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Abstract 

Plants require light for the process of photosynthesis, but excess of light absorption can 

cause photooxidative damage. To avoid this damage, plants have evolved a photoprotective 

mechanism to dissipate excess light energy as heat in a process called nonphotochemical 

quenching (NPQ). This regulatory mechanism of light harvesting involves both pigment 

and protein constituents of antenna complexes. Two xanthophylls, lutein and zeaxanthin, 

have been implicated to contribute to the rapidly relaxing qE component of NPQ, acting as 

quenchers of the chlorophyll excitation energy. To determine the molecular mechanism of 

NPQ and role of these xanthophylls in it, the kinetics of qE and qE-related conformational 

changes were measured in Arabidopsis thaliana mutant plants with altered xanthophyll 

contents. The effect of xanthophyll composition on the chlorophyll excited state lifetime 

was also compared - in leaves and native isolated antenna complexes. The data reveal that 

the replacement of lutein by either zeaxanthin or violaxanthin in the internal binding sites 

of the antenna complexes affects the qE kinetics and amplitude as well as the absolute 

chlorophyll fluorescence lifetime. This demonstrates the role of lutein in maintaining the 

efficient photoprotective state. The PsbS protein of photosystem II has also been 

demonstrated to play a significant role in controlling the qE component of NPQ. Thereby, 

enhancement of PsbS and resultant increase in qE and qE-related conformational changes 

was achieved in Arabidopsis by physiological and genetic means in the absence of 

zeaxanthin. This helps to dissect the relationship between zeaxanthin and PsbS in NPQ, 

suggesting both as independent entities. The results support allosteric role of zeaxanthin 

and not as the direct quencher alone or in combination with the PsbS in the process, whilst 

the role of PsbS is suggested as kinetic modulator of conformational change which results 

in NPQ.  
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Abbreviations 

ADP  adenosine diphosphate 
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DCCD   N,N’-dicyclohexylcarbodiimide 
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DTT   dithiothreitol 

EDTA   ethylenediaminetetraacetic acid 

ELIP   early light inducible protein 

EM    electron microscopy             

FAD   flavin adenine dinucleotide    

Fd   ferredoxin 

FeS   iron-sulphur centre 

FNR   ferredoxin NADP reductase 

FPLC   fast protein liquid chromatography 
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HLIP   high light inducible protein 

HPLC   high performance liquid chromatography 
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IgG   immunoglobulin G 

kDA   kilodalton 

LED    light emitting diode 

LHCI   light harvesting antenna complex of photosystem I 

LHCII               light harvesting antenna complex of photosystem II 

LHCIIb               major light harvesting antenna complex of PSII 

Lut                        lutein 

MGDG                 monogalactosyldiacylglycerol 

NADP                   nicotinamide adenine dinucleotide phosphate 

NADPH                nicotinamide adenine dinucleotide phosphate (reduced) 

Neo                        neoxanthin      

NPQ                      non-photochemical quenching of chlorophyll fluorescence 

OD                         optical density   

OEC                      oxygen evolving complex 

OHP                      one helix protein 

PAGE                    polyacrylamide gel electrophoresis 

PAM                      pulse amplitude modulated 

PC                          plastocyanin 

Pheo                       pheophytin 

PG                          phosphatidylglycerol 

PQ                          plastoquinone 

PQH2                    plastoquinol 

PSI                        photosystem I 

PSII                       photosystem II 

∆pH                       trans-thylakoid pH gradient 

RC                         reaction centre 

ROS                       reactive oxygen species      

Rubisco                 ribulose-1,5-bisphosphate carboxylase/oxygenase 

qE                          rapidly relaxing, energy dependent non-photochemical quenching 

qI                           very slowly relaxing, photoinhibitory non-photochemical quenching 
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qP                          photochemical quenching 

qT                         slowly relaxing non-photochemical quenching related to state 

transitions 

SDS                       sodium dodecyl sulphate 

SEP                       stress enhanced protein 

TEMED                tetramethylethylenediamine 

Vio                        violaxanthin 

VDE                      violaxanthin de-epoxidase 

WT                       wild type 

XC                         xanthophyll cycle 

Zea                        zeaxanthin 

ZE                         zeaxanthin epoxidase  
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1.1 Photosynthesis 

Solar energy is the ultimate source of all metabolic energy on earth, and capturing this 

radiant energy and making it available for biochemical reactions is prerequisite for life. 

Photosynthesis is the metabolic pathway whereby plants use light to convert simple, 

inorganic and energy-poor compounds, carbon dioxide (CO2) and water (H2O), into 

complex, organic and energy-rich compounds carbohydrates, releasing oxygen (O2) as a 

by-product. This process can be represented by this equation: 

H2O + CO2+ solar energy → (CH2)xO + O2 

 

1.2 Photosynthetic apparatus 

Photosynthesis is a highly efficient process which traps an immense amount of 

approximately 100 terawatts (1012 watts) of energy per annum, a quantity seven times 

larger than the annual energy consumption by human civilisation (Nealson and Conrad, 

1999). Plants perform this energy converting process in the specialised mesophyll cells of 

leaves (Fig. 1.1. A). These cells are packed with special organelles called chloroplasts. 

There are ten to hundred chloroplasts in a typical plant cell. A chloroplast is comprised of a 

system of flattened vesicles called thylakoids embedded in a colourless matrix called 

stroma, all contained within a double membrane envelope. The thylakoid membrane is a 

continuous double membrane system, which is differentiated into stacked grana and 

unstacked stroma lamellae regions (Fig. 1.1. B). This system is organised into a three 

dimensional network with an interior aqueous phase known as the lumen. There are four 

major protein complexes embedded in the thylakoid membranes which are important for 

light harvesting and electron transport functions, photosystem I and II (PSI and PSII), 

cytochrome b6/f complex (Cyt b6/f) and adenosine tri-phophosphate (ATP) synthase. 
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Figure 1.1 The higher plant leaf and chloroplast (A) Structure of the higher plant leaf (B) 
organisation of the thylakoid membranes within the chloroplast (Allen and Forsberg, 2001). 

  

1.3 Two phases of photosynthesis 

Photosynthesis comprises of two phases; light reactions and light-independent or dark 

reactions. The thylakoid membrane with its pigment-protein complexes is the site of light 

reactions while the dark reactions occur in stroma, which contains the enzymes responsible 

for carbon fixation. In the light reactions light energy is captured and used to oxidise water 

generating the energy-storage molecules ATP and reduced nicotinamide adenine 

dinucleotide (NADPH). During the dark reactions, the products of light reactions are used 

to fix and reduce carbon dioxide. 

Envelope 

A 

B 

http://en.wikipedia.org/wiki/ATP
http://en.wikipedia.org/wiki/NADPH
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1.3.1 Overview of light reactions and photosynthetic electron transport                                          

Plants harness light energy in the form of photons by the help of pigments, chlorophylls 

and carotenoids. A photosystem has two physiologically distinct components, light 

harvesting complex (LHC) and reaction centre (RC), the light energy harvested and 

funnelled by the former to the latter (Melis and Anderson, 1983). Photon absorption excites 

a chlorophyll or carotenoid molecule by raising an electron from a ground triplet state to an 

excited singlet state. This excitation energy brings about oxidation, an exit of electron or 

exciton from the pigment molecule. The RC utilises the excitation energy delivered by 

LHC to drive a charge separation reaction between a special chlorophyll molecule, called 

P680 in PSII and P700 in PSI, and an acceptor molecule. The electron generated during 

charge separation in PSII is passed along a series of acceptor molecules to reduce 

plastoquinone (PQ). The PQ is in turn oxidised by the Cyt b6/f resulting in a simultaneous 

translocation of protons across the thylakoid membrane into lumen. This translocation 

generates chemiosmotic potential to synthesise ATP. Cyt b6/f then passes the electron 

through a mobile electron carrier, plastocyanin (PC), to P700 special pair within the RC of 

PSI. A second charge separation event liberates an electron, this time from P700 special 

pair, which is passed along a series of carriers to the terminal electron acceptor ferredoxin 

(Fdx). Fdx is used by ferredoxin NADP reductase (FNR) to reduce NADP+ to NADPH.  

The deficiency of electron in the P680 special pair of PSII is completed by the photolysis of 

water, yielding protons and O2 as by-products of the reaction. Translocation of protons 

across the thylakoid membrane occurs concomitantly with the transport of electrons from 

water to NADP+. A pH gradient is formed by the release of protons into the thylakoid 

lumen by the photolysis of water in the oxygen-evolving complex of PSII, by the reduction 

of Cyt b6f complex during the electron transport and by the uptake of protons for the 

reduction of plastoquinone and NADP+ (Fig. 1.2). 
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Figure 1.2 The Z-scheme shows linear electron transport from water to NADPH in the thylakoid 
membrane. Abbreviations: Mn, Manganese cluster; Z, tyrosine z; P680, PSII reaction centre special 
pair chlorophyll; P680*, excited singlet state of special pair (Primary donor); Pheo, Pheophytin 
(primary acceptor); QA, Plastoquinone A, QB Plastoquinone B, PQ Plastoquinone pool, Cyt bf, 
Cytochrome b6f complex; PC, Plastocyanin; P700, PSI reaction centre special pair chlorophyll; 
P700*, excited singlet state of special pair (Primary donor); A0, Primary acceptor chlorophyll; A1, 
secondary acceptor phylloquinone; Fx, iron sulphur cluster; FAFB, iron sulphur cluster; Fdx, 
ferredoxin (Berg et al., 2003). 

 

1.4 Photosynthetic pigments: chlorophylls and carotenoids 

The photosynthetic pigments of plants are responsible for capturing the light energy and 

converting it into the chemical energy. The main pigments are chlorophylls, which absorb 

in the blue and red visible regions of the electromagnetic spectrum. These are substituted 

tetra pyrroles, constituting a porphyrin ring system of alternating double and single bonds, 

also called conjugated double bonds, which plays important role in light capture. The 

magnesium atom in the centre of porphyrin ring carries the electrons involved in 

photosynthesis. Attached to the porphyrin ring is an ester of a long-chain phytol, which 

makes chlorophyll hydrophobic and aids the pigment binding within protein complexes of  
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Figure 1.3 The light absorbing chlorophyll pigments. (A) Structure of chlorophyll a and 
chlorophyll b the primary photosynthetic light absorbing pigments of the chloroplast. (B) The room 
temperature absorption spectra of chlorophyll a (magenta) and chlorophyll b (blue). Berg et al., 
(2002). 

 

the membrane (Fig. 1.3.A). The critical and essential photosynthetic pigment in all the 

plants is chlorophyll a, which also constitutes P680 and P700 special pairs of the two 

photosystems. There are also accessory pigments in plants, such as chlorophyll b and 

carotenoids, which increase the absorption cross-section by absorbing light energy in 

different areas of the visible spectrum and pass that on to chlorophyll a.  Chlorophyll b 

differs from chlorophyll a by the presence of a formyl group (-CHO) attached to the 

porphyrin ring instead of a methyl group (-CH3) found in the latter. The differences 

between the absorption spectra of these two chlorophylls (Fig. 1.3.B) are significant: the 

red-most absorption band in the absorption spectrum (also known as the Qy band) of 

chlorophyll a is located at ~662 nm, whereas the red most absorption band for chlorophyll 

b is located at ~642 nm; and the so-called Soret band (in the blue region of the spectrum) 

A 

B 
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for chlorophyll a is situated at ~430 nm and at 460 nm for chlorophyll b. All chlorophylls 

present in the thylakoid membrane are bound by proteins, which provide a specific local 

environment, resulting in red shifts of the absorption spectra, further increasing the 

absorption cross-section. 

Carotenoids are yellow pigments which are also comprised of extended conjugated double 

bond systems and cyclic ring structures, most commonly C40. They are derived from 

isoprenoid precursors and are of two types, the carotenes (cyclic hydrocarbons) and 

xanthophylls (oxygenated derivatives of the carotenes). Much of the early work on the 

biosynthesis of carotenoids in higher plants was achieved through traditional biochemical 

approaches of purification and characterisation of the enzymes involved. More recently a 

new approach has been taken in which mutants lacking particular carotenoids have been 

isolated through screenings and subsequently molecular genetics is used to identify the 

mutated gene. The branching point of the carotenoid biosynthesis is defined by the action 

of the homodimeric lycopene β,β-cyclase complex which converts lycopene to β-carotene, 

or the heterodimeric lycopene β,ε-cyclase complex, which converts lycopene to α-carotene 

via δ-carotene (Cunningham et al., 1996; Cunningham, 2002). 

The α-xanthophyll branch involves the hydroxylation of α-carotene by a two step process 

involving two cytochrome mono-oxygenases, the first one (CYP97a3) catalyses the 

hydroxylation of the β-ring to form zeinoxanthin, and then the second one (CYP97c1) 

catalyses the ε-ring hydroxylation to yield lutein, the most common xanthophyll in nature 

(Pogson et al., 1996, Tian et al., 2004, Kim and DellaPenna, 2006). 

The β-xanthophyll branch involves hydroxylation of β-carotene primarily by the action of 

two ferredoxin dependent non-haem di-iron mono-oxygenase enzymes encoded by the 

chyB1 and chyB2 genes to form zeaxanthin (Bouvier et al., 1998, Tian et al., 2003). 

Zeaxanthin is then converted into violaxanthin, via the intermediate antheraxanthin, by the 

activity of zeaxanthin epoxidase enzyme which adds two epoxy groups across the β-ring 

double bonds (Yamamoto et al., 1962, Bouvier et al., 1996, Niyogi et al., 1998). The 

reverse reaction is also possible to convert violaxanthin back into zeaxanthin, via the 

intermediate antheraxanthin, by the activity of violaxanthin de-epoxidase which removes 
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two epoxy groups from both β-rings (Yamamoto et al., 1962, Avridsson et al., 1996, 

Niyogi et al., 1998). Together these two reactions constitute the xanthophyll cycle 

(Yamamoto et al., 1962). The final major xanthophyll that accumulates in thylakoids is 

neoxanthin which is formed by all-trans-violaxanthin. 9-cis neoxanthin is an isomer of  

violaxanthin and differs from the latter as its epoxy group with the conjugated double bond 

chain forms a hydroxyl group on the β-ring and an allene (= C =) group, this modification 

of violaxanthin has recently been ascribed as the function of neoxanthin synthase 

(Dall’Osto et al., 2007). 

 

 

Figure 1.4 The carotenoid biosynthetic pathway in higher plants. Key enzymes are in bold, 
Arabidopsis mutants that led to their identification in italics: LCY-e= lycopene ε-cyclase (lut2), 
LCY-b= lycopene β-cyclase, Chy1/ Chy2 = β-carotene hydroxylases, ZEP= zeaxanthin epoxidase, 
VDE = violaxanthin de-epoxidase, NXS = neoxanthin synthase, CYP97a3 (lut5) = β-ring 
hydroxylase activity, CYP97c1 (lut1) = ε-ring hydroxylase activity (Fiore et al., 2006). 
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Carotenoids are involved in light harvesting, absorbing light of different wavelengths to 

that of chlorophyll, and passing the energy on to chlorophyll. A major function of 

carotenoids is in photoprotection, removing chlorophyll triplet states, quenching singlet 

oxygen species and dissipating chlorophyll singlet states under excess light conditions. The 

role of carotenoids in photoprotection will be discussed in detail later. 

 

1.5 The pigment-protein complexes of the thylakoid membrane 

There are four major pigment-protein complexes, embedded in the thylakoid membrane of 

the chloroplast, which are responsible for light reaction of photosynthesis. The structural 

and functional features of these complexes, PSII, PSI, Cyt b6/f and ATP Synthase, are 

discussed in this section: 

 

1.5.1 Photosystem II 

Photosystem II (PSII) is a multi-subunit protein-cofactor complex found abundantly in the 

stacked or granal regions of the thylakoid membrane. It has a water-plastoquinone oxido-

reductase function (Hankamer et al., 1997; Barber, 1998). It can be separated into three 

main regions- the oxygen evolving complex, the reaction centre and the core antenna. The 

structure of the PSII core complex of the cyanobacterium, Synechococcus elongatus, has 

been resolved to a 2.5Å resolution (Zouni et al., 2001). Situated at the centre of PSII, the 

RC incorporates the chloroplast encoded D1 and D2 polypeptides (products of psbA and 

psbD genes, respectively), which form a heterodimer. The dimer contains 35 chlorophyll a, 

11 β-carotene molecules and 14 lipid molecules (Loll et al., 2005). Each of the D1 and D2 

subunits contains five membrane spanning helices with the n-termini on the stromal side of 

the membrane. The D1 and D2 subunits are homologues of the L and M subunits of the 

purple bacterial RC (Deisenhofer et al., 1985; Rhee et al., 1998). The cofactors involved in 

charge separation and electron transport bind to the RC’s dimeric core, and include the 

primary electron donor P680 reaction centre chlorophyll (probably PD1), PD2, ChlD1, 

ChlD2, ChlZD1, ChlZD2 chlorophylls, two pheophytins (PheoD1 and PheoD2), the 
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secondary electron acceptors plastoquinones QA and QB (situated close to pheophytins), 

two β-carotenes and finally a non-haem iron molecule situated between the plastoquinones 

molecules. The RC also contains cytochrome b559 (situated at the periphery), which 

consists of two subunits (9kDa and 4kDa) encoded by the chloroplast psbE and psbF genes, 

respectively. These polypeptides ligate a single haem group. The function of cytochrome 

b559 is still not proved but it is considered to be important in the protection of the RC 

against photodamage (Whitmarsh and Pakrasi, 1996; Stewart and Brudvig, 1998).  

Several other small subunits are present in the PSII dimer, the roles of most of them also 

being unclear. It is thought that PsbL, PsbM, and PsbT are involved in dimer formation and 

that PsbJ, PsbK, PsbN and PsbZ might facilitate the carotenoid binding since they are 

located close to β-carotene molecules (Ferreira et al., 2004). Cross-linking experiments 

(Tomo et al., 1993; Shi et al., 1999; Zouni et al., 2001) have located the low molecular 

weight PsbI and PsbX proteins close to the reaction centre D2 and cytochrome b559 

proteins, perhaps having a role in stabilising the peripheral ChlZD1 and ChlZD2 

chlorophylls (Ferreira et al., 2004). 

The D1 and D2 proteins bind the core antenna proteins, CP43 and CP47, products of the 

psbC (CP43) and psbB (CP47) genes binding 14 and 16 chlorophyll a molecules, 

respectively. These pigments form two layers close to the stromal and lumenal sides of the 

membrane. This is consistent with the observation by Barry et al. (1994) that the majority 

of conserved histidines, known to coordinate the Mg atoms in the chlorophyll molecules, 

are located towards the stromal and lumenal parts of the proteins. CP43 and CP47 are also 

considered to bind β-carotene and lutein (Bassi, 1996), although structural data does not 

confirm the latter (Zouni et al., 2001; Kamiya and Shen, 2003). The 2.5 Å structure of 

CP47, from Zouni et al. (2001) shows six membrane spanning helices as predicted by the 

topology of both CP43 and CP47 (Rhee et al., 1998). CP47 and CP43 function not only in 

light harvesting, but also in transferring excitation energy from the peripheral antenna to the 

RC, via the ChlZD1 and ChlZD2 chlorophylls (Fereira et al., 2004). 
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Figure 1.5 Structural organisation of the Photosystem II core complex. View perpendicular to the 
membrane plane, showing the minor lumenal exposed subunits (top). Helices are represented as 
cylinders with D1 in yellow; D2 in orange; CP47 in red; CP43 in green; cyt b559 in red; PsbL, 
PsbM, and PsbT in medium blue; and PsbH, PsbI, PsbJ, PsbK, PsbX, PsbZ, and PsbN in gray. The 
extrinsic proteins are PsbO in blue, PsbU in magenta, and PsbV in cyan. Chlorophylls of the D1/D2 
reaction centre are light green, pheophytins are blue, chlorophylls of the antenna complexes are 
dark green, β-carotenes are in orange, hemes are in red, nonheme Fe is red, QA and QB are purple. 
The oxygen-evolving centre (OEC) is shown as the red (oxygen atoms), magenta (Mn ions), and 
cyan (Ca2+) balls. View vertical from the membrane plane (bottom). Colouring is the same as for the 
top view (Ferreira et al., 2004). 
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On the lumenal side of the PSII complex close to the D1 subunit, there are three extrinsic 

proteins, PsbO, PsbP and PsbQ (Zouni et al., 2001), which form a ‘cap’ over the OEC (De 

Las Rivas et al., 2004). The OEC splits water into molecular oxygen, electrons and protons. 

The extrinsic proteins play a structural role by keeping the peripheral antenna at an 

appropriate distance from OEC (Boekema et al., 2000b), but their main role is in oxygen 

evolution. The Mn and Ca ions seen in the cyanobacterial PSII structure form a cuban-like 

Mn4CaO3 cluster that acts like a catalyst in the water splitting (Ferreira et al., 2004). The 

PsbO subunit is critical for the stability of Mn cluster (Ono and Inoue, 1984) and has been 

suggested to form a hydrophilic “pore” connecting the OEC with the lumenal surface 

(Ferriera et al., 2004). PsbO attaches to the PSII core via the large extrinsic loops of CP43 

and CP47 (Bricker and Frankel, 2002). The catalytic cycle of water oxidation involves five 

intermediate oxidation states, S0 to S4, each transition driven by a photon of light (Kok et 

al., 1970; Goussias, 2002). Each of the four incoming photons results in a charge separation 

event, thus removing four electrons from the Mn cluster in total, with simultaneous de-

protonation of two water molecules which ultimately results in liberation of one O2 for each 

completed cycle. 

 

1.5.2 Photosystem I 

Photosystem I (PSI) is a large pigment-protein complex, which comprises of a reaction 

centre core and a peripheral antenna. It is located in the unstacked stromal lamellae regions 

of the thylakoid membrane (Dekker and Boekema, 2005). It mediates the light driven 

electron transport from plastocyanin to ferredoxin, thus functions at the end of the 

photosynthetic electron transport chain as a plastocyanin-ferredoxin oxidoreductase 

(Scheller and Moller, 1990). Reduced ferredoxin is used in numerous regulatory cycles and 

reactions including nitrate assimilation, fatty acid desaturation and NADPH production. In 

turn NADPH is used with ATP to reduce CO2 to carbohydrates in the Calvin Cycle. This 

complex is composed of a core complex and a peripheral antenna system. The 3-

Dimensional crystal structure of PSI from pea, Pisum sativum, has been resolved to 4.4 Å 

showing 12 core subunits and 4 different light harvesting antenna complexes (LHCI), 
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which are assembled together in a half-moon shape on one side of the core. The complex 

binds 167 chlorophylls, 3 iron-sulphur clusters and 2 phylloquinones, and comprises of 45 

transmembrane helices (Ben-Shem et al., 2003). The core complex is made up of 14 

subunits and binds about 100 chlorophyll a and 22 β-carotene molecules (Jordan et al., 

2001). The structure of PSI is shown in Figure 1.6. 

 

Figure 1.6 Structural model of the plant photosystem I. View from the stromal side of the thylakoid 
membrane (a) and view from the LHCI side (b). Lhca antenna proteins are shown in green, PSI core 
proteins (PsaA and PsaB) in grey and the minor subunits in red (Ben-Shem et al., 2003). 
 
 
 
The large subunits PsaA and PsaB form the catalytic core and bind the majority of the 

chlorophylls, including the P700 special pair, which forms the primary electron donor.  

Subunits PsaA and PsaB each contain 11 transmembrane α-helices and share similarities in 

protein sequence and structure. The structural orientations of the carboxy-terminal regions 

of PsaA and PsaB have been found to be similar to that of the D1/D2 heterodimer in PSII 

(Hankamer et al., 1999). Six helices from each of the core polypeptides were also found to 

be arranged in a similar manner to CP43 and CP47 in PSII leading to suggestions that both 

photosystems may share common evolutionary origin (Hankamer et al., 1999). Light 

absorption causes charge separation in reaction centre, where the P700 transfers an electron 

to the electron acceptor A0 (a chlorophyll a molecule). The electron then passes to A1 (a 
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phylloquinone) and then through 3 iron-sulphur centres (FX, FA and FB), to ferredoxin on 

the stromal side of the membrane (Jordan et al., 2001). The electron reduces ferredoxin, 

which binds in a pocket on the stromal side of PsaA and is surrounded by PsaC, PsaD and 

PsaE. Oxidised P700+ is reduced by an electron from plastocyanin on the lumenal side of 

PSI. 

 

1.5.3 Cytochrome b6/f complex  

The Cytochrome b6/f complex (Cyt b6/f) links the two photosystems, PSII and PSI, by a 

linear electron flow. It is located in both granal and stromal regions of the membrane 

(Dekker and Boekema, 2005). It functions as a plastoquinol-plastocyanin oxidoreductase, 

simultaneously translocating protons into the lumen (for review, see Cape et al., 2006). The 

complex is dimeric, consisting of 4 large (cytochrome b6, cytochrome f, Rieske iron-sulfur, 

and subunit IV) and 4 small (PetG, PetM, PetL and PetN) polypeptide subunits (Widger et 

al., 1984; Kurisu et al., 2003). Each of the Cyt b6/f monomers is made up of 13 

transmembrane helices and binds four haem molecules (Kurisu et al., 2003), one 

chlorophyll a (Pierre et al., 1997) and one β-carotene (Zhang et al., 1999). The ferredoxin 

NADP reductase (FNR) binds to the Cyt b6/f complex, thus enabling the cyclic electron 

transport around PSI (Joliot et al., 2004). 
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Figure 1.7 Structure of cytochrome b6/f (a) and cyt bc1 (b) from Cape et al., (2006). Colour scheme 
for protein subunits: the Rieske ISP (orange); Cyt b (with subunit IV in the b6f structure) (slate); 
Cyt f (red). 

 

1.5.4 ATP-synthase complex 

The ATP-synthase complex is a large macromolecular multisubunit enzyme of 

approximately 600 kDa. It is responsible for the generation of ATP by phosphorylation, 

utilising the chemiosmotic proton gradient created by electron transport. ATP is formed 

from adenosine diphosphate (ADP) and inorganic phosphate (Pi). The complex is 

composed of nine polypeptides organised in the CF1 and CFo main subunits (for review, see 

Groth and Pohl, 2001). The CF1 subunit is found on the stromal surface of the thylakoid 

membrane, where it is associated with the CFo intrinsic membrane subunit. CF1 is water 

soluble while CFo is hydrophobic (Mc Carty et al., 2000). CF1 is the large component 

which contains the active site and is composed of 5 different polypetides in a stoichiometry 

of α3β3γδε (Abrahams et al., 1994; Groth and Pohl, 2001). CFo is made up of 4 subunits 

(IIV) and its function is to use a proton driving force to rotate the γ subunit of CF1 (Junge et 

al., 1997), a process that is a key part of the ATP synthase activity (Noji et al., 1997). 

Muller et al. (2000) found by atomic force microscopy that the four subunits are present in 

a 1:1:14:1 stoichiometry. 
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1.6 The peripheral light harvesting antenna complexes  

Both the photosystems, PSII and PSI, are equipped with their own additional membrane-

bound peripheral light harvesting antenna complexes. These antennae are meant for 

efficient light collection by increasing the absorption cross-section by many folds and then 

delivering the excitation energy to their photosystems. The peripheral antenna is a 

chlorophyll a/b binding protein complex which is of two types with reference to its 

respective photosystem, light harvesting complex I (LHCI) delivers excitation energy to 

PSI while light harvesting complex II (LHCII) is responsible for delivering excitation 

energy to PSII. The proteins of both the complexes are encoded by the Lhc super-gene 

family (Jansson, 1994) The 10 most commonly expressed Lhc genes encode polypeptides 

with molecular weights between 20-30 kDa, and the high degree of sequence homology 

among them indicates a common evolution (Green and Pichersky, 1994). All the Lhc 

polypeptides share significant sequence homology and significant conservation amongst 

chlorophyll binding residues with a predicted structure comprising 3 transmembrane helices 

(Green et al., 1991). These polypeptides have also tendency to replace one another, which 

is an evidence of robust molecular design of these antenna complexes and hence their 

functional significance (Ruban et al., 2003).   

  

1.6.1 LHCI 

Four light-harvesting proteins (Lhca1-4) with protein masses of around 25 kDa form LHCI. 

These are arranged to form two heterodimers (LHCI-730 and LHCI-680) that bind 

asymmetrically to the RC, via associations between a number of different subunits. The 

crystal structure of 4.4 Å resolution has revealed 56 chlorophylls bound by this complex 

(Ben-Shem et al., 2003). Biochemical work has also proposed that each individual Lhca 

protein binds 12-14 chlorophyll a and b molecules in total, along with 2-3 lutein, 1-1.5 

violaxanthin and 1-1.5 β-carotene molecules (Klimmek et al., 2005). In addition to the 

chlorophylls bound directly by Lhca polypeptides, 10 chlorophylls are considered to be 

localised between the PSI core and LHCI proteins. These ‘gap’ chlorophylls are suggested 

to optimize energy transfer from LHCI to the core and also to stabilise the structural 



32 

 

interaction between core and antenna. The chlorophyll a/b ratio has also been found as 

higher in PSI-LHCI complexes, which is around 10 (Morosinotto et al., 2005) as compared 

to PSII particles with this ratio as 2 (Ruban et at., 1999). The red shifted fluorescence 

emission spectrum of PSI is caused by a few so-called ‘red’ chlorophylls of antenna, which 

have an energy level lower than the RC. These ‘red’ chlorophylls are able to transfer 

excitation energy ‘up-hill’ to the reaction centre although this does not affect the efficiency 

of energy trapping by the core (Gobets et al., 2001). 

The LHCI-730 dimer (named after the 77K fluorescence emission maximum) is formed by 

association of the Lhca1 and Lhca4 polypeptides, while Lhca2 and Lhca3 form the LHCI-

680 dimer (Klimmek et al., 2005). A recent study has suggested LHCI structure as rigid, as 

the docking sites for the individual polypeptides are highly specific, except for Lhca4 being 

replaced by Lhca5 (Wientjes et al., 2009). The antenna serves to capture light and funnel it 

to the PSI core. The amount of LHCI bound to the PSI core has been demonstrated to 

fluctuate with various light conditions (Bailey et al., 2001), however another study has 

suggested that the LHCI polypeptide content is not affected by environmental conditions 

(Ballottari et al., 2007). PSI is also the binding site for phosphorylated LHCII following the 

state 1 to state 2 transitions (Lunde et al., 2000). 

 

1.6.2 LHCII  

The LHCII polypeptides bind chlorophyll a, chlorophyll b and xanthophylls (Melis and 

Andersson, 1983), and these are found to be intrinsic membrane proteins. LHCII is made 

up of four distinct complexes: the major trimeric LHCIIb complex and the three minor 

monomeric CP24, CP26 and CP29 complexes. LHCII complexes were conclusively 

resolved and identified using native deriphat-PAGE (Peter and Thornber, 1991). Trimeric 

LHCIIb was found to be comprised of various combinations of three very similar 

polypeptides; Lhcb1 (28 kDa), Lhcb2 (27 kDa) and Lhcb3 (25 kDa). The monomeric minor 

antenna complex polypeptides are Lhcb4 (29 kDa), Lhcb5 (26 kDa) and Lhcb6 (24 kDa), 

which are also called as CP29, CP26 and CP24 respectively (Peter and Thornber 1991; 

Jansson, 1994). It is considered that the atomic structures of Lhcb4-6 will be similar to that 
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of a monomer of LHCIIb, as there has been found a high degree of sequence homology 

among the six Lhcb proteins (Jansson, 1994; Green and Kuhlbrandt, 1995). These 

polypeptides have tendency to substitute each other, as shown by the replacement of two 

main components by another protein to attain the normal assembly and function, this is an 

evidence of robust design of antenna and hence its importance in highly efficient 

photosynthesis (Ruban et al., 2003). All these complexes increase the capacity of PSII for 

light capture, the minor antenna forming a link between the PSII core and the LHCII outer 

antenna. This function of the light-harvesting antenna is subject to regulation by a number 

of processes including state transitions and nonphotochemical quenching, both discussed in 

more detail below. 

 

1.6.2.1 The major LHCII antenna (LHCIIb) 

Early biochemical work has shown that trimeric LHCIIb (often called as LHCII) has a 

molecular weight of 72 kDa and a chlorophyll a/b ratio of 1.33 and that each monomer 

binds 3.5-4 xanthophylls in total, this includes 2 molecules of lutein, 1 of neoxanthin and 

0.5-1 of violaxanthin (Peter and Thornber, 1991; Ruban et al., 1999). The Lhcb1, Lhcb2 

and Lhcb3 polypeptides usually occur in a ratio of about 8:3:1 and join to form trimers 

which are not unique in composition (Jansson, 1994; Jansson, 1999). Among these three 

polypeptides, only Lhcb1 can form homotrimers and it is also present in all heterotrimeric 

forms such as Lhcb1(2)/ Lhcb2, Lhcb1(2)/ Lhcb3 and Lhcb1/Lhcb2/Lhcb3 (Jackowski et 

al., 2001). The first structural information about the monomeric subunit suggested 3 

transmembrane helices to constitute each subunit (Burgi et al., 1987), which was later 

confirmed by the structural model of trimeric LHCII resolved at 6 Å by electron 

crystallography of 2-Dimensional crystals, however there was insufficient evidence for the 

precise location of the chlorophyll molecules (Kuhlbrandt and Wang, 1991). The structure 

was further refined by the same method (Kuhlbrandt et al., 1994) to a 3.4 Å resolution, this 

time elaborating the interaction between two of the three membrane-spanning α-helices. An 

additional short helix was also located at the interface between the membrane and the 

lumen. Pigments, 12 chlorophylls and 2 xanthophylls, were also located in the centre of the 
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complex. The positions for chlorophyll a and chlorophyll b were not distinguished in this 

model but only designated by considering their energy transfer efficiencies. Later, the 3-

Dimensional structures of LHCII from spinach at 2.72 Å resolution (Liu et al., 2004), and 

from pea at 2.5 Å (Standfuss et al., 2005) provided a detailed account of protein and 

pigment orientation. The spinach structure confirmed the binding of 14 chlorophyll 

molecules and 4 xanthophylls by each monomeric LHCII, which was in conformity with 

earlier biochemical results suggesting 13-15 chlorophyll a and chlorophyll b molecules 

(Peter and Thornber, 1991) and 3-4 xanthophylls (Ruban et al., 1999). The structure is 

shown in Figure 1.8.  

 

 
 

Figure 1.8 Structural model of the LHCII obtained by X-ray crystallography (a). Side view of 
monomer showing the pigments: lutein (yellow), neoxanthin (orange), violaxanthin (purple), 
chlorophyll a (green), chlorophyll b (blue) (b). Pigment pattern in an LHCII monomer at the stromal 
and lumenal sides, respectively, displaying the strongly coupled chlorophyll clusters shown by 
green ovals (a610-a611-a612, a602-a603 and a613-a614) (c,d). Top view of LHCII trimer (e),(Liu 
et al., 2004). 
 

All the 14 chlorophyll molecules of monomer were identified as 8 chlorophyll a and 6 

chlorophyll b. The 4 xanthophylls were designated as 2 all-trans luteins in the form of a 
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cross-brace, 1 molecule of 9-cis neoxanthin localised in a highly selective binding site and 

1 all-trans violaxanthin at the monomer-monomer interface. The chlorophylls were located 

at specific binding sites for either chlorophyll a or chlorophyll b molecules, with no mixed 

binding sites available for both (Liu et al., 2004). The chlorophylls formed two layers 

within the membrane, one layer of 8 chlorophylls in the proximity of stroma and the other 

one of 6 chlorophylls near the lumen. In the trimer, chlorophylls form two rings on the 

stromal side, the inner one considered to be responsible for energy transfer between 

monomers (Gradinaru et al., 1998) while the outer one thought to broaden absorption of 

light energy and to transfer energy to the RC (Liu et al., 2004). 

The chlorophylls on the lumenal side were suggested to function upstream of the stromal 

chlorophylls (Liu et al., 2004). Three clusters of strongly coupled chlorophyll a molecules 

were found, to which energy could be transferred rapidly from chlorophyll b (Figure 

1.8.c.d): the a610-a611-a612 trimer and the a602-a603 and a613-a614 dimers 

(Novoderezhkin et al., 2005). The a610-a611-a612 cluster facilitated a good connection 

with other PSII subunits as it was found at the periphery of the LHCII trimer. This 

peripheral chlorophylls’ cluster, together with the adjacent lutein (lut 620) constituted the 

terminal emitter domain, which was proposed as the possible energy quenching site in 

LHCII (Wentworth et al., 2003; Pascal et al., 2005). 

This structural model not only confirmed the presence of the three transmembrane helices 

(A-C), and the α-helix along the lateral plane of the membrane (D), but also revealed a new, 

short amphipathic helix (E) inclined to the membrane plane by 30o. In the native 

membrane, LHCII is arranged as a trimer (Figure 1.8.e), and the trimerisation region was 

found to cover both the N-terminal and C-terminal domains, the stromal end of helix B and 

some residues of helix C. Trimer stability in the crystal structure seemed to be dependent 

on the presence of a phosphatidylglycerol (PG) molecule (Liu et al., 2004; Standfuss et al., 

2005), confirming the earlier reports (Remy et al., 1982; Nussberger et al., 1993) which 

suggested role of this lipid as  significant for the stability of  trimer, while monomerisation 

of this trimer could be achieved by  hydrolysis of PG with phospholipase A2 (Remy et al., 
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1982). Another lipid digalactosyl diacylglycerol (DGDG) was found to join the adjacent 

trimers through van der Waals forces (Nussberger et al., 1993; Liu et al., 2004).  

The high resolution crystal structure also confirmed the biochemical results for xanthophyll 

binding. Earlier biochemical studies proposed four xanthophyll binding sites for LHCII, 

two internal ones for lutein (L1 and L2) bound tightly within the complex, a neoxanthin 

binding site (N1) and one peripheral violaxanthin binding site (V1) bound only loosely 

(Ruban et al., 1999). Lutein had been found to perform various structural and functional 

roles like in vitro correct folding and stability of LHCII protein structure (Plumley and 

Schmidt, 1987; Croce et al., 1999; Phillip et al., 2002) and non-photochemical quenching 

(Lokstein et al., 2002). Contrarily the neoxanthin molecule had not been found essential for 

protein folding (Croce et al., 1999), although a photoprotective role for it was suggested in 

protection of the chlorophyll against photodamage (Standfuss et al., 2005). The neoxanthin 

was located in a chlorophyll b rich region close to helix C, a site which was also previously 

designated to be selective for it. Thus, both lutein and neoxanthin were considered to be 

functional in light harvesting and photoprotection (Kuhlbrandt et al., 1994). The loosely 

bound violaxanthin was considered to be significant in non-photochemical quenching 

(Demmig-Adams, 1990) through the xanthophyll cycle but its light harvesting role was not 

clear. 

 

1.6.2.2 CP29 (Lhcb4) 

CP29 is the largest of the minor antenna complexes, containing about 257 amino acids, 

with a molecular weight of 29 kDa (Peter and Thornber, 1991; Bassi, 1996). This complex 

is always found as a monomer and is the product of the Lhcb4 genes (Jansson, 1994). There 

are three Lhcb4 genes in Arabidopsis, two (Lhcb4.1 and Lhcb4.2) with similar expression 

levels while the third (Lhcb4.3) with lower expression level (Jansson, 1999). CP29 has 

been found to bind 8 chlorophyll molecules in total, with 6 chlorophyll a and 2 chlorophyll 

b (Sandona et al., 1998; Bassi et al., 1999). Isolation by native deriphat PAGE found 

approximately 3 xanthophylls: one lutein molecule, 0.77 neoxanthin and 1.54 violaxanthin 

(Peter and Thornber, 1991). However, this ratio of carotenoid binding was disputed, as in 
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vitro pigment reconstitution of recombinant CP29 produced in Escherichia coli showed that 

only 1 lutein and 1 violaxanthin could bind this complex (Bassi et al., 1999). The work 

using isoelectric focussing by Ruban et al. (1999) showed that there were two types of 

violaxanthin that are differentially bound to the complexes, one tightly bound which cannot 

be de-epoxidised, and the other loosely bound available for de-epoxidation. CP29 has been 

proposed to be functional in light harvesting along with a regulatory role. Its capacity to 

bind dicyclohexylcarbodiimide (DCCD) indicates that this protein can be protonated and 

for this a putative protonation site has been located on the lumenal loop (Pesaresi et al., 

1997). These results together with the evidence of the relative abundance of violaxanthin in 

CP29 as compared to the LHCII suggest a significant role for the former in non-

photochemical quenching. Moreover, under certain photoinhibitory conditions, this 

complex can also be phosphorylated in the N-terminal domain (Bergantino et al., 1995). 

