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Abstract 
Nowadays, computational grids have evolved to a stage where they can comprise many 

volunteered resources owned by different individual users and/or institutions, such as desktop 

grids and volunteered computing grids. This brings benefits for large-scale computing, as more 

resources are available to exploit. On the other hand, the inherent characteristics of the 

volunteered resources bring some challenges for efficiently exploiting them. For example, jobs 

may not be able to be executed by some resources, as the computing resources can be 

heterogeneous. Furthermore, the resources can be volatile as the resource owners usually have 

the right to decide when and how to donate the idle Central Processing Unit (CPU) cycles of 

their computers. 

Therefore, in order to utilise volunteered resources efficiently, this research investigated 

solutions from different aspects. Firstly, this research proposes a new computational Grid 

architecture based on Java and Java application migration technologies to provide fundamental 

support for coping with these challenges. This proposed architecture supports heterogeneous 

resources, ensuring local activities are not affected by Grid jobs and enabling resources to carry 

out live and automatic Java application migration. 

Secondly, this research work proposes some job-scheduling and migration algorithms based 

on resource availability prediction and/or artificial intelligence techniques. To examine the 

proposed algorithms, this work includes a series of experiments in both synthetic and practical 

scenarios and compares the performance of the proposed algorithms with existing ones across a 

variety of scenarios. According to the critical assessment, each algorithm has its own distinct 

advantages and performs well when certain conditions are met. 

In addition, this research analyses the characteristics of resources in terms of the availability 

pattern of practical volunteer-based grids. The analysis shows that each environment has its own 

characteristics and each volunteered resource’s availability tends to possess weak correlations 

across different days and times-of-day. 
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Chapter 1 Introduction 
1.1 Motivation 

Grid computing can be described as a type of distributed system consisting of a group of 

networked computers that is presented as one virtual computing resource. This virtual 

computing resource can be used to solve large-scale problems, such as computational and data 

storage problems. 

The motivation for this research is based on observations at the system architecture level and 

user/resource management level of the Grid environment, including challenges in existing Grid 

computing implementations and potential benefits brought by some current technologies. At the 

system architecture level, there are two challenges with many existing Grid computing 

environments: 

• Resources may not be able to run all kinds of jobs. This is because of the heterogeneity of 

the computer operating system. The operating system of the resources that are used to run 

the job can be different from the system that is used to create the jobs. For example, a job 

created by Windows system may have difficulty on running on a Linux machine. 

• Resources may not support live and automatic (reactive and proactive) job migration, 

especially migrations between heterogeneous computers. Here, job migration is an approach 

to enable fault-tolerant environment, especially in a volatile (resources may appear and 

disappear at any time) environment. It is more beneficial if the job can be migrated live 

between heterogeneous systems. For example, if a job running on an unreliable resource can 

be migrated to a reliable resource, then the probability of job failures brought by the 

unreliable resource can be reduced. 

Java technology [Sun10a][Arnold05] provides many useful features, e.g. simple, robust, 

secure, architecture neutral, portable, interpreted, threaded and so on [Gosling96]. Among all 

these features, architecture neutrality and portability are two key aspects that provide a solution 

to the two main challenges mentioned above. Architecture neutral and portable means that the 

Java programs are able to run on multiple kinds of operating systems, especially the mainstream 

operating systems such as Windows, Linux and Mac. Therefore, if a job is represented as a Java 

application(s), it should be able to run on multiple resources without worrying about 

heterogeneity between systems. In addition, architecture neutral and portable also enables job 

migration. If a job is represented as a Java application(s), it will be able to migrate between 

resources without worrying about the heterogeneity between systems. Though Java technology 

does not explicitly support live job migration, existing Java migration technologies can easily be 

leveraged to fulfil this requirement. Furthermore, other features of Java bring many benefits. For 

example, Java applications can be “simple”, allowing users to write a Java program with little 

difficulty, and “secure”, ensuring both jobs and the resources used to run the jobs will be safe.  

At the user/resource management level, one big challenge for effective job allocation for 
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volunteered resources based Grid environments (such as desktop Grid computing or volunteer 

computing environment) is resource volatility. In such an environment, the Grid can comprise 

many heterogeneous computing resources owned by different individual users and institutions. 

As the owners of the resources usually have the right to decide when and how to donate idle 

CPU cycles of their computers, availability of these resources can be hard to predict. If a 

resource that becomes unavailable before processing a job, then this job will have to be 

suspended or even failed, requiring the job scheduler to reallocate the job to another resource for 

processing again from scratch. This is a waste of resource CPU cycles and it lengthens the job’s 

Makespan (the time to “make” or complete a job). 

One approach to solve the problem of job failures caused by resource volatility is to 

characterise what will happen to the computing resources and to make reasonable 

job-scheduling and migration decisions accordingly. To anticipate what will happen to the 

computing resources, some resource availability prediction methods have been proposed, such 

as [Rood07][Rood08] [Mickens06][Dinda99][Ren06a]. For example, in [Rood07][Rood08], the 

authors propose a method to predict resource availability based on a multi-state model and the 

resource’s nearest past few days’ availability information. This multi-state model represents the 

states of volunteered resources in Grids appropriately and the prediction method performs well 

if the resource owner’s behaviour has displays pattern(s) across different days. 

Taking this into account, in this thesis new job-scheduling and job migration algorithms are 

created to improve scheduling performance in volunteered resources based Grid environments, 

especially in terms of avoiding job failures caused by resource volatility. 

1.2 Objectives 
There are two main objectives in this research: 

The first objective is to achieve an intelligent, ubiquitous, flexible, secure and distributed 

computing environment by proposing a new Grid architecture based on existing Java technology. 

The architecture is mainly focused on using volunteered resources so it should not only support 

multiple operating systems, but also support live and automatic Java application migration. In 

addition, it also ensures resources’ local activities are not affected by the execution of Grid jobs. 

The second objective is to provide new job-scheduling and migration algorithms, which 

ensuring reliability (ensuring jobs are processed successfully) with acceptable speed (i.e. getting 

jobs processed quickly) by proposing resource availability aware job-scheduling and job 

migration algorithms. According to [Dogan02], for a job-scheduling/migration algorithm, there 

is a trade-off between speed and reliability in a heterogeneous distributed computing system. 

Here, speed can be represented by the total number of jobs successfully completed by resources 

within a period of time and reliability can be represented by the percentage of jobs successfully 

completed by resources within a period of time. Therefore, ensuring reliability will be the 

primary goal of these algorithms. 
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1.3 Contributions and Publications 
In general, this research mainly focuses the following aspects: development of volunteered 

resources based computing architecture, research into resource management in a desktop Grid 

computing environment, analysis of the resources’ characteristics in real computing 

environments. Figure 1.1 summarises these contributions. 

Volunteered resources may 
not be able to run all kinds 
of jobs

Volunteered resources do not 
support live and automatic 
(reactive and proactive) job 
migration

Proposes a new Grid system architecture based on 
Java technology to achieve an intelligent, ubiquitous, 
flexible and distributed computing environment. In 
addition, existing Java program live migration 
technologies are utilised to enable live and automatic job 
migration. 

At the user/resource management 
level, one big challenge/problem for 
effective job allocation for 
volunteered resources based Grid 
environments (such as desktop Grid 
computing or volunteer computing 
environment) is resource volatility 

Propose FCFS plus Predictor (FCFSPP) 
algorithm to improve reliability with little cost in 
terms of speed. It is based on FCFS algorithm 
and TDE prediction method.

Propose Fuzzy Logic plus Predictor (FLP) 
algorithm to replace the fixed setting of 
Resource Availability Probability Threshold in 
the FCFSPP with a dynamic and Fuzzy Logic 
controlled setting to make a balance between 
speed and reliability. It is based on the 
FCFSPP, TDE prediction method and a Fuzzy 
inference system.

Job scheduling 
algorithms

Job migration 
algorithms

Propose a Particle Swarm Optimisation plus 
Predictor (PSOPP) algorithm to improve 
reliability with little cost in terms of speed. It is 
based on PSO technique.

Propose Periodical Scanning plus Predictor 
(PSPP) migration algorithm to help job-
scheduling algorithm to improve reliability. It 
uses TDE prediction method and trigger job 
migration procedure if resource is going to be 
unavailable soon.

Propose Case Based Reasoning (CBR) 
migration algorithm to improve reliability. It 
observes the CPU Availability of each 
resource and trigger job migration procedure. 
CBR Migration Threshold will be adjusted 
according to CBR procedure.

Critical analyses, 
validations and 
evaluations

Analyse characteristics 
of resource availability of 
volunteered resources 
from different Grids

Java technology provides a lot of useful features, 
e.g. “architecture neutral” and “portability 
enables” enables job migration, “simplicity”
ensure users to write a Java program with least 
hassle and “secure” helps ensure both jobs and 
the resources used to run the jobs will be safe. 

What do resources’ availability looks like 
in real Grids? For each resource, is 
resource availability predictable for days 
and hours?

Challenge/Problem
Inspiration
Approach

Some Java application 
migration techniques 
already exist

Proposes a reactive job migration procedure. 
This type of job migrations is triggered by 
resource before they are going to be 
unavailable.

Solution/Contribution

 
Figure 1-1: Challenges, Motivation and Contributions of this Research 

The challenges and motivation are introduced in Section 1.1 and 1.2 already. Based on these 

observations, this research addresses different aspects to solve the problems, which include 

proposing a new system architecture supporting live and automatic job migration, proposing 

new job-scheduling/migration algorithms to ensure jobs process successfully and critical 

analyses, validations and evaluations of the proposed algorithms. Therefore, the major 

contributions of this research can be summarised as follows: 

1. This research proposes a novel, ubiquitous, flexible and distributed Grid system architecture 

to utilise volunteered and heterogeneous resources and support live and automatic (reactive 

and proactive) job migration between them. This architecture also leverages features of Java 

technology to ensure a Grid can work well in a heterogeneous and volatile environment. 

2. This research proposes novel job-scheduling algorithms to improve the chances of jobs 

being processed successfully with little cost in terms of speed. All the algorithms are based 

on a resource availability prediction and some of them employ Artificial Intelligence (AI) 



 

14 

techniques to achieve the objective via different approaches. 

3. This research proposes novel proactive job migration algorithms to assist job-scheduling in 

order to ensure jobs are processed successfully. Again, these job migration algorithms try to 

achieve the objective via different approaches. 

4. This research analyses the characteristics of resources in real volunteered computing 

environments. In this research work, several sets of real resource availability data collected 

from different institutions have been analysed, especially in terms of correlations of 

resource availability within each resource. 

5. This research evaluates the job-scheduling and job migration algorithms. After proposing 

the algorithms, the research critically analysed them under different conditions. 

Publications List: 

• Jun Zhang, Chris Phillips, “Ubiquitous, Flexible and Distributed Computing”, PGNet 

2007 

• Jun Zhang, Chris Phillips, “Intelligent Roaming for Nomadic Computing”, 

Information and Communication Technologies: From Theory to Applications, 2008. 

ICTTA 2008. 3rd International Conference on 7-11 April 2008 Page(s):1 - 6 Digital 

Object Identifier 10.1109/ICTTA.2008.4530179 

• Jun Zhang, Chris Phillips, “Job-Scheduling with Resource Availability Prediction for 

Volunteer-Based Grid Computing”, London Communications Symposium 2009 

1.4 Thesis Organisation 
The thesis is organised as follows: 

Chapter 2 provides background knowledge to the thesis. Firstly, it introduces Grid computing, 

especially desktop Grids and volunteer computing Grids. Next, some open issues in the existing 

Grid computing environment are described. 

Chapter 3 presents a novel Grid computing system architecture. Firstly, general background 

knowledge about Java application and migration technologies are described as Java technology 

plays a very important role in the new architecture. Next, all the components of the proposed 

system architecture are functionally described in detail. In addition, the system operation is 

introduced. Furthermore, messages used in the system architecture are briefly described; further 

details about the messages are provided in Appendix A. 

Chapter 4 introduces job-scheduling and migration algorithms in the proposed system. Before 

describing the novel job-scheduling algorithms, the issues associated with volunteered 

resource-based Grid system are considered in detail along with prediction techniques. 

Chapter 5 critically analyses the proposed job-scheduling and migration algorithms. In this 

chapter, some important features of each algorithm will be considered and the performance of 

the proposed job-scheduling algorithms in different scenarios are analysed. 

Chapter 6 provides some information pertaining to four sets of real volunteered resource 
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based Grids and ascertains their characteristics. 

Chapter 7 described the simulation setup and evaluates the results. Several sets of real 

resource availability data are adopted for the simulation experiments. The simulation 

environment is described and evaluation results of the proposed job-scheduling and job 

migration algorithms are presented and discussed for the different scenarios. 

Chapter 8 provides some discussion of the salient results concludes the whole thesis. As 

many results are provided in Chapter 7, this chapter focuses on some important or interesting 

ones. In addition, future work is discussed.  

Finally, appendices provide detailed information about the messages used in the proposed 

architecture and validation work of job-scheduling and job migration algorithms. 
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Chapter 2 Background 
To better understand this thesis, this chapter will firstly give some background knowledge to 

the research. 

2.1 Grid Computing 
In this section, some knowledge about Grid computing will be viewed from some important 

aspects, including its system architecture, working procedures, potential applications, and 

existing Grid projects. 

2.1.1 Overview 

There are many definitions of Grid computing. Typically, Grid computing can be defined as a 

collection of networked computing resources used for solving common tasks. Here, a common 

task can be a computational job (a job mostly requires computational resources such as CPU 

processors), or a storage job (a job mostly requires storage resources such as hard disk and 

memory) or any other types of jobs. Different designs to the Grid system are required for coping 

with different types of tasks. In this thesis, the main focus is the computational Grid – the Grid 

that handles computational tasks. If it is not specified further, both Grid computing and 

computational Grid will have the same meaning in this thesis.  

Grid computing is a type of distributed computing. Different from conventional cluster 

computing, these computing resources are usually heterogeneous and from multiple 

geographical sites, connecting by the Internet or a local area network. The computational tasks 

in the Grid are created by the users and allocated to resource(s) according to specific 

requirements by the Grid. 

Grid computing was motivated by facts observed from some previous research work. 

According to many research [Jacob02][Smith][Mutka92][Acharya97], most computers are idle 

for over 60% (some research shows the result is over 90%) of the time. Therefore, many CPU 

cycles are idle. Meanwhile, many computers are easily accessible as computers typically 

connected to the Internet nowadays. Therefore, motivated by these easily accessible idle 

computing resources, the Grid computing technology has been proposed. 

According to suggestions from the father of Grid computing [Foster02], a Grid system should 

possess the following features: 

1. The system should “coordinate resources that are not subject to centralized control” 

[Foster02]. This means the resources in the Grid could be from different domains, e.g., 

different universities or different departments in a university. In addition, these resources 

could be controlled by different users, e.g., different staff or students in the university. 

Otherwise, if the resources are in the same domain, then it is more like a local management 

system. 

2. The system should use “standard, open, general-purpose protocols and interfaces” 
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[Foster02]. This is because fundamental problems exist like authentication and authorization 

that need to be addressed irrespective of the technologies in use. 

3. The system can “deliver nontrivial qualities of service” [Foster02]. This means the 

resources can be used to provide service with quality assured, like response time and 

throughput in terms of speed and success rate in terms of reliability. Therefore, a Grid – a 

combination of resources is much better than the sum of each single resource. 

According to the descriptions in 1, 2 and 3 the computational Grid was motivated by under 

utilised resources and used for computational tasks. However, in addition to this, a 

computational Grid can provide useful functionality. So some capabilities of Grid computing 

can be summarized as follows: 

1. Exploiting idle CPU cycles. This is one of the most important motivations for Grid 

computing and it is also one of the most important goals of Grid computing. Though there 

are many resources with idle CPU cycles in a private network or in the Internet, it may not 

be straightforward to utilise their idle CPU cycles as their CPU may not always idle. So if 

the Grid not only uses resources’ idle CPU cycles but also tries to occupy resources’ CPU 

when they are busy, then it will interfere with resources owners’ activities. This is an 

important issue, especially for desktop Grids and volunteer computing. This will be 

described further in the following sections. 

2. Balancing resources’ load. Generally speaking, it is better if all the resources in a Grid have 

more or less the same load as this will ensure all resources are efficiently utilised and the 

jobs can be quickly processed. However, due to various reasons, like resources owner’s 

behaviours, job-scheduling algorithm, some resources in the Grid may have extremely high 

loads while some other resources burden is relatively low. Therefore, it will be desirable to 

have mechanisms to balance resources’ load. Fortunately, it is possible to achieve this goal 

in a Grid via multiple approaches, e.g., different job allocation strategies and live job 

migration. In terms of live job migration, this will be covered in more detail in the following 

chapters. 

3. Providing extra reliability. Reliability is a part of quality of service and it is always a big 

issue in many fields. Reliability can be viewed from different angles, e.g., job completion 

reliability, data storage reliability and resource access reliability. Conventionally, extra 

reliability was mainly achieved by increasing the number of hardware equipments, e.g. 

buying more computers. However, this is an expensive solution and may be unnecessary in 

many situations. Grid provides another solution via a different approach, which is mainly 

based on software, rather than hardware. With Grids, extra reliability can be achieved by 

techniques such as job replication and job migration, which are, to some extent, more 

cost-effective than providing additional hardware. 
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2.1.2 Components 

Typically, a Grid has three main levels: user level, resource/user management level and 

resource level. At each level, there are multiple components. Figure 2.1 shows a common high 

level architecture of a Grid system: 
Job

Grid Job 
Scheduler

Resource 
Manager

User 
Manager

Resource 
Database

User 
Software

User
Database

JobJob

Resource 
Software

Guest 
Job

Guest 
Job

User Level

Resource Level

Resource/User 
Management Level

 
Figure 2-1: A generic high architecture of a Grid system 

According to the Figure 2.1, there are multiple components at each level. Each component 

and its functionalities are described as follows: 

• User Level 

At the user level, there are two main components - job and the user software: 

Job: A job is a task created by a user that will be submitted to the Grid and executed by the 

Grid resource(s) later. As the jobs have to be executed by the resource(s), the job(s) should have 

format(s) that can be understood by the resource(s). For example, a job could be a 

self-contained executable file that can be executed by a resource, or it could be a predefined 

specific format file that can be understood and executed by the resource(s). Different jobs may 

have different priorities. 

User software: It is the software for communicating with the user manager and the Grid job 

scheduler. Typically, it has three main functions: the first one is to register the user manager at 

the user/resource management level. Secondly, it is responsible for submitting the created jobs 

to the Grid job scheduler at the user/resource management level. Thirdly, it is responsible for 

receiving results from the Grid job scheduler after the submitted jobs are completed by 

resource(s). So if a user wants to use the Grid to execute job(s), then user software will execute 

the two functions in sequence. Firstly, it has to register at the user manager to gain the 

authorisation to submit jobs. Then after getting authorization, it sends the job(s) to the Grid job 

scheduler. Later, when the job is complete, the user software will receive the result(s) from the 

Grid job scheduler. 
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• User/Resource Management Level 

At the user/resource management level, there are five main components: Grid job scheduler, 

user manager, resource manager, user database and resource database. 

Grid job scheduler: It is responsible for sorting and allocating coming jobs to different 

resources and redirecting job results to user software when the jobs are completed by resources. 

Firstly, as many jobs from different users will be sent to the Grid job scheduler, the Grid job 

scheduler needs to sort the jobs in preparation of job allocation. In the phase of sorting, the Grid 

job scheduler can use one or multiple job queues to sort all the jobs. As mentioned earlier, 

different jobs can have different priorities. Therefore, jobs with high priorities may be put in 

front of a queue or put in a specific queue exclusively used for high priority jobs. For each 

queue, the Grid job scheduler can sort the jobs according to predefined sorting algorithm, e.g., 

First-Come-First-Served (FCFS) [Esklcloglu01], Earliest-Deadline-First (EDF) [StanKovic98], 

backfilling[Mu’alem01] and Least-Time-To-Run-First (LTTR) [Lazarevic06]. In addition, the 

Grid job scheduler can sort the jobs with specific requirements. For example, jobs with high 

priorities will always be in front of jobs with low priorities. 

In the phase of allocating, the Grid job scheduler also allocates the jobs to resources with a 

predefined allocation algorithm with/without specific requirements. For example, the Grid job 

scheduler can allocate jobs to the resource by using algorithm like FCFS [Esklcloglu01] and 

Matchmaker [Thain05]. The Grid job scheduler can also allocate jobs to the resource with some 

specific requirements so that high priority jobs are allocated to resources that have the shortest 

response time. 

When a job is finished, the resource will return the result(s) to the Grid job scheduler and the 

Grid job scheduler will redirect the result(s) to the original user. 

User manager: It is responsible for authenticating and authorising users. As mentioned 

above, the user software should communicate with the user manager to register at the user 

manager. After getting the registration request, the user manager will check its user database 

and/or predefined policies to make authentication decisions. If the user is authenticated, then the 

user manager authorises the user with predefined policies. For example, a regular user is 

allowed to use all the available resources while a restricted user can use limited number of 

resources. 

Resource manager: It is responsible for registering resources. When a resource would like to 

join the Grid, then the resource will need to send out a registration request to the resource 

manager. After getting the registration request, the resource manager will check the resource 

database and/or predefined policy to make authentication decisions. If the resource is 

authenticated, then the resource manager will allow the resource to join the Grid. 

User Database: It is a database used to store user related information, such as user ID, user 

authentication status, user authorisation status and so on. When the user manager gets the 

registration request from a user, the user manager will check the user database to make 
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authentication decisions and then update related records in the user database. 

Resource Database: It is a database used to store resource related information, such as 

resource ID, resource authentication status, resource availability history and so on. When the 

resource manager gets the registration request from a resource, the resource manager will check 

resource database to make authentication decisions and then update related records in the 

resource database. 

• Resource Level 

At the resource level, there are two main components: resource software and guest jobs. 

Resource software: It is a program running on the resource and it is responsible for 

communicating with the resource manager and the Grid job scheduler. Typically, it has up to 

four or five main functions: the first one is to register the resource at the resource manager at the 

user/resource management level. Second, it is responsible for receiving jobs allocated by the 

Grid job scheduler at the user/resource management level. Third, if the resource currently has 

more than one job, the resource software is responsible for scheduling all these jobs. Similar to 

the Grid job scheduler, the resource software can use one or multiple queues to sort all the jobs 

and then decide which job(s) to run next. Fourth, it is also responsible for monitoring the job 

execution state. Fifth, it is responsible for sending results to the Grid job scheduler after the 

submitted jobs are completed by resource. 

Therefore, if a resource wants to join the Grid to provide job execution service, then the 

resource software will carry out these two functions in sequence. Firstly, it has to register at the 

resource manager to gain the authentication to join the Grid. Then after getting the 

authentication, it waits for the Grid job scheduler allocating jobs to itself. Once the Grid job 

scheduler decides to allocate a job to the resource, then the resource software will receive it. 

After a job is completed, the resource software will return the results to the Grid job 

scheduler and then the Grid job scheduler will redirect the results to the users. 

Guest job: A guest job is the job created by the users and received by the resource software. 

A guest job is the exactly the same as the component “job” at the user level. As the jobs have to 

be executed by the resource(s), the job(s) should have format(s) that can be understood by the 

resource(s). For example, a job could be a self-contained executable file which can be executed 

by a resource, or it could be a predefined specific format file that can be understood and 

executed by the resource(s). 

2.1.3 Main Procedures 

Though different Grid systems might have more or fewer elements for providing extra or less 

functionality, typically the key functions in a Grid are now considered. All these components 

work together to achieve the goals of the Grid. In terms of work procedures, generally there are 

three main procedures: 

User registration procedure: user registration procedure is the procedure used to register 
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users at the user manager and the procedure can be outlined as follows: 

1. A user sends out a registration request to the user manager by using the user software. 

2. The user manager checks its user database and/or predefined policies to make authentication 

decisions. 

3. If the user is not authenticated, then the user is not allowed to use the Grid. If the user is 

authenticated, then the user manager makes authorisation decisions to the user with 

predefined policies. 

4. The user manager sends the authentication and authorisation decisions back to the user. 

Resource registration procedure: resource registration procedure is the procedure used to 

register the resources at the resource manager and the procedure can be outlined as follows: 

1. A resource sends out a registration request to the resource manager by using the resource 

software. 

2. The resource manager checks its resource database and/or predefined policies to make 

authentication decisions. 

3. If the resource is authenticated, then the user is allowed to join the Grid. Otherwise, the 

resource will be not allowed to join the Grid. 

4. The resource manager sends the authentication decisions back to the resource. 

Job execution procedure: job execution procedure is the procedure describing the whole job 

life cycle from creation to completion. The procedure can be outlined as follows: 

1. A user creates and submits a job by using the resource software. The job will be submitted 

to the Grid job scheduler. 

2. When the Grid job scheduler receives the job, the Grid job scheduler puts the job into a job 

queue and sorts it with a predefined job sorting algorithm. 

3. If the job is in front of the job queue, the Grid job scheduler allocates the job to a resource 

by using a predefined job allocation algorithm. 

4. When the resource receives the job via the resource software, it executes the jobs with the 

resource policies. After completing the job, the resource software returns the result(s) to 

Grid job scheduler. 

5. When the Grid job scheduler receives the result(s), it checks the original user of the job 

from the user database and then returns the result(s) to the original user. 

2.1.4 Grid Computing with Volunteered Resources 

Conventionally, distributed computing usually utilises resources that are completed owned 

and controlled by the distributed computing system. Different from this, Grid computing usually 

does not have this constraint and a Grid may be composed of fully controlled resources and/or 

volunteered resources from different places. In Grid computing, there are two represented types 

of Grid systems designed to utilise volunteered resources on purpose: 

The first type of Grid is desktop Grid computing. “Desktop Grid computing, exploiting 
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unused resources in the Intranet environments and across the Internet; it can provide 

considerable computational power, enabling the investigation of complex and demanding 

problems in a variety of different scientific fields.” [DGRID03] It is a type of Grid computing. 

In a desktop Grid computing environment, the resources can be composed by a group of 

computers within an organisation and they can come from PCs all over the Internet. 

The second type of Grid is volunteer computing. “Volunteer computing is a type of 

distributed computing in which computer owners donate their computing resources (such as 

processing power and storage) to one or more projects” [Volwiki10]. Volunteer is also a type of 

Grid computing. Therefore, these computers are also heterogeneous and geographically 

dispersed, connecting by the Internet or a local area network. 

Some researchers point out that the most important differences between desktop Grid and 

volunteer computing are accountability and anonymity [BOINC10a]. In desktop Grid 

computing, a resource is assumed to behave mannerly (not creating fake or malicious results) 

and the resource’s identity is known in advance. However, no matter whether it is a desktop 

Grid computing environment or a volunteer computing environment, the computing resources 

volunteer to join the grid and donate their idle CPU cycles to the Grid for finishing jobs of the 

project(s), e.g. donating idle CPU cycles for computational jobs or donating spare space for 

storing data. In this thesis, the focus will be mainly on contributing resources for computational 

tasks. Therefore, this kind of volunteer computing will discussed throughout this thesis. 

Here, one of the most important common characteristics of both desktop Grid computing and 

the volunteer computing environment is that the resources donated to the Grid are volunteer 

based, which brings both benefits and challenges to the Grid. 

In terms of benefits, volunteered can attract more resource owners to donate their idle CPU 

cycles of their computers as the owners of the resources are always welcome to join the Grid 

and they can decide when and how to donate their resources. In addition, their activities (e.g. 

processing local tasks, mouse and keyboard events) on the computers are usually ensured not be 

affected by the jobs from the Grid. 

For some projects, they are especially attractive as the joiner can collect credits, awards and 

even money from the projects. For example, in the projects [SETI10][Climate10], joiners can 

get credit scores when they successfully finish jobs. Computers collecting highest scores will be 

listed on the websites of the projects. In [GIMPS10], the owner of the computer that finds a new 

prime number can get a monetary award. For example, the department of mathematics of 

University of California Los Angeles was awarded 50,000 US dollars as the 45th known 

Mersenne prime was found on one of their computers. 

In addition, “volunteer” also brings inexpensive and efficient Grids. As the owners donate 

resources freely, it is a cheap approach to gather many accessible computing resources. As the 

jobs only execute when a computer’s CPU is idle, the computer resources can be efficiently 

utilised while the resource owners’ activities will not be affected. On the other hand, “volunteer” 
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also brings some problems and challenges for the Grid. As the owners of the resources usually 

have the right to decide when and how to donate idle CPU cycles of their computers, these 

resources may be volatile (they may appear and disappear at any time). 

The volatility of computing resources brings a big challenge for allocating jobs effectively. If 

a job is allocated to a resource that becomes unavailable before finishing the job is processed, 

then this job will be suspended or may even fail, requiring the job to be sent to another resource 

for processing again from the start. This is a waste of resource CPU cycles and it lengthens job’s 

Makespan (the time to “make” or complete a job). Therefore, this makes the work of job 

allocation complex. This is one of the most important issues that this thesis focuses on. More 

discussion on this issue is provided in Section 4.1.4. 

2.1.5 Applications 
According to the descriptions above, Grid computing is used for solving common 

computational tasks. As it is composed of a collection of loosely coupled computers, it can be 

considered as a “virtual super computer”. Therefore, it is not only useful for small and medium 

size computation tasks but is also suitable for large-scale computational tasks. So Grid 

computing can be applied to areas which require computing resources, and is especially suitable 

for the areas which need huge amount of computing resources. 

“This technology has been applied to computationally intensive scientific, mathematical, and 

academic problems through volunteer computing, and it is used in commercial enterprises for 

such diverse applications as drug discovery, economic forecasting, seismic analysis, and 

back-office data processing in support of e-commerce and Web services.” [Physorg10]. In Ian 

Foster and Carl Kesselman’s book “The GRID: Blueprint for a New Computing Infrastructure 

(Second Edition)” [Foster09], many kinds of practical applications have been collected and 

described in detail. 

According to the authors’ description, Grid computing is applicable to a wide range of areas. 

“They cover compute-, data-, sensor-, knowledge-, and collaboration-intensive scenarios and 

address problems ranging from multiplayer video gaming, fault diagnosis in jet engines, and 

earthquake engineering to bioinformatics, biomedical imaging, and astrophysics” [Foster09]. 

For example, Grid computing can be used to gather telescope data from hundreds of telescopes, 

allowing astronomers to carry out analysis in a large scale. Grid computing can be also used by 

enterprise to improve efficiency and flexibility in terms of resource management. Grid 

computing can be also used to federate data for analysing and discovering new drugs. More 

details about practical applications of Grid computing are given by Foster [Foster09]. 

2.1.6 Projects 

In the real world, extensive Grid projects have been designed and implemented in the past 

decade. In this section, some well known projects will be reviewed, especially their distinct 

features, advantages and disadvantages. 
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Condor [Thain05][Condor10a] is a project developed by the computer science department of 

University of Wisconsin-Madison. It is a project to implement and deploy High Throughput 

Computing (HTC) environments by utilising large collections of distributed computing 

resources. In practice, many researches rely on the number of computing results so scientists 

need a computing environment that can deliver a huge amount of computational capabilities 

over a long period of time. Therefore, the HTC environment was developed to fulfil this 

requirement. It is an environment that aims for high computing throughput. There are a couple 

of approaches to building such a HTC environment such as using mainframe computers, groups 

of personal computers. With the observations that many small, fast and inefficiently utilised 

personal computers are accessible in the Internet, Condor tries to achieve this goal by using 

distributed computing power all over the Internet and it aims to take “ this wasted computation 

time and puts it to good use” [Condor10b]. 

In Condor, jobs are assumed as long running tasks that do not require user interactions. 

Initially, users create a job and submit the job to the system via a end-user software. Unlike 

many other designs in Grid computing, users in Condor environment can specify their 

requirement for the job by using an advertisement mechanism - ClassAd. For example, the user 

can specify CPU speed, memory and storage space required for a single job. On the other hand, 

the owners of the donated resources can also specify the requirements they can fulfil, i.e. the 

CPU speed, memory and storage that their resources can provide. The system streamlines all the 

jobs and the Grid job scheduler (called “Matchmaker” in Condor) makes allocation decisions by 

using a match mechanism. For a single job, if the system can find a resource that can fulfil its 

requirements, then the job will be allocated to the resource [Thain05][Condor10c]. 

In addition, Condor software on the resources provides some useful functions. Firstly, it 

checkpoints job(s) periodically, so that the job can resume from the checkpoint if the resource 

crashes. It also suspends job(s) when the resources are busy with processing local tasks. It also 

restarts jobs if the resource reboots. It also supports job migration, so that a job can resume on 

another resource from the checkpoint. However, it does not provide any mechanism to support 

proactive job migration. 

Berkeley Open Infrastructure for Network Computing (BOINC) is an “open-source software 

for volunteer computing and grid computing” [BOINC10b] developed by The University of 

California. Any individual user or institution can contribute idle computer time to one or 

multiple projects on the platform at a time and a number of interesting public projects are 

running on this platform. For example, SETI@Home [SETI10] is one of the famous projects 

and it aims to detect intelligent life outside Earth. It uses radio telescopes to listen to 

narrow-bandwidth radio signal from space and the collected data is distributed and analysed by 

distributed resources. Climateprediction.net [Climate10] is another interesting project. It aims to 

make predictions of the Earth’s climate up to 2080. In this project, each resource runs the model 

distributed by the project server and calculates a unique version of the climate change in the 
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future. 

In BOINC, participant resources can claim credit when finishing a job and the procedure of 

finishing a job can be described as follows: Firstly, the client software on a resource requests 

one or multiple jobs from the scheduling server rather than waiting for the scheduling server to 

distribute jobs. Here, the jobs are preloaded to the data server by the project administrator. The 

scheduling server allocates job(s) to the resource according to the hardware of the resource. For 

example, the server will not give a job that requires more memory than the resource has. After 

that, the data server will send the executable and input files to the resource. Then the resource 

will start to execute the job(s) and produce output files. After completing the job, the resource 

will upload the results and request new jobs. 

One of the most interesting features is the resources can get credit when completing jobs. To 

claim credit for each job, the correct result should upload to the server before the deadline. The 

claim credit is usually dependent on the CPU time and CPU benchmark of the resource. Task 

replication is used to guarantee if the result is correct. If both results match, then both resources 

will be given the minimum claimed credit. Otherwise, the job will be allocated to a new 

resource until the matching result is found. 

Another interesting feature is its local scheduling policies. As mentioned above, a resource 

can download multiple jobs from different projects at a time. However, the number of CPU and 

the memory space is limited on a resource. In addition, there is a single deadline for each job. 

Therefore, how to schedule these jobs effectively is an important issue in such circumstances. In 

[Anderson07], the author proposes multiple scheduling policies - debt notion, deadline 

scheduling and job completion time estimation to “maximize CPU utilization and to avoid 

missed deadlines (and to balance these goals when they conflict)”. 

In addition to contributing idle CPU cycles to the existing projects, BOINC also allows users 

to create their own projects (especially public projects) with the platform software, even making 

them public projects which allow the public to join and contribute their computing resources. 

For a university, BOINC can be used to create a “Virtual Campus Supercomputing Centre” 

[VCSC10], which can provide a clustered computing power to the researchers. For a company, 

BOINC can be used for desktop Grid computing in dealing with long running computational 

tasks. For a scientist, BOINC can be used to create volunteer computing projects, like the 

SETI@Home project and Climateprediction.net mentioned above. 

Xgrid is a “technology in Mac OS X Server and Mac OS X, simplifies deployment and 

management of computational grids” [Xgrid10a]. It is “a proprietary software program and 

distributed computing protocol developed by the Advanced Computation Group subdivision of 

Apple Inc that allows networked computers to contribute to a single task” [Xgrid10b]. With this 

technology, researchers and scientists can build up their own computational grids for high 

throughput computing. The same as other Grid projects, Xgrid also tries to utilise idle CPU time 

on the networked computers. One of the most distinct features of Xgrid is that it only supports 
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the Mac operating system, which blocks users of other types of operating systems from joining 

or implementing a grid above Xgrid. 

The work procedure of Xgrid can be summarised as follows: firstly, a user (it is called 

“Client” in Xgrid) creates and submits a job to the Grid job scheduler (it is called “Controller” 

in Xgrid). Then the Grid job scheduler divides the job into small tasks and allocates them to 

multiple resources (it is called “Agent” in Xgrid). Here, each resource CPU executes at most 

one task at a time and a multiple-CPU machine can execute multiple tasks at a time. Later, the 

resources return the results to the Grid job scheduler when they finish the tasks. Then the Grid 

job scheduler compiles individual task results into job results and sends the results to the 

original user. During the task execution, the Grid job scheduler will monitor the task status. If a 

task fails to complete on a resource (e.g. the resource crashes), then the Grid job scheduler will 

reassign the task to another resource. 

XtremWeb is an open source platform for desktop grids designed by IN2P3 (CNRS), INRIA 

and Universisty Paris XI [Neri00]. It is designed to help for building users’ own Grid based on 

PCs within an institution or over the Internet. Like other Grid computing environment, 

XtremWeb utilises resources’ idle CPU cycles to accomplish computational tasks. 

The work procedure of XtremWeb can be summarized as follows: Firstly, the users (it is 

called “Client” in XtremWeb) submit jobs to the Grid job scheduler (called “Coordinator” in 

XtremWeb). Then, similarly to BOINC, the resources (it is called “Worker” in XtremWeb) 

sends requests to the Grid job scheduler and the Grid job scheduler will send the jobs (the job 

may have already been stored in the resources. If so, the Grid job scheduler will send a set of 

parameters to the resources. Otherwise, the Grid job scheduler will send the whole job to the 

resources). Later, the resources complete the job and reply with the results to the users via the 

Grid job scheduler. 

One of the most distinct features of XtremWeb is that it “can be used to build centralized 

Peer-to-Peer Systems such as some well known projects related to audio file exchange” 

[Xtremweb08a]. Therefore, a computer is considered as a resource and a user at the same time. 

Comparing with other systems, “XtremWeb is somewhere in between pure Desktop Grid 

system, a la Condor and pure Volunteer Computing system, a la BOINC.” [Xtremweb08b]. In 

Condor, the Grid job scheduler (Matchmaker) finds the best resource and allocates the job to it. 

Different from Condor, in XtremWeb, the resource request jobs rather than waiting for jobs to 

come. This is similar to the mechanism being used in BOINC. Compare with BOINC, 

XtremWeb allows each user has the right to submit jobs if it is authorised, while only project 

creator can upload jobs in BOINC. In addition, unlike BOINC, XtremWeb does not provide a 

credit system to award the resources. 

Globus® Toolkit [Globus10a] is open source software toolkit for building Grids, “letting 

people share computing power, databases, and other tools securely online across corporate, 

institutional, and geographic boundaries without sacrificing local autonomy” [Foster06]. It is 
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being developed by the Globus Alliance, an international association that is mainly based at 

Argonne National Laboratory [Globus10b], USA. The toolkit has a series of software services 

and libraries to provide functionalities covering different aspects in Grid computing, from 

resource discovery, monitoring to protecting resources’ safety. 

“Its core services, Interfaces, and protocols allow users to access remote resources as if these 

resources were located within the users’ own machine room while simultaneously preserving 

local control over who can use resources and when” [Garritano03]. 

The work procedure in Globus can be summarised as follows: Firstly, a user obtains 

authentication from the system. After that, the user queries the system to see if there is any 

resource available. If yes, then the user submits the job to the Grid. Then the Grid sends it to the 

resource for execution. During the job execution, the Grid monitors the progress of the job and 

notify the user if the job is finished, failed, or being delayed. 

In Globus, the Globus Resource Allocation Manager (GRAM) [Feller07] is a software 

component used to manage jobs and resources. Interestingly, “GRAM is not a scheduler itself -- 

but a standardized, front end interface to different existing scheduler components, such as PBS 

(Portable Batch System) [Corbatto00] and Platform's LSF (Load Sharing Facility) [UNC09]” 

[Czajkowski10]. Therefore, Globus leaves the choice of Grid job scheduler to the users of 

Globus Toolkit. In addition to this, Globus Toolkit also supports a number of third-party 

software. For example, Condor can build upon Globus Toolkit and Condor-G [Frey01] can be 

utilised as a job management mechanism to manage job submission. 

According to the above descriptions about different projects, all these representative projects 

have some common features: 

• All the Grid systems developed in the projects have three level components: user level 

components, user/resource management level components and resource level components. 

• User level components are mainly responsible for submitting jobs to the user/resource 

management level components for execution. 

• User/resource level management components are mainly responsible for managing 

users/resources and scheduling jobs to different resources. 

• Resource level components are mainly responsible for executing jobs and returning results 

back to the user/resource management level components. 

However, they have many differences if looking into details: 

• The definition and the range of users are different. In BOINC, the users are a limited 

number of system administrators or project managers that can submit jobs to the Grid 

system. In other projects, they generally do not have this kind of restriction, which means 

public users can also submit their jobs to the Grid system. 

• Job allocation mechanisms are different. In BOINC and XtremWeb, the resources will try to 

fetch jobs from the Grid job scheduler while the Grid job scheduler will try to allocate jobs 
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to resources. 

• Job-scheduling algorithms are different. FCFS algorithm is widely used, such as BOINC, 

XGrid and XtremWeb. In Globus, job-scheduling algorithm is not specified and the 

developers can decide what job-scheduling algorithm to be used when building a real Grid 

system. In Condor, it is based on FCFS and a matchmaker to scheduling jobs. 

• Operating systems supported by the Grid are different. XGrid only support Mac OS system, 

which means only the computers with Mac OS can become the resources of the Grid. For 

other projects, though multiple operating systems are supported by the Grid in theory, 

operating system specific resource software has to be run on a different operating system to 

make sure operating system specific jobs can be executed on different platform. In this 

thesis, Java technology is utilised to support multiple operating systems and resource 

software or jobs will be platform independent (this will be discussed in more details in 

following chapters). 

• Assumptions about resource availability are different. Some Grid systems assume the 

resources are available once they are in a Grid, such as Xgrid. However, for some Grid 

systems, resource owners can decide when and how to donate their resources to the Grid. 

For example, in Condor, a resource is considered as available to the Grid when the CPU 

load is lower than 25%. In BOINC, resource owners can define when and how to donate the 

CPU and memory resources with different parameters. In XtremWeb, it has a strict 

assumption in terms of availability: a resource is fully controlled by the resource owner and 

it is not available if some local activities occurs (e.g. mouse moved, keyboard touch or local 

process launched). In this thesis, Resource availability will have the same definition as 

XtremWeb and try to explore how job-scheduling algorithms can perform under such 

difficult circumstances (more details will be discussed in following chapters). 

• The approaches for tackling the problem of resource volatility are different. Resource 

volatility means the resources may come and go at any time so that jobs may be lost if the 

resources leave the Grid (more details about this problem will be discussed in Section 2.2). 

Here, different approaches are taken by different projects. For some projects, it simply 

allocates the job to a new resource for execution if a job fails, such as XGrid and BOINC. 

For some projects, it checkpoints jobs regularly so that jobs can be executed from the 

checkpoint if it fails, such as Condor. However, none of these projects provides live and 

automatic job migration algorithm so that jobs can be reactively or proactively migrated 

before jobs get lost. This is another focus of this thesis. This thesis uses the approach of 

reactive and proactive job migration algorithms to avoid jobs getting lost in a volatile Grid 

environment (more details will be discussed following chapters). 

2.2 Challenges in Volunteered Resources based Grid Computing 
Resource management is the core part of a Grid system. “At the heart of the Grid is the 



 

29 

ability to discover, allocate, and negotiate the use of network-accessible capabilities—be they 

computational services offered by a computer, application services offered by a piece of 

software, bandwidth delivered on a network, or storage space provided by a storage system” 

[Foster09]. In the Grid, resource management includes work like resource discovery, resource 

state monitoring, job-scheduling and job state monitoring, most of which are managed by Grid 

job scheduler at the user/resource management level and resource software at the resource level. 

Among the functionalities of the resource management, job-scheduling is an important part. 

In a Grid, especially in a volunteer resources based Grid (such as a desktop Grid computing or a 

volunteer computing environment), a resource may not always be available to the Grid and the 

job(s) may not always be allowed to run on them all the time. This is due to some characteristics 

of these systems: 

Firstly, resources in such systems are assumed to be controlled by the resource owners rather 

than the Grid system. This characteristic makes the resources volatile. In a volunteer resources 

based Grid, resources may join and leave at any time, even without any precaution. A resource 

joining the Grid is good for the Grid as more computing power is available and potentially more 

jobs can be processed within a period of time. However, a resource leaving the Grid is bad news 

for the Grid, as the jobs running on the resources will be lost. The case will be worse if the 

resource leaves without any precaution. With precaution, it is possible to migrate jobs 

beforehand. Without precaution, it is difficult for the job scheduler to know when to migrate 

jobs. 

Secondly, resources in such systems are typically assumed not to interfere with local 

activities. Every time the owner reclaims the resource, the guest job(s) from the Grid will have 

to be suspended. This characteristic also makes the resources volatile. Furthermore, if the 

suspension exceeds the predefined time-out, the job will be terminated and lost. 

Therefore, both characteristics makes the resources volatile and the volatility of computing 

resources brings a big challenge for the job-scheduling algorithm to a volunteer resources based 

Grid in terms of how to get higher job throughput and how to ensure jobs are processed 

successfully. 

One potential solution to this challenge is enabling the job scheduler to allocate jobs 

effectively with the information about resources’ future availability. This is one of the focuses of 

this research and this type of solution will be discussed in details in Chapter 4, 5 and 6. 

Another potential solution to this challenge is enabling the job scheduler to anticipate all 

resources’ future availability so that the system can trigger proactive job migrations when 

resources are about to become unavailable. This is another one of the focuses of this research 

and this type of solution will be discussed further in details in Chapter 4, 5 and 6 as well. 
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Chapter 3 Proposed System Architecture 
In this chapter, a novel Grid computing system architecture will be presented. In the system 

architecture, Java plays an important role as it has been used at both the user and resource level. 

Therefore, to make it easier to understand the proposed system architecture, a brief introduction 

about Java technology is provided. 

3.1 Java Technology 
According to the discussions in Chapter 2, the heterogeneity between resources and the 

volatility of each resource are the two main challenges faced by a computational Grid 

computing environment that is composed of unreliable resources (e.g. a desktop Grid or a 

volunteer computing Grid system). Therefore, this research proposes a new Grid system 

architecture to provide a solution. In terms of resource heterogeneity, and in order to tackle this 

challenge the proposed system architecture uses Java technology. In terms of resource volatility, 

this proposed system architecture utilises existing Java application migration technology to 

enable live and automatic job migration between heterogeneous resources. To provide a better 

understanding of the proposed system, some general knowledge about Java will be introduced. 

3.1.1 Technology Overview 

Java technology is “both a programming language and a platform” [Sun10b]. It was 

originally developed by Sun Microsystems to provide a modern programming paradigm. One of 

the important motivations for developing this technology was based on the observed difficulties 

of running applications on different operating systems. This was caused by the incompatibility 

of different operating systems. Therefore, before Java, if an application developer wanted to 

create an application running on multiple operating systems, then the developer may have to 

cope with one operating system at a time. 

To mitigate the problem brought about by incompatible operating systems and to accelerate 

the development process of applications, especially the applications working on a distributed 

environment, Sun Microsystems proposed Java technology, a new programming language and 

the platform to support this language. 

As a whole, Java’s architecture consists of four components: 

 The Java programming language: 

 The Java class file format. 

 The Java Application Programming Interface (API). 

 The Java Virtual Machine (JVM) 

The Java programming Language and the Java class file format can be considered to be in the 

category of the Java programming language whilst The Java API and the JVM can be regarded 

as components of the Java platform. Though these four components are distinct, they are related. 

During the process of writing and running a Java program, all of them cooperate to get the Java 
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program running successfully. Figure 3.1 shows the relationships of these four components: 
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Figure 3-1: The Java Programming Environment 

In order to run a Java program, firstly the source code should be written and saved in a .java 

format file. Here, the Java programming language is used. Then, a Java compiler should be used 

to compile the .java file to .class format file. This .class file is composed of the bytecodes which 

can be understood and executed by the JVM. Here, the Java class file format is used. Later, The 

JVM will be used to run the Java program. During the running period, the Java program may 

want to use system resources (such as I/O), the standard Java APIs can be used to access the 

required resources. 

3.1.2 Features of Java Program 

According to Java designers’ idea, Java programming was designed to have a number of 

beneficial features like simple, object oriented, familiar, interpreted, multithread, dynamic, 

architecture neutral, portable, robust and secure. Here, these features will be explained briefly. 

More detailed information can be found on [Gosling96]. 

• Java was designed to be a simple language so that programmers can understand the 

fundamental concepts and be productive quickly without much training. 

• The Java programming language is an object-oriented language. Before Java, the concept of 

object-oriented programming had been developed and become the mainstream. Java simply 

adopted this idea. 

• The “look and feel” of Java programming language was designed to be similar to C++ 

[Stroustrup04], a mainstream programming language before Java. So the programmers 

would feel familiar with Java when they started to use Java. 

• Java was designed as an interpreted language. Compiled and interpreted are two different 

approaches in the programming world. In compiled language, the source code is written in 

compiled language that is compiled into machine code (understandable and executable by 

the specific Resource) [Haas10]. On the other hand, in interpreted language, an interpreter is 

used to execute (interpret) the source code written in such a language [IBM08]. Java used 

the interpretation approach and this was based on the consideration of supporting 

heterogeneous operating systems. With the support of interpreter, Java program can be 
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quickly deployed on multiple platforms without worrying too much about the underlying 

operating systems. 

• Java is a multithreaded language. Multithreaded programs allow several tasks to be carried 

out parallel. For example, a web browser application may be needed to download files while 

displaying contents on the screen. Therefore, to enable applications with the ability of 

dealing with concurrent activities, Java was designed to be a multithreaded language. 

