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Numerical and Experimental Investigation  
for Stability Lobes Prediction in  

Thin Wall Machining 
O. B. Adetoro, P. H. Wen, W. M. Sim, R. Vepa 

  
Abstract— A Finite Element Analysis (FEA) and Fourier 

transform approach to obtain frequency response function 
(FRF) is presented in this paper. The aim in this paper is to 
eliminate the need for the classical impact experimental 
approach used in extracting structure’s FRF. 

The numerical and experimental FRFs have been used to 
obtain stable regions in machining of thin walled structures, 
which gives a good comparison. Examples are presented and 
compared with experimental results with a satisfactory 
agreement. 
 

Index Terms— FEA, frequency response function, discrete 
Fourier transform, stability lobes, transfer function.  
 

I. INTRODUCTION 
  Even after such an extensive research into chatter 

vibration, it still is (as stated by Taylor just over a century 
ago) one of the most obscure and delicate of all problems 
facing the machinist [1]. It certainly undermines and reduces 
productivity and surface quality in manufacturing. It could 
also increase the cost through possible machine or tool 
damage. It is because of these effects that it has been the topic 
of several studies over the years. The stability lobes/chart 
approach is more practical from the stance of a machinist, 
while its extraction can be somewhat tedious. The accuracy 
of the predicted stable region relies on the transfer function 
identified at the cutter-workpiece contact zone. The classical 
approach to obtaining the transfer function is through impact 
test. However, this paper proposes an alternative approach 
which uses finite element method (FEM) modal analysis to 
obtain the transfer function at specified cutter-workpiece 
contact zones. 

While the transfer functions for the tool can be assumed to 
be constant, the workpiece transfer function/dynamics are 
constantly changing as material is removed. Moreover, in 

thin wall machining, the workpiece vibration is significant 
compared to that of the tool. Hence the transfer function used 
must be precise. It will be highly impractical to perform 
impact tests at multiple stages of machining, hence the need 
for an offline approach to stability lobes prediction. 
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The prediction of stable conditions in the form of charts 
started when, Tobias [2] and Tlusty [3] simultaneously made 
the remarkable discovery that the most important sources of 
self-excitation, regeneration and mode coupling were 
associated with the structural dynamics of the machine 
tool-workpiece system and the feedback response between 
subsequent cuts. At this early stage, the stability lobes 
approach that is widely used by researches to predict the 
stable margin was also established by [2]. While Tlusty and 
Polacek [3] obtained an expression for chatter free axial 
depth of cut using the cutting force coefficient, and the real 
part of the structure’s transfer function in the direction 
normal to the machined surface. This was later improved by 
Tlusty [4] to include the effect of the spindle speed on the 
chatter frequency (‘lobbing effect’). Other studies on the 
stability of metal cutting were reported Merritt [5]. 

Though, a pioneering research, the stability models by 
Tobias and Tlusty are only applicable to orthogonal metal 
cutting where the directional dynamic milling coefficients are 
constant and not periodic. This is quite the contrary in milling 
due to the rotating cuter with multiple teeth. In order to 
accommodate this directional dynamic milling coefficients, 
time domain simulation of the milling process was 
introduced by Tlusty [6, 7]. Slavicek [8] and Vanherck [9] 
made the assumption that all the cutter teeth have a constant 
directional orientation in their study of the effect of irregular 
pitch on the stability. Sridhar et al. [10, 11] and Hohn [12] 
later carried out an in-depth study in which, they introduced 
time-varying directional coefficients in their chatter stability 
analysis. They used the system’s state transition matrix in 
their stability model, which helps to eliminate the periodic 
and time delay terms. Optiz et al. [13, 14] used an average 
value of the periodic directional coefficients in the analysis. 
Tlusty [15] made an attempt to apply the orthogonal model to 
milling process by assuming the teeth of the tool had equal 
pitch, was simultaneously in cut and that the motion was 
rectilinear with constant depth of cut. The Nyquist criterion 
was used by Minis and Yanushevsky [16, 17] and Lee et al. 
[18, 19] to obtain the stability limits. Lee et al. used the mean 
value method to replace the time varying directional 
coefficients by a constant. Up until this point there existed no 
proposed analytical approach to predicting the stability 
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margin for milling, whilst respecting the varying directional 
dynamic milling coefficients. 

