
Flexible distributed computing with volunteered resources
Zhang, Jun

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

For additional information about this publication click this link.

https://qmro.qmul.ac.uk/jspui/handle/123456789/358

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/30695062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://qmro.qmul.ac.uk/jspui/handle/123456789/358

Flexible Distributed Computing with

Volunteered Resources

By

Jun Zhang

SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Supervised by Dr. Chris Phillips

School of Electronic Engineering and Computer Science

Queen Mary, University of London

June 2010

 2

Acknowledgement
I would like to express my most sincere appreciation to my supervisor Dr. Chris Phillips for

his expert supervision, massive support and continuous encouragement throughout my PhD

study.

Many thanks to Dr. John Schormans, Dr. John Bigham, Dr. Raul Mondragon, Prof Laurie

Cuthbert, Dr. Na Yao, Dr. Yue Chen and many others for their valuable suggestions over this

period.

In addition, I would like to thank the support staff at Queen Mary, including Melissa Yeo,

Kok Ho Huen, Rhainnon Thomspon, Peter Smith, Sharing Cording, Phil Willson, Theresa Willis

and many others for their support and help.

My PhD has been partly supported by British Telecom, so I would like to express my thanks

to the staff in the Networks Research Centre of British Telecom, including Gabriele Corliano,

Peter Hovell, Ben Strulo, Edmund Kirkham, Laurence Forgiel, Charalambos Oxinos, Marc

Wenink, Phillip Eardley, Arnauld Jacquet, Bob Briscoe, Linda Saddick and many others for their

friendliness and help.

Thanks to all the friends in the UK and China.

Finally, my love and gratitude go to my family, especially to my parents. They are the most

important people in my life. Without them, this thesis would have not been possible.

 3

Abstract
Nowadays, computational grids have evolved to a stage where they can comprise many

volunteered resources owned by different individual users and/or institutions, such as desktop

grids and volunteered computing grids. This brings benefits for large-scale computing, as more

resources are available to exploit. On the other hand, the inherent characteristics of the

volunteered resources bring some challenges for efficiently exploiting them. For example, jobs

may not be able to be executed by some resources, as the computing resources can be

heterogeneous. Furthermore, the resources can be volatile as the resource owners usually have

the right to decide when and how to donate the idle Central Processing Unit (CPU) cycles of

their computers.

Therefore, in order to utilise volunteered resources efficiently, this research investigated

solutions from different aspects. Firstly, this research proposes a new computational Grid

architecture based on Java and Java application migration technologies to provide fundamental

support for coping with these challenges. This proposed architecture supports heterogeneous

resources, ensuring local activities are not affected by Grid jobs and enabling resources to carry

out live and automatic Java application migration.

Secondly, this research work proposes some job-scheduling and migration algorithms based

on resource availability prediction and/or artificial intelligence techniques. To examine the

proposed algorithms, this work includes a series of experiments in both synthetic and practical

scenarios and compares the performance of the proposed algorithms with existing ones across a

variety of scenarios. According to the critical assessment, each algorithm has its own distinct

advantages and performs well when certain conditions are met.

In addition, this research analyses the characteristics of resources in terms of the availability

pattern of practical volunteer-based grids. The analysis shows that each environment has its own

characteristics and each volunteered resource’s availability tends to possess weak correlations

across different days and times-of-day.

 4

Table of Contents

ACKNOWLEDGEMENT ...2

ABSTRACT ...3

TABLE OF CONTENTS..4

LIST OF FIGURE ...7

LIST OF TABLE ...9

GLOSSARY ...10

CHAPTER 1 INTRODUCTION ..11

1.1 Motivation ..11

1.2 Objectives...12

1.3 Contributions and Publications...13

1.4 Thesis Organisation ..14

CHAPTER 2 BACKGROUND ...16

2.1 Grid Computing..16

2.1.1 Overview...16

2.1.2 Components ..18

2.1.3 Main Procedures...20

2.1.4 Grid Computing with Volunteered Resources..21

2.1.5 Applications ..23

2.1.6 Projects ...23

2.2 Challenges in Volunteered Resources based Grid Computing ...28

CHAPTER 3 PROPOSED SYSTEM ARCHITECTURE ..30

3.1 Java Technology...30

3.1.1 Technology Overview..30

3.1.2 Features of Java Program...31

3.1.3 Java Platform..32

3.2 Overview of the Proposed System Architecture ...34

3.3 System Components ...35

3.3.1 User/Resource Management Level Components...35

3.3.2 Resource Level Components ...36

3.3.3 Java Application Migration Technologies...36

3.4 System Operations Procedures ...40

3.4.1 Job Execution Monitor..40

3.4.2 Job Migration ...41

3.5 System Messages..41

CHAPTER 4 JOB-SCHEDULING AND JOB MIGRATION..42

4.1 Job-Scheduling Introduction...42

4.1.1 Job-Scheduling Overview ...42

4.1.2 Job-Scheduling Components and Procedures ...42

4.1.3 Taxonomy of Job-Scheduling Algorithms..44

4.1.4 Open Issues in Job-Scheduling Algorithms...46

4.2 Proposed Job-Scheduling Algorithms ..50

4.2.1 Adopted Prediction Technique ..50

4.2.2 Resource Availability ..53

4.2.3 FCFS plus Predictor (FCFSPP) Algorithm ..54

 5

4.2.4 Fuzzy Logic plus Predictor (FLP) Algorithm..57

4.2.5 Particle Swarm Optimisation plus Predictor (PSOPP) Algorithm..62

4.3 Job Migration ...66

4.3.1 Reactive Job Migration...67

4.3.2 Proactive Job Migration ...68

CHAPTER 5 ANALYSIS OF PROPOSED ALGORITHMS ...75

5.1 Analysis of the Adopted TDE Prediction Method ..75

5.2 Analysis of the FCFSPP Algorithm..76

5.2.1 Features of the FCFSPP Algorithm ..76

5.2.2 Influences on the FCFSPP Algorithm...78

5.3 Explanation of the FLP Algorithm ...89

5.3.1 Features of the FLP Algorithm ...89

5.3.2 Influences on the FLP Algorithm ..91

5.4 Analysis of the PSOPP Algorithm..92

5.4.1 Features of the PSOPP algorithm...92

5.4.2 Influence of Workload ...93

5.4.3 Influence of Fitness Function..93

5.4.4 Influence of Resource Reliability ..93

5.4.5 Influences of the PSO Algorithm...94

5.5 Analysis of the PSPP Migration Algorithm..95

5.5.1 Features of the PSPP Algorithm ...95

5.5.2 Influences on the PSPP Algorithm ..95

5.6 Analysis of the CBR Migration Algorithm...98

5.6.1 Features of the CBR Migration Algorithm..98

5.6.2 Influence of CPU Availability Percentage ..99

5.6.3 Influence of CPU Migration Threshold...99

5.6.4 Influence of Migration Prediction Interval ...100

5.6.5 Influence of Adjustment Percentage..100

CHAPTER 6 CHARACTERISTICS OF REAL RESOURCES ..101

6.1 Data Traces Overview ..101

6.1.1 Analysed Data Sets ...102

6.1.2 Data Trace Formats..103

6.1.3 Job Execution Availability Characterisation ..104

6.1.4 Job Execution Availability Correlations ...108

CHAPTER 7 SIMULATION AND EVALUATION ..122

7.1 Simulation Environment...122

7.1.1 Components ..122

7.1.2 General Evaluation Approach ..126

7.2 Evaluation of FCFSPP Algorithms...130

7.2.1 Evaluation of the Number of Checking Days ..130

7.2.2 Evaluation of Resource Availability Probability Threshold T ...131

7.2.3 Evaluation of Different Weights on TDE Prediction...133

7.2.4 Influence of Similarity of Job Execution Availability between Days ...135

7.3 Evaluation of FLP Algorithm ...143

7.4 Evaluation of the PSOPP Algorithm ..146

7.4.1 Influence of Workload ...146

 6

7.4.2 Influence of PSO Fitness Function ...149

7.5 Evaluation of PSPP Migration Algorithm ..152

7.5.1 Evaluation with Data Set UCB ...154

7.5.2 Evaluation with Data Set SDSC..156

7.5.3 Evaluation with Data Set LRI ...158

7.5.4 Evaluation with Data Set DEUG ..160

7.5.5 Summary ...161

7.6 Evaluation of CBR Migration Algorithm ...162

CHAPTER 8 DISCUSSION, CONCLUSION AND FUTURE WORK...164

8.1 Discussion ..164

8.2 Conclusion..167

8.3 Future Work ...167

REFERENCES ...170

APPENDIX A ...175

I. Registration Message ..175

II. Registration Acknowledgement Message...175

III. Resource Information Message ..176

IV. Request Resource Information Message...177

V. Job Submission/Allocation Message ..177

VI. Job Submission/Allocation Acknowledgement Message ...178

VII. Job Submission/Allocation Completion Message...178

VIII. Job Submission/Allocation Completion Acknowledgement Message ..178

IX. Job Information Message..179

X. Migration Notification Message ...180

XI. Migration Notification Acknowledgement Message ..180

XII. Migration Connection Request Message ..180

XIII. Migration Connection Acknowledgement Message..181

XIV. Migration Completion Message..181

XV. Migration Completion Acknowledgement Message...182

XVI. Resource Unavailable Message...183

APPENDIX B ...184

I. FCFSPP Algorithm with Synthetic Data...184

II. FLP Algorithm with Synthetic Data ...193

III. PSPP Algorithm with Synthetic Data ...197

IV. CBR Migration Algorithm with Synthetic Data ...198

 7

List of Figures
Figure 1-1: Challenges, Motivation and Contributions of this Research ..13

Figure 2-1: A generic high architecture of a Grid system ...18

Figure 3-1: The Java Programming Environment...31

Figure 3-2: A Basic Block Diagram of the Java Virtual Machine ...33

Figure 3-3: Platform Specific Invocation..33

Figure 3-4: A platform-Independent Java Program...34

Figure 3-5: Resource Level of the Proposed Grid System Architecture ...34

Figure 3-6: Classification of Different Migration (Adapted from [Illmann00])..37

Figure 4-1: Global and local scheduling in a computational Grid ..43

Figure 4-2: Task Scheduling Characteristics (Adapted from [Casavant88]) ...44

Figure 4-3: Influence of Availability in Volunteered Resource-Based Systems..47

Figure 4-4: Availability States and Transitions (Adapted from [Rood08]) ...51

Figure 4-5: FCFSPP Algorithm Job Submission Procedure..55

Figure 4-6: FCFSPP Algorithm Job Allocation Procedure ...56

Figure 4-7: Traditional Boolean Logic in Computer System ..57

Figure 4-8: Fuzzy Logic in Fuzzy World..58

Figure 4-9: Fuzzy Set A and B..58

Figure 4-10: Result of A U B, A ∩ B and ¬A ...59

Figure 4-11: FLP Algorithm Membership Function ...60

Figure 4-12: Resource Availability Probability Threshold Adjustment Procedure ..62

Figure 4-13: PSOPP Algorithm Procedure ...66

Figure 4-14: PSPP Algorithm Procedure ..70

Figure 4-15: The CBR Cycle (Adapted from [Watson94]) ...71

Figure 4-16: Main Procedure of CBR Migration Algorithm...74

Figure 4-17: Procedure of CPU Migration Threshold Adjustment ...74

Figure 5-1: Example Resource Job Execution Availability Pattern...75

Figure 5-2: Extracted and Combined Job Execution Availability Pattern (Type 1)...78

Figure 5-3: Extracted and Combined Job Execution Availability Pattern (Type 2)...79

Figure 5-4: Examples of Job Execution Availability in 6 Cases..80

Figure 5-5: Transitions among all cases..81

Figure 5-6: Two Examples of “Exactly the Same” Checking and Prediction Period ..83

Figure 5-7: Third Example of “Exactly the Same” Checking and Prediction Period..84

Figure 5-8: Checking Past 2 Days for Prediction..85

Figure 6-1: Number of Available Resources for Different Days (UCB) ...105

Figure 6-2: Average Number of Available Resources over Time (UCB) ..105

Figure 6-3: Number of Available Resources for Different Days (SDSC) ...106

Figure 6-4: Average Number of Available Resources over Time (SDSC) ..106

Figure 6-5: Number of Available Resources for Different Days (LRI)...107

Figure 6-6: Average Number of Available Resources over Time (LRI) ..107

Figure 6-7: Number of Available Resources for Different Days (DEUG) ..107

Figure 6-8: Average Number of Available Resources over Time (DEUG) ...108

Figure 6-9: Daily Series PMCC Range of Results in UCB...111

Figure 6-10: Daily Series PMCC Distribution in UCB...111

 8

Figure 6-11: Hourly Sub-Series PMCC Range of Results in UCB ...112

Figure 6-12: Hourly Sub-Series PMCC Distribution in UCB...112

Figure 6-13: Daily Series PMCC Range of Results in SDSC...113

Figure 6-14: Daily Series PMCC Distribution in SDSC...113

Figure 6-15: Hourly Sub-Series PMCC Range of Results in SDSC ...113

Figure 6-16: Hourly Sub-Series PMCC Distribution in SDSC ...114

Figure 6-17: Daily Series PMCC Range of Results in LRI ..114

Figure 6-18: Daily Series PMCC Distribution in LRI ..115

Figure 6-19: Hourly Sub-Series PMCC Range of Results in LRI...115

Figure 6-20: Hourly Sub-Series PMCC Results Distribution in LRI ..115

Figure 6-21: Daily Series PMCC Range of Results in DEUG..116

Figure 6-22: Daily Series PMCC Results Distribution in DEUG ...116

Figure 6-23: Hourly Sub-Series PMCC Range of Results in DEUG ..117

Figure 6-24: Hourly Sub-Series PMCC Results Distribution in DEUG ...117

Figure 7-1: Structure of the Simulation Environment...122

Figure 7-2: Number of Checking Days in UCB and DEUG..130

Figure 7-3: Resource Availability Probability Threshold in UCB and DEUG ..132

Figure 7-4: Fourth Day Simulation Performance with SDSC...135

Figure 7-5: Fourth Day Simulation Performance with LRI ..135

Figure 7-6: Average Allocated Jobs in the Second Simulation Day..137

Figure 7-7: Job Allocation Proportion in the Second Simulation Day ...138

Figure 7-8: Average Succeeded Jobs in the Second Simulation Day ..139

Figure 7-9: Job Success Proportion in the Second Simulation Day ...140

Figure 7-10: Average Failed Jobs in the Second Simulation Day ..141

Figure 7-11: Job Failure Proportion in the Second Simulation Day ..141

Figure 7-12: Job Success Percentage in the Second Simulation Day ...142

Figure 7-13: Total Allocated Jobs with Margin of Error in the Second Simulation Day ..142

Figure 7-14: Total Succeeded Jobs with Margin of Error in the Second Simulation Day...143

Figure 7-15: Total Succeeded Jobs with Margin of Error in the Second Simulation Day...143

Figure 7-16: Total Allocated Jobs in the Second Simulation Day...144

Figure 7-17: Total Succeeded Jobs in the Second Simulation Day ...144

Figure 7-18: Total Failed Jobs in the Second Simulation Day ...144

Figure 7-19: Job Success Percentage Comparison ...145

Figure 7-20: Total Allocated Jobs in the Second Simulation Day...147

Figure 7-21: Total Succeeded Jobs in the Second Simulation Day ...147

Figure 7-22: Job Process Percentage in the second simulation day ...148

Figure 7-23: Average Job Makespan in the Second Simulation Day ..149

Figure 7-24: Total Succeeded Jobs in the Second Simulation Day ...150

Figure 7-25: Job Process Percentage in the Second Simulation Day ...151

Figure 7-26: Effect of Different Values of N and P in UCB ...155

Figure 7-27: Effect of Different Values of N and P in SDSC..157

Figure 7-28: Effect of Different Values of N and P in LRI ...159

Figure 7-29: Effect of Different Values of N and P in DEUG...161

Figure 7-30: Comparison of PSPP and CBR Algorithms..163

 9

List of Tables
Table 5-1: Prediction Accuracy...96

Table 6-1: UCB, SDSC, LRI and DEUG Data Sets..108

Table 6-2: Non-zero Standard Deviation Daily Series PMCC Results ...118

Table 6-3: Non-zero Standard Deviation Hourly Sub-Series PMCC Results..118

Table 6-4: Rho Mean of Different Day Intervals ..119

Table 6-5: Zero Standard Deviation Available Daily Series Results...120

Table 6-6: Zero Standard Deviation Unavailable Daily Series Results ..120

Table 6-7: Zero Standard Deviation Available Hourly Sub-Series Results ...121

Table 6-8: Zero Standard Deviation Unavailable Hourly Sub-Series Results...121

Table 7-1: Common Experimental Setup for Simulations ..129

Table 7-2: Experimental Setup for Simulations of N ..130

Table 7-3: Experimental Setup for Simulations of T...132

Table 7-4: Experimental Setup for Simulations of Different Weight Schemes ...134

Table 7-5: Experimental Setup for Simulations of ρ ...137

Table 7-6: Experimental Setup for Simulations of FLP ..143

Table 7-7: Experimental Setup for Simulations of Different Workload in PSOPP..146

Table 7-8: Experimental Setup for Simulations of Fitness Function of PSOPP..150

Table 8-1: Comparison of Proposed Job-Scheduling Algorithms ...165

Table 8-2: Comparison of Proposed Proactive Job Migration Algorithms..167

 10

Glossary
AI - Artificial Intelligence

API - Application Programming Interface

BOINC - Berkeley Open Infrastructure for Network Computing

CBR - Case Based Reasoning

CMCL - Computers, Media, and Communication Laboratory

CPU - Central Processing Unit

DEUG - Diplôme d'Enseignement Universitaire Général. Desktop PCs in classrooms used by first-year

 undergraduates at the University of Paris South and ran the open source XtremWeb.

EDF - Earliest-Deadline-First

FCFS - First-Come-First-Served

FCFSPP - First-Come-First-Served plus Predictor

FL - Fuzzy Logic

FLP - Fuzzy Logic plus First-Come-First-Served plus Predictor

GHz - Giga Hertz

GRAM - Globus Resource Allocation Manager

HTC - High Throughput Computing

I/O - Input and Output

Java EE - Java Platform Enterprise Edition

Java ME - Java Platform Micro Edition

Java SE - Java Platform Standard Edition

JVM - Java Virtual Machine

JVMDI - JVM Debugger Interface

JVMTI - JVM Tool Interface

LRI - Laboratoire de Recherche en Informatique. A cluster used by a computer science research for

 running parallel applications and benchmarks at the University of Paris South and ran the open

 source XtremWeb

LSF - Load Sharing Facility

LTTR - Least-Time-To-Run-First

NP - Non-deterministically Polynomial

PBS - Portable Batch System

PDF - Probability Density Function

PMCC - Pearson Product-Moment Correlation Coefficient

RPC - Remote Procedure Call

PSO - Particle Swarm Optimisation

PSPP - Periodical Scanning plus Predictor

PSOPP - Particle Swarm Optimisation plus Predictor

PSC - Pittsburgh Supercomputing Centre

SDSC - San Diego Super Computing Centre

TCP - Transmission Control Protocol

TDE - Transitional N-Day with Equal transition weights

UCB - University of California, Berkeley

11

Chapter 1 Introduction
1.1 Motivation

Grid computing can be described as a type of distributed system consisting of a group of

networked computers that is presented as one virtual computing resource. This virtual

computing resource can be used to solve large-scale problems, such as computational and data

storage problems.

The motivation for this research is based on observations at the system architecture level and

user/resource management level of the Grid environment, including challenges in existing Grid

computing implementations and potential benefits brought by some current technologies. At the

system architecture level, there are two challenges with many existing Grid computing

environments:

• Resources may not be able to run all kinds of jobs. This is because of the heterogeneity of

the computer operating system. The operating system of the resources that are used to run

the job can be different from the system that is used to create the jobs. For example, a job

created by Windows system may have difficulty on running on a Linux machine.

• Resources may not support live and automatic (reactive and proactive) job migration,

especially migrations between heterogeneous computers. Here, job migration is an approach

to enable fault-tolerant environment, especially in a volatile (resources may appear and

disappear at any time) environment. It is more beneficial if the job can be migrated live

between heterogeneous systems. For example, if a job running on an unreliable resource can

be migrated to a reliable resource, then the probability of job failures brought by the

unreliable resource can be reduced.

Java technology [Sun10a][Arnold05] provides many useful features, e.g. simple, robust,

secure, architecture neutral, portable, interpreted, threaded and so on [Gosling96]. Among all

these features, architecture neutrality and portability are two key aspects that provide a solution

to the two main challenges mentioned above. Architecture neutral and portable means that the

Java programs are able to run on multiple kinds of operating systems, especially the mainstream

operating systems such as Windows, Linux and Mac. Therefore, if a job is represented as a Java

application(s), it should be able to run on multiple resources without worrying about

heterogeneity between systems. In addition, architecture neutral and portable also enables job

migration. If a job is represented as a Java application(s), it will be able to migrate between

resources without worrying about the heterogeneity between systems. Though Java technology

does not explicitly support live job migration, existing Java migration technologies can easily be

leveraged to fulfil this requirement. Furthermore, other features of Java bring many benefits. For

example, Java applications can be “simple”, allowing users to write a Java program with little

difficulty, and “secure”, ensuring both jobs and the resources used to run the jobs will be safe.

At the user/resource management level, one big challenge for effective job allocation for

12

volunteered resources based Grid environments (such as desktop Grid computing or volunteer

computing environment) is resource volatility. In such an environment, the Grid can comprise

many heterogeneous computing resources owned by different individual users and institutions.

As the owners of the resources usually have the right to decide when and how to donate idle

CPU cycles of their computers, availability of these resources can be hard to predict. If a

resource that becomes unavailable before processing a job, then this job will have to be

suspended or even failed, requiring the job scheduler to reallocate the job to another resource for

processing again from scratch. This is a waste of resource CPU cycles and it lengthens the job’s

Makespan (the time to “make” or complete a job).

One approach to solve the problem of job failures caused by resource volatility is to

characterise what will happen to the computing resources and to make reasonable

job-scheduling and migration decisions accordingly. To anticipate what will happen to the

computing resources, some resource availability prediction methods have been proposed, such

as [Rood07][Rood08] [Mickens06][Dinda99][Ren06a]. For example, in [Rood07][Rood08], the

authors propose a method to predict resource availability based on a multi-state model and the

resource’s nearest past few days’ availability information. This multi-state model represents the

states of volunteered resources in Grids appropriately and the prediction method performs well

if the resource owner’s behaviour has displays pattern(s) across different days.

Taking this into account, in this thesis new job-scheduling and job migration algorithms are

created to improve scheduling performance in volunteered resources based Grid environments,

especially in terms of avoiding job failures caused by resource volatility.

1.2 Objectives
There are two main objectives in this research:

The first objective is to achieve an intelligent, ubiquitous, flexible, secure and distributed

computing environment by proposing a new Grid architecture based on existing Java technology.

The architecture is mainly focused on using volunteered resources so it should not only support

multiple operating systems, but also support live and automatic Java application migration. In

addition, it also ensures resources’ local activities are not affected by the execution of Grid jobs.

The second objective is to provide new job-scheduling and migration algorithms, which

ensuring reliability (ensuring jobs are processed successfully) with acceptable speed (i.e. getting

jobs processed quickly) by proposing resource availability aware job-scheduling and job

migration algorithms. According to [Dogan02], for a job-scheduling/migration algorithm, there

is a trade-off between speed and reliability in a heterogeneous distributed computing system.

Here, speed can be represented by the total number of jobs successfully completed by resources

within a period of time and reliability can be represented by the percentage of jobs successfully

completed by resources within a period of time. Therefore, ensuring reliability will be the

primary goal of these algorithms.

13

1.3 Contributions and Publications
In general, this research mainly focuses the following aspects: development of volunteered

resources based computing architecture, research into resource management in a desktop Grid

computing environment, analysis of the resources’ characteristics in real computing

environments. Figure 1.1 summarises these contributions.

Volunteered resources may
not be able to run all kinds
of jobs

Volunteered resources do not
support live and automatic
(reactive and proactive) job
migration

Proposes a new Grid system architecture based on
Java technology to achieve an intelligent, ubiquitous,
flexible and distributed computing environment. In
addition, existing Java program live migration
technologies are utilised to enable live and automatic job
migration.

At the user/resource management
level, one big challenge/problem for
effective job allocation for
volunteered resources based Grid
environments (such as desktop Grid
computing or volunteer computing
environment) is resource volatility

Propose FCFS plus Predictor (FCFSPP)
algorithm to improve reliability with little cost in
terms of speed. It is based on FCFS algorithm
and TDE prediction method.

Propose Fuzzy Logic plus Predictor (FLP)
algorithm to replace the fixed setting of
Resource Availability Probability Threshold in
the FCFSPP with a dynamic and Fuzzy Logic
controlled setting to make a balance between
speed and reliability. It is based on the
FCFSPP, TDE prediction method and a Fuzzy
inference system.

Job scheduling
algorithms

Job migration
algorithms

Propose a Particle Swarm Optimisation plus
Predictor (PSOPP) algorithm to improve
reliability with little cost in terms of speed. It is
based on PSO technique.

Propose Periodical Scanning plus Predictor
(PSPP) migration algorithm to help job-
scheduling algorithm to improve reliability. It
uses TDE prediction method and trigger job
migration procedure if resource is going to be
unavailable soon.

Propose Case Based Reasoning (CBR)
migration algorithm to improve reliability. It
observes the CPU Availability of each
resource and trigger job migration procedure.
CBR Migration Threshold will be adjusted
according to CBR procedure.

Critical analyses,
validations and
evaluations

Analyse characteristics
of resource availability of
volunteered resources
from different Grids

Java technology provides a lot of useful features,
e.g. “architecture neutral” and “portability
enables” enables job migration, “simplicity”
ensure users to write a Java program with least
hassle and “secure” helps ensure both jobs and
the resources used to run the jobs will be safe.

What do resources’ availability looks like
in real Grids? For each resource, is
resource availability predictable for days
and hours?

Challenge/Problem
Inspiration
Approach

Some Java application
migration techniques
already exist

Proposes a reactive job migration procedure.
This type of job migrations is triggered by
resource before they are going to be
unavailable.

Solution/Contribution

Figure 1-1: Challenges, Motivation and Contributions of this Research

The challenges and motivation are introduced in Section 1.1 and 1.2 already. Based on these

observations, this research addresses different aspects to solve the problems, which include

proposing a new system architecture supporting live and automatic job migration, proposing

new job-scheduling/migration algorithms to ensure jobs process successfully and critical

analyses, validations and evaluations of the proposed algorithms. Therefore, the major

contributions of this research can be summarised as follows:

1. This research proposes a novel, ubiquitous, flexible and distributed Grid system architecture

to utilise volunteered and heterogeneous resources and support live and automatic (reactive

and proactive) job migration between them. This architecture also leverages features of Java

technology to ensure a Grid can work well in a heterogeneous and volatile environment.

2. This research proposes novel job-scheduling algorithms to improve the chances of jobs

being processed successfully with little cost in terms of speed. All the algorithms are based

on a resource availability prediction and some of them employ Artificial Intelligence (AI)

14

techniques to achieve the objective via different approaches.

3. This research proposes novel proactive job migration algorithms to assist job-scheduling in

order to ensure jobs are processed successfully. Again, these job migration algorithms try to

achieve the objective via different approaches.

4. This research analyses the characteristics of resources in real volunteered computing

environments. In this research work, several sets of real resource availability data collected

from different institutions have been analysed, especially in terms of correlations of

resource availability within each resource.

5. This research evaluates the job-scheduling and job migration algorithms. After proposing

the algorithms, the research critically analysed them under different conditions.

Publications List:

• Jun Zhang, Chris Phillips, “Ubiquitous, Flexible and Distributed Computing”, PGNet

2007

• Jun Zhang, Chris Phillips, “Intelligent Roaming for Nomadic Computing”,

Information and Communication Technologies: From Theory to Applications, 2008.

ICTTA 2008. 3rd International Conference on 7-11 April 2008 Page(s):1 - 6 Digital

Object Identifier 10.1109/ICTTA.2008.4530179

• Jun Zhang, Chris Phillips, “Job-Scheduling with Resource Availability Prediction for

Volunteer-Based Grid Computing”, London Communications Symposium 2009

1.4 Thesis Organisation
The thesis is organised as follows:

Chapter 2 provides background knowledge to the thesis. Firstly, it introduces Grid computing,

especially desktop Grids and volunteer computing Grids. Next, some open issues in the existing

Grid computing environment are described.

Chapter 3 presents a novel Grid computing system architecture. Firstly, general background

knowledge about Java application and migration technologies are described as Java technology

plays a very important role in the new architecture. Next, all the components of the proposed

system architecture are functionally described in detail. In addition, the system operation is

introduced. Furthermore, messages used in the system architecture are briefly described; further

details about the messages are provided in Appendix A.

Chapter 4 introduces job-scheduling and migration algorithms in the proposed system. Before

describing the novel job-scheduling algorithms, the issues associated with volunteered

resource-based Grid system are considered in detail along with prediction techniques.

Chapter 5 critically analyses the proposed job-scheduling and migration algorithms. In this

chapter, some important features of each algorithm will be considered and the performance of

the proposed job-scheduling algorithms in different scenarios are analysed.

Chapter 6 provides some information pertaining to four sets of real volunteered resource

15

based Grids and ascertains their characteristics.

Chapter 7 described the simulation setup and evaluates the results. Several sets of real

resource availability data are adopted for the simulation experiments. The simulation

environment is described and evaluation results of the proposed job-scheduling and job

migration algorithms are presented and discussed for the different scenarios.

Chapter 8 provides some discussion of the salient results concludes the whole thesis. As

many results are provided in Chapter 7, this chapter focuses on some important or interesting

ones. In addition, future work is discussed.

Finally, appendices provide detailed information about the messages used in the proposed

architecture and validation work of job-scheduling and job migration algorithms.

16

Chapter 2 Background
To better understand this thesis, this chapter will firstly give some background knowledge to

the research.

2.1 Grid Computing
In this section, some knowledge about Grid computing will be viewed from some important

aspects, including its system architecture, working procedures, potential applications, and

existing Grid projects.

2.1.1 Overview

There are many definitions of Grid computing. Typically, Grid computing can be defined as a

collection of networked computing resources used for solving common tasks. Here, a common

task can be a computational job (a job mostly requires computational resources such as CPU

processors), or a storage job (a job mostly requires storage resources such as hard disk and

memory) or any other types of jobs. Different designs to the Grid system are required for coping

with different types of tasks. In this thesis, the main focus is the computational Grid – the Grid

that handles computational tasks. If it is not specified further, both Grid computing and

computational Grid will have the same meaning in this thesis.

Grid computing is a type of distributed computing. Different from conventional cluster

computing, these computing resources are usually heterogeneous and from multiple

geographical sites, connecting by the Internet or a local area network. The computational tasks

in the Grid are created by the users and allocated to resource(s) according to specific

requirements by the Grid.

Grid computing was motivated by facts observed from some previous research work.

According to many research [Jacob02][Smith][Mutka92][Acharya97], most computers are idle

for over 60% (some research shows the result is over 90%) of the time. Therefore, many CPU

cycles are idle. Meanwhile, many computers are easily accessible as computers typically

connected to the Internet nowadays. Therefore, motivated by these easily accessible idle

computing resources, the Grid computing technology has been proposed.

According to suggestions from the father of Grid computing [Foster02], a Grid system should

possess the following features:

1. The system should “coordinate resources that are not subject to centralized control”

[Foster02]. This means the resources in the Grid could be from different domains, e.g.,

different universities or different departments in a university. In addition, these resources

could be controlled by different users, e.g., different staff or students in the university.

Otherwise, if the resources are in the same domain, then it is more like a local management

system.

2. The system should use “standard, open, general-purpose protocols and interfaces”

17

[Foster02]. This is because fundamental problems exist like authentication and authorization

that need to be addressed irrespective of the technologies in use.

3. The system can “deliver nontrivial qualities of service” [Foster02]. This means the

resources can be used to provide service with quality assured, like response time and

throughput in terms of speed and success rate in terms of reliability. Therefore, a Grid – a

combination of resources is much better than the sum of each single resource.

According to the descriptions in 1, 2 and 3 the computational Grid was motivated by under

utilised resources and used for computational tasks. However, in addition to this, a

computational Grid can provide useful functionality. So some capabilities of Grid computing

can be summarized as follows:

1. Exploiting idle CPU cycles. This is one of the most important motivations for Grid

computing and it is also one of the most important goals of Grid computing. Though there

are many resources with idle CPU cycles in a private network or in the Internet, it may not

be straightforward to utilise their idle CPU cycles as their CPU may not always idle. So if

the Grid not only uses resources’ idle CPU cycles but also tries to occupy resources’ CPU

when they are busy, then it will interfere with resources owners’ activities. This is an

important issue, especially for desktop Grids and volunteer computing. This will be

described further in the following sections.

2. Balancing resources’ load. Generally speaking, it is better if all the resources in a Grid have

more or less the same load as this will ensure all resources are efficiently utilised and the

jobs can be quickly processed. However, due to various reasons, like resources owner’s

behaviours, job-scheduling algorithm, some resources in the Grid may have extremely high

loads while some other resources burden is relatively low. Therefore, it will be desirable to

have mechanisms to balance resources’ load. Fortunately, it is possible to achieve this goal

in a Grid via multiple approaches, e.g., different job allocation strategies and live job

migration. In terms of live job migration, this will be covered in more detail in the following

chapters.

3. Providing extra reliability. Reliability is a part of quality of service and it is always a big

issue in many fields. Reliability can be viewed from different angles, e.g., job completion

reliability, data storage reliability and resource access reliability. Conventionally, extra

reliability was mainly achieved by increasing the number of hardware equipments, e.g.

buying more computers. However, this is an expensive solution and may be unnecessary in

many situations. Grid provides another solution via a different approach, which is mainly

based on software, rather than hardware. With Grids, extra reliability can be achieved by

techniques such as job replication and job migration, which are, to some extent, more

cost-effective than providing additional hardware.

18

2.1.2 Components

Typically, a Grid has three main levels: user level, resource/user management level and

resource level. At each level, there are multiple components. Figure 2.1 shows a common high

level architecture of a Grid system:
Job

Grid Job
Scheduler

Resource
Manager

User
Manager

Resource
Database

User
Software

User
Database

JobJob

Resource
Software

Guest
Job

Guest
Job

User Level

Resource Level

Resource/User
Management Level

Figure 2-1: A generic high architecture of a Grid system

According to the Figure 2.1, there are multiple components at each level. Each component

and its functionalities are described as follows:

• User Level

At the user level, there are two main components - job and the user software:

Job: A job is a task created by a user that will be submitted to the Grid and executed by the

Grid resource(s) later. As the jobs have to be executed by the resource(s), the job(s) should have

format(s) that can be understood by the resource(s). For example, a job could be a

self-contained executable file that can be executed by a resource, or it could be a predefined

specific format file that can be understood and executed by the resource(s). Different jobs may

have different priorities.

User software: It is the software for communicating with the user manager and the Grid job

scheduler. Typically, it has three main functions: the first one is to register the user manager at

the user/resource management level. Secondly, it is responsible for submitting the created jobs

to the Grid job scheduler at the user/resource management level. Thirdly, it is responsible for

receiving results from the Grid job scheduler after the submitted jobs are completed by

resource(s). So if a user wants to use the Grid to execute job(s), then user software will execute

the two functions in sequence. Firstly, it has to register at the user manager to gain the

authorisation to submit jobs. Then after getting authorization, it sends the job(s) to the Grid job

scheduler. Later, when the job is complete, the user software will receive the result(s) from the

Grid job scheduler.

19

• User/Resource Management Level

At the user/resource management level, there are five main components: Grid job scheduler,

user manager, resource manager, user database and resource database.

Grid job scheduler: It is responsible for sorting and allocating coming jobs to different

resources and redirecting job results to user software when the jobs are completed by resources.

Firstly, as many jobs from different users will be sent to the Grid job scheduler, the Grid job

scheduler needs to sort the jobs in preparation of job allocation. In the phase of sorting, the Grid

job scheduler can use one or multiple job queues to sort all the jobs. As mentioned earlier,

different jobs can have different priorities. Therefore, jobs with high priorities may be put in

front of a queue or put in a specific queue exclusively used for high priority jobs. For each

queue, the Grid job scheduler can sort the jobs according to predefined sorting algorithm, e.g.,

First-Come-First-Served (FCFS) [Esklcloglu01], Earliest-Deadline-First (EDF) [StanKovic98],

backfilling[Mu’alem01] and Least-Time-To-Run-First (LTTR) [Lazarevic06]. In addition, the

Grid job scheduler can sort the jobs with specific requirements. For example, jobs with high

priorities will always be in front of jobs with low priorities.

In the phase of allocating, the Grid job scheduler also allocates the jobs to resources with a

predefined allocation algorithm with/without specific requirements. For example, the Grid job

scheduler can allocate jobs to the resource by using algorithm like FCFS [Esklcloglu01] and

Matchmaker [Thain05]. The Grid job scheduler can also allocate jobs to the resource with some

specific requirements so that high priority jobs are allocated to resources that have the shortest

response time.

When a job is finished, the resource will return the result(s) to the Grid job scheduler and the

Grid job scheduler will redirect the result(s) to the original user.

User manager: It is responsible for authenticating and authorising users. As mentioned

above, the user software should communicate with the user manager to register at the user

manager. After getting the registration request, the user manager will check its user database

and/or predefined policies to make authentication decisions. If the user is authenticated, then the

user manager authorises the user with predefined policies. For example, a regular user is

allowed to use all the available resources while a restricted user can use limited number of

resources.

Resource manager: It is responsible for registering resources. When a resource would like to

join the Grid, then the resource will need to send out a registration request to the resource

manager. After getting the registration request, the resource manager will check the resource

database and/or predefined policy to make authentication decisions. If the resource is

authenticated, then the resource manager will allow the resource to join the Grid.

User Database: It is a database used to store user related information, such as user ID, user

authentication status, user authorisation status and so on. When the user manager gets the

registration request from a user, the user manager will check the user database to make

20

authentication decisions and then update related records in the user database.

Resource Database: It is a database used to store resource related information, such as

resource ID, resource authentication status, resource availability history and so on. When the

resource manager gets the registration request from a resource, the resource manager will check

resource database to make authentication decisions and then update related records in the

resource database.

• Resource Level

At the resource level, there are two main components: resource software and guest jobs.

Resource software: It is a program running on the resource and it is responsible for

communicating with the resource manager and the Grid job scheduler. Typically, it has up to

four or five main functions: the first one is to register the resource at the resource manager at the

user/resource management level. Second, it is responsible for receiving jobs allocated by the

Grid job scheduler at the user/resource management level. Third, if the resource currently has

more than one job, the resource software is responsible for scheduling all these jobs. Similar to

the Grid job scheduler, the resource software can use one or multiple queues to sort all the jobs

and then decide which job(s) to run next. Fourth, it is also responsible for monitoring the job

execution state. Fifth, it is responsible for sending results to the Grid job scheduler after the

submitted jobs are completed by resource.

Therefore, if a resource wants to join the Grid to provide job execution service, then the

resource software will carry out these two functions in sequence. Firstly, it has to register at the

resource manager to gain the authentication to join the Grid. Then after getting the

authentication, it waits for the Grid job scheduler allocating jobs to itself. Once the Grid job

scheduler decides to allocate a job to the resource, then the resource software will receive it.

After a job is completed, the resource software will return the results to the Grid job

scheduler and then the Grid job scheduler will redirect the results to the users.

Guest job: A guest job is the job created by the users and received by the resource software.

A guest job is the exactly the same as the component “job” at the user level. As the jobs have to

be executed by the resource(s), the job(s) should have format(s) that can be understood by the

resource(s). For example, a job could be a self-contained executable file which can be executed

by a resource, or it could be a predefined specific format file that can be understood and

executed by the resource(s).

2.1.3 Main Procedures

Though different Grid systems might have more or fewer elements for providing extra or less

functionality, typically the key functions in a Grid are now considered. All these components

work together to achieve the goals of the Grid. In terms of work procedures, generally there are

three main procedures:

User registration procedure: user registration procedure is the procedure used to register

21

users at the user manager and the procedure can be outlined as follows:

1. A user sends out a registration request to the user manager by using the user software.

2. The user manager checks its user database and/or predefined policies to make authentication

decisions.

3. If the user is not authenticated, then the user is not allowed to use the Grid. If the user is

authenticated, then the user manager makes authorisation decisions to the user with

predefined policies.

4. The user manager sends the authentication and authorisation decisions back to the user.

Resource registration procedure: resource registration procedure is the procedure used to

register the resources at the resource manager and the procedure can be outlined as follows:

1. A resource sends out a registration request to the resource manager by using the resource

software.

2. The resource manager checks its resource database and/or predefined policies to make

authentication decisions.

3. If the resource is authenticated, then the user is allowed to join the Grid. Otherwise, the

resource will be not allowed to join the Grid.

4. The resource manager sends the authentication decisions back to the resource.

Job execution procedure: job execution procedure is the procedure describing the whole job

life cycle from creation to completion. The procedure can be outlined as follows:

1. A user creates and submits a job by using the resource software. The job will be submitted

to the Grid job scheduler.

2. When the Grid job scheduler receives the job, the Grid job scheduler puts the job into a job

queue and sorts it with a predefined job sorting algorithm.

3. If the job is in front of the job queue, the Grid job scheduler allocates the job to a resource

by using a predefined job allocation algorithm.

4. When the resource receives the job via the resource software, it executes the jobs with the

resource policies. After completing the job, the resource software returns the result(s) to

Grid job scheduler.

5. When the Grid job scheduler receives the result(s), it checks the original user of the job

from the user database and then returns the result(s) to the original user.

2.1.4 Grid Computing with Volunteered Resources

Conventionally, distributed computing usually utilises resources that are completed owned

and controlled by the distributed computing system. Different from this, Grid computing usually

does not have this constraint and a Grid may be composed of fully controlled resources and/or

volunteered resources from different places. In Grid computing, there are two represented types

of Grid systems designed to utilise volunteered resources on purpose:

The first type of Grid is desktop Grid computing. “Desktop Grid computing, exploiting

22

unused resources in the Intranet environments and across the Internet; it can provide

considerable computational power, enabling the investigation of complex and demanding

problems in a variety of different scientific fields.” [DGRID03] It is a type of Grid computing.

In a desktop Grid computing environment, the resources can be composed by a group of

computers within an organisation and they can come from PCs all over the Internet.

The second type of Grid is volunteer computing. “Volunteer computing is a type of

distributed computing in which computer owners donate their computing resources (such as

processing power and storage) to one or more projects” [Volwiki10]. Volunteer is also a type of

Grid computing. Therefore, these computers are also heterogeneous and geographically

dispersed, connecting by the Internet or a local area network.

Some researchers point out that the most important differences between desktop Grid and

volunteer computing are accountability and anonymity [BOINC10a]. In desktop Grid

computing, a resource is assumed to behave mannerly (not creating fake or malicious results)

and the resource’s identity is known in advance. However, no matter whether it is a desktop

Grid computing environment or a volunteer computing environment, the computing resources

volunteer to join the grid and donate their idle CPU cycles to the Grid for finishing jobs of the

project(s), e.g. donating idle CPU cycles for computational jobs or donating spare space for

storing data. In this thesis, the focus will be mainly on contributing resources for computational

tasks. Therefore, this kind of volunteer computing will discussed throughout this thesis.

Here, one of the most important common characteristics of both desktop Grid computing and

the volunteer computing environment is that the resources donated to the Grid are volunteer

based, which brings both benefits and challenges to the Grid.

In terms of benefits, volunteered can attract more resource owners to donate their idle CPU

cycles of their computers as the owners of the resources are always welcome to join the Grid

and they can decide when and how to donate their resources. In addition, their activities (e.g.

processing local tasks, mouse and keyboard events) on the computers are usually ensured not be

affected by the jobs from the Grid.

For some projects, they are especially attractive as the joiner can collect credits, awards and

even money from the projects. For example, in the projects [SETI10][Climate10], joiners can

get credit scores when they successfully finish jobs. Computers collecting highest scores will be

listed on the websites of the projects. In [GIMPS10], the owner of the computer that finds a new

prime number can get a monetary award. For example, the department of mathematics of

University of California Los Angeles was awarded 50,000 US dollars as the 45th known

Mersenne prime was found on one of their computers.

In addition, “volunteer” also brings inexpensive and efficient Grids. As the owners donate

resources freely, it is a cheap approach to gather many accessible computing resources. As the

jobs only execute when a computer’s CPU is idle, the computer resources can be efficiently

utilised while the resource owners’ activities will not be affected. On the other hand, “volunteer”

23

also brings some problems and challenges for the Grid. As the owners of the resources usually

have the right to decide when and how to donate idle CPU cycles of their computers, these

resources may be volatile (they may appear and disappear at any time).

The volatility of computing resources brings a big challenge for allocating jobs effectively. If

a job is allocated to a resource that becomes unavailable before finishing the job is processed,

then this job will be suspended or may even fail, requiring the job to be sent to another resource

for processing again from the start. This is a waste of resource CPU cycles and it lengthens job’s

Makespan (the time to “make” or complete a job). Therefore, this makes the work of job

allocation complex. This is one of the most important issues that this thesis focuses on. More

discussion on this issue is provided in Section 4.1.4.

2.1.5 Applications
According to the descriptions above, Grid computing is used for solving common

computational tasks. As it is composed of a collection of loosely coupled computers, it can be

considered as a “virtual super computer”. Therefore, it is not only useful for small and medium

size computation tasks but is also suitable for large-scale computational tasks. So Grid

computing can be applied to areas which require computing resources, and is especially suitable

for the areas which need huge amount of computing resources.

“This technology has been applied to computationally intensive scientific, mathematical, and

academic problems through volunteer computing, and it is used in commercial enterprises for

such diverse applications as drug discovery, economic forecasting, seismic analysis, and

back-office data processing in support of e-commerce and Web services.” [Physorg10]. In Ian

Foster and Carl Kesselman’s book “The GRID: Blueprint for a New Computing Infrastructure

(Second Edition)” [Foster09], many kinds of practical applications have been collected and

described in detail.

According to the authors’ description, Grid computing is applicable to a wide range of areas.

“They cover compute-, data-, sensor-, knowledge-, and collaboration-intensive scenarios and

address problems ranging from multiplayer video gaming, fault diagnosis in jet engines, and

earthquake engineering to bioinformatics, biomedical imaging, and astrophysics” [Foster09].

For example, Grid computing can be used to gather telescope data from hundreds of telescopes,

allowing astronomers to carry out analysis in a large scale. Grid computing can be also used by

enterprise to improve efficiency and flexibility in terms of resource management. Grid

computing can be also used to federate data for analysing and discovering new drugs. More

details about practical applications of Grid computing are given by Foster [Foster09].

2.1.6 Projects

In the real world, extensive Grid projects have been designed and implemented in the past

decade. In this section, some well known projects will be reviewed, especially their distinct

features, advantages and disadvantages.

24

Condor [Thain05][Condor10a] is a project developed by the computer science department of

University of Wisconsin-Madison. It is a project to implement and deploy High Throughput

Computing (HTC) environments by utilising large collections of distributed computing

resources. In practice, many researches rely on the number of computing results so scientists

need a computing environment that can deliver a huge amount of computational capabilities

over a long period of time. Therefore, the HTC environment was developed to fulfil this

requirement. It is an environment that aims for high computing throughput. There are a couple

of approaches to building such a HTC environment such as using mainframe computers, groups

of personal computers. With the observations that many small, fast and inefficiently utilised

personal computers are accessible in the Internet, Condor tries to achieve this goal by using

distributed computing power all over the Internet and it aims to take “ this wasted computation

time and puts it to good use” [Condor10b].

In Condor, jobs are assumed as long running tasks that do not require user interactions.

Initially, users create a job and submit the job to the system via a end-user software. Unlike

many other designs in Grid computing, users in Condor environment can specify their

requirement for the job by using an advertisement mechanism - ClassAd. For example, the user

can specify CPU speed, memory and storage space required for a single job. On the other hand,

the owners of the donated resources can also specify the requirements they can fulfil, i.e. the

CPU speed, memory and storage that their resources can provide. The system streamlines all the

jobs and the Grid job scheduler (called “Matchmaker” in Condor) makes allocation decisions by

using a match mechanism. For a single job, if the system can find a resource that can fulfil its

requirements, then the job will be allocated to the resource [Thain05][Condor10c].

In addition, Condor software on the resources provides some useful functions. Firstly, it

checkpoints job(s) periodically, so that the job can resume from the checkpoint if the resource

crashes. It also suspends job(s) when the resources are busy with processing local tasks. It also

restarts jobs if the resource reboots. It also supports job migration, so that a job can resume on

another resource from the checkpoint. However, it does not provide any mechanism to support

proactive job migration.

Berkeley Open Infrastructure for Network Computing (BOINC) is an “open-source software

for volunteer computing and grid computing” [BOINC10b] developed by The University of

California. Any individual user or institution can contribute idle computer time to one or

multiple projects on the platform at a time and a number of interesting public projects are

running on this platform. For example, SETI@Home [SETI10] is one of the famous projects

and it aims to detect intelligent life outside Earth. It uses radio telescopes to listen to

narrow-bandwidth radio signal from space and the collected data is distributed and analysed by

distributed resources. Climateprediction.net [Climate10] is another interesting project. It aims to

make predictions of the Earth’s climate up to 2080. In this project, each resource runs the model

distributed by the project server and calculates a unique version of the climate change in the

25

future.

In BOINC, participant resources can claim credit when finishing a job and the procedure of

finishing a job can be described as follows: Firstly, the client software on a resource requests

one or multiple jobs from the scheduling server rather than waiting for the scheduling server to

distribute jobs. Here, the jobs are preloaded to the data server by the project administrator. The

scheduling server allocates job(s) to the resource according to the hardware of the resource. For

example, the server will not give a job that requires more memory than the resource has. After

that, the data server will send the executable and input files to the resource. Then the resource

will start to execute the job(s) and produce output files. After completing the job, the resource

will upload the results and request new jobs.

One of the most interesting features is the resources can get credit when completing jobs. To

claim credit for each job, the correct result should upload to the server before the deadline. The

claim credit is usually dependent on the CPU time and CPU benchmark of the resource. Task

replication is used to guarantee if the result is correct. If both results match, then both resources

will be given the minimum claimed credit. Otherwise, the job will be allocated to a new

resource until the matching result is found.

Another interesting feature is its local scheduling policies. As mentioned above, a resource

can download multiple jobs from different projects at a time. However, the number of CPU and

the memory space is limited on a resource. In addition, there is a single deadline for each job.

Therefore, how to schedule these jobs effectively is an important issue in such circumstances. In

[Anderson07], the author proposes multiple scheduling policies - debt notion, deadline

scheduling and job completion time estimation to “maximize CPU utilization and to avoid

missed deadlines (and to balance these goals when they conflict)”.

In addition to contributing idle CPU cycles to the existing projects, BOINC also allows users

to create their own projects (especially public projects) with the platform software, even making

them public projects which allow the public to join and contribute their computing resources.

For a university, BOINC can be used to create a “Virtual Campus Supercomputing Centre”

[VCSC10], which can provide a clustered computing power to the researchers. For a company,

BOINC can be used for desktop Grid computing in dealing with long running computational

tasks. For a scientist, BOINC can be used to create volunteer computing projects, like the

SETI@Home project and Climateprediction.net mentioned above.

Xgrid is a “technology in Mac OS X Server and Mac OS X, simplifies deployment and

management of computational grids” [Xgrid10a]. It is “a proprietary software program and

distributed computing protocol developed by the Advanced Computation Group subdivision of

Apple Inc that allows networked computers to contribute to a single task” [Xgrid10b]. With this

technology, researchers and scientists can build up their own computational grids for high

throughput computing. The same as other Grid projects, Xgrid also tries to utilise idle CPU time

on the networked computers. One of the most distinct features of Xgrid is that it only supports

26

the Mac operating system, which blocks users of other types of operating systems from joining

or implementing a grid above Xgrid.

The work procedure of Xgrid can be summarised as follows: firstly, a user (it is called

“Client” in Xgrid) creates and submits a job to the Grid job scheduler (it is called “Controller”

in Xgrid). Then the Grid job scheduler divides the job into small tasks and allocates them to

multiple resources (it is called “Agent” in Xgrid). Here, each resource CPU executes at most

one task at a time and a multiple-CPU machine can execute multiple tasks at a time. Later, the

resources return the results to the Grid job scheduler when they finish the tasks. Then the Grid

job scheduler compiles individual task results into job results and sends the results to the

original user. During the task execution, the Grid job scheduler will monitor the task status. If a

task fails to complete on a resource (e.g. the resource crashes), then the Grid job scheduler will

reassign the task to another resource.

XtremWeb is an open source platform for desktop grids designed by IN2P3 (CNRS), INRIA

and Universisty Paris XI [Neri00]. It is designed to help for building users’ own Grid based on

PCs within an institution or over the Internet. Like other Grid computing environment,

XtremWeb utilises resources’ idle CPU cycles to accomplish computational tasks.

The work procedure of XtremWeb can be summarized as follows: Firstly, the users (it is

called “Client” in XtremWeb) submit jobs to the Grid job scheduler (called “Coordinator” in

XtremWeb). Then, similarly to BOINC, the resources (it is called “Worker” in XtremWeb)

sends requests to the Grid job scheduler and the Grid job scheduler will send the jobs (the job

may have already been stored in the resources. If so, the Grid job scheduler will send a set of

parameters to the resources. Otherwise, the Grid job scheduler will send the whole job to the

resources). Later, the resources complete the job and reply with the results to the users via the

Grid job scheduler.

One of the most distinct features of XtremWeb is that it “can be used to build centralized

Peer-to-Peer Systems such as some well known projects related to audio file exchange”

[Xtremweb08a]. Therefore, a computer is considered as a resource and a user at the same time.

Comparing with other systems, “XtremWeb is somewhere in between pure Desktop Grid

system, a la Condor and pure Volunteer Computing system, a la BOINC.” [Xtremweb08b]. In

Condor, the Grid job scheduler (Matchmaker) finds the best resource and allocates the job to it.

Different from Condor, in XtremWeb, the resource request jobs rather than waiting for jobs to

come. This is similar to the mechanism being used in BOINC. Compare with BOINC,

XtremWeb allows each user has the right to submit jobs if it is authorised, while only project

creator can upload jobs in BOINC. In addition, unlike BOINC, XtremWeb does not provide a

credit system to award the resources.

Globus® Toolkit [Globus10a] is open source software toolkit for building Grids, “letting

people share computing power, databases, and other tools securely online across corporate,

institutional, and geographic boundaries without sacrificing local autonomy” [Foster06]. It is

27

being developed by the Globus Alliance, an international association that is mainly based at

Argonne National Laboratory [Globus10b], USA. The toolkit has a series of software services

and libraries to provide functionalities covering different aspects in Grid computing, from

resource discovery, monitoring to protecting resources’ safety.

“Its core services, Interfaces, and protocols allow users to access remote resources as if these

resources were located within the users’ own machine room while simultaneously preserving

local control over who can use resources and when” [Garritano03].

The work procedure in Globus can be summarised as follows: Firstly, a user obtains

authentication from the system. After that, the user queries the system to see if there is any

resource available. If yes, then the user submits the job to the Grid. Then the Grid sends it to the

resource for execution. During the job execution, the Grid monitors the progress of the job and

notify the user if the job is finished, failed, or being delayed.

In Globus, the Globus Resource Allocation Manager (GRAM) [Feller07] is a software

component used to manage jobs and resources. Interestingly, “GRAM is not a scheduler itself --

but a standardized, front end interface to different existing scheduler components, such as PBS

(Portable Batch System) [Corbatto00] and Platform's LSF (Load Sharing Facility) [UNC09]”

[Czajkowski10]. Therefore, Globus leaves the choice of Grid job scheduler to the users of

Globus Toolkit. In addition to this, Globus Toolkit also supports a number of third-party

software. For example, Condor can build upon Globus Toolkit and Condor-G [Frey01] can be

utilised as a job management mechanism to manage job submission.

According to the above descriptions about different projects, all these representative projects

have some common features:

• All the Grid systems developed in the projects have three level components: user level

components, user/resource management level components and resource level components.

• User level components are mainly responsible for submitting jobs to the user/resource

management level components for execution.

• User/resource level management components are mainly responsible for managing

users/resources and scheduling jobs to different resources.

• Resource level components are mainly responsible for executing jobs and returning results

back to the user/resource management level components.

However, they have many differences if looking into details:

• The definition and the range of users are different. In BOINC, the users are a limited

number of system administrators or project managers that can submit jobs to the Grid

system. In other projects, they generally do not have this kind of restriction, which means

public users can also submit their jobs to the Grid system.