However, antisense inhibition studies do not support an essential role of CP29 in 

photoprotection and suggest a more likely function in the coordination of the major antenna 

(Andersson et al., 2001). Evidence for this hypothesis has been provided by the observation 

that in absence of CP29, no intact PSII-LHCII supercomplexes could be prepared from the 

thylakoid membrane proposing a crucial stabilizing role for CP29 (Yakushevska et al., 

2003). 

 

1.6.2.3 CP26 (Lhcb5) 

This minor antenna protein is about 247 amino acids in length with a molecular weight of 

26 kDa protein, which binds pigments to form the CP26 complex (Peter and Thornber, 

1991, Bassi, 1996). It binds 9 chlorophyll molecules, including 6 chlorophyll a and 3 

chlorophyll b, with three chlorophyll b specific binding sites (Croce et al., 2002). 

Regarding xanthophylls, CP26 has been found to bind 1 neoxanthin, 2 luteins and 0.5 

violaxanthin. Ruban et al. (1999) reported 7-8 molecules of chlorophyll a and 3 of 

chlorophyll b along with a molecule each of the three xanthophylls lutein, neoxanthin and 

violaxanthin, a scheme later confirmed by the data of Wehner et al. (2006). However, these 

results contrast with the findings of reconstitution work carried out by Sandona et al. 
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(1998), which suggest existence of only 2 binding sites L1 and L2  in CP26, occupied by 

lutein and by violaxanthin, respectively. On the basis of this, a key role has been suggested 

for violaxanthin at L2 in non-photochemical quenching (NPQ) (Dall’Osto et al., 2005). 

CP26 shares the most sequence homology with Lhcb1 among the three minor complexes 

(Jansson et al., 1999), and consequently it has been found to join with Lhcb3 to form 

trimers substituting for LHCII trimers in antisense plants lacking both Lhcb1 and Lhcb2, 

which is also indicative of functional robustness of the light harvesting antenna (Ruban et 

al., 2003). 

 

1.6.2.4 CP24 (Lhcb6) 

CP26 is the smallest of the Lhcb proteins which is about 210 amino acids long, with a 

molecular mass of 24 kDa (Morishige et al., 1990). This minor complex is considered to 

bind 5 each of chlorophyll a and chlorophyll b molecules (Peter and Thornber, 1991; 

Pagano et al., 1998), thus possessing the lowest chlorophyll a/b ratio among all the antenna 

complexes. It has also been found to bind only two xanthophylls, lutein and violaxanthin, 

hence possibly no neoxanthin (Bassi et al., 1993, Ruban et al., 1999). Reconstitution work 

has also suggested in conformity the absence of neoxanthin in this complex, with lutein and 

violaxanthin occupying L1 and L2 sites respectively (Sandona et al., 1998; Wehner et al., 

2006). CP24 has also been found to play regulatory and structural roles similar to the case 

for CP29. In the plants with an antisense Lhcb6 gene and knock-out Lhcb6 mutants, 

absence of CP24 complex resulted in partial inhibition of NPQ and disruption of the 

macroorganisation of the PSII-LHCII supercomplexes (Kovacs et al., 2006). 

 

1.6.2.5 Other LHC-related proteins 

Other than the light-harvesting complexes of the two photosystems, there are also many 

‘LHC-like’ proteins, sharing some sequence homology with LHC proteins (Grimm et al., 

1989; Jansson et al., 2000). These include the one-helix proteins (OHP), the two-helix 

stress enhanced proteins (SEP), the three-helix early light induced proteins (ELIP) and the 
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four-helix PsbS protein. ELIPs appear to bind lutein and chlorophyll a and these stress-

induced proteins are are produced under high light conditions (Adamska et al., 1999) along 

with SEPs and HLIPs (high light inducible proteins) (Heddad and Adamska, 2000). The 

light harvesting antenna complexes of photosynthetic organisms are considered to be 

evolved from one-helix proteins which first underwent gene duplications forming a four-

helix complex (PsbS-like) and then by the loss of one helix present three three-helix 

proteins were evolved (Green and Pichersky, 1994; Montane and Kloppstech, 2000).  

 

1.6.2.6 PsbS 

The PsbS protein has been found to be essential for the rapidly reversible component of 

NPQ (Li et al., 2000). This membrane protein is widely distributed among plants, both 

angiosperms and gymnosperms (Schultes and Peterson, 2007), moss (Phycomitrella patens) 

and in two green algae (Chlamydomonas reinhardtii and Volvox carteri) (Anwaruzzaman et 

al., 2004). The precursor polypeptide is encoded by nuclear psbS gene and comprises of 

274 amino acids. This hydrophobic protein has four transmembrane helices (Figure 1.9). 

 

Figure 1.9 Schematic representation of the PsbS protein. The positions of single amino acid 
mutations are indicated (Li et al., 2000). 
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Despite its similarity with other pigment-binding proteins, PsbS has been shown to lack 

potential chlorophyll binding histidines and asparagines residues (Green and Pichersky, 

1994), however certain dual motifs have also been located in it similar to those associated 

with chlorophyll binding sites of LHCII (Schultes and Peterson, 2007). Various conflicting 

reports of pigment-binding properties of this protein makes it controversial, however it has 

been shown as stable in the absence of pigments (Funk et al., 1995) and has also been 

found to loosely and transiently bind zeaxanthin in vitro (Aspinall O’Dea et al., 2002), by 

means of glutamate residues. However, in another study the binding of zeaxanthin to PsbS 

has been doubted (Bonente et al., 2008). The exact location of this protein in the thylakoid 

membranes has also been found as elusive, as it has been found associated with multiple 

locations (Teardo et al., 2007) in the grana as well as stroma lamellae. The distribution of 

PsbS seems to be highly dependent on the environmental conditions. It has also been shown 

that the PsbS protein can exist in dimeric forms depending on the light and pH (Bergantino 

et al., 2003), thereby monomers associate with LHCII and dimers with the PSII core. 

Forward genetics studies helped to identify the significant role of PsbS in photoprotection 

(Li et al., 2000), which will be discussed later in section 1.10.4.      

 

1.7 Macromolecular organisation of the photosystem II 

The first description of macromolecular structure of PSII from barley came from Peter and 

Thornber (1991) who employed the deriphat-PAGE native gels to find two copies each of 

CP26 and CP29 and an LHCIIb trimer for each dimeric PSII core. The similar isolation 

approach was used to produce an oligomeric LHCIIb complex of approximately 250kDa 

molecular mass which was found more heavily phosphorylated than the PSII associated 

LHCIIb (Peter and Thornber 1991). The evidence of oligomeric LHCII association and the 

fact that the minor complexes CP26 and CP29 remained attached to the core complex 

despite LHCIIb dissociation led the way to the proposal of a model describing the PSII 

organisation (Peter and Thornber, 1991). This model depicted association of up to 4 

peripheral LHCIIb trimers on both sides of a central dimeric PSII core complex, with the 

help of ‘linker’ minor complexes CP24, CP26 and CP29. These findings were further 
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supported by 2D-electrophoresis of detergent solubilised PSII particles and cross-linking 

studies which also confirmed existence of PSII as a dimer core connected with the LHCIIb 

trimers on the periphery of the complex, by the help of minor antenna CP29, CP24 and 

CP26 (Bassi and Dainese, 1992; Jansson, 1994).  

Further details of the macro-organisation of PSII and its associated light-harvesting antenna 

were revealed by the techniques of electron microscopy (EM) and single particle analysis 

of mildly solubilised PSII-enriched particles from spinach (Boekema et al., 1995). The PSII 

supercomplex was observed in the shape of a rectangle, which was proposed to be a dimer 

formed from two PSII cores (C) and two strongly bound LHCII trimers (S), along with two 

copies each of CP29 and CP26 monomers. This unit supercomplex was referred to a C2S2. 

However, there was no information about the Lhcb3 containing trimer and the Lhcb6 gene 

product. More gentle approach was employed in a later study on partially solubilised 

membranes to isolate the PSII particles by gel filtration chromatography. This time all the 

three minor complexes were located and an extra pair of moderately bound LHCII trimers 

(M) symmetrically associated within the supercomplex was also found. This new 

supercomplex was called C2S2M2 complex. 

Further detailed analysis revealed binding of a third type of loosely bound LHCII trimers 

(L) (Boekema et al., 1999) (Figure 1.10). However, no supercomplex with six LHCII 

trimers bound (C2S2M2L2) has been observed, and even it has been found as case of 

extremely low frequency to observe a supercomplex with five trimers (C2S2M2L) attached 

to it. The in situ particle analysis on grana membranes gently solubilised by using the mild 

detergent n-dodecyl-α,D-maltoside showed that mainly the C2S2M supercomplexes form 

the basic motifs of the large semi-crystalline membrane domains in spinach. By analyzing 

the pairs of membranes with large-spaced crystalline macrodomains, it was shown that PSII 

complexes in one layer face the LHCII complexes in opposite layer (Boekema et al., 

2000a), this suggests that the organisation of the supercomplex membranes is arranged in a 

way to enhance transfer of energy between the layers (Dekker and Boekema, 2005). An 

assembly of 7 LHCII trimers to form an oligomer has also been shown to represent the 



42 

 

native structure in the LHCII-only domains of grana at the peripheral margins (Dekker et 

al., 1999). 

 

 
 

Figure 1.10 Top view of the spinach C2S2M2 supercomplex (Dekker and Boekema, 2005). “S” 
and “M”refer to strongly and moderately bound LHCII, respectively. “L” indicates the loosely 
bound trimer,found only in spinach. The central part indicates the protein backbone in the 
membrane-intrinsic part of the PSII core complex (calculated from the structure of the PSII core 
complex from S. vulcanus). Also shown the minor complexes CP29, CP26 and CP24. “X” denotes a 
possible small peripheral subunit according to fitting and a comparison of slightly different types of 
supercomplexes (Boekema et al., 1999b). 

 

Similar C2S2M2 type supercomplex composition was also observed in Arabidopsis in the 

form of a larger unit cell (Figure 1.11c). The highly ordered semi-crystalline fragments 

(Yakushevska et al., 2001) were aligned and an average of such 450 crystal fragments was 

revealed as a unit cell as shown within the rectangular marking in Figure 1.11a. A density 

map was used to locate  the likely positions of LHCII S and M trimers (shown as yellow) 

and the minor complexes, CP29, CP26 and CP24 (shown as green) in Figure 1.11b, which 

was further modeled to draw an individual isolated complex (Figure 1.11c) (Yakushevska 

et al., 2001).  
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Figure 1.11 Electron Microscopy images of grana fragments from Arabidopsis showing PSII-
LHCII macrostructure, containing C2S2M2 PSII-LHCII supercomplex as the basic motif. 

(Yakushevska et al., 2001). Sum of 450 aligned crystal fragments; the unit cell is indicated by the 
rectangular shape (a). Image of (a) showing the S and M trimers (yellow) and CP29, CP26 and 
CP24 (green) in (b) and a marked C2S2M2 supercomplex in (c). 

 

The location of minor, monomeric light-harvesting proteins in the macromolecular 

organisation was determined by studies involving cross-linking and antisense plants of 

these proteins. Cross-linking studies revealed CP29 and CP47 in close contact to one 

another on one side of the supercomplex while CP26 and CP43 in proximity to each other 

on the other side (Hankamer et al., 1997). Studies of antisense plants lacking either CP26 

or CP29 revealed the exact positions of the minor complexes within the supercomplex by 

process of elimination (Yakushevska et al., 2003). CP24 (Lhcb6) was located near CP29 

(Lhcb4) as revealed by study of antisense plant of CP29, while a decrease in the level of 

CP24 was also observed in this plant (Andersson et al., 2003). A later study of the 

knockout mutant lacking CP24 confirmed the positioning of CP24 and further identification 

of its role in binding the M trimer to the supercomplex (Kovacs et al., 2006). CP29 has 

been considered as essential for the formation of supercomplexes, as no supercomplexes 

are recovered following membrane solubilisation in the absence of this protein 

(Yakushevska et al., 2003). Contrarily, the supercomplexes remain intact in the absence of 
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CP26, although an increase in the solubility of thylakoid membranes and the resulting 

instability of supercomplexes is also noticed (Yakushevska et al., 2003).  

In case of major light harvesting proteins, absence of Lhcb3 protein has been found to have 

little effect on trimer stability or macro-organisazation as compared to wild type (Damkjaer 

et al., 2009). Interestingly, the supercomplexes without other two major light harvesting 

proteins Lhcb1 and Lhcb2, isolated from  antisense Arabidopsis plants (asLhcb2) have also 

been found to maintain apparently unchanged macrostructure as that observed in case of 

wild type plants (Ruban et al., 2003). These antisense plants are devoid of both major 

LHCII proteins, but this appears to be compensated by an enhanced expression of the minor 

antenna protein Lhcb5 (CP26), without any change in levels of other Lhcb proteins. The 

LHCIIb trimers seems to be replaced by minor Lhcb5 forming trimers with Lhcb3, binding 

at both the S and M binding sites. Though, these trimers were found less stable than those 

in the wild type plants. The plants also show the same extent of grana stacking as the wild 

type and similar photosynthetic characteristics, although non-photochemical quenching is 

reduced (Andersson et al., 2003). An increase in photosystem I antenna size was also 

observed in these antisense plants, implying a concerted compensatory response in the 

composition of both photosystems as result of loss of the phosphorylated LHCIIb. All this 

demonstrates the significance of PSII and LHCII macro-molecular organisation and 

assembly to maintain light-harvesting and electron transport, by means of extreme plasticity 

at the level of its composition and hence functional robustness (Ruban et al., 2006). 

 

1.8 Acclimation and adaptation to the light environment 

In nature, plants face large temporal and spatial variations in the intensity and quality of 

light. For instance, plants exposed to direct sunlight receive more than hundred times 

higher daily photon flux as compared to that available for plants growing under the deep 

shade in the tropical forest. Similarly, light spectral quality varies between full sunlight and 

shade conditions, with reduced red light in the latter by virtue of filtering by the canopy 

(Anderson and Osmond, 2001). These fluctuations in light environment necessitate the 

development of an entire multilevel network of acclimations and adaptations in plants to 
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regulate light harvesting, ranging from systemic to molecular level. At systemic level 

changes are slow and involve leaf orientation (Björkman and Powles, 1987) and 

morphological measures to curtail light absorption by glossy cuticle, salt deposition, air-

filled trichomes (Ruban, 2009).  Changes at cellular level, like chloroplast movements 

(Chow et al., 1988), are relatively fast and can affect light absorption by 10-20% (Brugnoli 

and Björkman, 1992).  

The changes at molecular level are most profound, and these can be categorised as long-

term photoacclimation and short-term adaptation.  

 

 1.8.1 Photoacclimation  

Photoacclimation can be defined as adjustment of photosynthesis to different light 

conditions by altering the composition of the leaf (Murchie et al., 2002, 2005; Walters, 

2005). The long-term photoacclimation is mainly developmental change, considered to be 

regulated by complex light-induced gene expression at transcriptional, translational and 

post-translational levels. Photoacclimation has been demonstrated to be adapted at both leaf 

and chloroplast levels (Murchie and Horton, 1997). These processes result in 

morphological and anatomical changes at leaf level to optimise light absorption, such as 

changes in thickness and orientation of leaves. At chloroplast level, the compositional and 

structural changes in thylakoid membrane are brought about, which are mainly changes in 

antenna size and alteration of the ratio between PSI and PSII (Murchie and Horton, 1998). 

The PSII antenna size is reduced under high light intensity due to proteolysis (Anderson 

and Aro, 1997). Similarly high light can alter the ratio between various PSI and PSII units, 

for instance by inactivating a subpopulation of PSII reaction centres (Anderson et al., 

1988).  
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1.8.2 Photoprotection  

The short-term photoprotection is not generally under gene control. These adaptations are 

meant to counteract fast fluctuations in the light environment, like diurnal variations in the 

light quality and quantity, sun flecks and canopy effect (Anderson and Osmond, 2001).  

 

1.8.2.1 Photoprotection under low light: state transitions 

Changes in the spectral quality of light environment influence the activity of photosynthetic 

electron transport. In order to compensate for the frequently occurring imbalance in the 

photosystems excitation, plants have evolved a short-term adaptation mechanism, known as 

state transitions (State 1-State 2 transitions) (Bonaventura and Mayers, 1969). The need for 

state transitions arises from the fact that the reaction centres of photosystem I and II have 

different chlorophyll excited state energies, 700 and 680 nm, respectively. The process of 

state transitions is based upon LHCII phosphorylation mechanism (Allen et al., 1981; 

Bennett, 1983; Horton, 1983). When the efficiency of PSII to absorb excitation energy is 

higher than that of PSI, this causes the reduction of the plastoquinone pool. Reduced PQ in 

turn activates a kinase to phosphorylate some mobile LHCII polypeptides from PSII which 

can migrate to get attached to PSI complex. This process enhances the PSI efficiency to 

absorb excitation energy by 20-35% to restore the energy imbalance (Kyle et al., 1983). 

When PSI gains relatively more excitation energy, the resultant oxidation of PQ this time 

activates a phosphatase to dephosphorylate LHCII from PSI, which migrate and incorporate 

back into PSII (Fig 1.12). The use of low-temperature excitation fluorescence spectroscopy 

has suggested that phosphorylated LHCII is likely to be a trimer in the quenched state. 

Moreover, this LhcIIb binds and interacts effectively with PSI to enhance light harvesting 

under limiting light conditions (Ruban and Johnson, 2009). 
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Figure 1.12 The LHCII phosphorylation model of the state transitions (Ruban and Johnson, 2009) 

 

1.8.2.2 Photoprotection under high light: Photoinhibition  

Under the conditions of excess light intensity, the balance between excitation energy 

absorption by light harvesting antenna and its subsequent use in photochemistry is 

disturbed. This leads to photoinhibition, a sustained decline in the photosynthetic 

efficiency, mainly associated with the damage of reaction centres (Powles, 1984). The high 

susceptibility of PSII reaction centres is due to strong oxidation potential of the P680 

required to oxidise water. When electron donation to the P680 is less efficient than its 

oxidation, the powerful oxidant P680+ inevitably starts oxidising and degrading nearest 

proteins and pigments (Barber, 1995). On the other hand, when acceptor side is less 

efficient this results in recombination of radical pair to form the P680 triplet. This triplet 

state P680 is highly prone to combine with molecular oxygen to create highly reactive 

species of singlet oxygen (1O2), which in turn can bleach P680 (Telfer et al., 1990). 

Reactive oxygen species can also cause irreparable damage to pigments, proteins and lipids. 

Therefore a decline in the number of active PSII units and the slow D1 repair both cause a 

decrease in electron transfer even when excess light is no longer there (Ohad et al., 1984). 

The rate of light energy utilisation can also be perturbed by other environmental factors like 

low temperature and CO2 limitation (Horton et al., 2001).  
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In addition to the above mentioned mechanisms at systemic and cellular levels, plants need 

to regulate their light-harvesting efficiency at molecular level in a dynamic way, so that a 

balance can be achieved between the absorption and utilisation of light energy to avoid 

photoinhibition. Thus, under the conditions of excess light, protective mechanisms such as 

non-photochemical quenching facilitate the de-excitation of the singlet excited chlorophyll 

molecules to dissipate excess excitation energy as heat, and hence curtailing the formation 

of triplet states of chlorophylls to avoid photo-oxidative damage (Ruban, 2009).  

 

1.9 The role of carotenoids in photoprotection 

In higher plants, carotenoids perform various important functions. These functions can be 

categorized in four different sections:  

1. harvesting the light as accessory pigments by facilitating the absorption in the 

region of the electromagnetic spectrum where the chlorophyll absorption is low;  

2. scavenging of highly reactive triplet chlorophyll and singlet oxygen species;  

3. dissipating the excess absorbed energy;  

4. stabilising the structure.  

As discussed earlier, photoinhibition and photo-oxidative damage of the photosynthetic 

apparatus are the result of formation of highly reactive 3Chl and 1O2 species. Carotenoids 

can quench both 3Chl and 1O2 species by energy transfer to form the triplet state of the 

carotenoid (3Car) (Krinsky et al., 1971), which is accomplished by the non-destructive 

thermal dissipation of the triplet energy (Mathis 1969, Mathis et al., 1979, Cogdell and 

Frank, 1987). Such a photoprotective role of carotenoid appears to be universal in 

chlorophyll-based photosynthetic organisms. On the basis of mutant studies, 

photoprotective roles have been described in higher plants for β-carotene (Telfer et al., 

1994)), lutein (Kuhlbrandt et al., 1994; Pogson et al., 1998; Niyogi et al., 2001), and 

neoxanthin (Lockstein et al., 2002; Dall’Osto et al., 2007). 
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These photoprotective roles of carotenoids rely upon their specific chemical structures and 

electronic properties. Energy level diagrams for carotenoids comprise of at least two singlet 

excited states denoted as S1 and S2 according to their symmetry (Figure 1.13). Although 

direct transition from the ground state (S0) to the first excited state (S1) is forbidden due to 

symmetry properties, however transition from S0 to the S2 excited state can occur. This S0 

to S2 transition is followed by internal conversion between S2 and S1 states from where 

carotenoids can subsequently return to its ground S0 state by dissipating the acquired 

energy as heat or by transferring this energy through resonance to the chlorophyll 

molecules (Cogdell and Frank, 1987; Ricci et al., 1996). 

 

 

Figure 1.13 Jablonsky diagram of pathways for formation and decay of excited states. S0 ground 
state, S1, S2,…Sn excited singlet and T1 excited triplet electronic states. Dotted lines show 
vibrational levels within each electronic state (Parson and Nagaranjan, 2003). 

 

Variations in the length of the conjugated double bond system of carotenoids have been 

found to affect their S2 and S1 energies, longer the conjugated double bonding system of a 

carotenoids lower will be its singlet excited state energies. This suggests that a longer 
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conjugated double bond system is more likely to make a carotenoid reactive to inhibit 1O2 

(Edge and Truscott, 1999). The structural differences among the carotenoids are also 

responsible for other physical properties such as polarity (Ruban et al., 1993a). 

 

1.9.1 Xanthophyll cycle carotenoids 

The xanthophyll cycle (XC) was discovered by Yamamoto et al. (1962) as a reversible 

process involving the de-epoxidation of violaxanthin to zeaxanthin in two steps by forming 

another intermediate xanthophyll molecule called antheraxanthin. The XC is located across 

the thylakoid membrane with the involved xanthophylls bound to the LHC proteins of both 

photosystems mainly at the peripheral V1 site (Thayer and Björkmann 1992, Lee and 

Thornber, 1995, Ruban et al., 1999) though some fraction of the pool may exist freely in 

the thylakoid membrane lipid phase under conditions of photo-oxidative stress (Havaux and 

Tardy 1997, Morosinotto et al., 2002). Within thylakoid membranes, the forward de-

epoxidation reaction (violaxanthin to zeaxanthin) occurs on the lumenal side and it involves 

removal of an epoxy group from each of the β-rings of violaxanthin to yield zeaxanthin via 

formation of a mono-epoxy intermediate antheraxanthin (Yamamoto et al., 1962, Hager 

1969). The reverse epoxidation reaction (zeaxanthin to violaxanthin) occurs on the stromal 

side of the thylakoid membrane in which an epoxy group is added to each β-ring occurs, 

again involving intermediate antheraxanthin in the process (Yamamoto et al., 1962).  

Violaxanthin de-epoxidation occurs in the light and is catalysed by the nuclear encoded 

enzyme violaxanthin de-epoxidase (VDE). VDE was first purified from spinach (Arvidsson 

et al., 1996) and then from lettuce (Rockholm and Yamamoto, 1996) and the enzymes from 

both species have been found with an apparent molecular weights of approximately 43 kDa 

by the help of SDS-PAGE. VDE requires acidification of the thylakoid lumen to become 

active, with optimum activity between pH 4.8 – 5.2, whilst becomes completely inactive 

over pH 6.3 (Eskling et al., 1997). VDE also requires the build-up of ascorbate in addition 

to acidification (Neubauer and Yamamoto, 1994) for maximal activity. The conditions for 

VDE activity can be mimicked in the dark by the provision of ATP which gets hydrolysed 

by the thylakoid ATP-ase to form a ∆pH gradient across the thylakoid membrane (Gilmore 
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and Yamamoto 1992). The activated VDE binds to the membrane at low pH conditions by 

virtue of a conformational change within it after the protonation of its four key histidine 

residues (Hager and Holocher, 1994, Gisselsson et al., 2004). This enzyme exhibits an even 

distribution between the grana and stromal lamellae upon membrane binding, with a very 

low stoichiometry of only one VDE protein per 20 to 100 electron transport chains 

(Arvidsson et al., 1996, Arvidsson et al., 1997).  

 

 

Figure 1.14 The scheme of xanthophyll cycle in higher plants (Jahns et al., 2009). 

 

The XC is completed by the reverse reaction, the zeaxanthin epoxidation, which occurs in 

the dark or under weak illumination. It is catalysed by another nuclear encoded enzyme 

zeaxanthin epoxidase (ZE). This enzyme has not been purified directly, however cDNA 

encoding ZE has been extracted from tomato and pepper and then expressed in Escherichia 

coli to synthesise it successfully (Bouvier et al., 1996; Burbridge et al., 1997). Similar to 

VDE, ZE also demonstrates a strong pH dependency, with optimum activity occurring 

between pH 7.0 – 7.5 (Siefermann and Yamamoto, 1975). Moreover, the epoxidation 

reaction also requires additional components like molecular oxygen (Takeguchi and 

Yamamoto, 1968) and the cofactors NADPH (Siefermann and Yamamoto, 1975) and FAD 
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(Buch et al., 1995), together with the presence of ferredoxin or ‘ferredoxin’ like reductants 

(Yamamoto, 1999). 

Both the enzymes, VDE and ZEP, are members of the plant lipocalin family (Bugos et al., 

1998) and structurally possess a conserved narrow ‘well-like’ cavity which enables them to 

catalyse only all-trans xanthophyll substrates but not the 9-cis ones (Yamamoto and 

Higashi, 1978). This ‘well like’ cavity structure is constituted by an eight stranded anti-

parallel β-barrel that is considered to act like hydrophobic binding pocket for the 

xanthophyll substrates (Bugos et al., 1998). 

The xanthophyll cycle pool size can vary by four times depending upon growth conditions, 

as found in field-grown cotton and mazie leaves (Thayer and Björkmann, 1992). Plant 

growth in high light enhances the demand for de-epoxidation as compared to low light 

growth conditions (Demmig-Adams, 1990). Thus a prolonged exposure to high irradiance 

and/or cold induced stress has been demonstrated to increase the size of the xanthophyll 

cycle pool in a number of plant species (Demmig-Adams 1990, Johnson et al., 1994, 

Verhoeven et al., 1999). Despite an increase in de-epoxidation, the level of VDE itself, 

however, decreases by 15-30% in high light (Eskling and Akerlund, 1998). Though 

majority of the violaxanthin pool is bound to the antenna complexes at readily accessible 

sites, not all of it can be converted into zeaxanthin (Ruban et al., 1999). The de-epoxidation 

state (DES) can be calculated as DES=A+0.5 Z/A+Z+V, where A, Z, V are antheraxanthin, 

zeaxanthin and violaxanthin, respectively.  DES has been typically calculated as around 

60%, however values as high as up to 90% have also been found specially under stress 

conditions in certain plant species  (Demmig-Adams and Adams, 1992). As a result of 

light-induced de-epoxidation, the zeaxanthin build up has been shown to have a strong 

correlation with NPQ (Demmig-Adams, 1990). Further details of the XC role in NPQ will 

be discussed in section 1.10.4. 

In addition to its active role in non-radiative heat dissipation of excitation energy in the 

PSII antenna, the XC appears to have a number of other important roles as well. The 

zeaxanthin is evident to play a significant role in protection against the peroxidation and 

degradation of thylakoid lipids under high light stress conditions (Havaux et al. 1991). 
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Work on an Arabidopsis mutant of npq1, which is unable to de-epoxidise violaxanthin to 

zeaxanthin, has demonstrated it as highly prone to lipid peroxidation, pigment loss and 

photoinhibition, whilst the rate of photosynthesis remains unaffected in this mutant 

(Havaux and Niyogi, 1999). On the other hand, a two fold increase in the size of the XC 

pool has also been made possible in another Arabidopsis mutant by overexpression of the 

chyB gene encoding the β-carotene hydroxylase enzyme, which is a component of the 

zeaxanthin biosynthetic pathway (Davison et al., 2002). Thus increase in XC pool size 

enhanced the tolerance to excess light conditions, by means of reduction in lipid 

peroxidation, along with decline in leaf necrosis and anthocyanin levels (Johnson et al., 

2007). These evidences highlight a strong link between zeaxanthin and the protection of 

thylakoid lipids from photodegradation. Moreover, zeaxanthin has also been shown to 

reduce the membrane fluidity, thus providing a protection against the heat-induced 

increases in lipid bilayer permeability (Havaux et al., 1996). This final piece of evidence 

suggests a regulatory role of the XC in membrane stability. The XC has also been shown to 

influence the oligomerisation of the LHCII.  Zeaxanthin has shown stimulatory effect on 

formation of LHCII oligomers with reduction in fluorescence while violaxanthin inhibits 

such aggregation with enhancement of fluorescence. By these opposing actions of 

xanthophylls, macro-organisation of LHCII and hence physiological control of light 

harvesting system can be manipulated by the activity of XC (Ruban et al., 1997).  

 

1.10 Chlorophyll fluorescence and non-photochemical quenching (NPQ) 

1.10.1 Chlorophyll fluorescence 

When a chlorophyll molecule absorbs light energy in the form of a photon, it results in 

promotion of its electron, present in the conjugated delocalised π-electron system, from the 

ground state (S0) to one of number of higher energy levels. This is followed by rapid decay 

of electron to its first excited singlet state S1, through the loss of vibrational energy as heat. 

The electron from S1 state eventually decays back to the ground state (S0) by either re-

emitting the absorbed energy as fluorescence (kF); transferring the energy to a nearby low 

or non-fluorescent chlorophyll molecule (kT); utilising the energy in photochemistry for 
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charge separation (kP); or by dissipating the energy in the form of non-radiative heat (kD). 

Chlorophyll can emit up to 30% of the absorbed light in vitro, but in vivo this value is 

reduced to around 3% (Krause and Weis, 1991). The quantum yield of fluorescence (ΦF) of 

either single chlorophyll or a group of its molecules can be calculated as the fraction of 

energy remained after competing with all the above processes, as expressed in the 

following equation: 

 

Equation 1.1 ΦF= chlorophyll fluorescence yield, kF= rate constant for fluorescence, kT= 
rate constant for energy transfer to an adjacent non fluorescent or low fluorescent 
chlorophyll, kP= rate constant for photochemical processes, kD= rate constant for heat 
dissipation.  

 

It is evident from the above equation that a decrease in the fluorescence yield is possible by 

two processes. The first process involves enhanced photochemical quenching of 

chlorophyll fluorescence or qP, which is derived from an increase in kP, as a result of 

photosynthetic electron transport. The second process happens as an increase in the 

nonphotochemical quenching (NPQ) or qN, which is due to an increase in kT or kD. All the 

fluorescence changes observed at room temperature result from effects of these two 

processes on PSII only, since the PSI fluorescence yield is much lower than PSII. 

Separation of the photochemical and non-photochemical components of chlorophyll 

fluorescence quenching has been made possible by employing two techniques. The first 

technique involves use of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to block qP, 

which inhibits electron transport from QA to QB in PSII (Krause et al., 1982). In the 

second method, ‘light doubling’ technique is employed in which a strong light pulse is used 

to saturate PSII photochemistry (Bradbury and Baker, 1981). Moreover, the use of 

modulated fluorescence along with application of the saturating pulses, allows continuous 

visualization of the fluorescence yield, to facilitate the relative measurement of qP and qN 
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contributions (Quick and Horton, 1984). The same principle forms the basis of PAM 

(Pulse-Amplitude-Modulation) fluorimetry (Schreiber, 1986).  

Horton and Hague (1988) classified NPQ on the basis of their work involving a range of 

inhibitors and monitoring the relaxation of NPQ in the dark following illumination. They 

found it to be comprised of three distinct components: qE (the rapid relaxing phase), qT 

(slow relaxing phase) and qI (very slow relaxing phase), each representing the regulation of 

light-harvesting.  

The chlorophyll fluorescence quenching analysis is meant to resolve these components and 

qP (Figure 13). When a dark adapted leaf or chlorophyll containing sample is illuminated 

with a weak measuring light, a minimum level of fluorescence or Fo is achieved, with all 

the RCs open at this stage performing photochemistry. When an actinic light (AL) in 

moderate to excess range (50-2000 µmol photons m-2 sec-1) is applied, a surge in 

fluorescence is observed as the PSII RCs get closed. When exposed to excessive light, 

photochemistry is reduced to its minimum as all the RCs are closed, thus the fluorescence 

level reaches its maximum (Fm). This is followed by a decline in fluorescence which is due 

to an increase in photochemical quenching that begins as the rate of photosynthesis 

increases, and the slow induction of non-photochemical quenching. The extent of qP and 

NPQ can be measured here by applying saturating light pulse/s in the presence of actinic 

light. The maximum fluorescence (Fm') attained here by saturating light pulse shows the 

extent of qP and difference between Fm and Fm' is used to calculate the value of NPQ. After 

switching off the actinic light, recovery of Fm' over a variable span of time, ranging from a 

few seconds to hours, reflects relaxation of various components of NPQ (Horton and 

Hague, 1988; Walters and Horton, 1991). 

The quantum yield of PSII during the actinic light illumination can be calculated as (Fm’-

Fs)/Fm’, where Fm’ and Fs are the maximum fluorescence and the steady state fluorescence 

during actinic light, respectively. This trace also provides information on the proportion of 

the light used in photochemistry. qP can be measured by (Fm’-Fs)/Fm’-Fo, where Fo is the 

minimum fluorescence level at weak measuring light after dark adaptation (Figure 1.15). 

NPQ is calculated as (Fm-Fm’)/Fm’. 
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Figure 1.15 A typical fluorescence trace used for quenching analysis. Fo is the minimum 
and Fm maximum fluorescence. Fm’ represents maximum fluorescence during actinic light 
and Fs the steady state fluorescence in actinic light. Fm’’ is the maximum fluorescence 
during dark relaxation. AL=actinic light; qP=photochemical quenching; qE=energy 
dependent; qT=state transition; qI=photoinhibition components of NPQ (Muller et al., 
2001). 

 

1.10.2 Non-photochemical quenching of chlorophyll fluorescence 

1.10.2.1 Photoinhibition dependent irreversible quenching – qI 

The qI or photoinhibitory component of quenching is either irreversible or slowly reversible 

and may sustain for several hours. It relaxes over a longer period, often with a half time of 

greater than  10-20 minutes, however part of it can be rapidly reversed on addition of 

uncoupler nigericin  (Ruban and Horton, 1995). Its contribution depends on the degree of 

light stress. A part of qI occurs as the photodamaged RC quenches fluorescence, reflecting 
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photoinhibition. However, a significant proportion arises even in the absence of PSII RC 

activity and is referred to as sustained quenching of the antenna (Gilmore and Björkman, 

1994; Horton et al., 1996). It has been suggested that qI is a result of structural change 

caused by illumination (similar to qE), but this change is sustained during the dark for a 

longer period of time than the one responsible for qE (Ruban and Horton, 1995). qI has also 

been correlated with the presence of zeaxanthin, which is only slowly epoxidised back into 

violaxanthin during darkness (Demmig et al., 1987; Jahns and Miehe, 1996). Later, it was 

found that some of this persisting zeaxanthin is bound to the CP26 minor complexes which 

led to the proposal of minor antenna complexes as the sites for qI (Dall'Osto et al., 2005).  

 

1.10.2.2 State transitions dependent quenching– qT 

The qT or state transition related component of NPQ has a rather small proportion (15-

20%) of the maximum quenching, although its contribution can become major under very 

low light conditions which promote state transition. It also relaxes slower than qE, with a 

half time of around 5-10 minutes (Horton and Hague, 1988; Walters and Horton, 1993). 

This component was first identified as an increase in the rate of non-radiative heat 

dissipation, which was postulated to be a photoprotective mechanism, that actually 

quenched both Fo and Fm but unlike qE was not dependent upon the ∆pH (Demmig and 

Björkman 1987). Horton and Hague first resolved qT and qI by using sodium fluoride 

(NaF), a thylakoid phosphatase inhibitor. The proportion of reversible quenching found 

sensitive to NaF was designated as qT. The sensitivity of qT to NaF suggested the 

involvement of state transitions that were known to depend on phosphorylation of LHCII 

(Horton and Black 1981).  This phosphorylated LHCII is then moved to PSI in order to 

redistribute the energy between PSII and PSI by striking a balance between the rates of 

delivery of quanta to the two RCs for maximal photosynthetic efficiency (Allen, 1992). 

State transitions are inhibited in high light conditions (Aro et al., 1993) and are only 

significant in the adaptation of plants at low light intensities to balance the excitation rates 

between the two photosystems in order to maintain high quantum efficiency (reviewed in 

Mullineaux and Emlyn-Jones, 2004). Consistent with this, qT does not make a significant 
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contribution to quenching under high light. However, it is hard to measure qT exclusively 

as it overlaps not only with the slower components of qE (Walters and Horton, 1991), it 

also depends on dark-induced inactivation state of ferredoxin-NADP(+)-reductase (FNR) 

on the acceptor side of PSI (Schansker et al., 2006). 

 

1.10.2.3 Energy dependent quenching – qE 

The qE or energy dependent quenching is the largest component of NPQ which is formed 

during illumination as a proton gradient is developed across the thylakoid membrane 

(Briantais et al., 1979). The qE is formed rapidly with a relaxation half-time of 

approximately 30-60 seconds in the dark (Horton and Hague, 1988). It is usually estimated 

as Fm/Fm’-Fm/Fm’’, where Fm’’ is the maximum fluorescence after about 10 min of dark 

relaxation (as shown in Figure 13). 

The contribution of nonphotochemical components was first explained as the second wave 

of fluorescence quenching in the green alga Chlorella pyrenoidosa. It was suggested that 

qE is not dependent on the photosynthetic electron transport rate (Wraight and Crofts, 

1970). It was also proposed that alteration in the fluorescence yield might be a result of a 

change in the arrangement of chlorophyll a molecules under the influence of variable 

conformation of supporting lamella. Moreover dissociation of non-fluorescing chlorophyll 

a aggregates was considered to be a mechanism for de-excitation of energy from the 

photosynthetic unit (Papageorgiou and Govindjee, 1968). A decline in chlorophyll 

fluorescence yield has also been described to be unrelated to photochemistry and rather 

influenced by high energy state of phosphorylation that may affect the state of chlorophyll 

a molecules in the chloroplasts. The process was thus speculated to be a way to reduce the 

inactivation of the chloroplasts in excessive light (Murata and Sugahara 1969).  

Further investigation of fluorescence quenching explained the inhibitory role of uncouplers 

to abolish ‘energy-dependent’ quenching, suggesting its dependence on the trans-thylakoid 

proton gradient formed during photosynthesis. It was also proposed that chlorophyll 

fluorescence quenching occurs by an increase in the rate of non-radiative dissipation of the 
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chlorophyll excited singlet state by means of thermal degradation (Wraight and Crofts, 

1970). These results were corroborated by another study to firmly establish a linear 

correlation between the energy dependent chlorophyll fluorescence quenching (qE) and the 

intra-thylakoid proton gradient in the broken pea protoplasts (Briantais et al., 1979). 

Later on, it was discovered that the influx of protons into the lumen is accompanied by 

efflux of magnesium cations. These simultaneous movements cause certain changes in the 

thylakoid membrane structure which were proposed to affect both fluorescence and 

absorption band around 535 nm (Krause, 1973). Krause and Behrend (1986) first proposed 

a physiological role of qE by discovering the increase in photoinhibition as a direct 

consequence of abolishing the rapidly relaxing component of NPQ. Horton and Hague 

(1988) later confirmed by their work on isolated chloroplasts that photoinhibition was 

inversely proportional to the level of qE. It was suggested that under high light conditions 

qE impedes the build-up of reduced QA, thereby preventing photoinhibition. It has also 

been observed that, with the increase in light intensity, a steady decrease in the PSII 

quantum yield continues, however the level of qP remains high which keeps QA oxidised 

(Weis and Berry, 1987; Genty et al., 1989). This demonstrates that the decrease in quantum 

yield of PSII is not a consequence of feedback from reduced components of the 

photosynthetic electron transport system; rather it is result of NPQ that is reflected as an 

increase in dissipation of the energy absorbed by the antenna. All the above mentioned 

findings suggest that qE is a regulatory mechanism meant to provide photoprotection. 

