 1.44 1.79 1 3 2.4 1.1 1064.43 1313 

Au Ge 3 1.44 1.23 1 4 2.4 1.8 1064.43 938.8 

Au Ho 3.92 1.44 1.74 1 3 2.4 1.2 1064.43 1474 

Au Li 40 1.44 1.52 1 1 2.4 1 1064.43 180.6 

Li Au 0.7 1.52 1.44 1 1 1 2.4 180.6 1064.43 

Au Lu 7.7 1.44 1.72 1 3 2.4 1.2 1064.43 1663 

Mg Au 0.1 1.6 1.44 2 1 1.2 2.4 650 1064.43 
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Au Alfa-Mn 31 1.44 1.29 1 2 2.4 1.5 1064.43 1246 

Au Beta-Mn 31 1.44 1.29 1 2 2.4 1.5 1064.43 1246 

Au Gama-Mn 31 1.44 1.29 1 2 2.4 1.5 1064.43 1246 

Gama-Mn Au 25 1.29 1.44 2 1 1.5 2.4 1246 1064.43 

Au Delta-Mn 31 1.44 1.29 1 2 2.4 1.5 1064.43 1246 

Au Mo 1.25 1.44 1.36 1 4 2.4 1.8 1064.43 2623 

Mo Au 0.4 1.36 1.44 4 1 1.8 2.4 2623 1064.43 

Alfa-Pr Au 0.12 1.32 1.44 3 1 1.1 2.4 931 1064.43 

Beta-Pr Au 1.56 1.32 1.44 3 1 1.1 2.4 931 1064.43 

Au Rh 1.6 1.44 1.34 1 2 2.4 2.2 1064.43 1963 

Rh Au 0.5 1.34 1.33 2 1 2.2 2.4 1963 1064.43 

Au Ru 1.9 1.44 1.33 1 3 2.4 2.2 1064.43 2334 

Au Beta-Sm 0.3 1.44 1.79 1 3 2.4 1.2 1064.43 1074 

Beta-Sm Au 0.3 1.79 1.44 3 1 1.2 2.4 1074 1064.43 

Au Gama-Sm 0.3 1.44 1.79 1 3 2.4 1.2 1064.43 1074 

Au Te 0.15 1.44 1.43 1 -2 2.4 2.1 1064.43 449.57 

Beta-Th Au 10 1.8 1.44 3 1 1.3 2.4 1755 1064.43 

Au Alfa-Ti 12 1.44 1.46 1 2 2.4 1.5 1064.43 882 

Alfa-Ti Au 1.7 1.46 1.44 2 1 1.5 2.4 882 1064.43 

Au Beta-Ti 12 1.44 1.46 1 2 2.4 1.5 1064.43 1670 

Beta-Ti Au 15 1.46 1.44 2 1 1.5 2.4 1670 1064.43 

Au Alfa-Tl 1 1.44 1.56 1 3 2.4 1.8 1064.43 304 

Au Beta-Tl 1 1.44 1.56 1 3 2.4 1.8 1064.43 304 
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Au Alfa-U 0.6 1.44 1.39 1 3 2.4 1.7 1064.43 1135 

Alfa-U Au 1 1.39 1.44 3 1 1.7 2.4 1135 1064.43 

Au Beta-U 0.6 1.44 1.39 1 3 2.4 1.7 1064.43 1135 

Beta-U Au 1.15 1.39 1.44 3 1 1.7 2.4 1135 1064.43 

Au Gama-U 0.6 1.44 1.39 1 3 2.4 1.7 1064.43 1135 

Gama-U Au 3.2 1.39 1.44 3 1 1.7 2.4 1135 1064.43 

V Au 33 1.31 1.44 3 1 1.6 2.4 1910 1064.43 

Au Alfa-Yb 6.9 1.44 1.94 1 2 2.4 1.1 1064.43 819 

Au Beta-Yb 6.9 1.44 1.94 1 2 2.4 1.1 1064.43 819 

Au Gama-Yb 6.9 1.44 1.94 1 2 2.4 1.1 1064.43 819 
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Appendix 3 
 
Table A1 List of melting points from five handbooks (acronyms as in text). The elements are sorted in ascending 

(Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC (Unit: ºC) (Max-Min)/Min Median 

As (grey) - - 816.85**  - -  0.00% 816.85  

Th 1750  1750  1749.85  1750  1750   0.01% 1750  

Yb 824  824  823.85  824  824   0.02% 824  

Sn (white) 232  232  231.97  231.93  231.93   0.03% 231.97  

Sn (Grey) 232  232  231.97  231.93  231.93   0.03% 231.97  

Cd 321  321  320.95  321.08  321.07   0.04% 321  

Al 660  660  660.37  660.32  660.32   0.06% 660.32  

Po 254  254  253.85  254  254   0.06% 254  

Sc 1540  1540  1540.85  1540  1541   0.06% 1540  

La 920  920  920.85  920  920   0.09% 920  

Ag 961  961  961.93  961.78  961.78   0.10% 961.78  

Te 450  450  449.55  450  449.51   0.11% 450  

Na 97.8  97.8  97.81  97.7  97.79   0.11% 97.8  

Zn 420  420  419.58  419.53  419.53   0.11% 419.58  

P (White) 44.2  44.2  44.15  44.2  44.15   0.11% 44.2  

Sb 630  630  630.74  630.63  630.63   0.12% 630.63  

Ge 937  937  937.45  938  938.25   0.13% 937.45  

Ga 29.8  29.8  29.78  29.76  29.77   0.13% 29.78  

Au 1063  1063  1064.43  1064.18  1064.18   0.13% 1064.18  

Dy 1410  1410  1411.85  1410  1412   0.14% 1410  

Ni 1453  1453  1452.85  1455  1455   0.15% 1453  

Tl 304  304  303.55  304  304   0.15% 304  

Cu 1083  1083  1083.45  1084.62  1084.62   0.15% 1083.45  

Pb 327  327  327.50  327.50  327.46   0.15% 327.46  

Bi 271  271  271.35  271.44  271.41   0.16% 271.35  

Mg 650  650  648.85  650  650   0.18% 650  

Re 3180  3180  3179.85  3186  3185   0.19% 3180  

Co 1492  1492  1494.85  1495  1495   0.20% 1494.85  

Pt 1769  1769  1771.85  1768  1768.2   0.22% 1769  

Zr 1850  1850  1851.85  1850  1854.7   0.25% 1850  

Si 1410  1410  1409.85  1410  1414   0.29% 1410  

Li 180  180  180.54  180.5  180.5   0.30% 180.50  
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Gd 1310  1310  1312.85  1314  1313   0.31% 1312.85  

Tb 1360  1360  1355.85  1360  1359   0.31% 1360  

Pd 1550  1550  1551.85  1555  1554.8   0.32% 1551.85  

Fe 1535  1535  1534.85  1540  1538   0.34% 1535  

Rh 1970  1970  1965.85  1963  1964   0.36% 1965.85  

Nb 2470  2470  2467.85  2477  2477   0.37% 2470  

I (I2) 114  114  113.55  113.6  113.7   0.40% 113.7  

U 1130  1130  1132.35  1135  1135   0.44% 1132.35  

W 3410  3410  3406.85  3422  3422   0.44% 3410  

Pr 935  935  930.85  931  931   0.45% 931  

K 63.7  63.7  63.65  63.4  63.5   0.47% 63.65  

Nd 1020  1020  1020.85  1016  1016   0.48% 1020  

Mo 2610  2610  2616.85  2623  2623   0.50% 2616.85  

Eu 826  826  821.85  822  822   0.50% 822  

In 157  157  156.17  156.6  156.6   0.53% 156.6  

Ra 700  700  699.85  700  696   0.57% 700  

Hf 2220  2220  2229.85  2230  2233   0.59% 2229.85  

Ce 795  795  798.85  800  799   0.63% 798.85  

Tm 1540  1540  1544.85  1550  1545   0.65% 1544.85  

Be 1280  1280  1277.85  1287  1287   0.72% 1280  

Lu 1650  1650  1662.85  1660  1663   0.79% 1660  

Ta 3000  3000  2995.85  3020  3017   0.81% 3000  

Mn 1240  1240  1243.85  1250  1246   0.81% 1243.85  

Ti 1675  1675  1659.85  1670  1668   0.91% 1670  

Ho 1460  1460  1473.85  1470  1472   0.95% 1470  

Rb 38.9  38.9  39.05  39.3  39.3   1.03% 39.05  

Cs 28.7  28.7  28.4  28.4  28.5   1.06% 28.5  

Sr 768  768  768.85  777  777   1.17% 768.85  

Ca 850  850  838.85  840  842   1.33% 842  

Ir 2440  2440  2409.85  2447  2446   1.54% 2440  

Y 1500  1500  1521.85  1525  1522   1.67% 1521.85  

V 1900  1900  1886.85  1920  1910   1.76% 1900  

Os 3000  3000  3053.85  3030  3033   1.79% 3030  

Se 217  217  216.85  220  220.8   1.82% 217  

Tc 2200  2200  2171.85  2160  2157   1.99% 2171.85  

Er 1500  1500  1528.85  1530  1529   2.00% 1528.85  

Ba 714  714  728.85  728  727   2.08% 727  
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Cr 1890  1890  1856.85  1907  1907   2.70% 1890  

S (monoclinic) 119  119  119.05  115.32  115.21   3.33% 119  

Sm 1070  1070  1076.85  1170  1072   9.35% 1072  

B 2300  2300  2299.85  2075  2075   10.84% 2299.85  

Ru 2500  2500  2309.85  2330  2034   22.91% 2330  

Graphite 3730*  3730*  3526.85  4490  4489**   27.31% 3730  

 

* Sublimation temperature 

** Measure under pressure 

 

Table A2 List of boiling points from five handbooks (acronyms as in text). The elements are sorted in ascending 

(Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC (Unit: ºC) (Max-Min)/Min Median 

Se 685  685  684.95  685  685   0.01% 685  

S (monoclinic) 445  445  444.67  444.67  444.61   0.09% 444.67  

Ge 2830  2830  2829.85  2830  2833   0.11% 2830  

Te 990  990  989.85  990  988   0.20% 990  

Po 960  960  961.85  960  962   0.21% 960  

Ca 1487  1487  1483.85  1484  1484   0.21% 1484  

I (I2) 184  184  184.35  184  184.4   0.22% 184  

Sr 1380  1380  1383.85  1380  1382   0.28% 1380  

Rb 688  688  687.85  690  688   0.31% 688  

Zn 907  907  906.85  910  907   0.35% 907  

La 3470  3470  3456.85  3460  3464   0.38% 3464  

Os 5000  5000  5026.85  5000  5012   0.54% 5000  

Pb 1744  1744  1739.85  1750  1749   0.58% 1744  

Re 5630  5630  5626.85  5600  5596   0.61% 5626.85  

Cd 765  765  764.85  770  767   0.67% 765  

Ti 3260  3260  3286.85  3290  3287   0.92% 3286.85  

As (grey) 613*  613*  615.85*  610*  616*   0.98% 613  

Tl 1460  1460  1456.85  1470  1473   1.11% 1460  

Na 890  890  882.95  880  882.94   1.14% 882.95  

P (White) 280  280  279.85  277  280.5   1.26% 280  

Li 1330  1330  1346.85  1340  1342   1.27% 1340  

Cu 2595  2595  2566.85  2560  2562   1.37% 2566.85  

Er 2900  2900  2862.85  2860  2868   1.40% 2868  

Nd 3030  3030  3067.85  3070  3074   1.45% 3067.85  

Ce 3470  3470  3425.85  3420  3443   1.46% 3443  



Appendix 3 

 270 

Dy 2600  2600  2561.85  2560  2567   1.56% 2567  

Mg 1110  1110  1089.85  1090  1090   1.85% 1090  

K 774  774  773.85  760  759   1.98% 773.85  

Co 2900  2900  2869.85  2930  2927   2.10% 2900  

Al 2470  2470  2466.85  2520  2519   2.15% 2470  

Lu 3330  3330  3394.85  3390  3402   2.16% 3390  

Ag 2210  2210  2211.85  2160  2162   2.40% 2210  

Ta 5420  5420  5424.85  5560  5458   2.58% 5424.85  

Cs 690  690  678.45  670  671   2.99% 678.45  

Bi 1560  1560  1609.85  1560  1564   3.20% 1560  

Ho 2600  2600  2694.85  2700  2700   3.85% 2694.85  

Sc 2730  2730  2830.85  2830  2836   3.88% 2830  

In 2000  2000  2079.85  2070  2072   3.99% 2070  

Au 2970  2970  2806.85  2850  2856   5.81% 2856  

Sm 1900  1900  1790.85  1790  1794   6.15% 1794  

W 5930  5930  5656.85  5550  5555   6.85% 5656.85  

Mn 2100  2100  1961.85  2060  2061   7.04% 2061  

Cr 2482  2482  2671.85  2670  2671   7.65% 2670  

Fe 3000  3000  2749.85  2860  2861   9.10% 2861  

Gd 3000  3000  3265.85  3260  3273   9.10% 3260  

Ga 2400  2400  2402.85  2200  2204   9.22% 2400  

B 3930  3930  3657.85  4000  4000   9.35% 3930  

Ni 2730  2730  2731.85  2990  2931   9.52% 2731.85  

U 3820  3820  3744.85  4130  4131   10.31% 3820  

Eu 1440  1440  1596.85  1600  1529   11.11% 1529  

Pr 3130  3130  3511.85  3510  3520   12.46% 3510  

Tm 1730  1730  1946.85  1950  1950   12.72% 1946.85  

V 3000  3000  3376.85  3400  3407   13.57% 3376.85  

Y 2930  2930  3337.85  3340  3345   14.16% 3337.85  

Tb 2800  2800  3122.85  3220  3230   15.36% 3122.85  

Sn (white) 2270  2270  2269.85  2620  2602   15.43% 2270  

Sn (Grey) 2270  2270  2269.85  2620  2602   15.43% 2270  

Ba 1640  1640  1636.85  1900  1897   16.08% 1640  

Hf 5400  5400  5196.85  4600  4603   17.39% 5196.85  

Sb 1380  1380  1634.85  1587  1587   18.47% 1587  

Pt 4530  4530  3826.85  3820  3825   18.59% 3826.85  

Yb 1430  1430  1192.85  1200  1196   19.88% 1200  
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Be 2477  2477  2969.85**  2470  2471   20.24% 2477  

