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Abstract

This thesis consists of two parts: The first one is concerned with the

theory and applications of regular configurations; the second one is de-

voted to TBR graphs.

In the first part, a new approach is proposed to study regular configu-

rations, an extremal arrangement of necklaces formed by a given number

of red beads and black beads. We first show that this concept is closely re-

lated to several other concepts studied in the literature, such as balanced

words, maximally even sets, and the ground states in the Kawasaki-Ising

model. Then we apply regular configurations to solve the (vertex) cycle

packing problem for shift digraphs, a family of Cayley digraphs.

TBR is one of widely used tree rearrangement operationes, and plays

an important role in heuristic algorithms for phylogenetic tree recon-

struction. In the second part of this thesis we study various properties

of TBR graphs, a family of graphs associated with the TBR operation.

To investigate the degree distribution of the TBR graphs, we also study

Γ-index, a concept introduced to measure the shape of trees. As an inter-

esting by-product, we obtain a structural characterization of good trees,

a well-known family of trees that generalizes the complete binary trees.
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Chapter 1

Introduction

As the title suggests, the purpose of Part I in this thesis is to explore

the theory and applications of regular configurations, an extremal class

of configurations on cycles. We start with an informal description while

the formal definition will be presented in Chapter 2.

Given a necklace with d beads, how many ways can we color it with

two colors, say red and black, such that there are exactly a red beads and

d−a black beads? As a classical counting problem in combinatorics, the

reader can work it out in a few minutes, or find the answer in Section 1.4.2

as well as in many combinatorics books [59].

Informally speaking, a configuration in the Kawasaki-Ising model is

such a coloring. Instead of the above counting problem, here we are

interested in a family of extremal colorings: the ones such that the dis-

tribution of the two colors on beads is as evenly as possible.

This family of colorings, called regular configurations, is one of the

main objects in this part. They are important for many theoretical stud-

ies and practical applications. For example, if we regard the arrangement

of white keys and black keys on a piano keyboard as a configuration, then

it is a regular one (see Section 1.4.3 for more details).

The above example is one motivation for musicians to study regular

configurations, where they are called maximally even sets [16]. Indepen-

dently, they are also rediscovered in symbolic dynamics (combinatorics
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on words), where they are referred to as (cyclic) balanced words, a finite

version of Sturmian words [37].

Informally, this part shows how regular configurations, a natural com-

binatorial object, could be discovered from studying a problem in graph

theory. This problem, called cycle packing, is to calculate the maximum

number of vertex-disjoint cycles in a given digraph. It is an important

problem, and is closely linked with guessing number, one parameter of

graphs studied in this part.

Though they have been extensively investigated in many different

fields, regular configurations are studied here from a new perspective:

characteristic sequences. For each configuration, this sequence provides

a parameter to measure its regularity, and regular configurations are the

ones with maximal regularity.

There are many “nice” properties associated with regular configura-

tions. For example, they are unique, in the sense that there exists one

and only one regular configuration up to rotation for given a and d. They

are self-similar, that is, a configuration is regular if and only its “char-

acteristic configuration” is regular. These properties, as well as many

others, are investigated here from this new perspective.

Despite evenness, there are several other reasons to call regular con-

figurations extremal. One of such reasons can be found in the works

of Jenkinson and his coauthors [37, 34, 36, 35]. Furthermore, they can

be characterized as ground states, the configurations with the minimal

energy in the Kawasaki-Ising model [23]. Two new proofs of this fact

are given in this part: one shows the connections between regularity and

the Hamiltonian; the other shows one dynamic aspect of the Kawasaki-

Ising model, i.e., how non-regular configurations can been evolved to the

regular ones.
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1.1 Background

In this section, we give a brief discussion on the background of some

notation mentioned so far. The first one is for configurations. Here we

mainly follow Biggs’s book [7].

Configurations

In fair broad generality, configurations can be defined as follows.

Definition 1.1.1. Let Λ be a finite set, and G be a graph. A configuration

σ is a map from the vertex set V (G) to the set Λ defined as

σ : V (G) −→ Λ

v −→ σv.

Here σv, also denoted by σ(v), is an element of Λ. The set of all such

configurations will be denoted by Ω(G, Λ), or just Ω when G and Λ are

clear from the context.

The generality of this definition comes from two aspects: the inter-

pretation of the finite set Λ and the restriction on the map. For instance,

if Λ is a set of colors, then the map σ is a vertex coloring, i.e., an assign-

ment of colors to the vertices of G. If we further require that σu 6= σv for

any edge (u, v) in G, then σ is a proper vertex coloring.

Sometimes it is convenient to endow the set Λ with some algebraic

structure. One such structure of special interest is that of a ‘ring’. That

is, we allow two operations, + and ×, on the elements of Λ. In this

case, the configurations σ in Ω(G, Λ) may themselves be combined by

operations derived from the structure of Λ. In fact, let σ and φ be two

such configurations. Then we have

(σ + φ)(v) = σ(v) + φ(v) and (σ × φ)(v) = σ(v) × φ(v).

Thus the set Ω becomes a ring itself. In particular, if Λ contains 0

and 1, then there are two configurations, 0 and 1, such that 0(v) = 0

and 1(v) = 1 for each v in V (G). And it is straightforward to verify
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that 0 and 1 are respectively the identity element for + and the identity

element for × in Ω.

Here we want to stress that configurations have slightly different

meanings in different parts of this part. Roughly speaking, in Section 4.4,

Λ = Z2 and the algebraic structure plays a crucial role. In other place,

Λ = {+1,−1} and the algebraic structure is less important except in

Chapter 3. A more detailed study of configurations is given in Sec-

tion 1.4 where we will focus on the Kawasaki-Ising model, a variant of

the well-known Ising model.

Balanced words

A word is a (possibly infinite) sequence of symbols drawn from a finite

alphabet, say {0, 1}. Any finite contiguous subsequence of a word w is

called a factor.

The set of factors is denoted by L(w) and the set of factors of length

n ≥ 0 is denoted by Ln(w). First studied by Morse and Hedlund [45]

in symbolic dynamics, Sturmian words are aperiodic infinite words over

{0, 1} that are balanced: Denoting the number of occurrences of i (i ∈
{0, 1}) in w by |w|i, then a word w is called balanced if we have |u| =

|v| ⇒ ||u|0 − |v|0| ≤ 1 for all u, v ∈ L(w).

In this thesis, we are mainly interested in finite cyclic words, i.e.,

their first letter and last letter are considered to be adjacent. Therefore

all words mentioned later are cyclic unless otherwise stated.

The standard reference for Sturmian words is Berstel and Séébold’s

chapter in Lothaire’s book [43], which also contains a historical account.

For finite words, one recent survey has been conducted by Berstel and

Karhumäki [6].

Here we propose to study words from the perspective of configura-

tions. More precisely, the alphabet set will be regarded as the spin set

Λ. Therefore, an infinite word is a configuration on the one-dimensional

lattice, while a finite word of length k is a configuration on the cycle Ck.

More details about this connection will be explored in Section 2.2 and
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Chapter 3.

Shift Digraphs

A shift digraph, Γ = Cay(n; {α, β}), is a Cayley digraph of Zn with

two generators, say α and β. To avoid degenerated cases, we will assume

0 < α < β ≤ n−1 throughout this part. More precisely, the vertex set of

Γ is V (Γ) = {0, 1, · · · , n − 1} and the arc set is A(Γ) = Aα

⊔
Aβ, where

Aα = {(i, i + α) (modn) | 0 ≤ i < n} and Aβ = {(i, i + β) (modn) | 0 ≤
i < n}. The arcs in Aα are called type I while the arcs in Aβ are called

type II. They are generated respectively by α and β.

One case of special interest is when α = 1 and α < β < n−1. In this

case, Cay(n; {1, β}) is also written as Shift(n, β), and is called a directed

double loop. Their underlying graphs, the Cayley graphs of Zn with two

generators 1 and β, are also referred to as double loops, cyclic graphs or

chordal rings in the literature [26, 41, 5, 44], and have a vast number of

applications to telecommunication network, VLSI design and distributed

computations [5, 13, 40, 44].

More generally, the underlying graphs of shift digraphs, the Cayley

digraph Zn with two generators {α, β}, are a special family of circulant

graphs. Such graphs have been intensively studied [10, 18, 24, 42, 67].

Note that the cycles in shift digraphs can be coded as configurations.

More precisely, a cycle with length d can be coded as a necklace with d

beads, or a configuration on Cd. As we will see later, this connection is

our first step to study the cycle packing problem by regular configura-

tions.

1.2 Outline

Part I of this thesis investigates regular configurations, both its the-

ory and applications. Besides the current chapter on background and

definitions, it consists of the following three chapters.

Chapter 2 is devoted to regular configurations, the main object in this
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part. After introducing the degree of regularity, we present the formal

definition of regular configurations. The remainder of this chapter is

about a variety of properties of regular configurations, including self-

similarity and symmetry, and the connections to balanced words and

maximally even sets. Some results in this part are contained in the work

of the author [64].

Chapter 3 presents another characterization of regular configurations

by ground states in the Kawasaki-Ising model. This is obtained by two

different approaches. One shows the links between regularity and energy.

The other approach deals with the dynamics aspect of the Kawasaki-Ising

model. As a byproduct, we also obtain stability lemmas, which give us

certain structure information about semi-regular configurations. Some

results in this part have appeared as a joint work of the author and Peter

Cameron in [14], a preliminary version of [15].

Chapter 4, is about the cycle packing problem in shift digraphs. By

regular configurations, we prove that the cycle packing number of a shift

digraph D depends only on its size and girth. This result is also used to

study the guessing number of shift digraphs. Some results in this part

are contained in the author’s work [64, 65] and the results concerning

guessing number will appear in [58], a joint work with Peter Cameron

and Soren Riis.

1.3 Notation and terminology

In this section, we will fix some notation and terminology that will

be used throughout this part. Here we are mainly following [20] and [4].

The set of positive integers, nonnegative integers, integers and real

numbers will be denoted by N
+, N, Z and R respectively.

Given a, b ∈ N, we say a divides b and denote it by a|b if ax = b for

some x ∈ N. In this case, we also say a is a divisor of b. The greatest

common divisor of a, b, denoted by gcd(a, b), is the greatest number t

such that t|a and t|b. Similarly we can define gcd(a, b, c) for a triple of
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positive numbers.

For n ∈ Z, let [n] denote the finite set {0, 1, · · · , n − 1}. We also

associate it with an ordering < in [n] as follows: 0 < 1 < · · · < n − 1.

Given x ∈ N, let (x)n denote the integer in [n] which congruent to x

modulo n. For x ∈ R, let ⌊x⌋ denote the greatest integer ≤ x and ⌈x⌉
denote the least integer ≥ x. Furthermore, let {x} denote x − ⌊x⌋.

The set of Z/nZ of integers modulo n is denoted by Zn. For brevity,

the elements in Zn will be written as {0, 1, · · · , n − 1} as well, which

should cause no confusion with [n] from the context. Alternatively, Zn

is the cyclic group of order n. The multiplicative group of units of the

ring of integers modulo n is denoted by Z
∗
n. For later use, we denote by

F one of the elements in {Z, Zn, N, R}.
A finite sequence of length n in F is a map from the set [n] to F .

Generally, it is written as x0x1 · · ·xn−1 where xi ∈ F . A cyclic sequence

X is a map from Zn to F , and it will also be written as (x0, x1, · · · , xn−1).

Here we adopt the convention that the subscripts of xi in X are calculated

modulo n, the length of X . For any two elements xi, xj in X , their cyclic

distance, denoted by dc(xi, xj), is defined as min{(i − j)n, (j − i)n}.
A shift operator, denoted by τ , is defined as

τX := (x1, · · · , xn−1, x0).

This gives us an equivalence relation on cyclic sequences: X ∼ Y if and

only if X = τ tY for some t ∈ N.

To emphasis the importance of the relative positions of the elements

in sequences, we will regard a sequence, say x0, x1, · · ·xn−1, as a vector

and write it as 〈x0, x1, · · · , xn−1〉. All vectors of length n form a set,

denoted by Fn. If we associate it with an ordering, say <, on F , then

it will induce a lexicographic ordering, denoted by <L, on the vectors

in Fn as follows: for X = 〈x0, x1, · · · , xn−1〉 and Y = 〈y0, y1, · · · , yn−1〉,
X <L Y if there exists an integer k ∈ [0, n − 1] such that xk < yk and

xi = yi holds for 1 ≤ i < k.
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A multiset, usually denoted by Ξ, is formally defined as a pair (A, m)

where A is a set and m maps each element in A to N
+. The set A is called

the underlying set of Ξ. For a ∈ A, m(a) is called the the multiciplity of

a in Xi, i.e., the number of occurrences of a in Ξ. Sometimes, we also

write a multiset Ξ over a set A as {am(a) | a ∈ A}.
Given a cyclic sequence X = (x0, x1, · · · , xn−1) and an element α in

F , α + X and αX are defined as follows:

α+X := (α+x0, α+x1, · · · , α+xn−1) and αX := (αx0, αx1, · · · , αxn−1).

Similarly, these two operations can be defined over sets, vectors and mul-

tisets.