Following the in-depth work by Budak, [20], Altintas and 
Budak [21, 22, 23] later proposed an analytic approach in 
which the zeroth order term in the Fourier series expansion 
(single frequency solution or zeroth order approximation) of 
the time varying coefficients was adopted. A similar model 
was later used by Altintas et al. [24], where they proposed an 
average scheme of the immersion angle, while the analytical 
model was later extended to include three directions by 
Altintas [25], where the axial immersion angle was also 
assumed to be constant. Campa et al. [26] later proposed an 
averaging approach to calculating the axial immersion angle 
in order to solve the stability model analytically. Adetoro et 
al. [27] recently proposed some modifications to the stability 
lobe model by Altintas [25]. The modifications allow for the 
inclusion of the nonlinear nature of the cutting force 
coefficients and the axial immersion angle along the axial 
depth of cut in the prediction of more accurate stable cutting 
conditions. The results were obtained using a numerical 
approach 

To analytically predict the stable region the dynamic 
parameters identified at the cutter-workpiece contact zone are 
used. The classical approach to obtaining the dynamic 
parameters is through impact tests. Unlike in tool chatter, the 
dynamic parameters are not constant along the workpiece and 
are constantly changing as material is removed and the 
geometry changes. Attempts were made by Thevenot [28] to 
use this varying dynamics in thin wall machining to initiate 
the variation of the spindle speed along the workpiece in 
order to improve surface finish. The tendency in this 
approach however is the tendency for new marks to be left on 
the surface due to the change in cutting conditions as seen 
from their experimental results. Budak considered the 
variations the dynamics of the cutter and the workpiece along 
the axial direction [22, 23]. Seguy et al. [29] just recently 
carried out a study to include the varying dynamics along a 
thin wall and thin floor section, although the results show 
certain discrepancies which could have arisen from the 
assumptions made. It is however clear in thin wall that it is 
insufficient to assume the dynamics of the workpiece are 
constant, which has previously been the case. 

This paper presents a numerical approach to obtaining the 
structures transfer function, which is required in the stability 
model. This approach aims to eliminate the need for series of 
experimental impact testing at various points on a thin walled 
workpiece in order to obtain the corresponding transfer 
function at the point. The only experimental result required 
would be the one to obtain the damping parameters of the 
structure, which can also be eliminated by adapting the 
approach to predicting the damping parameters by Adetoro et 
al. [35, 36]. However to obtain the varying dynamics along 
the tool-path, this approach can be used to prevent further 
experimental impact testing. The full transfer function matrix 
in all the three translational directions can also be easily 
extracted. Compared to experimental methods, this can prove 
difficult in certain translational directions. The approach is 
presented here with the 2-D stability model in [21] and can 
easily be adapted to the 3-D model in [25, 27] as shown by 
Adetoro t al. [30]. 

II. CHATTER STABILITY MODEL 
The stability model used in this paper is the model 

proposed by Altintas and Budak [21] as summarized below. 
The periodic milling forces excite the cutter and the 
workpiece causing two orthogonal dynamic displacements 

y  in the global axis. x  and 

vibration marks 
left by tooth (j)

Figure 1 – Dynamic Milling Model. 