Another important role of the ∆pH formation in qE is the activation of the xanthophyll 

cycle, detailed in section 1.8.2. The de-epoxidation of violaxanthin to zeaxanthin has been 

linked to the level of qE in numerous plant species under various environmental conditions 

(Demmig-Adams, 1990) as well as in isolated chloroplasts (Gilmore and Yamamoto, 

1992). The inhibitor dithiothreitol (DTT) has been used to block both VDE and 

consequently qE (Bilger et al., 1989; Adams et al., 1990). Study of NPQ mutants has also 

provided important insights to understand the mechanism of qE. The Arabidopsis mutant of 

npq1, which is unable to convert violaxanthin to zeaxanthin, exhibits much reduced qE. 

Another mutant npq2, which is unable to epoxidise zeaxanthin and hence constitutively 
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accumulates zeaxanthin, has faster qE induction than in the wild type plants (Niyogi et al., 

1998). 

Spectroscopic studies of isolated thylakoids and leaves have indicated that high light 

induction of qE correlates with two separate absorbance changes. One absorbance change 

at 505 nm is considered as a result of the zeaxanthin formation from violaxanthin by de-

epoxidation (Yamamoto et al., 1972), consequently this change is a quantitative measure of 

the de-epoxidation reaction (Siefermann and Yamamoto, 1974). The second absorbance 

change, which is frequently referred to as a light scattering change, has a maximum at 530-

540 nm and is designated as ∆535. It is considered to be dependent on pH and the presence 

of zeaxanthin (Bilger et al., 1989). As both pH and zeaxanthin are considered to be 

significant prerequisites for the induction of qE, thus ∆A535 has been correlated with qE in 

both leaves and chloroplasts, (Noctor et al., 1993; Ruban et al., 1993b) and no such change 

has been observed in npq4 mutants, without PsbS, lacking qE (Li et al., 2000). As 

mentioned earlier, ∆A535 was initially thought to be a light scattering change resulting 

from a ∆pH-dependent conformational change in the thylakoid membrane (Heber, 1969; 

Krause, 1973) and it was also considered to be potentially related to aggregation of LHCII 

(Ruban et al., 1993b). Further studies proved that this absorbance change is a “real” one, at 

least in part, and reflects a change in the electronic absorption of zeaxanthin. Moreover, it 

was suggested that this change results from the “activation” of zeaxanthin molecules under 

the influence of some change in their local environment, thus it was regarded as a complex 

change (Ruban et al., 2002b). Change in the local environment of zeaxanthin has been 

possibly speculated in the form of head-to-tail aggregation (Polivka et al., 2002). A similar 

absorption spectral shift giving rise to a ∆A535 has been replicated in vitro upon 

association between isolated PsbS and zeaxanthin, suggesting that this interaction may be 

crucial for the functioning of zeaxanthin in NPQ (Aspinall O’Dea et al., 2002). 

The PsbS protein plays an essential role in qE. The npq4 mutant, which lacks PsbS, has 

been found to be deficient in the qE component of NPQ (Li et al., 2000a). However, some 

NPQ still occurs in this mutant but rate of induction and relaxation remains very slow. 

Correspondingly, the absorbance changes associated with ∆A535 also show slower 
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formation and smaller amplitude (Johnson and Ruban, 2009). On the basis of these 

observations, the role of PsbS has been proposed as a promoter of conformational changes 

within LHCII to bring about NPQ in vivo (Horton et al., 2000; Horton and Ruban, 2005, 

Johnson and Ruban, 2009). An in depth study of the role of PsbS has been made possible 

by a number of site-directed mutations of this protein. Most significant were those in which 

mutation of certain lumen-facing glutamate residues resulted in the inhibition of qE (Li et 

al., 2002c; Li et al., 2004). It was proposed that protonation of these residues is a key event 

in the pH-dependent induction of qE, which is consistent with DCCD binding to this 

protein (Ruban et al., 1992; Dominici et al., 2002). The PsbS over-expressor lines of 

Arabidopsis plants (L17) have also been generated, and these plants exhibited qE of larger 

amplitude than that found in the wild type (Li et al., 2002b). Although this evidence has 

been used to suggest a direct role of PsbS in NPQ, acting as the binding site for zeaxanthin, 

however it was subsequently demonstrated that the stimulatory role of PsbS is independent 

of the presence of zeaxanthin (Crouchman et al., 2006). Therefore, the exact mode of PsbS 

action remains elusive to date. In fact the location of this protein is still ambiguous: some 

reports suggest its association with either LHCII (Kim et al., 1994) or the PSII core (Funk 

et al., 1995; Dominici et al., 2002; Bergantino et al., 2003); and some others even suggest 

it as highly mobile within the thylakoid membrane (Nield et al., 2000; Yakushevska et al., 

2001; Teandro et al., 2007). 

 

1.10.3 The site of qE 

Various studies have attempted to suggest whether qE takes place in the RC or in the light 

harvesting antenna. Weis and Berry (1987) and later Krieger et al. (1992) suggested the 

PSII RC as site of quenching on the basis of observation that the quantum yield of PSII was 

correlated with the amount of qE. It was proposed that quenching occurs in the PSII RC 

itself, due to the increased population of QA-, which facilitates rapid recombination via a 

back reaction with P680+. This charge recombination and hence RC quenching is promoted 

by inactivation of electron donation to P680, caused by low pH-induced release of Ca+2 

from the OEC (Krieger and Weis, 1993). However, there are some results indicating that 
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quenching process can occur in RC (Finazzi et al., 2004), most of the evidence suggests 

that the qE component of NPQ takes place in the antenna (Horton and Ruban, 1992; Ruban 

and Horton, 1995; Wentworth et al., 2000). Some of these evidence are as follows: 

a) the qE-related heat emission occurs within 1.4 µs (Mullineaux et al., 1994), significantly 

faster than the rate of QA- and P680+ recombination (~120 µs); 

b) the 77K PSII fluorescence spectral analysis of photochemical and non-photochemical 

quenching shows variations of pigment populations in both processes, as qP preferentially 

quenches the PSII core at 688nm whereas qE quenches at maxima of 683 nm and 698 nm 

(Ruban and Horton, 1995); 

c) the XC carotenoids, which have been implicated to play a significant role in qE 

(Demmig-Adams, 1990), are only associated with the peripheral light harvesting antennae 

(Peter and Thornber, 1991; Ruban et al., 1999); 

d) quenching demonstrated by isolated antenna complexes resembles many features of in 

vivo qE observed in leaves and chloroplasts, such as the kinetics of fluorescence induction, 

the enhancement by zeaxanthin, and the absorbance changes accompanying the quenching 

process (Ruban and Horton, 1992; Wentworth et al., 2000; Wentworth et al., 2001); 

e) the qE inhibitor DCCD (Ruban et al., 1992) binds antenna polypeptides (Walters et al., 

1994; Ruban et al., 1998a), later on DCCD has also been shown to bind to PsbS protein 

(Dominici et al., 2002). 

The above mentioned approaches strongly suggest that qE occurs in the light-harvesting 

antenna; however the RC could be involved under certain physiological conditions, such as 

low pH or inhibition of antenna quenching. 
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1.10.4 The mechanism of qE 

Recently evidence has been provided for two distinct types of mechanisms to account for 

quenching in the antenna. One of the mechanisms suggests zeaxanthin while the other 

lutein as the quencher of excitation energy, however both assign a substantial role for 

zeaxanthin in the NPQ either as a direct quencher or allosteric regulator of the process.  The 

first mechanism, suggesting zeaxanthin as the obligatory quencher of chlorophyll excited 

states, is based on the evidence of strong correlation between qE and the formation of 

zeaxanthin (Demmig-Adams et al., 1989a,b,c; Demmig-Adams, 1990). The essential 

prerequisite of pH gradient for qE was explained by its role to activate the zeaxanthin 

binding site within PSII light-harvesting antenna (Gilmore et al., 1995).  

An idea was proposed to explain correlation between induction of quenching and 

violaxanthin de-epoxidation, based on the extrapolation of various singlet excited state 

properties of zeaxanthin in comparison with those of violaxanthin, as depicted in the Figure 

1.16 (Owens, 1994). This was later named as the “molecular gear shift model” (Frank et al., 

1994). As discussed earlier (see section 1.9.1), this model is based on the understanding 

that chlorophyll can dissipate its excitation energy by transferring it to a carotenoid 

molecule with the S1 level lower than that of former. Zeaxanthin has lower S1 level than 

the chlorophyll Qy band, so it can act as quencher of excited singlet chlorophyll to bring it 

back into ground state. Since the S1 level of violaxanthin is higher than that of chlorophyll 

a, which makes it a good candidate as light harvesting pigment. Thus the antenna can be 

modulated to efficiently harvest light energy or to effectively dissipate excess excitation 

energy, by converting violaxanthin into zeaxanthin, under conditions with light energy 

surplus of photochemistry.  

Carotenoids exhibit at least two excited states, named as S1 and S2. As S2 to S1 transition is 

possible and carotenoids use it as a measure to transfer energy to chlorophylls. The S1 

energy level of carotenoids, zeaxanthin and violaxanthin, relative to the chlorophyll a Qy 

band can be calculated or extrapolated by using the energy gap law (Frank et al., 1994). 

Thus the S1 energy levels of violaxanthin and zeaxanthin, in comparison with that of 

chlorophyll, were found as higher and lower, respectively. Later a relationship was 
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established between the length of the conjugated double bond chain of the molecule and 

ability to induce ∆pH dependent quenching in LHCII in vitro (Phillip et al., 1996). The de-

epoxidation of violaxanthin to zeaxanthin results in increasing the number of conjugated 

double bonds from 9 to 11, and thereby promotes LHCII quenching. Thus the molecular 

gear shift model suggests that differences in S1 energy states between zeaxanthin and 

violaxanthin are sufficient to account for their roles as quencher and light harvester, 

respectively. This model also explains the action of violaxanthin as an accessory pigment 

during low light conditions, whilst its conversion into zeaxanthin makes possible the 

dissipation of excess energy under high light conditions. 

 

 

Figure 1.16 The molecular gear shift model for non-photochemical quenching (after Owens, 1994) 

 

Some serious doubts were raised on the validity of molecular gear shift model, when the 

direct measurements of violaxanthin and zeaxanthin energy levels were performed, using 

transient absorption (Polivka et al., 1999) and fluorescence (Frank et al., 2000) 

spectroscopy. These measurements demonstrated that the values of S1 energy states of both 

xanthophylls were far lower than the extrapolated ones calculated earlier; actually the basic 

tenet of this hypothesis was negated as both values were found to be lower than the level of 

chlorophyll a Qy band. A subsequent study, using low temperature fluorescence 
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spectroscopy, measured the S1 energy levels of the xanthophyll cycle carotenoids, finding 

similar values with those previously reported (Frank et al., 1994), however it was 

considered to be a result of significant distortion of the carotenoids, caused by a change in 

protein at low temperature.  

The relationship between the length of conjugated double bond chain and the pH induced 

quenching in LHCII in vitro was used as evidence to support the molecular gear shift 

model. However, subsequent studies suggested this relationship was likely to be based on 

differences in carotenoid configuration and not on the S1 excited state energy level (Ruban 

et al., 1998b; Phillip et al., 1996). Direct evidence was obtained, using the artificial 

conjugated dyad model system, that energy transfer from a chlorin ring of chlorophyll to 

the S1 state of a carotenoid, coupled with an internal charge transfer state may cause energy 

dissipation. Moreover, this study also showed that addition of only one double bond to the 

conjugated double bond chain of the carotenoid converts the non-quencher carotenoid into 

a strong quencher (Berera et al., 2006).  

 

1.10.4.1 The carotenoid radical cation model  

The transfer of electrons between carotenoids and chlorophylls has been presented as a 

mechanism for chlorophyll fluorescence quenching, as an alternative to singlet-singlet 

energy transfer. The transient formation of carotenoid cation radicals as a result of 

photoexcitation has been observed in both bacterial light harvesting complexes (Frank and 

Brudvig, 2004) and thylakoid membranes (Holt et al., 2005). On the basis of these studies, 

a new model accounting for direct quenching was suggested (Figure 1.17). This model 

proposes direct quenching of the major light harvesting antenna chlorophylls following the 

∆pH-induced formation of a zeaxanthin/PsbS complex (Figure 1.17a). The excitation 

energy can be transferred from chlorophyll to carotenoids if the lowest excited state of the 

chlorophyll (Qy band) is higher than the carotenoid excited state. The carotenoid excited 

energy state was measured by transient absorption spectroscopy of isolated thylakoids, and 

was theoretically calculated as lower than the chlorophyll Qy band (Ma et al., 2003). 

Subsequently it was proposed that quenching occurs as a result of energy transfer from 
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chlorophyll to a carotenoid (zeaxanthin) or alternatively by the formation of a chlorophyll 

xanthophyll heterodimer. The formation of zeaxanthin/PsbS complex was considered to 

give rise to an exclusive signal depicting qE dependent changes (Holt et al., 2004). 

 

 

 

 

Figure 1.17 The PsbS-zeaxanthin complex model for non-photochemical quenching (a) (Holt et al., 
2004). The hypothesis for the zeaxanthin cation formation and the dissipation of energy by charge 
transfer and recombination (b) (Holt et al., 2005). 

 

The model suggests that exposure to intense light triggers the formation of zeaxanthin 

molecules in PSII. This mechanism involves transfer of energy to a chlorophyll-zeaxanthin 

heterodimer. This heterodimer undergoes charge separation and subsequent recombination, 

while transiently producing a zeaxanthin radical cation. In charge transfer mechanism, the 

zeaxanthin molecules interact with excited chlorophylls to dissipate the excess energy, by 

giving up an electron to the chlorophyll to bring the latter’s energy back down to ground 

state and to turn itself into a cation radical. This zeaxanthin cation radical, unlike an excited 

chlorophyll, is a non-oxidising agent.  

a 

b 



67 

 

Application of near-infrared absorption spectroscopy demonstrated the appearance of a qE 

related absorption band (at approximately 1,000 nm), indicating the formation of a 

carotenoid cation. The signal, which appears only in chloroplasts showing qE and 

containing zeaxanthin (Holt et al., 2005), was interpreted as arising from a chlorophyll-

zeaxanthin (Chl-Zea) heterodimer formed when qE is induced (Figure 1.15b). The 

heterodimer quenches the bulk of chlorophylls (Chlbulk) via the formation of a charge 

separated ground state Chl- and Zea+, which decay further to the ground state by charge 

recombination. Consistent with this model, it was calculated that zeaxanthin has the lowest 

ionization potential of the xanthophyll cycle carotenoids (Dreuw et al., 2003). A zeaxanthin 

radical cation was found exclusively at the L2 binding site of all the three isolated minor 

light-harvesting proteins, CP29, CP26 and CP24, which were either reconstituted in vitro or 

expressed in bacteria. As all the three minor complexes showed quenching, therefore it was 

suggested that no single antenna protein was specifically required for quenching and these 

complexes might be the site of qE in vivo (Ahn et al., 2008; Avenson et al., 2008). The 

effect of this carotenoid radical cation on the excited-state lifetime of the minor antenna 

complexes has only been demonstrated in vitro and found as very small. Moreover, the 

tightly bound violaxanthin in minor complexes has also been found as inaccessible for 

deepoxidation.  It has been proposed that in vivo, under the influence of the ∆pH, a large 

population of minor complexes can adopt a conformation to account for substantial 

reduction of excitation lifetime (Avenson et al., 2008). 

 

1.10.4.2 The allosteric model 

The LHCII aggregation model of qE was first presented by Horton et al. (1991) as an 

alternative to the direct quenching model. It was proposed that protonation causes 

aggregation of LHCII. As isolated aggregated antenna was found in quenched state, 

therefore aggregation model was considered to be responsible for the change in antenna 

underlying NPQ. The extent of aggregation and hence NPQ was found to be controlled by 

peripheral xanthophylls, violaxanthin and zeaxanthin as inhibitor and promoter respectively 

(Horton et al., 1996). Indeed, earlier studies on isolated chloroplasts already demonstrated 
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that qE could occur both in the absence or presence of zeaxanthin only with the 

requirement of different pH. Interestingly, qE was even observed in isolated chloroplasts 

devoid of zeaxanthin (Rees et al., 1989; Noctor et al., 1991). These results show that 

zeaxanthin itself is not the quencher; rather it performs an indirect role to lower the pH 

requirement for qE. This initial model has been updated (Horton et al., 2000; Horton et al., 

2005) describing 4 LHCII states, depending on the de-epoxidation state of the xanthophyll 

cycle and the lumenal pH (Figure 1.18).  

 

 

Figure 1.18 The LHCII model for NPQ. LHCII is represented in green; violaxanthin in yellow; 
zeaxanthin, red; orange arrows indicate energy dissipation; H denotes protonation; (Horton et al., 
2000; Horton et al., 2005). 

 

State I depicts the unquenched, light harvesting state of the antenna complex with bound 

violaxanthin at no or minimal pH difference between the stroma and the lumen. State III 

shows a partially quenched state of protonated complex with violaxanthin still bound to it. 

In the light activated state II, the LHCII is partially quenched in unprotonated and 
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zeaxanthin bound condition. The final state IV represents the maximum quenching as both 

protonation and zeaxanthin binding to the LHCII occur. In isolated LHCII, aggregation of 

the protein and hence quenching can be induced by the removal of the detergent (Ruban et 

al., 1991), by the addition of Mg ions (Arntzen and Ditto, 1976) or low pH (Briantais et al., 

1979). 

Several lines of evidence lend support to the idea that LHCII aggregation was a “first 

approximation” of the conformational change leading to quenching. However, further 

investigations revealed that the quenching process in LHCII was not a direct consequence 

of protein-protein interactions during the process of aggregation, rather a result of intrinsic 

conformational transition within the monomeric unit of the complex brought about by 

protonation (Ilioaia et al., 2008). This also suggests qE as inbuilt property of LHCII 

proteins, thus a protein conformational change alters the configuration of bound pigments 

(Ruban et al., 2007). 

Evidence has also been found that difference in activity of violaxanthin and zeaxanthin in 

qE can be a result of difference in their structural rather than in their excited energy levels, 

as proposed by the molecular gear shift model (Ruban et al., 1993a). It has been found that 

the ability to induce quenching is not merely dependent on the number of conjugated 

double bonds. Auroxanthin, an isomer of violaxanthin having only 7 double bonds, can 

induce quenching in the isolated LHCII with even greater efficiency than zeaxanthin 

(Ruban et al., 1998b). The explanation for this observation comes by finding a structural 

similarity between auroxanthin and zeaxanthin – in both, the head groups are in the same 

plane with respect to the double bond chain, but they are twisted in violaxanthin. This 

structural orientation of the head group has therefore been suggested to control the 

interaction of the xanthophyll molecules with LHCII (Horton et al., 1999). This observation 

is in contradiction to the direct quenching model of qE, but fully endorses the indirect 

model. 

All the PSII light harvesting complexes have intrinsic ability to undergo transition to a 

highly dissipative state in vitro quenching. This may provide a feasible molecular basis to 

relate conformational changes to qE (Horton et al., 1996). However, the minor complexes 
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have been demonstrated to affect both amplitude and kinetics of quenching more than does 

the major trimer LHCII (Ruban et al., 1996; Wentworth et al., 2001). Hence, quenching 

was proposed as a collective property of the whole antenna, rather than of one particular 

complex (Horton et al., 1996). Studies of various Lhc mutants have provided important 

insights to this question. These mutants were created either by expression of anti-sense 

Lhcb genes or T-DNA insertions in Lhcb genes. The first two antisense mutant lines 

obtained were without Lhcb4 (CP29) and Lhcb5 (CP26), both showed NPQ reduction by 

only a 30% and 10%, respectively. The mutant lacking CP29, however, was found to have 

perturbation in macro-organisation with the absence of PSII-LHCII supercomplexes, while 

slightly unstable supercomplexes were found in case of CP26-deficient mutants 

(Yakushevska et al., 2003). Major effect on NPQ was observed in the plants with antisense 

and knock-out of Lhcb6 (CP24) with a maximum qE reduction of 60%. The macro-

organisation was also drastically altered as only C2S2 complexes were observed, 

implicating the exclusion of M trimers in addition to CP24. Plants without major Lhcb1 and 

Lhcb2, forming major constituents of trimeric LHCII, were also created by an antisense 

Lhcb2 line (Andersson et al., 2003). This mutant type also showed a 30% reduction in qE, 

but macrostructure remained unchanged as Lhcb5 containing trimers replaced trimers with 

Lhcb1 and Lhcb2 to preserve PSII macro-organisation (Ruban et al., 2003). In case of 

plants without Lhcb3 as a result of gene mutation, the NPQ remained unaffected with only 

minor deviation in macro-structure from wild type (Damkjær et al., 2009). All these results 

together suggest that no single Lhcb protein can exclusively regarded as the unique site of 

qE and show, moreover, the significance of the macro-structure of the LHCII antenna 

system for maximal NPQ in vivo (Horton et al., 2005; Kovacs et al., 2006).  

Spectroscopic studies of quenched LHCII help to understand the mechanism of quenching. 

The significance of the terminal emitter domain, comprising of Chl a611, Chl a612, Chl 

b608 and lutein 1, has been emphasised by proposing a quenching interaction between the 

chlorophylls and lutein as a result of conformational change (Wentworth et al. 2001). The 

first elaborate insights into the understanding of quenching mechanism were made possible 

by the studies of LHCII crystal structure (Liu et al., 2004). Later spectroscopic analysis of 

these crystals by Pascal et al. (2005) demonstrated these crystals to be in a quenched state. 
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The lifetime of these quenched crystals was measured by the help of fluorescence lifetime 

imaging technique (FLIM) and found as 0.89 ns as against 4.2 ns measured in case of 

isolated trimers. A characteristic 680 nm band along with another maximum band at around 

700 nm was observed in the fluorescence emission spectra, similar to the results found 

previously in the quenched aggregated LHCII. Similar changes in pigment interactions 

were also observed between crystals and trimers in the Resonance Raman analysis; the 

neoxanthin molecule in each monomer in the crystal is twisted relative to its state in the 

trimer. Similarly, changes were also found in the chlorophyll b region of the crystal, 

indicating formation of an extra hydrogen bond between a formyl group of chlorophyll b 

and a water molecule in the crystal (Pascal et al., 2005). These observations indicate a 

change in the LHCII conformation upon its transition to the quenched state. On the basis of 

pigment orientation in the crystal structure, following three putative quenching sites have 

been proposed (Pascal et al., 2005): 

- terminal emitter domain comprises of chlorophylls: Chl a611, Chl a612, Chl b608 and 

lutein 1 (lut 620);  

- neoxanthin domain: neoxanthin, lutein 2 (lut 621), Chl b606 and Chl b607;  

- xanthophyll cycle binding domain (V1): violaxanthin, Chl a611 and Chl a601;  

The difference in interaction strengths of lutein 1 and lutein 2 with adjacent chlorophylls 

was further elaborated by a subsequent study of crystal structure; suggesting the interaction 

of lutein 1 molecule with the Chl a611 and Chl a612 molecules is likely to constitute the 

potential quenching site (Yan et al., 2007). Recently it has been suggested that quenching 

of excitation energy does not require an intrinsic conformational change, and it can be 

rather a result of interaction with external pigments in vitro or with PsbS in vivo (Barros et 

al., 2009). However, studies showing the qE induced by intrinsic conformational change in 

the absence of LHCII aggregation and hence external pigments in vitro (Ilioaia et al., 2008) 

and without PsbS both in vitro and in vivo (Crouchman et al., 2006; Bonente et al., 2007, 

Johnson and Ruban, 2009) are not supportive of the afore mentioned exclusion of LHCII 

conformational change role in qE. 
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Figure 1.19 Structural model of an LHCII monomer, depicting the molecular mechanism of 
qE. Lutein 1 (red) is in proximity with chlorin rings of chlorophyll a 610, 611 and 612 
(blue). The neoxanthin (Neo, pink) twist is shown as curved broad yellow arrow; while the 
white broad arrow demonstrates the putative movement of lutein 1 towards the chlorophyll 
cluster (broad yellow arrows) (Ruban et al., 2007). 

 

The intrinsically bound xanthophyll at the L1 site, normally lutein, has been proposed as an 

efficient quencher of chlorophyll excited states (Figure 1.19). Femtosecond transient 

absorption spectroscopy on the trimeric LHCII aggregates revealed that energy dissipation 

occurred by energy transfer from chlorophyll a to the low-lying excited state of lutein 1. A 

corresponding change in the conformation of another xanthophyll, neoxanthin, was 

detected by resonance Raman spectroscopy and correlated with both LHCII in vitro 

quenching and in vivo qE. Therefore this quenching mechanism demonstrates a reduction in 

the chlorophyll excited state lifetime by a magnitude which fully accounts for qE in vivo. 

This molecular insight into the mechanism of quenching re-affirms the allosteric model in 

which qE is initiated by a conformational change in the LHCII, induced by the light- 

dependent ∆pH. The conformational change thus gives rise to an increase in the rate of 

energy transfer from chlorophyll a to lutein 1. Considering qE as a heterogeneous process, 

quenching by lutein 1in LHCII may only be a part, as this model does not rule out 
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contribution of minor antenna complexes in the quenching, which bind zeaxanthin at 

internal sites occupied by lutein in LHCII (Ruban et al., 2007). 

 

1.11 Project outline 

The main focus of the work presented in this thesis is the identification and characterisation 

of molecular factors that regulate the photoprotective capacity of the photosynthetic 

membrane and the efficiency of light energy utilisation. The role of two major 

xanthophylls, lutein and zeaxanthin, which have been implicated to play main role in the 

NPQ, was investigated. Effect of xanthophyll composition on the regulation of light 

harvesting was studied using available xanthophyll mutants of Arabidopsis and methods of 

fluorescence and absorption spectroscopy. The in vitro biochemical and spectroscopic 

investigation was carried out to investigate the stability of macro structure of thylakoid 

membranes obtained from these mutants. Furthermore, LHCII complexes from xanthophyll 

mutants were isolated and characterised by means of in vitro chlorophyll fluorescence 

quenching and chlorophyll excitation life time measurements. Finally, a double mutant with 

over-expression of PsbS protein and devoid of zeaxanthin was generated and characterised 

to further shed light on the role of PsbS and zeaxanthin in energy dependent quenching qE. 
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2.1 General laboratory chemicals 

Chemicals and reagent used for all the analyses and experiments were obtained from 

Sigma-Aldrich unless stated otherwise. 

 

2.2 Plant material and growth conditions 

Arabidopsis (Arabidopsis thaliana cv Columbia) and mutant and transgenic lines derived 

from it were grown for 8 to 10 weeks in Sanyo Versatile Environmental Test Chambers 

(MLR-351) with an 8 hours photoperiod under a light intensity of 100 µmol photons m-2 s-1 

(also known as µE) and day/night temperatures maintained at 22oC/18oC. The seeds were 

sown in 19 x 15 cm seed germination trays on John Innes seed compost and then were 

transferred for stratification at 4oC immediately after sowing, for 12 hours (overnight), 

before being transferred to the growth chambers. Two weeks after planting, the seedlings at 

4-6 leaf stage were replanted in 7.5 x 7.5 cm plastic pots in commercial peat free 

multipurpose compost. Vermiculite, a commercially available naturally occuring non-toxic 

mica mineral, was also mixed in the compost at 10% (v/v) concentration, to improve water 

holding capacity and aeration of the compost. The plants for thylakoid and BBY 

preparation were grown in the plant growth room for 8 to 10 weeks under controlled 

day/night temperatures of 22oC/18oC and 8 hours photoperiod, provided by a bank of cool 

white Polylux XL fluorescent tubes (150 µmol photons m-2 s-1). The plants for high light 

acclimation experiment were grown initially under the controlled growth conditions as 

mentioned above and then well-established potted plants were moved under high light 

intensity of 700 µmol photons m-2 s-1 provided by HPI-T400W incandescent lamps 

(Philips), for either short (one week) or long term (four weeks). Plants were hand watered 

periodically by either sprinkling or sub-irrigation. 

The xanthophyll mutants used were as follows: npq1 (mutated in violaxanthin deepoxidase 

and therefore unable to synthesize zeaxanthin in excess light); npq2 (mutated in zeaxanthin 

epoxidase and constitutively containing zeaxanthin even in low light, while lacking 

violaxanthin and neoxanthin; Niyogi et al., 1998); lut2 (lacking the expression of functional 
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lycopene ε-cyclase and lacking lutein; Pérez-Bueno and Horton, 2008); lut2npq2 

(possessing zeaxanthin as the only xanthophyll; Havaux et al., 2004); and lut2npq1 

(lacking lutein and unable to deepoxidate violaxanthin to zeaxanthin; Niyogi et al., 2001). 

The mutant lines of Arabidopsis deficient in PsbS npq4-1 (Li et al., 2000) and PsbS 

overexpresser L17 (Li et al., 2002b) were also used. All the mutants were from same 

background (Col-0) and seeds were obtained from various collections: npq1, npq2 and 

npq4 (Nottingham Arabidopsis Stock Centre), lut2 (Patrick Romano), lut2npq1, lut2npq2 

and L17 (Kris Niyogi). Plant material was always collected for analyses and sample 

preparation at the beginning of the photoperiod, after 2 hr of illumination. Fully expanded 

rosette leaves were used for all measurements. 

 

2.3 Chlorophyll fluorescence induction  

Room temperature chlorophyll fluorescence was measured with a pulse amplitude 

modulated PAM-101 or Dual-PAM-100 Chlorophyll Fluorescence Measuring System 

(Heinz Walz, Effeltrich). All the fluorescence measurements were performed by using 

DualPAM software. For analysis of NPQ, the plants were adapted in the dark for 30 min 

prior to measurement. Fluorescence quenching was induced by two periods of 5 min actinic 

illumination at 700 µmol photons m-2 s-1, provided by arrangement of 635 nm LEDs 

illuminating both the adaxial and abaxial surfaces of the leaf. Each period of actinic 

illumination was followed by 5 minutes of dark relaxation period. The maximal 

fluorescence in the dark-adapted state (Fm), during the course of actinic illumination (Fm’) 

and the subsequent dark relaxation period were measured by a 0.8 s saturating (4000 µmol 

photons m-2 s-1) light pulse applied at 1 to 2 min intervals. NPQ was determined as ((Fm-

Fm’)/Fm’). Fv/Fm was measured at the beginning of the analysis in the dark adapted state. 

The reversible component (relaxing within 5 min) was assigned to energy dependent NPQ 

(qE) and was calculated as ((Fm/Fm’) – (Fm/Fm’’), where Fm’’ is the maximal yield of 

fluorescence after 5 min of dark relaxation following the actinic illumination. To obtain 

complete inhibition of violaxanthin de-epoxidation, leaves were vacuum infiltrated with a 5 

mM dithiothreitol (DTT) solution. For the measurement of state transitions, interference 
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filters were used to transmit light of 650nm PSII light of 40 µmol photons m-2 s-1 and 

715nm PSI light of 10 µmol photons m-2 s-1, using 650FS10-25 and 715FG07 filters 

respectively. To analyse fluorescence quenching kinetics, a SigmaPlot software curve-

fitting procedure (SPSS, Chicago, IL) was used. 

 

2.4 Chlorophyll fluorescence lifetime measurement 

Time-correlated single photon counting measurements were performed using a FluoTime 

200 picosecond fluorometer (PicoQuant GmbH). Excitation light was provided by a laser 

diode at 470 nm with 10 MHz repetition rate. Fluorescence was detected with 2 nm slit 

width at 685 nm for leaves and 680 nm for isolated LHCII and CP26. The instrumental 

response function was in the range of 50 ps. For lifetime analysis, FluoFit software 

(PicoQuant) was used. To measure the chlorophyll lifetime in photosynthetic state of the 

dynamic range (unquenched state, Fm), detached leaves were vacuum infiltrated with 50 

µM nigericin to completely inhibit NPQ. The excitation light intensity was carefully 

adjusted to completely close all PSII reaction centres without causing photoinhibitory 

quenching of Fm and to be far below the onset of singlet-singlet annihilation. White light 

intensity of 700 µmol photons m-2 s-1 was used to induce the NPQ state (quenched state, 

Fm’) in vivo. 

Fluorescence

Excitation

Laser pulses

470 nm

Detection 680 nm

Sample

 

Figure 2.1 Diagrammatic presentation of time-correlated single photon counting setup to measure 

chlorophyll fluorescence lifetime, using a picosecond fluorometer.  
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2.5 Preparation of thylakoid membranes 

Unstacked thylakoids were prepared by homogenising approximately 50g fresh dark 

adapted Arabidopsis leaves in 300 ml of ice-cold grinding medium (330 mM sorbitol, 10 

mM Na4P2O7x10H2O, 2 mM D-iso-ascorbate, pH 6.5) with a Polytron (Kinematica). The 

homogenate was then filtered through four layers of muslin followed by two layers of 

muslin containing a central layer of absorbent cotton wool. The filtrate was centrifuged 

using Harrier 18/80 (MSE) centrifuge for 10 min at 4000 x g, and the chloroplast-enriched 

pellet was resuspended in wash buffer (330 mM sorbitol, 10 mM MES, pH 6.5) and again 

centrifuged for a further 10 minutes at 4000 x g. The pellet was then resuspended in 30 ml 

of resuspension medium (330 mM sorbitol, 50 mM HEPES, pH 7.6) and osmotically 

shocked by mixing with 50 ml break medium (10 mM HEPES, pH 7.6) for 30 s to lyse any 

remaining intact chloroplasts. The osmotic potential was returned to normal immediately by 

addition of an equal volume of 50 ml osmoticum medium (660 mM sorbitol, 100 mM 

HEPES, pH 7.6). The thylakoids were centrifuged once again for 10 min at 4000 x g and 

resuspended in the resuspension medium. Stacked thylakoids were prepared using the same 

protocol with the addition of 5mM MgCl2 in all the media. 

 

2.6 PSII membrane preparation (BBYs) 

Preparation of PSII particles preparations was carried out following the protocol of 

Berthold et al. (1981). Approximately 40g of fresh leaves Arabidopsis were homogenised 

in 300 ml of ice cold grinding medium (330 mM sorbitol, 10 mM Na4P2O7x10H2O, 5 mM 

MgCl2, 2 mM sodium D-iso-ascorbate, pH 6.5) with 2-3 short bursts from a Polytron. The 

homogenate was initially filtered through 4 layers of muslin followed by 2 layers of muslin 

containing in between a central layer of highly absorbent cotton wool. The sample was then 

centrifuged at 4000 x g for 5 minutes, the supernatant discarded and the pellet resuspended 

in washing medium (330 mM sorbitol, 10 mM MES, pH 6.5) before centrifugation for 7.5 

minutes at 4000 g. The resulting pellet was resuspended in 30 ml of resuspension medium 

(330 mM sorbitol, 5 mM MgCl2, 40 mM MES, pH 6.5) and osmotically shocked by the 

addition of 50 ml of breaking medium (5 mM MgCl2, pH 7.6). The osmotic potential was 
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restored after 30 seconds by the addition of 50 ml of a double osmotic strength medium 

(660 M sorbitol, 5 mM MgCl2, 40 mM MES, pH 7.6). The thylakoids were then 

centrifuged for 10 minutes at 4000 x g and the pellet resuspended in stacking medium (5 

mM MgCl2, 15 mM NaCl, 2 mM MES, pH 6.3). A 0.5 ml aliquot was used for chlorophyll 

determination, and the rest of the sample was resuspended to a final chlorophyll 

concentration of 3 mg/ml in stacking medium. The sample was left on ice in the dark 

without stirring for a minimum period of 45 minutes to promote membrane stacking. 

Following this, the sample was then diluted with half its volume of 10 % (v/v) Triton X-

100 in stacking medium to give a final detergent concentration of 3.33 % (v/v). The sample 

was then incubated on ice for 30 minutes with occasional gentle inversions to help 

membrane digestion. After this step, the digestion was stopped by dilution of the detergent 

with the addition of at least 6 ml of stacking medium. The sample was then centrifuged for 

30 minutes at 30000 x g (4 °C) in a Beckman J2 centrifuge using a J2-21 rotor. The pellet 

was resuspended in particle wash medium (2 mM EDTA, pH 7.5) and again centrifuged as 

in the previous step (30000 x g, 30 minutes at 4 °C). The supernatant was discarded and the 

final pellet resuspended in deionised water. Samples were used as required or frozen in 

liquid nitrogen and stored at –80 °C. 

 

2.7 Sucrose gradient separation 

Sucrose density gradient centrifugation was performed for further purification (removing 

PSI and free pigments) of BBY PSII particles. Seven step exponential sucrose gradients 

from 0.15 to 1.0 M sucrose were used. Two 60 ml sucrose stock solutions of 0.1 M and 1.5 

M in 20 mM HEPES buffer containing 20 mM n-dodecyl β-D-maltoside (pH 8.0) were 

prepared for a total of six tubes. 1.5 ml of 0.1 M sucrose was pipetted into each of the six 

tubes (9 ml total). Subsequently, 9 ml of the 1.5 M stock solution was added to the 0.1 M 

stock and mixed. Again, a total of 9 ml of the latter stock are added to the tubes. This 

process was repeated six times to form the gradient. 200 to 500 ml of sample were loaded 

onto each tube and centrifuged at 200 000 x g in a SW41 rotor for 18 h at 4°C. 
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2.8 LHCII isolation 

Major and minor antenna complexes were isolated from unstacked wild-type and mutant 

thylakoid membranes using non denaturing IEF (isoelectric focussing). The procedure was 

carried out using a Multiphor II Electrophoresis system (Pharmacia) following the protocol 

of Bassi et al. (1991) as modified by Ruban et al. (1994). A number of gels and ampholites 

were used to analyse their suitability, as previously described Ultrodex 50 gel and 

Ampholine pH 3.5-5.0 carrier ampholite were no more available. Therefore various 

alternative Sephadex gels (G-50, G-75, G-100, G-150) were used and G-75 was found as 

most suitable among the available types. Similarly Pharmalytes with various pH ranges like 

2.5-5.0, 4.2-4.9, 4-6.5, 3.5-9.5 carrier ampholite were used one with pH 2.5-5.0 was found 

as an alternative to Ampholine pH 3.5-5.0.  

A slurry of volume 100 ml containing 4.6% Sephadex G-75 (GE Healthcare Bio-Sciences), 

2% Pharmalyte pH 2.5–5.0 (GE Healthcare Bio-Sciences), 1% glycine and 0.06% n-

dodecyl β-D-maltoside was prepared. Electrode strips were soaked in 2 % (w/v) pharmalyte 

solution (pH range 2.5-5.0), excess solution was removed with tissue and the strips placed 

at each end of the glass gel tray with dimensions of 24.5 x 11.0-cm. The slurry was 

carefully poured into the gel tray, avoiding air bubbles. The tray was then placed on a 

balance, with a small fan installed about 70 cm above to evaporate the excess water. The set 

up was left for approximately 2-3 hours in order to evaporate 37g of water. The anode and 

cathode strips were prepared by soaking the strip in either anode solution (5.6 % (v/v) 

H3PO4) or cathode solution (1 M NaOH). The excess solution was removed with a tissue 

and the strips were carefully placed at either end of the gel on top of the electrod strips. A 

0.1 % (v/v) solution of Triton X-100 was applied to the surface of the Multiphor II cooling 

plate to ensure good thermal contact with the gel tray. The gel tray was then placed on the 

cooling plate and the electrodes connected to the electrode strips. Pre-focusing of the gel 

was carried out at ~8 W (13 mA, 600 V) for 30-60 mins. 2 ml of freshly prepared unstacked 

thylakoids or PSII particles, with a total chlorophyll concentration of 2.5mg/ml, were used. 

Then from 10% n-dodecyl β-D-maltoside stock solution, 0.5 ml for thylakoids or 0.3 ml for 

BBY samples was added and the sample was incubated on ice for 30-60 minutes with 
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occasional stirring. The sample was centrifuged at 5000 x g for a minute to remove any 

insoluble material, and then the supernatant was applied 2 cm from the cathode on the pre-

cooled and pre-focussed gel using a sample applicator (10 x 2 cm). After sample 

application the gel was allowed to equilibrate for 3 minutes before the start of focusing. The 

focusing procedure was carried out for 18 h (overnight) at a constant power of 8W at 4 °C. 

The initial and final current values were normally ~15 and 5 mA, respectively. Each green 

band corresponding to the different light harvesting complexes was carefully collected 

using a spatula. The samples were eluted using a minimum volume of a solution containing 

100 mM HEPES (pH 7.6) and 0.01% n-dodecyl β-D-maltoside using a plastic Pasteur 

pipette. The samples were then loaded onto a desalting column to remove the ampholine, 

using a desalting buffer (25 mM HEPES and 0.01-0.03 % (w/v) n-dodecyl β-D-maltoside 

as required). 

As mutant LHCII exists in the monomeric rather than trimeric form (Lokstein et al., 2002; 

Havaux et al., 2004), monomers were prepared from wild-type trimers according to the 

method described in Nussberger et al. (1993), Mutant samples were treated in the same way 

as a control. For monomer preparation, the trimeric LHCII was treated with phospholipase 

A2 from bee venom for 48 h at room temperature in the presence of 20 mM CaCl2 in a 

sterilized eppendorf tube at a chlorophyll concentration of 500 dmol/ml. Immediately after 

the treatment, the sample was tested for monomerisation by FPLC and absorption 

spectroscopy. The monomeric LHCII were loaded onto a desalting column as for the 

trimers onto a desalting column, and then used for analysis. 