A graph G is an ordered pair (V, E) consisting of a non-empty set V

of vertices and a set E of edges satisfying E ⊆
(

V
2

)
. Thus, the elements of

E are 2-element subsets of V , which are written as uv or (u, v) for some

u, v ∈ V . Unless otherwise stated, all graphs mentioned in this part are

simple. That is, they have no loops and no parallel edges.

Let G = (V, E) and G′ = (V ′, E ′) be two graphs. We call G and G′

isomorphic, and write G ≃ G′, if there exists a bijection φ : V → V ′ such

that (x, y) ∈ E if and only if (φ(x), φ(y)) ∈ E ′ for any pair x, y in V .

We set G ∪ G′ := (V ∪ V ′, E ∪ E ′) and G ∩ G′ := (V ∩ V ′, E ∩ E ′).

If G ∩ G′ = ∅, then G and G′ are disjoint. In this case, G ∪ G′ is the

disjoint union of G and G′, and will be denoted by G ⊔ G′. If V ′ ⊆ V

and E ′ ⊆ E, then G′ is a subgraph of G.

A path is a non-empty graph P = (V, E) of the form

V = {v0, v1, · · · , vk}, E = {v0v1, v1v2, · · · , vk−1vk},

where all vi are distinct. A path is often be presented by the sequence

of its vertices. In other words, we will write the above path as P =

v0v1 · · · vk and say that P is a path from v0 to vk.

If P = v0 · · · vk−1 is a path such that k ≥ 3, then the graph C :=

P + vk−1v0 is called a cycle. To distinguish from paths, we often denote
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a cycle by its cyclic sequences of vertices; the above cycle C might be

written as (v0, v1, · · · , vk−1). The length of a cycle is the number of edges

(or vertices) contained in it; the cycle of length k is called a k-cycle and

denoted by Ck.

Given a path P or a cycle C, if P (resp. C) is a subgraph of G, then

we say that G contains P (resp. C). The length of the shortest cycle

contained in G is called the girth of G and denoted by ω(G).

Given a k-cycle, say Ck = (0, 1, · · · , k − 1), then the interval [i, i + t]

for i, t ∈ [0, k − 1] denotes the set {i, (i + 1)k, · · · , (i + t)k}. Given two

vertices i, j in Ck, its distance is defined to be dc(i, j); and |j − i|L is

defined as the minimum positive number s such that j = (i + s)k. Let

us remark here that generally we do not have |i − j|L = |j − i|L.

A directed graph (or just digraph) D is an ordered pair (V, A) consist-

ing of a non-empty set V of vertices and a set A of arcs, where each of

them is an ordered pair of distinct vertices. If a = (u, v) is an element of

A, then we say that u is the tail of a and v is the head of a. The arc a is

said to be directed from u to v.

In general, the terminology for directed graphs is similar to that of

graphs. For example, a directed path is a sequence of distinct vertices

v0v1 · · · vk such that there is an arc (vi, vi+1) for all i ∈ [0, k−1]. A digraph

is acyclic if it does not contain any directed cycle. Given a digraph D,

the maximum number of vertex-disjoint (directed) cycles contained in D,

denoted by ν0(D), is called the cycle packing number of D.

1.4 Configurations

This section is intended to provide a detailed introduction to the

Kawasaki-Ising model. We begin with a brief discussion on the Ising

model on graphs, a classical model of statistical mechanics. namely the

Ising model. For more backgrounds, we refer the reader to Welsh [62].

In the general Ising model on a graph G, each vertex i of G is assigned
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a spin, denoted by σi or σ(i), which is either +1 (called ‘up’) or −1 (called

‘down’). To simplify notation, we also write the up and the down spin

respectively as + and −. An assignment of spins to all the vertices of G

is called a configuration or a state, and is denoted by σ.

For each edge e = (u, v) of G, we associate it with an interaction

energy J1, which is constant. It measures the strength of the interaction

between neighboring pairs of vertices. When there is no effect from the

external field, the Hamiltonian H1(σ) for a state σ = (σ0, · · · , σn−1) is

defined as

H1(σ) := J1

∑

(u,v)

σuσv. (1.1)

Here we have one ore assumption that J1 is a positive constant. This

means the interactions between adjacent spins are antiferromagnetic.

1.4.1 The Kawasaki-Ising model

In this subsection we will study a variant of the Ising model, the

Kawasaki-Ising model. As a fixed-parameter version of the Ising model,

it is also called the conserved-order-parameter (COP) Ising model, or

Ising gases model, in the literature [48].

The number of vertices in the up spin state in a configuration σ,

denoted by |σ|+, is called the weight of σ. The Kawasaki-Ising model

consists of the configurations σ such that |σ|+ = a for a given number

a ∈ N.

In this part we are mainly interested in the Kawasaki-Ising model on

the cycle graph Cd. All configurations σ on Cd with weight a form a

set, denoted by KI(a, d). Throughout the part, we will also denote d− a

by b. Then (a, b) provides another set of parameters for the Kawasaki-

Ising model on Cd. Furthermore, sometimes we also denote KI(a, d) by

CONF(a, b).

In other words, a configuration σ in KI(a, d) is a map from V (Cd) to

the set of two spins {+,−} such that |σ|+ = |σ−1(+)| = a. Here V (Cd) =
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{0, · · · , d − 1} and the vertices are consecutively labelled. Then any

configuration σ can be represented as the cyclic sequence (σ0, · · · , σd−1),

which is called the representing sequence of σ.

Since σi is regarded as an element in a cyclic sequence of length d, the

subindex of σi is calculated modulo d. In other words, we will write σi

instead of σ(i)d
for i 6∈ {0, 1, · · · , d−1} when this is clear for the context.

Similar conventions will be used for other cyclic sequences.

Note that the ordering < defined in [d−1] induces an ordering on the

vertices of Cd, i.e., 0 < 1 < · · · < d − 1. By this ordering, the vertices in

the down spin state of any configuration σ ∈ KI(a, d) can be enumerated

as {B0 < B1 < · · · < Bb−1}, where Bj is the (j + 1)-th vertex in the

down spin.

Denote the number of vertices between Bi and Bi+1 by xi. That

means

xi = (B(i+1)b
− Bi − 1)d.

Then a configuration σ gives a unique cyclic sequence X = (x0, x1 · · · , xb−1),

called the characteristic sequence of σ. Let Xt = τ tX for t ∈ [b − 1]. It

is clear that each configuration σ is uniquely determined by the pair

(Bi,Xi). Note that if X = (x0, · · · , xb−1) is a characteristic sequence for

a configuration σ in CONF(a, b), then

x0 + x1 + · · · + xb−1 = a. (1.2)

For the moment, we will content ourselves with viewing the Kawasaki-

Ising model as a combinatorial object, while a generalized concept of the

Hamiltonian will be introduced in Chapter 3.

1.4.2 Elementary properties

Some elementary properties of the configurations in the Kawasaki-

Ising model are studied in this subsection, including the dual operator,

the shift operator and a counting result.
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For a configuration σ on Cd, its dual configuration σ∗ is defined as

the state on Cd such that σ∗(i) = −σ(i) for i ∈ [0, d−1]. In other words,

σ∗ is obtained from σ by switching the spin on each vertex of Cd. Note

that for σ ∈ KI(a, d), its dual σ∗ belongs to KI(b, d). Furthermore, we

know that (σ∗)∗ = σ holds for any configuration σ ∈ KI(a, d).

Another important operator acting on σ is the shift operator τ , which

is defined as follows.

Definition 1.4.1. Given a configuration σ in KI(a, d), τ(σ) is a config-

uration on Cd defined as:

τ(σ)(i) := σ(i+1)d
∀ i ∈ [0, d − 1].

In other words, τ(σ) = (σ1, · · · , σd−1, σ0) can be obtained from σ =

(σ0, σ1, · · · , σd−1) by a shift. One direct observation is that τ(σ) belongs

to KI(a, d) for any σ in KI(a, d). Furthermore, τ induces an equivalence

relationship in KI(a, d). That is,for any two configurations, σ ∼ σ′ if

σ = τ t(σ′) for some t ∈ [1, d]. Here τ t means applying the shift operator

t times.

The equivalence class of σ, denoted by [σ], is called the shift orbit of

σ. Let KI(a, d) be the set of all equivalence classes in KI(a, d). Then

[σ] ∈ KI(a, d). Intuitively, KI(a, d) consists of the labelled configurations

while KI(a, d) consists of the unlabelled ones.

We end this subsection with a discussion on the following problem:

what is the size of KI(a, d) given two integer parameters (a, d) such that

0 ≤ a ≤ d?

Note that |KI(a, d)| =
(

d
a

)
since there are

(
d
a

)
ways of choosing a

vertices from V (Cd) to be the down spins. Let Φ be the group generated

by the shift operator τ on KI(a, d). In other words, Φ is isomorphic to

Zd, which acts naturally on the states in KI(a, d) as follows:

Zd × KI(a, d) → KI(a, d),

(t, σ) 7→ τ t(σ).
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Note that |KI(0, d)| = |KI(d, d)| = 1 implies |KI(0, d)| = |KI(d, d)| =

1.

Let ϕ be the Euler function. That is, ϕ(d) is the number of integers

k in [1, d] such that gcd(k, d) = 1. The following theorem is a well known

result in Pólya counting theory; a proof appears in pp.529–530 in [59].

Proposition 1.4.1. For 1 ≤ a ≤ d − 1, we have:

|KI(a, d)| =
1

d

∑

k|(d,a)

ϕ(k)

(
d/k

a/k

)
.

�

When a and d are relatively prime, we have the following simplified

form:

|KI(a, d)| =
1

d

(
d

a

)
.

Clearly, we have |KI(1, d)| = |KI(d − 1, d)| = 1. Note that the above

formula shows that the set KI(a, d) could be very large.

1.4.3 Other visualizations

By interpreting spins in different settings, we can obtain some other

visualizations to represent the configurations in KI(a, d), which is also be

denoted by CONF(a, b).

Let T be a map defined as: T (+) = 1 and T (−) = 0. With abuse of

notation, for each configuration σ in KI(a, d), we define T (σ) as a word

ω over alphabet {0, 1} such that ω = T (σ0)T (σ1) · · ·T (σd−1). Then T (σ)

belongs to Wa,d, the set defined as follows:

Wa,d := {w ∈ {0, 1}d | |w|1 = a}.

In fact, T is a bijection and by which we can virtually identify Wa,d

with KI(a, d). Thus, we obtain another visualization to represent the

configurations in KI(a, d). We should notice that words are a class of

objects that have been intensively researched in recent years and have a
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variety of applications. For more background on words, we recommend

Lothaire’s book [43].

Another visualization is necklaces, where a configuration in CONF(a, b)

is a cyclic arrangement of a red beads and b black beads. Given a state

σ ∈ KI(a, a+ b), by putting a bead on each vertex i in Ca+b and coloring

it red or black, corresponding to whether σi = +1 or σi = −1, we can

associate σ with a necklace. Similarly, from a necklace in CONF(a, b),

we can also construct a state in KI(a, d). Note that two necklaces are

the same if we can rotate one to another. In this setting, an equivalence

class of necklaces is a shift orbit in KI(a, d).

One variant of the above visualization is using polygons, that is, a

configuration in CONF(a, b) is a polygon formed by two different type of

sides, say type I and type II. Generally, they are distinguished by length.

From a necklace, we can replace each red (resp. black) bead by a side of

type I (resp. II) to form a polygon. This visualization plays an important

role in Chapter 4.

There is a visualization arising in compute graphics to answer the

following problem: how to draw a zig-zag line from (0, 0) to (a, b) on the

screen to approximate the “real” line through these two points [11]. We

should notice that the screen is represented by the integer lattice Z
2, and

one step from (x, y) is either (x + 1, y) (x step) or (x, y + 1) (y step).

Example 1. Some visualizations of the configuration 0101101011 in

CONF(6, 4).

1 2

3

4

5

67

8

9

10

Figure 1.1: A polygon
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Figure 1.2: A necklace
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1 2 3 4 5 6

Figure 1.3: A line
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Figure 1.4: Ising Model

We end this subsection with a brief discussion about the connections

between musical scales and configurations. For more background and

references concerning musical scales, see [17, 16].

C CBAGFED

Figure 1.5: Piano keyboard

D

C

E

FG

A

B

Figure 1.6: CONF(7,5)

Informally speaking, in musical scales, we are interested in how the

diatonic set (the white keys on the piano) is embedded in the chromatic

scale (all the keys on the piano). Since the arrangement of keys on

the piano is periodic, this problem can be reformulated as to arrange 7

white beads (white keys) and 5 black beads (black keys) in a circle. See

Figure 1.6 for the configuration in CONF(7, 5) that corresponds to the

arrangement of the keys on the piano. By this correspondence, many

problems studied in musical scales can be studied in the framework of

configurations as well.
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Chapter 2

Regular Configurations

In this chapter we study regular configurations. Roughly speaking,

the distribution of up spins and down spins in regular configurations is

as evenly as possible. Furthermore, we also investigate some properties

of these two families of configurations.

2.1 Regularity

In this section, the formal definitions of regular configurations is pre-

sented after introducing the degree of regularity.