This generates undulations on the machined surface and 
each tooth removes the undulations generated by the 
previous tooth (Figure 1). Therefore leading to a modulated 
chip thickness which can be expressed as 

( ) ( ) ( ),sin 00
jwjcjwjcjtj sh υυυυφφ −−−+=

ts
 (1) 

where  is the feed per tooth, ( )jcjc υυ ,0  and ( )jwjw υυ ,0  are 

the dynamic displacement of the cutter and workpiece at the 
previous and present tooth periods respectively, 

( ) tj pj Ω+−= φφ 1  is the angular immersion of tooth j  

for a cutter ( Ω  is the angular speed), with constant pitch 
angle Np πφ 2=  (  is the number of teeth). N

jpjpjp yx

The dynamic displacements in the chip thickness direction 
due to tool and workpiece vibrations are defined as 

φφυ cossin −−=  (  (2) ),, wcp =
c w

pp yx , 00 , pp yx
where  and  indicate the cutter and workpiece 

respectively,  and  are the dynamic 

displacements in the global axis for the current and previous 
tooth periods respectively. 

By eliminating the static part in (1), the dynamic chip 
thickness in milling is defined as 

( ) ,cossin jjj yxh φφφ Δ−Δ=  (3) 

where, 
( ) ( )
( ) ( ),

,
00

00

wwcc

wwcc

yyyyy

xxxxx

−−−=Δ

−−−=Δ
 (4) 

Therefore, the dynamic forces on tooth j  (using 
‘‘Exponential Force Coefficient Model’’, [20]) in the 
tangential and radial directions can be defined as 

vjp, Fr 
ujp, dFt 

vibration marks left 
by tooth (j-1)

tooth ( j)

tooth (j-2) tooth (j-1) 

 
y

 
x
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ahKF

=

=
 (5) 

[ ] [ ][ ]GAG 00 =  

where  is the axial depth of cut (ADOC), and  and  
are the tangential and radial cutting force coefficients 
respectively. 

a tK rK

For simplicity, like in other studies these cutting force 
coefficients have been taken as constant here. However they 
have been shown to affect the predicted margin by Adetoro et 
al. [27]. This approach here can easily be adapted to the 
modifications they proposed. Therefore, by substituting (3) 
into (5) and resolving in the global directions, the following 
expression is obtained 

,
2
1

⎭
⎬
⎫

⎩
⎨
⎧

Δ
Δ

⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

y
x

aa
aa

aK
F
F

yyyx

xyxx
t

y

x
 (6) 

where  are the periodic directional cutting coefficients 

and depends on the angular position of the cutter and the 
radial cutting force coefficient , thereby making (6) a 
function of time 

xya

rK

( ){ } ( )[ ] ( ){ },
2
1 ttAaKtF t Δ=  (7) 

As mentioned in previous section,  is periodic at the 

tooth passing frequency 

( )[ tA ]
Ω= Nω , therefore its Fourier 

series expansion is used for the solution of the system. The 
average value in the Fourier series expansion (single 
frequency solution) of the time varying directional 
coefficients is used in this paper. Hence, (7) reduces to 

( ){ } [ ] ( ){ },
2
1

0 tAaKtF t Δ=  (8) 

where  is the time invariant, but radial immersion 
dependent directional cutting coefficient matrix. 

[ 0A ]

)

From the frequency response function FRF and the 
dynamic forces, the dynamic displacement vector in (8) can 
be solved. Using the response at present time (  and the 

previous tooth period , equation (8) can be expressed 
as [21] 

)t
( tT −

{ } [ ]( ) ( )[ ]{ } ,ee1
2
1e 0

ti
c

Ti
t

ti ccc FiGAaKF ωωω ω−−=  (9) 

where  represents the amplitude of the dynamic cutting 

force , 

{ }F
( ){ }tF ( )[ ciG ]ω  is the transfer function matrix. 