Mo 5560  5560  4611.85  4640  4639   20.56% 4640  

Rh 4500  4500  3726.85  3700  3695   21.79% 3726.85  

Zr 3580  3580  4376.85  4400  4409   23.16% 4376.85  

Th 3850  3850  4786.85  4790  4788   24.42% 4786.85  

Ru 4900  4900  3899.85  4150  4150   25.65% 4150  

Graphite 4830  4830  4826.85*  - 3825*   26.27% 4828.43  

Ir 5300  5300  4129.85  4430  4428   28.33% 4430  

Ra 1140  1140  1139.85  1500  -  31.60% 1140  

Pd 3980  3980  3139.85  2960  2963   34.46% 3139.85  

Si 2360  2360  2354.85  3260  3265   38.65% 2360  

Tc 3500  3500  4876.85  4260  4265   39.34% 4260  

Nb 3300  3300  4741.85  4700  4744   43.76% 4700  

 

* Sublimation temperature 

** Measure under pressure 

 

Table A3 List of atomic volume from five handbooks (acronyms as in text). The elements are sorted in ascending 

(Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC (Unit: cm-3 mol-1) (Max-Min)/Min Median 

P (White) 17.02  17.02  17.02  17.02  -  0.01% 17.02  

Ra 45.2  45.21  45.2  45.21  45.21   0.01% 45.21  

Sn (Grey) 20.64  20.65  - - -  0.02% 20.64  

Lu 17.78  17.78  17.78  17.78  17.78   0.02% 17.78  

Ag 10.27  10.27  10.27  10.27  10.27   0.03% 10.27  

Ho 18.74  18.74  18.75  18.75  18.74   0.04% 18.74  

Al 9.99  9.99  10  10  9.99   0.07% 9.99  

Nb 10.84  10.84  10.84  10.83  10.84   0.09% 10.84  

Sc 15.04  15.04  15.04  15.03  15.04   0.10% 15.04  

Ni 6.60  6.59  6.59  6.59  6.59   0.11% 6.59  

Tm 18.11  18.11  18.12  18.12  18.13   0.11% 18.12  

Ga 11.8  11.8  11.81  11.81  11.8   0.11% 11.8  

Mg 13.97  13.97  13.98  13.98  13.97   0.12% 13.97  

Nd 20.61  20.61  20.59  20.61  20.58   0.14% 20.61  

Pr 20.78  20.78  20.8  20.79  20.81   0.15% 20.79  

Eu 29  29  28.98  28.96  29   0.15% 29  

Zn 9.16  9.16  9.17  9.16  9.16   0.16% 9.16  

Rh 8.3  8.3  8.29  8.29  8.3   0.16% 8.3  
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Rb 55.86  55.86  55.79  55.75  55.86   0.20% 55.86  

Th 19.83  19.83  19.8  19.79  19.83   0.21% 19.83  

Fe 7.11  7.11  7.09  7.09  7.1   0.21% 7.1  

Be 4.87  4.87  4.88  4.88  4.87   0.22% 4.87  

Mo 9.41  9.41  9.39  9.39  9.41   0.24% 9.41  

Pd 8.87  8.87  8.85  8.87  8.87   0.25% 8.87  

Au 10.21  10.21  10.19  10.22  10.21   0.25% 10.21  

Hf 13.42  13.42  13.41  13.44  13.42   0.26% 13.42  

In 15.73  15.73  15.71  15.75  15.71   0.27% 15.73  

Sm 19.95  19.94  20  19.95  19.99   0.29% 19.95  

Dy 18.98  18.98  19  19.05  19.01   0.34% 19  

Os 8.45  8.45  8.43  8.42  8.42   0.38% 8.43  

Pb 18.34  18.34  18.26  18.27  18.34   0.42% 18.34  

Zr 14.06  14.06  14.02  14.02  13.99   0.46% 14.02  

I (I2) 25.74  25.74  25.74  25.62  -  0.47% 25.74  

Pt 9.12  9.12  9.10  9.09  9.07   0.47% 9.10  

Cu 7.12  7.12  7.09  7.11  7.09   0.48% 7.11  

Tb 19.22  19.22  19.31  19.22  19.31   0.49% 19.22  

Na 23.7  23.7  23.68  23.8  23.7   0.50% 23.7  

Ir 8.54  8.54  8.57  8.52  8.54   0.54% 8.54  

Bi 21.32  21.32  21.44  21.32  21.35   0.57% 21.32  

Cd 13.01  13.01  13  13  12.94   0.58% 13  

Tl 17.32  17.32  17.24  17.22  17.32   0.60% 17.32  

Cr 7.23  7.23  7.23  7.23  7.27   0.62% 7.23  

Sn (white) 16.30  16.31  16.24  16.3  16.35   0.68% 16.3  

Ti 10.55  10.55  10.55  10.62  10.61   0.71% 10.55  

Graphite 5.34  5.34  - 5.3  -  0.71% 5.34  

La 22.44  22.44  22.6  22.5  22.59   0.71% 22.5  

W 9.48  9.48  9.53  9.55  9.53   0.75% 9.53  

Li 13.1  13.1  13  13.02  13   0.75% 13.02  

U 12.46  12.46  12.56  12.49  12.46   0.78% 12.46  

Gd 19.78  19.78  19.9  19.98  19.91   1.02% 19.9  

Sb 18.39  18.39  18.20  18.19  18.23   1.08% 18.23  

Co 6.62  6.62  6.62  6.7  6.65   1.16% 6.62  

Yb 24.79  24.79  24.84  24.84  25.08   1.17% 24.84  

Er 18.26  18.26  18.44  18.49  18.44   1.28% 18.44  

Ca 26.03  26.03  25.86  26.19  26.02   1.29% 26.03  
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Ta 10.9  10.9  10.87  10.85  11.03   1.65% 10.9  

Po 22.34  22.23  22.4  22.23  22.72   2.17% 22.34  

V 8.55  8.55  8.34  8.36  8.49   2.48% 8.49  

Re 9.08  9.08  8.86  8.86  8.95   2.55% 8.95  

Ru 8.22  8.22  8.14  8.18  8.35   2.62% 8.22  

Cs 69.95  69.95  70.96  69.95  68.86   3.05% 69.95  

Y 20.49  20.49  19.89  19.87  19.89   3.11% 19.89  

Ba 39.13  39.13  38.21  38.21  37.94   3.14% 38.21  

K 45.47  45.46  45.36  45.36  43.93   3.50% 45.36  

Mn 7.63  7.63  7.38  7.35  7.53   3.79% 7.53  

Sr 33.44  33.44  34.50  33.92  33.19   3.95% 33.44  

Tc 8.61  8.52  8.6  8.52  8.9   4.51% 8.6  

Ge 13.57  13.57  13.64  13.64  12.97   5.16% 13.57  

Te 20.42  20.42  20.45  20.43  22.39   9.65% 20.43  

Si 12.05  12.05  12.06  12.06  10.93   10.36% 12.05  

As (grey) 13.1  13.1  12.95  12.97  14.35   10.83% 13.1  

S (monoclinic) 16.36  16.36  15.49  - 17.63   13.80% 16.36  

B 4.62  4.62  4.62  4.38  5.20   18.56% 4.62  

Se 16.42  16.42  16.48  16.42  19.79   20.55% 16.42  

Ce 20.67  20.67  17  20.88  20.7   22.81% 20.67  

 

Table A4 List of polarizability from five handbooks (acronyms as in text). The elements are sorted in ascending 

(Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC (Unit: 10-24cm3) 

Li - - - - 24.3   

Be - - - - 5.6   

B - - - - 3.03   

Na - - - - 24.08   

Mg - - - - 10.6   

Al - - - - 6.8   

Si - - - - 5.38   

K - - - - 43.4   

Ca - - - - 22.8   

Sc - - - - 17.8   

Ti - - - - 14.6   

V - - - - 12.4   

Cr - - - - 11.6   
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Mn - - - - 9.4   

Fe - - - - 8.4   

Co - - - - 7.5   

Ni - - - - 6.8   

Cu - - - - 6.1   

Zn - - - - 5.75   

Ge - - - - 6.07   

As (grey) - - - - 4.31   

Se - - - - 3.77   

Sr - - - - 27.6   

Y - - - - 22.7   

Zr - - - - 17.9   

Nb - - - - 15.7   

Mo - - - - 12.8   

Ru - - - - 9.6   

Rh - - - - 8.6   

Pd - - - - 4.8   

Ag - - - - 7.2   

Cd - - - - 7.36   

In - - - - 10.2   

Sn (white) - - - - 7.7   

Sb - - - - 6.6   

Te - - - - 5.5   

I (I2) - - - - 5.35   

Ba - - - - 39.7   

La - - - - 31.1   

Hf - - - - 16.2   

Ta - - - - 13.1   

W - - - - 11.1   

Re - - - - 9.7   

Os - - - - 8.5   

Ir - - - - 7.6   

Pt - - - - 6.5   

Au - - - - 5.8   

Tl - - - - 7.6   

Pb - - - - 6.8   

Bi - - - - 7.4   
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Ra - - - - 38.3   

Ce - - - - 29.6   

Pr - - - - 28.2   

Nd - - - - 31.4   

Sm - - - - 28.8   

Eu - - - - 27.7   

Gd - - - - 23.5   

Tb - - - - 25.5   

Dy - - - - 24.5   

Ho - - - - 23.6   

Er - - - - 22.7   

Tm - - - - 21.8   

Yb - - - - 21   

Lu - - - - 21.9   

Th - - - - 32.1   

U - - - - 24.9   

Graphite - - - - 1.76   

Cs - - - - 59.42   

Ga - - - - 8.12   

P (White) - - - - 3.63   

Po - - - - 6.8   

Rb - - - - 47.3   

Tc - - - - 11.4   

S (monoclinic) - - - - 2.9   

Sn (Grey) - - - - 7.7   

 

Table A5 List of first ionization potential from five handbooks (acronyms as in text). The elements are sorted in 

ascending (Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC 

(Unit: kJ mol-1) 

at 298K (Max-Min)/Min Median 

S (monoclinic) 1006  1000  1005.6  999.74  999.59   0.64% 1000  

Se 947  941  946.9  940.88  940.96   0.65% 941  

Cd 872  868  873.6  867.54  867.77   0.70% 868  

B 805  801  806.6  800.95  800.64   0.74% 801  

Po 818  812  818  - 811.83   0.76% 815  

Ni 742  737  742.7  737.26  737.13   0.77% 737.26  

Be 906  899  905.4  899.38  899.5   0.78% 899.5  
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I (I2) 1016  1008  1014.4  1008.43  1008.39   0.79% 1008.43  