When a = 0, there is only one configuration in CONF(a, b): the state

on Ca+b with all vertices associated with down spins or the necklace

formed by b black beads. To avoid this trivial case, in the remainder of

this chapter, we will assume a > 0 and b > 0 unless explicitly stated

otherwise.

Recall that any configuration σ in CONF(a, b) is uniquely determined

by a pair (B0,X ), where B0 is the first vertex in the down spin (under

the ordering < on [a+ b−1]) and X is the characteristic sequence. Then

σ in CONF(a, b) is called r-regular for some r ∈ [0, b] if

|xi + · · ·+ xi+s−1 − s
a

b
| < 1 (2.1)
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for all i ∈ [0, b − 1] and s ∈ [1, r]. Here we use the convention that all

configurations are 0-regular and a configuration is at most b-regular.

Note that σ is r-regular for some r ≥ 2 only if σ is (r − 1)-regular.

Therefore the maximal r such that σ is r-regular but not (r + 1)-regular

will be referred to as the degree of regularity and denoted by ρ(σ). Note

that by definition 0 ≤ ρ(σ) ≤ b holds for any configuration σ ∈ CONF(a, b).

A configuration σ is called semi-regular if ρ(σ) > 0. In particular, we

have the following

Definition 2.1.1. A configuration σ is called regular if ρ(σ) = b. In

other words, we have

|xi + · · ·+ xi+s−1 − s
a

b
| < 1 (2.2)

for all i ∈ [0, b − 1] and s ∈ [1, b].

The left side in (2.2) measures the deviation between two quantities:

the first one, xi + · · ·+xi+s−1, is the number of up spins between Bi and

Bi+s; the second one, sa/b, is the expected number of up spins between

Bi and Bi+s in a random configuration in CONF(a, b). The smaller value

of this deviation (or discrepancy as it is sometimes called) would imply

the configuration is closer to the “random” one.

By (1.2), the system of inequalities in (2.2) can be simplified as

a

b
k − 1 < xi + xi+1 + · · · + xi+k−1 <

a

b
k + 1 (2.3)

for all i ∈ [0, b−1] and k ∈ [1, ⌊b/2⌋]. Denote this system of inequalities by

Reg(a, b). Then a configuration σ is regular if and only if its characteristic

sequence satisfies Reg(a, b). For simplicity, in the remainder of Part I we

shall denote ⌊a
b
⌋ by ⊥ and ⌈a

b
⌉ by ⊤.

Now we proceed to study some elementary properties of regular con-

figurations.

First note that for any configuration σ ∈ KI(a, d), ρ(σ) = ρ(τ(σ)).

Furthermore, σ is regular if and only if τ(σ) is regular. Therefore the
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degree of regularity is invariant under the shift operator, and hence it is

also well defined on KI(a, a + b).

Since ρ(σ) is invariant under the shift operator, in the following dis-

cussion we will assume B0 = 0 without loss of generality. By this con-

vention, there is a one to one correspondence between configurations in

CONF(a, b) and their characteristic sequences. In the necklace visualiza-

tion, a configuration σ is represented by the following cyclic sequence:

σ = (B0, R, · · · , R︸ ︷︷ ︸
x0

, B1, R, · · · , R︸ ︷︷ ︸
x1

, · · · , Bb−1, R, · · · , R︸ ︷︷ ︸
xb−1

). (2.4)

where xi is the number of red beads between black beads Bi and Bi+1.

Note that Bj denotes the j-th vertex in the down spin in the Kawasaki-

Ising model, but here it denotes the j-th black bead, with abuse of no-

tation.

This gives us another construction of configurations. We can put b

black beads in a round and consecutively label them from 0 to b − 1.

Then we put xi red beads between each pair of black beads Bi and Bi+1.

The following lemma provides us with a useful criterion for non-

regular configurations.

Lemma 2.1.1. Given a configuration σ in CONF(a, b) such that a ≥ 2,

if ρ(σ) = r < b, then there exist i and j such that Bi < Bj and

| (xi + · · ·+ xi+r) − (xj + · · ·+ xj+r) | ≥ 2.

Proof. Denoting the sum xj +· · ·+xj+r by Xr
j , then from the assumption

ρ(σ) = r < b we can assert that | Xr
i − (r + 1)a

b
| ≥ 1 holds for some i.

Now we shall establish the lemma for the case Xr
i ≥ (r + 1)a

b
+ 1 as a

similar argument works for the other case Xr
i ≤ (r + 1)a

b
− 1.

Since Xr
i ≥ (r + 1)a

b
+ 1, it suffices to show that

(xj + · · ·+ xj+r) − (r + 1)
a

b
≤ −1

24



holds for some j: Indeed, if the above inequality fails for all j, that is

Xr
j ≥ (r + 1)a/b holds for all j ∈ [0, b − 1], then we have

b−1∑

j=0

Xr
j ≥ b

(r + 1)a

b
+ 1 = (r + 1)a + 1

in view of Xr
i ≥ (r + 1)a

b
+ 1, a contradiction to

b−1∑

j=0

Xr
j =

b−1∑

j=0

(xj + · · ·+ xj+r) = (r + 1)(x0 + · · · + xb−1) = (r + 1)a.

Now we introduce two useful parameters associated with a configura-

tion.

Definition 2.1.2. Given a configuration σ ∈ CONF(a, b) with its char-

acteristic sequence X = (x0, x1, · · · , xb−1). For 1 ≤ j ≤ b, we put

µj(σ) := min
06i6b−1

{xi + xi+1 + · · ·+ xi+j−1}; (2.5)

ξj(σ) := max
06i6b−1

{xi + xi+1 + · · ·+ xi+j−1}. (2.6)

Here we adopt the convention that µ−1 = µ0 = 0 and ξb+1 = a − 1.

Note that µj(σ) is the minimal number of up spins among j + 1

consecutive down spins in σ, which provides another characterization of

regularity.

Lemma 2.1.2. σ is regular if and only if 1 + µj(σ) > (aj)/b for −1 6

j 6 b.

Proof. “⇒” This direction can be verified directly from the inequalities

in Reg(a, b).

“⇐” In this direction, the left inequalities in Reg(a, b) are easy. From

the assumptions and the fact x0 + x1 + · · · + xb−1 = a, we have

xi + xi+1 + · · ·+ xi+k−1 6 a − µb−k < a − (
a

b
(b − k) − 1) = 1 +

a

b
k
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for all 0 ∈ [0, b−1] and k ∈ [1, 1+ ⌊b/2⌋], which completes the proof.

2.2 Balanced words

In this section, we shall establish the relation between regular configu-

rations and balanced words. Roughly speaking, a word is a configuration

written as a cyclic sequence, although it is more common to write 1 for

up spin and 0 for down spin. As we see in Section 1.4.3, the set Wa,d

formed by the words with length d and containing exactly a 1’s is virtu-

ally identified with KI(a, d) by the canonical isomorphism T .

Given a word w = w0w1 · · ·wd−1 ∈ {0, 1}d, the cyclic shift τ on it is

defined as τ(w) := w1 · · ·wd−1w0. A cyclic subword of w is any length-q

prefix of some τ i−1(w) for i and q in [1, d].

Definition 2.2.1. A word w is called balanced if for any two of its

cyclic subwords z and z′ with the same length, we have ||z|i − |z′|i| ≤ 1

for i ∈ {0, 1}.

Now a configuration is called balanced if its representing cyclic se-

quence is a balanced word. Recall that [i, i + t] denotes the segment

{i, (i+1)d, · · · , (i+ t)d} in V (Cd). For any configuration σ on Cd, a seg-

ment of σ, denoted by σ[i,i+t], is the word formed by σiσ(i+1)d
· · ·σ(i+t)d

.

Let σ−1
[i,i+t](s) denote σ−1(s) ∩ [i, i + t] for s = ±1. In other words,

σ−1
[i,i+t](+1) contains the vertices in [i, i + t] that are associated with up

spins. Note that any cyclic subword can be realized as a segment of the

configuration. This implies directly the following

Lemma 2.2.1. A configuration σ in KI(a, d) is balanced if and only if

| |σ−1
[i,i+t](s)| − |σ−1

[j,j+t](s)| | ≤ 1

holds for any s ∈ {+1,−1}, i, j ∈ [0, d − 1] and 1 ≤ t ≤ d − 1.

�
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Given a configuration σ in CONF(a, b), its dual configuration σ∗ can

be regarded as the state obtained from σ by switching all its spins. In the

Kawasaki-Ising model, this means σ∗(i) = −σ(i) for i ∈ [0, d − 1]. Note

that σ∗ in CONF(b, a) and (σ∗)∗ = σ. Since |σ−1
[i,i+t](−1)| = |σ∗−1

[i,i+t](+1)|
holds for any i and t, by the above lemma we have

Corollary 2.2.2. A configuration σ is balanced if and only if its dual σ∗

is balanced. �

Now we are proceed to establish the connection between regularity

and balance.

Theorem 2.2.3. A configuration σ in CONF(a, b) is regular if and only

if it is balanced.

Proof. Since the dual operator preserves balance and regularity, in this

proof we will assume a ≥ b for simplicity.

“ ⇐ ”: This direction is straightforward. For a balanced configuration

σ, we assume, for the sake of contradiction, that ρ(σ) = p < b. By

Lemma 2.1.1,

(xj + · · ·+ xj+p−1) − (xi + · · · + xi+p−1) ≥ 2

holds for some i and j. Now consider the fragments

u = 0i, 1, · · · , 1︸ ︷︷ ︸
xi

, 0i+1, · · · , 0i+p−1, 1, · · · , 1︸ ︷︷ ︸
xi+p−1

, 0i+p

and

v = 0j, 1, · · · , 1︸ ︷︷ ︸
xj

, 0j+1, · · · , 0j+p−1, 1, · · · , 1︸ ︷︷ ︸
xj+p−1

, 0j+p

in σ, and construct a new fragment v′ by choosing the first |u| + 1 bits

from v and deleting 0j. Then we have |u| = |v′| and |u|0 − |v′|0 = 2, a

contradiction as required.

“ ⇒ ”: From Lemma 2.2.1, if σ is not balanced, then there exist i, j
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in Zd and t ∈ [1, d − 1] such that

| |σ−1
[i,i+t](−1)| − |σ−1

[j,j+t](−1)| | ≥ 2.

Let u and v denote respectively the segments σ[i,i+t] and σ[j,j+t]. Putting

p := |u|0 and q := |v|0, then u can be schematically represented as

u = 1, · · · , 1︸ ︷︷ ︸
ǫ1

, 01, · · · , 0p, 1, · · · , 1︸ ︷︷ ︸
ǫ2

with 0 ≤ ǫ1 ≤ x0 and 0 ≤ ǫ2 ≤ xp. Similarly, we have

v = 1, · · · , 1︸ ︷︷ ︸
ǫ′
1

, 0l, · · · , 0l+q−1, 1, · · · , 1︸ ︷︷ ︸
ǫ′
2

with 0 ≤ ǫ′1 ≤ xl−1 and 0 ≤ ǫ′2 ≤ xl+q−1. Since |u| = |v| = t + 1, clearly

we have

ǫ1 +x1 + · · ·+xp−1 + ǫ2 +p = ǫ′1 +xl + · · ·+xl+q−2 + ǫ′2 + q = t+1. (2.7)

Assume without loss of generality that p − q ≥ 2 holds. Then from

equation (2.7) and the constraints of ǫ and ǫ′, this implies

(xl−1 + xl + · · ·+ xl+q−1) − (x1 + · · ·+ xp−1) ≥ 2. (2.8)

On the other hand, since σ is regular, we have

(xl−1 + · · ·+ xl+p−1) − (x1 + · · ·+ xq−1) < (q + 1)
a

b
+ 1 − [(p − 1)

a

b
− 1]

= (q + 2 − p)
a

b
+ 2

≤ 2,

a contradiction as required. Note that in the last step of the above

inequalities we also use the assumption that q + 2 ≤ p.

By Theorem 2.2.3, we have the following two further properties of
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regular configurations: the first one derives from Corollary 2.2.2 and the

second one follows from the fact that the balanced word with a given

number of 1s and 0s is unique (up to shifting) [37].

Theorem 2.2.4. A configuration σ in CONF(a, b) is regular if and only

if its dual configuration σ∗ is regular. �

Theorem 2.2.5. The regular configurations in CONF(a, b) are unique

up to shifting. �

Let us remark that there exist many well well-known algorithms to

construct regular configurations [11, 23].

2.3 Properties

In the last section of this chapter, we collect some properties of regular

configurations.

2.3.1 Self-similarity

Recall that for a given configuration σ ∈ CONF(a, b), its character-

istic sequence X = (x0, · · · , xb−1) is given by xi = (B(i+1)b
−Bi − 1)(a+b)

for i ∈ [0, b − 1]. Another convention we have adopted is ⊥ = ⌊a
b
⌋ and

⊤ = ⌈a
b
⌉.

Similarly to the definition of balance over {0, 1}, a word w over {⊤,⊥}
is called balanced if and only if ||z|⊤ − |z′|⊤| ≤ 1 for any two cyclic

subwords z and z′. Here |z|⊤ and |z|⊥ denote respectively the number

of the occurrences of ⊤ and ⊥ in z. Note that if ⊤ = ⊥, then all words

over {⊤,⊥} are balanced.