The transfer function matrix ( )[ ]ciG ω  is the main focus 
of this paper. It is defined as 

( )[ ] ( )[ ] ( )[ ,cwccc iGiGiG ]ωωω +=  (10) 
where 

( )[ ] ( ) ( )
( ) ( ) ,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

cpcp

cpcp
cp iGiG

iGiG
iG

yyyx

xyxx

ωω
ωω

ω  (  (11) )

]

wcp ,=

Equation (9) has a non-trivial solution only if its 
determinant is zero, 

[ ] ( )[ ][ ,0det 0 =Λ+ ciGI ω  (12) 

where 
The eigenvalues is defined as 

( ),e1
4

Ti
taKN ω

π
−−−=Λ  (13) 

Solving (12) numerically will give eigenvalues with 
complex and real parts ( )IR iΛ+Λ=Λ , and from Euler’s 

formula, . When this is 
substituted into (13), the complex part has to vanish (i.e. 

TiT cc
Ti c ωωω sincose −=−

( ) TT cRcI ωω sincos1− = ΛΛ ) because the axial depth 
of cut  is a real value. Therefore, a

,tansin ψ
ωcos1

ωκ =
−

=
Λ
Λ

=
T

T

c

c

R

I  (14) 

where ψ  is the phase shift of the eigenvalues. From this 
expression the relationship between the frequency and the 
spindle speed is [21] obtained 

,60
,tan
,2

,2

1

NT
n

kTc

=

=

−=
+=

− κ

ψπε
πεω

 (15) ψ

where ε  is the phase difference between the inner and outer 
undulations,  is an integer corresponding to the number of 
vibration waves within a tooth period and n  is the spindle 
speed (rpm). 

k

Substituting (14) into (13) and the final expression for 
chatter free axial depth of cut becomes 

( )2
lim 1 κ+

Λ
−=

t

R

NK
a

c

2π
 (16) 

Therefore for a given chatter frequency, ω  the 
eigenvalues are obtained from (12), which allows for the 
critical depth of cut to be calculated using (16) and finally the 
spindle speed using (15) for different number of vibration 
waves, . This is repeated for various frequencies around 
the structures dominant modes. 

k

III. THE SYSTEM’S TRANSFER FUNCTION 
To obtain the transfer function of the system, the modal 

dynamic analysis on Abaqus was used. Being a very well 
developed model, the modal dynamic analysis gives the 
response of a defined domain as a function of time for a given 
time dependent loading. This gives the linear response of the 
structure, which can be very easily extracted once the modes 
of the system are available. This is due to the modes being 
orthogonal, thereby rendering the system as a mere 
combination of single degree of freedom systems. The modes 
are extracted in a frequency extraction analysis, which 
utilizes the Lanczos algorithm. The free vibration solution of 
the equation of motion takes the form 
{ } { } tXx = sinω  (17) 

When substituted into equation of motion, an eigenvalue 
problem is obtained as 

Engineering Letters, 17:4, EL_17_4_07
______________________________________________________________________________________

(Advance online publication: 19 November 2009)



 
 

 

[ ] [ ]( ){ } ,02 =− XMK ω  (18) ( )

,2cos21         

sin12exp

332

2

2

11

t
t

t

t
t

tb

nnn

nn
n

Δ
+⎥

⎦

⎤
Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ

++

⎢
⎣

⎡
Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ
−

+Δ−−=

ω
ζω

ω
ζ

ω

ω
ωω

ζ
ωω

ζζω
where  is the stiffness matrix of the system, [  is the 

mass matrix,  is the eigenvalue or in this case the 

undamped natural frequency of the system squared and 

[ ]K ]M
2
nω

{ }X  
is the eigenvector (the mode of vibration or mode shape). 

The transient modal dynamic analysis on Abaqus was used 
to solve the eigenvalue problem and to predict the system’s 
transfer function. The modal dynamic analysis gives the 
response of a defined domain as a function of time for a given 
time dependent loading. The response obtained is the linear 
response of the structure, which is easily extracted once the 
modes of the system are available. The modes are extracted in 
a frequency extraction analysis, which utilizes the Lanczos 
algorithm due to the size of the eigenproblem in equation 
(4.9). The algorithm is detailed by Grimes et al. [31] and in 
the Abaqus user manual [32]. Therefore, when the model is 
projected onto the eigenmodes used for the system’s dynamic 
representation (i.e. uncoupling the system’s stiffness, mass 
and damping matrices using the orthogonality property 
explained earlier), its equation of motion is uncoupled and an 
expression at time t  is [32] obtained 