• Java is a dynamic language. At the linking stage, the Java class files are linked when they 

are needed. Therefore, new code can be loaded dynamically, which enables a more flexible 

approach to run applications, especially for network-based applications. For network-based 

applications, new code can be downloaded from somewhere else in the network and then 

start to run directly. 

• Java is an architecture neutral programming language. In Java, the source file will be 

compiled to bytecodes, a format that will be understood and executed by the Java interpreter 

- JVM running upon different operating systems. Therefore, with the representation format 

and the help of JVM, Java programming language is independent from underlying operating 

systems. 

• Java was designed to be portable. The feature of architecture neutral partially enables 

portability. In addition, Java also specifies that the size of its basic data types and arithmetic 

operators are the same on each platform, which eliminates the problem of data type 

incompatibilities on different platforms. 

• Java is a robust programming language. It provides compile-time checking and run-time 

checking to ensure the source code is compiled correctly. Furthermore, it has a simple 

memory management model to eliminate potential memory related program errors. 

• Java language is secure. As Java technology was designed to run in distributed and complex 

environments, security is of importance for applications and underlying operating systems. 

With Java bytecodes and the protection provided by JVM, Java applications will not be able 

to be invaded from outside. In addition, JVM prohibits malicious Java code from invading 

underlying operating systems. 

3.1.3 Java Platform 

Conventionally, most platforms consist of the operating system and underlying hardware. 

Unlike this convention, the Java platform differs from most other platforms in that it’s a 

software-only platform that runs on top of other hardware-based platforms [Sun10c]. 

The Java platform has three editions: Java Platform Standard Edition (Java SE), Java 

Platform, Enterprise Edition (Java EE), and Java Platform Micro Edition (Java ME) [Sun10d]. 

Each edition has the JVM and the main difference between each edition is that the Java API 

they provide. Java SE provides the standard API whilst Java EE provides a superset of the 

standard API and Java ME provides a subset of the standard API. In this research, the main 
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focus will be on Java SE. 

According to the description earlier in this section, the JVM and the Java API comprise the 

Java platform. The JVM is an abstract computer and its main task is to load and execute 

the .class files. Figure 3.2 shows the basic structure of the JVM. 
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Figure 3-2: A Basic Block Diagram of the Java Virtual Machine 

The JVM contains a class loader and an execution engine. The main job of the class loader is 

to load all the class files that are needed. The main job of the execution engine is to execute the 

bytecodes that are loaded by the class loader. 

During executing the Java programs, some system resources of the computer may be required, 

such as reading a file from the hard disk and setting up a TCP connection with another 

computer. 

There are two approaches to fulfil these requirements. The first approach is invocating native 

methods, which are written in some other languages directly, such as C or Pascal. These native 

methods are platform specific. As a result, using this approach leads the Java programs to be 

platform specific. Figure 3.3 shows this approach. 
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Figure 3-3: Platform Specific Invocation 

The second approach is invocating Java methods that are written in Java programming 

language. These Java methods provide a standard way to access the system resources of the 

Resource computer and there are called Java API. Using this approach, Java programs will 

become platform independent. Figure 3.4 shows this approach. 
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Figure 3-4: A platform-Independent Java Program 

3.2 Overview of the Proposed System Architecture 
This research proposes a new high-level Grid system architecture. As with the generic 

architecture described in Section 2.1.1, this new architecture has three levels and the same 

components. The novel parts of this architecture are the new features at the resource level. 

Figure 3.5 shows the resource level of the new system architecture. 
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Figure 3-5: Resource Level of the Proposed Grid System Architecture 

There are three important features in this proposed system architecture: 

1. The proposed system architecture is based on Java technology [Sun10a] so that the resource 

software and guest jobs are running in JVM environment. Among Java technology’s 

features, architecture neutrality and portability are the most important two: 

Firstly, these two features ensure the Grid system to be able to utilise heterogeneous 

computing resources. According to the descriptions in Chapter 2, a source file of a program 

will be compiled to a .class file and the .class file is composed of bytecodes (the machine 

language which can be understood and executed by JVM). As JVM is available on multiple 

platforms, so the .class file can be executed on different computing systems. Therefore, if a 

job in a Grid system is represented as a .class file, then it will be able to run on 

heterogeneous computing resources and the idle CPU cycles on these computing systems 

can be utilised. 

Secondly, these two features raise the possibility of job migrations between these 

heterogeneous operating systems. As the .class file is in a standardised format and 

understood by JVMs on multiple platforms, the .class file can be executed by the new 

resource if it is migrated from another resource. Therefore, if a job is represented as a .class 

file, then it can be migrated between heterogeneous resources without worrying about 
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whether they can be executed by the resources.  

In addition, using Java technology can bring some extra benefits. For example, in terms 

of security, JVM can provide protection to the resources and guest jobs as guest jobs are 

running within a sandbox that is isolated from the underlying operating system. The 

activities of the guest jobs are restricted within the sandbox and any harmful activities to the 

resource will be blocked by the JVM. On the other hand, as the guest jobs are isolated from 

the resource, the resource cannot access the guest jobs either. As a result, both the resource 

and the guest jobs will be kept safe because of the JVM. In terms of programming, Java is 

an advanced programming language with features like simple, object-oriented and 

multi-thread, these features ensure Grid users can utilise Java to create powerful jobs easily. 

2. The proposed system architecture enables resources to support live and automatic (reactive 

and proactive) job migration. This is based on the Java application migration technologies 

investigated by other research work (more details are provided in Section 3.3.4) and the Job 

migration algorithms proposed in this research (more details are provided in Section 4.3. 

With live and automatic job migration, potential job failures can be avoided.  

3. The proposed system architecture is that it ensures resources’ local activities are not affected 

by the guest jobs. If any local activity occurs, the Guest Job(s) will be terminated by the 

Resource Software.  

3.3 System Components 
As mentioned in Section 3.1, there are three levels in the proposed system architecture and 

there are multiple components at each level. Some system components have the same 

functionalities as the components’ functionalities described in Section 2.1.2. This section will 

focus on the new functionalities provided by the new system architecture. 

3.3.1 User/Resource Management Level Components 

Grid job scheduler: It is the component used to deal with jobs. Specifically, it has the 

following functions: 

• It is responsible for making job migration decisions. When the jobs are running on the 

resources, the Grid job scheduler monitors both the progress of the job and the state of the 

resource. In addition, the Grid job scheduler can also predict resources’ future availability 

by using current/past information. Then with the monitoring information and migration 

decision algorithm(s), the Grid job scheduler makes job migration decisions. 

• It is responsible for notifying related resources and monitoring the migration state of the job 

migration. After the Grid job scheduler makes a job migration decision, the Grid job 

scheduler should notify both the original and the destination resources to let them carry out 

the job migration process. During the migration process, both resources will send updated 

information to the Grid job scheduler and the Grid job scheduler will change the resource 

and job states in the resource and job databases accordingly. 
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3.3.2 Resource Level Components 

Resource software: In addition to the functionalities described in Section 2.1.2, the resource 

software in this proposed system architecture has the following function: 

• It is responsible for carrying out job migrations and reporting the migration progress to 

the resource manager and Grid job scheduler. If the resource software on the original 

resource receives the job migration notification from Grid job scheduler or resource 

owner, it will communicate with the destination and then carry out the job migration 

procedure. 

Guest job: A job is composed of a .class file(s) with/without additional files used by 

the .class files. The additional files can be files used for input or output. For example, it can be 

an input file describing settings of parameters for running the job and it can also be an output 

file recording job results. 

There are multiple approaches to create a guest job. The most common approach is that 

original user creates a Java source file(s) and then gets the source file(s) compiled. This 

approach requires the user has knowledge about Java and implement the jobs in Java 

programming language. 

Another approach is creating source file(s) in other programming language and then 

converting the source file(s) into a Java source file(s) or converting into .class file(s) directly. 

For example, C2J converter [C2J01] is software to translate C-code source files into Java .class 

files. BEELUCID [Beelucid09] is software to convert VB.Net source files into Java source files. 

With this approach, users can use their preferred programming language to create source file(s) 

and then convert it to Java format. In addition, this approach enables the reuse of legacy 

applications that were written in other programming languages. 

3.3.3 Java Application Migration Technologies 

In the state of art, to enable distributed computing and fault tolerance, Java process / thread 

migration technology has been introduced in recent years. In [Illmann00], they examine the 

migration problem of migrating Java applications and classify different types of migration. 

At the top level, Java applications can be divided into two kinds: those supporting strong or 

weak migration. Strong migration is “a migration technique which realizes code migration and 

strong state migration” [Illmann00]. This means not only the source code of the application but 

also the execution state and data information such as the program counter and Java stack should 

be migrated as well. Any kind of migration that cannot achieve both code and strong state 

transfer together is considered weak migration. 

Strong migration can be classified into different sub-types and Figure 3.6 shows the 

classification under strong migration: 
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Figure 3-6: Classification of Different Migration (Adapted from [Illmann00]) 

According to the classification, a strong migration is described as mixture of two aspects: 

code migration and state migration. Code migration means that all the source code could be 

migrated from the source to the destination. State information includes execution state and data 

that is being used. Therefore, state migration consists of two aspects – execution migration and 

data migration. 

Each thread has a program counter and its own state information, i.e. running, suspended and 

blocked. As a result, execution migration is composed of two aspects – program counter 

migration and thread migration. 

In terms of data, it includes member variables, local variables, operands and external 

resources (e.g. network connections and files), which are being used by the code. Therefore, 

data migration is composed of member migration, stack migration and resource migration. 

According to [Bouchenak00a], the key techniques in Java process / thread migration mainly 

include how to capture and restore Java process or thread’s execution state and data, which is 

represented by execution migration and data migration in Figure 3.6. In order to achieve this 

objective, some solutions through different approaches have been proposed in earlier research 

work: 

• The first approach is to pre-process the source-code of Java [Truyen00][Huang02]. In this 

approach, some extra Java statements are inserted into the source code before execution. 

During the execution time, the execution state of the Java program will be captured and the 

Java application with the current execution state can be stored and migrated. 

• The second one is adding a middleware between Java application and JVM. This 

middleware is capable of capturing Java application execution states and data by using JVM 

Debugger Interface (JVMDI) [Ma00][Ma02]. Note that currently JVMDI [Sun04] has 

already replaced by JVM tool interface (JVMTI) and the functions of JVMDI are inherited 

by JVMTI [Sun06]. JVMDI/JVMTI is on top of the JVM and is a native interface for 

debuggers. It defines the standard services that a JVM must provide for debugging. When 

starting a Java application, a JVMDI/JVMTI client is started as well. By using 

JVMDI/JVMTI, the runtime information of threads, stack frames, local variables, classes, 

objects and methods can be obtained. In addition, some Java statements will be inserted to 
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the source code to make sure that the operand stacks is empty when the migration occurs. 

• The third approach is to extend the JVM [Bouchenak00b]. In their mechanism, the JVM 

was extended to be able to extract the Java thread’s execution state and store it in a Java 

object during the execution time. This object can then be stored in a file and sent to the 

destination Resource to resume the Java application from the current execution state. 

Now, how to apply one or more of these proposed Java migration technologies in the 

proposed system architecture becomes a problem: 

• For the first approach, it needs to pre-process the Java source code to insert additional 

statements for the purpose of capturing execution states and data while the Java application 

is running. When the Java application reaches the point of those specially inserted 

statements, the execution states and data can be accessed and recorded (checkpointed). Later, 

when job migration is needed, the original job (the Java applications) with the latest 

execution states and data can be transferred to a new resource and resume execution from 

the checkpoint. 

In theory, the work of inserting additional statements can be done at any level of the 

proposed system. At the user level, the additional statements can be added when the users 

create the Java source code. At the user/resource management level, if the users submit Java 

source code rather than submitting compiled .class files, then the Grid job scheduler can 

insert these additional statements and then get the source code compiled. At the resource 

level, if the users submit Java source code and the Grid job scheduler allocates the source 

code to the resource software, rather than the compiled .class files, then the resource 

software can insert additional statements and get the source code compiled. 

In terms of implementation, this approach could be simpler than the other two as it does 

not require any modification to the existing systems (e.g. extending JVM or adding a new 

middleware). What it requires is the ability to insert additional and special statements in the 

source code at the level of user, resource management or resource. 

In the use phase, this approach can be more complex than the other two approaches. 

Additional special statements have to be inserted into the Java source code. Therefore, 

where and how to insert this type of code is important and can be difficult to decide. So 

compared with the other two approaches, this approach can be more complex. In addition, 

as it requires the source code to be pre-processed before running, it may add significant 

overheads to application performance because of the inserted code. Furthermore, as the 

statements are inserted at certain points, this means the program states can be captured at 

these points only. Another potential problem is that many legacy applications’ source code 

is not available anymore. This means it may be impossible to insert the required statements 

in the source code for the purpose of job migration. 

• For the second approach, it needs to implement a middleware between the JVM and Java 

applications to capture Java applications’ execution states and data. The middleware should 



 

39 

be capable of utilising JVMDI/JVMTI to achieve this goal. To apply this approach, the 

resource software should play the role as the middleware and be capable of invoking 

JVMDI/JVMTI to execute Java applications in a debugger mode. Except for this, there is no 

requirement to modify JVM or pre-processing Java source code. As JVMDI/JVMTI can 

capture applications execution states and data at any time, the resource software can access 

the updated job execution states and data when the migration is needed. After getting the 

necessary information, the resource software can transfer the original job and the update job 

execution states and data to a new resource. 

In terms of implementation, this approach could be more complex compared to the first 

approach as it requires the implementation of an additional layer between Java application 

and JVM. However, compare with the third approach, it could be simpler as the work is to 

writing software to utilise existing JVMDI/JVMTI rather than modifying underlying 

infrastructure. 

In the use phase, it could be simpler than the first approach as no further modification is 

needed after this approach is implemented and deployed. The resource software can deal 

with all the migration work without any pre-processing work to the Java source code. 

One potential disadvantage of this approach is that the previous study in [JPC10] shows 

that a Java application running in the debugger mode is much slower than running in the 

normal mode. Therefore, this approach may significantly affect the jobs’ Makespan. 

• For the third approach, it needs to extend existing JVM. After extending the JVM, the 

modified JVM will be able to provide support for capturing Java applications’ execution 

state and data. If the modified JVM is installed in the resource, then external applications 

(e.g. the resource software) can access the current state and data information of the running 

Java applications (e.g. the guest jobs) via the Application Programming Interface (API) 

provided by the extended JVM. When a job needs to be migrated, the resource software can 

access current job execution states and data by invoking specific functions provided by the 

modified JVM. Then the resource software can transfer the original job with its current 

execution states and data to a new resource. 

Compared with the other two approaches, this approach could be more complex in terms 

of implementation and deployment as it requires modifications to the existing JVM and it 

also requires the resources to install this modified version of JVM. 

In the use phase, similarly to the second approach, once it is implemented and deployed, 

then it will be a standard and easy way for resource software to access running jobs 

information and carry out job migrations. It could be even simpler than the second approach 

in terms of use, as the underlying infrastructure will provide enough support so that the 

resource software can access what it needs by using standard APIs. 

One concern for this approach is the security. As the modifications to the JVM enable 

resource software to access running jobs’ execution information, it may also enable other 
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programs to fetch the information as well. This might be a threat to the running jobs if this 

program has malicious purposes. Therefore, security issues should be considered carefully 

when extending the existing JVM. 

Therefore, none of these approaches has been specified as the only way to achieve job 

migration in the proposed system architecture. This is due to the following reasons: 

Firstly, each technology is compatible with the system architecture. The proposed system 

architecture defines the broad framework for the whole system. However, for further details like 

choosing a job migration technology, the proposed system architecture is quite open (it is 

possible to apply any job migration technology compatible with the system architecture to the 

system architecture). According to the preceding discussions, all approaches are compatible 

with the system architecture, which means each of them can be applied to the proposed system 

architecture. 

Secondly, each approach has its own advantages and disadvantages. To choose a certain 

technology, the chosen technology should provide more benefits than others. However, 

according to the above discussions, all technologies have their own distinct advantages and 

inherent disadvantages at the same time. Therefore, for the current stage, none of these 

technologies is specified as the only technology for job migration in the proposed system 

architecture. 

3.4 System Operations Procedures 
In order to make sure the proposed system architecture work properly, some important system 

operations were designed. As some system operations have been described in Section 2.1.3, this 

section will focus on the new operation procedures provided by the new system architecture. 

3.4.1 Job Execution Monitor 

After the job is distributed to a resource, the resource software will start the job. During the 

execution of the job, the resource software will monitor the execution progress and report to the 

job manager when important events occur. The procedure can be described as follows: 

1. The resource software sends out job’s latest information (e.g. job started, job finished 50% 

or job delayed, etc) to the job manager by using Job Information Message. 

2. If the resource manager receives this updated job state information, it will store the data in 

the resource database. 

In the way as the procedure of monitoring resource state, the job manager can also initiate the 

procedure of monitoring job execution progress. If the procedure is initiated by the job manager, 

then the procedure can be described as follows: 

1. The resource manager sends a Request Resource Information Message to the resource 

software. 

2. The resource software sends out job’s latest information (e.g. job started, job finished 50% 

or job delayed) to the job manager by using Resource Information Message. 
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3. If the resource manager receives this updated job state information, it will store the data in 

the resource database. 

3.4.2 Job Migration 

Job migration is one of the most important features provided by the new system architecture, 

the benefits and the technique used to carry out this migration has been discussed in earlier 

chapters. In general, the whole procedure can be divided into two parts: the first part is to make 

a job migration decision and the second part is to carry out the job migration. 

1. If the Grid job scheduler determines that the job needs migration or the resource owner 

notify the Grid job scheduler that the resource is going to be unavailable, the Grid job 

scheduler will look for a destination resource (the resource which the job will be migrated to) 

for the job according to a job-scheduling algorithm. 

2. If a suitable resource is not found, then the Grid job scheduler will not make a job migration 

decision. Otherwise, the Grid job scheduler will make the job migration decisions. 

After making the decision, the next step is to carry out the job migration. The steps are as 

follows: 

1. The Grid job scheduler sends a Migration Notification Message to the origin and destination 

resources separately. 

2. Once the origin resource software receives this message, it will send a TCP connection 

request to the destination resource software and setup a TCP connection with the destination 

resource software. 

3. After this, the original resource will checkpoint the job and send a copy of the checkpointed 

job to the destination resource. 

4. When the destination resource software receives this checkpointed job, it will resume the 

job on the destination resource. The origin resource software will terminate the job running 

on the origin resource. 

3.5 System Messages 
In order to support communication between different components in the proposed system 

architecture, some messages are designed to be used in different scenarios. These messages 

cover various aspects to ensure the system operation procedures can be carried out correctly, 

such as the Registration Message and Registration Acknowledgement Message ensure users and 

resources can register with the Grid system. The Resource Information Message lets resources 

report their updated system information to the Grid job scheduler, etc. The most important 

messages are the job migration related messages as they ensure live and automatic job migration 

procedures are carried out properly. For more details about the system messages, please refer to 

Appendix A. 
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Chapter 4 Job-scheduling and Job Migration 
In this chapter, some novel job-scheduling and migration algorithms will be proposed. 

4.1 Job-Scheduling Introduction 
In this section, some background knowledge about job-scheduling will be introduced, 

including scheduling procedures, job-scheduling taxonomy, challenges of job-scheduling and so 

on. 

4.1.1 Job-Scheduling Overview 

Job-scheduling is a part of resource management in a Grid system. Resource management is a 

core part of a Grid system. In practice, there are several kinds of Grids, e.g. computational Grids 

and data Grids. For different kind of Grids, different objectives are defined. For computational 

Grids, one of the main objectives of resource management is to manage the resources and let 

them process computational jobs efficiently, such as improving job throughput and reducing job 

Makespan. 

For a computational Grid like a desktop Grid or volunteer computing Grid, the main concern 

is to process computational jobs using the computing power of CPU(s) on each computer 

comprising the Grid. Therefore, in a computational Grid, resource management includes but is 

not limited to the following tasks: resource registration, resource state monitoring, 

job-scheduling and job state monitoring. 

Among all these tasks, job-scheduling is one of the most important and complex. In a 

computational Grid, Job-scheduling is the process of mapping computational jobs to available 

resources with one or more objectives (e.g. achieving the highest throughput or the shortest job 

Makespan). Therefore, an efficient job-scheduling algorithm is important to achieve these 

objectives. 

The reason for its complexity is because it can be difficult or even impossible to achieve 

some objectives at a given time. For example, conventionally, the Shortest Job First (SJF) 

[Thomas56] scheduling algorithm is proven optimal [Dusseau09] in terms of maximising job 

throughput when all jobs are simultaneously available [Bridgeport01]. However, SJF may starve 

long jobs as short jobs may occupy all available CPU cycles. In addition, to obtain optimal 

results, SJF requires all jobs to be available simultaneously, which is not usually practical in a 

computational Grid as new jobs may arrive at the job scheduler at any time. Furthermore, as the 

resources in desktop Grids and volunteer computing Grids are dynamic and volatile, it is 

difficult for the Grid job scheduler to ensure all jobs are completed successfully. 

4.1.2 Job-Scheduling Components and Procedures 

In Chapter 2 and 3, job-scheduling components and procedures have been described briefly. 

In terms of components, the Grid job scheduler and resource software are involved in the 

job-scheduling and they are responsible for different levels of job scheduling. Figure 4.1 shows 
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how these two components work together and interact with other system components in a 

computational Grid: 

Global 
SchedulerJobJobJob

Local 
Scheduler

Local 
SchedulerJobJobJob

Guest Job

CPU Processor 

Guest Job

Grid 
User

Job

JobJob
Grid 
UserJob

Guest Job

CPU Processor CPU Processor  
Figure 4-1: Global and local scheduling in a computational Grid 

After the jobs are submitted to the Grid system, a job needs two levels of job-scheduling 

before it is executed by the CPU resource: 

The first level is global scheduling, (deciding where to allocate jobs). In the proposed system 

architecture described in Chapter 3, the Grid job scheduler plays the role of global scheduler. As 

a global scheduler, it receives submitted jobs from users and decides where to allocate the jobs. 

Then according to its allocation decision, the job will be transferred to the resource. 

The second level is local scheduling, (deciding the jobs’ execution sequence) and is the 

responsibility of the local scheduler. In the proposed system architecture described in Chapter 3, 

the resource software is a local scheduler. As a local scheduler, it receives jobs allocated by the 

global scheduler and then decides which job to run first. A conventional computer typically has 

one CPU. Nowadays, however along with the development of computer hardware, more and 

more machines have more than one CPU. Therefore, in such a computer system, the local 

scheduler is not just responsible for deciding which job(s) to run next, but also responsible for 

deciding which job(s) to run on which CPU. After these two levels of job scheduling, a job will 

become a guest job on a resource and will be executed by the CPU of that resource. Note, in this 

thesis the job-scheduling decisions are based purely on the global scheduler, (the Grid job 

scheduler). The local scheduler (the resource software) always schedules jobs in FCFS order. In 

addition, the job migration decisions are based purely on the global scheduler and the local 

scheduler will get the jobs migrated according to the global scheduler’s decisions. 

In a Grid system, especially in the proposed Grid system architecture, the whole lifetime of a 

job from creation to termination can be summarised as follows: 

1. The job is created and submitted by the Grid user. In the proposed Grid system architecture, 

a job is Java source/compiled files with/without additional input/output files, created and 

submitted by the user via the user software. 

2. The job is scheduled by the global scheduler. In the proposed Grid system architecture, this 
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scheduling procedure can be divided into several parts: job submission, job allocation and 

job distribution. In the job submission, the job will be put into a job queue and sorted with a 

sorting algorithm. Next, the job will be mapped to an available resource in the Grid with a 

job-scheduling algorithm. Later, in job distribution, the job will be transferred to the 

resource. 

3. The job is scheduled by the local scheduler. In the proposed Grid system architecture, 

resource software plays the role of local scheduler and is responsible for sorting incoming 

jobs and deciding which job should be run by which CPU if there is more than one CPU on 

the resource. 

4. The job is executed by the resource CPU. In the proposed Grid system architecture, the 

resource plays the role of job processor and it is responsible for executing the jobs. 

4.1.3 Taxonomy of Job-Scheduling Algorithms 

In [Casavant88], the author proposed a hierarchical taxonomy for job-scheduling algorithms 

in general distributed systems. The taxonomy is shown in Figure 4.2 
Job 
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Figure 4-2: Task Scheduling Characteristics (Adapted from [Casavant88]) 

• Local versus Global: At the top level, the job-scheduling algorithm is divided into local and 

global scheduling. Local scheduling is used for scheduling jobs on a single CPU while 

global scheduling is used for scheduling among multiple CPUs. In Grid computing, the Grid 

job scheduler is mainly responsible for the global scheduling as it schedules jobs among 

different resources (CPU). Resource software is mainly responsible for local scheduling as 

it schedules jobs on the local CPU processor. 

However there are some exceptions here. Nowadays, computers with multiple CPUs are 

becoming more prevalent [Intel10][AMD10]. Therefore, if the resource software is working 

on such a computer, it will also be responsible for job-scheduling among multiple CPU so in 

fact the resource software will be not only responsible for local scheduling but also partially 

in charge of global scheduling. 

• Static versus Dynamic: Global scheduling can be further divided into static scheduling and 

dynamic scheduling. According to [Casavant88], static scheduling has the same meaning as 
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deterministic scheduling described [Lo84]. In static scheduling, the information about jobs 

and resources is known by the job scheduler in advanced and the job-scheduling decisions 

will be made before the jobs are being executed on the resources. When decisions are made, 

jobs will be transferred to the resources and they will not be rescheduled to other resources 

whilst they are being executed. Many job-scheduling algorithms belong to static scheduling, 

such as FCFS [Esklcloglu01], EDF [StanKovic98] and so on. The job-scheduling 

algorithms proposed in this thesis also belong to static scheduling. 

After the initial decisions are made, dynamic scheduling will still change the 

job-scheduling decisions when necessary. This is for the purpose of balancing loads 

between resources and avoiding potential job failures. In addition to job-scheduling 

algorithms, this thesis also proposes some job migration (rescheduling) algorithms as aids to 

these proposed job-scheduling algorithms. After adding these job migration (rescheduling) 

algorithms, the job-scheduling algorithms proposed in this thesis will become dynamic 

scheduling. 

Compared with static scheduling, dynamic scheduling is more complex. However, as the 

decisions can be adjusted according to real time information, dynamic scheduling will be 

useful in a dynamic environment, such as desktop Grid and volunteer computing 

environments. 

• Optimal versus Suboptimal: Static scheduling can be divided into optimal and suboptimal 

scheduling. Optimal scheduling means all related information about the job and the resource 

is known by the job-scheduler and optimal allocation decisions can be calculated within a 

feasible period of time. If these problems are not computational feasible and / or some 

related information is unknown, suboptimal allocation will be a more practical approach. 

• Approximate versus Heuristic: In approximate scheduling, instead of searching the entire 

solution space, the algorithm will terminate when it finds a “good” solution. Next, the 

solution will be evaluated by an objective function and the job scheduler will decide 

whether to pursue this solution for later jobs, based on the results of the evaluation. 

Heuristic scheduling uses the most realistic assumptions about the jobs and resources to 

make a “reasonable” solution. Though heuristic algorithms use assumptions about jobs and 

resources, they are not restricted by the assumptions nor evaluated by an objective function. 

Therefore, they can make more flexible and adaptive decisions within an acceptable time 

given a certain computational complexity. 

• Physically distributed versus Physically non-distributed: Dynamic scheduling can be further 

divided into distributed and non-distributed (centralised). For distributed scheduling, 

dynamic scheduling decisions will be made at different places. For example, if a resource 

considers a job is not suitable to run on itself any longer, it can reschedule the job to another 

resource. For non-distributed scheduling, all the dynamic scheduling decisions are made at a 

centralised place, such as the centralised job scheduler at the user/resource management 
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level. Therefore, jobs will be rescheduled when the job scheduler thinks jobs needs 

rescheduling. The job migration algorithms proposed in this thesis belong to non-distributed 

scheduling as all dynamic scheduling will be done by the centralised Grid job scheduler. 

• Cooperative versus Non-cooperative: Distributed scheduling can be further divided into 

cooperative scheduling and non-cooperative scheduling. For cooperative scheduling, 

multiple resources will work together to make dynamic and distributed job-scheduling 

decisions toward a common system-wide goal. For example, multiple resources work 

together to decide which resources should run each job in order to maximise the job 

throughput. For non-cooperative scheduling, each resource works alone making 

job-scheduling decisions about how it should be used. 

4.1.4 Open Issues in Job-Scheduling Algorithms 

Resource management is the core part of a Grid system. In the Grid, resource management 

includes functions such as: resource discovery, resource state monitoring, job scheduling, and 

job state monitoring. 

Among the functionalities of the resource management, job-scheduling is an important piece 

of work. In a Grid environment, especially in a volunteer resource based Grid job-scheduling 

may be more complex than a conventional distributed computing system. A volunteer resource 

based Grid may have an important issue that rarely appears in conventional distributed 

computing systems. In a conventional distributed computing system, all the resources in the 

system are typically assumed to be available to the system and jobs can run on them all the time 

(except when the system does not work properly, e.g. resources crash or the network connection 

is down). For a desktop Grid or a volunteer computing environment, resources may not always 

be available to the Grid and the job(s) may not always be allowed to run on all resources all of 

the time. This is due to the characteristics of these systems: 

Firstly, resources in these systems may be assumed to be fully controlled by the resources 

owners. In such a case, each resource’s owner can decide when and how to donate their 

resources. In terms of when to donate the resource, each resource’s owner can specify some 

policies through the user software. For example, a resource owner can define a policy that the 

resource only works for a Grid during the night, from 12am to 8am. In terms of how to donate 

the resource, resources owners can also specify some related policies as well.  

In some Grid systems, default policies are predefined by the system. For example, in the 

Condor Grid system, the resource can only execute guest jobs when the CPU load is not above 

25% and the job suspension time is at most 10 minutes [Kondo05]. If the CPU load of a 

resource is over the threshold (i.e. 25% in Condor), the guest jobs will be temporarily suspended 

first. Later, if the resource CPU load reduces to less than the threshold before a predefined 

timeout (10 minutes in Condor), the job will be able to resume from the point where it was 

suspended. However if the CPU load is not lowered to less than the threshold before the 
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predefined timeout, the job will fail. 

Secondly, resources in such systems may be assumed not to interfere with local activities. 

Here, local activities are the activities initialised by the user of the local resource, such as 

mouse/keyboard activity, initiating local processes and accessing the hard disk. So if any kind of 

local activity occurs, the guest job(s) running on the resources will be suspended. If the 

resources do not become idle after a predefined time-out, the job will be terminated and lost. 

Figure 4.3 illustrates this problem. 
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Figure 4-3: Influence of Availability in Volunteered Resource-Based Systems  

(Adapted from [Kondo07]) 

In Figure 4.3, Y axis “CPU Availability” shows the number of CPU cycles delivered to the 

Grid by a resource per second. Max means the maximum CPU speed. CPU availability may 

vary along with the time as some CPU cycles are used by the local processes. When a local 

activity occurs, the CPU availability will become 0 and the guest job(s) will be suspended. After 

a short while, if the local activity finishes, then the CPU availability will be above 0 again and 

the guest job(s) will be resumed. However, if the suspension period is too long and exceeds the 

predefined time-out, the job will be terminated and fail. 

Note these two characteristics depend on the definitions and assumptions of a specific Grid 

system. For example, in a volunteer computing environment BOINC [ANDERSON05], 

resource owners can decide when and how to donate their resource and jobs are allowed to run 

while local activities are being carried out. For Grid system Condor [Thain05], resource owners 

can decide when and how to donate their resource and jobs are NOT allowed to run if resource’s 

CPU load is over 25%. For Grid system XtremWeb [Neri00], it has both two assumptions 

mentioned above: resource owners can decide when and how to donate their resource and jobs 

are allowed to run while local activities are being carried out. In this thesis, these two important 

assumptions are used and the predefined suspension time-out shown in Figure 4.3 is assumed to 

be 0. This means the guest job will be terminated and failed once the resource owners reclaim 

their machines. These assumptions are based on the following considerations: 

• Firstly, the influences of the Grid system’s activities to volunteered resources are controlled 

at the lowest level. The activities of the Grid system are almost transparent and invisible to 
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the resource owners so that guest jobs from the system will not slow down their resources. 

Therefore, these conditions protect the resource owners’ rights and this should attract more 

people to join the Grid system. 

• Secondly, these assumptions present a big challenge to the job-scheduling algorithm, in 

particular how to ensure guest jobs are processed successfully as well as quickly. 

Conventionally, job-scheduling algorithms are typically assumed to work with looser 

assumption(s); very limited work has considered this issue though one example is 

[Kondo05], which is discussed in the next paragraph. Therefore, more research work is 

needed in this area. 

[Kondo05][Kondo07] propose a number of resource prioritisation/exclusion methods for 

resource selection in a Grid computing context, especially in the Grid context where volunteer 

and unreliable resources are utilised. Some of these methods simply use static information, e.g. 

resources’ clock rate to prioritise resources and some use resources’ past performance to predict 

its future performance and prioritise the resources accordingly. Based on the prioritisation 

results, the Grid job scheduler allocates jobs to the resource that has the highest priority. They 

evaluate the job-scheduling algorithm with a couple of resource availability data traces collected 

from real desktop Grids (these data traces are also utilised in this research, more detail about the 

data traces are provided in Chapter 6 and 7). According to their results, though FCFS 

job-scheduling algorithm is a simple and static algorithm, it works relatively well in many 

different scenarios, especially in the scenarios where the number of jobs are more than the 

number of resources. Therefore, in this thesis FCFS algorithm is used to compare the proposed 

algorithms in many scenarios (more details are provided in Chapter 7). 

An approach to solve this problem is that the job-scheduling algorithm allocates jobs without 

reference to resource availability at all. This is the approach used mainly by existing 

job-scheduling algorithms. Instead of reference to resource availability, some existing 

job-scheduling algorithms use other approaches to mitigate the problem. For example, in one 

approach the Grid job scheduler simply ignores the problem and reallocates the job to another 

resource if the job fails (e.g. FCFS algorithm).  

Another approach to the problem is for the Grid job scheduler to use job replication (e.g. 

derrick [Kondo07]). Here, job replication means allocating the same job to multiple resources at 

the same time. However, these solutions also present difficulties. 

The first approach cannot provide any reliability so that jobs’ Makespan may be delayed and 

job throughput may be reduced as a result of resource volatility. For example, if a job runs on a 

resource and then fails before completion, the job needs to be allocated to another resource and 

will start from the beginning. Furthermore, though the first resource cannot finish the job before 

it becomes unavailable, it has already used some CPU cycles, as the job fails, so the used CPU 

cycles can be considered wasted. 

The second approach, though it provides extra reliability via job replication, some CPU 
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cycles will be wasted as a result of replication. For example, even if a job is allocated to two 

resources at the same time, then only job will be completed. If two jobs are allocated to two 

resources separately, then two jobs may be completed. Therefore, job replication is way of 

providing extra reliability by sacrificing the job throughput. 

In an ideal situation, one resource should have one job at a time and it should be able to 

migrate the job to another resource just prior to the resource becoming unavailable. In this case, 

the jobs’ Makespan will not be delayed due to the resource unavailability nor will the resources’ 

CPU cycles be wasted. To approach this ideal state, some important requirements are needed: 

Firstly, the Grid system should support live and automatic job migration between 

heterogeneous systems so that jobs can be migrated proactively or reactively when necessary. 

However, existing Grid systems lack such a mechanism for providing support for live job 

migration between heterogeneous systems. Only a few of existing systems support job 

migration, e.g. Condor [Thain05], MOSIX [Barak05][Barak08] and vOS [Boyd02]. However, 

very few of them support heterogeneous job migration between heterogeneous systems. For 

example, Condor supports live job migration, but it does not provide any automatic mechanism 

and it can only support job migration within Unix system. Therefore, to provide support for live 

and automatic job migration between heterogeneous systems, a new Grid system architecture is 

proposed in this research. In addition to providing a job migration mechanism, this system can 

also provide other benefits. More detailed information is given in Chapter 3. 

Secondly, the Grid system should have a job-scheduling algorithm, with the information 

about resources’ future availability and/or reliability, which can allocate jobs effectively. 

Therefore, job migration will delay the jobs’ execution. Therefore, effective job allocation 

decisions should allocate jobs to resources that require minimum times of migrations (0 times in 

the ideal case). To make effective job allocation decisions, this research work proposes some 

novel job-scheduling algorithms. More discussions about this job-scheduling algorithm will be 

provided in Section 4.2. 

Thirdly, the Grid system should be able to carry out job migration after jobs have been 

allocated to resources. There are two types of job migration algorithms. If resources notify the 

job scheduler when they are going to be unavailable, the job scheduler can trigger these job 

migrations; it will provide reactive job migrations, which is straightforward as the job scheduler 

can trigger job migrations according to resources notifications. However, if resources do not 

notify the job scheduler, proactive job migrations are required and the job scheduler needs to 

anticipate all resources’ future availability so that it can trigger job migrations when resources 

are about to become unavailable. To anticipate resources’ future availability, two types of 

measurements can be carried. The first measurement is uses the user’s defined policies and the 

second one uses prediction techniques. To make predictions, this research work adopted and 

examined a prediction technique. More details about these two types of measurements are 

discussed in Section 4.3. 
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4.2 Proposed Job-Scheduling Algorithms 
As mentioned in Section 4.1, one efficient approach to solve the problems caused by resource 

volatility in the volunteered resources based Grid is to enable the Grid job scheduler to allocate 

jobs effectively with the information about resources’ future availability and/or reliability. 

Therefore, this research proposes a couple of novel job-scheduling algorithms based on 

considerations about resources’ availability and/or reliability. In this section, all the algorithms 

proposed in this research will be introduced. 

Generally, in addition to the two important assumptions mentioned in Section 4.1 (resource 

owners can decide when and how to donate their resource and jobs are allowed to run while 

local activities are being carried out), all job-scheduling and job migration algorithms proposed 

in this research work have the following assumptions: Firstly, there is a centralised Grid job 

scheduler in the Grid and users submit their self-contained executable jobs to the Grid job 

scheduler. When the job arrives at the Grid job scheduler, the Grid job scheduler puts the job 

into a job queue. Later, the Grid job scheduler decides where to allocate these jobs. Jobs can 

fully exploit resources’ CPU cycles donated to the grid. After execution, resources return the 

results to the original users that submitted those jobs. The Grid job scheduler is presumed to 

know the execution time for each job before making allocation decisions. 

All the job-scheduling algorithms proposed in this thesis utilise a resource availability 

predictor and this resource availability predictor is based on a resource availability technique 

proposed in [Rood07][Rood08]. In fact, some prediction techniques have been proposed as well, 

such as Saturating and History Counter predictor [Mickens05][Mickens06][Mickens07], Ren 

predictor [Ren06a][Ren06b][Ren07a][Ren07b] and Multi-State and Single State Sliding 

Window predictor [Dinda99]. The reasons why the prediction technique was adopted in this 

research was: firstly, their model describes resource states clearly for a Grid, especially for a 

volunteer Grid. Secondly, according to their simulation results, their prediction technique was 

more accurate than some other existing prediction techniques, including those prediction 

techniques proposed in [Mickens05][Dinda99][Ren06a]. In order to better understand the 

proposed algorithms, some background knowledge about the adopted prediction technique is 

given. 

4.2.1 Adopted Prediction Technique 

The prediction technique uses a multi-state model to describe a resource’s state. Figure 4.4 shows 

this model: 
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Figure 4-4: Availability States and Transitions (Adapted from [Rood08]) 

In this model, there are five states to describe the state of a volunteered resource in the Grid: 

1. Available to Grid: Available to Grid means the resource is accessible and exploitable by the 

Grid at the moment. When the resource is in this state, the guest job(s) allocated by the Grid 

is allowed to utilise the idle cycles of the resource’s CPU. 

2. User Present: User Present means the resource is being used by the owner at the moment so 

that it is accessible by the Grid but not available to the Grid. When the resource is in this 

state, the guest job(s) will have to be suspended. 

3. CPU Threshold Exceeded: CPU Threshold Exceeded means the CPU load of the resource is 

over a predefined threshold so that it is available to the Grid but not exploitable by the Grid. 

When the resource is in this state, the guest job(s) on the resource will have to be 

suspended. 

4. Job Eviction or Graceful Shutdown: Job Eviction or Graceful Shutdown means the resource 

has notified the Grid that it is going to leave the Grid or it is not going to allow guest job(s) 

to run any longer so that the resource is available (and become unavailable soon) to the Grid 

but not exploitable by the Grid. When the resource is in this state, the guest job(s) will have 

to be migrated, otherwise the job(s) will be lost if the resource enters Unavailable state later. 

5. Unavailable: Unavailable means the resource is not in the Grid at the moment so that it is 

neither available nor exploitable by the Grid. When the resource is in this state, the guest 

job(s) will not be able to allocate to the resource. If any guest job(s) is still on the resource 

when the resource is in this state, the guest job(s) will be lost. 

With this resource availability model, they then consider a number of multi-state prediction 

algorithms. In brief, a multi-state algorithm works as follows: it takes a length of time as an 

input (this is called Checking Period) and uses a resource’s availability history to predict the 

probability of that resource remain in the state of Available to Grid throughout the interval (this 

interval is called Prediction Period). This probability is called Resource Availability. 

To calculate this probability, they employ several techniques and the one used in this research 

is Transitional N-Day with Equal transition weights (TDE). “Transitional” means the prediction 

technique calculates the output probabilities by counting both the number of transitions from 

Available to Grid to other states and how many times the job could be processed between two 
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transitions. “N-Day” means checking the most recent past N days’ transitions. Number of 

Checking Days is a parameter to define the number of N here. “Equal transition weights” means 

the prediction method considers each transition within the different checking days equally. 

According to their results, TDE is the most successful technique among all the prediction 

techniques they tested when the prediction length is no longer than 42 hours, especially when it 

is shorter than 19 hours. According to research in [Lazarevic06] [Li04][Iosup06][Medernach05], 

the Job Execution Time in a grid context is typically less than 105 seconds (around 27.8 hours), 

so TDE was adopted in this thesis. 

A day to which the Checking Period belongs is called a Checking Day and a day to which the 

Prediction Period belongs is called a Prediction Day. If the value of Number of Checking Days 

is larger than 1 (which means the prediction method will check more than one day to make a 

prediction), each day being checked is a Checking Day. 

Their TDE prediction method checks the resource’s most recent past N days’ availability state, 

transition history, to get a prediction result. Briefly, the TDE prediction method works as 

follows: assume now the current time is Tcurrent and predictor is examining a resource for a job 

that is expected to run for L hours. Here, the length that a job is expected to run is called Job 

Execution Time. The predictor will check the resource’ state transitions history (only state 

transitions exit from the state of Available to Grid) in the Checking Period – time between 

Tcurrent and Tcurrent + M*L in the past N days. 

Here, M is a Multiply Factor; a positive number equal to or bigger than 1, like 1, 1.3, 6, etc. 

After checking, the predictor calculates the Resource Availability Probability result in the 

Prediction Period – between Tcurrent and Tcurrent + M*L in the current day. The length of 

Prediction Period is the same as the length of Checking Period. 

In this thesis, the definition of “past N days” is slightly different to the definition of used by 

the proposer of the TDE prediction method [Rood08]. In this thesis, “past N days” is considered 

as the most recent past N days by default, but it could be any N days in the past. This is based 

on the following assumptions: 

Firstly, no evidence has been found to show that the prediction will be more accurate if the 

most recent, past N days data is used (this will be discussed more in Chapter 6). If resource 

owners’ behaviours have a regular pattern everyday, then using the nearest “past N days” data 

will be helpful for prediction. However, if resources owners’ behaviours have some other 

patterns or no patterns, then using the nearest “past N days” data may not be helpful for 

prediction. For example, assume some resources are owned by company staff and the resources 

are usually used intermittently during 9am to 5pm in the working days but left free during the 

weekend. So if now is Monday and the prediction method uses past N days’ data (including the 

weekend’s data) to make a prediction, the accuracy of the prediction will be doubtful. 

Secondly, though job’s Job Execution Time is typically less than 24 hours, it could be longer 

than that time in principle. If a job’s Job Execution Time is longer than 24 hours, the length of 
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Checking Period will overlap with the Prediction Period, which is problematic. For example, 

assume the time is 9am and the prediction method uses past 1 day’s data. If the job’s Job 

Execution Time is 26 hours, then the length of Checking Period will be 26 hours - from 9am 

yesterday to 11am today, which is beyond the current time. Therefore, this will influence the 

accuracy of the prediction. 

Let Pdayi(r) denote the Resource Availability Probability of resource r in day i; Pdayi(r) is 

calculated by the following equation: 

Pdayi(r) = Tdayi / Tall * 100%                       (Equation 4.1) 

where TtoA denotes the number of times that resource r transits from the state of Available to 

Grid to Available to Grid in the Prediction Period and Tall denotes the number of times that 

resource r transits from the state of Available to Grid to all states in the Prediction Period. P(r) 

denotes the final output of Resource Availability Probability; it can be calculated by the 

following equation: 

 P(r) = 

N

i=1

dayiP (r)

N

∑
*100%                    (Equation 4.2) 

where N is the total number of Checking Days. 

4.2.2 Resource Availability 

As discussed in Section 4.1.4, “resource availability” is an important term in a thesis since 

resource volatility is a distinct characteristic in a volunteer resource based Grid environment and 

this characteristic brings a big challenge to the job-scheduling algorithms. Therefore, “resources 

availability” should be one of the main concerns for the proposed job-scheduling and job 

migration algorithms. Before discussing the proposed job-scheduling and job migration 

algorithms, some definitions and clarifications related to “resource availability” are introduced. 

 “Resource availability” can be defined at different levels. In [Kondo05], the author defines 

three levels of availability in the Grid computing environment: Host Availability, Job Execution 

Availability and CPU Availability. 

Host Availability: Host Availability indicates whether the resource is reachable by the Grid. If 

a resource is in a Grid, then Host Availability is true. Otherwise, Host Availability is false. In the 

multi-state model described in Section 4.2.1, if a resource is in the state of Available to Grid or 

User Present or CPU Threshold Exceeded or Job Eviction or Graceful Shutdown, the resource’s 

Host Availability will be true. If a resource is in the state of Unavailable, the resource’s Host 

Availability is false. 

Job Execution Availability: Job Execution Availability indicates whether guest jobs from the 

Grid are currently allowed to execute on the resource. This is based on the resources’ 

recruitment policy. Therefore, if the resource’s current condition is in line with the recruitment 

policy, Job Execution Availability will true. Otherwise, the Job Execution Availability will be 
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false. If Resource Unavailability is false, Resource Execution Unavailability will be false as 

well because Job Execution Availability cannot be true if the resource is unavailable. On the 

other hand, if Job Execution Availability is true, Host Availability will be true. In the multi-state 

model described in Section 4.2.1, if a resource is in the state of Available to Grid, the resource’s 

Job Execution Availability will be true. Otherwise, the resource’s Job Execution Availability will 

be false if it is in any other state.  

CPU Availability: CPU Availability indicates current CPU speed (number of CPU cycles 

delivered to the Grid per second). It is directly influenced by the resource’s recruitment policy 

and activities of local processes on the resource. For example, if a resource recruitment policy 

defines that the guest job is not allowed to run when the owner reclaims the resource, then CPU 

cycles delivered to the Grid will becomes 0 when the owner reclaims the resource. The 

difference between CPU availability and Job Execution Availability is that Job Execution 

Availability only indicates whether a resource is currently allowing guest jobs to run on it or not, 

whilst CPU Availability not only indicates this but also shows the number of CPU cycles the 

resource contributes to the Grid in each second. Therefore, if Job Execution Availability is false, 

CPU Availability will be 0. On the other hand, Job Execution Availability can be derived from 

the value of CPU Availability. If CPU Availability is above 0, Job Execution Availability will be 

true. If CPU Availability is 0, Job Execution Availability will be false. As for CPU Availability, 

in the multi-state model described in Section 4.2.1, if a resource is in the state of Available to 

Grid, the resource’s CPU Availability will be true. Otherwise, the resource’s CPU Availability 

will be true if it is in any other state. 

In this thesis, unless stated, resources are volunteered members of a Grid. Furthermore, if a 

resource is available it means the resource’s Job Execution Availability is true and the resource 

is prepared to allow guest jobs to run on it. Conversely, when a resource is unavailable it means 

the resource’s Job Execution Availability is false then the resource does not currently allow any 

guest jobs to run on it. A resource may already have had old guest job(s) when the job scheduler 

tries to allocate new guest job(s) to it. If a resource is available and it does not have any guest 

job(s), it will be called idle whereas a busy resource is already running a guest job. A resource 

may be considered as suitable when the Grid Job Scheduler tries to make a job allocation. A 

qualified resource is considered to be a suitable resource for the first job in the job queue so a 

job can be directly allocated to the resource. An unqualified resource is not considered to be a 

suitable resource for the first job in the job queue and so a job will not be allocated to the 

resource directly. 

4.2.3 FCFS plus Predictor (FCFSPP) Algorithm 

The first algorithm is called the FCFS Plus Predictor (FCFSPP) algorithm. This algorithm is 

based on a simple and widely used algorithm FCFS and to it is added an advanced part – a 

resource availability predictor. In FCFS algorithm, jobs will be allocated to available resources 
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in turn. In terms of prediction, this algorithm uses a resource availability predictor based on the 

prediction technique described in Section 4.2.1. 

According to [Dogan02], for a job-scheduling algorithm, there is a trade-off between speed 

and reliability. This means that it is impossible to achieve both objectives at the same time in 

most cases. Extensive research has been carried out to achieve the objective of speed, this 

proposed FCFSPP scheduling algorithm focuses on the second objective whilst not ignoring the 

first objective – trying to ensure the reliability as much as possible with as least as possible cost 

in terms of speed. 