The following theorem gives another characterization of regular con-

figurations.

Theorem 2.3.1. A configuration σ ∈ CONF(a, b) is regular if and only

if its characteristic sequence is a balanced word over {⊤,⊥}.
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Proof. Clearly, if σ is regular, then its characteristic sequence is a word

over {⊤,⊥}, which will be denoted by w in this proof, i.e., w = x0x1 · · ·xb−1.

For any two cyclic subwords z, z′ of length s in w, we know

z = xixi+1 · · ·xi+s−1 and z′ = xjxj+1 · · ·xj+s−1

for some i, j ∈ [0, b − 1], where the subscripts are calculated modulo b.

Since

||z|⊤ − |z′|⊤| = |(xi + xi+1 + · · ·+ xi+s−1) − (xj + xj+1 + · · · + xj+s−1)|,

we can assert that ||z|⊤ − |z′|⊤|| ≤ 1 holds for each pair of subwords of

length s if and only if we have ξs −µs ≤ 1. As this assertion holds for all

s ∈ [1, b], the proof is completed.

For regular configurations, their characteristic configurations are well

defined. Together with Theorem 2.2.3, the above theorem has the fol-

lowing corollary.

Corollary 2.3.2. A configuration in CONF(a, b) is regular if and only

if its characteristic configuration is regular. �

2.3.2 Symmetry

In this section, we are going to study the symmetry of the regular

configuration in CONF(a, b).

Recall that the cyclic group generated by the shift operator τ on

CONF(a, b) is denoted by Φ. For any σ ∈ CONF(a, b), let Φσ denote the

stationary subgroup of Φ whose elements fix σ, and let Orb(σ) be the

orbit of σ under the action of Φ. In other words, we have

Φσ = {τ t | τ t(σ) = σ and 0 ≤ t ≤ a + b − 1},

and

Orb(σ) = {τ t(σ) | 0 ≤ t ≤ a + b − 1}.
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Let κ be the minimal positive integer such that τκ(σ) = σ. Then

Φσ is a cyclic subgroup of Za+b generated by κ. Furthermore, we have

|Φσ| = (a + b)/κ and |Orb(σ)| = κ.

The symmetry degree of a configuration σ, χ(σ), is defined as |Φσ|. By

this definition, χ(σ) ∈ [1, a+b] holds for any σ ∈ CONF(a, b). Indeed, by

Lagrange’s Theorem, it is not difficult to see that χ(σ) ≤ gcd(a, b) holds

for any configuration σ ∈ CONF(a, b). Hence we have the following

Definition 2.3.1. A configuration σ in CONF(a, b) is called symmetric

if χ(σ) = gcd(a, b).

In other words, a configuration is called symmetric if it has the max-

imal possible symmetry degree.

Example 2. Figure 1.1 and Figure 2.2 show two symmetric configura-

tions for CONF(6, 4). On the other hand, Figure 2.1 presents an ex-

ample of nonsymmetric configurations. Note that the configuration in

Figure 2.2 is symmetric but not regular.
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Figure 2.1: Nonsymmetric
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Figure 2.2: Symmetric

As Fig 1.1 also presents a symmetric configuration in CONF(6, 4), the

above example shows that the symmetric configurations in CONF(a, b)

are generally not unique, even under the action of τ . Therefore, symme-

try does not imply regularity. But the converse is true, as the following

theorem implies.

Theorem 2.3.3. Regular configurations are symmetric.
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Proof. We shall prove χ(σ) = gcd(a, b) for the regular configuration σ ∈
CONF(a, b) by a straightforward induction on b.

Step 1: The base case is a = bt, which includes b = 1, is straight-

forward as the regular configuration σ in CONF(a, b) is characterized by

(t, · · · , t).

Step 2: Now assume the theorem fails for some CONF(a, b) and

let b be minimal such that the regular configuration σ in CONF(a, b)

satisfies |Φσ| < gcd(a, b). From step 1 we have a = bt + r for some

t ∈ N and integer 0 < r < b. Denoting the characteristic sequence of σ

by X = {x0, · · · , xb−1} , then the configuration σ′ with the characteristic

sequence X−t is a regular configuration in CONF(r, b) and χ(σ) = χ(σ′).

Since gcd(a, b) = gcd(r, b), σ′ is not symmetric, a contradiction to the

minimality of b.

One direct consequence of the above theorem is the following corol-

lary, which counts the number of regular configurations in CONF(a, b).

Corollary 2.3.4. For a regular configuration σ in CONF(a, b), there are

exactly (a + b)/ gcd(a, b) configurations in Orb(σ). �

Since gcd(a, b) = gcd(a, a + b), the above result shows that there are

exactly d/ gcd(a, d) regular configurations in KI(a, d), and they form a

unique shift orbit in KI(a, d).

2.3.3 Maximally even sets

In this section, we shall show the equivalence between regular config-

urations and maximally even sets (ME), a concept in musical scales that

has been intensively studied [17].

Given a configuration σ ∈ CONF(a, b) and its characteristic sequence

(x0, x1, · · · , xb−1), the spectrum of σ is defined as Ξ := {Ξ1, Ξ2, · · · , Ξb−1},
where Ξr (1 ≤ r ≤ b) is a multiset defined as

Ξr := {xi + xi+1 + · · ·+ xi+r−1 | 0 ≤ i ≤ b − 1}.
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Let Ξr be the underlying set of Ξr. Then we have the following

definition of ME, which is slightly different from the original one [17],

but they are essentially the same.

Definition 2.3.2. Let Ξ be the spectrum of σ. Then σ is called maxi-

mally even if and only if each Ξr (1 ≤ r ≤ b) contains either one integer

or two consecutive integers.

Note that, for 1 ≤ r ≤ b, µr and ξr, which are given as Definition 2.1.2,

belong to Ξr. From the above definition, if σ is maximally even, ξr−µr ≤
1 for 1 ≤ r ≤ b. This leads to the following theorem.

Theorem 2.3.5. A configuration σ in CONF(a, b) is regular if and only

if it is maximally even.

Proof. “⇒” If σ is regular, then its characteristic sequence satisfies Reg(a,b).

This implies

µr, ξr ∈
(ar

b
− 1,

ar

b
+ 1
)

for 1 ≤ r ≤ b.

Therefore ξr − µr ≤ 1, since both of them are integers. This means that

Ξr contains either an integer or two consecutive integers.

“⇐” We will prove this direction by contradiction. If σ is not regular,

then from Lemma 2.1.1, there exists r ∈ [1, b] such that ξr − µr ≥ 2, a

contradiction to the fact that σ is maximally even.
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Chapter 3

Ground States

In this chapter, we show a connection between the energy of a con-

figuration and its degree of regularity. Loosely speaking, the higher its

degree of regularity, the lower its energy. This fact leads to a charac-

terization of regular configurations by ground states, the states with the

minimum energy. Furthermore, it also presents a new interpretation of

balanced words.

In the second part of this chapter, we study the dynamics of the

Kawasaki-Ising model. Roughly speaking, for any non-regular configura-

tions, a particular path in the state space that connects it to a regular

configuration is investigated. To this end, we develop some stability lem-

mas for the structure of non-regular configurations. One byproduct here

is another proof of the equivalence between regular configurations and

ground states.

3.1 Hamiltonian

In this section, we introduce the Hamiltonian on the Kawasaki-Ising

model, which can be regarded as a generalization of of that on the Ising

model.

For the Ising model on Cd, the Hamiltonian for a given configuration
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σ = (σ0, · · · , σd−1) is defined in Section 1.4 as

H1(σ) = J1

d−1∑

i=0

σiσi+1. (3.1)

Here J1 is a positive constant, i.e., the interactions between the neigh-

boring spins are antiferromagnetic.

But for the Kawasaki-Ising model, we consider long-range interac-

tions as well. That is, the actions between σi and σi+j for all j. To

measure such interactions, we introduce the generalized Hamiltonian Hp

as follows.

Definition 3.1.1. For 1 ≤ p ≤ d, the p-th Hamiltonian component Hp

on a configuration σ in KI(a, d) is defined as

Hp(σ) := Jp

d−1∑

i=0

σiσi+p. (3.2)

Note that when p = 1, Hp(σ) is exactly the Hamiltonian of σ when

it is regarded as the Ising model. In this chapter, we will let

Jp =

(
1

2d

)p

for p ∈ [1, d]. Actually , as shown in [22, 23], it suffices to let Jp satisfy

certain “convexity” conditions to define the Hamiltonian in this model.

For this thesis, we fix these parameters as above for simplicity.

Definition 3.1.2. The Hamiltonian of a configuration σ, denoted by

H(σ), is defined as the sum of its p-th Hamiltonian components:

H(σ) :=
d∑

p=1

Hp(σ). (3.3)

A ground state in KI(a, d) is a configuration that has the minimum

Hamiltonian over all configurations in KI(a, d). Note that Hamiltonian
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induces an pre-ordering on the configurations in KI(a, d). More precisely,

if H(σ) ≥ H(φ) for σ and φ in KI(a, d), then we say σ �E φ. It is clear

that �E satisfies transitivity and σ �E σ for any σ ∈ KI(a, d). But

antisymmetry does not always hold, as the following example shows.

Example 3. Consider two configurations σ, φ ∈ KI(4, 12), where σ−1(+1) =

{0, 1, 4, 6} and φ−1(+1) = {0, 1, 3, 7}. Clearly H(σ) = H(φ). But σ and

φ are not equivalent, even under the action of shifting and reflecting.

We can give another interpretation of the pre-ordering �E . For a

configuration σ, consider the Hamiltonian vector associated with it as

follows.
~H(σ) = 〈H1(σ), · · · , Hd(σ)〉.

Then �E is induced by the lexicographic ordering of R
d. More precisely,

we have the following lemma.

Lemma 3.1.1. For any two configurations σ and φ in KI(a, d), σ ≻E φ

if and only if there exists an integer l ∈ [1, d] such that

Hi(σ) = Hi(φ) for 1 ≤ i ≤ l − 1 and Hl(σ) > Hl(φ). (3.4)

Proof. From

|
d−1∑

i=0

σiσi+p| ≤ d and Jp =

(
1

2d

)p

,

we have

|Hp| ≤
1

2

(
1

2d

)p−1

(3.5)

holds for any p ∈ [1, d]. Therefore,

|
d∑

p=l+1

Hp| < Jl =

(
1

2d

)l

(3.6)

holds for any l ∈ [1, d]. This implies the lemma.

Now we associate each configuration σ in KI(a, d) with a new family
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of parameters, which can used to replace the role of Hp in characterizing

≻E but is better for calculations.

For each integer p ∈ [1, d], let Np(σ) consists of the ordered pair

(i, i + p) such that σi = σi+p = −1. Formally, we have

Np(σ) = {(i, i + p) | 0 ≤ i < d, σi = σi+p = −1}.

Furthermore, for each integer p ∈ [1, d], let Ip(σ) be defined as

Ip(σ) :=
1

4

d−1∑

i=0

(1 − σi)(1 − σi+p). (3.7)

Note that (1 − σi)(1 − σi+p) is equal to 4 when σi = σi+p = −1 and

is equal to 0 in the other cases. Therefore Ip(σ) counts the number of

pairs (σi, σi+p) such that σi = σi+p = −1. In other words, we have the

following

Lemma 3.1.2. For any integer p ∈ [1, d], we have Ip(σ) = |Np(σ)|. �

Given a configuration σ ∈ CONF(a, b), p ∈ [1, a + b] and t ∈ [1, b],

let ϑt
p(σ) denote the multiplicity of p in t + Ξt(σ). Then the following

lemma presents another formula to calculate Ip(σ) by its spectrum.

Lemma 3.1.3. Given a configuration σ ∈ CONF(a, b) and p ∈ [1, a+ b],

we have

Ip(σ) =

b∑

i=1

ϑi
p(σ).

Proof. The proof is straightforward. Let d = a + b. If σj = σ(j+p)d
= −1

for some j ∈ [0, d − 1], then σj = Bt while σ(j+p)d
= B(t+s)b

for some

t ∈ [0, b − 1] and s ∈ [1, b − 2]. In other words,

p = s + (xt + xt+1 + · · ·+ xt+s−1).

Therefor we have

p ∈ s + Ξs(σ).
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On the other hand, for each occurrence of p in s + Ξs(σ), we can find a

different pair (j, j + p) such that σj = σ(j+p)d
= −1. This completes the

proof.

Lemma 3.1.4. For any integer p ∈ [1, d] and σ ∈ KI(a, d), we have

d−1∑

i=0

σiσi+p = a + 4Ip(σ) − 3b, (3.8)

where b = d − a.

Proof. It is clear that
d−1∑

i=0

σi = a − b.

Together with equation (3.7), we have

4Ip(σ) =

d−1∑

i=0

(1 − σi)(1 − σi+p)

=
d−1∑

i=0

(1 − σi − σi+p) +
d−1∑

i=0

σiσi+p

= (a + b) − 2
d−1∑

i=0

σi +
d−1∑

i=0

σiσi+p

= (3b − a) +
d−1∑

i=0

σiσi+p.

Rearrange the items in both sides give us (3.8).