Te 876  869  875.2  869.47  869.29   0.81% 869.47  

Mg 742  738  743.7  738.23  737.75   0.81% 738.23  

Au 897  890  896  889.73  890.13   0.82% 890.13  

Si 792  786  792.5  786.48  786.52   0.83% 786.52  

Tc 705  702  708  702.52  702.41   0.85% 702.52  

Cu 751  745  751.4  744.98  745.48   0.86% 745.48  

Zn 914  906  912.4  906.14  906.4   0.88% 906.4  

Sn (white) 713  709  714.6  708.31  708.58   0.89% 709  

Sn (Grey) 713  709  714.6  708.31  708.58   0.89% 709  

Bi 709  703  709.2  - 702.94   0.89% 706  

Pd 809  805  811  803.85  804.39   0.89% 805  

Mn 722  717  723.4  717  717.27   0.89% 717.27  

Pb 722  716  721.5  716.03  715.6   0.89% 716.03  

Graphite 1096  1086  1092.2  1086.59  1086.45   0.92% 1086.59  

V 654  650  656  650.41  650.91   0.92% 650.91  

Cr 659  653  658.7  653.31  652.87   0.94% 653.31  

Er - 589  594.7  - 589.3   0.97% 589.3  

Ho - 581  586.7  - 580.99   0.98% 581  

Ge 768  762  768.1  760.42  762.18   1.01% 762.18  

Al 583  578  583.4  578.04  577.54   1.01% 578.04  

Ag 738  731  737  730.51  731   1.03% 731  

Ga 583  579  584.80  579  578.84   1.03% 579  

Co 763  758  766  758.49  760.4   1.06% 760.4  

Yb 604  603  609.4  - 603.44   1.06% 603.72  

Ca 596  590  595.7  589.62  589.83   1.08% 590  

Sb 839  834  839.7  833.76  830.58   1.10% 834  

Li 525  520  519.3  520.14  520.22   1.10% 520.14  

Sc 638  631  637  631.11  633.09   1.11% 633.09  

Tm - 596  602.7  - 596.7   1.12% 596.7  

In 562  558  564.3  558.74  558.3   1.13% 558.74  

Sm 546  543  549.3  - 544.53   1.16% 545.27  

Sr 554  549  555.50  549.09  549.47   1.18% 549.47  

Fe 768  759  765.3  759.46  762.47   1.19% 762.47  

Tl 596  589  595.3  589.62  589.35   1.19% 589.62  

Ba 508  503  508.8  502.77  502.85   1.20% 503  

Na 500  496  501.8  496.01  495.85   1.20% 496.01  
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Eu 554  547  552.7  - 547.11   1.28% 549.9  

Pt 872  870  876  868.50  864.39   1.34% 870  

Gd 600  592  598.5  - 593.37   1.35% 595.93  

Ti 667  658  664  658.13  658.81   1.37% 658.81  

Ra 516  509  515.3  509.52  509.29   1.38% 509.52  

K 424  419  424.8  418.81  418.81   1.43% 419  

La 546  538  544.1  541.37  538.09   1.49% 541.37  

Rb 408  403  409  403.37  403.03   1.49% 403.37  

Re 768  760  766  759.46  755.82   1.61% 760  

Cs 382  376  381.7  375.39  375.7   1.76% 376  

W 776  770  776  770.07  758.76   2.27% 770.07  

Nb 659  664  670  653.31  652.13   2.74% 659  

Mo 700  685  691  681.29  684.32   2.75% 685  

Ru 730  711  717  710.24  710.18   2.79% 711  

As (grey) 972  947  953  946.67  944.46   2.92% 947  

Ir 893  880  886  - 865.19   3.21% 883  

Os 847  840  846  839.55  814.17   4.03% 840  

Rh 751  720  726  719.89  719.67   4.35% 720  

Ta 766  761  767  760.42  728.42   5.30% 761  

P (White) 1066  1012  1017.7  1012.29  1011.81   5.36% 1012.29  

Zr 675  660  666  670.68  640.07   5.46% 666  

Y 642  616  622  603.13  599.88   7.02% 616  

Pr 562  523  529.1  - 528.06   7.46% 528.58  

Lu 487  524  529.5  - 523.52   8.73% 523.76  

Nd 613  530  535.6  - 533.08   15.66% 534.34  

Dy 663  572  577.9  - 573.02   15.91% 575.46  

Tb 654  564  570.6  - 565.77   15.96% 568.19  

Th 680  587  593  723.75  608.5   23.30% 608.5  

Hf 537  680  648  - 658.52   26.63% 653.26  

Ce 671  528  533.4  - 534.4   27.08% 533.9  

U 391  598  590  597.34  597.64   52.94% 597.34  

 

Table A6 List of electronegativity from five handbooks (acronyms as in text). The elements are sorted in ascending 

(Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC (Unit: Pauling) (Max-Min)/Min Median 

Ca 1  1  1  - 1   0% 1  

Cu 1.9  1.9  1.9  - 1.9   0% 1.9  
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Nb 1.6  1.6  1.6  - 1.6   0% 1.6  

Ru 2.2  2.2  2.2  - 2.2   0% 2.2  

Pd 2.2  2.2  2.2  - 2.2   0% 2.2  

Te 2.10  2.1  2.1  - 2.1   0% 2.1  

La 1.10  1.1  1.1  - 1.1   0% 1.1  

Hf 1.30  1.3  1.3  - 1.3   0% 1.3  

Ta 1.5  1.5  1.5  - 1.5   0% 1.5  

Re 1.9  1.9  1.9  - 1.9   0% 1.9  

Os 2.2  2.2  2.2  - 2.2   0% 2.2  

Ir 2.2  2.2  2.2  - 2.2   0% 2.2  

Eu 1.1  - - - -  0% 1.1  

Tb 1.2  - - - -  0% 1.2  

Yb 1.1  - - - -  0% 1.1  

Th 1.3  1.3  1.3  - 1.3   0% 1.3  

Po 2  2  2  - 2   0% 2  

Cd 1.7  1.69  1.69  - 1.69   0.59% 1.69  

Ba 0.9  0.89  0.89  - 0.89   1.12% 0.89  

Ra 0.9  0.9  0.89  - 0.9   1.12% 0.9  

Ag 1.9  1.93  1.93  - 1.93   1.58% 1.93  

Fe 1.8  1.83  1.83  - 1.83   1.67% 1.83  

Y 1.2  1.22  1.22  - 1.22   1.67% 1.22  

Ce 1.1  1.12  1.12  - 1.12   1.82% 1.12  

V 1.6  1.63  1.63  - 1.63   1.87% 1.63  

B 2  2.04  2.04  - 2.04   2.00% 2.04  

Graphite 2.5  2.55  2.55  - 2.55   2.00% 2.55  

Li 1  0.98  0.98  - 0.98   2.04% 0.98  

K 0.8  0.82  0.82  - 0.82   2.50% 0.82  

Rb 0.8  0.82  0.82  - 0.82   2.50% 0.82  

Ho 1.2  1.23  1.23  - 1.23   2.50% 1.23  

Sm 1.2  1.17  1.17  - 1.17   2.56% 1.17  

Ti 1.5  1.54  1.54  - 1.54   2.67% 1.54  

Pr 1.1  1.13  1.13  - 1.13   2.73% 1.13  

Zn 1.6  1.65  1.65  - 1.65   3.12% 1.65  

S (monoclinic) 2.5  2.58  2.58  - 2.58   3.20% 2.58  

Na 0.9  0.93  0.93  - 0.93   3.33% 0.93  

Mn 1.5  1.55  1.55  - 1.55   3.33% 1.55  

Er 1.2  1.24  1.24  - 1.24   3.33% 1.24  
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Rh 2.2  2.28  2.28  - 2.28   3.64% 2.28  

Pt 2.2  2.2  2.28  - 2.2   3.64% 2.2  

Cr 1.6  1.66  1.66  - 1.66   3.75% 1.66  

Tm 1.2  1.25  1.25  - 1.25   4.17% 1.25  

P (White) 2.1  2.19  2.19  - 2.19   4.29% 2.19  

Co 1.8  1.88  1.88  - 1.88   4.44% 1.88  

Sc 1.3  1.36  1.36  - 1.36   4.62% 1.36  

Be 1.5  1.57  1.57  - 1.57   4.67% 1.57  

In 1.7  1.78  1.78  - 1.78   4.71% 1.78  

Sr 1  0.95  0.95  - 0.95   5.26% 0.95  

Zr 1.4  1.33  1.33  - 1.33   5.26% 1.33  

Nd 1.2  1.14  1.14  - 1.14   5.26% 1.14  

Si 1.8  1.9  1.9  - 1.9   5.56% 1.9  

Au 2.4  2.4  2.54  - 2.4   5.83% 2.4  

Ni 1.8  1.91  1.91  - 1.91   6.11% 1.91  

Se 2.4  2.55  2.55  - 2.55   6.25% 2.55  

Bi 1.9  1.9  2.02  - 1.9   6.32% 1.9  

I (I2) 2.5  2.66  2.66  - 2.66   6.40% 2.66  

Al 1.5  1.61  1.61  - 1.61   7.33% 1.61  

Sb 1.9  2.05  2.05  - 2.05   7.89% 2.05  

Sn (white) 1.8  1.96  1.96  - 1.96   8.89% 1.96  

Sn (Grey) 1.8  1.96  1.96  - 1.96   8.89% 1.96  

As (grey) 2  2.18  2.18  - 2.18   9% 2.18  

Gd 1.1  1.2  1.2  - 1.2   9.09% 1.2  

Mg 1.2  1.31  1.31  - 1.31   9.17% 1.31  

Tc 1.9  2.1  1.9  - 2.1   10.53% 2  

Dy 1.1  1.22  1.22  - 1.22   10.91% 1.22  

Tl 1.8  1.8  1.62*  - 1.8   11.11% 1.8  

Ge 1.80  2.01  2.01  - 2.01   11.67% 2.01  

Cs 0.7  0.79  0.79  - 0.79   12.86% 0.79  

Ga 1.6  1.81  1.81  - 1.81   13.13% 1.81  

Mo 1.8  2.16  2.16  - 2.16   20% 2.16  

U 1.7  1.7  1.38  - 1.7   23.19% 1.7  

Lu 1.2  1  1.27  - 1   27% 1.1  

Pb 1.8  1.8  2.33  - 1.8   29.44% 1.8  

W 1.7  1.7  2.36  - 1.7   38.82% 1.7  

* Tl: 1.62 (valence: I), 2.04 (valence: II) 
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Table A7 List of density from five handbooks (acronyms as in text). The elements are sorted in ascending 

(Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC (Unit: g cm-3) (Max-Min)/Min  Median 