The basic idea of this job-scheduling algorithm is to avoid allocating jobs to the resources 

that are considered to be unqualified. The resource availability predictor is used to judge 

whether a resource is qualified or not. In general, the procedure of the job-scheduling algorithm 

can be divided into two separate parts. The first part is Job Submission. Figure 4.5 shows the 

Job Submission procedure. 

Put the job onto the job queue tail

Sort the job queue

Start

Receive a new job?

Yes

No

 
Figure 4-5: FCFSPP Algorithm Job Submission Procedure 

Firstly, the Grid job scheduler waits for jobs all the time. The jobs are self-contained jobs sent 

by the Grid users. Secondly, if the job scheduler receives a job, it will put the job onto the end of 

the job queue. Thirdly, the job scheduler uses a predefined algorithm (e.g. FCFS or EDF) to sort 

the job queue. 

After Job Submission, the next part of job-scheduling algorithm is Job Allocation. Figure 4.6 

shows the Job Allocation procedure. 
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Figure 4-6: FCFSPP Algorithm Job Allocation Procedure 

First, at regular intervals, if the Grid job queue is not empty and there are idle resource(s) in 

the Grid, the Grid job scheduler picks the first job in the job queue. 

Second, the Grid job scheduler picks the next idle resource from the resource list as a 

candidate resource and uses the TDE prediction method to calculate the Resource Availability 

Probability for the waiting job. 

Third, the Grid job scheduler checks to see if the picked candidate resource is qualified or not. 

Here, qualified means the Resource Availability Probability is over a predefined threshold – 

Resource Availability Probability Threshold after checking the resources nearest past few days’ 

Job Execution Availability history. For example, if the Resource Availability Probability is 80% 

and the predefined threshold is 70%, then the candidate’s resource is considered to be qualified 

as the Resource Availability Probability is higher than the predefined threshold. In addition to 

the parameter Resource Availability Probability Threshold, there is another important parameter 

Number of Checking Days here. It means the number of days checked by the predictor. So if the 

Number of Checking Days is 3 in the above example, the value of Resource Availability 

Probability 80% is calculated after checking the resource’s past 3 days’ Job Execution 

Availability history. 

Fourth, based on the checking result, the job scheduler makes a decision about whether to 

allocate the job to the candidate resource. If yes, then the job will be allocated to the resource 

and the Grid job scheduler goes back to the first step of Job Allocation. If no, the Grid job 

scheduler will check if there is any other idle resource(s) in the Grid at the moment. If yes, the 

Grid job scheduler will go back to the third step. If no, the Grid job scheduler will go back to 

the first step. 
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4.2.4 Fuzzy Logic plus Predictor (FLP) Algorithm 

The second algorithm proposed in this research is based on Fuzzy Logic (FL). FL is a type of 

Artificial Intelligence (AI) technique used in certain areas, including air conditioners, 

automobile, digital image processing amongst others. 

Fuzzy Logic Introduction 

The concept of FL was proposed in [Zadeh73]. It was derived from fuzzy set theory 

[Zadeh65]. “Basically, Fuzzy Logic is a multi-valued logic that allows intermediate values to be 

defined between conventional evaluations like true/false, yes/no, high/low, etc.”[Hellmann01]. 

FL is not only widely used in building real products (e.g. washing machines, fridges and so on), 

but it has also one of the most active and fruitful area of research in the past few decades. 

Furthermore, “the use of fuzzy systems makes a viable addition to the field of Artificial 

Intelligence” [Brule05] 

• Fuzzy Sets 

FL allows people to encode linguistic expressions to numeric form and therefore build a more 

flexible rule based computer system. As with traditional logic, a computer is a binary based 

system so Boolean logic of computer programming only has the two values: true (1) and false 

(0). Although there are many advantages of two-value based logic, it is difficult to describe 

some terms in the real world. In reality, there are many imprecise concepts for instance 

statements like “Resource A is fast”, “Resource B is reliable” and so on. Figure 4.7 illustrates 

how the term “fast” could be represented in a computer system. 
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Figure 4-7: Traditional Boolean Logic in Computer System 

A computer with CPU speed 2GHz is considered fast but a computer with CPU speed 

1.9GHz is not. This does not really reflect the way people think or make comparative 

judgements. To let the computer reflect the way people think, FL introduces multiple values 

between the truth (1) and false (0). As a result, though “grade of membership” can only be 0 or 

1 in the computer world, “grade of membership” can have values between 0 and 1 in the fuzzy 

world. Therefore, the term “fast” could be represented in the fuzzy world as shown in Figure 

4.8. 
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Figure 4-8: Fuzzy Logic in Fuzzy World 

So a computer that has 2GHz CPU and the computer that has 1.9GHz will have the values of 

“grade of membership” of around 0.5 in FL, which is much closer to the way people think rather 

than Boolean logic. 

“The notion central to fuzzy systems is that truth values (in fuzzy logic) or membership 

values (in fuzzy sets) are indicated by a value on the range [0.0, 1.0], with 0.0 representing 

absolute falseness and 1.0 representing absolute Truth.”[Brule05]. To determine the membership 

value for an element x, membership function f(x) is used. “A fuzzy set (class) A in X is 

characterized by a membership (characteristic) function fA(x) which associates with each point 

in X a real number in the interval [0,1], with the value of fA(x) at x representing the “grade of 

membership” of x in A” [Zadeh65]. Take Figure 4.8 for example, if “Resource’s CPU speed is 

2GHz”, then the result of membership function f(2GHz) is 0.5 in this example, which means the 

resource’s grade of membership within the set of fast computers is 0.5. 

• Fuzzy Set Operations 

Besides the concept of fuzzy sets, some operations are also used to express the fuzzy “thing”. 

Three Boolean logic operators are used FL: OR, AND and NOT. Assuming A and B are two 

fuzzy sets, then the operations results are defined as follow: 

OR: A U B = MAX (A, B) 

AND: A ∩ B = MIN (A, B) 

NOT: ¬A = 1 - A 

For example, assume that fuzzy sets A and B have the shapes shown in Figure 4.9: 
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Figure 4-9: Fuzzy Set A and B 

Then the results of A U B, A ∩ B, and ¬A are shown in Figure 4.10: 
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Figure 4-10: Result of A U B, A ∩ B and ¬A 

• Fuzzy Rules 

In addition to the concept of fuzzy sets and fuzzy set operations, rules for inference are 

defined. The set of rules is usually expressed in the form: 

“IF variable IS set THEN action” [Synaptic06] 

For example, a simple set of rules for controlling a heater could be defined as follows: 
IF temperature IS cold THEN start heating. 

IF temperature IS hot THEN stop heating. 

With these defined rules, a fuzzy control system can influence the output according to the 

input variable(s). Similar to membership functions, this kind of rules could be modified 

according to the design requirement. For example, the rules for the heater be refined as follows: 
IF temperature IS cold THEN speed up heating. 

IF temperature IS normal THEN keep the speed. 

IF temperature IS hot THEN stop heating. 

Overall, FL provides a different way to solve a control problem and it focuses on what the 

system should do with a set of rules rather than using a complex mathematic model. As our 

research will focus on a large-scale network, the use of FL will provide benefits such as getting 

the system to work correctly without worrying too much about the complex mathematic model 

of the network. 

• Fuzzy Inference System 

Next, if fuzzy sets, fuzzy set operations and fuzzy rules are put together, a FL based system – 

A Fuzzy inference system can be built up. A fuzzy inference system consists of four distinct 

steps: 

1. Fuzzification: In this step, a “crisp” numerical value will be translated to a fuzzy variable 

with membership function. 

2. Rule Evaluation: In this step, some fuzzy rules are defined and the fuzzy sets’ truth values 

will be applied to each rule to get outputs. 

3. Aggregation: In this step, all outputs are aggregated. 
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4. Defuzzyfication: In this step, the aggregated output will be translated to a “crisp” numerical 

value as the final output. 

To explain how a fuzzy inference system operates, consider an example where FL is used to 

control the Resource Availability Probability Threshold. Here, Dispose Jobs Dot is used to 

describe the difference between the number of disposed jobs in the last time interval Nt-1 and the 

number of disposed jobs in the current interval Nt: Dispose Jobs Dot = Nt - Nt-1. Therefore, if the 

numbers of disposed jobs are 12 and 7 in the last and the current time interval, respectively, 

Dispose Jobs Dot will be 7 – 12 = -5. As a result, the Resource Availability Probability 

Threshold will be lowered as resources tend to dispose of fewer jobs (Dispose Jobs Dot is 

smaller than 0). 

In this fuzzy inference system, the input is Dispose Jobs Dot and the output is the adjustment 

value to the Resource Availability Probability Threshold. To describe Dispose Jobs Dot, three 

fuzzy sets are defined – Negative, Zero and Positive. 

The first step is fuzzification. In this step, the “crisp” numerical values of Disposed Jobs Dot 

will be translated to fuzzy variables with the membership function shown in Figure 4.11. 

λ0-λ

PositiveZeroNegative
1

0

 
Figure 4-11: FLP Algorithm Membership Function 

In this membership function, two important thresholds are λ and – λ. λ is a numerical value, 

such as 1, 5, etc. If the value of Disposed Jobs Dot is smaller than 0, Disposed Jobs Dot’s truth 

value of Negative is above 0 and becomes 1 when the value of Disposed Jobs Dot is smaller 

than – λ. If the value of Disposed Jobs Dot is between – λ and λ, Disposed Jobs Dot’s truth 

value of Zero is above 0 and becomes 1 when the value of Disposed Jobs Dot is 0. Finally, if the 

value of Disposed Jobs Dot is larger than 0, Disposed Jobs Dot’s truth value of Positive is above 

0 and becomes 1 when the value of Disposed Jobs Dot is larger than λ. 

In the second step of rule evaluation, some fuzzy rules are defined: 

1. If Disposed Jobs Dot = Negative, then Resource Availability Probability Threshold changes 

= Negative%. 

2. If Disposed Jobs Dot = Zero, then Resource Availability Probability Threshold changes = 

Negative%. 

3. If Disposed Jobs Dot = Positive, then Resource Availability Probability Threshold changes 

= Positive%. 

Here, the rules can be translated into the following natural language. Take rule 1 for example; 
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if the Disposed Jobs Dot’s grade of membership within the set of Negative is above 0, then the 

value of Resource Availability Probability Threshold will be lowered by Disposed Jobs Dot’s 

truth value of Negative. For example, if Disposed Jobs Dot’s truth value of Negative is 0.5, then 

the value of Resource Availability Probability Threshold will be lowered by 0.5%. So if the 

value of Resource Availability Probability Threshold is 90%, it should be changed to 90% – 

0.5% = 89.5% after applying this rule. The other two rules can also be translated into natural 

language in the same way. 

The third step is rule aggregation. In this step, the fuzzy variable will apply to each rule and 

the result of each rule is aggregated. 

The fourth step is defuzzification. In this step, the aggregated fuzzy results will be translated 

to a “crisp” numerical value. Let Ofinal denotes the final output; Ofinal can be calculated by the 

following centroid computation equation: 

 N Z P1 2 3
final

N Z P

( + + )O O OT T T = O
( + + )T T T

∗ ∗ ∗                 (Equation 4.3) 

Where TN, TZ and TP denote the Disposed Jobs Dot’s truth value of Negative, Zero and Positive 

respectively and O1, O2 and O3 denote the output of rule 1, 2 and 3, respectively. 

Later, let Pnew(r) denotes the new value of Resource Availability Probability Threshold; Pnew(r) 

will be adjusted according to the value of final output by the following equation: 

Pnew(r) = Pold(r) + Ofinal                                       (Equation 4.4) 

Where Pold(r) is the old value of Resource Availability Probability Threshold. 

i. FLP Algorithm 

In general, the FLP algorithm is very similar to the FCFSPP algorithm proposed in Section 

4.2.2. The distinct difference between them is that FLP uses FL to adjust the Resource 

Availability Probability Threshold of candidate resource(s) according to the trend of overall 

resources reliability. Therefore, the FLP algorithm can be considered to be a modification of the 

FCFSPP algorithm. 

The basic idea is to replace the fixed setting of Resource Availability Probability Threshold 

with a dynamic and artificial intelligently controlled setting in order to achieve a better balance 

between speed and reliability. Here, “a better balance” means achieving a better result than the 

FCFSPP algorithm in terms of speed (but the result should still be lower than FCFS algorithm) 

and a better result than the FCFS algorithm in terms of reliability (but the result should be lower 

than the FCFSPP algorithm). In FCFSPP, if the value of Resource Availability Probability 

Threshold is high (e.g. 100%), many resources (including some relatively reliable resources) 

may be considered as unqualified so that FCFSPP will not allocate any job to them and their idle 

CPU cycles will be wasted. On the other hand, if the value of Resource Availability Probability 

Threshold is low (e.g. 5%), many resources (including some volatile resources) may be 

considered as qualified so the FCFSPP algorithm will allocate jobs to some volatile resources 

and many jobs will be failed due to resources’ volatility. 
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The same as the FCFSPP algorithm, the procedure of the FLP algorithm has the separate parts 

of Job Submission and Job Allocation. The procedures for these two parts in FLP are exactly the 

same as it is in the FCFSPP algorithm. Figure 4.12 shows the third part of FLP Resource 

Availability Probability Threshold Adjustment: 

Start

Reach the end of the 
current time interval?

No

Yes

Adjust Resource Availability Probability
Threshold

 
Figure 4-12: Resource Availability Probability Threshold Adjustment Procedure 

Firstly, the Grid job scheduler checks the time interval. The time interval is called Resource 

Availability Probability Threshold Adjustment Interval, which is a predefined value, such as 1 

minute, 10 minutes and so on. 

Secondly, if the time interval has been reached, the Grid job scheduler will trigger the 

adjustment of Resource Availability Probability Threshold. If not, the Grid job scheduler will 

keep on repeating the first step. Therefore if the time interval is set as x minutes (such as 10 

minutes), the procedure of Resource Availability Probability Threshold Adjustment is triggered 

every x minutes (such as 10 minutes). 

In the proposed the FLP algorithm, the Resource Availability Probability Threshold 

Adjustment uses FL to control the adjustment. The basic idea of this adjustment is to compare 

the number of disposed jobs in the current time interval to the last time interval, and then 

decreases/increase the Resource Availability Probability Threshold if resources tend to drop 

fewer/more jobs. Here, Dispose Jobs Dot mentioned earlier in this section is used to describe 

this trend. As a result, the Resource Availability Probability Threshold will be lowered as 

resources tend to dispose of fewer jobs (Dispose Jobs Dot is smaller than 0). 

4.2.5 Particle Swarm Optimisation plus Predictor (PSOPP) Algorithm 

The third job-scheduling algorithm proposed in this research is called Particle Swarm 

Optimisation plus Predictor (PSOPP) algorithm. Different from FCFSPP and FLP 

job-scheduling algorithms, the PSOPP algorithm is not based on the FCFS algorithm. Instead, it 

is mainly based on an AI algorithm - Particle Swarm Optimisation (PSO) [Hu06]. It is a 

relatively new AI algorithm so very little research work has been done in terms of applying the 

PSO algorithm to job-scheduling algorithm. Therefore, to check if this new AI algorithm can 

bring any benefits to job-scheduling algorithm in terms of speed and reliability, this new PSO 

based job-scheduling algorithm is proposed. To better understand this proposed algorithm, some 

general background knowledge about PSO will be given. 
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i. PSO Introduction 

PSO is an artificial intelligence algorithm proposed by James Kennedy and Russell Eberhart 

[Kenndy95] in 1995. It is based on swarm intelligence and used to find a solution to an 

optimisation problem in a specific search space. 

PSO was motivated by the social behaviour of birds flocking and fish schools. One scenario 

can be used to explain this kind of behaviour in a Grid computing context. In this example, the 

aim of PSO is to find the resource the fastest CPU in the Grid. Initially, PSO initialises a group 

of particles with random values in the search space. This can be understood as each particle 

selects a resource randomly in the Grid. Later, PSO evaluates the resource that was selected by 

each particle with a predefined fitness function and records the fitness value of each resource. 

Here, the fitness value of a resource is determined by the CPU speed of that resource. Next, 

PSO updates each particle with the two “best” values. The first “best” value is the fastest 

resource a particular resource has found so far. This value is called pbest. The second “best” 

value is the fastest resource any particle in the group has found so far. After getting these two 

values, each particle updates its value with the following two equations:   

v[i] = v[i] + c1r1(pbest[i] – present[i]) + c2r2(gbest – present[i])         (Equation 4.5) 

present[i] = present[i] + v[i]                        (Equation 4.6) 

v[i] is the velocity of particle i. The maximum velocity can be restricted by a parameter Vmax. 

pbest[i] is best value that particle i has got so far and gbest is the best value that any particle in 

the group has got so far. present[i] is the present value of particle i. c1 and c2 are learning factors 

and usually c1= c2=2. r1 and r2 are random numbers and their values are between 0 and 1. After 

an update, the new resources selected by each particle will be evaluated by the fitness function 

again. This process will continue until achieving the predefined objective(s) or reaching the 

maximum number of iterations. Pseudo code of the whole procedure of the PSO algorithm is 

shown as follows: 
For each particle 
  Begin 
    Initialises particle’ value present[i] 
  End 
Repeat   
   For each particle 
      Begin 
        Calculate particle’s fitness value f(present[i]) 
        If fitness value f(present[i]) > local best value f(pbest[i]) 
          Begin 
            pbest[i] = present[i] 
          End 
        If fitness value f(present[i]) > global best value f(gbest) 
          Begin 
            gbest = present[i] 
          End 
        Calculate particle’s velocity according to [1] 
        Update particle’s value according to [2] 
      End; 
Until predefined goal(s) achieved or the maximum number of iterations is 
reached 



 

64 

ii. PSOPP Algorithm Procedure 

In the PSOPP algorithm, the Grid job scheduler tries to allocate a job. However, unlike the 

FCFSPP and FLP job-scheduling algorithms, all (not just one resource at a time) available (not 

necessarily to idle) resources are candidates when the Grid job scheduler tries to make a job 

allocation decision. 

In the PSOPP algorithm, there are P particles and each particle is represented by a unique 

number p, where p∈[1, P]. The total number of a resources at a given instant is represented by 

R and the number of a particular resource is represented by r, where r ∈  [1, R]. Particle p’s 

current position at iteration t is represented by Pp(t). If Pp(t) = r, this means the job is supposed 

to allocate resource r in the particle p’s solution at iteration t. Here, the position represents the 

solution. For example, assuming there are 10 resources currently available and 5 particles are 

used to find out the optimal solution. At iteration 5, each particle’s position can be represented 

as follows: 

 Position
Particle 1 10 
Particle 2 1 
Particle 3 7 
Particle 4 2 
Particle 5 3 

Take particle 5 for example, P3(5) = 7 means particle 3’s position at the 5th iteration is 7 - the 

job is allocating the job to resource 7. 

Bp(t) represents the best position that particle p has visited after t iterations. For example, 

assuming the personal best position B2(3) = 9, then it means that particle 2’s best solution is to 

allocate the job to resource 9. 

G(t) represents the best position that all particles have visited after t iterations. For example, 

if G(3) = 6, it means that the best solution all particles have visited after 3 iterations is to 

allocate the first job to resource 6. 

At each iteration, the value of Bp(t) and G(t) will be updated with a fitness function. The 

fitness value Fp(t) of particle p at iteration t can be represented by the following equation: 

Fp(t) = x*P(r) + y* current

job

CPU
N

                     (Equation 4.7) 

Where P(r) means the resource r’s Resource Availability Probability in the Prediction Period, 

CPUcurrent means the current CPU Availability (unit is GHz) of resource r and Njob means the 

total number of jobs on resource r after adding the new job, x and y are two multiplication 

factors and their default values are 1. Here, the value of Resource Availability Probability is also 

calculated by the TDE prediction method introduced in Section 4.2.1. Assuming the value of P(r) 

is 70%, CPUcurrent is 1.5(GHz) and Njob is 3, x and y are 1, the fitness value Fp(t) = 0.7 + 1.5 / 

(2+1) = 1.2. After calculating the fitness of each particle, the value of Pp(t) will be updated by 

the highest value particle p has visited so far and G(t) will be updated by the highest value all 
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particles have visited so far. 

After each iteration the position of each particle will be updated by the parameter of velocity. 

Each particle will have a separate velocity value. The velocity value is within the range of 

[-Vmax, Vmax]. After updating by the velocity, the position of a particle should always be between 

1 and R. This is to ensure each job will be allocated to a valid resource, as there are total R 

resources in the Grid. If the position in a certain dimension exceeds the range, its value will be 

rounded to 1 or R. For each particle, the position will be updated by the following equations: 

Vp(t+1) = Vp(t) + c1r1(Bp(t) – Pp(t)) + c2r2(G(t) – Pp(t))           (Equation 4.8) 

Pp(t+1) = Pp(t) + Vp(t+1)                       (Equation 4.9) 

Vp(t) is the velocity of particle p at iteration t and Vp(t+1) is the velocity of particle p at 

iteration t+1. c1 and c2 are learning factors and c1 = c2 = 2. r1 and r2 are random numbers 

between 0 and 1. Pp(t) is the position of particle p at t iterations Pp(t+1) is the position of particle 

p at t+1 iterations. The value of Pp(t) is always within the range [1, R]. If Pp(t) exceeds the range 

after adding Vp(t+1), it will be rounded to 1 or R depending on which boundary it exceeds. 

This is the procedure to use PSO to make allocation decisions for jobs: 

1. Create and initialise a P-element array position[P] for recording all particles’ positions. Each 

element in the array is initialised to a random number with a random number generator [6], 

which means particles are initially randomly scattered. 

2. Create and initialise a P-element array velocity[P] for recording all particles’ velocities. 

Each element in the array is initialised to zero, which means particles are initially stationary. 

3. Create and initialise a P-element array pbest[P] for recording such particles’ personal best 

positions visited so far. Each element in the array is initialised to zero. 

4. Create and initialise a variable gbest for recording the best position that all particles have 

visited so far. The value of gbest is initialised to zero. 

5. For each particle, if Fp(t+1) is larger than pbest[p], then the value of pbest[p] will be 

updated to be the value of Fp(t+1). 

6. For each particle, if Fp(t+1) is larger than gbest, then the value of gbest will be updated to 

the value of Fp(t+1). 

7. Update each particle’s velocity with Equation 4.8. 

8. Update each particle’s position with Equation 4.9. 

9. Repeat steps 6 to 9 until the predefined goal(s) are reached or the maximum number of 

iterations.  

The procedure can be represented by the flowchart shown in Figure 4.13: 
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Figure 4-13: PSOPP Algorithm Procedure 

4.3 Job Migration 
As discussed in Section 4.1.5, in volunteer resource based environments like desktop Grids 

and volunteer computing environments, resources may come and go at any time. This means a 

resource may not be able to finish a job before it becomes unavailable. If the job keeps on 

running on the resource, then the job will fail when the resource becomes unavailable. This is 

harmful for both the job and the resource. For the job, it cannot finish as expected. For the 

resource, it is a waste of CPU cycles. 

Therefore, it is necessary to take some actions to protect jobs from this kind of failure. In 

general, checkpointing is a technique to introduce fault tolerance. Basically it consists of storing 

a snapshot of the current application state and using it to restart the job in the case of failure 

[Microsoft10]. However, it may not be enough if the job needs to be processed as soon as 

possible. Imagine that a job runs on a resource and the job checkpoints before the resource 

becomes unavailable. After that, the resource does not become available for a long time. Then 

the job has to wait for a long time before it can resume. Therefore, job process time will take 

longer. As mentioned in Section 4.1, one solution to the volatility problem in the volunteer Grid 

is to enable the job scheduler to migrate jobs effectively after jobs have already been allocated 

to resources. Job migration can be considered a type of job rescheduling, this is an approach to 

assist job-scheduling by adjusting job-scheduling decisions dynamically. As discussed in 

Section 4.1, job-scheduling algorithms generally have two objectives: speed and reliability. To 
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assist job scheduling, the job migration algorithm’s objective is to help achieve the speed or 

reliability. In a volunteered Grid, reliability is the main goal for a job migration algorithm. 

They are two main types of job-scheduling algorithms: reactive migration and proactive 

migration. For each type of job migration algorithm, this research proposes some job migration 

algorithms to help achieve reliability. In this section, all the algorithms proposed in this research 

will be introduced. 

4.3.1 Reactive Job Migration 

Reactive migration is a type of job migration initiated by the volunteer resources. From the 

point of view of the Grid job scheduler, it is a passive approach as resources trigger this type of 

migration. When a resource is going to leave the Grid or it is no longer allowing any guest jobs 

from the Grid to run on it, the resource can notify the Grid job scheduler. When the Grid job 

scheduler receives this kind of notification, it will carry out the job migration. 

The procedure of proposed reactive job migration algorithm can be described as follows: 

1. When a resource is in any one of the following states, the resource should send out a job 

migration notification to the job scheduler. These states are: 

 The resource is leaving the Grid soon. 

 The resource is no longer allowing any guest job to run on it. 

2. When the Grid job scheduler receives this job migration notification, it will trigger the job 

migration procedures (details about the whole procedure of job migration are described in 

Section 3.4.9). In general, the job migration procedure can be summarised in two steps: the 

first step is using a job-scheduling algorithm to find suitable resources for jobs, one by one. 

Next, if a qualified resource is found for a job, the job migration will be carried out.  

Generally, compared with proactive migration (for details about proactive migration, please 

refer to Section 4.3.2), it has the following advantages: 

• It is simpler and more straightforward. This is because in reactive migration the job 

scheduler needs to wait for notification from the resources’ before triggering job migrations. 

• It is more effective in terms of utilising resources’ idle CPU cycles. This is because the 

resources’ idle CPU cycles will be fully utilised until the resources raises notifications and 

so potential job failures brought by resource volatility will not occur. 

At the same time, it has the following disadvantages when compared with proactive 

migration: 

• It lacks intelligence. This is because it always waits for resources’ notification to trigger job 

migrations rather than observing the performance (such as changes of CPU load or 

availability patterns) of resources and then makes intelligent job migrations decisions. 

Therefore if resources leave the Grid without any notification or do not allow guest jobs to 

run without any precautions, such as when resources crash or there is a network connection 

failure or the user reclaims the resources for a long time, reactive migrations will not 
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improve reliability. 

• It may not have enough time to carry out the job migration before resources become 

unavailable. This is because the resource may leave shortly after sending out the 

notifications. If the time gap between the resource sending notification and the resource 

leaving the Grid, is shorter than the time required to migrate all guest jobs on the resource, 

then some or all of the jobs will not be able to migrate successfully. 

4.3.2 Proactive Job Migration 

Proactive migration is a type of job migration initiated by the Grid job scheduler. From the 

point of view of the job scheduler, it is an active approach as this type of migration is triggered 

by itself. When the job scheduler observes a resource is going to leave the Grid or it is no longer 

allowing any guest jobs from the Grid to run on it, the resource can trigger the job migration 

proactively. In general, compared with reactive migration, it has the following advantages: 

• It is more intelligent. This is because it observes the performance of resources and then 

makes proactive job migration decisions rather than waiting for resource notifications to 

trigger job migrations. Therefore if resources leave the Grid without any notification or do 

not allow guest jobs to run without precautions, an efficient proactive job migration 

algorithm will be able to provide help to improve reliability. 

• An efficient proactive job migration will have more time to carry out the job migration. As 

that the Grid job scheduler will take proactive migration before getting the migration 

notifications from resources. Therefore, with an efficient proactive migration algorithm, the 

job scheduler has more time to carry out job migrations. However there are disadvantages 

compared to reactive migration: 

• It is more complex than reactive migration. This is because the job scheduler needs to 

observe the performance (such as changes of CPU load or availability patterns) of resources 

and then make migration decisions. As a resource’s performance may change constantly, it 

is straightforward enough to make migration decisions, but it is not so straightforward to 

make efficient decisions. 

• It may be less effective in terms of utilising resources’ idle CPU cycles. This is because the 

resources’ idle CPU cycles will not usually be fully utilised as it is difficult to get the ideal 

timing to carry out proactive job migrations. It is easy to migrate a job too early or too late. 

Two proactive job migration algorithms have been proposed in this research. The first one is 

based on the resource availability predictor described in Section 4.2.1. The second one is based 

on an artificial intelligence technique Case Based Reasoning (CBR). In this section, these two 

algorithms will be described: 

i. Periodical Scanning with Predictor Migration Algorithm 

The first proactive job migration algorithm proposed in this research is Periodical Scanning 

with Predictor (PSPP) algorithm. The name of the algorithm shows this algorithm is based on 
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scanning resources periodically and judging whether job(s) on each resource needs migration or 

not using the prediction technique described in Section 4.2.1. The objective of this algorithm is 

to help the job-scheduling algorithm in terms of improving reliability – reducing the number of 

job failures caused by resources’ unavailability. The procedure of PSPP algorithm can be 

described as follows: 

First, at the end of a predefined regular interval, the job scheduler picks the first busy 

resource. This interval is called Migration Prediction Interval. The reason why the job scheduler 

only picks a busy resource is that only this kind of resource has the potential to experience job 

failures. 

Second, the job scheduler checks Resource Availability Probability in the Prediction Period. 

Here, the Prediction Period can be a predefined length of time, such as 5 minutes, 10 minutes 

and so on. 

Third, if the resource is predicted to exit Available to Grid state some time during the 

Prediction Period (Resource Availability Probability is lower than 100%), the resource will be 

considered as unqualified. A resource marked as unqualified means it is considered as becoming 

unavailable to the Grid soon. Therefore, all the job(s) on the resource will need migration to 

avoid failure. 

Fourth, the job scheduler uses a job-scheduling algorithm to make job allocation decisions for 

job(s) on the unqualified resource one by one. 

Fifth, if a job scheduler finds a qualified resource, it will migrate the job to the new resource 

at once. If not, the job will stay on the resource. 

After this step, the job scheduler will pick the next busy resource and repeat steps one to five 

until all resources have been scanned. After all resources have been scanned, the job scheduler 

waits a predefined interval and starts this procedure again. Figure 4.14 shows this procedure: 
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Figure 4-14: PSPP Algorithm Procedure 

ii. Case Based Reasoning Migration Algorithm 

The second migration algorithm proposed in this research is based on CBR. CBR is a type of 

AI technique and successfully applied in various areas, such as air conditioners, automobile, 

digital image processing and so on. To better understand the algorithm, some background 

knowledge on CBR is given. 

Case Based Reasoning Introduction 

CBR is a machine-learning approach that has received much attention over the last few years. 

“It is the process of solving new problems based on the solutions of similar past problems” 

[Richter06]. Typically, a CBR system consists of a database which records past cases and their 

solutions. With this database, past similar cases will be generalised and their solutions will be 

reused (with some modifications if necessary) for new problems. 

The CBR approach is based on two main assumptions from the real world. The first one is 

that similar problems have similar solutions. “Consequently, solutions for similar prior problems 

are a useful starting point for a new problem” [Leake96]. The second one is that similar 

problems will recur again and again. Therefore, when a new problem occurs, it is likely to be 

similar to the old ones. 
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Similarly to some other problem solving techniques, especially rule induction algorithms 

[Slade91], a CBR system uses a database to record past cases and their solutions. However, 

unlike rule induction algorithms, a CBR system makes generalizations of past cases. “A 

rule-induction algorithm draws its generalizations from a set of training examples before the 

target problem is even known. This contrasts to CBR, which delays (implicit) generalization of 

its cases until testing time – a strategy of lazy generalization”. [CBRwiki10] 

In addition, CBR has the ability to learn from the past whilst rule induction algorithms do not 

have this ability. In rule induction algorithms, the same rules will be used unless they are 

modified manually. However, CBR “is an approach to incremental, sustained learning, since a 

new experience is retained each time a problem has been solved, making it immediately 

available for future problems.” [Aamodt94]. 

Generally, the CBR cycle is composed of four steps: retrieve, reuse, revise and retain. Figure 

4.15 shows this cycle. 

Case Base
Retain

Reuse

Retrieve

New problems

Revise

Proposed 
Solution

Confirmed Solution
 

Figure 4-15: The CBR Cycle (Adapted from [Watson94]) 

An explanation of each step is as follows: 

Retrieve: When a new problem occurs, the CBR system retrieves similar cases from the Case 

Base. Usually, a case consists of a problem, its solution and comments about how the solution 

was derived. For example, Alice wants to use the oven to roast a small chicken. The problem is 

that Alice has never cooked such a small chicken before. However, luckily, she has previously 

cooked some bigger ones. Therefore, Alice tries to remember how long it took, so that she can 

set the cooking time for the small chicken correctly. 

Reuse: After retrieving the similar cases, the CBR system compares the new problem with 

the past cases, reuses the past solutions and proposes a new solution based on the past ones for 

the new problem. In Alice’s example, Alice remembers that it took 1 hour for the bigger ones so 

she reuses this solution and tries to set the roasting time as 30 minutes for the small chicken. 

Revise: After proposing a new solution, the CBR system tests the new solution. If the new 

solution does not meet the requirement, the CBR system revises the solution. In Alice’s example, 

Alice checks the chicken after 30 minutes. However, she finds that the chicken is not done yet. 

Therefore, she revises the solution and adds another 5 minutes for the chicken. 

Retain: After solving the problem, the CBR system retains the useful information as a new 
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case and stores it in the Case Base for further use. In Alice’s example, Alice finally gets the 

chicken roasted. She now retains the experience of cooking a small chicken so that this 

experience can be reused in future. 

There are a number of advantages of using CBR, especially in a domain where there is a lack 

of strong theory. In such a domain, a rule induction reasoner is not practical. “When the 

relationship between the case attributes and the solution or outcome is not understood well 

enough to represent it in rules, or when the ratio of cases that are ‘exceptions to the rule’ is high, 

rule based systems become impractical. CBR is especially useful in such situations because it 

models the exceptions and novel cases.” [Morris95] 

Procedure of the CBR Migration Algorithm 

In general, the CBR is different from any other job-scheduling and job migration algorithm 

proposed above as the adopted TDE prediction method is not used in this algorithm. Instead of 

using Job Execution Availability to make predictions for job-scheduling or job migration, this 

algorithm use CPU Availability to trigger job migration. 

The basic idea of this migration algorithm is to observe the CPU Availability of each resource 

and trigger job migration procedures if the current value of CPU Availability is below a 

threshold (it is called CBR Migration Threshold). CPU Migration Threshold is a value between 

0% and 100%. Here, whether or not to trigger the job migration procedure can be considered as 

a new problem in CBR and getting the value of CBR Migration Threshold can be considered as 

the step of retrieving the solution to the past cases. As discussed in Section 4.2.2, CPU 

Availability is the current CPU speed which indicating the current number of idle CPU cycles 

delivered to the Grid per second. In the meanwhile, a term CPU Availability Percentage can be 

used to describe the percentage of maximum CPU speed available at the moment. Let Cpercent, 

Ccurrent and Cmax denote the CPU Availability Percentage, current value of CPU Availability and 

the maximum value of CPU Availability separately; the value of CPU Availability Percentage 

can be calculated by the following equation: 

Cpercent = Ccurrent / Cmax * 100%                    (Equation 4.10) 

For example, if a resource’s maximum CPU speed is 1000 CPU cycles per second and now 

the number of CPU cycles delivered to the Grid (CPU Availability) is 700, then Cpercent = 70% 

((700 / 1000) * 100%). The same as the PSPP migration algorithm described above, CBR 

migration algorithm scans each resource at regular intervals. If the CBR migration algorithm 

finds a resource’s CPU Availability Percentage is below the CBR Migration Threshold, the 

resource is considered likely to become unavailable soon. Therefore, CBR migration algorithm 

will trigger the job migration procedure and try to migrate the job to another resource by using a 

job-scheduling algorithm. Here, triggering the job migration procedure by using the CBR 

Migration Threshold can be considered as reusing the solutions of past cases in CBR. 

After making job migration decisions, CBR Migration algorithm will revise the proposed 

solution. This step is carried out just before observing each resource at regular intervals. If a 



 

73 

resource considered to be unqualified turns out to be unavailable after triggering the job 

migration procedure, the solution is considered to be correct and no revision is needed (the 

value of CBR Migration Threshold will not change). However, if a resource considered as 

unqualified turns out to stay in the state of Available to Grid until now, then the solution is 

considered to be incorrect and revision to the CBR Migration Threshold is needed. 

After the revision, the new value of CBR Migration Threshold is considered to be a 

confirmed solution and it will be retained. 

Specifically, the procedure of CBR migration algorithm can be described as follows: 

First, at the end of a predefined regular interval, the CBR migration algorithm checks the 

migration decisions made at the end of last interval. If the total number of incorrect solutions is 

over the total number of correct solutions, the value of CBR Migration Threshold will be 

increased or reduced by x percent. Here, x percent is called Adjustment Percentage and it is a 

random value and the range of value is (0%, Max%]. After adjustment, the value of CBR 

Migration Threshold should be always within the range of (0%, 100%). 

Second, the job scheduler picks the first resource that currently has guest job(s). As in PSPP 

migration algorithm, this interval is also called Migration Prediction Interval. The reason why 

the job scheduler only picks the resource that currently has guest job(s) is that only this kind of 

resource has the potential to experience job failures. 

Third, the job scheduler checks resource CPU Availability Percentage. 

Fourth, if the resource’s CPU Availability Percentage is below the CBR Migration Threshold, 

the resource will be considered as unqualified. A resource marked as unqualified means it is 

considered as to becoming unavailable to the Grid soon. Therefore, all the job(s) on the 

resource will need migration to avoid process failures. 

Fifth, the job scheduler uses a job-scheduling algorithm to make job allocation decisions for 

job(s) on the unqualified resource one by one. 

Sixth, if a job scheduler finds a suitable resource for a job, it will migrate the job to the new 

resource at once. If not, the job will stay on the resource. 

Seventh, the job scheduler will pick the next resource that currently has guest job(s) and 

repeat steps one to five until all resources have been scanned. After all resources have been 

scanned, the job scheduler waits for a predefined interval and then starts this procedure again. 

Figure 4.16 provides a flowchart to show this procedure. 
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Figure 4-16: Main Procedure of CBR Migration Algorithm 

The CPU Migration Threshold adjustment procedure is shown in Figure 4.17: 
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Figure 4-17: Procedure of CPU Migration Threshold Adjustment 
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Chapter 5 Analysis of Proposed Algorithms 
In this chapter, these algorithms will be analysed before providing simulation and evaluation 

results in Chapter 7. 

5.1 Analysis of the Adopted TDE Prediction Method 
If the goal of a job-scheduling algorithm is to improve speed (such as improving job 

throughput or to shorten job Makespan), CPU Availability will be the primary concern as CPU 

performance affects speed most among the three levels of “availability” described in Section 

4.2.2. However, if a job-scheduling algorithm is to improve reliability (such as reducing the 

number of failed jobs or the ratio of failed jobs to total jobs), Job Execution Availability will be 

the primary concern as Job Execution Availability shows whether jobs will be able to keep 

running on the resources or not. A running job will be failed if a resource’s Job Execution 

Availability changes from true to false. In this thesis, this state change event is called an 

Unavailability Event. 

As a resource’s Job Execution Availability is either true of false, the pattern of a resource’s 

Job Execution Availability in a Grid looks like an on-off pattern. When Job Execution 

Availability is true or false, then it is on or off respectively. This is illustrated in Figure 5.1. 
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Figure 5-1: Example Resource Job Execution Availability Pattern 

If Job Execution Availability is true (the value of Job Execution Availability is above 0 in 

Figure 5.1), the resource is in the state of Available to Grid (described in Section 4.2). If the Job 

Execution Availability is false (the value of Job Execution Availability equals 0 in Figure 5.1), 

the resource is one of the following states: User Present, CPU Threshold Exceeded, Job 

Eviction or Graceful Shutdown or Unavailable. The equation for calculating Resource 

Availability Probability described in Section 4.2.1 (Equation 4.1) shows that the number of 

times of Available to Grid to Available to Grid is the numerator of the equation. As a result, the 

adopted TDE prediction method is in fact checking a resource’s Job Execution Availability 

history in the Checking Period in the Checking Day and then calculating the resource’s 

Resource Availability Probability in the Prediction Period in the Prediction Day. 

If the Job Execution Availability pattern in the Checking Period is exactly the same as Job 

Execution Availability pattern in the Prediction Period, the result of Resource Availability 
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Probability will be completely accurate. Here, “accurate” means the result of Resource 

Availability Probability in the Checking Period is exactly the same as the result of Resource 

Availability Probability in the Prediction Period. However, if the Job Execution Availability 

pattern in the Checking Period is not exactly the same as the Job Execution Availability pattern 

in the Prediction Period, it is not straightforward to judge whether the result of Resource 

Availability Probability will be accurate or not. In addition, the accuracy of prediction is 

influenced by the values of some important parameters used in the TDE prediction method, such 

as Number of Checking Days and Multiply Factor. The FCFSPP algorithm is based on the TDE 

prediction method, so more detailed analysis about the TDE prediction method and the 

influences of prediction results on the FCFSPP algorithm will be introduced in Section 5.2. 

5.2 Analysis of the FCFSPP Algorithm 

5.2.1 Features of the FCFSPP Algorithm 

As described in Section 4.2.3, the FCFSPP algorithm is based on FCFS with the added TDE 

predictor (the predictor is described in Section 4.2.1 and analysed in Section 5.1). Therefore, 

this algorithm will have three distinct features: 

1. Only idle resources are possible candidates when the FCFSPP algorithm tries to make job 

allocation decisions. As discussed in Section 4.2.2, an idle resource is a resource that is not 

only available to the Grid but also not busy (does not have any guest job from the Grid) at 

the moment. Therefore, a busy (available but not idle) resource will not be considered as a 

candidate. This is because one resource having more than one job at a time is usually 

difficult to provide benefits in terms of speed. In addition, if resource reliability is unknown, 

one resource having more than one job at a time is difficult to provide benefits in terms of 

reliability. 

In terms of speed, as the number of CPU cycles provided by a resource is fixed and as all 

guest jobs are assumed to have the same priority, all guest jobs on a resource have to share 

the CPU cycles at the same time. Therefore, if there is only one guest job on a resource at a 

time, the job’s Makespan will be the shortest. If there is more than one guest job on a 

resource at a time, each job’s Makespan will become longer and job throughput will be 

influenced as well. 

If resource availability is unknown, a resource may become unavailable at any time. 

When a resource becomes unavailable to the Grid, all guest jobs running on the resource 

will be lost. Therefore, if there is only one guest job on a resource at a time, only one job 

will be lost. Though the FCFSPP algorithm uses TDE prediction, the resources may still 

become unavailable at any time as the resource owners control them. Therefore, only idle 

resources are possible to become a candidate when the FCFSPP algorithm tries to make job 

allocation decisions. 

2. There is only one candidate resource at a time when the FCFSPP algorithm tries to make a 
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job allocation decision. The FCFSPP algorithm always tries to allocate a new job to the next 

idle resource. This is a feature inherited from FCFS algorithm and this is different from 

some other job-scheduling algorithms. For example, with Matchmaker[Thain05] and MTTF 

[Ren07], all available (not necessarily to be idle) resources will be candidates and the 

job-scheduling algorithms will try to find out the “best” resource from all candidates (let’s 

call this approach as Finding the Best). Here, “best” can have different meanings. It could 

be the resource that has the highest CPU speed or the resource that has the highest number 

of completed jobs, and so forth. 

Unlike these algorithms, only one resource is the candidate in algorithms like FCFS and 

FCFSPP, in which the algorithm always has one candidate at a time and the algorithm tries 

to find out whether the candidate resource is qualified or not. This approach will be referred 

to as Checking if Qualified. Generally speaking, Checking if Qualified is quicker in terms of 

making job allocation decisions when comparing with Finding the Best approach. Imagine a 

scenario that hundreds of thousands of resources are idle in the Grid. Finding the Best 

approach may be very time consuming while Checking if Qualified is not. Furthermore, as 

many resources are volatile in a volunteered resource based environment, the “best” one 

found by Finding the Best approach may not still be the “best” one when the job allocation 

decision is made. However, using more powerful resources can reduce this difference. 

In a type of scenario, Finding the Best will become the same as FCFS. This is the 

scenario in which Finding the Best looks for idle resources but only one resource is idle at a 

time. This scenario is common when the number of jobs is much higher than the number of 

resources. One resource idle occurs when a resource has just finished a job. In the meantime 

other resources are still busy with jobs. Therefore, it will be common that only one resource 

is idle at a time. In such a case, the approach of Finding the Best will have to allocate the 

new job to the next and the only idle resource. As a result, Finding the Best cannot provide 

any more benefits than just using a simple FCFS algorithm. This scenario is not uncommon 

in practical world. For example, for a High Throughput Computing environment [HTC10], 

the number of jobs is far more than the number of resources and the one important objective 

of this environment is to get as high as possible job throughput. In addition, in some 

volunteered resources based environments, such as BOINC [Anderson05], all resources will 

be busy all the time. 

3. The FCFSPP algorithm will only allocate a new job to the next idle resource if the resource 

is considered as qualified. In the FCFSPP algorithm, a qualified resource means the 

resource’s Resource Availability Probability is over the Resource Availability Probability 

Threshold. This is different from the FCFS algorithm, in which no threshold is defined for 

candidate resources. This measure in the FCFSPP algorithm is for ensuring reliability as the 

primary objective of the FCFSPP algorithm is to ensure jobs being processed successfully 

as much as possible. Therefore, the FCFSPP algorithm will only allocate the new job to the 
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candidate resource if it is qualified. As discussed in Chapter 1, there is a trade-off between 

reliability and speed. In FCFSPP, if no resource is considered as qualified, the Grid Job 

Scheduler will wait halt for a while and then start to find a qualified resource again. This 

measure may affect the time to complete the job as a result. In addition, some idle CPU 

cycles on the idle but unqualified candidate resource(s) will be wasted. 

5.2.2 Influences on the FCFSPP Algorithm 

In addition to the features described above, the FCFSPP algorithm is also influenced by some 

factors and parameters. Therefore, in this subsection, important influences will be considered. 

i. System Case 

If the Checking Period and the Prediction Period in Figure 5.1 are extracted and combined 

together, then what they look like is shown in Figure 5.2. 
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Figure 5-2: Extracted and Combined Job Execution Availability Pattern (Type 1) 

In Figure 5.2, diagrams of Job Execution Availability in both the Checking Period and 

Prediction Period on the left hand side are put in the same diagram on the right hand side. t1 is 

the time interval between the start of checking time (the same is current time Tcurrent) and the 

time that the first Unavailability Event occurs in the Checking Day. In the example shown in 

Figure 5.2, t1 is shorter than the length of Checking Period (or Prediction Period). However, note 

t1 may also be longer or shorter than the Checking Period and this depends on the length of 

Checking Period, which is further depends on the length of Job Execution Time and Multiply 

Factor. t2 is the time interval between the start of checking time and the time that the first 

Unavailability Event occurs in the Prediction Day. The same as t1, t2 may also be longer or 

shorter than the Checking Period and it also depends on the length of Checking Period, which is 

further depends on the length of Job Execution Time and Multiply Factor. ∆t is the time 

difference between the length of t1 and t2. 

In Figure 5.2, assume a resource is available for t1 in the Checking Period, available for t2 in 

the Prediction Period and ∆t is the difference between the length of t1 and t2. The current time is 

Tcurrent and the first job in the job queue lasts for time L. So the Grid job scheduler needs to use 

TDE prediction to make a job allocation decision now and the prediction method will check 

resource Job Execution Availability history in the Checking Period (assume the length of Job 
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Execution Time is L and Multiply Factor is 1 and the length of Checking Period is L*1=L) to 

predict the Resource Availability Probability of the resource in the Prediction Period (assume 

the Prediction Period’s length is also L). In addition, in the following analysis of Section 5.2.2, 

if there is no further notice, the parameter Number of Checking Days is assumed to be 1 and 

Resource Availability Probability Threshold T is assumed to be 100%. 

Based on these assumptions and with the length of Checking Period L (or Prediction Period), 

several cases would occur in the system: 

Case 1: If L is shorter than t1, then the resource is always available in the Checking Period. As 

a result, the Resource Availability Probability of the resource will be 100% and it is not lower 

than the Resource Availability Probability Threshold. So the resource will be considered as 

qualified and the job will be allocated to the resource. As resource is still available at time Tcurrent 

+ L, the prediction result will turn out to be correct and the job will processed successfully by the 

resource. 

Case 2: If L is longer than t1 but shorter than t2, then the resource is not always available in the 

Checking Period, so the Resource Availability Probability of the resource will be lower than 

100%. It is lower than the Resource Availability Probability Threshold so the resource is 

considered as unqualified and the job will not be allocated to the resource. However, the resource 

turns out to be still available at time Tcurrent + L, then the prediction is incorrect and resource’s 

idle CPU cycles will be wasted until another job being allocated to the resource. 

Case 3: If L is longer than t2, then the resource is not always available in the Checking Period, 

so the Resource Availability Probability of the resource will be lower than 100%. It is lower than 

the Resource Availability Probability Threshold so the resource is considered as unqualified and 

the job will not be allocated to the resource. The resource turns out to become unavailable before 

time Tcurrent + L, so the prediction is correct. Some idle CPU cycles of the resource will be wasted 

until another job being allocated to the resource. However, more importantly, a job failure is 

successfully avoided. 

If t2 is shorter than t1, then the situation will be different. Figure 5.3 illustrates this situation. 
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Figure 5-3: Extracted and Combined Job Execution Availability Pattern (Type 2) 

Case 4: If L is longer than t2 but shorter than t1, resource is always available in the Checking 

Period, so the Resource Availability Probability of the resource will be 100% and it is not lower 
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than the Resource Availability Probability Threshold. So the resource will be considered as 

qualified and the job will be allocated to the resource. However, the resource turns out to be 

become unavailable before time Tcurrent + L, then the prediction is incorrect and job will be failed 

to be processed. 