• Job allocation mechanisms are different. In BOINC and XtremWeb, the resources will try to

fetch jobs from the Grid job scheduler while the Grid job scheduler will try to allocate jobs

28

to resources.

• Job-scheduling algorithms are different. FCFS algorithm is widely used, such as BOINC,

XGrid and XtremWeb. In Globus, job-scheduling algorithm is not specified and the

developers can decide what job-scheduling algorithm to be used when building a real Grid

system. In Condor, it is based on FCFS and a matchmaker to scheduling jobs.

• Operating systems supported by the Grid are different. XGrid only support Mac OS system,

which means only the computers with Mac OS can become the resources of the Grid. For

other projects, though multiple operating systems are supported by the Grid in theory,

operating system specific resource software has to be run on a different operating system to

make sure operating system specific jobs can be executed on different platform. In this

thesis, Java technology is utilised to support multiple operating systems and resource

software or jobs will be platform independent (this will be discussed in more details in

following chapters).

• Assumptions about resource availability are different. Some Grid systems assume the

resources are available once they are in a Grid, such as Xgrid. However, for some Grid

systems, resource owners can decide when and how to donate their resources to the Grid.

For example, in Condor, a resource is considered as available to the Grid when the CPU

load is lower than 25%. In BOINC, resource owners can define when and how to donate the

CPU and memory resources with different parameters. In XtremWeb, it has a strict

assumption in terms of availability: a resource is fully controlled by the resource owner and

it is not available if some local activities occurs (e.g. mouse moved, keyboard touch or local

process launched). In this thesis, Resource availability will have the same definition as

XtremWeb and try to explore how job-scheduling algorithms can perform under such

difficult circumstances (more details will be discussed in following chapters).

• The approaches for tackling the problem of resource volatility are different. Resource

volatility means the resources may come and go at any time so that jobs may be lost if the

resources leave the Grid (more details about this problem will be discussed in Section 2.2).

Here, different approaches are taken by different projects. For some projects, it simply

allocates the job to a new resource for execution if a job fails, such as XGrid and BOINC.

For some projects, it checkpoints jobs regularly so that jobs can be executed from the

checkpoint if it fails, such as Condor. However, none of these projects provides live and

automatic job migration algorithm so that jobs can be reactively or proactively migrated

before jobs get lost. This is another focus of this thesis. This thesis uses the approach of

reactive and proactive job migration algorithms to avoid jobs getting lost in a volatile Grid

environment (more details will be discussed following chapters).

2.2 Challenges in Volunteered Resources based Grid Computing
Resource management is the core part of a Grid system. “At the heart of the Grid is the

29

ability to discover, allocate, and negotiate the use of network-accessible capabilities—be they

computational services offered by a computer, application services offered by a piece of

software, bandwidth delivered on a network, or storage space provided by a storage system”

[Foster09]. In the Grid, resource management includes work like resource discovery, resource

state monitoring, job-scheduling and job state monitoring, most of which are managed by Grid

job scheduler at the user/resource management level and resource software at the resource level.

Among the functionalities of the resource management, job-scheduling is an important part.

In a Grid, especially in a volunteer resources based Grid (such as a desktop Grid computing or a

volunteer computing environment), a resource may not always be available to the Grid and the

job(s) may not always be allowed to run on them all the time. This is due to some characteristics

of these systems:

Firstly, resources in such systems are assumed to be controlled by the resource owners rather

than the Grid system. This characteristic makes the resources volatile. In a volunteer resources

based Grid, resources may join and leave at any time, even without any precaution. A resource

joining the Grid is good for the Grid as more computing power is available and potentially more

jobs can be processed within a period of time. However, a resource leaving the Grid is bad news

for the Grid, as the jobs running on the resources will be lost. The case will be worse if the

resource leaves without any precaution. With precaution, it is possible to migrate jobs

beforehand. Without precaution, it is difficult for the job scheduler to know when to migrate

jobs.

Secondly, resources in such systems are typically assumed not to interfere with local

activities. Every time the owner reclaims the resource, the guest job(s) from the Grid will have

to be suspended. This characteristic also makes the resources volatile. Furthermore, if the

suspension exceeds the predefined time-out, the job will be terminated and lost.

Therefore, both characteristics makes the resources volatile and the volatility of computing

resources brings a big challenge for the job-scheduling algorithm to a volunteer resources based

Grid in terms of how to get higher job throughput and how to ensure jobs are processed

successfully.

One potential solution to this challenge is enabling the job scheduler to allocate jobs

effectively with the information about resources’ future availability. This is one of the focuses of

this research and this type of solution will be discussed in details in Chapter 4, 5 and 6.

Another potential solution to this challenge is enabling the job scheduler to anticipate all

resources’ future availability so that the system can trigger proactive job migrations when

resources are about to become unavailable. This is another one of the focuses of this research

and this type of solution will be discussed further in details in Chapter 4, 5 and 6 as well.

30

Chapter 3 Proposed System Architecture
In this chapter, a novel Grid computing system architecture will be presented. In the system

architecture, Java plays an important role as it has been used at both the user and resource level.

Therefore, to make it easier to understand the proposed system architecture, a brief introduction

about Java technology is provided.

3.1 Java Technology
According to the discussions in Chapter 2, the heterogeneity between resources and the

volatility of each resource are the two main challenges faced by a computational Grid

computing environment that is composed of unreliable resources (e.g. a desktop Grid or a

volunteer computing Grid system). Therefore, this research proposes a new Grid system

architecture to provide a solution. In terms of resource heterogeneity, and in order to tackle this

challenge the proposed system architecture uses Java technology. In terms of resource volatility,

this proposed system architecture utilises existing Java application migration technology to

enable live and automatic job migration between heterogeneous resources. To provide a better

understanding of the proposed system, some general knowledge about Java will be introduced.

3.1.1 Technology Overview

Java technology is “both a programming language and a platform” [Sun10b]. It was

originally developed by Sun Microsystems to provide a modern programming paradigm. One of

the important motivations for developing this technology was based on the observed difficulties

of running applications on different operating systems. This was caused by the incompatibility

of different operating systems. Therefore, before Java, if an application developer wanted to

create an application running on multiple operating systems, then the developer may have to

cope with one operating system at a time.

To mitigate the problem brought about by incompatible operating systems and to accelerate

the development process of applications, especially the applications working on a distributed

environment, Sun Microsystems proposed Java technology, a new programming language and

the platform to support this language.

As a whole, Java’s architecture consists of four components:

 The Java programming language:

 The Java class file format.

 The Java Application Programming Interface (API).

 The Java Virtual Machine (JVM)

The Java programming Language and the Java class file format can be considered to be in the

category of the Java programming language whilst The Java API and the JVM can be regarded

as components of the Java platform. Though these four components are distinct, they are related.

During the process of writing and running a Java program, all of them cooperate to get the Java

31

program running successfully. Figure 3.1 shows the relationships of these four components:

A.java B.java C.java

Java Compiler

A.class B.class C.class

Program’s source files

Program’s class files

Compile-time environment

A.class B.class C.class

Java Virtual Machine

Object.class

Program’s class files

Java API’s class files

Run-time environment

Object.class

Class files
move locally
or through
network

Figure 3-1: The Java Programming Environment

In order to run a Java program, firstly the source code should be written and saved in a .java

format file. Here, the Java programming language is used. Then, a Java compiler should be used

to compile the .java file to .class format file. This .class file is composed of the bytecodes which

can be understood and executed by the JVM. Here, the Java class file format is used. Later, The

JVM will be used to run the Java program. During the running period, the Java program may

want to use system resources (such as I/O), the standard Java APIs can be used to access the

required resources.

3.1.2 Features of Java Program

According to Java designers’ idea, Java programming was designed to have a number of

beneficial features like simple, object oriented, familiar, interpreted, multithread, dynamic,

architecture neutral, portable, robust and secure. Here, these features will be explained briefly.

More detailed information can be found on [Gosling96].

• Java was designed to be a simple language so that programmers can understand the

fundamental concepts and be productive quickly without much training.

• The Java programming language is an object-oriented language. Before Java, the concept of

object-oriented programming had been developed and become the mainstream. Java simply

adopted this idea.

• The “look and feel” of Java programming language was designed to be similar to C++

[Stroustrup04], a mainstream programming language before Java. So the programmers

would feel familiar with Java when they started to use Java.

• Java was designed as an interpreted language. Compiled and interpreted are two different

approaches in the programming world. In compiled language, the source code is written in

compiled language that is compiled into machine code (understandable and executable by

the specific Resource) [Haas10]. On the other hand, in interpreted language, an interpreter is

used to execute (interpret) the source code written in such a language [IBM08]. Java used

the interpretation approach and this was based on the consideration of supporting

heterogeneous operating systems. With the support of interpreter, Java program can be

32

quickly deployed on multiple platforms without worrying too much about the underlying

operating systems.

• Java is a multithreaded language. Multithreaded programs allow several tasks to be carried

out parallel. For example, a web browser application may be needed to download files while

displaying contents on the screen. Therefore, to enable applications with the ability of

dealing with concurrent activities, Java was designed to be a multithreaded language.

• Java is a dynamic language. At the linking stage, the Java class files are linked when they

are needed. Therefore, new code can be loaded dynamically, which enables a more flexible

approach to run applications, especially for network-based applications. For network-based

applications, new code can be downloaded from somewhere else in the network and then

start to run directly.

• Java is an architecture neutral programming language. In Java, the source file will be

compiled to bytecodes, a format that will be understood and executed by the Java interpreter

- JVM running upon different operating systems. Therefore, with the representation format

and the help of JVM, Java programming language is independent from underlying operating

systems.

• Java was designed to be portable. The feature of architecture neutral partially enables

portability. In addition, Java also specifies that the size of its basic data types and arithmetic

operators are the same on each platform, which eliminates the problem of data type

incompatibilities on different platforms.

• Java is a robust programming language. It provides compile-time checking and run-time

checking to ensure the source code is compiled correctly. Furthermore, it has a simple

memory management model to eliminate potential memory related program errors.

• Java language is secure. As Java technology was designed to run in distributed and complex

environments, security is of importance for applications and underlying operating systems.

With Java bytecodes and the protection provided by JVM, Java applications will not be able

to be invaded from outside. In addition, JVM prohibits malicious Java code from invading

underlying operating systems.

3.1.3 Java Platform

Conventionally, most platforms consist of the operating system and underlying hardware.

Unlike this convention, the Java platform differs from most other platforms in that it’s a

software-only platform that runs on top of other hardware-based platforms [Sun10c].

The Java platform has three editions: Java Platform Standard Edition (Java SE), Java

Platform, Enterprise Edition (Java EE), and Java Platform Micro Edition (Java ME) [Sun10d].

Each edition has the JVM and the main difference between each edition is that the Java API

they provide. Java SE provides the standard API whilst Java EE provides a superset of the

standard API and Java ME provides a subset of the standard API. In this research, the main

33

focus will be on Java SE.

According to the description earlier in this section, the JVM and the Java API comprise the

Java platform. The JVM is an abstract computer and its main task is to load and execute

the .class files. Figure 3.2 shows the basic structure of the JVM.

Class Loader

Execution Engine

Program’s
class file

The Java
API’s class file

Bytecodes

Figure 3-2: A Basic Block Diagram of the Java Virtual Machine

The JVM contains a class loader and an execution engine. The main job of the class loader is

to load all the class files that are needed. The main job of the execution engine is to execute the

bytecodes that are loaded by the class loader.

During executing the Java programs, some system resources of the computer may be required,

such as reading a file from the hard disk and setting up a TCP connection with another

computer.

There are two approaches to fulfil these requirements. The first approach is invocating native

methods, which are written in some other languages directly, such as C or Pascal. These native

methods are platform specific. As a result, using this approach leads the Java programs to be

platform specific. Figure 3.3 shows this approach.

Class Loader

Execution Engine

Program’s
class file

The Java
API’s class file

Bytecodes

The Java Virtual Machine

Host Operating System

Native method invocations

Figure 3-3: Platform Specific Invocation

The second approach is invocating Java methods that are written in Java programming

language. These Java methods provide a standard way to access the system resources of the

Resource computer and there are called Java API. Using this approach, Java programs will

become platform independent. Figure 3.4 shows this approach.

34

Java Program

Java Methods (Java API)

Native Methods (dynamic libraries)

Host Operating System

Figure 3-4: A platform-Independent Java Program

3.2 Overview of the Proposed System Architecture
This research proposes a new high-level Grid system architecture. As with the generic

architecture described in Section 2.1.1, this new architecture has three levels and the same

components. The novel parts of this architecture are the new features at the resource level.

Figure 3.5 shows the resource level of the new system architecture.

Resource
Software

Guest
Job

Guest
Job

Resource
Software

Guest
Job

Guest
Job

Java Virtual Machine
Resource Level

Java Virtual Machine

Job
Migration

Figure 3-5: Resource Level of the Proposed Grid System Architecture

There are three important features in this proposed system architecture:

1. The proposed system architecture is based on Java technology [Sun10a] so that the resource

software and guest jobs are running in JVM environment. Among Java technology’s

features, architecture neutrality and portability are the most important two:

Firstly, these two features ensure the Grid system to be able to utilise heterogeneous

computing resources. According to the descriptions in Chapter 2, a source file of a program

will be compiled to a .class file and the .class file is composed of bytecodes (the machine

language which can be understood and executed by JVM). As JVM is available on multiple

platforms, so the .class file can be executed on different computing systems. Therefore, if a

job in a Grid system is represented as a .class file, then it will be able to run on

heterogeneous computing resources and the idle CPU cycles on these computing systems

can be utilised.

Secondly, these two features raise the possibility of job migrations between these

heterogeneous operating systems. As the .class file is in a standardised format and

understood by JVMs on multiple platforms, the .class file can be executed by the new

resource if it is migrated from another resource. Therefore, if a job is represented as a .class

file, then it can be migrated between heterogeneous resources without worrying about

35

whether they can be executed by the resources.

In addition, using Java technology can bring some extra benefits. For example, in terms

of security, JVM can provide protection to the resources and guest jobs as guest jobs are

running within a sandbox that is isolated from the underlying operating system. The

activities of the guest jobs are restricted within the sandbox and any harmful activities to the

resource will be blocked by the JVM. On the other hand, as the guest jobs are isolated from

the resource, the resource cannot access the guest jobs either. As a result, both the resource

and the guest jobs will be kept safe because of the JVM. In terms of programming, Java is

an advanced programming language with features like simple, object-oriented and

multi-thread, these features ensure Grid users can utilise Java to create powerful jobs easily.

2. The proposed system architecture enables resources to support live and automatic (reactive

and proactive) job migration. This is based on the Java application migration technologies

investigated by other research work (more details are provided in Section 3.3.4) and the Job

migration algorithms proposed in this research (more details are provided in Section 4.3.

With live and automatic job migration, potential job failures can be avoided.

3. The proposed system architecture is that it ensures resources’ local activities are not affected

by the guest jobs. If any local activity occurs, the Guest Job(s) will be terminated by the

Resource Software.

3.3 System Components
As mentioned in Section 3.1, there are three levels in the proposed system architecture and

there are multiple components at each level. Some system components have the same

functionalities as the components’ functionalities described in Section 2.1.2. This section will

focus on the new functionalities provided by the new system architecture.

3.3.1 User/Resource Management Level Components

Grid job scheduler: It is the component used to deal with jobs. Specifically, it has the

following functions:

• It is responsible for making job migration decisions. When the jobs are running on the

resources, the Grid job scheduler monitors both the progress of the job and the state of the

resource. In addition, the Grid job scheduler can also predict resources’ future availability

by using current/past information. Then with the monitoring information and migration

decision algorithm(s), the Grid job scheduler makes job migration decisions.

• It is responsible for notifying related resources and monitoring the migration state of the job

migration. After the Grid job scheduler makes a job migration decision, the Grid job

scheduler should notify both the original and the destination resources to let them carry out

the job migration process. During the migration process, both resources will send updated

information to the Grid job scheduler and the Grid job scheduler will change the resource

and job states in the resource and job databases accordingly.

36

3.3.2 Resource Level Components

Resource software: In addition to the functionalities described in Section 2.1.2, the resource

software in this proposed system architecture has the following function:

• It is responsible for carrying out job migrations and reporting the migration progress to

the resource manager and Grid job scheduler. If the resource software on the original

resource receives the job migration notification from Grid job scheduler or resource

owner, it will communicate with the destination and then carry out the job migration

procedure.

Guest job: A job is composed of a .class file(s) with/without additional files used by

the .class files. The additional files can be files used for input or output. For example, it can be

an input file describing settings of parameters for running the job and it can also be an output

file recording job results.

There are multiple approaches to create a guest job. The most common approach is that

original user creates a Java source file(s) and then gets the source file(s) compiled. This

approach requires the user has knowledge about Java and implement the jobs in Java

programming language.

Another approach is creating source file(s) in other programming language and then

converting the source file(s) into a Java source file(s) or converting into .class file(s) directly.

For example, C2J converter [C2J01] is software to translate C-code source files into Java .class

files. BEELUCID [Beelucid09] is software to convert VB.Net source files into Java source files.

With this approach, users can use their preferred programming language to create source file(s)

and then convert it to Java format. In addition, this approach enables the reuse of legacy

applications that were written in other programming languages.

3.3.3 Java Application Migration Technologies

In the state of art, to enable distributed computing and fault tolerance, Java process / thread

migration technology has been introduced in recent years. In [Illmann00], they examine the

migration problem of migrating Java applications and classify different types of migration.

At the top level, Java applications can be divided into two kinds: those supporting strong or

weak migration. Strong migration is “a migration technique which realizes code migration and

strong state migration” [Illmann00]. This means not only the source code of the application but

also the execution state and data information such as the program counter and Java stack should

be migrated as well. Any kind of migration that cannot achieve both code and strong state

transfer together is considered weak migration.

Strong migration can be classified into different sub-types and Figure 3.6 shows the

classification under strong migration:

37

Strong Migration

Code Migration State Migration

Execution Migration Data Migration

Thread
Migration

Member
Migration

Stack
Migration

Program Counter
Migration

Resource
Migration

Figure 3-6: Classification of Different Migration (Adapted from [Illmann00])

According to the classification, a strong migration is described as mixture of two aspects:

code migration and state migration. Code migration means that all the source code could be

migrated from the source to the destination. State information includes execution state and data

that is being used. Therefore, state migration consists of two aspects – execution migration and

data migration.

Each thread has a program counter and its own state information, i.e. running, suspended and

blocked. As a result, execution migration is composed of two aspects – program counter

migration and thread migration.

In terms of data, it includes member variables, local variables, operands and external

resources (e.g. network connections and files), which are being used by the code. Therefore,

data migration is composed of member migration, stack migration and resource migration.

According to [Bouchenak00a], the key techniques in Java process / thread migration mainly

include how to capture and restore Java process or thread’s execution state and data, which is

represented by execution migration and data migration in Figure 3.6. In order to achieve this

objective, some solutions through different approaches have been proposed in earlier research

work:

• The first approach is to pre-process the source-code of Java [Truyen00][Huang02]. In this

approach, some extra Java statements are inserted into the source code before execution.

During the execution time, the execution state of the Java program will be captured and the

Java application with the current execution state can be stored and migrated.

• The second one is adding a middleware between Java application and JVM. This

middleware is capable of capturing Java application execution states and data by using JVM

Debugger Interface (JVMDI) [Ma00][Ma02]. Note that currently JVMDI [Sun04] has

already replaced by JVM tool interface (JVMTI) and the functions of JVMDI are inherited

by JVMTI [Sun06]. JVMDI/JVMTI is on top of the JVM and is a native interface for

debuggers. It defines the standard services that a JVM must provide for debugging. When

starting a Java application, a JVMDI/JVMTI client is started as well. By using

JVMDI/JVMTI, the runtime information of threads, stack frames, local variables, classes,

objects and methods can be obtained. In addition, some Java statements will be inserted to

38

the source code to make sure that the operand stacks is empty when the migration occurs.

• The third approach is to extend the JVM [Bouchenak00b]. In their mechanism, the JVM

was extended to be able to extract the Java thread’s execution state and store it in a Java

object during the execution time. This object can then be stored in a file and sent to the

destination Resource to resume the Java application from the current execution state.

Now, how to apply one or more of these proposed Java migration technologies in the

proposed system architecture becomes a problem:

• For the first approach, it needs to pre-process the Java source code to insert additional

statements for the purpose of capturing execution states and data while the Java application

is running. When the Java application reaches the point of those specially inserted

statements, the execution states and data can be accessed and recorded (checkpointed). Later,

when job migration is needed, the original job (the Java applications) with the latest

execution states and data can be transferred to a new resource and resume execution from

the checkpoint.

In theory, the work of inserting additional statements can be done at any level of the

proposed system. At the user level, the additional statements can be added when the users

create the Java source code. At the user/resource management level, if the users submit Java

source code rather than submitting compiled .class files, then the Grid job scheduler can

insert these additional statements and then get the source code compiled. At the resource

level, if the users submit Java source code and the Grid job scheduler allocates the source

code to the resource software, rather than the compiled .class files, then the resource

software can insert additional statements and get the source code compiled.

In terms of implementation, this approach could be simpler than the other two as it does

not require any modification to the existing systems (e.g. extending JVM or adding a new

middleware). What it requires is the ability to insert additional and special statements in the

source code at the level of user, resource management or resource.

In the use phase, this approach can be more complex than the other two approaches.

Additional special statements have to be inserted into the Java source code. Therefore,

where and how to insert this type of code is important and can be difficult to decide. So

compared with the other two approaches, this approach can be more complex. In addition,

as it requires the source code to be pre-processed before running, it may add significant

overheads to application performance because of the inserted code. Furthermore, as the

statements are inserted at certain points, this means the program states can be captured at

these points only. Another potential problem is that many legacy applications’ source code

is not available anymore. This means it may be impossible to insert the required statements

in the source code for the purpose of job migration.

• For the second approach, it needs to implement a middleware between the JVM and Java

applications to capture Java applications’ execution states and data. The middleware should

39

be capable of utilising JVMDI/JVMTI to achieve this goal. To apply this approach, the

resource software should play the role as the middleware and be capable of invoking

JVMDI/JVMTI to execute Java applications in a debugger mode. Except for this, there is no

requirement to modify JVM or pre-processing Java source code. As JVMDI/JVMTI can

capture applications execution states and data at any time, the resource software can access

the updated job execution states and data when the migration is needed. After getting the

necessary information, the resource software can transfer the original job and the update job

execution states and data to a new resource.

In terms of implementation, this approach could be more complex compared to the first

approach as it requires the implementation of an additional layer between Java application

and JVM. However, compare with the third approach, it could be simpler as the work is to

writing software to utilise existing JVMDI/JVMTI rather than modifying underlying

infrastructure.

In the use phase, it could be simpler than the first approach as no further modification is

needed after this approach is implemented and deployed. The resource software can deal

with all the migration work without any pre-processing work to the Java source code.

One potential disadvantage of this approach is that the previous study in [JPC10] shows

that a Java application running in the debugger mode is much slower than running in the

normal mode. Therefore, this approach may significantly affect the jobs’ Makespan.

• For the third approach, it needs to extend existing JVM. After extending the JVM, the

modified JVM will be able to provide support for capturing Java applications’ execution

state and data. If the modified JVM is installed in the resource, then external applications

(e.g. the resource software) can access the current state and data information of the running

Java applications (e.g. the guest jobs) via the Application Programming Interface (API)

provided by the extended JVM. When a job needs to be migrated, the resource software can

access current job execution states and data by invoking specific functions provided by the

modified JVM. Then the resource software can transfer the original job with its current

execution states and data to a new resource.

Compared with the other two approaches, this approach could be more complex in terms

of implementation and deployment as it requires modifications to the existing JVM and it

also requires the resources to install this modified version of JVM.

In the use phase, similarly to the second approach, once it is implemented and deployed,

then it will be a standard and easy way for resource software to access running jobs

information and carry out job migrations. It could be even simpler than the second approach

in terms of use, as the underlying infrastructure will provide enough support so that the

resource software can access what it needs by using standard APIs.

One concern for this approach is the security. As the modifications to the JVM enable

resource software to access running jobs’ execution information, it may also enable other

40

programs to fetch the information as well. This might be a threat to the running jobs if this

program has malicious purposes. Therefore, security issues should be considered carefully

when extending the existing JVM.

Therefore, none of these approaches has been specified as the only way to achieve job

migration in the proposed system architecture. This is due to the following reasons:

Firstly, each technology is compatible with the system architecture. The proposed system

architecture defines the broad framework for the whole system. However, for further details like

choosing a job migration technology, the proposed system architecture is quite open (it is

possible to apply any job migration technology compatible with the system architecture to the

system architecture). According to the preceding discussions, all approaches are compatible

with the system architecture, which means each of them can be applied to the proposed system

architecture.

Secondly, each approach has its own advantages and disadvantages. To choose a certain

technology, the chosen technology should provide more benefits than others. However,

according to the above discussions, all technologies have their own distinct advantages and

inherent disadvantages at the same time. Therefore, for the current stage, none of these

technologies is specified as the only technology for job migration in the proposed system

architecture.

3.4 System Operations Procedures
In order to make sure the proposed system architecture work properly, some important system

operations were designed. As some system operations have been described in Section 2.1.3, this

section will focus on the new operation procedures provided by the new system architecture.

3.4.1 Job Execution Monitor

After the job is distributed to a resource, the resource software will start the job. During the

execution of the job, the resource software will monitor the execution progress and report to the

job manager when important events occur. The procedure can be described as follows:

1. The resource software sends out job’s latest information (e.g. job started, job finished 50%

or job delayed, etc) to the job manager by using Job Information Message.

2. If the resource manager receives this updated job state information, it will store the data in

the resource database.

In the way as the procedure of monitoring resource state, the job manager can also initiate the

procedure of monitoring job execution progress. If the procedure is initiated by the job manager,

then the procedure can be described as follows:

1. The resource manager sends a Request Resource Information Message to the resource

software.

2. The resource software sends out job’s latest information (e.g. job started, job finished 50%

or job delayed) to the job manager by using Resource Information Message.

41

3. If the resource manager receives this updated job state information, it will store the data in

the resource database.

3.4.2 Job Migration

Job migration is one of the most important features provided by the new system architecture,

the benefits and the technique used to carry out this migration has been discussed in earlier

chapters. In general, the whole procedure can be divided into two parts: the first part is to make

a job migration decision and the second part is to carry out the job migration.

1. If the Grid job scheduler determines that the job needs migration or the resource owner

notify the Grid job scheduler that the resource is going to be unavailable, the Grid job

scheduler will look for a destination resource (the resource which the job will be migrated to)

for the job according to a job-scheduling algorithm.

2. If a suitable resource is not found, then the Grid job scheduler will not make a job migration

decision. Otherwise, the Grid job scheduler will make the job migration decisions.

After making the decision, the next step is to carry out the job migration. The steps are as

follows:

1. The Grid job scheduler sends a Migration Notification Message to the origin and destination

resources separately.

2. Once the origin resource software receives this message, it will send a TCP connection

request to the destination resource software and setup a TCP connection with the destination

resource software.

3. After this, the original resource will checkpoint the job and send a copy of the checkpointed

job to the destination resource.

4. When the destination resource software receives this checkpointed job, it will resume the

job on the destination resource. The origin resource software will terminate the job running

on the origin resource.

3.5 System Messages
In order to support communication between different components in the proposed system

architecture, some messages are designed to be used in different scenarios. These messages

cover various aspects to ensure the system operation procedures can be carried out correctly,

such as the Registration Message and Registration Acknowledgement Message ensure users and

resources can register with the Grid system. The Resource Information Message lets resources

report their updated system information to the Grid job scheduler, etc. The most important

messages are the job migration related messages as they ensure live and automatic job migration

procedures are carried out properly. For more details about the system messages, please refer to

Appendix A.

42

Chapter 4 Job-scheduling and Job Migration
In this chapter, some novel job-scheduling and migration algorithms will be proposed.

4.1 Job-Scheduling Introduction
In this section, some background knowledge about job-scheduling will be introduced,

including scheduling procedures, job-scheduling taxonomy, challenges of job-scheduling and so

on.

4.1.1 Job-Scheduling Overview

Job-scheduling is a part of resource management in a Grid system. Resource management is a

core part of a Grid system. In practice, there are several kinds of Grids, e.g. computational Grids

and data Grids. For different kind of Grids, different objectives are defined. For computational

Grids, one of the main objectives of resource management is to manage the resources and let

them process computational jobs efficiently, such as improving job throughput and reducing job

Makespan.

For a computational Grid like a desktop Grid or volunteer computing Grid, the main concern

is to process computational jobs using the computing power of CPU(s) on each computer

comprising the Grid. Therefore, in a computational Grid, resource management includes but is

not limited to the following tasks: resource registration, resource state monitoring,

job-scheduling and job state monitoring.

Among all these tasks, job-scheduling is one of the most important and complex. In a

computational Grid, Job-scheduling is the process of mapping computational jobs to available

resources with one or more objectives (e.g. achieving the highest throughput or the shortest job

Makespan). Therefore, an efficient job-scheduling algorithm is important to achieve these

objectives.

The reason for its complexity is because it can be difficult or even impossible to achieve

some objectives at a given time. For example, conventionally, the Shortest Job First (SJF)

[Thomas56] scheduling algorithm is proven optimal [Dusseau09] in terms of maximising job

throughput when all jobs are simultaneously available [Bridgeport01]. However, SJF may starve

long jobs as short jobs may occupy all available CPU cycles. In addition, to obtain optimal

results, SJF requires all jobs to be available simultaneously, which is not usually practical in a

computational Grid as new jobs may arrive at the job scheduler at any time. Furthermore, as the

resources in desktop Grids and volunteer computing Grids are dynamic and volatile, it is

difficult for the Grid job scheduler to ensure all jobs are completed successfully.

4.1.2 Job-Scheduling Components and Procedures

In Chapter 2 and 3, job-scheduling components and procedures have been described briefly.

In terms of components, the Grid job scheduler and resource software are involved in the

job-scheduling and they are responsible for different levels of job scheduling. Figure 4.1 shows

43

how these two components work together and interact with other system components in a

computational Grid:

Global
SchedulerJobJobJob

Local
Scheduler

Local
SchedulerJobJobJob

Guest Job

CPU Processor

Guest Job

Grid
User

Job

JobJob
Grid
UserJob

Guest Job

CPU Processor CPU Processor
Figure 4-1: Global and local scheduling in a computational Grid

After the jobs are submitted to the Grid system, a job needs two levels of job-scheduling

before it is executed by the CPU resource:

The first level is global scheduling, (deciding where to allocate jobs). In the proposed system

architecture described in Chapter 3, the Grid job scheduler plays the role of global scheduler. As

a global scheduler, it receives submitted jobs from users and decides where to allocate the jobs.

Then according to its allocation decision, the job will be transferred to the resource.

The second level is local scheduling, (deciding the jobs’ execution sequence) and is the

responsibility of the local scheduler. In the proposed system architecture described in Chapter 3,

the resource software is a local scheduler. As a local scheduler, it receives jobs allocated by the

global scheduler and then decides which job to run first. A conventional computer typically has

one CPU. Nowadays, however along with the development of computer hardware, more and

more machines have more than one CPU. Therefore, in such a computer system, the local

scheduler is not just responsible for deciding which job(s) to run next, but also responsible for

deciding which job(s) to run on which CPU. After these two levels of job scheduling, a job will

become a guest job on a resource and will be executed by the CPU of that resource. Note, in this

thesis the job-scheduling decisions are based purely on the global scheduler, (the Grid job

scheduler). The local scheduler (the resource software) always schedules jobs in FCFS order. In

addition, the job migration decisions are based purely on the global scheduler and the local

scheduler will get the jobs migrated according to the global scheduler’s decisions.

In a Grid system, especially in the proposed Grid system architecture, the whole lifetime of a

job from creation to termination can be summarised as follows:

1. The job is created and submitted by the Grid user. In the proposed Grid system architecture,

a job is Java source/compiled files with/without additional input/output files, created and

submitted by the user via the user software.

2. The job is scheduled by the global scheduler. In the proposed Grid system architecture, this

44

scheduling procedure can be divided into several parts: job submission, job allocation and

job distribution. In the job submission, the job will be put into a job queue and sorted with a

sorting algorithm. Next, the job will be mapped to an available resource in the Grid with a

job-scheduling algorithm. Later, in job distribution, the job will be transferred to the

resource.

3. The job is scheduled by the local scheduler. In the proposed Grid system architecture,

resource software plays the role of local scheduler and is responsible for sorting incoming

jobs and deciding which job should be run by which CPU if there is more than one CPU on

the resource.

4. The job is executed by the resource CPU. In the proposed Grid system architecture, the

resource plays the role of job processor and it is responsible for executing the jobs.

4.1.3 Taxonomy of Job-Scheduling Algorithms

In [Casavant88], the author proposed a hierarchical taxonomy for job-scheduling algorithms

in general distributed systems. The taxonomy is shown in Figure 4.2
Job

Scheduling

Local Global

Static Dynamic

Optimal Sub-optimal

Approximate Heuristic

Physically
Distributed

Cooperative Non-cooperative

Physically
Non-distributed

Figure 4-2: Task Scheduling Characteristics (Adapted from [Casavant88])

• Local versus Global: At the top level, the job-scheduling algorithm is divided into local and

global scheduling. Local scheduling is used for scheduling jobs on a single CPU while

global scheduling is used for scheduling among multiple CPUs. In Grid computing, the Grid

job scheduler is mainly responsible for the global scheduling as it schedules jobs among

different resources (CPU). Resource software is mainly responsible for local scheduling as

it schedules jobs on the local CPU processor.

However there are some exceptions here. Nowadays, computers with multiple CPUs are

becoming more prevalent [Intel10][AMD10]. Therefore, if the resource software is working

on such a computer, it will also be responsible for job-scheduling among multiple CPU so in

fact the resource software will be not only responsible for local scheduling but also partially

in charge of global scheduling.

• Static versus Dynamic: Global scheduling can be further divided into static scheduling and

dynamic scheduling. According to [Casavant88], static scheduling has the same meaning as

45

deterministic scheduling described [Lo84]. In static scheduling, the information about jobs

and resources is known by the job scheduler in advanced and the job-scheduling decisions

will be made before the jobs are being executed on the resources. When decisions are made,

jobs will be transferred to the resources and they will not be rescheduled to other resources

whilst they are being executed. Many job-scheduling algorithms belong to static scheduling,

such as FCFS [Esklcloglu01], EDF [StanKovic98] and so on. The job-scheduling

algorithms proposed in this thesis also belong to static scheduling.

After the initial decisions are made, dynamic scheduling will still change the

job-scheduling decisions when necessary. This is for the purpose of balancing loads

between resources and avoiding potential job failures. In addition to job-scheduling

algorithms, this thesis also proposes some job migration (rescheduling) algorithms as aids to

these proposed job-scheduling algorithms. After adding these job migration (rescheduling)

algorithms, the job-scheduling algorithms proposed in this thesis will become dynamic

scheduling.

Compared with static scheduling, dynamic scheduling is more complex. However, as the

decisions can be adjusted according to real time information, dynamic scheduling will be

useful in a dynamic environment, such as desktop Grid and volunteer computing

environments.

• Optimal versus Suboptimal: Static scheduling can be divided into optimal and suboptimal

scheduling. Optimal scheduling means all related information about the job and the resource

is known by the job-scheduler and optimal allocation decisions can be calculated within a

feasible period of time. If these problems are not computational feasible and / or some

related information is unknown, suboptimal allocation will be a more practical approach.

• Approximate versus Heuristic: In approximate scheduling, instead of searching the entire

solution space, the algorithm will terminate when it finds a “good” solution. Next, the

solution will be evaluated by an objective function and the job scheduler will decide

whether to pursue this solution for later jobs, based on the results of the evaluation.

Heuristic scheduling uses the most realistic assumptions about the jobs and resources to

make a “reasonable” solution. Though heuristic algorithms use assumptions about jobs and

resources, they are not restricted by the assumptions nor evaluated by an objective function.

Therefore, they can make more flexible and adaptive decisions within an acceptable time

given a certain computational complexity.

• Physically distributed versus Physically non-distributed: Dynamic scheduling can be further

divided into distributed and non-distributed (centralised). For distributed scheduling,

dynamic scheduling decisions will be made at different places. For example, if a resource

considers a job is not suitable to run on itself any longer, it can reschedule the job to another

resource. For non-distributed scheduling, all the dynamic scheduling decisions are made at a

centralised place, such as the centralised job scheduler at the user/resource management

46

level. Therefore, jobs will be rescheduled when the job scheduler thinks jobs needs

rescheduling. The job migration algorithms proposed in this thesis belong to non-distributed

scheduling as all dynamic scheduling will be done by the centralised Grid job scheduler.

• Cooperative versus Non-cooperative: Distributed scheduling can be further divided into

cooperative scheduling and non-cooperative scheduling. For cooperative scheduling,

multiple resources will work together to make dynamic and distributed job-scheduling

decisions toward a common system-wide goal. For example, multiple resources work

together to decide which resources should run each job in order to maximise the job

throughput. For non-cooperative scheduling, each resource works alone making

job-scheduling decisions about how it should be used.

4.1.4 Open Issues in Job-Scheduling Algorithms

Resource management is the core part of a Grid system. In the Grid, resource management

includes functions such as: resource discovery, resource state monitoring, job scheduling, and

job state monitoring.

Among the functionalities of the resource management, job-scheduling is an important piece

of work. In a Grid environment, especially in a volunteer resource based Grid job-scheduling

may be more complex than a conventional distributed computing system. A volunteer resource

based Grid may have an important issue that rarely appears in conventional distributed

computing systems. In a conventional distributed computing system, all the resources in the

system are typically assumed to be available to the system and jobs can run on them all the time

(except when the system does not work properly, e.g. resources crash or the network connection

is down). For a desktop Grid or a volunteer computing environment, resources may not always

be available to the Grid and the job(s) may not always be allowed to run on all resources all of

the time. This is due to the characteristics of these systems:

Firstly, resources in these systems may be assumed to be fully controlled by the resources

owners. In such a case, each resource’s owner can decide when and how to donate their

resources. In terms of when to donate the resource, each resource’s owner can specify some

policies through the user software. For example, a resource owner can define a policy that the

resource only works for a Grid during the night, from 12am to 8am. In terms of how to donate

the resource, resources owners can also specify some related policies as well.

In some Grid systems, default policies are predefined by the system. For example, in the

Condor Grid system, the resource can only execute guest jobs when the CPU load is not above

25% and the job suspension time is at most 10 minutes [Kondo05]. If the CPU load of a

resource is over the threshold (i.e. 25% in Condor), the guest jobs will be temporarily suspended

first. Later, if the resource CPU load reduces to less than the threshold before a predefined

timeout (10 minutes in Condor), the job will be able to resume from the point where it was

suspended. However if the CPU load is not lowered to less than the threshold before the

47

predefined timeout, the job will fail.

Secondly, resources in such systems may be assumed not to interfere with local activities.

Here, local activities are the activities initialised by the user of the local resource, such as

mouse/keyboard activity, initiating local processes and accessing the hard disk. So if any kind of

local activity occurs, the guest job(s) running on the resources will be suspended. If the

resources do not become idle after a predefined time-out, the job will be terminated and lost.

Figure 4.3 illustrates this problem.

Job 1 resumed

Max

C
PU

 A
va

ila
bi

lit
y

Time

Job 1 suspended

Job 1 started
Job 2 started

Job 1 completed

Job 2 terminates and failed
as time-out reached

Job 3 started

9:40 9:459:00 11:00 11:10 11:15

Figure 4-3: Influence of Availability in Volunteered Resource-Based Systems

(Adapted from [Kondo07])

In Figure 4.3, Y axis “CPU Availability” shows the number of CPU cycles delivered to the

Grid by a resource per second. Max means the maximum CPU speed. CPU availability may

vary along with the time as some CPU cycles are used by the local processes. When a local

activity occurs, the CPU availability will become 0 and the guest job(s) will be suspended. After

a short while, if the local activity finishes, then the CPU availability will be above 0 again and

the guest job(s) will be resumed. However, if the suspension period is too long and exceeds the

predefined time-out, the job will be terminated and fail.

Note these two characteristics depend on the definitions and assumptions of a specific Grid

system. For example, in a volunteer computing environment BOINC [ANDERSON05],

resource owners can decide when and how to donate their resource and jobs are allowed to run

while local activities are being carried out. For Grid system Condor [Thain05], resource owners

can decide when and how to donate their resource and jobs are NOT allowed to run if resource’s

CPU load is over 25%. For Grid system XtremWeb [Neri00], it has both two assumptions

mentioned above: resource owners can decide when and how to donate their resource and jobs

are allowed to run while local activities are being carried out. In this thesis, these two important

assumptions are used and the predefined suspension time-out shown in Figure 4.3 is assumed to

be 0. This means the guest job will be terminated and failed once the resource owners reclaim

their machines. These assumptions are based on the following considerations:

• Firstly, the influences of the Grid system’s activities to volunteered resources are controlled

at the lowest level. The activities of the Grid system are almost transparent and invisible to

48

the resource owners so that guest jobs from the system will not slow down their resources.

Therefore, these conditions protect the resource owners’ rights and this should attract more

people to join the Grid system.

• Secondly, these assumptions present a big challenge to the job-scheduling algorithm, in

particular how to ensure guest jobs are processed successfully as well as quickly.

Conventionally, job-scheduling algorithms are typically assumed to work with looser

assumption(s); very limited work has considered this issue though one example is

[Kondo05], which is discussed in the next paragraph. Therefore, more research work is

needed in this area.

[Kondo05][Kondo07] propose a number of resource prioritisation/exclusion methods for

resource selection in a Grid computing context, especially in the Grid context where volunteer

and unreliable resources are utilised. Some of these methods simply use static information, e.g.

resources’ clock rate to prioritise resources and some use resources’ past performance to predict

its future performance and prioritise the resources accordingly. Based on the prioritisation

results, the Grid job scheduler allocates jobs to the resource that has the highest priority. They

evaluate the job-scheduling algorithm with a couple of resource availability data traces collected

from real desktop Grids (these data traces are also utilised in this research, more detail about the

data traces are provided in Chapter 6 and 7). According to their results, though FCFS

job-scheduling algorithm is a simple and static algorithm, it works relatively well in many

different scenarios, especially in the scenarios where the number of jobs are more than the

number of resources. Therefore, in this thesis FCFS algorithm is used to compare the proposed

algorithms in many scenarios (more details are provided in Chapter 7).

An approach to solve this problem is that the job-scheduling algorithm allocates jobs without

reference to resource availability at all. This is the approach used mainly by existing

job-scheduling algorithms. Instead of reference to resource availability, some existing

job-scheduling algorithms use other approaches to mitigate the problem. For example, in one

approach the Grid job scheduler simply ignores the problem and reallocates the job to another

resource if the job fails (e.g. FCFS algorithm).

Another approach to the problem is for the Grid job scheduler to use job replication (e.g.

derrick [Kondo07]). Here, job replication means allocating the same job to multiple resources at

the same time. However, these solutions also present difficulties.

The first approach cannot provide any reliability so that jobs’ Makespan may be delayed and

job throughput may be reduced as a result of resource volatility. For example, if a job runs on a

resource and then fails before completion, the job needs to be allocated to another resource and

will start from the beginning. Furthermore, though the first resource cannot finish the job before

it becomes unavailable, it has already used some CPU cycles, as the job fails, so the used CPU

cycles can be considered wasted.

The second approach, though it provides extra reliability via job replication, some CPU

49

cycles will be wasted as a result of replication. For example, even if a job is allocated to two

resources at the same time, then only job will be completed. If two jobs are allocated to two

resources separately, then two jobs may be completed. Therefore, job replication is way of

providing extra reliability by sacrificing the job throughput.

In an ideal situation, one resource should have one job at a time and it should be able to

migrate the job to another resource just prior to the resource becoming unavailable. In this case,

the jobs’ Makespan will not be delayed due to the resource unavailability nor will the resources’

CPU cycles be wasted. To approach this ideal state, some important requirements are needed:

Firstly, the Grid system should support live and automatic job migration between

heterogeneous systems so that jobs can be migrated proactively or reactively when necessary.

However, existing Grid systems lack such a mechanism for providing support for live job

migration between heterogeneous systems. Only a few of existing systems support job

migration, e.g. Condor [Thain05], MOSIX [Barak05][Barak08] and vOS [Boyd02]. However,

very few of them support heterogeneous job migration between heterogeneous systems. For

example, Condor supports live job migration, but it does not provide any automatic mechanism

and it can only support job migration within Unix system. Therefore, to provide support for live

and automatic job migration between heterogeneous systems, a new Grid system architecture is

proposed in this research. In addition to providing a job migration mechanism, this system can

also provide other benefits. More detailed information is given in Chapter 3.

Secondly, the Grid system should have a job-scheduling algorithm, with the information

about resources’ future availability and/or reliability, which can allocate jobs effectively.

Therefore, job migration will delay the jobs’ execution. Therefore, effective job allocation

decisions should allocate jobs to resources that require minimum times of migrations (0 times in

the ideal case). To make effective job allocation decisions, this research work proposes some

novel job-scheduling algorithms. More discussions about this job-scheduling algorithm will be

provided in Section 4.2.

Thirdly, the Grid system should be able to carry out job migration after jobs have been

allocated to resources. There are two types of job migration algorithms. If resources notify the

job scheduler when they are going to be unavailable, the job scheduler can trigger these job

migrations; it will provide reactive job migrations, which is straightforward as the job scheduler

can trigger job migrations according to resources notifications. However, if resources do not

notify the job scheduler, proactive job migrations are required and the job scheduler needs to

anticipate all resources’ future availability so that it can trigger job migrations when resources

are about to become unavailable. To anticipate resources’ future availability, two types of

measurements can be carried. The first measurement is uses the user’s defined policies and the

second one uses prediction techniques. To make predictions, this research work adopted and

examined a prediction technique. More details about these two types of measurements are

discussed in Section 4.3.

50

4.2 Proposed Job-Scheduling Algorithms
As mentioned in Section 4.1, one efficient approach to solve the problems caused by resource

volatility in the volunteered resources based Grid is to enable the Grid job scheduler to allocate

jobs effectively with the information about resources’ future availability and/or reliability.

Therefore, this research proposes a couple of novel job-scheduling algorithms based on

considerations about resources’ availability and/or reliability. In this section, all the algorithms

proposed in this research will be introduced.

Generally, in addition to the two important assumptions mentioned in Section 4.1 (resource

owners can decide when and how to donate their resource and jobs are allowed to run while

local activities are being carried out), all job-scheduling and job migration algorithms proposed

in this research work have the following assumptions: Firstly, there is a centralised Grid job

scheduler in the Grid and users submit their self-contained executable jobs to the Grid job

scheduler. When the job arrives at the Grid job scheduler, the Grid job scheduler puts the job

into a job queue. Later, the Grid job scheduler decides where to allocate these jobs. Jobs can

fully exploit resources’ CPU cycles donated to the grid. After execution, resources return the

results to the original users that submitted those jobs. The Grid job scheduler is presumed to

know the execution time for each job before making allocation decisions.

All the job-scheduling algorithms proposed in this thesis utilise a resource availability

predictor and this resource availability predictor is based on a resource availability technique

proposed in [Rood07][Rood08]. In fact, some prediction techniques have been proposed as well,

such as Saturating and History Counter predictor [Mickens05][Mickens06][Mickens07], Ren

predictor [Ren06a][Ren06b][Ren07a][Ren07b] and Multi-State and Single State Sliding

Window predictor [Dinda99]. The reasons why the prediction technique was adopted in this

research was: firstly, their model describes resource states clearly for a Grid, especially for a

volunteer Grid. Secondly, according to their simulation results, their prediction technique was

more accurate than some other existing prediction techniques, including those prediction

techniques proposed in [Mickens05][Dinda99][Ren06a]. In order to better understand the

proposed algorithms, some background knowledge about the adopted prediction technique is

given.

4.2.1 Adopted Prediction Technique

The prediction technique uses a multi-state model to describe a resource’s state. Figure 4.4 shows

this model:

51

Available
To

Grid

User Present

CPU
Threshold
Exceed

Job Eviction or
Graceful

Shutdown
Unavailable

Available
To

Grid

User Present

CPU
Threshold
Exceed

Job Eviction or
Graceful

Shutdown
Unavailable

Figure 4-4: Availability States and Transitions (Adapted from [Rood08])

In this model, there are five states to describe the state of a volunteered resource in the Grid:

1. Available to Grid: Available to Grid means the resource is accessible and exploitable by the

Grid at the moment. When the resource is in this state, the guest job(s) allocated by the Grid

is allowed to utilise the idle cycles of the resource’s CPU.

2. User Present: User Present means the resource is being used by the owner at the moment so

that it is accessible by the Grid but not available to the Grid. When the resource is in this

state, the guest job(s) will have to be suspended.

3. CPU Threshold Exceeded: CPU Threshold Exceeded means the CPU load of the resource is

over a predefined threshold so that it is available to the Grid but not exploitable by the Grid.

When the resource is in this state, the guest job(s) on the resource will have to be

suspended.

4. Job Eviction or Graceful Shutdown: Job Eviction or Graceful Shutdown means the resource

has notified the Grid that it is going to leave the Grid or it is not going to allow guest job(s)

to run any longer so that the resource is available (and become unavailable soon) to the Grid

but not exploitable by the Grid. When the resource is in this state, the guest job(s) will have

to be migrated, otherwise the job(s) will be lost if the resource enters Unavailable state later.

5. Unavailable: Unavailable means the resource is not in the Grid at the moment so that it is

neither available nor exploitable by the Grid. When the resource is in this state, the guest

job(s) will not be able to allocate to the resource. If any guest job(s) is still on the resource

when the resource is in this state, the guest job(s) will be lost.

With this resource availability model, they then consider a number of multi-state prediction

algorithms. In brief, a multi-state algorithm works as follows: it takes a length of time as an

input (this is called Checking Period) and uses a resource’s availability history to predict the

probability of that resource remain in the state of Available to Grid throughout the interval (this

interval is called Prediction Period). This probability is called Resource Availability.

To calculate this probability, they employ several techniques and the one used in this research

is Transitional N-Day with Equal transition weights (TDE). “Transitional” means the prediction

technique calculates the output probabilities by counting both the number of transitions from

Available to Grid to other states and how many times the job could be processed between two

52

transitions. “N-Day” means checking the most recent past N days’ transitions. Number of

Checking Days is a parameter to define the number of N here. “Equal transition weights” means

the prediction method considers each transition within the different checking days equally.

According to their results, TDE is the most successful technique among all the prediction

techniques they tested when the prediction length is no longer than 42 hours, especially when it

is shorter than 19 hours. According to research in [Lazarevic06] [Li04][Iosup06][Medernach05],

the Job Execution Time in a grid context is typically less than 105 seconds (around 27.8 hours),

so TDE was adopted in this thesis.

A day to which the Checking Period belongs is called a Checking Day and a day to which the

Prediction Period belongs is called a Prediction Day. If the value of Number of Checking Days

is larger than 1 (which means the prediction method will check more than one day to make a

prediction), each day being checked is a Checking Day.

Their TDE prediction method checks the resource’s most recent past N days’ availability state,

transition history, to get a prediction result. Briefly, the TDE prediction method works as

follows: assume now the current time is Tcurrent and predictor is examining a resource for a job

that is expected to run for L hours. Here, the length that a job is expected to run is called Job

Execution Time. The predictor will check the resource’ state transitions history (only state

transitions exit from the state of Available to Grid) in the Checking Period – time between

Tcurrent and Tcurrent + M*L in the past N days.

Here, M is a Multiply Factor; a positive number equal to or bigger than 1, like 1, 1.3, 6, etc.

After checking, the predictor calculates the Resource Availability Probability result in the

Prediction Period – between Tcurrent and Tcurrent + M*L in the current day. The length of

Prediction Period is the same as the length of Checking Period.

In this thesis, the definition of “past N days” is slightly different to the definition of used by

the proposer of the TDE prediction method [Rood08]. In this thesis, “past N days” is considered

as the most recent past N days by default, but it could be any N days in the past. This is based

on the following assumptions:

Firstly, no evidence has been found to show that the prediction will be more accurate if the

most recent, past N days data is used (this will be discussed more in Chapter 6). If resource

owners’ behaviours have a regular pattern everyday, then using the nearest “past N days” data

will be helpful for prediction. However, if resources owners’ behaviours have some other

patterns or no patterns, then using the nearest “past N days” data may not be helpful for

prediction. For example, assume some resources are owned by company staff and the resources

are usually used intermittently during 9am to 5pm in the working days but left free during the

weekend. So if now is Monday and the prediction method uses past N days’ data (including the

weekend’s data) to make a prediction, the accuracy of the prediction will be doubtful.

Secondly, though job’s Job Execution Time is typically less than 24 hours, it could be longer

than that time in principle. If a job’s Job Execution Time is longer than 24 hours, the length of

53

Checking Period will overlap with the Prediction Period, which is problematic. For example,

assume the time is 9am and the prediction method uses past 1 day’s data. If the job’s Job

Execution Time is 26 hours, then the length of Checking Period will be 26 hours - from 9am

yesterday to 11am today, which is beyond the current time. Therefore, this will influence the

accuracy of the prediction.

Let Pdayi(r) denote the Resource Availability Probability of resource r in day i; Pdayi(r) is

calculated by the following equation:

Pdayi(r) = Tdayi / Tall * 100% (Equation 4.1)

where TtoA denotes the number of times that resource r transits from the state of Available to

Grid to Available to Grid in the Prediction Period and Tall denotes the number of times that

resource r transits from the state of Available to Grid to all states in the Prediction Period. P(r)

denotes the final output of Resource Availability Probability; it can be calculated by the

following equation:

 P(r) =

N

i=1

dayiP (r)

N

∑
*100% (Equation 4.2)

where N is the total number of Checking Days.

4.2.2 Resource Availability

As discussed in Section 4.1.4, “resource availability” is an important term in a thesis since

resource volatility is a distinct characteristic in a volunteer resource based Grid environment and

this characteristic brings a big challenge to the job-scheduling algorithms. Therefore, “resources

availability” should be one of the main concerns for the proposed job-scheduling and job

migration algorithms. Before discussing the proposed job-scheduling and job migration

algorithms, some definitions and clarifications related to “resource availability” are introduced.

 “Resource availability” can be defined at different levels. In [Kondo05], the author defines

three levels of availability in the Grid computing environment: Host Availability, Job Execution

Availability and CPU Availability.

Host Availability: Host Availability indicates whether the resource is reachable by the Grid. If

a resource is in a Grid, then Host Availability is true. Otherwise, Host Availability is false. In the

multi-state model described in Section 4.2.1, if a resource is in the state of Available to Grid or

User Present or CPU Threshold Exceeded or Job Eviction or Graceful Shutdown, the resource’s

Host Availability will be true. If a resource is in the state of Unavailable, the resource’s Host

Availability is false.

Job Execution Availability: Job Execution Availability indicates whether guest jobs from the

Grid are currently allowed to execute on the resource. This is based on the resources’

recruitment policy. Therefore, if the resource’s current condition is in line with the recruitment

policy, Job Execution Availability will true. Otherwise, the Job Execution Availability will be

54

false. If Resource Unavailability is false, Resource Execution Unavailability will be false as

well because Job Execution Availability cannot be true if the resource is unavailable. On the

other hand, if Job Execution Availability is true, Host Availability will be true. In the multi-state

model described in Section 4.2.1, if a resource is in the state of Available to Grid, the resource’s

Job Execution Availability will be true. Otherwise, the resource’s Job Execution Availability will

be false if it is in any other state.

CPU Availability: CPU Availability indicates current CPU speed (number of CPU cycles

delivered to the Grid per second). It is directly influenced by the resource’s recruitment policy

and activities of local processes on the resource. For example, if a resource recruitment policy

defines that the guest job is not allowed to run when the owner reclaims the resource, then CPU

cycles delivered to the Grid will becomes 0 when the owner reclaims the resource. The

difference between CPU availability and Job Execution Availability is that Job Execution

Availability only indicates whether a resource is currently allowing guest jobs to run on it or not,

whilst CPU Availability not only indicates this but also shows the number of CPU cycles the

resource contributes to the Grid in each second. Therefore, if Job Execution Availability is false,

CPU Availability will be 0. On the other hand, Job Execution Availability can be derived from

the value of CPU Availability. If CPU Availability is above 0, Job Execution Availability will be

true. If CPU Availability is 0, Job Execution Availability will be false. As for CPU Availability,

in the multi-state model described in Section 4.2.1, if a resource is in the state of Available to

Grid, the resource’s CPU Availability will be true. Otherwise, the resource’s CPU Availability

will be true if it is in any other state.