 

2.9 Pigment analysis - High Pressure Liquid Chromatography (HPLC) 

 For analysis of pigments in leaves, 1 cm leaf disks were taken from fully expanded mature 

leaves and immediately frozen in liquid N2 and stored at -80 °C until use. Leaf disks were 

ground in 400 µL cold 100% acetone. The samples were centrifuged at 5000 x g and 

filtered before collecting in the sample inserts. Pigments from various antenna protein 

samples were detected by first subjecting to a phase separation- for concentrated major 

LHCII 40 µl and for diluted minor complexes 200 µl of sample was mixed in mini glass 
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tube with 340 µl water, 0.5 ml ethanol and 1 mL diethyl ether. The hazy mixture was 

formed by inverting the tube few times and then allowed to stand. The coloured organic 

phase on top containing the pigment was then carefully extracted using a fine syringe. The 

collected sample was taken in a small conical flask and then dried down under a jet of N2. 

The dried pigment was resuspended in 200 µL cold 100% acetone and collected in sample 

inserts. These inserts were placed in brown glass vials and sealed with caps containing 

PTFE (polytetrafluoroethylene) septa. Pigment composition was determined by HPLC 

using a LiChroCART RP-18 column (Merck) and Dionex chromatography system. Two 

solvents system was used (solvent A: 87% acetonitrile, 10% methanol, 3% 0.1 M TRIS pH 

8; solvent B: 80% methanol, 20% hexane). The gradient from solvent A to solvent B was 

run at a flow rate of 1 mL/min with the following run profile.  

                                             0 – 18 minutes: 100% Solvent A 

                                           18 – 25 minutes: 0% to 100% Solvent B 

                                           25 – 36 minutes: 100% Solvent B 

                                           36 – 38 minutes: 100% to 0% Solvent B 

                                           38 – 46 minutes: 100% Solvent A 

 

Spectra were recorded between 280 and 750 nm using a Dionex PDA-100 photodiode array 

detector. Each peak was integrated at its optimum absorbance and analysed using Dionex 

Chromeleon software. The system was calibrated using chlorophyll and carotenoid 

standards of known concentration obtained from DHI, Hørsholm (Denmark). The 

conversion factors allowing the calculation of pigment concentration from the integrated 

peak area were determined by calibration with the pure pigments.  
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2.10 Polypeptide analysis  

The LHCII proteins were analyzed using immunoblotting essentially as described by 

Ganeteg et al., (2004). Protein fractions were solubilised in equal volume of 2 x Laemmli 

buffer, the samples were incubated at 85 °C for 20 min and then proteins were separated by 

15% denaturing SDS-PAGE mini gels (Laemmli, 1970), with or without 6M Urea, using 

Bio Rad Mini Protean Tetra Cell and PowerPac Basic . 10 µL of sample were loaded in 

each lane, alongside broad-range molecular weight markers ‘Benchmark’ (Invitrogen). 

Protein bands were stained using Coomassie brilliant blue stain (0.25 % (w/v) Coomassie 

brilliant blue-R250, 10 % (v/v) methanol, 7 % (v/v) acetic acid, 83 % (v/v) dH2O). Gels 

were de-stained for 10 hours in 10 % (v/v) methanol, 7 % acetic acid 83 % (v/v) dH2O.  

The PsbS detection was carried out by Western or immunoblotting of thylakoid membranes 

as described by Jansson et al., (1997). The sample preparation and separation by SDS-

PAGE was performed as mentioned above. Sample containing 0.2 to 2 µg of chlorophyll 

was loaded per lane. Chlorophyll concentration was determined using the method of Porra 

et al., (1989). The gels were blotted onto Hybond nitrocellulose membrane (Amersham 

Biosciences), with the help of Bio Rad Mini Trans-Blot Cell. Primary antibodies for PsbS 

immunodectection (Agrisera), raised in chicken, were detected by a secondary IRDye 680 

donkey anti-chicken IgG antibody. The Odyssey Infrared Imaging System with Odyssey 

software (LI-COR Biosciences) was used to obtain high resolution images.  

 

2.11 Determination of chlorophyll concentration  

The chlorophyll concentration in various samples was measured following the protocol of 

Porra et al. (1989). Pigments were extracted with 80 % (v/v) acetone and centrifuged at 

3000 x g for 5 minutes to remove insoluble material. Sample absorption was measured at 

663 nm (A663) and 645 nm (A645) using U2800A UV-Vis spectrophotometer (Hitachi). 

Chlorophyll concentration and chlorophyll a/b ratio were estimated using the following 

equations. 
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[Chl a]= 12.7 (A663)-2.69 (A645) (Equation 2.1) 

[Chl b]= 22.9 (A645)-4.68 (A663) (Equation 2.2) 

Total [Chl]= 20.2 (A645)-8.02 (A663) (Equation 2.3) 

Chl a/b ratio = [Chl a] / [Chl b] (Equation 2.4) 

 

2.12 Room temperature absorption spectra 

Absorption spectroscopy of samples was performed using a U-3310 UV/Visible scanning 

spectrophotometer. The absorption spectra were recorded for standard measurements from 

380-750 nm with a 2 nm slit width and data interval of 1 nm. Data analysis and 

manipulation was done using UV Solutions software. 

 

2.13 Low temperature fluorescence  

Low temperature fluorescence spectroscopy was performed using a Jobin Yvon 

FluoroMax-3 spectrophotometer with the help of an Optistat DN LN-2 cooled bath cryostat 

(Oxford Instruments). The thylakoid samples were diluted in a medium containing 20 mM 

HEPES buffer, pH 7.8, 5 mM MgCl2, and 0.33 M sorbitol. The chlorophyll concentration 

was 12 µg/ml. The excitation light was provided from a Xenon light source. For 

fluorescence emission spectra, excitation was defined at 435 nm with a 5 nm spectral 

bandwidth. The fluorescence spectral resolution was 1 nm. In fluorescence excitation 

measurements fluorescence was detected at 680, 685, 695 and 735 nm for thylakoid and at 

680 and 740 nm for LHCII samples. The excitation spectral resolution was 1 nm. The 

spectra were automatically corrected for the spectral distribution of the exciting light during 

data acquisition.  
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2.14 Absorbance changes in leaves  

Absorbance measurements were performed, in the 400- to 560-nm range, using an SLM 

Aminco DW2000 dual wavelength spectrophotometer. Leaf samples detached from dark 

adapted plants and petioles wrapped in moist filter paper were placed in leaf holder. The 

leaf holder was inserted in the pre cooled (16oC) sample chamber, facing at 45o both the 

actinic light and the measuring beams. A 250-W tungsten halogen lamp, defined by a 

Corning 5-58 Filter, was used to deliver the red actinic light intensity (700 µmol PAR m-2  

s-l) with a water filled cuvette in the light path as heat filter along with a long focus lens in 

between the sample and light source. The photomultiplier was protected by a Corning 4-96 

filter and a 585nm short pass filter. The instrument slit width was 5 nm and the scan rate 

was 2 nm/s. For measuring light and recovery spectra, leaf sample was illuminated for 1 

min and then kept in dark for 4-5 mins, respectively. These spectra were recorded with two 

monochromatic beams of 435 and 565 nm, within the range of 410 to 565 nm, at scan rate 

of 5.0. Filter set-up has been shown in the Fig. 2.2.  

 

Figure 2.2 Filter setup for Soret region spectra / kinetics.  
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2.15 Gel filtration- Fast Protein Liquid Chromatography (FPLC) 

 For FPLC analysis, stacked thylakoid membranes were diluted to a final chlorophyll 

concentration of 1.0 mg ml-1 and solubilised by the addition of n-dodecyl α-D-maltoside to 

three final detergent concentrations of 0.5%, 0.8% and 1.1%. The samples were vortexed 

thoroughly for 1 min, left to stand on ice for 30 min and then centrifuged for 1 min at 

16,000 g. The supernatant was then filtered through a 0.54 µm Minisart nylon filter and 

subjected to gel filtration chromatography using a Superdex 200 HR 10/30 column in an 

Amersham Biosciences ÄKTA purifier system run at a flow rate of 0.4 mL min-1 using a 

running buffer containing (20 mM Bis-TRIS, 5 mM MgCl2, 0.03% n-dodecyl α-D-

maltoside, pH 6.5). Three wavelengths were set in the programme for UV-900, 280 nm for 

proteins, 670 nm for chlorophylls and 480 nm for carotenoids. By using Unicorn software, 

composition of supercomplex protein fractions, depicting the stability of membrane 

macrostructure, was estimated. 

 

2.16 Genetic crossing 

Genetic crosses were performed according to standard procedures (Somerville and Ogren, 

1982). Fully grown flowering npq1 and L17 plants were selected. For emasculation, a 

cluster of buds on the main flowering stem was selected, removing all side branches. All 

flowers, open buds and tiny central buds were removed, leaving behind only 2-3 closed 

buds to be emasculated on the floral stem. Using Dumont biology tweezers no.5 dumostar 

(Agar Scientific), floral buds were opened to remove all anthers. These floral buds 

containing only carpels were cross pollinated after 2 days, i.e. emasculated npq1 carpels 

were pollinated by L17 pollens and vice versa. When the tips of siliques turned yellow, 

they were harvested to be stored in eppendorf tubes for drying out.  
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Effects of xanthophyll composition on the regulation of                 
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3.1 Introduction 

Xanthophylls have been implicated to perform three major roles in the light harvesting 

antenna, photoprotection against excess excitation energy, structural stabilization of 

proteins and light harvesting. Any change in the xanthophyll complement of the antenna is 

therefore likely to affect these functional and structural roles. The xanthophyll composition 

of each protein member of the LHC family is unique; however the highly conserved 

secondary structure among these proteins suggests the presence of similar xanthophyll 

binding sites in all of them. In various xanthophyll mutants of Arabidopsis thaliana, a high 

variability in occupation of the xanthophyll binding sites even under in vivo conditions 

provides a good opportunity to explore the role and need of these xanthophylls. Since 

binding of xanthophylls has been indicated to be a prerequisite for the stability of LHC 

proteins (Plumley and Schmidt, 1987), any change in the xanthophyll complement can 

accordingly alter the organisation of the antenna proteins in the membrane. These changes 

can lead to structural anomalies as well as variable functional capacities for photoprotection 

and light harvesting in photosystem II.  In this chapter, photoprotective, light harvesting 

and structural roles of xanthophylls will be elaborated by study of qE and related 

conformational changes, photochemical parameters and state transitions, respectively. As 

this study deals with investigating the molecular mechanism of photoprotection in higher 

plants, therefore functional role of xanthophylls in this regard is studied in detail.  

There is strong evidence that the site of photoprotective qE is located in the light-harvesting 

PSII antenna and that xanthophylls are involved in this function, though the knowledge of 

the mechanism of energy dissipation remains controversial. Two distinct quenching 

mechanisms have been suggested, one involving zeaxanthin (type I) and the other lutein 

(type II). The type I mechanism proposes qE to be obligatorily dependent upon zeaxanthin, 

which acts as a quencher of chlorophyll excitation energy via the formation of a charge 

transfer state. Evidence for this quenching mechanism is the formation of a carotenoid 

radical cation that correlates with the extent of qE showing absorption at approximately 

1,000 nm (Holt et al., 2005). Further evidence in this regard was in the form of report of a 

zeaxanthin radical cation formation which occurs exclusively at the L2 binding site of the 
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minor antenna complexes (Ahn et al., 2008; Avenson et al., 2008), suggesting reversible 

insertion of zeaxanthin into this internal site as a prerequisite for quenching. The  type II 

mechanism presents the xanthophyll bound at the L1 site in the major antenna complexes as 

an effective quencher qE of chlorophyll excited states, controlled by the intrinsic property 

of LHCII proteins to undergo a conformational change altering the configuration of bound 

pigments (Ruban et al., 2007; Ilioaia et al., 2008). In this mechanism, the role of zeaxanthin 

has been suggested as an allosteric modulator of the ∆pH sensitivity. 

There is possibility for both the above mentioned mechanisms to contribute to in vivo qE, 

since the quenching occurs in both the presence and absence of zeaxanthin (Adams et al., 

1990; Crouchman et al., 2006). Despite the involvement of different xanthophylls operating 

at discrete sites, both mechanisms have been proposed to evolve similarly as a result of a 

∆pH-triggered, PsbS-mediated conformational change (Ruban et al., 2007; Ahn et al., 

2008). Here a crucial question arises as whether zeaxanthin-dependent and zeaxanthin-

independent qE arise from two different mechanisms (types I and II, respectively) or from 

the same mechanism (type II). The formation of qE comprises of two components: the 

initial rapidly formed component is zeaxanthin independent; while the second slowly 

formed component is zeaxanthin dependent as it correlates with violaxanthin de-

epoxidation (Adams et al., 1990; Ruban and Horton, 1999). Both the components of qE 

relax rapidly in the dark (Adams et al., 1990) 

The formation and relaxation kinetics of qE can be investigated to determine whether two 

mechanisms can account for two components of qE. Here, we test the hypothesis that the 

two components arise from different mechanisms at two discrete sites: the zeaxanthin-

dependent component originates in the minor monomeric antenna by a type I mechanism 

(Gilmore et al., 1998; Ahn et al., 2008; Avenson et al., 2008), and the zeaxanthin-

independent component originates in the major trimeric LHCII by the type II mechanism. 

The PSII reaction centre quenching has also been suggested to contribute towards the 

zeaxanthin-independent component of qE, at least under low-light conditions when 

transient qE is formed (Finazzi et al., 2004). This hypothesis gives rise to some predictions. 

First, the two components could not compensate for the loss of one another because their 
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effect would be additive (Niyogi et al., 1998; Pogson et al., 1998) and each of them should 

contribute a discrete component to the kinetics of qE formation and relaxation. Second, in 

the mutants lacking lutein, zeaxanthin-dependent component should remain unaltered, 

while the capacity of the type II mechanism would be reduced. Finally, the two components 

may be anticipated to correlate with different absorption changes in the Soret region. These 

absorption changes are result of conformational changes within the PSII antenna upon qE 

formation and depict the variation in the absorption spectra of bound pigments as a 

consequence of conformational changes (Ruban et al., 1993a, 1993b, 2002b; Bilger and 

Björkman, 1994). In this work, the investigation of qE formation and relaxation kinetics, 

qE-related absorption difference spectra and absolute chlorophyll fluorescence lifetimes has 

been carried out to test the above mentioned hypothesis. Contrary to the above predictions, 

the data demonstrates that qE, in both steady and transient forms, is controlled by a single 

common mechanism within the PSII antenna, irrespective of zeaxanthin. 

As mentioned earlier, xanthophylls are also believed to play significant role in structural 

stability and light harvesting of LHCII antenna. Thereby any change in xanthophyll 

composition is likely to influence these two roles quite similarly to the effect on 

photoprotective capacity and dynamics. For this purpose various fluorescence parameters 

related to photochemistry were also investigated. On one hand, parameters like 

photochemical quenching (qP), yield of PSII (ΦII) and electron transport rate of PSII (ETR 

II) indicate towards the light harvesting efficiency of the antenna as a result of any change 

in the spectral cross section influenced by xanthophyll composition. On the other hand role 

of a particular xanthophyll in the assembly and stability of antenna can be assessed by state 

transition parameter, demonstrated by migration and attachment of LHCII antenna under 

low light conditions. All these methods are non-invasive and insightful, thus can provide 

reliable and ample information regarding role of xanthophyll in the photosynthetic 

membrane system.   
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3.2 Results 

3.2.1 Pigment composition of xanthophyll mutants  

Xanthophyll mutants were analysed for their pigment composition in comparison to that of 

the wild type plants. Wild type and xanthophyll mutant plants were grown for 8 to 10 

weeks under similar control growth conditions of light and ambient temperature (100 µmol 

photons m-2 s-1, day/night temperature of 22°C/18oC, 8 hr photoperiod). Leaf discs were 

collected from these plants to analyse their pigment composition by HPLC in both light-

treated and dark-adapted conditions. The expected general differences were found between 

the xanthophyll mutants and the wild-type plants (Table 3.1) as reported previously (Niyogi 

et al., 1998; Havaux et al., 2004; Pérez-Bueno and Horton, 2008).  

Both antheraxanthin and zeaxanthin were absent in npq1, while npq2 was lacking 

neoxanthin, violaxanthin and antheraxanthin. Both lut2 and lut2npq1 mutants were lacking 

lutein, whereas in lut2npq2 all the xanthophylls were absent except zeaxanthin. Absence of 

any xanthophyll in these mutants was compensated by an increase in the quantity of other 

xanthophylls, for example all lutein deficient mutants maintained their total xanthophyll 

contents by an almost similar increase of xanthophyll cycle pool size. All lutein mutants 

and npq2 were found to have larger xanthophyll cycle pool than wild type, however no 

significant difference in pool size was observed between npq1 and wild type despite the 

fact that npq1 lacked antheraxanthin and zeaxanthin.  In the internal L1 and L2 Lhcb 

protein-binding sites of lutein mutants, violaxanthin has been suggested to replace lutein in 

case of lut2 and lut2npq1 mutants, whereas zeaxanthin being the sole xanthophyll in 

lut2npq2 substitutes lutein at these sites. Notably, both lut2 and lut2npq1 retained 

significant amounts of their zeaxanthin and antheraxanthin components even in the dark-

adapted condition, implying that a fraction of these de-epoxidised xanthophylls is not 

available for epoxidation. The light-induced de-epoxidation was absent in both npq1 and 

lut2npq1, whereas 100% de-epoxidation was constitutively present in case of npq2 and 

lut2npq2.  
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Plant Type Neo Lut Vio Ant Zea DEPs 

Wild-type, dark 5.2 ± 0.5 17 ± 1 4.4 ± 0.2 0.2 ±0.1 0 4±0.9 

Wild-type, light 5.1 ± 0.9 16 ± 1 2.0 ± 0.4 0.8 ±0.3 1.7 ±0.4 46±1.2 

npq1-dark 5.3 ± 1.1 18 ± 2 4.4 ± 1.1 0 0 0 

npq1-light 5.7 ± 0.6 20 ± 1 5.3 ± 0.3  0 0 0 

npq2-dark 0 18 ± 1.8 0 0 9.5 ±0.9 100 

npq2-light 0 18 ± 1.5 0 0 9.2 ±0.5 100 

lut2-dark 4.9 ± 0.8 0 13.7 
±1.4 

3.6 ±0.1 1.0 ±0.3 12±2.4 

lut2-light 4.8 ± 1.1 0 8.2 ± 0.8 4.5 ±0.9 4.1 ±1.1 38±2.6 

lut2npq1-dark 4.9 ± 0.7 0 14.6 
±1.2 

2.6 ±0.1 0.9 ±0.8 12±1.9 

lut2np1-light 5.2 ± 0.4 0 15.1 
±0.4 

2.8 ±0.3 1.2 ±0.2 35±2 

lut2npq2-dark 0 0 0 0 15 ±0.8 100 

lut2npq2-light 0 0 0 0 15.4±0.5 100 

 
 

Table 3.1 Pigment composition of wild-type and xanthophyll mutant plants. Leaf discs were 
collected from plants either dark-adapted for 30 min or light-treated for 10 min at 700 µmol photons 
m-2 s-1. Data are normalized to 100 chlorophyll a + b molecules and are means ± SE from four 
replicates. No differences were detected for npq2, npq1, lut2npq1, and lut2npq2 between light and 
dark conditions. Neo, Lut, Vio, Ant, Zea and DEPs represent neoxanthin, lutein, violaxanthin, 
antheraxanthin, zeaxanthin and de-epoxidation state % [(zeaxanthin + 0.5 
antheraxanthin)/(violaxanthin + antheraxanthin + zeaxanthin)], respectively. 
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Total chlorophyll contents per unit leaf area of all the genotypes were measured using 

spectrophotometer and found as similar with no significant differences. However, a 

significant increase in chlorophyll a/b ratio was observed particularly in lutein deficient 

double mutants (Table 3.2). As Chl b is attached particularly to LHCII, so this may provide 

an evidence of decrease in antenna size in all these mutants. 

 

Plant Type Total Chl 
(mg/ml) 

Chl a/b 

WT 3.14 ± 0.22 3.14 ± 0.06 
npq1 2.90 ± 0.32 3.18 ± 0.19 
npq2 3.05 ± 0.20 3.32 ± 0.16 
lut2 2.75 ± 0.38 3.44 ± 0.12 
lut2 npq1 3.26 ± 0.25 3.46 ± 0.06* 
lut2 npq2 3.11 ± 0.33 3.60 ± 0.15* 

 

Table 3.2 Chlorophyll concentration measurements of wild-type (WT) and xanthophyll mutants. 
Pigments were extracted with 80 % (v/v) acetone from leaf discs, using UV-Vis spectrophotometer. 
Mean values of four replicates (±SE) are shown. *= Significantly different to WT (Student’s t-test 
p=0.05).  

 

3.2.2 Effect of xanthophyll composition on qE and related conformational changes 

In order to investigate the effect of varying xanthophyll composition on various 

fluorescence parameters, fluorescence induction curves were recorded on dark adapted 

wild-type and xanthophyll mutant plants. All of these mutants possess unchanged levels of 

∆pH compared with the wild-type plants (Pérez-Bueno et al., 2008), the kinetics of NPQ 

should therefore be affected only by the differences in the xanthophyll contents among 

these genotypes. Two actinic light intensities, high and moderate (1600 and 700 µmol 

photons  m-2 s-1, respectively), were initially used to compare the response of xanthophyll 

mutants by studying following parameters of PAM chlorophyll fluorescence analysis: qE, 

qP, qI, quantum yield of PSII, regulated and non-regulated NPQ (ΦII,  ΦNPQ, ΦNO, 

respectively); and electron transport rate of PSII (ETR II). The magnitude of NPQ  
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Figure 3.1 Maximum amplitudes of NPQ measured at the end of first 5 min illumination (A), 
followed by 5 min dark relaxation and then by the end of second 5 min illumination (B). All data 
are mean  SE for at least three plants.  All data are significantly different to WT (Student’s t-test 
p=0.05). 

 

increased with the use of higher actinic light in all the plants, as high light might be 

expected to induce higher ∆pH and/or extra zeaxanthin formation. However, use of high 

actinic light also resulted in the increase of slowly reversible components of NPQ, as 
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indicated by the effect of uncoupler nigericin (section 3.2.3.5). NPQ amplitude among all 

the xanthophyll mutants was found lower than that of wild type, at both actinic lights used 

(Fig. 3.1 A,B). 

 

3.2.2.1 qE Formation Kinetics  

To compare the kinetics of both zeaxanthin-independent and zeaxanthin-dependent 

components of qE, NPQ formation was measured during two successive periods of 

illumination. The actinic light intensity of 700 µmol photons m-2 s-1 was selected in order to 

enhance the reversible qE component of NPQ and to minimize the slowly reversible qI 

component. During the first illumination, NPQ formation was found as more rapid in npq2, 

lut2npq2, and npq1 than in the wild type, while it was observed as slower in case of lut2, 

however all the xanthophyll mutants showed lower NPQ amplitude than that of wild type. 

These differences in the kinetics of NPQ formation were found similar to those observed by 

others (Niyogi et al., 1998, 2001; Pogson et al., 1998) (Fig. 3.2 A; Table 3.3). The de-

epoxidation rates in lut2 and wild-type plants had been found as virtually identical 

(Lokstein et al., 2002), therefore difference in rates of NPQ formation could not be ascribed 

to this factor. The NPQ amplitude in lut2npq1 plants was very small, whilst qE was 

virtually absent in this double mutant at moderate actinic light; this shows the inhibition of 

zeaxanthin-independent qE in the absence of lutein and zeaxanthin. Considering this fact, 

the slower NPQ formation in lut2 could similarly be assigned to the absence of zeaxanthin-

independent qE. 

The kinetics of NPQ reformation were also obtained in leaf samples that had previously 

been subjected to illumination for 10 min at 700 µmol photons m-2 s-1, followed by  5 min 

of dark period in order to achieve qE relaxation. During the second illumination, the NPQ 

reformation kinetics were accelerated in all the cases compared with the first illumination 

cycle (Fig. 3.2 B; Table 3.3). The reformation of qE was more rapid in the wild type, taking 

less than 20 s to reach saturation, and was now even faster than that of the npq1 mutant. 

Contrarily, NPQ formation was still at faster rate in the npq2 as compared to the wild type.  
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Figure 3.2 Kinetics of NPQ at 700 µmol photons m-2 s-1 in wild-type and xanthophyll mutant 
leaves. NPQ formation kinetics in dark-adapted leaves during first 5 min illumination (A), followed 
by 5 min dark relaxation NPQ formation kinetics during second 5 min illumination (B) and final 
NPQ relaxation kinetics during 5 min dark period (C). Average NPQ formation and relaxation 
curves were fitted in all cases with a Hill function (y = [axb]/[cb + xb] and a hyperbolic decay (y 
= y0 + [ab]/[b + x], respectively. Wild-type (black stars), npq2 (white circles), npq1 (black 
triangles) and lut2 (black squares), lut2npq2 (white diamonds). Data is average of 3 experiments ± 
standard error. 
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However the effect of lutein replacement by zeaxanthin on qE was intriguing as qE 

formation in lut2npq2 was found to be slower and with lower amplitude in both 

illuminations compared with npq2. In the similar way, the lutein replacement by 

violaxanthin in lut2 mutant affected qE formation by reducing both rate and amplitude 

compared with the wild type, despite the fact that there was no difference in de epoxidation 

state between the two. Therefore in the internal binding sites of the Lhcb proteins, lutein 

replacement by either violaxanthin or zeaxanthin reduces the rate and amplitude of qE 

formation, independent of the differences in ∆pH or de-epoxidation state. 

 

Plant NPQ, Dark 

Adapted 

Formation    

t1/2  (s)        

Relaxation    

t1/2  (s) 

NPQ 

Preilluminated 

Reformation 

t1/2  (s) 

Wild type 1.82±0.1 44±0.9 12.9±1.2 1.75±0.1 7.5±0.4 

npq1 0.58±0.1 19±2 5.8±2 0.48±0.1 10.5±0.5 

npq2 1.54±0.1 16±0.8 53±5.5 1.32±0.1 6.5±0.1 

lut2 1.25±0.1 96±2 10.5±0.5 1.09±0.1 9.5±0.5 

lut2npq1 0.37±0.1 120±3 80±3.5 0.35±0.1 16±2 

lut2npq2 0.82±0.1 22±1 77±3.4 0.54±0.1 7.5±0.5 

 

Table 3.3 Kinetic parameters of NPQ in wild-type and xanthophyll mutant plants. Half time (t1/2) 

was calculated manually. Data are averages of three independent experiments ± SE, and obtained as 
for Figure 3.2. 
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3.2.2.2 qE Relaxation Kinetics  

During the dark phase following the first illumination, the kinetics of qE relaxation were 

also monitored in the wild type and xanthophyll mutants. In all cases, the relaxation of qE 

could be fitted to a single hyperbolic decay (Fig. 3.2 C; Table 3.3). The mutants with 

constitutive presence of zeaxanthin, npq2 and lut2npq2, were found to have much slower 

relaxation kinetics than all others. The rate of relaxation of qE in the npq1 mutant was 

measured as twice as fast as in the wild type, as this mutant is without zeaxanthin so qE 

comprises only of the zeaxanthin-independent component. Contrarily, npq2 mutant, which 

contains both zeaxanthin-dependent and zeaxanthin-independent components, relaxed at 

much slower rate than wild type. The hypothesis regarding involvement of one or two 

mechanisms in qE can be tested by comparing the relaxation kinetics of npq1 and npq2. If 

separate type I and type II mechanisms exist, then qE should have relaxed with two 

components in npq2: one - fast zeaxanthin-independent component (similar to npq1) and 

the other - slower zeaxanthin-dependent one. However, defying this prediction, it was 

observed that the additional constitutive zeaxanthin in npq2 slowed down the relaxation of 

all of qE, and not just the zeaxanthin dependent component. Indeed, the rate of qE 

relaxation in npq2 was monitored as three times slower than that of the wild type. The 

relaxation of qE was further slowed down in lut2npq2 where additional zeaxanthin replaces 

the internally bound lutein. In contrast, replacement of lutein by violaxanthin in lut2 

resulted in a marginally faster relaxation of qE than in the wild type. In case of lut2npq1, as 

photoinhibitory components have most contribution so the NPQ was slowest to relax. In 

summary, the amount of zeaxanthin seemed to modulate the rate of qE relaxation, which 

behaved kinetically as a single process. 

 

3.2.2.3 Transient qE Formation  

At low light intensity, qE is transiently formed, which is suggested to form in the PSII 

reaction centre (Finazzi et al., 2004). In this work, effect of alteration in xanthophyll 

composition on this type of transient qE was also analysed using actinic light of low 

intensity (100 µmol photons m-2 s-1). It was observed that similar to steady state qE 
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generated at high light intensity, the transient qE formed at low light intensity was also 

affected by alteration in the xanthophyll composition. The similar dependence on 

xanthophyll composition was exhibited in transient qE at low light intensity in the form of 

its strong reduction in npq1, lut2, and lut2npq2 mutants compared to wild type and a total 

absence in case of lut2npq1 mutant (Fig. 3.3). 

 

 

Figure 3.3 Kinetics of transient NPQ at 100 µmol photons m-2 s-1 in wild type and xanthophyll 
mutant leaves dark adapted for 30 minutes. Wild type (black stars), npq2 (white circles), npq1 
(black triangles) and lut2 (black squares), lut2npq2 (white diamonds), lut2npq1 (white squares). 
Data is average of 3 experiments ± standard error. 

 

3.2.2.4 qE-Related Conformational Changes  

A linear correlation has been found between the qE formation and a positive absorption 

change in leaves at 535 nm (∆A535), which monitors a conformational change in the PSII 

antenna that accompanies quenching (Heber, 1969; Bilger and Björkman, 1990; Ruban et 

al., 1993b, 2002b; Bilger and Björkman., 1994). The kinetics of ∆A535 were measured in 
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the dark adapted leaves of wild type and xanthophyll mutant plants to investigate the qE-

related conformational changes. When the ∆A535 kinetics of wild type were compared 

with those of npq1, a smaller amplitude in latter case corresponds to the lower level of qE 

in this mutant and it confirms that the ∆A535 amplitude is influenced by the de-epoxidation 

state (Fig. 3.4 A). Similar to qE formation during first illumination, ∆A535 kinetics were 

formed slower in wild type as compared to the case of npq1. In npq2, the ∆A535 formation 

was found faster while relaxation in dark was slower than the corresponding kinetics of 

wild type, again in agreement with the differences monitored during the qE kinetics. 

However, the amplitude of ∆A535 in npq2 was found similar to that of the wild type 

despite the lower qE amplitude of the mutant.  

The ∆A535 signal was completely absent in the lut2npq1 mutant, which displayed only 

slowly reversible photoinhibitory component qI without any contribution of qE, also 

confirms that this signal is only correlated to qE (Fig. 3.4 B). This is also in compliance 

with the data obtained in the npq4 mutant lacking PsbS, where no such ∆A535 signal was 

detected in the absence of qE (Li et al., 2000; Ruban et al., 2002b). The ∆A535 formation 

was found faster and relaxation slower in the lut2npq2 as compared to the corresponding 

kinetics of the wild type and quite similar to the ones of npq2. Once again, a much larger 

than anticipated amplitude of the signal was detected (like the case of npq2), given the fact 

that the qE amplitude was again less than that of the wild type. The ∆A535 kinetics in lut2 

were detected with lower amplitude and slower formation rate than those of the wild type, 

in agreement with the smaller qE measured in the mutant. Thus, the discrepancy between 

the amplitudes of ∆A535 and qE was only observed in case of two mutants with larger de-

epoxidation states than that of the wild type. 

The absorption difference spectra reveal the nature of the absorption changes that relate to 

the zeaxanthin-independent component of qE. Any shift in the peak position of various 

bands provides clues about the involvement of the respective xanthophylls. Thus, the 

absorption difference spectra of the qE-related conformational changes were recorded in 

the xanthophyll mutants (Fig. 3.4, C and D).   
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Figure 3.4 Light dependent kinetics of qE related ∆A535 conformational changes at 700 µmol 
photons m-2 s-1 and qE absorption difference spectra of wild-type and xanthophyll mutant leaves 
dark adapted for 30 minutes. (A and B) Kinetics of ∆A535, traces as labeled, 6-10 kinetic traces 
were averaged, error ± 5%. (C and D) qE absorption difference spectra (5 minutes light- minus-5 
minutes dark relaxation), Wild-type (solid line), npq2 (short dashed line), npq1 (long dashed line), 
lut2 (dashed dotted line), lut2npq2 (medium dashed line), lut2npq1 (dotted line). 
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The difference spectra of wild type and npq1 were found nearly identical to one another 

with previously observed negative bands at 438, 468, and 495 nm (Fig. 3.4 C). However, 

the positive band of 535 was blue-shifted to around 525 nm in npq1, consistent with the 

absence of de-epoxidation in this mutant. This positive band of 535 also shifts similarly 

when the wild-type leaves are infiltrated with dithiotheitol (DTT) to inhibit de-epoxidation 

(Noctor et al., 1991). In correlation with the much reduced qE in npq1, all the bands were 

observed with lesser amplitudes than those found in the wild-type spectrum. In case of 

npq2, the absorption difference spectrum showed few differences from the wild type. A 

similar amplitude was observed for the positive 535-nm as in the wild type, however a 

slight red shift to around 537 nm was also detected in this mutant. Interestingly, all the 

three negative bands in the difference spectrum of npq2 were of lower amplitude than those 

of the wild type spectrum, consistent with the lower values of qE in npq2. In the 495-nm 

negative band of npq2, a slight red-shift and noticeable broadening was also observed.  

In case of lut2, the absorption difference spectrum revealed the reduction of all the negative 

and positive bands in comparison to those in the wild-type spectrum, consistent with the 

lower qE amplitude in this mutant (Fig. 3.4 D). A slight red shift in the 495-nm negative 

band to 497 nm was revealed. In the difference spectrum of the double mutant lut2npq2, the 

535-nm positive band showed similar amplitude to the corresponding bands of npq2 and 

wild type difference spectra, with a slight red shift to 537 nm as observed in npq2. The 535-

band of double mutant was, however, enhanced compared to the corresponding band in the 

lut2 mutant difference spectrum, consistent with the similar difference observed in the 

∆A535 kinetics data of these two mutants. Once again, negative bands of smaller amplitude 

were recorded in this double mutant, in agreement with the lower qE amplitude. 

Interestingly, there was a strong red shift of the 495-nm negative band to around 501 nm. 

Similar to the kinetics of qE and ∆A535, the absorption difference spectrum of other 

double mutant lut2npq1 was found entirely featureless without any negative or positive 

bands, demonstrating that all the features of the absorption difference spectrum are entirely 

related to the qE. Interestingly, the transiently forming electro-chromic shift (pigment 

polarization in membrane only during initial illumination, shown as ∆A 518 nm) was 
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barely visible in the steady-state spectrum of lut2npq1, consistent with a previous study (Li 

et al., 2000).  

A similar correlation was also noticed between the qE transiently generated at low light 

intensity and the transient increase in 535-nm absorption. The absorption difference 

spectrum of light minus recovery exhibiting the transient absorption change at low light 

intensity (Fig. 3.5) was found virtually identical to the steady-state absorption difference 

spectrum observed at high light intensity. 

 

 

 

Figure 3.5. Kinetics of ∆A535 conformational changes and qE absorption difference spectra at 100 
µmol photons m-2 s-1 measured on wild type leaves previously dark adapted for 30 minutes. 
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3.2.3 Effect of xanthophyll composition on major photosynthetic parameters of PSII 

3.2.3.1 PSII efficiency (Fv/Fm):  

The intrinsic photosystem II (PSII) efficiency is measured as Fv/Fm. In all genotypes, it 

was found as >0.8 except in the two zeaxanthin accumulating mutants of npq2 and 

lut2npq2 with lower Fv/Fm values (Fig 3.6, Table 3.4). The lower values of NPQ in npq2 

and lut2npq2 have also been attributed to the pre-quenching of Fm, the maximum 

fluorescence in the dark adapted state, due to sustained zeaxanthin-mediated quenching 

(Dall’Osto et al., 2005; Kalituho et al., 2006). 

To further explore this pre-quenching phenomenon in zeaxanthin-accumulating mutants,  

chlorophyll fluorescence lifetimes were measured in the leaves of wild type and these 

mutants in the dark adapted Fm state when all PSII reaction centres were closed by 

saturating light, along with the use of uncoupler nigericin to block any qE formation. In 

wild type leaves, the average fluorescence lifetime was 2.0 ns in the dark adapted Fm state, 

which was consistent with the previously reported values (Gilmore et al., 1998). In dark 

adapted npq2 and lut2npq2 leaves, the average fluorescence lifetimes were measured as 

1.73 and 1.52 ns, respectively. These shorter than the wild type lifetime values confirm the 

presence of pre-quenching in these mutants. The respective chlorophyll fluorescence 

lifetimes were also measured, during the course of actinic illumination Fm’ state in the 

presence of NPQ. In wild-type leaves, an average lifetime of 621 ps was measured with an 

NPQ value of 2.2, also similar to the previously reported values (Gilmore et al., 1998). For 

npq2 mutant, the fluorescence lifetime in the Fm’ state was slightly longer (637 ps with an 

NPQ of 1.8) while for lut2npq2 mutant it was significantly longer (724 ps with an NPQ of 

0.95). Thus, npq2 has similar final extent of Fm’ quenching to that in the wild type, this 

demonstrates that pre-quenching is responsible for the decrease in observed NPQ in this 

case without any lesion in the NPQ formation. Contrarily, in lut2npq2, the final extent of 

Fm’ quenching is much reduced, which shows a real decrease in the amplitude of NPQ in 

this mutant. 
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Figure 3.6 Fv/Fm of xanthophyll mutants (measured as Fm-F0/Fm). All data are mean  SE for at 
least three plants. 

 

 

Table 3.4 Average chlorophyll fluorescence lifetimes and maximum quantum yield of PSII 
(Fv/Fm) in wild-type and zeaxanthin accumulating mutants. Average Fm and Fm’ state lifetimes of 
dark adapted leaves from wild-type and xanthophyll mutants under saturating light. Experiments are 
means ± S.E.M. from 10 replicates. *=Significantly different to wild-type (Student’s t-test p=0.005) 
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3.2.3.2 Photochemical quenching (qP):  

Utilisation of light energy for photochemical pathway is generally measured in the form of 

fluorescence quenching and called qP. qP is dependent upon the fraction of open reaction 

centres (RC). Xanthophylls are believed to act as accessory pigments, complementing the 

chlorophyll light absorption and hence increasing the spectral cross section of light 

harvesting antenna.  
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Figure 3.7 (A,B) Photochemical (qP) of xanthophyll mutants at two different actinic lights, 
calculated as qP= Fm’-Fs/Fm’-Fo’. Data are averages of three independent experiments ± SE. All 
data are significantly different to WT (Student’s t-test p=0.05), except for npq2 at 700µE. 
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It was observed that extent of qP was decreased variably in all the mutants, as compared to 

wild type (Fig.3.7). qP was lowest in both the zeaxanthin deficient mutants of npq1 and 

npq1lut2 while highest qP values were found in npq2 and wild type. This may indicate 

towards more reduction of QA in the zeaxanthin deficient mutants which also demonstrate 

inefficient NPQ, while presence of zeaxanthin is likely to reduce excitation pressure in PSII 

hence leading to higher oxidation of QA. 

With the increase in actinic light, utilisation of light energy for photochemical pathway 

decreases as excess energy is dissipated through nonphotochemical quenching. As qP 

depends on the relative fraction of open reaction centres, so these data may show the less 

fraction of open RC in all cases when high actinic light is used, diverting most of the light 

energy for NPQ. Decline in qP also shows the increased reduction of QA upon saturation of 

linear electron transport from PSII to PSI.  

 

3.2.3.3 Yields of PSII, regulated NPQ and non-regulated NPQ:  

A new method has been suggested to estimate photon flux down both photochemical and 

non-photochemical pathways. In addition to fraction measurement of excitons utilised for 

photochemistry as quantum yield of PSII (ΦII), remaining fraction going via the NPQ 

pathway can be calculated as energy-dependent dissipation (ΦNPQ) and other non-

regulatory losses due to basal intrinsic dissipation (ΦNO). By this way, the energy absorbed 

by PSII can be shown as sum of all yields for dissipative processes (Kramer et al., 2004). 