,2 2
,, t

t
ffqqq ttppnppnpp Δ

Δ
Δ

+=++ Δ−ωωζ  (19) 

where p  is the mode number,  is the amplitude of the 

response of mode 
pq

p  (in the ‘‘generalized coordinate’’), 

pn,ω  is the undamped natural frequency of mode p , fΔ  is 

the change in  over the time increment,  assuming the 

excitation varies linearly within each increment and 

f tΔ

pζ  is 

the damping ratio for mode p . 
The solutions is obtained [32] in the form 
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 (20) 

where ,  and  are constants, which are 
dependent on the three different cases of non-rigid body 
motion. 

2,1, =li ild ile

These cases are based on the oscillation modes - 
underdamped, critical damping and overdamped. These 
constants are detailed in Abaqus user manual [32]. For the 
underdamped case, the constants are given as follows [32] 
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Since the time integrations is done in generalized 
coordinates, the response of the physical variables are 
obtained through summation 

 (23) 

where  are the eigenvector corresponding to the mode 

p  and  is the actual nodal displacement. From this the 
velocity and hence the nodal acceleration can be derived. 

u

The system’s frequency response function (FRF), is 
simply the ratio of the Fourier transform of the output over 
the input (in the case of a system with single input and 
output). 
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The discrete Fourier transform algorithm is adopted, which 
is defined [33] as 

[ ] [ ] ,2cosRe
1

0
∑

−

=
⎟
⎠
⎞

⎜
⎝
⎛=

M

i M
ktihkH π

[ ] [ ] ,2sinIm
1

0
∑

−

=
⎟
⎠
⎞

⎜
⎝
⎛−=

M

i M
ktihkH π

 (25) 

Engineering Letters, 17:4, EL_17_4_07
______________________________________________________________________________________

(Advance online publication: 19 November 2009)



 
 

 

where  runs from  to k 0 2M ,  and [ ]kHRe [ ]kHIm  
are the real and imaginary parts of the frequency domain 
signal and  is the time domain signal. [ ]ih

The corresponding frequencies are defined as 

,
1−

⋅
=

M
fkω  (26) 

were ω  is the frequency,  is the sampling frequency. f

IV. THE FINITE ELEMENT MODEL 
The workpiece material used in the FEM model is 

Aluminium Alloy 7010 T7651. The material properties 
required for generating the stiffness and mass matrices are: 
Density -  Kg m-3, Young’s Modulus - 69.809 
GPa and Poisson Ratio - 0.337. Three different types of 
workpiece were used in the finite element analysis (FEA). 
The dimensions are shown in Figure 2 and the different 
thicknesses, (W) are shown in tables 1, 2 and 3 respectively. 

310823.2 ×

p

The assumptions made in the finite element analysis (FEA) 
are as follows: 
1) The workpiece was bolted at the back surface during the 

impact tests and in the FEM this was assumed to be 
clamped. 

2) The workpiece was bolted to the milling machine 
during the impact test and it was assumed that the 
natural frequencies of the machine are very high 
compared to that of the workpiece, hence their influence 
can be ignored in the FEM analysis. 

3) The mass of the accelerometer was assumed to be a 
point mass added to the FEM model. 

 

 
Figure 2 – Workpiece dimensions. 

 

A. The Damping Ratio 

The damping ratios, ζ  used in (19) here for 

demonstrating the proposed approach were identified 
through impact tests (given in tables 1, 2 and 3). Adetoro et 
al. [35, 36] however recently proposed an approach to 
predicting the damping parameters for different wall 

thicknesses during machining of thin wall sections. This 
approach can be adapted with the FEM approach proposed in 
this paper as shown in [36] to form a unified model that 
would not require further experiments carried out for 
different wall thicknesses. 