In this thesis, unless stated, resources are volunteered members of a Grid. Furthermore, if a

resource is available it means the resource’s Job Execution Availability is true and the resource

is prepared to allow guest jobs to run on it. Conversely, when a resource is unavailable it means

the resource’s Job Execution Availability is false then the resource does not currently allow any

guest jobs to run on it. A resource may already have had old guest job(s) when the job scheduler

tries to allocate new guest job(s) to it. If a resource is available and it does not have any guest

job(s), it will be called idle whereas a busy resource is already running a guest job. A resource

may be considered as suitable when the Grid Job Scheduler tries to make a job allocation. A

qualified resource is considered to be a suitable resource for the first job in the job queue so a

job can be directly allocated to the resource. An unqualified resource is not considered to be a

suitable resource for the first job in the job queue and so a job will not be allocated to the

resource directly.

4.2.3 FCFS plus Predictor (FCFSPP) Algorithm

The first algorithm is called the FCFS Plus Predictor (FCFSPP) algorithm. This algorithm is

based on a simple and widely used algorithm FCFS and to it is added an advanced part – a

resource availability predictor. In FCFS algorithm, jobs will be allocated to available resources

55

in turn. In terms of prediction, this algorithm uses a resource availability predictor based on the

prediction technique described in Section 4.2.1.

According to [Dogan02], for a job-scheduling algorithm, there is a trade-off between speed

and reliability. This means that it is impossible to achieve both objectives at the same time in

most cases. Extensive research has been carried out to achieve the objective of speed, this

proposed FCFSPP scheduling algorithm focuses on the second objective whilst not ignoring the

first objective – trying to ensure the reliability as much as possible with as least as possible cost

in terms of speed.

The basic idea of this job-scheduling algorithm is to avoid allocating jobs to the resources

that are considered to be unqualified. The resource availability predictor is used to judge

whether a resource is qualified or not. In general, the procedure of the job-scheduling algorithm

can be divided into two separate parts. The first part is Job Submission. Figure 4.5 shows the

Job Submission procedure.

Put the job onto the job queue tail

Sort the job queue

Start

Receive a new job?

Yes

No

Figure 4-5: FCFSPP Algorithm Job Submission Procedure

Firstly, the Grid job scheduler waits for jobs all the time. The jobs are self-contained jobs sent

by the Grid users. Secondly, if the job scheduler receives a job, it will put the job onto the end of

the job queue. Thirdly, the job scheduler uses a predefined algorithm (e.g. FCFS or EDF) to sort

the job queue.

After Job Submission, the next part of job-scheduling algorithm is Job Allocation. Figure 4.6

shows the Job Allocation procedure.

56

Pick the next idle resource and use
TDE prediction method to calculate the

Resource Availability Probability

Is the resource qualified?

Allocate the job to the resource

Pick the first job from the job queue

Start

Is any other
resource

idle?

No

No

Yes

Yes

Yes

No

Yes

No

Is there any job in the
job queue?

Is any resource idle?

Figure 4-6: FCFSPP Algorithm Job Allocation Procedure

First, at regular intervals, if the Grid job queue is not empty and there are idle resource(s) in

the Grid, the Grid job scheduler picks the first job in the job queue.

Second, the Grid job scheduler picks the next idle resource from the resource list as a

candidate resource and uses the TDE prediction method to calculate the Resource Availability

Probability for the waiting job.

Third, the Grid job scheduler checks to see if the picked candidate resource is qualified or not.

Here, qualified means the Resource Availability Probability is over a predefined threshold –

Resource Availability Probability Threshold after checking the resources nearest past few days’

Job Execution Availability history. For example, if the Resource Availability Probability is 80%

and the predefined threshold is 70%, then the candidate’s resource is considered to be qualified

as the Resource Availability Probability is higher than the predefined threshold. In addition to

the parameter Resource Availability Probability Threshold, there is another important parameter

Number of Checking Days here. It means the number of days checked by the predictor. So if the

Number of Checking Days is 3 in the above example, the value of Resource Availability

Probability 80% is calculated after checking the resource’s past 3 days’ Job Execution

Availability history.

Fourth, based on the checking result, the job scheduler makes a decision about whether to

allocate the job to the candidate resource. If yes, then the job will be allocated to the resource

and the Grid job scheduler goes back to the first step of Job Allocation. If no, the Grid job

scheduler will check if there is any other idle resource(s) in the Grid at the moment. If yes, the

Grid job scheduler will go back to the third step. If no, the Grid job scheduler will go back to

the first step.

57

4.2.4 Fuzzy Logic plus Predictor (FLP) Algorithm

The second algorithm proposed in this research is based on Fuzzy Logic (FL). FL is a type of

Artificial Intelligence (AI) technique used in certain areas, including air conditioners,

automobile, digital image processing amongst others.

Fuzzy Logic Introduction

The concept of FL was proposed in [Zadeh73]. It was derived from fuzzy set theory

[Zadeh65]. “Basically, Fuzzy Logic is a multi-valued logic that allows intermediate values to be

defined between conventional evaluations like true/false, yes/no, high/low, etc.”[Hellmann01].

FL is not only widely used in building real products (e.g. washing machines, fridges and so on),

but it has also one of the most active and fruitful area of research in the past few decades.

Furthermore, “the use of fuzzy systems makes a viable addition to the field of Artificial

Intelligence” [Brule05]

• Fuzzy Sets

FL allows people to encode linguistic expressions to numeric form and therefore build a more

flexible rule based computer system. As with traditional logic, a computer is a binary based

system so Boolean logic of computer programming only has the two values: true (1) and false

(0). Although there are many advantages of two-value based logic, it is difficult to describe

some terms in the real world. In reality, there are many imprecise concepts for instance

statements like “Resource A is fast”, “Resource B is reliable” and so on. Figure 4.7 illustrates

how the term “fast” could be represented in a computer system.

0

1

0.5 1 1.5 2 2.5 3 3.5

CPU Speed (GHz)

G
ra

de
 o

f M
em

be
rs

hi
p

Figure 4-7: Traditional Boolean Logic in Computer System

A computer with CPU speed 2GHz is considered fast but a computer with CPU speed

1.9GHz is not. This does not really reflect the way people think or make comparative

judgements. To let the computer reflect the way people think, FL introduces multiple values

between the truth (1) and false (0). As a result, though “grade of membership” can only be 0 or

1 in the computer world, “grade of membership” can have values between 0 and 1 in the fuzzy

world. Therefore, the term “fast” could be represented in the fuzzy world as shown in Figure

4.8.

58

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3 3.5

CPU Speed (GHz)

G
ra

de
 o

f M
em

be
rs

hi
p

Figure 4-8: Fuzzy Logic in Fuzzy World

So a computer that has 2GHz CPU and the computer that has 1.9GHz will have the values of

“grade of membership” of around 0.5 in FL, which is much closer to the way people think rather

than Boolean logic.

“The notion central to fuzzy systems is that truth values (in fuzzy logic) or membership

values (in fuzzy sets) are indicated by a value on the range [0.0, 1.0], with 0.0 representing

absolute falseness and 1.0 representing absolute Truth.”[Brule05]. To determine the membership

value for an element x, membership function f(x) is used. “A fuzzy set (class) A in X is

characterized by a membership (characteristic) function fA(x) which associates with each point

in X a real number in the interval [0,1], with the value of fA(x) at x representing the “grade of

membership” of x in A” [Zadeh65]. Take Figure 4.8 for example, if “Resource’s CPU speed is

2GHz”, then the result of membership function f(2GHz) is 0.5 in this example, which means the

resource’s grade of membership within the set of fast computers is 0.5.

• Fuzzy Set Operations

Besides the concept of fuzzy sets, some operations are also used to express the fuzzy “thing”.

Three Boolean logic operators are used FL: OR, AND and NOT. Assuming A and B are two

fuzzy sets, then the operations results are defined as follow:

OR: A U B = MAX (A, B)

AND: A ∩ B = MIN (A, B)

NOT: ¬A = 1 - A

For example, assume that fuzzy sets A and B have the shapes shown in Figure 4.9:

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

X

G
ra

de
 o

f M
em

be
rs

hi
p

A

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

X

G
ra

de
 o

f M
em

be
rs

hi
p

B

Figure 4-9: Fuzzy Set A and B

Then the results of A U B, A ∩ B, and ¬A are shown in Figure 4.10:

59

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

X
G

ra
de

 o
f M

em
be

rs
hi

p

A
B
A U B

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

X

G
ra

de
 o

f M
em

be
rs

hi
p

A
B
A ∩ B

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

X
G

ra
de

 o
f M

em
be

rs
hi

p

A

﹁A

Figure 4-10: Result of A U B, A ∩ B and ¬A

• Fuzzy Rules

In addition to the concept of fuzzy sets and fuzzy set operations, rules for inference are

defined. The set of rules is usually expressed in the form:

“IF variable IS set THEN action” [Synaptic06]

For example, a simple set of rules for controlling a heater could be defined as follows:
IF temperature IS cold THEN start heating.

IF temperature IS hot THEN stop heating.

With these defined rules, a fuzzy control system can influence the output according to the

input variable(s). Similar to membership functions, this kind of rules could be modified

according to the design requirement. For example, the rules for the heater be refined as follows:
IF temperature IS cold THEN speed up heating.

IF temperature IS normal THEN keep the speed.

IF temperature IS hot THEN stop heating.

Overall, FL provides a different way to solve a control problem and it focuses on what the

system should do with a set of rules rather than using a complex mathematic model. As our

research will focus on a large-scale network, the use of FL will provide benefits such as getting

the system to work correctly without worrying too much about the complex mathematic model

of the network.

• Fuzzy Inference System

Next, if fuzzy sets, fuzzy set operations and fuzzy rules are put together, a FL based system –

A Fuzzy inference system can be built up. A fuzzy inference system consists of four distinct

steps:

1. Fuzzification: In this step, a “crisp” numerical value will be translated to a fuzzy variable

with membership function.

2. Rule Evaluation: In this step, some fuzzy rules are defined and the fuzzy sets’ truth values

will be applied to each rule to get outputs.

3. Aggregation: In this step, all outputs are aggregated.

60

4. Defuzzyfication: In this step, the aggregated output will be translated to a “crisp” numerical

value as the final output.

To explain how a fuzzy inference system operates, consider an example where FL is used to

control the Resource Availability Probability Threshold. Here, Dispose Jobs Dot is used to

describe the difference between the number of disposed jobs in the last time interval Nt-1 and the

number of disposed jobs in the current interval Nt: Dispose Jobs Dot = Nt - Nt-1. Therefore, if the

numbers of disposed jobs are 12 and 7 in the last and the current time interval, respectively,

Dispose Jobs Dot will be 7 – 12 = -5. As a result, the Resource Availability Probability

Threshold will be lowered as resources tend to dispose of fewer jobs (Dispose Jobs Dot is

smaller than 0).

In this fuzzy inference system, the input is Dispose Jobs Dot and the output is the adjustment

value to the Resource Availability Probability Threshold. To describe Dispose Jobs Dot, three

fuzzy sets are defined – Negative, Zero and Positive.

The first step is fuzzification. In this step, the “crisp” numerical values of Disposed Jobs Dot

will be translated to fuzzy variables with the membership function shown in Figure 4.11.

λ0-λ

PositiveZeroNegative
1

0

Figure 4-11: FLP Algorithm Membership Function

In this membership function, two important thresholds are λ and – λ. λ is a numerical value,

such as 1, 5, etc. If the value of Disposed Jobs Dot is smaller than 0, Disposed Jobs Dot’s truth

value of Negative is above 0 and becomes 1 when the value of Disposed Jobs Dot is smaller

than – λ. If the value of Disposed Jobs Dot is between – λ and λ, Disposed Jobs Dot’s truth

value of Zero is above 0 and becomes 1 when the value of Disposed Jobs Dot is 0. Finally, if the

value of Disposed Jobs Dot is larger than 0, Disposed Jobs Dot’s truth value of Positive is above

0 and becomes 1 when the value of Disposed Jobs Dot is larger than λ.

In the second step of rule evaluation, some fuzzy rules are defined:

1. If Disposed Jobs Dot = Negative, then Resource Availability Probability Threshold changes

= Negative%.

2. If Disposed Jobs Dot = Zero, then Resource Availability Probability Threshold changes =

Negative%.

3. If Disposed Jobs Dot = Positive, then Resource Availability Probability Threshold changes

= Positive%.

Here, the rules can be translated into the following natural language. Take rule 1 for example;

61

if the Disposed Jobs Dot’s grade of membership within the set of Negative is above 0, then the

value of Resource Availability Probability Threshold will be lowered by Disposed Jobs Dot’s

truth value of Negative. For example, if Disposed Jobs Dot’s truth value of Negative is 0.5, then

the value of Resource Availability Probability Threshold will be lowered by 0.5%. So if the

value of Resource Availability Probability Threshold is 90%, it should be changed to 90% –

0.5% = 89.5% after applying this rule. The other two rules can also be translated into natural

language in the same way.

The third step is rule aggregation. In this step, the fuzzy variable will apply to each rule and

the result of each rule is aggregated.

The fourth step is defuzzification. In this step, the aggregated fuzzy results will be translated

to a “crisp” numerical value. Let Ofinal denotes the final output; Ofinal can be calculated by the

following centroid computation equation:

 N Z P1 2 3
final

N Z P

(+ +)O O OT T T = O
(+ +)T T T

∗ ∗ ∗ (Equation 4.3)

Where TN, TZ and TP denote the Disposed Jobs Dot’s truth value of Negative, Zero and Positive

respectively and O1, O2 and O3 denote the output of rule 1, 2 and 3, respectively.

Later, let Pnew(r) denotes the new value of Resource Availability Probability Threshold; Pnew(r)

will be adjusted according to the value of final output by the following equation:

Pnew(r) = Pold(r) + Ofinal (Equation 4.4)

Where Pold(r) is the old value of Resource Availability Probability Threshold.

i. FLP Algorithm

In general, the FLP algorithm is very similar to the FCFSPP algorithm proposed in Section

4.2.2. The distinct difference between them is that FLP uses FL to adjust the Resource

Availability Probability Threshold of candidate resource(s) according to the trend of overall

resources reliability. Therefore, the FLP algorithm can be considered to be a modification of the

FCFSPP algorithm.

The basic idea is to replace the fixed setting of Resource Availability Probability Threshold

with a dynamic and artificial intelligently controlled setting in order to achieve a better balance

between speed and reliability. Here, “a better balance” means achieving a better result than the

FCFSPP algorithm in terms of speed (but the result should still be lower than FCFS algorithm)

and a better result than the FCFS algorithm in terms of reliability (but the result should be lower

than the FCFSPP algorithm). In FCFSPP, if the value of Resource Availability Probability

Threshold is high (e.g. 100%), many resources (including some relatively reliable resources)

may be considered as unqualified so that FCFSPP will not allocate any job to them and their idle

CPU cycles will be wasted. On the other hand, if the value of Resource Availability Probability

Threshold is low (e.g. 5%), many resources (including some volatile resources) may be

considered as qualified so the FCFSPP algorithm will allocate jobs to some volatile resources

and many jobs will be failed due to resources’ volatility.

62

The same as the FCFSPP algorithm, the procedure of the FLP algorithm has the separate parts

of Job Submission and Job Allocation. The procedures for these two parts in FLP are exactly the

same as it is in the FCFSPP algorithm. Figure 4.12 shows the third part of FLP Resource

Availability Probability Threshold Adjustment:

Start

Reach the end of the
current time interval?

No

Yes

Adjust Resource Availability Probability
Threshold

Figure 4-12: Resource Availability Probability Threshold Adjustment Procedure

Firstly, the Grid job scheduler checks the time interval. The time interval is called Resource

Availability Probability Threshold Adjustment Interval, which is a predefined value, such as 1

minute, 10 minutes and so on.

Secondly, if the time interval has been reached, the Grid job scheduler will trigger the

adjustment of Resource Availability Probability Threshold. If not, the Grid job scheduler will

keep on repeating the first step. Therefore if the time interval is set as x minutes (such as 10

minutes), the procedure of Resource Availability Probability Threshold Adjustment is triggered

every x minutes (such as 10 minutes).

In the proposed the FLP algorithm, the Resource Availability Probability Threshold

Adjustment uses FL to control the adjustment. The basic idea of this adjustment is to compare

the number of disposed jobs in the current time interval to the last time interval, and then

decreases/increase the Resource Availability Probability Threshold if resources tend to drop

fewer/more jobs. Here, Dispose Jobs Dot mentioned earlier in this section is used to describe

this trend. As a result, the Resource Availability Probability Threshold will be lowered as

resources tend to dispose of fewer jobs (Dispose Jobs Dot is smaller than 0).

4.2.5 Particle Swarm Optimisation plus Predictor (PSOPP) Algorithm

The third job-scheduling algorithm proposed in this research is called Particle Swarm

Optimisation plus Predictor (PSOPP) algorithm. Different from FCFSPP and FLP

job-scheduling algorithms, the PSOPP algorithm is not based on the FCFS algorithm. Instead, it

is mainly based on an AI algorithm - Particle Swarm Optimisation (PSO) [Hu06]. It is a

relatively new AI algorithm so very little research work has been done in terms of applying the

PSO algorithm to job-scheduling algorithm. Therefore, to check if this new AI algorithm can

bring any benefits to job-scheduling algorithm in terms of speed and reliability, this new PSO

based job-scheduling algorithm is proposed. To better understand this proposed algorithm, some

general background knowledge about PSO will be given.

63

i. PSO Introduction

PSO is an artificial intelligence algorithm proposed by James Kennedy and Russell Eberhart

[Kenndy95] in 1995. It is based on swarm intelligence and used to find a solution to an

optimisation problem in a specific search space.

PSO was motivated by the social behaviour of birds flocking and fish schools. One scenario

can be used to explain this kind of behaviour in a Grid computing context. In this example, the

aim of PSO is to find the resource the fastest CPU in the Grid. Initially, PSO initialises a group

of particles with random values in the search space. This can be understood as each particle

selects a resource randomly in the Grid. Later, PSO evaluates the resource that was selected by

each particle with a predefined fitness function and records the fitness value of each resource.

Here, the fitness value of a resource is determined by the CPU speed of that resource. Next,

PSO updates each particle with the two “best” values. The first “best” value is the fastest

resource a particular resource has found so far. This value is called pbest. The second “best”

value is the fastest resource any particle in the group has found so far. After getting these two

values, each particle updates its value with the following two equations:

v[i] = v[i] + c1r1(pbest[i] – present[i]) + c2r2(gbest – present[i]) (Equation 4.5)

present[i] = present[i] + v[i] (Equation 4.6)

v[i] is the velocity of particle i. The maximum velocity can be restricted by a parameter Vmax.

pbest[i] is best value that particle i has got so far and gbest is the best value that any particle in

the group has got so far. present[i] is the present value of particle i. c1 and c2 are learning factors

and usually c1= c2=2. r1 and r2 are random numbers and their values are between 0 and 1. After

an update, the new resources selected by each particle will be evaluated by the fitness function

again. This process will continue until achieving the predefined objective(s) or reaching the

maximum number of iterations. Pseudo code of the whole procedure of the PSO algorithm is

shown as follows:
For each particle
 Begin
 Initialises particle’ value present[i]
 End
Repeat
 For each particle
 Begin
 Calculate particle’s fitness value f(present[i])
 If fitness value f(present[i]) > local best value f(pbest[i])
 Begin
 pbest[i] = present[i]
 End
 If fitness value f(present[i]) > global best value f(gbest)
 Begin
 gbest = present[i]
 End
 Calculate particle’s velocity according to [1]
 Update particle’s value according to [2]
 End;
Until predefined goal(s) achieved or the maximum number of iterations is
reached

64

ii. PSOPP Algorithm Procedure

In the PSOPP algorithm, the Grid job scheduler tries to allocate a job. However, unlike the

FCFSPP and FLP job-scheduling algorithms, all (not just one resource at a time) available (not

necessarily to idle) resources are candidates when the Grid job scheduler tries to make a job

allocation decision.

In the PSOPP algorithm, there are P particles and each particle is represented by a unique

number p, where p∈[1, P]. The total number of a resources at a given instant is represented by

R and the number of a particular resource is represented by r, where r ∈ [1, R]. Particle p’s

current position at iteration t is represented by Pp(t). If Pp(t) = r, this means the job is supposed

to allocate resource r in the particle p’s solution at iteration t. Here, the position represents the

solution. For example, assuming there are 10 resources currently available and 5 particles are

used to find out the optimal solution. At iteration 5, each particle’s position can be represented

as follows:

 Position
Particle 1 10
Particle 2 1
Particle 3 7
Particle 4 2
Particle 5 3

Take particle 5 for example, P3(5) = 7 means particle 3’s position at the 5th iteration is 7 - the

job is allocating the job to resource 7.

Bp(t) represents the best position that particle p has visited after t iterations. For example,

assuming the personal best position B2(3) = 9, then it means that particle 2’s best solution is to

allocate the job to resource 9.

G(t) represents the best position that all particles have visited after t iterations. For example,

if G(3) = 6, it means that the best solution all particles have visited after 3 iterations is to

allocate the first job to resource 6.

At each iteration, the value of Bp(t) and G(t) will be updated with a fitness function. The

fitness value Fp(t) of particle p at iteration t can be represented by the following equation:

Fp(t) = x*P(r) + y* current

job

CPU
N

 (Equation 4.7)

Where P(r) means the resource r’s Resource Availability Probability in the Prediction Period,

CPUcurrent means the current CPU Availability (unit is GHz) of resource r and Njob means the

total number of jobs on resource r after adding the new job, x and y are two multiplication

factors and their default values are 1. Here, the value of Resource Availability Probability is also

calculated by the TDE prediction method introduced in Section 4.2.1. Assuming the value of P(r)

is 70%, CPUcurrent is 1.5(GHz) and Njob is 3, x and y are 1, the fitness value Fp(t) = 0.7 + 1.5 /

(2+1) = 1.2. After calculating the fitness of each particle, the value of Pp(t) will be updated by

the highest value particle p has visited so far and G(t) will be updated by the highest value all

65

particles have visited so far.

After each iteration the position of each particle will be updated by the parameter of velocity.

Each particle will have a separate velocity value. The velocity value is within the range of

[-Vmax, Vmax]. After updating by the velocity, the position of a particle should always be between

1 and R. This is to ensure each job will be allocated to a valid resource, as there are total R

resources in the Grid. If the position in a certain dimension exceeds the range, its value will be

rounded to 1 or R. For each particle, the position will be updated by the following equations:

Vp(t+1) = Vp(t) + c1r1(Bp(t) – Pp(t)) + c2r2(G(t) – Pp(t)) (Equation 4.8)

Pp(t+1) = Pp(t) + Vp(t+1) (Equation 4.9)

Vp(t) is the velocity of particle p at iteration t and Vp(t+1) is the velocity of particle p at

iteration t+1. c1 and c2 are learning factors and c1 = c2 = 2. r1 and r2 are random numbers

between 0 and 1. Pp(t) is the position of particle p at t iterations Pp(t+1) is the position of particle

p at t+1 iterations. The value of Pp(t) is always within the range [1, R]. If Pp(t) exceeds the range

after adding Vp(t+1), it will be rounded to 1 or R depending on which boundary it exceeds.

This is the procedure to use PSO to make allocation decisions for jobs:

1. Create and initialise a P-element array position[P] for recording all particles’ positions. Each

element in the array is initialised to a random number with a random number generator [6],

which means particles are initially randomly scattered.

2. Create and initialise a P-element array velocity[P] for recording all particles’ velocities.

Each element in the array is initialised to zero, which means particles are initially stationary.

3. Create and initialise a P-element array pbest[P] for recording such particles’ personal best

positions visited so far. Each element in the array is initialised to zero.

4. Create and initialise a variable gbest for recording the best position that all particles have

visited so far. The value of gbest is initialised to zero.

5. For each particle, if Fp(t+1) is larger than pbest[p], then the value of pbest[p] will be

updated to be the value of Fp(t+1).

6. For each particle, if Fp(t+1) is larger than gbest, then the value of gbest will be updated to

the value of Fp(t+1).

7. Update each particle’s velocity with Equation 4.8.

8. Update each particle’s position with Equation 4.9.

9. Repeat steps 6 to 9 until the predefined goal(s) are reached or the maximum number of

iterations.

The procedure can be represented by the flowchart shown in Figure 4.13:

66

No

Initialise P-element arrays position[P],
velocity[P], pbest[P] and a variable gbest

Start

Calculated fitness
value for all particles?

Is Fp(t) > pbest[p]?

Is Fp(t) > pbest[p]?

pbest[p] = Fp(t)

gbest = Fp(t)

Update particle’s velocity and position

Reaching the predefined
goal(s) or the maximum
number of iterations?

End

Yes

Yes

Yes

Yes

No

No

No

No

Initialise P-element arrays position[P],
velocity[P], pbest[P] and a variable gbest

Start

Calculated fitness
value for all particles?

Is Fp(t) > pbest[p]?

Is Fp(t) > pbest[p]?

pbest[p] = Fp(t)

gbest = Fp(t)

Update particle’s velocity and position

Reaching the predefined
goal(s) or the maximum
number of iterations?

End

Yes

Yes

Yes

Yes

No

No

No

Figure 4-13: PSOPP Algorithm Procedure

4.3 Job Migration
As discussed in Section 4.1.5, in volunteer resource based environments like desktop Grids

and volunteer computing environments, resources may come and go at any time. This means a

resource may not be able to finish a job before it becomes unavailable. If the job keeps on

running on the resource, then the job will fail when the resource becomes unavailable. This is

harmful for both the job and the resource. For the job, it cannot finish as expected. For the

resource, it is a waste of CPU cycles.

Therefore, it is necessary to take some actions to protect jobs from this kind of failure. In

general, checkpointing is a technique to introduce fault tolerance. Basically it consists of storing

a snapshot of the current application state and using it to restart the job in the case of failure

[Microsoft10]. However, it may not be enough if the job needs to be processed as soon as

possible. Imagine that a job runs on a resource and the job checkpoints before the resource

becomes unavailable. After that, the resource does not become available for a long time. Then

the job has to wait for a long time before it can resume. Therefore, job process time will take

longer. As mentioned in Section 4.1, one solution to the volatility problem in the volunteer Grid

is to enable the job scheduler to migrate jobs effectively after jobs have already been allocated

to resources. Job migration can be considered a type of job rescheduling, this is an approach to

assist job-scheduling by adjusting job-scheduling decisions dynamically. As discussed in

Section 4.1, job-scheduling algorithms generally have two objectives: speed and reliability. To

67

assist job scheduling, the job migration algorithm’s objective is to help achieve the speed or

reliability. In a volunteered Grid, reliability is the main goal for a job migration algorithm.

They are two main types of job-scheduling algorithms: reactive migration and proactive

migration. For each type of job migration algorithm, this research proposes some job migration

algorithms to help achieve reliability. In this section, all the algorithms proposed in this research

will be introduced.

4.3.1 Reactive Job Migration

Reactive migration is a type of job migration initiated by the volunteer resources. From the

point of view of the Grid job scheduler, it is a passive approach as resources trigger this type of

migration. When a resource is going to leave the Grid or it is no longer allowing any guest jobs

from the Grid to run on it, the resource can notify the Grid job scheduler. When the Grid job

scheduler receives this kind of notification, it will carry out the job migration.

The procedure of proposed reactive job migration algorithm can be described as follows:

1. When a resource is in any one of the following states, the resource should send out a job

migration notification to the job scheduler. These states are:

 The resource is leaving the Grid soon.

 The resource is no longer allowing any guest job to run on it.

2. When the Grid job scheduler receives this job migration notification, it will trigger the job

migration procedures (details about the whole procedure of job migration are described in

Section 3.4.9). In general, the job migration procedure can be summarised in two steps: the

first step is using a job-scheduling algorithm to find suitable resources for jobs, one by one.

Next, if a qualified resource is found for a job, the job migration will be carried out.

Generally, compared with proactive migration (for details about proactive migration, please

refer to Section 4.3.2), it has the following advantages:

• It is simpler and more straightforward. This is because in reactive migration the job

scheduler needs to wait for notification from the resources’ before triggering job migrations.

• It is more effective in terms of utilising resources’ idle CPU cycles. This is because the

resources’ idle CPU cycles will be fully utilised until the resources raises notifications and

so potential job failures brought by resource volatility will not occur.

At the same time, it has the following disadvantages when compared with proactive

migration:

• It lacks intelligence. This is because it always waits for resources’ notification to trigger job

migrations rather than observing the performance (such as changes of CPU load or

availability patterns) of resources and then makes intelligent job migrations decisions.

Therefore if resources leave the Grid without any notification or do not allow guest jobs to

run without any precautions, such as when resources crash or there is a network connection

failure or the user reclaims the resources for a long time, reactive migrations will not

68

improve reliability.

• It may not have enough time to carry out the job migration before resources become

unavailable. This is because the resource may leave shortly after sending out the

notifications. If the time gap between the resource sending notification and the resource

leaving the Grid, is shorter than the time required to migrate all guest jobs on the resource,

then some or all of the jobs will not be able to migrate successfully.

4.3.2 Proactive Job Migration

Proactive migration is a type of job migration initiated by the Grid job scheduler. From the

point of view of the job scheduler, it is an active approach as this type of migration is triggered

by itself. When the job scheduler observes a resource is going to leave the Grid or it is no longer

allowing any guest jobs from the Grid to run on it, the resource can trigger the job migration

proactively. In general, compared with reactive migration, it has the following advantages:

• It is more intelligent. This is because it observes the performance of resources and then

makes proactive job migration decisions rather than waiting for resource notifications to

trigger job migrations. Therefore if resources leave the Grid without any notification or do

not allow guest jobs to run without precautions, an efficient proactive job migration

algorithm will be able to provide help to improve reliability.

• An efficient proactive job migration will have more time to carry out the job migration. As

that the Grid job scheduler will take proactive migration before getting the migration

notifications from resources. Therefore, with an efficient proactive migration algorithm, the

job scheduler has more time to carry out job migrations. However there are disadvantages

compared to reactive migration:

• It is more complex than reactive migration. This is because the job scheduler needs to

observe the performance (such as changes of CPU load or availability patterns) of resources

and then make migration decisions. As a resource’s performance may change constantly, it

is straightforward enough to make migration decisions, but it is not so straightforward to

make efficient decisions.

• It may be less effective in terms of utilising resources’ idle CPU cycles. This is because the

resources’ idle CPU cycles will not usually be fully utilised as it is difficult to get the ideal

timing to carry out proactive job migrations. It is easy to migrate a job too early or too late.

Two proactive job migration algorithms have been proposed in this research. The first one is

based on the resource availability predictor described in Section 4.2.1. The second one is based

on an artificial intelligence technique Case Based Reasoning (CBR). In this section, these two

algorithms will be described:

i. Periodical Scanning with Predictor Migration Algorithm

The first proactive job migration algorithm proposed in this research is Periodical Scanning

with Predictor (PSPP) algorithm. The name of the algorithm shows this algorithm is based on

69

scanning resources periodically and judging whether job(s) on each resource needs migration or

not using the prediction technique described in Section 4.2.1. The objective of this algorithm is

to help the job-scheduling algorithm in terms of improving reliability – reducing the number of

job failures caused by resources’ unavailability. The procedure of PSPP algorithm can be

described as follows:

First, at the end of a predefined regular interval, the job scheduler picks the first busy

resource. This interval is called Migration Prediction Interval. The reason why the job scheduler

only picks a busy resource is that only this kind of resource has the potential to experience job

failures.

Second, the job scheduler checks Resource Availability Probability in the Prediction Period.

Here, the Prediction Period can be a predefined length of time, such as 5 minutes, 10 minutes

and so on.

Third, if the resource is predicted to exit Available to Grid state some time during the

Prediction Period (Resource Availability Probability is lower than 100%), the resource will be

considered as unqualified. A resource marked as unqualified means it is considered as becoming

unavailable to the Grid soon. Therefore, all the job(s) on the resource will need migration to

avoid failure.

Fourth, the job scheduler uses a job-scheduling algorithm to make job allocation decisions for

job(s) on the unqualified resource one by one.

Fifth, if a job scheduler finds a qualified resource, it will migrate the job to the new resource

at once. If not, the job will stay on the resource.

After this step, the job scheduler will pick the next busy resource and repeat steps one to five

until all resources have been scanned. After all resources have been scanned, the job scheduler

waits a predefined interval and starts this procedure again. Figure 4.14 shows this procedure:

70

Checks the resource’s Resource Availability
Probability in the prediction period

Picks a job on the resource and tries
to find a qualified resource for the job

Resource predicted to exit
Available to Gridstate

during the Prediction Period

Picks the next busy resource

Found a qualified
resource for the job?

Migrates the job to the new resource

All busy resources have
been scanned?

Start

All jobs have been
handled?

Yes

Yes

Yes

YesNo

No

No

No

Reach the end of Migration
Prediction Interval?

No

Yes

Figure 4-14: PSPP Algorithm Procedure

ii. Case Based Reasoning Migration Algorithm

The second migration algorithm proposed in this research is based on CBR. CBR is a type of

AI technique and successfully applied in various areas, such as air conditioners, automobile,

digital image processing and so on. To better understand the algorithm, some background

knowledge on CBR is given.

Case Based Reasoning Introduction

CBR is a machine-learning approach that has received much attention over the last few years.

“It is the process of solving new problems based on the solutions of similar past problems”

[Richter06]. Typically, a CBR system consists of a database which records past cases and their

solutions. With this database, past similar cases will be generalised and their solutions will be

reused (with some modifications if necessary) for new problems.

The CBR approach is based on two main assumptions from the real world. The first one is

that similar problems have similar solutions. “Consequently, solutions for similar prior problems

are a useful starting point for a new problem” [Leake96]. The second one is that similar

problems will recur again and again. Therefore, when a new problem occurs, it is likely to be

similar to the old ones.

71

Similarly to some other problem solving techniques, especially rule induction algorithms

[Slade91], a CBR system uses a database to record past cases and their solutions. However,

unlike rule induction algorithms, a CBR system makes generalizations of past cases. “A

rule-induction algorithm draws its generalizations from a set of training examples before the

target problem is even known. This contrasts to CBR, which delays (implicit) generalization of

its cases until testing time – a strategy of lazy generalization”. [CBRwiki10]

In addition, CBR has the ability to learn from the past whilst rule induction algorithms do not

have this ability. In rule induction algorithms, the same rules will be used unless they are

modified manually. However, CBR “is an approach to incremental, sustained learning, since a

new experience is retained each time a problem has been solved, making it immediately

available for future problems.” [Aamodt94].

Generally, the CBR cycle is composed of four steps: retrieve, reuse, revise and retain. Figure

4.15 shows this cycle.

Case Base
Retain

Reuse

Retrieve

New problems

Revise

Proposed
Solution

Confirmed Solution

Figure 4-15: The CBR Cycle (Adapted from [Watson94])

An explanation of each step is as follows:

Retrieve: When a new problem occurs, the CBR system retrieves similar cases from the Case

Base. Usually, a case consists of a problem, its solution and comments about how the solution

was derived. For example, Alice wants to use the oven to roast a small chicken. The problem is

that Alice has never cooked such a small chicken before. However, luckily, she has previously

cooked some bigger ones. Therefore, Alice tries to remember how long it took, so that she can

set the cooking time for the small chicken correctly.

Reuse: After retrieving the similar cases, the CBR system compares the new problem with

the past cases, reuses the past solutions and proposes a new solution based on the past ones for

the new problem. In Alice’s example, Alice remembers that it took 1 hour for the bigger ones so

she reuses this solution and tries to set the roasting time as 30 minutes for the small chicken.

Revise: After proposing a new solution, the CBR system tests the new solution. If the new

solution does not meet the requirement, the CBR system revises the solution. In Alice’s example,

Alice checks the chicken after 30 minutes. However, she finds that the chicken is not done yet.

Therefore, she revises the solution and adds another 5 minutes for the chicken.

Retain: After solving the problem, the CBR system retains the useful information as a new

72

case and stores it in the Case Base for further use. In Alice’s example, Alice finally gets the

chicken roasted. She now retains the experience of cooking a small chicken so that this

experience can be reused in future.

There are a number of advantages of using CBR, especially in a domain where there is a lack

of strong theory. In such a domain, a rule induction reasoner is not practical. “When the

relationship between the case attributes and the solution or outcome is not understood well

enough to represent it in rules, or when the ratio of cases that are ‘exceptions to the rule’ is high,

rule based systems become impractical. CBR is especially useful in such situations because it

models the exceptions and novel cases.” [Morris95]

Procedure of the CBR Migration Algorithm

In general, the CBR is different from any other job-scheduling and job migration algorithm

proposed above as the adopted TDE prediction method is not used in this algorithm. Instead of

using Job Execution Availability to make predictions for job-scheduling or job migration, this

algorithm use CPU Availability to trigger job migration.

The basic idea of this migration algorithm is to observe the CPU Availability of each resource

and trigger job migration procedures if the current value of CPU Availability is below a

threshold (it is called CBR Migration Threshold). CPU Migration Threshold is a value between

0% and 100%. Here, whether or not to trigger the job migration procedure can be considered as

a new problem in CBR and getting the value of CBR Migration Threshold can be considered as

the step of retrieving the solution to the past cases. As discussed in Section 4.2.2, CPU

Availability is the current CPU speed which indicating the current number of idle CPU cycles

delivered to the Grid per second. In the meanwhile, a term CPU Availability Percentage can be

used to describe the percentage of maximum CPU speed available at the moment. Let Cpercent,

Ccurrent and Cmax denote the CPU Availability Percentage, current value of CPU Availability and

the maximum value of CPU Availability separately; the value of CPU Availability Percentage

can be calculated by the following equation:

Cpercent = Ccurrent / Cmax * 100% (Equation 4.10)

For example, if a resource’s maximum CPU speed is 1000 CPU cycles per second and now

the number of CPU cycles delivered to the Grid (CPU Availability) is 700, then Cpercent = 70%

((700 / 1000) * 100%). The same as the PSPP migration algorithm described above, CBR

migration algorithm scans each resource at regular intervals. If the CBR migration algorithm

finds a resource’s CPU Availability Percentage is below the CBR Migration Threshold, the

resource is considered likely to become unavailable soon. Therefore, CBR migration algorithm

will trigger the job migration procedure and try to migrate the job to another resource by using a

job-scheduling algorithm. Here, triggering the job migration procedure by using the CBR

Migration Threshold can be considered as reusing the solutions of past cases in CBR.

After making job migration decisions, CBR Migration algorithm will revise the proposed

solution. This step is carried out just before observing each resource at regular intervals. If a

73

resource considered to be unqualified turns out to be unavailable after triggering the job

migration procedure, the solution is considered to be correct and no revision is needed (the

value of CBR Migration Threshold will not change). However, if a resource considered as

unqualified turns out to stay in the state of Available to Grid until now, then the solution is

considered to be incorrect and revision to the CBR Migration Threshold is needed.

After the revision, the new value of CBR Migration Threshold is considered to be a

confirmed solution and it will be retained.

Specifically, the procedure of CBR migration algorithm can be described as follows:

First, at the end of a predefined regular interval, the CBR migration algorithm checks the

migration decisions made at the end of last interval. If the total number of incorrect solutions is

over the total number of correct solutions, the value of CBR Migration Threshold will be

increased or reduced by x percent. Here, x percent is called Adjustment Percentage and it is a

random value and the range of value is (0%, Max%]. After adjustment, the value of CBR

Migration Threshold should be always within the range of (0%, 100%).

Second, the job scheduler picks the first resource that currently has guest job(s). As in PSPP

migration algorithm, this interval is also called Migration Prediction Interval. The reason why

the job scheduler only picks the resource that currently has guest job(s) is that only this kind of

resource has the potential to experience job failures.

Third, the job scheduler checks resource CPU Availability Percentage.

Fourth, if the resource’s CPU Availability Percentage is below the CBR Migration Threshold,

the resource will be considered as unqualified. A resource marked as unqualified means it is

considered as to becoming unavailable to the Grid soon. Therefore, all the job(s) on the

resource will need migration to avoid process failures.

Fifth, the job scheduler uses a job-scheduling algorithm to make job allocation decisions for

job(s) on the unqualified resource one by one.

Sixth, if a job scheduler finds a suitable resource for a job, it will migrate the job to the new

resource at once. If not, the job will stay on the resource.

Seventh, the job scheduler will pick the next resource that currently has guest job(s) and

repeat steps one to five until all resources have been scanned. After all resources have been

scanned, the job scheduler waits for a predefined interval and then starts this procedure again.

Figure 4.16 provides a flowchart to show this procedure.

74

Checks resource’ Resource Availability
Probability in the prediction period

Picks a job on the resource and tries
to find a qualified resource for the job

Resource predicted to exit
Available to Grid state

during the Prediction Period

Picks one busy resource

Found a qualified
resource for the job?

Migrates the job to the new resource

All busy resources have
been scanned?

All jobs have been
handled?

Yes

Yes

Yes

YesNo

No

No

No

Yes

Start

Reach the end of Migration
Prediction Interval?

No

Adjust CPU Migration Threshold

Figure 4-16: Main Procedure of CBR Migration Algorithm

The CPU Migration Threshold adjustment procedure is shown in Figure 4.17:

Yes

No

No

Yes

Start

Made migration decision(s)
at the end of last interval?

Total number of incorrect
migration decisions over the

correct ones?

Adjust CPU Migration Threshold with
Adjustment Interval

End

Yes

No

No

Yes

Start

Made migration decision(s)
at the end of last interval?

Total number of incorrect
migration decisions over the

correct ones?

Adjust CPU Migration Threshold with
Adjustment Interval

End

Figure 4-17: Procedure of CPU Migration Threshold Adjustment

75

Chapter 5 Analysis of Proposed Algorithms
In this chapter, these algorithms will be analysed before providing simulation and evaluation

results in Chapter 7.

5.1 Analysis of the Adopted TDE Prediction Method
If the goal of a job-scheduling algorithm is to improve speed (such as improving job

throughput or to shorten job Makespan), CPU Availability will be the primary concern as CPU

performance affects speed most among the three levels of “availability” described in Section

4.2.2. However, if a job-scheduling algorithm is to improve reliability (such as reducing the

number of failed jobs or the ratio of failed jobs to total jobs), Job Execution Availability will be

the primary concern as Job Execution Availability shows whether jobs will be able to keep

running on the resources or not. A running job will be failed if a resource’s Job Execution

Availability changes from true to false. In this thesis, this state change event is called an

Unavailability Event.

As a resource’s Job Execution Availability is either true of false, the pattern of a resource’s

Job Execution Availability in a Grid looks like an on-off pattern. When Job Execution

Availability is true or false, then it is on or off respectively. This is illustrated in Figure 5.1.

True

Checking Day

Checking
Period

Prediction
Period

Current Time
Tcurrent

Unavailability
Event

Jo
b

Ex
ec

ut
io

n
Av

ai
la

bi
lit

y

False

9:00 11:00 9:00 11:00

Prediction Day
Figure 5-1: Example Resource Job Execution Availability Pattern

If Job Execution Availability is true (the value of Job Execution Availability is above 0 in

Figure 5.1), the resource is in the state of Available to Grid (described in Section 4.2). If the Job

Execution Availability is false (the value of Job Execution Availability equals 0 in Figure 5.1),

the resource is one of the following states: User Present, CPU Threshold Exceeded, Job

Eviction or Graceful Shutdown or Unavailable. The equation for calculating Resource

Availability Probability described in Section 4.2.1 (Equation 4.1) shows that the number of

times of Available to Grid to Available to Grid is the numerator of the equation. As a result, the

adopted TDE prediction method is in fact checking a resource’s Job Execution Availability

history in the Checking Period in the Checking Day and then calculating the resource’s

Resource Availability Probability in the Prediction Period in the Prediction Day.

If the Job Execution Availability pattern in the Checking Period is exactly the same as Job

Execution Availability pattern in the Prediction Period, the result of Resource Availability

76

Probability will be completely accurate. Here, “accurate” means the result of Resource

Availability Probability in the Checking Period is exactly the same as the result of Resource

Availability Probability in the Prediction Period. However, if the Job Execution Availability

pattern in the Checking Period is not exactly the same as the Job Execution Availability pattern

in the Prediction Period, it is not straightforward to judge whether the result of Resource

Availability Probability will be accurate or not. In addition, the accuracy of prediction is

influenced by the values of some important parameters used in the TDE prediction method, such

as Number of Checking Days and Multiply Factor. The FCFSPP algorithm is based on the TDE

prediction method, so more detailed analysis about the TDE prediction method and the

influences of prediction results on the FCFSPP algorithm will be introduced in Section 5.2.

5.2 Analysis of the FCFSPP Algorithm

5.2.1 Features of the FCFSPP Algorithm

As described in Section 4.2.3, the FCFSPP algorithm is based on FCFS with the added TDE

predictor (the predictor is described in Section 4.2.1 and analysed in Section 5.1). Therefore,

this algorithm will have three distinct features:

1. Only idle resources are possible candidates when the FCFSPP algorithm tries to make job

allocation decisions. As discussed in Section 4.2.2, an idle resource is a resource that is not

only available to the Grid but also not busy (does not have any guest job from the Grid) at

the moment. Therefore, a busy (available but not idle) resource will not be considered as a

candidate. This is because one resource having more than one job at a time is usually

difficult to provide benefits in terms of speed. In addition, if resource reliability is unknown,

one resource having more than one job at a time is difficult to provide benefits in terms of

reliability.

In terms of speed, as the number of CPU cycles provided by a resource is fixed and as all

guest jobs are assumed to have the same priority, all guest jobs on a resource have to share

the CPU cycles at the same time. Therefore, if there is only one guest job on a resource at a

time, the job’s Makespan will be the shortest. If there is more than one guest job on a

resource at a time, each job’s Makespan will become longer and job throughput will be

influenced as well.

If resource availability is unknown, a resource may become unavailable at any time.

When a resource becomes unavailable to the Grid, all guest jobs running on the resource

will be lost. Therefore, if there is only one guest job on a resource at a time, only one job

will be lost. Though the FCFSPP algorithm uses TDE prediction, the resources may still

become unavailable at any time as the resource owners control them. Therefore, only idle

resources are possible to become a candidate when the FCFSPP algorithm tries to make job

allocation decisions.

2. There is only one candidate resource at a time when the FCFSPP algorithm tries to make a

77

job allocation decision. The FCFSPP algorithm always tries to allocate a new job to the next

idle resource. This is a feature inherited from FCFS algorithm and this is different from

some other job-scheduling algorithms. For example, with Matchmaker[Thain05] and MTTF

[Ren07], all available (not necessarily to be idle) resources will be candidates and the

job-scheduling algorithms will try to find out the “best” resource from all candidates (let’s

call this approach as Finding the Best). Here, “best” can have different meanings. It could

be the resource that has the highest CPU speed or the resource that has the highest number

of completed jobs, and so forth.

Unlike these algorithms, only one resource is the candidate in algorithms like FCFS and

FCFSPP, in which the algorithm always has one candidate at a time and the algorithm tries

to find out whether the candidate resource is qualified or not. This approach will be referred

to as Checking if Qualified. Generally speaking, Checking if Qualified is quicker in terms of

making job allocation decisions when comparing with Finding the Best approach. Imagine a

scenario that hundreds of thousands of resources are idle in the Grid. Finding the Best

approach may be very time consuming while Checking if Qualified is not. Furthermore, as

many resources are volatile in a volunteered resource based environment, the “best” one

found by Finding the Best approach may not still be the “best” one when the job allocation

decision is made. However, using more powerful resources can reduce this difference.

In a type of scenario, Finding the Best will become the same as FCFS. This is the

scenario in which Finding the Best looks for idle resources but only one resource is idle at a

time. This scenario is common when the number of jobs is much higher than the number of

resources. One resource idle occurs when a resource has just finished a job. In the meantime

other resources are still busy with jobs. Therefore, it will be common that only one resource

is idle at a time. In such a case, the approach of Finding the Best will have to allocate the

new job to the next and the only idle resource. As a result, Finding the Best cannot provide

any more benefits than just using a simple FCFS algorithm. This scenario is not uncommon

in practical world. For example, for a High Throughput Computing environment [HTC10],

the number of jobs is far more than the number of resources and the one important objective

of this environment is to get as high as possible job throughput. In addition, in some

volunteered resources based environments, such as BOINC [Anderson05], all resources will

be busy all the time.

3. The FCFSPP algorithm will only allocate a new job to the next idle resource if the resource

is considered as qualified. In the FCFSPP algorithm, a qualified resource means the

resource’s Resource Availability Probability is over the Resource Availability Probability

Threshold. This is different from the FCFS algorithm, in which no threshold is defined for

candidate resources. This measure in the FCFSPP algorithm is for ensuring reliability as the

primary objective of the FCFSPP algorithm is to ensure jobs being processed successfully

as much as possible. Therefore, the FCFSPP algorithm will only allocate the new job to the

78

candidate resource if it is qualified. As discussed in Chapter 1, there is a trade-off between

reliability and speed. In FCFSPP, if no resource is considered as qualified, the Grid Job

Scheduler will wait halt for a while and then start to find a qualified resource again. This

measure may affect the time to complete the job as a result. In addition, some idle CPU

cycles on the idle but unqualified candidate resource(s) will be wasted.

5.2.2 Influences on the FCFSPP Algorithm

In addition to the features described above, the FCFSPP algorithm is also influenced by some

factors and parameters. Therefore, in this subsection, important influences will be considered.

i. System Case

If the Checking Period and the Prediction Period in Figure 5.1 are extracted and combined

together, then what they look like is shown in Figure 5.2.

Time

Time

Jo
b

Ex
ec

ut
io

n
Av

ai
la

bi
lit

y
Jo

b
Ex

ec
ut

io
n

Av
ai

la
bi

lit
y

Checking
Period

Prediction
Period

Jo
b

Ex
ec

ut
io

n
Av

ai
la

bi
lit

y

Time
Current time O. The

job scheduler needs to
make a prediction

before making a job
allocation decision.

∆tt1
t2

If the length of Prediction Period
is between t1 and t2, the resource
is considered as unqualified but

actually it is qualified.

Figure 5-2: Extracted and Combined Job Execution Availability Pattern (Type 1)

In Figure 5.2, diagrams of Job Execution Availability in both the Checking Period and

Prediction Period on the left hand side are put in the same diagram on the right hand side. t1 is

the time interval between the start of checking time (the same is current time Tcurrent) and the

time that the first Unavailability Event occurs in the Checking Day. In the example shown in

Figure 5.2, t1 is shorter than the length of Checking Period (or Prediction Period). However, note

t1 may also be longer or shorter than the Checking Period and this depends on the length of

Checking Period, which is further depends on the length of Job Execution Time and Multiply

Factor. t2 is the time interval between the start of checking time and the time that the first

Unavailability Event occurs in the Prediction Day. The same as t1, t2 may also be longer or

shorter than the Checking Period and it also depends on the length of Checking Period, which is

further depends on the length of Job Execution Time and Multiply Factor. ∆t is the time

difference between the length of t1 and t2.

In Figure 5.2, assume a resource is available for t1 in the Checking Period, available for t2 in

the Prediction Period and ∆t is the difference between the length of t1 and t2. The current time is

Tcurrent and the first job in the job queue lasts for time L. So the Grid job scheduler needs to use

TDE prediction to make a job allocation decision now and the prediction method will check

resource Job Execution Availability history in the Checking Period (assume the length of Job

79

Execution Time is L and Multiply Factor is 1 and the length of Checking Period is L*1=L) to

predict the Resource Availability Probability of the resource in the Prediction Period (assume

the Prediction Period’s length is also L). In addition, in the following analysis of Section 5.2.2,

if there is no further notice, the parameter Number of Checking Days is assumed to be 1 and

Resource Availability Probability Threshold T is assumed to be 100%.

Based on these assumptions and with the length of Checking Period L (or Prediction Period),

several cases would occur in the system:

Case 1: If L is shorter than t1, then the resource is always available in the Checking Period. As

a result, the Resource Availability Probability of the resource will be 100% and it is not lower

than the Resource Availability Probability Threshold. So the resource will be considered as

qualified and the job will be allocated to the resource. As resource is still available at time Tcurrent

+ L, the prediction result will turn out to be correct and the job will processed successfully by the

resource.

Case 2: If L is longer than t1 but shorter than t2, then the resource is not always available in the

Checking Period, so the Resource Availability Probability of the resource will be lower than

100%. It is lower than the Resource Availability Probability Threshold so the resource is

considered as unqualified and the job will not be allocated to the resource. However, the resource

turns out to be still available at time Tcurrent + L, then the prediction is incorrect and resource’s

idle CPU cycles will be wasted until another job being allocated to the resource.

Case 3: If L is longer than t2, then the resource is not always available in the Checking Period,

so the Resource Availability Probability of the resource will be lower than 100%. It is lower than

the Resource Availability Probability Threshold so the resource is considered as unqualified and

the job will not be allocated to the resource. The resource turns out to become unavailable before

time Tcurrent + L, so the prediction is correct. Some idle CPU cycles of the resource will be wasted

until another job being allocated to the resource. However, more importantly, a job failure is

successfully avoided.

If t2 is shorter than t1, then the situation will be different. Figure 5.3 illustrates this situation.

Time

Time

Jo
b

Ex
ec

ut
io

n
Av

ai
la

bi
lit

y
Jo

b
Ex

ec
ut

io
n

Av
ai

la
bi

lit
y

Checking
Period

Prediction
Period

Jo
b

Ex
ec

ut
io

n
Av

ai
la

bi
lit

y

Time

Current time O. The
job scheduler needs
to make a prediction
before making a job
allocation decision.

∆tt2

t1

If the length of Prediction Period
is between t1 and t2, the resource

is considered as qualified but
actually it is unqualified.

Figure 5-3: Extracted and Combined Job Execution Availability Pattern (Type 2)

Case 4: If L is longer than t2 but shorter than t1, resource is always available in the Checking

Period, so the Resource Availability Probability of the resource will be 100% and it is not lower

80

than the Resource Availability Probability Threshold. So the resource will be considered as

qualified and the job will be allocated to the resource. However, the resource turns out to be

become unavailable before time Tcurrent + L, then the prediction is incorrect and job will be failed

to be processed.

Case 5: If L is longer than t1, then the resource is not always available in the Checking Period,

so the Resource Availability Probability of the resource will be lower than 100%. So the resource

will be considered as unqualified and the job will not be allocated to the resource. The resource

turns out to become unavailable before time Tcurrent + L, so the prediction is correct. Resource’s

CPU cycles will be wasted until another job being allocated to the resource, but a job failure is

successfully avoided.

Figure 5.4 shows an example of Job Execution Availability in the above 5 cases.

Time

Jo
b

E
xe

cu
tio

n
A

va
ila

bi
lit

y

Jo
b

E
xe

cu
tio

n
A

va
ila

bi
lit

y

Time Time

Jo
b

E
xe

cu
tio

n
A

va
ila

bi
lit

y

Case 1

Checking Period

Case 2 Case 3

Prediction Period

Case 4

Jo
b

E
xe

cu
tio

n
A

va
ila

bi
lit

y

Jo
b

E
xe

cu
tio

n
A

va
ila

bi
lit

y

TimeTime

Case 5

Figure 5-4: Examples of Job Execution Availability in 6 Cases

It should be noted that in all of these cases, the Checking Period and the Prediction Period

may change between available and unavailable a number of times. However, as one

Unavailability Event in the Checking Period will result in a Resource Availability Probability

below 100%. As one Unavailability Event in the Prediction Period will cause the job to fail to

complete, only the first Unavailability Event in both Checking Period and Prediction Period is

considered.

According to the above analysis, the TDE prediction will affect the job-scheduling algorithm’s

performance in both terms of speed and reliability. Next, the influences brought by the TDE

prediction technique will be discussed by comparing the performance of the FCFS and FCFSPP

algorithms in different cases:

In case 1, both the FCFS and the FCFSPP algorithm will allocate the job to the resource and

the resource will complete the job successfully. Therefore, both the FCFS and the FCFSPP

algorithm perform the same in terms of speed and reliability in these two cases.

In case 2, the FCFS algorithm will allocate the job to the resource and the resource will

complete the job successfully. The FCFSPP algorithm will not allocate the job to the resource and

81

the idle CPU cycles of the resource will be wasted. Therefore, in terms of speed, FCFS is better

than the FCFSPP algorithm as the job throughput in FCFS algorithm is higher than the job

throughput in the FCFSPP algorithm. In terms of reliability, two types of algorithm perform the

same and the job will not be failed.

In case 3 and 5, FCFS algorithm will allocate the job to the resource and the resource will not

complete the job successfully. The FCFSPP algorithm will not allocate the job to the resource and

a potential job failure is avoided. Therefore, in terms of speed, both types of algorithm perform

the same and the job will not complete. In terms of reliability, the FCFSPP algorithm is better

than the FCFS algorithm as the FCFSPP algorithm does not allocate any job to the resource, and

so the potential job failure is avoided.