                                                  ΦII +  ΦNPQ + ΦNO = 1  

Maximum yields of PSII were measured in case of wild type and npq2, which shows the 

higher fraction of excitons going down the photochemical pathway and hence an enhanced 

PSII yield in these two genotypes, consistent with their higher values of qP found earlier in 

this work. The results of regulated NPQ yields also demonstrate a similar value in wild type 

and npq2 which is consistent with the outcome of comparative study of chlorophyll 

fluorescence lifetimes of these two cases. In all other xanthophyll mutants, the yields of 

both PSII and regulated NPQ are reduced variably. Yield of non-regulated NPQ, indicating 
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slowly reversible components of NPQ, has been also found lower in wild type and npq2 as 

compared to all other xanthophyll mutants. Moreover, highest non-regulated NPQ in 

npq1lut2 supports the view of maximum photoinhibition and damage to antenna in this 

double mutant. Increase in actinic light decreases PSII yield and increases energy-

dependent NPQ in all cases (Fig.3.8 A,B). 

 

 

 

 

Figure 3.8 (A,B) Yields of PSII, regulated NPQ and non-regulated NPQ shown as ΦII, ΦNPQ and 
ΦNO respectively, in xanthophyll mutants measured at two different actinic lights, and calculated 
as ΦII = Fm’- Fs/Fm’, ΦNO = 1 / NPQ + 1 + qL [NPQ = Fm-Fm’/Fm’ and qL = Fm/Fo-1] and 
ΦNPQ= 1 - ΦII - ΦNO. All data are mean  SE for at least three plants. 
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3.2.3.4 Electron Transport Rate in PSII, ETR (II):  

The extent of photochemistry can be demonstrated by electron transport rate in PSII. As 

utilisation and dissipation of energy are competing processes, so any decrease in ETR (II) 

can be attributed to increase in NPQ thereby extra available light energy is dissipated (as 

NPQ) instead of being utilised for photochemistry. Other factors like photoinhibition and 

smaller antenna size may also affect ETR (II), as in case of npq1 mutant both NPQ and 

ETR (II) are reduced. ETR (II) of all the xanthophyll mutants have been affected in the 

order wild type >npq2>lut2>npq1> lut2npq2 >lut2npq1. Double mutants are more affected 

than the single ones. Xanthophylls also play significant role in the stability of 

supercomplexes and macro organisation of the membrane, therefore any structural or 

organisational disruption may also result in reduction of ETR (II). Increase in actinic light 

has inversely affected ETR (II) in all cases variably except lut2 (Fig.3.9), which is difficult 

to explain as this mutant has not shown any similar increase in qP and PSII yield under 

higher light.      
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Figure 3.9 Electron transport rate in PSII or ETR(II) of xanthophyll mutants using two different 
actinic lights and measured as 0.5x ΦII (Yield of PSII) x PFD (photon flux density). All data are 
mean  SE for at least three plants. All data are significantly different to WT (Student’s t-test 
p=0.05), except for npq2 at 700µE. 
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3.2.3.5 Effect of Inhibitors on xanthophyll mutants: 

The uncouplers like nigericin remove ∆pH, so abolish qE and also de-epoxidation. This 

may help to measure the extent of ∆pH-independent, irreversible and non-relaxing part of 

NPQ, also called as photoinhibition (qI). No significant difference was observed in the 

extent of qI between wild type and lut2, however the absence of zeaxanthin, as in npq1, 

shows enhancement of qI. In the mutants with constitutive presence of zeaxanthin, npq2 

and lut2npq2, photoinhibitory qI is reduced (Fig.3.10 A). This effect of zeaxanthin on 

photoinhibition may be attributed to its antioxidant nature, as it provides protection against 

damage to RC’s. In case of omission of both zeaxanthin and lutein (npq1lut2), all the NPQ 

seems to be sustained and irreversible by virtue of qI. This may indicate the structural and 

functional anomalies caused by missing lutein and zeaxanthin in LHCII antenna.  
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Figure 3.10 (A) Effect of 5mM nigericin and (B) 50µM DTT infiltrations on NPQ of xanthophyll 
mutants, measured using 700µE actinic light. All data are mean  SE for at least three plants. All 
data are significantly different to respective controls (Student’s t-test p=0.05), except for npq1lut2 
(A) npq2, npq1lut2 and npq2lut2 (B). 
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The use of dithiotheitol (DTT) helps to identify the zeaxanthin-independent and 

zeaxanthin-dependent components of NPQ, as DTT inhibits deepoxidation. Obviously most 

affected NPQ levels were observed in those with active xanthophyll cycle (wild type, lut2), 

whilst zeaxanthin containing mutants (npq2 and npq2lut2) remained unaffected. However, 

effect of DTT on NPQ of npq1lut2 and even of npq1 (which were also expected to remain 

unaffected due to absence of XC activity) shows either additional impact of DTT apart 

from blocking zeaxanthin synthesis or to inhibit zeaxanthin-independent NPQ in both 

npq1lut2 and npq1 (Fig.3.10 B). This may indicate the role of DTT as a general reductant, 

because this effect of NPQ in npq1 is evidence of its non-specific activity. 

 

3.2.4 Effect of xanthophyll composition on state transitions:   

Under light limiting conditions, state transitions are meant to optimise light utilisation. 

Phosphorylation of LHCII complexes causes their migration from PSII to PSI to balance 

the distribution of excitation energy between the two photosystems (Allen et al., 1981; 

Bennett, 1983; Horton, 1983). As xanthophylls have been implicated to maintain the 

structural integrity of the antenna complexes, thus changes in xanthophyll composition are 

predicted to affect the process of state transition as ability of LHCII to migrate and attach 

are changed. State transition is a short-term adaptation strategy, which can be measured as 

chlorophyll fluorescence using low light intensity for selective excitation of PSII or PSI. 

Assessment of state transitions is based upon relative fluorescence measurements. Several 

parameters characterising this process can be derived (Ruban and Johnson, 2009): 

As low light conditions induce an imbalance between the energy absorbed by the two 

photosystems, thus this imbalance can be measured by removal of far-red light as: 

Imbalance or IB = (FsI´ - FsI) / Fo 

 

Another useful parameter is qS, which shows the efficiency of state transition in a simple 

way. It demonstrates the optimisation of electron transport with the changing quality of 
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light. This parameter ranges from 0 to 1, where 1 depicts 100% efficiency of state transition 

to rebalance electron transport rate after the changes in the spectral quality of light.  

qS = (FsI´ – FsII´) / (FsI´ – FsII)  

 

The results show that state transitions are disturbed by the absence of lutein alone but not of 

zeaxanthin alone. The level of imbalance and qS are unaffected in the absence of 

zeaxanthin in npq1 as compared to wild type. In case of npq2, similar qS is also observed 

however extent of imbalance is almost half of the level of wild type which can be attributed 

to pre-quenched state or smaller PSII antenna size in this zeaxanthin accumulating mutant. 

It can also be inferred that presence of zeaxanthin and/or absence of violaxanthin or 

neoxanthin in npq2 affect state transitions, as this genotype does not respond to turning on 

the PS II light. This indicates complete state transition or particular effect of any of these 

xanthophylls on LHCII function. Interestingly, the results show that both qS and imbalance 

are reduced in the absence of lutein alone. This may suggest that LHCII antenna structural 

disturbances can be caused by violaxanthin at lutein-binding sites, but not at its original 

site. Similarly, in lut2npq1 values of qS and imbalance are reduced like lut2. Moreover, 

binding of zeaxanthin at lutein-binding sites as in lut2npq2 has most pronounced impact, as 

no measurable state transitions and imbalance are observed. This indicates the deleterious 

structural effect of zeaxanthin at lutein binding sites or protein conformational disturbances 

caused by absence of lutein, leading to smaller antenna size and/or lack of imbalance 

between PSII and PSI (Fig.3.11). 
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Figure 3.11 State transitions traces of wild type and xanthophyll mutants measured using PAM 
101with 25µE PSII and 10µE PSI lights, downward and upward arrows show PSI light off and on 
respectively. qS is calculated as (FsI  ́– FsII´) / (FsI´ – FsII), and IB is measured as (FsI  ́- FsI) / Fo. 
Red and blue arrows show red and blue light, respectively, with light on   and off     . Traces are 
representative of 3 independent repeats. 
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3.3 Discussion 

In this work, effect of various xanthophyll compositions is studied to perform three major 

functional and structural roles of photoprotection, light harvesting and stabilization in light 

harvesting antenna. As this work is focused on photoprotective role of xanthophylls 

therefore more detailed analysis is carried out in this regard. The hypothesis is tested here 

that NPQ, with its zeaxanthin-independent and zeaxanthin-dependent components, takes 

place by two distinct mechanisms. Type I mechanism involves zeaxanthin as quencher, 

while lutein is considered as quencher in type II mechanism. Both mechanisms have been 

proposed to occur in different LHCII antenna complexes (Ahn et al., 2008; Ruban et al., 

2007). A thorough investigation of various fluorescence parameters, in particular qE and 

qE-related absorption changes, was performed using the wild type and xanthophyll mutants 

with various xanthophyll compositions. The wild type composition of xanthophylls 

demonstrated not only the maximum qP, ETR II and ΦII but also most efficient qE as 

compared to all the mutants, implying its suitability for a fully functional NPQ, in which 

the conformational dynamics are tuned to create maximum flexibility between efficient 

light harvesting in low light and rapid formation and relaxation of photoprotection in 

fluctuating light. 

Type I mechanism of quenching has been suggested to take place in minor antenna 

complexes by means of zeaxanthin radical cation formed exclusively at L2 internal binding 

site. As L2 site is occupied by violaxanthin in the minor complexes therefore a reversible 

insertion is required at this site for the execution of this radical cation formation event. The 

biochemical analysis of lut2 mutant has suggested that extra pool of violaxanthin is 

attached to internal L1 and L2 sites along with normal peripheral V1 site. Xanthophyll 

pigment analysis of light and dark states demonstrates that only part of violaxanthin pool, at 

peripheral site, is de-epoxidised, while majority of it remains inaccessible to de-epoxidase 

enzyme (Kalituho et al., 2006). Moreover, the effect of this in vitro cation formation was 

even found to be quite small to account for in vivo qE (Avenson et al., 2008). 

It can be argued that if type I and type II mechanisms both contribute to qE, then each 

mechanism would behave like a discrete kinetic component. Contrary to this prediction, 
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only a single component of qE relaxation was monitored, the rate of which was controlled 

by the de-epoxidation level. In the type I mechanism, zeaxanthin is regarded as the 

quencher and its level would not influence the relaxation kinetics. In contrast, type II 

mechanism proposes zeaxanthin role as an allosteric regulator and it aptly justifies its effect 

on relaxation kinetics. This effect of zeaxanthin to slow down the qE relaxation has also 

been reported earlier (Noctor et al., 1991). Here in this study, it was observed that the 

relaxation of qE in npq1 was faster than that in the wild type, while in npq2 and lut2npq2, 

qE relaxation was significantly delayed. These relaxation kinetics offer evidence for the 

allosteric role of zeaxanthin. 

Lower Fv/Fm in zeaxanthin accumulating mutants, npq2 and lut2npq2, was suggested to be 

caused by pre-quenching of Fm, due to the constitutive presence of extra zeaxanthin 

(Dall’Osto et al., 2005; Kalituho et al., 2006). This study confirms this suggestion by 

measuring the absolute chlorophyll fluorescence lifetimes. In type II mechanism of 

quenching, the zeaxanthin-binding L2 site in the minor LHCII complexes has been 

implicated to be the quenching site. In npq2 and lut2np2 mutants, zeaxanthin replaces all of 

the violaxanthin, including that bound to the L2 site in the minor antenna complexes. In 

some reconstitution studies, a slight quenching in the similar minor antenna complexes with 

similar xanthophyll composition to that of these mutants has been reported (Crimi et al., 

2001; Dall’Osto et al., 2005). However, it is important to note that the presence of extra 

zeaxanthin does not confer any additional capacity for NPQ. Contrarily, NPQ capacity is 

significantly reduced in lut2npq2 as confirmed by the lifetime measurements. This suggests 

that zeaxanthin is not necessarily the best quencher among the xanthophylls. 

However, qE formation occurs in the form of two distinct components unlike its relaxation 

kinetics. Both zeaxanthin-independent and zeaxanthin-dependent components of qE can be 

discretely observed in the qE formation kinetics of wild type and various xanthophyll 

mutants. Fast initial zeaxanthin-independent component is shown by npq1 as the total qE 

while this component seems to be missing in case of lut2 mutant which only exhibits 

second zeaxanthin-dependent component as its sole qE. The perturbed kinetics and lower 

capacity of NPQ formation in lutein-deficient mutants, also found in the previous studies, 
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lends some support for the validity of a type II mechanism. The zeaxanthin-independent 

component of qE was almost completely eliminated while the zeaxanthin-dependent qE 

was also affected. However, the presence of zeaxanthin-dependent component of qE in the 

absence of lutein negates the obligatory requirement for lutein, though this component in 

the lutein mutants is still kinetically different from that of the wild type. It is quite evident 

that replacement of lutein by either of zeaxanthin or violaxanthin in the internal binding 

sites of Lhcb proteins negatively affects both the dynamics and amplitude of qE, though 

quenching still occurs. Therefore, this work adds to the previous work implying the role of 

lutein for fully functional qE (Pogson et al., 1998; Pogson and Rissler, 2000). It can also be 

suggested from this study that the already known structural destabilization of PSII antenna 

proteins in the absence of lutein (Lokstein et al., 2002; Havaux et al., 2004) may impair the 

intrinsic conformational changes within the individual monomers, which lead to the 

formation of quenched state. 

Further insight into the impact of xanthophyll composition on the conformational changes 

can be explored by study of the absorption changes correlated with qE formation. 

Zeaxanthin has been shown previously to enhance long wavelength LHCII 700 nm 

fluorescence emission bands in the qE state (Ruban et al., 1991; Ruban et al., 1993a), 

indicative of LHCII aggregation, which it promotes in vitro (Ruban et al., 1998b). Here a 

further evidence of zeaxanthin’s ability to promote structural changes within the PSII 

antenna that lead to the quenching is provided. Constitutive zeaxanthin enhanced the ∆A535 

signal in npq2 and lut2npq2, despite the fact the qE capacity was no larger. The 

enhancement of the signal in the zeaxanthin accumulating cases is consistent with its 

identification by Raman spectroscopy as the source of the band (Ruban et al., 2002b). 

However, in lut2npq2 a non-linear and significant increase in ∆A535 was observed albeit a 

reduction in amplitude of qE. All other mutants and wild type demonstrate a linear 

correlation between the amplitudes of ∆A535 and qE (Fig. 3.12 A). On the other hand if a 

similar graph is plotted between the amplitudes of ∆A495 and qE shows a linear correlation 

in all cases (Fig. 3.10 B), which demonstrates an unbroken correlation between qE and 

change in 495 absorption change, which corresponds to L1 site. It also lends support to the 
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Figure 3.12 Relationship between qE amplitude and qE related absorption changes in the wild-type 
and xanthophyll mutant leaves. (A) ∆A535 vs. qE, deviation of lut2npq2 from the linear 
relationship is highlighted with a circle. (B)  ∆A495 vs. qE. Data obtained as in Figures 3.2 and 3.4.  
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formation of quenching species at L1 site as it directly correlates with qE amplitude in all 

the cases. The deviation of lut2npq2 in the form of broken correlation between ∆A535 and 

qE indicates that the absorption change may not directly correspond to the formation of 

quenching species, consistent with a previous report (Kalituho et al., 2006). Therefore, it 

can be suggested that ∆A535 monitors the conformational change associated with 

amplification of qE as a result of de-epoxidation. Moreover, the origin of the red-shifted 

zeaxanthin accounting for ∆A535 has been attributed to the formation of a dimer (Ruban et 

al., 1993a; Bonente et al., 2008) between two zeaxanthin molecules at V1 sites of the two 

neighbouring LHCII complexes. 

In case of npq1 lacking the zeaxanthin, the position of positive 535 band is shifted to 

around 525 nm, similar to a previous study involving isolated chloroplasts (Noctor et al., 

1993). This band cannot be assigned to any other particular xanthophyll in the wake of 

present understanding. The same 535 band is slightly red shifted to 537 in zeaxanthin 

accumulating npq2 and lut2npq2 mutants, which are in 100% de-epoxidation state at the V1 

site. Based on the observation of a broad range of this span, it can be suggested that ∆A535 

may be comprised of a mixture of bands ranging from 525 to 540 nm, indicative of the 

occupancy of the V1 site by different xanthophylls (violaxanthin, antheraxanthin and 

zeaxanthin) depending upon the de-epoxidation state. 

The qE-related absorption difference spectra also exhibit specific negative bands at 495, 

468, and 438 nm. Improved resolution of these negative bands provides an insight into the 

complexity of the variations in pigment configurations upon the establishment of qE. In 

resonance Raman spectroscopy, light minus recovery difference spectra of leaves and 

chloroplasts also show resonance only above 500 nm showing exactly the similar positive 

and negative features of the qE absorption difference spectra, while resonance is lost below 

500 nm (Ruban et al., 2002b). The 495-nm negative band has been assigned as L1 lutein 

band (Ruban et al., 2000), thereby replacement of lutein by zeaxanthin or violaxanthin in 

lut2npq2 and lut2 mutants caused a red shift in this band. In contrast to the behaviour of the 

535-nm band, the amplitudes of these bands were reduced in lut2npq2 compared with the 

wild type, therefore being better correlated with qE. Thus, it is suggested that this 
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observation provides support for the involvement of the L1 domain in qE, as in the type II 

mechanism. 

During transiently formed qE at low light intensity, the analysis of accompanied 535-nm 

absorption change also suggests that this form of qE also involves similar conformational 

changes within the PSII antenna, as demonstrated during the steady state qE. The transient 

qE formed under such low light conditions was previously ascribed to quenching in the 

PSII reaction centre (Finazzi et al., 2004), but here this work indicates that both these types 

of qE are accompanied by similar absorption change with the same spectrum irrespective of 

high or low light conditions. Moreover, any alteration in the xanthophyll composition 

affects the transient qE in a similar fashion as steady-state qE is influenced, adding to 

previous results (Kalituho et al., 2007); hence, in either case the qE was strongly reduced in 

lut2 and lut2npq2 and completely absent in the lut2npq1 mutant. It has also been suggested 

that transient qE is dependent on activity of PsbS (Finazzi et al., 2004; Kalituho et al., 

2007), these data strongly suggest that it originates from the same common PSII antenna-

based mechanism as steady-state qE in high light. In summary, the evidence that both the 

zeaxanthin-independent and zeaxanthin-dependent components of qE arise from the same 

mechanism within the PSII antenna has been strengthened. Both are enhanced by PsbS 

overexpression (Li et al., 2002; Crouchman et al., 2006), and both preferentially quench 

LHCII fluorescence emission bands (Ruban et al., 1991). Both components of qE are 

reduced in amplitude in the absence of lutein (Pogson et al., 1998; Niyogi et al., 2001). 

Despite different xanthophyll compositions, qE was found to consistently relax as a single 

component even though the half-times differed by greater than 15-fold. All of these 

findings are consistent with a type II mechanism involving the xanthophyll at the L1 

binding site, which is activated by the LHCII conformational change that leads to 

neoxanthin distortion (Ruban et al., 2007) and is allosterically regulated by de-epoxidation 

state at the V1 site (Horton et al., 2005). This may take place in some or all of the Lhcb 

containing antenna complexes (Ruban et al., 1996; Mozzo et al., 2008). The alternative 

possibility is that a type I mechanism occurs in both trimeric LHCII and the minor 

monomeric antenna and that, in the absence of zeaxanthin, a lutein cation can take its place 

as the quencher. However, irrespective of which mechanism is involved and which 
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xanthophyll acts as direct quencher, it is abundantly clear from the data shown here that the 

natural xanthophyll composition of the PSII antenna is essential for a fully functional NPQ. 

All the xanthophylls have a role to play in the efficient light harvesting in low light and 

effective photoprotection under fluctuating light conditions. This may indicate the need and 

purpose of retaining a variety of xanthophylls during the course of evolution in the higher 

plants.    

 

3.3.1 Hydrophobicity index 

A novel approach of hydrophobicity index is applied in this study to determine how 

xanthophyll polarity collectively tunes the ability of the PSII antenna to undergo a 

conformational change. Differences in the head group orientation and hydrophobicity 

between violaxanthin and zeaxanthin have been shown to underlie the differences in their 

allosteric effects upon quenching in LHCII in vitro (Horton et al., 1999). Hydrophobicity 

values for each xanthophyll have previously been determined by their solubility mid-point 

in water ethanol mixes (Ruban et al., 1993b). Therefore, to rationalize the effect of the 

other xanthophyll binding sites within the PSII antenna upon qE kinetics a hydrophobicity 

index for each mutant was calculated based upon biochemically determined xanthophyll 

binding and Lhcb protein stoichiometries as shown in Table 3.5 (Ruban et al., 1994; Ruban 

et al., 1999; Lokstein et al., 2003; Havaux et al., 2004; Dall’ Osto et al., 2005). 

When these calculated hydrophobicity indexes for PSII antenna from each mutant were 

plotted against the kinetic rates of formation and relaxation a clear correlation was seen 

(Fig 3.13 A and B). As the hydrophobicity of xanthophyll complement in the PSII antenna 

increased in a mutant so correspondingly the rate of formation increased and the rate of 

relaxation decreased in that mutant. It is interesting to note that the dependence for the two 

processes is very different, a change in hydrophobicity index of 45 to 54 caused an increase 

in the rate of qE formation of 1.7 times, yet it decreased the rate of qE relaxation by 17 

times, a factor of ten difference. This novel finding adds tremendous insight into the role 

the natural xanthophyll complement plays in tuning the dynamics of the photoprotective 

switch in antenna function. The allosteric effect of substituting violaxanthin for zeaxanthin  
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Plant type LHCIIb stoichiometry Hydrophobicity index 

Wild type NLLZ 48.75 

npq1 NLLV  44.5 

npq2 -LLZ 54 

lut2 NVVZ 46.25 

lut2npq2 -ZZZ 62 

lut2npq1 NVVV  42 

 

Table 3.5 Calculation of hydrophobicity index of wild type and xanthophyll mutants on the basis of 
their respective LHCIIb stoichiometry and hydrophobicity values of constituent xanthophylls, 
previously determined as the solubility midpoints in the % ethanol/water mixture. Hence, the 
hydrophobicity values for each xanthophyll were found as: Z (zeaxanthin) 62%, L (lutein) 50%, V 
(violaxanthin) 45% and N (neoxanthin) 33% (Ruban et al., 1993b). The respective values of each 
plant type were added according to its stoichiometry, e.g. for wild type (NLLZ) = (33+50+50+62/4) 
and for npq2 (-LLZ) = (50+50+62/3) 

 

upon the wild-type LHCII xanthophyll hydrophobicity index is clear, allowing reversible 

change insensitivity of the complex to the PsbS-∆pH driving force. The significance of 

disturbing the natural xanthophyll composition by mutation is also clear- a xanthophyll 

complement is ‘too polar’ as in lut2npq1 reduces the sensitivity to the ∆pH to the extent 

that no qE is possible while one that is ‘too hydrophobic’ would cause only a slight 

acceleration of qE formation (3-4 seconds) but significantly retard relaxation (60+ s). 

Hence in npq2 and lut2npq2 the ‘positive’ dynamic effect on qE formation of having 

increased zeaxanthin content compared to wild-type is almost certainly mitigated by the 

‘negative’ effect it has upon qE relaxation. A similar conclusion was recently reached in 

plants overexpressing β- carotene hydroxylase and therefore containing a xanthophyll cycle 

pool size three times larger than that seen in wild-type (Johnson et al., 2008). The dynamics  

 



122 

 

A 

 

B 

                                       

Figure 3.13 Relationship between (A) NPQ formation and (B) relaxation rates (1/t) and PSII 
antenna xanthophyll hydrophobicity index % of the wild-type and xanthophyll mutants. Data 
obtained as in Figures 3.2. 
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of the PSII antenna can therefore be considered to be finely tuned by xanthophyll content to 

allow the maximum flexibility between allowing rapid induction of photoprotection on one 

hand and rapid reversal to a light harvesting state on another.  The varying xanthophyll 

complements in each PSII antenna complex would, perhaps, further increase the dynamic 

flexibility of the process. Thus when sustained periods of illumination cause de-epoxidation 

at L2 sites within the minor antenna in addition to rapid de- epoxidation at the V1 sites 

(Farber et al., 1997; Wehner et al., 2006) the qE phase becomes more and more 

‘allosterically locked’ and thus qE relaxation becomes slower like that seen in diatom algae 

(Ruban et al., 2004). Xanthophyll hydrophobicity may also offer an alternative explanation 

of their role as structural co-factors of the antenna complexes. 

To summarise the data presented in this chapter, this work suggests following outcomes: 

1. There exists a single quencher and/or quenching mechanism. 

2. Xanthophyll complement affects the kinetics of qE formation and relaxation, and 

hence is significant for photoprotection. 

3. Polarity of xanthophylls collectively tunes PSII antenna dynamics. 

4. Xanthophylls also influence the light harvesting capacity and structural stability of 

antenna. 
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Chapter Four 

 

 

 

Effect of xanthophyll composition on the chlorophyll excited 

state lifetime in plant leaves and isolated LHCII 
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4.1 Introduction 

Biological regulatory mechanisms involve a switch between two alternative functions, most 

simply between active and inactive states. An important aspect of this regulatory route is its 

dynamics ranging from the capacity for maximum activity in one state to minimum in the 

other. In the course of evolution, biomolecules have optimized this dynamic regulation in 

order to adapt to their particular set of physiological and environmental circumstances. 

Albeit this tendency of biomolecules for a dynamic design is apparent it remains poorly 

explored. Like many regulatory biomolecules, the light harvesting complexes of 

photosystem II (LHCII) have such type of dual function: they efficiently utilise absorbed 

light energy for photosynthesis at limiting light intensity and they dissipate excess energy at 

saturating light for photoprotection. The dynamics of this functional range is controlled by 

a change in the pathway of energy transfer in LHCII, whilst the light energy is efficiently 

funnelled down to reaction centres in the photosynthetically-active state it is swayed into a 

new channel for non-radiative decay of chlorophyll excited states in the photoprotective 

state. This switch from the light harvesting state into the photoprotective state is termed as 

nonphotochemical quenching (NPQ) (Horton et al., 1996). 

LHCII is composed of the major trimeric and minor monomeric complexes. All these 

complexes variably bind chlorophyll a and b, and a conserved complement of xanthophylls: 

lutein, neoxanthin, violaxanthin and zeaxanthin (Liu et al., 2004). In major complexes, two 

lutein molecules are located at L1 and L2 sites in the core of each monomer, both having 

distinct absorption spectra at the two sites (Ruban et al., 2001). The L1 site is located in the 

proximity of chlorophyll a610, a611, a612, constituting a ‘terminal emitter domain’ as 

there is highest probability for excitation energy to be localised in this domain 

(Novoderezhkin et al., 2005). The L2 site is also located near to the chlorophylls a602, a603, 

a604. The third xanthophyll, neoxanthin, is located in a domain rich in chlorophyll b. The 

neoxanthin is far more polar (Ruban et al., 1993) than lutein by virtue of its increased 

number of oxygenated groups and different conformation. All these three xanthophylls are 

tightly bound to the LHCII (Ruban et al., 1999). The fourth more loosely bound 

xanthophyll is located at the V1 site near the periphery in the chlorophyll a613, a614, b601 
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domain (Liu et al., 2004; Ruban et al., 1999). The V1 site is specified for the binding of the 

xanthophyll cycle carotenoids. Violaxanthin occupies this site in low light conditions, while 

as a result of enzymatic de-epoxidation it is replaced by zeaxanthin under excess light 

conditions causing acidification of the thylakoid lumen. Both violaxanthin and zeaxanthin 

adopt a distorted configuration in vivo (Ruban et al., 2002), indicating their interaction with 

the protein matrix despite loose binding pattern. All these xanthophylls located at different 

binding sites have structural and biochemical variations in terms of a number of conjugated 

double bonds and oxygenated groups, cyclic head group orientation and polarity (Ruban et 

al., 1993).  On the basis of these differences, variable functional roles of these xanthophylls 

have been proposed in the light harvesting antenna (Frank et al., 1994; Young et al., 1997; 

Ruban, 2009)  

Recent studies have suggested the xanthophylls bound to the internal L1 and L2 sites 

within the complexes are involved in the mechanism of NPQ by quenching chlorophyll 

excited states via energy transfer to the xanthophyll S1 or via formation of a radical state 

(Ruban et al., 2007; Holt et al., 2005; Avenson et al., 2008; Ahn et al., 2008). This switch 

to the quenched photoprotective state has also been demonstrated to involve an intrinsic 

change in the LHCII conformation (Pascal et al., 2005; Ilioaia et al., 2008), which increases 

the interaction between the quenching xanthophyll and chlorophyll a. This process is 

triggered by the build up of the trans-thylakoid ∆pH under saturating light in vivo (Briantais 

et al., 1979). Although interactions between complexes in the highly-conserved PSII 

macrostructure of the grana membranes has been suggested to modulate NPQ (Horton et 

al., 2008), the quenching process itself seems to be intrinsic to the light harvesting complex 

(Ilioaia et al., 2008). The native isolated major and minor LHCII complexes can readily and 

reversibly switch between the unquenched and highly quenched states by manipulation of 

detergent concentration and pH in the reaction medium (Ruban et al., 1994). The low 

detergent concentration and low pH induce fluorescence quenching followed by 

aggregation of LHCII complexes and this in vitro process possess many of the same 

spectroscopic features as NPQ in vivo (Ruban et al., 2007; Johnson and Ruban, 2009; 

Ruban et al., 1992). Transient absorption studies have revealed that in low detergent 

aggregated LHCII the excited state of the xanthophyll lutein 1 (S1) was populated as a 
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result of chlorophyll excitation (Ruban et al., 2007), indicating that this xanthophyll plays a 

role of the quencher in NPQ process. In addition, a recent two photon excitation study has 

also demonstrated an enhanced coupling between xanthophyll S1 and chlorophyll S1 states 

in LHCII aggregates (Bode et al., 2009).  

 The intrinsic molecular features of LHCII governing the efficiency and dynamic range of 

the switching process are not well understood. Since the energy transfer efficiency depends 

upon the configuration of the quenching xanthophyll and its partner chlorophyll(s), it is 

predicted that the type of the xanthophylls bound to the internal L1 and L2 binding sites 

would be important. Various fluorescence measurements presented in the Chapter III have 

demonstrated that variation in xanthophylls bound to the internal LHCII sites in 

Arabidopsis mutants affect photosynthetic efficiency and NPQ capacity, in agreement with 

other studies (Pogson et al., 1998; Niyogi et al., 1998; Pérez-Bueno and Horton, 2008). 

However, these studies have been based upon the relative fluorescence measurements and 

hence can only give arbitrary measures of the fluorescence quenching. Therefore, we 

performed chlorophyll fluorescence lifetime measurements in order to get an absolute value 

of the excited state lifetime in each of light harvesting and photoprotective states and also 

to distinguish direct impact of xanthophylls on the intrinsic function of light harvesting 

complexes from various indirect effects of the mutations in the carotenoid biosynthesis 

pathways of the Arabidopsis mutants used for this study. These measurements also 

provided additional information on the number and amplitude of fluorescence components. 

First, we measured the chlorophyll fluorescence lifetime in both the efficient light 

harvesting and photoprotective (NPQ) states in vivo. Then, the similar measurements were 

also performed on native isolated LHCII major and minor complexes with and without 

fluorescence quenching mimicking the in vivo NPQ. In order to evaluate the impact of 

specific xanthophylls bound to L1 and L2 internal sites on the LHCII functional dynamics, 

we used wild type, lut2 and lut2npq2 mutants with lutein, violaxanthin and zeaxanthin, 

respectively, bound into the L1 and L2 internal sites. Another mutant npq2 was also used 

which has lutein in L1 and L2 sites and zeaxanthin attached to the neoxanthin-binding site. 

The LHCII complexes isolated from mutants show similar chlorophyll composition and 

pigment ratio to the complexes isolated from the wild type plants. The content of peripheral 
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V1 binding site of xanthophyll cycle carotenoids has been significantly decreased in 

conformity with the earlier reports (Sandona et al., 1998; Ruban et al., 1999), indicative of 

weaker xanthophyll binding or detergent sensitivity. Therefore, here we have investigated 

exclusively the role of internally-bound xanthophylls in the fluorescence quenching.  

 

4.2 Results 

 4.2.1 In vivo chlorophyll fluorescence lifetime decays in photosynthetic and 

photoprotective states 

Time-correlated single photon counting measurements were performed using a FluoTime 

200 picosecond fluorometer. Excitation light was provided by a laser diode at 470 nm with 

10 MHz repetition rate. Fluorescence was detected with 2 nm slit width at 685 nm for 

leaves and 680 nm for isolated LHCII and CP26. The instrumental response function was in 

the range of 50 ps. For lifetime analysis, FluoFit software (PicoQuant) was used. To 

measure the chlorophyll lifetime in photosynthetic state of the dynamic range (unquenched 

state, Fm), detached leaves were vacuum infiltrated with 50 µM nigericin to completely 

inhibit NPQ. The excitation light intensity was carefully adjusted to completely close all 

PSII reaction centres without causing photoinhibitory quenching of Fm and to be far below 

the onset of singlet-singlet annihilation. While light intensity of 700 µmol photons m-2 s-1 

was used to induce the NPQ state (quenched state, Fm’) in vivo. Figure 4.1 A shows the 

fluorescence lifetime decays in the form of curves recorded in leaves of wild type, lut2, 

lut2npq2 and npq2 in both photosynthetic and NPQ states. LHCII has the ability to switch 

between these two states- one with long lifetime increasing the chance of energy transfer to 

neighbouring chlorophyll and eventually the RC and therefore is efficient for light 

harvesting; the second photoprotective state is inefficient with a short lifetime- and is 

highly quenched. These curves are semi-exponential presentations: as in case of a single 

exponential they should be straight lines, but the fact that they are not (particularly for the 

NPQ quenched states). This suggests that there are several components involved; hence a 

curve fitting procedure was used. The amplitudes of components resolved in the 

fluorescence decay are shown in Figure 4.1 B.  
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In wild type, the average intensity weighted fluorescence lifetime was 1.95 ns in 

photosynthetic state in the absence of NPQ, consistent with the previous measurements in 

leaves and thylakoids (Gilmore et al., 1995; Gilmore, 2001; Moise and Moya, 2004). Three 

components were resolved in fluorescence decay in this case. An additional longer 

component of ~3.0-3.5 ns was not found here, which has previously been reported in 

several studies involving thylakoids (Wagner et al., 1996; Richter et al., 1999; Vasil’ev and 

Bruce, 1998). As this component has also been not observed in another studies on leaves 

(Moise and Moya, 2004), it can be suggested that it is caused as a result of preparative 

disruption to the natural system via osmotic shock or detergent effects in thylakoids and 

PSII particles. This disruption may lead to the formation of free chlorophyll or 

free/detached antenna components, which can cause a long-living component. Another 

shorter lifetime component of around 0.35-0.5 ns was also absent here which has 

previously been reported and is considered to appear only when the excitation energy is not 

high enough to saturate all PSII reaction centres. In photoprotective state, induced as a 

result of illumination the average fluorescence lifetime in the wild-type leaves was reduced 

to 0.61 ns, consistent with a similar decrease reported previously in thylakoids (Gilmore et 

al., 1995). The decays in this state could again be fitted with three components, which show 

the appearance of a new decay with a lifetime of 0.5 ns and the loss of a 2.3 ns component 

as the main effect of NPQ. This may demonstrate that NPQ is a process of transformation 

of one type of antenna state into another, and not a process of emergence of a totally 

new/additional lifetime state. In both photosynthetic and photoprotective states of all the 

plant types, a very short (~0.1 ns) lifetime with fairly constant amplitude was observed, 

which is consistent with the reported lifetime of Photosystem I (Wagner et al., 1996; 

Richter et al., 1999; Vasil’ev and Bruce, 1998).  

In the lut2 mutant, with violaxanthin at internal L1 and L2 sites, the average lifetime was 

significantly longer than in the wild type in both states: in the photosynthetic state its value 

was 2.17 ns, which was decreased to 0.84 ns in the photoprotective state. The two 

photosynthetic state components of 1.7 ns and 2.8 ns were replaced by those of 0.6 ns and 

1.2 ns in photoprotective state. Thus in this mutant, an increase in lifetime in the 

photosynthetic state indicates an enhanced light harvesting efficiency, and lifetime increase 
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in the photoprotective state demonstrates a reduced NPQ capacity. These data are 

consistent with the slight increase in the maximum PSII quantum efficiency (Fv/Fm) and 

the decrease in NPQ capacity in the leaves of this mutant compared to the wild type, which 

has previously been discussed in Chapter III. 

 

Figure 4.1 Chlorophyll fluorescence lifetime decays (A) and lifetime component amplitudes (B) in 
leaves from wild type, lut2, lut2npq2 and npq2 mutant Arabidopsis plants. The photosynthetic 
(unquenched) state (vacuum infiltrated with 50 µM nigericin) appears in blue, the photoprotective 
(quenched) state (in presence of 700 µM photons m-2 s-1 light after 10 mins preillumination) appears 
in red. The intensity weighted average fluorescence lifetime ±SEM (n=10) of each decay is also 
displayed. 
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In the lut2npq2 mutant, with zeaxanthin as the sole xanthophyll, the lifetime in the 

photosynthetic state was significantly shorter than in the wild type, at 1.52 ns, 

demonstrating a less efficient light harvesting. This is also consistent with the lower value 

of Fv/Fm found in this mutant with a constitutive level of energy dissipation (Pogson et al., 

1998). Interestingly, the decrease in lifetime during photoprotective state was only to 0.71 

ns in this zeaxanthin-only mutant, which actually corresponds to its lower NPQ capacity 

than in wild-type. The increase in average lifetime as compared to wild type is mainly due 

to the appearance of a higher relative population of the ~0.9 ns lifetime compared to the 

0.4-0.5 ns component. These data suggest that replacement of lutein by zeaxanthin 

undermines both photosynthesis and photoprotection in these leaves. However, lut2npq2 

double mutant not only lacks lutein and violaxanthin but neoxanthin is also absent in it. 

Therefore, the npq2 single mutant was analysed to determine the effect of neoxanthin and 

violaxanthin exclusion while lutein is retained along with zeaxanthin. 

In npq2 mutant the average lifetime in the photosynthetic state was at 1.71 ns which was 

again lower than that for wild type, but not as low as in lut2npq2. However, the lifetime in 

the photoprotective state was the same as in the wild type, at 0.6 ns. The analysis of decay 

components of photosynthetically efficient state in this mutant showed a similarity to the 

lut2npq2 mutant with the only difference of 2.0 ns component compared to one at 1.8 ns. 

However, in the photoprotective state, the data are almost indistinguishable from the wild 

type. This shows that the constitutive presence of zeaxanthin in npq2 does not confer any 

additional photoprotective capacity compared to the wild-type. However, the 

photosynthetic efficiency gets impaired with this combination, consistent with the reduced 

photosystem II quantum efficiency in this mutant. 

All these data recorded in both efficient light harvesting (photosynthetic) and 

photoprotective states combined from each of the plant types reveals a correlation between 

the quantum efficiency of PSII and the chlorophyll fluorescence lifetime (Figure 4.2). 

Moreover, the data shows that in the photosynthetic state both maximum quantum 

efficiency of PSII and the fluorescence lifetime have values above as well as below the 
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wild-type levels, which demonstrates the dynamic range in the light harvesting capacity as 

influenced by various xanthophylls. 

 

Figure 4.2 Relationship between chlorophyll fluorescence lifetime and photosystem II quantum 
efficiency measured simultaneously in Arabidopsis leaves with different xanthophyll complements 
in photosynthetic (unquenched) and photoprotective (quenched) states. The arrows highlight how 
the PSII quantum efficiency can be both increased (by replacement of lutein by violaxanthin in lut2) 
and decreased (by replacement of lutein by zeaxanthin in lut2npq2) compared to the wild type level 
(dashed line). 

 

In the above data, the most efficient photoprotective ability in wild type and npq2 can also 

be partly attributed to the presence of zeaxanthin at V1 site, although lut2 did not show a 

similar ability despite de-epoxidation state similar to that of wild type. Nonetheless, to 

further explore the role of only internal bound xanthophyll on lifetime measurements, in 

vitro fluorescence quenching of LHCII major and minor complexes was performed. This 

can also help to determine whether these observed differences are result of direct 
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xanthophyll effects on the state of LHCII or other indirect effects, for example altered PSII 

macrostructure (Lokstein et al., 2002)  

 

4.2.2 Isolation and characterisation of major and minor LHCII complexes 

Major LHCII and minor CP26 complexes were isolated from unstacked thylakoid 

membranes prepared from Arabidopsis wild type and mutant plants. Detergent (n-dodecyl 

β-D-maltoside) solubilised thylakoids were fractioned by isoelectric focusing (IEF) and the 

respective bands were collected as shown in the Figure 4.3.  