Ag 10.5  10.5  10.5  10.5  10.5   0.00%  10.5  

Ra 5  5  5  5  5   0.00%  5  

P (White) 1.82  1.82  1.82  1.82  -  0.00%  1.82  

Sn (Grey) 5.75  5.75  5.75  - -  0.00%  5.75  

Lu 9.84  9.84  9.84  9.842  9.84   0.02%  9.84  

Ho 8.8  8.8  8.795  8.797  8.8   0.06%  8.8  

Al 2.7  2.7  2.698  2.698 2.7   0.07%  2.70  

Ni 8.9  8.9  8.902  8.907  8.9   0.08%  8.90  

Ga 5.91  5.91  5.907  5.905  5.91   0.08%  5.91  

Nb 8.57  8.57  8.57  8.578  8.57   0.09%  8.57  

Zn 7.14  7.14  7.133  7.135  7.14   0.10%  7.14  

Sc 2.99  2.99  2.989  2.992  2.99   0.10%  2.99  

Tm 9.33  9.33  9.321  9.325  9.32   0.11%  9.33  

Mg 1.74  1.74  1.738  1.738 1.74   0.12%  1.74  

Nd 7  7  7.01  7  7.01   0.14%  7  

Pr 6.78  6.78  6.77  6.78  6.77   0.15%  6.78  

Eu 5.24  5.24  5.24  5.25  5.24   0.15%  5.24  

Rh 12.4  12.4  12.41  12.42  12.4   0.16%  12.4  

Fe 7.86  7.86  7.87  7.87  7.87   0.18%  7.87  

Rb 1.53  1.53  1.53  1.53  1.53   0.20%  1.53  

Au 19.3  19.3  19.32  19.28  19.3   0.20%  19.3  

Pd 12  12  12.02  12  12   0.21%  12  

Th 11.7  11.7  11.72  11.73  11.7   0.21%  11.7  

Mo 10.2  10.2  10.22  10.22  10.2   0.22%  10.2  

Be 1.85  1.85  1.8477  1.846  1.85   0.22%  1.85  

Hf 13.3  13.3  13.31  13.28  13.3   0.26%  13.3  

Sm 7.54  7.54  7.52  7.54  7.52   0.27%  7.54  

Ir 22.5  22.5  22.56  22.55  22.5   0.27%  22.5  

In 7.3  7.3  7.31  7.29  7.31   0.27%  7.3  

Dy 8.56  8.56  8.55  8.53  8.55   0.34%  8.55  

Os 22.5  22.5  22.59  22.58  22.59   0.40%  22.58  

Pb 11.3  11.3  11.35  11.34  11.3   0.44%  11.3  

Cu 8.92  8.92  8.96  8.93  8.96   0.45%  8.93  

Zr 6.49  6.49  6.51  6.51  6.52   0.46%  6.51  



Appendix 3 

 281 

I (I2) 4.93  4.93  4.93  4.95  -  0.47%  4.93  

Pt 21.4  21.4  21.45  21.45  21.5   0.47%  21.45  

Tb 8.27  8.27  8.23  8.27  8.23   0.50%  8.27  

Na 0.97  0.97  0.971  0.966  0.97   0.52%  0.97  

Bi 9.8  9.8  9.75  9.8  9.79   0.57%  9.8  

Cd 8.64  8.64  8.65  8.65  8.69   0.58%  8.65  

Tl 11.8  11.8  11.85  11.87  11.8   0.60%  11.8  

Cr 7.19  7.19  7.19  7.19  7.15   0.62%  7.19  

Sn (white) 7.28  7.28  7.31  7.29  7.26   0.69%  7.28  

Ti 4.54  4.54  4.54  4.51  4.51   0.71%  4.54  

Graphite 2.25  2.25  2.26  2.27  -  0.71%  2.26  

La 6.19  6.19  6.15  6.17  6.15   0.73%  6.17  

Li 0.53  0.53  0.53  0.53  0.53   0.75%  0.53  

W 19.4  19.4  19.3  19.25  19.3   0.76%  19.3  

U 19.1  19.1  18.95  19.05  19.1   0.79%  19.1  

Gd 7.95  7.95  7.9  7.87  7.9   1.02%  7.9  

Ce 6.78  6.78  6.77*  6.71  6.77   1.03%  6.77  

Sb 6.62  6.62  6.69  6.69  6.68   1.09%  6.68  

Co 8.9  8.9  8.9  8.8  8.86   1.14%  8.9  

Yb 6.98  6.98  6.97  6.97  6.9   1.16%  6.97  

Er 9.16  9.16  9.07  9.04  9.07   1.28%  9.07  

Ca 1.54  1.54  1.55  1.53  1.54   1.31%  1.54  

Ta 16.6  16.6  16.65  16.67  16.4   1.65%  16.6  

Po 9.4  9.4  9.32  9.4  9.2   2.17%  9.4  

Ru 12.3  12.3  12.37  12.36  12.1   2.23%  12.3  

V 5.96  5.96  6.11  6.09  6   2.52%  6  

Re 20.5  20.5  21.02  21.02  20.8   2.55%  20.8  

Cs 1.9  1.9  1.87  1.9  1.93   3.04%  1.9  

Y 4.34  4.34  4.47  4.48  4.47   3.11%  4.47  

Ba 3.51  3.51  3.59  3.59  3.62   3.13%  3.59  

K 0.86  0.86  0.86  0.86  0.89   3.49%  0.86  

Mn 7.2  7.2  7.44  7.47  7.3   3.79%  7.3  

Sr 2.62  2.62  2.54  2.58  2.64   3.94%  2.62  

Tc 11.5  11.5  11.5  11.5  11   4.55%  11.5  

Ge 5.35  5.35  5.32  5.32  5.6**   5.20%  5.35  

S (monoclinic) 1.96  1.96  1.96  - 1.82**   7.75%  1.96  

Te 6.25  6.25  6.24  6.25  5.7**   9.65%  6.25  
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Si 2.33  2.33  2.33  2.33  2.57**   10.35%  2.33  

As (grey) 5.72  5.72  5.78  5.78  5.22**   10.73%  5.72  

B 2.34  2.34  2.34  2.47  2.08**   18.56%  2.34  

Se 4.81  4.81  4.79  4.81  3.99**   20.55%  4.81  

 

* Ce: 8.24 (α), 6.749 (β), 6.773 (γ), 6.7 (δ) 

** At melting point 

 

Table A8 List of atomic weight from five handbooks (acronyms as in text). The elements are sorted in ascending 

(Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC (Unit: g mol-1) (Max-Min)/Min Median 

Hf 178.49  178.49  178.49  178.49  178.49   0.00% 178.49  

Cs 132.91  132.91  132.91  132.91  132.91   0.00% 132.91  

Bi 208.98  208.98  208.98  208.98  208.98   0.00% 208.98  

Graphite 12.01  12.01  - 12.01  12.01   0.00% 12.01  

Rb 85.47  85.47  85.47  85.47  85.47   0.00% 85.47  

Sc 44.96  44.96  44.95  44.96  44.96   0.00% 44.96  

I (I2) 126.9  126.91  126.9  126.9  126.9   0.01% 126.9  

Al 26.98  26.98  26.98  26.98  26.98   0.01% 26.98  

Te 127.6  127.6  127.61  127.6  127.6   0.01% 127.6  

U 238.03  238.03  238.01  238.03  238.03   0.01% 238.03  

Th 232.04  232.04  232.06  232.04  232.04   0.01% 232.04  

Si 28.09  28.09  28.09  28.09  28.09   0.01% 28.09  

Nb 92.91  92.91  92.90  92.91  92.91   0.01% 92.91  

Lu 174.97  174.97  174.96  174.97  174.97   0.01% 174.97  

P (White) 30.97  30.97  30.98  30.97  30.97   0.01% 30.97  

B 10.81  10.81  10.81  10.81  10.81   0.01% 10.81  

K 39.102  39.098  39.1  39.098  39.098   0.01% 39.1  

Ba 137.34  137.33  137.33  137.33  137.33   0.01% 137.33  

Zr 91.22  91.22  91.21  91.22  91.22   0.01% 91.22  

Ra 226*  226.03  226  226.03*  226.03*   0.01% 226.03  

Sr 87.62  87.62  87.63  87.62  87.62   0.01% 87.62  

Ca 40.08  40.08  40.08  40.08  40.08   0.01% 40.08  

Li 6.941  6.941  6.942  6.941  6.941   0.01% 6.941  

Ho 164.93  164.93  164.91  164.93  164.93   0.01% 164.93  

Tb 158.93  158.93  158.9  158.93  158.93   0.01% 158.93  

Eu 151.96  151.96  151.94  151.97  151.96   0.02% 151.96  

Na 22.9898  22.9898  22.99  22.9898  22.9898   0.02% 22.99  
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Sn (Grey) 118.69*  118.71  - 118.71  118.71   0.02% 118.71  

In 114.82  114.82  114.84  114.82  114.82   0.02% 114.82  

Y 88.91  88.91  88.89  88.91  88.91   0.02% 88.91  

Re 186.2  186.21  186.24  186.21  186.21   0.02% 186.21  

Gd 157.25  157.25  157.22  157.25  157.25   0.02% 157.25  

Sn (white) 118.69  118.71  118.71  118.71  118.71   0.02% 118.71  

La 138.91  138.91  138.88  138.91  138.91   0.02% 138.91  

Pr 140.91  140.91  140.88  140.91  140.91   0.02% 140.91  

Sb 121.75  121.75  121.78  121.76  121.76   0.02% 121.76  

Tm 168.93  168.93  168.9  168.93  168.93   0.02% 168.93  

Nd 144.24  144.24  144.27  144.24  144.24   0.02% 144.24  

Cr 52  52  51.98  52  52   0.02% 52  

Pb 207.2  207.2  207.25  207.2  207.2   0.02% 207.2  

Yb 173.04  173.04  173.01  173.04  173.05   0.03% 173.04  

Co 58.93  58.93  58.92  58.93  58.93   0.03% 58.93  

Rh 102.91  102.91  102.88  102.91  102.91   0.03% 102.91  

Se 78.96  78.96  78.94  78.96  78.96   0.03% 78.96  

Sm 150.4  150.36  150.4  150.36  150.36   0.03% 150.36  

Mo 95.94  95.94  95.97  95.94  95.96   0.03% 95.94  

Dy 162.5  162.5  162.45  162.5  162.5   0.03% 162.5  

Ag 107.87  107.87  107.84  107.87  107.87   0.03% 107.87  

Cu 63.55  63.55  63.53  63.55  63.55   0.03% 63.55  

V 50.94  50.94  50.96  50.94  50.94   0.03% 50.94  

Mg 24.31  24.31  24.30  24.31  24.31   0.03% 24.31  

Fe 55.85  55.85  55.83  55.85  55.85   0.04% 55.85  

Pd 106.4  106.42  106.38  106.42  106.42   0.04% 106.42  

Tl 204.37  204.38  204.29  204.38  204.38   0.04% 204.38  

Cd 112.4  112.41  112.45  112.41  112.41   0.04% 112.41  

Ta 180.95  180.95  181.03  180.95  180.95   0.04% 180.95  

W 183.85  183.85  183.93  183.84  183.84   0.05% 183.85  

Au 196.97  196.97  196.87  196.97  196.97   0.05% 196.97  

Er 167.26  167.26  167.18  167.26  167.26   0.05% 167.26  

Be 9.01  9.01  9.02  9.01  9.01   0.05% 9.01  

Mn 54.94  54.94  54.91  54.94  54.94   0.06% 54.94  

Pt 195.09  195.08  195.20  195.08  195.08   0.06% 195.08  

Ga 69.72  69.72  69.76  69.72  69.72   0.06% 69.72  

Zn 65.37  65.39  65.41  65.39  65.38   0.06% 65.39  
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Ge 72.59  72.59  72.61  72.61  72.64   0.07% 72.61  

Ti 47.90  47.88  47.90  47.88  47.87   0.07% 47.88  

Ni 58.71  58.69  58.66  58.69  58.69   0.08% 58.69  

As (grey) 74.92  74.92  74.85  74.92  74.92   0.09% 74.92  

Os 190.2  190.2  190.43  190.23  190.23   0.12% 190.23  

Ru 101.07  101.07  100.69  101.07  101.07   0.38% 101.07  

Ir 192.22  192.22  193.34  192.22  192.22   0.58% 192.22  

Po 210*  209*  208.77  208.98  208.98*   0.59% 208.98  

Tc 99*  98*  98.90  97.91  97.91*   1.12% 98  

S (monoclinic) 32.06  32.06  30.31  32.07  32.07   5.78% 32.06  

Ce 140.12  140.12  115.09  140.12  140.12   21.75% 140.12  

 

* For most stable isotrope 

 

Table A9 List of linear thermal expansion coefficient from five handbooks (acronyms as in text). The elements are 

sorted in ascending (Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC (Unit: 106*K-1) (Max-Min)/Min Median 

Cu - 16.5  16.5  16.5  16.5   0.00% 16.5  

As (grey) - - 4.7  - -  0.00% 4.7  

Y - 10.6  10.6  - 10.6   0.00% 10.6  

Te - - 16.75  - - 

29.41 

 (From Journal) 0.00% 16.75  

I (I2) - - - 32.10  -  0.00% 32.1  

Hf - 5.9  5.9  - 5.9   0.00% 5.9  

Ir - 6.4  6.4  6.4  6.4   0.00% 6.4  

Bi - 13.4  13.4  13.4  13.4   0.00% 13.4  

Ra - - 20.2  - -  0.00% 20.2  

Tm - 13.3  13.3  - 13.3   0.00% 13.3  

Graphite - - - 7.1  -  0.00% 7.1  

Cs - - 97  - 97   0.00% 97  

P (White) - - 124.5  - -  0.00% 124.5  

Rb - - 90  - -  0.00% 90  

Tc - - 8.06  - -  0.00% 8.06  

S 

(monoclinic) - - 74.33  - -  0.00% 74.33  

Se - 37  36.9  - -  0.27% 36.95  

Au - 14.2  14.16  14.2  14.2   0.28% 14.2  

Al - 23.1  23.03  23.1  23.1   0.30% 23.1  
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K - - 83  - 83.3   0.36% 83.15  