In case 4, both FCFS and the FCFSPP algorithm will allocate the job to the resource but the

resource will not complete the job successfully. Therefore, both FCFS and the FCFSPP algorithm

perform the same in terms of speed and reliability in these two cases.

Assume job 1’s length L1 is shorter than both t1 and t2, so it is facing case 1. After processing

this job, the Grid job scheduler starts to handle the next job in the job queue. Therefore, if the

job 2’s length L is shorter than t1 and t2, then it faces 1 again. If L2 is longer than t1 but shorter

than t2, then it faces 2. If L2 is longer than t1 and t2, then it faces 3. Figure 5.5 illustrates all the

possible system cases transitions.

Case 5

Case 1

Case 2

Case 4 Case 3

Figure 5-5: Transitions among all cases

If the system transits among all the cases between 1 and 5 uniformly, the FCFSPP algorithm is

supposed to be better than FCFS algorithm in 2/5 = 40% cases in terms of reliability as

the FCFSPP algorithm performs better than FCFS algorithm in case 3 and 5. In terms of speed,

the FCFSPP algorithm performs worse than FCFS algorithm in case 2. Therefore, the FCFSPP

algorithm is worse than FCFS algorithm in 1/5 = 20% cases.

If the system only transits within case 3 or case 5, then the FCFSPP algorithm is supposed to

provide the best performance in terms of reliability. In this situation, all jobs will be failed if

FCFS algorithm is used and all of these can be avoided if the FCFSPP algorithm is used.

82

However, note in such an extreme case, though the FCFSPP algorithm can avoid job failures, no

job can be processed successfully as the resource(s) are so volatile.

If case 3 or 5 is included in the system transitions, then the FCFSPP algorithm will be better

than FCFS algorithm in terms of reliability. In this situation, all jobs will be failed if FCFS

algorithm is used and all of these failures can be avoided if the FCFSPP algorithm is used.

If the system only transits within case 2, then the FCFSPP algorithm provides worse

performance in terms of speed. In this situation, all jobs will be allocated to the resource(s) and

processed successfully if FCFS algorithm is used while no job will be allocated to the resource(s)

if the FCFSPP algorithm is used.

Overall, In terms of speed, FCFS is better than FCFSPP in case 2 and both algorithms have

the same results in other cases. In terms of reliability, the FCFSPP algorithm is better than FCFS

in case 3 and 5 and both algorithms have the same results in other cases. Therefore, FCFS will

not be worse than the FCFSPP algorithm in terms of speed while the FCFSPP algorithm will not

be worse than FCFS algorithm in terms of reliability.

ii. The Influence of ∆t between Checking Day and Prediction Day

According to the definition above, ∆t is the length difference between t1 and t2. In general, if

the size of ∆t changes, the accuracy of the adopted prediction method and the performance of

the proposed job-scheduling algorithm will be influenced directly.

Suppose t1 is much smaller than t2 (the situation shown in Figure 5.2), then, if ∆t becomes

larger (t1 becomes smaller or t2 become larger), the length of Checking Period is more likely to

be longer than t1 while shorter than t2. Therefore, the occurrence probability of case 2 will

increase. According to the analysis above, the FCFSPP algorithm is not as good as FCFS

algorithm in terms of speed in such a case while both algorithms have the same results in terms

of reliability.

On the other hand, if ∆t becomes smaller (t1 becomes larger or t2 become smaller), the length

of Checking Period is more likely to be shorter than t1 or longer than t2. If the length of

Checking Period is shorter than t1, case 1 will occur and both FCFS and the FCFSPP algorithm

will have the same results in both terms of speed and reliability. If the length of Checking

Period is longer than t2, case 3 will occur and both FCFS and the FCFSPP algorithm will have

the same results in terms of speed while the FCFSPP algorithm will have better results than

FCFS algorithm in terms of reliability.

Suppose t1 is much larger than t2 (the situation shown in Figure 5.3), then if ∆t becomes larger,

the length of Checking Period is more likely to longer than t2 while shorter than t1. Therefore,

the occurrence probability of case 5 will increase. According to the analysis above, jobs will fail

to be processed in both FCFS and the FCFSPP algorithm if case 4 occurs, so the more times the

system entering case 4, the worse performance in terms of reliability both algorithms will have.

On the other hand, if ∆t becomes smaller (t1 becomes smaller or t2 become larger), the length

83

of Checking Period is more likely to be shorter than t2 or longer than t1. If the length of

Checking Period is shorter than t2, case 1 will occur and both FCFS and the FCFSPP algorithm

will have the same results in both terms of speed and reliability. If the length of Checking

Period is longer than t1, case 5 will occur and both FCFS and the FCFSPP algorithm will have

the same results in terms of speed while the FCFSPP algorithm will have better results than

FCFS algorithm in terms of reliability.

iii. Influence of Similarity of Job Execution Availability between Checking Period and

Prediction Period

The adopted prediction method checks a resource’s Job Execution Availability history in the

Checking Period and predicts the resource’s Job Execution Availability in the Prediction Period

(e.g. a period of time in the next few days/hours). So if the prediction results will be completely

accurate when Job Execution Availability in Checking Period and Prediction Period are exactly

the same.

Here, “exactly the same” could be presented as two cases. The first case is resource’s Job

Execution Availability does not change throughout the Checking Period and Prediction Period.

Figure 5.6 shows two examples of this case.

Time

Jo
b

E
xe

cu
tio

n
A

va
ila

bi
lit

y

Time

Jo
b

E
xe

cu
tio

n
A

va
ila

bi
lit

y

Checking
Period

Prediction
Period

Time

Jo
b

E
xe

cu
tio

n
A

va
ila

bi
lit

y

Time

Jo
b

Ex
ec

ut
io

n
Av

ai
la

bi
lit

y

Checking
Period

Prediction
Period

Time

Jo
b

E
xe

cu
tio

n
A

va
ila

bi
lit

y

Time

Jo
b

E
xe

cu
tio

n
A

va
ila

bi
lit

y

Checking
Period

Prediction
Period

Time

Jo
b

E
xe

cu
tio

n
A

va
ila

bi
lit

y

Time

Jo
b

Ex
ec

ut
io

n
Av

ai
la

bi
lit

y

Checking
Period

Prediction
Period

Figure 5-6: Two Examples of “Exactly the Same” Checking and Prediction Period

The second case is resource’s Job Execution Availability changes in the Checking Period and

Prediction Period, but the change pattern in the Checking Period and Prediction Period are

exactly the same. Figure 5.7 shows an example of this case.

84

Time

Time

Jo
b

Ex
ec

ut
io

n
A

va
ila

bi
lit

y
Jo

b
E

xe
cu

tio
n

A
va

ila
bi

lit
y

Checking
Period

Prediction
Period

Time

Time

Jo
b

Ex
ec

ut
io

n
A

va
ila

bi
lit

y
Jo

b
E

xe
cu

tio
n

A
va

ila
bi

lit
y

Checking
Period

Prediction
Period

Figure 5-7: Third Example of “Exactly the Same” Checking and Prediction Period

In statistics, the Pearson Product-Moment Correlation Coefficient (PMCC) “is a measure of

the correlation (linear dependence) between two variables X and Y, giving a value between -1

and +1 inclusive” [Rodgers88][Stephen89]. According to [PMCCwiki], the PMCC result ρ can

be calculated by the following equations:

X Y

X Y

N i i

i=1

1 X -μ Y -μρ= ()()
N σ σ∑ (Equation 5.1)

where X

X

iX -μ
σ

, Xμ and Xσ are the standard score, population mean, and population standard

deviation. The standard deviation is calculated as:

N
2

i

i=1

1σ = (-)
N

x x∑ (Equation 5.2)

where is the arithmetic mean of the values xi, defined as:
n

i
i=1

1 2 N 1= =
N N

x +x +...+x xx ∑ (Equation 5.3)

PMCC can be used to describe the similarity between two variables/time-series in some cases.

In the two cases shown in Figure 5.6, PMCC of the Checking Period and Prediction Period is

not calculable as each series’ standard deviation σ is 0. However, in this case shown in Figure

5.7, the PMCC of the Checking Period and Prediction Period is calculable and the PMCC ρ is 1

in such case.

If a resource’s Job Execution Availability behaves like the first and the second examples, then

the prediction results will be perfect. However, in the mean while, prediction will also become

unnecessary as Job Execution Availability does not change at all. Therefore, TDE prediction is

useful in the cases that Job Execution Availability changes (cases like the third case) and

similarity (represented by PMCC ρ) between Checking Period and Prediction Period is

important factor that influences prediction results in such cases.

85

As resources’ Job Execution Availability patterns is on-off pattern (it is either true or false),

PMCC between Checking Period and Prediction Period is mainly influenced by state changes

between on and off. Let’s take an example to see how the state changes affect the PMCC and

prediction results.

In Figure 5.2 and 5.3, if both t1 and t2 are shorter than the length of Checking Period and the

value of ∆t equals 0, then the Checking Period and the Prediction Period are exactly the same

so that ρ will be 1. In such a case, the prediction results will be always accurate and the FCFSPP

algorithm will perform the best in both terms of speed (it has similar results of job throughput as

FCFS algorithm) and reliability (it can filter out the unreliable resources correctly and avoid

allocating jobs to these unreliable resources so few jobs will be failed).

If t1 and t2 are shorter than the length of Checking Period but the absolute value of ∆t

becomes larger (the value of ∆t far lower or far higher than 0), then the Checking Period and the

Prediction Period becomes less similar so that ρ will become smaller accordingly. If the

absolute value of ∆t is close to the maximum value, the value of ρ will be close to -1. According

to analysis above, if the absolute value ∆t becomes larger, the prediction results will more likely

to be inaccurate and the FCFSPP algorithm tends to perform worse in terms of either speed or

reliability. Therefore, if ρ becomes smaller, prediction results will more likely to be inaccurate

and the FCFSPP algorithm will tend to perform worse in terms of either speed or reliability as

well.

iv. Influence of Number of Checking Days N

If Number of Checking Days (abbreviated as N) becomes larger (which mean the prediction

method checks more days for prediction) and if the Resource Availability Probability Threshold

is 100%, then the day with shortest Availability Interval (the time between two consecutive

periods of unavailability) in Checking Period will be the most important day if each day’s

weight is equal. Figure 5.8 shows the case when Number of Checking Days is 2 (abbreviated as

N=2):

Time

Time

Time

Checking Day 2
(current day – 1)

Prediction Period
(current day)

∆t2t3
t2

Time

Checking Day 1
(current day – 2)

t1 ∆t1

Jo
b

E
xe

cu
tio

n
A

va
ila

bi
lit

y

Case 1 Case 2

Jo
b

E
xe

cu
tio

n
A

va
ila

bi
lit

y
Jo

b
E

xe
cu

tio
n

A
va

ila
bi

lit
y

Jo
b

E
xe

cu
tio

n
A

va
ila

bi
lit

y

Figure 5-8: Checking Past 2 Days for Prediction

86

In this example, the prediction method checks past two days. The resource has to be available

throughout the whole Checking Period in both days to get the result of 100% in terms of

Resource Availability Probability. A day with a shorter Availability Interval will be more

important. In this example, Checking Day 1 has shorter Availability Interval, so the result of

Resource Availability Probability will be 100% if the length of Checking Period is shorter than

t1 and the resource will be considered as a qualified resource. If the length of Checking Period is

longer than t1 (no matter the length of Checking Period is longer than t2 or not), the result of

Resource Availability Probability will be lower than 100% and the resource will be considered

as an unqualified resource.

In general, the job allocation decisions tend to be more conservative (tend to NOT allocate

the job to the resource) when N becomes larger. When N becomes larger, more Checking Days

will be checked and it is more likely to find a Checking Day with shorter Availability Interval.

Therefore, if higher reliability via the approach of conservative job allocation decisions is

desired, then a larger N is required. On the other hand, though larger N can help for improving

reliability, the performance of the FCFSPP algorithm in term of speed will tend to decrease at

the same time.

If N is larger than 1, if the FCFSPP algorithm tries to make a job allocation, it has to face

extra cases than it has to face when N equals 1. If N equals 2, the FCFSPP algorithm has to face

four extra cases (shown in Figure 5.8). However, the differences between N=1 and N=2 will

only occur in cases 1 and 2 shown in Figure 5.8:

Case 1: If the job length L is longer than t1 but shorter than t3, the FCFSPP algorithm will face

case 1. In such a case, the FCFSPP algorithm will allocate the job to the resource if N=1 while it

will NOT allocate the job to the resource if N=2. N=1 is better as it allocates the job to the

resource and the job will be able to complete before the resource becomes unavailable.

Case 2: If the job length L is longer than t3 but shorter than t2, the FCFSPP algorithm will face

case 3. As for case 2, in such a case, the FCFSPP algorithm will allocate the job to the resource

if N=1 while it will NOT allocate the job to the resource if N=2. Different from case 1, N=2 is

better in such a case as it does NOT allocate the job to the resource and avoid a job failure (the

job is not be able to be completed before the resource becomes unavailable).

v. Influence of Resource Availability Probability Threshold T

If the value of Resource Availability Probability Threshold T (abbreviated as T) becomes

smaller (approaching to 0%), the FCFSPP algorithm becomes looser and achieves the loosest

situation (becomes a completely non-prediction based FCFS algorithm) when T is 0%. On the

other hand, if the value of T becomes larger (approaching to 100%), it becomes more

conservative and achieves the most conservative situation when T is 100%.

Therefore, if T is between 0% and 100%, in both terms of speed and reliability, the result

should be between the results achieved when T is 0% and 100%.

87

vi. Influence of Job Arrival Process

Similarly to the influence of the job sorting algorithm, each job’s “destiny” might be different

if jobs arrived with different process and the FCFSPP algorithm’s performance in terms of speed

might be affected as well.

For environments like High Throughput Computing environment or some volunteered

resources based environments (e.g. BOINC), the number of jobs is far more than the number of

resources. Therefore, if a Grid system is at the initial stage (in which many resources are

available), the job arrival process will influence the result of speed at the initial stage for a

period of time as most (or even all) resources are available. If the job arrival interval is

large/small, the initial stage will tend to be long/short and the job throughput will tend to be

low/high in the initial stage. However, once the Grid system enters a steady state (in which all

resources are kept busy all the time), the result of speed is not influenced by the job arrival

process any longer. In steady state, all new jobs will have to wait in the job queue first. In such a

case, job throughput or job Makespan depends on the resources’ CPU speed.

For environments in which the number of jobs is lower than the number of resources, the job

arrival process will influence the result of speed at both the initial and steady stage. If few/many

jobs arrive in a period of time, job throughput will tend to be low/high. However, the job arrival

process will not affect each job’s Makespan in the FCFSPP algorithm as one resource will

always process one job at a time.

vii. Influence of Resource Availability Interval

The resource Total Availability Interval means the time during which the resource’s Job

Execution Availability is true in a give period of time and the resource Total Unavailability

Interval means the time during which the resource’s Job Execution Availability is false in a

given period of time. The resource Average Availability Interval means the average length of the

resource’s Availability Intervals and the resource Average Unavailability Interval means the

average length of the resource’s Unavailability Intervals.

A given period of time is composed of Total Availability Interval and Total Unavailability

Interval. Therefore, if Total Availability Interval is longer, job throughput in both FCFS and the

FCFSPP algorithm will tend to be higher (more jobs will be finished). However, the Average

Availability Interval will influence the job throughput if the Total Availability Interval is fixed.

For a given resource with a given period of time and a given Total Availability Interval, if

Average Availability Interval is small, then the resource tends to be very unreliable (become

unavailable frequently). In such a case, the job throughput tends to be lower than the case in

which the Average Availability Interval is small. On the other hand, as the resource becomes

unavailable frequently, many jobs will fail with the FCFS algorithm. This is not true for the

FCFSPP algorithm, if TDE prediction can provide accurate prediction results. Potential job

failures will be avoided, as the FCFSPP algorithm will not allocate a job to the resource if the

88

resource is predicted to become unavailable before the job is finished.

For the same resource with the same given period of time and the same given Total

Availability Interval, if Average Availability Interval is large, then the resource tends to be very

reliable (become unavailable infrequently). In such a case, the job throughput tends to be higher

than the case in which the Average Availability Interval is small. On the other hand, as the

resource becomes unavailable infrequently, few jobs will be failed as a result in FCFS algorithm.

For the FCFSPP algorithm, if TDE prediction can provide accurate prediction results, the job

throughput result in the FCFSPP algorithm will be the same (or very closed) to the job

throughput result obtained by FCFS algorithm as many jobs will be allocated to the resource in

the FCFSPP algorithm. However, if TDE prediction cannot provide accurate results, the job

throughput result in the FCFSPP algorithm will be fewer than the job throughput obtained by

FCFS algorithm as few jobs will be allocated to the resource as the FCFSPP algorithm will

consider the resource as unreliable resource (but in fact the resource is very reliable).

viii. Influence of Average Job Size and Resource Average Availability Interval

Here, a job’s Job Size means the job’s Job Execution Time and Average Job Size means the

average Job Execution Time. In general, if the Average Job Size is small (compared with the

resources’ Average Availability Interval), then the system will tend to enter case 1 and 4

frequently. In such a case, the FCFSPP algorithm performs more or less the same as the FCFS

algorithm both in terms of speed (represented by the number of processed jobs) and reliability

(represented by the number of failed jobs).

If the Average Job Size is medium (also compared with resources’ Average Availability

Interval), then the system will tend to enter case 2 and 4 frequently. In such a case, the FCFSPP

algorithm performs more or less the same as the FCFS algorithm in terms of reliability while it

tends to perform worse than FCFS algorithm in terms of speed.

If the Average Job Size is large (also compared with resources’ Average Availability Interval),

then the system will tend to enter case 3 and 5 frequently. In such a case, the FCFSPP algorithm

performs more or less the same as the FCFS algorithm in terms of speed while it tends to

perform better than FCFS algorithm in terms of reliability.

In contrast to job size, resource’s Average Availability Interval has the opposite influence to

the FCFSPP algorithm.

If resources’ Average Availability Interval is large (compared with Average Job Size), the

system will tend to enter case 1 and 4 frequently. In such a case, the FCFSPP algorithm

performs more or less the same as FCFS algorithm in both terms of speed and reliability.

If resources’ Average Availability Interval is medium (also compared with Average Job Size),

then the system will tend to enter case 2 and 5 frequently. In such a case, the FCFSPP algorithm

performs more or less the same as FCFS algorithm in terms of reliability while it tends to

perform worse than FCFS algorithm in terms of speed.

89

If the resources’ Average Availability Interval is large (also compared with Average Job Size),

then the system will tend to enter case 3 and 6 frequently. In such a case, the FCFSPP algorithm

performs more or less the same as the FCFS algorithm in terms of speed while it tends to

perform better than the FCFS algorithm in terms of reliability.

According to previous research work in [Lazarevic06] [Li04][Iosup06][Medernach05], job

size varies significantly in different Grid systems, but normally job size is between a couple of

seconds to 24 hours. According to previous research work in [Kondo05][TUDelft10], each

resource’ Availability Interval in a volunteered resources based Grid system varies significantly

(more about this will be discussed in Chapter 6), even mean Availability Interval of each Grid

also varies, but normally the Average Job Size of all resources in a Grid is between 10 minutes

to a couple of hours. Therefore, the possible highest results in terms of speed and reliability vary

from one Grid system to another.

ix. Influence of the Multiply Factor M

If the value of M is 1, then the length of Checking Period and Prediction Period equal the

length of the job execution time X. If the parameter of Number of Checking Days is 1, the result

of Resource Availability Probability will be either 0% or 100%. This is because of the equation

that used to calculate the result of Resource Availability Probability. As mentioned in Equation

4.1, the result of Resource Availability Probability is calculated by Equation 4.1. In this equation,

the numerator is the Times of Available to Grid to Available to Grid. If the resource stays in the

state of Available to Grid throughout the Checking Period, Times of Available to Grid to

Available to Grid will be 1 and Times of Available to Grid to other states will be all 0. Therefore,

the result of Resource Availability Probability will be 100%. On the other hand, if resource exits

the state of Available to Grid during the Checking Period, Times of Available to Grid to

Available to Grid will be 0 and Times of Available to Grid to some other states will be above 0.

Therefore, the result of Resource Availability Probability will be 0%.

If the value of M becomes larger, the result of Resource Availability Probability can be any

value between 0% and 100%. However, a larger value of M does not mean it will definitely

bring more accurate prediction results and it also brings difficulty for analysis and evaluation of

the performance of the FCFSPP algorithm. Therefore, without any further notice, the default

value of Multiply Factor will be 1 in this thesis.

5.3 Explanation of the FLP Algorithm

5.3.1 Features of the FLP Algorithm

As described in Section 4.2.4, the FLP algorithm is based on the FCFSPP algorithm

(described in Section 4.2.3) and it adds Fuzzy inference system. In general, the FLP algorithm

inherits all the important features of the FCFSPP algorithm described in Section 5.2. In addition,

the factors and parameters influence FLP in the same way as it is in the FCFSPP algorithm.

90

However, as FLP has an extra Fuzzy inference system, this will bring some one important new

feature to the FLP algorithm:

Different from FCFSPP, the Resource Availability Probability Threshold will change over

time according to the trend of overall resource reliability in FLP. Here, the overall resource

reliability is represented as “Disposed Jobs Dot” (described in Section 4.2.4) and FLP takes

reactive actions to this change. As discussed in Section 4.2, FLP tries to achieve a better balance

between speed and reliability by replacing the fix setting of Resource Availability Probability

Threshold with a dynamic and artificial intelligent algorithm controlled setting.

If the number of “Disposed Jobs Dot” is above 0, it means resources become more volatile

and tend to dispose more jobs now. As a result, FLP will raise Resource Availability Probability

Threshold to get better results in terms of reliability. If the number of “Disposed Jobs Dot” is

not above 0, it means resources becomes more reliable and tend to dispose fewer jobs now. As a

result, FLP will lower Resource Availability Probability Threshold to get better results in terms

of speed.

If the pattern(s) of all resources’ Job Execution Availability is similar, Job Execution

Availability on some resources will provide good indications for all resources. In such a case,

FLP will make good balance between speed and reliability. Imagine a scenario in which a Grid

is composed of personal computers within a company, resources availability patterns will be

similar as these personal computers are typically utilised during the office hours. As a result, all

resources tend to be very volatile during office hours (e.g. 9am to 5pm) but tend to be rather

reliable during non-office hours. When office hour starts, “Disposed Jobs Dot” will increase and

Resource Availability Probability Threshold will increase as a result. Therefore, high value of

Resource Availability Probability Threshold will ensure jobs not being allocated to volatile

resources and better results of reliability can be achieved. When non-office hour starts,

“Disposed Jobs Dot” will decrease and Resource Availability Probability Threshold will

decrease as a result. Therefore, low value of Resource Availability Probability Threshold will

ensure idle CPU cycles on many resources can be utilised efficiently and better results of speed

can be achieved.

If the pattern(s) of all resources’ Job Execution Availability is dissimilar, Job Execution

Availability on some resources will NOT provide good indications for all resources. In such a

case, FLP is difficult to make good balance between speed and reliability. Imagine a scenario in

which a Grid is composed of computers from individual users, resources availability patterns

can be dissimilar as people have different life styles. As a result, some resources will be very

volatile while some others are not. Therefore, “Disposed Jobs Dot” will increase/decrease over

time. However, the increase/decrease of “Disposed Jobs Dot” may not be a good indication, and

it may even be misleading. In such a scenario, changing Resource Availability Probability

Threshold may not be able to provide good balance between speed and reliability.

As the value of Resource Availability Probability Threshold varies between 0% and 100%,

91

FLP’s performance in terms of speed and reliability should generally (an exceptional case will

be described in Section 7.3) between the FCFSPP algorithm with Resource Availability

Probability Threshold 100% (equals the FCFS algorithm) and the FCFSPP algorithm with

Resource Availability Probability Threshold 100%. In addition, the FLP algorithm is also

influenced by some factors and parameters. Therefore, in next subsection, some important

influences will be analysed.

5.3.2 Influences on the FLP Algorithm

i. Influence of Resource Availability Probability Threshold Adjustment Interval

In the FLP algorithm, the Grid job scheduler checks whether the time has reached the end of

the current time interval or not. Here, the time interval is called Resource Availability

Probability Threshold Adjustment Interval, which is a predefined value, such as 1 minute, 10

minutes and so on.

The length of Resource Availability Probability Threshold Adjustment Interval will affect the

sensitivity of:

If the value of Resource Availability Probability Threshold Adjustment Interval is large, the

FLP algorithm will rarely trigger the procedure of Resource Availability Probability Threshold

Adjustment. As a result, Resource Availability Probability Threshold will be relatively stable and

the FLP algorithm becomes more like the FCFSPP algorithm in such a case.

If the value of Resource Availability Probability Threshold Adjustment Interval is small, the

FLP algorithm will trigger the procedure of Resource Availability Probability Threshold

Adjustment frequently. As a result, Resource Availability Probability Threshold tends to be

changed frequently in such a case.

ii. Influence of Parameter λ

In the FLP algorithm, a fuzzy inference system is used and λ and – λ are two important

thresholds to define a truth value of Disposed Jobs Dot:

If the absolute value of λ is small, Disposed Jobs Dot’s truth value of Zero tends to be low

while Negative and Positive tends to high. As a result, Resource Availability Probability

Threshold tends to be changed sharply in such a case.

If the absolute value of λ is large, Disposed Jobs Dot’s truth value of Zero tends to be high

while Negative and Positive tends to low. As a result, Resource Availability Probability

Threshold tends to be changed smoothly in such a case.

iii. Influence of Initial Resource Availability Probability Threshold

At the initial stage, the value of Resource Availability Probability Threshold is defined

manually and this initial value will influence the performance of the FLP algorithm at the initial

stage(s). For example, if the value of Resource Availability Probability Threshold is very small

(a value close to 0%), the FLP algorithm will be loose and tend to allocate jobs to unreliable

92

resources at first. On the other hand, if the value of Resource Availability Probability Threshold

is very large (a value close to 0%), the FLP algorithm will be strict and NOT tend to allocate

jobs to unreliable resources at first. However, this influence may be limited as the value of

Resource Availability Probability Threshold could later change.

5.4 Analysis of the PSOPP Algorithm

5.4.1 Features of the PSOPP algorithm

As described in Section 4.2.5, the PSOPP algorithm uses a completely different

job-scheduling algorithm when comparing with the FCFSPP and the FLP algorithm. This new

algorithm has some important features:

1. The PSOPP algorithm inherits features of the PSO algorithm. It uses a number of particles

to search the best solution in the search space. In this algorithm, the best solution is the

resource which has the highest fitness value after a number of iterations and the search

space is all available resources. After each iteration, each particle’s position will be updated

with the personal best value and global best value.

PSOPP’s fitness function is based on the considerations of both speed and reliability of each

resource. The fitness function of the PSOPP algorithm is shown by Equation 4.7. It uses TDE

prediction to calculate the reliability of the resource in the first part of the equation and

calculates the speed that the job can get from the resource the second part of the equation.

2. All available resources are candidates when the PSOPP algorithm tries to make job

allocations. In other words, the PSOPP algorithm does not keep any coming job waiting in

the job queue if available resource(s) exists. If available resource(s) exists, all these

available resources will be candidate for the new coming jobs and the PSOPP algorithm

will try to allocate these new coming jobs to one or some of the available resource(s).

As discussed in Section 5.2.1 and 5.3.1, the FCFSPP and the FLP algorithm always try to

allocate a new job to the next idle resource (which is called Checking If Qualified).

Different from these Checking If Qualified algorithms, PSOPP is a type of Finding the Best

(the job-scheduling algorithms will try to find out the “best” resource from some candidates)

algorithm and all available resources (not necessarily idle) will be candidates when the

PSOPP algorithm tries to make job allocation.

As discussed in Section 5.2.1, Checking if Qualified is quicker in terms of making job

allocation decisions when comparing with Finding the Best approach. If the number of jobs

is far more than the number of resources, Finding the Best approach will become the same

as Checking if Qualified if there is always one candidate at a time. However, as the PSOPP

algorithm uses available resources rather than idle resources as candidates, it is less likely

that the whole Grid has only one candidate at the time when the PSOPP algorithm tries to

make a job allocation decision. If there is more than one candidate when the PSOPP

algorithm tries to make a job allocation decision, the PSOPP algorithm is possible to

93

perform better than Checking if Qualified algorithms as multiple choices are available at the

moment. However, on the other hand, multiple choices also make PSOPP possible to

perform worse than Checking if Qualified algorithms.

5.4.2 Influence of Workload

Here, Workload means the total number of jobs in the Grids at a certain moment. As the

PSOPP algorithm will consider all available resources when it tries to make job allocation

decisions, it is possible to allocate jobs to a busy resource if Workload is high. If all resources

are busy at the moment, then the PSOPP algorithm will have to allocate new jobs to busy

resources. Therefore, Workload influences the PSOPP algorithm in terms of speed (including

both job Makespan and job throughput) greatly.

If the Workload is high (the number of jobs is usually above the number of idle resources),

the PSO algorithm will have to allocate jobs to busy resources and keep one resource have more

than one job at a time. As discussed in Section 5.2.1, keeping one resource have more than one

job at a time is usually difficult to provide benefit in terms of speed. In terms of speed, as the

number of CPU cycles provided by a resource is fixed and as all guest jobs are assumed to have

the same priority, all guest jobs on a resource have to share the CPU cycles at a time. Therefore,

if there is only one guest job on a resource at a time, each job’s Makespan will be the shortest. If

there is more than one guest job on a resource at a time, each job’s Makespan will become

longer and job throughput will tend to be low as well.

If the Workload is low (the number of jobs is usually below the number of idle resources), the

PSOPP algorithm will not have to allocate new jobs to busy resources. Therefore, the influence

to each job’s Makespan will tend to be smaller. However, the result of job throughput will tend

to be low as resources tend to have not enough jobs to process in such a case.

5.4.3 Influence of Fitness Function

In the PSOPP algorithm, the fitness function is used to calculate the fitness value of each

solution. As discussed in Section 4.2.5, the fitness value of a resource is calculated by the

Equation 4.7. It is based on the considerations of both speed (represented by resource’s current

CPU Availability and the number of jobs running on the resource) and reliability (represented

by the Resource Availability Probability) of each resource. The multiply factor x and y are used

to adjust the proportion of speed and reliability. Therefore, if a resource currently has a high

CPU Availability, low number of jobs and high reliability, it is likely to be chosen by the PSOPP

algorithm when the PSOPP algorithm makes job allocations.

5.4.4 Influence of Resource Reliability

Resource reliability means the Availability Interval lasts for a very long time. As discussed in

Section 5.2.1, if resource reliability is unknown or uncertain, each resource may become

unavailable to the Grid at any time. When a resource becomes unavailable to the Grid, all guest

94

jobs running on the resource will be lost. Therefore, if there is only one guest job on a resource

at a time, only one job will be lost. If there is more than one guest job on a resource at a time,

more than one guest job will be lost. As a result, a job-scheduling algorithm’s performance in

terms of reliability will be influenced. As PSOPP may keep a resource have more than one guest

job at a time, the PSOPP algorithm’s performance in terms of reliability will be influenced if

resources reliability is unknown or uncertain.

However, if resource reliability is known in advance, allocating jobs to busy resources

(keeping resources have more than one job at a time) may bring benefits to the PSOPP

algorithm in terms of reliability. Imagine a scenario that two groups of resources are in the Grid,

one group is very reliable (Job Execution Availability is true for a very long time) and the other

group is volatile (Job Execution Availability changes between true and false frequently). In such

a scenario, if allocating jobs to the second group of resources, jobs have to face potential job

failures. So if allocating jobs to the first group of resources only, this will mitigate the problem

of job failure brought by the second group of resources though the first group of resources may

be have more than one job at a time.

5.4.5 Influences of the PSO Algorithm

In the PSO algorithm, various parameters will influence the performance of the PSO

algorithm and the PSOPP algorithm will be influenced as a result. These parameters include:

• The number of particles: Number of particles is a parameter to specify the total number of

particles used for searching the best solution in the PSO algorithm. If a search space is small,

all positions are likely to be covered (even by a small number of particles) so that number of

particles does not influence the performance too much in such cases. However, if the search

space is very large and the number of particles is small, it is difficult for particles to cover

all possible positions and find the best solution. A typical range is 20 to 40 and, for most

problems, 10 particles are enough to obtain good results [Hu06].

• Vmax: Vmax is a parameter to specify the maximum velocity a particle algorithm. If a search

space is small, particles can find the best solution easily so that Vmax does not influence the

performance of the PSO algorithm too much. However, if the search space is very large and

the Vmax is very small, it is difficult for particles to cover all possible positions. According to

[Hu06], the typical value of Vmax is set as the same as the search space. For example, if the

search space is [1, 20], Vmax is typically set as 20.

• The stop condition: In the PSO algorithm, the procedure will stop once if meets the

predefined goal(s) or reaches the maximum number of iterations. In terms of maximum

number of iterations, if the search space is small and all positions can be covered by

particles easily, the maximum number of iteration does not influence the performance of the

PSO algorithm too much. However, if the search space is large and the maximum number of

iteration is small, it will be difficult for particles to find the best solution before reaching the

95

maximum number of iterations.

5.5 Analysis of the PSPP Migration Algorithm

5.5.1 Features of the PSPP Algorithm

As described in Section 4.3.2, the PSPP migration algorithm is a proactive job migration

algorithm used for migrate jobs proactively for avoiding potential job failures. Therefore, this

algorithm will have the following distinct features:

Firstly, the PSPP migration algorithm uses TDE prediction to carry out predictions and then

determine whether to trigger proactive job migrations. Therefore, the performance of the PSPP

migration algorithm is directly influenced by the performance of the TDE prediction method

(more details about the influences will be introduced in the following subsection).

Secondly, the PSPP migration algorithm only checks resources that are busy (running guest

job from the Grid) at the moment. For a resource that is idle (in the state of Available to Grid

but does not have guest job) or unavailable (not in the state of Available to Grid), there is no

need to worry about job migration. Therefore, only busy resource will be checked.

Thirdly, the PSPP migration algorithm carries out the checking procedure regularly. The

algorithm carries out the checking procedure regularly. At the end of each Migration Prediction

Interval, the PSPP migration algorithm will check each busy resource and determine whether

the job on the resource needs migration or not. In addition, the PSPP migration algorithm is also

influenced by some factors and parameters. Therefore, in next subsection, some important

influences will be analysed.

5.5.2 Influences on the PSPP Algorithm

i. Influence of TDE Prediction

According to [Rood08], “A correct prediction is one for which the machine is predicted to

exit on a certain non-available state and it does, or for which the machine is predicted to remain

available throughout the interval, and it does.” Here, “exit on a certain non-available state”

means the result of Resource Availability Probability in the Prediction Period is below 100%.

“Remain available throughout the interval” means the result of Resource Availability Probability

in the Prediction Period is 100%. Based on this definition, there are three terms to describe the

accuracy of a prediction result in different scenarios:

Correct Prediction: If a resource is predicted to exit or not exit Available to Grid state and the

resource turns out to exit or not exit Available to Grid state some time during the Prediction

Period, then the prediction result is Correct Prediction. Furthermore, the Correction Prediction

about resource exit Available to Grid State is Correction Prediction Type 1 and the Correction

Prediction about resource stay in Available to Grid State is Correction Prediction Type 2.

False Alarm: If a resource is predicted to exit Available to Grid state but it turns out NOT to

exit Available to Grid state throughout the Prediction Period, then the prediction result is False

96

Alarm.

Missed Detection: If a resource is predicted to NOT to exit Available to Grid state but it turns

out to exit Available to Grid state some time during the Prediction Period, then the prediction

result is Missed Detection.

Table 5-2 shows the prediction accuracy in different scenarios.

Checking Period Prediction Period Prediction Accuracy
exit Available to Grid exit Available to Grid Correct Prediction Type 1
exit Available to Grid stays in Available to Grid False Alarm

stays in Available to Grid exit Available to Grid Missed Detection
stays in Available to Grid stays in Available to Grid Correct Prediction Type 2

Table 5-1: Prediction Accuracy

Based on these terms, the TDE prediction method influences the PSPP migration algorithm in

the following ways:

1. The performance of the PSPP migration algorithm is directly influenced by the accuracy of

results from the TDE prediction scheme.

If the TDE prediction scheme predicts that a resource will stay in the state of Available to

Grid throughout the Prediction Period and it is a Correct Prediction Type 2, then the job

migration procedure will not be triggered and the job migration also turns out to be not

necessary. This type of Correction Prediction will avoid PSPP algorithm wasting time on

unnecessary job migration. However, note the effect of this type of prediction is actually the

same as no prediction.

If the TDE prediction method predicts that a resource will exit Available to Grid state

during the Prediction Period and it is a Correct Prediction Type 1, then the job migration

procedure will be triggered and the job migration turns out to be necessary. This type of

Correct Prediction will protect jobs on the resource from job failures because of the

resource becoming unavailable.

If the prediction algorithm predicts that a resource will exit Available to Grid state during

the Prediction Period but it is a False Alarm, then the job migration procedure will be

triggered and the job migration turns out to be unnecessary. The reasons why it is

unnecessary are:

• Firstly, it will be a waste of idle CPU cycles of the resources if all jobs on the

resource are migrated and the resource will leave idle until being allocated new

job(s). However, this influence might be trivial as a new job may be allocated to

this resource after a short period time (such as a couple of seconds).

• Secondly, it may lengthen job(s)’s Makespan reduce job throughput as it will take

some time to accomplish the procedure of job migration. However, this influence

might be trivial, as the job migration procedure will usually take a couple of

seconds.

If the prediction algorithm predicts that a resource will stay in Available to Grid state

97

during the Prediction Period but it is a Missed Detection, then the job migration procedure

will not be triggered and the job migration turns out to be very necessary. In such a case, all

job(s) on the resource will be lost and the original job(s) needs to be allocated to a new

resource and process from the beginning, which may lengthen job(s)’s Makespan and

reduce job throughput.

2. As the PSPP migration algorithm and the FCFSPP job-scheduling algorithm are both based

on TDE prediction, some factors and parameters influencing the FCFSPP algorithm will

also influence the PSPP migration algorithm.

Firstly, the PSPP migration algorithm encounters the same system states (described in

Section 5.2.2) as the FCFSPP algorithm. The TDE prediction method will make a correct

prediction when facing all cases except cases 2 and 4.

In case 1, the resource is predicted to stay in the state of Available to Grid throughout the

Prediction Period and the resource turns out to stay in the state of Available to Grid

throughout the Prediction Period. Therefore, the prediction will be a Correct Prediction

when facing these two cases.

In case 3 and 5, the resource is predicted to exit the state of Available to Grid during the

Prediction Period and the resource turns out to exit the state of Available to Grid during the

Prediction Period. Therefore, the prediction will be a Correct Prediction when facing these

two cases as well.

In case 2, the resource is predicted to exit the state of Available to Grid during the

Prediction Period but the resource turns out to stay in the state of Available to Grid during

the Prediction Period. Therefore, the prediction will be a False Alarm when facing these

two cases as well.

In case 4, the resource is predicted to stay in the state of Available to Grid throughout the

Prediction Period but the resource turns out to exit the state of Available to Grid during the

Prediction Period. Therefore, the prediction will be a Missed Detection when facing these

two cases.

Second, the factor “∆t between Checking Day and Prediction Day” (described in Section

5.2.2) will also influence the performance of PSPP algorithm. If the value of ∆t is small, a

prediction result will tends to be a Correct Prediction. On the other hand, if the value of ∆t

is large, the prediction result will tends to be either a False Alarm or Missed Detection.

Third, the factor “Similarity of Job Execution Availability between Checking Period and

Prediction Period” (described in Section 5.2.2) will also influence the performance of PSPP

algorithm. If the pattern of Job Execution Availability in Checking Period is similar to

pattern of Job Execution Availability in Prediction period, the prediction result will tend to

be a Correct Prediction. On the other hand, if the pattern of Job Execution Availability in

Checking Period is dissimilar to pattern of Job Execution Availability in Prediction period,

the prediction result will tends to be a False Alarm or Missed Detection.

98

Fourth, the parameter Number of Checking Days will also influence the performance of

PSPP algorithm. According to the analysis about Number of Checking Days in Section 5.2.2,

when the value of Number of Checking Days becomes larger, the total length of Checking

Period becomes longer so it is more likely to have an Unavailability Events in the Checking

Period. Therefore, the result of Resource Availability Probability tends to below 100% more

likely and the TDE prediction method tends to predict many resources to exit the state of

Available to Grid during the Prediction Period.

ii. Influence of Checking Period (or Prediction Period)

In the PSPP algorithm, if the length of Checking Period (or Prediction Period) becomes

longer, it is more likely to have Unavailability Events in the Checking Period for each resource.

Therefore, the result of Resource Availability Probability tends to below 100% and the TDE

prediction method tends to predict each resource to exit the state of Available to Grid during the

Prediction Period. On the other hand, if the length of Checking Period (or Prediction Period)

becomes shorter, it is more likely to have Unavailability Events in the Checking Period for each

resource. Therefore, the result of Resource Availability Probability tends to be 100% and the

TDE prediction method tends to predict many resources to stay in the state of Available to Grid

during the Prediction Period.

The length of Checking Period will only influence the prediction results, but it will not

influence the accuracy of the prediction results.

5.6 Analysis of the CBR Migration Algorithm

5.6.1 Features of the CBR Migration Algorithm

The proposed CBR migration algorithm has the following features:

Firstly, it uses each resource’s CPU Availability Percentage and a CPU Migration Threshold

to predict whether a resource will exit the state of Available to Grid or not. Different from other

job-scheduling or migration algorithm proposed in this research, CBR migration algorithm does

not used the adopted the TDE prediction method to make predictions.

Secondly, it uses CBR to refine the job migration decisions. As discussed in Section 4.3.2,

CBR migration algorithm uses CPU Migration Threshold as solutions to solve the problem of

whether to trigger job migration procedure or not. More importantly, CBR migration algorithm

revises the value of CPU Migration Threshold according to the accuracy level of previous

migration decisions.

Thirdly, the same as the PSPP migration algorithm, CBR migration algorithm only checks

resources that are busy (running guest job from the Grid) at the moment. For a resource that is

idle (in the state of Available to Grid but does not have guest job) or unavailable (not in the

state of Available to Grid), there is no need to worry about job migration. Therefore, only busy

resource will be checked.

99

Thirdly, as with the PSPP migration algorithm, CBR carries out the checking procedure

regularly. The algorithm carries out the checking procedure regularly. At the end of each

Migration Prediction Interval, CBR migration algorithm will check each busy resource and

determine whether the job on the resource needs migration or not.

In addition, CBR migration algorithm is also influenced by some factors and parameters;

these will be considered in Section 5.6.2.

5.6.2 Influence of CPU Availability Percentage

CBR migration algorithm observes the change of CPU Availability Percentage and then

makes prediction based on the current value of CPU Availability Percentage.

Therefore, the performance of the proposed CBR migration algorithm depends on whether

the CPU Availability Percentage can provide any useful information. If all resources’ CPU

Availability Percentage will become low before they become unavailable, then using CBR

migration algorithm will be possible to observe this change and then make correct job migration

decisions. However, on the other hand, if all resources’ CPU Availability Percentage does not

become low before they become unavailable, then using CBR migration it is difficult to observe

the change of CPU Availability Percentage and make correct job migration decisions. It requires

all resource have similar behaviour when they become unavailable.

5.6.3 Influence of CPU Migration Threshold

In CBR migration algorithm, the CPU Migration Threshold is a very important value as

whether to trigger job migration decisions are based on this value. If resources’ CPU

Availability Percentage always get lower than the CPU Migration Threshold before become

unavailable, using the CPU Migration Threshold to make predictions will be a good solution.

If resources have CPU Availability Percentage higher than the CPU Migration Threshold will

also exit the state of Available to Grid soon, then using the CPU Migration Threshold to make

predictions will probably still be good as CBR migration algorithm will probably find a suitable

CPU Migration Threshold by adjusting the value of CPU Availability Percentage regularly.

In addition to the value of the CPU Migration Threshold, the range of the value of CPU

Migration Threshold is also important. As CPU Availability Percentage is always between 0%

and 100%, the value of the CPU Migration Threshold should at most ranges from 0% to 100%.

However, if a resource has a CPU Availability Percentage of 0%, then the resource is already

left the state of Available to Grid so CBR migration algorithm will not make prediction for such

a resource. As a result, the value of the CPU Migration Threshold should not be 0% at any time.

On the other hand, if the value of the CPU Migration Threshold is too high (e.g. 100%), then all

resources are unqualified and they will all need migration in such a case. Therefore, the value of

the CPU Migration Threshold should not be 100% at any time. So the maximum range of the

CPU Migration Threshold is (0%, 100%)

Only defining the range of the CPU Migration Threshold as (0%, 100%) might not be enough.

100

If the value of the CPU Migration Threshold is close to 0%, a small proportion of resources will

tend to be considered as unqualified. On the other hand, if the value of the CPU Migration

Threshold is close to 0%, a large proportion of resources will be considered as unqualified. So

the range of the value of the CPU Migration Threshold can be further restricted to a smaller

range, such as (0%, 30%).

5.6.4 Influence of Migration Prediction Interval

The Migration Prediction Interval is a parameter that influences the behaviour of CBR

migration algorithm. In brief, if the value of the Migration Prediction Interval is small, then

CBR migration algorithm tends to review the value of the CPU Migration Threshold frequently

and the value of the CPU Migration Threshold might be adjusted frequently. On the other hand,

if the value of the Migration Prediction Interval is large, then CBR migration algorithm tends to

review the value of the CPU Migration Threshold infrequently and the CPU Migration

Threshold will be adjusted infrequently as a result.

5.6.5 Influence of Adjustment Percentage

In addition to Migration Prediction Interval, Adjustment Percentage is another parameter that

influences the behaviour of CBR migration algorithm.

When the CPU Migration Threshold needs an adjustment, the value of Adjustment

Percentage will be generated over the range (0, Max%]. Here “(0, Max%]” means the value of

Adjustment Percentage should be above 0 and not larger than the predefined maximum value

Max. Therefore, if the maximum value of Adjustment Percentage is small, the value of CPU

Migration Threshold will tend to be adjusted a small value at a time. So if the ideal value of

CPU Migration Threshold is not far away from the current value of CPU Migration Threshold,

then making small adjustments at a time tends to get to this ideal value quickly. However, if the

ideal value of CPU Migration Threshold is far away from the current value of CPU Migration

Threshold, adjusting a small amount at a time tends to delay the time to get to this ideal value.

101

Chapter 6 Characteristics of Real Resources
Resource availability data traces record different resource availability data over time (e.g. an

hour, a day, etc). As mentioned in Section 4.2.2, three levels of availability can be used to

describe a resource’s availability (Resource Availability, Job Execution Availability and CPU

Availability). Host Availability indicates whether a resource is in the Grid or not but it does not

mean the Grid can utilise the resource’s idle CPU cycles or not. CPU Availability and Job

Execution Availability are more important terms as they indicate whether the resource allows

guest jobs to run and how many CPU cycles the resource contributes to the Grid in a certain

period of time. In [Kondo09], four sets of resource availability data traces that record CPU

Availability in different real volunteered resources based Grids are provided. Therefore, some

important characteristics of the resources (especially Job Execution Availability) in these four

data sets will be described and discussed in this chapter.

6.1 Data Traces Overview
In terms of collecting resource availability data traces, some research has been done before.

In [Brevik03], the authors designed an “up-time sensor” sensor to record each machine’s uptime

from the /proc file system. In [Long95], the authors used Remote Procedure Call (RPC) to get a

response from each resource. If a resource replies, then the resource is marked as up, otherwise,

the resource will be considered as down. In [Bhagwan03], the authors designed a “prober” in

peer-to-peer networks. At regular intervals, the “prober” performs a lookup for a certain

resource. If the resource responds to the prober, then the resource is considered as up, otherwise,

the resource is down. In [Saroiu02], the authors used ping/pong messages for peers to discover

other nodes. In [Dinda99][Dinda02], the authors use the kernel to collect and record resources’

CPU load at regular intervals. In [Kondo09], the authors run their CPU-bound, fixed-time

length tasks on different resources to record CPU availability. At regular intervals, the

information of CPU availability is written into a trace file.

A number of data traces from the same Grid compose a data set and there are few resource

availability data sets available in the Internet. On the website of [Dinda00], the authors

published two sets of data traces collected from Pittsburgh Supercomputing Center (PSC) and

Computers, Media, and Communication Laboratory (CMCL) of Carnegie Mellon University in

two periods (August 1997 and March 1998). The kernel records the resource CPU load once a

second. So there are two columns in each trace file, one for the timestamp and the other for the

value of measured CPU load. Though the CPU load and CPU cycles delivered to the Grid (CPU

availability) are correlated, CPU load does not necessarily provide accurate information about

CPU availability, this is because of the priority issue in Unix systems. In Unix, processes share

CPU time according to their priority. Therefore, the value of the CPU load does not mean all the

spare CPU time will be available to the Grid.

102

On the website of [Kondo09], the author published four data sets collected from different

volunteered resources based Grids. All these data sets were collected with the approach they

proposed in [Kondo05][Kondo07]. The publisher claims that the CPU Availability are

accurately recorded by the fixed-time length tasks on the resource, so these four data sets were

used for analysis and simulation evaluations in this research.

6.1.1 Analysed Data Sets

There are four data sets provided on the website of [Kondo09]: UCB, SDSC, LRI and DEUG.

The first data set is called UCB, which was originally obtained from [Arpaci95]. As mentioned

above, the authors of [Kondo09] collected these data by using a daemon program to log CPU

and keyboard/mouse activity every second of the resources. Note here the daemon program only

records whether a resource is up and whether any local activity occurs. As a result, Resource

Availability and Job Execution Availability can be derived from the log file while CPU

availability cannot be derived. However, according to [Kondo05], a resource is considered to be

Available to the Grid when the Resource load is below 5% and no local activity occurs during

that time, so the publishers believe the result of post-processing is most likely to be accurate.

Therefore, [Kondo05] post-processed the UCB trace files and published the processed data

traces on their website. The traces record 80 resources’ CPU Availability in 10 consecutive

working days from 28th of February to 9th of March in 1994. According to their description, the

resources are quite stable during off-peak (non-business) hours. So the traces only show CPU

Availability once a second during peak (business) hours of each day. In this data set, the

business hours are from 10AM to 5PM. As the data set is more than ten years old, the publisher

also mentioned that this might be a potential weakness with this data set.

The second data set is called SDSC, collecting from the Entropia DCGridTM desktop grid

software system that was deployed at San Diego Super Computing Centre (SDSC). The traces

record 244 resources’ CPU Availability in 7 consecutive working days from 3rd of September to

12th of September in 2003. As for data set SDSC, the traces show the CPU Availability once a

second during peak hours in each day. The business hour in this data set is 9AM to 5PM.

According to [Kondo05], “30 are used by secretaries, 20 are public Resources that are available

in SDSC’s conference rooms, 12 are used by system administrators, and the remaining are used

by SDSC staff scientists and researchers.”

The third data set is called LRI, collecting from the XtremWeb desktop grid software system

deployed at University of Paris-Sud. The traces record resources’ CPU Availability in

consecutive working days from 5th of January to 26th of January in 2005. Each day the trace

records the resources’ CPU Availability once a second. For the purpose of simulation [Kondo05],

the traces of resources on different days were pooled together to increase the number of the

resources in the platform. After post-processing, 275 resources’ data traces in 7 consecutive

working days were created. According to [Kondo05], all the resources in this data set are a

103

cluster computer.

The fourth data set is called DEUG, also collecting from the XtremWeb desktop grid software

system deployed at University of Paris-Sud. The traces record 136 resources’ CPU availability

in consecutive working days from 5th of January to 26th of January in 2005. In each day, the

trace records the CPU availability once a second during business hours – 6AM to 6PM. As with

DEUG, for the purpose of simulation [Kondo05], the traces of resources on different days were

pooled together to increase the number of the resources in the platform. After post-processing,

680 resources’ data traces in 7 consecutive working days were created. All the resources in this

data set are computers in different classrooms [Kondo05].

6.1.2 Data Trace Formats

For each data set, a file named “Resourceinfo.dat” contains some general information about

each resource. The information includes each resource’s name, clocks rates and maximum

number of CPU cycles delivered to the Grid per second. Here is a part of the “Resourceinfo.dat”

of data set SDSC:
Resource Name Clock Rates Maximum Number of CPU Cycles
MWAN-2K 179 6851.7776566835
RITKE-PC 198 7706.3301532329
OUYAR 198 7738.4406779661
LAGRANGE-2K 297 14628.53780466
CENON-2K 298 12438.263009999
BASEBALL-2K 330 13775.014899006
LPW8 331 13778.188795437
CRBPUB-4 331 14226.06326689
POTOROO-2K 333 16529.418732542
JCZECH-2K 397 19508.218134882

A single data trace file records a single resource’s CPU Availability in the business hours of a

single day. The business hour is defined as 10am to 5pm, 9am to 5pm, 6am to 6pm in data set

UCB, SDSC and DEUG. For data set LRI, 24 hours of a day are considered as the business

hours and recorded.

In each trace file, there are three columns in a line. The first and the second column shows the

epoch start and finish time respectively. The third column shows the CPU cycles delivered to

the Grid between the epoch start time and epoch finish time. For example, here is a part of

extracted from a trace file:
Start time End time CPU cycles Delivered to Grid
0 1 110653
1 2 110395
2 3 110650
3 4 110653
4 5 110653
5 6 110653
6 7 -1
7 8 -1
8 9 -1
9 10 -1

“0 1 110653” means resource’s CPU Availability (CPU cycles delivered to the Grid) from

104

time 0 to 1 is 110653 and it also indicates resource’s Job Execution Availability is true in that

period. In “6 7 -1”, CPU Availability is 0 from time 6 to 7 and it indicates resource’s Job

Execution Availability is false in that period.

6.1.3 Job Execution Availability Characterisation

In terms of resource CPU Availability, the publisher provides detailed information in his PhD

dissertation [Kondo05]. So here only some important points will be summarised:

First, in terms of Job Execution Availability, resources are volatile during the peak hours in

every working day except the LRI trace. That means the number of available resources vary a

lot during the peak hours. According to their statistical results, the mean length of all platforms

is about 2.6 hours. Even in the most volatile platform – UCB, the availability intervals tend to

be 10 minutes or greater.

Second, job failure rates on each platform are correlated with the job size and it can be

approximated as a linear function of Job Size. Whether a job can be completed or not is directly

influenced by the length of Availability Intervals. If an Availability Interval is long enough, then

the job can be completed. Otherwise, the job will be failed before completion.

In [Kondo05], the authors chose hundreds of thousands of random points in the data traces

and then allocated random size jobs to the resources at these points. If the allocated jobs can

finish successfully, then it was counted as a success. Otherwise, it was counted as a failure.

After producing statistics, the author found that task failure rate has a strong relationship with

the job size on all platforms and the lowest correlation coefficient is 0.98.

Third, on all platforms, Job Execution Availability tends to be independent between resources

used by separate users. The authors studied the correlation of Job Execution Availability

between paired resources. They used a method proposed in [Bolosky00] to study the

correlations between resources. Specifically, this method compares the availability for each

paired resources and see if both resources are available or unavailable at the same time. After

study, the authors found resources on all four platforms show significant correlation relative to

random if separate users use the resources.

If the same user uses multiple resources, e.g. resources with wake-on-LAN enabled Ethernet

adapters that are controlled by a single network administrator, or resources used to run batch

jobs, then these resources show strong correlation in terms of Job Execution Availability.

Fourth, the length of Availability Interval is not correlated with resources’ clock rates. This

means a resource with high clock rates does not necessarily used more often than a resource

with a low clock rates.

Fifth, the length of Availability Interval is not correlated with the percentage of time a

resource is unavailable. This means resources with high percentage of available time do not

necessarily have longer availability intervals than resources have low percentage of available

time.

105

Though plenty of information has been provided in [Kondo05], there is still some important

characteristics information not provided, especially in terms of Job Execution Availability

correlations within each single resource. In addition, such kind of information is very important

to the job-scheduling algorithms proposed in this thesis. Therefore, some detailed information

about these terms is discussed next.

There are 80 resources in data set UCB and 10 day’s data are provided in [Arpaci95]. Figure

6.1 shows the number of available resource over time in 10 days and Figure 6.2 shows the

average number of available resource over time in this data set. Overall, the number of available

resources varies between 56 and 78 over time and the average number of available resources

varies between 65 and 73.

The variance of the average number of available resources over time is 2.719. According to

[Kondo05], resources’ Average Availability Interval in UCB is only 0.166 hours and the

Average Unavailability Interval in UCB is 0.119 hours, which indicates the resources are quite

volatile (resource’s Job Execution Availability changes between true and false frequently).