The reason for selection of minor band CP26 is that CP26 has been presented as unique site 

of quenching in a recent study with the formation of zeaxanthin radical cation (Ahn et al., 

2008).  The reason for not studying the other two minor complexes was also poor 

resolution of CP24 and CP29 in lut2 and lut2npq2 which may indicate less stability of these 

complexes in these lutein deficient mutants. The use of new commercially available gel and 

Pharmalyte materials may also be another reason for the poor resolution obtained for the 

minor antenna complexes as materials reported in previous studies are no more available. 

As LHCII in lut2 and lut2npq2 mutants exist in monomeric forms rather than trimeric 

forms (Havaux et al., 2004; Lokstein et al., 2002), monomers were also prepared from wild 

type and npq2 trimers. Mutant samples were also treated in the same way as control. 

For the characterisation of these complexes, pigment composition was determined by 

HPLC (Table 4.1) which showed the absence of lutein in the lut2 and lut2npq2 mutants, 

and its replacement by violaxanthin and zeaxanthin, respectively. In LHCII, the reduction 

in total xanthophyll bound in npq2 and lut2npq2 was mostly due to the absence of 

neoxanthin. In the case of CP26, there was some additional loss of xanthophyll. The 

absorption spectra of the samples were also measured and found same as previously 

published (Figure 4.4). In the case of LHCII from the lut2npq2 mutant there was a 

reduction in prominence of the chlorophyll b band around 650 nm, consistent with the 

pigment analyses. 
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Figure 4.3 Separation of major (LHCIIb) and minor (CP24, CP29 and CP26) light harvesting 
antenna complexes of PSII in discreet bands from unstacked thylakoids of wild type, npq2, lut2 and 
lut2npq2 mutant by isoelectric focusing. Only LHCII and CP26 are well resolved in all the four 
genotypes. 
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Table 4.1 Pigment composition of isolated LHCIIb and CP26. Monomeric LHCIIb and CP26 were 
prepared by IEF from dark-adapted Arabidopsis wild-type and mutant plants. Data are mmoles 
carotenoids per mole chlorophyll a + b molecules and are means ± S.E. from four replicates. Neo, 
Vio, Ant, Lut, Zea, and chl a/b: neoxanthin, violaxanthin, antheraxanthin, lutein, zeaxanthin, and 
chlorophyll a/b ratio. Xan/Chl is the molar ratio of total xanthophylls to total chlorophylls. 

 

 

Figure 4.4 Absorption spectra of isolated LHCII (A) and CP26 (B) proteins from the wild-type, 
lut2, npq2 and lut2npq2 mutants. 
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4.2.3 In vitro chlorophyll fluorescence lifetime decays of isolated LHCII in 

unquenched and quenched states 

It is known that aggregation of LHCII complexes is inhibited in detergent micelles, thus 

fluorescence remains unquenched in this condition. Chlorophyll excited lifetime of native 

LHCII and CP26, isolated from leaves of plants with varying xanthophyll composition, was 

first compared in detergent micelles. To measure lifetime decays in unquenched state,  

 

 

Figure 4.5 In vitro fluorescence quenching in isolated (A) LHCII and (B) CP26 from wild-type 
(green), lut2 (blue), npq2 (black) and lut2npq2 (red) mutants. Samples were diluted into 30 µM DM 
(LHCII) or 60 µM DM (CP26)/ 10 mM HEPES / 10 mM Sodium Citrate pH 7.8, the pH is then 
lowered to 5.5 (shown by downward arrow) to induce maximum fluorescence quenching. Recovery 
from the fluorescence quenching was induced by returning detergent concentration to 200 µM DM 
(shown by upward arrow with +DM). 
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isolated complexes were subjected to 200 µM β-DM detergent concentration in a HEPES 

buffer of pH 7.8. These complexes can also show quenching of fluorescence under low 

detergent and low pH (5.5) condition (Ruban et al., 1994) by forming aggregates, this 

process mimics many of the features of NPQ in vivo (Horton et al., 2005). Thereby, the 

lifetimes were also recorded following the in vitro quenching of isolated complexes. For in 

vitro quenching, the isolated complexes were diluted into 30 µM β-DM (LHCII) or 60 µM 

β-DM (CP26) detergent concentrations in a similar buffer as above. To induce maximum 

quenching diluted HCl was added to lower the pH to 5.5 after the initiation of spontaneous 

quenching. Reason for using higher detergent concentration in CP26 quenching was to 

avoid induction of irreversible fraction of quenching in mutant CP26 samples upon dilution 

to lower (30 µM β-DM) detergent concentration. This in vitro quenching of isolated 

complexes is a reversible process hence quenching was recovered by returning the 

detergent concentration to 200 µM β-DM, this recovery also shows that complexes are not 

denatured during the quenching process (Figure 4.5). Data collected from lifetime 

measurements in unquenched and quenched states correspond and explain the differences 

observed in vivo during the photosynthetic and photoprotective states, respectively.  

The fluorescence lifetime decays recorded in isolated LHCII of wild type, lut2, lut2npq2 

and npq2 in both unquenched and quenched states are shown in Figure 4.6 A, while the 

amplitudes of components resolved in the fluorescence decay are shown in Figure 4.6 B. 

The average lifetime of LHCII from wild type was found as 3.52 ns in unquenched state, 

while in lut2 it was measured as 3.7 ns, the longer value observed in latter case was 

consistent with the in vivo result. The extent of in vitro fluorescence quenching induced in 

LHCII from the wild type was much larger than that of lut2 under identical conditions, 

consistent with the in vivo NPQ data. Accordingly, the average lifetime in the wild type 

was 0.33 ns as compared to 0.98 ns in case of the mutant. Comparison of the lifetime 

component amplitudes of the decay curve fits showed that around ~80% of wild type 

LHCII population was converted to a state with a sub-0.2 ns lifetime, consistent with 

previous reports (Mullineaux et al., 1993; van Oort et al., 2007), while in lut2 LHCII even 

the shortest lifetime was longer (~0.3 ns) with much less (~55%) conversion at this 

component and a significant population of a longer 0.9 ns lifetime remaining. 
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Figure 4.6 Chlorophyll fluorescence lifetime decays (A) and lifetime component amplitudes (B) of 
isolated monomeric LHCII complexes from wild type, lut2, lut2npq2 and npq2 mutant Arabidopsis 
plants. The photosynthetic (unquenched) state (in presence of 200 µM β-DM, pH 7.8) appears in 
blue, the photoprotective (quenched) state (in presence of 30 µM β-DM, pH 5.5) appears in red. The 
intensity weighted average fluorescence lifetime ±SEM (n=3) of each decay is also displayed. 
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Similarly, the results of lifetime analysis of LHCII from lut2npq2 also mirrored those found 

in vivo. The average lifetime was shorter in unquenched state but longer in the quenched 

state of LHCII which contained zeaxanthin as only xanthophyll. Thus, similar to the in vivo 

finding, zeaxanthin confers reduced light harvesting efficiency without increasing the 

capacity for energy dissipation. Similar to lut2, the component amplitudes in lut2npq2 also 

showed less efficient conversion to the shorter lifetimes than in wild-type with a significant 

population of a ~0.7 ns lifetime.  

The LHCII from the npq2 mutant in unquenched state showed similar but smaller 

reductions in average lifetime compared to those from the lut2npq2. However, the average 

lifetime of the quenched state of npq2 was found identical to that of wild type, consistent 

with the in vivo results. Thus the reduction in quenching was only observed when 

zeaxanthin replaced either lutein and/or neoxanthin in the internal LHCII sites as in 

lut2npq2 and npq2. Moreover, no impact on photoprotective capacity was observed in the 

absence of only neoxanthin.  

 

4.2.4 In vitro chlorophyll fluorescence lifetime decays of isolated CP26 in unquenched 

and quenched states 

The fluorescence lifetime decays were also similarly recorded in isolated minor complex 

CP26 of wild type and mutants in both unquenched and quenched states (Figure 4.7 A), 

along with the amplitudes of components resolved in the fluorescence decay (Figure 4.7 B). 

This minor antenna complex has been reported to form lutein and zeaxanthin radical 

cations, which are implicated in the quenching mechanism (Avenson et al., 2008; Avenson 

et al., 2009). However, the results obtained here demonstrate a similar pattern to that found 

for LHCII. 

In wild type, once again a significantly shorter average lifetime in the quenched state and 

only slightly lower value was measured in unquenched state, as compared to the 

corresponding values of lut2. Interestingly, the fluorescence decays obtained for CP26 in 

unquenched state show 20% contribution from a short lifetime component in wild type and  
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Figure 4.7 Chlorophyll fluorescence lifetime decays (A) and lifetime component amplitudes (B) of 
isolated CP26 complexes from wild type, lut2, lut2npq2 and npq2 mutant Arabidopsis plants. The 
photosynthetic (unquenched) state (in presence of 200 µM β-DM, pH 7.8) appears in blue, the 
photoprotective (quenched) state (in presence of 60 µM β-DM, pH 5.5) appears in red. The 
intensity weighted average fluorescence lifetime ±SEM (n=3) of each decay is also displayed. 
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all mutants, indicating some of it was already quenched as reported previously (Avenson et 

al., 2008; Crimi et al., 2001). A clear difference between wild type and lut2 in unquenched 

state can however be achieved by excluding the short lifetime component, thus considering 

only the longer lifetime components of wild type at 2.0 ns and 4.2 ns and those of  lut2 at 

2.4 ns and 4.5 ns can cause a shift to longer lifetime in the latter case.  

 In the case of lut2npq2, a significant reduction in average lifetime of the unquenched state 

but only a small increase in that of the quenched state was observed as compared to the 

wild type. The cause of this reduction in quenching in lut2npq2 seemed to be the presence 

of a slightly longer lifetime components of ~0.25 ns and ~1 ns compared to the 

corresponding components of ~0.2 ns and 0.7 ns in the wild-type.  

Similar results were also found in case of CP26 from the npq2 mutant to those found for 

LHCII. In the quenched state, almost similar lifetime to that of wild type was observed, 

while a small decrease in lifetime of the unquenched state. This reduction in lifetime of 

unquenched CP26 is in fact consistent with the slightly lower fluorescence yield reported 

earlier in the same complex of npq2 mutant (Dall’Osto et al., 2005). 

 

4.2.5 Room temperature fluorescence spectra of isolated LHCII and CP26 

The room temperature fluorescence spectra were also recorded under unquenched and 

quenched states for both LHCII and CP26 complexes isolated from wild type and mutants 

(Figure 4.8 A, B). This exercise was performed to see any evidence of denaturation or 

unfolding of protein complexes in the low detergent and low pH conditions, which would 

manifest under such conditions in the form of blue-shifted fluorescence arising from 

uncoupled chlorophylls (Ilioaia et al., 2008). No such evidence was found in any of the 

complexes, spectrum of an LHCII denatured by triton detergent was also recorded for 

references, as shown in Figure 4.7 A. These spectra also revealed the same characteristic, 

albeit smaller, red-shift known to accompany quenching in LHCII under low detergent 

conditions (Ilioaia et al., 2008).  
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Figure 4.8 Fluorescence spectra of isolated LHCII (A) and CP26 (B) proteins from the wild-type, 
lut2, npq2 and lut2npq2 mutants, dashed lines represent samples quenched at 30 µM DM / pH 5.5, 
solid lines are same samples following restoration of detergent concentration to 200 µM DM. 
Dashed-dotted spectrum (marked ‘D’) is that of detergent denatured LHCII achieved by 10 minutes 
incubation with 3% triton X-100. 

 

4.3 Discussion 

The dynamic behaviour of LHCII, ranging from efficient light harvesting at limiting light 

for photosynthesis to effective excess energy dissipation at saturating light for 

photoprotection, has been studied for the first time here. Effect of varying xanthophyll 

composition on the optimisation of light harvesting is analysed in particular, by means of 

chlorophyll fluorescence lifetime measurements both in vivo and in vitro.  The resulting 

data also adds to the existing knowledge of the regulation and optimisation of the efficiency 

of both light harvesting and photoprotection. This dynamic activity demonstrates its 

optimum range by having maximum light harvesting (or longest lifetime in the unquenched 

state) and maximum photoprotection (or shortest lifetime in the quenched state) at the same 

time.  

The optimum dynamic range was achieved by having the wild type native complement of 

internal xanthophylls, with two luteins and one neoxanthin occupying the internal sites. The 

replacement of lutein with violaxanthin increased the light harvesting efficiency; however 
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the photoprotective capacity was reduced on the other end, restricting the dynamic range in 

lut2. Therefore the positive impact of increase in the light harvesting efficiency is clearly 

offset by the reduction in capacity of photoprotection. The replacement of all internal 

xanthophylls with zeaxanthin resulted in most drastic impact on dynamic activity as both 

the light harvesting efficiency and photoprotective capacity were jeopardized in this case, 

as shown in lut2npq2. Absence of another internal xanthophyll, neoxanthin, also affected 

the dynamic range by impairing the light harvesting efficiency, however the 

photoprotective capacity remained maximum similar to the wild type.  

Similar pattern, observed in both in vivo and in vitro analyses, suggests that the origins of 

these effects of xanthophyll complement on light harvesting and photoprotection reside in 

the altered properties of the light harvesting complexes. Remarkably, all the effects on 

lifetimes of changes in xanthophyll composition observed in leaves were manifested as 

altered properties of the isolated LHCII. The lifetime of isolated LHCII is not fixed but can 

be manipulated, by varying detergent concentrations, from ~4 ns down to ~1.0-0.3 ns 

(Pascal et al., 2005; Ilioaia et al., 2008; Moya et al., 2001; van Oort et al., 2007). The in 

vitro quenching induced by low detergent and low pH conditions mimics the NPQ in vivo. 

The similarities between the effects of xanthophyll substitutions on leaves and LHCII 

suggests that the quenching mechanism is the same in both, consistent with much previous 

data that highlighted the similarity between NPQ and quenching in LHCII aggregates 

(Horton et al., 1996; Horton et al., 2005). 

The results described here show that the xanthophyll complement affects the excited 

chlorophyll lifetimes in both unquenched and quenched states of LHCII antenna 

complexes. Lutein is clearly an essential cofactor of LHCII and when it is replaced at its 

internal binding sites by violaxanthin or zeaxanthin the lifetimes either increase or 

decrease, respectively, in unquenched light harvesting state. However in quenched or 

photoprotective state, incorporation of violaxanthin and zeaxanthin in place of lutein 

suggests the fromer two as weaker quenchers than the latter one. It has been suggested that 

excess energy is transferred by the S1 excited state of chlorophyll a to the S1 state of 

xanthophyll at L1 site and hence dissipated (Ruban et al., 2007). The variations in 
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quenching capacity of these xanthophylls are unlikely to be explained by differences in 

their excited state energy levels since both violaxanthin and zeaxanthin possess similar S1 

lifetimes and energies to lutein when incorporated into these sites in LHCII, which are 

already below those of chlorophyll a (Polívka et al., 2002). Thus, the differences in 

molecular geometry and polarity of each xanthophyll (Ruban et al., 1993a) may instead 

determine how well it is able to interact with the terminal emitter chlorophylls in the L1 

binding site. Alternatively, xanthophylls bound at these internal sites may control the 

structural flexibility needed for the transition between the different states of quenching 

(Ruban et al., 2007; Ilioaia et al., 2008). Thus, the identity of the xanthophyll bound to the 

L1 and L2 sites determines the extent of dynamic range between the quenched and 

unquenched states, which are believed to originate from intrinsic conformational changes, 

as originally suggested (Horton et al., 2000; Bassi and Caffarri, 2000). 

Major and minor LHCII complexes have been shown to undergo in vitro quenching by 

aggregate formation, as there is high degree of structural homology among all these protein 

complexes. The minor complex CP26 has been reported to aggregate and quench more 

readily than the LHCII in vitro (Ruban et al., 1996), however the protein-to-protein 

interactions and conformational changes cannot be accorded in vivo, where these 

complexes are organised in a strict stoichiometry in the PSII complex (Hankamer et al., 

1997; Rhee et al., 1997). The CP26 has recently been implicated in a reconstituted study as 

unique site of NPQ whereby quenching occurs by a different mechanism involving a 

zeaxanthin radical cation (Ahn et al., 2008). There is no direct evidence that the minor 

complex can quench more efficiently than the LHCII in vivo. In the present work, the 

similar behaviour of the minor antenna complex CP26 and LHCII does not lend any 

support to the above mentioned idea. Indeed, the results shown here provide no evidence 

for an important direct quenching role for zeaxanthin. The presence of extra zeaxanthin in 

the npq2 and lut2npq2 mutants causes constitutive quenching which is small and does not 

increase the maximum quenching capacity, in leaves, in LHCII or in CP26; indeed, for the 

zeaxanthin only mutant it was actually decreased.  
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In this study, the native isolated LHCII and CP26 complexes seem to be devoid of any 

peripheral binding xanthophylls at V1 site, as indicated by the pigment analysis. The 

chlorophyll fluorescence lifetimes measured in these isolated complexes followed the 

similar pattern as observed during the similar measurements performed in vivo, despite 

absence of peripheral xanthophylls. The well-documented impact of de-epoxidation of 

violaxanthin to zeaxanthin on enhancement of NPQ (Demmig-Adams, 1990) can therefore 

be explained by an indirect, regulatory role from the peripheral V1 site, allosterically 

modulating the pH sensitivity of NPQ, as has been described in vitro and in vivo (Horton et 

al., 2000). In vivo, the quenching state of LHCII is controlled within a range which is less 

than that achievable in isolated complexes. Hence LHCII acts rather like a dimmer switch, 

which in vivo is never fully turned off or on. In light harvesting state, the lifetime is already 

reduced to around 2-2.5 ns, consistent with the lifetime of LHCII when incorporated into 

liposomes (Moya et al., 2001), while in photoprotective state, NPQ is formed by further 

action of the dimmer switch to yield a lifetime of ~0.4-0.6 ns. Resonance Raman analysis 

also shows that LHCII is in a partially quenched conformation in the absence of NPQ and 

in an incomplete state of switching at maximum NPQ (Ruban et al., 2007). Clearly, 

external factors in the thylakoid membrane tune the capacity of LHCII to express its 

potential states: e.g. interaction with neighbouring proteins in the LHCII-PSII 

macrostructure, such as PsbS (Horton et al., 2008). Thus, nature exploits the inherent 

flexibility of LHCII function by adopting a complement of xanthophylls that optimizes the 

maximum dynamic range between its light harvesting and photoprotective states. 

Optimisation of photosystem II quantum efficiency therefore occurs at the level of 

individual LHCII proteins. 
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5.1 Introduction 
 
Nonphotochemical quenching (NPQ) is a regulatory photoprotective process, by which 

excess light energy absorbed by the light harvesting antenna of photosynthetic organisms is 

dissipated as heat (discussed in section 1.10). In algae and plants, the major fraction of 

NPQ is called qE or energy-dependent quenching, which is rapidly reversible in dark. qE 

depends upon the thylakoid lumen pH and the presence of specific de-epoxidised 

xanthophylls (reviewed in Horton et al., 1996; Gilmore, 1997; Muller et al., 2001). The 

low-lumen pH (pH 5.2-6.0) is the result of a ∆pH formation across the thylakoid membrane 

caused by light-driven electron transport (Briantais et al., 1979). This lumen acidification is 

required for activation of the violaxanthin de-epoxidase enzyme (VDE) and protonation of 

PSII protein(s). The de-epoxidation of xanthophylls required for qE is a part of the 

xanthophyll cycle in which violaxanthin is de-epoxidised by VDE to yield antheraxanthin 

and zeaxanthin in excess light (Demmig- Adams, 1990). This zeaxanthin has been 

suggested to act as an acceptor and hence a direct quencher of excitation energy transferred 

from chlorophyll excited states (Ma et al., 2003; Holt et al., 2004).  

qE has also been shown to be affected by the level of a photosystem II subunit S (PsbS) 

protein, as its absence can strongly reduce the extent of qE (Li et al., 2000). The site-

directed mutagenesis of PsbS has proposed that it is a ∆pH sensor protein possessing two 

proton-binding lumen-exposed glutamate residues. However, the exact mechanism by 

which PsbS regulates NPQ is yet to be elucidated. This protein with twofold symmetry has 

been suggested to be directly involved in NPQ by providing two quenching sites which 

include two proton-active domains and two zeaxanthin binding sites (Li et al., 2004). The 

evidence for this proposed quenching mechanism was based on the observation of in vitro 

binding of two zeaxanthin to PsbS (Aspinall O’Dea et al., 2002). Moreover, this binding of 

zeaxanthin to PsbS resulted in a strong red shift in the pigment absorption spectrum, which 

may explain the origin of ∆A535 absorption change from a sub-pool of red-shifted 

zeaxanthin (Ruban et al., 2002a). An inhibitor of qE, dicyclohexylcarbodiimide (DCCD), 

has also been shown to bind proton active domains of PsbS (Dominici et al., 2002). On the 

basis of these observations, it has been suggested that PsbS binds zeaxanthin and/or 

protons, both of which are necessary for qE. 
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Alternatively, an allosteric model for NPQ was put forward to explain the indirect role of 

both zeaxanthin and PsbS protein in regulation of the quenching site which is localised in 

the light harvesting antenna complexes (Horton et al., 2005). A conformational change 

within these complexes would result in a change in pigment configuration, creating a 

quenching interaction between bound pigments. The evidence for such conformational 

changes has not only been provided in vitro in LHCII crystals (Pascal et al., 2005), but also 

in thylakoid membranes in vivo by the use of Raman spectroscopy (Ruban et al., 2007). 

Evidence for the indirect role of zeaxanthin as a modulator of NPQ has come from the 

∆pH-dependent quenching formed immediately upon illumination in the absence of 

zeaxanthin (Noctor et al., 1991; Ruban et al., 1999); this has also been demonstrated in the 

qE formation kinetics of npq1 mutant in Chapter 3. Thus, NPQ is not entirely dependent 

upon the formation of zeaxanthin, as presence of zeaxanthin only lowers the ∆pH 

requirement for NPQ without increasing the magnitude of it, in pre-illuminated leaves and 

isolated chloroplasts (Rees et al., 1989; Noctor et al., 1991, Ruban et al., 2001) as well as 

upon the second illumination of dark-adapted leaves when zeaxanthin is already present 

(Ruban et al., 1999). The latter has also been shown in the qE formation kinetics study of 

npq2 mutant in Chapter 3. Zeaxanthin can also promote the induction of quenching in 

isolated light harvesting complexes by accelerating the rate of formation of the quenched 

state, indicative of its role to regulate the quenching kinetics (Ruban et al., 1994; 1999). In 

the allosteric model of NPQ, the role of PsbS has been suggested to bind protons and 

zeaxanthin or to act as a regulator of conformational changes in one or more antenna 

complexes to cause quenching (Horton et al., 2005).  

Study of PsbS-lacking mutant npq4 showed that both components of rapidly forming NPQ, 

zeaxanthin-independent and zeaxanthin-dependent, were greatly reduced in the absence of 

PsbS (Li et al., 2000). Whilst, the extent of NPQ was increased by almost two fold by over-

expression of psbS gene in L17 plants with higher levels of PsbS (Li et al., 2002c). 

Interestingly, both the above mentioned plant types showed such a stark contrast in their 

NPQ despite having no differences in zeaxanthin formation as both possessed normal 

xanthophyll cycle. However the role of PsbS for both zeaxanthin-independent and 

zeaxanthin-dependent quenching was only demonstrated in a later comparative study of 
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L17 and wild type plants, showing similar increase of NPQ, in the presence or the absence 

of zeaxanthin (Crouchman et al., 2006). This study indicated towards the role of PsbS as a 

trigger of intrinsic conformational change in antenna complexes resulting in NPQ, with 

zeaxanthin as an allosteric regulator and not the direct quencher. To avoid violaxanthin de-

epoxidation, the zeaxanthin-inhibitor dithiotheitol (DTT) was used to measure only 

zeaxanthin-independent component of NPQ in both types of plants. However, observation 

of an additional impact of DTT apart from blocking zeaxanthin synthesis in case of npq1, 

as mentioned in Chapter 3, necessitates the use of a natural system for this experiment by 

enhancing the PsbS levels in absence of zeaxanthin without using any exogenous chemical 

inhibitor. To achieve this, PsbS can be increased in zeaxanthin-lacking npq1 mutant by 

employing physiological measures like acclimation to high light and/or low temperature 

treatment (Demmig-Adams et al., 2006). Similarly, availability of both PsbS over-

expressor L17 and npq1 mutant can also be genetically exploited to create a double mutant 

possessing both over-expression of psbS gene along with mutation in VDE gene.  

The work presented in this chapter deals with assessing the role of zeaxanthin as a direct 

quencher or allosteric regulator by enhancing the level of PsbS in the absence of this 

xanthophyll. This can also help to dissect the role of both zeaxanthin and PsbS by 

identifying if quenching can be increased in the absence of zeaxanthin only by the increase 

in amount of PsbS. As a result of genetic cross between PsbS overexpressor L17 and npq1 

with two copies of the psbS gene we also envisage observing the dosage effect of PsbS on 

NPQ, which has also been demonstrated in an earlier study involving a cross between 

PsbS-lacking npq4 and wild type containing two copies of the psbS gene (Li et al., 2002a). 

This can help to identify a correlation between PsbS and zeaxanthin-independent and 

zeaxanthin-dependent components of quenching. The effect of PsbS on NPQ is well 

established, but its mechanistic role is not clear as it has been suggested either as a direct 

quencher by binding zeaxanthin (Li et al., 2004; Holt et al., 2005) or otherwise indirectly as 

regulator of the conformational change in antenna complexes leading to quenching (Ruban 

et al., 2001; Wentworth et al., 2001; Horton et al., 2005). The quenching would be 

expected to be increased by PsbS enhancement only in the presence of zeaxanthin in case 
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of its direct role, while quenching would be enhanced both in the presence or absence of 

zeaxanthin in case of indirect role of PsbS.  

Furthermore, observation of the kinetics of NPQ formation and relaxation in plants with 

altered PsbS levels would give insight into the proposed mechanism of qE quenching and 

support either a direct or indirect role of PsbS in quenching. If PsbS acted as a direct 

quencher, whilst the level of NPQ would be greater, the rate of formation and relaxation of 

the quenched state would only be affected by the concentration of the protein in the 

presence of deepoxidation. However, if PsbS was acting allosterically to regulate the 

transition to the quenched state, the rate of both formation and relaxation would be 

expected to differ depending on the concentration of the protein, and these differences 

would be seen both in the presence and absence of de-epoxidation. The level and rate of 

non-photochemical quenching in leaves and chloroplasts, both in the presence and absence 

of de-epoxidation, was therefore analysed in an attempt to establish how PsbS 

concentration influences both the amount and kinetics of NPQ in vivo. 

 

5.2 Results 

The fact, that overexpression of PsbS increases the amplitude of NPQ even after using 

zeaxanthin-inhibitor dithiotheitol (DTT), supported this view (Crouchman et al., 2006). 

Further work is required to elucidate the exact role of PsbS and zeaxanthin in the molecular 

mechanism of NPQ. To achieve this, PsbS levels can be manipulated by physiological 

means such as acclimation to high light (Demmig-Adams et al., 2006). A similar increase 

in NPQ in the npq1 mutant lacking zeaxanthin is also envisaged as a result of enhanced 

PsbS by high light acclimation, without using DTT. Alternatively, a double mutant can also 

be generated by crossing the zeaxanthin lacking mutant npq1 with PsbS overexpressor L17, 

to obtain a line with potentially higher NPQ level than that of npq1.   The resultant findings 

thus can elucidate the role of zeaxanthin as a quencher alone or in combination with PsbS, 

or alternatively as an allosteric regulator of NPQ. 
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5.2.1 High light (HL) acclimation to increase NPQ levels 

To determine the temporal effect of high light acclimation, npq1 and wild type plants were 

exposed to 500 µmol photons m-2 s-1 high light (HL), with 8h photoperiod at room 

temperature (24oC) for two acclimation treatments of 8 days and 4 weeks durations. By the 

end of both HL treatments, plants of same age, i.e. 8 weeks, were obtained for further 

analyses. For 8 days acclimation, 7-week- old plants were used, while 4-week-old plants 

were used for further 4 week HL acclimation. Prior to HL exposures, plants were grown 

under controlled conditions of 8h of 100 µmol photons m-2 s-1 light at 22oC alternating with 

a 16h dark period at 18oC. Shorter duration of HL exposure (8 days) was found to have 

more pronounced effect to increase NPQ level while no significant increase in NPQ was 

observed as a result of prolonged HL exposures (4 week). This may explain the two 

contrasting strategies of short term photoprotection and long term photoacclimation adapted 

by plants for the regulation of light harvesting. All the data presented here is therefore 

obtained from short term (8 days) HL acclimation of plants, as this work is aimed at 

increasing the extent of NPQ. 

Both wild type and npq1 plants showed no apparent growth differences, when exposed to 

HL. This shows that both plant types were capable to adapt to the HL and zeaxanthin 

formation does not limit the energy utilisation and thus plant growth. However, minor 

changes in leaf morphology were observed in all HL acclimated plants. Leaves with darker 

colour, coarse texture, curly edges, more thickness and shorter petioles were observed after 

HL acclimation, in comparison to those grown under controlled growth conditions. 

 

5.2.1.1 Effect of HL acclimation on Pigment composition 

5.2.1.1.1 Chlorophyll content 

Total chlorophyll concentration per unit leaf area decreased in both wild type and npq1 

after HL acclimation, but no significant differences were observed between both plant types 

grown at the same light intensity. Moreover, in HL acclimated plants, relatively stronger 

decrease in chlorophyll b than that of chlorophyll a resulted in increase of chlorophyll a/b 
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ratio. Since the major light harvesting complexes of PSII (LHCII) are enriched in 

chlorophyll b, this may indicate a likely reduction in the antenna size under HL conditions. 

The availability of excess light energy eliminates the need for higher capacity of light 

harvesting and hence a large-sized antenna.  Apart from LHCII, some less pronounced 

changes in other chlorophyll binding components, like minor LHCII complexes, LHCI 

complexes and reaction centres, have also been reported that may also contribute to the 

values of chlorophyll a/b (Bailey et al., 2001). 

 

Plant Type Total Chl (mg/ml) Chl a/b 
Wild type -100µE 2.67 ± 0.33 2.86 ± 0.12 
Wild type -500µE 1.58 ± 0.12* 3.28 ± 0.14 
npq1 -100µE 2.81 ± 0.20 3.02 ± 0.06 
npq1 -500µE 1.63 ± 0.13* 3.35 ± 0.10 

                                                                                                                                                                 
Table 5.1 Chlorophyll concentration measurements of wild type and npq1 grown at 100 µmol 
photons m-2 s-1 (control) and 500 µmol photons m-2 s-1 (high light). Pigments were extracted with 
80 % (v/v) acetone from leaf discs, using UV-Vis spectrophotometer. All data are mean  SE for at 

least three plants. *= Significantly different to respective controls (Student’s t-test p=0.005). 

 

5.2.1.1.2 Xanthophyll composition 

To determine the effect of HL acclimation on xanthophyll composition, leaf discs were 

collected from wild type and npq1 plants to analyse their pigment composition by HPLC in 

both light-treated and dark-adapted conditions (Table 5.2). The expected general 

differences between wild type and npq1 were found as both antheraxanthin and zeaxanthin 

were absent in the latter due to inactivity of VDE. The light-induced de-epoxidation was 

also absent in npq1, while in case of wild type it was measured as 46 %. After HL 

acclimation, xanthophyll cycle pool was significantly increased in wild type, but no 

significant increase in de-epoxidation was observed as a result of HL acclimation. 

Interestingly, a similar significant increase in the violaxanthin quantity was also measured 

in npq1, despite the fact that xanthophyll cycle was inactive in this mutant. This increase in 

xanthophyll cycle pool has been suggested to accumulate in the lipid phase of the 
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membrane, as the antenna size and hence the number of available xanthophyll cycle-

binding sites is expected to be reduced under HL conditions (Kalituho et al., 2006).  

 

Plant  Neo Lut  Vio Ant  Zea β-Car DEPs 
WT 
100µE 
dark 
 

5.2 ± 0.5 17 ± 1 4.4 ± 0.2 0.2 ± 0.1 0 12.1 ± 1 3 ± 0.9 

WT 
100µE 
light  
 

5.1 ± 0.9 16 ± 1 2.0 ± 0.4 0.8 ± 0.3 1.7 ± 0.4 9.8 ± 0.8 46 ± 1.2 

WT 
500µE 
dark 
 

4.7 ± 0.5 14.6 ± 
2.5 

6.0 ± 0.6 0.3 ± 0.1 0 11.9 ± 
1.2 

4 ± 1.4 

WT 
500µE 
light  
 

4.5 ± 0.7 15.2 ± 
2.2 

2.8 ± 0.8 1.4 ± 0.4  2.4 ± 0.8 10.5 ± 
0.6 

47 ± 2 

npq1 
100µE 
dark 
 

5.3 ± 1.1 18 ± 2 4.4 ± 1.1 0 0 12 ±1.8 0 

npq1 
100µE 
light  
 

5.7 ± 0.6 20 ± 1 5.3 ± 0.3 0 0 9.2 ± 0.6 0 

npq1 
500µE 
dark 
 

5.0 ± 0.4 17.5 ± 
1.7 

7.95 ± 
0.2 

0 0 9 ± 0.6 0 

npq1 
500µE 
light  
 

4.8 ± 0.7 18.2 ± 
2.4 

7.8 ± 0.8 0 0 7.5 ± 0.5 0 

 

Table 5.2 Pigment composition of wild type (WT) and npq1 grown at 100 µmol photons m-2 s-1 
(control) and 500 µmol photons m-2 s-1 (high light). Leaf discs were collected from plants either 
dark-adapted for 30 min or light-treated for 10 min at 1000 µE. Data are normalized to 100 
chlorophyll a + b molecules and are means ± SE from three replicates. Neo, Lut, Vio, Ant, Zea, β-
Car and DEPs represent neoxanthin, lutein, violaxanthin, antheraxanthin, zeaxanthin, β-carotene 
and de-epoxidation state % [(zeaxanthin + 0.5 antheraxanthin)/(violaxanthin + antheraxanthin + 
zeaxanthin)], respectively. 
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The additional xanthophyll-binding proteins, like ELIPs, HLIPs and SEPs formed during 

HL exposure have also been proposed to bind substantial amounts of xanthophylls, as 

mentioned earlier in chapter I (Adamska, 1997; Adamska et al., 1999; Heddad and 

Adamska, 2000).  

 

5.2.1.2 Effect of HL acclimation on PsbS enhancement  

For the confirmation of PsbS enhancement among HL acclimated wild type and npq1 

plants, the western blots were performed using an anti-PsbS primary antibody specific for 

Arabidopsis. Unstacked thylakoids were prepared from the plants grown at HL (500 µmol 

photons m-2 s-1) and at moderate light (100 µmol photons m-2 s-1) along with npq4 and L17 

plants as control. Figure 5.1 shows a typical blot where PsbS band of 22 kDa is identified 

by the help of marker and is confirmed by the absence of this band in PsbS-less npq4 

mutant. The band appears to be noticeably denser in case of HL acclimated plants as 

compared to those grown at moderate light. 

 WT-500μE   npq1-500μE WT-100μE npq1-100μE      L17-C              npq4-C 

 

 

Figure 5.1. Western blot probed with anti-PsbS antibody for wild type (WT) and npq1 plants grown 
at 500µE and 100µE. L17 and npq4 were used as controls, denoted by “-C”. Unstacked thylakoids 
(1µg chl/lane) were run on a 15% SDS PAGE gel and probed with anti-PsbS primary antibody. 

 

5.2.1.3 Effect of HL acclimation on fluorescence parameters 

In order to investigate the effect of HL acclimation on various fluorescence parameters, 

fluorescence induction curves were recorded on dark adapted wild type and npq1 plants. 

Three different actinic light intensities (700, 1000 and 2000 µmol photons m-2 s-1, also 
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known as µE) were initially used to compare the response of both plant types as a result of 

HL exposure by studying the parameter of chlorophyll fluorescence like NPQ and its two 

components qE, qI.  

 

5.2.1.3.1 NPQ magnitude 

Average NPQ for both first and second illumination periods were recorded, as shown in 

Table 5.3 A and B, respectively. In all the cases, steady state values of NPQ were reached. 

As a result of HL acclimation, NPQ magnitude was increased in both wild type and npq1 at 

all the three actinic light intensities used (Table 5.3 A, B). However, the use of 2000 µmol 

photons m-2 s-1 (µE) actinic light caused more pronounced NPQ differences in case of wild 

type between HL-acclimated plants and controls, as higher actinic light ensures the 

saturation of photosynthetic electron transport to  minimize photochemical quenching, and 

therefore the contribution of NPQ would be maximum. Contrarily for npq1, the use of 700 

µmol photons m-2 s-1 (µE) proved more useful to exhibit clearer NPQ differences between 

HL acclimated and control plants, as this mutant showed higher contribution of slowly 

reversible qI component. This may also suggest that npq1 is unable to cope with HL 

intensities due to absence of zeaxanthin causing more photoinhibition, which ultimately 

affects the amplitude and kinetics of NPQ. This data also shows higher level NPQ during 

the second illumination, in wild type this increase can be attributed to the “light activation” 

and the formation of zeaxanthin during first illumination which is retained during the short 

dark period (Demmig-Adams, 1990), while in npq1 either the first factor or enhanced 

susceptibility to high light can be responsible as the contribution of qI also increases during 

the second illumination. 

An increase of 34% in NPQ levels was recorded using 700µE actinic light for 8 days HL-

acclimated npq1. While for wild type of similar HL acclimation, 40% increase in NPQ 

levels was observed using 2000µE actinic light. Increase in NPQ levels of wild type plants 

after HL acclimation can be attributed to physiological factors like increase in PsbS 

concentration and xanthophyll cycle pool. In case of HL acclimated npq1, the only apparent  
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A 

Plant Actinic Light NPQ 1st Illumination NPQ 2nd Illumination 

Wild type 100 µE 700 µE 1.973 ± 0.15 2.094 ± 0.17 

Wild type 500 µE 700 µE 2.207 ± 0.20 2.459 ± 0.22 

Wild type 100 µE 1000 µE 2.016 ± 0.17 2.217 ± 0.20 

Wild type 500 µE 1000 µE 2.476 ± 0.21 2.638 ± 0.25 

Wild type 100 µE 2000 µE 2.237 ± 0.15 2.259 ± 0.19 

Wild type 500 µE 2000 µE 2.849 ± 0.20 3.171 ± 0.16 

 

B 

Plant Actinic Light NPQ 1st Illumination NPQ 2nd Illumination 

npq1 100 µE 700 µE 0.515 ± 0.03 0.568 ± 0.05 

npq1 500 µE 700 µE 0.706 ± 0.07 0.762 ± 0.05 

npq1 100 µE 1000 µE 0.677 ± 0.05 0.871 ± 0.09 

npq1 500 µE 1000 µE 0.750 ± 0.07 1.075 ± 0.10 

npq1 100 µE 2000 µE 0.842 ± 0.06 1.028  ± 0.08 

npq1 500 µE 2000 µE 0.948 ± 0.08 1.210 ± 0.11 

 

Table 5.3 NPQ magnitudes of wild type (A) and npq1 (B) grown at 100µE (control) and 500µE 
(high light). NPQ was measured by the end of first 5 min illumination, followed by 5 min dark 
relaxation and then by the end of second 5 min illumination, using three actinic lights of 700, 1000 
and 2000 µE.  NPQ was calculated as (Fm-Fm')/Fm', where Fm is the maximum dark-adapted 
fluorescence and Fm' is the maximum fluorescence on application of a saturating pulse during 
actinic illumination. All data are mean  SE for at least three plants. 

 

physiological factor causative of NPQ enhancement can be increase in PsbS concentration, 

as zeaxanthin is missing in this case. This shows that NPQ can be enhanced due to increase 
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in PsbS, even in the absence of zeaxanthin. This further indicates that role of zeaxanthin in 

NPQ is unlikely to be direct but an indirect and regulatory one. The magnitude of NPQ 

increased with use of higher actinic light in both the plant types, as high light might be 

expected to induce higher ∆pH and/or extra xanthophyll cycle pool. However, use of high 

actinic light also resulted in the increase of slowly reversible photoinhibitory components 

of NPQ, which were more pronounced in npq1 mutant after HL acclimation. The increase 

in amount of xanthophyll cycle carotenoid violaxanthin in npq1 as a result of HL 

acclimation may explain this inhibitory effect on NPQ. Violaxanthin is an allosteric 

inhibitor (Ruban et al., 1996); hence this can explain why under higher actinic light 

intensities (1000 and 2000 µM) the NPQ is not that enhanced in npq1 as under lower 

actinic light of 700 µM.  