Case 5: If L is longer than t1, then the resource is not always available in the Checking Period, 

so the Resource Availability Probability of the resource will be lower than 100%. So the resource 

will be considered as unqualified and the job will not be allocated to the resource. The resource 

turns out to become unavailable before time Tcurrent + L, so the prediction is correct. Resource’s 

CPU cycles will be wasted until another job being allocated to the resource, but a job failure is 

successfully avoided. 

Figure 5.4 shows an example of Job Execution Availability in the above 5 cases. 
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Figure 5-4: Examples of Job Execution Availability in 6 Cases 

It should be noted that in all of these cases, the Checking Period and the Prediction Period 

may change between available and unavailable a number of times. However, as one 

Unavailability Event in the Checking Period will result in a Resource Availability Probability 

below 100%. As one Unavailability Event in the Prediction Period will cause the job to fail to 

complete, only the first Unavailability Event in both Checking Period and Prediction Period is 

considered. 

According to the above analysis, the TDE prediction will affect the job-scheduling algorithm’s 

performance in both terms of speed and reliability. Next, the influences brought by the TDE 

prediction technique will be discussed by comparing the performance of the FCFS and FCFSPP 

algorithms in different cases: 

In case 1, both the FCFS and the FCFSPP algorithm will allocate the job to the resource and 

the resource will complete the job successfully. Therefore, both the FCFS and the FCFSPP 

algorithm perform the same in terms of speed and reliability in these two cases. 

In case 2, the FCFS algorithm will allocate the job to the resource and the resource will 

complete the job successfully. The FCFSPP algorithm will not allocate the job to the resource and 
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the idle CPU cycles of the resource will be wasted. Therefore, in terms of speed, FCFS is better 

than the FCFSPP algorithm as the job throughput in FCFS algorithm is higher than the job 

throughput in the FCFSPP algorithm. In terms of reliability, two types of algorithm perform the 

same and the job will not be failed. 

In case 3 and 5, FCFS algorithm will allocate the job to the resource and the resource will not 

complete the job successfully. The FCFSPP algorithm will not allocate the job to the resource and 

a potential job failure is avoided. Therefore, in terms of speed, both types of algorithm perform 

the same and the job will not complete. In terms of reliability, the FCFSPP algorithm is better 

than the FCFS algorithm as the FCFSPP algorithm does not allocate any job to the resource, and 

so the potential job failure is avoided. 

In case 4, both FCFS and the FCFSPP algorithm will allocate the job to the resource but the 

resource will not complete the job successfully. Therefore, both FCFS and the FCFSPP algorithm 

perform the same in terms of speed and reliability in these two cases. 

Assume job 1’s length L1 is shorter than both t1 and t2, so it is facing case 1. After processing 

this job, the Grid job scheduler starts to handle the next job in the job queue. Therefore, if the 

job 2’s length L is shorter than t1 and t2, then it faces 1 again. If L2 is longer than t1 but shorter 

than t2, then it faces 2. If L2 is longer than t1 and t2, then it faces 3. Figure 5.5 illustrates all the 

possible system cases transitions. 

Case 5

Case 1

Case 2

Case 4 Case 3

 
Figure 5-5: Transitions among all cases 

If the system transits among all the cases between 1 and 5 uniformly, the FCFSPP algorithm is 

supposed to be better than FCFS algorithm in 2/5 = 40% cases in terms of reliability as 

the FCFSPP algorithm performs better than FCFS algorithm in case 3 and 5. In terms of speed, 

the FCFSPP algorithm performs worse than FCFS algorithm in case 2. Therefore, the FCFSPP 

algorithm is worse than FCFS algorithm in 1/5 = 20% cases. 

If the system only transits within case 3 or case 5, then the FCFSPP algorithm is supposed to 

provide the best performance in terms of reliability. In this situation, all jobs will be failed if 

FCFS algorithm is used and all of these can be avoided if the FCFSPP algorithm is used. 
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However, note in such an extreme case, though the FCFSPP algorithm can avoid job failures, no 

job can be processed successfully as the resource(s) are so volatile. 

If case 3 or 5 is included in the system transitions, then the FCFSPP algorithm will be better 

than FCFS algorithm in terms of reliability. In this situation, all jobs will be failed if FCFS 

algorithm is used and all of these failures can be avoided if the FCFSPP algorithm is used. 

If the system only transits within case 2, then the FCFSPP algorithm provides worse 

performance in terms of speed. In this situation, all jobs will be allocated to the resource(s) and 

processed successfully if FCFS algorithm is used while no job will be allocated to the resource(s) 

if the FCFSPP algorithm is used. 

Overall, In terms of speed, FCFS is better than FCFSPP in case 2 and both algorithms have 

the same results in other cases. In terms of reliability, the FCFSPP algorithm is better than FCFS 

in case 3 and 5 and both algorithms have the same results in other cases. Therefore, FCFS will 

not be worse than the FCFSPP algorithm in terms of speed while the FCFSPP algorithm will not 

be worse than FCFS algorithm in terms of reliability. 

ii. The Influence of ∆t between Checking Day and Prediction Day 

According to the definition above, ∆t is the length difference between t1 and t2. In general, if 

the size of ∆t changes, the accuracy of the adopted prediction method and the performance of 

the proposed job-scheduling algorithm will be influenced directly. 

Suppose t1 is much smaller than t2 (the situation shown in Figure 5.2), then, if ∆t becomes 

larger (t1 becomes smaller or t2 become larger), the length of Checking Period is more likely to 

be longer than t1 while shorter than t2. Therefore, the occurrence probability of case 2 will 

increase. According to the analysis above, the FCFSPP algorithm is not as good as FCFS 

algorithm in terms of speed in such a case while both algorithms have the same results in terms 

of reliability. 

On the other hand, if ∆t becomes smaller (t1 becomes larger or t2 become smaller), the length 

of Checking Period is more likely to be shorter than t1 or longer than t2. If the length of 

Checking Period is shorter than t1, case 1 will occur and both FCFS and the FCFSPP algorithm 

will have the same results in both terms of speed and reliability. If the length of Checking 

Period is longer than t2, case 3 will occur and both FCFS and the FCFSPP algorithm will have 

the same results in terms of speed while the FCFSPP algorithm will have better results than 

FCFS algorithm in terms of reliability. 

Suppose t1 is much larger than t2 (the situation shown in Figure 5.3), then if ∆t becomes larger, 

the length of Checking Period is more likely to longer than t2 while shorter than t1. Therefore, 

the occurrence probability of case 5 will increase. According to the analysis above, jobs will fail 

to be processed in both FCFS and the FCFSPP algorithm if case 4 occurs, so the more times the 

system entering case 4, the worse performance in terms of reliability both algorithms will have. 

On the other hand, if ∆t becomes smaller (t1 becomes smaller or t2 become larger), the length 
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of Checking Period is more likely to be shorter than t2 or longer than t1. If the length of 

Checking Period is shorter than t2, case 1 will occur and both FCFS and the FCFSPP algorithm 

will have the same results in both terms of speed and reliability. If the length of Checking 

Period is longer than t1, case 5 will occur and both FCFS and the FCFSPP algorithm will have 

the same results in terms of speed while the FCFSPP algorithm will have better results than 

FCFS algorithm in terms of reliability. 

iii. Influence of Similarity of Job Execution Availability between Checking Period and 

Prediction Period 

The adopted prediction method checks a resource’s Job Execution Availability history in the 

Checking Period and predicts the resource’s Job Execution Availability in the Prediction Period 

(e.g. a period of time in the next few days/hours). So if the prediction results will be completely 

accurate when Job Execution Availability in Checking Period and Prediction Period are exactly 

the same. 

Here, “exactly the same” could be presented as two cases. The first case is resource’s Job 

Execution Availability does not change throughout the Checking Period and Prediction Period. 

Figure 5.6 shows two examples of this case. 
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Figure 5-6: Two Examples of “Exactly the Same” Checking and Prediction Period 

The second case is resource’s Job Execution Availability changes in the Checking Period and 

Prediction Period, but the change pattern in the Checking Period and Prediction Period are 

exactly the same. Figure 5.7 shows an example of this case. 
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Figure 5-7: Third Example of “Exactly the Same” Checking and Prediction Period 

In statistics, the Pearson Product-Moment Correlation Coefficient (PMCC) “is a measure of 

the correlation (linear dependence) between two variables X and Y, giving a value between -1 

and +1 inclusive” [Rodgers88][Stephen89]. According to [PMCCwiki], the PMCC result ρ can 

be calculated by the following equations: 

 
X Y

X Y

N i i

i=1

1 X -μ Y -μρ= ( )( )
N σ σ∑                   (Equation 5.1) 

where X

X

iX -μ
σ

, Xμ  and Xσ are the standard score, population mean, and population standard 

deviation. The standard deviation is calculated as: 

N
2

i

i=1

1σ = ( - )
N

x x∑                         (Equation 5.2) 

where  is the arithmetic mean of the values xi, defined as: 
n

i
i=1

1 2 N 1= =
N N

x +x +...+x xx ∑                     (Equation 5.3) 

PMCC can be used to describe the similarity between two variables/time-series in some cases. 

In the two cases shown in Figure 5.6, PMCC of the Checking Period and Prediction Period is 

not calculable as each series’ standard deviation σ is 0. However, in this case shown in Figure 

5.7, the PMCC of the Checking Period and Prediction Period is calculable and the PMCC ρ is 1 

in such case. 

If a resource’s Job Execution Availability behaves like the first and the second examples, then 

the prediction results will be perfect. However, in the mean while, prediction will also become 

unnecessary as Job Execution Availability does not change at all. Therefore, TDE prediction is 

useful in the cases that Job Execution Availability changes (cases like the third case) and 

similarity (represented by PMCC ρ) between Checking Period and Prediction Period is 

important factor that influences prediction results in such cases. 
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As resources’ Job Execution Availability patterns is on-off pattern (it is either true or false), 

PMCC between Checking Period and Prediction Period is mainly influenced by state changes 

between on and off. Let’s take an example to see how the state changes affect the PMCC and 

prediction results. 

In Figure 5.2 and 5.3, if both t1 and t2 are shorter than the length of Checking Period and the 

value of ∆t equals 0, then the Checking Period and the Prediction Period are exactly the same 

so that ρ will be 1. In such a case, the prediction results will be always accurate and the FCFSPP 

algorithm will perform the best in both terms of speed (it has similar results of job throughput as 

FCFS algorithm) and reliability (it can filter out the unreliable resources correctly and avoid 

allocating jobs to these unreliable resources so few jobs will be failed). 

If t1 and t2 are shorter than the length of Checking Period but the absolute value of ∆t 

becomes larger (the value of ∆t far lower or far higher than 0), then the Checking Period and the 

Prediction Period becomes less similar so that ρ will become smaller accordingly. If the 

absolute value of ∆t is close to the maximum value, the value of ρ will be close to -1. According 

to analysis above, if the absolute value ∆t becomes larger, the prediction results will more likely 

to be inaccurate and the FCFSPP algorithm tends to perform worse in terms of either speed or 

reliability. Therefore, if ρ becomes smaller, prediction results will more likely to be inaccurate 

and the FCFSPP algorithm will tend to perform worse in terms of either speed or reliability as 

well. 

iv. Influence of Number of Checking Days N 

If Number of Checking Days (abbreviated as N) becomes larger (which mean the prediction 

method checks more days for prediction) and if the Resource Availability Probability Threshold 

is 100%, then the day with shortest Availability Interval (the time between two consecutive 

periods of unavailability) in Checking Period will be the most important day if each day’s 

weight is equal. Figure 5.8 shows the case when Number of Checking Days is 2 (abbreviated as 

N=2): 
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Figure 5-8: Checking Past 2 Days for Prediction 
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In this example, the prediction method checks past two days. The resource has to be available 

throughout the whole Checking Period in both days to get the result of 100% in terms of 

Resource Availability Probability. A day with a shorter Availability Interval will be more 

important. In this example, Checking Day 1 has shorter Availability Interval, so the result of 

Resource Availability Probability will be 100% if the length of Checking Period is shorter than 

t1 and the resource will be considered as a qualified resource. If the length of Checking Period is 

longer than t1 (no matter the length of Checking Period is longer than t2 or not), the result of 

Resource Availability Probability will be lower than 100% and the resource will be considered 

as an unqualified resource. 

In general, the job allocation decisions tend to be more conservative (tend to NOT allocate 

the job to the resource) when N becomes larger. When N becomes larger, more Checking Days 

will be checked and it is more likely to find a Checking Day with shorter Availability Interval. 

Therefore, if higher reliability via the approach of conservative job allocation decisions is 

desired, then a larger N is required. On the other hand, though larger N can help for improving 

reliability, the performance of the FCFSPP algorithm in term of speed will tend to decrease at 

the same time. 

If N is larger than 1, if the FCFSPP algorithm tries to make a job allocation, it has to face 

extra cases than it has to face when N equals 1. If N equals 2, the FCFSPP algorithm has to face 

four extra cases (shown in Figure 5.8). However, the differences between N=1 and N=2 will 

only occur in cases 1 and 2 shown in Figure 5.8: 

Case 1: If the job length L is longer than t1 but shorter than t3, the FCFSPP algorithm will face 

case 1. In such a case, the FCFSPP algorithm will allocate the job to the resource if N=1 while it 

will NOT allocate the job to the resource if N=2. N=1 is better as it allocates the job to the 

resource and the job will be able to complete before the resource becomes unavailable. 

Case 2: If the job length L is longer than t3 but shorter than t2, the FCFSPP algorithm will face 

case 3. As for case 2, in such a case, the FCFSPP algorithm will allocate the job to the resource 

if N=1 while it will NOT allocate the job to the resource if N=2. Different from case 1, N=2 is 

better in such a case as it does NOT allocate the job to the resource and avoid a job failure (the 

job is not be able to be completed before the resource becomes unavailable). 

v. Influence of Resource Availability Probability Threshold T 

If the value of Resource Availability Probability Threshold T (abbreviated as T) becomes 

smaller (approaching to 0%), the FCFSPP algorithm becomes looser and achieves the loosest 

situation (becomes a completely non-prediction based FCFS algorithm) when T is 0%. On the 

other hand, if the value of T becomes larger (approaching to 100%), it becomes more 

conservative and achieves the most conservative situation when T is 100%. 

Therefore, if T is between 0% and 100%, in both terms of speed and reliability, the result 

should be between the results achieved when T is 0% and 100%. 
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vi. Influence of Job Arrival Process 

Similarly to the influence of the job sorting algorithm, each job’s “destiny” might be different 

if jobs arrived with different process and the FCFSPP algorithm’s performance in terms of speed 

might be affected as well. 

For environments like High Throughput Computing environment or some volunteered 

resources based environments (e.g. BOINC), the number of jobs is far more than the number of 

resources. Therefore, if a Grid system is at the initial stage (in which many resources are 

available), the job arrival process will influence the result of speed at the initial stage for a 

period of time as most (or even all) resources are available. If the job arrival interval is 

large/small, the initial stage will tend to be long/short and the job throughput will tend to be 

low/high in the initial stage. However, once the Grid system enters a steady state (in which all 

resources are kept busy all the time), the result of speed is not influenced by the job arrival 

process any longer. In steady state, all new jobs will have to wait in the job queue first. In such a 

case, job throughput or job Makespan depends on the resources’ CPU speed. 

For environments in which the number of jobs is lower than the number of resources, the job 

arrival process will influence the result of speed at both the initial and steady stage. If few/many 

jobs arrive in a period of time, job throughput will tend to be low/high. However, the job arrival 

process will not affect each job’s Makespan in the FCFSPP algorithm as one resource will 

always process one job at a time. 

vii. Influence of Resource Availability Interval 

The resource Total Availability Interval means the time during which the resource’s Job 

Execution Availability is true in a give period of time and the resource Total Unavailability 

Interval means the time during which the resource’s Job Execution Availability is false in a 

given period of time. The resource Average Availability Interval means the average length of the 

resource’s Availability Intervals and the resource Average Unavailability Interval means the 

average length of the resource’s Unavailability Intervals. 

A given period of time is composed of Total Availability Interval and Total Unavailability 

Interval. Therefore, if Total Availability Interval is longer, job throughput in both FCFS and the 

FCFSPP algorithm will tend to be higher (more jobs will be finished). However, the Average 

Availability Interval will influence the job throughput if the Total Availability Interval is fixed. 

For a given resource with a given period of time and a given Total Availability Interval, if 

Average Availability Interval is small, then the resource tends to be very unreliable (become 

unavailable frequently). In such a case, the job throughput tends to be lower than the case in 

which the Average Availability Interval is small. On the other hand, as the resource becomes 

unavailable frequently, many jobs will fail with the FCFS algorithm. This is not true for the 

FCFSPP algorithm, if TDE prediction can provide accurate prediction results. Potential job 

failures will be avoided, as the FCFSPP algorithm will not allocate a job to the resource if the 
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resource is predicted to become unavailable before the job is finished. 

For the same resource with the same given period of time and the same given Total 

Availability Interval, if Average Availability Interval is large, then the resource tends to be very 

reliable (become unavailable infrequently). In such a case, the job throughput tends to be higher 

than the case in which the Average Availability Interval is small. On the other hand, as the 

resource becomes unavailable infrequently, few jobs will be failed as a result in FCFS algorithm. 

For the FCFSPP algorithm, if TDE prediction can provide accurate prediction results, the job 

throughput result in the FCFSPP algorithm will be the same (or very closed) to the job 

throughput result obtained by FCFS algorithm as many jobs will be allocated to the resource in 

the FCFSPP algorithm. However, if TDE prediction cannot provide accurate results, the job 

throughput result in the FCFSPP algorithm will be fewer than the job throughput obtained by 

FCFS algorithm as few jobs will be allocated to the resource as the FCFSPP algorithm will 

consider the resource as unreliable resource (but in fact the resource is very reliable). 

viii. Influence of Average Job Size and Resource Average Availability Interval 

Here, a job’s Job Size means the job’s Job Execution Time and Average Job Size means the 

average Job Execution Time. In general, if the Average Job Size is small (compared with the 

resources’ Average Availability Interval), then the system will tend to enter case 1 and 4 

frequently. In such a case, the FCFSPP algorithm performs more or less the same as the FCFS 

algorithm both in terms of speed (represented by the number of processed jobs) and reliability 

(represented by the number of failed jobs). 

If the Average Job Size is medium (also compared with resources’ Average Availability 

Interval), then the system will tend to enter case 2 and 4 frequently. In such a case, the FCFSPP 

algorithm performs more or less the same as the FCFS algorithm in terms of reliability while it 

tends to perform worse than FCFS algorithm in terms of speed.  

If the Average Job Size is large (also compared with resources’ Average Availability Interval), 

then the system will tend to enter case 3 and 5 frequently. In such a case, the FCFSPP algorithm 

performs more or less the same as the FCFS algorithm in terms of speed while it tends to 

perform better than FCFS algorithm in terms of reliability. 

In contrast to job size, resource’s Average Availability Interval has the opposite influence to 

the FCFSPP algorithm. 

If resources’ Average Availability Interval is large (compared with Average Job Size), the 

system will tend to enter case 1 and 4 frequently. In such a case, the FCFSPP algorithm 

performs more or less the same as FCFS algorithm in both terms of speed and reliability. 

If resources’ Average Availability Interval is medium (also compared with Average Job Size), 

then the system will tend to enter case 2 and 5 frequently. In such a case, the FCFSPP algorithm 

performs more or less the same as FCFS algorithm in terms of reliability while it tends to 

perform worse than FCFS algorithm in terms of speed.  
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If the resources’ Average Availability Interval is large (also compared with Average Job Size), 

then the system will tend to enter case 3 and 6 frequently. In such a case, the FCFSPP algorithm 

performs more or less the same as the FCFS algorithm in terms of speed while it tends to 

perform better than the FCFS algorithm in terms of reliability. 

According to previous research work in [Lazarevic06] [Li04][Iosup06][Medernach05], job 

size varies significantly in different Grid systems, but normally job size is between a couple of 

seconds to 24 hours. According to previous research work in [Kondo05][TUDelft10], each 

resource’ Availability Interval in a volunteered resources based Grid system varies significantly 

(more about this will be discussed in Chapter 6), even mean Availability Interval of each Grid 

also varies, but normally the Average Job Size of all resources in a Grid is between 10 minutes 

to a couple of hours. Therefore, the possible highest results in terms of speed and reliability vary 

from one Grid system to another. 

ix. Influence of the Multiply Factor M 

If the value of M is 1, then the length of Checking Period and Prediction Period equal the 

length of the job execution time X. If the parameter of Number of Checking Days is 1, the result 

of Resource Availability Probability will be either 0% or 100%. This is because of the equation 

that used to calculate the result of Resource Availability Probability. As mentioned in Equation 

4.1, the result of Resource Availability Probability is calculated by Equation 4.1. In this equation, 

the numerator is the Times of Available to Grid to Available to Grid. If the resource stays in the 

state of Available to Grid throughout the Checking Period, Times of Available to Grid to 

Available to Grid will be 1 and Times of Available to Grid to other states will be all 0. Therefore, 

the result of Resource Availability Probability will be 100%. On the other hand, if resource exits 

the state of Available to Grid during the Checking Period, Times of Available to Grid to 

Available to Grid will be 0 and Times of Available to Grid to some other states will be above 0. 

Therefore, the result of Resource Availability Probability will be 0%. 

If the value of M becomes larger, the result of Resource Availability Probability can be any 

value between 0% and 100%. However, a larger value of M does not mean it will definitely 

bring more accurate prediction results and it also brings difficulty for analysis and evaluation of 

the performance of the FCFSPP algorithm. Therefore, without any further notice, the default 

value of Multiply Factor will be 1 in this thesis. 

5.3 Explanation of the FLP Algorithm 

5.3.1 Features of the FLP Algorithm 

As described in Section 4.2.4, the FLP algorithm is based on the FCFSPP algorithm 

(described in Section 4.2.3) and it adds Fuzzy inference system. In general, the FLP algorithm 

inherits all the important features of the FCFSPP algorithm described in Section 5.2. In addition, 

the factors and parameters influence FLP in the same way as it is in the FCFSPP algorithm. 
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However, as FLP has an extra Fuzzy inference system, this will bring some one important new 

feature to the FLP algorithm: 

Different from FCFSPP, the Resource Availability Probability Threshold will change over 

time according to the trend of overall resource reliability in FLP. Here, the overall resource 

reliability is represented as “Disposed Jobs Dot” (described in Section 4.2.4) and FLP takes 

reactive actions to this change. As discussed in Section 4.2, FLP tries to achieve a better balance 

between speed and reliability by replacing the fix setting of Resource Availability Probability 

Threshold with a dynamic and artificial intelligent algorithm controlled setting. 

If the number of “Disposed Jobs Dot” is above 0, it means resources become more volatile 

and tend to dispose more jobs now. As a result, FLP will raise Resource Availability Probability 

Threshold to get better results in terms of reliability. If the number of “Disposed Jobs Dot” is 

not above 0, it means resources becomes more reliable and tend to dispose fewer jobs now. As a 

result, FLP will lower Resource Availability Probability Threshold to get better results in terms 

of speed. 

If the pattern(s) of all resources’ Job Execution Availability is similar, Job Execution 

Availability on some resources will provide good indications for all resources. In such a case, 

FLP will make good balance between speed and reliability. Imagine a scenario in which a Grid 

is composed of personal computers within a company, resources availability patterns will be 

similar as these personal computers are typically utilised during the office hours. As a result, all 

resources tend to be very volatile during office hours (e.g. 9am to 5pm) but tend to be rather 

reliable during non-office hours. When office hour starts, “Disposed Jobs Dot” will increase and 

Resource Availability Probability Threshold will increase as a result. Therefore, high value of 

Resource Availability Probability Threshold will ensure jobs not being allocated to volatile 

resources and better results of reliability can be achieved. When non-office hour starts, 

“Disposed Jobs Dot” will decrease and Resource Availability Probability Threshold will 

decrease as a result. Therefore, low value of Resource Availability Probability Threshold will 

ensure idle CPU cycles on many resources can be utilised efficiently and better results of speed 

can be achieved. 

If the pattern(s) of all resources’ Job Execution Availability is dissimilar, Job Execution 

Availability on some resources will NOT provide good indications for all resources. In such a 

case, FLP is difficult to make good balance between speed and reliability. Imagine a scenario in 

which a Grid is composed of computers from individual users, resources availability patterns 

can be dissimilar as people have different life styles. As a result, some resources will be very 

volatile while some others are not. Therefore, “Disposed Jobs Dot” will increase/decrease over 

time. However, the increase/decrease of “Disposed Jobs Dot” may not be a good indication, and 

it may even be misleading. In such a scenario, changing Resource Availability Probability 

Threshold may not be able to provide good balance between speed and reliability. 

As the value of Resource Availability Probability Threshold varies between 0% and 100%, 
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FLP’s performance in terms of speed and reliability should generally (an exceptional case will 

be described in Section 7.3) between the FCFSPP algorithm with Resource Availability 

Probability Threshold 100% (equals the FCFS algorithm) and the FCFSPP algorithm with 

Resource Availability Probability Threshold 100%. In addition, the FLP algorithm is also 

influenced by some factors and parameters. Therefore, in next subsection, some important 

influences will be analysed. 

5.3.2 Influences on the FLP Algorithm 

i. Influence of Resource Availability Probability Threshold Adjustment Interval 

In the FLP algorithm, the Grid job scheduler checks whether the time has reached the end of 

the current time interval or not. Here, the time interval is called Resource Availability 

Probability Threshold Adjustment Interval, which is a predefined value, such as 1 minute, 10 

minutes and so on. 

The length of Resource Availability Probability Threshold Adjustment Interval will affect the 

sensitivity of: 

If the value of Resource Availability Probability Threshold Adjustment Interval is large, the 

FLP algorithm will rarely trigger the procedure of Resource Availability Probability Threshold 

Adjustment. As a result, Resource Availability Probability Threshold will be relatively stable and 

the FLP algorithm becomes more like the FCFSPP algorithm in such a case. 

If the value of Resource Availability Probability Threshold Adjustment Interval is small, the 

FLP algorithm will trigger the procedure of Resource Availability Probability Threshold 

Adjustment frequently. As a result, Resource Availability Probability Threshold tends to be 

changed frequently in such a case. 

ii. Influence of Parameter λ 

In the FLP algorithm, a fuzzy inference system is used and λ and – λ are two important 

thresholds to define a truth value of Disposed Jobs Dot: 

If the absolute value of λ is small, Disposed Jobs Dot’s truth value of Zero tends to be low 

while Negative and Positive tends to high. As a result, Resource Availability Probability 

Threshold tends to be changed sharply in such a case. 

If the absolute value of λ is large, Disposed Jobs Dot’s truth value of Zero tends to be high 

while Negative and Positive tends to low. As a result, Resource Availability Probability 

Threshold tends to be changed smoothly in such a case. 

iii. Influence of Initial Resource Availability Probability Threshold 

At the initial stage, the value of Resource Availability Probability Threshold is defined 

manually and this initial value will influence the performance of the FLP algorithm at the initial 

stage(s). For example, if the value of Resource Availability Probability Threshold is very small 

(a value close to 0%), the FLP algorithm will be loose and tend to allocate jobs to unreliable 
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resources at first. On the other hand, if the value of Resource Availability Probability Threshold 

is very large (a value close to 0%), the FLP algorithm will be strict and NOT tend to allocate 

jobs to unreliable resources at first. However, this influence may be limited as the value of 

Resource Availability Probability Threshold could later change. 

5.4 Analysis of the PSOPP Algorithm 

5.4.1 Features of the PSOPP algorithm 

As described in Section 4.2.5, the PSOPP algorithm uses a completely different 

job-scheduling algorithm when comparing with the FCFSPP and the FLP algorithm. This new 

algorithm has some important features: 

1. The PSOPP algorithm inherits features of the PSO algorithm. It uses a number of particles 

to search the best solution in the search space. In this algorithm, the best solution is the 

resource which has the highest fitness value after a number of iterations and the search 

space is all available resources. After each iteration, each particle’s position will be updated 

with the personal best value and global best value. 

PSOPP’s fitness function is based on the considerations of both speed and reliability of each 

resource. The fitness function of the PSOPP algorithm is shown by Equation 4.7. It uses TDE 

prediction to calculate the reliability of the resource in the first part of the equation and 

calculates the speed that the job can get from the resource the second part of the equation. 

2. All available resources are candidates when the PSOPP algorithm tries to make job 

allocations. In other words, the PSOPP algorithm does not keep any coming job waiting in 

the job queue if available resource(s) exists. If available resource(s) exists, all these 

available resources will be candidate for the new coming jobs and the PSOPP algorithm 

will try to allocate these new coming jobs to one or some of the available resource(s). 

As discussed in Section 5.2.1 and 5.3.1, the FCFSPP and the FLP algorithm always try to 

allocate a new job to the next idle resource (which is called Checking If Qualified). 

Different from these Checking If Qualified algorithms, PSOPP is a type of Finding the Best 

(the job-scheduling algorithms will try to find out the “best” resource from some candidates) 

algorithm and all available resources (not necessarily idle) will be candidates when the 

PSOPP algorithm tries to make job allocation. 

As discussed in Section 5.2.1, Checking if Qualified is quicker in terms of making job 

allocation decisions when comparing with Finding the Best approach. If the number of jobs 

is far more than the number of resources, Finding the Best approach will become the same 

as Checking if Qualified if there is always one candidate at a time. However, as the PSOPP 

algorithm uses available resources rather than idle resources as candidates, it is less likely 

that the whole Grid has only one candidate at the time when the PSOPP algorithm tries to 

make a job allocation decision. If there is more than one candidate when the PSOPP 

algorithm tries to make a job allocation decision, the PSOPP algorithm is possible to 



 

93 

perform better than Checking if Qualified algorithms as multiple choices are available at the 

moment. However, on the other hand, multiple choices also make PSOPP possible to 

perform worse than Checking if Qualified algorithms. 

5.4.2 Influence of Workload 

Here, Workload means the total number of jobs in the Grids at a certain moment. As the 

PSOPP algorithm will consider all available resources when it tries to make job allocation 

decisions, it is possible to allocate jobs to a busy resource if Workload is high. If all resources 

are busy at the moment, then the PSOPP algorithm will have to allocate new jobs to busy 

resources. Therefore, Workload influences the PSOPP algorithm in terms of speed (including 

both job Makespan and job throughput) greatly. 

If the Workload is high (the number of jobs is usually above the number of idle resources), 

the PSO algorithm will have to allocate jobs to busy resources and keep one resource have more 

than one job at a time. As discussed in Section 5.2.1, keeping one resource have more than one 

job at a time is usually difficult to provide benefit in terms of speed. In terms of speed, as the 

number of CPU cycles provided by a resource is fixed and as all guest jobs are assumed to have 

the same priority, all guest jobs on a resource have to share the CPU cycles at a time. Therefore, 

if there is only one guest job on a resource at a time, each job’s Makespan will be the shortest. If 

there is more than one guest job on a resource at a time, each job’s Makespan will become 

longer and job throughput will tend to be low as well. 

If the Workload is low (the number of jobs is usually below the number of idle resources), the 

PSOPP algorithm will not have to allocate new jobs to busy resources. Therefore, the influence 

to each job’s Makespan will tend to be smaller. However, the result of job throughput will tend 

to be low as resources tend to have not enough jobs to process in such a case. 

5.4.3 Influence of Fitness Function 

In the PSOPP algorithm, the fitness function is used to calculate the fitness value of each 

solution. As discussed in Section 4.2.5, the fitness value of a resource is calculated by the 

Equation 4.7. It is based on the considerations of both speed (represented by resource’s current 

CPU Availability and the number of jobs running on the resource) and reliability (represented 

by the Resource Availability Probability) of each resource. The multiply factor x and y are used 

to adjust the proportion of speed and reliability. Therefore, if a resource currently has a high 

CPU Availability, low number of jobs and high reliability, it is likely to be chosen by the PSOPP 

algorithm when the PSOPP algorithm makes job allocations. 

5.4.4 Influence of Resource Reliability 

Resource reliability means the Availability Interval lasts for a very long time. As discussed in 

Section 5.2.1, if resource reliability is unknown or uncertain, each resource may become 

unavailable to the Grid at any time. When a resource becomes unavailable to the Grid, all guest 
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jobs running on the resource will be lost. Therefore, if there is only one guest job on a resource 

at a time, only one job will be lost. If there is more than one guest job on a resource at a time, 

more than one guest job will be lost. As a result, a job-scheduling algorithm’s performance in 

terms of reliability will be influenced. As PSOPP may keep a resource have more than one guest 

job at a time, the PSOPP algorithm’s performance in terms of reliability will be influenced if 

resources reliability is unknown or uncertain. 

However, if resource reliability is known in advance, allocating jobs to busy resources 

(keeping resources have more than one job at a time) may bring benefits to the PSOPP 

algorithm in terms of reliability. Imagine a scenario that two groups of resources are in the Grid, 

one group is very reliable (Job Execution Availability is true for a very long time) and the other 

group is volatile (Job Execution Availability changes between true and false frequently). In such 

a scenario, if allocating jobs to the second group of resources, jobs have to face potential job 

failures. So if allocating jobs to the first group of resources only, this will mitigate the problem 

of job failure brought by the second group of resources though the first group of resources may 

be have more than one job at a time. 

5.4.5 Influences of the PSO Algorithm 

In the PSO algorithm, various parameters will influence the performance of the PSO 

algorithm and the PSOPP algorithm will be influenced as a result. These parameters include: 

• The number of particles: Number of particles is a parameter to specify the total number of 

particles used for searching the best solution in the PSO algorithm. If a search space is small, 

all positions are likely to be covered (even by a small number of particles) so that number of 

particles does not influence the performance too much in such cases. However, if the search 

space is very large and the number of particles is small, it is difficult for particles to cover 

all possible positions and find the best solution. A typical range is 20 to 40 and, for most 

problems, 10 particles are enough to obtain good results [Hu06]. 

• Vmax: Vmax is a parameter to specify the maximum velocity a particle algorithm. If a search 

space is small, particles can find the best solution easily so that Vmax does not influence the 

performance of the PSO algorithm too much. However, if the search space is very large and 

the Vmax is very small, it is difficult for particles to cover all possible positions. According to 

[Hu06], the typical value of Vmax is set as the same as the search space. For example, if the 

search space is [1, 20], Vmax is typically set as 20. 

• The stop condition: In the PSO algorithm, the procedure will stop once if meets the 

predefined goal(s) or reaches the maximum number of iterations. In terms of maximum 

number of iterations, if the search space is small and all positions can be covered by 

particles easily, the maximum number of iteration does not influence the performance of the 

PSO algorithm too much. However, if the search space is large and the maximum number of 

iteration is small, it will be difficult for particles to find the best solution before reaching the 
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maximum number of iterations.  

5.5 Analysis of the PSPP Migration Algorithm 

5.5.1 Features of the PSPP Algorithm 

As described in Section 4.3.2, the PSPP migration algorithm is a proactive job migration 

algorithm used for migrate jobs proactively for avoiding potential job failures. Therefore, this 

algorithm will have the following distinct features: 

Firstly, the PSPP migration algorithm uses TDE prediction to carry out predictions and then 

determine whether to trigger proactive job migrations. Therefore, the performance of the PSPP 

migration algorithm is directly influenced by the performance of the TDE prediction method 

(more details about the influences will be introduced in the following subsection). 

Secondly, the PSPP migration algorithm only checks resources that are busy (running guest 

job from the Grid) at the moment. For a resource that is idle (in the state of Available to Grid 

but does not have guest job) or unavailable (not in the state of Available to Grid), there is no 

need to worry about job migration. Therefore, only busy resource will be checked. 

Thirdly, the PSPP migration algorithm carries out the checking procedure regularly. The 

algorithm carries out the checking procedure regularly. At the end of each Migration Prediction 

Interval, the PSPP migration algorithm will check each busy resource and determine whether 

the job on the resource needs migration or not. In addition, the PSPP migration algorithm is also 

influenced by some factors and parameters. Therefore, in next subsection, some important 

influences will be analysed. 

5.5.2 Influences on the PSPP Algorithm 

i. Influence of TDE Prediction 

According to [Rood08], “A correct prediction is one for which the machine is predicted to 

exit on a certain non-available state and it does, or for which the machine is predicted to remain 

available throughout the interval, and it does.” Here, “exit on a certain non-available state” 

means the result of Resource Availability Probability in the Prediction Period is below 100%. 

“Remain available throughout the interval” means the result of Resource Availability Probability 

in the Prediction Period is 100%. Based on this definition, there are three terms to describe the 

accuracy of a prediction result in different scenarios: 

Correct Prediction: If a resource is predicted to exit or not exit Available to Grid state and the 

resource turns out to exit or not exit Available to Grid state some time during the Prediction 

Period, then the prediction result is Correct Prediction. Furthermore, the Correction Prediction 

about resource exit Available to Grid State is Correction Prediction Type 1 and the Correction 

Prediction about resource stay in Available to Grid State is Correction Prediction Type 2. 

False Alarm: If a resource is predicted to exit Available to Grid state but it turns out NOT to 

exit Available to Grid state throughout the Prediction Period, then the prediction result is False 
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Alarm. 

Missed Detection: If a resource is predicted to NOT to exit Available to Grid state but it turns 

out to exit Available to Grid state some time during the Prediction Period, then the prediction 

result is Missed Detection. 

Table 5-2 shows the prediction accuracy in different scenarios. 

Checking Period Prediction Period Prediction Accuracy 
exit Available to Grid exit Available to Grid Correct Prediction Type 1 
exit Available to Grid stays in Available to Grid False Alarm 

stays in Available to Grid exit Available to Grid Missed Detection 
stays in Available to Grid stays in Available to Grid Correct Prediction Type 2 

Table 5-1: Prediction Accuracy 

Based on these terms, the TDE prediction method influences the PSPP migration algorithm in 

the following ways: 

1. The performance of the PSPP migration algorithm is directly influenced by the accuracy of 

results from the TDE prediction scheme. 

If the TDE prediction scheme predicts that a resource will stay in the state of Available to 

Grid throughout the Prediction Period and it is a Correct Prediction Type 2, then the job 

migration procedure will not be triggered and the job migration also turns out to be not 

necessary. This type of Correction Prediction will avoid PSPP algorithm wasting time on 

unnecessary job migration. However, note the effect of this type of prediction is actually the 

same as no prediction. 

If the TDE prediction method predicts that a resource will exit Available to Grid state 

during the Prediction Period and it is a Correct Prediction Type 1, then the job migration 

procedure will be triggered and the job migration turns out to be necessary. This type of 

Correct Prediction will protect jobs on the resource from job failures because of the 

resource becoming unavailable. 

If the prediction algorithm predicts that a resource will exit Available to Grid state during 

the Prediction Period but it is a False Alarm, then the job migration procedure will be 

triggered and the job migration turns out to be unnecessary. The reasons why it is 

unnecessary are: 

• Firstly, it will be a waste of idle CPU cycles of the resources if all jobs on the 

resource are migrated and the resource will leave idle until being allocated new 

job(s). However, this influence might be trivial as a new job may be allocated to 

this resource after a short period time (such as a couple of seconds). 

• Secondly, it may lengthen job(s)’s Makespan reduce job throughput as it will take 

some time to accomplish the procedure of job migration. However, this influence 

might be trivial, as the job migration procedure will usually take a couple of 

seconds. 

If the prediction algorithm predicts that a resource will stay in Available to Grid state 
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during the Prediction Period but it is a Missed Detection, then the job migration procedure 

will not be triggered and the job migration turns out to be very necessary. In such a case, all 

job(s) on the resource will be lost and the original job(s) needs to be allocated to a new 

resource and process from the beginning, which may lengthen job(s)’s Makespan and 

reduce job throughput. 

2. As the PSPP migration algorithm and the FCFSPP job-scheduling algorithm are both based 

on TDE prediction, some factors and parameters influencing the FCFSPP algorithm will 

also influence the PSPP migration algorithm. 

Firstly, the PSPP migration algorithm encounters the same system states (described in 

Section 5.2.2) as the FCFSPP algorithm. The TDE prediction method will make a correct 

prediction when facing all cases except cases 2 and 4. 

In case 1, the resource is predicted to stay in the state of Available to Grid throughout the 

Prediction Period and the resource turns out to stay in the state of Available to Grid 

throughout the Prediction Period. Therefore, the prediction will be a Correct Prediction 

when facing these two cases. 

In case 3 and 5, the resource is predicted to exit the state of Available to Grid during the 

Prediction Period and the resource turns out to exit the state of Available to Grid during the 

Prediction Period. Therefore, the prediction will be a Correct Prediction when facing these 

two cases as well. 

In case 2, the resource is predicted to exit the state of Available to Grid during the 

Prediction Period but the resource turns out to stay in the state of Available to Grid during 

the Prediction Period. Therefore, the prediction will be a False Alarm when facing these 

two cases as well. 

In case 4, the resource is predicted to stay in the state of Available to Grid throughout the 

Prediction Period but the resource turns out to exit the state of Available to Grid during the 

Prediction Period. Therefore, the prediction will be a Missed Detection when facing these 

two cases. 

Second, the factor “∆t between Checking Day and Prediction Day” (described in Section 

5.2.2) will also influence the performance of PSPP algorithm. If the value of ∆t is small, a 

prediction result will tends to be a Correct Prediction. On the other hand, if the value of ∆t 

is large, the prediction result will tends to be either a False Alarm or Missed Detection. 

Third, the factor “Similarity of Job Execution Availability between Checking Period and 

Prediction Period” (described in Section 5.2.2) will also influence the performance of PSPP 

algorithm. If the pattern of Job Execution Availability in Checking Period is similar to 

pattern of Job Execution Availability in Prediction period, the prediction result will tend to 

be a Correct Prediction. On the other hand, if the pattern of Job Execution Availability in 

Checking Period is dissimilar to pattern of Job Execution Availability in Prediction period, 

the prediction result will tends to be a False Alarm or Missed Detection. 
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Fourth, the parameter Number of Checking Days will also influence the performance of 

PSPP algorithm. According to the analysis about Number of Checking Days in Section 5.2.2, 

when the value of Number of Checking Days becomes larger, the total length of Checking 

Period becomes longer so it is more likely to have an Unavailability Events in the Checking 

Period. Therefore, the result of Resource Availability Probability tends to below 100% more 

likely and the TDE prediction method tends to predict many resources to exit the state of 

Available to Grid during the Prediction Period. 

ii. Influence of Checking Period (or Prediction Period) 

In the PSPP algorithm, if the length of Checking Period (or Prediction Period) becomes 

longer, it is more likely to have Unavailability Events in the Checking Period for each resource. 

Therefore, the result of Resource Availability Probability tends to below 100% and the TDE 

prediction method tends to predict each resource to exit the state of Available to Grid during the 

Prediction Period. On the other hand, if the length of Checking Period (or Prediction Period) 

becomes shorter, it is more likely to have Unavailability Events in the Checking Period for each 

resource. Therefore, the result of Resource Availability Probability tends to be 100% and the 

TDE prediction method tends to predict many resources to stay in the state of Available to Grid 

during the Prediction Period. 

The length of Checking Period will only influence the prediction results, but it will not 

influence the accuracy of the prediction results. 

5.6 Analysis of the CBR Migration Algorithm 

5.6.1 Features of the CBR Migration Algorithm 

The proposed CBR migration algorithm has the following features: 

Firstly, it uses each resource’s CPU Availability Percentage and a CPU Migration Threshold 

to predict whether a resource will exit the state of Available to Grid or not. Different from other 

job-scheduling or migration algorithm proposed in this research, CBR migration algorithm does 

not used the adopted the TDE prediction method to make predictions. 

Secondly, it uses CBR to refine the job migration decisions. As discussed in Section 4.3.2, 

CBR migration algorithm uses CPU Migration Threshold as solutions to solve the problem of 

whether to trigger job migration procedure or not. More importantly, CBR migration algorithm 

revises the value of CPU Migration Threshold according to the accuracy level of previous 

migration decisions. 

Thirdly, the same as the PSPP migration algorithm, CBR migration algorithm only checks 

resources that are busy (running guest job from the Grid) at the moment. For a resource that is 

idle (in the state of Available to Grid but does not have guest job) or unavailable (not in the 

state of Available to Grid), there is no need to worry about job migration. Therefore, only busy 

resource will be checked. 
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Thirdly, as with the PSPP migration algorithm, CBR carries out the checking procedure 

regularly. The algorithm carries out the checking procedure regularly. At the end of each 

Migration Prediction Interval, CBR migration algorithm will check each busy resource and 

determine whether the job on the resource needs migration or not. 

In addition, CBR migration algorithm is also influenced by some factors and parameters; 

these will be considered in Section 5.6.2. 

5.6.2 Influence of CPU Availability Percentage 

CBR migration algorithm observes the change of CPU Availability Percentage and then 

makes prediction based on the current value of CPU Availability Percentage. 

Therefore, the performance of the proposed CBR migration algorithm depends on whether 

the CPU Availability Percentage can provide any useful information. If all resources’ CPU 

Availability Percentage will become low before they become unavailable, then using CBR 

migration algorithm will be possible to observe this change and then make correct job migration 

decisions. However, on the other hand, if all resources’ CPU Availability Percentage does not 

become low before they become unavailable, then using CBR migration it is difficult to observe 

the change of CPU Availability Percentage and make correct job migration decisions. It requires 

all resource have similar behaviour when they become unavailable. 

5.6.3 Influence of CPU Migration Threshold 

In CBR migration algorithm, the CPU Migration Threshold is a very important value as 

whether to trigger job migration decisions are based on this value. If resources’ CPU 

Availability Percentage always get lower than the CPU Migration Threshold before become 

unavailable, using the CPU Migration Threshold to make predictions will be a good solution. 

If resources have CPU Availability Percentage higher than the CPU Migration Threshold will 

also exit the state of Available to Grid soon, then using the CPU Migration Threshold to make 

predictions will probably still be good as CBR migration algorithm will probably find a suitable 

CPU Migration Threshold by adjusting the value of CPU Availability Percentage regularly. 

In addition to the value of the CPU Migration Threshold, the range of the value of CPU 

Migration Threshold is also important. As CPU Availability Percentage is always between 0% 

and 100%, the value of the CPU Migration Threshold should at most ranges from 0% to 100%. 

However, if a resource has a CPU Availability Percentage of 0%, then the resource is already 

left the state of Available to Grid so CBR migration algorithm will not make prediction for such 

a resource. As a result, the value of the CPU Migration Threshold should not be 0% at any time. 

On the other hand, if the value of the CPU Migration Threshold is too high (e.g. 100%), then all 

resources are unqualified and they will all need migration in such a case. Therefore, the value of 

the CPU Migration Threshold should not be 100% at any time. So the maximum range of the 

CPU Migration Threshold is (0%, 100%) 

Only defining the range of the CPU Migration Threshold as (0%, 100%) might not be enough. 
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If the value of the CPU Migration Threshold is close to 0%, a small proportion of resources will 

tend to be considered as unqualified. On the other hand, if the value of the CPU Migration 

Threshold is close to 0%, a large proportion of resources will be considered as unqualified. So 

the range of the value of the CPU Migration Threshold can be further restricted to a smaller 

range, such as (0%, 30%). 

5.6.4 Influence of Migration Prediction Interval 

The Migration Prediction Interval is a parameter that influences the behaviour of CBR 

migration algorithm. In brief, if the value of the Migration Prediction Interval is small, then 

CBR migration algorithm tends to review the value of the CPU Migration Threshold frequently 

and the value of the CPU Migration Threshold might be adjusted frequently. On the other hand, 

if the value of the Migration Prediction Interval is large, then CBR migration algorithm tends to 

review the value of the CPU Migration Threshold infrequently and the CPU Migration 

Threshold will be adjusted infrequently as a result. 

5.6.5 Influence of Adjustment Percentage 

In addition to Migration Prediction Interval, Adjustment Percentage is another parameter that 

influences the behaviour of CBR migration algorithm. 

When the CPU Migration Threshold needs an adjustment, the value of Adjustment 

Percentage will be generated over the range (0, Max%]. Here “(0, Max%]” means the value of 

Adjustment Percentage should be above 0 and not larger than the predefined maximum value 

Max. Therefore, if the maximum value of Adjustment Percentage is small, the value of CPU 

Migration Threshold will tend to be adjusted a small value at a time. So if the ideal value of 

CPU Migration Threshold is not far away from the current value of CPU Migration Threshold, 

then making small adjustments at a time tends to get to this ideal value quickly. However, if the 

ideal value of CPU Migration Threshold is far away from the current value of CPU Migration 

Threshold, adjusting a small amount at a time tends to delay the time to get to this ideal value. 
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Chapter 6 Characteristics of Real Resources 
Resource availability data traces record different resource availability data over time (e.g. an 

hour, a day, etc). As mentioned in Section 4.2.2, three levels of availability can be used to 

describe a resource’s availability (Resource Availability, Job Execution Availability and CPU 

Availability). Host Availability indicates whether a resource is in the Grid or not but it does not 

mean the Grid can utilise the resource’s idle CPU cycles or not. CPU Availability and Job 

Execution Availability are more important terms as they indicate whether the resource allows 

guest jobs to run and how many CPU cycles the resource contributes to the Grid in a certain 

period of time. In [Kondo09], four sets of resource availability data traces that record CPU 

Availability in different real volunteered resources based Grids are provided. Therefore, some 

important characteristics of the resources (especially Job Execution Availability) in these four 

data sets will be described and discussed in this chapter. 