Overall, the total number of Unavailability Events is 6076, which means all resources have

607.6 Unavailability Events in a day on average and each resource has 7.595 Unavailability

Events in a day on average.

Figure 6-1: Number of Available Resources for Different Days (UCB)

Figure 6-2: Average Number of Available Resources over Time (UCB)

There are 244 resources in data set SDSC and 7 day’s data are provided in [Kondo05]. Figure

6.3 shows the number of available resource over time in 7 days and Figure 6.4 shows the

average number of available resource over time in this data set. Overall, the number of available

resources varies between 0 and 155 over time and the average number of available resources

varies between 74.7 and 115.

The variance value of average number of available resources over time is 54.375, which

106

indicates the average number of available resource over time is quite unstable. According to

[Kondo05], resources’ Average Availability Interval in SDSC is 2.034 hours, which indicates

that the number of Unavailability Events will be lower than UCB. On the other hand, resource’s

average Unavailability Interval in SDSC is 1.256 hours. Overall, the total number of

Unavailability Events is 2370, which means all resources have about 339 Unavailability Events

on average in a day, and each resource has about 1.388 Unavailability Events on average in a

day, which is lower than the number of Unavailability Events in UCB.

Figure 6-3: Number of Available Resources for Different Days (SDSC)

Figure 6-4: Average Number of Available Resources over Time (SDSC)

There are 275 resources in data set LRI and 7 day’s data are provided in [Kondo05]. Figure

6.5 shows the number of available resource over time in 7 days and Figure 6.6 shows the

average number of available resource over time in this data set. Overall, the number of available

resources varies between 40 and 109 over time and the average number of available resources

varies between 73.2 and 95.

The variance value of the average number of available resources over time is 12.801, which

indicates the average number of available resources over time is quite unstable. According to

[Kondo05], resources’ Average Availability Interval in LRI is 23.535 hours, which indicates the

number of Unavailability Events will be lower than UCB and SDSC. On the other hand, the

resource’s average Unavailability Interval in LRI is 3.756 hours. Overall, the total number of

Unavailability Events is 390, which means all resources have about 55.714 Unavailability

Events on average in a day and each resource has about 0.203 Unavailability Events on average

in a day, which is much lower than the number of Unavailability Events in UCB and SDSC.

107

Figure 6-5: Number of Available Resources for Different Days (LRI)

Figure 6-6: Average Number of Available Resources over Time (LRI)

There are 680 resources in data set DEUG and 7 day’s data are provided in [Kondo05].

Figure 6.7 shows the number of available resource over time in 7 days and Figure 6.8 shows the

average number of available resource over time in this data set. Overall, the number of available

resources varies between 57 and 184 over time and the average number of available resources

varies between 89.3 and 149.

The variance value of average number of available resources over time is 254.822, which

indicates the average number of available resource over time is very unstable. According to

[Kondo05], resources’ Average Availability Interval in DEUG is 0.477 hours, which indicates

the number of Unavailability Events is lower than UCB. On the other hand, resource’s average

Unavailability Interval in DEUG is 0.357 hours. Overall, the total number of Unavailability

Events is 10764, which means all resources have about 1537.714 Unavailability Events on

average in a day and each resource has about 2.261 Unavailability Events in a day on average,

which is lower than the number of Unavailability Events in UCB but higher than SDSC and

LRI.

Figure 6-7: Number of Available Resources for Different Days (DEUG)

108

Figure 6-8: Average Number of Available Resources over Time (DEUG)

According to the above, each data set has its own characteristics. For example, they have quite

different Average Availability Interval and Average Unavailability Interval. For comparison,

some important results are summarised in Table 6-1.

Name
of data

set

Total
number of
resources

Number
of days

analysed

Length of
a data
trace

(hours)

Average
Availability

Interval
(hours)

Average
Unavailability

Interval (hours)

Variance of
available
resources
over time

Average number of
Unavailability

Events for per day
for each resource

UCB 80 10 7 (10am
to 5pm) 0.166 0.119 2.719 7.595

SDSC 244 7 8 (9am to
5pm) 2.034 1.256 54.375 1.388

LRI 275 7 24 23.535 3.756 12.801 0.203

DEUG 680 7 12 (6am
to 6pm) 0.477 0.356 254.822 2.261

Table 6-1: UCB, SDSC, LRI and DEUG Data Sets

6.1.4 Job Execution Availability Correlations

Some job-scheduling and job migration algorithms proposed in Chapter 4 are based on the

TDE prediction method (described in Section 4.2.1). As discussed in Chapter 5, the accuracy of

the TDE prediction method is highly reliant on the similarity of Job Execution Availability

between the Checking Period (the period of availability history used for prediction) and

Prediction Period (the period to predict). If resources' Job Execution Availability in the

Prediction Period is similar to the availability in the Checking Period, then the prediction will

be accurate and helpful for job scheduling. Therefore, to check if each single resource has such

predictable pattern is important.

As mentioned in Section 5.2.2, Pearson product-moment correlation coefficient (PMCC)

[Rodgers88] [Stigler89] is a useful tool to find out the relationships between different days'

availability pattern for each single resource. If we have a series of n measurements of X and Y

written as xi and yi where i = 1, 2, ..., n, then the Pearson product-moment correlation coefficient

can be used to estimate the correlation of X and Y" [PMCC10]. So in the case of prediction, X

can be considered as the Checking Period and Y can be considered as the Prediction Period. If

the series values of xi and yi have strong relationship, then the results of PMCC will close to +1

or -1. On the other way round, if PMCC is close to +1 or -1, then X and Y will have strong

linear relationship. In other word, If PMCC is close to +1 or -1, then resources' availability is

more predictable, and prediction results are more useful for job scheduling. As discussed in

Section 6.1.3, the downloaded data trace files not only records resources’ CPU Availability.

109

Therefore, to calculate the Job Execution Availability, the trace files have been added in a new

column to show the value of Job Execution Availability clearly. Here is an example:
Start time End time CPU cycles Delivered to Grid Job Execution Availability

0 1 110653 1
1 2 110653 1
2 3 110650 1
3 4 110653 1
4 5 110653 1
5 6 110653 1
6 7 -1 0
7 8 -1 0
8 9 -1 0
9 10 -1 0

If the value of CPU Availability is above 0, then Job Execution Availability is true and it is

represented by the value of 1. If the value of CPU Availability is below 0, then Job Execution

Availability is false and the value of Job Execution Availability is 0. A resource's Job Execution

Availability in a period (e.g. 1 hour, 1 day) can be considered as a series Si . Therefore, the

correlation between different periods can be calculated. Based on this idea, each the correlation

coefficient values of each resource’s Job Execution Availability in different days and different

hours were calculated.

In brief, the correlation coefficient values between different days were calculated using the

following method: Firstly, a single resource's availability traces are selected. As mentioned

above, each resource has n days’ traces and each day’s trace is in a separate file. Next, each

day's trace is considered as a Daily Series and then the relationships between a pair of series are

calculated. For example, assume resource i’s availability traces a picked, day1
iS , day2

iS and so on.

Here, day1
iS means resource i’s Daily Series in day 1, day2

iS means resource i’s Daily Series in

day 2 and so on. So PMCC of paired series are calculated, e.g. (day1
iS , day3

iS), (day2
iS , day5

iS) and

so on. PMCC results of different days are calculated by the Equation 5.1.

The correlation coefficient values between different hours were calculated with the following

method: firstly, a single resource's availability traces are picked at a time. Each resource has n

days’ traces and each day’s trace is in a separate file, which is called Daily Series. A Daily

Series is composed of a couple of hours’ data (e.g. 9am to 5pm) and each hour’s data is

considered as an Hourly Sub-Series. Then the relationship between a pair of Hourly Sub-Series

is calculated. For example, assume the resource i’s availability traces picked are day1
iS , day2

iS and

so on. day1
iS is composed of hour1 of day1

iS , hour2 of day1
iS , etc and day2

iS is composed of hour1 of day2
iS ,

hour2 of day2
iS , etc. So PMCC of paired Hourly Sub-Series are calculated, e.g.

(hour1 of day1
iS , hour1 of day2

iS), (hour3 of day2
iS , hour3 of day5

iS) and so on. PMCC results of different hours

are calculated via Equations 5.1 to 5.3.

With the PMCC equations, some results about resource availability correlations between

different days and different hours of a resource have been calculated for the downloaded data

110

sets of UCB, SDSC, LRI and DEUG and important results are summarised. The aim of these

correlation calculations is to find out if there is any strong correlation between different

days/hours for each single resource.

Note here the results of PMCC calculations only include correlations of different data traces

within a certain resource, not including correlations of different data traces between different

resources. The reason is because the latter type of calculation has been done by [Kondo05],

which is briefly described in Section 6.1.3.

Due to the limitations of PMCC calculation method, it is impossible to calculate PMCC

results for some Daily Series or Hourly Sub-Series and these Daily Series or Hourly Sub-Series

are excluded from the PMCC calculation. For a Daily Series or an Hourly Sub-Series, its

standard deviation can be 0 (such a Daily Series is called Zero Standard Deviation Daily Series

and such an Hourly Sub-Series is called Zero Standard Deviation Hourly Sub-Series) as the

value of Job Execution Availability does not change throughout the whole series. For example, a

resource is not available in a certain day so that Job Execution Availability is in that day will be

always 0. Such a Zero Standard Deviation Daily Series is called Zero Standard Deviation

Unavailable Daily Series. Similarly, a resource is not available in a certain hour so that Job

Execution Availability is in that hour will be always 0. Such a Zero Standard Deviation Hourly

Sub-Series is called Zero Standard Deviation Unavailable Hourly Sub-Series. On the other hand,

if a resource is available in a certain day so that Job Execution Availability is in that day will be

always 1. Such a Zero Standard Deviation Daily Series is called Zero Standard Deviation

Available Daily Series. Similarly, a resource is available in a certain hour so that Job Execution

Availability is in that hour will be always 1. Such a Zero Standard Deviation Hourly Sub-Series

is called Zero Standard Deviation Available Hourly Sub-Series.

Zero Standard Deviation Daily Series and Zero Standard Deviation Hourly Sub-Series make

it impossible to calculate PMCC result with Equation 5.1 as the result of standard deviation in

Equation 5.2 is the denominator in Equation 5.1. Therefore, these Daily Series and Hourly

Sub-Series are excluded from the PMCC calculation.

In UCB, each resource has 10 days' data traces so there are 10 data traces to be calculated for

each resource. Each data trace is called a Daily Series. There are 80 resources in the data set of

UCB. Overall, there are 800 (80 * 10) series for all 80 resources in the UCB data set. In these

800 Daily Series, 193 Daily Series are Zero Standard Deviation Daily Series. Therefore, these

193 Zero Standard Deviation Daily Series are not valid and excluded from the PMCC

calculations while other 607 series (such a Daily Series is called Non-zero Standard Deviation

Daily Series) were used.

Overall, the PMCC results of valid paired Non-zero Standard Deviation Daily Series range

from -0.59742 to 0.84117 with the mean value 0.06878. Figure 6.9 shows the range of PMCC

results.

111

Figure 6-9: Daily Series PMCC Range of Results in UCB

There are a number of ways to interpret the PMCC results in [Kumar06][Simon05]

[Correlation10][VSS10]. [Cohen88] argues that all criteria are in some ways arbitrary and

should not be observed too strictly. However, according to [VSS10], “As a rule of thumb,

correlation coefficients between .00 and .30 are considered weak, those between 0.30 and 0.70

are moderate and coefficients between .70 and 1.00 are considered high”. Therefore, the PMCC

interpretation below will use these criteria: if absolute value of PMCC is below 0.3, then the

correlation is considered as low. If the absolute value of PMCC is between 0.3 and 0.7, then the

correlation is considered medium. If the absolute value of PMCC is between 0.7 and 1, then the

correlation is considered high.

Figure 6-10: Daily Series PMCC Distribution in UCB

Overall, according to Figure 6.10, 85.68% (1927 PMCC results out of 2249) of the absolute

values of PMCC results are small (below 0.3). 14.10% (317 PMCC results out of 2249) is

medium (not smaller than 0.3 and below 0.7) and only 0.22% (5 PMCC results out of 2249) is

large (between 0.7 and 1). Therefore, in data set UCB, most correlations between different

Non-zero Standard Deviation Daily Series are low for each resource, which means the

resources’ Non-Zero Standard Deviation Daily Series tend to be independent on different days.

In UCB, 7 hours’ data (from 10am to 5pm) were recorded for each resource in each day.

Therefore, a Daily Series can be divided into 7 Hourly Sub-Series. Each single resource is

available for 10 days so each resource has 70 (10*7) Hourly Sub-Series and all 80 resources

have 5600 (80*10*7). In these 5600 Hourly Sub-Series, 3057 Hourly Sub-Series' are Zero

Standard Deviation Hourly Sub-Series and these 3057 sub-series were excluded from the PMCC

calculations and 2543 Hourly Sub-Series (such an Hourly Sub-Series is called Non-zero

Standard Deviation Hourly Sub-Series) were used.

112

Figure 6-11: Hourly Sub-Series PMCC Range of Results in UCB

Figure 6-12: Hourly Sub-Series PMCC Distribution in UCB

According to Figure 6.12, in UCB, 78.17% (5281 PMCC results out of 6756) of all PMCC

results’ absolute value is below 0.3 (which are considered as low correlations), 20.35% (1375

PMCC results out of 6756) is below 0.7 (which are considered as medium correlations) and

1.48% (100 PMCC results out of 6756) is between 0.7 and 1 (which as considered as high

correlations). Therefore, in data set UCB, most correlations between different Non-zero

Standard Deviation Hourly Sub-Series are low for each resource, which means the resources’

Non-Zero Standard Deviation Hourly Sub-Series tend to be independent in different hours.

There are 244 resources in data set of SDSC and each resource has 7 days' data traces. For a

resource, Not every single resource is available for 7 days and there are 1708 data traces (Daily

Series) overall for 244 resources. In these 1708 Daily Series, 755 Daily Series are Zero Standard

Deviation Series. Therefore, all these 755 Daily Series were excluded in the PMCC calculations

while the other 953 Non-zero Standard Deviation Series were included.

Overall, the PMCC results of Non-zero Standard Deviation Daily Series range from -0.84933

to 0.98897 with the mean value 0.03628. Similar to UCB, the mean is positive but close to 0.

Therefore, the correlation between different days' availability pattern is low and positive on

average in SDSC. Figure 6.13 shows the range of PMCC results.

113

Figure 6-13: Daily Series PMCC Range of Results in SDSC

According to Figure 6.14, in SDSC, 76.79% (1509 PMCC results out of 1965) of the absolute

value of PMCC is below 0.3. 21.68% (426 PMCC results out of 1965) is not smaller than 0.3

and below 0.7 and only 1.53% (30 PMCC results out of 1965) is between 0.7 and 1. Therefore,

in data set SDSC, most correlations between different Non-zero Standard Deviation Daily Series

are low for each resource, which means the resources’ Non-zero Standard Deviation Daily

Series tends to be independent in different days.

Figure 6-14: Daily Series PMCC Distribution in SDSC

In data set SDSC, 8 hours’ data (from 9am to 5pm) were recorded for each resource in each

day. Therefore, a Daily Series can be divided into 8 Hourly Sub-Series. As mentioned above, not

every single resource is available for 7 days and there are 1708 data traces (Daily Series).

Therefore, there are 13664 (1708*8) Hourly Sub-Series for all 244 resources. In these 13664

Hourly Sub-Series, 11253 Hourly Sub-Series' are Zero Standard Deviation Hourly Sub-Series.

Therefore, these 11253 Hourly Sub-Series were excluded from the PMCC calculations and other

2411 Non-zero Standard Deviation Hourly Sub-Series were used.

Figure 6-15: Hourly Sub-Series PMCC Range of Results in SDSC

114

Figure 6-16: Hourly Sub-Series PMCC Distribution in SDSC

According to Figure 6.16, in SDSC, 45.33% (859 PMCC results out of 1895) of all PMCC

results’ absolute value is not larger than 0.3 (which are considered as low correlations), 41.48%

(786 PMCC results out of 1895) is not larger than 0.7 (which are considered as medium

correlations) and 13.19% (250 PMCC results out of 1895) is between 0.7 and 1 (which is

considered as high correlations). Therefore, in SDSC, most correlations between different

Hourly Sub-Series are not high (86.81% results are below 0.7), for each resource, which means

the resources’ Non-zero Standard Deviation Hourly Sub-Series tend to low small or medium

correlations in different hours.

There are 275 resources in the data set of LRI and each resource has 7 days' data traces.

Therefore, there are 1925 (275*7) data traces (Daily Series) overall for 275 resources. In these

1925 Daily Series, 1444 Daily Series are Zero Standard Deviation Series. Therefore, these 1444

Daily Series were excluded from the PMCC calculations and other 481 Daily Series were

included in the PMCC calculations.

Overall, the PMCC results of these Non-Zero Standard Deviation Daily Series are ranged

from -0.98692 to 0.69623 with the mean value -0.19927. Different from UCB and SDSC, the

mean of PMCC in LRI is negative so this means the correlation between different days'

availability pattern is a decreasing linear relationships. In addition, the result is also close to 0.

So this means the correlation between different days' availability pattern tend to be small and

negative on average in LRI. Figure 6.13 shows the range of PMCC results:

Figure 6-17: Daily Series PMCC Range of Results in LRI

 115

Figure 6-18: Daily Series PMCC Distribution in LRI

Accordingly Figure 6.18, in LRI, 55.86% (205 PMCC results out of 367) of the absolute

value of PMCC is below 0.3. 22.89% (84 PMCC results out of 367) is not smaller than 0.3 and

below 0.7 while 21.25% (78 PMCC results out of 367) is between 0.7 and 1. Therefore, in data

set LRI, most correlations between different Daily Series are low for each resource, which

means the resources’ Non-zero Standard Deviation Daily Series tends to have low or medium

correlations in different days.

In data set LRI, 24 hours’ data were recorded for each resource in each day. Therefore, a

Daily Series can be divided into 24 Hourly Sub-Series. Therefore, there are 46200 (1925*24)

Hourly Sub-Series for all 275 resources. In these 46032 Hourly Sub-Series, 45498 Hourly

Sub-Series' are Zero Standard Deviation Hourly Sub-Series. Therefore, these 45498 sub-series

were excluded from the PMCC calculations and other 702 sub-series were used.

Figure 6.19 shows the range of PMCC results:

Figure 6-19: Hourly Sub-Series PMCC Range of Results in LRI

Figure 6-20: Hourly Sub-Series PMCC Results Distribution in LRI

According to Figure 6.20, in LRI, 30.43% (14 PMCC results out of 46) of all PMCC results’

 116

absolute value is not larger than 0.3 (which are considered low correlations), 52.17% (24 PMCC

results out of 46) is not larger than 0.7 (which are considered as medium correlations) and

17.39% (8 PMCC results out of 46) is between 0.7 and 1 (which is considered as high

correlations). Therefore, in data set LRI, most correlations between different Hourly Sub-Series

are not high (82.60% results are below 0.7) for each resource, which means the resource

Non-Zero Standard Deviation Hourly Sub-Series tends to have low or medium correlations in

different hours.

There are 680 resources in the data set of DEUG and each resource has at most 7 days' data

traces. Therefore there are 4760 (680*7) data traces (Daily Series) overall for 680 resources. In

these 4760 Daily Series, 3041 Daily Series are Zero Standard Deviation Series. Therefore, these

3041 Daily Series are excluded from the PMCC calculation and other 1719 Daily Series were

included in the PMCC calculations.

Overall, the PMCC results of these Non-zero Standard Deviation Daily Series range from

-0.99302 to 0.99305 with the mean value -0.06560. In DEUG, the mean of PMCC in DEUG is

negative so this means the correlation between different days' availability pattern is a decreasing

linear relationships. It is a low correlation on average as it is close to 0. Figure 6.21 shows the

range of PMCC results.

Figure 6-21: Daily Series PMCC Range of Results in DEUG

Figure 6-22: Daily Series PMCC Results Distribution in DEUG

According to Figure 6.22, in DEUG, 60.59% (1356 PMCC results out of 2238) of the

absolute value of PMCC is below 0.3. 35.30% (790 PMCC results out of 2238) is between 0.3

and 0.7 and only 4.11% (92 PMCC results out of 2238) is between 0.7 and 1.

In data set DEUG, 12 hours’ data were recorded (6am to 6pm) for each resource in each day.

Therefore, a Daily Series can be divided into 12 Hourly Sub-Series. Therefore, there are 57120

 117

(4760*12) Hourly Sub-Series for all 680 resources. In these 57120 Hourly Sub-Series, 52244

Hourly Sub-Series' are Zero Standard Deviation Hourly Sub-Series. Therefore, these 52244

sub-series were excluded from the PMCC calculations and other 4876 Non-Zero Standard

Deviation Sub-Series were used.

Figure 6.23 and Figure 6.4 show the range of PMCC results and their distribution,

respectively.

Figure 6-23: Hourly Sub-Series PMCC Range of Results in DEUG

Figure 6-24: Hourly Sub-Series PMCC Results Distribution in DEUG

According to the PMCC results shown above, the key points are as follows:

Firstly, the results show that each data set has its distinct features and the PMCC results have

different distributions.

Secondly, though each data set has different features and PMCC results, the PMCC results

indicate that the correlations between different Non-zero Standard Deviation Daily Series and

Non-zero Standard Deviation Hourly Sub-Series are generally not high (over 0.7). This means

the resources’ Non-zero Standard Deviation Daily Series and Non-zero Standard Deviation

Hourly Sub-Series tends to have low (or even no) correlations in different days. In comparison,

some important results are summarised in Table 6-2 and 6-3.

 118

Name
of data

set

Total number
of Non-zero

Standard
Deviation Daily

Series

Minimum
PMCC

Maximum
PMCC

PMCC
mean

Percentage of
low correlation
(|PMCC| < 0.3)

Percentage of
medium

correlation
(|PMCC| >

0.3|PMCC| < 0.7)

Percentage of
high

correlation
(|PMCC| >=

0.7)

UCB 607 -0.59742 0.84117 0.06878 85.68% 14.10% 0.22%

SDSC 953 -0.84933 0.98897 0.03628 76.79% 21.68% 1.53%

LRI 481 -0.98692 0.69623 -0.19927 55.86% 22.89% 21.25%

DEUG 1719 -0.99302 0.99305 -0.06560 60.59% 35.30% 4.11%

Table 6-2: Non-zero Standard Deviation Daily Series PMCC Results

Name
of data

set

Total number of
Non-zero
Standard
Deviation

Hourly
Sub-Series

Minimum
PMCC

Maximum
PMCC

PMCC
result
mean

Percentage of
low

correlation
(|PMCC| <

0.3)

Percentage of
medium

correlation
(|PMCC| >

0.3|PMCC| <
0.7)

Percentage of
high

correlation
(|PMCC| >=

0.7)

UCB 2543 -0.92733 0.99070 0.03264 78.17% 20.35% 1.48%

SDSC 2411 -0.96346 0.99827 0.07701 45.33% 41.48% 13.19%

LRI 702 -0.77787 0.84494 -0.18391 30.43% 52.17% 17.39%

DEUG 4876 -0.96379 0.99760 0.00781 73.11% 23.98% 2.91%

Table 6-3: Non-zero Standard Deviation Hourly Sub-Series PMCC Results

Day Interval means the intervals of days between two Daily Series. For example, for

(day2
iS , day5

iS), Day Interval is 5–2 =3. For (day1
iS , day3

iS), Day Interval is 3-1=2. Rho Mean

calculates the average value of the PMCC results which having the same Day Interval. For

example, for Rho Mean of Day Interval 8, it aggregates PMCC results of (day1
iS , day9

iS) and

(day2
iS , day10

iS) and then calculates the average.

To find out if there is any strong correlation between particular days (e.g. if two Daily Series

have strong correlation when Day Interval is 5 as they are the same day in different weeks), Rho

Mean of different Day Interval were calculated and summarised in Table 6-4.

 119

Rho Mean of Day Interval X

Name of data set

X=1 X=2 X=3 X=4 X=5 X=6 X=7 X=8 X=9

UCB 0.05030 0.08312 0.06331 0.06440 0.12774 0.03914 0.08232 0.01462 0.07289

SDSC 0.04604 0.07648 0.06260 0.05324 -0.13735 0.06893 N/A N/A N/A

LRI -0.01148 -0.37804 -0.32262 0.11189 -0.26969 -0.75934 N/A N/A N/A

DEUG -0.08830 -0.02766 -0.02788 0.097392 -0.02233 0.05184 N/A N/A N/A

Table 6-4: Rho Mean of Different Day Intervals

According to the Day Interval results shown above, the key points are as follows:

Firstly, the results show that the correlations between particular days are different in each data

set.

Secondly, though the correlations are different, the results indicate the correlations are

generally low (below 0.3) no matter what value Day Interval it is. This indicates that for a

resource, each day’s Non-zero Standard Deviation Daily Series tends to be independent from

any other days.

To find out if there is any regular pattern in Zero Standard Deviation Daily Series and Zero

Standard Deviation Hourly Sub-Series, another approach was taken. Assuming a given type of

Zero Standard Deviation Daily Series (either Zero Standard Deviation Available Daily Series or

Zero Standard Deviation Unavailable Daily Series), two questions are raised. The first one is “is

this type of Zero Standard Deviation Daily Series or Zero Standard Deviation Hourly Sub-Series

going to occur again in the following days?” and the second one is “if the answer to the first

question is yes, then what is the probability that it will occur again tomorrow (the day after

tomorrow, the same day next week, etc)?” For example, assuming a resource has a Zero

Standard Deviation Available Daily Series today (the resource is always available so its Job

Execution Availability is always 1 today), is it possible that the resource is going to have another

Zero Standard Deviation Available Daily Series (the same type of series) in the following days?

If it is possible, then what is the probability (called Same Type Series Occurrence Probability)

that this type of Zero Standard Deviation Available Daily Series will occur again after X days

(e.g. after 1 day, 7 days, etc)?” If these two questions can be answered, then some relationships

between Zero Standard Deviation Daily Series and Zero Standard Deviation Hourly Sub-Series

can be found and this will be helpful for job-scheduling algorithms. For example, if a resource

has a Zero Standard Deviation Available Daily Series today, and the Same Type Series

Occurrence Probability after 1 day is 100%, then the job-scheduling algorithm will know this

resource will be very reliable tomorrow based on today’s observation.

Therefore, to answer these two questions, some statistical results from each data set are

collected for Zero Standard Deviation Daily Series and Zero Standard Deviation Hourly

 120

Sub-Series. Let Pr(X) denotes the result of Same Type Series Occurrence Probability; Pr(X) can

be calculated by the following equation:

Pr(X) = S(X) / T(X) (Equation 6.1)

where S(X) denotes total occurrence times of the same type series after X days and T(X)

denotes total occurrence times of all types’ series after X days.

Here, for Daily Series, all types’ series includes Zero Standard Deviation Available Daily

Series, Zero Standard Deviation Unavailable Daily Series and Non-Zero Standard Deviation

Daily Series. For Hourly Sub-Series, all types’ series includes Zero Standard Deviation

Available Hourly Sub-Series, Zero Standard Deviation Unavailable Hourly Sub-Series and

Non-Zero Standard Deviation Hourly Sub-Series. Table 6-5 through to Table 6-8 summarise

some statistical results relating to the Same Type Series Occurrence Probability.

Same Type Series Occurrence Probability after X day(s)

Name of
data set

Total number of
Non-zero Standard

Deviation
Available Daily

Series X=1 X=2 X=3 X=4 X=5 X=6 X=7 X=8 X=9

UCB 193 52.87% 41.72% 36.24% 29.32% 33.04% 36.00% 30.86% 27.27% 37.21%

SDSC 267 50.40% 30.20% 15.45% 0.00% 0.00% 0.00% N/A N/A N/A

LRI 315 37.96% 38.03% 35.85% 45.71% 31.91% 43.48% N/A N/A N/A

DEUG 91 18.30% 29.62% 8.33% 0.00% 0.00% 0.00% N/A N/A N/A

Table 6-5: Zero Standard Deviation Available Daily Series Results

Same Type Series Occurrence Probability after X day(s)

Name of
data set

Total number of Non-zero
Standard Deviation

Unavailable Daily Series
X=1 X=2 X=3 X=4 X=5 X=6 X=7 X=8 X=9

UCB 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A

SDSC 488 78.05% 68.58% 61.42% 57.65% 48.91% 54.43% N/A N/A N/A

LRI 1129 83.84% 77.00% 67.29% 62.50% 63.23% 45.00% N/A N/A N/A

DEUG 2950 81.36% 72.64% 69.60% 71.06% 71.06% 77.29% N/A N/A N/A

Table 6-6: Zero Standard Deviation Unavailable Daily Series Results

 121

Same Type Series Occurrence Probability after X day(s)
Name
of data

set

Total number of
Non-zero Standard
Deviation Available
Hourly Sub-Series

X=1 X=2 X=3 X=4 X=5 X=6 X=7 X=8 X=9

UCB 3052 66.61% 65.11% 63.00% 61.70% 65.10% 60.31% 63.51% 59.57% 64.57%

SDSC 4247 79.86% 77.02% 71.39% 62.38% 77.19% 54.90% N/A N/A N/A

LRI 14030 95.73% 94.69% 94.67% 94.78% 93.90% 94.80% N/A N/A N/A

DEUG 6755 74.31% 74.14% 75.07% 75.08% 75.43% 76.47% N/A N/A N/A

Table 6-7: Zero Standard Deviation Available Hourly Sub-Series Results

Same Type Series Occurrence Probability after X day(s)

Name of
data set

Total number of Non-zero
Standard Deviation
Unavailable Hourly

Sub-Series
X=1 X=2 X=3 X=4 X=5 X=6 X=7 X=8 X=9

UCB 5 0.00% 0.00% 0.00% 0.00% 0.00% N/A 0.00% N/A N/A

SDSC 7006 82.56% 75.95% 73.58% 71.16% 65.77% 59.70% N/A N/A N/A

LRI 31468 99.03% 98.40% 97.74% 97.20% 97.56% 96.12% N/A N/A N/A

DEUG 45489 93.84% 93.47% 93.22% 93.87% 94.07% 95.59% N/A N/A N/A

Table 6-8: Zero Standard Deviation Unavailable Hourly Sub-Series Results

According to the results shown above Same Type Series Occurrence Probability, the key

points can be summarised as follows:

Firstly, in general, the statistical results show that the Same Type Series Occurrence

Probability varies from one data set to another.

Secondly, in some data sets, the results of Same Type Series Occurrence Probability are low

whilst other data sets have high results of Same Type Series Occurrence Probability. In some

data sets, the result of Same Type Series Occurrence Probability after 1 day tend to have a

higher probability than the results Same Type Series Occurrence Probability after any other day

in some data sets while other data sets have different results. Therefore, it is not straightforward

to conclude that is Zero Standard Deviation Daily Series and Zero Standard Deviation Hourly

Sub-Series are predictable or not in general and it is also not straightforward to conclude that

which day will have a higher result of Same Type Series Occurrence Probability consistently.

122

Chapter 7 Simulation and Evaluation
This chapter provides details of the simulation set up together with evaluation results for the

proposed job-scheduling and job migration algorithms in different scenarios.

7.1 Simulation Environment
The evaluations were carried out in a discrete-event simulation environment [DES10]. “In

discrete-event simulation, the operation of a system is represented as a chronological sequence

of events” and “each event occurs at an instant in time and marks a change of state in the

system” [Robinson04]. It was developed by the author of this thesis and the source code was

written in Delphi (Object-Pascal) programming language [Delphi10].

7.1.1 Components

There are five components in the simulation environment: User, Grid Job Scheduler,

Resource, Job and Event. Figure 7.1 shows the structure of the simulation environment.

Grid Job
SchedulerJob 4Job 5Job 6

User 2

Job 7

User m

Job 8

User 1

Resource 2Resource 1 Resource n

Job 9

Job 1 will be
completed

by Resource
2 at time

1.006

Job 7 will
arrive at
Grid Job

Scheduler at
time 3.283

Job 4 will
arrive at

Resource 5
at time
5.967

Job 10 will
be created

by Source 2
at time
8.771

Polling
Resources

at time
10.000

Guest Job 2
will be

migrated to
Resource 2 at
time 12.733

Observe
Grid Job

Scheduler at
time 15.000

Job 1

Job 3

Job 2

Event List

Figure 7-1: Structure of the Simulation Environment

• User

The User is responsible for generating Jobs and sending them to the Grid Job Scheduler. It is

defined as a pointer type data in the simulation code. The interval between generating two Jobs

for a certain User can follow a certain probability distribution, e.g. uniform distribution, negative

exponential distribution, normal distribution, etc. When a User generates a Job, it firstly

initialises the parameters for the Job, like Job number, Job size and so on. Then the User will

123

send the generated Job to the Grid Job Scheduler. Later, an Event will be inserted into the Event

list, which indicates what time the Job will arrive at that Grid Job Scheduler.

In the simulation code, the User has the following important attributes:

 User number: This index number identifies each User.

 User Probability Density Function (PDF) type: This attribute specifies the interval time

between a User generating two Jobs follows. The PDF type may be uniform, exponential or

any other PDF type.

• Grid Job Scheduler

The Grid Job Scheduler is the core component in the simulation environment. It is defined as

a pointer type data in the simulation code. It has the following functions:

1) It receives Jobs sent from the User and allocates the Jobs to Resource according to a certain

algorithm. For example, the Grid Job Scheduler may assign Jobs to each Resource in turn

with FCFS algorithm or it may assign Jobs to the Resource according to an AI mechanism

based algorithm such as FLP. When the Grid Job Scheduler decides to allocate a Job to a

certain User, it will insert an Event to the Event list, which indicates which Resource the Job

will be sent to and what time the Job will arrive at the Grid Job Scheduler.

2) It observes the performance of Resource at regular interval and decides whether to migrate a

Job from one Resource to another. Details about why and how to migrate a Job is described

in the Chapter 5. The intervals between two observing time may be uniform or follow a

probability like Normal distribution. The migration decision can be based on an algorithm

introduced in Chapter 4. When the Grid Job Scheduler decides to migrate a Job, it will insert

an Event to the Event list, which indicates which Resource the Job will be migrated to and

what time the Job will arrive at that Resource.

In the simulation code, the Grid Job Scheduler has the following important attributes:

 Resource List: This is a single linked list specifying the Resource which the Grid Job

Scheduler is connected with. Take Figure 7.1 for example, Grid job scheduler 1 is connected

with Resource 1 to Resource n, so the linked list has n pointers specifies that it is connected

with Resource 1 to Resource n.

 Job List: This is a single linked list specifying the Jobs which have arrived at the Grid Job

Scheduler but not allocated to Resource yet. Take Figure 7.1 for example, Job 4, Job 5 and

Job 6 have arrived at the Grid Job Scheduler and they are waiting for allocation.

• Resource

The Resource is responsible for processing Jobs allocated by the Grid Job Scheduler. It is

defined as a pointer type data in the simulation code. The Resource can handle multiple tasks at

the same time and all the Jobs will be treated equally. Take Figure 7.1 for example, for Resource

124

1, there is only one Job running on it at the moment so the Job will occupy the CPU cycles until

a new Job comes. For Resource 2, there are 2 Jobs running on it at the moment so these two Jobs

will share the number of CPU cycles equally.

In the simulation code, the Resource has the following important attributes:

 Resource number: This index number identifies each Resource.

 Resource capability: This attribute specifies the CPU speed of a Resource. It is the

Resource’s CPU cycles delivered to the Grid at a certain time.

 Job list: This is a single linked list that lists all the Job(s) being processed by the Resource.

• Event

An Event is a discrete time during which something occurs within the simulation and an Event

list is a single link-list that stores all known Events. The Events are listed in order of Event time.

When the simulation is running, the execution engine will keep on picking the first Event in the

Event list and invoking the corresponding Event. For example, if the first Event in the list is a Job

Creation Event, the execution engine will invoke the procedure of Job Creation to generate a Job

and the Job generator will be marked as the User that is specified in the Event. When the

corresponding procedure is finished, the Event will be disposed of and the Event list header will

point to the next Event.

As the simulation environment is discrete, the current time is the same as the time specified

in the first Event. For example, the first Event in the Event list of Figure 7.1 is “Job 1 will be

completed by Resource 2 at time 1.006”, so when the execution engine picks this Event, the

current time in the simulation is 1.006. Later, when this Event is finished and the second Event

“Job 7 will arrive at Grid Job Scheduler at time 3.283”, the current time in the simulation will

become 3.823.

The Event list is changed along with the progress of simulation. During the simulation, some

Events will be executed and disposed of and some other Events will be generated and added to

the Event list as well. For example, when the first Event “Job 1 will be completed by Resource 2

at time 1.006” in Figure 7.1 finishes, Job 1 will be completed by Resource 2. As Job 1 is

finished, Job 3 will occupy Resource 2 solely. Therefore, it is necessary to recalculate the

completion time of Job 3 and insert an Event to the Event list to specify the time when Job 3 is

going to be completed. Assume the completion time of Job 3 is 5.509, so the new Event “Job 3

will be completed by Resource 2 at time 5.509” will be created and inserted to the Event list

after the Event “Job 7 will arrive at Grid Job Scheduler at time 3.283” and before the Event

“Job 4 will arrive at Resource 5 at time 5.967”.

There is a number of Event types used in the simulations as follows:

1) Job Creation: This Event is used to generate a Job at the specified time given in the Event.

For example, when the Event “Job 10 will be created by User 1 at time 8.771” in Figure 7.1

125

becomes the first Event in the Event list, the execution engine will invoke the corresponding

procedure(s) to generate a Job and the generator of the Job will be marked as User 1.

2) Job Arrive at Grid Job Scheduler: This Event is used to specify the time when a Job arrives

at the Grid Job Scheduler. For example, when an Event “Job 7 will arrive at Grid Job

Scheduler at 3.823” becomes the first Event in the Event list, the execution engine will

invoke the corresponding procedure(s) to move Job 7 to Grid Job Scheduler’s Job list.

3) Job Arrive at Resource: This Event is used to specify the time when a Job arrives at a

Resource. For example, when an Event “Job 4 will arrive at Resource 5 at time 5.967”

becomes the first Event in the Event list, the execution engine will invoke the corresponding

procedure(s) to move Job 4 to Resource 5’s Job list.

4) Job Completion: This Event is used to specify the completion time for a Job. For example,

the “Job 1 will be finished by Resource 2 at time 1.006” in Figure 7.1 is the first Event in the

Event list, so the execution engine will invoke the corresponding procedures(s) to dispose the

Job and update the stat information on Resource 1.

5) Poll Resources: This Event is used to specify the time to poll all Resources. The work

includes updating some important information of each Resource (such as Resource’s current

CPU speed, each job’s completion time), collecting some statistical results (such as the

number of Jobs completed/disposed since last observation) and check if the Jobs on the

Resource need migration or not. When the Event “Polling Resources at time 10.000”

becomes the first Event in the Event list, the execution invokes the procedure(s) to poll all

Resources and make Job migration decisions if necessary. This kind of observation is

typically carried out at regular interval.

6) Job Migrated to Resource: This Event is used to specify the time when a Job will be

migrated and arrived at a new Resource. For example, when the Event “Job 2 will be

migrated to Resource 2 at time 12.733” becomes the first Event in the Event list, the

execution engine will invoke the corresponding procedure(s) to remove the Job 12 from

Resource 2’s Job list and add it to the Resource 1’s Job list.

7) Observe Grid Job Scheduler: This Event is used to specify the time to observe the Grid Job

Scheduler. The work includes triggering a Job allocation procedure for the first Job in the

Job queue, collecting some statistical results (such as the number of Jobs allocated to

Resources since last observation). For example, when the Event “Observe Grid Job

Scheduler at time 15.000” becomes the first Event in the Event list, the execution engine will

invoke the procedure(s) to observe the Grid Job Scheduler. Similar to Poll Resources, this

kind of observation is carried at regular interval as well.

126

Each Event has the following attributes:

 Event time: This attribute specifies when the Event is going to happen.

 Event type: This attribute specifies the type of the Event. It is one of the seven Event types

that are described earlier in this section.

 Event place: This attribute specifies where the Event is going to happen, including User,

Grid Job Scheduler and Resource.

 User pointer: This pointer points to a User if the Event is related to that User.

 Grid Job Scheduler pointer: This pointer points to the Grid Job Scheduler if the Event is

related to the Grid Job Scheduler.

 Resource pointer: This pointer points to a Resource if the Event is related to that Resource.

 Job pointer: This attribute specifies the Job pointer if the Event is related to that Job.

• Job

The Job is generated by User and processed by the Resource. It is created dynamically and

referenced via a pointer in the simulation code. It has the following important attributes:

 Job number: Each Job has a unique number.

 Current Job size: This attribute records the current Job size of the Job. It is represented

by a numerical value (the number of CPU cycles to complete the job).

 Job Completion time: This attribute records the completion time of the Job.

 Job User number: This attribute records the User number that generated the Job.

 Job Resource number: This attribute records the Resource number if the Job has already

allocated to a Resource.

7.1.2 General Evaluation Approach

In order to carry out evaluations of the proposed job-scheduling and job migration algorithms,

a series of simulation experiments were carried out based on the simulation environment

described in Section 7.1.1. To carry out simulation experiments, availability data traces

recording resource CPU Availability are required. As discussed in Section 4.2.2, CPU

Availability indicates current CPU speed (number of CPU cycles delivered to the Grid per

second) and Job Execution Availability indicates whether jobs are allowed to run on the resource

or not in that period. In generally, there are two approaches to obtain such data traces:

The first approach is to create synthetic data traces. In this approach, resources’ availability

data traces are created artificially. Data can be created quickly and any kind of simulation

scenarios can be designed accordingly. For example, to simulate a reliable resource, the

127

resource’s CPU Availability can be created to be always above 0. To simulate a powerful

resource, the resource’s CPU Availability can have very high values. For example, if a Grid is

composed of reliable/powerful resources, then many reliable/powerful resources can be created.

However, as the data traces are artificial, they may not be very realistic. Note, some simulations

with synthetic data traces are provided in appendix B.

The second approach is to gather availability data traces from real Grid system(s). In this

approach, the resource availability data traces are collected rather than created. Unlike the first

approach, it is not straightforward to get data traces and to design simulation scenarios in this

approach. To collect data traces, the resources have to be monitored and the CPU Availability

data need to be recorded. In addition, it will be time consuming if a long trace is desired. As

they are real data traces, to design simulation scenarios, they may have to be processed first.

Without processing, the resource CPU Availability may not be readily available. For example,

whether a resource is reliable or powerful is unknown before analysing the collected data traces.

Therefore, compared with the first approach, it is a more complex and time-consuming.

However, the data traces represent realistic cases. As each approach has advantages and

disadvantages, both kinds of data were used in the simulation experiments.

In terms of synthetic data traces, they are easy to create but not easy to ensure they are

sensible. Real data traces, are neither straightforward to collect nor easy to ensure that they are

useful. Therefore, it is important to ensure the collected data traces are collected and processed

in an appropriate way. Ideal resource data traces were discussed in [Kondo05][Kondo07]. In

summary, the ideal trace should have the following characteristics:

Firstly, the trace should accurately record CPU Availability information throughout the

observation period. Accurate information permits replaying the behaviour of the resource

accurately, which is especially useful for debugging.

Secondly, the trace should not just record the CPU Availability when failures occur but also

the reason for the failure. When a failure occurs, CPU Availability changes to -1 but it does not

indicate what caused this failure. It could be caused by Events like a resource shutting down,

network connection failure and user reclaiming the resource. Therefore, if reasons for each

failure are recorded, it facilitates analysis in terms of statistics and prediction.

Some assumptions of the simulation environments are also important:

First, the purpose of simulating with synthetic data is to validate the simulator or to explore

influences brought about by different parameter settings. To achieve this, typically only a few

resources are used in such simulations. The main reason for this is to keep the system as simple

as possible and more clearly observe how different parameter settings influence the system

performance. For example, if many resources are used and each of them has different patterns in

terms of CPU Availability, then the system becomes complicated.

Secondly, the purpose of simulations with real data is to examine the influence of different

128

parameter settings and compare the performance of various job-scheduling algorithms in

practical scenarios, both for non-prediction and prediction-based algorithms. Therefore, many

resources are used in such practical scenarios.

Third, in the simulations with synthetic data, the simulations last the minimum number of

days. The purpose of this is also to keep the system as simple as possible and clearly show how

different parameters influence a single resource. In the first day, the TDE prediction method

(used by the proposed job-scheduling algorithm) does not have any historical data of the

resource so that it cannot make any prediction based on historical data. Therefore, the TDE

prediction based algorithms (e.g. the proposed FCFSPP, FLP and PSOPP job-scheduling

schemes) behave the same as non-prediction based methods (e.g. FCFS job-scheduling

algorithm). However, in the second day of the simulation, the TDE prediction method now has

access to historical data. With this data, it can make predictions for the Prediction Period by

reviewing the Checking Period before job allocations in the second day. Therefore, the

difference between TDE prediction based algorithms and the FCFS algorithm can be clearly

observed.

Fourth, in simulations with both synthetic data and real data, the FCFS algorithm is used for

comparison. This is mainly because of some of the proposed job-scheduling algorithms

(FCFSPP and FLP) are based on it. Therefore, it is easy to observe the impact of TDE prediction.

In addition, previous research [Kondo05][Kondo07] proposes a number of resource

prioritisation/exclusion methods for job-scheduling in a Grid computing context, especially in

the Grid context, where utilising volunteered and unreliable resource. According to their results,

FCFS works relatively well in many scenarios, especially ones where the number of jobs are

more than the number of resources.

Fifth, simulations are mainly focused on results not from the first simulation day. This is due

to Initial Bias. Initial Bias means the system may be in a transition stage at the beginning stage

of a simulation and the results gathered from this transition stage of simulation may distort the

results gathered from steady stage. At the beginning stage of a simulation, the job queue of the

Grid job scheduler is empty and many available resources are idle. Later, as new jobs join the

job queue of Grid job scheduler and then being allocated to available resources, the simulation

will gradually enter a steady state in which the job queue of Grid job scheduler may not be

empty and many available resources may not be idle. Therefore, results gathered from the

transition stage may be different from the results gathered from the steady stage. For example, if

the simulation simulates a HTC environment, the job throughput at the transition stage may be

lower than steady stage as there are not enough jobs for resources to process in the transition

stage.

Sixth, in a simulation, each job is assumed to have the same job size (Job Execution Time)

and the job scheduler when making a job allocation knows the size. This is for the purpose of

129

showing the influence brought by different parameters and factors clearly. If the job size is not

fixed, the results gathered from a simulation may be affected. In such a case, the influence

brought by different parameters and factors may be distorted by the influence of unfixed job

size. However, the job size may vary from one simulation to another.

Seventh, in the simulation, jobs arrive at the Grid job scheduler at regular and fixed intervals.

This is for the sake of simplicity and based on the following considerations:

If a simulation simulates a scenario in which Workload is high (the number of jobs are far

more than resources), the main focus is on the number of jobs processed and failed in a given

period. As resources will always have jobs to process, job arrival process will not influence

these results.

If a simulation simulates a scenario where the Workload is low, the main focus is on the

Makespan of each job and the proportion of processed and failed jobs. As the Workload is low

and the job will not wait at the job queue, each job’s Makespan is hardly influenced by job

arrival process. In terms of processed and failed jobs, the main focus is on the proportion rather

than the absolute values of processed and failed jobs. Here, the job arrival process does not

influence the proportion either.

Eight, in each simulation, the time required to transfer a job from one component to another

(e.g. from a user to the Grid job scheduler or from the Grid job scheduler to a resource) is

assumed to be 0. In practise, it takes some time to transfer a job from one component to another

in a Grid system and it may affect the results such as job throughput or each job’s Makespan.

Therefore, the job transmission time in these scenarios are assumed to be 0 to ensure the results

are not affected by various transmission times.

Finally, there is some commonality to the experimental setup across the simulations. In the

following sections, unless stated, the simulations use the setup shown in Table 7-1:
Name Setting

Number of User The value is 1
Number of Grid Job Scheduler The value is 1

Job Sorting Algorithm First-Come-First-Served
Number of Checking Days The value is 1 day

Resource Availability Probability Threshold The value is 100%
Job Size The value is 10 minutes

Job Arrival Interval The value is 1 minute
Length of Checking Period The same as Job Size
Length of Prediction Period The same as Job Size

Multiply Factor The value is 1
Resource Availability Probability Threshold Adjustment Interval in FLP The value is 10 minutes

Parameter λ in FLP The value is 1
Number of Particles in PSOPP The value is 10
The Predefined Goal in PSOPP The fitness value is above 1

Vmax in PSOPP The value is 10
Parameter x in PSOPP algorithm The value is 1
Parameter y in PSOPP algorithm The value is 1

Table 7-1: Common Experimental Setup for Simulations

130

7.2 Evaluation of FCFSPP Algorithms

7.2.1 Evaluation of the Number of Checking Days

To verify the analysis of the Number of Checking Days (abbreviated as N) and examine the

performance of the FCFSPP algorithm with different Number of Checking Days in practical

scenarios, a set of simulations are presented in this subsection. In this set of simulations real

data sets UCB and DEUG are used. As well as the setup shown in Table 7-1, these simulations

have the experimental setup shown in Table 7-2:
Name Setting

Number of Resources 80 in UCB and 680 in DEUG (depends on the available data in the
downloaded data sets)

Job-scheduling Algorithm FCFS, FCFSPP
Number of Checking Days 1, 2, 3, 4, 5 and 6

Resource Availability Probability
Threshold The value is 100%

Length of Simulation 10 days in UCB and 7 days in DEUG (depends on the available data in the
downloaded data sets)

Table 7-2: Experimental Setup for Simulations of N

In the first simulation day, as no historical data is available, the FCFSPP algorithm behaves

the same as FCFS (for more details about this, please refer to appendix B.I). Therefore, the

following results are composed of the remaining simulation days.

0
1000
2000
3000
4000
5000
6000
7000

1 2 3 4 5 6

Number of Checking Days

To
ta

l A
llo

ca
te

d
Jo

bs

UCB
DEUG

0

1000

2000

3000

4000

1 2 3 4 5 6

Number of Checking Days

To
ta

l S
uc

ce
ed

ed
 J

ob
s

UCB
DEUG

(a) Total Allocated Jobs (b) Total Succeeded Jobs

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4 5 6

Number of Checking Days

To
ta

l F
ai

le
d

Jo
bs

UCB
DEUG

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6

Number of Checking Days

Jo
b

Su
cc

es
s

P
er

ce
nt

ag
e

UCB
DEUG

(c) Total Failed Jobs (d) Job Success Percentage

Figure 7-2: Number of Checking Days in UCB and DEUG

The Total Allocated Jobs shows the total number of job allocated to the resource in all

simulation days except the first day. According to the Figure 7.2, when N is larger, the algorithm

becomes more “conservative” and allocates fewer jobs to resources. In data set UCB and DEUG,

the results of Total Allocated Jobs are 4934 and 6481 respectively when N equals 1. Total

Allocated Jobs gradually decreases as N increases confirming the analysis.

The Total Succeeded Jobs shows the total number of jobs processed by the resources in all

simulation days except the first day. Similar to Total Allocated Jobs, when N increases, the

resources process fewer jobs as fewer jobs are allocated to them. In data set UCB and DEUG,

131

the results of Total Succeeded Jobs are 2329 and 3359 respectively when N equals 1. Total

Succeeded Jobs gradually decrease as N increases. These results are directly influenced by the

result of Total Allocated Jobs.

Total Failed Jobs shows the total number of jobs failed by the resource in all simulation days

except the first day. Similar to Total Allocated Jobs and Total Succeeded Jobs, fewer jobs fail to

finish when N becomes larger. In data set UCB and DEUG, the results of Total Failed Jobs are

2546 and 2942 respectively when N equals 1. Total Failed Jobs gradually decrease as N

increases. Again, these results are also directly influenced by the result of Total Allocated Jobs

and fewer jobs tend to be failed when the FCFSPP algorithm becomes more conservative as N

becomes larger.

The Job Success Percentage shows the percentage of job processed successfully among all the

jobs being processed. Let Sp denotes Job Success Percentage, the result of Spercent can be

calculated by the following equation:

Spercent = Stotal / F total * 100% (Equation 7.1)

where S total is Total Succeeded Jobs and Ftotal is Total Failed Jobs. As opposed to Total Allocated

Jobs, Total Succeeded Jobs, Total Succeeded Jobs and Job Success Percentage all increase

when N becomes larger. In data set UCB and DEUG, the results of Job Success Percentage are

47.77% and 44.78% respectively when N equals 1. Then the result of Total Failed Jobs

gradually increases to 74.17% and 81.34% when N equals 6. This means though Total

Succeeded Jobs and Total Failed Jobs decrease when N becomes larger; the decreasing rate of

Total Failed Jobs is much faster than Total Succeeded Jobs. These results show though the

FCFSPP algorithm becomes more conservative with the increase of N, providing more reliable

job allocation decisions.

The results in this section show that in the tested data sets, the cost in terms of Total Allocated

Jobs and Total Succeeded Jobs can bring benefits in terms of Total Failed Jobs and Increase of

Job Success Percentage. If more reliable job allocation decisions are desired, then a larger value

of N is required.

7.2.2 Evaluation of Resource Availability Probability Threshold T

To check the analysis about Parameter Resource Availability Probability Threshold T

(abbreviated as T) and to examine the performance of FCFSPP with different setting of T in

practical scenarios, a set of simulations scenarios are presented using real data sets UCB and

DEUG. Besides the setup shown in Table 7-1, these simulations have the experimental setup

shown in Table 7-3:

132

Name Setting

Number of Resources 80 in UCB and 680 in DEUG (depends on the available data in the
downloaded data sets)

Job-scheduling Algorithm FCFS, FCFSPP
Number of Checking Days The value is 6

Resource Availability Probability
Threshold The value varies from 0% to 100%

Length of Simulation 10 days in UCB and 7 days in DEUG (depends on the available data in the
downloaded data sets)

Table 7-3: Experimental Setup for Simulations of T

Note the parameter Number of Checking Days here is 6. According to the Figure 7.3, when the

value of Resource Availability Probability T is 0%, it behaves the same FCFS algorithm as the

every resource will be qualified as the Resource Availability Probability of each resource cannot

below 0%. In both data set UCB and DEUG, the allocation decisions are more “conservative” as

the qualification standard (Resource Availability Probability Threshold) for job allocations

becomes higher when the value of T increases. Therefore, the result of Total Allocated Jobs tends

to decrease when the value of T increases.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Resource Availability Probability Threshold T

To
ta

l A
llo

ca
te

d
Jo

bs

UCB
DEUG

0
1000
2000
3000
4000
5000
6000
7000
8000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Resource Availability Probability Threshold T

To
ta

l S
uc

ce
ed

ed
 J

ob
s

UCB
DEUG

(a) Total Allocated Jobs (b) Total Succeeded Jobs

0

2000

4000

6000

8000

10000

12000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Resource Availability Probability Threshold T

To
ta

l F
ai

le
d

Jo
bs

UCB
DEUG

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Resource Availability Probability Threshold T

Jo
b

S
uc

ce
ss

 P
er

ce
nt

ag
e

UCB
DEUG

(c) Total Failed Jobs (d) Job Success Percentage

Figure 7-3: Resource Availability Probability Threshold in UCB and DEUG

Interestingly, the result of Total Allocated Jobs does not always decrease smoothly when the

value of T becomes larger. For example, in data set UCB, the result of Total Allocated Jobs only

decreases from 5883 to 5882 when the value of T increases from 20% to 30%. This is because

of very few resources’ Resource Availability Probability is between 20% and 30%. Setting the

value of T as 20% or 30% therefore has very little influence to the result of Total Allocated Jobs.

On the other hand, if many resources’ value of Resource Availability Probability is within a

small range (e.g. 0% to 10% in Figure 7.3), increasing or decreasing the value of T will have a

large influence to result of Total Allocated Jobs (the result of the result of Total Allocated Jobs

decreases from 9897 to 8092 when the value of T increases from 0% to 10% in data set UCB).

As the number of Total Allocated Jobs tends to drop when T increases, the number of Total

Succeeded Jobs tends to drop along with the increase of T. In general, Total Succeeded Jobs has

the similar trend as Total Allocated Jobs and the result of Total Succeeded Jobs decreases when

133

the value of T increases. In addition, the trend does not always smooth due to the same reason

discussed in the result of Total Allocated Jobs. Again, directly influenced by the result Total

Allocated Jobs, it has the similar trend as Total Allocated Jobs and Total Succeeded Jobs and the

result of Total Failed Jobs tend to drop when T increases. In addition, the trend does not always

smooth due to the same reason discussed in the result of Total Allocated Jobs.