In the experimental impact tests, the workpiece is excited 
using an instrumented hammer, whilst the accelerometer is 
placed on the opposite side of the impact point, to measure 
the direct transfer function. Using a Fourier analyser, the 
accelerance frequency response function is extracted for each 
impact test. This is simply the division of the Fourier 
transform of the measured time domain input force ( )tf  and 

acceleration ( )tx

( )

. 

( )
( ) ,
ω
ωω

F
XAcc =  (27) 

( )ωwhere Acc ( )ωX is the accelerance FRF,  is the output 

acceleration signal in frequency domain and ( )ωF  is the 
input force signal in frequency domain. The experimental 
measurements are analysed using a modal analysis system 
(CutPro was used for the solutions in this paper), which scans 
the measured transfer function and fits a curve to the data in 
order to obtain the numerical values of natural frequency, 
damping [34]. 

 
Table 1 – Workpiece A, W = 1.5mm 

MODE NUMBER NATURAL FREQUENCY, nω  (HZ) DAMPING RATIO, pζ  (%)

1 1323.00 2.9345E-02 
2 1604.00 2.6765E-03 
3 1708.00 1.9422E-03 
4 1908.00 2.2348E-03 
5 2196.00 1.4750E-03 
6 2566.00 1.6500E-03 
7 3021.00 2.0739E-03 
8 3571.215 8.0504E-03 

260mm

260mm

30mm

30mm 

W 

R=5mm 
 

Table 2 – Workpiece B, W = 3.0mm 

MODE NUMBER NATURAL FREQUENCY, nω  (HZ) DAMPING RATIO, pζ  (%)

1 2830.5000 2.5449E-02 
2 3204.5000 4.4995E-03 
3 3406.0000 2.9076E-03 
4 3798.0000 4.8137E-03 
5 4372.0000 5.3524E-03 

 
Table 3 – Workpiece C, W = 4.5mm 

MODE NUMBER, NATURAL FREQUENCY, nω  (HZ) DAMPING RATIO, pζ  (%)

1 4253.0000 3.4222E-02 
2 4568.0000 9.0496E-03 
3 4894.0000 8.2851E-03 

 

V. RESULTS 

A. Extracting the Workpiece Transfer Function. 
For workpiece A, the measured input force from the 
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impact test was used as the input force (in time domain) in the 
FEM modal analysis. The predicted acceleration (time 
domain) is shown in comparison to the experimental 
acceleration from the accelerometer (during the impact test) 
in Figure 3. The predicted FRF (using the approach in section 
2) and experimental FRF, are compared in Figures 4 a and b 
respectively. The agreement between the experimental 
results and the predictions is satisfactory.  

For workpiece B, the input force (in time domain) used in 
the FEM modal analysis was a Dirac delta function. The 
predicted and experimental FRFs are compared in Figures 5 a 
and b. 

The agreement between the experimental results and the 
predictions is satisfactory. 
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Figure 3 – Predicted and measured acceleration for workpiece A. 
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(a) Real 
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(b) Imag 

Figure 4 – Predicted and measured FRFs for workpiece A, G . 
yyw

 

Figure 6 compares the predicted and experimental FRFs 
for workpiece C and the agreement has shown to be good. 
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(b) Imag 

Figure 5 – Predicted and measured FRFs for workpiece B, G . 
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(b) Imag 

Figure 6 – Predicted and measured FRFs for workpiece C, G . 
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B. Chatter Stability Lobes. 
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Using both the predicted and experimental FRFs, the 
stability lobes were generated using CutPro, for the different 
types of workpiece using the parameters listed in table 4. 
CutPro is an advanced analytical and time-domain machining 
process simulation commercial package developed by 
Altintas. It has an in built modal analysis module and also a 
stability lobes module. The stability lobes module can take 
the transfer function in all three orthogonal directions for the 
workpiece and transfer function in x, and y directions for the 
tool. 