6.1 Data Traces Overview 
In terms of collecting resource availability data traces, some research has been done before. 

In [Brevik03], the authors designed an “up-time sensor” sensor to record each machine’s uptime 

from the /proc file system. In [Long95], the authors used Remote Procedure Call (RPC) to get a 

response from each resource. If a resource replies, then the resource is marked as up, otherwise, 

the resource will be considered as down. In [Bhagwan03], the authors designed a “prober” in 

peer-to-peer networks. At regular intervals, the “prober” performs a lookup for a certain 

resource. If the resource responds to the prober, then the resource is considered as up, otherwise, 

the resource is down. In [Saroiu02], the authors used ping/pong messages for peers to discover 

other nodes. In [Dinda99][Dinda02], the authors use the kernel to collect and record resources’ 

CPU load at regular intervals. In [Kondo09], the authors run their CPU-bound, fixed-time 

length tasks on different resources to record CPU availability. At regular intervals, the 

information of CPU availability is written into a trace file. 

A number of data traces from the same Grid compose a data set and there are few resource 

availability data sets available in the Internet. On the website of [Dinda00], the authors 

published two sets of data traces collected from Pittsburgh Supercomputing Center (PSC) and 

Computers, Media, and Communication Laboratory (CMCL) of Carnegie Mellon University in 

two periods (August 1997 and March 1998). The kernel records the resource CPU load once a 

second. So there are two columns in each trace file, one for the timestamp and the other for the 

value of measured CPU load. Though the CPU load and CPU cycles delivered to the Grid (CPU 

availability) are correlated, CPU load does not necessarily provide accurate information about 

CPU availability, this is because of the priority issue in Unix systems. In Unix, processes share 

CPU time according to their priority. Therefore, the value of the CPU load does not mean all the 

spare CPU time will be available to the Grid. 



 

102 

On the website of [Kondo09], the author published four data sets collected from different 

volunteered resources based Grids. All these data sets were collected with the approach they 

proposed in [Kondo05][Kondo07]. The publisher claims that the CPU Availability are 

accurately recorded by the fixed-time length tasks on the resource, so these four data sets were 

used for analysis and simulation evaluations in this research. 

6.1.1 Analysed Data Sets 

There are four data sets provided on the website of [Kondo09]: UCB, SDSC, LRI and DEUG. 

The first data set is called UCB, which was originally obtained from [Arpaci95]. As mentioned 

above, the authors of [Kondo09] collected these data by using a daemon program to log CPU 

and keyboard/mouse activity every second of the resources. Note here the daemon program only 

records whether a resource is up and whether any local activity occurs. As a result, Resource 

Availability and Job Execution Availability can be derived from the log file while CPU 

availability cannot be derived. However, according to [Kondo05], a resource is considered to be 

Available to the Grid when the Resource load is below 5% and no local activity occurs during 

that time, so the publishers believe the result of post-processing is most likely to be accurate. 

Therefore, [Kondo05] post-processed the UCB trace files and published the processed data 

traces on their website. The traces record 80 resources’ CPU Availability in 10 consecutive 

working days from 28th of February to 9th of March in 1994. According to their description, the 

resources are quite stable during off-peak (non-business) hours. So the traces only show CPU 

Availability once a second during peak (business) hours of each day. In this data set, the 

business hours are from 10AM to 5PM. As the data set is more than ten years old, the publisher 

also mentioned that this might be a potential weakness with this data set. 

The second data set is called SDSC, collecting from the Entropia DCGridTM desktop grid 

software system that was deployed at San Diego Super Computing Centre (SDSC). The traces 

record 244 resources’ CPU Availability in 7 consecutive working days from 3rd of September to 

12th of September in 2003. As for data set SDSC, the traces show the CPU Availability once a 

second during peak hours in each day. The business hour in this data set is 9AM to 5PM. 

According to [Kondo05], “30 are used by secretaries, 20 are public Resources that are available 

in SDSC’s conference rooms, 12 are used by system administrators, and the remaining are used 

by SDSC staff scientists and researchers.” 

The third data set is called LRI, collecting from the XtremWeb desktop grid software system 

deployed at University of Paris-Sud. The traces record resources’ CPU Availability in 

consecutive working days from 5th of January to 26th of January in 2005. Each day the trace 

records the resources’ CPU Availability once a second. For the purpose of simulation [Kondo05], 

the traces of resources on different days were pooled together to increase the number of the 

resources in the platform. After post-processing, 275 resources’ data traces in 7 consecutive 

working days were created. According to [Kondo05], all the resources in this data set are a 
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cluster computer. 

The fourth data set is called DEUG, also collecting from the XtremWeb desktop grid software 

system deployed at University of Paris-Sud. The traces record 136 resources’ CPU availability 

in consecutive working days from 5th of January to 26th of January in 2005. In each day, the 

trace records the CPU availability once a second during business hours – 6AM to 6PM. As with 

DEUG, for the purpose of simulation [Kondo05], the traces of resources on different days were 

pooled together to increase the number of the resources in the platform. After post-processing, 

680 resources’ data traces in 7 consecutive working days were created. All the resources in this 

data set are computers in different classrooms [Kondo05]. 

6.1.2 Data Trace Formats 

For each data set, a file named “Resourceinfo.dat” contains some general information about 

each resource. The information includes each resource’s name, clocks rates and maximum 

number of CPU cycles delivered to the Grid per second. Here is a part of the “Resourceinfo.dat” 

of data set SDSC: 
Resource Name   Clock Rates  Maximum Number of CPU Cycles 
MWAN-2K    179     6851.7776566835 
RITKE-PC   198      7706.3301532329 
OUYAR    198     7738.4406779661 
LAGRANGE-2K   297     14628.53780466 
CENON-2K   298     12438.263009999 
BASEBALL-2K   330     13775.014899006 
LPW8     331     13778.188795437 
CRBPUB-4   331     14226.06326689 
POTOROO-2K   333     16529.418732542 
JCZECH-2K   397     19508.218134882 
 
A single data trace file records a single resource’s CPU Availability in the business hours of a 

single day. The business hour is defined as 10am to 5pm, 9am to 5pm, 6am to 6pm in data set 

UCB, SDSC and DEUG. For data set LRI, 24 hours of a day are considered as the business 

hours and recorded. 

In each trace file, there are three columns in a line. The first and the second column shows the 

epoch start and finish time respectively. The third column shows the CPU cycles delivered to 

the Grid between the epoch start time and epoch finish time. For example, here is a part of 

extracted from a trace file: 
Start time End time   CPU cycles Delivered to Grid 
0    1    110653 
1     2     110395 
2     3     110650 
3     4     110653 
4     5     110653 
5     6     110653 
6     7     -1 
7     8     -1 
8     9     -1 
9     10     -1 

 
“0 1 110653” means resource’s CPU Availability (CPU cycles delivered to the Grid) from 
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time 0 to 1 is 110653 and it also indicates resource’s Job Execution Availability is true in that 

period. In “6 7 -1”, CPU Availability is 0 from time 6 to 7 and it indicates resource’s Job 

Execution Availability is false in that period. 

6.1.3 Job Execution Availability Characterisation 

In terms of resource CPU Availability, the publisher provides detailed information in his PhD 

dissertation [Kondo05]. So here only some important points will be summarised: 

First, in terms of Job Execution Availability, resources are volatile during the peak hours in 

every working day except the LRI trace. That means the number of available resources vary a 

lot during the peak hours. According to their statistical results, the mean length of all platforms 

is about 2.6 hours. Even in the most volatile platform – UCB, the availability intervals tend to 

be 10 minutes or greater. 

Second, job failure rates on each platform are correlated with the job size and it can be 

approximated as a linear function of Job Size. Whether a job can be completed or not is directly 

influenced by the length of Availability Intervals. If an Availability Interval is long enough, then 

the job can be completed. Otherwise, the job will be failed before completion. 

In [Kondo05], the authors chose hundreds of thousands of random points in the data traces 

and then allocated random size jobs to the resources at these points. If the allocated jobs can 

finish successfully, then it was counted as a success. Otherwise, it was counted as a failure. 

After producing statistics, the author found that task failure rate has a strong relationship with 

the job size on all platforms and the lowest correlation coefficient is 0.98. 

Third, on all platforms, Job Execution Availability tends to be independent between resources 

used by separate users. The authors studied the correlation of Job Execution Availability 

between paired resources. They used a method proposed in [Bolosky00] to study the 

correlations between resources. Specifically, this method compares the availability for each 

paired resources and see if both resources are available or unavailable at the same time. After 

study, the authors found resources on all four platforms show significant correlation relative to 

random if separate users use the resources. 

If the same user uses multiple resources, e.g. resources with wake-on-LAN enabled Ethernet 

adapters that are controlled by a single network administrator, or resources used to run batch 

jobs, then these resources show strong correlation in terms of Job Execution Availability. 

Fourth, the length of Availability Interval is not correlated with resources’ clock rates. This 

means a resource with high clock rates does not necessarily used more often than a resource 

with a low clock rates. 

Fifth, the length of Availability Interval is not correlated with the percentage of time a 

resource is unavailable. This means resources with high percentage of available time do not 

necessarily have longer availability intervals than resources have low percentage of available 

time. 
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Though plenty of information has been provided in [Kondo05], there is still some important 

characteristics information not provided, especially in terms of Job Execution Availability 

correlations within each single resource. In addition, such kind of information is very important 

to the job-scheduling algorithms proposed in this thesis. Therefore, some detailed information 

about these terms is discussed next.  

There are 80 resources in data set UCB and 10 day’s data are provided in [Arpaci95]. Figure 

6.1 shows the number of available resource over time in 10 days and Figure 6.2 shows the 

average number of available resource over time in this data set. Overall, the number of available 

resources varies between 56 and 78 over time and the average number of available resources 

varies between 65 and 73.  

The variance of the average number of available resources over time is 2.719. According to 

[Kondo05], resources’ Average Availability Interval in UCB is only 0.166 hours and the 

Average Unavailability Interval in UCB is 0.119 hours, which indicates the resources are quite 

volatile (resource’s Job Execution Availability changes between true and false frequently). 

Overall, the total number of Unavailability Events is 6076, which means all resources have 

607.6 Unavailability Events in a day on average and each resource has 7.595 Unavailability 

Events in a day on average. 

 
Figure 6-1: Number of Available Resources for Different Days (UCB) 

 
Figure 6-2: Average Number of Available Resources over Time (UCB) 

There are 244 resources in data set SDSC and 7 day’s data are provided in [Kondo05]. Figure 

6.3 shows the number of available resource over time in 7 days and Figure 6.4 shows the 

average number of available resource over time in this data set. Overall, the number of available 

resources varies between 0 and 155 over time and the average number of available resources 

varies between 74.7 and 115.  

The variance value of average number of available resources over time is 54.375, which 
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indicates the average number of available resource over time is quite unstable. According to 

[Kondo05], resources’ Average Availability Interval in SDSC is 2.034 hours, which indicates 

that the number of Unavailability Events will be lower than UCB. On the other hand, resource’s 

average Unavailability Interval in SDSC is 1.256 hours. Overall, the total number of 

Unavailability Events is 2370, which means all resources have about 339 Unavailability Events 

on average in a day, and each resource has about 1.388 Unavailability Events on average in a 

day, which is lower than the number of Unavailability Events in UCB. 

 
Figure 6-3: Number of Available Resources for Different Days (SDSC) 

 
Figure 6-4: Average Number of Available Resources over Time (SDSC) 

There are 275 resources in data set LRI and 7 day’s data are provided in [Kondo05]. Figure 

6.5 shows the number of available resource over time in 7 days and Figure 6.6 shows the 

average number of available resource over time in this data set. Overall, the number of available 

resources varies between 40 and 109 over time and the average number of available resources 

varies between 73.2 and 95.  

The variance value of the average number of available resources over time is 12.801, which 

indicates the average number of available resources over time is quite unstable. According to 

[Kondo05], resources’ Average Availability Interval in LRI is 23.535 hours, which indicates the 

number of Unavailability Events will be lower than UCB and SDSC. On the other hand, the 

resource’s average Unavailability Interval in LRI is 3.756 hours. Overall, the total number of 

Unavailability Events is 390, which means all resources have about 55.714 Unavailability 

Events on average in a day and each resource has about 0.203 Unavailability Events on average 

in a day, which is much lower than the number of Unavailability Events in UCB and SDSC. 
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Figure 6-5: Number of Available Resources for Different Days (LRI) 

 
Figure 6-6: Average Number of Available Resources over Time (LRI) 

There are 680 resources in data set DEUG and 7 day’s data are provided in [Kondo05]. 

Figure 6.7 shows the number of available resource over time in 7 days and Figure 6.8 shows the 

average number of available resource over time in this data set. Overall, the number of available 

resources varies between 57 and 184 over time and the average number of available resources 

varies between 89.3 and 149.  

The variance value of average number of available resources over time is 254.822, which 

indicates the average number of available resource over time is very unstable. According to 

[Kondo05], resources’ Average Availability Interval in DEUG is 0.477 hours, which indicates 

the number of Unavailability Events is lower than UCB. On the other hand, resource’s average 

Unavailability Interval in DEUG is 0.357 hours. Overall, the total number of Unavailability 

Events is 10764, which means all resources have about 1537.714 Unavailability Events on 

average in a day and each resource has about 2.261 Unavailability Events in a day on average, 

which is lower than the number of Unavailability Events in UCB but higher than SDSC and 

LRI. 

 
Figure 6-7: Number of Available Resources for Different Days (DEUG) 
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Figure 6-8: Average Number of Available Resources over Time (DEUG) 

According to the above, each data set has its own characteristics. For example, they have quite 

different Average Availability Interval and Average Unavailability Interval. For comparison, 

some important results are summarised in Table 6-1. 

Name 
of data 

set 

Total 
number of 
resources 

Number 
of days 

analysed 

Length of 
a data 
trace 

(hours) 

Average 
Availability 

Interval 
(hours) 

Average 
Unavailability 

Interval (hours) 

Variance of 
available 
resources 
over time 

Average number of 
Unavailability 

Events for per day 
for each resource 

UCB 80 10 7 (10am 
to 5pm) 0.166 0.119 2.719 7.595 

SDSC 244 7 8 (9am to 
5pm) 2.034 1.256 54.375 1.388 

LRI 275 7 24 23.535 3.756 12.801 0.203 

DEUG 680 7 12 (6am 
to 6pm) 0.477 0.356 254.822 2.261 

Table 6-1: UCB, SDSC, LRI and DEUG Data Sets 

6.1.4 Job Execution Availability Correlations 

Some job-scheduling and job migration algorithms proposed in Chapter 4 are based on the 

TDE prediction method (described in Section 4.2.1). As discussed in Chapter 5, the accuracy of 

the TDE prediction method is highly reliant on the similarity of Job Execution Availability 

between the Checking Period (the period of availability history used for prediction) and 

Prediction Period (the period to predict). If resources' Job Execution Availability in the 

Prediction Period is similar to the availability in the Checking Period, then the prediction will 

be accurate and helpful for job scheduling. Therefore, to check if each single resource has such 

predictable pattern is important. 

As mentioned in Section 5.2.2, Pearson product-moment correlation coefficient (PMCC) 

[Rodgers88] [Stigler89] is a useful tool to find out the relationships between different days' 

availability pattern for each single resource. If we have a series of n measurements of X and Y 

written as xi and yi where i = 1, 2, ..., n, then the Pearson product-moment correlation coefficient 

can be used to estimate the correlation of X and Y" [PMCC10]. So in the case of prediction, X 

can be considered as the Checking Period and Y can be considered as the Prediction Period. If 

the series values of xi and yi have strong relationship, then the results of PMCC will close to +1 

or -1. On the other way round, if PMCC is close to +1 or -1, then X and Y will have strong 

linear relationship. In other word, If PMCC is close to +1 or -1, then resources' availability is 

more predictable, and prediction results are more useful for job scheduling. As discussed in 

Section 6.1.3, the downloaded data trace files not only records resources’ CPU Availability. 
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Therefore, to calculate the Job Execution Availability, the trace files have been added in a new 

column to show the value of Job Execution Availability clearly. Here is an example: 
Start time   End time    CPU cycles Delivered to Grid    Job Execution Availability 

0   1    110653                         1 
1    2     110653                         1  
2    3     110650                         1 
3    4     110653                         1 
4    5     110653                         1 
5    6     110653                         1 
6    7     -1                              0 
7    8     -1                              0 
8    9     -1                              0 
9    10     -1                              0 

 
If the value of CPU Availability is above 0, then Job Execution Availability is true and it is 

represented by the value of 1. If the value of CPU Availability is below 0, then Job Execution 

Availability is false and the value of Job Execution Availability is 0. A resource's Job Execution 

Availability in a period (e.g. 1 hour, 1 day) can be considered as a series Si . Therefore, the 

correlation between different periods can be calculated. Based on this idea, each the correlation 

coefficient values of each resource’s Job Execution Availability in different days and different 

hours were calculated. 

In brief, the correlation coefficient values between different days were calculated using the 

following method: Firstly, a single resource's availability traces are selected. As mentioned 

above, each resource has n days’ traces and each day’s trace is in a separate file. Next, each 

day's trace is considered as a Daily Series and then the relationships between a pair of series are 

calculated. For example, assume resource i’s availability traces a picked, day1
iS , day2

iS and so on. 

Here, day1
iS means resource i’s Daily Series in day 1, day2

iS means resource i’s Daily Series in 

day 2 and so on. So PMCC of paired series are calculated, e.g. ( day1
iS , day3

iS ), ( day2
iS , day5

iS ) and 

so on. PMCC results of different days are calculated by the Equation 5.1. 

The correlation coefficient values between different hours were calculated with the following 

method: firstly, a single resource's availability traces are picked at a time. Each resource has n 

days’ traces and each day’s trace is in a separate file, which is called Daily Series. A Daily 

Series is composed of a couple of hours’ data (e.g. 9am to 5pm) and each hour’s data is 

considered as an Hourly Sub-Series. Then the relationship between a pair of Hourly Sub-Series 

is calculated. For example, assume the resource i’s availability traces picked are day1
iS , day2

iS and 

so on. day1
iS is composed of hour1 of day1

iS , hour2 of day1
iS , etc and day2

iS is composed of hour1 of day2
iS , 

hour2 of day2
iS , etc. So PMCC of paired Hourly Sub-Series are calculated, e.g. 

( hour1 of day1
iS , hour1 of day2

iS ), ( hour3 of day2
iS , hour3 of day5

iS ) and so on. PMCC results of different hours 

are calculated via Equations 5.1 to 5.3. 

With the PMCC equations, some results about resource availability correlations between 

different days and different hours of a resource have been calculated for the downloaded data 
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sets of UCB, SDSC, LRI and DEUG and important results are summarised. The aim of these 

correlation calculations is to find out if there is any strong correlation between different 

days/hours for each single resource. 

Note here the results of PMCC calculations only include correlations of different data traces 

within a certain resource, not including correlations of different data traces between different 

resources. The reason is because the latter type of calculation has been done by [Kondo05], 

which is briefly described in Section 6.1.3. 

Due to the limitations of PMCC calculation method, it is impossible to calculate PMCC 

results for some Daily Series or Hourly Sub-Series and these Daily Series or Hourly Sub-Series 

are excluded from the PMCC calculation. For a Daily Series or an Hourly Sub-Series, its 

standard deviation can be 0 (such a Daily Series is called Zero Standard Deviation Daily Series 

and such an Hourly Sub-Series is called Zero Standard Deviation Hourly Sub-Series) as the 

value of Job Execution Availability does not change throughout the whole series. For example, a 

resource is not available in a certain day so that Job Execution Availability is in that day will be 

always 0. Such a Zero Standard Deviation Daily Series is called Zero Standard Deviation 

Unavailable Daily Series. Similarly, a resource is not available in a certain hour so that Job 

Execution Availability is in that hour will be always 0. Such a Zero Standard Deviation Hourly 

Sub-Series is called Zero Standard Deviation Unavailable Hourly Sub-Series. On the other hand, 

if a resource is available in a certain day so that Job Execution Availability is in that day will be 

always 1. Such a Zero Standard Deviation Daily Series is called Zero Standard Deviation 

Available Daily Series. Similarly, a resource is available in a certain hour so that Job Execution 

Availability is in that hour will be always 1. Such a Zero Standard Deviation Hourly Sub-Series 

is called Zero Standard Deviation Available Hourly Sub-Series. 

Zero Standard Deviation Daily Series and Zero Standard Deviation Hourly Sub-Series make 

it impossible to calculate PMCC result with Equation 5.1 as the result of standard deviation in 

Equation 5.2 is the denominator in Equation 5.1. Therefore, these Daily Series and Hourly 

Sub-Series are excluded from the PMCC calculation. 

In UCB, each resource has 10 days' data traces so there are 10 data traces to be calculated for 

each resource. Each data trace is called a Daily Series. There are 80 resources in the data set of 

UCB. Overall, there are 800 (80 * 10) series for all 80 resources in the UCB data set. In these 

800 Daily Series, 193 Daily Series are Zero Standard Deviation Daily Series. Therefore, these 

193 Zero Standard Deviation Daily Series are not valid and excluded from the PMCC 

calculations while other 607 series (such a Daily Series is called Non-zero Standard Deviation 

Daily Series) were used. 

Overall, the PMCC results of valid paired Non-zero Standard Deviation Daily Series range 

from -0.59742 to 0.84117 with the mean value 0.06878. Figure 6.9 shows the range of PMCC 

results. 
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Figure 6-9: Daily Series PMCC Range of Results in UCB 

There are a number of ways to interpret the PMCC results in [Kumar06][Simon05] 

[Correlation10][VSS10]. [Cohen88] argues that all criteria are in some ways arbitrary and 

should not be observed too strictly. However, according to [VSS10], “As a rule of thumb, 

correlation coefficients between .00 and .30 are considered weak, those between 0.30 and 0.70 

are moderate and coefficients between .70 and 1.00 are considered high”. Therefore, the PMCC 

interpretation below will use these criteria: if absolute value of PMCC is below 0.3, then the 

correlation is considered as low. If the absolute value of PMCC is between 0.3 and 0.7, then the 

correlation is considered medium. If the absolute value of PMCC is between 0.7 and 1, then the 

correlation is considered high. 

 
Figure 6-10: Daily Series PMCC Distribution in UCB 

Overall, according to Figure 6.10, 85.68% (1927 PMCC results out of 2249) of the absolute 

values of PMCC results are small (below 0.3). 14.10% (317 PMCC results out of 2249) is 

medium (not smaller than 0.3 and below 0.7) and only 0.22% (5 PMCC results out of 2249) is 

large (between 0.7 and 1). Therefore, in data set UCB, most correlations between different 

Non-zero Standard Deviation Daily Series are low for each resource, which means the 

resources’ Non-Zero Standard Deviation Daily Series tend to be independent on different days. 

In UCB, 7 hours’ data (from 10am to 5pm) were recorded for each resource in each day. 

Therefore, a Daily Series can be divided into 7 Hourly Sub-Series. Each single resource is 

available for 10 days so each resource has 70 (10*7) Hourly Sub-Series and all 80 resources 

have 5600 (80*10*7). In these 5600 Hourly Sub-Series, 3057 Hourly Sub-Series' are Zero 

Standard Deviation Hourly Sub-Series and these 3057 sub-series were excluded from the PMCC 

calculations and 2543 Hourly Sub-Series (such an Hourly Sub-Series is called Non-zero 

Standard Deviation Hourly Sub-Series) were used. 
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Figure 6-11: Hourly Sub-Series PMCC Range of Results in UCB 

 
Figure 6-12: Hourly Sub-Series PMCC Distribution in UCB 

According to Figure 6.12, in UCB, 78.17% (5281 PMCC results out of 6756) of all PMCC 

results’ absolute value is below 0.3 (which are considered as low correlations), 20.35% (1375 

PMCC results out of 6756) is below 0.7 (which are considered as medium correlations) and 

1.48% (100 PMCC results out of 6756) is between 0.7 and 1 (which as considered as high 

correlations). Therefore, in data set UCB, most correlations between different Non-zero 

Standard Deviation Hourly Sub-Series are low for each resource, which means the resources’ 

Non-Zero Standard Deviation Hourly Sub-Series tend to be independent in different hours. 

There are 244 resources in data set of SDSC and each resource has 7 days' data traces. For a 

resource, Not every single resource is available for 7 days and there are 1708 data traces (Daily 

Series) overall for 244 resources. In these 1708 Daily Series, 755 Daily Series are Zero Standard 

Deviation Series. Therefore, all these 755 Daily Series were excluded in the PMCC calculations 

while the other 953 Non-zero Standard Deviation Series were included. 

Overall, the PMCC results of Non-zero Standard Deviation Daily Series range from -0.84933 

to 0.98897 with the mean value 0.03628. Similar to UCB, the mean is positive but close to 0. 

Therefore, the correlation between different days' availability pattern is low and positive on 

average in SDSC. Figure 6.13 shows the range of PMCC results. 
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Figure 6-13: Daily Series PMCC Range of Results in SDSC 

According to Figure 6.14, in SDSC, 76.79% (1509 PMCC results out of 1965) of the absolute 

value of PMCC is below 0.3. 21.68% (426 PMCC results out of 1965) is not smaller than 0.3 

and below 0.7 and only 1.53% (30 PMCC results out of 1965) is between 0.7 and 1. Therefore, 

in data set SDSC, most correlations between different Non-zero Standard Deviation Daily Series 

are low for each resource, which means the resources’ Non-zero Standard Deviation Daily 

Series tends to be independent in different days. 

 
Figure 6-14: Daily Series PMCC Distribution in SDSC 

In data set SDSC, 8 hours’ data (from 9am to 5pm) were recorded for each resource in each 

day. Therefore, a Daily Series can be divided into 8 Hourly Sub-Series. As mentioned above, not 

every single resource is available for 7 days and there are 1708 data traces (Daily Series). 

Therefore, there are 13664 (1708*8) Hourly Sub-Series for all 244 resources. In these 13664 

Hourly Sub-Series, 11253 Hourly Sub-Series' are Zero Standard Deviation Hourly Sub-Series. 

Therefore, these 11253 Hourly Sub-Series were excluded from the PMCC calculations and other 

2411 Non-zero Standard Deviation Hourly Sub-Series were used. 

 
Figure 6-15: Hourly Sub-Series PMCC Range of Results in SDSC 
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Figure 6-16: Hourly Sub-Series PMCC Distribution in SDSC

According to Figure 6.16, in SDSC, 45.33% (859 PMCC results out of 1895) of all PMCC 

results’ absolute value is not larger than 0.3 (which are considered as low correlations), 41.48% 

(786 PMCC results out of 1895) is not larger than 0.7 (which are considered as medium 

correlations) and 13.19% (250 PMCC results out of 1895) is between 0.7 and 1 (which is 

considered as high correlations). Therefore, in SDSC, most correlations between different 

Hourly Sub-Series are not high (86.81% results are below 0.7), for each resource, which means 

the resources’ Non-zero Standard Deviation Hourly Sub-Series tend to low small or medium 

correlations in different hours. 

There are 275 resources in the data set of LRI and each resource has 7 days' data traces. 

Therefore, there are 1925 (275*7) data traces (Daily Series) overall for 275 resources. In these 

1925 Daily Series, 1444 Daily Series are Zero Standard Deviation Series. Therefore, these 1444 

Daily Series were excluded from the PMCC calculations and other 481 Daily Series were 

included in the PMCC calculations. 

Overall, the PMCC results of these Non-Zero Standard Deviation Daily Series are ranged 

from -0.98692 to 0.69623 with the mean value -0.19927. Different from UCB and SDSC, the 

mean of PMCC in LRI is negative so this means the correlation between different days' 

availability pattern is a decreasing linear relationships. In addition, the result is also close to 0. 

So this means the correlation between different days' availability pattern tend to be small and 

negative on average in LRI. Figure 6.13 shows the range of PMCC results: 

 
Figure 6-17: Daily Series PMCC Range of Results in LRI 
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Figure 6-18: Daily Series PMCC Distribution in LRI 

Accordingly Figure 6.18, in LRI, 55.86% (205 PMCC results out of 367) of the absolute 

value of PMCC is below 0.3. 22.89% (84 PMCC results out of 367) is not smaller than 0.3 and 

below 0.7 while 21.25% (78 PMCC results out of 367) is between 0.7 and 1. Therefore, in data 

set LRI, most correlations between different Daily Series are low for each resource, which 

means the resources’ Non-zero Standard Deviation Daily Series tends to have low or medium 

correlations in different days. 

In data set LRI, 24 hours’ data were recorded for each resource in each day. Therefore, a 

Daily Series can be divided into 24 Hourly Sub-Series. Therefore, there are 46200 (1925*24) 

Hourly Sub-Series for all 275 resources. In these 46032 Hourly Sub-Series, 45498 Hourly 

Sub-Series' are Zero Standard Deviation Hourly Sub-Series. Therefore, these 45498 sub-series 

were excluded from the PMCC calculations and other 702 sub-series were used. 

Figure 6.19 shows the range of PMCC results: 

 
Figure 6-19: Hourly Sub-Series PMCC Range of Results in LRI 

 
Figure 6-20: Hourly Sub-Series PMCC Results Distribution in LRI 

According to Figure 6.20, in LRI, 30.43% (14 PMCC results out of 46) of all PMCC results’ 
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absolute value is not larger than 0.3 (which are considered low correlations), 52.17% (24 PMCC 

results out of 46) is not larger than 0.7 (which are considered as medium correlations) and 

17.39% (8 PMCC results out of 46) is between 0.7 and 1 (which is considered as high 

correlations). Therefore, in data set LRI, most correlations between different Hourly Sub-Series 

are not high (82.60% results are below 0.7) for each resource, which means the resource 

Non-Zero Standard Deviation Hourly Sub-Series tends to have low or medium correlations in 

different hours. 

There are 680 resources in the data set of DEUG and each resource has at most 7 days' data 

traces. Therefore there are 4760 (680*7) data traces (Daily Series) overall for 680 resources. In 

these 4760 Daily Series, 3041 Daily Series are Zero Standard Deviation Series. Therefore, these 

3041 Daily Series are excluded from the PMCC calculation and other 1719 Daily Series were 

included in the PMCC calculations. 

Overall, the PMCC results of these Non-zero Standard Deviation Daily Series range from 

-0.99302 to 0.99305 with the mean value -0.06560. In DEUG, the mean of PMCC in DEUG is 

negative so this means the correlation between different days' availability pattern is a decreasing 

linear relationships. It is a low correlation on average as it is close to 0. Figure 6.21 shows the 

range of PMCC results. 

 
Figure 6-21: Daily Series PMCC Range of Results in DEUG 

 
Figure 6-22: Daily Series PMCC Results Distribution in DEUG 

According to Figure 6.22, in DEUG, 60.59% (1356 PMCC results out of 2238) of the 

absolute value of PMCC is below 0.3. 35.30% (790 PMCC results out of 2238) is between 0.3 

and 0.7 and only 4.11% (92 PMCC results out of 2238) is between 0.7 and 1. 

In data set DEUG, 12 hours’ data were recorded (6am to 6pm) for each resource in each day. 

Therefore, a Daily Series can be divided into 12 Hourly Sub-Series. Therefore, there are 57120 
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(4760*12) Hourly Sub-Series for all 680 resources. In these 57120 Hourly Sub-Series, 52244 

Hourly Sub-Series' are Zero Standard Deviation Hourly Sub-Series. Therefore, these 52244 

sub-series were excluded from the PMCC calculations and other 4876 Non-Zero Standard 

Deviation Sub-Series were used. 

Figure 6.23 and Figure 6.4 show the range of PMCC results and their distribution, 

respectively. 

 
Figure 6-23: Hourly Sub-Series PMCC Range of Results in DEUG 

 
Figure 6-24: Hourly Sub-Series PMCC Results Distribution in DEUG 

According to the PMCC results shown above, the key points are as follows: 

Firstly, the results show that each data set has its distinct features and the PMCC results have 

different distributions. 

Secondly, though each data set has different features and PMCC results, the PMCC results 

indicate that the correlations between different Non-zero Standard Deviation Daily Series and 

Non-zero Standard Deviation Hourly Sub-Series are generally not high (over 0.7). This means 

the resources’ Non-zero Standard Deviation Daily Series and Non-zero Standard Deviation 

Hourly Sub-Series tends to have low (or even no) correlations in different days. In comparison, 

some important results are summarised in Table 6-2 and 6-3. 
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Name 
of data 

set 

Total number 
of Non-zero 

Standard 
Deviation Daily 

Series 

Minimum 
PMCC 

Maximum 
PMCC 

PMCC 
mean 

Percentage of 
low correlation 
(|PMCC| < 0.3) 

Percentage of 
medium 

correlation 
(|PMCC| > 

0.3|PMCC| < 0.7) 

Percentage of 
high 

correlation 
(|PMCC| >= 

0.7) 

UCB 607 -0.59742 0.84117 0.06878 85.68% 14.10% 0.22% 

SDSC 953 -0.84933 0.98897 0.03628 76.79% 21.68% 1.53% 

LRI 481 -0.98692 0.69623 -0.19927 55.86% 22.89% 21.25% 

DEUG 1719 -0.99302 0.99305 -0.06560 60.59% 35.30% 4.11% 

Table 6-2: Non-zero Standard Deviation Daily Series PMCC Results 

Name 
of data 

set 

Total number of 
Non-zero 
Standard 
Deviation 

Hourly 
Sub-Series 

Minimum 
PMCC 

Maximum 
PMCC 

PMCC 
result 
mean 

Percentage of 
low 

correlation 
(|PMCC| < 

0.3) 

Percentage of 
medium 

correlation 
(|PMCC| > 

0.3|PMCC| < 
0.7) 

Percentage of 
high 

correlation 
(|PMCC| >= 

0.7) 

UCB 2543 -0.92733 0.99070 0.03264 78.17% 20.35% 1.48% 

SDSC 2411 -0.96346 0.99827 0.07701 45.33% 41.48% 13.19% 

LRI 702 -0.77787 0.84494 -0.18391 30.43% 52.17% 17.39% 

DEUG 4876 -0.96379 0.99760 0.00781 73.11% 23.98% 2.91% 

Table 6-3: Non-zero Standard Deviation Hourly Sub-Series PMCC Results 

Day Interval means the intervals of days between two Daily Series. For example, for 

( day2
iS , day5

iS ), Day Interval is 5–2 =3. For ( day1
iS , day3

iS ), Day Interval is 3-1=2. Rho Mean 

calculates the average value of the PMCC results which having the same Day Interval. For 

example, for Rho Mean of Day Interval 8, it aggregates PMCC results of ( day1
iS , day9

iS ) and 

( day2
iS , day10

iS ) and then calculates the average. 

To find out if there is any strong correlation between particular days (e.g. if two Daily Series 

have strong correlation when Day Interval is 5 as they are the same day in different weeks), Rho 

Mean of different Day Interval were calculated and summarised in Table 6-4. 
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Rho Mean of Day Interval X 

Name of data set 

X=1 X=2 X=3 X=4 X=5 X=6 X=7 X=8 X=9 

UCB 0.05030 0.08312 0.06331 0.06440 0.12774 0.03914 0.08232 0.01462 0.07289 

SDSC 0.04604 0.07648 0.06260 0.05324 -0.13735 0.06893 N/A N/A N/A 

LRI -0.01148 -0.37804 -0.32262 0.11189 -0.26969 -0.75934 N/A N/A N/A 

DEUG -0.08830 -0.02766 -0.02788 0.097392 -0.02233 0.05184 N/A N/A N/A 

Table 6-4: Rho Mean of Different Day Intervals 

According to the Day Interval results shown above, the key points are as follows: 

Firstly, the results show that the correlations between particular days are different in each data 

set. 

Secondly, though the correlations are different, the results indicate the correlations are 

generally low (below 0.3) no matter what value Day Interval it is. This indicates that for a 

resource, each day’s Non-zero Standard Deviation Daily Series tends to be independent from 

any other days.  

To find out if there is any regular pattern in Zero Standard Deviation Daily Series and Zero 

Standard Deviation Hourly Sub-Series, another approach was taken. Assuming a given type of 

Zero Standard Deviation Daily Series (either Zero Standard Deviation Available Daily Series or 

Zero Standard Deviation Unavailable Daily Series), two questions are raised. The first one is “is 

this type of Zero Standard Deviation Daily Series or Zero Standard Deviation Hourly Sub-Series 

going to occur again in the following days?” and the second one is “if the answer to the first 

question is yes, then what is the probability that it will occur again tomorrow (the day after 

tomorrow, the same day next week, etc)?” For example, assuming a resource has a Zero 

Standard Deviation Available Daily Series today (the resource is always available so its Job 

Execution Availability is always 1 today), is it possible that the resource is going to have another 

Zero Standard Deviation Available Daily Series (the same type of series) in the following days? 

If it is possible, then what is the probability (called Same Type Series Occurrence Probability) 

that this type of Zero Standard Deviation Available Daily Series will occur again after X days 

(e.g. after 1 day, 7 days, etc)?” If these two questions can be answered, then some relationships 

between Zero Standard Deviation Daily Series and Zero Standard Deviation Hourly Sub-Series 

can be found and this will be helpful for job-scheduling algorithms. For example, if a resource 

has a Zero Standard Deviation Available Daily Series today, and the Same Type Series 

Occurrence Probability after 1 day is 100%, then the job-scheduling algorithm will know this 

resource will be very reliable tomorrow based on today’s observation. 

Therefore, to answer these two questions, some statistical results from each data set are 

collected for Zero Standard Deviation Daily Series and Zero Standard Deviation Hourly 
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Sub-Series. Let Pr(X) denotes the result of Same Type Series Occurrence Probability; Pr(X) can 

be calculated by the following equation: 

Pr(X) = S(X) / T(X)                       (Equation 6.1) 

where S(X) denotes total occurrence times of the same type series after X days and T(X) 

denotes total occurrence times of all types’ series after X days. 

Here, for Daily Series, all types’ series includes Zero Standard Deviation Available Daily 

Series, Zero Standard Deviation Unavailable Daily Series and Non-Zero Standard Deviation 

Daily Series. For Hourly Sub-Series, all types’ series includes Zero Standard Deviation 

Available Hourly Sub-Series, Zero Standard Deviation Unavailable Hourly Sub-Series and 

Non-Zero Standard Deviation Hourly Sub-Series. Table 6-5 through to Table 6-8 summarise 

some statistical results relating to the Same Type Series Occurrence Probability. 

Same Type Series Occurrence Probability after X day(s) 

Name of 
data set 

Total number of 
Non-zero Standard 

Deviation 
Available Daily 

Series X=1 X=2 X=3 X=4 X=5 X=6 X=7 X=8 X=9 

UCB 193 52.87% 41.72% 36.24% 29.32% 33.04% 36.00% 30.86% 27.27% 37.21% 

SDSC 267 50.40% 30.20% 15.45% 0.00% 0.00% 0.00% N/A N/A N/A 

LRI 315 37.96% 38.03% 35.85% 45.71% 31.91% 43.48% N/A N/A N/A 

DEUG 91 18.30% 29.62% 8.33% 0.00% 0.00% 0.00% N/A N/A N/A 

Table 6-5: Zero Standard Deviation Available Daily Series Results 

Same Type Series Occurrence Probability after X day(s) 

Name of 
data set 

Total number of Non-zero 
Standard Deviation 

Unavailable Daily Series 
X=1 X=2 X=3 X=4 X=5 X=6 X=7 X=8 X=9 

UCB 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

SDSC 488 78.05% 68.58% 61.42% 57.65% 48.91% 54.43% N/A N/A N/A 

LRI 1129 83.84% 77.00% 67.29% 62.50% 63.23% 45.00% N/A N/A N/A 

DEUG 2950 81.36% 72.64% 69.60% 71.06% 71.06% 77.29% N/A N/A N/A 

Table 6-6: Zero Standard Deviation Unavailable Daily Series Results 
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Same Type Series Occurrence Probability after X day(s) 
Name 
of data 

set 

Total number of 
Non-zero Standard 
Deviation Available 
Hourly Sub-Series 

X=1 X=2 X=3 X=4 X=5 X=6 X=7 X=8 X=9 

UCB 3052 66.61% 65.11% 63.00% 61.70% 65.10% 60.31% 63.51% 59.57% 64.57% 

SDSC 4247 79.86% 77.02% 71.39% 62.38% 77.19% 54.90% N/A N/A N/A 

LRI 14030 95.73% 94.69% 94.67% 94.78% 93.90% 94.80% N/A N/A N/A 

DEUG 6755 74.31% 74.14% 75.07% 75.08% 75.43% 76.47% N/A N/A N/A 

Table 6-7: Zero Standard Deviation Available Hourly Sub-Series Results 

 

Same Type Series Occurrence Probability after X day(s) 

Name of 
data set 

Total number of Non-zero 
Standard Deviation 
Unavailable Hourly 

Sub-Series 
X=1 X=2 X=3 X=4 X=5 X=6 X=7 X=8 X=9 

UCB 5 0.00% 0.00% 0.00% 0.00% 0.00% N/A 0.00% N/A N/A 

SDSC 7006 82.56% 75.95% 73.58% 71.16% 65.77% 59.70% N/A N/A N/A 

LRI 31468 99.03% 98.40% 97.74% 97.20% 97.56% 96.12% N/A N/A N/A 

DEUG 45489 93.84% 93.47% 93.22% 93.87% 94.07% 95.59% N/A N/A N/A 

Table 6-8: Zero Standard Deviation Unavailable Hourly Sub-Series Results 

According to the results shown above Same Type Series Occurrence Probability, the key 

points can be summarised as follows: 

Firstly, in general, the statistical results show that the Same Type Series Occurrence 

Probability varies from one data set to another.  

Secondly, in some data sets, the results of Same Type Series Occurrence Probability are low 

whilst other data sets have high results of Same Type Series Occurrence Probability. In some 

data sets, the result of Same Type Series Occurrence Probability after 1 day tend to have a 

higher probability than the results Same Type Series Occurrence Probability after any other day 

in some data sets while other data sets have different results. Therefore, it is not straightforward 

to conclude that is Zero Standard Deviation Daily Series and Zero Standard Deviation Hourly 

Sub-Series are predictable or not in general and it is also not straightforward to conclude that 

which day will have a higher result of Same Type Series Occurrence Probability consistently. 
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Chapter 7 Simulation and Evaluation 
This chapter provides details of the simulation set up together with evaluation results for the 

proposed job-scheduling and job migration algorithms in different scenarios. 

7.1 Simulation Environment 
The evaluations were carried out in a discrete-event simulation environment [DES10]. “In 

discrete-event simulation, the operation of a system is represented as a chronological sequence 

of events” and “each event occurs at an instant in time and marks a change of state in the 

system” [Robinson04]. It was developed by the author of this thesis and the source code was 

written in Delphi (Object-Pascal) programming language [Delphi10]. 

7.1.1 Components 

There are five components in the simulation environment: User, Grid Job Scheduler, 

Resource, Job and Event. Figure 7.1 shows the structure of the simulation environment. 

Grid Job 
SchedulerJob 4Job 5Job 6

User 2

Job 7

User m

Job 8

User 1

Resource 2Resource 1 Resource n

Job 9

Job 1 will be 
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Grid Job 
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Job 1

Job 3

Job 2
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Figure 7-1: Structure of the Simulation Environment 

• User 

The User is responsible for generating Jobs and sending them to the Grid Job Scheduler. It is 

defined as a pointer type data in the simulation code. The interval between generating two Jobs 

for a certain User can follow a certain probability distribution, e.g. uniform distribution, negative 

exponential distribution, normal distribution, etc. When a User generates a Job, it firstly 

initialises the parameters for the Job, like Job number, Job size and so on. Then the User will 
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send the generated Job to the Grid Job Scheduler. Later, an Event will be inserted into the Event 

list, which indicates what time the Job will arrive at that Grid Job Scheduler. 

In the simulation code, the User has the following important attributes: 

 User number: This index number identifies each User. 

 User Probability Density Function (PDF) type: This attribute specifies the interval time 

between a User generating two Jobs follows. The PDF type may be uniform, exponential or 

any other PDF type. 

• Grid Job Scheduler 

The Grid Job Scheduler is the core component in the simulation environment. It is defined as 

a pointer type data in the simulation code. It has the following functions: 

1) It receives Jobs sent from the User and allocates the Jobs to Resource according to a certain 

algorithm. For example, the Grid Job Scheduler may assign Jobs to each Resource in turn 

with FCFS algorithm or it may assign Jobs to the Resource according to an AI mechanism 

based algorithm such as FLP. When the Grid Job Scheduler decides to allocate a Job to a 

certain User, it will insert an Event to the Event list, which indicates which Resource the Job 

will be sent to and what time the Job will arrive at the Grid Job Scheduler. 

2) It observes the performance of Resource at regular interval and decides whether to migrate a 

Job from one Resource to another. Details about why and how to migrate a Job is described 

in the Chapter 5. The intervals between two observing time may be uniform or follow a 

probability like Normal distribution. The migration decision can be based on an algorithm 

introduced in Chapter 4. When the Grid Job Scheduler decides to migrate a Job, it will insert 

an Event to the Event list, which indicates which Resource the Job will be migrated to and 

what time the Job will arrive at that Resource. 

In the simulation code, the Grid Job Scheduler has the following important attributes: 

 Resource List: This is a single linked list specifying the Resource which the Grid Job 

Scheduler is connected with. Take Figure 7.1 for example, Grid job scheduler 1 is connected 

with Resource 1 to Resource n, so the linked list has n pointers specifies that it is connected 

with Resource 1 to Resource n. 

 Job List: This is a single linked list specifying the Jobs which have arrived at the Grid Job 

Scheduler but not allocated to Resource yet. Take Figure 7.1 for example, Job 4, Job 5 and 

Job 6 have arrived at the Grid Job Scheduler and they are waiting for allocation. 

• Resource 

The Resource is responsible for processing Jobs allocated by the Grid Job Scheduler. It is 

defined as a pointer type data in the simulation code. The Resource can handle multiple tasks at 

the same time and all the Jobs will be treated equally. Take Figure 7.1 for example, for Resource 
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1, there is only one Job running on it at the moment so the Job will occupy the CPU cycles until 

a new Job comes. For Resource 2, there are 2 Jobs running on it at the moment so these two Jobs 

will share the number of CPU cycles equally. 

In the simulation code, the Resource has the following important attributes: 

 Resource number: This index number identifies each Resource. 

 Resource capability: This attribute specifies the CPU speed of a Resource. It is the 

Resource’s CPU cycles delivered to the Grid at a certain time. 

 Job list: This is a single linked list that lists all the Job(s) being processed by the Resource. 

• Event 

An Event is a discrete time during which something occurs within the simulation and an Event 

list is a single link-list that stores all known Events. The Events are listed in order of Event time. 

When the simulation is running, the execution engine will keep on picking the first Event in the 

Event list and invoking the corresponding Event. For example, if the first Event in the list is a Job 

Creation Event, the execution engine will invoke the procedure of Job Creation to generate a Job 

and the Job generator will be marked as the User that is specified in the Event. When the 

corresponding procedure is finished, the Event will be disposed of and the Event list header will 

point to the next Event. 

As the simulation environment is discrete, the current time is the same as the time specified 

in the first Event. For example, the first Event in the Event list of Figure 7.1 is “Job 1 will be 

completed by Resource 2 at time 1.006”, so when the execution engine picks this Event, the 

current time in the simulation is 1.006. Later, when this Event is finished and the second Event 

“Job 7 will arrive at Grid Job Scheduler at time 3.283”, the current time in the simulation will 

become 3.823. 

The Event list is changed along with the progress of simulation. During the simulation, some 

Events will be executed and disposed of and some other Events will be generated and added to 

the Event list as well. For example, when the first Event “Job 1 will be completed by Resource 2 

at time 1.006” in Figure 7.1 finishes, Job 1 will be completed by Resource 2. As Job 1 is 

finished, Job 3 will occupy Resource 2 solely. Therefore, it is necessary to recalculate the 

completion time of Job 3 and insert an Event to the Event list to specify the time when Job 3 is 

going to be completed. Assume the completion time of Job 3 is 5.509, so the new Event “Job 3 

will be completed by Resource 2 at time 5.509” will be created and inserted to the Event list 

after the Event “Job 7 will arrive at Grid Job Scheduler at time 3.283” and before the Event 

“Job 4 will arrive at Resource 5 at time 5.967”. 

There is a number of Event types used in the simulations as follows: 

1) Job Creation: This Event is used to generate a Job at the specified time given in the Event. 

For example, when the Event “Job 10 will be created by User 1 at time 8.771” in Figure 7.1 
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becomes the first Event in the Event list, the execution engine will invoke the corresponding 

procedure(s) to generate a Job and the generator of the Job will be marked as User 1. 

2) Job Arrive at Grid Job Scheduler: This Event is used to specify the time when a Job arrives 

at the Grid Job Scheduler. For example, when an Event “Job 7 will arrive at Grid Job 

Scheduler at 3.823” becomes the first Event in the Event list, the execution engine will 

invoke the corresponding procedure(s) to move Job 7 to Grid Job Scheduler’s Job list. 

3) Job Arrive at Resource: This Event is used to specify the time when a Job arrives at a 

Resource. For example, when an Event “Job 4 will arrive at Resource 5 at time 5.967” 

becomes the first Event in the Event list, the execution engine will invoke the corresponding 

procedure(s) to move Job 4 to Resource 5’s Job list. 

4) Job Completion: This Event is used to specify the completion time for a Job. For example, 

the “Job 1 will be finished by Resource 2 at time 1.006” in Figure 7.1 is the first Event in the 

Event list, so the execution engine will invoke the corresponding procedures(s) to dispose the 

Job and update the stat information on Resource 1. 

5) Poll Resources: This Event is used to specify the time to poll all Resources. The work 

includes updating some important information of each Resource (such as Resource’s current 

CPU speed, each job’s completion time), collecting some statistical results (such as the 

number of Jobs completed/disposed since last observation) and check if the Jobs on the 

Resource need migration or not. When the Event “Polling Resources at time 10.000” 

becomes the first Event in the Event list, the execution invokes the procedure(s) to poll all 

Resources and make Job migration decisions if necessary. This kind of observation is 

typically carried out at regular interval. 