As opposed to the previous trends, the results of Job Success Percentage become higher when

T increases. This is because when T increases the rate of Total Failed Jobs reduces slower than

the rate of Total Succeeded Jobs. This shows the job allocation decisions are more reliable when

qualification standard is higher (i.e. the value of T becomes higher).

According to the results in this subsection, different settings of Resource Availability

Threshold T show that the cost in terms of Total Allocated Jobs and Total Succeeded Jobs can

bring benefits in terms of Total Failed Jobs and Job Success Percentage. If more reliable job

allocation decisions are desired, then a larger value of T is required.

7.2.3 Evaluation of Different Weights on TDE Prediction

According to Job Execution Availability correlation results shown in Section 6.2, the

resources’ Job Execution Availability in a certain day tends to be independent if the series are

Non-zero Standard Deviation Daily Series. For Zero Standard Deviation Daily Series, it is not

straightforward to consistently judge that which day(s) will have a higher result of Same Type

Series Occurrence Probability. Therefore, this indicates none of the Checking Days should have

higher weights than any other Checking Days. However, it is still interesting to confirm whether

this indication is true. Therefore, a set of simulations with real data is used to check this.

Two non-equal weight schemes are used as a comparison with the equal weight scheme. Each

scheme checks the resource’s past 3 days’ Job Execution Availability in the Prediction Period to

make job allocation decisions. In such a case, the equal weight scheme (Equation 4.2) employs

the following equation:

P(r) = 0.33*Pday1(r) + 0.33*Pday2(r) + 0.33*Pday3(r) (Equation 7.2)

The two non-equal weight schemes are described as follows:

Non-equal weight scheme 1:

P(r) = 0.7*Pday1(r) + 0.2*Pday2(r) + 0.1*Pday3(r) (Equation 7.3)
Where day 1 is three days before, day 2 is the day before yesterday and day 3 is yesterday. In

this scheme, the result of Resource Availability Probability in day 3(yesterday) has the heaviest

weight while the result of Resource Availability Probability in day 1(two days before) has the

lightest weight.

Non-equal weight scheme 2:

P(r) = 0.1*Pday1(r) + 0.2*Pday2(r) + 0.7*Pday3(r) (Equation 7.4)

Where day 1 is three days before, day 2 is the day before yesterday and day 3 is yesterday. In

134

this scheme, the result of Resource Availability Probability in day 1(two days before) has the

heaviest weight while the result of Resource Availability Probability in day 3(yesterday) has the

lightest weight.

In this set of simulations, each simulation lasts for 4 days and the fourth day will be the most

important day. In the first three days, the prediction method will not have 3 days’ historical data

to check and this cannot clearly show the differences between the three schemes. In the fourth

day, the prediction method will have 3 days’ historical data to check and this can show the

differences between the three schemes. Data taken from data set SDSC and LRI were used for

the simulations. 10 simulation runs were carried out. Besides this and the setup shown in Table

7-1, these simulations have the experimental setup shown in Table 7-4:
Name Setting

Number of Resources The value is 20
Job-scheduling Algorithm FCFSPP with 3 different weight schemes
Number of Checking Days The value is 3

Resource Availability Probability Threshold The value is 50%
Length of Simulation 4 simulation days

Multiply Factor The value is 3

Table 7-4: Experimental Setup for Simulations of Different Weight Schemes

In these simulations, the first three simulation days are used to provide historical data and the

following results are from the fourth simulation days. Three types of results are compared

among these three schemes in the simulations, including the results of Total Allocated Jobs

Mean, Total Succeeded Jobs Mean and Total Failed Jobs Mean. Total

Allocated/Succeeded/Failed Jobs Mean is the average number of Total

Allocated/Succeeded/Failed Jobs from a number of times simulations.

According to Figure 7.4, n the simulations with data set SDSC, the three schemes tend to

have very similar results in terms of Total Allocated Jobs Mean, Total Succeeded Jobs Mean and

Total Failed Jobs Mean. For example, the results of Total Allocated Jobs Mean are 182.0 (with

margin of error 9.6), 180.3 (with margin of error (with margin of error 10.8) and 181.3 (with

margin of error 9.1) in the three schemes respectively, showing the difference of in terms of

Total Allocated Jobs Mean tends to be small (within 1%). In terms of Total Succeeded Jobs

Mean and Total Failed Jobs Mean, the differences between these three schemes’ results are

small as well. The difference between these three schemes is within 2% in both terms of Total

Succeeded Jobs Mean and Total Failed Jobs Mean). Here the margin of error is calculated by

the following equation:

Margin of error = Z * S / n (Equation 7.5)

Where Z-value is 1.96 as 95% confident is required, S is the sample standard deviation and n

is the sample size.

135

0
50

100
150
200
250

Total Allocated
Jobs Mean

Total Succeeded
Jobs Mean

Total Failed Jobs
Mean

Results in SDSC

To
ta

l N
um

be
r

Equal Scheme

Non-equal Scheme 1

Non-equal Scheme 2

Figure 7-4: Fourth Day Simulation Performance with SDSC

From Figure 7.5, with data set LRI, the three schemes tend to have very similar results in

terms of Total Allocated Jobs Mean, Total Succeeded Jobs Mean and Total Failed Jobs Mean as

well. For example, the results of Total Allocated Jobs Mean are 324.4 (with margin of error

22.3), 326.8 (with margin of error (with margin of error 21.2) and 323.9 (with margin of error

21.1) in the three schemes respectively, showing the difference of in terms of Total Allocated

Jobs Mean tends to be small (within 1%). In terms of Total Succeeded Jobs Mean and Total

Failed Jobs Mean, the differences between these three schemes’ results are small as well. The

difference between these three schemes is within 1.5% in terms of Total Succeeded Jobs Mean

and within 5% in terms of Total Failed Jobs Mean).

0

100

200

300

400

Total Allocated
Jobs Mean

Total Succeeded
Jobs Mean

Total Failed Jobs
Mean

Results in LRI

To
ta

l N
um

be
r

Equal Scheme

Non-equal Scheme 1

Non-equal Scheme 2

Figure 7-5: Fourth Day Simulation Performance with LRI

There are two key observations from the results:

• The results of each scheme tend to be very similar (the biggest difference in the simulations

is within 5%).

• There is no strong indication showing which scheme will perform well. For example, the

equal scheme has a slightly higher Total Allocated Jobs Mean than the two non-equal

schemes with data set SDSC, but “non-equal scheme 1” has a higher result than the “equal

scheme” with data set LRI.

Therefore, it is not straightforward to judge whether a non-equal weight scheme will be

consistently better than the equal weight scheme or not.

7.2.4 Influence of Similarity of Job Execution Availability between Days

In the analysis of influence of similarity between Checking Period and Prediction Period in

Section 5.2.2, the similarity level between Checking Period and Prediction Period can be

represented by PMCC result ρ if they belong to the case shown in Figure 5.7. ρ is calculated by

Checking Period and Prediction Period and it shows the similarity of Job Execution Availability

136

between Checking Period and Prediction Period. The Checking Period and the Prediction

Period are known if only the time to a specific job’s Job Execution Time and the time to make

job allocation decision for the job are known.

However, for simulations, it is difficult to know the length of Checking Period and Prediction

Period for each specific job beforehand. One compromise solution is to use the value of ρ

between Checking Day and Prediction Day instead. As mentioned in Section 4.2.2, Checking

Period is a period of time in the Checking Day and Prediction Period is a period of time in the

Prediction Day. In general, if the Job Execution Availability in the Prediction Day is strongly

correlated with the Job Execution Availability in the Checking Day (the value of ρ is close to +1

or -1), the Job Execution Availability in the Prediction Period will tend to be strongly correlated

with the Job Execution Availability in the Checking Period, especially when the Job Execution

Availability in the Prediction Day is very strongly correlated with the Job Execution Availability

in the Checking Day (the value of ρ is very close to 1). On the other hand, if the Job Execution

Availability in the Prediction Day is not correlated with to the Job Execution Availability in the

Checking Day (the value of ρ is close to 0), the Job Execution Availability in the Prediction

Period will not tend to be strongly correlated with the Job Execution Availability in the

Checking Period, especially when the Job Execution Availability in the Prediction Day is

uncorrelated with the Job Execution Availability in the Checking Day (the value of ρ is very

close to 0). Therefore, the evaluation of similarity of Job Execution Availability between

Checking Day and Prediction Day in this section is an approximation to similarity of Job

Execution Availability between Checking Period and Prediction Period.

A set of simulations with real data were designed and carried out. The purpose of real data is

to show how ρ influences the performance of FCFS and the FCFSPP algorithm in real cases,

which cannot be completely provided by analysis or synthetic data.

To carry out these simulations, pairs of data traces were extracted from the downloaded data

set DEUG (discussed in Chapter 6) and categorised by the range of ρ. As mentioned in Chapter 6,

any paired traces of each resource were calculated and a paired trace has a result of ρ, showing

the similarity level between these two traces. There are 20 categories in the simulations and the

range of each category is defined by the value ρ. The ranges of these categories are: -1 to -0.9,

-0.9 to -0.8 … 0.8 to 0.9 and 0.9 to 1 for each category, 20 paired traces were randomly picked

except the categories of -1 to -0.9 and 0.9 to 1 as the total number of qualified (the value of ρ is

within the range) paired traces is less than 20, all available 17 paired traces were used for the

category of -1 to -0.9 and 18 paired traces were used for the category of 0.9 to 1. For example, if

the value of a paired trace (day2
iS , day5

iS) is 0.55, it could picked and categorised in the category

of “0.5 to 0.6”. Here, day2
iS means resource i’s data trace in day 2 and day5

iS means resource i’s

data trace in day 5.

137

If the absolute value of ρ is large (close to +1 or -1), it means the two Daily Series have strong

positive/negative relationship. If the absolute value of ρ is small (close to 0), it means the two

Daily Series have weak positive/negative relationship. In these simulations, one Daily Series is

considered as the resource’s Job Execution Availability data in Checking Day while the other one

is considered as the resource’s Job Execution Availability data Prediction Day. In the FCFSPP

algorithm, it checks a resource’s Job Execution Availability in Checking Period (a part of

Checking Day) and predicts the resource’s Job Execution Availability in the Prediction Period (a

part of Checking Day) when making job allocation decisions.

Therefore, these simulations with real data are used to assist the previous analysis (in Section

5.2.2) and simulations with synthetic data (in Appendix B.I) and to provide more information in

the cases that synthetic data cannot provide. Besides the setup shown in Table 7-1, these

simulations have the experimental setup shown in Table 7-5:
Name Setting

Number of Resources 17 to 20 (depends on the number of available paired traces)
Job-scheduling Algorithm FCFS and FCFSPP

Length of Simulation 2 simulation days

Table 7-5: Experimental Setup for Simulations of ρ

In the first simulation day, as no historical data is available, the proposed algorithm behaves

the same as FCFS (for more details about this, please refer to appendix B.I). Therefore, the

following results are from the second simulation day:

0
5

10
15
20
25
30
35
40

-1
 to

 -0
.9

-0
.9

 to
 -0

.8

-0
.8

 to
 -0

.7

-0
.7

 to
 -0

.6

-0
.6

 to
 -0

.5

-0
.5

 to
 -0

.4

-0
.4

 to
 -0

.3

-0
.3

 to
 -0

.2

-0
.2

 to
 -0

.1

-0
.1

 to
 0

0
to

 0
.1

0.
1

to
 0

.2

0.
2

to
 0

.3

0.
3

to
 0

.4

0.
4

to
 0

.5

0.
5

to
 0

.6

0.
6

to
 0

.7

0.
7

to
 0

.8

0.
8

to
 0

.9

0.
9

to
 1

Range of ρ

Av
er

ag
e

Al
lo

ca
te

d
Jo

bs

FCFS
FCFSPP

Figure 7-6: Average Allocated Jobs in the Second Simulation Day

Average Allocated Jobs shows the average number of jobs allocated to each resource in the

second simulation day. Let Aaverage denotes the number Average Allocated Jobs; the result of

Aaverage is calculated by the following equation:

Aaverage = Atotal / n (Equation 7.6)

where Atotal is the total number of jobs allocated to all resources in the second simulation day

and n is the number of resources. According to Figure 7.6, the results of Average Allocated Jobs

show the FCFSPP algorithm allocates fewer jobs than FCFS in all simulated cases, especially

when the absolute value of ρ is small (close to -1). When the absolute value of ρ is small, the

gap between FCFS and FCFSPP is large. This is because resources tend to be considered as

unqualified after making prediction method in the FCFSPP algorithm. As a result, to ensure

reliability, the FCFSPP algorithm does not allocate many jobs to resources in such cases. When

the absolute value of ρ becomes larger (especially when it is close to 1), the gap between the

138

results of Average Allocated Jobs of FCFSPP and FCFS algorithms tends to be shortened. This

is because resources tend to be considered as qualified after making prediction method in the

FCFSPP algorithm. As a result, the FCFSPP algorithm will allocate many jobs to resources in

such cases.

Fluctuations occur in both FCFS and the FCFSPP algorithms. However, the reasons for these

fluctuations are slightly different. For FCFS algorithm, it is because that resources’ available

time varies in each data trace. For each paired data traces, the value of ρ can only show the

similarity level of the two traces but ρ cannot show how long the resource is available. However,

in addition to the value of ρ, resource available time also influences results of Average Allocated

Jobs. For FCFS algorithm, the longer available period a resource has, the more jobs will be

allocated to the resources. Therefore, the results of Average Allocated Jobs fluctuate in FCFS

algorithm.

For the FCFSPP algorithm, in addition to different resource available time, the fluctuations

are also caused the following reasons:

• The method to calculate the value of ρ. As mentioned earlier, the values of ρ are calculated

for Checking Day and Prediction Day rather than Checking Period and Prediction Period.

Checking Period and Prediction Period are subseries of Checking Day and Prediction Day

so the value of ρ between Checking Period and Prediction Period may be different from the

value of ρ between Checking Day and Prediction Day.

• The method to categorise the data traces. As mentioned earlier, the paired data traces are

categorised by the range of ρ (e.g. 0.5 to 0.6) rather than the specific value of ρ (e.g. 0.5).

This means the paired data traces in the same category has similar value of ρ but may not the

same value of ρ. For each resource in the same category, different value of ρ may also bring

different results of Total Allocated Jobs. Therefore, the aggregated results of Total Allocated

Jobs are influenced.

• Therefore, this set of simulations mainly focuses on showing the general trends and

differences between FCFS and the FCFSPP algorithm rather than providing accurate results.

0

0.2

0.4

0.6

0.8

1

-1
 to

 -0
.9

-0
.9

 to
 -0

.8

-0
.8

 to
 -0

.7

-0
.7

 to
 -0

.6

-0
.6

 to
 -0

.5

-0
.5

 to
 -0

.4

-0
.4

 to
 -0

.3

-0
.3

 to
 -0

.2

-0
.2

 to
 -0

.1

-0
.1

 to
 0

0
to

 0
.1

0.
1

to
 0

.2

0.
2

to
 0

.3

0.
3

to
 0

.4

0.
4

to
 0

.5

0.
5

to
 0

.6

0.
6

to
 0

.7

0.
7

to
 0

.8

0.
8

to
 0

.9

0.
9

to
 1

Range of ρ

Jo
b

A
llo

ca
tio

n
P

ro
po

rti
on

Figure 7-7: Job Allocation Proportion in the Second Simulation Day

Job Allocation Proportion is calculated by Total Allocated Jobs in FCFSPP divided by Total

Allocated Jobs in FCFS algorithm for each category. Let Aproportion denotes Job Allocation

Proportion; It is calculated by the following equation:

139

Aproportion = AFCFSPP / AFCFS (Equation 7.7)

where AFCFSPP is the Total Allocated Jobs in FCFSPP and AFCFSPP is the Total Allocated Jobs in

FCFSPP. For example, in category “0.9 to 1”, the number of Total Allocated Jobs in the FCFSPP

algorithm is 49 and the number of Total Allocated Jobs in FCFS is 70, so Job Allocation

Proportion is 49/70 = 0.7.

According to Figure 7.7, Job Allocation Proportion is high when the value of ρ is large (above

0.7). In addition, the value of Job Allocation Proportion tends to become larger when ρ

increases. The trend of Job Allocation Proportion indicates that the FCFSPP algorithm’s

performance in terms of allocating jobs tends to be similar to FCFS algorithm when the value of

ρ becomes larger.

Average Succeeded Jobs shows the average number of jobs processed by each resource in the

second simulation day. Let Saverage denotes Average Succeeded Jobs; it is calculated by the

following equation:

Saverage = Stotal / N (Equation 7.8)

Where Stotal is Total Succeeded Jobs in the second simulation day and N is the total number of

resources. According to the analysis in Section 5.2.2, the FCFSPP algorithm does not processing

higher number of jobs than FCFS algorithm under the same condition. The result in Figure 7.8

also confirms this. In terms of Average Succeeded Jobs, the FCFSPP algorithm has lower values

than FCFS in all simulated cases.

0
5

10
15

20
25
30
35
40

-1
 to

 -0
.9

-0
.9

 to
 -0

.8

-0
.8

 to
 -0

.7

-0
.7

 to
 -0

.6

-0
.6

 to
 -0

.5

-0
.5

 to
 -0

.4

-0
.4

 to
 -0

.3

-0
.3

 to
 -0

.2

-0
.2

 to
 -0

.1

-0
.1

 to
 0

0
to

 0
.1

0.
1

to
 0

.2

0.
2

to
 0

.3

0.
3

to
 0

.4

0.
4

to
 0

.5

0.
5

to
 0

.6

0.
6

to
 0

.7

0.
7

to
 0

.8

0.
8

to
 0

.9

0.
9

to
 1

Range of ρ

Av
er

ag
e

Su
cc

ee
de

d
Jo

bs

FCFS
FCFSPP

Figure 7-8: Average Succeeded Jobs in the Second Simulation Day

In addition, Figure 7.8 shows a trend that the FCFSPP algorithm tends to process more jobs

when ρ becomes larger. These results also show that the FCFSPP algorithm does not perform

better than FCFS algorithm in terms of getting jobs processed quickly. The fluctuations can be

also explained by the three reasons discussed above: different available time in each trace and the

method to calculate the value of ρ.

Job Success Proportion is calculated by Total Succeeded Jobs in the FCFSPP algorithm

divided by Total Succeeded Jobs in FCFS algorithm for each category. Let Sproportion denotes Job

Success Proportion; it is calculated by the following equation:

Sproportion = SFCFSPP / SFCFS (Equation 7.9)

Where SFCFSPP is Total Succeeded Jobs in FCFSPP and SFCFS is Total Succeeded Jobs in FCFS.

For example, in category “0.9 to 1”, the number of Total Succeeded Jobs in the FCFSPP

140

algorithm is 288 and the number of Total Succeeded Jobs in FCFS algorithm is 342, so Job

Processed Proportion is 288/342 ≈ 0.842.

As seen in Figure 7.9, when ρ is small, Job Success Proportion tends to be low and it has the

trend to become higher when ρ becomes larger. When ρ is higher than 0.5, Job Success

Proportion increases rapidly and it is over 0.8 when ρ is close to 1. These results show the

analysis that the FCFSPP algorithm tends to perform as well as FCFS in terms of Job Success

Proportion when ρ has a high value. The fluctuations can be also explained by the reasons given

above: insufficient data and the method to calculate the value of ρ.

0

0.2

0.4

0.6

0.8

1
-1

 to
 -0

.9

-0
.9

 to
 -0

.8

-0
.8

 to
 -0

.7

-0
.7

 to
 -0

.6

-0
.6

 to
 -0

.5

-0
.5

 to
 -0

.4

-0
.4

 to
 -0

.3

-0
.3

 to
 -0

.2

-0
.2

 to
 -0

.1

-0
.1

 to
 0

0
to

 0
.1

0.
1

to
 0

.2

0.
2

to
 0

.3

0.
3

to
 0

.4

0.
4

to
 0

.5

0.
5

to
 0

.6

0.
6

to
 0

.7

0.
7

to
 0

.8

0.
8

to
 0

.9

0.
9

to
 1

Range of ρ

Jo
b

S
uc

ce
ss

 P
ro

po
rti

on

Figure 7-9: Job Success Proportion in the Second Simulation Day

Average Failed Jobs shows the average number of jobs disposed by each resource in the

second simulation day. Let Faverage denotes Average Failed Jobs; It is calculated by the following

equation:

Faverage = Ftotal / N (Equation 7.10)

Where Ftotal is Total Failed Jobs in the second simulation day and N is the total number of

resources. In terms of Average Failed Jobs, a job will be failed when an Unavailability Event

occurs. As FCFS will keeps all the resources busy when the resources are available, so when an

Unavailability Event occurs, a job will be failed in FCFS algorithm. So the number of Total

Failed Jobs in FCFS is identical as the number of Unavailability Event in each simulation. In the

mean while, the FCFSPP algorithm does not always keep the resources busy, so when an

Unavailability Event occurs, a job will not necessarily be failed in the FCFSPP algorithm.

When the absolute value of ρ is large (the original value is close to -1 or 1), the number of

Unavailability Event is lower than the cases when the absolute value of ρ is small (close to 0).

The number of Average Failed Jobs in FCFS algorithm represents this. According to Figure 7.10,

the number of Total Failed Jobs in the FCFSPP algorithm also tends to have a high value when

the absolute value of ρ is small. In all simulated scenarios, the results show FCFS algorithm

cannot perform better than the FCFSPP algorithm in terms of Average Failed Jobs.

141

0
2
4
6
8

10
12

-1
 to

 -0
.9

-0
.9

 to
 -0

.8

-0
.8

 to
 -0

.7

-0
.7

 to
 -0

.6

-0
.6

 to
 -0

.5

-0
.5

 to
 -0

.4

-0
.4

 to
 -0

.3

-0
.3

 to
 -0

.2

-0
.2

 to
 -0

.1

-0
.1

 to
 0

0
to

 0
.1

0.
1

to
 0

.2

0.
2

to
 0

.3

0.
3

to
 0

.4

0.
4

to
 0

.5

0.
5

to
 0

.6

0.
6

to
 0

.7

0.
7

to
 0

.8

0.
8

to
 0

.9

0.
9

to
 1

Range of ρ

Av
er

ag
e

Fa
ile

d
Jo

bs

FCFS
FCFSPP

Figure 7-10: Average Failed Jobs in the Second Simulation Day

Job Failure Proportion is calculated by Total Failed Jobs the FCFSPP algorithm divided by

Total Failed Jobs in FCFS algorithm for each category. Let Fproportion denotes Job Failure

Proportion; it is calculated by the following equation:

Fproportion = FFCFSPP / FFCFS (Equation 7.11)

Where FFCFSPP is Total Failed Jobs in FCFSPP and FFCFS is Total Failed Jobs in FCFS.

For example, in category “0.9 to 1”, the number of Total Failed Jobs in FCFS algorithm is 1

and the number of Total Failed Jobs in FCFS is 10, so Job Success Proportion is 1/10 = 0.9.

According to Figure 7.11, Job Failure Proportion fluctuates when ρ varies. The reason of this

is that Unavailability Event does not occur regularly. For example, for a particular resource,

assume all Unavailability Events can be predicted and avoided within a short period. So within

the period, the number of can be varied. It could be a small number and it also could be a very

large number. Therefore, Job Failure Proportion does not indicate something clearly in such

cases.

0
0.1
0.2
0.3
0.4
0.5
0.6

-1
 to

 -0
.9

-0
.9

 to
 -0

.8

-0
.8

 to
 -0

.7

-0
.7

 to
 -0

.6

-0
.6

 to
 -0

.5

-0
.5

 to
 -0

.4

-0
.4

 to
 -0

.3

-0
.3

 to
 -0

.2

-0
.2

 to
 -0

.1

-0
.1

 to
 0

0
to

 0
.1

0.
1

to
 0

.2

0.
2

to
 0

.3

0.
3

to
 0

.4

0.
4

to
 0

.5

0.
5

to
 0

.6

0.
6

to
 0

.7

0.
7

to
 0

.8

0.
8

to
 0

.9

0.
9

to
 1

Range of ρ

Jo
b

Fa
ilu

re
 P

ro
po

rti
on

Figure 7-11: Job Failure Proportion in the Second Simulation Day

Still according to the Figure 7.11, when ρ is small, Job Failure Proportion tends to be high

and it has the trend to become lower when ρ becomes larger. These results show that FCFS

algorithm cannot perform as well as the FCFSPP algorithm in terms of Job Failure Proportion.

This difference between FCFS and the FCFSPP algorithm in terms of Job Failure Proportion

tends to be obvious when ρ has a high value. In addition, the fluctuations can be also explained

by the two reasons discussed above: different available time in each data trace and the method to

calculate the value of ρ.

As seen in Figure 7.12, in terms of Job Success Percentage, the FCFSPP algorithm has higher

results than FCFS in most cases. The exceptions occur when the original value of ρ is small

(below 0 and close to -1). This shows the FCFSPP algorithm can make reliable decisions – higher

percentage of allocated jobs can be completed successfully in most cases, especially when the

142

value of ρ is high. When the value of ρ is small, the historical data actually become misleading

for TDE predictor in the FCFSPP algorithm as the behaviour in the Prediction Period will

significantly different from the Checking Period in such cases. Therefore, job allocation

decisions based on misleading information cannot be very reliable.

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

-1
 to

 -0
.9

-0
.9

 to
 -0

.8

-0
.8

 to
 -0

.7

-0
.7

 to
 -0

.6

-0
.6

 to
 -0

.5

-0
.5

 to
 -0

.4

-0
.4

 to
 -0

.3

-0
.3

 to
 -0

.2

-0
.2

 to
 -0

.1

-0
.1

 to
 0

0
to

 0
.1

0.
1

to
 0

.2

0.
2

to
 0

.3

0.
3

to
 0

.4

0.
4

to
 0

.5

0.
5

to
 0

.6

0.
6

to
 0

.7

0.
7

to
 0

.8

0.
8

to
 0

.9

0.
9

to
 1

Range of ρ

Jo
b

S
uc

ce
ss

 R
at

io

FCFS
FCFSPP

Figure 7-12: Job Success Percentage in the Second Simulation Day

As mentioned above, the fluctuations always occur in different results. To see if these

fluctuations can be mitigated and clearer trends be obtained by more runs of simulations, some

simulation replications for some categories have been taken. In the simulated 20 categories,

only 5 of them (-0.2 to -0.1, -0.1 to 0, 0 to 0.1, 0.1 to 0.2 and 0.2 to 0.3) have more than

200-paired data traces (this is shown in Figure 6.22). As one simulation uses 20 paired data

traces, 9 replications (so the total number of simulations for one category is 10 times) are

carried out for these 5 categories. The result of Total Allocated Jobs Mean is added and

subtracted by the margin of error. Here, the result collected from each simulation is considered

as a sample and the margin of error for the sample average.

According Figure 7.13, the fluctuations in results of Average Total Allocated Jobs tend to

narrow after replications. However, it does not show a clear trend that the gaps between

FCFSPP and FCFS tend to be closer when the absolute value of ρ becomes larger (approaches

to 1) in these 5 simulated categories. On the other hand, it indicates the gaps between the results

of Total Allocated Jobs Mean of FCFSPP and FCFS tend to be unpredictable when the two

Daily Series have a very weak relationship (in these 5 simulated cases, the absolute value of ρ is

below 0.3).

0
100
200
300
400
500
600
700
800

-0.2 to -0.1 -0.1 to 0 0 to 0.1 0.1 to 0.2 0.2 to 0.3

Range of ρ

To
ta

l A
llo

ca
te

d
Jo

s
M

ea
n

FCFS

FCFSPP

Figure 7-13: Total Allocated Jobs with Margin of Error in the Second Simulation Day

According to Figure 7.14, in terms of Total Succeeded Jobs Mean, it does not show a clear

trend that the gaps between FCFSPP and FCFS tend to be closer when the absolute value of ρ

becomes larger (approaches to 1) in these 5 simulated categories either. Similar to the results of

Average Total Allocated Jobs, it indicates that the gaps between the results of Average Total

143

Succeeded Jobs of FCFSPP and FCFS tend to be unpredictable when the two Daily Series have

a very weak relationship. In addition, it also indicates FCFSPP tends to perform worse than

FCFS algorithm in terms of Average Total Succeeded Jobs in all simulated scenarios.

0
100
200
300
400
500
600
700
800

-0.2 to -0.1 -0.1 to 0 0 to 0.1 0.1 to 0.2 0.2 to 0.3

Range of ρ
To

ta
l S

uc
ce

ed
ed

 J
ob

s
M

ea
n

FCFS

FCFSPP

Figure 7-14: Total Succeeded Jobs with Margin of Error in the Second Simulation Day

As seen in Figure 7.15, in terms of Total Failed Jobs Mean, it does not show a clear trend that

the gaps between FCFSPP and FCFS tend to be closer when the absolute value of ρ becomes

larger (approaches to 1) in these 5 simulated categories either. As with the results of Total

Allocated Jobs Mean and Average Total Succeeded Jobs, it indicates the gaps between the

results of Total Failed Jobs Mean of FCFSPP and FCFS tend to be unpredictable when the two

Daily Series have very weak relationship. In addition, it also indicates FCFS tends to perform

worse than the FCFSPP algorithm in terms of Total Failed Jobs Mean in all simulated scenarios.

0

50

100

150

200

-0.2 to -0.1 -0.1 to 0 0 to 0.1 0.1 to 0.2 0.2 to 0.3

Range of ρ

To
ta

l F
ai

le
d

Jo
bs

 M
ea

n

FCFS

FCFSPP

Figure 7-15: Total Succeeded Jobs with Margin of Error in the Second Simulation Day

7.3 Evaluation of FLP Algorithm
To show the performance of the FLP algorithm and check the difference between FCFS, FLP

and the FCFSPP algorithm, a set of simulations with real data were carried out. Besides the

setup shown in Table 7-1, these simulations have the experimental setup shown in Table 7-6:
Name Setting

Number of Resources 17 to 20 (depends on the number of available paired traces)
Job-scheduling algorithm FCFS, FCFSPP and FLP

Length of Simulation 2 simulation days

Table 7-6: Experimental Setup for Simulations of FLP

According to Figure 7.16, in terms of Total Allocated Jobs, the result of the FLP algorithm is

always between FCFS and the FCFSPP algorithm. Furthermore, the result of Total Allocated

Jobs is closer to FCFS algorithm in all simulation scenarios and this indicates the value of

Resource Availability Probability Threshold tend to be low (so it behaves more like FCFS

algorithm) in all simulation scenarios.

144

0

100

200

300

400

500

600

700

800

-1
 to

 -0
.9

-0
.9

 to
 -0

.8

-0
.8

 to
 -0

.7

-0
.7

 to
 -0

.6

-0
.6

 to
 -0

.5

-0
.5

 to
 -0

.4

-0
.4

 to
 -0

.3

-0
.3

 to
 -0

.2

-0
.2

 to
 -0

.1

-0
.1

 to
 0

0
to

 0
.1

0.
1

to
 0

.2

0.
2

to
 0

.3

0.
3

to
 0

.4

0.
4

to
 0

.5

0.
5

to
 0

.6

0.
6

to
 0

.7

0.
7

to
 0

.8

0.
8

to
 0

.9

0.
9

to
 1

Range of ρ

To
ta

l A
llo

ca
te

d
Jo

bs

FCFS

FLP

FCFSPP

Figure 7-16: Total Allocated Jobs in the Second Simulation Day

As can be seen from Figure 7.17, the result of Total Succeeded Jobs in the FLP algorithm is

always between FCFS and the FCFSPP algorithm and it is closer to FCFS algorithm in all

simulation scenarios.

0

100

200

300

400

500

600

700

800

-1
 to

 -0
.9

-0
.9

 to
 -0

.8

-0
.8

 to
 -0

.7

-0
.7

 to
 -0

.6

-0
.6

 to
 -0

.5

-0
.5

 to
 -0

.4

-0
.4

 to
 -0

.3

-0
.3

 to
 -0

.2

-0
.2

 to
 -0

.1

-0
.1

 to
 0

0
to

 0
.1

0.
1

to
 0

.2

0.
2

to
 0

.3

0.
3

to
 0

.4

0.
4

to
 0

.5

0.
5

to
 0

.6

0.
6

to
 0

.7

0.
7

to
 0

.8

0.
8

to
 0

.9

0.
9

to
 1

Range of ρ

To
ta

l S
uc

ce
ed

ed
 J

ob
s

FCFS

FLP

FCFSPP

Figure 7-17: Total Succeeded Jobs in the Second Simulation Day

As seen in Figure 7.18, the result of Total Succeeded Jobs in the FLP algorithm is always

between FCFS and the FCFSPP algorithm in most simulation scenarios. According to the

analysis in Section 5.3, the results of the FLP algorithm in terms of speed and reliability are

generally supposed to between FCFS and the FCFSPP algorithm. However, interestingly, the

result of Total Failed Jobs is even higher than FCFS, the FLP algorithm performs even worse

than FCFS algorithm in some scenarios (e.g. in the simulation scenario “0.1 to 0.2” and “-0.7 to

-0.6”).

0

50

100

150

200

250

300

-1
 to

 -0
.9

-0
.9

 to
 -0

.8

-0
.8

 to
 -0

.7

-0
.7

 to
 -0

.6

-0
.6

 to
 -0

.5

-0
.5

 to
 -0

.4

-0
.4

 to
 -0

.3

-0
.3

 to
 -0

.2

-0
.2

 to
 -0

.1

-0
.1

 to
 0

0
to

 0
.1

0.
1

to
 0

.2

0.
2

to
 0

.3

0.
3

to
 0

.4

0.
4

to
 0

.5

0.
5

to
 0

.6

0.
6

to
 0

.7

0.
7

to
 0

.8

0.
8

to
 0

.9

0.
9

to
 1

Range of ρ

To
ta

l F
ai

le
d

Jo
bs

FCFS

FLP

FCFSPP

Figure 7-18: Total Failed Jobs in the Second Simulation Day

This could be explained by making job allocations at different times. For example, assume a

resource is available for 60 minutes in the Prediction Period and 30 minutes in the Checking

Period and a job waiting for allocation also lasts for 60 minutes. For FCFS algorithm, it always

allocates the job to the resource. As the resource will available for 60 minutes, the job will be

completed successfully. For the FCFSPP algorithm, as the resource’s Resource Availability

Probability is 50% (30/60 = 50%), it will not allocate the job to the resource during the hour.

Therefore, the job will not be failed either. However, for the FLP algorithm, it may also refuse

145

to allocate the job to the resource for a while (e.g. 10 minutes) as the Resource Availability

Probability Threshold is high in this period (e.g. the Resource Availability Probability Threshold

can be 60% for the first 10 minutes). However, after this period, the Resource Availability

Probability Threshold might be reduced (e.g. reduced to 30%). Now if the FLP algorithm tries

to allocate the job to this resource again, as the resource’s Resource Availability Probability is

33.3% ((30-10)/60 = 33.3%), it will allocate the job to the resource now. However, this job will

be failed as the resource will not available for one hour now (60-10=50 minutes), the job will be

failed.

This exceptional case can be called as Failure of Delayed Job Allocation Decision, which

means job failures are caused by the delayed job allocation decision. When the resource is

considered as unqualified and the job will not be allocated to the resource, the resource may be

actually qualified at that moment. When the resource is considered as qualified later and the job

is allocated to the resource, the resource may have already become unqualified. However, this

case does not occur frequently and only arises due to the following conditions:

• The resource is considered as unqualified firstly. This will only occur if system is facing

case 2 and 3 (the cases described in section 5.2.2).

• After being considered as unqualified, the resource is considered as qualified soon after

(before the job is allocated to another resource). This requires the Resource Availability

Probability Threshold reduces quickly enough to let this resource becomes qualified soon.

• Normal job allocation decisions will not result in a job failure while Delayed Job Allocation

Decision results in a job failure.

• The resource is being considered as the resource candidate for the same job again after the

Resource Availability Probability Threshold has been lowered. This requires the job to have

not been allocated to another resource yet.

In addition, the results show this case does not occur frequently as the result of Total Failed

Jobs in the FLP algorithm is below the performance of the FCFS algorithm in most cases.

Figure 7.19 shows that FLP is usually between FCFS and FCFSPP in terms of Job Success

Percentage. However, the FLP algorithm has the lowest Job Success Percentage some

simulation scenarios. This is due to Failure of Delayed Job Allocation Decisions.

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

-1
 to

 -0
.9

-0
.9

 to
 -0

.8

-0
.8

 to
 -0

.7

-0
.7

 to
 -0

.6

-0
.6

 to
 -0

.5

-0
.5

 to
 -0

.4

-0
.4

 to
 -0

.3

-0
.3

 to
 -0

.2

-0
.2

 to
 -0

.1

-0
.1

 to
 0

0
to

 0
.1

0.
1

to
 0

.2

0.
2

to
 0

.3

0.
3

to
 0

.4

0.
4

to
 0

.5

0.
5

to
 0

.6

0.
6

to
 0

.7

0.
7

to
 0

.8

0.
8

to
 0

.9

0.
9

to
 1

Range of ρ

Jo
b

Su
cc

es
s

R
at

io

FCFS

FLP

FCFSPP

Figure 7-19: Job Success Percentage Comparison

According to the simulation scenarios with real data, the FLP algorithm’s Total Succeeded

146

Jobs, Total Failed Jobs and Job Success Percentage are typically between FCFS and FCFSPP.

However, in these simulation scenarios, it does not manage to obtain a better performance than

FCFS or FCFSPP, as FLP cannot achieve a higher Job Success Percentage than other two

algorithms in these scenarios. The reason for this is that the patterns of all resources’ Job

Execution Availability tend to be dissimilar (as shown in Chapter 6), that is employing the Job

Execution Availability from some resources does not necessarily provide a good indication for

all resources.

7.4 Evaluation of the PSOPP Algorithm
To evaluate the performance of the PSOPP algorithm and check the analysis (discussed in

Section 5.4), some simulations have been designed and carried out.

7.4.1 Influence of Workload

As discussed in Section 5.4.2, the PSOPP algorithm will be influenced by different level of

Workload. Therefore, a set of simulations with synthetic data is used to check the influences.

Besides the setup shown in Table 7-1, these simulations have the experimental setup shown in

Table 7-7:
Name Setting

Number of Resources The value is 1
Job-scheduling algorithm FCFS, FCFSPP, FLP and PSOPP

CPU Availability of the resource 1GHz

t1
24 hours (resource is available throughout the first

simulation day)

t2
24 hours (resource is available throughout the second

simulation day)
Job Size 12 hours

Job Arrival Interval in simulation scenario 1 The value is 16 hours
Job Arrival Interval in simulation scenario 2 The value is 12 hours
Job Arrival Interval in simulation scenario 3 The value is 8 hours
Resource Availability Probability Threshold

Adjustment Interval The value is 1 hour

Number of Iteration in PSOPP The value is 1
Length of simulation 2 simulation days

Table 7-7: Experimental Setup for Simulations of Different Workload in PSOPP

These three simple but representative scenarios show the influence of Workload. In these

simulation scenarios, there is only one resource and the resource is always available in the two

simulation days. As there is only one resource, the PSOPP algorithm will always allocate the

new jobs to the resource. The only difference between these two scenarios is that the job

creation interval (the same as job arrival interval). A job arrives at the Grid job scheduler every

16 hours, 12 and 8 hours in these three scenarios respectively. This represents three levels of

Workload: low, medium and high. For comparisons, FCFS, FCFSPP and the FLP algorithms are

used in the simulations. Note no job is created in the first simulation day in these simulation

scenarios. Therefore, the resource will be idle at the beginning of the second simulation day.

147

0

1

2

3

4

1 2 3

Simulation Scenario Number

To
ta

l A
llo

ca
te

d
Jo

bs

FCFS

FCFSPP

FLP

PSOPP

Figure 7-20: Total Allocated Jobs in the Second Simulation Day

Figure 7.20 shows the results of Total Allocated Jobs of each algorithm in the second

simulation day. In terms of Total Allocated Jobs, the possible highest result is 3. In simulation

scenario 3, a job arrives at the Grid job scheduler every 8 hours. Therefore, 3 jobs (excluding

the last one arrives just at the end of the second simulation day) will arrive at the Grid job

scheduler in the second simulation day.

For FCFS algorithm, it only allocates a new job to the resource when the resource is idle. As

each job lasts for 12 hours in these simulation scenarios, the resource will be idle for 2 times

(including the last time just at the end of the second simulation day) in the second simulation

day, the result of Total Allocated Jobs is 2 in simulation scenario 2 and 3. In simulation scenario

1, the number of Total Allocated Jobs is 1 as the Workload is low (job arrives every 16 hours).

For the FCFSPP and the FLP algorithms, they only allocate a new job to the resource when

the resource is idle and the resource’s Resource Availability Probability is not below the

predefined Resource Availability Probability Threshold. In these simulation scenarios, the

resource is always available so the Resource Availability Probability is not below the predefined

Resource Availability Probability Threshold all the time. Therefore, FCFSPP and FLP always

allocate a new job to the resource when the resource becomes idle in these simulation scenarios.

As each job lasts for 12 hours in these simulation scenarios, the resource will be idle for 2 times

(including the last time just at the end of the second simulation day) in the second simulation

day, the result of Total Allocated Jobs is 2 in simulation scenario 2 and 3. In simulation scenario

1, the number of Total Allocated Jobs is 1 as the Workload is low (job arrives every 16 hours).

For the PSOPP algorithm, it allocates a new job to the resource when the resource is

available. As the resource is always available in three simulation scenarios, PSOPP always

allocates new jobs to the resource. As a result, PSOPP always have the possible highest result of

Total Allocated Jobs in these three simulation scenarios.

0

1

2

3

1 2 3

Simulation Scenario Number

To
ta

l S
uc

ce
ed

ed
 J

ob
s

FCFS

FCFSPP

FLP

PSOPP

Figure 7-21: Total Succeeded Jobs in the Second Simulation Day

148

Figure 7.21 show the results of Total Succeeded Jobs of each algorithm in the second

simulation day. In terms of Total Succeeded Jobs, the possible highest result is 2 as a job last for

12 hours.

For FCFS, FCFSPP and the FLP algorithm, they have the highest result in terms of Total

Succeed Jobs in simulation scenario 2 and 3 as it always has a job to process at a time. In

simulation scenario 1, they do not have the highest result in terms of Total Succeed Jobs as the

Workload is low (the resource is left idle for 4 hours).

For the PSOPP algorithm, it has the highest results in terms of Total Succeed Jobs in

simulation scenario 2. In this scenario, the Workload is medium and the PSOPP algorithm keeps

the resource has job and only one job to process at a time. In simulation scenario 1, as for FCFS,

it does not have the highest result in terms of Total Succeed Jobs as the Workload is low (the

resource is left idle for 4 hours). In simulation scenario 3, it does not have the highest result as

the Workload is high and the PSOPP algorithm keeps the resource have more than 1 job for 16

hours.

0%

20%

40%

60%

80%

100%

1 2 3

Simulation Scenario Number

Jo
b

Pr
oc

es
s

Pe
rc

en
ta

ge

FCFS

FCFSPP

FLP

PSOPP

Figure 7-22: Job Process Percentage in the second simulation day

Figure 7.22 show the results of Job Process Percentage of each algorithm in the second

simulation day. Job Process Percentage shows the percentage of jobs processed by all resources

in a given period. Let Ppercentage denotes Job Process Percentage; calculated by the following

equation:

Ppercentage = (Stotal + Ftotal) / Atotal * 100% (Equation 7.12)

Where Stotal is Total Succeeded Jobs, Ftotal is Total Failed Jobs and Atotal is Total Allocated Jobs.

For FCFS, FCFSPP and the FLP algorithms, they have the high results (it is 100% in these three

simulation scenarios) in terms of Job Process Percentage as it always keep the resource has at

most one job at a time rather than multiple jobs at a time.

For the PSOPP algorithm, it has the highest results in terms of Job Process Percentage in

simulation scenario 1 and 2. In these scenarios, the Workload is not high and the PSOPP

algorithm keeps the resource has job and only one job to process at a time. In simulation

scenario 3, it does not have the highest result as the Workload is high and the PSOPP algorithm

keeps the resource have more than 1 job for 16 hours.

149

0
2
4
6
8

10
12
14
16
18

1 2 3

Simulation Scenario Number

Av
er

ag
e

Jo
b

M
ak

es
pa

n

FCFS

FCFSPP

FLP

PSOPP

Figure 7-23: Average Job Makespan in the Second Simulation Day

Figure 7.23 show the results of Average Job Makespan of each algorithm in the second

simulation day. Average Job Makespan describes the average time to complete a job. Let Maverage

denotes Average Job Makespan; It is calculated by the following equation:

Maverage =

S

j
j=1

S

M∑
 (Equation 7.13)

where Mj is the Makespan of job j and S is Total Succeeded Jobs so far.

For FCFS, FCFSPP and the FLP algorithms, the result of Average Job Makespan is always 12

hours in these three simulation scenarios as each job will occupy the CPU cycles of the resource

solely if it is allocated to the resource.

For the PSOPP algorithm, the result of Average Job Makespan is 12 hours simulation

scenario 1 and 2 as each job is occupy the CPU cycles of the resource solely if it is allocated to

the resource in these two scenarios. In simulation scenario 3, the result of Average Job

Makespan is 16 hours as multiple jobs have to share the CPU cycles of the resource for some

time.

According to the above results, the performances of the PSOPP algorithm under different

Workload levels are presented. In brief, the PSOPP algorithm’ result of job throughput tends to

be low if the Workload is low or high. The PSOPP algorithm’s result of Average Job Makespan

tends to be long if the Workload is high.

In addition, these results also show some differences between the algorithm using the

approach of allocating jobs to idle resources and the algorithm using the approach of allocating

jobs to available resources, especially when Workload is high. If Workload is high, the

algorithm using the approach of allocating jobs to available resources is influenced greatly in

terms of speed.

7.4.2 Influence of PSO Fitness Function

As discussed in Section 5.4.3, the PSOPP algorithm will be influenced by the correctness

level of fitness function. Therefore, a set of simulations with synthetic data and representative

scenarios are used to check the influence of the PSO fitness function. Besides the setup shown

in Table 7-1, these simulations have the experimental setup shown in Table 7-8:

150

Name Setting
Number of Resources The value is 2

Job-scheduling algorithm FCFS, FCFSPP, FLP and PSOPP.

CPU Availability of resource 1 In simulation scenario 1, it is always 2GHz. In simulation scenario 2, it is
2GHz at first but becomes 1GHz after 12 hours in the second simulation day

CPU Availability of resource 2 In simulation scenario 1, it is always 1GHz. In simulation scenario 2, it is
1GHz at first but becomes 2GHz after 12 hours in the second simulation day

t1 24 hours (resource is available throughout the first simulation day)
t2 24 hours (resource is available throughout the second simulation day)

Job Size 12 hours if CPU Availability is always 2GHz and 24 hours if CPU
Availability is always 1GHz

Job Arrival Interval The value is 12 hours
Resource Availability Probability

Threshold Adjustment Interval The value is 1 hour

Number of Iteration in PSOPP The value is 1
Length of simulation The value is 48 hours

Table 7-8: Experimental Setup for Simulations of Fitness Function of PSOPP

These are two simple but representative scenarios to show how the correctness level of the

fitness function influences the PSOPP algorithm. In the first simulation scenario, both resources’

CPU Availability does not change in the two simulation days. In such a case, the fitness function

is supposed to represent the fitness value of both resources correctly. In the second simulation

scenario, both resources’ CPU Availability changes in the middle of second simulation days. In

such a case, the fitness function is supposed to represent the fitness value of both resources

correctly.

For comparisons, FCFS, FCFSPP and the FLP algorithms are used in the simulations. The

results from the second simulation day are focused here as FCFSPP, FLP and the PSOPP

algorithm use the TDE prediction method (TDE prediction method needs historical data and the

first simulation day’s data is considered as the historical data here).

0

1

2

3

1 2

Simulation Scenario Number

To
ta

l S
uc

ce
ed

ed
 J

ob
s

FCFS

FCFSPP

FLP

PSOPP

Figure 7-24: Total Succeeded Jobs in the Second Simulation Day

Figure 7.24 show the results of Total Succeeded Jobs of each algorithm in the second

simulation day. In terms of Total Succeeded Jobs, the possible highest result is 2 as a job last for

12 hours.

For FCFS, FCFSPP and the FLP algorithms, they do not have the highest result in terms of

Total Succeeded Jobs in simulation scenario 1 as the second job is not allocated to the more

powerful resource. At the beginning of second simulation day, the first job will be allocated to

resource 1 as resource 1 is the first resource in the resource list. The first job will be finished by

resource 1 after 12 hours. After 12 hours, the second job arrives and it will be allocated to

resource 2 as resource 2 is the first resource in the resource list. The second job will not be

151

finished by resource 2 after 12 hours as it has low CPU Availability (the CPU availability of

resource 2 is 1GHz and it requires 24 hour to finish a job).

The FCFS, FCFSPP and FLP algorithms have the highest result in terms of Total Succeed

Jobs in simulation scenario 2 as the first two jobs are allocated to the more powerful resource.

At the beginning of second simulation day, the first job will be allocated to resource 1 as

resource 1 is the first resource in the resource list. The first job will be finished by resource 1

after 12 hours. After 12 hours, the second job arrives and it will be allocated to resource 2 as

resource 2 is the first resource in the resource list.

For the PSOPP algorithm, it has the opposite results to FCFS algorithm in terms of Total

Succeeded Jobs in these two scenarios. PSOPP has the highest result in terms of Total

Succeeded Jobs in simulation scenario 1 as both jobs are allocated to the more powerful

resource. At the beginning of the second simulation day, the first job will be allocated to

resource 1 as resource 1’s fitness value is higher than resource 2’s. The first job will be finished

by resource 1 after 12 hours. After 12 hours, the second job arrives and it will still be allocated

to resource 1 as resource 1 has a higher fitness value than resource 2. The second job will be

finished by resource 2 after 12 hours as well.

PSOPP has the highest result in terms of Total Succeeded Jobs in simulation scenario 1 as the

second job is allocated to the more powerful resource. At the beginning of the second simulation

day, the first job will be allocated to resource 1 as resource 1’s fitness value is higher than

resource 2’s. The first job will be finished by resource 1 after 12 hours. After 12 hours, the

second job arrives and it will still be allocated to resource 1 as resource 1 has a higher fitness

value than resource 2. However, the CPU Availability of resource 1 changes to 1GHz after the

job is allocated to resource 1. Therefore, the second job will not be finished by resource 1 after

12 hours.

0%

20%

40%

60%

80%

100%

1 2

Simulation Scenario Number

Jo
b

Pr
oc

es
s

Pe
rc

en
ta

ge

FCFS

FCFSPP

FLP

PSOPP

Figure 7-25: Job Process Percentage in the Second Simulation Day

Figure 7.25 show the results of Job Process Percentage of each algorithm in the second

simulation day. Similar to the result of Total Succeeded Jobs, FCFS, FCFSPP, FLP have the

highest result in terms of Job Process Percentage in simulation scenario 2 as the first two jobs

are allocated to the more powerful resource. At the beginning of second simulation day, the first

job will be allocated to resource 1 as resource 1 is the first resource in the resource list. The first

job will be finished by resource 1 after 12 hours. After 12 hours, the second job arrives and it

152

will be allocated to resource 2 as resource 2 is the first resource in the resource list.

The PSOPP algorithm has the highest result in terms of Total Succeeded Jobs in simulation

scenario 1 as the second job is allocated to the more powerful resource. At the beginning of

second simulation day, the first job will be allocated to resource 1 as resource 1’s fitness value is

higher than resource 2’s. The first job will be finished by resource 1 after 12 hours. After 12

hours, the second job arrives and it will still be allocated to resource 1 as resource 1 has a higher

fitness value than resource 2. However, the CPU Availability of resource 1 changes to 1GHz

after the job is allocated to resource 1. Therefore, the second job will not be finished by resource

1 after 12 hours.

According to the above results, the correctness level of the fitness value will influence the

performance of the PSOPP algorithm in terms of Total Succeeded Jobs and Job Process

Percentage here). If the fitness function can represent fitness values of each solution correctly,

the job allocation decisions based on the correct fitness value will perform well in terms of

speed and it will better than a job-scheduling algorithm with Checking if Qualified approach

(represented by FCFS, FCFSPP and the FLP algorithm), such as simulation scenario 1.

But on the other hand, if the fitness function cannot represent fitness values of each solution

correctly, the job allocation decisions based on the correct fitness value will not be able to

perform well in terms of speed and/or reliability and it will worse than job-scheduling

algorithms with Checking if Qualified approach, such as simulation scenario 2.

7.5 Evaluation of PSPP Migration Algorithm
To examine the performances of the Periodical Scanning with Predictor Migration Algorithm

(PSPP), especially in terms of predicting Unavailability Events of resources, a set of simulations

have been designed and carried out.

The examination method works as follow: At regular intervals, the Grid job scheduler uses

PSPP algorithm to check each currently available resource’s availability history and predict the

Resource Availability Probability of each resource in the Prediction Period. Note here the Grid

job scheduler focus on the resources which are currently available because only those currently

available resources may have jobs and the jobs might need proactive migration as a result of

potential Unavailability Events. For those currently unavailable resources, no job is running on

them so it is no need to worry about job migration consequently.

After making a prediction for a particular resource, the prediction result shows the Resource

Availability Probability of the resource in the Prediction Period. If a resource’s Resource

Availability Probability is lower than 100%, then it means the resource is predicted to have an

Unavailability Event (the resource will become unavailable) at some time during the Prediction

Period. In such a case, a job migration is considered to be necessary. If a resource’s Resource

Availability Probability is 100%, then it means the resource is predicted to be staying available

153

throughout the Prediction Period. In such a case, a proactive migration is not considered to be

necessary.

With the prediction results, the Grid job scheduler checks if the prediction results are correct

after the Prediction Period. For example, assume an Prediction Period lasts for time P and the

PSPP prediction algorithm makes a prediction at time Tcurrent, then the Grid job scheduler will

check the predictions at time Tcurrent + P.

Three terms describing a prediction result introduced in Section 5.5.2 are used to describe

whether a prediction result is correct or not: Correct Prediction Type 1, False Alarm and Missed

Detection. Note here Correct Prediction Type 2 is not used for evaluating the performance of

prediction result as the evaluation is mainly focused on whether the prediction method can

detect Unavailability Events correctly.

A set of simulations with real data were used to show the performance of PSPP algorithm in

practical scenarios. In this set of simulation, data sets UCB, SDSC, LRI and DEUG were used.

To test the accuracy of prediction algorithm in with different Prediction Period P, the

parameter of Prediction Period (the same length as Migration Prediction Interval) were set as 1,

5 and 10 minutes in different series of simulations. The reason for choosing these values is for

the consideration of job migration procedure. According to previous research

[Ma00][Bouchenak00b], a job migration is expected to finished between a couple of seconds

and a couple of minutes. Therefore, if the Prediction Period (abbreviated as P) is too short (e.g.

1 second), the Grid job scheduler will not be able to have enough time to finish the procedure of

job migration. On the other hand, if P is too long (e.g. 1 hour), some idle CPU cycles of the

resources may be wasted as a result of migration too early. Therefore, making prediction for the

next couple of minutes should be a suitable range of time.

To test the influence brought by the parameter Number of Checking Days (abbreviated as N),

the parameter was varied from 1 to 6 in different simulations.

In this set of simulations, two extra results are used to represent the performance of the

prediction algorithm. The first one is Unavailability Event Detection Percentage. Let Dpercent

denotes Unavailability Event Detection Percentage; it is calculated by the following equation:

Dpercent = Ctype1 / Utotal * 100% (Equation 7.14)

where Ctype1 is total number of Correct Predictions Type 1 and Utotal is the total number of

Unavailability Events (equals Total Number of Correction Prediction Type 1 + Total Number of

Missed Detection). According to Equation 7.14, to what extent the prediction algorithm can

detect all Unavailability Events can be tested.

The second equation is Correct Prediction Percentage. Let Cpercent denotes Correct Prediction

Percentage; it is calculated by the following equation:

Cpercent = Ctype1 / (Ctype1 + Ftotal) * 100% (Equation 7.15)

where Ctype1 is is total number of Correct Predictions Type 1 and Ftotal is the total number of

154

False Alarm. According to Equation 7.15, to what extent the prediction algorithm can make

correct predictions can be tested.

7.5.1 Evaluation with Data Set UCB

UCB contains 10 days’ availability data and there are 6076 Unavailability Events overall.

However, as the prediction algorithm needs past 1 day’s availability history to make prediction

and the prediction algorithm does not have any availability history in the first day, the prediction

algorithm does not make any prediction in the first day consequently. Therefore, 460

Unavailability Events which occur in the first day were excluded from the examination. As a

result, 5616 Unavailability Events which occur in the rest 9 days were used for the examination.