Na - 71  70.6  - 71   0.57% 71  

Pb - 28.9  29.1  28.9  28.9   0.69% 28.9  

Ni - 13.4  13.3  13.4  13.4   0.75% 13.4  

Dy - 9.9  10  - 9.9   1.01% 9.9  

V - 8.4  8.3  8.4  8.4   1.20% 8.4  

Pr - 6.7  6.79  - 6.7   1.34% 6.7  

Ca - 22.3  22  - 22.3   1.36% 22.3  

Mn - 21.7  22  - 21.7   1.38% 21.7  

Zr - 5.7  5.78  - 5.7   1.40% 5.7  

Ag - 18.9  19.2  18.9  18.9   1.59% 18.9  

Be - 11.3  11.5  11.3  11.3   1.77% 11.3  

Sc - 10.2  10  - 10.2   2.00% 10.2  

W - 4.5  4.59  4.5  4.5   2.00% 4.5  

Po - - 23  - 23.5   2.17% 23.25  

Sr - 22.5  23  - 22.5   2.22% 22.5  

Pt - 8.8  9  8.8  8.8   2.27% 8.8  

Rh - 8.2  8.4  8.2  8.2   2.44% 8.2  

Co - 13  13.36  13  13   2.77% 13  

In - 32.1  33  - 32.1   2.80% 32.1  

Ti - 8.6  8.35  8.6  8.6   2.99% 8.6  

Nb - 7.3  7.07  7.3  7.3   3.25% 7.3  

Cd - 30.8  29.8  30.8  30.8   3.36% 30.8  

Sn (white) - 22  21.2  22  22   3.77% 22  

Fe - 11.8  12.3  11.8  11.8   4.24% 11.8  

Ta - 6.3  6.6  6.3  6.3   4.76% 6.3  

Yb - 26.3  25  - 26.3   5.20% 26.3  

Pd - 11.8  11.2  11.8  11.8   5.36% 11.8  

Ba - 20.6  19.55  - 20.6   5.37% 20.6  

B - 5**  5  4.7  -  6.38% 5  

Tl - 29.9  28  29.9  29.9   6.79% 29.9  

Re - 6.2  6.63  - 6.2   6.94% 6.2  

Ge - 6  5.57  5.7  -  7.72% 5.7  

Gd - 9.4↑  8.6  - 9.4↑   9.30% 9.4  

Eu - 35  32  - 35   9.38% 35  

U - 13.9  12.6  13.9  13.9   10.32% 13.9  

Mo - 4.8  5.43  4.8  4.8   13.13% 4.8  
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Th - 11.1  12.5  - 11   13.64% 11.1  

Ho - 11.2  9.5  - 11.2   17.89% 11.2  

Os - 5.1  4.3*  - 5.1   18.60% 5.1  

Zn - 30.2  25  30.2  30.2   20.80% 30.2  

Li - 46  56  - 46   21.74% 46  

Lu - 9.9  8.12  - 9.9   21.92% 9.9  

Sm - 12.7  10.4  - 12.7   22.12% 12.7  

Cr - 4.9  6.2  4.9  4.9   26.53% 4.9  

Sb - 11  8.5  11  11   29.41% 11  

Er - 12.2  9.2  - 12.2   32.61% 12.2  

Ce - 6.3  8.5  - 6.3   34.92% 6.3  

Ru - 6.4  9.1  - 6.4   42.19% 6.4  

Nd - 9.6  6.7  - 9.6   43.28% 9.6  

Tb - 10.3  7  - 10.3   47.14% 10.3  

Si - - 4.2  2.6  -  61.54% 3.4  

La - 12.1  4.9  - 12.1   146.94% 12.1  

Mg - 24.8  26.1  8.2  24.8   218.29% 24.8  

Sn (Grey) - 22  5.3  22  22   315.09% 22  

Ga - 120  11.5*  - 18   943.48% 18  

 

* Os: 4.3 (a axis), 6.1 (b axis), 6.8 (c axis); Ga: 11.5 (a axis), 31.5 (b axis), 16.5 (c axis) 

** B: range of 5~7 

↑ Gd: recorded at 100 ºC 

 

Table A10 List of work function from five handbooks (acronyms as in text). The elements are sorted in ascending 

(Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC** 

Ptable 

Software 

(Unit: eV) 

Polycr. (Max-Min)/Min Median 

Sc - 3.5  - - 3.5    0.00% 3.5  

Se - 5.9  - - 5.9    0.00% 5.9  

Y - 3.1  - - 3.1    0.00% 3.1  

I (I2) - - - - - 2.8   0.00% 2.8  

W - 4.55  - 4.55  4.55    0.00% 4.55  

Ra - - - - - 3.2   0.00% 3.2  

Pr - 2.7  - - -   0.00% 2.7  

Eu - 2.5  - - 2.5    0.00% 2.5  

Tb - 3  - - 3    0.00% 3  

Dy - - - - - 3.09   0.00% 3.09  
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Ho - - - - - 3.09   0.00% 3.09  

Er - - - - - 3.12   0.00% 3.12  

Tm - - - - - 3.12   0.00% 3.12  

Yb - - - - - 2.59   0.00% 2.59  

Lu - - - - 3.3*    0.00% 3.3  

Graphite - 5*  - 5  5*    0.00% 5  

P (White) - - - - - 3.96   0.00% 3.96  

Po - 4.6  - - -   0.00% 4.6  

Tc - - - - - 4.6   0.00% 4.6  

S (monoclinic) - - - - - 4.2   0.00% 4.2  

Sb - 4.56  - 4.56  4.55    0.22% 4.56  

In - 4.08  - 4.08  4.09    0.25% 4.08  

K - 2.3  - 2.3  2.29    0.44% 2.3  

Bi - 4.36  - 4.34  4.34    0.46% 4.34  

Ta - 4.22  - 4.22  4.25    0.71% 4.22  

Au - 5.32  - 5.28  5.31    0.76% 5.31  

Zr - 4  - 4  4.05    1.25% 4  

Mg - 3.66  - 3.61  3.66    1.39% 3.66  

Al - 4.19  - 4.19  4.26    1.67% 4.19  

Pb - 4.18  - 4.25  4.25    1.67% 4.25  

Ru - 4.8  - 4.73  4.71    1.91% 4.73  

U - 3.7  - 3.63  3.63    1.93% 3.63  

Si - 4.85  - 4.95  4.85    2.06% 4.85  

Cr - 4.4  - 4.44  4.5    2.27% 4.44  

Ga - 4.25  - 4.35  4.32    2.35% 4.32  

Cs - 1.9  - 1.95  1.95    2.63% 1.95  

La - 3.4  - - 3.5    2.94% 3.45  

Ge - 5  - 5.15  5    3.00% 5  

Nd - 3.1  - - 3.2    3.23% 3.15  

V - 4.44  - - 4.3    3.26% 4.37  

Sn (white) - 4.35  - 4.28  4.42    3.27% 4.35  

Sn (Grey) - 4.35  - 4.28  4.42    3.27% 4.35  

Cd - 4.12  - 4.22  4.08    3.43% 4.12  

Ce - 2.8  - - 2.9    3.57% 2.85  

Nb - 4.2  - 4.3  4.36    3.81% 4.3  
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Ni - 5.15  - 5.15  5.35    3.88% 5.15  

Fe - 4.65  - 4.6  4.81    4.57% 4.65  

Tl - 4.02  - - 3.84*    4.69% 3.93  

Re - 4.95  - 4.72  4.72    4.87% 4.72  

Mn - 3.9  - 4.08  4.1    5.13% 4.08  

Pt - 5.4  - 5.36  5.64    5.22% 5.4  

Te - 4.7  - - 4.95    5.32% 4.83  

Rh - 4.98  - 4.72  4.98    5.51% 4.98  

Ti - 4.1  - 4.1  4.33    5.61% 4.1  

Mo - 4.3  - 4.33  4.55    5.81% 4.33  

Ca - 2.71  - 2.87  2.87    5.90% 2.87  

Cu - 4.7  - 4.65  4.94    6.24% 4.7  

Co - 4.7  - 4.97  5    6.38% 4.97  

Sr - 2.76  - - 2.59*    6.56% 2.68  

B - 4.75*  - - 4.45*    6.74% 4.6  

Hf - 3.65  - 3.65  3.9    6.85% 3.65  

Gd - 3.1  - - 2.9    6.90% 3  

Ba - 2.35  - 2.35  2.52    7.23% 2.35  

Pd - 5  - 5.4  5.22    8% 5.22  

Th - 3.71  - 3.71  3.4    9.12% 3.71  

Sm - 2.95  - - 2.7    9.26% 2.83  

Rb - 2.2  - 2.05  2.26    10.29% 2.2  

Ag - 4.64  - 4.29  4.74    10.49% 4.64  

Na - 2.7  - 2.46  2.36    14.41% 2.46  

Zn - 4.3  - 4.11  3.63    18.46% 4.11  

Os - 4.83  - - 5.93    22.77% 5.38  

Ir - 5.6  - 4.57  5.76    26.04% 5.6  

As (grey) - 3.75*  - 4.79  3.75*    27.73% 3.75  

Be - 5.08  - 3.91  4.98    29.92% 4.98  

Li - 3.1  - 2.32  2.93    33.62% 2.93  

 

* Approximation value 

** For single crystals, values are recorded for (111) plane 
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Table A11 List of electrical resistivity from five handbooks (acronyms as in text). The elements are sorted in ascending 

(Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC 

(Unit: *108 ohm m) 

at 293K (Max-Min)/Min Median 

Ra - 100  100  - -  0.00% 100  

Sn (white) 11.36  11.5  - 11.5*  11.5*   1.20% 11.5  

Cr 12.82  12.5  12.7  12.7*  12.5   2.56% 12.7  

Sm 90.91  94  94  

91.40
*  94   3.40% 94  

Tb 111.11  115  114  113*  115   3.50% 114  

Sn (Grey) 11.36  11.5*  11  11.5*  11.5*   4.55% 11.5  

Rh 4.55  4.33*  4.51  4.3*  4.3*   5.71% 4.33  

Cd 6.85  7.27  6.83  6.8*  6.8*   6.91% 6.83  

Er 83.33  86  87  81*  86   7.41% 86  

Ti 41.67  42  42  39*  39*   7.69% 41.67  

Pr 66.67  70  68  65*  70   7.69% 68  

Y 55.56  59.6  57  55*  59.6   8.36% 57  

Sb 38.46  41.7  39  39*  39*   8.42% 39  

Pt 10.64  10.6  10.6  9.81*  10.5   8.44% 10.6  

Zr 41.67  42.1  42.1  38.8*  42.1   8.51% 42.1  

Li 9.26  9.28  8.55  8.53*  9.28   8.79% 9.26  

Cs 18.87  20.5  20  18.8*  20.5   9.04% 20  

Zn 5.99  5.9  5.92  5.48*  5.9   9.27% 5.9  

Cu 1.69  1.68  1.67  1.54*  1.68   9.50% 1.68  

Al 2.62  2.65  2.65  2.42*  2.65   9.70% 2.65  

Ag 1.61  1.59  1.59  1.47*  1.59   9.72% 1.59  

U 30.3  28*  30.8  28*  28*   10.00% 28  

Mo 5.26  5.34  5.2  4.85*  5.34   10.10% 5.26  

Pd 10.75  10.54  10.8  9.8*  10.54   10.20% 10.54  

Mg 4.46  4.39  4.38  4.05*  4.39   10.23% 4.39  

Ta 12.35  13.5  12.45  12.2*  13.1   10.66% 12.45  

Rb 12.5  12.8  12.5  11.5*  12.8   11.30% 12.5  

Co 6.25  6.24  6.24  5.6*  5.6*   11.61% 6.24  

Ho 90.91  81.4  87  90*  81.4   11.68% 87  

Os 9.09  8.12*  8.12  8.1*  8.1*   12.23% 8.12  

Ni 6.9  6.93  6.84  6.16*  6.93   12.50% 6.9  

In 9.01  8.37  8.37  8*  8*   12.61% 8.37  

Ir 5.26  4.71  5.30  4.70*  4.70*   12.77% 4.71  
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Pb 21.74  20.8  20.65  19.2*  20.8   13.22% 20.8  

Gd 142.86  131  134  126*  131   13.38% 131  

Ce 76.92  82.8¦  73  73*  74.4¦   13.42% 74.4  

Na 4.59  4.77  4.2  4.33*  4.77   13.57% 4.59  

La 58.82  61.5  57  54*  61.5   13.89% 58.82  

Re 19.61  19.3  19.3  17.2*  17.2*   14.00% 19.3  

Au 2.38  2.21  2.35  2.05*  2.21   16.14% 2.21  

Fe 10  9.61  9.71  8.57*  9.61   16.69% 9.61  

K 6.99  7.2  6.15  6.49*  7.2   17.07% 6.99  

W 5.56  5.28  5.65  4.82*  5.28   17.22% 5.28  

Hf 35.71  33.1  35.1  30.4*  33.1   17.48% 33.1  

Yb 29.41  25  29  27.7*  25   17.65% 27.7  

Bi 111.11  129  106.8  107*  107*   20.79% 107  

Tl 18.18  18  18  15*  15*   21.21% 18  

Nb 12.5  15.2*  12.5  15.2*  15.2*   21.6% 15.2  

Po 50  40*  - 40*  40*   25.00% 40  

Nd 76.92  64.3  64  61*  64.3   26.10% 64.3  

Sc 66.67  56.2  61  50.5*  56.2   32.01% 56.2  

Be 4  3.56  4  3.02*  3.56   32.45% 3.56  

As (grey) 34.48  33.3  26  26*  -  32.63% 29.65  

Tm 90.91  67.6  79  67*  67.6   35.69% 67.6  

I (I2) 1E+15 1.30E+15* 1.37E+15 - -  37.00% 1.30E+15 

V 25  19.7  24.8  18.1*  19.7   38.12% 19.7  

Th 18.18  15.4  13  14.7*  14.7*   39.86% 14.7  

Ru 10  7.1*  7.6  7.1*  7.1*   40.85% 7.1  

Lu 76.92  58.2  79  54*  58.2   46.30% 58.2  

Ca 4.59  3.36  3.43  3.11*  3.36   47.50% 3.36  

Dy 90.91  92.6  57  89*  92.6   62.46% 90.91  

B 1E+12 1.50E+12 1.80E+12 - -  80.00% 1.50E+12 

Sr 23.26  13.2  23  12.3*  13.2   89.07% 13.2  

Ga 17.24  25.8**  27↑  13.6*  13.6*   98.53% 17.24  

S 

(monoclinic) 1E+23 2E+23 2E+23 - -  100.00% 2E+23 

Ba 62.5  33.2  50  30.2*  33.2   106.95% 33.2  

Graphite 

1428.5

7  1375  1375  300↕  -  376.19% 1375  

Mn 18.52  144  185  143*  144   899.00% 144  
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Eu 90.91  90  990  89*  90   1.01E+01 90  

Te 1E+06 3.30E+4$ 4.36E+5 3E+5$ -  2.93E+01 3.68E+05 

Ge 4.6E+7 5.30E+4 4.60E+7 1E+5↕ -  8.67E+02 2.28E+07 

Tc 1E+05 22.6§  22.6  - -  4.42E+03 22.6  

Si 10  1E+05 1E+05 1E+7↕ -  1E+06 1E+05 

Se 12.5  1.2*  1E+06 0.1  -  1E+07 6.85  

P (White) 1E+17 10  1E+17 - -  1E+16 1E+17 

 

* At 0 ºC 

** Ga: at 30 ºC 

↑ Ga: varies with axis 

↕ C: 300-6000; Ge: 100000-50000000; Si: 10000000-6000000000 

$ Te: 5800-33000 

§ At 100 ºC 

¦ Ce: 82.8 (β, hex), 74.4 (γ, Cub.) 