6) Job Migrated to Resource: This Event is used to specify the time when a Job will be 

migrated and arrived at a new Resource. For example, when the Event “Job 2 will be 

migrated to Resource 2 at time 12.733” becomes the first Event in the Event list, the 

execution engine will invoke the corresponding procedure(s) to remove the Job 12 from 

Resource 2’s Job list and add it to the Resource 1’s Job list. 

7) Observe Grid Job Scheduler: This Event is used to specify the time to observe the Grid Job 

Scheduler. The work includes triggering a Job allocation procedure for the first Job in the 

Job queue, collecting some statistical results (such as the number of Jobs allocated to 

Resources since last observation). For example, when the Event “Observe Grid Job 

Scheduler at time 15.000” becomes the first Event in the Event list, the execution engine will 

invoke the procedure(s) to observe the Grid Job Scheduler. Similar to Poll Resources, this 

kind of observation is carried at regular interval as well. 
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Each Event has the following attributes: 

 Event time: This attribute specifies when the Event is going to happen. 

 Event type: This attribute specifies the type of the Event. It is one of the seven Event types 

that are described earlier in this section. 

 Event place: This attribute specifies where the Event is going to happen, including User, 

Grid Job Scheduler and Resource. 

 User pointer: This pointer points to a User if the Event is related to that User. 

 Grid Job Scheduler pointer: This pointer points to the Grid Job Scheduler if the Event is 

related to the Grid Job Scheduler. 

 Resource pointer: This pointer points to a Resource if the Event is related to that Resource. 

 Job pointer: This attribute specifies the Job pointer if the Event is related to that Job. 

• Job 

The Job is generated by User and processed by the Resource. It is created dynamically and 

referenced via a pointer in the simulation code. It has the following important attributes: 

 Job number: Each Job has a unique number. 

 Current Job size: This attribute records the current Job size of the Job. It is represented 

by a numerical value (the number of CPU cycles to complete the job). 

 Job Completion time: This attribute records the completion time of the Job. 

 Job User number: This attribute records the User number that generated the Job. 

 Job Resource number: This attribute records the Resource number if the Job has already 

allocated to a Resource. 

7.1.2 General Evaluation Approach 

In order to carry out evaluations of the proposed job-scheduling and job migration algorithms, 

a series of simulation experiments were carried out based on the simulation environment 

described in Section 7.1.1. To carry out simulation experiments, availability data traces 

recording resource CPU Availability are required. As discussed in Section 4.2.2, CPU 

Availability indicates current CPU speed (number of CPU cycles delivered to the Grid per 

second) and Job Execution Availability indicates whether jobs are allowed to run on the resource 

or not in that period. In generally, there are two approaches to obtain such data traces: 

The first approach is to create synthetic data traces. In this approach, resources’ availability 

data traces are created artificially. Data can be created quickly and any kind of simulation 

scenarios can be designed accordingly. For example, to simulate a reliable resource, the 
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resource’s CPU Availability can be created to be always above 0. To simulate a powerful 

resource, the resource’s CPU Availability can have very high values. For example, if a Grid is 

composed of reliable/powerful resources, then many reliable/powerful resources can be created. 

However, as the data traces are artificial, they may not be very realistic. Note, some simulations 

with synthetic data traces are provided in appendix B.  

The second approach is to gather availability data traces from real Grid system(s). In this 

approach, the resource availability data traces are collected rather than created. Unlike the first 

approach, it is not straightforward to get data traces and to design simulation scenarios in this 

approach. To collect data traces, the resources have to be monitored and the CPU Availability 

data need to be recorded. In addition, it will be time consuming if a long trace is desired. As 

they are real data traces, to design simulation scenarios, they may have to be processed first. 

Without processing, the resource CPU Availability may not be readily available. For example, 

whether a resource is reliable or powerful is unknown before analysing the collected data traces. 

Therefore, compared with the first approach, it is a more complex and time-consuming. 

However, the data traces represent realistic cases. As each approach has advantages and 

disadvantages, both kinds of data were used in the simulation experiments. 

In terms of synthetic data traces, they are easy to create but not easy to ensure they are 

sensible. Real data traces, are neither straightforward to collect nor easy to ensure that they are 

useful. Therefore, it is important to ensure the collected data traces are collected and processed 

in an appropriate way. Ideal resource data traces were discussed in [Kondo05][Kondo07]. In 

summary, the ideal trace should have the following characteristics: 

Firstly, the trace should accurately record CPU Availability information throughout the 

observation period. Accurate information permits replaying the behaviour of the resource 

accurately, which is especially useful for debugging. 

Secondly, the trace should not just record the CPU Availability when failures occur but also 

the reason for the failure. When a failure occurs, CPU Availability changes to -1 but it does not 

indicate what caused this failure. It could be caused by Events like a resource shutting down, 

network connection failure and user reclaiming the resource. Therefore, if reasons for each 

failure are recorded, it facilitates analysis in terms of statistics and prediction. 

Some assumptions of the simulation environments are also important: 

First, the purpose of simulating with synthetic data is to validate the simulator or to explore 

influences brought about by different parameter settings. To achieve this, typically only a few 

resources are used in such simulations. The main reason for this is to keep the system as simple 

as possible and more clearly observe how different parameter settings influence the system 

performance. For example, if many resources are used and each of them has different patterns in 

terms of CPU Availability, then the system becomes complicated. 

Secondly, the purpose of simulations with real data is to examine the influence of different 
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parameter settings and compare the performance of various job-scheduling algorithms in 

practical scenarios, both for non-prediction and prediction-based algorithms. Therefore, many 

resources are used in such practical scenarios. 

Third, in the simulations with synthetic data, the simulations last the minimum number of 

days. The purpose of this is also to keep the system as simple as possible and clearly show how 

different parameters influence a single resource. In the first day, the TDE prediction method 

(used by the proposed job-scheduling algorithm) does not have any historical data of the 

resource so that it cannot make any prediction based on historical data. Therefore, the TDE 

prediction based algorithms (e.g. the proposed FCFSPP, FLP and PSOPP job-scheduling 

schemes) behave the same as non-prediction based methods (e.g. FCFS job-scheduling 

algorithm). However, in the second day of the simulation, the TDE prediction method now has 

access to historical data. With this data, it can make predictions for the Prediction Period by 

reviewing the Checking Period before job allocations in the second day. Therefore, the 

difference between TDE prediction based algorithms and the FCFS algorithm can be clearly 

observed. 

Fourth, in simulations with both synthetic data and real data, the FCFS algorithm is used for 

comparison. This is mainly because of some of the proposed job-scheduling algorithms 

(FCFSPP and FLP) are based on it. Therefore, it is easy to observe the impact of TDE prediction. 

In addition, previous research [Kondo05][Kondo07] proposes a number of resource 

prioritisation/exclusion methods for job-scheduling in a Grid computing context, especially in 

the Grid context, where utilising volunteered and unreliable resource. According to their results, 

FCFS works relatively well in many scenarios, especially ones where the number of jobs are 

more than the number of resources. 

Fifth, simulations are mainly focused on results not from the first simulation day. This is due 

to Initial Bias. Initial Bias means the system may be in a transition stage at the beginning stage 

of a simulation and the results gathered from this transition stage of simulation may distort the 

results gathered from steady stage. At the beginning stage of a simulation, the job queue of the 

Grid job scheduler is empty and many available resources are idle. Later, as new jobs join the 

job queue of Grid job scheduler and then being allocated to available resources, the simulation 

will gradually enter a steady state in which the job queue of Grid job scheduler may not be 

empty and many available resources may not be idle. Therefore, results gathered from the 

transition stage may be different from the results gathered from the steady stage. For example, if 

the simulation simulates a HTC environment, the job throughput at the transition stage may be 

lower than steady stage as there are not enough jobs for resources to process in the transition 

stage. 

Sixth, in a simulation, each job is assumed to have the same job size (Job Execution Time) 

and the job scheduler when making a job allocation knows the size. This is for the purpose of 
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showing the influence brought by different parameters and factors clearly. If the job size is not 

fixed, the results gathered from a simulation may be affected. In such a case, the influence 

brought by different parameters and factors may be distorted by the influence of unfixed job 

size. However, the job size may vary from one simulation to another. 

Seventh, in the simulation, jobs arrive at the Grid job scheduler at regular and fixed intervals. 

This is for the sake of simplicity and based on the following considerations: 

If a simulation simulates a scenario in which Workload is high (the number of jobs are far 

more than resources), the main focus is on the number of jobs processed and failed in a given 

period. As resources will always have jobs to process, job arrival process will not influence 

these results. 

If a simulation simulates a scenario where the Workload is low, the main focus is on the 

Makespan of each job and the proportion of processed and failed jobs. As the Workload is low 

and the job will not wait at the job queue, each job’s Makespan is hardly influenced by job 

arrival process. In terms of processed and failed jobs, the main focus is on the proportion rather 

than the absolute values of processed and failed jobs. Here, the job arrival process does not 

influence the proportion either. 

Eight, in each simulation, the time required to transfer a job from one component to another 

(e.g. from a user to the Grid job scheduler or from the Grid job scheduler to a resource) is 

assumed to be 0. In practise, it takes some time to transfer a job from one component to another 

in a Grid system and it may affect the results such as job throughput or each job’s Makespan. 

Therefore, the job transmission time in these scenarios are assumed to be 0 to ensure the results 

are not affected by various transmission times. 

Finally, there is some commonality to the experimental setup across the simulations. In the 

following sections, unless stated, the simulations use the setup shown in Table 7-1: 
Name Setting 

Number of User The value is 1 
Number of Grid Job Scheduler The value is 1 

Job Sorting Algorithm First-Come-First-Served 
Number of Checking Days The value is 1 day 

Resource Availability Probability Threshold The value is 100% 
Job Size The value is 10 minutes 

Job Arrival Interval The value is 1 minute 
Length of Checking Period The same as Job Size 
Length of Prediction Period The same as Job Size 

Multiply Factor The value is 1 
Resource Availability Probability Threshold Adjustment Interval in FLP The value is 10 minutes 

Parameter λ in FLP The value is 1 
Number of Particles in PSOPP The value is 10 
The Predefined Goal in PSOPP The fitness value is above 1 

Vmax in PSOPP The value is 10 
Parameter x in PSOPP algorithm The value is 1 
Parameter y in PSOPP algorithm The value is 1 

Table 7-1: Common Experimental Setup for Simulations 
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7.2 Evaluation of FCFSPP Algorithms 

7.2.1 Evaluation of the Number of Checking Days 

To verify the analysis of the Number of Checking Days (abbreviated as N) and examine the 

performance of the FCFSPP algorithm with different Number of Checking Days in practical 

scenarios, a set of simulations are presented in this subsection. In this set of simulations real 

data sets UCB and DEUG are used. As well as the setup shown in Table 7-1, these simulations 

have the experimental setup shown in Table 7-2: 
Name Setting 

Number of Resources 80 in UCB and 680 in DEUG (depends on the available data in the 
downloaded data sets)  

Job-scheduling Algorithm FCFS, FCFSPP 
Number of Checking Days 1, 2, 3, 4, 5 and 6 

Resource Availability Probability 
Threshold The value is 100% 

Length of Simulation 10 days in UCB and 7 days in DEUG (depends on the available data in the 
downloaded data sets) 

Table 7-2: Experimental Setup for Simulations of N 

In the first simulation day, as no historical data is available, the FCFSPP algorithm behaves 

the same as FCFS (for more details about this, please refer to appendix B.I). Therefore, the 

following results are composed of the remaining simulation days. 
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(c) Total Failed Jobs                     (d) Job Success Percentage 

Figure 7-2: Number of Checking Days in UCB and DEUG 

The Total Allocated Jobs shows the total number of job allocated to the resource in all 

simulation days except the first day. According to the Figure 7.2, when N is larger, the algorithm 

becomes more “conservative” and allocates fewer jobs to resources. In data set UCB and DEUG, 

the results of Total Allocated Jobs are 4934 and 6481 respectively when N equals 1. Total 

Allocated Jobs gradually decreases as N increases confirming the analysis. 

The Total Succeeded Jobs shows the total number of jobs processed by the resources in all 

simulation days except the first day. Similar to Total Allocated Jobs, when N increases, the 

resources process fewer jobs as fewer jobs are allocated to them. In data set UCB and DEUG, 
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the results of Total Succeeded Jobs are 2329 and 3359 respectively when N equals 1. Total 

Succeeded Jobs gradually decrease as N increases. These results are directly influenced by the 

result of Total Allocated Jobs. 

Total Failed Jobs shows the total number of jobs failed by the resource in all simulation days 

except the first day. Similar to Total Allocated Jobs and Total Succeeded Jobs, fewer jobs fail to 

finish when N becomes larger. In data set UCB and DEUG, the results of Total Failed Jobs are 

2546 and 2942 respectively when N equals 1. Total Failed Jobs gradually decrease as N 

increases. Again, these results are also directly influenced by the result of Total Allocated Jobs 

and fewer jobs tend to be failed when the FCFSPP algorithm becomes more conservative as N 

becomes larger. 

The Job Success Percentage shows the percentage of job processed successfully among all the 

jobs being processed. Let Sp denotes Job Success Percentage, the result of Spercent can be 

calculated by the following equation: 

Spercent = Stotal / F total * 100%                         (Equation 7.1) 

where S total is Total Succeeded Jobs and Ftotal is Total Failed Jobs. As opposed to Total Allocated 

Jobs, Total Succeeded Jobs, Total Succeeded Jobs and Job Success Percentage all increase 

when N becomes larger. In data set UCB and DEUG, the results of Job Success Percentage are 

47.77% and 44.78% respectively when N equals 1. Then the result of Total Failed Jobs 

gradually increases to 74.17% and 81.34% when N equals 6. This means though Total 

Succeeded Jobs and Total Failed Jobs decrease when N becomes larger; the decreasing rate of 

Total Failed Jobs is much faster than Total Succeeded Jobs. These results show though the 

FCFSPP algorithm becomes more conservative with the increase of N, providing more reliable 

job allocation decisions. 

The results in this section show that in the tested data sets, the cost in terms of Total Allocated 

Jobs and Total Succeeded Jobs can bring benefits in terms of Total Failed Jobs and Increase of 

Job Success Percentage. If more reliable job allocation decisions are desired, then a larger value 

of N is required. 

7.2.2 Evaluation of Resource Availability Probability Threshold T 

To check the analysis about Parameter Resource Availability Probability Threshold T 

(abbreviated as T) and to examine the performance of FCFSPP with different setting of T in 

practical scenarios, a set of simulations scenarios are presented using real data sets UCB and 

DEUG. Besides the setup shown in Table 7-1, these simulations have the experimental setup 

shown in Table 7-3: 
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Name Setting 

Number of Resources 80 in UCB and 680 in DEUG (depends on the available data in the 
downloaded data sets) 

Job-scheduling Algorithm FCFS, FCFSPP 
Number of Checking Days The value is 6 

Resource Availability Probability 
Threshold The value varies from 0% to 100% 

Length of Simulation 10 days in UCB and 7 days in DEUG (depends on the available data in the 
downloaded data sets) 

Table 7-3: Experimental Setup for Simulations of T 

Note the parameter Number of Checking Days here is 6. According to the Figure 7.3, when the 

value of Resource Availability Probability T is 0%, it behaves the same FCFS algorithm as the 

every resource will be qualified as the Resource Availability Probability of each resource cannot 

below 0%. In both data set UCB and DEUG, the allocation decisions are more “conservative” as 

the qualification standard (Resource Availability Probability Threshold) for job allocations 

becomes higher when the value of T increases. Therefore, the result of Total Allocated Jobs tends 

to decrease when the value of T increases. 
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(c) Total Failed Jobs                       (d) Job Success Percentage 

Figure 7-3: Resource Availability Probability Threshold in UCB and DEUG 

Interestingly, the result of Total Allocated Jobs does not always decrease smoothly when the 

value of T becomes larger. For example, in data set UCB, the result of Total Allocated Jobs only 

decreases from 5883 to 5882 when the value of T increases from 20% to 30%. This is because 

of very few resources’ Resource Availability Probability is between 20% and 30%. Setting the 

value of T as 20% or 30% therefore has very little influence to the result of Total Allocated Jobs. 

On the other hand, if many resources’ value of Resource Availability Probability is within a 

small range (e.g. 0% to 10% in Figure 7.3), increasing or decreasing the value of T will have a 

large influence to result of Total Allocated Jobs (the result of the result of Total Allocated Jobs 

decreases from 9897 to 8092 when the value of T increases from 0% to 10% in data set UCB). 

As the number of Total Allocated Jobs tends to drop when T increases, the number of Total 

Succeeded Jobs tends to drop along with the increase of T. In general, Total Succeeded Jobs has 

the similar trend as Total Allocated Jobs and the result of Total Succeeded Jobs decreases when 
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the value of T increases. In addition, the trend does not always smooth due to the same reason 

discussed in the result of Total Allocated Jobs. Again, directly influenced by the result Total 

Allocated Jobs, it has the similar trend as Total Allocated Jobs and Total Succeeded Jobs and the 

result of Total Failed Jobs tend to drop when T increases. In addition, the trend does not always 

smooth due to the same reason discussed in the result of Total Allocated Jobs. 

As opposed to the previous trends, the results of Job Success Percentage become higher when 

T increases. This is because when T increases the rate of Total Failed Jobs reduces slower than 

the rate of Total Succeeded Jobs. This shows the job allocation decisions are more reliable when 

qualification standard is higher (i.e. the value of T becomes higher). 

According to the results in this subsection, different settings of Resource Availability 

Threshold T show that the cost in terms of Total Allocated Jobs and Total Succeeded Jobs can 

bring benefits in terms of Total Failed Jobs and Job Success Percentage. If more reliable job 

allocation decisions are desired, then a larger value of T is required. 

7.2.3 Evaluation of Different Weights on TDE Prediction 

According to Job Execution Availability correlation results shown in Section 6.2, the 

resources’ Job Execution Availability in a certain day tends to be independent if the series are 

Non-zero Standard Deviation Daily Series. For Zero Standard Deviation Daily Series, it is not 

straightforward to consistently judge that which day(s) will have a higher result of Same Type 

Series Occurrence Probability. Therefore, this indicates none of the Checking Days should have 

higher weights than any other Checking Days. However, it is still interesting to confirm whether 

this indication is true. Therefore, a set of simulations with real data is used to check this. 

Two non-equal weight schemes are used as a comparison with the equal weight scheme. Each 

scheme checks the resource’s past 3 days’ Job Execution Availability in the Prediction Period to 

make job allocation decisions. In such a case, the equal weight scheme (Equation 4.2) employs 

the following equation: 

P(r) = 0.33*Pday1(r) + 0.33*Pday2(r) + 0.33*Pday3(r)            (Equation 7.2) 

The two non-equal weight schemes are described as follows: 

Non-equal weight scheme 1: 

P(r) = 0.7*Pday1(r) + 0.2*Pday2(r) + 0.1*Pday3(r)               (Equation 7.3) 
Where day 1 is three days before, day 2 is the day before yesterday and day 3 is yesterday. In 

this scheme, the result of Resource Availability Probability in day 3(yesterday) has the heaviest 

weight while the result of Resource Availability Probability in day 1(two days before) has the 

lightest weight. 

Non-equal weight scheme 2: 

P(r) = 0.1*Pday1(r) + 0.2*Pday2(r) + 0.7*Pday3(r)              (Equation 7.4) 

Where day 1 is three days before, day 2 is the day before yesterday and day 3 is yesterday. In 
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this scheme, the result of Resource Availability Probability in day 1(two days before) has the 

heaviest weight while the result of Resource Availability Probability in day 3(yesterday) has the 

lightest weight. 

In this set of simulations, each simulation lasts for 4 days and the fourth day will be the most 

important day. In the first three days, the prediction method will not have 3 days’ historical data 

to check and this cannot clearly show the differences between the three schemes. In the fourth 

day, the prediction method will have 3 days’ historical data to check and this can show the 

differences between the three schemes. Data taken from data set SDSC and LRI were used for 

the simulations. 10 simulation runs were carried out. Besides this and the setup shown in Table 

7-1, these simulations have the experimental setup shown in Table 7-4: 
Name Setting 

Number of Resources The value is 20 
Job-scheduling Algorithm FCFSPP with 3 different weight schemes 
Number of Checking Days The value is 3 

Resource Availability Probability Threshold The value is 50% 
Length of Simulation 4 simulation days 

Multiply Factor The value is 3 

Table 7-4: Experimental Setup for Simulations of Different Weight Schemes 

In these simulations, the first three simulation days are used to provide historical data and the 

following results are from the fourth simulation days. Three types of results are compared 

among these three schemes in the simulations, including the results of Total Allocated Jobs 

Mean, Total Succeeded Jobs Mean and Total Failed Jobs Mean. Total 

Allocated/Succeeded/Failed Jobs Mean is the average number of Total 

Allocated/Succeeded/Failed Jobs from a number of times simulations.  

According to Figure 7.4, n the simulations with data set SDSC, the three schemes tend to 

have very similar results in terms of Total Allocated Jobs Mean, Total Succeeded Jobs Mean and 

Total Failed Jobs Mean. For example, the results of Total Allocated Jobs Mean are 182.0 (with 

margin of error 9.6), 180.3 (with margin of error (with margin of error 10.8) and 181.3 (with 

margin of error 9.1) in the three schemes respectively, showing the difference of in terms of 

Total Allocated Jobs Mean tends to be small (within 1%). In terms of Total Succeeded Jobs 

Mean and Total Failed Jobs Mean, the differences between these three schemes’ results are 

small as well. The difference between these three schemes is within 2% in both terms of Total 

Succeeded Jobs Mean and Total Failed Jobs Mean). Here the margin of error is calculated by 

the following equation: 

Margin of error = Z * S / n                       (Equation 7.5) 

Where Z-value is 1.96 as 95% confident is required, S is the sample standard deviation and n 

is the sample size. 
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Figure 7-4: Fourth Day Simulation Performance with SDSC 

From Figure 7.5, with data set LRI, the three schemes tend to have very similar results in 

terms of Total Allocated Jobs Mean, Total Succeeded Jobs Mean and Total Failed Jobs Mean as 

well. For example, the results of Total Allocated Jobs Mean are 324.4 (with margin of error 

22.3), 326.8 (with margin of error (with margin of error 21.2) and 323.9 (with margin of error 

21.1) in the three schemes respectively, showing the difference of in terms of Total Allocated 

Jobs Mean tends to be small (within 1%). In terms of Total Succeeded Jobs Mean and Total 

Failed Jobs Mean, the differences between these three schemes’ results are small as well. The 

difference between these three schemes is within 1.5% in terms of Total Succeeded Jobs Mean 

and within 5% in terms of Total Failed Jobs Mean). 
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Figure 7-5: Fourth Day Simulation Performance with LRI 

There are two key observations from the results: 

• The results of each scheme tend to be very similar (the biggest difference in the simulations 

is within 5%). 

• There is no strong indication showing which scheme will perform well. For example, the 

equal scheme has a slightly higher Total Allocated Jobs Mean than the two non-equal 

schemes with data set SDSC, but “non-equal scheme 1” has a higher result than the “equal 

scheme” with data set LRI. 

Therefore, it is not straightforward to judge whether a non-equal weight scheme will be 

consistently better than the equal weight scheme or not. 

7.2.4 Influence of Similarity of Job Execution Availability between Days 

In the analysis of influence of similarity between Checking Period and Prediction Period in 

Section 5.2.2, the similarity level between Checking Period and Prediction Period can be 

represented by PMCC result ρ if they belong to the case shown in Figure 5.7. ρ is calculated by 

Checking Period and Prediction Period and it shows the similarity of Job Execution Availability 
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between Checking Period and Prediction Period. The Checking Period and the Prediction 

Period are known if only the time to a specific job’s Job Execution Time and the time to make 

job allocation decision for the job are known. 

However, for simulations, it is difficult to know the length of Checking Period and Prediction 

Period for each specific job beforehand. One compromise solution is to use the value of ρ 

between Checking Day and Prediction Day instead. As mentioned in Section 4.2.2, Checking 

Period is a period of time in the Checking Day and Prediction Period is a period of time in the 

Prediction Day. In general, if the Job Execution Availability in the Prediction Day is strongly 

correlated with the Job Execution Availability in the Checking Day (the value of ρ is close to +1 

or -1), the Job Execution Availability in the Prediction Period will tend to be strongly correlated 

with the Job Execution Availability in the Checking Period, especially when the Job Execution 

Availability in the Prediction Day is very strongly correlated with the Job Execution Availability 

in the Checking Day (the value of ρ is very close to 1). On the other hand, if the Job Execution 

Availability in the Prediction Day is not correlated with to the Job Execution Availability in the 

Checking Day (the value of ρ is close to 0), the Job Execution Availability in the Prediction 

Period will not tend to be strongly correlated with the Job Execution Availability in the 

Checking Period, especially when the Job Execution Availability in the Prediction Day is 

uncorrelated with the Job Execution Availability in the Checking Day (the value of ρ is very 

close to 0). Therefore, the evaluation of similarity of Job Execution Availability between 

Checking Day and Prediction Day in this section is an approximation to similarity of Job 

Execution Availability between Checking Period and Prediction Period. 

A set of simulations with real data were designed and carried out. The purpose of real data is 

to show how ρ influences the performance of FCFS and the FCFSPP algorithm in real cases, 

which cannot be completely provided by analysis or synthetic data. 

To carry out these simulations, pairs of data traces were extracted from the downloaded data 

set DEUG (discussed in Chapter 6) and categorised by the range of ρ. As mentioned in Chapter 6, 

any paired traces of each resource were calculated and a paired trace has a result of ρ, showing 

the similarity level between these two traces. There are 20 categories in the simulations and the 

range of each category is defined by the value ρ. The ranges of these categories are: -1 to -0.9, 

-0.9 to -0.8 … 0.8 to 0.9 and 0.9 to 1 for each category, 20 paired traces were randomly picked 

except the categories of -1 to -0.9 and 0.9 to 1 as the total number of qualified (the value of ρ is 

within the range) paired traces is less than 20, all available 17 paired traces were used for the 

category of -1 to -0.9 and 18 paired traces were used for the category of 0.9 to 1. For example, if 

the value of a paired trace ( day2
iS , day5

iS ) is 0.55, it could picked and categorised in the category 

of “0.5 to 0.6”. Here, day2
iS means resource i’s data trace in day 2 and day5

iS means resource i’s 

data trace in day 5. 
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If the absolute value of ρ is large (close to +1 or -1), it means the two Daily Series have strong 

positive/negative relationship. If the absolute value of ρ is small (close to 0), it means the two 

Daily Series have weak positive/negative relationship. In these simulations, one Daily Series is 

considered as the resource’s Job Execution Availability data in Checking Day while the other one 

is considered as the resource’s Job Execution Availability data Prediction Day. In the FCFSPP 

algorithm, it checks a resource’s Job Execution Availability in Checking Period (a part of 

Checking Day) and predicts the resource’s Job Execution Availability in the Prediction Period (a 

part of Checking Day) when making job allocation decisions. 

Therefore, these simulations with real data are used to assist the previous analysis (in Section 

5.2.2) and simulations with synthetic data (in Appendix B.I) and to provide more information in 

the cases that synthetic data cannot provide. Besides the setup shown in Table 7-1, these 

simulations have the experimental setup shown in Table 7-5: 
Name Setting 

Number of Resources  17 to 20 (depends on the number of available paired traces) 
Job-scheduling Algorithm FCFS and FCFSPP 

Length of Simulation 2 simulation days 

Table 7-5: Experimental Setup for Simulations of ρ 

In the first simulation day, as no historical data is available, the proposed algorithm behaves 

the same as FCFS (for more details about this, please refer to appendix B.I). Therefore, the 

following results are from the second simulation day: 
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Figure 7-6: Average Allocated Jobs in the Second Simulation Day 

Average Allocated Jobs shows the average number of jobs allocated to each resource in the 

second simulation day. Let Aaverage denotes the number Average Allocated Jobs; the result of 

Aaverage is calculated by the following equation: 

Aaverage = Atotal / n                         (Equation 7.6) 

where Atotal is the total number of jobs allocated to all resources in the second simulation day 

and n is the number of resources. According to Figure 7.6, the results of Average Allocated Jobs 

show the FCFSPP algorithm allocates fewer jobs than FCFS in all simulated cases, especially 

when the absolute value of ρ is small (close to -1). When the absolute value of ρ is small, the 

gap between FCFS and FCFSPP is large. This is because resources tend to be considered as 

unqualified after making prediction method in the FCFSPP algorithm. As a result, to ensure 

reliability, the FCFSPP algorithm does not allocate many jobs to resources in such cases. When 

the absolute value of ρ becomes larger (especially when it is close to 1), the gap between the 
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results of Average Allocated Jobs of FCFSPP and FCFS algorithms tends to be shortened. This 

is because resources tend to be considered as qualified after making prediction method in the 

FCFSPP algorithm. As a result, the FCFSPP algorithm will allocate many jobs to resources in 

such cases. 

Fluctuations occur in both FCFS and the FCFSPP algorithms. However, the reasons for these 

fluctuations are slightly different. For FCFS algorithm, it is because that resources’ available 

time varies in each data trace. For each paired data traces, the value of ρ can only show the 

similarity level of the two traces but ρ cannot show how long the resource is available. However, 

in addition to the value of ρ, resource available time also influences results of Average Allocated 

Jobs. For FCFS algorithm, the longer available period a resource has, the more jobs will be 

allocated to the resources. Therefore, the results of Average Allocated Jobs fluctuate in FCFS 

algorithm. 

For the FCFSPP algorithm, in addition to different resource available time, the fluctuations 

are also caused the following reasons: 

• The method to calculate the value of ρ. As mentioned earlier, the values of ρ are calculated 

for Checking Day and Prediction Day rather than Checking Period and Prediction Period. 

Checking Period and Prediction Period are subseries of Checking Day and Prediction Day 

so the value of ρ between Checking Period and Prediction Period may be different from the 

value of ρ between Checking Day and Prediction Day. 

• The method to categorise the data traces. As mentioned earlier, the paired data traces are 

categorised by the range of ρ (e.g. 0.5 to 0.6) rather than the specific value of ρ (e.g. 0.5). 

This means the paired data traces in the same category has similar value of ρ but may not the 

same value of ρ. For each resource in the same category, different value of ρ may also bring 

different results of Total Allocated Jobs. Therefore, the aggregated results of Total Allocated 

Jobs are influenced.  

• Therefore, this set of simulations mainly focuses on showing the general trends and 

differences between FCFS and the FCFSPP algorithm rather than providing accurate results. 

0

0.2

0.4

0.6

0.8

1

-1
 to

 -0
.9

-0
.9

 to
 -0

.8

-0
.8

 to
 -0

.7

-0
.7

 to
 -0

.6

-0
.6

 to
 -0

.5

-0
.5

 to
 -0

.4

-0
.4

 to
 -0

.3

-0
.3

 to
 -0

.2

-0
.2

 to
 -0

.1

-0
.1

 to
 0

0 
to

 0
.1

0.
1 

to
 0

.2

0.
2 

to
 0

.3

0.
3 

to
 0

.4

0.
4 

to
 0

.5

0.
5 

to
 0

.6

0.
6 

to
 0

.7

0.
7 

to
 0

.8

0.
8 

to
 0

.9

0.
9 

to
 1

Range of ρ

Jo
b 

A
llo

ca
tio

n 
P

ro
po

rti
on

 
Figure 7-7: Job Allocation Proportion in the Second Simulation Day 

Job Allocation Proportion is calculated by Total Allocated Jobs in FCFSPP divided by Total 

Allocated Jobs in FCFS algorithm for each category. Let Aproportion denotes Job Allocation 

Proportion; It is calculated by the following equation: 
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Aproportion  = AFCFSPP / AFCFS                      (Equation 7.7) 

where AFCFSPP is the Total Allocated Jobs in FCFSPP and AFCFSPP is the Total Allocated Jobs in 

FCFSPP. For example, in category “0.9 to 1”, the number of Total Allocated Jobs in the FCFSPP 

algorithm is 49 and the number of Total Allocated Jobs in FCFS is 70, so Job Allocation 

Proportion is 49/70 = 0.7. 

According to Figure 7.7, Job Allocation Proportion is high when the value of ρ is large (above 

0.7). In addition, the value of Job Allocation Proportion tends to become larger when ρ 

increases. The trend of Job Allocation Proportion indicates that the FCFSPP algorithm’s 

performance in terms of allocating jobs tends to be similar to FCFS algorithm when the value of 

ρ becomes larger.  

Average Succeeded Jobs shows the average number of jobs processed by each resource in the 

second simulation day. Let Saverage denotes Average Succeeded Jobs; it is calculated by the 

following equation: 

Saverage = Stotal / N                        (Equation 7.8) 

Where Stotal is Total Succeeded Jobs in the second simulation day and N is the total number of 

resources. According to the analysis in Section 5.2.2, the FCFSPP algorithm does not processing 

higher number of jobs than FCFS algorithm under the same condition. The result in Figure 7.8 

also confirms this. In terms of Average Succeeded Jobs, the FCFSPP algorithm has lower values 

than FCFS in all simulated cases. 
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Figure 7-8: Average Succeeded Jobs in the Second Simulation Day 

In addition, Figure 7.8 shows a trend that the FCFSPP algorithm tends to process more jobs 

when ρ becomes larger. These results also show that the FCFSPP algorithm does not perform 

better than FCFS algorithm in terms of getting jobs processed quickly. The fluctuations can be 

also explained by the three reasons discussed above: different available time in each trace and the 

method to calculate the value of ρ. 

Job Success Proportion is calculated by Total Succeeded Jobs in the FCFSPP algorithm 

divided by Total Succeeded Jobs in FCFS algorithm for each category. Let Sproportion denotes Job 

Success Proportion; it is calculated by the following equation: 

Sproportion = SFCFSPP / SFCFS                                    (Equation 7.9) 

Where SFCFSPP is Total Succeeded Jobs in FCFSPP and SFCFS is Total Succeeded Jobs in FCFS. 

For example, in category “0.9 to 1”, the number of Total Succeeded Jobs in the FCFSPP 
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algorithm is 288 and the number of Total Succeeded Jobs in FCFS algorithm is 342, so Job 

Processed Proportion is 288/342 ≈ 0.842.  

As seen in Figure 7.9, when ρ is small, Job Success Proportion tends to be low and it has the 

trend to become higher when ρ becomes larger. When ρ is higher than 0.5, Job Success 

Proportion increases rapidly and it is over 0.8 when ρ is close to 1. These results show the 

analysis that the FCFSPP algorithm tends to perform as well as FCFS in terms of Job Success 

Proportion when ρ has a high value. The fluctuations can be also explained by the reasons given 

above: insufficient data and the method to calculate the value of ρ. 
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Figure 7-9: Job Success Proportion in the Second Simulation Day 

Average Failed Jobs shows the average number of jobs disposed by each resource in the 

second simulation day. Let Faverage denotes Average Failed Jobs; It is calculated by the following 

equation: 

Faverage = Ftotal / N                       (Equation 7.10) 

Where Ftotal is Total Failed Jobs in the second simulation day and N is the total number of 

resources. In terms of Average Failed Jobs, a job will be failed when an Unavailability Event 

occurs. As FCFS will keeps all the resources busy when the resources are available, so when an 

Unavailability Event occurs, a job will be failed in FCFS algorithm. So the number of Total 

Failed Jobs in FCFS is identical as the number of Unavailability Event in each simulation. In the 

mean while, the FCFSPP algorithm does not always keep the resources busy, so when an 

Unavailability Event occurs, a job will not necessarily be failed in the FCFSPP algorithm. 

When the absolute value of ρ is large (the original value is close to -1 or 1), the number of 

Unavailability Event is lower than the cases when the absolute value of ρ is small (close to 0). 

The number of Average Failed Jobs in FCFS algorithm represents this. According to Figure 7.10, 

the number of Total Failed Jobs in the FCFSPP algorithm also tends to have a high value when 

the absolute value of ρ is small. In all simulated scenarios, the results show FCFS algorithm 

cannot perform better than the FCFSPP algorithm in terms of Average Failed Jobs. 
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Figure 7-10: Average Failed Jobs in the Second Simulation Day 

Job Failure Proportion is calculated by Total Failed Jobs the FCFSPP algorithm divided by 

Total Failed Jobs in FCFS algorithm for each category. Let Fproportion denotes Job Failure 

Proportion; it is calculated by the following equation: 

Fproportion = FFCFSPP / FFCFS                        (Equation 7.11) 

Where FFCFSPP is Total Failed Jobs in FCFSPP and FFCFS is Total Failed Jobs in FCFS. 

For example, in category “0.9 to 1”, the number of Total Failed Jobs in FCFS algorithm is 1 

and the number of Total Failed Jobs in FCFS is 10, so Job Success Proportion is 1/10 = 0.9. 

According to Figure 7.11, Job Failure Proportion fluctuates when ρ varies. The reason of this 

is that Unavailability Event does not occur regularly. For example, for a particular resource, 

assume all Unavailability Events can be predicted and avoided within a short period. So within 

the period, the number of can be varied. It could be a small number and it also could be a very 

large number. Therefore, Job Failure Proportion does not indicate something clearly in such 

cases. 
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Figure 7-11: Job Failure Proportion in the Second Simulation Day 

Still according to the Figure 7.11, when ρ is small, Job Failure Proportion tends to be high 

and it has the trend to become lower when ρ becomes larger. These results show that FCFS 

algorithm cannot perform as well as the FCFSPP algorithm in terms of Job Failure Proportion. 

This difference between FCFS and the FCFSPP algorithm in terms of Job Failure Proportion 

tends to be obvious when ρ has a high value. In addition, the fluctuations can be also explained 

by the two reasons discussed above: different available time in each data trace and the method to 

calculate the value of ρ.  

As seen in Figure 7.12, in terms of Job Success Percentage, the FCFSPP algorithm has higher 

results than FCFS in most cases. The exceptions occur when the original value of ρ is small 

(below 0 and close to -1). This shows the FCFSPP algorithm can make reliable decisions – higher 

percentage of allocated jobs can be completed successfully in most cases, especially when the 
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value of ρ is high. When the value of ρ is small, the historical data actually become misleading 

for TDE predictor in the FCFSPP algorithm as the behaviour in the Prediction Period will 

significantly different from the Checking Period in such cases. Therefore, job allocation 

decisions based on misleading information cannot be very reliable. 
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Figure 7-12: Job Success Percentage in the Second Simulation Day 

As mentioned above, the fluctuations always occur in different results. To see if these 

fluctuations can be mitigated and clearer trends be obtained by more runs of simulations, some 

simulation replications for some categories have been taken. In the simulated 20 categories, 

only 5 of them (-0.2 to -0.1, -0.1 to 0, 0 to 0.1, 0.1 to 0.2 and 0.2 to 0.3) have more than 

200-paired data traces (this is shown in Figure 6.22). As one simulation uses 20 paired data 

traces, 9 replications (so the total number of simulations for one category is 10 times) are 

carried out for these 5 categories. The result of Total Allocated Jobs Mean is added and 

subtracted by the margin of error. Here, the result collected from each simulation is considered 

as a sample and the margin of error for the sample average.  

According Figure 7.13, the fluctuations in results of Average Total Allocated Jobs tend to 

narrow after replications. However, it does not show a clear trend that the gaps between 

FCFSPP and FCFS tend to be closer when the absolute value of ρ becomes larger (approaches 

to 1) in these 5 simulated categories. On the other hand, it indicates the gaps between the results 

of Total Allocated Jobs Mean of FCFSPP and FCFS tend to be unpredictable when the two 

Daily Series have a very weak relationship (in these 5 simulated cases, the absolute value of ρ is 

below 0.3). 
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Figure 7-13: Total Allocated Jobs with Margin of Error in the Second Simulation Day 

According to Figure 7.14, in terms of Total Succeeded Jobs Mean, it does not show a clear 

trend that the gaps between FCFSPP and FCFS tend to be closer when the absolute value of ρ 

becomes larger (approaches to 1) in these 5 simulated categories either. Similar to the results of 

Average Total Allocated Jobs, it indicates that the gaps between the results of Average Total 
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Succeeded Jobs of FCFSPP and FCFS tend to be unpredictable when the two Daily Series have 

a very weak relationship. In addition, it also indicates FCFSPP tends to perform worse than 

FCFS algorithm in terms of Average Total Succeeded Jobs in all simulated scenarios. 
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Figure 7-14: Total Succeeded Jobs with Margin of Error in the Second Simulation Day 

As seen in Figure 7.15, in terms of Total Failed Jobs Mean, it does not show a clear trend that 

the gaps between FCFSPP and FCFS tend to be closer when the absolute value of ρ becomes 

larger (approaches to 1) in these 5 simulated categories either. As with the results of Total 

Allocated Jobs Mean and Average Total Succeeded Jobs, it indicates the gaps between the 

results of Total Failed Jobs Mean of FCFSPP and FCFS tend to be unpredictable when the two 

Daily Series have very weak relationship. In addition, it also indicates FCFS tends to perform 

worse than the FCFSPP algorithm in terms of Total Failed Jobs Mean in all simulated scenarios. 
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Figure 7-15: Total Succeeded Jobs with Margin of Error in the Second Simulation Day 

7.3 Evaluation of FLP Algorithm 
To show the performance of the FLP algorithm and check the difference between FCFS, FLP 

and the FCFSPP algorithm, a set of simulations with real data were carried out. Besides the 

setup shown in Table 7-1, these simulations have the experimental setup shown in Table 7-6: 
Name Setting 

Number of Resources  17 to 20 (depends on the number of available paired traces) 
Job-scheduling algorithm FCFS, FCFSPP and FLP 

Length of Simulation 2 simulation days 

Table 7-6: Experimental Setup for Simulations of FLP 

According to Figure 7.16, in terms of Total Allocated Jobs, the result of the FLP algorithm is 

always between FCFS and the FCFSPP algorithm. Furthermore, the result of Total Allocated 

Jobs is closer to FCFS algorithm in all simulation scenarios and this indicates the value of 

Resource Availability Probability Threshold tend to be low (so it behaves more like FCFS 

algorithm) in all simulation scenarios. 
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Figure 7-16: Total Allocated Jobs in the Second Simulation Day 

As can be seen from Figure 7.17, the result of Total Succeeded Jobs in the FLP algorithm is 

always between FCFS and the FCFSPP algorithm and it is closer to FCFS algorithm in all 

simulation scenarios. 
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Figure 7-17: Total Succeeded Jobs in the Second Simulation Day 

As seen in Figure 7.18, the result of Total Succeeded Jobs in the FLP algorithm is always 

between FCFS and the FCFSPP algorithm in most simulation scenarios. According to the 

analysis in Section 5.3, the results of the FLP algorithm in terms of speed and reliability are 

generally supposed to between FCFS and the FCFSPP algorithm. However, interestingly, the 

result of Total Failed Jobs is even higher than FCFS, the FLP algorithm performs even worse 

than FCFS algorithm in some scenarios (e.g. in the simulation scenario “0.1 to 0.2” and “-0.7 to 

-0.6”). 
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Figure 7-18: Total Failed Jobs in the Second Simulation Day 

This could be explained by making job allocations at different times. For example, assume a 

resource is available for 60 minutes in the Prediction Period and 30 minutes in the Checking 

Period and a job waiting for allocation also lasts for 60 minutes. For FCFS algorithm, it always 

allocates the job to the resource. As the resource will available for 60 minutes, the job will be 

completed successfully. For the FCFSPP algorithm, as the resource’s Resource Availability 

Probability is 50% (30/60 = 50%), it will not allocate the job to the resource during the hour. 

Therefore, the job will not be failed either. However, for the FLP algorithm, it may also refuse 
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to allocate the job to the resource for a while (e.g. 10 minutes) as the Resource Availability 

Probability Threshold is high in this period (e.g. the Resource Availability Probability Threshold 

can be 60% for the first 10 minutes). However, after this period, the Resource Availability 

Probability Threshold might be reduced (e.g. reduced to 30%). Now if the FLP algorithm tries 

to allocate the job to this resource again, as the resource’s Resource Availability Probability is 

33.3% ((30-10)/60 = 33.3%), it will allocate the job to the resource now. However, this job will 

be failed as the resource will not available for one hour now (60-10=50 minutes), the job will be 

failed. 

This exceptional case can be called as Failure of Delayed Job Allocation Decision, which 

means job failures are caused by the delayed job allocation decision. When the resource is 

considered as unqualified and the job will not be allocated to the resource, the resource may be 

actually qualified at that moment. When the resource is considered as qualified later and the job 

is allocated to the resource, the resource may have already become unqualified. However, this 

case does not occur frequently and only arises due to the following conditions: 

• The resource is considered as unqualified firstly. This will only occur if system is facing 

case 2 and 3 (the cases described in section 5.2.2). 

• After being considered as unqualified, the resource is considered as qualified soon after 

(before the job is allocated to another resource). This requires the Resource Availability 

Probability Threshold reduces quickly enough to let this resource becomes qualified soon. 

• Normal job allocation decisions will not result in a job failure while Delayed Job Allocation 

Decision results in a job failure. 

• The resource is being considered as the resource candidate for the same job again after the 

Resource Availability Probability Threshold has been lowered. This requires the job to have 

not been allocated to another resource yet. 

In addition, the results show this case does not occur frequently as the result of Total Failed 

Jobs in the FLP algorithm is below the performance of the FCFS algorithm in most cases. 

Figure 7.19 shows that FLP is usually between FCFS and FCFSPP in terms of Job Success 

Percentage. However, the FLP algorithm has the lowest Job Success Percentage some 

simulation scenarios. This is due to Failure of Delayed Job Allocation Decisions. 
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Figure 7-19: Job Success Percentage Comparison 

According to the simulation scenarios with real data, the FLP algorithm’s Total Succeeded 
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Jobs, Total Failed Jobs and Job Success Percentage are typically between FCFS and FCFSPP. 

However, in these simulation scenarios, it does not manage to obtain a better performance than 

FCFS or FCFSPP, as FLP cannot achieve a higher Job Success Percentage than other two 

algorithms in these scenarios. The reason for this is that the patterns of all resources’ Job 

Execution Availability tend to be dissimilar (as shown in Chapter 6), that is employing the Job 

Execution Availability from some resources does not necessarily provide a good indication for 

all resources. 

7.4 Evaluation of the PSOPP Algorithm 
To evaluate the performance of the PSOPP algorithm and check the analysis (discussed in 

Section 5.4), some simulations have been designed and carried out. 

7.4.1 Influence of Workload 

As discussed in Section 5.4.2, the PSOPP algorithm will be influenced by different level of 

Workload. Therefore, a set of simulations with synthetic data is used to check the influences. 

Besides the setup shown in Table 7-1, these simulations have the experimental setup shown in 

Table 7-7: 
Name Setting 

Number of Resources  The value is 1 
Job-scheduling algorithm FCFS, FCFSPP, FLP and PSOPP 

CPU Availability of the resource 1GHz 

t1 
24 hours (resource is available throughout the first 

simulation day) 

t2 
24 hours (resource is available throughout the second 

simulation day) 
Job Size 12 hours 

Job Arrival Interval in simulation scenario 1 The value is 16 hours 
Job Arrival Interval in simulation scenario 2 The value is 12 hours 
Job Arrival Interval in simulation scenario 3 The value is 8 hours 
Resource Availability Probability Threshold 

Adjustment Interval The value is 1 hour 

Number of Iteration in PSOPP The value is 1 
Length of simulation 2 simulation days 

Table 7-7: Experimental Setup for Simulations of Different Workload in PSOPP 

These three simple but representative scenarios show the influence of Workload. In these 

simulation scenarios, there is only one resource and the resource is always available in the two 

simulation days. As there is only one resource, the PSOPP algorithm will always allocate the 

new jobs to the resource. The only difference between these two scenarios is that the job 

creation interval (the same as job arrival interval). A job arrives at the Grid job scheduler every 

16 hours, 12 and 8 hours in these three scenarios respectively. This represents three levels of 

Workload: low, medium and high. For comparisons, FCFS, FCFSPP and the FLP algorithms are 

used in the simulations. Note no job is created in the first simulation day in these simulation 

scenarios. Therefore, the resource will be idle at the beginning of the second simulation day. 
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Figure 7-20: Total Allocated Jobs in the Second Simulation Day 

Figure 7.20 shows the results of Total Allocated Jobs of each algorithm in the second 

simulation day. In terms of Total Allocated Jobs, the possible highest result is 3. In simulation 

scenario 3, a job arrives at the Grid job scheduler every 8 hours. Therefore, 3 jobs (excluding 

the last one arrives just at the end of the second simulation day) will arrive at the Grid job 

scheduler in the second simulation day. 

For FCFS algorithm, it only allocates a new job to the resource when the resource is idle. As 

each job lasts for 12 hours in these simulation scenarios, the resource will be idle for 2 times 

(including the last time just at the end of the second simulation day) in the second simulation 

day, the result of Total Allocated Jobs is 2 in simulation scenario 2 and 3. In simulation scenario 

1, the number of Total Allocated Jobs is 1 as the Workload is low (job arrives every 16 hours). 

For the FCFSPP and the FLP algorithms, they only allocate a new job to the resource when 

the resource is idle and the resource’s Resource Availability Probability is not below the 

predefined Resource Availability Probability Threshold. In these simulation scenarios, the 

resource is always available so the Resource Availability Probability is not below the predefined 

Resource Availability Probability Threshold all the time. Therefore, FCFSPP and FLP always 

allocate a new job to the resource when the resource becomes idle in these simulation scenarios. 

As each job lasts for 12 hours in these simulation scenarios, the resource will be idle for 2 times 

(including the last time just at the end of the second simulation day) in the second simulation 

day, the result of Total Allocated Jobs is 2 in simulation scenario 2 and 3. In simulation scenario 

1, the number of Total Allocated Jobs is 1 as the Workload is low (job arrives every 16 hours). 