In general, there are two trends shown in Figure 7.26: firstly, the results of Correct Prediction

Type 1 and False Alarm increase while the result of Missed Detection decreases along with the

increase of N. Secondly, the result of Correct Prediction Type 1 increases while the results of

Missed Detection and False Alarm decrease along with the increase of P.

For Correct Prediction Type 1, it has the lowest result 149 when N=1 (day) and P=1 (minute).

When N increase to 6 (days) and P increases to 10 (minutes), the result of Correct Prediction

Type 1 also increases to 3644. According to the analysis in Section 5.4, this can be explained by

the reason that the Checking Period has been lengthened so it is more likely to have at least one

Unavailability Event in the Checking Period.

For Missed Detection, it has the highest result 5927 when N=1 (day) and P=1 (minute). When

N increase to 6 (days) and P increases to 10 (minutes), the result of Correct Prediction Type 1

decreases to 2432. This can be explained by the increase of Correct Prediction Type 1. As the

total number of Unavailability Event is fixed (it is 6076 in UCB). Therefore, opposite to

Correction Prediction Type 1, if the result of Correction Prediction Type 1 increases, the result

of Missed Detection will decrease.

For False Alarm, it has the lowest result 3592 when N=1 (day) and P=10 (minutes). When N

increase to 6 (days) and P decreases to 1 (minute), the result of False Alarm increases to 18567.

The result of False Alarm increasing with the increase of N can be explained by the reason that

the Checking Period has been lengthened so it is more likely to have at least one Unavailability

Event in the Checking Period. The result of False Alarm decreasing with the increase of P can

be explained by the reason that the Prediction Period has been lengthened so it is more likely to

have at least one Unavailability Event in the Prediction Period.

155

0

1000

2000

3000

4000

1 2 3 4 5 6

Number of Checking Days N

C
or

re
ct

 P
re

di
ct

io
n

Ty
pe

1

P=1

P=5

P=10

(a) Correct Prediction Type 1

0
1000
2000
3000
4000
5000
6000

1 2 3 4 5 6

Number of Checking Days N

M
is

se
d

D
et

ec
tio

n

P=1

P=5

P=10

0

5000

10000

15000

20000

1 2 3 4 5 6

Number of Checking Days N

Fa
ls

e
Al

ar
m

P=1

P=5

P=10

 (b) Missed Detection (c) False Alarm

0%

20%

40%

60%

80%

1 2 3 4 5 6

Number of Checking Days N

U
na

va
ila

bi
lity

 E
ve

nt

D
et

ec
tio

n
Pe

rc
en

ta
ge

P=1

P=5

P=10

0%

10%

20%

30%

40%

1 2 3 4 5 6

Number of Checking Days N

C
or

re
ct

 P
re

di
ct

io
n

Pe
rc

en
ta

ge P=1

P=5

P=10

(d) Unavailability Event Detection Percentage (e) Correct Prediction Percentage

Figure 7-26: Effect of Different Values of N and P in UCB

The results of Unavailability Event Detection Percentage increase along with the increase of

N and P. It has the lowest result 2.58% when N=1 (day) and P=1 (minute). When N increases to

6 (days) and P increases to 10 (minutes), the result of Unavailability Event Detection

Percentage increases to 64.89%. The result of Unavailability Event Detection Percentage

increasing with the increase of N and P can be explained by the reason that the increase of

Correction Prediction Type 1.

For P=5 and P=10, the result of Correct Detection Ratio decreases along with the increase of

N and decreases of P. It has the highest result 30.94% when N=1 (day) and P=10 (minutes).

When N increase to 6 (days) and P decreases to 5 (minutes), the result of Correct Prediction

Percentage decreases to 16.57%. The result of Correct Detection Ratio decreasing with the

increase of N can be explained by the reason that the increase of Correction Prediction Type 1 is

slower than the increase of False Alarm when N increases. The result of Correct Detection Ratio

increases with the decrease of P can be explained by the reason that the increase of Correction

Prediction Type 1 is slower than the increase of False Alarm when N increases, especially in the

case when P decreases.

For P=1, the result of Correct Detection Ratio increases along with the increase of N when N

changes from 1 to 5. When N=1 and N=5, the result of Correct Detection Ratio is 3.24% and

3.58% respectively. When N=6, the result of Correct Detection Ratio is 3.49%. The result of

156

Correct Detection Ratio increases with the decrease of P when N change from 1 to 5 can be

explained by the reason that the increase of Correction Prediction Type 1 is faster than the

increase of False Alarm when N increases. However, later, when N changes from 5 to 6, the

increase of Correction Prediction Type 1 is slower than the increase of False Alarm so the result

of Correct Detection Ratio decreases consequently.

According to the above results, if P increases, the performance of PSPP algorithm improves

as both results of Unavailability Event Detection Percentage and Correct Detection Ratio

increases. However, for parameter N, if the value of N increases, it is difficult to say the

performance of PSPP algorithm improves as the result of Unavailability Event Detection

Percentage increases but Correct Detection Ratio decreases.

7.5.2 Evaluation with Data Set SDSC

SDSC contains 7 days availability data and there are 2370 Unavailability Event overall.

However, as for UCB, as the prediction algorithm needs past 1 day’s availability history to make

prediction and the prediction algorithm does not have any availability history in the first day, the

prediction algorithm does not make any prediction in the first day consequently. Therefore, 506

Unavailability Events, which occur in the first day, were excluded from the examination. As a

result, 1864 Unavailability events that occur in the remaining 6 days were used for the

examination.

There are two trends shown in Figure 7.27: firstly, the results of Correct Prediction Type 1

and False Alarm (though it is not very obvious in this data set) increase while the result of

Missed Detection decreases along with the increase of N. Secondly, the result of Correct

Prediction Type 1 increases while the results of Missed Detection and False Alarm decrease

along with the increase of P.

For Correct Prediction Type 1, it has the lowest result 29 when N=1 (day) and P=1 (minute).

When N increase to 6 (days) and P increases to 10 (minutes), the result of Correct Prediction

Type 1 also increases to 306. According to the analysis in Section 5.4, this can be explained by

the reason that the Checking Period has been lengthened so it is more likely to have at least one

Unavailability Event in the Checking Period.

157

0
50

100
150
200
250
300
350

1 2 3 4 5 6
Number of Checking DaysC

or
re

ct
 P

re
di

ct
io

n
Ty

pe
1

P=1

P=5

P=10

(a) Correct Prediction Type 1

1400

1500

1600

1700

1800

1900

1 2 3 4 5 6
Number of Checking Days

M
is

se
d

D
et

ec
tio

n

P=1

P=5

P=10

0

1000

2000

3000

4000

5000

1 2 3 4 5 6
Number of Checking Days

Fa
ls

e
Al

ar
m P=1

P=5

P=10

 (b) Missed Detection (c) False Alarm

0%

5%

10%

15%

20%

1 2 3 4 5 6
Number of Checking Days

U
na

va
ila

bi
lity

 E
ve

nt

D
et

ec
tio

n
Pe

rc
en

ta
ge

P=1

P=5

P=10

0%

2%

4%

6%

8%

10%

1 2 3 4 5 6
Number of Checking Days

C
or

re
ct

io
n

Pr
ed

ic
tio

n
Pe

rc
en

ta
ge P=1

P=5

P=10

 (d) Unavailability Event Detection Percentage (e) Correct Prediction Percentage

Figure 7-27: Effect of Different Values of N and P in SDSC

For Missed Detection, it has the highest result 2280 when N=1 (day) and P=1 (minute). When

N increase to 6 (days) and P increases to 10 (minutes), the result of Correct Prediction Type 1

decreases to 2064. This can be explained by the increase of Correct Prediction Type 1. As the

total number of Unavailability Event is fixed (it is 1864 in SDSC). Therefore, opposite to

Correction Prediction Type 1, if the result of Correction Prediction Type 1 increases, the result

of Missed Detection will decrease.

For False Alarm, it has the lowest result 951 when N=1 (day) and P=10 (minutes). When N

increase to 6 (days) and P decreases to 1 (minute), the result of False Alarm increases to 4317.

The result of False Alarm increasing with the increase of N can be explained by the reason that

the Checking Period has been lengthened so it is more likely to have at least one Unavailability

Event in the Checking Period. The result of False Alarm decreasing with the increase of P can

be explained by the reason that the Prediction Period has been lengthened so it is more likely to

have at least one Unavailability Event in the Prediction Period.

The results of Unavailability Event Detection Percentage increase along with the increase of

N and P. It has the lowest result 1.56% when N=1 (day) and P=1 (minute). When N increase to

6 (days) and P increases to 10 (minutes), the result of Unavailability Event Detection

Percentage increases to 16.42%. The result of Unavailability Event Detection Percentage

increasing with the increase of N and P can be explained by the reason that the increase of

158

Correction Prediction Type 1.

The result of Correct Detection Ratio decreases along with the increase of N and decreases of

P. It has the highest result 9.17% when N=1 (day) and P=10 (minutes). When N increase to 6

(days) and P decreases to 1 (minutes), the result of Correct Prediction Percentage decreases to

2.04%. The result of Correct Detection Ratio decreasing with the increase of N can be explained

by the reason that the increase of Correction Prediction Type 1 is slower than the increase of

False Alarm when N increases. The result of Correct Detection Ratio increases with the

decrease of P can be explained by the reason that the increase of Correction Prediction Type 1 is

slower than the increase of False Alarm when N increases, especially in the case when P

decreases.

7.5.3 Evaluation with Data Set LRI

LRI contains 7 days’ availability data and there are 390 Unavailability Events overall.

However, as the prediction algorithm needs past N days availability history to make a prediction

and the prediction algorithm does not have any availability history in the first day, consequently

the prediction algorithm does not make any predictions in the first day. Therefore, 45

Unavailability Events, which occur in the first day, were excluded from the examination. As a

result, 345 Unavailability Events that occur in the remaining 6 days were used for the

examination.

Different from data set UCB and SDSC, there is no obvious trend along with the change of N

and P in some results shown in Figure 7.28.

For Correct Prediction Type 1, it has the lowest result 1 when and P=1 (minute) and P=5

(minutes) no matter how the number N changes. When P=10 (minutes), the result of Correct

Prediction Type 1 is 2 no matter how the number of N changes. This can be explained by the

reason that the relationship of Job Execution Availability between Checking Period and

Prediction Period is very weak (which is detailed described in Section 6.2.3) so that it is

difficult to have Unavailability Event both in Checking Period and Prediction Period.

For Missed Detection, it has the highest result 344 when and P=1 (minute) and P=5 (minutes)

no matter how the number N changes. When P=10 (minutes), the result of Missed Detection is

343 no matter how the number of N changes. As the total number of Unavailability Event is

fixed, the change of Missed Detection is directly influenced by the change of the result of

Correct Prediction Type 1.

159

0

1

2

3

1 2 3 4 5 6

Number of Checking Days

C
or

re
ct

 P
re

di
ct

io
n

Ty
pe

1

P=1

P=5

P=10

(a) Correct Prediction Type 1

342

343

344

345

1 2 3 4 5 6

Number of Checking Days

M
is

se
d

D
et

ec
tio

n

P=1

P=5

P=10

0

200

400

600

800

1000

1 2 3 4 5 6

Number of Checking Days

Fa
ls

e
Al

ar
m P=1

P=5

P=10

 (b) Missed Detection (c) False Alarm

0.00%
0.10%
0.20%
0.30%
0.40%
0.50%
0.60%
0.70%

1 2 3 4 5 6

Number of Checking Days

U
na

va
ila

bi
lity

 E
ve

nt

D
et

ec
tio

n
Pe

rc
en

ta
g e

P=1

P=5

P=10

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1 2 3 4 5 6
Number of Checking Days

C
or

re
ct

 P
re

di
ct

io
n

Pe
rc

en
ta

ge

P=1

P=5

P=10

 (d) Unavailability Event Detection Percentage (e) Correct Prediction Percentage

Figure 7-28: Effect of Different Values of N and P in LRI

For False Alarm, it has the lowest result 247 when N=1 (day) no matter how the number P

changes. When N increase to 6 (days), the result of False Alarm increases to 900 no matter how

the number P changes. The result of False Alarm increasing with the increase of N can be still

explained by the reason of weak relationship of Job Execution Availability between Checking

Period and Prediction Period.

The result of Unavailability Event Detection Percentage has no obvious trend along with the

change of N and P. It has the lowest result 0.29% when P=1 (minute) and P=5 (minutes) no

matter how the number N changes. When P=10 (minutes), the result of Unavailability Event

Detection Percentage is 0.22%. The result of Unavailability Event Detection Percentage can be

explained by the reason that the nearly unchanged result of Correct Prediction Type 1 and

Missed Detection.

The result of Correct Detection Ratio decreases along with the increase of N and decreases of

P. It has the highest result 0.80% when N=1 (day) and P=10 (minutes). When N increase to 6

(days) and P decreases to 1 (minutes), the result of Correct Prediction Percentage decreases to

0.40%. The result of Correct Detection Ratio decreasing with the increase of N can be explained

by the reason that the increase of Correction Prediction Type 1 is slower than the increase of

False Alarm when N increases. The result of Correct Detection Ratio increases with the

decrease of P can be explained by the reason that the increase of Correction Prediction Type 1 is

160

slower than the increase of False Alarm when N increases, especially when P decreases.

7.5.4 Evaluation with Data Set DEUG

DEUG contains 7 days’ availability data and there are 9764 Unavailability Events overall.

However, as the prediction algorithm needs past N days availability history to make predictions

and the prediction algorithm does not have any availability history in the first day, consequently

the prediction algorithm does not make any predictions in the first day. Therefore, 2235

Unavailability Events, which occur in the first day, were excluded from the examination. As a

result, 7529 Unavailability Events that occur in the remaining 6 days were used for the

examination.

As for data set DEUG, there are two trends shown in Figure 7.29: firstly, the results of

Correct Prediction Type 1 and False Alarm (though it is not very obvious in this data set)

increase while the result of Missed Detection decreases along with the increase of N. Secondly,

the result of Correct Prediction Type 1 increases while the results of Missed Detection and False

Alarm decrease along with the increase of P.

For Correct Prediction Type 1, it has the lowest result 104 when N=1 (day) and P=1 (minute).

When N increase to 6 (days) and P increases to 10 (minutes), the result of Correct Prediction

Type 1 also increases to 1802. According to the analysis in Section 5.4, this can be explained by

the reason that the Checking Period has been lengthened so it is more likely to have at least one

Unavailability Event in the Checking Period.

For Missed Detection, it has the highest result 28392 when N=1 (day) and P=1 (minute).

When N increase to 6 (days) and P increases to 10 (minutes), the result of Correct Prediction

Type 1 decreases to 4844. This can be explained by the increase of Correct Prediction Type 1.

As the total number of Unavailability Event is fixed (it is 7529 in DEUG). Therefore, opposite

to Correction Prediction Type 1, if the result of Correction Prediction Type 1 increases, the

result of Missed Detection will decrease.

For False Alarm, it has the lowest result 9660 when N=1 (day) and P=10 (minutes). When N

increase to 6 (days) and P decreases to 1 (minute), the result of False Alarm increases to 7962.

The result of False Alarm increasing with the increase of N can be explained by the reason that

the Checking Period has been lengthened so it is more likely to have at least one Unavailability

Event in the Checking Period. The result of False Alarm decreasing with the increase of P can

be explained by the reason that the Prediction Period has been lengthened so it is more likely to

have at least one Unavailability Event in the Prediction Period.

161

0

500

1000

1500

2000

1 2 3 4 5 6
Number of Checking Days

C
or

re
ct

 P
re

di
ct

io
n

Ty
pe

1

P=1

P=5

P=10

(a) Correct Prediction Type 1

0

2000

4000

6000

8000

1 2 3 4 5 6
Number of Checking Days

M
is

se
d

D
et

ec
tio

n

P=1

P=5

P=10

0
5000

10000
15000
20000
25000
30000

1 2 3 4 5 6
Number of Checking Days

Fa
ls

e
Al

ar
m P=1

P=5

P=10

 (b) Missed Detection (c) False Alarm

0%
5%

10%
15%
20%
25%
30%

1 2 3 4 5 6

Number of Checking Days

U
na

va
ila

bi
lity

 E
ve

nt

D
et

ec
tio

n
Pe

rc
en

ta
g e

P=1

P=5

P=10

0%

5%

10%

15%

20%

1 2 3 4 5 6

Number of Checking Days

C
or

re
ct

 P
re

di
ct

io
n

Pe
rc

en
ta

ge P=1

P=5

P=10

 (d) Unavailability Event Detection Percentage (e) Correct Prediction Percentage

Figure 7-29: Effect of Different Values of N and P in DEUG

The results of Unavailability Event Detection Percentage increase along with the increase of

N and P. It has the lowest result 1.38% when N=1 (day) and P=1 (minute). When N increase to

6 (days) and P increases to 10 (minutes), the result of Unavailability Event Detection

Percentage increases to 23.93%. The result of Unavailability Event Detection Percentage

increasing with the increase of N and P can be explained by the reason that the increase of

Correction Prediction Type 1.

The result of Correct Detection Ratio decreases along with the increase of N and decreases of

P. It has the highest result 16.03% when N=1 (day) and P=10 (minutes). When N increase to 6

(days) and P decreases to 1 (minutes), the result of Correct Prediction Percentage decreases to

0.81%. The result of Correct Detection Ratio decreasing with the increase of N can be explained

by the reason that the increase of Correction Prediction Type 1 is slower than the increase of

False Alarm when N increases. The result of Correct Detection Ratio increases with the

decrease of P can be explained by the reason that the increase of Correction Prediction Type 1 is

slower than the increase of False Alarm when N increases, especially when P decreases.

7.5.5 Summary

The results of Unavailability Events Detection Ratio and Correct Prediction Percentage are

relative low (lower than 30%) in most cases, especially in the case of LRI. Though some results

162

of Unavailability Events Detection Ratio are over 60% in some cases of UCB, the results of

Correct Prediction Percentage are still quite low in such cases. For example, in UCB, when the

parameter Checking Days N equals 6 and Prediction Period is 10 minutes, Unavailability

Events Detection Ratio is 64.89%. This means 64.89% Unavailability Events can be detected by

the prediction algorithm and the other 35.11% Unavailability Events cannot. Furthermore,

Correct Prediction Percentage is 30.94%, which means only 30.94% predictions are Correct

Prediction while the other 69.06% predictions are False Alarms.

Therefore, in these four data sets, if this prediction algorithm is used to make proactive

migration decisions, it can make Correct Predictions and trigger proactive migration decisions

to help avoid potential job failures to some extent. For example, it can help avoid 64.89%

Unavailability Events in UCB. However, in the meanwhile, many unnecessary migration

decisions will be triggered by False Alarms and many necessary migrations cannot be triggered

as a result of Missed Detections. For example, 69.06% predictions are False Alarms in UCB and

35.11% Unavailability Events cannot be detected by the prediction algorithm.

7.6 Evaluation of CBR Migration Algorithm
To examine the accuracy of the CBR migration algorithm and to compare CBR migration

with the proposed PSPP migration algorithm in real Grid environments, a set of simulations

were designed and carried out with the downloaded data sets UCB, SDSC, LRI and DEUG.

The examination method used by CBR migration algorithm can be described as follows:

Every 10 minutes, the Grid job scheduler uses CBR migration algorithm to check each available

resource’s current CPU Availability Percentage to predict at regular interval. If a resources’ If a

resource’s Resource Availability Probability is lower than the predefined CPU Migration

Threshold, then it means the resource is predicted to have an Unavailability Event at some time

during the Prediction Period. Here, the length of Prediction Period is 10 minutes and the

prediction interval is also 10 minutes. After making predictions, CBR migration algorithm will

review the accuracy of these predictions after the Prediction Period and adjust the CPU

Migration Threshold with the value of Adjustment Percentage. In this set of simulations, the

maximum value of Adjustment Percentage is ± 5% and the initial value of CPU Migration

Threshold is 25%. As the Adjustment Percentage is a random value uniformly distributed

between [-5%, 5%], the simulations for each data set have been run for 3 replications and the

results shown in this section will be the average results of the 3 replications.

The terms describing a prediction result in Section 5.5.2 are used to describe whether a

prediction result is correct or not, including Correct Prediction Type 1, False Alarm and Missed

Detection. Here are some important results from the simulations and the results from PSPP

algorithm are also put together for comparison:

163

0

2000

4000

6000

8000

10000

12000

Correct Prediction
Type 1

Missed Detection False Alarm

To
ta

l N
um

be
r

PSPP
CBR

0

5000

10000

15000

20000

25000

30000

35000

Correct Prediction
Type 1

Missed Detection False Alarm

To
ta

l N
um

be
r

PSPP

CBR

(a) UCB (b) SDSC

0
100
200
300
400
500
600
700
800
900

1000

Correct Prediction
Type 1

Missed Detection False Alarm

To
ta

l N
um

be
r

PSPP

CBR

0

5000

10000

15000

20000

25000

Correct Prediction
Type 1

Missed Detection False Alarm

To
ta

l N
um

be
r

PSPP

CBR

(c)LRI (d) DEUG

Figure 7-30: Comparison of PSPP and CBR Algorithms

According to Figure 7.30, the results Correct Prediction Type 1, Missed Detection and False

Alarm gathered from PSPP and CBR vary from one data set to another in general. For example,

in data set UCB, PSPP algorithm’s result of Correct Prediction Type 1 is 3644 while CBR

algorithm’s result of Correct Prediction Type 1 is only 130.8 (average results from 5

replications), which means PSPP algorithm can predict 3644 Unavailability Events out of 5616

in data set UCB while CBR algorithm can only predict 130.8 Unavailability Events out of 5616

on average in data set UCB.

But in data set LRI, PSPP algorithm’s result of Correct Prediction Type 1 is 2 while CBR

algorithm’s result of Correct Prediction Type 1 is only 213.4 (average results from 5

replications), which means PSPP algorithm can only predict 2 Unavailability Events out of 345

in data set UCB while CBR algorithm can predict 213.4 Unavailability Events out of 345 on

average in data set UCB.

This is because of different characteristics of each data set and different prediction

approaches used by the migration method. For example, if a resource’s CPU Availability in

different days is strongly correlated, the PSPP migration algorithm tends to perform well as the

prediction method in PSPP algorithm can observe the pattern of CPU Availability from past

days and then make correct predictions. If a resource’s CPU Availability Percentage usually

decreases to a low level before becoming unavailable, CBR migration tends to perform as well

as the prediction methods in the CBR algorithm can observe this change and then make correct

predictions. Therefore, it is not straightforward to judge which migration method is better as it is

highly reliant not only on the characteristics of the resources but the characteristics of the

resources in a data set tend to be different from resources in another data set and even the

characteristics of a resource in a data set tends to be different from another resource in the same

data set.

164

Chapter 8 – Discussion, Conclusion and Future Work
8.1 Discussion

In this thesis, job-scheduling and migration algorithms have been proposed, analysed and

evaluated. The general performance of each algorithm under different situations is now briefly

summarised.

In terms of job-scheduling, FCFSPP, FLP and the PSOPP algorithms have been proposed:

• FCFSPP is a job-scheduling algorithm based on a basic FCFS algorithm that leverages the

TDE prediction method for improving reliability with little cost in terms of speed.

According to the analysis in Section 5.2, validation in Appendix B.I and evaluation work

shown in Section 7.2, this algorithm works well in scenarios where Workload is high (the

number of jobs exceeds the number of resources) and each resource’s Job Execution

Availability possesses a pattern that can be observed by the TDE prediction scheme. In such

cases, the FCFSPP algorithm performs well both in terms of speed and reliability. In terms

of speed, job throughput can be maximised by allocating jobs to qualified resources. In

terms of reliability, potential job failures can be avoided by not allocating job to unqualified

resources.

If the Workload is low, the FCFSPP algorithm’s performance in terms of speed is affected

as it may not be able to find the most suitable resources for jobs1. Furthermore, if each

resource’s Job Execution Availability does not have a regular pattern or the predictor cannot

observe the pattern effectively, the performance in terms of reliability is affected, too.

• FLP is a job-scheduling algorithm based on FCFSPP and a Fuzzy Inference System to

adjust setting of Resource Availability Probability Threshold to achieve a balance between

speed and reliability.

According to the analysis in Section 5.3, validation in Appendix B.II and evaluation work

given in Section 7.3, this algorithm works well if the pattern(s) of all resources’ Job

Execution Availability is similar as Job Execution Availability on some resources will

provide good indications of the behaviour of all resources. In such cases, the FLP algorithm

can provide a good balance between speed and reliability as the Fuzzy Inference System can

learn2 from the indications about the change of resources’ Job Execution Availability

pattern and then response to the change quickly and correctly.

1 This is because FCFSPP uses the Checking If Qualified approach, checking one idle resource at a
time, when trying to make job allocation decisions. Therefore, it may not be able find the most
powerful resources for jobs. This can be improved by using the Finding the Best approach, checking
multiple resources at a time when trying to make job allocation decisions. However, Finding the Best
approach only helps in cases where the Workload is low.

2 The fuzzy inference system makes adaptations in response to observations. The fuzzy inference
system is based on fuzzy logic as described in Section 4.2.4. In the proposed algorithm, the system
adjusts the Resource Availability Probability Threshold based on the value of Disposed Jobs Dots.

165

If the pattern(s) of all resources’ Job Execution Availability is dissimilar, the FLP

algorithm finds it difficult to provide a good balance between speed and reliability as Fuzzy

Inference System may not be able to learn something correctly.

• PSOPP is a job-scheduling algorithm based on the PSOPP algorithm and uses TDE

prediction. As discussed in Section 5.2.1 and 5.3.1, FCFSPP and FLP always try to allocate

a new job to the next idle resource (which is called Checking If Qualified). Different from

these Checking If Qualified algorithms, PSOPP is a type of Finding the Best algorithm (i.e.

it will try to find out the “best” resource from some candidates) and all available resources,

not necessarily idle ones, will be candidates when the job allocation decision is being made.

Therefore, if the Workload is high, the PSOPP algorithm may allocate jobs to busy

resources and cause a resource to have more than one job at a time. As discussed in Section

5.2.1, allowing a resource to have more than one job at a time may cause the PSOPP

algorithm to perform poorly in terms of speed and reliability. In terms of speed, placing

multiple jobs on a single resource increases each job’s Makespan and the job throughput

becomes lower. In terms of reliability, if the resource becomes unavailable before the jobs

complete, then multiple jobs will be failed at a time.

If the Workload is low, the PSOPP algorithm will not have to allocate new jobs to busy

resources. In such cases, if PSOPP algorithm can identify the resource with most powerful

CPU and adequate reliability with its fitness function, then the algorithm can perform well

in both terms of speed and reliability.

Table 8-1 compare these three proposed job-scheduling algorithms.
Name Advantages Disadvantages

FCFSPP

If the Workload is high and each resource has its
own regular pattern(s) in terms of Job Execution
Availability, FCFSPP can make reliable job
allocation decisions and have a high job
throughput.
Secondly, the increase of Resource Availability
Probability Threshold and Number of Checking
Days makes FCFSPP more conservative, but this
conservativeness permits more reliable job
allocation decisions to be made.

If the Workload is not high or each resource does
not have its own regular pattern(s) in terms of Job
Execution Availability, FCFSPP can make reliable
job allocation decisions and have a high job
throughput at the same time.

FLP

If the pattern(s) of all resources’ Job Execution
Availability is similar, the Fuzzy Inference System
can observe the changes of some resources’ Job
Execution Availability and achieve a higher job
throughput than FCFSPP whilst still making
reliable decisions.

If the pattern(s) of all resources’ Job Execution
Availability is dissimilar, the Fuzzy Inference
System cannot observe the changes of some
resources’ Job Execution Availability and achieve a
higher job throughput than FCFSPP whilst still
making reliable decisions.

PSOPP

If the Workload is not high and if PSOPP can
identify the resource with powerful CPU and
adequate reliability, then PSOPP can get shorter job
makespan than FCFSPP and FLP whilst still
making reliable job allocation decisions.

If the Workload is high or if PSOPP cannot identify
the resource with powerful CPU and adequate
reliability, then PSOPP cannot get shorter job
makespan than FCFSPP and FLP whilst still
making reliable job allocation decisions.

Table 8-1: Comparison of Proposed Job-Scheduling Algorithms

In terms of job migration algorithms, especially proactive migration, Periodical Scanning

with Predictor (PSPP) and Case Based Reasoning (CBR) algorithms have been proposed:

166

• The PSPP algorithm is based on scanning resources periodically and judging whether job(s)

on each resource need to be migrated using TDE prediction. The objective of this algorithm

is to help job-scheduling in terms of improving reliability – reducing the number of job

failures caused by resource unavailability.

According to the analysis in Section 5.5, validation in Appendix B.III and evaluation

work shown in shown in Section 7.5, this migration algorithm works well if each resource’s

Job Execution Availability possesses a regular pattern that can be observed by the predictor.

This is similar to FCFSPP and FLP job-scheduling schemes as they all use the TDE

prediction method. If each resource’s Job Execution Availability is irregular the PSPP

algorithm’s performance deteriorates, as the TDE prediction method does not work well in

such cases.

• CBR migration is a job migration algorithm that observes the CPU Availability of each

resource and triggers a job migration procedure if the current value of CPU Availability is

below the CBR Migration Threshold. This differs from PSPP, which observes Job Execution

Availability to make predictions.

According to the analysis in Section 5.6, validation in Appendix B.IV and evaluation in

Section 7.6, this algorithm works well if the all the resources’ CPU Availability Percentage

is lower than the CPU Migration Threshold before they become completely unavailable.

The CBR migration algorithm can observe this (with or without learning from recent

decisions) and make correct job migration decisions.

However, if all resources’ CPU Availability Percentage do not become low before they

become completely unavailable, it is difficult for CBR migration algorithm to offer better

performance, as there is nothing valuable that can be learnt from the past cases. The CBR

migration algorithm is unable to observe the correct threshold after learning or make correct

job migration decisions.

For example, assuming all resources’ CPU Availability Percentage follow a regular

pattern that is always lower than a certain value (e.g. 80%) before they become completely

unavailable. If the current value of CPU Migration Threshold is 90%, the job migration

algorithm will trigger job migrations correctly before resources become unavailable.

Conversely, if the current value of CPU Migration Threshold is 50%, the job migration

algorithm will not be able to trigger job migrations correctly. Nevertheless, CBR will learn

from past decisions and the value of CPU Migration Threshold will be raised (e.g. to 90%).

Subsequently CPU Migration Threshold will be able to capture the change of CPU

Availability Percentage and the job migration algorithm will be able to trigger job

migrations at the appropriate times.

However, if the resources’ CPU Availability Percentage does not have a regular pattern

before they become completely unavailable (e.g. one resource may become unavailable

167

from 100% while another one becomes unavailable from 20%), it is difficult for the job

migration algorithm to determine a suitable value of CPU Migration Threshold. Here is a

table to compare these proactive job migration algorithms.

Name Advantages Disadvantages

PSPP

If each resource’s Job Execution Availability
has its own regular pattern, PSPP can make
correct predictions and trigger proactive
migrations to avoid potential job failures.

If each resource’s Job Execution Availability
does not have regular pattern(s), PSPP cannot
make correct predictions and trigger proactive
migrations to avoid potential job failures.

CBR

If resources’ CPU Availability Percentage
becomes low before becoming unavailable,
CBR can observe this (with or without
learning from recent decisions) and trigger
job migrations correctly.

If resources’ CPU Availability Percentage do not
become low before becoming unavailable, CBR
cannot observe this (with or without learning
from recent decisions) and trigger job migrations
correctly.

Table 8-2: Comparison of Proposed Proactive Job Migration Algorithms

8.2 Conclusion
This research focuses on three main aspects of volunteered resources based Grids and the

research work has been presented and discussed in this thesis. Firstly, this research proposes a

new Grid computing system architecture to utilise idle CPU cycles from volunteered resources.

The proposed system architecture supports heterogeneous resources, enables resources to

support live and automatic job migration and ensures resource owner’s local activities are not

affected by the Grid jobs.

Secondly, this research proposes some new job-scheduling and migration algorithms aimed at

providing reliable job allocation and reallocation decisions whilst maintaining acceptable job

throughput. In these job algorithms, a prediction method TDE and AI techniques (including

Fuzzy Logic, Particle Swarm Optimisation and Case Based Reasoning) have been utilised. After

proposing these algorithms, this research also critically analyses, validates and evaluates all the

algorithms in the various scenarios with both synthetic and real data. According to the analysis

and simulation results, each algorithm has its own advantages and disadvantages. In general, a

certain algorithm performs well if certain specific conditions are met, e.g. each resource behaves

with a regular pattern(s) or showing indications before state change.

Thirdly, this research analyses the characteristics of resources in real volunteered resources

based Grids. The analysis shows that each Grid has its own characteristics and, perhaps

surprisingly, each volunteered resource’s Job Execution Availability tends to possess weak

correlations across different days and times-of-day.

8.3 Future Work
There are a number of ways in which this research work can be extended to further studies

both in terms of refining a Grid system architecture for utilising idle CPU cycles on volunteered

resources and also job scheduling/migration algorithms it can employ.

Firstly, further developments in terms of the proposed architecture include:

168

• The system could provide more advanced functionalities to users and resources. This would

provide benefits to all components in this system. For users, the system can try to provide

quality of service. This could include allowing users to specify the type of resource they

would like to use. For example, a user may only wish to use a resource with sufficient CPU

speed to get the job completed within a specified time. For resources, the system can try to

give rewards to all resources for their contributions or support policies so owners can

choose gracefully the times when the resources will be donated to the grid.

• In terms of Java application migration technology, some techniques proposed by other

researchers have been adopted in this research. However, as mentioned in Section 3.4, each

technique has its own advantage(s) and disadvantage(s). Therefore, more work could be

done to provide more efficient and reliable job migration.

Secondly, further studies could be undertaken to improve the performance of the

user/resource management components, especially providing better jobs servicing. These

include:

• Combining the proposed job scheduling algorithms with regular job checkpointing. This is

an option to provide more reliable service to jobs, especially in a Grid system with

volunteered and reliable resources. With job checkpointing, the latest job execution states

with data can be recorded and stored. They might be stored on the local resources or even

by sending back information to the user/resource management in cases where the job needs

to be rescheduling if it fails. With the recorded job execution state and data, the job can be

executed from the checkpoint onwards using another resource rather than starting from the

scratch.

• Combining the proposed job scheduling algorithms with job replication. This is another

option to provide more reliable service to jobs, especially in a Grid system with volunteered

and reliable resources. With job replication, different resources can execute a single job at

the same time for extra reliability. If one of the resources remains available until the job

completes, the job will finish successfully. However, this extra reliability “costs” more

resources and provides no speed benefit.

• Combining the proposed job scheduling algorithms with job prioritisation. This is an option

to provide better service to users. It can be achieved by letting users to specify their jobs’

priority when submitting jobs. In job prioritisation, jobs with high priority can be put at the

front of the job queue or a separate queue when they arrive at the Grid job scheduler. As a

result, jobs with a high priority can be completed more quickly than those jobs with low

priority and the users’ requirement can be fulfilled.

• The use of additional real data. This could be collected and more characteristics could be

obtained, especially in terms of determining characteristics of specific resources or between

169

different resources in terms of CPU Availability, Job Execution Availability or Resource

Availability. According to the results shown in [Kondo05] and this research, the results so

far appear to suggest that this type of relationship is weak. However, more data needs to be

collected and analysed to confirm this. In addition, even if a weak relationship is confirmed

for “today’s” networks, it is not easy to say whether this will still be the case in future as

network technologies are still developing and human behaviour in terms of computer usage

patterns may change as well.

Thirdly, though this research work was aimed at solving some challenges in Grid computing

environments, especially volunteered resources based Grid computing environments, the results

from this research (including the proposed system architecture, job scheduling and migration

algorithms) are not only applicable in Grid computing context but it is also possible to apply it

to other areas. One of the application areas is Cloud computing context.

Cloud computing is a new terminology which has been proposed in recent years. The basic

idea of Cloud computing indicates that in the future, people will compute in centralised facilities

(somewhere on the “cloud”) operated by third-party providers, there are some significant

differences between Cloud computing and Grid computing.

In a Cloud computing environment, although resources are deemed to be reliable and fully

controlled by the service provider, resource management is still an important issue as the

environment is dynamic. For example, different resources may have to face different workloads

at different times and need to cope with different applications that have different latency

requirements. Therefore, the job-scheduling and migration algorithms proposed in this research

could be used or adapted to the scheduler and to reschedule different applications.

In the core of the Cloud, it is likely to be composed of various software and hardware

components and the CPU processor will be an important component. Therefore, it is also

possible to apply the system architecture proposed in this research to utilise idle CPU cycles

from different CPU processors. For each CPU processor in the Cloud, it may not be busy all the

time. Therefore, the idle CPU cycles on each resource can be utilised to process computational

jobs (this could be jobs submitted by users of the Cloud) by using a job-scheduling algorithm

proposed in this research. If the resources are going to be busy again, the computational jobs

can be migrated to another idle resource for completion with the job migration algorithm

proposed by this research. As a result, this can be considered as opportunistic computing in a

Cloud computing context and the idle CPU cycles of different CPU processors can be utilised

efficiently.

170

References
[Aamodt94] Agnar Aamodt, Enric Plaza, Case-Based Reasoning: Foundational Issues, Methodological

Variations, and System Approaches, AICom – Artificial Intelligence Communications, IOS Press,
Vol.7:1, pp. 39-59, 1994

[Acharya97] A. Acharya, G. Edjlali, and J. Saltz. The Utility of Exploiting Idle Workstations for Parallel
Computation. In Proceedings of the 1997 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages 225–234, 1997.

[AMD10] Quad-Core AMD Processors, Advanced Micro Devices, URL:
http://multicore.amd.com/us-en/AMD-Multi-Core.aspx, Date accessed: 10th Feb, 2010

[Anderson05] Anderson, D.P, Korpela, E. Walton, R, High-performance task distribution for volunteer
computing, e-Science and Grid Computing, 2005, 1-1 July 2005, page(s): 8 pp.-203, Melbourne,
Vic., ISBN: 0-7695-2448-6

[Anderson07] Anderson, D.P, Local Scheduling for Volunteer Computing, Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, 26-30 March 2007, page(s): 1-8, ISBN:
1-4244-0910-1

[Arpaci95] The Interaction of Parallel and Sequential Workloads on a Network of Workstations Arpaci, R.H.
and Dusseau, A.C. and Vahdat, A.M. and Liu, L.T. and Anderson, T.E. and Patterson, D.A.
Proceedings of SIGMETRICS'95, May, 1995, pp. 267-278

[Arnold05] Ken Arnold, James Gosling, David Holmes, The Java Programming Language (Fourth Edition),
URL: http://java.sun.com/docs/books/javaprog/, Date accessed: 10th Feb, 2010

[Barak05] Barak A., Shiloh A. and Amar L., An Organizational Grid of Federated MOSIX Clusters, Proc.
5-th IEEE International Symposium on Cluster Computing and the Grid (CCGrid'05), pp. 350-357,
Cardiff, May 2005.

[Barak08] Maoz T., Barak A. and Amar L., Combining Virtual Machine Migration with Process Migration for
HPC on Multi-Clusters and Grids, IEEE Cluster 2008, Tsukuba, Sept. 2008

[Beelucid09] Beelucid Software LLC, A New Approach to Migrating VB.Net Applications to Java, URL:
http://www.beelucid.com/products/do_download_pdf, Date accessed: 10th Feb, 2010

[Bhagwan03] R. Bhagwan, S. Savage, and G. Voelker. Understanding Availability. In In Proceedings of
IPTPS’03, 2003.

[Black08] Paul E. Black, "NP-complete", in Dictionary of Algorithms and Data Structures [online], Paul E.
Black, ed., U.S. National Institute of Standards and Technology,
URL:http://www.itl.nist.gov/div897/sqg/dads/HTML/npcomplete.html, Date accessed: 10th Feb,
2010

[BOINC10a] Volunteer computing, URL: http://boinc.berkeley.edu/trac/wiki/VolunteerComputing, Date
accessed: 10th Feb, 2010

[BOINC10b] BOINC Project, URL: http://boinc.berkeley.edu/, Date accessed: 10th Feb, 2010
[Bolosky00] W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feasibility of a Serverless Distributed file

System Deployed on an Existing Set of Desktop PCs. In Proceedings of SIGMETRICS, 2000.
[Bouchenak00a] S. Bouchenak, D. Hagimont, Approaches to Capturing Java Threads State”, In Middleware 2000
[Bouchenak00b] S. Bouchenak, D. Hagimont, Pickling threads in the Java System, Technology of Object-Oriented

Languages, 2000. TOOLS 33. Proceedings. 33rd International Conference
[Boyd02] Tom Boyd and Partha Dasgupta, “Process Migration: A Generalized Approach Using a

Virtualizing Operating System”, Distributed Computing Systems, 2002. Proceedings. 22nd
International Conference on 2-5 July 2002 Page(s):385 - 392 Digital Object Identifier
10.1109/ICDCS.2002.1022276

[Brevik03] J. Brevik, D. Nurmi, and R. Wolski. Quantifying Machine Availability in Networked and Desktop
Grid Systems, Technical Report CS2003-37, Dept. of Computer Science and Engineering,
University of California at Santa Barbara, November 2003.

[Bridgeport01] Bridgeport University, CPU Scheduling, URL:
http://www1bpt.bridgeport.edu/sed/projects/cs503/Spring_2001/kode/os/scheduling.htm#sjf, Date
accessed: 08 Apr, 2010

[Brule05] James F. Brule, Fuzzy System – A Tutorial, URL: http://www.austinlinks.com/Fuzzy/tutorial.html,
Date accessed: 10th Feb, 2010

[C2J01] C2J Converter, URL: http://tech.novosoft-us.com/product_c2j.jsp, Date accessed: 10th Feb, 2010
[Casavant88] Thomas L. Casavant, Jon G. Kuhl, A Taxonomy of Scheduling in General-Purpose Distributed

Computing Systems, IEEE Transaction on software engineering, Vol. 14, No. 2, February 1988

171

[CBRwiki10] Case Based Reasoning, URL: http://en.wikipedia.org/wiki/Case-based_reasoning, Date accessed:
10th Feb, 2010

[Climate10] Climateprediction.net, URL: http://climateprediction.net/, Date accessed: 10th Feb, 2010
[Cohen88] Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.)
[Condor10a] Condor High Throughput Computing, URL: http://www.cs.wisc.edu/condor/, Date accessed: 10th

Feb, 2010
[Condor10b] An Overview of the Condor System on High-Throughput Computing, URL:

http://www.cs.wisc.edu/condor/overview/, Date accessed: 10th Feb, 2010
[Condor10c] Condor: A Distributed Job Scheduler, URL:

http://www.cs.wisc.edu/condor/doc/beowulf-chapter-rev1.ps, Date accessed: 10th Feb, 2010
[Corbatto00] M.Corbatto, An introduction to PORTABLE BATCH SYSTEM (PBS), URL:

http://hpc.sissa.it/pbs/pbs.html, Date accessed: 10th Feb, 2010
[Correlation10] Correlation and dependence, URL: http://en.wikipedia.org/wiki/Correlation_and_dependence,

Date accessed: 10th, Feb, 2010
[Czajkowski10] Karl Czajkowski, Globus GRAM, URL:

http://www.globusconsortium.org/journal/20060109/czajkowski.html, Date accessed: 10th Feb,
2010

[Delphi10] Delphi Basics, URL: http://www.delphi.co.nr/, date accessed: 10th, Feb, 2010.
[DES10] Discrete-event simulation, URL: http://en.wikipedia.org/wiki/Discrete_event_simulation, Date

accessed: 10th Feb, 2010
[DGRID03] Desktop Grids: Critical Systems and Applications Research (DGRID 2003), Phoenix, Arizona, 17

November 2003, URL: http://www-csag.ucsd.edu/DGRID03/, Date accessed: 10th Feb, 2010
[Dinda99] P. Dinda and D. O’Hallaron. An extensive toolkit for resource prediction in distributed systems.

Technical Report CMU-CS-99-138, Carnegie Mellon University, 1999.
[Dinda00] Load Trace Archive, URL: http://www.cs.northwestern.edu/~pdinda/LoadTraces/, Date accessed:

10th Feb, 2010
[Dinda02] P. Dinda. A Prediction-Based Real-Time Scheduling Advisor. In Proceedings of the International

Parallel and Distributed Processing Symposium (IPDPS’02), April 2002.

[Dogan02] A, Dogan. F, Ozguner., Matching and scheduling algorithms for minimizing execution time
and failure probability of applications in heterogeneous computing. IEEE Transactions on
Parallel and Distributed Systems, 13(3):308–323, 2002.

[Dusseau09] Remzi Arpaci Dusseau, Scheduling: Introduction, URL:
http://pages.cs.wisc.edu/~remzi/Classes/537/Spring2009/Notes/cpu-sched.pdf, Date accessed: 08
Apr, 2010

[Esklcloglu01] Esklcloglu and Marsland, Scheduling, URL:
http://webdocs.cs.ualberta.ca/~tony/C379/Notes/PDF/05.4.pdf, Date accessed: 10th Feb, 2010

[Feller07] M.Feller, I.Foster and S. Martin, GT4 GRAM: A Functionality and Performance Study, TeraGrid
Conference, 2007, Madison, WI, June 2007

[Foster02] Foster I. What is the grid? A three points checklist. Grid Today, 2002,1(6). URL:
http://www.gridtoday.com/02/0722/100136.html, Date accessed: 10th Feb, 2010

[Foster06] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems, IFIP International
Conference on Network and Parallel Computing, Springer-Verlag LNCS 3779, pp 2-13, 2006.

[Foster09] Ian Foster, Carl Kesselman’s, The Grid 2: Blueprint for a New Computing Infrastructure, ISBN:
9780080521534, parent-ISBN: 9781558609334, Publisher: Morgan Kaufmann Publishers, Jan,
2009

[Frey01] Frey, J.; Tannenbaum, T.; Livny, M.; Foster, I.; Tuecke, S.; Condor-G: a computation management
agent for multi-institutional grids, High Performance Distributed Computing, 2001. Proceedings.
10th IEEE International Symposium on 7-9 Aug. 2001 Page(s):55 – 63

[Garey79] Garey, M.R.; Johnson, D.S., Computers and Intractability: A Guide to the Theory of
NP-Completeness. New York: W.H. Freeman. ISBN 0-7167-1045-5. 1979

[Garritano03] Tom Garritano, Globus: An Infrastructure for Resource Sharing, ClusterWorld’s On the Grid
Column, December 2003

[GIMPS10] Great Internet Mersenne Prime Search GIMPS, URL: http://www.mersenne.org/freesoft/, Date
accessed: 10th Feb, 2010

[Globus10a] The Globus Alliance, URL: http://www.globus.org/, Date accessed: 10th Feb, 2010
[Globus10b] Globus Team, URL: http://www.globus.org/alliance/team/, Date accessed: 10th Feb, 2010

172

[Goebel03] Greg Goebel, An Introduction to Fuzzy Control Systems, URL: http://www.faqs.org/docs/fuzzy/
v1.0.4, 01 June 2003, Date accessed: 10th Feb, 2010

[Gosling96] James Gosling, Henry McGilton, White Paper – The Java Language Environment, URL:
http://java.sun.com/docs/white/langenv/, Date accessed: 10th Feb, 2010

[Haas10] Juergen Haas, Compiled Language, URL:
http://www.tldp.org/LDP/Linux-Dictionary/html/index.html, Date accessed: 10th Feb, 2010

[Huang02] Zhisheng Huang, Anton Eliëns, and Cees Visser, 3D Agent-based Virtual Communities,
Proceedings of the 2002 Web3D Conference, Tempe, Arizona, USA, 2002

[Hellmann01] Martin Hellmann, Fuzzy Logic Introduction, URL:
http://epsilon.nought.de/tutorials/fuzzy/fuzzy.pdf, Date accessed: 10th Feb, 2010

[HTC10] High Throughput Computing, URL: http://www.cs.wisc.edu/condor/htc.html, Date accessed: 10th
Feb, 2010

[Hu06] Xiaohui Hu, PSO Tutorial, URL: http://www.swarmintelligence.org/tutorials.php, 2006, Date
accessed: 10th Feb, 2010

[IBM08] Compiled versus Interpreted Language, IBM, URL:
http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp?topic=/com.ibm.zos.zappldev/zappl
dev_85.htm, Date accessed: 10th Feb, 2010

[Illmann00] Torsten Illmann, Frank Kargl, Migration of Mobile Agent in Java - Problems,Classification and
Solutions, Torsten Illmann University, Torsten Illmann, Michael Weber, In Proc. of the Int'l ICSC
Symposium on Multi-Agents and Mobile Agents in Virtual Organizationa and E-Commerce,
MAMA 2000

[Intel10] Intel® Multi-Core Technology, Intel Corporation, URL: http://www.intel.com/multi-core/, Date
accessed: 10th Feb, 2010

[Jacob02] Bart Jacob, Viktors Berstis, Fundamental of Grid Computing, URL:
http://www.redbooks.ibm.com/abstracts/redp3613.html, Date accessed: 10th Feb, 2010

[JPC10] The Pure Java x86 PC Emulator, Oxford University, URL:
http://www-jpc.physics.ox.ac.uk/download_faq.html, Date accessed: 10th Feb, 2010

[Kenndy95] James Kenndy, Russell Eberhart, Particle Swarm Optimization, Proc. IEEE Int’l. Conf. on Neural
Networks, 1995

[Kondo05] Derrick Kondo, Scheduling Task Parallel Aplications For Rapid Turnaround on Desktop Grids,
Dissertation, University of California, San Diego, La Jolla, CA 92093, 2005.

[Kondo07] Derrick Kondo, Gilles Fedak, Franck Cappello, Andrew A. Chien, Henri Casanova, Resource
Availability in Enterprise Desktop Grids, appear in the Journal of Future Generation Computer
Systems, 2007

[Kondo09] Desktop Grid Trace Archive, URL: http://xw01.lri.fr:4320/dg/, Date accessed: 10th Feb, 2010
[Kumar06] J.I Nirmal Kumar, Hiren Soni and Rita N.Kumar, Biomonitoring of selected freshwater

macrophytes to access lake trace element contamination: a case study of Nal Sarovar Bird
Sanctuary, Gujarat, Indiat, J. Limnol, 65(1): 9-16, 2006

[Lazarevic06] A. Lazarevi′c and L. Sacks, “Managing Uncertainty - A Case for Probabilistic Grid Scheduling”,
Proceedings of The Seventh International Meeting on High Performance for Computational
Science - VECPAR 2006, Rio de Janeiro, Brazil, July 2006.

[Leake96] David B. Leake, CBR in Context: The Present and Future, Case-Based Reasoning: Experience,
lessons, and Future Directions, AAAI Press/MIT Press, 1996

[Lo84] V. M. Lo, Heuristic algorithms for task assignment in distributed systems, in Proc. 4th Internal
Conference Distributed Computing Systems, May 1984, pp. 30-39

[Long95] D. Long, A. Muir, and R. Golding. A Longitudinal Survey of Internet Host Reliability, In 14th
Symposium on Reliable Distributed Systems, pages 2–9, 1995.

[Ma00] Matchy J.M. Ma, Cho-Li Wang and Francis C.M. Lau, “Delta Execution: A preemptive Java thread
migration mechanism”, Cluster Computing, Springer Netherlands ISSN1386-7857 (Print)
1573-7543 (Online), Volume 3, Number 2 / 2000 DOI10.1023/A:1019071902255 Page 83-94

[Ma02] Ma, R.K.K., Cho-Li. Wang, Lau, F.C.M, “M-JavaMPI: A Java-MPI Binding with Process
Migration Support”, Cluster Computing and the Grid, 2002. 2nd IEEE/ACM International
Symposium

[Mickens05] J. Mickens and B. Noble. Predicting node availability in peer-to-peer networks. In International
Conference on Measurement and Modeling of Computer Systems, 2005.

[Mickens06] J. Mickens and B. Noble. Exploiting availability prediction in distributed systems. In Network
Systems Design and Implementation, pages 73–86, 2006.

173

[Mickens07] J. Mickens and B. Noble. Improving distributed system performance using machine availability
prediction. International Conference on Measurement and Modeling of Computer Systems
Performance Evaluation Review, 34(2), 2006.

[Microsoft10] MSDN, Checkpoint Restart, Microsoft, URL:
http://msdn.microsoft.com/en-us/library/ms894386.aspx, Date accessed: 10th Feb, 2010

[Morris95] Bonnie Morris, “Case-Based Reasoning”, URL:
http://accounting.rutgers.edu/raw/aies/www.bus.orst.edu/faculty/brownc/aies/news-let/fall95/caseb
ase.htm, Date accessed: 10th Feb, 2010

[Mu’alem01] Mu’alem, A.W., Feitelson. D.G., Utilization, predictability, workloads, and user runtime estimates
in scheduling the IBM SP2 with backfilling, Parallel and Distributed Systems, IEEE Transactions
on June 2001, Volume: 12, Issue: 6, On page(s): 529-543 ISSN: 1045-9219

[Mutka91] M. Mutka and M. Livny. The available capacity of a privately owned workstation environment .
Performance Evaluation, 4(12), July 1991.

[Neri00] C. Germain, V. Neri, G. Fedak and F. Cappello, XtremWeb: Building an Experimental Platform for
Global Computingin Proceedings of Grid2000 (Worshop in HIPC2000), Bngalore India, 2000

[NPCWiki10] NP-Complete, URL: http://en.wikipedia.org/wiki/NP-complete, Date accessed: 10th Feb, 2010
[Physorg10] Grid computing, URL: http://www.physorg.com/tags/grid+computing/, Date accessed: 10th Feb,

2010
[PMCC10] Pearson product-moment correlation coefficient, URL:

http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient, Date accessed: 10th
Feb, 2010

[Ren06a] X. Ren, S. Lee, R. Eigenmann, and S. Bagchi. Resource failure prediction in fine-grained cycle
sharing system. In International Conference on High Performance Distributed Computing, 2006.

[Ren06b] Xiaojuan Ren; Eigenmann, R., Empirical Studies on the Behavior of Resource Availability in
Fine-Grained Cycle Sharing Systems, Parallel Processing, 2006. ICPP 2006. 14-18 Aug. 2006
Page(s):3 – 11, Digital Object Identifier 10.1109/ICPP.2006.39

[Ren07a] Xiaojuan Ren, Rudolf Eigenmann, Saurabh Bagchi, Failure-aware checkpointing in fine-grained
cycle sharing systems, High Performance Distributed Computing archive, Proceedings of the 16th
international symposium on High performance distributed computing table of contents, Pages: 33
– 42, Year of Publication: 2007, ISBN:978-1-59593-673-8

[Ren07b] Xiaojuan Ren, Seyong Lee, Rudolf Eigenmann, Saurabh Bagchi, Prediction of Resource
Availability in Fine-Grained Cycle Sharing Systems Empirical Evaluation. J. Grid Comput. 5(2):
173-195, 2007

[Richter06] Michael M. Richter, Agnar Aamoodt, Case-based reasoning foundations, The Knowledge
Engineering Review, Vol. 20:3, 203-207, 2006, Cambridge University Press

[Robinson04] Stewart Robinson, Simulation - The practice of model development and use. Wiley, 2004.
[Rodgers88] J. L. Rodgers and W. A. Nicewander. Thirteen ways to look at the correlation coefficient. The

American Statistician, 42(1):59–66, Feb 1988.

[Rood07] Rood, B. Lewis, M.J., Multi-state Grid Resource Availability Characterization,
Proceedings of Grid Computing, 2007 8th IEEE/ACM International Conference, ISBN:
978-1-4244-1560-1

[Rood08] Rood, B. Lewis, M.J., Resource Availability Prediction for Improved Grid Scheduling,
Proceedings of eScience, 2008. eScience '08. IEEE Fourth International Conference, ISBN:
978-1-4244-3380-3

[Saroiu02] S. Saroiu, P.K. Gummadi, and S.D. Gribble. A measurement study of peer-to-peer file sharing
systems. In Proceedinsg of MMCN, January 2002.