 

5.2.1.3.2 qE and qI components of NPQ 

As NPQ comprises of two major components, one rapidly relaxing qE component depends 

on ∆pH also involving PsbS and zeaxanthin, the other slowly relaxing qI component caused 

by photoinhibitory effect. The measurement of qE is therefore essential to depict any 

change in the PsbS levels. Rapidly reversible qE and slowly reversible qI components of 

NPQ were also measured for both wild type and npq1 at all the three actinic light 

intensities. 

Figure 5.2 shows the contribution of these two major components of NPQ during first and 

second illumination each for wild type ((A and B) and npq1 (C and D). The rapidly 

reversible qE of wild type plants has higher contribution in total NPQ, whereas as slowly 

reversible qI of npq1 forms major part of NPQ, particularly in control plants grown at lower 

light intensity (80 µE) and upon use of higher actinic light intensities. The data 

demonstrates that qE, the major component of NPQ, increased variably as a result of HL 

acclimation at all the three actinic light intensities used in both wild type and npq1, which 

can be attributed to the predominant factor of higher PsbS concentration for the increase in 

NPQ in case of both wild type and npq1. 
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Figure 5.2 Separation of qE and qI components of NPQ during first and second illumination each 
in wild type (A, B) and npq1 (C, D) grown at 100µE (control) and 500µE (high light). Plants were 
illuminated as described in Table 5.3, using three actinic lights of 700, 1000 and 2000 µE.  qE and 
qI were calculated as (Fm / Fm’) – (Fm / Fm”) and (Fm – Fm”) / Fm”, respectively. Fm, Fm' and 
Fm” are the maximum fluorescence values after dark-adaptation, during actinic illumination and 
after a period of dark relaxation, respectively. All data are mean  SE for at least three plants. All 
data are significantly different to respective controls (Student’s t-test p=0.05). 

 

In HL acclimated wild type plants, maximum of 51% increase in qE component was 

measured using actinic light of 2000 µE intensity, with only 6 % increase in slowly 

reversible qI component. The qE component also constituted 82% of the total NPQ in this 

case. Remarkably, in HL-acclimated npq1 an almost two times maximum increase (97%) in 

qE component was observed using actinic light intensity of 700 µE, which accounted for 

59% of the total NPQ. In contrast to wild type, here a decrease in qI component by 8% was 

measured in npq1 as a result of HL acclimation. Though the increase in qI component of 

HL acclimated npq1 with use of higher actinic lights was quite similar to that in wild type. 

The two fold rise in qE of zeaxanthin-lacking npq1 mutant can mainly be accredited to 

enhanced PsbS levels as a result of HL acclimation. Moreover, this enhancement in qE 

magnitude may also demonstrate that zeaxanthin cannot be a direct quencher in this 

component of NPQ and PsbS can modulate the conformational change in antenna 

complexes responsible for quenching without involving zeaxanthin. Similarly, the qE 

increase in HL-acclimated wild type can also be ascribed to enhanced PsbS levels, as no 

significant increase in de-epoxidation state was observed in the xanthophyll analysis. The 

increase in xanthophyll cycle pool may only be responsible to check the photoinhibitory 

effects as a result of HL exposure, in both wild type and npq1 which maintained their qI 

levels to almost same level as in their respective controls. Thereby, both NPQ and its major 

component rapidly reversible qE can be increased without involving zeaxanthin by 

enhancing the amount of PsbS as a result of HL acclimation in both wild type and npq1. 
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5.2.1.3.3 Chlorophyll fluorescence quenching traces 

For an in depth study to quantify the differences in NPQ as a result of HL acclimation, a 

detailed analysis of chlorophyll fluorescence formation and relaxation kinetics was carried 

out. The NPQ formation kinetics were obtained from dark-adapted plants during two 

successive light cycles of  5 minutes illumination, separated by a dark period of 5 minutes 

for qE relaxation. The effect of HL acclimation can be compared by the representative 

fluorescence traces for both wild type and npq1, as shown in Figure 5.3 A and B, 

respectively. In wild type, biphasic quenching was observed as first rapid zeaxanthin-

independent induction phase was followed by second slower zeaxanthin-dependent 

quenching phase. A higher light intensity of 2000µE was used in this case to obtain 

maximum NPQ differences. In case of npq1, quenching with one phase was monitored as 

only the first rapid zeaxanthin-independent component of qE was formed, due to lack of 

zeaxanthin in this mutant which is responsible for the second slower component. Lower 

actinic light intensity of 700µE was used for this mutant to enhance the qE component of 

NPQ, as there is higher contribution of slowly reversible qI component of NPQ in it as 

compared to wild type at similar actinic light. This comparative analysis of quenching 

shows that HL acclimation induces more quenching in both wild type and npq1. 
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Figure 5.3 Comparison of chlorophyll fluorescence traces of plants grown at 100µE (control) and 
500µE (high light) for both wild type (A) and npq1 (B). Dark adapted plants were subjected to two 
cycles of 5 minutes actinic illumination (2000 µE for wild type and 700 µE for npq1), each 
followed by 5 minutes of dark relaxation to allow recovery of the fast qE component of NPQ.  ↑ - 
actinic light on, ↓ - actinic light off, (refer also to figure 1.13). 
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5.2.1.3.4 NPQ formation and relaxation kinetics 

To measure rate of formation and relaxation of NPQ during the chlorophyll fluorescence 

quenching as shown in comparative traces in Figure 5.2, their respective half times were 

recorded from kinetics. For statistical fitting of NPQ formation and relaxation kinetics, 

Sigmoidal Hill 3 and Hyperbolic Decay 3 parameters (Sigmaplot, Systat Software Inc, 

USA) were used, respectively. The half times were measured as the time taken to reach 

50% of total NPQ during formation and relaxation.  

Figure 5.4 shows that in HL-acclimated wild type, the quenching was formed slower during 

the first illumination as compared to control, however the relaxation was faster. During first 

illumination, the kinetics can be limited by de-epoxidation of violaxanthin, and additional 

complications are brought in by the changes in the qP that result from the induction of 

carbon assimilation. These factors make it difficult to ascertain the effect of HL acclimation 

during the first cycle of NPQ formation and relaxation. Thereby, as a result of second 

illumination, both the presence of zeaxanthin and the “light activation” allow to achieve the 

maximum NPQ. As discussed earlier the higher levels of NPQ were obtained as a result of 

HL acclimation. Interestingly, the rate of NPQ formation as a result of HL acclimation was 

also faster than that of the control. On the other hand, the rate of NPQ relaxation was 

slower in the HL acclimated wild type plants. Zeaxanthin has been shown to increase the 

rate of formation and to slow down the relaxation rate, as discussed in Chapter 3. No 

differences in the final NPQ relaxation levels were observed between the HL-acclimated 

plants and control. 

Figure 5.5 shows similarly the NPQ formation and relaxation kinetics and half times for 

HL-acclimated npq1. It is significant as it may help to understand the effect of PsbS 

enhancement alone on these kinetics without any zeaxanthin contribution. As a result of 

xanthophyll cycle activity, zeaxanthin formation has already been demonstrated to 

accelerate formation kinetics and inhibit relaxation kinetics in the wild type plants. In the 

absence of violaxanthin de-epoxidation and hence zeaxanthin, the rate of formation was 

faster in both illuminations as a result of HL acclimation. The half time for relaxation as a 

result of HL acclimation was faster as fraction of a second, therefore hard to be measured in 
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Figure 5.4 Time course of NPQ for wild type (WT) plants grown at 100µE (control) and 500µE 
(high light). NPQ was calculated as (Fm-Fm')/Fm', where Fm is the maximum dark-adapted 
fluorescence and Fm' is the maximum fluorescence on application of a saturating pulse during 
actinic illumination. Plants were illuminated as described in Table 5.3. Half time (t ½) for formation 
and relaxation of NPQ in small graphs for each case. t ½ was calculated as the time taken for NPQ 
to reach 50% of total NPQ during formation and relaxation. 

A NPQ formation during 1st illumination; 

B NPQ relaxation during 1st dark period;  

C NPQ formation during 2nd illumination;  

D NPQ relaxation during 2nd dark period 
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Figure 5.5 Time course of NPQ for npq1 plants grown at 100µE (control) and 500µE (high light). 
NPQ was calculated as (Fm-Fm')/Fm', where Fm is the maximum dark-adapted fluorescence and 
Fm' is the maximum fluorescence on application of a saturating pulse during actinic illumination. 
Plants were illuminated as described in Table 5.3. Half time (t ½) for formation and relaxation of 
NPQ in small graphs for each case. t ½ was calculated as the time taken for NPQ to reach 50% of 
total NPQ during formation and relaxation. 

A NPQ formation during 1st illumination; 

B NPQ relaxation during 1st dark period; 

C NPQ formation during 2nd illumination;  

D NPQ relaxation during 2nd dark period 
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this case, as compared to ~ 1 second in control. The effect of PsbS on quenching has 

previously been reported by PsbS-less npq4 mutant, in which the absence of this protein 

slows down the quenching formation as well as its relaxation in the darkness, as compared 

to the wild type (Li et al., 2000). Similarly, another study involving PsbS over-expressor 

L17, which contains ~ 4 times the amount of this protein as the wild type, has shown 

greater extent of quenching induction in comparison to the wild type (Li et al., 2002c). 

However, the effect of PsbS protein on the NPQ relaxation was not clear from this study. 

The data shown in the Figure 5.4 may help to gain further understanding of the role of PsbS 

in the mechanism of NPQ and of the effects of enhancement in the levels of this protein as 

a result of HL acclimation. This role is independent of factors like violaxanthin de-

epoxidation and zeaxanthin, as this mutant lacks zeaxanthin formation by de-epoxidation. 

Apart from showing the effect of enhanced PsbS to increase the extent of NPQ without 

involving zeaxanthin, it also indicates towards a regulatory role of PsbS protein as it 

promotes both the rate of formation and relaxation of NPQ. This regulatory role of PsbS is 

not similar to that of zeaxanthin, which only promotes the rate of NPQ formation without 

increasing its extent, and inhibits the relaxation. This data does not support the direct 

involvement of PsbS as a quencher, since quenching would rely on the association of 

zeaxanthin-bound PsbS with the quenching complex. This data, however, indicates that 

PsbS may facilitate the rapid switching between quenched and unquenched conformations. 

 

5.2.2 Genetic Manipulation to increase NPQ levels 

The extent of NPQ has been demonstrated to be increased by enhancing the levels of PsbS 

protein, achieved by over-expression of nuclear gene psbS. The L17 overexpressor line, 

which has been found to possess ~ 4 times the amount of PsbS protein as the wild type, 

clearly demonstrates a much greater extent of quenching in comparison to the wild type leaf 

(Li et al., 2002c). The absence of this protein on the other hand severely reduces the extent 

of NPQ, as demonstrated in PsbS mutant npq4 (Li et al., 2000). As discussed earlier in this 

chapter, the mechanistic role of this protein in the quenching process is not clear, as it is 

considered to be involved directly in this process by acting as quencher or providing 
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quenching site by binding protons and zeaxanthin, thus the resultant PsbS-zeaxanthin 

complex de-excites the singlet excited chlorophyll by energy transfer (Ma et al., 2003; Holt 

et al., 2004). Alternatively, PsbS has also been proposed to act indirectly as modulator of 

the NPQ by controlling the conformational changes in antenna complexes, this model also 

suggests an indirect allosteric regulator role for zeaxanthin (Horton et al., 2005). 

The role of zeaxanthin is also not clear in quenching as it has also been considered as direct 

quencher or indirect regulator in NPQ, as mentioned above. The npq1 mutant defective in 

nuclear gene encoding violaxanthin de-epoxidase (VDE) is also available, which is unable 

to convert violaxanthin to zeaxanthin in excessive light (Niyogi et al., 1998). The over-

expression of PsbS in this zeaxanthin-lacking mutant can help to elucidate the molecular 

mechanism of NPQ with respect to the roles assigned to zeaxanthin and PsbS. The single 

recessive nuclear mutation of VDE gene npq1 results in absence of zeaxanthin in strong 

light and the partial inhibition of the quenching of singlet excited chlorophylls in the 

antenna complexes (Niyogi et al., 1998). This gene is located on chromosome 1 of 

Arabidopsis (Bugos and Yamamoto, 1996), at location 2,706,927-2,709,534. Arabidopsis 

has 5 pairs of homologous chromosomes, the chromosome 1 is the longest among all of 

them with 30,432,563 base pairs (bps) and 5,967 known protein-coding genes. The co-

dominant psbS gene is also located on chromosome 1 at location 16,874,136-16,875,823. 

The expression of PsbS protein has been enhanced four times above the wild type level, by 

transformation of wild type with the psbS genomic clone. A 3,198 bp clone fragment with 

the psbS gene under the control of its own promoter was subcloned in an Agrobacterium 

tumefaciens vector to transform Arabidopsis with single insertion. The resultant over-

expressor line L17 of PsbS has demonstrated a two fold increase in NPQ as compared to 

that of wild type (Li et al., 2002b,c).  

Though insertion of transgene is a random event, however genetic recombination of two 

genes present on the same chromosome is possible by crossing-over and the frequency of 

this event depends on the relative distance between the two genes. The longer distance 

between two linked genes increases the frequency of genetic recombination. The distance 

between npq1 and psbS transgenes on the chromosome 1 is needed to be long enough to 
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allow genetic recombination which can be possible considering the total length of this 

chromosome. Therefore it is likely to obtain a hybrid with both mutant npq1 and over-

expressor psbS genes, as a result of cross between npq1 and L17 parents. To obtain such a 

mutant deficient in zeaxanthin with over-expression of PsbS, a reciprocal cross was made 

between npq1 and L17 first parental lines (P1). However, the selection of npq1 as female 

line proved to be more successful and useful, as the crosses involving L17 as female line 

did not produce viable pods and hence seeds. With npq1 as female line, screening of the 

heterozygous hybrids in resultant first filial generation (F1) was also convenient as much 

higher NPQ was observed in all the heterozygous F1 as compared to npq1 homozygous 

plants. A ratio of 7 successful crosses out of total 11 was recorded, yielding heterozygous 

F1 generation. Four plants were emasculated for each of the genotype to be considered as 

female lines. Each female line with 3-4 emasculated flowers was cross-pollinated with 

pollens from opposite male line. Seeds from each attempted cross were germinated to 

obtain F1 generation, whereby the heterozygous F1 were screened by chlorophyll 

fluorescence quenching and pigment analysis. All the plants were grown under controlled 

conditions of 8h of 100µE light at 22oC alternating with a 16h dark period at 18oC. 

 

5.2.2.1 Screening and characterisation of F1 generation 

The chlorophyll fluorescence quenching was performed in dark adapted P1 and F1 plants 

(Figure 5.6), using two successive illumination cycles for P1, however only one 

illumination followed by dark relaxation was used for screening purpose in F1 and 

subsequent generations. The actinic light intensity of 700 µmol photons m-2 s-1 was selected 

in order to enhance the reversible qE component of NPQ and to minimize the slowly 

reversible qI component. For npq1, the quenching was formed in one rapid phase and did 

not relax fully due to higher contribution of qI in this mutant, as discussed earlier. The NPQ 

was measured as 0.58 ± 0.05, with ~ 60% of reversible qE in npq1 P1. The L17 over-

expressor line clearly showed a much greater extent of quenching in comparison to the  
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 Figure 5.6 Chlorophyll fluorescence traces of dark-adapted npq1 (A) and L17 (B) P1 plants, with 
resultant F1 heterozygous (C) plant. The leaves were subjected to actinic light of 700 µE intensity 
for two cycles of 5 minutes, each followed by 5 minutes of dark relaxation to allow recovery of the 
fast qE component of NPQ. For screening of F1 heterozygous plants, only one illumination cycle 
was used.  

 

npq1. The quenching was induced in typical biphasic way like wild type, with initial rapid 

zeaxanthin-independent component controlled by ∆pH and final slower zeaxanthin- 

dependent component influenced by de-epoxidation rate. The relaxation of quenching was 

also faster and to a much higher extent as compared to npq1. The NPQ was measured as 3.7 

± 0.1, with ~ 90% of reversible qE in L17 P1. For screening of F1 heterozygote, only first 

illumination was used and higher magnitudes NPQ of NPQ with biphasic formation 

kinetics were recorded which resembled to L17 P1. The average NPQ as a result of one 

illumination cycle was measured as 3.0 ± 0.5 with ~ 90% reversible qE. 

Leaf discs were collected from P1 and F1 plants to analyse their pigment composition by 

HPLC in both light-treated and dark-adapted conditions. The expected general differences 

were found between npq1 and L17 (Table 5.4), as reported previously (Niyogi et al., 1998; 

Li et al., 2002c). Both antheraxanthin and zeaxanthin were absent in npq1 due to inactivity 

of VDE. The light-induced de-epoxidation was also lacking in npq1, while in case of L17 it 

was measured as ~ 49%. Despite much higher NPQ levels measured in L17, there have 

been no significant differences in xanthophyll cycle pool and de-epoxidation state as 

compared to the wild type. In case of F1 heterozygotes, no significant differences were 

observed in xanthophyll composition and de-epoxidation state from those of L17 parental 

line. 
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Plant  Neo Lut  Vio Ant  Zea β-Car DEPs 

P1-npq1 

dark 

5.3 ± 0.3 18 ± 2 4.4 ± 1.1 0 0 12 ±1.8 0 

P1-npq1 

light 

5.7 ± 0.6 20 ± 1 5.3 ± 0.3 0 0 9.2 ± 0.6 0 

P1- L17 

dark 

5.9 ± 0.2 20.2 ± 1.6 6.0 ± 0.5 0.49 ± 0.1 0 12.9 ±0.4 3.8 ± 0.5 

P1- L17 

light 

5.5 ± 0.5 19.8 ± 0.5 2.4 ± 0.4 0.46 ± 0.1 2.33 ± 0.2 10.6 ± 0.5 49 ± 1 

F1-
heterozygote 
dark 

6.0 ± 0.2 22.6 ± 1 6.2 ± 0.5 0.6 ± 0.1 0 12.5 ± 1 4.4 ± 0.4 

F1-
heterozygote 
light 

6.1 ± 0.4 11 ± 1.5 2.2 ± 0.2 0.5 ± 0.2 2.4 ± 0.3 11 ± 1 52 ± 2 

 

Table 5.4. Pigment composition of npq1 and L17 parental lines and F1 heterozygous lines. Leaf 
discs were collected from plants either dark-adapted for 30 min or light-treated for 10 min at 1000 
µE. Data are normalized to 100 chlorophyll a + b molecules and are means ± SE from three 
replicates. Neo, Lut, Vio, Ant, Zea, β-Car and DEPs represent neoxanthin, lutein, violaxanthin, 
antheraxanthin, zeaxanthin, β-carotene and de-epoxidation state % [(zeaxanthin + 0.5 
antheraxanthin)/(violaxanthin + antheraxanthin + zeaxanthin)], respectively. 

 

5.2.2.1.1 Explanation of P1 genetic cross to yield F1 genetic make up 

As elaborated in the Figure 5.7, the parent line of npq1 possesses two copies of recessive 

npq1 mutant gene (denoted by “n”) along with two copies of psbS normal gene (denoted by 

“l”), both genes located on the same chromosome. The other parental line of L17 has two 

copies of dominant and normal NPQ1 gene for VDE (N) with two copies of co-dominant 

over-expressor psbS transgenes (L). Only one set of genes is transferred to the next 

generation through meiotic gametogenesis, therefore, a putative heterozygote in F1 can be 



172 

 

obtained with a gene combination of “nN lL” where “N” dominant gene will dominate over 

its recessive counterpart “n” gene to express itself, while “L” over-expressor gene will 

remain co-dominant with “l” gene to yield dosage effect. As a result of gene expression, the 

resultant F1 heterozygote would have normal activity of VDE and xanthophyll cycle and 

hence zeaxanthin concentrations similar to those of L17 parental line. The over-expression 

of one psbS gene and the other normal gene would result in intermediate PsbS protein 

concentrations, which are higher than npq1 but lower than L17. However, it is interesting 

finding that high NPQ levels were achieved in heterozygote quite similar to those of L17. 

The PsbS protein amount has been shown to directly correlate with the NPQ levels, a ~ 4 

times increase in PsbS protein level in L17 over-expressor as compared to wild type can 

almost double the level of NPQ (Li et al., 2002c). This increase in NPQ may appear to be 

smaller than anticipated, as we have measured similar NPQ levels in L17 and heterozygote 

despite the differences between their psbS gene expression. This may suggest that activity 

of this protein is limited by maximum capacity of plants for NPQ, or it may also be 

proposed that only a part of this protein is required for NPQ, while the rest of PsbS remains 

as inactive and excess for this process. 
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Figure 5.7 Diagrammatic explanation of genetic architecture of the Chromosome 1 of npq1 and 
L17 parental lines and F1 heterozygous F1 generation. Gene combination in gametes has also been 
shown for both P1 and F1 generations, with all possible gene combinations shown for F1 
gametogenesis, where “linked gene” combination in the absence of crossing-over and “recombinant 
gene” combination as a result of crossing-over.  

 

5.2.2.2 Screening and characterisation of F2 generation 

The F1 heterozygous generation was allowed to self pollinate to produce seeds, which were 

sown to obtain F2 generation. During the gametogenesis in F1 generation, the homologous 

pairs of chromosomes may exchange their genetic material in a process synapsis during 

prophase 1 of meiosis. The frequency of this crossing-over resulting in genetic 

recombination depends on the distance between two genes. As discussed earlier, both npq1 

and psbS has a long distance between them, so the frequency of genetic recombination 

would be high in this case. In the Figure 5.8, the F1 gametogenesis has been shown with all 

possible gene combinations, assuming both occurrence of crossing-over or otherwise.  
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Possible outcome of all the gene combinations which can be obtained in F2 generation has 

been shown diagrammatically in Figure 5.8, which involves all the possible gametes 

produced by F1 generation. Considering only crossed-over gene combinations, it can be 

predicted that genes will assort independently in F2 genes. In fact, the linked gene 

combinations cannot be ruled out in this case, as both the genes are located on the same 

chromosome. For F2 generation, a total of 120 plants were screened again using the 

combination of two methods, chlorophyll fluorescence quenching and xanthophyll analysis. 

As shown in Table 5.5, majority of plants showed phenotype like L17 with higher extent of 

NPQ (2.0-3.4) during one illumination cycle. These plants showed over 90% of reversible 

qE, similar to L17. Plants having slightly lower NPQ levels (1.3-2.0) with reversible qE ~ 

86% of total NPQ were considered as wild type like. There was no clear demarcation 

between these two groups, most probably due to dosage effect of psbS gene. Remarkably, 

there were no F2 plants in the NPQ range of 1.0-1.3, thus it creates a clear boundary line 

between all the plants demonstrating NPQ levels higher than 1.3 (L17-like and wild type-

like) and all those with NPQ lower than 1.0. The plants exhibiting NPQ levels lower than 

1.0 can again be divided into two sub groups, one with very low NPQ along with lowest 

reversible qE resembling the npq1 parent, and the other with substantially higher NPQ and 

more reversible qE than the npq1. Only 8 npq1-like plants were observed with NPQ 0.55-

0.65 and ~ 58% reversible qE. The other sub-group, which can be putative npq1L17 double 

mutants, consisted of 19 plants with NPQ 0.65-1.0 and reversible qE ~ 68%. There was 

also no distinction between these two sub-groups, again most likely because of the psbS 

dosage effect. The ratio among various F2 sub-groups does not strictly follow the one 

obtained as a result of Mendelian independent assortment which is unsurprising as 

statistical probability does not influence the event of crossing-over. Despite this, the ratio 

obtained here was exactly 8:3:2:1, which is not too deviated from the theoretical 9:3:3:1, 

considering a comparatively small sample population by statistical standards in this 

experiment.  

The putative npq1L17 double mutants from F2 generation were selected to obtain two pure 

homozygous lines in F3 generation by screening method of fluorescence quenching. 



175 

 

nnll NnLl Nnll nnLl

NnLl NNLL NNLl NnLL

Nnll NNLl NNll NnLl

nnLl NnLL NnLl nnLL

nl NL Nl nL

nl

NL

Nl

nL

F2

9 3 3 1: : :Mendelian independent assortment

F3

L17-like

Wild type-like

npq1-like

Putative npq1L17

Double mutants

Homozygous       Heterozygous

Homozygous pure line selction

 

 

Figure 5.8. Diagrammatic explanation of the possible outcome of gene combination in F2 
generation. The expected Mendelian independent assortment ratio among F2 genotypes with all 
possible gene combinations has also been presented. The putative npq1L17 double mutants were 
finally grown for F3 generation to select pure homozygous lines, with all homozygous plants.  
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F2 

phenotype 

Number 

of plants 

NPQ Reversible 

qE % 

L17-like 65 2.0-3.4 92.2 ± 0.2 

Wild type-

like 

28 1.3-2.0 86 ± 0.6 

Putative 

npq1L17 

double 

mutant 

19 0.65-1 68 ± 1.4 

npq1-like 8 0.55-0.65 58.2 ± 1.9 

 

Table 5.5 Characterisation of F2 generation by quenching phenotypes. NPQ was measured by the 
end of first 5 min illumination, followed by 5 min dark relaxation, using actinic light intensity of 
700 µE.  NPQ and qE were calculated as (Fm-Fm')/Fm' and (Fm / Fm’) – (Fm / Fm”), respectively. 
Fm, Fm' and Fm” are the maximum fluorescence values after dark-adaptation, during actinic 
illumination and after a period of dark relaxation, respectively. Reversible qE % was qE / NPQ x 
100. All data are mean  SE for the respective number of plants in each group. 

 

Availability of a sample population with a broad range of NPQ values with a concomitant 

variability in reversible qE % provided an opportunity to find a correlation between the 

values of these two measurements (Figure 5.9), which has not been established before. The 

extent of NPQ in this population has a range from lowest value of 0.55 to a maximum of 

3.4, measured at the end of 5 minutes illumination of dark adapted F2 plants. A 

concomitant increase in reversible qE % of total NPQ was also noticed which was 

measured at the end of 5 minutes long dark period following the illumination. A non-linear 

regression shows a correlation between NPQ and qE % of total NPQ which is rapidly 

reversible and is measured after 5 minutes of dark period following first illumination. It 

demonstrates that extent of qE increases with the increase in NPQ; moreover this increase 

in qE is also dependent on amount of zeaxanthin and PsbS just like NPQ. This correlation 

also shows that increase in NPQ in F2 generation is due to increase in rapidly reversible qE 

and not because of photoinhibition. 
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Figure 5.9 Correlation between NPQ and reversible qE % of total NPQ presented in the form of 
non-linear regression from sample population of F2 generation with NPQ ranging from a lower 
value of 0.55 to as high as 3.4 and qE % pool from ~ 50% to ~ 100%. 

  

The representative quenching traces of the F2 plants with average NPQ from each of the 

four sub-groups have been shown in Figure 5.10 for comparison. In all the plants with NPQ 

levels higher than 1.3, the typical biphasic quenching induction was observed with initial 

rapid zeaxanthin-independent phase followed by final slower zeaxanthin-dependent phase, 

quite similar to those of L17 and wild type. On the other hand, all those plants having lower 

than 1.0 NPQ magnitude, showed only single rapid zeaxanthin-independent phase during 

quenching formation, controlled by ∆pH. The extent of relaxation upon darkening is 

distinctly higher and faster in plants with higher NPQ (>1.3) than those with lower NPQ 

values (<1.0). It is difficult to ascertain any differences in the rate of relaxation between the 

sub-groups with variable PsbS amounts by these traces, however data in Table 5.5 shows  
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Figure 5.10 Representative chlorophyll fluorescence traces of F2 plants from four sub-groups, 
L17-like (A) and wild type-like (B) with biphasic formation kinetics, putative npq1L17 double 
mutant (C) and npq1-like (D) with single phase formation kinetics. The dark-adapted leaves were 
subjected to actinic light of 700 µE intensity for one cycle of 5 minutes, followed by 5 minutes of 
dark relaxation to allow recovery of the fast qE component of NPQ. The relaxation during dark 
period was more reversible in plants with higher NPQ. 
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F2 
phenotype 

Neo Lut  Vio Ant  Zea β-Car DEPs 

L17-like 

dark 

5.3 ± 1.1 18 ± 2.5 4.4 ± 1.1 0 0 12 ± 1.8 4.0 ± 0.5 

L17-like 

light 

5.7 ± 0.6 20 ± 1 5.3 ± 0.3 0 0 9.2 ± 0.6 50 ± 1 

WT-like 

dark 

5.3 ± 0.2 20.2 ± 
1.6 

6.0 ± 0.5 0.49 ± 
0.1 

0 12.9 ± 
0.4 

4.4 ± 0.4 

WT-like 

light 

5.1± 0.2 19.8 ± 
0.5 

2.4 ± 0.4 0.46 ± 
0.1 

2.33 ± 
0.2 

10.6 ± 
0.5 

52 ± 2 

Putative 
npq1L17  

dark 

6.1 ± 0.3 22.6 ± 
1.8 

6.3 ± 0.2 0 0 11.9 ± 
0.7 

0 

Putative 
npq1L17  

light 

5.0 ± 0.1 11 ± 1.5 5.3 ± 0.3 0 0 9.1 ± 0.1 0 

npq1-like 

dark 

5.7 ± 0.5 20 ± 2 6.8 ± 0.8 0 0 9.3 ± 0.5 0 

npq1-like 

dark 

4.7 ± 0.2 18.8 ± 
2.4  

5.1 ± 0.5 0 0 12.3 ± 
1.2 

0 

 

Table 5.6 Pigment composition of F2 generation for screening of plants lacking antheraxanthin and 
zeaxanthin. Leaf discs were collected from plants either dark-adapted for 30 min or light-treated for 
10 min at 1000 µE. Data are normalized to 100 chlorophyll a + b molecules and are means ± SE 
from all the plants available in each sub-group. Neo, Lut, Vio, Ant, Zea, β-Car and DEPs represent 
neoxanthin, lutein, violaxanthin, antheraxanthin, zeaxanthin, β-carotene and de-epoxidation state % 
[(zeaxanthin + 0.5 antheraxanthin)/(violaxanthin + antheraxanthin + zeaxanthin)], respectively. 
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higher extent of relaxation in PsbS over-expressors L17-like and putative double mutant, if 

compared to wild type-like and npq1-like plants, respectively. Another significant result 

from the average NPQ of each sub-group demonstrates that the proportional increase in 

NPQ as a result of PsbS over-expression was almost the same. A two fold increase in NPQ 

was measured in L17-like plants over the wild type-like plants, and similarly in putative 

npq1L17 double mutant over the npq1-like F2 plants.  

The F2 generation was also screened by measuring the xanthophyll composition. All those 

plants with NPQ levels lower than 1.0 and monophasic quenching formation were expected 

to be devoid of both antheraxanthin and zeaxanthin due to npq1 mutant gene, and all the 

plants with higher NPQ (>1.3) and biphasic quenching induction were anticipated to 

possess xanthophyll cycle pigments along with light-induced de-epoxidation. Leaf discs 

were collected from all the F2 plants to analyse their pigment composition by HPLC in 

both light-treated and dark-adapted conditions. The data shown in Table 5.6 shows the 

results confirming above mentioned statements, as both L17-like and wild type-like plants 

showed almost similar de-epoxidation states along with xanthophyll cycle pool, while 

putative npq1L17 double mutant and npq1-like plants demonstrated inactivity of VDE to 

yield antheraxanthin and zeaxanthin and lacking of de-epoxidation, similar to npq1 mutant. 

 

5.2.2.2.1 Spectral analysis of F2 generation 

The role of PsbS has been suggested to induce a conformational change in antenna 

complexes which changes the configuration of bound pigments to result in quenching of 

chlorophyll excitation possibly via chlorophyll-xanthophyll interaction, as discussed in 

Chapter III in detail. Therefore, the effect of over-expressed PsbS would be predicted to 

result in more pronounced conformational changes. These conformational changes 

associated with NPQ can be monitored by accompanying absorption change in the range of 

520-540 (Ruban et al., 1993; Bilger and Björkman, 1990). This absorbance change consists 

of a 535 nm band, which has been related to a change in properties of zeaxanthin (Ruban et 

al., 2002). A blue shift in this 535 nm band towards 520 nm in the absence of zeaxanthin 

suggests that it may arise from other xanthophylls (Noctor et al., 1993). The effect of PsbS 
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on conformational change has also been demonstrated by a study involving npq4 mutant 

lacking ∆A535 (Li et al., 2000), however a recent work has shown that ∆A535 is only very 

slow to form and not completely abolished in this mutant (Johnson and Ruban, 2009). 

Figure 5.11 shows the light minus recovery absorption spectra for all the four sub-groups of 

F2 generation, which were recorded in the Soret region (410-565 nm). These spectra also 

provide information about pigment changes as a result of conformational changes, as 

discussed in detail in Chapter III. In both L17-like and wild type-like plants (Figure 5.11 

A), the presence of de-epoxidation and hence zeaxanthin resulted in a light-minus recovery 

difference spectrum with the maximum absorption in 535 nm band. The other two sub-

groups with lower NPQ values (< 1.0) showed maximum absorption at 525 nm (Figure 

5.11 B), which is blue shifted in comparison to spectra of sub-groups with higher NPQ (> 

1.3). The reason for this blue shift is absence of zeaxanthin, as mentioned earlier. In 

addition to this blue shift, the amplitude of the absorption spectra was also reduced in the 

absence of zeaxanthin, which is consistent with the lower extent of NPQ in plants lacking 

zeaxanthin. This demonstrates the ability of zeaxanthin to enhance the conformational 

changes associated with qE in the antenna. The figure also shows the effect of enhanced 

PsbS on maximum absorption at both 535 and 525 nm, as this protein can increase the 

absorption in each case by almost similar proportion. The three negative bands were present 

in all the spectra at 495, 468, and 438 nm; however the amplitude of these bands was 

smaller in plants with lower NPQ values, consistent with the correlation between 

absorption changes and the NPQ. This data suggests that the qE-related conformational 

change can be induced by PsbS independent of zeaxanthin. 
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Figure 5.11 Light minus recovery absorption difference spectra of leaves from F2 generation, L17-
like and wild type-like (A), putative double mutant npq1L17 and npq1-like (B). The spectra were 
recorded using the Aminco DW2000 spectrophotometer with actinic light intensity 700 µE. Each 
spectrum is the average of at least 3 separate measurements. 

A 

B 
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In Figure 5.12, the kinetics of absorbance change during light and dark periods have been 

shown, in a similar way as chlorophyll fluorescence quenching was measured earlier. The 

dark-adapted leaves were subjected to actinic light of 700 µE intensity, followed by dark 

period. The absorbance was measured at 535 nm for the representatives of all the four sub-

groups of F2 plants, L17-like and wild type-like (Figure 5.12 A), putative double mutant 

npq1L17 and npq1-like (Figure 5.12 B). The absorbance change increased upon 

illumination and relaxed during the dark period in all cases. The amplitude of absorbance 

change shows that PsbS over-expression increases the extent of absorbance, and hence the 

conformational change in antenna complexes. The kinetics of the 535 nm absorbance 

change also reflects the differences in NPQ kinetics observed earlier. In plants with de-

epoxidation (L17-like and wild type-like), the kinetics of 535 absorbance changes are faster 

to form and slower to relax during the second cycle as compared to the first one because of 

more zeaxanthin presence in the former cycle. While in case of plants lacking de-

epoxidation (npq1L17 and npq1-like), the differences in kinetics of first and second cycle 

were not as pronounced as in plants with active de-epoxidation. The effect of PsbS was also 

apparent in these 535 nm kinetics, as the over-expression of this protein seemed to 

accelerate both the formation and relaxation rates.        

The absorbance measurements revealed that the ∆A535, showing the extent of qE-related 

conformational change, was enhanced by over-expression of PsbS, both in the presence and 

absence of zeaxanthin. These results provide support for the NPQ model involving PsbS as 

modulator of conformational change resulting in quenching and zeaxanthin as allosteric 

regulator of the process.  
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Figure 5.12 Kinetics of light-induced absorption changes in leaves of F2 generation, L17-like, wild 
type-like (A), putative double mutant npq1L17 and npq1-like plants (B). Spectra were recorded 
using the Aminco DW2000 spectrophotometer with actinic light intensity 700 µE. The absorption 
change A565 minus A535 nm was used for L17-like and wild type-like plants, while absorption 
change A565 minus A535 nm was used for putative double mutant npq1L17 and npq1-like plants. ↑ 
- actinic light on, ↓ - actinic light off. 

 

A 

B 



185 

 

5.2.2.2.2 Measurement of PsbS over-expression by western blots 

For the confirmation of PsbS over-expression among F2 generation, the western blots were 

performed using an anti-PsbS primary antibody specific for Arabidopsis. Unstacked 

thylakoids were prepared from all the four sub-groups of F2 plants along with npq4, L17 

and wild type plants as control. Figure 5.13 shows a typical blot where PsbS band of 22 

kDa is identified by the help of marker and is confirmed by the absence of this band in 

PsbS-less npq4 mutant. The band appears to be noticeably denser in case of L17-like and 

putative double mutant npq1L17 as compared to wild type-like and npq1-like plants. This 

difference is also comparable to one observed between the L17 and wild type used as 

controls.

 

npq4-C             L17-C           L17-like          putative      putative WT-like            npq1-like 

npq1L17     npq1L17

F2 generation

 

 Figure 5.13. Western blot probed with anti-PsbS antibody for F2 generation L17-like, putative 
double mutant npq1L17, wild type (WT)-like, and npq1-like plants. L17 and npq4 were used as 
controls, denoted by “-C”. Unstacked thylakoids (1µg chl/lane) were run on a 15% SDS PAGE gel 
and probed with anti-PsbS primary antibody.  

 

5.3 Discussion 

The aim of the work presented in this chapter was characterisation of the role of zeaxanthin 

and PsbS in the mechanism of NPQ by dissecting their mutual interaction. This aim was 

achieved through enhancement of PsbS in the absence of zeaxanthin in the plant 

Arabidopsis thaliana. The work was analysed mainly by chlorophyll fluorescence and 

absorption spectroscopy. The observations presented in this work clearly demonstrate that 

an increase in the PsbS contents can enhance NPQ independent of zeaxanthin. This shows 
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that xanthophyll cycle activity is not an absolute requirement for quenching process, and 

hence cannot play a direct role in the initial rapid component of NPQ formation controlled 

by ∆pH. Rather, the data lends support to the view that zeaxanthin acts as an indirect 

regulator of the process, as it enhances the rate of NPQ formation during illumination, 

inhibits the rate of relaxation in dark and enhances the extent of the qE-related 

conformational changes. This work also suggests that PsbS, on the other hand, plays a key 

role as a kinetic modulator of the NPQ, as it not only increases the extent of NPQ but also 

seems to accelerate both the formation and relaxation of NPQ, in conformity with the 

earlier finding (Crouchman et al., 2006). The PsbS has also been suggested to affect the 

macro-organisation of the thylakoid membranes, as its absence induces more rigidity and 

less flexibility (Kiss et al., 2008). A quite recent study has also shown that NPQ is not 

abolished in the absence of PsbS, it is formed on a much slower timescale, however can 

reach to the same extent as in the wild type. Moreover this slowly NPQ formation is ∆pH 

sensitive and only partially zeaxanthin-dependent similar to that in wild type and relaxes in 

the dark (Johnson and Ruban, 2009). 

The activity of PsbS involves binding of protons and/or zeaxanthin, however the 

mechanistic role of this protein is not well known. This protein has shown to affect the 

extent and rate of NPQ kinetics, as the over-expression of its gene has shown two-fold 

increase in NPQ extent (Li et al., 2002c) which is quicker to form and relax, as discussed 

earlier. The enhancement of PsbS amount as a result of HL exposure (Demmig-Adams et 

al., 2006) can also elevate the NPQ. On the basis of these findings, this protein has been 

proposed to play a direct role as quenching site, by binding of protons and zeaxanthin. 

Contrarily, the indirect role of PsbS presents it as inducer of the conformational change in 

antenna complexes leading to quenching (Horton et al., 2000), acting as sensor of pH by 

means of its proton-binding sites (Li et al., 2004). In this work, the enhancement in NPQ 

levels along with qE components was also achieved by HL acclimation both in the presence 

and absence of zeaxanthin. As mentioned above, this enhancement is believed to be a result 

of elevated PsbS levels as a result of HL exposure. The enhanced PsbS thus not only 

increases the extent of NPQ and its rapidly reversible qE component, but also induces faster 

rates of induction and relaxation. This enhancement of NPQ cannot be explained by 
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differences in the xanthophyll cycle pool and de-epoxidation state. It was also observed that 

PsbS enhancement as a result of HL acclimation decreased the extent of slowly reversible 

qI component part of which is photoinhibitory in nature, again independent of zeaxanthin. 