For the PSOPP algorithm, it allocates a new job to the resource when the resource is 

available. As the resource is always available in three simulation scenarios, PSOPP always 

allocates new jobs to the resource. As a result, PSOPP always have the possible highest result of 

Total Allocated Jobs in these three simulation scenarios. 
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Figure 7-21: Total Succeeded Jobs in the Second Simulation Day 



 

  

148 

Figure 7.21 show the results of Total Succeeded Jobs of each algorithm in the second 

simulation day. In terms of Total Succeeded Jobs, the possible highest result is 2 as a job last for 

12 hours. 

For FCFS, FCFSPP and the FLP algorithm, they have the highest result in terms of Total 

Succeed Jobs in simulation scenario 2 and 3 as it always has a job to process at a time. In 

simulation scenario 1, they do not have the highest result in terms of Total Succeed Jobs as the 

Workload is low (the resource is left idle for 4 hours).        

For the PSOPP algorithm, it has the highest results in terms of Total Succeed Jobs in 

simulation scenario 2. In this scenario, the Workload is medium and the PSOPP algorithm keeps 

the resource has job and only one job to process at a time. In simulation scenario 1, as for FCFS, 

it does not have the highest result in terms of Total Succeed Jobs as the Workload is low (the 

resource is left idle for 4 hours). In simulation scenario 3, it does not have the highest result as 

the Workload is high and the PSOPP algorithm keeps the resource have more than 1 job for 16 

hours. 
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Figure 7-22: Job Process Percentage in the second simulation day 

Figure 7.22 show the results of Job Process Percentage of each algorithm in the second 

simulation day. Job Process Percentage shows the percentage of jobs processed by all resources 

in a given period. Let Ppercentage denotes Job Process Percentage; calculated by the following 

equation: 

Ppercentage = (Stotal + Ftotal) / Atotal * 100%               (Equation 7.12) 

Where Stotal is Total Succeeded Jobs, Ftotal is Total Failed Jobs and Atotal is Total Allocated Jobs. 

For FCFS, FCFSPP and the FLP algorithms, they have the high results (it is 100% in these three 

simulation scenarios) in terms of Job Process Percentage as it always keep the resource has at 

most one job at a time rather than multiple jobs at a time.        

For the PSOPP algorithm, it has the highest results in terms of Job Process Percentage in 

simulation scenario 1 and 2. In these scenarios, the Workload is not high and the PSOPP 

algorithm keeps the resource has job and only one job to process at a time. In simulation 

scenario 3, it does not have the highest result as the Workload is high and the PSOPP algorithm 

keeps the resource have more than 1 job for 16 hours. 
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Figure 7-23: Average Job Makespan in the Second Simulation Day 

Figure 7.23 show the results of Average Job Makespan of each algorithm in the second 

simulation day. Average Job Makespan describes the average time to complete a job. Let Maverage 

denotes Average Job Makespan; It is calculated by the following equation: 

Maverage = 

S

j
j=1

S

M∑
                         (Equation 7.13) 

where Mj is the Makespan of job j and S is Total Succeeded Jobs so far. 

For FCFS, FCFSPP and the FLP algorithms, the result of Average Job Makespan is always 12 

hours in these three simulation scenarios as each job will occupy the CPU cycles of the resource 

solely if it is allocated to the resource. 

For the PSOPP algorithm, the result of Average Job Makespan is 12 hours simulation 

scenario 1 and 2 as each job is occupy the CPU cycles of the resource solely if it is allocated to 

the resource in these two scenarios. In simulation scenario 3, the result of Average Job 

Makespan is 16 hours as multiple jobs have to share the CPU cycles of the resource for some 

time. 

According to the above results, the performances of the PSOPP algorithm under different 

Workload levels are presented. In brief, the PSOPP algorithm’ result of job throughput tends to 

be low if the Workload is low or high. The PSOPP algorithm’s result of Average Job Makespan 

tends to be long if the Workload is high. 

In addition, these results also show some differences between the algorithm using the 

approach of allocating jobs to idle resources and the algorithm using the approach of allocating 

jobs to available resources, especially when Workload is high. If Workload is high, the 

algorithm using the approach of allocating jobs to available resources is influenced greatly in 

terms of speed. 

7.4.2 Influence of PSO Fitness Function 

As discussed in Section 5.4.3, the PSOPP algorithm will be influenced by the correctness 

level of fitness function. Therefore, a set of simulations with synthetic data and representative 

scenarios are used to check the influence of the PSO fitness function. Besides the setup shown 

in Table 7-1, these simulations have the experimental setup shown in Table 7-8: 
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Name Setting 
Number of Resources  The value is 2 

Job-scheduling algorithm FCFS, FCFSPP, FLP and PSOPP. 

CPU Availability of resource 1 In simulation scenario 1, it is always 2GHz. In simulation scenario 2, it is 
2GHz at first but becomes 1GHz after 12 hours in the second simulation day 

CPU Availability of resource 2 In simulation scenario 1, it is always 1GHz. In simulation scenario 2, it is 
1GHz at first but becomes 2GHz after 12 hours in the second simulation day 

t1 24 hours (resource is available throughout the first simulation day) 
t2 24 hours (resource is available throughout the second simulation day) 

Job Size 12 hours if CPU Availability is always 2GHz and 24 hours if CPU 
Availability is always 1GHz 

Job Arrival Interval The value is 12 hours 
Resource Availability Probability 

Threshold Adjustment Interval The value is 1 hour 

Number of Iteration in PSOPP The value is 1 
Length of simulation The value is 48 hours 

Table 7-8: Experimental Setup for Simulations of Fitness Function of PSOPP 

These are two simple but representative scenarios to show how the correctness level of the 

fitness function influences the PSOPP algorithm. In the first simulation scenario, both resources’ 

CPU Availability does not change in the two simulation days. In such a case, the fitness function 

is supposed to represent the fitness value of both resources correctly. In the second simulation 

scenario, both resources’ CPU Availability changes in the middle of second simulation days. In 

such a case, the fitness function is supposed to represent the fitness value of both resources 

correctly. 

For comparisons, FCFS, FCFSPP and the FLP algorithms are used in the simulations. The 

results from the second simulation day are focused here as FCFSPP, FLP and the PSOPP 

algorithm use the TDE prediction method (TDE prediction method needs historical data and the 

first simulation day’s data is considered as the historical data here).  
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Figure 7-24: Total Succeeded Jobs in the Second Simulation Day 

Figure 7.24 show the results of Total Succeeded Jobs of each algorithm in the second 

simulation day. In terms of Total Succeeded Jobs, the possible highest result is 2 as a job last for 

12 hours. 

For FCFS, FCFSPP and the FLP algorithms, they do not have the highest result in terms of 

Total Succeeded Jobs in simulation scenario 1 as the second job is not allocated to the more 

powerful resource. At the beginning of second simulation day, the first job will be allocated to 

resource 1 as resource 1 is the first resource in the resource list. The first job will be finished by 

resource 1 after 12 hours. After 12 hours, the second job arrives and it will be allocated to 

resource 2 as resource 2 is the first resource in the resource list. The second job will not be 
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finished by resource 2 after 12 hours as it has low CPU Availability (the CPU availability of 

resource 2 is 1GHz and it requires 24 hour to finish a job). 

The FCFS, FCFSPP and FLP algorithms have the highest result in terms of Total Succeed 

Jobs in simulation scenario 2 as the first two jobs are allocated to the more powerful resource. 

At the beginning of second simulation day, the first job will be allocated to resource 1 as 

resource 1 is the first resource in the resource list. The first job will be finished by resource 1 

after 12 hours. After 12 hours, the second job arrives and it will be allocated to resource 2 as 

resource 2 is the first resource in the resource list. 

For the PSOPP algorithm, it has the opposite results to FCFS algorithm in terms of Total 

Succeeded Jobs in these two scenarios. PSOPP has the highest result in terms of Total 

Succeeded Jobs in simulation scenario 1 as both jobs are allocated to the more powerful 

resource. At the beginning of the second simulation day, the first job will be allocated to 

resource 1 as resource 1’s fitness value is higher than resource 2’s. The first job will be finished 

by resource 1 after 12 hours. After 12 hours, the second job arrives and it will still be allocated 

to resource 1 as resource 1 has a higher fitness value than resource 2. The second job will be 

finished by resource 2 after 12 hours as well. 

PSOPP has the highest result in terms of Total Succeeded Jobs in simulation scenario 1 as the 

second job is allocated to the more powerful resource. At the beginning of the second simulation 

day, the first job will be allocated to resource 1 as resource 1’s fitness value is higher than 

resource 2’s. The first job will be finished by resource 1 after 12 hours. After 12 hours, the 

second job arrives and it will still be allocated to resource 1 as resource 1 has a higher fitness 

value than resource 2. However, the CPU Availability of resource 1 changes to 1GHz after the 

job is allocated to resource 1. Therefore, the second job will not be finished by resource 1 after 

12 hours. 
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Figure 7-25: Job Process Percentage in the Second Simulation Day 

Figure 7.25 show the results of Job Process Percentage of each algorithm in the second 

simulation day. Similar to the result of Total Succeeded Jobs, FCFS, FCFSPP, FLP have the 

highest result in terms of Job Process Percentage in simulation scenario 2 as the first two jobs 

are allocated to the more powerful resource. At the beginning of second simulation day, the first 

job will be allocated to resource 1 as resource 1 is the first resource in the resource list. The first 

job will be finished by resource 1 after 12 hours. After 12 hours, the second job arrives and it 
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will be allocated to resource 2 as resource 2 is the first resource in the resource list. 

The PSOPP algorithm has the highest result in terms of Total Succeeded Jobs in simulation 

scenario 1 as the second job is allocated to the more powerful resource. At the beginning of 

second simulation day, the first job will be allocated to resource 1 as resource 1’s fitness value is 

higher than resource 2’s. The first job will be finished by resource 1 after 12 hours. After 12 

hours, the second job arrives and it will still be allocated to resource 1 as resource 1 has a higher 

fitness value than resource 2. However, the CPU Availability of resource 1 changes to 1GHz 

after the job is allocated to resource 1. Therefore, the second job will not be finished by resource 

1 after 12 hours. 

According to the above results, the correctness level of the fitness value will influence the 

performance of the PSOPP algorithm in terms of Total Succeeded Jobs and Job Process 

Percentage here). If the fitness function can represent fitness values of each solution correctly, 

the job allocation decisions based on the correct fitness value will perform well in terms of 

speed and it will better than a job-scheduling algorithm with Checking if Qualified approach 

(represented by FCFS, FCFSPP and the FLP algorithm), such as simulation scenario 1. 

But on the other hand, if the fitness function cannot represent fitness values of each solution 

correctly, the job allocation decisions based on the correct fitness value will not be able to 

perform well in terms of speed and/or reliability and it will worse than job-scheduling 

algorithms with Checking if Qualified approach, such as simulation scenario 2. 

7.5 Evaluation of PSPP Migration Algorithm 
To examine the performances of the Periodical Scanning with Predictor Migration Algorithm 

(PSPP), especially in terms of predicting Unavailability Events of resources, a set of simulations 

have been designed and carried out. 

The examination method works as follow: At regular intervals, the Grid job scheduler uses 

PSPP algorithm to check each currently available resource’s availability history and predict the 

Resource Availability Probability of each resource in the Prediction Period. Note here the Grid 

job scheduler focus on the resources which are currently available because only those currently 

available resources may have jobs and the jobs might need proactive migration as a result of 

potential Unavailability Events. For those currently unavailable resources, no job is running on 

them so it is no need to worry about job migration consequently. 

After making a prediction for a particular resource, the prediction result shows the Resource 

Availability Probability of the resource in the Prediction Period. If a resource’s Resource 

Availability Probability is lower than 100%, then it means the resource is predicted to have an 

Unavailability Event (the resource will become unavailable) at some time during the Prediction 

Period. In such a case, a job migration is considered to be necessary. If a resource’s Resource 

Availability Probability is 100%, then it means the resource is predicted to be staying available 
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throughout the Prediction Period. In such a case, a proactive migration is not considered to be 

necessary. 

With the prediction results, the Grid job scheduler checks if the prediction results are correct 

after the Prediction Period. For example, assume an Prediction Period lasts for time P and the 

PSPP prediction algorithm makes a prediction at time Tcurrent, then the Grid job scheduler will 

check the predictions at time Tcurrent + P. 

Three terms describing a prediction result introduced in Section 5.5.2 are used to describe 

whether a prediction result is correct or not: Correct Prediction Type 1, False Alarm and Missed 

Detection. Note here Correct Prediction Type 2 is not used for evaluating the performance of 

prediction result as the evaluation is mainly focused on whether the prediction method can 

detect Unavailability Events correctly. 

A set of simulations with real data were used to show the performance of PSPP algorithm in 

practical scenarios. In this set of simulation, data sets UCB, SDSC, LRI and DEUG were used. 

To test the accuracy of prediction algorithm in with different Prediction Period P, the 

parameter of Prediction Period (the same length as Migration Prediction Interval) were set as 1, 

5 and 10 minutes in different series of simulations. The reason for choosing these values is for 

the consideration of job migration procedure. According to previous research 

[Ma00][Bouchenak00b], a job migration is expected to finished between a couple of seconds 

and a couple of minutes. Therefore, if the Prediction Period (abbreviated as P) is too short (e.g. 

1 second), the Grid job scheduler will not be able to have enough time to finish the procedure of 

job migration. On the other hand, if P is too long (e.g. 1 hour), some idle CPU cycles of the 

resources may be wasted as a result of migration too early. Therefore, making prediction for the 

next couple of minutes should be a suitable range of time. 

To test the influence brought by the parameter Number of Checking Days (abbreviated as N), 

the parameter was varied from 1 to 6 in different simulations. 

In this set of simulations, two extra results are used to represent the performance of the 

prediction algorithm. The first one is Unavailability Event Detection Percentage. Let Dpercent 

denotes Unavailability Event Detection Percentage; it is calculated by the following equation: 

Dpercent = Ctype1 / Utotal * 100%                    (Equation 7.14) 

where Ctype1 is total number of Correct Predictions Type 1 and Utotal is the total number of 

Unavailability Events (equals Total Number of Correction Prediction Type 1 + Total Number of 

Missed Detection). According to Equation 7.14, to what extent the prediction algorithm can 

detect all Unavailability Events can be tested. 

The second equation is Correct Prediction Percentage. Let Cpercent denotes Correct Prediction 

Percentage; it is calculated by the following equation: 

Cpercent = Ctype1 / (Ctype1 + Ftotal) * 100%                (Equation 7.15) 

where Ctype1 is is total number of Correct Predictions Type 1 and Ftotal is the total number of 
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False Alarm. According to Equation 7.15, to what extent the prediction algorithm can make 

correct predictions can be tested. 

7.5.1 Evaluation with Data Set UCB 

UCB contains 10 days’ availability data and there are 6076 Unavailability Events overall. 

However, as the prediction algorithm needs past 1 day’s availability history to make prediction 

and the prediction algorithm does not have any availability history in the first day, the prediction 

algorithm does not make any prediction in the first day consequently. Therefore, 460 

Unavailability Events which occur in the first day were excluded from the examination. As a 

result, 5616 Unavailability Events which occur in the rest 9 days were used for the examination. 

In general, there are two trends shown in Figure 7.26: firstly, the results of Correct Prediction 

Type 1 and False Alarm increase while the result of Missed Detection decreases along with the 

increase of N. Secondly, the result of Correct Prediction Type 1 increases while the results of 

Missed Detection and False Alarm decrease along with the increase of P. 

For Correct Prediction Type 1, it has the lowest result 149 when N=1 (day) and P=1 (minute). 

When N increase to 6 (days) and P increases to 10 (minutes), the result of Correct Prediction 

Type 1 also increases to 3644. According to the analysis in Section 5.4, this can be explained by 

the reason that the Checking Period has been lengthened so it is more likely to have at least one 

Unavailability Event in the Checking Period. 

For Missed Detection, it has the highest result 5927 when N=1 (day) and P=1 (minute). When 

N increase to 6 (days) and P increases to 10 (minutes), the result of Correct Prediction Type 1 

decreases to 2432. This can be explained by the increase of Correct Prediction Type 1. As the 

total number of Unavailability Event is fixed (it is 6076 in UCB). Therefore, opposite to 

Correction Prediction Type 1, if the result of Correction Prediction Type 1 increases, the result 

of Missed Detection will decrease. 

For False Alarm, it has the lowest result 3592 when N=1 (day) and P=10 (minutes). When N 

increase to 6 (days) and P decreases to 1 (minute), the result of False Alarm increases to 18567. 

The result of False Alarm increasing with the increase of N can be explained by the reason that 

the Checking Period has been lengthened so it is more likely to have at least one Unavailability 

Event in the Checking Period. The result of False Alarm decreasing with the increase of P can 

be explained by the reason that the Prediction Period has been lengthened so it is more likely to 

have at least one Unavailability Event in the Prediction Period. 
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(d) Unavailability Event Detection Percentage      (e) Correct Prediction Percentage 

Figure 7-26: Effect of Different Values of N and P in UCB 

The results of Unavailability Event Detection Percentage increase along with the increase of 

N and P. It has the lowest result 2.58% when N=1 (day) and P=1 (minute). When N increases to 

6 (days) and P increases to 10 (minutes), the result of Unavailability Event Detection 

Percentage increases to 64.89%. The result of Unavailability Event Detection Percentage 

increasing with the increase of N and P can be explained by the reason that the increase of 

Correction Prediction Type 1. 

For P=5 and P=10, the result of Correct Detection Ratio decreases along with the increase of 

N and decreases of P. It has the highest result 30.94% when N=1 (day) and P=10 (minutes). 

When N increase to 6 (days) and P decreases to 5 (minutes), the result of Correct Prediction 

Percentage decreases to 16.57%. The result of Correct Detection Ratio decreasing with the 

increase of N can be explained by the reason that the increase of Correction Prediction Type 1 is 

slower than the increase of False Alarm when N increases. The result of Correct Detection Ratio 

increases with the decrease of P can be explained by the reason that the increase of Correction 

Prediction Type 1 is slower than the increase of False Alarm when N increases, especially in the 

case when P decreases. 

For P=1, the result of Correct Detection Ratio increases along with the increase of N when N 

changes from 1 to 5. When N=1 and N=5, the result of Correct Detection Ratio is 3.24% and 

3.58% respectively. When N=6, the result of Correct Detection Ratio is 3.49%. The result of 
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Correct Detection Ratio increases with the decrease of P when N change from 1 to 5 can be 

explained by the reason that the increase of Correction Prediction Type 1 is faster than the 

increase of False Alarm when N increases. However, later, when N changes from 5 to 6, the 

increase of Correction Prediction Type 1 is slower than the increase of False Alarm so the result 

of Correct Detection Ratio decreases consequently. 

According to the above results, if P increases, the performance of PSPP algorithm improves 

as both results of Unavailability Event Detection Percentage and Correct Detection Ratio 

increases. However, for parameter N, if the value of N increases, it is difficult to say the 

performance of PSPP algorithm improves as the result of Unavailability Event Detection 

Percentage increases but Correct Detection Ratio decreases. 

7.5.2 Evaluation with Data Set SDSC 

SDSC contains 7 days availability data and there are 2370 Unavailability Event overall. 

However, as for UCB, as the prediction algorithm needs past 1 day’s availability history to make 

prediction and the prediction algorithm does not have any availability history in the first day, the 

prediction algorithm does not make any prediction in the first day consequently. Therefore, 506 

Unavailability Events, which occur in the first day, were excluded from the examination. As a 

result, 1864 Unavailability events that occur in the remaining 6 days were used for the 

examination.  

There are two trends shown in Figure 7.27: firstly, the results of Correct Prediction Type 1 

and False Alarm (though it is not very obvious in this data set) increase while the result of 

Missed Detection decreases along with the increase of N. Secondly, the result of Correct 

Prediction Type 1 increases while the results of Missed Detection and False Alarm decrease 

along with the increase of P. 

For Correct Prediction Type 1, it has the lowest result 29 when N=1 (day) and P=1 (minute). 

When N increase to 6 (days) and P increases to 10 (minutes), the result of Correct Prediction 

Type 1 also increases to 306. According to the analysis in Section 5.4, this can be explained by 

the reason that the Checking Period has been lengthened so it is more likely to have at least one 

Unavailability Event in the Checking Period. 
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 (d) Unavailability Event Detection Percentage     (e) Correct Prediction Percentage 

Figure 7-27: Effect of Different Values of N and P in SDSC 

For Missed Detection, it has the highest result 2280 when N=1 (day) and P=1 (minute). When 

N increase to 6 (days) and P increases to 10 (minutes), the result of Correct Prediction Type 1 

decreases to 2064. This can be explained by the increase of Correct Prediction Type 1. As the 

total number of Unavailability Event is fixed (it is 1864 in SDSC). Therefore, opposite to 

Correction Prediction Type 1, if the result of Correction Prediction Type 1 increases, the result 

of Missed Detection will decrease. 

For False Alarm, it has the lowest result 951 when N=1 (day) and P=10 (minutes). When N 

increase to 6 (days) and P decreases to 1 (minute), the result of False Alarm increases to 4317. 

The result of False Alarm increasing with the increase of N can be explained by the reason that 

the Checking Period has been lengthened so it is more likely to have at least one Unavailability 

Event in the Checking Period. The result of False Alarm decreasing with the increase of P can 

be explained by the reason that the Prediction Period has been lengthened so it is more likely to 

have at least one Unavailability Event in the Prediction Period.                                  

The results of Unavailability Event Detection Percentage increase along with the increase of 

N and P. It has the lowest result 1.56% when N=1 (day) and P=1 (minute). When N increase to 

6 (days) and P increases to 10 (minutes), the result of Unavailability Event Detection 

Percentage increases to 16.42%. The result of Unavailability Event Detection Percentage 

increasing with the increase of N and P can be explained by the reason that the increase of 



 

  

158 

Correction Prediction Type 1. 

The result of Correct Detection Ratio decreases along with the increase of N and decreases of 

P. It has the highest result 9.17% when N=1 (day) and P=10 (minutes). When N increase to 6 

(days) and P decreases to 1 (minutes), the result of Correct Prediction Percentage decreases to 

2.04%. The result of Correct Detection Ratio decreasing with the increase of N can be explained 

by the reason that the increase of Correction Prediction Type 1 is slower than the increase of 

False Alarm when N increases. The result of Correct Detection Ratio increases with the 

decrease of P can be explained by the reason that the increase of Correction Prediction Type 1 is 

slower than the increase of False Alarm when N increases, especially in the case when P 

decreases. 

7.5.3 Evaluation with Data Set LRI 

LRI contains 7 days’ availability data and there are 390 Unavailability Events overall. 

However, as the prediction algorithm needs past N days availability history to make a prediction 

and the prediction algorithm does not have any availability history in the first day, consequently 

the prediction algorithm does not make any predictions in the first day. Therefore, 45 

Unavailability Events, which occur in the first day, were excluded from the examination. As a 

result, 345 Unavailability Events that occur in the remaining 6 days were used for the 

examination.  

Different from data set UCB and SDSC, there is no obvious trend along with the change of N 

and P in some results shown in Figure 7.28. 

For Correct Prediction Type 1, it has the lowest result 1 when and P=1 (minute) and P=5 

(minutes) no matter how the number N changes. When P=10 (minutes), the result of Correct 

Prediction Type 1 is 2 no matter how the number of N changes. This can be explained by the 

reason that the relationship of Job Execution Availability between Checking Period and 

Prediction Period is very weak (which is detailed described in Section 6.2.3) so that it is 

difficult to have Unavailability Event both in Checking Period and Prediction Period.  

For Missed Detection, it has the highest result 344 when and P=1 (minute) and P=5 (minutes) 

no matter how the number N changes. When P=10 (minutes), the result of Missed Detection is 

343 no matter how the number of N changes. As the total number of Unavailability Event is 

fixed, the change of Missed Detection is directly influenced by the change of the result of 

Correct Prediction Type 1. 
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 (d) Unavailability Event Detection Percentage     (e) Correct Prediction Percentage 

Figure 7-28: Effect of Different Values of N and P in LRI 

For False Alarm, it has the lowest result 247 when N=1 (day) no matter how the number P 

changes. When N increase to 6 (days), the result of False Alarm increases to 900 no matter how 

the number P changes. The result of False Alarm increasing with the increase of N can be still 

explained by the reason of weak relationship of Job Execution Availability between Checking 

Period and Prediction Period. 

The result of Unavailability Event Detection Percentage has no obvious trend along with the 

change of N and P. It has the lowest result 0.29% when P=1 (minute) and P=5 (minutes) no 

matter how the number N changes. When P=10 (minutes), the result of Unavailability Event 

Detection Percentage is 0.22%. The result of Unavailability Event Detection Percentage can be 

explained by the reason that the nearly unchanged result of Correct Prediction Type 1 and 

Missed Detection. 

The result of Correct Detection Ratio decreases along with the increase of N and decreases of 

P. It has the highest result 0.80% when N=1 (day) and P=10 (minutes). When N increase to 6 

(days) and P decreases to 1 (minutes), the result of Correct Prediction Percentage decreases to 

0.40%. The result of Correct Detection Ratio decreasing with the increase of N can be explained 

by the reason that the increase of Correction Prediction Type 1 is slower than the increase of 

False Alarm when N increases. The result of Correct Detection Ratio increases with the 

decrease of P can be explained by the reason that the increase of Correction Prediction Type 1 is 
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slower than the increase of False Alarm when N increases, especially when P decreases. 

7.5.4 Evaluation with Data Set DEUG 

DEUG contains 7 days’ availability data and there are 9764 Unavailability Events overall. 

However, as the prediction algorithm needs past N days availability history to make predictions 

and the prediction algorithm does not have any availability history in the first day, consequently 

the prediction algorithm does not make any predictions in the first day. Therefore, 2235 

Unavailability Events, which occur in the first day, were excluded from the examination. As a 

result, 7529 Unavailability Events that occur in the remaining 6 days were used for the 

examination.  

As for data set DEUG, there are two trends shown in Figure 7.29: firstly, the results of 

Correct Prediction Type 1 and False Alarm (though it is not very obvious in this data set) 

increase while the result of Missed Detection decreases along with the increase of N. Secondly, 

the result of Correct Prediction Type 1 increases while the results of Missed Detection and False 

Alarm decrease along with the increase of P. 

For Correct Prediction Type 1, it has the lowest result 104 when N=1 (day) and P=1 (minute). 

When N increase to 6 (days) and P increases to 10 (minutes), the result of Correct Prediction 

Type 1 also increases to 1802. According to the analysis in Section 5.4, this can be explained by 

the reason that the Checking Period has been lengthened so it is more likely to have at least one 

Unavailability Event in the Checking Period.  

For Missed Detection, it has the highest result 28392 when N=1 (day) and P=1 (minute). 

When N increase to 6 (days) and P increases to 10 (minutes), the result of Correct Prediction 

Type 1 decreases to 4844. This can be explained by the increase of Correct Prediction Type 1. 

As the total number of Unavailability Event is fixed (it is 7529 in DEUG). Therefore, opposite 

to Correction Prediction Type 1, if the result of Correction Prediction Type 1 increases, the 

result of Missed Detection will decrease. 

For False Alarm, it has the lowest result 9660 when N=1 (day) and P=10 (minutes). When N 

increase to 6 (days) and P decreases to 1 (minute), the result of False Alarm increases to 7962. 

The result of False Alarm increasing with the increase of N can be explained by the reason that 

the Checking Period has been lengthened so it is more likely to have at least one Unavailability 

Event in the Checking Period. The result of False Alarm decreasing with the increase of P can 

be explained by the reason that the Prediction Period has been lengthened so it is more likely to 

have at least one Unavailability Event in the Prediction Period.                                  
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 (d) Unavailability Event Detection Percentage     (e) Correct Prediction Percentage 

Figure 7-29: Effect of Different Values of N and P in DEUG 

The results of Unavailability Event Detection Percentage increase along with the increase of 

N and P. It has the lowest result 1.38% when N=1 (day) and P=1 (minute). When N increase to 

6 (days) and P increases to 10 (minutes), the result of Unavailability Event Detection 

Percentage increases to 23.93%. The result of Unavailability Event Detection Percentage 

increasing with the increase of N and P can be explained by the reason that the increase of 

Correction Prediction Type 1. 

The result of Correct Detection Ratio decreases along with the increase of N and decreases of 

P. It has the highest result 16.03% when N=1 (day) and P=10 (minutes). When N increase to 6 

(days) and P decreases to 1 (minutes), the result of Correct Prediction Percentage decreases to 

0.81%. The result of Correct Detection Ratio decreasing with the increase of N can be explained 

by the reason that the increase of Correction Prediction Type 1 is slower than the increase of 

False Alarm when N increases. The result of Correct Detection Ratio increases with the 

decrease of P can be explained by the reason that the increase of Correction Prediction Type 1 is 

slower than the increase of False Alarm when N increases, especially when P decreases. 

7.5.5 Summary 

The results of Unavailability Events Detection Ratio and Correct Prediction Percentage are 

relative low (lower than 30%) in most cases, especially in the case of LRI. Though some results 
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of Unavailability Events Detection Ratio are over 60% in some cases of UCB, the results of 

Correct Prediction Percentage are still quite low in such cases. For example, in UCB, when the 

parameter Checking Days N equals 6 and Prediction Period is 10 minutes, Unavailability 

Events Detection Ratio is 64.89%. This means 64.89% Unavailability Events can be detected by 

the prediction algorithm and the other 35.11% Unavailability Events cannot. Furthermore, 

Correct Prediction Percentage is 30.94%, which means only 30.94% predictions are Correct 

Prediction while the other 69.06% predictions are False Alarms. 

Therefore, in these four data sets, if this prediction algorithm is used to make proactive 

migration decisions, it can make Correct Predictions and trigger proactive migration decisions 

to help avoid potential job failures to some extent. For example, it can help avoid 64.89% 

Unavailability Events in UCB. However, in the meanwhile, many unnecessary migration 

decisions will be triggered by False Alarms and many necessary migrations cannot be triggered 

as a result of Missed Detections. For example, 69.06% predictions are False Alarms in UCB and 

35.11% Unavailability Events cannot be detected by the prediction algorithm. 

7.6 Evaluation of CBR Migration Algorithm 
To examine the accuracy of the CBR migration algorithm and to compare CBR migration 

with the proposed PSPP migration algorithm in real Grid environments, a set of simulations 

were designed and carried out with the downloaded data sets UCB, SDSC, LRI and DEUG. 

The examination method used by CBR migration algorithm can be described as follows: 

Every 10 minutes, the Grid job scheduler uses CBR migration algorithm to check each available 

resource’s current CPU Availability Percentage to predict at regular interval. If a resources’ If a 

resource’s Resource Availability Probability is lower than the predefined CPU Migration 

Threshold, then it means the resource is predicted to have an Unavailability Event at some time 

during the Prediction Period. Here, the length of Prediction Period is 10 minutes and the 

prediction interval is also 10 minutes. After making predictions, CBR migration algorithm will 

review the accuracy of these predictions after the Prediction Period and adjust the CPU 

Migration Threshold with the value of Adjustment Percentage. In this set of simulations, the 

maximum value of Adjustment Percentage is ± 5% and the initial value of CPU Migration 

Threshold is 25%. As the Adjustment Percentage is a random value uniformly distributed 

between [-5%, 5%], the simulations for each data set have been run for 3 replications and the 

results shown in this section will be the average results of the 3 replications. 

The terms describing a prediction result in Section 5.5.2 are used to describe whether a 

prediction result is correct or not, including Correct Prediction Type 1, False Alarm and Missed 

Detection. Here are some important results from the simulations and the results from PSPP 

algorithm are also put together for comparison: 
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Figure 7-30: Comparison of PSPP and CBR Algorithms 

According to Figure 7.30, the results Correct Prediction Type 1, Missed Detection and False 

Alarm gathered from PSPP and CBR vary from one data set to another in general. For example, 

in data set UCB, PSPP algorithm’s result of Correct Prediction Type 1 is 3644 while CBR 

algorithm’s result of Correct Prediction Type 1 is only 130.8 (average results from 5 

replications), which means PSPP algorithm can predict 3644 Unavailability Events out of 5616 

in data set UCB while CBR algorithm can only predict 130.8 Unavailability Events out of 5616 

on average in data set UCB. 

But in data set LRI, PSPP algorithm’s result of Correct Prediction Type 1 is 2 while CBR 

algorithm’s result of Correct Prediction Type 1 is only 213.4 (average results from 5 

replications), which means PSPP algorithm can only predict 2 Unavailability Events out of 345 

in data set UCB while CBR algorithm can predict 213.4 Unavailability Events out of 345 on 

average in data set UCB. 

This is because of different characteristics of each data set and different prediction 

approaches used by the migration method. For example, if a resource’s CPU Availability in 

different days is strongly correlated, the PSPP migration algorithm tends to perform well as the 

prediction method in PSPP algorithm can observe the pattern of CPU Availability from past 

days and then make correct predictions. If a resource’s CPU Availability Percentage usually 

decreases to a low level before becoming unavailable, CBR migration tends to perform as well 

as the prediction methods in the CBR algorithm can observe this change and then make correct 

predictions. Therefore, it is not straightforward to judge which migration method is better as it is 

highly reliant not only on the characteristics of the resources but the characteristics of the 

resources in a data set tend to be different from resources in another data set and even the 

characteristics of a resource in a data set tends to be different from another resource in the same 

data set. 
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Chapter 8 – Discussion, Conclusion and Future Work 
8.1 Discussion 

In this thesis, job-scheduling and migration algorithms have been proposed, analysed and 

evaluated. The general performance of each algorithm under different situations is now briefly 

summarised. 

In terms of job-scheduling, FCFSPP, FLP and the PSOPP algorithms have been proposed: 

• FCFSPP is a job-scheduling algorithm based on a basic FCFS algorithm that leverages the 

TDE prediction method for improving reliability with little cost in terms of speed.  

According to the analysis in Section 5.2, validation in Appendix B.I and evaluation work 

shown in Section 7.2, this algorithm works well in scenarios where Workload is high (the 

number of jobs exceeds the number of resources) and each resource’s Job Execution 

Availability possesses a pattern that can be observed by the TDE prediction scheme. In such 

cases, the FCFSPP algorithm performs well both in terms of speed and reliability. In terms 

of speed, job throughput can be maximised by allocating jobs to qualified resources. In 

terms of reliability, potential job failures can be avoided by not allocating job to unqualified 

resources. 

If the Workload is low, the FCFSPP algorithm’s performance in terms of speed is affected 

as it may not be able to find the most suitable resources for jobs1. Furthermore, if each 

resource’s Job Execution Availability does not have a regular pattern or the predictor cannot 

observe the pattern effectively, the performance in terms of reliability is affected, too. 

• FLP is a job-scheduling algorithm based on FCFSPP and a Fuzzy Inference System to 

adjust setting of Resource Availability Probability Threshold to achieve a balance between 

speed and reliability. 

According to the analysis in Section 5.3, validation in Appendix B.II and evaluation work 

given in Section 7.3, this algorithm works well if the pattern(s) of all resources’ Job 

Execution Availability is similar as Job Execution Availability on some resources will 

provide good indications of the behaviour of all resources. In such cases, the FLP algorithm 

can provide a good balance between speed and reliability as the Fuzzy Inference System can 

learn2 from the indications about the change of resources’ Job Execution Availability 

pattern and then response to the change quickly and correctly. 
                                                      

1  This is because FCFSPP uses the Checking If Qualified approach, checking one idle resource at a 
time, when trying to make job allocation decisions. Therefore, it may not be able find the most 
powerful resources for jobs. This can be improved by using the Finding the Best approach, checking 
multiple resources at a time when trying to make job allocation decisions. However, Finding the Best 
approach only helps in cases where the Workload is low. 

2  The fuzzy inference system makes adaptations in response to observations. The fuzzy inference 
system is based on fuzzy logic as described in Section 4.2.4. In the proposed algorithm, the system 
adjusts the Resource Availability Probability Threshold based on the value of Disposed Jobs Dots. 
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If the pattern(s) of all resources’ Job Execution Availability is dissimilar, the FLP 

algorithm finds it difficult to provide a good balance between speed and reliability as Fuzzy 

Inference System may not be able to learn something correctly. 

• PSOPP is a job-scheduling algorithm based on the PSOPP algorithm and uses TDE 

prediction. As discussed in Section 5.2.1 and 5.3.1, FCFSPP and FLP always try to allocate 

a new job to the next idle resource (which is called Checking If Qualified). Different from 

these Checking If Qualified algorithms, PSOPP is a type of Finding the Best algorithm (i.e. 

it will try to find out the “best” resource from some candidates) and all available resources, 

not necessarily idle ones, will be candidates when the job allocation decision is being made. 

Therefore, if the Workload is high, the PSOPP algorithm may allocate jobs to busy 

resources and cause a resource to have more than one job at a time. As discussed in Section 

5.2.1, allowing a resource to have more than one job at a time may cause the PSOPP 

algorithm to perform poorly in terms of speed and reliability. In terms of speed, placing 

multiple jobs on a single resource increases each job’s Makespan and the job throughput 

becomes lower. In terms of reliability, if the resource becomes unavailable before the jobs 

complete, then multiple jobs will be failed at a time. 

If the Workload is low, the PSOPP algorithm will not have to allocate new jobs to busy 

resources. In such cases, if PSOPP algorithm can identify the resource with most powerful 

CPU and adequate reliability with its fitness function, then the algorithm can perform well 

in both terms of speed and reliability.  

Table 8-1 compare these three proposed job-scheduling algorithms. 
Name Advantages Disadvantages 

FCFSPP 

If the Workload is high and each resource has its 
own regular pattern(s) in terms of Job Execution 
Availability, FCFSPP can make reliable job 
allocation decisions and have a high job 
throughput. 
Secondly, the increase of Resource Availability 
Probability Threshold and Number of Checking 
Days makes FCFSPP more conservative, but this 
conservativeness permits more reliable job 
allocation decisions to be made. 

If the Workload is not high or each resource does 
not have its own regular pattern(s) in terms of Job 
Execution Availability, FCFSPP can make reliable 
job allocation decisions and have a high job 
throughput at the same time. 
 

FLP 

If the pattern(s) of all resources’ Job Execution 
Availability is similar, the Fuzzy Inference System 
can observe the changes of some resources’ Job 
Execution Availability and achieve a higher job 
throughput than FCFSPP whilst still making 
reliable decisions. 

If the pattern(s) of all resources’ Job Execution 
Availability is dissimilar, the Fuzzy Inference 
System cannot observe the changes of some 
resources’ Job Execution Availability and achieve a 
higher job throughput than FCFSPP whilst still 
making reliable decisions. 

PSOPP 

If the Workload is not high and if PSOPP can 
identify the resource with powerful CPU and 
adequate reliability, then PSOPP can get shorter job 
makespan than FCFSPP and FLP whilst still 
making reliable job allocation decisions. 

If the Workload is high or if PSOPP cannot identify 
the resource with powerful CPU and adequate 
reliability, then PSOPP cannot get shorter job 
makespan than FCFSPP and FLP whilst still 
making reliable job allocation decisions. 

Table 8-1: Comparison of Proposed Job-Scheduling Algorithms 

In terms of job migration algorithms, especially proactive migration, Periodical Scanning 

with Predictor (PSPP) and Case Based Reasoning (CBR) algorithms have been proposed: 
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• The PSPP algorithm is based on scanning resources periodically and judging whether job(s) 

on each resource need to be migrated using TDE prediction. The objective of this algorithm 

is to help job-scheduling in terms of improving reliability – reducing the number of job 

failures caused by resource unavailability. 

According to the analysis in Section 5.5, validation in Appendix B.III and evaluation 

work shown in shown in Section 7.5, this migration algorithm works well if each resource’s 

Job Execution Availability possesses a regular pattern that can be observed by the predictor. 

This is similar to FCFSPP and FLP job-scheduling schemes as they all use the TDE 

prediction method. If each resource’s Job Execution Availability is irregular the PSPP 

algorithm’s performance deteriorates, as the TDE prediction method does not work well in 

such cases. 

• CBR migration is a job migration algorithm that observes the CPU Availability of each 

resource and triggers a job migration procedure if the current value of CPU Availability is 

below the CBR Migration Threshold. This differs from PSPP, which observes Job Execution 

Availability to make predictions. 

According to the analysis in Section 5.6, validation in Appendix B.IV and evaluation in 

Section 7.6, this algorithm works well if the all the resources’ CPU Availability Percentage 

is lower than the CPU Migration Threshold before they become completely unavailable. 

The CBR migration algorithm can observe this (with or without learning from recent 

decisions) and make correct job migration decisions. 

However, if all resources’ CPU Availability Percentage do not become low before they 

become completely unavailable, it is difficult for CBR migration algorithm to offer better 

performance, as there is nothing valuable that can be learnt from the past cases. The CBR 

migration algorithm is unable to observe the correct threshold after learning or make correct 

job migration decisions. 

For example, assuming all resources’ CPU Availability Percentage follow a regular 

pattern that is always lower than a certain value (e.g. 80%) before they become completely 

unavailable. If the current value of CPU Migration Threshold is 90%, the job migration 

algorithm will trigger job migrations correctly before resources become unavailable. 

Conversely, if the current value of CPU Migration Threshold is 50%, the job migration 

algorithm will not be able to trigger job migrations correctly. Nevertheless, CBR will learn 

from past decisions and the value of CPU Migration Threshold will be raised (e.g. to 90%). 

Subsequently CPU Migration Threshold will be able to capture the change of CPU 

Availability Percentage and the job migration algorithm will be able to trigger job 

migrations at the appropriate times.  

However, if the resources’ CPU Availability Percentage does not have a regular pattern 

before they become completely unavailable (e.g. one resource may become unavailable 
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from 100% while another one becomes unavailable from 20%), it is difficult for the job 

migration algorithm to determine a suitable value of CPU Migration Threshold. Here is a 

table to compare these proactive job migration algorithms. 

Name Advantages Disadvantages 

PSPP 

If each resource’s Job Execution Availability 
has its own regular pattern, PSPP can make 
correct predictions and trigger proactive 
migrations to avoid potential job failures.  

If each resource’s Job Execution Availability 
does not have regular pattern(s), PSPP cannot 
make correct predictions and trigger proactive 
migrations to avoid potential job failures.  

CBR 

If resources’ CPU Availability Percentage 
becomes low before becoming unavailable, 
CBR can observe this (with or without 
learning from recent decisions) and trigger 
job migrations correctly. 

If resources’ CPU Availability Percentage do not 
become low before becoming unavailable, CBR 
cannot observe this (with or without learning 
from recent decisions) and trigger job migrations 
correctly. 

Table 8-2: Comparison of Proposed Proactive Job Migration Algorithms 

8.2 Conclusion 
This research focuses on three main aspects of volunteered resources based Grids and the 

research work has been presented and discussed in this thesis. Firstly, this research proposes a 

new Grid computing system architecture to utilise idle CPU cycles from volunteered resources. 

The proposed system architecture supports heterogeneous resources, enables resources to 

support live and automatic job migration and ensures resource owner’s local activities are not 

affected by the Grid jobs. 

Secondly, this research proposes some new job-scheduling and migration algorithms aimed at 

providing reliable job allocation and reallocation decisions whilst maintaining acceptable job 

throughput. In these job algorithms, a prediction method TDE and AI techniques (including 

Fuzzy Logic, Particle Swarm Optimisation and Case Based Reasoning) have been utilised. After 

proposing these algorithms, this research also critically analyses, validates and evaluates all the 

algorithms in the various scenarios with both synthetic and real data. According to the analysis 

and simulation results, each algorithm has its own advantages and disadvantages. In general, a 

certain algorithm performs well if certain specific conditions are met, e.g. each resource behaves 

with a regular pattern(s) or showing indications before state change.  

Thirdly, this research analyses the characteristics of resources in real volunteered resources 

based Grids. The analysis shows that each Grid has its own characteristics and, perhaps 

surprisingly, each volunteered resource’s Job Execution Availability tends to possess weak 

correlations across different days and times-of-day. 

8.3 Future Work 
There are a number of ways in which this research work can be extended to further studies 

both in terms of refining a Grid system architecture for utilising idle CPU cycles on volunteered 

resources and also job scheduling/migration algorithms it can employ. 

Firstly, further developments in terms of the proposed architecture include:  
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• The system could provide more advanced functionalities to users and resources. This would 

provide benefits to all components in this system. For users, the system can try to provide 

quality of service. This could include allowing users to specify the type of resource they 

would like to use. For example, a user may only wish to use a resource with sufficient CPU 

speed to get the job completed within a specified time. For resources, the system can try to 

give rewards to all resources for their contributions or support policies so owners can 

choose gracefully the times when the resources will be donated to the grid.  

• In terms of Java application migration technology, some techniques proposed by other 

researchers have been adopted in this research. However, as mentioned in Section 3.4, each 

technique has its own advantage(s) and disadvantage(s). Therefore, more work could be 

done to provide more efficient and reliable job migration. 

Secondly, further studies could be undertaken to improve the performance of the 

user/resource management components, especially providing better jobs servicing. These 

include: 

• Combining the proposed job scheduling algorithms with regular job checkpointing. This is 

an option to provide more reliable service to jobs, especially in a Grid system with 

volunteered and reliable resources. With job checkpointing, the latest job execution states 

with data can be recorded and stored. They might be stored on the local resources or even 

by sending back information to the user/resource management in cases where the job needs 

to be rescheduling if it fails. With the recorded job execution state and data, the job can be 

executed from the checkpoint onwards using another resource rather than starting from the 

scratch. 

• Combining the proposed job scheduling algorithms with job replication. This is another 

option to provide more reliable service to jobs, especially in a Grid system with volunteered 

and reliable resources. With job replication, different resources can execute a single job at 

the same time for extra reliability. If one of the resources remains available until the job 

completes, the job will finish successfully. However, this extra reliability “costs” more 

resources and provides no speed benefit. 

• Combining the proposed job scheduling algorithms with job prioritisation. This is an option 

to provide better service to users. It can be achieved by letting users to specify their jobs’ 

priority when submitting jobs. In job prioritisation, jobs with high priority can be put at the 

front of the job queue or a separate queue when they arrive at the Grid job scheduler. As a 

result, jobs with a high priority can be completed more quickly than those jobs with low 

priority and the users’ requirement can be fulfilled.  

• The use of additional real data. This could be collected and more characteristics could be 

obtained, especially in terms of determining characteristics of specific resources or between 
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different resources in terms of CPU Availability, Job Execution Availability or Resource 

Availability. According to the results shown in [Kondo05] and this research, the results so 

far appear to suggest that this type of relationship is weak. However, more data needs to be 

collected and analysed to confirm this. In addition, even if a weak relationship is confirmed 

for “today’s” networks, it is not easy to say whether this will still be the case in future as 

network technologies are still developing and human behaviour in terms of computer usage 

patterns may change as well. 

Thirdly, though this research work was aimed at solving some challenges in Grid computing 

environments, especially volunteered resources based Grid computing environments, the results 

from this research (including the proposed system architecture, job scheduling and migration 

algorithms) are not only applicable in Grid computing context but it is also possible to apply it 

to other areas. One of the application areas is Cloud computing context. 

Cloud computing is a new terminology which has been proposed in recent years. The basic 

idea of Cloud computing indicates that in the future, people will compute in centralised facilities 

(somewhere on the “cloud”) operated by third-party providers, there are some significant 

differences between Cloud computing and Grid computing.  

In a Cloud computing environment, although resources are deemed to be reliable and fully 

controlled by the service provider, resource management is still an important issue as the 

environment is dynamic. For example, different resources may have to face different workloads 

at different times and need to cope with different applications that have different latency 

requirements. Therefore, the job-scheduling and migration algorithms proposed in this research 

could be used or adapted to the scheduler and to reschedule different applications. 

In the core of the Cloud, it is likely to be composed of various software and hardware 

components and the CPU processor will be an important component. Therefore, it is also 

possible to apply the system architecture proposed in this research to utilise idle CPU cycles 

from different CPU processors. For each CPU processor in the Cloud, it may not be busy all the 

time. Therefore, the idle CPU cycles on each resource can be utilised to process computational 

jobs (this could be jobs submitted by users of the Cloud) by using a job-scheduling algorithm 

proposed in this research. If the resources are going to be busy again, the computational jobs 

can be migrated to another idle resource for completion with the job migration algorithm 

proposed by this research. As a result, this can be considered as opportunistic computing in a 

Cloud computing context and the idle CPU cycles of different CPU processors can be utilised 

efficiently. 
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Appendix A 
In order to make the communication among users, Grid job scheduler and resources 

efficiently, some types of messages are designed to use in different scenarios. 

I.  Registration Message 

In order to join the Grid, both users and resources need to register at the Grid firstly. 

Therefore, the Registration Message is needed. With this message, the user/resource manager 

will create a new entry and record the information provided by the resource in its user/resource 

database for the resource. Figure A.1 shows the format of this message: 

Message Type 
Message Sequence Number
User/Resource IP Address 

User/Resource Name 

Figure A.1: Registration Message 

Each field in the Registration Message is described as follow: 

Message Type: This field will be filled as “Registration Message” when a resource sends this 

message to the user/resource manager. 

Message Sequence Number: This field records the message’s sequence number. 

User/Resource IP Address: This field records the user/resource’s IP address. 

User/Resource Name: This field records the name of the resource. 

II.  Registration Acknowledgement Message 

In order to tell to the resource that the resource is already registered at the user/resource 

manager, a Registration Acknowledgement Message is needed. From this message, the resource 

will know that it is already registered at the user/resource manager and get the user/resource ID 

assigned by the user/resource manager. Figure A.2 shows the format of this message: 

Message Type 
User/Resource ID 

Figure A.2: Registration Acknowledgement Message 

Each field in the Registration Acknowledgement Message is described as follow: 

Message Type: This field will be filled as “Registration Acknowledgement Message” when a 

resource sends this message to the user/resource manager. 