From the above lemma and the fact that Jp is a positive constant,

we can assert that for any two configurations σ, φ ∈ KI(a, d) and any

p ∈ [1, d], Hp(σ) > Hp(φ) holds if and only if Ip(σ) > Ip(φ) holds.

Together with Lemma 3.1.1, this assertion implies the following useful

criterion.

Corollary 3.1.5. For any two configurations σ and φ in KI(a, d), σ ≻E φ
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if and only if there exists an integer l ∈ [1, d] such that

Ii(σ) = Ii(φ) for 1 ≤ i ≤ l − 1 and Il(σ) > Il(φ).

�

In other words, let

I(σ) := 〈I1(σ), · · · , Id(σ)〉

be a vector in N
d. Then σ ≻E φ if and only if I(φ) <L I(σ). Here <L

denotes the lexicographic ordering.

In the following two lemmas, we will show that H(σ) is invariant

under the dual operator ∗ and the shift operator τ .

Lemma 3.1.6. For any configuration σ in KI(a, d) and its dual σ∗, we

have H(σ) = H(σ∗).

Proof. Recall that σ∗ is a configuration in KI(d−a, d) defined as (σ∗
0, · · · , σ∗

d−1),

where σ∗
i = −σi. Thus

σ∗
i σ

∗
i+p = σiσi+p

holds for any integer p ∈ [1, d]. This means that

Hp(σ) = Hp(σ
∗)

holds for any p, a sufficient condition for H(σ) = H(σ∗).

Lemma 3.1.7. If σ ∼ φ, then H(σ) = H(φ).

Proof. From the definition of the shift operator τ , we have

d−1∑

i=0

σiσi+p =
d−1∑

i=0

σi+1σi+p+1 =
d−1∑

i=0

τ(σ)iτ(σ)i+p (3.9)

for any p ∈ [1, d]. This implies that

Hp(σ) = Hp(τ(σ))
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holds for any p ∈ [1, d]. Therefore H(σ) = H(τ(σ)). Since σ ∼ φ if and

only if φ = τ j(σ) for some j, we conclude that H(φ) = H(σ).

3.2 Ground states

In this section, we investigate the connections between regularity and

energy. Recalling that ρ(σ), the degree of the configuration σ, is defined

to be r if σ is r-regular but not (r+1)-regular. As the following theorem

shows, it is closely linked with the energy of σ.

Theorem 3.2.1. Suppose that σ, φ are two configurations in CONF(a, b)

such that ρ(σ) > ρ(φ). Then H(σ) < H(φ).

Proof. It suffices to show that if σ is r-regular while φ is (r − 1)-regular

but not r regular for some r ∈ N
+, then H(σ) < H(φ), which can be

established by the following straightforward verification.

Put

α :=
⌊ra

b

⌋
and β :=

⌈ra

b

⌉
.

Without loss of generality, we will assume that α 6= β in this proof. Since

σ is r-regular, we have Ξσ
r = {αp, βq}, where p and q are respectively the

multiplicity of α and β in Ξσ
r . On the other hand, let p′ (resp. q′) denote

the multiplicity of α (resp. β) in Ξφ
r . Then Ξφ

r − {αp′, βq′} contains t

elements (counting multiplicity) for a positive integer t, since φ is not

r-regular. Now we show that H(σ) < H(φ) by considering the following

two cases.

Case I: The minimal element in Ξφ
r , say λ, is smaller than α. Now we

can assert that Iλ+r(φ) > Iλ+r(σ), while Is(σ) = Is(φ) for 1 ≤ s < λ + r,

from Lemma 3.1.3 and the following facts:

(1): ϑi
j(σ) = ϑi

j(φ) if i < r; ( Note that if i ≤ r − 1, then Ξi(σ) = Ξi(φ)

since σ and φ are both (r − 1)-regular.)

(2): ϑr
λ+r(σ) = 0 and ϑr

λ+r(φ) > 0; (Clearly, λ 6∈ Ξr(σ) and λ ∈ Ξr(φ).)

40



(3): ϑr
j(σ) = ϑr

j(φ) = 0 for j < λ+r; ( If j < λ+r, then j−r 6∈ Ξφ
r ∪Ξσ

r .)

(4): ϑi
j(σ) = ϑi

j(φ) = 0 if i > r and j ≤ λ + r. ( If i > r and j ≤ λ + r,

then j 6∈ i + Ξi(φ) and j 6∈ i + Ξi(σ), since j < λ + i and λ ≤ k for

any k ∈ Ξφ
i ∪ Ξσ

i .)

Case II: The t elements in Ξφ
r − {αp′, βq′} are greater than β. In

other words, the arithmetic average of such t elements, denoted by c, is

greater than β. Now we have

pα + qβ = p′α + q′β + tc, (3.10)

and

p + q = p′ + q′ + t, (3.11)

since the sum of the elements in Ξr(σ) is equal to that of Ξr(σ) and they

have the same cardinality.

Combining (3.11) and (3.10), we obtain

(p − p′)(α − β) = t(c − β).

Together with the assumption that α < β < c and t ≥ 1, the above

equality implies that p < p′. Now we conclude that Iα+r(φ) > Iα+r(σ),

while Is(σ) = Is(φ) for 1 ≤ s < α+r, from Lemma 3.1.3 and the following

facts:

(1): ϑi
j(σ) = ϑi

j(φ) if i < r; ( This is the same as that in Case I.)

(2): ϑr
α+r(σ) < ϑr

α+r(φ); (Note that ϑr
α+r(σ) = p and ϑr

α+r(φ) = p′.)

(3): ϑr
j(σ) = ϑr

j(φ) = 0 for j < α+r; ( If j < α+r, then j−r 6∈ Ξφ
r ∪Ξσ

r .)

(4): ϑi
j(σ) = ϑi

j(φ) = 0 if i > r and j ≤ α + r. ( This can be proved by

a similar argument to that in Case I.)

Since in both cases, there exists l ∈ [1, a+b] such that Ii(σ) = Ii(φ) for

i ∈ [1, l] while Il+1(σ) < Il+1(φ), the theorem follows from Corollary 3.1.5
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Note that the above theorem provides us with a new characterization

of regular configurations.

Theorem 3.2.2. For any configuration σ in CONF(a, b), σ is regular if

and only if it is a ground state.

Proof. This follows from Theorem 3.2.1 and the fact that the regular

configuration in CONF(a, b) is the only one in CONF(a, b) that has the

maximal degree of regularity.

Together with Theorem 2.2.3, the above theorem implies the following

corollary.

Corollary 3.2.3. A configuration σ in CONF(a, b) is balanced if and

only if it is a ground state. �

Thus, we obtain a new characterization of balanced words, a well

studied object in words, by a concept in statistical mechanics.

3.3 Dynamics

In this section, we discuss some dynamic aspects of the Kawasaki-

Ising model on cycles. To this end, we introduce the concept of state

graph.

3.3.1 State graph

We begin with recalling some notation defined in Chapter 1. Given

i, j ∈ V (Cd) = {0, 1, · · · , d − 1}, the interval [i, j] on the cycle Cd is

defined to be the path i, (i + 1)d, · · · , j, and the number of edges in this

path is written as |j − i|L.

One important operator defined in the Kawasaki-Ising model is the

switch operator S, which acts on states in CONF(a, b) by switching the

spins on some interval [i, j] of Ca+b. When j = i + 1, it simply switches

one pair of neighboring spins. More precisely, we have the following

definition.
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Definition 3.3.1. Suppose that σ is a configuration in CONF(a, b) and

i, j ∈ V (Ca+b). Then Si,j(σ) is a configuration in CONF(a, b) defined as

Si,j(σ)(t) :=

{
σ(j−|t−i|L)a+b

if t ∈ [i, j],

σt if t 6∈ [i, j].

Denoting Si,j(σ) by φ, then it is clear that φi = σj and φj = σi.

When the subindex is not important or is clear from the context, we will

abbreviate Si,j(σ) to S(σ). The above definition is further illustrated by

the following example.

Example 4. Considering the configuration

σ = (+,−, +, +,−,−, +, +, +)

on the cycle C = {0, 1, · · · , 8}. Then we have

S0,4(σ) = (−, +, +,−, +,−, +, +, +).

Denoting a set of x up spins by x , in this thesis we will mainly use

the the operator S in the following scenario. Suppose the configuration

σ contains the following segment of spins:

− xj − xj+1 − · · · − xj+t−1 − xj+t −,

where the down spin in the right of xj is in position u and the first

up spin in xj+t is in position v. Then φ = Su,v(σ) has the same spin

structure as that of σ except for replacing the above fragment by the

following one:

− xj + 1 − xj+t−1 − · · · − xj+1 − xj+t − 1 − .

In other words, if σ is characterized by the sequence

(x0, · · · , xj , xj+1, · · · , xj+t−1, xj+t, · · · , xb−1),

43



then the characterizing sequence of φ = Su,v(σ) is

(x0, · · · , xj + 1, xj+t−1, xj+t−2, · · · , xj+2, xj+1, xj+t − 1, · · · , xb−1).

Similarly, the characterizing sequence of φ′ = Su−1,v−1(σ) is

(x0, · · · , xj − 1, xj+t−1, xj+t−2, · · · , xj+2, xj+1, xj+t + 1, · · · , xb−1).

Note that both φ and φ′ can be obtained from σ by applying the switch

operator once.

It is easy to see that S is an involution. More precisely, if we apply

S on σ twice, then we get σ again. Now we use this operator to define a

graph on the set of all states in CONF(a, b).

Definition 3.3.2. The state graph Ga,b of the Kawasaki-Ising model

CONF(a, b) is given as follows: the vertex set consists of the states in

CONF(a, b), and two vertices (σ, φ) are adjacent if and only if S(σ) = φ.

It is straightforward to verify that Ga,b is connected and its maximal

degree is bounded by
(

a+b
2

)
. In the remainder of this section, we will

investigate some other aspects of state graphs.

3.3.2 Monotone paths

The following theorem is the main result of this section, which claims

that non-regular configurations can “evolve” to regular configurations via

an “energy decreasing ” path in the state graph.

Theorem 3.3.1. Suppose that σ is a non-regular configuration in CONF(a, b).

Then there exists a path P = v0 · · · vt in Ga,b such that v0 = σ, vt = φ

for a regular configuration in CONF(a, b) and H(vk) > H(vk+1) for each

k ∈ [0, t − 1],

Proof. From Theorem 2.2.4 and Lemma 3.1.6, the duality operator ∗
preserves regularity and the Hamiltonian. Therefore we can assume a ≥ b
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in this proof since otherwise we can replace φ by its dual configuration

φ∗.

It suffices to show that if σ is non-regular, then there exists φ such that

(σ, φ) ∈ E(Ga,b) and H(σ) > H(φ). We have divided the proof of this

observation into a sequence of lemmas (Lemma 3.3.3, 3.3.4 and 3.3.6)

by considering three possible values of ρ(σ): ρ(σ) = 0, ρ(σ) = 1 and

ρ(σ) = h − 1 for 3 ≤ h ≤ b. Their proofs are quite involved and will be

presented in Subsection 3.3.3.

Informally speaking, associating each vertex u ∈ Ga,b with its energy,

the Hamiltonian H(u), Theorem 3.2.2 shows that the regular configura-

tions in CONF(a, b) are the vertices that have the “globally” minimal

energy. Furthermore, Theorem 3.3.1 implies that there are no other

vertices with the “locally” minimal energy, i.e., given any non-regular

configuration σ in Ga,b, there exits a configuration in its neighbors that

has higher energy.

The following corollary is a direct consequence of the above theorem.

Corollary 3.3.2. For σ ∈ CONF(a, b), if H(σ) is minimal, then σ is

regular.

�

The above corollary also leads to an alternative proof of Theorem 3.2.2.

Another proof of Theorem 3.2.2. From Corollary 3.3.2, it is sufficient

to show that H(σ) is minimal if σ is regular. If this fails, then there

exists a configuration φ such that H(φ) is minimal and H(φ) < H(σ).

On the other hand, we can assert that φ is regular from Corollary 3.3.2.

By Theorem 2.2.5 and Lemma 3.1.7, this implies that H(φ) = H(σ), a

contradiction. �

3.3.3 Technical lemmas

In this subsection we will prove the lemmas used in the proof of

Theorem 3.3.1. Throughout this subsection, we will use the convention
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that a > b. We begin with the case that ρ(σ) = 0.

Lemma 3.3.3. Suppose that σ is a non-regular configuration in CONF(a, b)

with ρ(σ) = 0. Then there exists a configuration φ such that (σ, φ) ∈
E(Ga,b) and H(σ) > H(φ).

Proof. Recall that dc(xi, xj) for xi, xj in the characteristic sequence of

σ is defined as min{(i − j)b, (j − i)b}. Among all pairs (i, j) satisfying

the inequality |xi − xj | ≥ 2, consider one pair such that t = dc(xi, xj)

is minimal. Switching the role of i and j if necessary, we can assume

j = (i + t)b. Denote Bi by u and Bj+1 by v. Then the fragment between

two down spins σu (the left-most one) and σv (the right-most one) in the

configuration σ is:

− xi − xi+1 − xi+2 · · · − xi+t−1 − xj − . (3.12)

Without loss of generality, we may assume xj > xi + 1. Since dc(xi, xj)

is minimal, we can assert that

xi+1 = xi+2 = · · · = xi+t−1 = xi + 1.