This may suggest that protection from photoinhibition is accorded by the larger NPQ in the 

presence of enhanced PsbS (Li et al., 2002). 

The enhancement of PsbS was also made possible through genetic manipulation, obtaining 

a genetic combination of mutant npq1 and over-expressor psbS genes. This double mutant, 

lacking zeaxanthin and possessing enhanced PsbS, showed an almost similar two-fold 

increase in the extent of NPQ, as compared to npq1 mutant. Thus the similar proportional 

increase in the extent of NPQ both in the presence and absence of zeaxanthin cannot be 

credited to violaxanthin de-epoxidation yielding the zeaxanthin. The results obtained in this 

work demonstrate in a more natural system that activity of PsbS is not reliant on zeaxanthin 

to induce quenching, as it can enhance NPQ equally in the presence and absence of 

zeaxanthin. This finding contradicts a direct role of zeaxanthin-bound PsbS in NPQ, as 

proposed by Holt et al., 2005.  

The activity of PsbS also differs from that of zeaxanthin in two ways,  

(a) Firstly, the extent of NPQ can be elevated by PsbS enhancement (L17) while 

increase in zeaxanthin content does not increase the NPQ level (npq2) and rather it 

results in its decrease due to pre-quenching of Fm level, as discussed in Chapter III. 

(b) Secondly, PsbS enhancement induces NPQ formation and relaxation at faster rate, 

while zeaxanthin increase only enhances the rate of formation and relaxation is 

inhibited by its increase. 

The data presented in this chapter cannot explain a model involving PsbS-bound zeaxanthin 

as direct quencher of chlorophyll excited state. Both PsbS and zeaxanthin affect the extent 

and kinetics of NPQ, however their role in this respect is likely to be indirect and 

regulatory. However the allosteric model for NPQ readily explains the results presented in 

this chapter. This model suggests quenching as an intrinsic of the antenna protein 

complexes, where zeaxanthin acts as allosteric regulator and PsbS as modulator of this 
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process. Protonation of PsbS and/or antenna complexes triggers the conformational change 

in the antenna. Here PsbS can play its role independent of zeaxanthin, by inducing the 

conformational change leading to quenching. However, zeaxanthin can regulate this event 

by lowering the pH requirement for it (Ruban et al., 1996). Binding of zeaxanthin by PsbS 

and/or PsbS antenna complex maintains this conformational change and hence the 

quenched state. The mechanistic role of PsbS protein appears to be as an effective switch 

between the unquenched and quenched states of the plant thylakoid membrane, by 

controlling the dynamics of the macro-organisation of the PSII membranes. The role of 

zeaxanthin in this switch is to enhance ∆pH sensitivity of NPQ and thus its extent and rate.   
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The success and survival of life on earth has been made possible by virtue of oxygenic 

photosynthesis, and this vital biological phenomenon pedestals on the efficient light 

harvesting mechanism. The light harvesting antenna is an assembly of pigments and 

proteins which collects the light energy quanta and transfers it for charge separation and 

water splitting to the reaction centre. The pigments of antenna are involved in interception 

and transfer of light energy while the proteins optimise and tune these functions. The role 

of antenna is dynamic and crucial for light regulation under both low and high light 

conditions. In case of low light, the antenna increases the excitation rate of the reaction 

centre to match its turnover rate, for an efficient energy conversion. In high light 

conditions, the same antenna undergoes a conformational change to channel the excessive 

and potentially harmful energy into heat dissipation, a process commonly measured and 

referred to as nonphotochemical quenching. Thereby, the antenna acts like a dynamic 

switch between photosynthetic and photoprotective states.   

The scope of this project was to determine the molecular factors controlling the 

photoprotective capacity of thylakoid membranes in higher plants. The light harvesting 

antenna binds about 70% of the photosynthetic pigment molecules, chlorophylls and 

xanthophylls. The process of light harvesting is mainly performed by chlorophylls, in 

which a chlorophyll molecule in ground state absorbs light energy to form singlet-excited 

chlorophyll, the de-excitation of this excited chlorophyll occurs by the release of absorbed 

light energy in various ways. In photosynthetic state, the excitation energy of chlorophyll 

molecule is transferred to another acceptor molecule in the electron transport chain. The 

excess of light energy and chlorophyll over-excitation results in production of triplet-

excited chlorophyll by intersystem crossing which can interact with molecular oxygen to 

generate singlet oxygen, a lethal species for photosynthetic apparatus. This necessitates a 

need for photoprotective state which enables plants to avoid this oxidative damage by a 

suite of measures; among these the heat dissipation by means of nonphotochemical 

chlorophyll fluorescence quenching (NPQ), is believed to be the most significant one. The 

NPQ is kinetically heterogeneous process which is induced under high light by low 

thylakoid lumen pH. 
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The xanthophylls are accessory photosynthetic pigments which are implicated in 

complementing light absorption, photoprotection and structural stability of antenna. By the 

help of xanthophyll mutants, this study demonstrated the role of xanthophylls in 

accomplishing all these three assigned functions. However the main focus here was the 

elucidation of photoprotective role of xanthophylls in higher plants, which is considered as 

their essential function. The xanthophylls are considered to limit the destructive reactions 

of singlet reactive oxygen species either by direct quenching of excitation in antenna or 

indirectly by eliminating the triplet chlorophyll states. The light harvesting antenna 

possesses four types of xanthophylls: lutein, neoxanthin, violaxanthin and zeaxanthin. 

These xanthophylls are oxygen-containing carotenoids with two terminal hydrophilic cyclic 

groups joined together by hydrophobic long carbon chain (Figure 6.1), possession of both 

  

 

Figure 6.1 Chemical structures of the four xanthophylls, each showing two terminal hydrophilic 
cyclic groups joined together by hydrophobic carbon chain with conjugated carbon double bonds.  
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hydrophilic and hydrophobic characteristics makes them similar to detergents and 

quinones. The photosynthetic xanthophylls vary in their photophysical properties as a result 

of variations in their symmetry, hydrophobicity, number of oxygen atoms and number of 

conjugated double bonds which affects their delocalised excited state π-electron energy.  

Both zeaxanthin and lutein have been implicated as direct quenchers of chlorophyll 

excitation in antenna, using ultrafast transient absorption spectroscopic studies (Holt et al., 

2005; Ruban et al., 2007). These two xanthophylls are isomers of each other and are more 

hydrophobic and less oxygenated as compared to the other two photosynthetic 

xanthophylls, neoxanthin and violaxanthin. The light harvesting antenna is made up of 

major trimeric and three minor monomeric pigment binding protein complexes. Lutein, the 

most abundant xanthophyll pigment of higher plants, occupies exclusively the central L1 

binding site of all the antenna complexes. The other central L2 binding site is occupied by 

lutein in major antenna complexes and by violaxanthin in some of the minor complexes 

(CP29). The remaining two xanthophylls neoxanthin and violaxanthin bind to N1 and 

peripheral V1 sites, respectively, in major and most of minor antenna complexes. 

Violaxanthin loosely bound to peripheral site is reversibly replaced by zeaxanthin in the 

light by xanthophyll cycle activity; however this replacement has not been demonstrated in 

vivo at internal L2 site of the minor antenna, the suggested site of zeaxanthin cation 

quenching.  The retention of a variety of xanthophylls in light harvesting antenna during 

evolution points towards their indispensable functional and structural role. It is also 

interesting to mention here that both lutein and zeaxanthin, which are considered to play a 

central role in photoprotection in plants, are also present in retinal macula of eye 

performing there a similar function of filtering the high energy wavelengths of visible light 

and acting as antioxidants (reviewed in Roberts et al., 2009).   

Two mechanisms have been proposed for the quenching of excited chlorophyll in plants. 

One mechanism suggests quenching as intrinsic property of antenna complexes and lutein 

at L1 site has been demonstrated in major antenna complexes as quencher of chlorophyll 

excitation energy (Ruban et al., 2007). This mechanism suggests zeaxanthin at peripheral 

binding site V1 as allosteric regulator of the quenching process. The other mechanism 
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proposes zeaxanthin at L2 site of minor complexes as the direct quencher of excited 

chlorophyll through charge transfer. Transient zeaxanthin radical cation formation has been 

demonstrated as evidence in the minor antenna complexes in the reconstituted forms (Holt 

et al., 2005).  

In this work, NPQ formation and relaxation kinetics have been studied in the plant types 

with different xanthophyll composition. From the data it can be inferred that xanthophyll 

composition affects both the amplitude and kinetics of NPQ, as the absence of any of the 

constituent xanthophylls decreases the NPQ amplitude along with influencing the kinetics. 

However, no single xanthophyll has been found as obligatory for this process as quenching 

occurs variably in all the cases. The NPQ formation kinetics consists of an initial rapid 

zeaxanthin-independent and a second slower zeaxanthin-dependent phase. The zeaxanthin-

less mutants show only initial phase, those without lutein exhibit only a second one and 

those lacking both zeaxanthin and lutein are lacking any rapidly reversible NPQ. This may 

indicate that NPQ comprises of two discrete mechanisms involving lutein and zeaxanthin as 

quenchers at two different sites of major and minor antenna complexes, respectively. This 

must also be reflected in the NPQ relaxation kinetics; however observation of a single 

component here does not support the assumption of two quenching mechanisms. Moreover, 

the relaxation kinetics is expected to be influenced by a regulator and not the quencher, and 

the data in this study suggests zeaxanthin as allosteric regulator of the process. The 

zeaxanthin–independent quenching is also usually proposed to occur by a different 

mechanism, for example by transient reaction–centre quenching caused by inactivation of 

PSII electron transport (Finazzi et al., 2004). This work suggests role of xanthophylls in 

both steady state and transient quenching, both regulated by the same mechanism involving 

the same conformational changes in LHCII bound pigments.  

In addition, the results presented here also suggest that zeaxanthin concentration does not 

regulate the state of antenna. It is rather de-epoxidation state, the relative proportion of 

zeaxanthin to violaxanthin, which influences the amplitude of NPQ. The constitutive 

presence of zeaxanthin though accelerates the NPQ formation; nevertheless it results in 

decrease in NPQ amplitude due in part to quenching of Fm and also slows down the 
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relaxation kinetics. It is also interesting that relative proportion of zeaxanthin to 

violaxanthin cannot enhance the photoprotective capacity beyond wild type level, as 

studied in one of the over-expressors of xanthophylls sChyB plants (Johnson et al., 2007). 

The saturation of NPQ here can be explained by the limitation of PsbS concentration. 

Therefore, the de-epoxidation state by means of xanthophyll cycle activity seems to 

allosterically regulate the conformational state of the LHCII antenna system. Zeaxanthin 

enhances the conformational change in antenna by promoting the sensitivity to the pH, 

while violaxanthin allosterically inhibits this change by making LHCII more resistant to 

pH. It has also been demonstrated in an in vitro quenching study that exogenous zeaxanthin 

promotes both the rate and amplitude of pH induced quenching in isolated antenna 

complexes, while violaxanthin had an opposite effect (Ruban et al., 1996). This stark 

difference in the activity of these two xanthophylls, which can replace and substitute one 

another at the same binding site by xanthophyll cycle activity, can be attributed to the 

differences in their polarities and head group orientations which also influences their 

binding ability (Horton et al., 1999). More hydrophobic zeaxanthin is considered to form 

stronger interactions with LHCII and had been shown to offer more resistance to extraction 

by detergent (Ruban et al., 1999).   

The differences between the NPQ formation kinetics of dark-adapted and pre-illuminated 

leaf samples can be understood by the differences in the de-epoxidation states. In the dark 

adapted samples, NPQ formation kinetics is shown as biphasic with initial fast pH 

dependent phase followed by slower zeaxanthin dependent phase as violaxanthin is slowly 

de-epoxidised to yield zeaxanthin. Contrarily, NPQ formation is rapid and monophasic 

during the subsequent illumination because of zeaxanthin presence and light activation in 

the previous illumination event. Even a relatively low de-epoxidation state of 10-20% 

suffices to significantly enhance the rate of NPQ formation kinetics. This can be explained 

by the organisation of antenna complexes acting closely and co-operatively, thus 

conformational change in one complex may lead to lowering of the activation energy 

barrier for a similar change in the adjacent counterparts. This may lead to a rapid sequential 

allosteric transition at rather lower de-epoxidation states. High light acclimation results in 

reduction of antenna size, thus co-operativity in a small system would likely be enhanced 
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resulting in further increase in the extent and rate of NPQ. Similarly, the impact of 

aggregation may also enhance the interaction among these complexes to promote the 

quenching signal in antenna. 

Retention of zeaxanthin and light-activated NPQ capacity also has physiological 

significance. During intermittent high light exposures which are common in nature due to 

sun flecks and shading by canopy, plants can dissipate excess absorbed energy instantly and 

efficiently while maintaining their photosynthetic activity simultaneously. Moreover, this 

may also act as molecular memory to keep the track of average light conditions in a 

particular time period. Thus the amplitude and rate of NPQ can be tuned accordingly to 

match the light conditions without interfering with the linear electron transport and ATP 

synthesis. Zeaxanthin thus seems to promote interaction between antenna complexes which 

leads to the quenched conformation, and NPQ is a result of a co-operative progressive 

event (Horton et al., 2008).   

A photoprotective system solely reliant on xanthophylls would have its own disadvantages 

as the slower kinetics of NPQ formation and relaxation cannot be favourable for efficient 

photoprotection and effective photosynthesis respectively. Slower NPQ formation can yield 

into photodamage to the photosynthetic machinery by means of reactive oxygen species, 

whilst slower NPQ relaxation can hamper photosynthetic activity and cumulative effect of 

both of these events can ultimately be in the form of lower crop productivity. It is suggested 

that this disadvantage was overcome by the evolution of PsbS protein in the higher plants. 

This hydrophobic protein can reversibly bind with either the PSII core or LHCII antenna, 

which demonstrates its mobile nature in the thylakoid membranes. The evolutionary 

advantage of this dynamic protein seems to be associated with facilitating the swift 

transitions between quenched and unquenched states of the antenna. NPQ is not completely 

abolished in the absence of PsbS; rather it is formed and relaxed over a much longer period 

of time (Johnson and Ruban, 2009). Presence of this protein also does not seem to limit the 

photosynthetic activity albeit provides efficient and rapid photoprotection. PsbS is 

suggested to act like a biological catalyst by lowering the activation energy of the 

conformational change, as it stimulates the rate of NPQ formation as well as relaxation. 
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This helps to achieve optimum responsiveness in the light harvesting system towards the 

fluctuating light exposure without bringing large changes in the xanthophyll pool size.  

Like other biological regulatory processes, NPQ is optimised to meet the conflicting 

demands of environment and development. Both the magnitude and rate of NPQ need to be 

at optimum levels, so that none of light harvesting and light dissipation modes are 

jeopardised. This balancing approach explains why plants do not maintain a large 

xanthophyll cycle pool under the light limiting conditions. A larger xanthophyll cycle pool 

can make system less responsive by slowing down the transitions between the above 

mentioned modes (from protective to efficient). The reason for maintaining the xanthophyll 

cycle is essentially to use light in an efficient way in photosynthesis, which is vital to plant 

fitness in the field conditions (Kulheim et al., 2002). The constitutive presence of 

zeaxanthin can significantly limit the efficient usage of light in low or fluctuating light by 

maintaining a perpetual heat dissipation mode (Niyogi et al., 1998; Kalituho et al., 2007).                       

Observation of zeaxanthin formation during high light exposure indeed revealed a strong 

correlation between zeaxanthin and NPQ, which led to the suggestion of its role as 

quencher in the process. This mechanism also suggests minor complexes as site of 

quenching which link the light harvesting major complexes with reaction centre; this 

ideally presents a division of labour among these complexes. Thus light is harvested mainly 

by major complexes and transferred through linking minor complexes into reaction centre; 

and in case of excess light the latter complexes become the quenching site. However, it is 

also interesting to mention here that photoprotection can be considered to be the intrinsic 

property of all the light harvesting complexes as each of them exhibits quenching in vitro. It 

is photoprotection which should be considered to be the “original” function of these 

complexes instead of light harvesting, as the presumed ancestors to all these protein 

complexes, the cyanobacterial one-helix proteins, were meant for photoprotection and/or 

pigment metabolism. The light harvesting antenna function could have evolved later, which 

then led to the diversification of the complexes (Jansson, 2005). The universal binding of 

conserved lutein at L1 site of all the complexes could indicate a strong correlation with the 

original photoprotective function. The control of this photoprotective process necessitated 
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the evolution of an indicative and regulatory event of xanthophyll conversions in the form 

of xanthophyll cycle.  

The binding of different xanthophylls at L2 site can also be presented as indicator of 

division of labour among the antenna complexes, as lutein of major complexes is replaced 

by violaxanthin in minor complexes at this particular site. The violaxanthin has been known 

to play an inhibitory role for quenching process and its conversion into zeaxanthin under 

high light stimulates the photoprotective quenching of chlorophyll excitation. It has been 

clearly demonstrated here in this work by xanthophyll pigment analysis of light and dark 

states that this conversion is not fully accomplished in wild type and a significant pool of 

violaxanthin (40-50%) persists after light exposure, this suggests that VDE enzyme 

responsible for this conversion can only bring about partial de-epoxidation, most probably 

by accessing the peripheral pool of violaxanthin. The replacement of violaxanthin by 

zeaxanthin at internal L2 binding site has only been demonstrated in reconstitution studies 

and not in vivo. Nevertheless the results obtained in this work with mutants binding 

zeaxanthin at L2 site clearly show that presence of extra zeaxanthin does not impart any 

additional photoprotective capacity, rather it impairs the “original” photoprotective role of 

these complexes.  

The antenna complexes have evolved an efficient light harvesting function along with their 

conserved original photoprotective role. The variety among these complexes might have 

developed to build up a dynamic structure and macro-organisation of photosystem II, which 

is considered to play a regulatory role between the two afore mentioned functions. Thereby 

all the interacting antenna complexes act as a domain to switch from one function to the 

other. The alteration of antenna composition by genetic manipulation has demonstrated that 

exclusion of certain minor complexes like CP29 and CP24 disturbs the organisation of the 

LHCII-PSII super-complexes in the grana membrane (Horton et al., 2008).  This structural 

anomaly also perturbs the amplitude and kinetics of NPQ. However, the antenna 

composition and organisation also seems to be robust and dynamic in nature as absence of 

other major and minor complexes does not significantly change the macrostructure and 

hence the NPQ remains more or less unaffected. There is also evidence for the involvement 
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of PsbS in the macro-organisation of the antenna as the LHCII-PSII association during 

restacking of thylakoid has been correlated to the PsbS level (Kiss et al., 2007). This 

suggests that PsbS is likely to have a dynamic role in NPQ by priming the LHCII antenna 

for conformational change into the quenched state.  

The intrinsic conformational change in the major and minor antenna complexes leading to 

the formation of a highly quenched state has been demonstrated in vitro, which provides a 

molecular basis for link between conformational change and quenching event. Although 

this event is accompanied by the protein aggregation, quenching itself originates from 

within each complex as a result of pigment interactions (Pascal et al., 2005; Ilioaia et al., 

2008). The excess of light energy prompts the conformational change in the light harvesting 

antenna leading to a decrease in the amount of excitation energy delivered to the reaction 

centre. A new energy dissipative pathway is created in the antenna to achieve this down 

regulation, which competes with the transfer of energy for photosynthetic activity. The 

conformational change is induced by acidification of LHCII amino acid residues, as a result 

of the establishment of the transmembrane proton gradient under excess of light conditions. 

This also promotes interactions among the complexes leading to aggregate formation, as 

demonstrated by aggregation of isolated complexes which results in lower fluorescence and 

shorter excited state lifetime as compared to those in trimeric or monomeric forms (Ruban 

and Horton, 1992; Mullineaux et al., 1992).  

Further evidence in this regard has been provided by a pump-probe femtosecond transient 

absorption spectroscopic study probing the possible molecular cause of the decrease in the 

excited state lifetime. This has also showed a similar conformational change in LHCII in 

vivo upon formation of NPQ (Ruban et al., 2007). The change in conformation is however 

monitored indirectly by twisting of neoxanthin molecule detected by resonance Raman 

spectroscopy. This conformational change is suggested to facilitate the energy transfer from 

chlorophyll a to one of the low lying xanthophyll excited states absorbing in 490-495 nm 

region. The absorption of lutein 1 within same region implies this xanthophyll to be the 

most likely quencher of the chlorophyll excitation. This is made possible by distortion in 

the lutein 1 molecule in such a way that it comes close enough to the three chlorophyll a 
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molecules, Chl a610, a611 and a612 (Figure 6.2), of terminal emitter domain to quench the 

excitation energy. The excitation energy is transferred from the chlorophyll Qy band to the 

S1 state of the Lutein 1, whereby it is ultimately dissipated as heat via decay to the ground 

state. A similar distortion in Lutein 1 domain has also been reported in the crystals of 

LHCII upon dehydration, and this event is also accompanied by a red shift in the 

chlorophyll emission maxima from 680 nm to 700 nm (Yan et al., 2007). The conservation 

of Lutein 1 in all the major and minor antenna complexes may also validate the particular 

role of quenching species played by this xanthophyll at this specific position to maintain 

the original photoprotective function in all the complexes. The data presented in chapter 3 

also suggests a direct correlation between ∆A495, a lutein1 0-0 absorption maximum, and 

energy-dependent quenching, confirming the role of lutein 1 as quenching species.  

 

 

 

Figure 6.2 Lutein 1 (Lut1) and terminal emitter domain within each LHCIIb monomer (grey). The 
formation of a quencher is proposed to arise from an interaction between Lutein 1 (red) and 
chlorophylls a610, a611 and a612 (green) that constitute the terminal emitter domain. The LHCIIb 
conformational change induced by the ∆pH is proposed to distort lutein 1, bringing it close to the 
terminal emitter domain. The close proximity of the xanthophyll cycle carotenoid at the V1 site 
from the same (orange), or adjacent monomer V1* (yellow) has been suggested to allosterically 
modulate this interaction. (Image created in PyMol). 
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The regulation of this significant event also necessitates the existence of a specific 

molecular mechanism. The allosteric model suggests xanthophyll cycle as the regulator of 

this conformational change, whereby zeaxanthin and violaxanthin act as promoter and 

inhibitor, respectively. The peripherally bound xanthophyll cycle molecule at V1 binding 

site may affect the lutein 1 domain within the same monomer or the adjacent monomer in 

the form of an allosteric effect. It has also been suggested that the thylakoid membranes 

become thinner, more hydrophobic and dehydrated upon ∆pH formation (Murakami and 

Packer, 1970), these changes may also involve PsbS which is also a very hydrophobic 

protein. Such a reduction in volume in the membrane environment of LHCII, could 

compress the pigments within the structure increasing the interaction between the quencher 

and chlorophyll. Indeed, the LHCII fluorescence lifetime in vitro was found to be very 

sensitive to even a small change in volume induced by high hydrostatic pressure (van Oort 

et al., 2007). In vivo this compression of LHCII structure would be further enhanced by the 

exchange of the polar xanthophyll violaxanthin, which behaves rather like a detergent, for 

the hydrophobic zeaxanthin, which behaves more like a lipid, at the V1 binding site (Ruban 

et al., 1997).   

It is quite interesting that all the xanthophylls have ability to quench the chlorophyll 

excitation energy as shown by the in vitro quenching and lifetime measurements in Chapter 

IV, however this ability is not similar. Lutein at internal binding sites has been found as 

most efficient quencher, whereas its replacement by zeaxanthin and violaxanthin at internal 

L1 and L2 binding sites impairs the quenching capacity of the complexes. Since the 

quencher in wild-type LHCII aggregates has been identified as the S1 state of lutein 1, 

therefore it can be argued here that the observed differences between the photoprotective 

capacities upon varying the xanthophyll composition are due to the fact that zeaxanthin and 

violaxanthin both make ‘weaker’ quenchers when incorporated into the L1 ‘quencher’ 

binding site. The differences are unlikely to be explained by differences in excited state 

energy levels since both violaxanthin and zeaxanthin possess similar S1 lifetimes and 

energies to lutein when incorporated into these sites in LHCII, which are already below 

those of chlorophyll a (Polivka et al., 2002). It is therefore more likely that the differing 

polarities and head group orientations of each xanthophyll (Ruban et al., 1993; Young et 
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al., 1997) dictate how close the interaction between the xanthophyll and the terminal 

emitter chlorophylls in the L1 site can be and/ or upon the constriction of the protein matrix 

itself  how much each xanthophyll can be distorted. Potentially, distortion of the 

xanthophyll can alter its excited state properties (Polivka et al., 2002), for instance, by 

giving rise to an intermolecular charge transfer (ICT) state which could influence the 

likelihood of energy transfer/ excitonic coupling between the chlorophyll S1 state and the 

forbidden xanthophyll S1 state (van Amerongen and van Grondelle, 2001; Bode et al., 2009; 

Berera et al., 2006). Indeed, in both LHCII aggregates and in chloroplasts the excited state 

energy of the emitting chlorophylls is modified in the NPQ state (Johnson and Ruban, 

2009), given that the red shift of the terminal emitting fluorescence correlates with the 

lifetime. 

Violaxanthin was found to be the strongest promoter of the light harvesting mode in LHCII 

antenna. It can be suggested here that lutein at L1 binding site conserves the original 

photoprotective characteristic in all the antenna complexes whilst the minor complexes 

with violaxanthin at L2 site may have evolved to confer additional light harvesting 

characteristic to the antenna. It can be also be proposed that nature exploits the inherent 

flexibility of LHCII function by adopting a complement of xanthophylls that optimises the 

maximum dynamic range between its light harvesting and photoprotective states.  

Optimisation of photosystem II quantum efficiency therefore occurs at the level of 

individual LHCII complexes.  

The chlorophyll fluorescence lifetime measurements with varying xanthophyll composition 

have been carried out for the first time in this research. The resulting data furthers our 

understanding of the regulation and optimisation of the efficiency of both light harvesting 

and photoprotection. The optimum performance of this regulation, with largest dynamic 

range, is having the longest lifetime in the unquenched state (giving maximum light 

harvesting efficiency) and shortest lifetime in the quenched state (giving the most effective 

photoprotection). Clearly the maximum dynamic range was achieved by having the native 

complement of xanthophylls (Figure 6.3). Whereas replacing lutein with violaxanthin 

increased the lifetime of the unquenched state, the capacity of NPQ was reduced, giving a 
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restricted dynamic range. The advantage of a potential increase in light harvesting 

efficiency is clearly offset by the reduced level of photoprotection. Similarly, when lutein 

was replaced by zeaxanthin, the dynamic range was also compromised, since there was a 

reduced lifetime in the unquenched state without any enhancement in the quenched state. 

The origins of these effects of xanthophyll complement on light harvesting and 

photoprotection were shown to reside in the altered properties of the light harvesting 

complexes. Remarkably, all the effects on lifetimes of changes in xanthophyll composition 

observed in leaves were manifested as altered properties of the isolated LHCII. The results 

also suggest that the xanthophyll complement determines the lifetime of both quenched and  

 

Figure 6.3 Model depicting the relationship between chlorophyll fluorescence lifetime and 
xanthophyll composition in Arabidopsis leaves. The xanthophyll complement of LHCII determines 
the dynamic equilibrium between light harvesting and photoprotective functional states in vivo, 
which possess different average fluorescence lifetimes. Note in all cases the difference in lifetime 
between the two states in the mutants is less than in the wild type.  
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unquenched states. Lutein was clearly shown as an essential cofactor of LHCII and when it 

is replaced at its internal binding sites by violaxanthin or zeaxanthin the lifetimes either 

increase or decrease respectively. The similarities between the effects of xanthophyll 

substitutions on leaves and LHCII suggest that the quenching mechanism is the same in 

both, consistent with the previous data that highlighted the similarity between NPQ and 

quenching in LHCII aggregates (Horton et al., 1996; Horton et al., 2005). The similar 

behaviour of the minor antenna complex CP26 and LHCII does not support the idea that the 

former is the unique site of NPQ or that quenching in this complex occurs by a different 

mechanism involving a zeaxanthin radical cation. Indeed, the results presented here in this 

work provide no evidence for an exclusive direct quenching role for zeaxanthin. The well-

documented enhancement of NPQ by de-epoxidation of violaxanthin to zeaxanthin is 

therefore best explained by an indirect, regulatory role from the peripheral V1 site, 

allosterically modulating the pH sensitivity of NPQ.  

The remarkable reduction in the rapidly reversible component of NPQ in the absence of 

PsbS protein and the two-fold enhancement of NPQ magnitude achieved by over-

expression of this protein, both demonstrate the key role of PsbS in photoprotection (Li et 

al., 2000; Li et al., 2002). Currently, two models have been proposed which attempt to 

explain the role of PsbS in NPQ. A brief summary of these two models is as follows: 

The first model suggests that direct quenching of chlorophyll excited states takes place by 

zeaxanthin bound to PsbS. This model was supported by evidence that PsbS is able to bind 

zeaxanthin (Aspinall O’Dea et al., 2002) and subsequent studies suggested a quenching 

mechanism of direct energy transfer from chlorophyll to zeaxanthin (Ma et al., 2003; 

Dreuw et al., 2003; Holt et al., 2004, 2005; Berera et al., 2006). The second is allosteric 

model which presents PsbS as a biological catalyst meant for lowering the activation 

energy for the transition from the unquenched to the quenched state (Horton et al., 2000). 

According to this model, the quenching arises as a result of conformational change within 

the light harvesting antenna and this transition is regulated by zeaxanthin which acts as an 

allosteric effector. The initial support for this model came from the observation of 

aggregation event which accompanies the quenching process of light harvesting proteins 
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(Horton et al., 1991). Both the processes were shown to have a dependency on ∆pH which 

was found remarkably similar to an enzyme – catalysed reaction (Noctor et al., 1991; 

Horton et al., 2000). Moreover it was also demonstrated that this quenching process is 

independent of zeaxanthin (Noctor et al., 1991) and this xanthophyll is only meant to 

potentiate the process by lowering the pH requirement (Ruban and Horton, 1999). 

These two models suggest different mechanistic roles of PsbS and zeaxanthin; however 

they are by no means mutually exclusive. For instance, it can be possible that zeaxanthin 

influences both direct quenching in LHCII (Liu et al., 2004), probably by accounting for 

photoinhibitory qI, and the indirect quenching by acting as an allosteric effector 

(Wentworth et al., 2000; Horton et al., 2005). The enhancement of rapidly reversible NPQ 

attained by fortification of PsbS protein both in the presence and absence of zeaxanthin, 

achieved in the present study, is also strong evidence in support of the allosteric model. The 

main features of this evidence are outlined below. 

It has conclusively been demonstrated in earlier studies that increase in PsbS amount leads 

to enhancement of the ∆pH-dependent NPQ capacity (Li et al., 2000, 2002b, 2002c). This 

corresponding dosage effect of PsbS on the quenching process supports the critical role of 

this protein in energy dissipation; however it does not aptly explain its mechanistic role, 

since the similar effect would be exhibited if PsbS acted in the direct or indirect model.  

It has previously been shown by the analysis of leaves and isolated chloroplasts treated with 

dithiothreitol that over-expression of PsbS can result in the enhancement of NPQ in the 

absence of de-epoxidation. This was a firm evidence that xanthophyll cycle had no direct 

role in PsbS – dependent quenching, validating the proposed role of zeaxanthin as an 

allosteric effector in the indirect quenching model. The use of an exogenous inhibitor of de-

epoxidation process can be speculated to have adverse impact on other biological activities; 

this necessitated the need for development of a more natural system for enhancement of 

NPQ in the absence of zeaxanthin. This was achieved by increasing the PsbS amount in 

zeaxanthin-less mutant (npq1) by both physiological and genetic means, therefore 

reversible NPQ was enhanced in similar proportion both in the presence and absence of 

zeaxanthin. Both the amplitude and rate of NPQ formation was enhanced by increase in 
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PsbS level, nevertheless both the values were significantly higher in the presence of de-

epoxidation. This again presents zeaxanthin as the regulator of the process and not as an 

absolute requirement. The enhancement of magnitude and level of NPQ, as a result of 

increased PsbS levels, does not necessarily explain the direct role of this protein, as NPQ 

still occurs in the absence of PsbS. However, it can be suggested here that PsbS acts to 

somehow induce conformational changes in light harvesting subunits which leads to the 

quenching of chlorophyll excited states, whilst the presence of zeaxanthin enhances both 

the rate and extent of these changes, perhaps by binding PsbS, as has been shown in vitro 

(Aspinall-O’Dea et al., 2002).  

As PsbS has been suggested as a catalyst for reversible NPQ, thus increase in the levels of 

this catalyst is expected to enhance the rate of reaction up to certain level. Therefore over-

expression of PsbS in L17 plants allows the conformational changes to happen more 

efficiently, which results in a faster transition to the quenched state. However, an increase 

in PsbS level of 4 times in the over-expressor line as compared to wild type only resulted in 

a NPQ increase by 2 fold, which may indicate that either the reaction (NPQ) has reached its 

ceiling or the activity of the catalyst (PsbS) is limited by substrate concentration 

(zeaxanthin and/or antenna proteins). On the other hand, the direct quenching model has no 

explanation for these changes in kinetics, since in the absence of de-epoxidation there 

would be no PsbS–zeaxanthin quenching complex and thus the rate of quenching would be 

expected to remain unaffected. As mentioned earlier, this model suggests zeaxanthin–

independent quenching to occur by a different mechanism of transient type, which takes 

place in reaction centre due to inactivation of PSII electron transport (Finazzi et al., 2004). 

Further analysis of NPQ kinetics also demonstrated that PsbS over-expression also 

enhanced the rate of relaxation in the dark. However, the presence of zeaxanthin made this 

recovery slower as compared to that in the absence of de-epoxidation. This observation 

indicates towards a key role played by PsbS in the NPQ kinetics independent of zeaxanthin. 

Thus it can be suggested that PsbS acts as a reversible switch between the quenched and the 

unquenched states, facilitating both the rapid induction and relaxation of quenching by 

inducing conformational changes in the thylakoid membrane. This activity to induce the 
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formation of the quenched state is in an allosteric fashion.  The presence of zeaxanthin 

appears to enhance the function of PsbS by increasing both the magnitude and rate of NPQ 

formation; however it inhibits the rate of relaxation of quenching.  

The differences in kinetics between wild type and npq1 mutant plants have also been 

demonstrated in plants which accumulate PsbS during acclimation to growth at high 

irradiance. High light acclimated plants had approximately twice the level of PsbS protein 

and exhibited an increase in the rate of NPQ activation in both the presence and absence of 

zeaxanthin. The control plants grown under normal lower light conditions showed lower 

levels of PsbS and an associated small NPQ which was slower to form. This indicates that 

high light exposure demands the need the need for a large, rapidly forming NPQ which can 

be met by the accumulation of PsbS. Conversely, low light conditions require avoidance of 

unnecessary wastage of absorbed energy in the form of quenching, and this is achieved by 

reducing the level of PsbS protein. The relaxation kinetics were also observed as faster in 

the presence of enhanced PsbS levels, thus it would be reasonable to assume that the 

requirement for a rapidly forming quenched state also requires the corresponding ability to 

relax back to the unquenched state equally rapidly, so that an unnecessary dissipation of 

harvested energy can be avoided. This proposed role of PsbS as a “molecular switch” 

between the quenched and unquenched transitions is consistent with the field studies which 

showed the essential requirement of PsbS for plant fitness under conditions of fluctuating 

light (Kühlheim et al., 2002). A recent field study of plants with different levels of PsbS 

expression has demonstrated that this photoprotective protein also affects metabolite 

profiles as up to ten-fold differences were measured in the concentrations of some 

carbohydrates and amino acids among these plants. Moreover, transcriptomes of such 

plants were also varied as certain stress-related genes for the jasmonate biosynthesis were 

up-regulated in the PsbS-lacking mutants, when subjected to herbivory. Ironically, these 

profile changes were not observed under constant laboratory conditions (Frenkel et al., 

2009). It would be interesting to employ a similar ecophysiological approach towards the 

study of xanthophyll mutants as the xanthophylls have only been implicated so far for the 

regulation of light harvesting in controlled conditions, while their physiological role to 

influence metabolite and transcriptome profiles under field conditions is yet to be explored.   
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Further analysis of the effects of PsbS level on NPQ capacity and kinetics is needed to 

clarify the role of PsbS in the transition between the light harvesting and energy dissipation 

states. It would also be interesting to study mutants which over-express PsbS along with 

enhanced pool of xanthophyll cycle, as this would allow better understanding of the 

maximum potential of NPQ and further investigation of the zeaxanthin-dependent 

quenching mechanism. 

The measurement of NPQ kinetics in two illumination cycles allowed making certain 

interesting observation as the rate of formation and capacity of NPQ was always enhanced 

during the second illumination after a period of dark relaxation, even in the absence of 

zeaxanthin as this promoting effect is mainly attributed to the zeaxanthin formation. The 

increase in NPQ was shown to be of reversible nature (qE) and not photoinhibitory (qI). 

These differences were small however significant with reference to the previously thought 

influence of the de-epoxidation state (Demmig-Adams, 1990; Ruban et al., 1993). This 

observation suggests that the thylakoid membrane may undergo zeaxanthin-independent 

transition during illumination which is “memorised” during the dark period and “prime” the 

system for quenching during the subsequent illumination period. This increase in the NPQ 

capacity during the second illumination period may suggest that that PsbS is involved in 

such a process, by inducing the conformational change in antenna complexes which does 

not fully relax during the dark period. The proposed priming of thylakoid membranes can 

be understood further by in depth study of NPQ extent and kinetics in the plants with PsbS 

over-expression subjected to various regimes of pre-illumination. 

Absorption changes in the broad region of 520 nm to 540 nm have been correlated with the 

conformational changes in the thylakoid membrane which lead to the quenching (Noctor et 

al., 1993; Ruban et al., 1993, 2002). The spectral analysis of leaves also show that the 

magnitude and kinetics of 535 nm absorbance changes were enhanced in the PsbS over-

expressor, suggesting that the conformational changes, which lead to quenching, result 

from PsbS-dependent alterations in the light harvesting antenna. This is a further support 

for the proposed role of PsbS in acting as a “molecular switch” facilitating the transition 

between the unquenched and quenched states of the photosynthetic apparatus, which is 
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most likely proceeded by induction of conformational changes in the membrane. Moreover, 

these absorbance changes were also enhanced in the presence of zeaxanthin similar to the 

fluorescence quenching, providing further support to the model where zeaxanthin regulates 

the rate of formation and extent of the quenched state, by acting like a positive effector.  

It can also be interesting to mention here that the amplitude of 535 nm absorbance change 

does not apparently match the extent of NPQ level, as at least 3 times increase in 

absorbance change was observed against the 2 times greater NPQ increase in L17 as 

compared to the wild type. This discrepancy may be explained by assuming that the 535nm 

absorbance change does indeed arise as a result of PsbS binding zeaxanthin (Aspinall 

O’Dea et al., 2002; Ruban et al., 2002). Since the availability of PsbS protein is much 

higher in the over-expressor as compared to normal wild type levels, therefore obviously 

more zeaxanthin molecules would bind to the protein to get activated, resulting in the more 

pronounced increase in the ∆A535. However, this increase in the amount of PsbS-

zeaxanthin associations would not necessarily be expected to lead to a similar increase in 

the level of NPQ, as it can be limited by the amount of available antenna complexes with 

the ability to quench chlorophyll excited states. 

In summary, the PsbS-zeaxanthin binding event was not confirmed in this study by 

observation of the absence of linear correlation with an increase in NPQ. The enhancement 

of the similar absorbance change in the absence of zeaxanthin also demonstrates that this 

change may also be solely dependent upon PsbS, although its origin is not well understood. 

The involvement of more than one xanthophyll has also been speculated in the 520 nm to 

540 nm absorbance region, possibly lutein. Thus, it can be suggested that absorbance 

change depicting conformational change is result of pigment interactions between 

chlorophyll and lutein, also proposed as a mechanism for energy dissipation (Ruban et al., 

2007). Further investigation of the origin of this broad absorbance band can provide insight 

into the changes taking place in the thylakoid membrane during the quenching process and 

the role of PsbS to influence these changes. 

Since PsbS appears to equip plants with the advantage of large extent of NPQ with rapid 

formation and relaxation rates, it can be considered as a strategy to optimise the 
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photoprotective capacity of plants. The constitutive expression of higher PsbS level can be 

significant at high light intensities, as revealed by high light acclimation studies (Bailey et 

al., 2004; Ballottari et al., 2007), the enhanced photoprotective capacity can actually be a 

real disadvantage at low light intensities, where unnecessary wastage of absorbed light 

energy can easily be carried on by heat dissipation. Thus a delicate balance must be reached 

whereby protection from harmful excess excitation is avoided, but not at the expense of 

photosynthetic capacity. It seems therefore that the most crucial function of PsbS is to 

provide flexibility in photosynthesis under fluctuating light conditions, and to allow control 

over photoprotective capacity during acclimation. 
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