 

Table A12 List of thermal conductivity from five handbooks (acronyms as in text). The elements are sorted in ascending 

(Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC 

(Unit: Wm-1K-1) 

at 300K (Max-Min)/Min Median 

Ru - 117  117  117↕  117   0.00% 117  

Ba - 18.4  18.4  - 18.4   0.00% 18.4  

Hf - 23  23  23↕  23   0.00% 23  

Ir - 147  147  147↕  147   0.00% 147  

Ra - 18.6  18.6  - -  0.00% 18.6  

Nd - 16.5  16.5  - 16.5   0.00% 16.5  

Eu - 13.9  13.9  - 13.9$   0.00% 13.9  

Th - 54  54  54↕  54   0.00% 54  

Ag - 429  429  428↕  429   0.23% 429  

Pd - 71.8  71.8  72↕  71.8   0.28% 71.8  

Cs - 35.9  35.9  36↕  35.9   0.28% 35.9  

Sr - 35.4  35.3  - 35.3   0.28% 35.3  

Rb - 58.2  58.2  58↕  58.2   0.34% 58.2  

As (grey) - 50.2  50  - -  0.40% 50.1  

Cd - 96.6  96.8  97↕  96.8   0.41% 96.8  

Al - 237  237  236↕  237   0.42% 237  

Ti - 21.9  21.9  22↕  21.9   0.46% 21.9  

Os - 87.6  87.6  88↕  87.6   0.46% 87.6  

Cu - 401  401  403↕  401   0.50% 401  
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Ca - 201  200  - 200   0.50% 200  

Pt - 71.6  71.6  72↕  71.6   0.56% 71.6  

Au - 318  317  319↕  317   0.63% 317.5  

Mg - 156  156  157↕  156   0.64% 156  

Rh - 150  150  151↕  150   0.67% 150  

Na - 142  141  142↕  141   0.71% 141.5  

Mo - 138  138  139↕  138   0.72% 138  

Tc - 50.6  50.6  51↕  50.6   0.79% 50.6  

Zn - 116  116  117↕  116   0.86% 116  

Ta - 57.5  57.5  57↕  57.5   0.88% 57.5  

V - 30.7  30.7  31↕  30.7   0.98% 30.7  

Ga - 40.6  40.6  41↕  40.6   0.99% 40.6  

Y - 17.2  17.2  17↕  17.2   1.18% 17.2  

Tm - 16.9  16.8  17↕  16.9   1.19% 16.9  

Ho - 16.2  16.2  16↕  16.2   1.25% 16.2  

Sc - 15.8  15.8  16↕  15.8   1.27% 15.8  

Nb - 53.7  53.7  53↕  53.7   1.32% 53.7  

Li - 84.8  84.7  86↕  84.7   1.53% 84.75  

K - 102.5  102.4  104↕  102.4   1.56% 102.45  

Zr - 22.6  22.7  23↕  22.7   1.77% 22.7  

Dy - 10.7  10.7  10.5↕  10.7   1.90% 10.7  

Tl - 46.1  46.1  47↕  46.1   1.95% 46.1  

Pb - 35.3  35.3  36↕  35.3   1.98% 35.3  

Sn (white) - 66.8  - 68↕  66.6   2.10% 66.8  

Sn (Grey) - 66.8  66.6  68↕  66.6   2.10% 66.7  

U - 27.5  27.6  27↕  27.6   2.22% 27.55  

Re - 48  47.9  49↕  47.9   2.30% 47.95  

Sm - 13.3  13.3  13↕  13.3   2.31% 13.3  

W - 173  174  177↕  174   2.31% 174  

Mn - 7.81  7.82  8↕  7.82   2.43% 7.82  

S (monoclinic) - 0.21  - 0.2↕  -  2.50% 0.2  

In - 81.8  81.6  84↕  81.6   2.94% 81.7  

Cr - 93.9  93.7  96.5↕  93.7   2.99% 93.8  

Ce - 11.3  11.4  11↕  11.3   3.64% 11.3  

Ni - 90.9  90.7  94↕  90.7   3.64% 90.8  

Lu - 16.4  16.4  17↕  16.4   3.66% 16.4  

La - 13.4  13.5  13↕  13.4   3.85% 13.4  
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Fe - 80.4  80.2  83.5↕  80.2   4.11% 80.3  

Pr - 12.5  12.5  12↕  12.5   4.17% 12.5  

Bi - 7.97  7.87  8.20↕  7.87   4.19% 7.92  

Er - 14.5  14.3  15↕  14.5   4.90% 14.5  

Sb - 24.4  24.3  25.5↕  24.3   4.94% 24.35  

Co - 100  100  105↕  100   5% 100  

Tb - 11.1  11.1  10.5↕  11.1   5.71% 11.1  

Gd - 10.5  10.6  10↕  10.5   6% 10.5  

P (White) - 0.24  0.24  0.25↕  -  6.38% 0.24  

Be - 200  200  218↕  200   9% 200  

Yb - 38.5  34.9  - 38.5   10.32% 38.5  

Ge - 60.2  59.9  67↕  -  11.85% 60.2  

Si - 149  148  168↕  -  13.51% 149  

B - 27.4  27  32↕  -  18.52% 27.4  

Te - 2.68↑  2.35  2.85↕  -  21.28% 2.68  

Se - 0.52  2.04  0.43↕  -  374.42% 0.52  

Graphite - 119**  5.7*  80↕  -  1987.72% 80  

Po - 0.2  20  - 20   9900% 20  

I (I2) - 449  0.45  0.5↕  -  99900% 0.5  

 

* Graphite: 5.7 (perpendicular), 1960 (parallel) 

** Graphite: 119-165 

↑ Te: 1.97-3.38 

↕ At 273.2 K, and Graphite: 80-230 

$ Eu: estimated value 

 

Table A13 List of specific heat capacity from five handbooks (acronyms as in text). The elements are sorted in 

ascending (Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC (Unit: J Kg-1 K-1) (Max-Min)/Min Median 

S (monoclinic) 732  732  - - -  0.00% 732  

Si 711  711  712.05  - 712   0.15% 711.5  

Os 130  130  129.7  130*  130   0.23% 130  

Graphite 711  711  - - 709   0.28% 711  

Se 322  322  321.3  - 321   0.31% 321.65  

Nb 264  264  264.8  265*  265   0.38% 264.8  

B 1030  1030  1025.83  - 1026   0.41% 1028  

Ag 234  234  235.09  235*  235   0.47% 235  

Te 201  201  201.63  - 202   0.50% 201.32  



Appendix 3 

 294 

Ge 322  322  321.56  - 320   0.63% 321.78  

Tm 159  159  160.04  159*  160   0.65% 159  

Dy 172  172  173.35  - 173   0.78% 172.5  

Po 126  126  125.02  - -  0.78% 126  

Zn 385  385  388.32  385*  388   0.86% 385  

Re 138  138  136.81  138*  137   0.87% 138  

Ra 121  121  119.91  - -  0.91% 121  

Bi 121  121  122.12  122*  122   0.93% 122  

As (grey) 326  326  329.19  - 329   0.98% 327.5  

Nd 188  188  190.26  - 190   1.20% 189  

Ho 163  163  164.64  164*  165   1.23% 164  

Cd 230  230  231.04  229*  232   1.31% 230  

Er 167  167  168.20  166*  168   1.33% 167  

Sn (Grey) 218  218  - 221*  -  1.38% 218  

Sb 209  209  207.18  206*  207   1.46% 207.18  

Ta 138  138  140.09  139*  140   1.51% 139  

Pt 134  134  132.48  132*  133   1.52% 133  

Y 297  297  298.46  294*  298   1.52% 297  

W 134  134  131.95  133*  132   1.55% 133  

Au 130  130  129.11  128*  129   1.56% 129.11  

Cu 385  385  384.64  379*  385   1.58% 385  

V 481  481  488.45  489*  489   1.66% 488.45  

P (White) 757  757  769.62  - 769   1.67% 763  

Ru 238  238  238.95  235*  238   1.68% 238  

Tl 130  130  128.83  131*  129   1.68% 130  

Fe 448  448  449.61  442*  449   1.72% 448  

Zr 276  276  278.03  273*  278   1.84% 276  

Mo 251  251  250.71  246*  251   2.03% 251  

Pr 192  192  193.07  196*  193   2.08% 193  

Hf 146  146  144.16  143*  144   2.10% 144.16  

Rh 243  243  242.81  238*  243   2.10% 243  

Sc 556  556  567.68  557*  568   2.16% 557  

Tb 184  184  181.94  186*  182   2.23% 184  

Ti 523  523  522.37  511*  523   2.35% 523  

Pb 130  130  127.57  127*  130   2.36% 130  

Na 1230  1230  1228.18  1200*  1228   2.50% 1228.18  

Pd 243  243  244.23  240*  246   2.50% 243  
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Cr 448  448  449.18  438*  449   2.55% 448  

Al 900  900  902.52  880*  897   2.56% 900  

Sm 197  197  196.41  192*  197   2.60% 197  

U 117  117  116.23  114*  116   2.63% 116.23  

Mn 477  477  479.35  467*  479   2.65% 477  

Ga 381  381  370.69  - 373   2.78% 377  

Mg 1030  1030  1024.4  1000*  1023   3.00% 1024.4  

In 238  238  232.85  231*  233   3.03% 233  

La 201  201  195.21  - 195   3.08% 198.1  

Ir 134  134  129.82  - 131   3.22% 132.5  

Ca 653  653  631.44  - 647   3.41% 650  

K 753  753  756.52  732*  757   3.42% 753  

Cs 234  234  242.05  - 242   3.44% 238  

Ni 439  439  444.39  429*  444   3.59% 439  

Tc 243  243  252.78  - -  4.02% 243  

Be 1820  1820  1823.27  1750*  1825   4.29% 1820  

Th 113  113  117.73  117*  118   4.42% 117  

Sn (white) 218  218  217.08  221*  227   4.57% 218  

Rb 360  360  363.42  346*  363   5.04% 360  

Co 435  435  421.09  414*  421   5.07% 421.09  

Li 3390  3390  3568.14  3480*  3582   5.66% 3480  

Yb 146  146  154.56  - 155   6.16% 150.28  

Ba 192  192  204.4  - 204   6.46% 198  

Sr 284  284  301.27  - 306   7.75% 292.63  

Ce 184  184  234.08  190*  192   27.22% 190  

Gd 234  234  235.53  300*  236   28.21% 235.53  

Eu 138  138  182.04  - 182   31.92% 160  

I (I2) 218  218  428.99  - 214   100.46% 218  

Lu 155  155  153.53  640*  154   316.87% 155  

 

* At 273 K 
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Table A14 List of molar heat capacity from five handbooks (acronyms as in text). The elements are sorted in ascending 

(Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC (Unit: J K-1 Mol-1) (Max-Min)/Min Median 