Thus the fragment in (3.12) can be simplified as the following one, which

contains t − 1 blocks xi + 1 in the middle:

− xi − xi + 1 − xi + 1 · · · − xi + 1 − xj − . (3.13)

By applying the switch operator once, we can obtain a new configu-

ration φ, which has the same spin structure as that of σ except replac-

ing (3.13) with

− xi + 1 − xi + 1 − xi + 1 − · · · − xi + 1 − xj − 1 − , (3.14)

where the number of xi + 1 in the above fragment is t. Now we conclude

that:

(1): Is(φ) = Is(σ) for 1 ≤ s < xi + 1;
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(2): Ixi+1(σ) = Ixi+1(φ) + 1. (Note that σu = σu+xi+1 = −1 and

φu+xi+1 = +1).

This implies that H(σ) > H(φ) by Corollary 3.1.5.

For any non-regular configuration σ in CONF(a, b) with ρ(σ) ≥ 1, we

know that

xi ∈
{⌊a

b

⌋
,
⌈a

b

⌉}

for 0 ≤ i ≤ b − 1. Note that if b divides a, then a configuration σ is

1-regular if and only if it is regular. Therefore we may assume ⌈a/b⌉ =

⌊a/b⌋ + 1 in the remainder of this subsection. To simplify notation, we

denote ⌊a/b⌋ and ⌈a/b⌉ respectively by ⊥ and ⊤. Note that ⊥ ≥ 1 from

the assumption that a ≥ b. Furthermore, for any x ∈ {⊤,⊥}, let x be

the unique element in {⊤,⊥} that is different from x.

Now we are proceeding to the proof of the second case.

Lemma 3.3.4. Suppose that σ is a non-regular configuration in CONF(a, b)

with ρ(σ) = 1. Then there exists a configuration φ such that (σ, φ) ∈
E(Ga,b) and H(σ) > H(φ).

Proof. From Lemma 2.1.1 and the assumptions, there exist i and j such

that

|(xi + xi+1) − (xj + xj+1)| ≥ 2.

Consider one pair (xi, xj) such that dc(xi, xj) is minimal over all pairs

satisfying the above inequality. Without loss of generality, we may also

assume that Bi < Bj.

Since ρ(σ) = 1, we have |xi − xj | ≤ 1. In fact, the equality must

hold. Otherwise |xi+1 − xj+1| ≥ 2, a contradiction to the 1-regularity of

σ. Therefore we need to consider the following two possible cases:

(1): xi = xi+1 = ⊥ and xj = xj+1 = ⊤;

(2): xi = xi+1 = ⊤ and xj = xj+1 = ⊥.

47



Here we will prove the lemma for Case (2), which can be easily modi-

fied for Case (1) as well. With this additional assumption, we claim that

the following fact holds.

Fact: There are exactly t copies of the block ⊥− ⊤− between the

block xi − xi+1− and xj − xj+1− in σ for some t ∈ [0, ⌊a/4⌋].

This fact can be verified as follows. If j = i + 2, then t = 0. Other-

wise the components of up spins between xi and xj+1 can be expressed

schematically in the following way:

⊤⊤a1a2 · · ·as⊥⊥,

where s ≥ 1 and at ∈ {⊥,⊤} for 1 ≤ t ≤ s. From the minimality of

dc(xi, xj), we deduce that

a1 = ⊥, as = ⊤ and at 6= at+1 for 1 ≤ t < s,

which implies that s = 2t and a1a2 · · ·as is formed by t blocks of ⊥⊤ .

This completes the verification of the fact by noticing that there exists

one down spin between each component of up spins.

By the above fact, σ contains the following fragment of spins:

− ⊤ − ⊤ − ⊥ − ⊤ − · · · − ⊥ − ⊤ − ⊥ − ⊥ − .

By applying the switch operator S, we obtain the following config-

uration φ, which remains the same as σ except for replacing the above

fragment with

− ⊤ − ⊥ − ⊤ − ⊥ − · · · − ⊤ − ⊥ − ⊤ − ⊥ − .

Recall that ⊤ = ⌈a/b⌉ and ⊥ = ⌊a/b⌋. Put L := 2⌊a/b⌋ + 2. Then
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we have Il(σ) = Il(φ) for 1 ≤ l < L and IL(σ) > IL(φ). Together with

Corollary 3.1.5, we conclude that H(σ) > H(φ).

Now we consider the general case that σ is a non-regular configuration

in CONF(a, b) with ρ(σ) = h − 1 for some h ∈ [3, b]. As before, we need

some structure information about the configurations that are (h − 1)-

regular but not h-regular. We begin with some notation.

Given a vector A = 〈ai, ai+1, · · · , aj〉, the contraposition of X, is

defined as

AT := 〈aj, aj−1, · · · , ai+1, ai〉.

When this vector is a segment of the characteristic sequence of the con-

figuration σ, it will also be written as aiai+1 · · ·aj , and is called a h-block

(or a block for simplicity) of σ. Here we will use A|B to denote two

adjacent blocks.

Now we state the following stability lemma, whose proof will be pre-

sented in Subsection 3.3.4.

Lemma 3.3.5 (stability lemma). Suppose that σ is a configuration in

CONF(a, b) that is (h − 1)-regular but not h-regular for some h ∈ [3, b].

Then there exists a block X := xa1 · · · ah−2x such that

(1): XT = X, i.e., 〈a1, · · · , ah−2〉T = 〈a1, · · · , ah−2〉;

(2): If we put Y := xa1 · · · ah−2x and Z := xa1 · · · ah−2x, then the

characteristic sequence of σ contains

X|Z0|Z1| · · · |Zk−1|Y ,

where X and Y could be adjacent, i.e., k = 0.

Note that the above lemma can be regarded as a generalization of the

fact used in the proof of Lemma 3.3.4.

Lemma 3.3.6. Suppose that σ is a non-regular configuration in CONF(a, b)

with ρ(σ) = h − 1 for 3 ≤ h ≤ b. Then there exists a configuration φ

such that (σ, φ) ∈ E(Ga,b) and H(σ) > H(φ).
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Proof. Without loss of generality, the characteristic sequence of σ con-

tains the fragment

⊤a1 · · · ah−2⊤|⊥a1 · · ·ah−2⊤| · · · |⊥a1 · · ·ah−2⊤|⊥a1 · · ·ah−2⊥
(3.15)

from Lemma 3.3.5. Here the left-most (resp. right-most) block is X

(resp. Y ), and the middle blocks are Z.

Now we can obtain a configuration φ = S(σ) whose characteristic

sequence is the same as that of σ except replacing the above fragment by

⊤a1 · · · ah−2⊥|ZT
r−1|ZT

r−2| · · · |ZT
1 |ZT

0 |⊤a1 · · ·ah−2⊥ ,

which is equivalent to

⊤a1 · · · ah−2⊥|⊤a1 · · ·ah−2⊥| · · · |⊤a1 · · ·ah−2⊥|⊤a1 · · ·ah−2⊥ , (3.16)

since 〈a1, · · · , ah−2〉T = 〈a1, · · · , ah−2〉.
Now we claim that the Y block is the minimal h-block in σ, in the

sense that for any h-block Y ′ := x0, · · · , xh−1 in the characteristic se-

quence in σ, we have

⊥ + a1 + · · · + ah−2 + ⊥ ≤ x0 + · · · + xh−1 .

If this fails, then we can obtain a contradiction to the fact that σ is

(h − 1)-regular by comparing the block Y ′ with X. Furthermore, φ also

does not contain any h-block that is smaller than Y ′.

Putting

L := ⊥ + a1 + · · ·+ ah−2 + ⊥ + h,

then we can assert that

(1): ϑi
j(σ) = ϑi

j(φ) if i < h; ( Note that Ξi(σ) = Ξi(φ) for i < h, since σ

and φ are both (h − 1)-regular.)

(2): ϑh
L(σ) > ϑh

L(φ);( This is clear from the construction.)
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(3): ϑh
j (σ) = ϑh

j (φ) = 0 if j < L;( This is because any h-block in σ or φ

is equal to or bigger than Y .)

(4): ϑi
j(σ) = ϑi

j(φ) = 0 if i > h and j ≤ L. ( This is because any

(h + 1)-block in σ or φ is strictly bigger than Y .)

Together Lemma 3.1.3, the above facts imply that

IL(σ) > IL(φ) and Il(σ) = Il(φ) for l < L,

which completes the proof of the lemma via Corollary 3.1.5.

3.3.4 The stability lemma

We end Chapter 3 with this subsection, which is devoted to proving

the stability lemma.

The Proof of Lemma 3.3.5: Suppose that σ is a configuration CONF(a, b)

with ρ(σ) = h− 1 for h ∈ [3, b]. From Lemma 2.1.1, we assert that there

exists a pair (i, j) such that

|(xi + xi+1 + · · · + xi+h−1) − (xj + xj+1 + · · ·+ xj+h−1)| ≥ 2. (3.17)

Furthermore, let (i, j) be a pair of the indices such that dc(xi, xj) is

minimal over all pairs satisfying (3.17).

Clearly (3.17) leads to two cases to consider. Here we will prove the

lemma for the following case (i.e., x = ⊤) while the other case is similar:

(xi + xi+1 + · · · + xi+h−1) − (xj + xj+1 + · · ·+ xj+h−1) ≥ 2, (3.18)

Denoting the block xixi+1 · · ·xi+h−1 by X and xjxj+1 · · ·xj+h−1 by

Y , Now we claim that the block X and Y satisfies the requirement in

Lemma 3.3.5:

Claim I: In (3.18), we have xi = xi+h−1 = ⊤, xj = xj+h−1 = ⊥ and

xi+t = xj+t for 1 ≤ t ≤ h − 2.
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Proof. If xi ≤ xj , then (3.18) implies that

(xi+1 + · · ·+ xi+h−1) − (xj+1 + · · ·+ xj+h−1) ≥ 2,

a contradiction to the fact that φ is (h − 1)-regular. Similarly, we can

show that xi+h−1 > xj+h−1 and hence complete the proof of the first part.

If the conclusion of the second part fails, then xi+t 6= xj+t for some

t ∈ [1, h− 2]. Consider the minimal t such that xi+p = xj+p for all p < t.

Now if xi+t > xj+t, then we have

(xi+1 + · · · + xi+t) − (xj+1 + · · ·+ xj+t) ≥ 2.

On the other hand, if xi+t < xj+t, then we can conclude that

(xi+t+1 + · · ·+ xi+h−1) − (xj+t+1 + · · ·+ xj+h−1) ≥ 2.

In both cases, we obtain a contradiction to the fact that σ is (h − 1)-

regular, which completes the proof of the second part.

From Claim I, the X block can be written as ⊤a1 · · ·ah−2⊤ while the

Y block as ⊥a1 · · ·ah−2⊥ with as ∈ {⊥,⊤} (1 ≤ s ≤ h−2). Furthermore,

we have the following claim:

Claim II: With the notation above, 〈a1 · · ·ah−2〉 = 〈a1 · · ·ah−2〉T .

Proof. If a1 6= ah−2, then a1 > ah−2 or a1 < ah−2. In the first case, we

have

(⊤ + a1) − (ah−2 + ⊥) ≥ 2

by considering the left fragment of the X block and the right fragment

of the Y block.

On the other hand, in the second case we know

(ah−2 + ⊤) − (⊥ + a1) ≥ 2

by considering the right fragment of the X block and the left fragment
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of the Y block.

Since in both cases we obtain a contradiction to the fact that σ is

2-regular, we conclude that a1 = ah−2. Similarly, we can prove that

at = ah−1−t for 1 ≤ t ≤ h − 2.

Let Z be the block formed by ⊥a1a2 · · ·ah−2⊤. Together with Claim

I and II, the following claim completes the proof of the lemma:

Claim III: With the notation above, there are exactly k (k ∈ N)

copies of the Z block between the block X and Y in the characteristic

sequence of the configuration σ.

Proof. Without loss of generality, let j = i + h + t (mod b) for t =

dc(xi, xj). In other words, we have the following fragment between the

X block (left) and the Y block (right) in the characteristic sequence of

σ:

⊤a1 · · ·ah−2⊤ c0 · · · ct−1 ⊥a1 · · ·ah−2⊥ . (3.19)

Clearly the following two facts imply Claim III:

Fact 1: h divides t. That is, hk = t holds for some k;

Fact 2: c0 · · · ct−1 consists of k copies of the Z block.

If Fact 1 fails, then t = kh + p holds for some integers k and p with

1 ≤ p ≤ h − 1. Therefore we can divide c0 · · · ct−1 into the following

groups:

c0
0, c

0
1 · · · , c0

h−1 | c1
0, c

1
1 · · · , c1

h−1 | · · · | ck−1
0 , ck−1

1 · · · , ck−1
h−1 | d0, · · · , dp−1.

Here cq = {cq
0, c

q
1 · · · , cq

h−1} denotes the q-th group in the decomposition

and the low index in cq
s denotes the relative position of cq

s in the group

cq.