Experimental
Predicted

The cutting conditions used during the simulations are 
detailed in table 4. The tangential cutting force coefficient 
(TCFC) Kt and the radial cutting constant Kr are given in this 
table. The radial cutting constant is a ratio of the radial 
cutting force coefficient to the tangential cutting force 
coefficient. The TCFC and the radial cutting constant are 
used in (5) to model the tangential and radial cutting forces 
respectively. The radial depth of cut or radial immersion is 
also given in table 4, which is used to calculate the entry and 
exit angles of the cutter. The entry and exit angles are used as 
the limits for the elements in the radial immersion dependent 
matrix,  required when calculating the oriented transfer 

function  in (12). The elements of the matrix 

[ 0A
[ 0G

]
] [ ]0A  are 

detailed in [20, 21, 22 and 24]. 
The predicted and experimental results are compared in 

Figures 7a, b & c for the three different workpiece. The 
comparisons show a satisfactory agreement. The slight 
discrepancy in the predicted natural frequency (frequency at 
which FRF real is zero and imaginary is maximum) can be 
seen in the slight shift in the spindle speed calculated in the 
stability lobes. 

The natural frequency predicted affects the stable tooth 
passing frequency calculated in the stability lobes, hence the 
slight differences seen in the spindle speeds. The predicted 
stable axial depth of cuts in Figures 7 b and c are slightly 
higher than the experimental stable ADOC and this is due to 
the FEM model being too stiff. This can be caused by the 
boundary condition assumption stated in section 3, where the 
back surface was assumed to be perfectly clamped. In the 
FEM stiffness matrix formulation, the elements are therefore 
set to 1E+36 and the degrees of freedom at this surface are 
not included in the simulation. A more accurate approach 
would require knowledge of the friction at the boundary 
between the machine and the workpiece. 

 

Table 4 – Cutting Condition and Coefficients 

 WORKPIECE A WORKPIECE B WORKPIECE C

KR -0.7040 0.3030 1.1459 

KT (MPA) 981.6966 801.0970 679.6021 

RADIAL DEPTH OF CUT, (mm) 0.500 1.000 2.000 

 
 

 
(a) Workpiece A 
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(b) Workpiece B 
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(b) Workpiece C 

Figure 7 – Stability lobes comparison. 

C. Experimental Results 
To show the advantages of this approach in thin-wall 

machining, a typical surface finish obtained for a thin walled 
section is shown in Figure 9. and the cutting forces shown in 
Figure 8. This experimental results show that the varying 
dynamics along the workpiece cannot be ignored or assumed 
as constant. In the surface finish it is shown that the 
workpiece is unstable only at the end of the cut, while this is 
confirmed in the cutting force (Fx) plot. These results are 
shown and discussed in-depth in [30]. Therefore using the 
approach in this paper, the transfer function along the 
workpiece can be easily extracted without reliance on 
experimental results. 
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Figure 8 – Experimental cutting forces from [30]. 

 

 
(a) – Part I 
 

 
(b) – Part II 
Figure 9 – Surface finish thin wall machining [30]. 

For completeness, the full FRF matrix in (11) is also 
required, however applying the impact force and/or 
measuring the response in certain directions experimentally 
can prove difficult. Using the proposed approach however, 
the full FRF matrix in (11) can be obtained easily in all 
directions. This is done by simply applying the impact force 
in the corresponding directions of interest. 

VI. CONCLUSION 
Chatter still undermines the efforts of the machinist by 

reducing surface quality, productivity and increasing cost in 
damage repair. In this paper, an alternative approach to 
extracting the transfer function using the FEM modal 
analysis has been presented. The approach is based on the 
Fourier transform of the results obtained from the finite 
element analysis. The results are shown to agree with 
experimental results and hence the transfer function 
calculated. Its accuracy is further explored by its use in 
stability lobe predictions. This approach can be used to solve 
different problems encountered through the use of impact 
test, including obtaining the frequency response function in 
directions that ca prove difficult experimentally. 
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