S (monoclinic) 23.47  23.47  - - -  0.00% 23.47  

Os 24.73  24.73  24.7  24.73*  24.7   0.12% 24.73  

Si 19.97  19.97  20  - 19.99   0.16% 19.98  

Se 25.43  25.43  25.36  - 25.36   0.24% 25.39  

Graphite 8.54  8.54  8.53  - 8.52   0.27% 8.53  

Te 25.65  25.65  25.73  - 25.73   0.32% 25.69  

Nb 24.53  24.53  24.6  24.62*  24.6   0.38% 24.6  

B 11.13  11.13  11.09  - 11.09   0.43% 11.11  

Ag 25.24  25.24  25.35  25.35*  25.35   0.44% 25.35  

Tm 26.86  26.86  27.03  26.86*  27.03   0.63% 26.86  

Ge 23.37  23.37  23.35  - 23.22   0.65% 23.36  

Dy 27.95  27.95  28.16  - 28.16   0.75% 28.06  

Re 25.7  25.7  25.48  25.7*  25.48   0.85% 25.7  

As (grey) 24.42  24.42  24.64  - 24.64   0.88% 24.53  

Ra 27.35  27.35  27.1  - -  0.92% 27.35  

Bi 25.29  25.29  25.52  25.5*  25.52   0.92% 25.5  

Zn 25.17  25.18  25.4  25.18*  25.39   0.92% 25.18  

Ho 26.88  26.88  27.15  27.05*  27.15   0.99% 27.05  

Cd 25.85  25.85  25.98  25.74*  26.02   1.08% 25.85  

Nd 27.12  27.12  27.45  - 27.45   1.23% 27.28  

Er 27.93  27.93  28.12  27.77*  28.12   1.28% 27.93  

Ru 24.05  24.05  24.06  23.75*  24.06   1.30% 24.05  

Po 26.46  26.33  26.1  - -  1.38% 26.33  

Sb 25.45  25.45  25.23  25.08*  25.23   1.45% 25.23  

Y 26.41  26.41  26.53  26.14*  26.53   1.50% 26.41  

W 24.64  24.64  24.27  24.45*  24.27   1.51% 24.45  

Pt 26.14  26.14  25.86  25.75*  25.86   1.52% 25.86  

Ta 24.97  24.97  25.36  25.15*  25.36   1.56% 25.15  

Au 25.61  25.61  25.42  25.21*  25.42   1.56% 25.42  

Cu 24.47  24.47  24.44  24.08*  24.44   1.58% 24.44  

V 24.50  24.50  24.89  24.91*  24.89   1.66% 24.89  

P (White) 23.45  23.45  23.84  - 23.82   1.68% 23.64  

Fe 25.02  25.02  25.1  24.68*  25.1   1.68% 25.02  

Pd 25.86  25.86  25.98  25.54*  25.98   1.72% 25.86  
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Tl 26.57  26.57  26.32  26.77*  26.32   1.73% 26.57  

Sn (Grey) 25.87  25.88  25.77  26.23*  -  1.80% 25.88  

Zr 25.18  25.18  25.36  24.90*  25.36   1.83% 25.18  

Mo 24.08  24.08  24.06  23.60*  24.06   2.03% 24.06  

Pr 27.05  27.05  27.2  27.62*  27.2   2.08% 27.2  

Hf 26.06  26.06  25.73  25.52*  25.73   2.10% 25.73  

Sc 25  25  25.52  25.04*  25.52   2.10% 25.04  

Rh 25.01  25.01  24.98  24.49*  24.98   2.10% 24.98  

Tb 29.24  29.24  28.91  29.56*  28.91   2.25% 29.24  

Pb 26.94  26.94  26.44  26.31*  26.84   2.36% 26.84  

Ti 25.05  25.04  25.02  24.47*  25.06   2.43% 25.04  

Na 28.28  28.28  28.24  27.59*  28.23   2.50% 28.24  

Cr 23.29  23.29  23.35  22.77*  23.35   2.53% 23.29  

Al 24.28  24.28  24.35  23.74*  24.20   2.55% 24.28  

Mn 26.21  26.21  26.32  25.66*  26.32   2.59% 26.21  

Ir 25.76  25.76  25.1  - 25.1   2.62% 25.43  

Sm 29.63  29.62  29.54  28.87*  29.54   2.63% 29.54  

U 27.85  27.85  27.67  27.14*  27.67   2.63% 27.67  

Ga 26.56  26.56  25.86  - 26.03   2.72% 26.30  

La 27.92  27.92  27.11  - 27.11   2.99% 27.52  

Mg 25.03  25.03  24.89  24.31*  24.87   3% 24.89  

In 27.33  27.33  26.74  26.52*  26.74   3.03% 26.74  

Ca 26.17  26.17  25.31  - 25.93   3.41% 26.05  

K 29.44  29.44  29.58  28.62*  29.6   3.42% 29.44  

Ni 25.77  25.76  26.07  25.18*  26.07   3.54% 25.77  

Cs 31.1  31.1  32.17  - 32.21   3.57% 31.63  

Th 26.22  26.22  27.32  27.15*  27.32   4.19% 27.15  

Be 16.4  16.4  16.44  15.77*  16.44   4.26% 16.4  

Ce 25.78  25.78  26.94  26.62*  26.94   4.49% 26.62  

Sn (white) 25.87  25.88  25.77  26.23*  26.99   4.73% 25.88  

Tc 24.06  23.81  25  - -  4.98% 24.06  

Rb 30.77  30.77  31.06  29.57*  31.06   5.04% 30.77  

Co 25.64  25.64  24.81  24.4*  24.81   5.07% 24.81  

Li 23.53  23.53  24.77  24.15*  24.86   5.65% 24.15  

Yb 25.26  25.26  26.74  - 26.74   5.84% 26  

Ba 26.37  26.37  28.07  - 28.07   6.46% 27.22  

Sr 24.88  24.88  26.4  - 26.79   7.66% 25.64  
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Gd 36.80  36.80  37.03  47.18*  37.03   28.21% 37.03  

Eu 20.97  20.97  27.66  - 27.66   31.90% 24.32  

I (I2) 27.67  27.67  54.44  - 54.43   96.77% 41.05  

Lu 27.12  27.12  26.86  111.98*  26.86   316.90% 27.12  

 

* At 273 K 

 

Table A15 List of heat of vaporization from five handbooks (acronyms as in text). The elements are sorted in ascending 

(Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC (Unit: kJ mol-1) (Max-Min)/Min Median 

Tm - 247  247  - -  0.00% 247  

Yb - 159  159  - -  0.00% 159  

Cd 100  99.9  99.87  99.87  99.9   0.13% 99.9  

Eu - 176  175.7  175.73  -  0.17% 175.73  

Pr - 331  332.6  332.63  -  0.49% 332.6  

Graphite 715*  - 710.9  - -  0.58% 712.95  

La 400  402.1  399.6  399.57  -  0.63% 399.8  

Ga 256  254  256.1  256.06  254   0.83% 256  

Ti 427  425  428.9  425.2  -  0.92% 426.1  

Nb 694  689.9  696.6  690.1  -  0.97% 692.05  

Ge 330  334  334.3  334.3  334   1.30% 334  

U - 417.1  422.6  422.58  -  1.32% 422.58  

Cu 305  300.4  304.6  300.49  -  1.53% 302.54  

As (grey) 32.4*  - 31.9  - -  1.57% 32.15  

Pb 177  179.5  179.4  177.93  180   1.69% 179.4  

Tl 162  165  162.1  162.09  -  1.85% 162.1  

Nd - 289  283.7  283.68  -  1.87% 283.7  

Ni 379  377.5  371.8  377.48  -  1.94% 377.49  

Sn (white) 290  296.1  290.4  290.37  -  2.10% 290.38  

Sn (Grey) 290  296.1  290.4  290.37  -  2.10% 290.38  

Mn 225  221  219.7  219.74  -  2.41% 220.37  

Cr 347  339.5  348.78  339.48  -  2.74% 343.25  

Ta 753  732.8  753.1  737  -  2.77% 745  

K 79.1  76.9  77.53  76.91  -  2.86% 77.22  

Sr 141  136.9  138.91  136.94  -  2.99% 137.92  

In 225  231.8  226.4  226.35  -  3.02% 226.37  

Ca 153  154.7  149.95  154.67  -  3.17% 153.83  
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V 444  459  458.6  446.74  -  3.38% 452.67  

Lu - 414  428  - -  3.38% 421  

Mg 132  128  128.7  127.63  -  3.43% 128.35  

Gd - 301.3  311.7  311.71  -  3.46% 311.7  

Be 309  297  308.8  297.58  -  4.04% 303.19  

Fe 354  340  351  349.5  -  4.12% 350.25  

W 774  806.7  799.1  805.93  -  4.22% 802.51  

Co 390  377  382.4  373.32  -  4.47% 379.7  

Er - 280  292.9  292.88  -  4.61% 292.88  

Dy - 280  293  - -  4.64% 286.5  

Au 342  324  324.4  324.43  324   5.56% 324.4  

Th - 514  543.9  543.92  -  5.82% 543.9  

Cs 66.1  63.9  65.9  67.77  -  6.06% 66  

Zn 115  123.6  115.3  115.31  -  7.48% 115.31  

Rh 531  494  495.4  495.39  -  7.49% 495.39  

Y 390  365  393.3  393.3  -  7.75% 391.65  

Ba 149  140.3  150.9  140.18  140   7.79% 140.3  

Pd 380  362  393.3  393.3  -  8.65% 386.65  

Pt 510  469  510.5  510.45  -  8.85% 510.23  

Ru 619  591.6  567.8  567.77  -  9.02% 579.7  

Sc 310  332.7  304.8  304.8  -  9.15% 307.4  

Li 136  147.1  134.7  147.08  -  9.21% 141.54  

Rb 69  75.77  69.2  69.2  -  9.81% 69.2  

Re 636  704  707.1  707.1  -  11.18% 705.55  

B 540  480  538.9  507.77  480   12.50% 507.77  

Na 101  97.42  89.04  97.36  -  13.43% 97.39  

Mo 536  617  594.1  590.41  -  15.11% 592.26  

Hf 648  571  661.1  661.07  -  15.78% 654.54  

Sm - 165  191.6  191.63  -  16.14% 191.6  

Tc 502  585.20  585.22  - -  16.58% 585.2  

Os 678  738  627.6  627.6  -  17.59% 652.8  

Zr 502  573  581.6  590.5  -  17.63% 577.3  

Po 120  102.91  100.8  - -  19.05% 102.91  

Ra 115  113  136.8  136.82  -  21.08% 125.9  

Bi 179  151  179.1  187.29  151   24.03% 179  

Ce - 398  313.8  313.8  -  26.83% 313.8  

Si 300  359  383.3  359.02  -  27.77% 359.01  
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Tb - 293  391  - -  33.45% 342  

I (I2) 22  41.6  41.67  41.94  41.6   90.63% 41.6  

Te 49.8  114.1  50.63  50.63  114   129.12% 50.63  

Ir 636  231.80  563.6  563.58  -  174.37% 563.59  

Sb 195  193.43  67.91  67.91  -  187.14% 130.67  

Ho - 71  251  251.04  -  253.58% 251  

P (White) 12.4  12.4  51.9  - 12.4   318.55% 12.4  

S 

(monoclinic) 10  45  9.62  - 45   367.78% 27.5  

Se 14  95.48  26.32  26.32  95.5   582.14% 26.32  

Al 284  294  293.72  29.08  294   910.86% 293.72  

Ag 254  258  255.1  25.51  -  911.54% 254.55  

 

* Sublimation 

 

Table A16 List of heat of fusion from five handbooks (acronyms as in text). The elements are sorted in ascending 

(Max.-Min.)/Min. 