User/Resource ID: This field specifies the resource ID assigned by the user/resource manager. 

Figure A.3 shows the procedure for a resource to register at the user/resource manager: 
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User/Resource User/Resource Manager

Registration Acknowledgement 
Message

Registration Message

 
Figure A.3: Procedure of Registration 

If the Registration Message gets lost on its way to the user/resource manager, the 

user/resource will resend the Registration Message after timeout. If the Registration 

Acknowledgement Message gets lost on its way to the user/resource, the user/resource will 

resend the Registration Message again after time out as well. When the user/resource manager 

receives this duplicated Registration Message, it will find out the user/resource ID from its 

resource database and send the Registration Acknowledgement Message back to the resource 

again. Figure A.4 shows this scenario: 

User/Resource User/Resource Manager

Registration Acknowledgement 
Message

Registration Message

Registration Acknowledgement 
Message

Registration Message

Registration Message

 
Figure A.4: Procedure of resending Registration and Registration Acknowledgement Message 

III.  Resource Information Message 

In order to let the resource manager realise the updated system information, each resource 

will send its updated system information to the resource manager at regular interval. In addition, 

the resource manager will request the resource’s information whenever necessary. After 

receiving this message, the resource manager will update the resource’s information in the 

resource database. With this information, the resource manager could also make stats of the 

resource and analyse the resource’s performance. Figure A.5 shows the format of this message. 
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Message Type 
Message Time Stamp 

Resource ID 
CPU Speed 
CPU Usage 

Figure A.5: Resource Information Message 

Each field in the Resource Information Message is described as follow: 

Message Type: This field will be filled as “Resource Information Message” when a resource 

sends this message to a resource manager. 

Resource ID: Each resource has a unique resource ID.  

Message Time Stamp: Shows message’s sending time. 

CPU Speed: Records the CPU speed of the resource. 

CPU Usage: Records the current usage percentage of the CPU. 

IV.  Request Resource Information Message 

Though the resource sends Resource Information Message to the resource manager at regular 

interval, the resource manager may not always receive the message because the message may 

get lost on its way to the resource manager or the resource is no longer available. Therefore, the 

resource manager can use Request Resource Information Message to request the resource’s 

information initiatively. Figure A.6 shows the format of this message: 

Message Type 

Figure A.6: Request Resource Information Message 

Each field in the Resource Information Message is described as follow: 

Message Type: This field will be filled as “Request resource Information Message” the resource 

manager sends this message to a resource. 

V.  Job Submission/Allocation Message 

When a user decides to submit a job to the Grid job scheduler, the user will inform the Grid 

job scheduler firstly. When the Grid job scheduler decides to allocate a job to the resource, the 

Grid job scheduler will inform the resource firstly. Therefore, Job Submission/Allocation 

Message will be used. Figure A.7 shows the format of this message: 

Message Type

Job ID 

Figure A.7: Job Submission/Allocation Message 

Each field in the Job Submission/Allocation Message is described as follow: 

Message Type: This field will be filled as “Job Submission/Allocation Message” when a user 

sends this message to the Grid job scheduler or the Grid job scheduler sends this message to a 

resource. 

Job ID: This field specifies the ID of the job which is going to be sent. 
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VI.  Job Submission/Allocation Acknowledgement Message 

When the Grid job scheduler receives the Job Submission/Allocation Message from a user, 

the Grid job scheduler needs to tell the user that it is ready to receive the job. When the resource 

receives the Job Submission/Allocation Message from the Grid job scheduler, the resource needs 

to tell the Grid job scheduler that it is ready to receive the job. Therefore, the Job 

Submission/Allocation Acknowledgement Message will be used. Figure A.8 shows the format of 

this message: 

Message Type 
Job ID 

Figure A.8: Job Submission/Allocation Acknowledgement Message 

Each field in the Job Submission/Allocation Acknowledgement Message is described as 

follow: 

Message Type: This field will be filled as “Job Submission/Allocation Acknowledgement 

Message” when the Grid job scheduler sends this message to a user or a resource sends this 

message to the Grid job scheduler. 

Job ID: This field specifies the ID of the job which is going to be received. 

VII.  Job Submission/Allocation Completion Message 

After sending the whole job, the resource needs to tell the Grid job scheduler or the Grid job 

scheduler needs to tell the user it has already finished sending the job. Therefore, the Grid job 

scheduler will send a “Job Submission/Allocation Completion Message” to the resource: Figure 

A.9 shows the format of this message: 

Message Type 
Job ID 

Figure A.9: Job Submission/Allocation Completion Message 

Each field in the Job Submission/Allocation Completion Message is described as follow: 

Message Type: This field will be filled as “Job Submission/Allocation Completion Message” 

when the Grid job scheduler sends this message to a user or a resource sends this message to a 

Grid job scheduler. 

Job ID: This field specifies the ID of the job which has been already sent. 

VIII. Job Submission/Allocation Completion Acknowledgement Message 

When the Grid job scheduler/resource receives a Job Submission/Allocation Completion 

Message, it should reply to the user/Grid job scheduler to tell the user/Grid job scheduler that it 

has already received the Job Allocation Completion Message. So the resource will send a “Job 

Submission/Allocation Completion Acknowledgement Message” back to the Grid job scheduler. 

Figure A.10 shows the format of this message: 
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Message Type 
Job ID 

Figure A.10: Job Submission/Allocation Completion Acknowledgement Message 

Each field in the Job Submission/Allocation Completion Message is described as follow: 

Message Type: This field will be filled as “Job Submission/Allocation Completion 

Acknowledgement Message” when a resource sends this message to the Grid job scheduler or 

the Grid job scheduler sends this message to a resource. 

Job ID: This field specifies the ID of the job which has been already received. 

Figure A.11 shows the whole procedure of allocating and transmitting a job from the 

user/Grid job scheduler to the Grid job scheduler/resource: 

Grid job scheduler/Resource User/Grid job scheduler

Job Submission/Allocation Completion 
Acknowledgement Message

Job Submission/Allocation Message

Job Submission/Allocation 
Acknowledgement Message

Job Submission/Allocation 
Completion Message

Job data

 
Figure A.11: Procedure of Job Submission/Allocation and Transmission 

IX. Job Information Message 

During the execution of the job, the resource software will monitor the execution progress 

and report to the job manager when important events occur. Therefore, Job Information 

Message will be used. Figure A.12 shows the format of this message: 

Message Type

Job ID 

State 

Figure A.12: Job Submission/Allocation Message 

Each field in the Job Submission/Allocation Message is described as follow: 

Message Type: This field will be filled as “Job Submission/Allocation Message” when a user 

sends this message to the Grid job scheduler or the Grid job scheduler sends this message to a 

resource. 

Job ID: This field specifies the ID of the job which is going to be sent. 

State: This field specifies the job’s current state, e.g. job started, job finished, job delayed, etc. 
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X.  Migration Notification Message 

In order to let a resource migrate a job to another resource, the Grid job scheduler should 

notify each resource firstly. Therefore, Migration Notification Message is used when the Grid 

job scheduler decides to ask a resource to migrate a job to another resource. Figure A.13 shows 

the format of this message: 

Message Type 
Original Resource ID 

Original Resource IP Address 
Destination Resource ID 

Destination Resource IP Address
Job ID 

Figure A.13: Migration Notification Message 

Each field in the Migration Notification Message is described as follow: 

Message Type: This field will be filled as “Migration Notification Message” when the Grid job 

scheduler sends this message to a resource. 

Original Resource ID: This field specifies the ID of the resource which the job should be 

emigrated from. 

Original Resource IP Address: This field specifies the IP address of the original resource. 

Destination Resource ID: This field specifies the ID of the resource which the job should be 

emigrated to. 

Destination Resource IP Address: This field specifies the IP address of the destination resource. 

Job ID: This field specifies the ID of the job which is going to be migrated. 

XI.  Migration Notification Acknowledgement Message 

In order to let the Grid job scheduler know both the original and the destination resource have 

received the Migration Notification Message, the resource should send a Migration Notification 

Acknowledgement Message back to the Grid job scheduler. Figure A.14 shows the format of this 

message: 

Message Type
Resource ID 

Job ID 
Figure A.14: Migration Notification Acknowledgement Message 

Each field in the Migration Notification Acknowledgement Message is described as follow: 

Message Type: This field will be filled as “Migration Notification Acknowledgement Message” 

when a resource sends this message to a Grid job scheduler. 

Resource ID: This field specifies the ID of the resource which sends this message. 

Job ID: This field specifies the ID of the job which is going to be migrated. 

XII. Migration Connection Request Message 
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When the resource receives a Migration Notification Message from a Grid job scheduler, it 

should start to migrate the specified job to the destination resource. Before the job migration, it 

should firstly set up a connection with the destination resource. Therefore, the Migration 

Connection Request Message is used for the resource to send a connection request to the 

destination resource. Figure A.15 shows the format of this message.  

Message Type 
Resource ID 

Resource IP Address
Job ID 

Figure A.15: Migration Connection Request Message 

Each field in the Migration Connection Request Message is described as follow: 

Message Type: This field will be filled as “Migration Connection Request Message” when the 

resource sends this message to the destination resource. 

Resource ID: This field shows the ID of the resource. 

Resource IP Address: This field shows the IP address of the resource. 

Job ID: This field specifies the ID of the job which is going to be migrated. 

XIII. Migration Connection Acknowledgement Message 

After the destination resource receives the Migration Connection Request Message from the 

resource, it should send a Migration Connection Acknowledgement Message back to the 

resource to accept this connection. Figure A.16 shows the format of this message: 

Message Type 
Destination Resource ID 

Destination Resource IP Address
Job ID 

Figure A.16: Migration Connection Acknowledgement Message 

Each field in the Migration Connection Request Message is described as follow: 

Message Type: This field will be filled as “Migration Connection Acknowledgement Message” 

when the destination resource sends this message to the resource. 

Destination Resource ID: This field shows the ID of the destination resource. 

Destination Resource IP Address: This field shows the IP address of the destination resource. 

Job ID: This field specifies the ID of the job which is going to be migrated. 

XIV. Migration Completion Message 

After transmitting the whole job, the resource should send a Migration Completion Message 

to tell the destination resource that the job has been completely transmitted. Figure A.17 shows 

the format for this message: 
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Message Type
Job ID 

Figure A.17: Migration Completion Message 

Each field in the Migration Completion Message is described as follow: 

Message Type: This field will be filled as “Migration Completion Message” when the original 

resource sends this message to the destination resource. 

Job ID: This field specifies the ID of the job which has been already migrated. 

XV. Migration Completion Acknowledgement Message 

After receiving the Migration Completion Message sent from the original resource, the 

destination resource should send back a Migration Completion Acknowledgement Message to 

tell the original resource that it has received the Migration Completion Message. In addition, the 

destination resource should notify the Grid job scheduler so that the Grid job scheduler could 

update the information stored in its databases. After the Grid job scheduler receives a Migration 

Completion Acknowledgement Message, it needs to tell the destination resource that it has 

received the Migration Completion Acknowledgement Message by sending back another 

Migration Completion Acknowledgement Message. This message is identical as the one it 

received from the destination resource. Figure A.18 shows the format for this message: 

Message Type 
Original Resource ID 

Destination Resource ID
Job ID 

Figure A.18: Migration Notification Message 

Each field in the Migration Completion Acknowledgement Message is described as follow: 

Message Type: This field will be filled as “Migration Completion Acknowledgement Message” 

when the Grid job scheduler sends this message to a resource. 

Original Resource ID: This field specifies the ID of the original resource. 

Destination Resource ID: This field specifies the ID of the resource which the job should be 

emigrated to. 

Job ID: This field specifies the ID of the job which has been migrated. 

Figure A.19 shows the whole procedure of migrating a job from a resource to another: 
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Migration Notification Message

Grid job scheduler Original Resource

Migration Completion 
Acknowledgement Message

Migration Completion 
Message

Job data

Destination Resource

Migration Notification Message

Migration Connection Request 
Message

Migration Connection 
Acknowledgement Message

Migration Completion 
Acknowledgement Message

Job data

Set up a data plane 
TCP connection

Release a TCP 
connection

Set up a new 
TCP connection

 
Figure A.19: Procedure of a Job Migration 

XVI. Resource Unavailable Message 

In order to tell the Grid job scheduler that it is going to be unavailable shortly, the resource 

can send a Resource Unavailable Message to notify the Grid job scheduler. Figure A.20 shows 

the format: 

Message Type 
Resource IP Address 

Resource Name 
Figure A.20: Resource Unavailable Message 

Each field in the Resource Unavailable Message is described as follow: 

Message Type: This field will be filled as “Resource Unavailable Message” when a resource 

sends this message to a Grid job scheduler. 

Resource IP Address: This field records the resource’s IP address. 

Resource Name: This field records the name of the resource. 
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Appendix B 
I. FCFSPP Algorithm with Synthetic Data 

Validation of Simulator and the Influence of Different System States 

To check the performance of the FCFSPP algorithm in different system states, a set of 

simulations with synthetic data is carried out. This set of simulations has two objectives: the 

first objective is to validate whether the simulator works correctly. The second objective is to 

check if the analysis in Section 5.2.2 is correct. In Section 5.2.2, 5 cases were presented. 

Therefore, five simulation scenarios with synthetic data were used to represent each case that 

the Grid job scheduler will have to face. Besides the setup shown in Table 7-1, these simulations 

have the experimental setup shown in Table B-1: 
Name Setting 

Number of Resources  1 
Job-scheduling Algorithm FCFS, FCFSPP 

Job Size The value is 24 hours 
t1 24 hours in scenario 1 and 2; 12 hours in scenario 3 and 4; 10 hours in scenario 5 
t2 24 hours in scenario 1 and 4; 12 hours in scenario 2 and 5; 10 hours in scenario 3 

Length of simulation The value is 48 hours 
Table B-1: Experimental Setup in Simulations 

There is only one user, one Grid job scheduler and one resource in the simulation scenarios 

with synthetic data to clearly show how the simulator works. Each simulation is used to 

simulate one system case described in Section 5.2.2. As the job size is 24 hours, the Grid job 

scheduler is in fact making one allocation decision in each simulation day. In addition, the Grid 

job scheduler is assumed to know all resources’ CPU Availability. 

According to Figure B.1, both FCFS and the FCFSPP algorithm have identical results in terms 

of Total Allocated Jobs in the first simulation day. This is because it is the first simulation day 

and there is no historical data of resource availability. Therefore, the FCFSPP algorithm cannot 

make any prediction based on resource’s historical data and it behaves the same a 

non-prediction base algorithm. As FCFSPP is based on FCFS algorithm, it behaves the same 

FCFS in such a case and both algorithms have identical results in terms of Total Allocated Jobs. 
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Figure B.1: Total Allocated Jobs in the First Simulation Day 

With either FCFS or FCFSPP, the Grid job scheduler only allocates a new job to the resource 

when the resource is idle. As there is only one resource in all these simulation scenarios and each 

job lasts for 24 hours, the Grid job scheduler only allocates a new job to the only resource in the 

first day. Therefore, the result of Total Allocated Jobs is 1 in all simulation scenarios. 
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Figure B.2: Total Succeeded Jobs in the First Simulation Day 

According to Figure B.2, both algorithms have identical results in terms of Total Succeeded 

Jobs in the first simulation day of all simulation scenarios. The same as Total Allocated Jobs, this 

is also explained by the lack of historical resource availability data. 

As there is only one resource in all these simulation scenarios and each job lasts for 24 hours, 

the possible highest result of Total Succeeded Jobs is 1 in all simulation scenarios. In simulation 

scenario 1 and 2, as the resource’s Job Execution Availability is true throughout the first 

simulation day, the result of Total Succeeded Jobs is 1 in these scenarios. In simulation scenario 

3, 4 and 5, as the resource’s Job Execution Availability is not always true in the first simulation 

day, the result of Total Succeeded Jobs is 0 in these scenarios. 
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Figure B.3: Total Failed Jobs in the First Simulation Day 

According to Figure B.3, both algorithms have identical results in terms of Total Failed Jobs 

in the first simulation day. Again, lack of historical resource availability data causes both FCFS 

and the FCFSPP to have the same results in terms of Total Failed Jobs. 

The reason why job get lost is because the resource does not available throughout the first day 

of some scenario. Given the resource has one and only one Unavailability Event in the first day 

in all simulation scenarios, the possible highest results of Total Failed Jobs are 1 in all simulation 

scenarios. In simulation scenario 1 and 2, as the resource’s Job Execution Availability is true 

throughout the first simulation day, the result of Total Failed Jobs is 0 in these scenarios. In 

simulation scenario 3, 4 and 5, as the resource’s Job Execution Availability is not always true in 

the first simulation day, the result of Total Succeeded Jobs is 1 in these scenarios. 
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Figure B.4: Job Success Percentage in the First Simulation Day 

After a job is processed, the result is either completed successfully or failed because of 

resource’s Unavailability Events. Therefore, the Job Success Percentage is always between 0% 

and 100%. As both FCFS and FCFSPP have the identical results of Total Succeeded Jobs and 

Total Failed Jobs in the simulated scenarios, the result of Job Success Percentage in FCFS and 

the FCFSPP algorithm are identical in Figure B.4. 

With reference to Figures B.1 through to B.4, FCFSPP behaves the same as FCFS if no 

historical data is available for making predictions. In addition, the results confirm that the 

simulator is working correctly with FCFS and FCFSPP in the cases where historical data is 

absent.  

The results of the second day are more interesting because the FCFSPP algorithm will have 

historical data (the first simulation day’s data) and it should behave differently to FCFS in some 

scenarios. As shown in Figure B.5, in terms of Total Allocated Jobs, the highest possible result is 

1 in the second simulation day as each job lasts for 24 hours. In FCFS, it always allocates a new 

job to the resource when the resource becomes idle. Therefore, the result of Total Allocated Jobs 

is 1 in all simulation scenarios. 
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Figure B.5: Total Allocated Jobs in the Second Simulation Day 

In the FCFSPP algorithm, the value of t1 will influence the result of Total Allocated Jobs. 

FCFSPP uses the Job Execution Availability history data from day one to predict the Job 

Execution Availability in day two. Therefore, if t1 is shorter than 24 hours, the resource’s 

Resource Availability Probability tends to be low when the FCFSPP algorithm makes 

predictions. As a result, the FCFSPP Resource Availability Probability will be lower than 100% 

and FCFSPP will not allocate jobs to resources in such cases. On the other hand, if t1 is not 

shorter 24 hours, the resource’s Resource Availability Probability will be 100%. As a result, the 

FCFSPP algorithm will allocate a job to the resource when the resource is idle. For FCFSPP in 

simulation scenario 1 and 2, the result of Total Allocated Jobs is 1 as Resource Availability 
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Probability is 100%. In simulation scenario 3, 4 and 5, the result of Total Allocated Jobs is 0 as 

Resource Availability Probability is 100%. 
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Figure B.6: Total Succeeded Jobs in the Second Simulation Day 

In terms of Total Succeeded Jobs, the possible highest result is 1 in the second simulation day 

as each job lasts for 24 hours. According to Figure B.6, in FCFS, the result of Total Succeeded 

Jobs is 1 in simulation scenario 1 and 4 as the resource stays available for 24 hours in the second 

day of these simulation scenarios. The result of Total Succeeded Jobs is 0 in simulation scenario 

2, 3 and 5 as the resource is not always available for 24 hours in the second day of these 

simulation scenarios. 

In the FCFSPP algorithm, the result of Total Succeeded Jobs is 1 in simulation scenario 1 and 

the result of Total Succeeded Jobs is 0 in other simulation scenarios. The results also indicate 

FCFSPP will not perform better than FCFS in terms of Total Succeeded Jobs (this is considered 

in Section 5.2.2). If the system in case 4, the performance of FCFSPP is worse than FCFS in 

terms of Total Succeeded Jobs. If the Grid job scheduler faces other cases, the performance of the 

FCFSPP algorithm is the same as FCFS in terms of Total Succeeded Jobs. 
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Figure B.7: Total Failed Jobs in the Second Simulation Day 

In terms of Total Failed Jobs, the highest result is 1 as the resource has one Unavailability 

Event (becomes unavailable once) after 12 hours. According to Figure B.7, in FCFS, the result of 

Total Failed Jobs is 0 in simulation scenario 1 and 4 as the resource stays available for 24 hours 

in the second day of these simulation scenarios. The result of Total Failed Jobs is 1 in simulation 

scenario 2, 3 and 5 as the resource is not always available for 24 hours in the second day of each 

simulation scenario. 

In FCFSPP, the result of Total Failed Jobs is 1 in simulation scenario 2 and the result of Total 

Failed Jobs is 0 in other simulation scenarios. The results also indicate FCFS algorithm will not 

perform better than the FCFSPP algorithm in terms of Total Failed Jobs in any case (this is 

analysed in Section 5.2.2). If the system in case 3 and 5, the performance of FCFS algorithm is 
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worse than FCFS in terms of Total Failed Jobs. If the Grid job scheduler faces other cases, the 

performance of FCFS algorithm is the same as the FCFSPP algorithm in terms of Total Failed 

Jobs. 
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Figure B.8: Job Success Percentage in the Second Simulation Day 

In terms of Job Success Percentage, the possible highest result is 100%. According to Figure 

B.8, in FCFS, the result of Total Succeeded Jobs is 1 and Total Failed Jobs 0 in simulation 

scenario 1 and 4 so that the result of Job Success Percentage in these simulation scenarios is 

100%. The result is of Total Succeeded Jobs is 0 and Total Failed Jobs 1 in simulation scenario 

2, 3 and 5 so that the result of Job Success Percentage in these simulation scenarios is 0%. 

In FCFSPP, the result of Total Succeeded Jobs is 1 and Total Failed Jobs 0 in simulation 

scenario 1 so that the result of Job Success Percentage in this simulation scenario is 100%. The 

result is of Total Succeeded Jobs is 0 and Total Failed Jobs 1 in simulation scenario 2so that the 

result of Job Success Percentage in this simulation scenarios is 0%. The result is of Total 

Succeeded Jobs is 0 and Total Failed Jobs 0 in simulation scenario 2 so that the result of Job 

Success Percentage in this simulation scenarios is not available. 

0

0.5

1

1 2 3 4 5

Simulation Scenario Number

R
es

ou
rc

e 
U

tili
sa

tio
n 

%

FCFS

FCFSPP

 
Figure B.9: Resource Utilisation in the Second Simulation Day 

In terms of Resource Utilisation, the possible highest result is 100%, which means the 

resource’s idle CPU cycles are fully utilised. In FCFS, it always sends a new job to the resource 

when it is become idle. Therefore, Resource Utilisation is always 100% in FCFS algorithm. This 

is shown in Figure B.9. In FCFSPP, as it does not allocate a new job to the resource if the 

resource’s Resource Availability Probability is lower than 100%, so Resource Utilisation is 

lower than 100% in such a case. As the resource’s Resource Availability Probability is 100% in 

simulation scenario 1, so the result of Resource Utilisation is 100%. As the resource’s Resource 

Availability Probability is lower than 100% in other simulation scenarios, so the result of 

Resource Utilisation is lower than 100% (which is 0% here). 

According to the simulation results above, the simulator proved to work correctly with FCFS 
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and FCFSPP in different system cases and the analysis (addressed in Section 5.2.2) regarding 

the performance of FCFS and FCFSPP under different cases is proved. 

Influence of ∆t between Checking Day and Prediction Day 

In this subsection, a set of representative simulation scenarios with synthetic data are used to 

show the influence of a single ∆t on a single resource. According to Figure 5.2 and the 

descriptions in Section 5.2.2, ∆t is the time difference between the length of t1 and t2 and it is 

created by a pair of resource Unavailability Events (one occurs during the Checking Period 

while the other one occurs during the Prediction Period). To show the influence of parameter 

∆t, the only Resource was designed to have a simple Job Execution Availability pattern - 

available for the few hour of a day and then unavailable for the rest hours of that day. 

Regarding the influence of ∆t, the resource was designed to have similar pattern in terms of 

CPU Availability in both simulation days but the times to become unavailable are different. In 

the first day of these simulations, the resource is available for the first period of time t1 and then 

stays unavailable for the rest time of the day 24 - t1. In the second day of these simulations, the 

resource is available for the first period t2 and then unavailable for the rest time of the day 24 – t2. 

Figure 5.2 and 5.3 show two types of this availability pattern. 

To facilitate understanding, in these simulations the value of ∆t is defined as t1- t2. Therefore, 

the value of ∆t will be positive when t1 is larger than t2 and it is negative when t2 is larger than t1. 

Besides the setup shown in Table 7-1, these simulations have the experimental setup shown in 

Table B-2: 
Name Setting 

Number of Resources  The value is 1 
Job-scheduling 

Algorithm FCFS, FCFSPP 

Job Size The value is 6 hours 

t1 
3 hours in scenario 1; 6 hours in scenario 2; 9 hours in scenario 3; 12 hours in scenario 4; 

15 hours in scenario 5; 18 hours in scenario 6; 21 hours in scenario 7. 
t2 The value is 12 hours. 

Length of simulation The value is 48 hours 
Table B-2: Experimental Setup in Simulations 

In addition, the Grid job scheduler is assumed to know all resources’ CPU Availability at all 

time. Note ∆t are decided by the differences between t1 and t2. As t2 is fixed, ∆t will change along 

with the change of t1 accordingly. If the value of t1 increases/decreases, the value of ∆t will 

increase/decrease accordingly. Figure B.10 shows an example Job Execution Availability in 

these simulation scenarios. 
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Figure B.10: An example of Job Execution Availability in simulation scenarios 

According to the analysis in Section 5.2.2 and results earlier in this section, the FCFSPP 

algorithm performs the same as FCFS algorithm when the FCFSPP algorithm has no historical 

data of resource Job Execution Availability to make predictions. What are more important and 

interesting are the results in the second simulation day. This is because the FCFSPP algorithm 

will have historical data (the first simulation day’s data) and it may behave different from FCFS 

any more in the second day. So the results can clearly show the differences between FCFS and 

the FCFSPP algorithm or the FCFSPP algorithm without historical data and the FCFSPP 

algorithm with historical data. Therefore, this set of simulations will focus on the simulation 

results from the second simulation day of each scenario. Here are some results in the second 

simulation day: 
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Figure B.11: Total Allocated Jobs in the second simulation day 

Figure B.11 shows the result of Total Allocated Jobs of each algorithm in the second 

simulation day. In terms of Total Allocated Jobs, the possible highest result is 3 as each job lasts 

for 6 hours and the resource available for 12 hours in the second day of all simulation scenarios. 

The third job will be failed and disposed of, as the resource will become unavailable before it 

completes. 

The FCFS algorithm allocates the same amount of jobs to the resources in all simulation 

scenarios as t2 (the resource’s Job Execution Availability in the second day) does not change and 

the algorithm allocates a new job to the resource when it becomes idle. In FCFSPP, the value of 

∆t will influence the result of Total Allocated Jobs. FCFSPP uses the Job Execution Availability 

historical data in the first simulation day to predict the Job Execution Availability in the second 
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simulation day. 

In the simulation, scenarios where the value of ∆t is very low (it is because of large value of 

t1), the results of Total Allocated Jobs is low in the FCFSPP algorithm is worse than the result of 

Total Allocated Jobs in FCFS algorithm. When the value of ∆t increases, the FCFSPP algorithm 

allocates more jobs to the resource and finally has the same result of Total Allocated Jobs as 

FCFS algorithm. 

This phenomenon can be explained by the analysis in Section 5.2.2. If the value of t1 is low, 

the resource’s Resource Availability Probability tends to be low when the FCFSPP algorithm 

makes predictions. As a result, the FCFSPP algorithm tends to NOT allocate jobs to the resource 

when the resource is idle. Therefore, when the value of t1 becomes higher, the resource’s 

Resource Availability Probability tends to be higher when the FCFSPP algorithm makes 

predictions. As a result, the FCFSPP algorithm tends to allocate jobs to the resource when the 

resource is idle. 
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Figure B.12: Total Succeeded Jobs in the second simulation day 

Figure B.12 shows the result of Total Succeeded Jobs of each algorithm in the second 

simulation day. In terms of Total Succeeded Jobs, the possible highest result is 2 as each job lasts 

for 6 hours and the resource available for 12 hours in the second day. 

In FCFS algorithm, the result is always 2 as the algorithm utilises the resource in that 12 

hours. 

In the FCFSPP algorithm, the result increases along with the increase of ∆t and finally 

achieves 2 when the value of ∆t is not below 0. The number of Total Allocated Jobs directly 

influences this. As FCFS algorithm keeps the resource busy all the time, so it always has the 

highest result no matter what value of ∆t is. However, in the FCFSPP algorithm, which is directly 

influenced by the result of Total Allocated Jobs, Total Succeeded Jobs is lower than the possible 

highest result in some scenarios. These results indicate the FCFSPP algorithm will be no better 

than FCFS algorithm in terms of Total Succeeded Jobs but will tend to the same performance as 

FCFS algorithm when the value of ∆t is not too low. 
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Figure B.13: Total Failed Jobs in the second simulation day 

Figure B.13 shows the result of Total Failed Jobs of each algorithm in the second simulation 

day. In terms of Total Failed Jobs, the highest result is 1 as the resource has one Unavailability 

Event (becomes unavailable once) after 12 hours. In FCFS, as the resource always has a job to 

process, so a job will be failed in all simulated cases. 

In the FCFSPP algorithm, resource’s Resource Availability Probability is lower than 100% 

when the value of ∆t is lower than the job size (6 hours), so Total Failed Jobs is 0 in such cases. 

When the value of ∆t is not lower than the job size (6 hours), Resource Availability Probability is 

100%, so the third job will allocated to the resource. However, unfortunately, the system will 

enter case 4 the prediction is incorrect and resource becomes unavailable before the job is 

completed. 

These results also indicate the FCFSPP algorithm tends to perform worse in terms of Total 

Failed Jobs when ∆t becomes higher. If ∆t becomes higher, the probability that the length of 

Checking Period falls in somewhere between t1 and t2 becomes higher as well. Therefore, the 

prediction results will tend to be less accurate and the occurrence probability of case 4 will 

increase accordingly. According to the analysis in Section 5.2.2, jobs will fail to be processed 

with both FCFS and the FCFSPP algorithms in this case. This indicates that FCFSPP will not be 

worse than FCFS in terms of Total Failed Jobs but it will tend perform the same as FCFS in 

terms of Total Failed Jobs when the value of ∆t is too high. 
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Figure B.14: Job Success Percentage in the Second Simulation Day 

Figure B.14 shows the result of Job Success Percentage of each algorithm in the second 

simulation day. In terms of Job Success Percentage, the highest result is 100%. FCFS always has 

the same results 66.7%, as Total Succeeded Jobs and Total Failed Jobs are always the same 

result in all simulation scenarios. 

In the FCFSPP algorithm, when ∆t is -9, Job Success Percentage is not calculable as either 

Total Succeeded Jobs and Total Failed Jobs is 0. In the FCFSPP algorithm, when -6 ≤ ∆t < 6, 
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Job Success Percentage has the highest result 100%. When ∆t is not lower than the job size (6 

hours), the FCFSPP algorithm has the same result as FCFS algorithm. These results indicate 

FCFSPP will perform the same as the FCFS algorithm in terms of Job Success Percentage if the 

value of ∆t is too low or too high; otherwise FCFSPP is able to perform better than FCFS. 

Influence of Similarity of Job Execution Availability between Checking Day and 

Prediction Day 

The influence of ∆t between Checking Day and Simulation Day has been evaluated earlier in 

this section. When the value of ∆t varies, the value of ρ between Checking Day and Simulation 

Day varies as well. Some important results from “Influence of ∆t between Checking Day and 

Prediction Day” are summarised in Table B-3: 

∆t 
(Hours) 

ρ Total 
Succeeded 

Jobs 
(FCFS) 

Total 
Succeeded 

Jobs 
(FCFSPP) 

Total 
Failed 
Jobs 

(FCFS) 

Total 
Failed Jobs 
(FCFSPP) 

Job 
Success 

Percentage 
(FCFS) 

Job 
Success 

Percentage 
(FCFSPP) 

-9 0.378 2 0 1 0 66.7% N/A 
-6 0.577 2 1 1 0 66.7% 100% 
-3 0.775 2 1 1 0 66.7% 100% 
0 1 2 2 1 0 66.7% 100% 
3 0.775 2 2 1 0 66.7% 100% 
6 0.577 2 2 1 1 66.7% 66.7% 
9 0.378 2 2 1 1 66.7% 66.7% 

Table B-3: Impact of ρ on Job Success Percentage 

When ∆t changes from -9 hours to 9 hours, the value of ρ increases from 0.378 (when ∆t is -9 

hours) to 1 when ∆t is 0. After that, the value of ρ decreases again and reaches the lowest result 

0.378 again when ∆t is 9 hours. According to the results, the FCFSPP algorithm performs well 

in both terms of Total Succeeded Jobs, Total Failed Jobs and Job Success Percentage when the 

value of ρ is 1 (the highest value of ρ). When the value of ρ is 1, the FCFSPP algorithm has the 

same result as FCFS in terms of Total Succeeded Jobs and it has better results than FCFS in 

terms of Total Failed Jobs and Job Success Percentage. 

If the value of ρ decreases, the FCFSPP algorithm’s performance tends to become worse 

along with the decrease of ρ, either in terms of Total Succeeded Jobs, Total Failed Jobs or Job 

Success Percentage. 

For the same value of ρ, the FCFSPP algorithm’s performance might be different. For example, 

when ∆t equals ±3 hours, the value of ρ is 0.775, but the results of Total Succeeded Jobs are 

different: it is 1 when ∆t equals -3 hours and it is 2 when ∆t equals 3 hours. Therefore, it 

indicates the value of ρ between Checking Day and Prediction Day can only used as an 

approximation to similarity of Job Execution Availability between Checking Period and 

Prediction Period. 

II.  FLP Algorithm with Synthetic Data 

The simulation scenarios in this set of simulations are representative scenarios with synthetic 
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data and they are used to clearly show the influence of different parameter(s) and/or factor(s) 

while keeping the simulation scenarios as simple as possible. Besides the setup shown in Table 

7-1, these simulations have the experimental setup shown in Table B-4: 
Name Setting 

Number of Resources  1 
Job-scheduling algorithm FCFS, FCFSPP 

Job Size The value is 12 hours   

t1 
The value is 20 hours in scenario 1 and 2; 23 hours 

in scenario 3 and 4 

t2 
The value is 23 hours in scenario 1 and 3; 24 hours 

in scenario 2 and 4 
Resource Availability Probability Threshold 

Adjustment Interval in FLP The value is 1 hours. 

Length of simulation The value is 48 hours 
Table B-4: Experimental Setup in Simulations 

Resource Availability Probability Threshold Adjustment Interval equals 1 hour means the FLP 

algorithm uses a Fuzzy inference system to adjust its Resource Availability Probability 

Threshold once an hour. 

The value of parameter λ equals 1 means the Resource Availability Probability Threshold will 

increase 1% if the value of Disposed Jobs Dot is equal to or larger than 1 and Resource 

Availability Probability Threshold will decrease 1% if the value of Disposed Jobs Dot is equal 

to or below 0. In other words, if the number of disposed job in the current adjustment interval is 

larger than the number of disposed job in the last interval, the value of Resource Availability 

Probability Threshold will increase 1%. On the other hand, if the number of disposed job in the 

current adjustment interval is not larger than the number of disposed job in the last interval, the 

value of Resource Availability Probability Threshold will decrease 1%. 

This set of simulations is also focused on the results of the second simulation day in each 

simulation scenario. Here are some results in the second simulation day: 
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Figure B.15: Total Allocated Jobs in the Second Simulation Day 

Figure B.15 shows the result of Total Allocated Jobs of each algorithm in the second 

simulation day. In terms of Total Allocated Jobs, the possible highest value is 2 as each job last 

for 12 hours and the resource is available at most 24 hours in the second simulation day. 

For FCFS algorithm, it always has the possible highest results as it always keep the resource 

busy. Therefore, the result of Total Allocated Jobs is always 2 in these scenarios. 

For the FLP algorithm, the result of Total Allocated Jobs tends to change between FCFS and 

the FCFSPP algorithm as the value of Resource Availability Probability Threshold is changed 
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once an hour. 

When the FLP algorithm tries to allocate the second job to the resource after the first one is 

finished, the value of Resource Availability Probability Threshold has decreased from 100% to 

88% (reduce 1% each hour). This means the FLP algorithm will allocate the job to the resource 

if the resource’s Resource Availability Probability is not lower than 88% in the following 12 

hours (the time which job is expected to run on). In simulation scenario 1 and 2, the resource’s 

Resource Availability Probability is 75% (lower than 88%), so the FLP algorithm will not 

allocate the job to the resource in this scenario. In simulation scenario 3 and 4, the resource’s 

Resource Availability Probability is 91.7% and 100% respectively, so the FLP algorithm will 

allocate the job to the resource in these two scenarios. Therefore, the result of Total Allocated 

Jobs is 1 in simulation scenario 1 and 2 and it is 2 in simulation scenario 3 and 4. 

FCFSPP is the most conservative one among these tested algorithms. It only allocates the 

second job to the resource if the resource’s Resource Availability Probability is 100%. However, 

the Resource Availability Probability is always below 100% when FCFSPP tries to make job 

allocation for the second job. Therefore, the result of Total Allocated Jobs is 1 all simulation 

scenarios. 

The results also indicate that the difference between FLP and FCFS will occur in scenarios 

like 1 and 2 and the difference between FLP and the FCFSPP algorithm will occur in scenarios 

like 3 and 4. 
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Figure B.16: Total Succeeded Jobs in the Second Simulation Day 

Figure B.16 shows the result of Total Succeeded Jobs of each algorithm in the second 

simulation day. Directly influenced by the results of Total Allocated Jobs, the possible highest 

result of Total Succeeded Jobs is 2. In simulation scenario 1 and 3, as the resource lasts for 23 

hours in the second day, the possible highest results of Total Succeeded Jobs is 1. In simulation 

scenario 2 and 4, as the resource lasts for 24 hours in the second day, the possible highest results 

of Total Succeeded Jobs is 2. 

For FCFS algorithm, it always has the possible highest result in terms of Total Succeeded 

Jobs as it always keeps the resource busy. 

For the FLP algorithm, as it is different from FCFS in simulation scenario 1 and 2, it does not 

have the possible highest result in simulation scenario 1 and 2. In simulation scenario 3 and 4, 

FLP will have the possible highest result in terms of Total Succeeded Jobs as it behaves the 
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same as FCFS in such scenarios. 

For the FCFSPP algorithm, it cannot achieve the possible highest result in terms of Total 

Succeeded Jobs in all these scenarios due to its conservativeness. 

The results also indicate the FLP algorithm’s performance is between FCFS and the FCFSPP 

algorithm in terms of Total Succeeded Jobs. Specifically, the FLP algorithm’s performance is 

the same as the FCFSPP algorithm in scenarios like 1 and 2 and the FLP algorithm’s 

performance is the same as FCFS algorithm in scenarios like 3 and 4. 
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Figure B.17: Total Failed Jobs in the Second Simulation Day 

Figure B.17 shows the result of Total Failed Jobs of each algorithm in the second simulation 

day. Directly influenced by the results of Total Allocated Jobs, the possible highest result of 

Total Failed Jobs is 1. In simulation scenario 1 and 3, as the resource lasts for 23 hours in the 

second day, the possible highest results of Total Failed Jobs is 1. In simulation scenario 2 and 4, 

as the resource lasts for 24 hours in the second day, the possible highest results of Total 

Succeeded Jobs is 0. For FCFS, it always has the highest result in terms of Total Failed Jobs as 

it always keeps the resource busy. 

For the FLP algorithm, as it is different from FCFS in simulation scenario 1 and 2, it does not 

have the highest result in terms of Total Succeeded Jobs simulation in scenario 1 and 2. In 

simulation scenario 3 and 4, FLP will have the highest result as it behaves the same as FCFS in 

such scenarios. For the FCFSPP algorithm, it does not achieve the highest result in terms of 

Total Failed Jobs in all these scenarios due to its conservativeness. 

The results also indicate the FLP algorithm’s performance is between FCFS and the FCFSPP 

algorithm in terms of Total Failed Jobs. Specifically, the FLP algorithm’s performance is the 

same as the FCFSPP algorithm in scenarios like 1 and 2 and the FLP algorithm’s performance is 

the same as FCFS algorithm in scenarios like 3 and 4. 
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Figure B.18: Job Success Percentage in the Second Simulation Day 

Figure B.18 shows the result of Job Success Percentage of each algorithm in the second 
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simulation day. In terms of Job Success Percentage, the possible highest result is 100%. 

For the FCFS algorithm, it only achieves the possible highest result in terms of Job Success 

Percentage in simulation scenario 2 and 4. 

For the FLP algorithm, it has the possible highest result in terms of Job Success Percentage in 

simulation scenario 1, 3 and 4. 

For the FCFSPP algorithm, it always has the possible highest result in terms of Job Success 

Percentage in all these scenarios due to its conservativeness. 

According to the results shown above, the results of the FLP algorithm in both terms of Total 

Succeeded Jobs, Total Failed Jobs and Job Success Percentage tend to falls in somewhere 

between the results of the FCFS and the FCFSPP algorithm. In scenarios (e.g. simulation 

scenario 1 and 4) where Job Execution Availability of some resource can provide good 

indication to all resources, the FLP algorithm can improve speed (such as maximising the result 

of Total Succeeded Jobs) while ensuring reliability (such as minimising the result of Total 

Failed Jobs). However, on the other hand, if Job Execution Availability of some resource cannot 

provide good indication to all resources, the FLP algorithm cannot improve speed while 

ensuring reliability (e.g. simulation scenario 2 and 3). 

III.  PSPP Algorithm with Synthetic Data 

The first set of simulations uses synthetic data and representative scenarios to check if the 

analysis about the performance PSPP algorithm under different cases is correct. These 

simulations have the experimental setup shown in Table B-5: 
Name Setting 

t1 1 hour in scenario 1 and 4; 0.5 hours in scenario 2 and 3; 0.7 hours in scenario 5 
t2 1 hour in scenario 1 and 2; 0.7 hours in scenario 3 and 4; 0.5 hours in scenario 5 

Length of Checking Period The value is 1 hour 
Length of Prediction Period The value is 1 hour 

Migration Prediction Interval The value is 1 hour 
Length of simulation 2 simulation days 

Table B-5: Experimental Setup in Simulations 

Here Migration Prediction Interval is a term defined in Section 4.3.2, which means how 

frequent to carry out the procedure of prediction for each resource. This set of simulations is 

focused on the results of the second simulation day. 
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Figure B.19: Prediction Performance in Different Scenarios 

Figure B.19 shows the prediction results in each simulation scenario. In each simulation 

scenario, the total number of prediction is only 1. PSPP algorithm will make prediction at the 
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beginning of the second simulation day.  

In simulation scenario 1, t1 equals 1 hour and t2 equals 1 hour, the PSPP algorithm will face 

case 1 (described in Section 5.2.2) and the resource is predicted to stay in the state of Available 

to Grid in the Prediction Period (the length of Prediction Period is 1 hour) and the resource 

turns out to stay in the state of Available to Grid throughout the Prediction Period. Therefore, 

the result of Correct Prediction Type 2 is 1 while other results are 0. 

In simulation scenario 2, t1 equals 0.5 hours and t2 equals 1 hour, the PSPP algorithm will 

face case 2 (described in Section 5.2.2) and the resource is predicted to stay available in the 

Prediction Period (the length of Prediction Period is 1 hour) but the resource turns out to 

become unavailable during the Prediction Period. Therefore, the result of Missed Detection is 1 

while other results are 0. 

In simulation scenario 3, t1 equals 0.5 hours and t2 equals 0.7 hours, the PSPP algorithm will 

face case 3 (described in Section 5.2.2) and the resource is predicted to become unavailable in 

the Prediction Period (the length of Prediction Period is 1 hour) and the resource turns out to 

become unavailable during the Prediction Period. Therefore, the result of Correct Prediction 

Type 1 is 1 while other results are 0. 

In simulation scenario 4, t1 equals 1 hour and t2 equals 0.7 hours, the PSPP algorithm will 

face case 4 (described in Section 5.2.2) and the resource is predicted to become unavailable in 

the Prediction Period (the length of Prediction Period is 1 hour) but the resource turns out to 

stay available throughout the Prediction Period. Therefore, the result of False Alarm is 1 while 

other results are 0. 

In simulation scenario 5, t1 equals 0.7 hours and t2 equals 0.5 hours, the PSPP algorithm will 

face case 5 (described in Section 5.2.2) and the resource is predicted to become unavailable in 

the Prediction Period (the length of Prediction Period is 1 hour) and the resource turns out to 

become unavailable during the Prediction Period. Therefore, the result of Correct Prediction 

Type 1 is 1 while other results are 0. 

IV.  CBR Migration Algorithm with Synthetic Data 

In order to check performance of CBR migration algorithm and whether the analysis about 

CBR in Section 5.5 is correct, a set of simulations have been designed and carried out. 

This set of simulations use synthetic data and representative scenarios to check if the analysis 

about the performance CBR algorithm under different patterns of CPU Availability Percentage 

is correct. Figure B.20 shows the patterns of CPU Availability Percentage in these scenarios: 
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Figure B.20: Change of CPU Availability Percentage in Different Scenarios 

In addition, the initial value of CPU Migration Threshold is 50%. The same as simulations 

with synthetic data for PSPP algorithm, this simulation also uses the results of Correct 

Prediction, Missed Detection and False Alarm to describe the performance of CBR migration 

algorithm. Here are some results after 2-hour simulation of each simulation: 
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Figure B.21: Correct Prediction, Missed Detection and False Alarms in Different Scenarios 

According to Figure B.21, in simulation scenarios 1 and 4, the CBR migration algorithm will 

make twice predictions for the resource, the first one at the beginning of the simulation and the 

second one at the beginning of the second hour. Therefore, the possible highest number of each 

result in these two simulation scenario is 2. 

In simulation scenarios 2, 3 and 5, the CBR migration algorithm will make prediction for the 

resource once at the beginning of the simulation. At the beginning of second hour, the resource 

is not available CBR migration algorithm will not make prediction for the resource at that time. 

Therefore, the possible highest number of each result in these two simulation scenario is 1. 

In simulation scenario 1, as the resource’s CPU Availability Percentage is always at 100%, 

the CBR migration algorithm will predict the resource to stay in available twice and it turns out 

that these two predictions are correct. Therefore, the result of Correct Prediction Type 2 is 2 

while other results are 0. This shows CBR migration performs well in the situation where the 

resource is stable and reliable. However, if resources are always stable and reliable, it is not 

meaningful to carry out this type of prediction and job migration. 

In simulation scenario 2, as the resource’s CPU Availability Percentage is 100% at the 

beginning, the CBR migration algorithm will predict the resource to stay in available but it 

turns out that the resource becomes unavailable before next prediction. Therefore, the result of 

Missed Detection is 1 while other results are 0. This shows CBR migration algorithm does not 

work well in the situation where the resource becomes unavailable without any or little 

indication in terms of CPU Availability Percentage. 
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In simulation scenario 3, the resource’s CPU Availability Percentage is 30% at the beginning. 

The CBR migration algorithm will predict the resource to become unavailable as the value of 

CPU Availability Percentage 30% is below the value of CBR Migration Threshold 50% and it 

turns out that the resource becomes unavailable before next prediction. Therefore, the result of 

Correct Prediction Type 1 is 1 while other results are 0. This shows CBR migration algorithm 

work well in the situation where the resource becomes unavailable with useful indication in 

terms of CPU Availability Percentage. More importantly, CBR migration algorithm should 

observe this indication to make correct prediction. 

In scenario 4, the resource’s CPU Availability Percentage is 30% at the beginning. The CBR 

migration algorithm will predict the resource to become unavailable as the value of CPU 

Availability Percentage 30% is below the value of CBR Migration Threshold 50% but it turns 

out that the resource not unavailable. After 1 hour, the resource’s CPU Availability Percentage 

is 65% and the CBR migration algorithm will predict the resource to stay available as the value 

of CPU Availability Percentage 30% is above the value of CBR Migration Threshold 50% and it 

turns out that the resource stay available before next prediction.  

This shows CBR migration algorithm does not work well in the situation where the resource 

gives misleading indication in terms of CPU Availability Percentage and CBR migration 

algorithm observes this misleading indication. 

In simulation scenario 5, the resource’s CPU Availability Percentage is 60% at the beginning. 

The CBR migration algorithm will predict the resource to stay available as the value of CPU 

Availability Percentage 60% is above the value of CBR Migration Threshold 50% but it turns 

out that the resource becomes unavailable before next prediction. Therefore, the result of 

Correct Prediction Type 1 is 1 while other results are 0. 

This scenario shows the importance of a suitable CPU Migration Threshold. In this scenario, 

the resource gives useful indication in terms of CPU Availability Percentage but CBR migration 

algorithm cannot observe this as the CPU Migration Threshold is too low. CBR migration 

algorithm should observe this indication to make correct predictions. 

In addition, this scenario also shows the importance of a suitable Migration Prediction 

Interval. In the simulation, the value of Migration Prediction Interval is set as 1 hour so that 

CBR migration algorithm cannot observe the change of CPU Availability Percentage in the 

whole hour. However, if the value of Migration Prediction Interval is smaller, then the value of 

CPU Availability Percentage will be 15% at that time and CBR migration algorithm will be able 

to observe this change then make a correct prediction and trigger job migration in due course. 

According to the above results, the performance of CBR migration algorithm under different 

situations and the influences of CPU Migration Threshold and Migration Prediction Interval are 

shown and discussed. The results also reflect the analysis of CBR migration algorithm shown in 

Section 5.5 is correct. 