[SETI10] SETI@Home, URL: http://setiathome.berkeley.edu/, Date accessed: 10th Feb, 2010
[Simon05] Steve Simon, Stats: What is a correlation? (Pearson correlation), URL:

http://childrens-mercy.org/stats/definitions/correlation.htm, Date accessed: 10th Feb, 2010
[Slade91] Stephen Slade, Case-Based Reasoning: A Research Paradigm, AI Magazine Volume 12 Number 1,

1991
[Smith] Roger Smith, Grid Computing: A Brief Technology Analysis, URL:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.109.943, Date accessed: 10th Feb, 2010
[Sun04] JavaTM Virtual Machine Debug Interface Reference, Sun Microsystems, URL:

http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jvmdi-spec.html, Date accessed: 10th Feb, 2010
[Sun06] JavaTM Virtual Machine Tool Interface (JVMTI), Sun Microsystems, URL:

http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html, Date accessed: 10th Feb, 2010

174

[Sun10a] Java Technology Homepage, Sun Developer Network, URL: http://java.sun.com, Date accessed:
10th Feb, 2010

[Sun10b] The Java Tutorials, Sun Developer Network, URL: http://java.sun.com/docs/books/tutorial/, Date
accessed: 10th Feb, 2010

[Sun10c] About the Java Technology, Sun Developer Network, URL:
http://java.sun.com/docs/books/tutorial/getStarted/intro/definition.html, Date accessed: 10th Feb,
2010

[Sun10d] Java Technology Reference, Sun Developer Network, URL:
http://java.sun.com/reference/index.jsp, Date accessed: 10th Feb, 2010

[StanKovic98] John A. StanKovic, Macro Spuri, Krithi, Ramamritham, Giorgio C. Buttazzo, Deadline Scheduling
for Real-Time Systems – EDF and Related Algorithms (The Springer International Series in
Engineering and Computer Science), Springer, 1998, ISBM:0792382692

[Stigler89] Stigler, Stephen M. "Francis Galton's Account of the Invention of Correlation". Statistical Science
4 (2), 1989

[Stroustrup04] Bjarne Stroustrup, The C++ Programming Language (Third Edition and Special Edition),
Addison-Wesley, ISBN 0-201-88954-4 and 021-70073-5

[Synaptic06] Fuzzy Logic, URL: http://en.wikipedia.org/wiki/Fuzzy_logic, Date accessed: 10th Feb, 2010
[Thain05] Douglas Thain and Todd Tannenbaum and Miron Livny, Distributed Computing in Practice: The

Condor Experience, Concurrency and Computation: Practice and Experience, 2005, volume 17,
pages = 2-4

[Thomas56] Thomas E. Phipps Jr. and W.R. Van Voorhis, Machine Repair as a PriorityWaiting-Line Problem,
Operations Research, Vol. 4, No. 1 (Feb. 1956), pp. 76-86.

[Truyen00] Eddy Truyen, Bert Robben, Bart Vanhaute, Tim Coninx, Wouter Joosen and Pierre Verbaeten,
Portable Support for Transparent Thread Migration in Java, Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, ISSN 0302-9743 (Print) 1611-3349 (Online), Volume 1882/2000,
Agent Systems, Mobile Agents, and Applications

[TUDelft10] The Grid Workloads Archive, URL:
http://gwa.ewi.tudelft.nl/pmwiki/pmwiki.php?n=Workloads.Overview, Date accessed: 10th Feb,
2010

[UNC09] LSF (Load Sharing Facility) Overview, URL: http://help.unc.edu/4484, Date accessed: 10th Feb,
2010

[VCSC10] Create a Virtual Campus Supercomputing Center (VCSC), URL:
http://boinc.berkeley.edu/trac/wiki/VirtualCampusSupercomputerCenter, Date accessed: 10th Feb,
2010

[Volwiki10] Volunteer computing, URL: http://en.wikipedia.org/wiki/Volunteer_computing, Date accessed: 10th
Feb, 2010

[VSS10] Correlation: Interpretations, Visual Statistics Studio, URL:
http://www.visualstatistics.net/Visual%20Statistics%20Multimedia/correlation_interpretation.htm,
Date accessed: 10th, Feb, 2010

[Watson94] Ian Watson, Farhi Marir, “Case-Based Reasoning: A Review”, The Knowledge Engineering
Review, 1994

[Xgrid10a] Xgrid Overview, URL: http://www.apple.com/server/macosx/technology/, Date accessed: 10th Feb,
2010

[Xgrid10b] Xgrid, URL: http://en.wikipedia.org/wiki/Xgrid, Date accessed: 10th Feb, 2010
[Xtremweb08a] Introduction to Xtremweb, URL: http://www.xtremweb.net/introduction.html, Date accessed: 10th

Feb, 2010
[Xtremweb08b] Computing on Large Scale Distributed Systems, URL:

http://www.xtremweb.net/desktopgrids.html, Date accessed: 10th Feb, 2010
[Zadeh65] L.A. Zadeh, Fuzzy Sets, URL:

http://www-bisc.cs.berkeley.edu/zadeh/papers/Fuzzy%20Sets-1965.pdf, Date accessed: 10th Feb,
2010

[Zadeh73] L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes,
IEEE Trans. on Systems, Man, and Cybernetics, Vol. SMC-3 (1973), pp. 28-44

175

Appendix A
In order to make the communication among users, Grid job scheduler and resources

efficiently, some types of messages are designed to use in different scenarios.

I. Registration Message

In order to join the Grid, both users and resources need to register at the Grid firstly.

Therefore, the Registration Message is needed. With this message, the user/resource manager

will create a new entry and record the information provided by the resource in its user/resource

database for the resource. Figure A.1 shows the format of this message:

Message Type
Message Sequence Number
User/Resource IP Address

User/Resource Name

Figure A.1: Registration Message

Each field in the Registration Message is described as follow:

Message Type: This field will be filled as “Registration Message” when a resource sends this

message to the user/resource manager.

Message Sequence Number: This field records the message’s sequence number.

User/Resource IP Address: This field records the user/resource’s IP address.

User/Resource Name: This field records the name of the resource.

II. Registration Acknowledgement Message

In order to tell to the resource that the resource is already registered at the user/resource

manager, a Registration Acknowledgement Message is needed. From this message, the resource

will know that it is already registered at the user/resource manager and get the user/resource ID

assigned by the user/resource manager. Figure A.2 shows the format of this message:

Message Type
User/Resource ID

Figure A.2: Registration Acknowledgement Message

Each field in the Registration Acknowledgement Message is described as follow:

Message Type: This field will be filled as “Registration Acknowledgement Message” when a

resource sends this message to the user/resource manager.

User/Resource ID: This field specifies the resource ID assigned by the user/resource manager.

Figure A.3 shows the procedure for a resource to register at the user/resource manager:

176

User/Resource User/Resource Manager

Registration Acknowledgement
Message

Registration Message

Figure A.3: Procedure of Registration

If the Registration Message gets lost on its way to the user/resource manager, the

user/resource will resend the Registration Message after timeout. If the Registration

Acknowledgement Message gets lost on its way to the user/resource, the user/resource will

resend the Registration Message again after time out as well. When the user/resource manager

receives this duplicated Registration Message, it will find out the user/resource ID from its

resource database and send the Registration Acknowledgement Message back to the resource

again. Figure A.4 shows this scenario:

User/Resource User/Resource Manager

Registration Acknowledgement
Message

Registration Message

Registration Acknowledgement
Message

Registration Message

Registration Message

Figure A.4: Procedure of resending Registration and Registration Acknowledgement Message

III. Resource Information Message

In order to let the resource manager realise the updated system information, each resource

will send its updated system information to the resource manager at regular interval. In addition,

the resource manager will request the resource’s information whenever necessary. After

receiving this message, the resource manager will update the resource’s information in the

resource database. With this information, the resource manager could also make stats of the

resource and analyse the resource’s performance. Figure A.5 shows the format of this message.

177

Message Type
Message Time Stamp

Resource ID
CPU Speed
CPU Usage

Figure A.5: Resource Information Message

Each field in the Resource Information Message is described as follow:

Message Type: This field will be filled as “Resource Information Message” when a resource

sends this message to a resource manager.

Resource ID: Each resource has a unique resource ID.

Message Time Stamp: Shows message’s sending time.

CPU Speed: Records the CPU speed of the resource.

CPU Usage: Records the current usage percentage of the CPU.

IV. Request Resource Information Message

Though the resource sends Resource Information Message to the resource manager at regular

interval, the resource manager may not always receive the message because the message may

get lost on its way to the resource manager or the resource is no longer available. Therefore, the

resource manager can use Request Resource Information Message to request the resource’s

information initiatively. Figure A.6 shows the format of this message:

Message Type

Figure A.6: Request Resource Information Message

Each field in the Resource Information Message is described as follow:

Message Type: This field will be filled as “Request resource Information Message” the resource

manager sends this message to a resource.

V. Job Submission/Allocation Message

When a user decides to submit a job to the Grid job scheduler, the user will inform the Grid

job scheduler firstly. When the Grid job scheduler decides to allocate a job to the resource, the

Grid job scheduler will inform the resource firstly. Therefore, Job Submission/Allocation

Message will be used. Figure A.7 shows the format of this message:

Message Type

Job ID

Figure A.7: Job Submission/Allocation Message

Each field in the Job Submission/Allocation Message is described as follow:

Message Type: This field will be filled as “Job Submission/Allocation Message” when a user

sends this message to the Grid job scheduler or the Grid job scheduler sends this message to a

resource.

Job ID: This field specifies the ID of the job which is going to be sent.

178

VI. Job Submission/Allocation Acknowledgement Message

When the Grid job scheduler receives the Job Submission/Allocation Message from a user,

the Grid job scheduler needs to tell the user that it is ready to receive the job. When the resource

receives the Job Submission/Allocation Message from the Grid job scheduler, the resource needs

to tell the Grid job scheduler that it is ready to receive the job. Therefore, the Job

Submission/Allocation Acknowledgement Message will be used. Figure A.8 shows the format of

this message:

Message Type
Job ID

Figure A.8: Job Submission/Allocation Acknowledgement Message

Each field in the Job Submission/Allocation Acknowledgement Message is described as

follow:

Message Type: This field will be filled as “Job Submission/Allocation Acknowledgement

Message” when the Grid job scheduler sends this message to a user or a resource sends this

message to the Grid job scheduler.

Job ID: This field specifies the ID of the job which is going to be received.

VII. Job Submission/Allocation Completion Message

After sending the whole job, the resource needs to tell the Grid job scheduler or the Grid job

scheduler needs to tell the user it has already finished sending the job. Therefore, the Grid job

scheduler will send a “Job Submission/Allocation Completion Message” to the resource: Figure

A.9 shows the format of this message:

Message Type
Job ID

Figure A.9: Job Submission/Allocation Completion Message

Each field in the Job Submission/Allocation Completion Message is described as follow:

Message Type: This field will be filled as “Job Submission/Allocation Completion Message”

when the Grid job scheduler sends this message to a user or a resource sends this message to a

Grid job scheduler.

Job ID: This field specifies the ID of the job which has been already sent.

VIII. Job Submission/Allocation Completion Acknowledgement Message

When the Grid job scheduler/resource receives a Job Submission/Allocation Completion

Message, it should reply to the user/Grid job scheduler to tell the user/Grid job scheduler that it

has already received the Job Allocation Completion Message. So the resource will send a “Job

Submission/Allocation Completion Acknowledgement Message” back to the Grid job scheduler.

Figure A.10 shows the format of this message:

179

Message Type
Job ID

Figure A.10: Job Submission/Allocation Completion Acknowledgement Message

Each field in the Job Submission/Allocation Completion Message is described as follow:

Message Type: This field will be filled as “Job Submission/Allocation Completion

Acknowledgement Message” when a resource sends this message to the Grid job scheduler or

the Grid job scheduler sends this message to a resource.

Job ID: This field specifies the ID of the job which has been already received.

Figure A.11 shows the whole procedure of allocating and transmitting a job from the

user/Grid job scheduler to the Grid job scheduler/resource:

Grid job scheduler/Resource User/Grid job scheduler

Job Submission/Allocation Completion
Acknowledgement Message

Job Submission/Allocation Message

Job Submission/Allocation
Acknowledgement Message

Job Submission/Allocation
Completion Message

Job data

Figure A.11: Procedure of Job Submission/Allocation and Transmission

IX. Job Information Message

During the execution of the job, the resource software will monitor the execution progress

and report to the job manager when important events occur. Therefore, Job Information

Message will be used. Figure A.12 shows the format of this message:

Message Type

Job ID

State

Figure A.12: Job Submission/Allocation Message

Each field in the Job Submission/Allocation Message is described as follow:

Message Type: This field will be filled as “Job Submission/Allocation Message” when a user

sends this message to the Grid job scheduler or the Grid job scheduler sends this message to a

resource.

Job ID: This field specifies the ID of the job which is going to be sent.

State: This field specifies the job’s current state, e.g. job started, job finished, job delayed, etc.

180

X. Migration Notification Message

In order to let a resource migrate a job to another resource, the Grid job scheduler should

notify each resource firstly. Therefore, Migration Notification Message is used when the Grid

job scheduler decides to ask a resource to migrate a job to another resource. Figure A.13 shows

the format of this message:

Message Type
Original Resource ID

Original Resource IP Address
Destination Resource ID

Destination Resource IP Address
Job ID

Figure A.13: Migration Notification Message

Each field in the Migration Notification Message is described as follow:

Message Type: This field will be filled as “Migration Notification Message” when the Grid job

scheduler sends this message to a resource.

Original Resource ID: This field specifies the ID of the resource which the job should be

emigrated from.

Original Resource IP Address: This field specifies the IP address of the original resource.

Destination Resource ID: This field specifies the ID of the resource which the job should be

emigrated to.

Destination Resource IP Address: This field specifies the IP address of the destination resource.

Job ID: This field specifies the ID of the job which is going to be migrated.

XI. Migration Notification Acknowledgement Message

In order to let the Grid job scheduler know both the original and the destination resource have

received the Migration Notification Message, the resource should send a Migration Notification

Acknowledgement Message back to the Grid job scheduler. Figure A.14 shows the format of this

message:

Message Type
Resource ID

Job ID
Figure A.14: Migration Notification Acknowledgement Message

Each field in the Migration Notification Acknowledgement Message is described as follow:

Message Type: This field will be filled as “Migration Notification Acknowledgement Message”

when a resource sends this message to a Grid job scheduler.

Resource ID: This field specifies the ID of the resource which sends this message.

Job ID: This field specifies the ID of the job which is going to be migrated.

XII. Migration Connection Request Message

181

When the resource receives a Migration Notification Message from a Grid job scheduler, it

should start to migrate the specified job to the destination resource. Before the job migration, it

should firstly set up a connection with the destination resource. Therefore, the Migration

Connection Request Message is used for the resource to send a connection request to the

destination resource. Figure A.15 shows the format of this message.

Message Type
Resource ID

Resource IP Address
Job ID

Figure A.15: Migration Connection Request Message

Each field in the Migration Connection Request Message is described as follow:

Message Type: This field will be filled as “Migration Connection Request Message” when the

resource sends this message to the destination resource.

Resource ID: This field shows the ID of the resource.

Resource IP Address: This field shows the IP address of the resource.

Job ID: This field specifies the ID of the job which is going to be migrated.

XIII. Migration Connection Acknowledgement Message

After the destination resource receives the Migration Connection Request Message from the

resource, it should send a Migration Connection Acknowledgement Message back to the

resource to accept this connection. Figure A.16 shows the format of this message:

Message Type
Destination Resource ID

Destination Resource IP Address
Job ID

Figure A.16: Migration Connection Acknowledgement Message

Each field in the Migration Connection Request Message is described as follow:

Message Type: This field will be filled as “Migration Connection Acknowledgement Message”

when the destination resource sends this message to the resource.

Destination Resource ID: This field shows the ID of the destination resource.

Destination Resource IP Address: This field shows the IP address of the destination resource.

Job ID: This field specifies the ID of the job which is going to be migrated.

XIV. Migration Completion Message

After transmitting the whole job, the resource should send a Migration Completion Message

to tell the destination resource that the job has been completely transmitted. Figure A.17 shows

the format for this message:

182

Message Type
Job ID

Figure A.17: Migration Completion Message

Each field in the Migration Completion Message is described as follow:

Message Type: This field will be filled as “Migration Completion Message” when the original

resource sends this message to the destination resource.

Job ID: This field specifies the ID of the job which has been already migrated.

XV. Migration Completion Acknowledgement Message

After receiving the Migration Completion Message sent from the original resource, the

destination resource should send back a Migration Completion Acknowledgement Message to

tell the original resource that it has received the Migration Completion Message. In addition, the

destination resource should notify the Grid job scheduler so that the Grid job scheduler could

update the information stored in its databases. After the Grid job scheduler receives a Migration

Completion Acknowledgement Message, it needs to tell the destination resource that it has

received the Migration Completion Acknowledgement Message by sending back another

Migration Completion Acknowledgement Message. This message is identical as the one it

received from the destination resource. Figure A.18 shows the format for this message:

Message Type
Original Resource ID

Destination Resource ID
Job ID

Figure A.18: Migration Notification Message

Each field in the Migration Completion Acknowledgement Message is described as follow:

Message Type: This field will be filled as “Migration Completion Acknowledgement Message”

when the Grid job scheduler sends this message to a resource.

Original Resource ID: This field specifies the ID of the original resource.

Destination Resource ID: This field specifies the ID of the resource which the job should be

emigrated to.

Job ID: This field specifies the ID of the job which has been migrated.

Figure A.19 shows the whole procedure of migrating a job from a resource to another:

183

Migration Notification Message

Grid job scheduler Original Resource

Migration Completion
Acknowledgement Message

Migration Completion
Message

Job data

Destination Resource

Migration Notification Message

Migration Connection Request
Message

Migration Connection
Acknowledgement Message

Migration Completion
Acknowledgement Message

Job data

Set up a data plane
TCP connection

Release a TCP
connection

Set up a new
TCP connection

Figure A.19: Procedure of a Job Migration

XVI. Resource Unavailable Message

In order to tell the Grid job scheduler that it is going to be unavailable shortly, the resource

can send a Resource Unavailable Message to notify the Grid job scheduler. Figure A.20 shows

the format:

Message Type
Resource IP Address

Resource Name
Figure A.20: Resource Unavailable Message

Each field in the Resource Unavailable Message is described as follow:

Message Type: This field will be filled as “Resource Unavailable Message” when a resource

sends this message to a Grid job scheduler.

Resource IP Address: This field records the resource’s IP address.

Resource Name: This field records the name of the resource.

184

Appendix B
I. FCFSPP Algorithm with Synthetic Data

Validation of Simulator and the Influence of Different System States

To check the performance of the FCFSPP algorithm in different system states, a set of

simulations with synthetic data is carried out. This set of simulations has two objectives: the

first objective is to validate whether the simulator works correctly. The second objective is to

check if the analysis in Section 5.2.2 is correct. In Section 5.2.2, 5 cases were presented.

Therefore, five simulation scenarios with synthetic data were used to represent each case that

the Grid job scheduler will have to face. Besides the setup shown in Table 7-1, these simulations

have the experimental setup shown in Table B-1:
Name Setting

Number of Resources 1
Job-scheduling Algorithm FCFS, FCFSPP

Job Size The value is 24 hours
t1 24 hours in scenario 1 and 2; 12 hours in scenario 3 and 4; 10 hours in scenario 5
t2 24 hours in scenario 1 and 4; 12 hours in scenario 2 and 5; 10 hours in scenario 3

Length of simulation The value is 48 hours
Table B-1: Experimental Setup in Simulations

There is only one user, one Grid job scheduler and one resource in the simulation scenarios

with synthetic data to clearly show how the simulator works. Each simulation is used to

simulate one system case described in Section 5.2.2. As the job size is 24 hours, the Grid job

scheduler is in fact making one allocation decision in each simulation day. In addition, the Grid

job scheduler is assumed to know all resources’ CPU Availability.

According to Figure B.1, both FCFS and the FCFSPP algorithm have identical results in terms

of Total Allocated Jobs in the first simulation day. This is because it is the first simulation day

and there is no historical data of resource availability. Therefore, the FCFSPP algorithm cannot

make any prediction based on resource’s historical data and it behaves the same a

non-prediction base algorithm. As FCFSPP is based on FCFS algorithm, it behaves the same

FCFS in such a case and both algorithms have identical results in terms of Total Allocated Jobs.

0

1

2

1 2 3 4 5

Simulation Scenario Number

To
ta

l A
llo

ca
te

d
Jo

bs

FCFS

FCFSPP

Figure B.1: Total Allocated Jobs in the First Simulation Day

With either FCFS or FCFSPP, the Grid job scheduler only allocates a new job to the resource

when the resource is idle. As there is only one resource in all these simulation scenarios and each

job lasts for 24 hours, the Grid job scheduler only allocates a new job to the only resource in the

first day. Therefore, the result of Total Allocated Jobs is 1 in all simulation scenarios.

185

0

1

2

1 2 3 4 5

Simulation Scenario Number

To
ta

l S
uc

ce
ed

ed
 J

ob
s

FCFS

FCFSPP

Figure B.2: Total Succeeded Jobs in the First Simulation Day

According to Figure B.2, both algorithms have identical results in terms of Total Succeeded

Jobs in the first simulation day of all simulation scenarios. The same as Total Allocated Jobs, this

is also explained by the lack of historical resource availability data.

As there is only one resource in all these simulation scenarios and each job lasts for 24 hours,

the possible highest result of Total Succeeded Jobs is 1 in all simulation scenarios. In simulation

scenario 1 and 2, as the resource’s Job Execution Availability is true throughout the first

simulation day, the result of Total Succeeded Jobs is 1 in these scenarios. In simulation scenario

3, 4 and 5, as the resource’s Job Execution Availability is not always true in the first simulation

day, the result of Total Succeeded Jobs is 0 in these scenarios.

0

1

2

1 2 3 4 5

Simulation Scenario Number

To
ta

l F
ai

le
d

Jo
bs

FCFS

FCFSPP

Figure B.3: Total Failed Jobs in the First Simulation Day

According to Figure B.3, both algorithms have identical results in terms of Total Failed Jobs

in the first simulation day. Again, lack of historical resource availability data causes both FCFS

and the FCFSPP to have the same results in terms of Total Failed Jobs.

The reason why job get lost is because the resource does not available throughout the first day

of some scenario. Given the resource has one and only one Unavailability Event in the first day

in all simulation scenarios, the possible highest results of Total Failed Jobs are 1 in all simulation

scenarios. In simulation scenario 1 and 2, as the resource’s Job Execution Availability is true

throughout the first simulation day, the result of Total Failed Jobs is 0 in these scenarios. In

simulation scenario 3, 4 and 5, as the resource’s Job Execution Availability is not always true in

the first simulation day, the result of Total Succeeded Jobs is 1 in these scenarios.

186

0%

50%

100%

1 2 3 4 5

Simulation Scenario Number

Jo
b

Su
cc

es
s

R
at

io

FCFS

FCFSPP

Figure B.4: Job Success Percentage in the First Simulation Day

After a job is processed, the result is either completed successfully or failed because of

resource’s Unavailability Events. Therefore, the Job Success Percentage is always between 0%

and 100%. As both FCFS and FCFSPP have the identical results of Total Succeeded Jobs and

Total Failed Jobs in the simulated scenarios, the result of Job Success Percentage in FCFS and

the FCFSPP algorithm are identical in Figure B.4.

With reference to Figures B.1 through to B.4, FCFSPP behaves the same as FCFS if no

historical data is available for making predictions. In addition, the results confirm that the

simulator is working correctly with FCFS and FCFSPP in the cases where historical data is

absent.

The results of the second day are more interesting because the FCFSPP algorithm will have

historical data (the first simulation day’s data) and it should behave differently to FCFS in some

scenarios. As shown in Figure B.5, in terms of Total Allocated Jobs, the highest possible result is

1 in the second simulation day as each job lasts for 24 hours. In FCFS, it always allocates a new

job to the resource when the resource becomes idle. Therefore, the result of Total Allocated Jobs

is 1 in all simulation scenarios.

0

1

2

1 2 3 4 5

Simulation Scenario Number

To
ta

l A
llo

ca
te

d
Jo

bs

FCFS

FCFSPP

Figure B.5: Total Allocated Jobs in the Second Simulation Day

In the FCFSPP algorithm, the value of t1 will influence the result of Total Allocated Jobs.

FCFSPP uses the Job Execution Availability history data from day one to predict the Job

Execution Availability in day two. Therefore, if t1 is shorter than 24 hours, the resource’s

Resource Availability Probability tends to be low when the FCFSPP algorithm makes

predictions. As a result, the FCFSPP Resource Availability Probability will be lower than 100%

and FCFSPP will not allocate jobs to resources in such cases. On the other hand, if t1 is not

shorter 24 hours, the resource’s Resource Availability Probability will be 100%. As a result, the

FCFSPP algorithm will allocate a job to the resource when the resource is idle. For FCFSPP in

simulation scenario 1 and 2, the result of Total Allocated Jobs is 1 as Resource Availability

187

Probability is 100%. In simulation scenario 3, 4 and 5, the result of Total Allocated Jobs is 0 as

Resource Availability Probability is 100%.

0

1

2

1 2 3 4 5

Simulation Scenario Number

To
ta

l S
uc

ce
ed

ed
 J

ob
s

FCFS

FCFSPP

Figure B.6: Total Succeeded Jobs in the Second Simulation Day

In terms of Total Succeeded Jobs, the possible highest result is 1 in the second simulation day

as each job lasts for 24 hours. According to Figure B.6, in FCFS, the result of Total Succeeded

Jobs is 1 in simulation scenario 1 and 4 as the resource stays available for 24 hours in the second

day of these simulation scenarios. The result of Total Succeeded Jobs is 0 in simulation scenario

2, 3 and 5 as the resource is not always available for 24 hours in the second day of these

simulation scenarios.

In the FCFSPP algorithm, the result of Total Succeeded Jobs is 1 in simulation scenario 1 and

the result of Total Succeeded Jobs is 0 in other simulation scenarios. The results also indicate

FCFSPP will not perform better than FCFS in terms of Total Succeeded Jobs (this is considered

in Section 5.2.2). If the system in case 4, the performance of FCFSPP is worse than FCFS in

terms of Total Succeeded Jobs. If the Grid job scheduler faces other cases, the performance of the

FCFSPP algorithm is the same as FCFS in terms of Total Succeeded Jobs.

0

1

2

1 2 3 4 5

Simulation Scenario Number

To
ta

l F
ai

le
d

Jo
bs

FCFS

FCFSPP

Figure B.7: Total Failed Jobs in the Second Simulation Day

In terms of Total Failed Jobs, the highest result is 1 as the resource has one Unavailability

Event (becomes unavailable once) after 12 hours. According to Figure B.7, in FCFS, the result of

Total Failed Jobs is 0 in simulation scenario 1 and 4 as the resource stays available for 24 hours

in the second day of these simulation scenarios. The result of Total Failed Jobs is 1 in simulation

scenario 2, 3 and 5 as the resource is not always available for 24 hours in the second day of each

simulation scenario.

In FCFSPP, the result of Total Failed Jobs is 1 in simulation scenario 2 and the result of Total

Failed Jobs is 0 in other simulation scenarios. The results also indicate FCFS algorithm will not

perform better than the FCFSPP algorithm in terms of Total Failed Jobs in any case (this is

analysed in Section 5.2.2). If the system in case 3 and 5, the performance of FCFS algorithm is

188

worse than FCFS in terms of Total Failed Jobs. If the Grid job scheduler faces other cases, the

performance of FCFS algorithm is the same as the FCFSPP algorithm in terms of Total Failed

Jobs.

0%

50%

100%

1 2 3 4 5

Simulation Scenario Number
Jo

b
Su

cc
es

s
R

at
io

FCFS

FCFSPP

Figure B.8: Job Success Percentage in the Second Simulation Day

In terms of Job Success Percentage, the possible highest result is 100%. According to Figure

B.8, in FCFS, the result of Total Succeeded Jobs is 1 and Total Failed Jobs 0 in simulation

scenario 1 and 4 so that the result of Job Success Percentage in these simulation scenarios is

100%. The result is of Total Succeeded Jobs is 0 and Total Failed Jobs 1 in simulation scenario

2, 3 and 5 so that the result of Job Success Percentage in these simulation scenarios is 0%.

In FCFSPP, the result of Total Succeeded Jobs is 1 and Total Failed Jobs 0 in simulation

scenario 1 so that the result of Job Success Percentage in this simulation scenario is 100%. The

result is of Total Succeeded Jobs is 0 and Total Failed Jobs 1 in simulation scenario 2so that the

result of Job Success Percentage in this simulation scenarios is 0%. The result is of Total

Succeeded Jobs is 0 and Total Failed Jobs 0 in simulation scenario 2 so that the result of Job

Success Percentage in this simulation scenarios is not available.

0

0.5

1

1 2 3 4 5

Simulation Scenario Number

R
es

ou
rc

e
U

tili
sa

tio
n

%

FCFS

FCFSPP

Figure B.9: Resource Utilisation in the Second Simulation Day

In terms of Resource Utilisation, the possible highest result is 100%, which means the

resource’s idle CPU cycles are fully utilised. In FCFS, it always sends a new job to the resource

when it is become idle. Therefore, Resource Utilisation is always 100% in FCFS algorithm. This

is shown in Figure B.9. In FCFSPP, as it does not allocate a new job to the resource if the

resource’s Resource Availability Probability is lower than 100%, so Resource Utilisation is

lower than 100% in such a case. As the resource’s Resource Availability Probability is 100% in

simulation scenario 1, so the result of Resource Utilisation is 100%. As the resource’s Resource

Availability Probability is lower than 100% in other simulation scenarios, so the result of

Resource Utilisation is lower than 100% (which is 0% here).

According to the simulation results above, the simulator proved to work correctly with FCFS

189

and FCFSPP in different system cases and the analysis (addressed in Section 5.2.2) regarding

the performance of FCFS and FCFSPP under different cases is proved.

Influence of ∆t between Checking Day and Prediction Day

In this subsection, a set of representative simulation scenarios with synthetic data are used to

show the influence of a single ∆t on a single resource. According to Figure 5.2 and the

descriptions in Section 5.2.2, ∆t is the time difference between the length of t1 and t2 and it is

created by a pair of resource Unavailability Events (one occurs during the Checking Period

while the other one occurs during the Prediction Period). To show the influence of parameter

∆t, the only Resource was designed to have a simple Job Execution Availability pattern -

available for the few hour of a day and then unavailable for the rest hours of that day.

Regarding the influence of ∆t, the resource was designed to have similar pattern in terms of

CPU Availability in both simulation days but the times to become unavailable are different. In

the first day of these simulations, the resource is available for the first period of time t1 and then

stays unavailable for the rest time of the day 24 - t1. In the second day of these simulations, the

resource is available for the first period t2 and then unavailable for the rest time of the day 24 – t2.

Figure 5.2 and 5.3 show two types of this availability pattern.

To facilitate understanding, in these simulations the value of ∆t is defined as t1- t2. Therefore,

the value of ∆t will be positive when t1 is larger than t2 and it is negative when t2 is larger than t1.

Besides the setup shown in Table 7-1, these simulations have the experimental setup shown in

Table B-2:
Name Setting

Number of Resources The value is 1
Job-scheduling

Algorithm FCFS, FCFSPP

Job Size The value is 6 hours

t1
3 hours in scenario 1; 6 hours in scenario 2; 9 hours in scenario 3; 12 hours in scenario 4;

15 hours in scenario 5; 18 hours in scenario 6; 21 hours in scenario 7.
t2 The value is 12 hours.

Length of simulation The value is 48 hours
Table B-2: Experimental Setup in Simulations

In addition, the Grid job scheduler is assumed to know all resources’ CPU Availability at all

time. Note ∆t are decided by the differences between t1 and t2. As t2 is fixed, ∆t will change along

with the change of t1 accordingly. If the value of t1 increases/decreases, the value of ∆t will

increase/decrease accordingly. Figure B.10 shows an example Job Execution Availability in

these simulation scenarios.

190

∆t
t1

t2

Jo
b

Ex
ec

ut
io

n
A

va
ila

bi
lit

y

First Day Second Day

t1

Jo
b

Ex
ec

ut
io

n
A

va
ila

bi
lit

y

Time

t2

Figure B.10: An example of Job Execution Availability in simulation scenarios

According to the analysis in Section 5.2.2 and results earlier in this section, the FCFSPP

algorithm performs the same as FCFS algorithm when the FCFSPP algorithm has no historical

data of resource Job Execution Availability to make predictions. What are more important and

interesting are the results in the second simulation day. This is because the FCFSPP algorithm

will have historical data (the first simulation day’s data) and it may behave different from FCFS

any more in the second day. So the results can clearly show the differences between FCFS and

the FCFSPP algorithm or the FCFSPP algorithm without historical data and the FCFSPP

algorithm with historical data. Therefore, this set of simulations will focus on the simulation

results from the second simulation day of each scenario. Here are some results in the second

simulation day:

0

1

2

3

4

-9 -6 -3 0 3 6 9

∆t

To
ta

l A
llo

ca
te

d
Jo

bs

FCFS

FCFSPP

Figure B.11: Total Allocated Jobs in the second simulation day

Figure B.11 shows the result of Total Allocated Jobs of each algorithm in the second

simulation day. In terms of Total Allocated Jobs, the possible highest result is 3 as each job lasts

for 6 hours and the resource available for 12 hours in the second day of all simulation scenarios.

The third job will be failed and disposed of, as the resource will become unavailable before it

completes.

The FCFS algorithm allocates the same amount of jobs to the resources in all simulation

scenarios as t2 (the resource’s Job Execution Availability in the second day) does not change and

the algorithm allocates a new job to the resource when it becomes idle. In FCFSPP, the value of

∆t will influence the result of Total Allocated Jobs. FCFSPP uses the Job Execution Availability

historical data in the first simulation day to predict the Job Execution Availability in the second

191

simulation day.

In the simulation, scenarios where the value of ∆t is very low (it is because of large value of

t1), the results of Total Allocated Jobs is low in the FCFSPP algorithm is worse than the result of

Total Allocated Jobs in FCFS algorithm. When the value of ∆t increases, the FCFSPP algorithm

allocates more jobs to the resource and finally has the same result of Total Allocated Jobs as

FCFS algorithm.

This phenomenon can be explained by the analysis in Section 5.2.2. If the value of t1 is low,

the resource’s Resource Availability Probability tends to be low when the FCFSPP algorithm

makes predictions. As a result, the FCFSPP algorithm tends to NOT allocate jobs to the resource

when the resource is idle. Therefore, when the value of t1 becomes higher, the resource’s

Resource Availability Probability tends to be higher when the FCFSPP algorithm makes

predictions. As a result, the FCFSPP algorithm tends to allocate jobs to the resource when the

resource is idle.

0

1

2

3

-9 -6 -3 0 3 6 9

∆t

To
ta

l S
uc

ce
ed

ed
 J

ob
s

FCFS

FCFSPP

Figure B.12: Total Succeeded Jobs in the second simulation day

Figure B.12 shows the result of Total Succeeded Jobs of each algorithm in the second

simulation day. In terms of Total Succeeded Jobs, the possible highest result is 2 as each job lasts

for 6 hours and the resource available for 12 hours in the second day.

In FCFS algorithm, the result is always 2 as the algorithm utilises the resource in that 12

hours.

In the FCFSPP algorithm, the result increases along with the increase of ∆t and finally

achieves 2 when the value of ∆t is not below 0. The number of Total Allocated Jobs directly

influences this. As FCFS algorithm keeps the resource busy all the time, so it always has the

highest result no matter what value of ∆t is. However, in the FCFSPP algorithm, which is directly

influenced by the result of Total Allocated Jobs, Total Succeeded Jobs is lower than the possible

highest result in some scenarios. These results indicate the FCFSPP algorithm will be no better

than FCFS algorithm in terms of Total Succeeded Jobs but will tend to the same performance as

FCFS algorithm when the value of ∆t is not too low.

192

0

1

2

-9 -6 -3 0 3 6 9

∆t

To
ta

l F
ai

le
d

Jo
bs

FCFS

FCFSPP

Figure B.13: Total Failed Jobs in the second simulation day

Figure B.13 shows the result of Total Failed Jobs of each algorithm in the second simulation

day. In terms of Total Failed Jobs, the highest result is 1 as the resource has one Unavailability

Event (becomes unavailable once) after 12 hours. In FCFS, as the resource always has a job to

process, so a job will be failed in all simulated cases.

In the FCFSPP algorithm, resource’s Resource Availability Probability is lower than 100%

when the value of ∆t is lower than the job size (6 hours), so Total Failed Jobs is 0 in such cases.

When the value of ∆t is not lower than the job size (6 hours), Resource Availability Probability is

100%, so the third job will allocated to the resource. However, unfortunately, the system will

enter case 4 the prediction is incorrect and resource becomes unavailable before the job is

completed.

These results also indicate the FCFSPP algorithm tends to perform worse in terms of Total

Failed Jobs when ∆t becomes higher. If ∆t becomes higher, the probability that the length of

Checking Period falls in somewhere between t1 and t2 becomes higher as well. Therefore, the

prediction results will tend to be less accurate and the occurrence probability of case 4 will

increase accordingly. According to the analysis in Section 5.2.2, jobs will fail to be processed

with both FCFS and the FCFSPP algorithms in this case. This indicates that FCFSPP will not be

worse than FCFS in terms of Total Failed Jobs but it will tend perform the same as FCFS in

terms of Total Failed Jobs when the value of ∆t is too high.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

-9 -6 -3 0 3 6 9

∆t

Jo
b

Su
cc

es
s

R
at

io

FCFS

FCFSPP

Figure B.14: Job Success Percentage in the Second Simulation Day

Figure B.14 shows the result of Job Success Percentage of each algorithm in the second

simulation day. In terms of Job Success Percentage, the highest result is 100%. FCFS always has

the same results 66.7%, as Total Succeeded Jobs and Total Failed Jobs are always the same

result in all simulation scenarios.

In the FCFSPP algorithm, when ∆t is -9, Job Success Percentage is not calculable as either

Total Succeeded Jobs and Total Failed Jobs is 0. In the FCFSPP algorithm, when -6 ≤ ∆t < 6,

193

Job Success Percentage has the highest result 100%. When ∆t is not lower than the job size (6

hours), the FCFSPP algorithm has the same result as FCFS algorithm. These results indicate

FCFSPP will perform the same as the FCFS algorithm in terms of Job Success Percentage if the

value of ∆t is too low or too high; otherwise FCFSPP is able to perform better than FCFS.

Influence of Similarity of Job Execution Availability between Checking Day and

Prediction Day

The influence of ∆t between Checking Day and Simulation Day has been evaluated earlier in

this section. When the value of ∆t varies, the value of ρ between Checking Day and Simulation

Day varies as well. Some important results from “Influence of ∆t between Checking Day and

Prediction Day” are summarised in Table B-3:

∆t
(Hours)

ρ Total
Succeeded

Jobs
(FCFS)

Total
Succeeded

Jobs
(FCFSPP)

Total
Failed
Jobs

(FCFS)

Total
Failed Jobs
(FCFSPP)

Job
Success

Percentage
(FCFS)

Job
Success

Percentage
(FCFSPP)

-9 0.378 2 0 1 0 66.7% N/A
-6 0.577 2 1 1 0 66.7% 100%
-3 0.775 2 1 1 0 66.7% 100%
0 1 2 2 1 0 66.7% 100%
3 0.775 2 2 1 0 66.7% 100%
6 0.577 2 2 1 1 66.7% 66.7%
9 0.378 2 2 1 1 66.7% 66.7%

Table B-3: Impact of ρ on Job Success Percentage

When ∆t changes from -9 hours to 9 hours, the value of ρ increases from 0.378 (when ∆t is -9

hours) to 1 when ∆t is 0. After that, the value of ρ decreases again and reaches the lowest result

0.378 again when ∆t is 9 hours. According to the results, the FCFSPP algorithm performs well

in both terms of Total Succeeded Jobs, Total Failed Jobs and Job Success Percentage when the

value of ρ is 1 (the highest value of ρ). When the value of ρ is 1, the FCFSPP algorithm has the

same result as FCFS in terms of Total Succeeded Jobs and it has better results than FCFS in

terms of Total Failed Jobs and Job Success Percentage.

If the value of ρ decreases, the FCFSPP algorithm’s performance tends to become worse

along with the decrease of ρ, either in terms of Total Succeeded Jobs, Total Failed Jobs or Job

Success Percentage.

For the same value of ρ, the FCFSPP algorithm’s performance might be different. For example,

when ∆t equals ±3 hours, the value of ρ is 0.775, but the results of Total Succeeded Jobs are

different: it is 1 when ∆t equals -3 hours and it is 2 when ∆t equals 3 hours. Therefore, it

indicates the value of ρ between Checking Day and Prediction Day can only used as an

approximation to similarity of Job Execution Availability between Checking Period and

Prediction Period.

II. FLP Algorithm with Synthetic Data

The simulation scenarios in this set of simulations are representative scenarios with synthetic

194

data and they are used to clearly show the influence of different parameter(s) and/or factor(s)

while keeping the simulation scenarios as simple as possible. Besides the setup shown in Table

7-1, these simulations have the experimental setup shown in Table B-4:
Name Setting

Number of Resources 1
Job-scheduling algorithm FCFS, FCFSPP

Job Size The value is 12 hours

t1
The value is 20 hours in scenario 1 and 2; 23 hours

in scenario 3 and 4

t2
The value is 23 hours in scenario 1 and 3; 24 hours

in scenario 2 and 4
Resource Availability Probability Threshold

Adjustment Interval in FLP The value is 1 hours.

Length of simulation The value is 48 hours
Table B-4: Experimental Setup in Simulations

Resource Availability Probability Threshold Adjustment Interval equals 1 hour means the FLP

algorithm uses a Fuzzy inference system to adjust its Resource Availability Probability

Threshold once an hour.

The value of parameter λ equals 1 means the Resource Availability Probability Threshold will

increase 1% if the value of Disposed Jobs Dot is equal to or larger than 1 and Resource

Availability Probability Threshold will decrease 1% if the value of Disposed Jobs Dot is equal

to or below 0. In other words, if the number of disposed job in the current adjustment interval is

larger than the number of disposed job in the last interval, the value of Resource Availability

Probability Threshold will increase 1%. On the other hand, if the number of disposed job in the

current adjustment interval is not larger than the number of disposed job in the last interval, the

value of Resource Availability Probability Threshold will decrease 1%.

This set of simulations is also focused on the results of the second simulation day in each

simulation scenario. Here are some results in the second simulation day:

0

1

2

1 2 3 4

Simulation Scenario Number

To
ta

l A
llo

ca
te

d
Jo

bs

FCFS

FLP

FCFSPP

Figure B.15: Total Allocated Jobs in the Second Simulation Day

Figure B.15 shows the result of Total Allocated Jobs of each algorithm in the second

simulation day. In terms of Total Allocated Jobs, the possible highest value is 2 as each job last

for 12 hours and the resource is available at most 24 hours in the second simulation day.

For FCFS algorithm, it always has the possible highest results as it always keep the resource

busy. Therefore, the result of Total Allocated Jobs is always 2 in these scenarios.

For the FLP algorithm, the result of Total Allocated Jobs tends to change between FCFS and

the FCFSPP algorithm as the value of Resource Availability Probability Threshold is changed

195

once an hour.

When the FLP algorithm tries to allocate the second job to the resource after the first one is

finished, the value of Resource Availability Probability Threshold has decreased from 100% to

88% (reduce 1% each hour). This means the FLP algorithm will allocate the job to the resource

if the resource’s Resource Availability Probability is not lower than 88% in the following 12

hours (the time which job is expected to run on). In simulation scenario 1 and 2, the resource’s

Resource Availability Probability is 75% (lower than 88%), so the FLP algorithm will not

allocate the job to the resource in this scenario. In simulation scenario 3 and 4, the resource’s

Resource Availability Probability is 91.7% and 100% respectively, so the FLP algorithm will

allocate the job to the resource in these two scenarios. Therefore, the result of Total Allocated

Jobs is 1 in simulation scenario 1 and 2 and it is 2 in simulation scenario 3 and 4.

FCFSPP is the most conservative one among these tested algorithms. It only allocates the

second job to the resource if the resource’s Resource Availability Probability is 100%. However,

the Resource Availability Probability is always below 100% when FCFSPP tries to make job

allocation for the second job. Therefore, the result of Total Allocated Jobs is 1 all simulation

scenarios.

The results also indicate that the difference between FLP and FCFS will occur in scenarios

like 1 and 2 and the difference between FLP and the FCFSPP algorithm will occur in scenarios

like 3 and 4.

0

1

2

1 2 3 4

Simulation Scenario Number

To
ta

l S
uc

ce
ed

ed
 J

ob
s

FCFS

FLP

FCFSPP

Figure B.16: Total Succeeded Jobs in the Second Simulation Day

Figure B.16 shows the result of Total Succeeded Jobs of each algorithm in the second

simulation day. Directly influenced by the results of Total Allocated Jobs, the possible highest

result of Total Succeeded Jobs is 2. In simulation scenario 1 and 3, as the resource lasts for 23

hours in the second day, the possible highest results of Total Succeeded Jobs is 1. In simulation

scenario 2 and 4, as the resource lasts for 24 hours in the second day, the possible highest results

of Total Succeeded Jobs is 2.

For FCFS algorithm, it always has the possible highest result in terms of Total Succeeded

Jobs as it always keeps the resource busy.

For the FLP algorithm, as it is different from FCFS in simulation scenario 1 and 2, it does not

have the possible highest result in simulation scenario 1 and 2. In simulation scenario 3 and 4,

FLP will have the possible highest result in terms of Total Succeeded Jobs as it behaves the

196

same as FCFS in such scenarios.

For the FCFSPP algorithm, it cannot achieve the possible highest result in terms of Total

Succeeded Jobs in all these scenarios due to its conservativeness.

The results also indicate the FLP algorithm’s performance is between FCFS and the FCFSPP

algorithm in terms of Total Succeeded Jobs. Specifically, the FLP algorithm’s performance is

the same as the FCFSPP algorithm in scenarios like 1 and 2 and the FLP algorithm’s

performance is the same as FCFS algorithm in scenarios like 3 and 4.

0

1

2

1 2 3 4

Simulation Scenario Number

To
ta

l F
ai

le
d

Jo
bs

FCFS

FLP

FCFSPP

Figure B.17: Total Failed Jobs in the Second Simulation Day

Figure B.17 shows the result of Total Failed Jobs of each algorithm in the second simulation

day. Directly influenced by the results of Total Allocated Jobs, the possible highest result of

Total Failed Jobs is 1. In simulation scenario 1 and 3, as the resource lasts for 23 hours in the

second day, the possible highest results of Total Failed Jobs is 1. In simulation scenario 2 and 4,

as the resource lasts for 24 hours in the second day, the possible highest results of Total

Succeeded Jobs is 0. For FCFS, it always has the highest result in terms of Total Failed Jobs as

it always keeps the resource busy.

For the FLP algorithm, as it is different from FCFS in simulation scenario 1 and 2, it does not

have the highest result in terms of Total Succeeded Jobs simulation in scenario 1 and 2. In

simulation scenario 3 and 4, FLP will have the highest result as it behaves the same as FCFS in

such scenarios. For the FCFSPP algorithm, it does not achieve the highest result in terms of

Total Failed Jobs in all these scenarios due to its conservativeness.

The results also indicate the FLP algorithm’s performance is between FCFS and the FCFSPP

algorithm in terms of Total Failed Jobs. Specifically, the FLP algorithm’s performance is the

same as the FCFSPP algorithm in scenarios like 1 and 2 and the FLP algorithm’s performance is

the same as FCFS algorithm in scenarios like 3 and 4.

0.00%

50.00%

100.00%

1 2 3 4

Simulation Scenario Number

Jo
b

Su
cc

es
s

R
at

io

FCFS

FLP

FCFSPP

Figure B.18: Job Success Percentage in the Second Simulation Day

Figure B.18 shows the result of Job Success Percentage of each algorithm in the second

197

simulation day. In terms of Job Success Percentage, the possible highest result is 100%.

For the FCFS algorithm, it only achieves the possible highest result in terms of Job Success

Percentage in simulation scenario 2 and 4.

For the FLP algorithm, it has the possible highest result in terms of Job Success Percentage in

simulation scenario 1, 3 and 4.

For the FCFSPP algorithm, it always has the possible highest result in terms of Job Success

Percentage in all these scenarios due to its conservativeness.

According to the results shown above, the results of the FLP algorithm in both terms of Total

Succeeded Jobs, Total Failed Jobs and Job Success Percentage tend to falls in somewhere

between the results of the FCFS and the FCFSPP algorithm. In scenarios (e.g. simulation

scenario 1 and 4) where Job Execution Availability of some resource can provide good

indication to all resources, the FLP algorithm can improve speed (such as maximising the result

of Total Succeeded Jobs) while ensuring reliability (such as minimising the result of Total

Failed Jobs). However, on the other hand, if Job Execution Availability of some resource cannot

provide good indication to all resources, the FLP algorithm cannot improve speed while

ensuring reliability (e.g. simulation scenario 2 and 3).

III. PSPP Algorithm with Synthetic Data

The first set of simulations uses synthetic data and representative scenarios to check if the

analysis about the performance PSPP algorithm under different cases is correct. These

simulations have the experimental setup shown in Table B-5:
Name Setting

t1 1 hour in scenario 1 and 4; 0.5 hours in scenario 2 and 3; 0.7 hours in scenario 5
t2 1 hour in scenario 1 and 2; 0.7 hours in scenario 3 and 4; 0.5 hours in scenario 5

Length of Checking Period The value is 1 hour
Length of Prediction Period The value is 1 hour

Migration Prediction Interval The value is 1 hour
Length of simulation 2 simulation days

Table B-5: Experimental Setup in Simulations

Here Migration Prediction Interval is a term defined in Section 4.3.2, which means how

frequent to carry out the procedure of prediction for each resource. This set of simulations is

focused on the results of the second simulation day.

0

1

2

1 2 3 4 5

Simulation Scenario Number

To
ta

l N
um

be
r Correct Prediction Type 1

Correct Prediction Type 2

Missed Detection

False Alarm

Figure B.19: Prediction Performance in Different Scenarios

Figure B.19 shows the prediction results in each simulation scenario. In each simulation

scenario, the total number of prediction is only 1. PSPP algorithm will make prediction at the

198

beginning of the second simulation day.

In simulation scenario 1, t1 equals 1 hour and t2 equals 1 hour, the PSPP algorithm will face

case 1 (described in Section 5.2.2) and the resource is predicted to stay in the state of Available

to Grid in the Prediction Period (the length of Prediction Period is 1 hour) and the resource

turns out to stay in the state of Available to Grid throughout the Prediction Period. Therefore,

the result of Correct Prediction Type 2 is 1 while other results are 0.

In simulation scenario 2, t1 equals 0.5 hours and t2 equals 1 hour, the PSPP algorithm will

face case 2 (described in Section 5.2.2) and the resource is predicted to stay available in the

Prediction Period (the length of Prediction Period is 1 hour) but the resource turns out to

become unavailable during the Prediction Period. Therefore, the result of Missed Detection is 1

while other results are 0.

In simulation scenario 3, t1 equals 0.5 hours and t2 equals 0.7 hours, the PSPP algorithm will

face case 3 (described in Section 5.2.2) and the resource is predicted to become unavailable in

the Prediction Period (the length of Prediction Period is 1 hour) and the resource turns out to

become unavailable during the Prediction Period. Therefore, the result of Correct Prediction

Type 1 is 1 while other results are 0.

In simulation scenario 4, t1 equals 1 hour and t2 equals 0.7 hours, the PSPP algorithm will

face case 4 (described in Section 5.2.2) and the resource is predicted to become unavailable in

the Prediction Period (the length of Prediction Period is 1 hour) but the resource turns out to

stay available throughout the Prediction Period. Therefore, the result of False Alarm is 1 while

other results are 0.

In simulation scenario 5, t1 equals 0.7 hours and t2 equals 0.5 hours, the PSPP algorithm will

face case 5 (described in Section 5.2.2) and the resource is predicted to become unavailable in

the Prediction Period (the length of Prediction Period is 1 hour) and the resource turns out to

become unavailable during the Prediction Period. Therefore, the result of Correct Prediction

Type 1 is 1 while other results are 0.

IV. CBR Migration Algorithm with Synthetic Data

In order to check performance of CBR migration algorithm and whether the analysis about

CBR in Section 5.5 is correct, a set of simulations have been designed and carried out.

This set of simulations use synthetic data and representative scenarios to check if the analysis

about the performance CBR algorithm under different patterns of CPU Availability Percentage

is correct. Figure B.20 shows the patterns of CPU Availability Percentage in these scenarios:

199

Scenario 1
Scenario 2

C
PU

 A
va

ila
bi

lit
y

Pe
rc

en
ta

ge

0%

50%
Scenario 3

Max

21
Hour

Scenario 4
Scenario 5

Figure B.20: Change of CPU Availability Percentage in Different Scenarios

In addition, the initial value of CPU Migration Threshold is 50%. The same as simulations

with synthetic data for PSPP algorithm, this simulation also uses the results of Correct

Prediction, Missed Detection and False Alarm to describe the performance of CBR migration

algorithm. Here are some results after 2-hour simulation of each simulation:

0

1

2

1 2 3 4 5
Simulation Scenario Number

To
ta

l N
um

be
r Correct Prediction Type 1

Correct Prediction Type 2

Missed Detection

False Alarm

Figure B.21: Correct Prediction, Missed Detection and False Alarms in Different Scenarios

According to Figure B.21, in simulation scenarios 1 and 4, the CBR migration algorithm will

make twice predictions for the resource, the first one at the beginning of the simulation and the

second one at the beginning of the second hour. Therefore, the possible highest number of each

result in these two simulation scenario is 2.

In simulation scenarios 2, 3 and 5, the CBR migration algorithm will make prediction for the

resource once at the beginning of the simulation. At the beginning of second hour, the resource

is not available CBR migration algorithm will not make prediction for the resource at that time.

Therefore, the possible highest number of each result in these two simulation scenario is 1.

In simulation scenario 1, as the resource’s CPU Availability Percentage is always at 100%,

the CBR migration algorithm will predict the resource to stay in available twice and it turns out

that these two predictions are correct. Therefore, the result of Correct Prediction Type 2 is 2

while other results are 0. This shows CBR migration performs well in the situation where the

resource is stable and reliable. However, if resources are always stable and reliable, it is not

meaningful to carry out this type of prediction and job migration.

In simulation scenario 2, as the resource’s CPU Availability Percentage is 100% at the

beginning, the CBR migration algorithm will predict the resource to stay in available but it

turns out that the resource becomes unavailable before next prediction. Therefore, the result of

Missed Detection is 1 while other results are 0. This shows CBR migration algorithm does not

work well in the situation where the resource becomes unavailable without any or little

indication in terms of CPU Availability Percentage.

200

In simulation scenario 3, the resource’s CPU Availability Percentage is 30% at the beginning.

The CBR migration algorithm will predict the resource to become unavailable as the value of

CPU Availability Percentage 30% is below the value of CBR Migration Threshold 50% and it

turns out that the resource becomes unavailable before next prediction. Therefore, the result of

Correct Prediction Type 1 is 1 while other results are 0. This shows CBR migration algorithm

work well in the situation where the resource becomes unavailable with useful indication in

terms of CPU Availability Percentage. More importantly, CBR migration algorithm should

observe this indication to make correct prediction.

In scenario 4, the resource’s CPU Availability Percentage is 30% at the beginning. The CBR

migration algorithm will predict the resource to become unavailable as the value of CPU

Availability Percentage 30% is below the value of CBR Migration Threshold 50% but it turns

out that the resource not unavailable. After 1 hour, the resource’s CPU Availability Percentage

is 65% and the CBR migration algorithm will predict the resource to stay available as the value

of CPU Availability Percentage 30% is above the value of CBR Migration Threshold 50% and it

turns out that the resource stay available before next prediction.

This shows CBR migration algorithm does not work well in the situation where the resource

gives misleading indication in terms of CPU Availability Percentage and CBR migration

algorithm observes this misleading indication.

In simulation scenario 5, the resource’s CPU Availability Percentage is 60% at the beginning.

The CBR migration algorithm will predict the resource to stay available as the value of CPU

Availability Percentage 60% is above the value of CBR Migration Threshold 50% but it turns

out that the resource becomes unavailable before next prediction. Therefore, the result of

Correct Prediction Type 1 is 1 while other results are 0.

This scenario shows the importance of a suitable CPU Migration Threshold. In this scenario,

the resource gives useful indication in terms of CPU Availability Percentage but CBR migration

algorithm cannot observe this as the CPU Migration Threshold is too low. CBR migration

algorithm should observe this indication to make correct predictions.

In addition, this scenario also shows the importance of a suitable Migration Prediction

Interval. In the simulation, the value of Migration Prediction Interval is set as 1 hour so that

CBR migration algorithm cannot observe the change of CPU Availability Percentage in the

whole hour. However, if the value of Migration Prediction Interval is smaller, then the value of

CPU Availability Percentage will be 15% at that time and CBR migration algorithm will be able

to observe this change then make a correct prediction and trigger job migration in due course.

According to the above results, the performance of CBR migration algorithm under different

situations and the influences of CPU Migration Threshold and Migration Prediction Interval are

shown and discussed. The results also reflect the analysis of CBR migration algorithm shown in

Section 5.5 is correct.