Elements CDH LNG ELE TPC CRC  (Unit: kJ mol-1)  (Max-Min)/Min  Median 

Cs 2.09  2.09  2.09  2.09  2.09     0.15%  2.09  

Al 10.7  10.71  10.67  10.7  10.71     0.37%  10.7  

Ga 5.61  5.59  5.59  5.59  5.59     0.45%  5.59  

In 3.26  3.28  3.27  3.26  3.29     0.97%  3.27  

Na 2.6  2.6  2.64  2.6  2.6     1.54%  2.6  

Cu 13  13.26  13  13.14  13.26     2.00%  13.14  

Ni 17.6  17.48  17.6  17.21  17.48     2.26%  17.48  

Cd 6.11  6.19  6.11  6.07  6.21     2.31%  6.11  

Sn (white) 7.2  7.03  7.2  7.2  7.15     2.42%  7.2  

Sn (Grey) 7.2  7.03  7.2  7.2  -    2.42%  7.2  

Au 12.7  12.55  12.7  12.36  12.55     2.72%  12.55  

Pd 17  16.74  17.2  16.74  16.74     2.77%  16.74  

Tl 4.27  4.14  4.31  4.27  4.14     4.11%  4.27  

K 2.3  2.32  2.4  2.33  2.34     4.35%  2.33  

Sb 19.8  19.87  20.9  19.83  19.79     5.61%  19.83  

Ag 11.3  11.95  11.3  11.3  11.3     5.76%  11.3  

Mg 8.95  8.48  9.04  8.95  8.48     6.60%  8.95  

Co 15.2  16.2  15.2  16.21  16.2     6.67%  16.2  

Rb 2.3  2.19  2.2  2.34  2.19     6.68%  2.2  

Pb 5.1  4.77  5.12  4.77  4.77     7.36%  4.77  
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Bi 11  11.3  10.48  11.3  11.11     7.82%  11.11  

Tm - 16.84  18.4  - 16.84     9.26%  16.84  

Ca 9.2  8.54  9.33  8.53  8.54     9.37%  8.54  

Zn 7.36  7.32  6.67  7.38  7.07     10.69%  7.32  

Nb 27  30  27.2  26.94  30     11.36%  27.2  

Fe 15.4  13.81  14.9  13.8  13.81     11.58%  13.81  

Graphite - 117  105.1  - 117.4     11.70%  117  

Ba 7.66  7.12  7.66  8.01  7.12     12.46%  7.66  

Pt 22  22.17  19.7  19.66  22.18     12.77%  22  

As (grey) 27.7  24.44  27.7  - 24.44     13.34%  26.07  

Mn 14.6  12.9  14.4  14.64  12.91     13.50%  14.4  

Eu - 9.21  10.5  10.46  9.21     14.01%  9.83  

Sc 16  14.1  15.9  16.11  14.1     14.28%  15.9  

Er - 19.9  17.2  17.15  19.9     16.02%  18.55  

Ge 32  36.94  34.7  31.8  36.94     16.15%  34.7  

Lu - 22*  19.2  - 18.65     17.96%  19.2  

Yb - 7.66  9.2  - 7.66     20.10%  7.66  

Rh 22  26.59  21.55  21.76  26.59     23.39%  22  

Sr 9.2  7.43  9.16  8.23  7.43     23.82%  8.23  

Hf 22  27.2  25.5  21.76  27.2     25.01%  25.5  

Si 46.4  50.21  39.6  50.22  50.21     26.82%  50.21  

Sm - 8.62  10.9  11.09  8.62     28.67%  9.76  

V 18  21.5  17.6  22.78  21.5     29.44%  21.5  

Po 13  - 10  - 10     30%  10  

Ta 28  36.57  31.4  35.75  36.57     30.61%  35.75  

Se 5.23  6.69  5.1  5.44  6.69     31.18%  5.44  

Te 17.9  17.49  13.5  17.49  17.38     32.59%  17.49  

Zr 17  21  23  20.79  21     35.29%  21  

Mo 28  37.48  27.6  36  37.48     35.80%  36  

Th - 13.81  19.2**  15.65  13.81     39.03%  14.73  

Ra 10  8.5  7.15  8.37  7.7     39.86%  8.37  

S (monoclinic) 1.42  1.73  1.23  1.73  1.72     40.60%  1.72  

Tc 23  33.29  23.81  - 33.29     44.74%  28.55  

Ho - 16.80  17.2  17.15  11.76     46.26%  16.98  

Ti 15  14.15  20.9  18.62  14.15     47.70%  15  

Cr 14  21  15.3  19.95  21     50%  19.95  

Y 17  11.42  17.2  17.15  11.39     51.01%  17  
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Be 12  7.9  9.8  11.71  7.9     51.99%  9.8  

Nd - 7.14  7.11  10.88  7.14     53.01%  7.14  

Li 3  3  4.6  3  3     53.33%  3  

W 33.7  52.31  35.2  35.42  52.31     55.22%  35.42  

Dy - 11.06  17.2  - 11.35     55.52%  11.35  

Ir 28  41.12  26.4  26.36  41.12     56.01%  28  

Gd - 10.05  15.5  15.48  9.67     60.29%  12.77  

Tb - 10.15  16.3  - 10.15     60.59%  10.15  

Ru 26  38.59  23.7  25.52  38.59     62.83%  26  

Pr - 6.89  11.3  10.04  6.89     64.01%  8.47  

Ce - 5.46  8.87  9.2  5.46     68.42%  7.17  

U - 9.14  15.5  15.48  9.14     69.58%  12.31  

La 11  6.2  10.04  11.3  6.2     82.25%  10.04  

Re 33  60.43  33.1  33.05  34.08     83.12%  33.1  

Os 27  57.85  29.3  29.29  57.85     114.26%  29.3  

B 22  50.2  22.2  22.6  50.2     128.18%  22.6  

P (White) 0.63  0.66  2.51  - 0.66     298.41%  0.66  

I (I2) 7.87  150.66  15.27  15.52  15.52     1814.36%  15.52  

* Approximation value 

** Th: <19.2 
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Appendix 4 

Figure A1: Distribution of (i) melting point (/K); (ii) boiling point (/K); (iii) atomic volume (/m3 mol-1); (iv) polarizability (/10-30 m3); (v) 1st ionization 

potential (/J mol-1); (vi) electronegativity (Pauling); (vii) density (/kg m-3); (viii) atomic weight (/kg mol-1); (ix) linear thermal expansion coefficient (/106 

K-1); (x) photonic work function (/10-19 J); (xi) electrical conductivity (/108 Ω-1 m-1); (xii) thermal conductivity (/W m-1 K-1); (xiii) specific heat capacity (/J 

kg-1 K-1); (xiv) molar heat capacity (/J mol-1 K-1); (xv) heat of vaporization (/J mol-1); (xvi) heat of fusion (/J mol-1). Figure A2: Distribution of (i) atomic 

volume (Ln /cm3 mol-1); (ii) polarizability (Ln /10-30 m3); (iii) linear thermal expansion coefficient (Ln /K-1); (iv) thermal conductivity (Ln /W m-1 K-1); (v) 

specific heat capacity (Ln /J kg-1 K-1); (vi) heat of fusion (Ln /J mol-1) after taking logarithms. 
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        Figure A1 (i) Distribution of melting point (/K)    Figure A1 (ii) Distribution of boiling point (/K) 



Appendix 4 

 304 

0

5

10

15

20

25

30

35

4.6
19

66
E-06

1.2
78

6E
-05

2.0
95

23
E-05

2.9
11

86
E-05

3.7
28

5E
-05

4.5
45

13
E-05

5.3
61

76
E-05

6.1
78

39
E-05 More

N
o.

 o
f p

oi
nt

s

0

5

10

15

20

25

30

35

1.76 8.99 16.22 23.45 30.68 37.91 45.14 52.37 More

N
o.

 o
f p

oi
nt

s

 
      Figure A1 (iii) Distribution of atomic volume (/m3 mol-1)   Figure A1 (iv) Distribution of polarizability (/10-30 m3) 
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      Figure A1 (v) Distribution of 1st ionization potential (/J mol-1) Figure A1 (vi) Distribution of electronegativity (Pauling) 
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        Figure A1 (vii) Distribution of density (/kg m-3)    Figure A1 (viii) Distribution of atomic weight (/kg mol-1) 
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           Figure A1 (ix) Distribution of linear thermal expansion      Figure A1 (x) Distribution of photonic work function (/10-19 J) 
        coefficient (/106 K-1) 
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   Figure A1 (xi) Distribution of electrical conductivity (/108 Ω-1 m-1) Figure A1 (xii) Distribution of thermal conductivity (/W m-1 K-1) 
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   Figure A1 (xiii) Distribution of specific heat capacity (/J kg-1 K-1)  Figure A1 (xiv) Distribution of molar heat capacity (/J mol-1 K-1) 
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    Figure A1 (xv) Distribution of heat of vaporization (/J mol-1) Figure A1 (xvi) Distribution of heat of fusion (/J mol-1) 
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    Figure A2 (i) Distribution of atomic volume (Ln /cm3 mol-1)  Figure A2 (ii) Distribution of polarizability (Ln /10-30 m3) 
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    Figure A2 (iii) Distribution of linear thermal expansion  Figure A2 (iv) Distribution of thermal conductivity (Ln /W m-1 K-1) 
       coefficient (Ln /K-1) 
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    Figure A2 (v) Distribution of specific heat capacity    Figure A2 (vi) Distribution of heat of fusion (Ln /J mol-1) 
         (Ln /J kg-1 K-1) 
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Appendix 5  

 
Figure A3 Variation of polarizability (vertical axis) as a function of two input variables (horizontal axes) 

 
 

  
 (1) cp = 113 J kg-1 K-1, EI = 376 kJ mol-1 (2) cp = 113 J kg-1 K-1, EI = 691 kJ mol-1  (3) cp = 113 J kg-1 K-1, EI = 1086 kJ mol-1 

 
 (4) cp = 279 J kg-1 K-1, EI = 376 kJ mol-1  (5) cp = 279 J kg-1 K-1, EI = 691 kJ mol-1  (6) cp = 279 J kg-1 K-1, EI = 1086 kJ mol-1 
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 (7) cp = 3390 J kg-1 K-1, EI = 376 kJ mol-1  (8) cp = 3390 J kg-1 K-1, EI = 691 kJ mol-1  (9) cp = 3390 J kg-1 K-1, EI = 1086 kJ mol-1 

 
 (10) ΔHV = 10 kJ mol-1, EI = 376 kJ mol-1 (11) ΔHV = 10 kJ mol-1, EI = 691 kJ mol-1 (12) ΔHV = 10 kJ mol-1, EI = 1086 kJ mol-1 
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 (13) ΔHV = 309 kJ mol-1, EI = 376 kJ mol-1  (14) ΔHV = 309 kJ mol-1, EI = 691 kJ mol-1  (15) ΔHV = 309 kJ mol-1, EI = 1086 kJ mol-1 
 

 

 (16) ΔHV = 774 kJ mol-1, EI = 376 kJ mol-1  (17) ΔHV = 774 kJ mol-1, EI = 691 kJ mol-1  (18) ΔHV = 774 kJ mol-1, EI = 1086 kJ mol-1 
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 (19) ΔHV = 10 kJ mol-1, cp = 113 J kg-1 K-1 (20) ΔHV = 10 kJ mol-1, cp = 279 J kg-1 K-1  (21) ΔHV = 10 kJ mol-1, cp = 3390 J kg-1 K-1 
 

 

 (22) ΔHV = 309 kJ mol-1, cp = 113 J kg-1 K-1  (23) ΔHV = 309 kJ mol-1, cp = 279 J kg-1 K-1  (24) ΔHV = 309 kJ mol-1, cp = 3390 J kg-1 K-1 
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 (25) ΔHV = 774 kJ mol-1, cp = 113 J kg-1 K-1  (26) ΔHV = 774 kJ mol-1, cp = 279 J kg-1 K-1  (27) ΔHV = 774 kJ mol-1, cp = 3390 J kg-1 K-1 

  
 (28) Tm = 302 K, EI = 376 kJ mol-1  (29) Tm = 302 K, EI = 691 kJ mol-1  (30) Tm = 302 K, EI = 1086 kJ mol-1 
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 (31) Tm = 1478 K, EI = 376 kJ mol-1   (32) Tm = 1478 K, EI = 691 kJ mol-1   (33) Tm = 1478 K, EI = 1086 kJ mol-1 

 
 (34) Tm = 4003 K, EI = 376 kJ mol-1   (35) Tm = 4003 K, EI = 691 kJ mol-1   (36) Tm = 4003 K, EI = 1086 kJ mol-1 
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 (37) Tm = 302 K, cp = 113 J kg-1 K-1  (38) Tm = 302 K, cp = 279 J kg-1 K-1   (39) Tm = 302 K, cp = 3390 J kg-1 K-1 
 

 

 (40) Tm = 1478 K, cp = 113 J kg-1 K-1   (41) Tm = 1478 K, cp = 279 J kg-1 K-1   (42) Tm = 1478 K, cp = 3390 J kg-1 K-1 
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 (43) Tm = 4003 K, cp = 113 J kg-1 K-1   (44) Tm = 4003 K, cp = 279 J kg-1 K-1   (45) Tm = 4003 K, cp = 3390 J kg-1 K-1 

  
 (46) Tm = 302 K, ΔHV = 10 kJ mol-1  (47) Tm = 302 K, ΔHV = 309 kJ mol-1  (48) Tm = 302 K, ΔHV = 774 kJ mol-1 
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 (49) Tm = 1478 K, ΔHV = 10 kJ mol-1  (50) Tm = 1478 K, ΔHV = 309 kJ mol-1  (51) Tm = 1478 K, ΔHV = 774 kJ mol-1 

 
 (52) Tm = 4003 K, ΔHV = 10 kJ mol-1  (53) Tm = 4003 K, ΔHV = 309 kJ mol-1  (54) Tm = 4003 K, ΔHV = 774 kJ mol-1 
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