Now we claim the following fact holds:

Fact 3: For any 0 ≤ q ≤ k − 1, cq
0, c

q
1 · · · , cq

h−1 is a copy of the Z

block.
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The above fact can be verified by induction on q. For the base case

q = 0, consider the following left-most segment in (3.19):

⊤a1a2 · · ·ah−2⊤ | c0
0, c

0
1 · · · , c0

h−1 . (3.20)

Then it suffices to show that c0
0 = ⊥, c0

h−1 = ⊤ and c0
s = as for 1 ≤ s ≤

h − 2 by the following four steps.

Step 1: Firstly we prove c0
0 = ⊥. Conversely, if c0

0 = ⊤, then the X

block in (3.18) can be replaced by a1a2 · · ·ah−2⊤|c0
0 , a contradiction to

the minimality of dc(xi, xj).

Step 2: Secondly we prove c0
1 = a1. Note that c0

1 ≥ a1 because

otherwise (⊤ + a1) − (⊥ + c0
1) ≥ 2, a contradiction to the fact that σ is

2-regular. On the other hand, we also have c0
1 ≤ a1. If not, then c0

1 = ⊤
and a1 = ⊥, which implies ⊥+c0

1 = ⊤+a1. Therefore we can replace the

block X in (3.18) by a2 · · ·ah−2⊤|c0
0, c

0
1, a contradiction to the minimality

of dc(xi, xj).

Step 3: This is the induction step. For 1 < s < h − 1, we need

to prove that c0
s = as with the assumption that c0

0 = ⊥ and c0
l = al for

1 ≤ l ≤ s−1. In other words, (3.20) can be reformulated as the following

one:

⊤a1a2 · · ·as−1as · · ·ah−2⊤ | ⊥a1 · · ·as−1c
0
s · · · c0

h−1 .

Now if c0
s 6= as, we need to consider the following two cases:

Case i): c0
s > as. Then c0

s = ⊤ and as = ⊥. From c0
s + ⊥ = ⊤ + as,

we have

⊤ + a1 + · · · + ah−2 + ⊤ = as+1 + · · ·+ ⊤ + ⊥ + · · ·+ as−1 + c0
s.

Therefore the block X in (3.18) can be replaced by as+1 · · ·⊤⊥ · · ·as−1c
0
s,

a contradiction to the minimality of dc(xi, xj).

Case ii): c0
s < as. In this case we have

(⊤ + a1 + a2 + · · ·+ as−1 + as) − (⊥ + a1 + · · ·+ as−1 + c0
s) ≥ 2 ,

54



a contradiction to the fact that σ is (h − 1)-regular.

Step 4: The last step is to prove that c0
h−1 = ⊤. If not, then we can

replace Y in (3.18) by c0, a contradiction to the minimality of dc(xi, xj).

From Step 1-4, we complete the proof of Fact 3 for the base case

q = 0, i.e., c0 = Z (this means that c0 is a copy of the Z block). Now we

proceed to the induction step: if cs = Z for 0 ≤ s ≤ q − 1, then

cq = Z for q ∈ [1, k − 1].

From the assumption, we have the following fragment:

⊤a1a2 · · ·ah−2⊤ | · · · |⊥a1a2 · · ·ah−2⊤ | cq
0, c

q
1 · · · , cq

h−1 .

Now we need to prove that cq
0 = ⊥, cq

h−1 = ⊤ and cq
u = au for 1 ≤ u ≤

h− 2. This can be done by an argument similar to the above four steps.

The details are omitted to save space.

Therefore we complete the proof of Fact 3. To sum up, now we have

the following right segment in the fragment (3.19):

a0 a1 a2 · · · ah−2 ⊤ | d0 · · · dp−1|⊥ a1 a2 · · · ah−2 ⊥, (3.21)

where a0 = ⊤ if k = 0 and a0 = ⊥ otherwise.

Now we claim that d0 = ⊥. If this fails, then the X block can be

replaced by a1 a2 · · · ah−1 ⊤ | d0. Furthermore, we also have dp−1 = ⊤.

If not, then we can obtain a contradiction via replacing the Y block by

⊥|⊥ a1 a2 · · · ah−1. Thus k ≥ 2 if k 6= 0. By a similar argument to

Step 2 in proving c0 = z, we can show that ds = as for 1 ≤ s ≤ p − 2.

Therefore the fragment in (3.21) is equivalent to

a0 a1 a2 · · · ah−2 ⊤ | ⊥a1 · · ·ap−2⊤|⊥ a1 a2 · · · ah−2 ⊥.
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From the minimality of dc(xi, xj), we conclude that

⊤+a1+· · ·+ap−1 > ⊥+a1+· · ·+ap−2+⊤ > ah−p+1+· · ·+ah−2+⊥. (3.22)

Here the first inequality holds because otherwise the X block can be

replaced by the fragment

ap · · ·ah−2⊤|⊥a1 · · ·ap−2⊤ .

Similarly, the second inequality holds, otherwise the block Y can be

replaced by the fragment

⊥a1 · · ·ap−2⊤|⊥ a1 · · ·ah−p .

On the other hand, from Claim II, we know as = ah−1−s for 1 ≤ s ≤
h − 2. Together with (3.22), it implies that

⊤ + ap−1 > ⊥ + ⊤ > ap−1 + ⊥. (3.23)

From which we can assert that ⊥ < ap−1 < ⊤, a contradiction to the fact

that ap−1 ∈ {⊥,⊤}. Therefore we have p = 0, which completes our proof

of Fact 1: t = kh for some k. Furthermore, this proof also implies the

correctness of Fact 2. Therefore we have completed the proof of Claim

III.

Since Lemma 3.3.5 follows directly from Claim I, II and III, we also

complete the proof of the lemma as well. �

Note

Let us remark here that the links between ground states in the Kawasaki-

Ising model and maximally even configurations was firstly investigated

in [22, 23]. Independently, we studied the connections between ground

states and regular configurations in [15, 14]. After publishing [14], we

realized the equivalence between maximally even and regularity, which

leads to a new proof of Theorem 3.2.1.
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Chapter 4

Cycle Packing

In this chapter we study the cycle packing problem for shift digraphs,

the Cayley digraphs of Zn with two generators. That is, we show that the

maximal number of vertex-disjoint cycles in shift digraphs is determined

by its size and girth. In addition, we can find a shortest cycle such that

it produces enough disjoint copies by rotating.

4.1 Cycles

In this section, we propose a scheme to encode the cycles in shift

digraphs via the configurations in the Kawasaki-Ising model. This scheme

makes it possible to apply the theory of regular configurations to solve

the cycle packing problem of shift digraphs.

Given a cycle C = (v0, v1, · · · , vd−1) in Cay(Zn, {l, m}), its difference

sequence is defined as

∇(C) := ((v1 − v0)n, · · · , (vd−1 − vd−2)n, (v0 − vd−1)n).

Note that the sequence ∇(C) consists only of two numbers, l and m. In

other words, it is a word over the binary alphabet {l, m}. Denoting the

number of the occurrences of l (resp. m) in this sequence by b (resp. a),

∇(C) can be regarded as a configuration in CONF(a, b), where a+b = d.
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More precisely, here l represents a down spin and m represents an up

spin.

This configuration is also denoted by σC . By this scheme, any cycle in

a shift digraph can be encoded as a pair (v0, σ), where v0 is the starting

vertex and σ is the coding configuration. Note that the same cycle can

be encoded as two different pairs, say (v, σ) and (u, σ′), by choosing two

different starting vertices, but they satisfy the relation σ ∼ σ′, i.e., they

are equivalent up to the shift operator.

Example 5. An cycle in Cay(Z9, {1, 3}).
Consider the cycle C = (0, 1, 4, 5, 6) in Cay(Z9, {1, 3}). Clearly we

have ∇(AC) = (1, 3, 1, 1, 3) and C can be encoded as the pair (0, σ),

where σ = (B, R, B, B, R) is a configuration in CONF(2, 3).

On the other hand, given any pair (v0, σ), it is not difficult to find

the cycle corresponding to it in Γ = Cay(Zn, {l, m}) if such cycle is

contained in Γ. Note that there exists a cycle C in Cay(Zn, {l, m}) such

that C = C0,σ for some σ ∈ CONF(a, b) if and only if n | am + bl.

When the configuration σ is clear from the context, Cv,σ will also be

simply written as v. In this setting, the cycle 0, which plays an important

role in the following analysis, is called the generic cycle of σ and its vertex

set is denoted by Vσ.

Definition 4.1.1. Given a set B ⊆ V (Cay(n; {l, m})), its difference set

D(B) is defined to be {(bi − bj)n | ∀ bi, bj ∈ B}.

From the above definition, we have the following direct consequences.

Proposition 4.1.1. Given a non-empty set B ⊆ V (Cay(n; {l, m})), the

following two facts hold:

(1): 0 ∈ D(B) and n 6∈ D(B);

(2): x ∈ D(B) implies (−x)n ∈ D(B).

�
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In the remainder of this section, we fix a coding configuration σ

for some cycles in a shift digraph Γ = Cay(n, {l, m}) and study the

properties of D(Vσ). Here we assume σ = (ι0, · · · , ιa+b−1), where ιi ∈
{l, m} for each i, belongs to CONF(a, b) and its characteristic sequence

is (x0, · · · , xb−1). As before, we will also denote a + b by d.

Proposition 4.1.2. For any two cycles s and t in Cay(n, {l, m}) that

are encoded by σ, s ∩ t 6= ∅ if and only if (s − t)n ∈ D(Vσ).

Proof. Clearly we have Vσ = (0, κ0, κ1, · · · , κd−2), where

κi = (

i∑

j=0

ιj)n

for 0 ≤ i ≤ d − 2. Furthermore we have

V (t) = (t, (t + κ0)n, (t + κ1)n, · · · , (t + κd−2)n)

and

V (s) = (s, (s + κ0)n, (s + κ1)n, · · · , (s + κd−2)n).

Thus s ∩ t 6= ∅ if and only if there exists a pair of indices i, j such that

s + κi ≡ t + κj (mod n),

which is equivalent to (s − t)n ∈ D(Vσ) from Proposition 4.1.1.

The above proposition implies the following corollary, whose proof is

straightforward.

Corollary 4.1.3. For any two cycles s and t in Cay(n, {l, m}) that have

the same encoding configuration, s∩t 6= ∅ if and only if s + 1∩t + 1 6= ∅.
�

The difference set of Vσ can be characterized by the following propo-

sition.
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Proposition 4.1.4. Given a configuration σ = (ι0, · · · , ιd−1), the differ-

ence set of its generic cycle is:

D(Vσ) = {ιi + ιi+1 + · · ·+ ιi+s | 0 6 i 6 d − 1, 0 6 s < d − 1} ∪ {0}.

Proof. ∀x, y ∈ Vσ, if x = y, then x − y = 0; otherwise we have: x =

ι0 + ι1 + · · ·+ ιp and y = ι0 + ι1 + · · ·+ ιq for two distinct numbers p and

q in [1, d − 1]. If p > q, then

x − y = ιp+1 + · · · + ιq.

Otherwise from the fact that(ι0 + ι1 + · · ·+ ιd−1) = n, we have

(x − y)n = x + n − y

= (ι0 + ι1 + · · ·+ ιp) + (ι0 + ι1 + · · ·+ ιd−1) − (ι0 + ι1 + · · ·+ ιq)

= (ι0 + ι1 + · · ·+ ιp) + (ιq+1 + · · · + ιd−1)

= ιq+1 + · · ·+ ιd−1 + ι0 + ι1 + · · ·+ ιp .

Given a configuration σ and an integer j ∈ [1, b], µj and ξj were

defined in Chapter 2 (see Definition 2.1.2) as

µj = min
06i6b−1

{xi + xi+1 + · · ·+ xi+j−1},

and

ξj = max
06i6b−1

{xi + xi+1 + · · ·+ xi+j−1}.

Here (x0, x1, · · · , xb−1) is the characteristic sequence of σ and the sub-

scripts in xi are calculated modulo b. Furthermore, we use the convention

that µ−1 = µ0 = 0 and ξb+1 = a − 1. Then we have the following propo-

sition.

Proposition 4.1.5. Given a configuration σ in CONF(a, b), then we
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have

D(Vσ) = {pjm + jl | 0 6 j 6 b, µj−1 6 pj 6 ξj+1}.

Proof. The boundary cases can be verified directly and the other cases

follow from Proposition 4.1.4 by considering the number of l’s in the

expressions of the elements in D(Vσ).

To illustrate the concepts mentioned so far, we consider the following

example.

Example 6. A cycle in Γ = Cay(11, {1, 3}).
Consider the cycle C = (0, 3, 4, 7, 10) in Γ. Here the parameters of the

shift digraph are n = 11, l = 1, m = 3. Then ∇(C) = (3, 1, 3, 3, 1) and C

can be encoded as the pair (0, σ) with σ = (3, 1, 3, 3, 1) ∈ CONF(3, 2).

Since 3 denotes the up spin and 1 denotes the down spin, σ can be also

written as (R, B, R, R, B). Clearly, for this cycle we have a = 3, b = 2

and δ(C) = 1. Furthermore, the characteristic sequence for σ is (2, 1).

Therefore, by definition we have

µ−1 = µ0 = 0, µ1 = 1, µ2 = 3,

and

ξ1 = 2, ξ2 = 3, ξ3 = 2.

To sum up, we have the following table.

j µj−1 ξj+1 pj j + 3pj

0 0 2 {0,1,2} {0,3,6}
1 0 3 {0,1,2,3} {1,4,7,10}
2 1 2 {1,2} {5,8}

Then we can verify directly that the union of the last two columns gives

us exactly the same set as

D(Vσ) = D(C) = {0, 1, 3, 4, 5, 6, 7, 8, 10}.
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4.2 Regularity and disjointness

In this section we investigate one connection between the regularity

and the disjointness of cycles in shift digraphs.

Note that Cay(n; {l, m}) contains a cycle consisting of a type II arcs

(that are generated by l) and b type I arcs (that are generated by m) if

and only if n | am + bl.

Theorem 4.2.1. Given a digraph Cay(n; {l, m}) and a pair integers

(a, b) such that n | am+ bl, suppose that σ is the regular configuration in

CONF(a, b) and denote ⌊n/(a + b)⌋ by k. Then the following set:

C = {0, β(m − l), · · · , β(k − h)(m − l)},

where i = Ci,σ, h = gcd(l, m) and β = 1/h, is a collection of pairwise

disjoint cycles in Cay(n; {l, m}).

Proof. From the assumption, we have am + bl = tn for some t ∈ N
+. By

contradiction, if the theorem fails, then we have

qβ(m − l) ∈ D(Vσ)

from Proposition 4.1.2. Together with Proposition 4.1.5, this implies the

following equation has an integer solution (j, q) such that 0 6 j 6 b and

1 6 q 6 k − h:

qβ(m − l) ≡ pjm + jl (modn). (4.1)

Let

r :=

⌊
qβ(m − l)

n

⌋
=

⌊
tqβ(m − l)

am + bl

⌋
.

Since pjm + jl < n from the definition, equation (4.1) can be simplified

as

qβ(m − l) = pjm + jl +
r

t
(am + bl), (4.2)

which gives us

m = l
tqβ + rb + tj

tqβ − tpj − ra
. (4.3)
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Since gcd(l, m) = 1/β, equation (4.3) has integer solutions if and only

if the following two equations have integer solutions for some s ≥ 1:

tqβ + rb + tj = smβ, (4.4)

tqβ − tpj − ra = slβ. (4.5)

By eliminating q from the above two equations we obtain

s(m − l)β = r(a + b) + t(j + pj), (4.6)

which yields

m = l +
r(a + b) + t(j + pj)

sβ
. (4.7)

On the other hand, equation (4.4) implies

q =
smβ − tj − rb

tβ
. (4.8)

Since

k =

⌊
am + bl

t(a + b)

⌋
,

we have

t(a + b)k ≤ am + bl. (4.9)

Together with 0 ≤ q ≤ k − h, it implies

t(a + b)(q + h) ≤ am + bl. (4.10)

Substituting (4.8) into the above equation, we can assert that

t(a + b)(h +
smβ − tj − rb

tβ
) ≤ am + bl,

which can be further simplified as

(a + b)(thβ + smβ − tj − rb) ≤ amβ + blβ.
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Since hβ = 1, we deduce from the above equation that

am(s − 1)β + bsmβ + t(a + b) ≤ blβ + (tj + rb)(a + b).

Using the fact that s ≥ 1, we further obtain

bsmβ + t(a + b) ≤ blβ + (tj + rb)(a + b).

Substituting (4.7) into the above equation, we see that the following

inequality holds:

bsβ(l +
r(a + b) + t(j + pj)

sβ
) + t(a + b) ≤ blβ + (rb + tj)(a + b),

which can be simplified as

blβ(s − 1) + bt(j + pj) + t(a + b) ≤ tj(a + b).

Using the fact that s ≥ 1 again, we obtain

bt(j + pj) + t(a + b) ≤ tj(a + b).

Since t > 0, we conclude that

bpj + a + b ≤ aj. (4.11)

If b = 0, then j = 0 since we assume that j ∈ [0, b]. Hence (4.11) im-

plies a = 0, a contradiction. Otherwise, we have b > 0 and the following

inequality holds:

1 + pj 6
a

b
(j − 1).

Since µj−1 6 pj, we have

1 + µj−1 6
a

b
(j − 1). (4.12)

Therefore if the theorem fails, then there must exist some j ∈ [0, b]
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such that (4.12) holds. On the other hand, since σ is regular, we know

that

1 + µj−1 >
a

b
(j − 1)

holds for all j ∈ [0, b] from Lemma 2.1.2. This contradicts (4.12), and

hence completes the proof.

One important case of the above theorem is that l and m are coprime.

Theorem 4.2.2. Given a digraph Cay(n; {l, m} with l and m being co-

prime and a pair integers (a, b) such that n | am + bl, suppose that σ

is the regular configuration in CONF(a, b) and denote ⌊n/(a + b)⌋ by k.

Then the following set:

C = {0, (m − l), · · · , (k − 1)(m − l)},

where i = Ci,σ, is a collection of pairwise disjoint cycles in Cay(n; {l, m}).

�

4.3 Cycle packing number

In this section, we shall use the results in the previous section to

show that the cycle packing number of a shift digraph is determined by

its girth.

By the definition of girth, the following lemma clearly holds.

Lemma 4.3.1. For any digraph D, its cycle packing number ν0(D) and

girth ω(D) satisfy ω(D)ν0(D) ≤ |V (D)|. �

Now we can state a restricted version of our main result in this section.

Lemma 4.3.2. Suppose that gcd(n, l, m) = 1. Then

ν0(Γ) =

⌊
n

ω(Γ)

⌋

holds for the digraph Γ = Cay(n, {l, m}).
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Proof. From Lemma 4.3.1, it suffices to show that

ν0(Γ) ≥
⌊

n

ω(Γ)

⌋
, (4.13)

which can be proved by considering the following two possible cases.

Case I: gcd(l, m) = 1. From Theorem 4.2.2, any cycle of length d in

Γ implies ν0(Γ) ≥ ⌊n/d⌋. Now (4.13) follows from the fact that Γ always

contains a cycle of length ω.

Case II: gcd(l, m) > 1. Denoting gcd(l, m) by α, then we know that

gcd(α, n) = 1 from the assumption that gcd(n, l, m) = 1. In other words,

we have α ∈ Z
∗
n, and hence that Γ is isomorphic to

Γ′ := Cay(n; {α−1l, α−1m}).

Now gcd(α−1l, α−1m) = 1. Therefore (4.13) holds for Γ′, as we show in

Case I. Furthermore, (4.13) holds for Γ as well, since ν0(Γ) = ν0(Γ
′) and

ω(Γ) = ω(Γ′). This completes the proof of Case II.

Note that if gcd(n, l, m) = β, then Γ = Cay(n; {l, m}) has β con-

nected components with each of them being isomorphic to the Cayley di-

graph Γ′ = Cay(n/β, {l/β, m/β}). By this observation, the above lemma

can be clearly generalized to the following

Theorem 4.3.3. Suppose that gcd(n, l, m) = α. Then

ν0(Γ) = α

⌊
n

αω(Γ)

⌋

holds for the digraph Γ = Cay(n; {l, m}). �

From the above theorem, the cycle packing problem for shift digraphs,

which is to calculate ν0(Γ), is reduced to calculate the girth of Γ, which

can be solved in O(n2) time.

66



4.4 Guessing number

In this section, we present a brief exposition of guessing number and

use the results in the previous sections to obtain the bounds of this

parameter for a family of digraphs.

Guessing Number was introduced by Riis in studying network coding

and circuit complexity [49]. Before presenting its formal definition, here

we give an informal description by the following ’game’.

Given a digraph D, we can play a guessing game as follows. Each

node is randomly assigned a bit from {0, 1} and each node knows only

the bit assigned to its in-neighbors but not the one for itself. Now the

task for each node is to guess the bit assigned to itself.

Here we are interested in the probability that all nodes can simulta-

neously correctly guess their bits in the above game. Then the guessing

number measures the best probability we can achieve over all allowed

protocols.

Now we fix some notations used in this section. Recall that a config-

uration on digraph D is a map from its vertex set V (D) to Z2 := {0, 1}.
All such configurations on D form a set Ω; the variables that take val-

ues in Ω will be denoted by x, y, · · · . Note that the ring structure of Z2

induces a natural ring structure on Ω as well.

A protocol P on a digraph D is a map between its configurations

such that P(x) is locally defined, i.e., P(x)v = (fv)(xv1
, · · · , xvk

) for any

v ∈ V , where k = |N−(v)| and xvi
∈ N−(v) for each xvi

. Note that

we can also associate a ring structure with the set of all protocols for

a given graph, where the composition of two protocols is defined to be

point-wise.

Let us remark here that not every map acting on Ω is a protocol on

D. For instance, the identity map I, which maps each configuration x

to itself, is not a protocol for any simple digraphs.

67



Given a protocol P = (fv)v∈V (D), let

Fix(P) := {x ∈ Ω | xv = fv(xv1
, · · · , xvk

) for all v}

be the set formed by the fixed points of P.

Definition 4.4.1. Given a digraph D, its guessing number is defined as

g(D) := max
P

g(D,P),

where P runs over all allowed protocols on D and g(D,P) := log2(|Fix(P)|).

Now we collect the following observations about guessing numbers,

whose proofs are straightforward and can be obtained in [58].

Proposition 4.4.1. For any digraph D = (V, E) with |V | = n, the

following assertions hold:

(a) 0 ≤ g(D) ≤ |V | − 1;

(b) If H = (V ′, E ′) is a subgraph of D, then g(H) ≤ g(D);

(c) If D is a directed cycle, we have g(D) ≥ 1;

(d) If D is acyclic, then g(D) = 0.

(e) If D is the disjoint union of two graphs H1 and H2, then g(D) =

g(H1) + g(H2)

Let τ(D) be the size of the minimal vertex set S in D such that D−S

is acyclic. Recall that H is an induced subgraph of D if (u, v) ∈ E(H)

holds for any (u, v) ∈ E(D) with u, v ∈ V (H) ⊆ V (D). Now we can

state one of our main results in this section as follows.

Theorem 4.4.2. For any digraph D, we have

ν0(D) ≤ g(D) ≤ τ(D).
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Proof. To establish the first inequality, let {c1, · · · , ck} be a set of vertex

disjoint cycles of D with k = ν0(D) and consider the disjoint union c of

these cycles. Then the first inequality clearly holds since

g(D) ≥ g(c) =
k∑

i=1

g(ci) ≥ k = ν0(D)

holds from Proposition 4.4.1.

Now the second one follows directly from Proposition 4.4.1 and the

following

Claim: For any induced subgraph H of D, we have g(D) ≤ g(H) +

|V (D) − V (H)|.

It is sufficient to establish this claim for the special case V (D) −
V (H) = {0}. For any optimal protocol P on D, let P i denote the induced

protocol on H by putting x0 = i for i = 0, 1. That is, if f(x0, x1 · · · ) ∈ P,

then f(i, x1, · · · ) ∈ P i. Clearly for any x ∈ Fix(P), we have x|H ∈
Fix(P i) if and only if x0 = i. In other words, we have |Fix(P)| ≤
|Fix(P0)| + |Fix(P1)|, from which we conclude that

g(D) = log2 |Fix(P)| ≤ log2(|Fix(P0)| + |Fix(P1)|)
≤ log2 2|Fix(P ′)|
= 1 + g(H)

holds as required, where P ′ is an optimal protocol on H .

One direct consequence of the above theorem is g(Cn) = 1. Let us also

remark here that the results in this section also hold for other alphabet

sets with cardinality greater than 2.

Note that g(D) ≤ max{l, m} clearly holds for any connected digraph

D = Cay(n; {l, m}). Therefore, by Lemma 4.3.2, the above theorem

implies directly the following
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Corollary 4.4.3. For any connected digraph D = Cay(n; {l, m}), we

have ⌊
n

ω(D)

⌋
≤ g(D) ≤ max{l, m}.

�

In particular, we have a more explicit bound on directed double loops,

a subfamily of shift graphs.

Corollary 4.4.4. For a digraph D = Cay(n; {1, m}), we have

⌊
n

n + (1 − m)⌊n/m⌋

⌋
≤ g(D) ≤ m,

Proof. Putting p := ⌊n/m⌋ and r := n − pm, then it is clear that n =

pm + r holds and Cay(n; {1, m}) contains a cycle of size p + r. Together

with Corollary 4.4.3, this establishes the corollary.
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Part II

TBR Graphs
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Chapter 5

Introduction

Phylogenetic trees, i.e., leaf-labelled trees, are useful to study evolu-

tion relationships in biology and other areas of classification. For some

problems, from a given data set one needs to construct a tree that is opti-

mal according to a given criteria, such as maximal parsimony or maximal

likelihood, to understand the true evolution history.

As the search space is large: there are (2n − 5)!! = 1 × 3 × · · · ×
(2n − 5) unrooted binary phylogenetic trees for n objects (a result that

dates back to [52], see also [53]), many tree (re-)construction problems

are intractable and hence heuristic algorithms are popular for practical

applications. In such algorithms we start with an initial tree, which could

be chosen randomly or in an intelligent way, and apply some types of local

changes to find a new tree with better scores for the given criteria until

we reach a local optimal solution.

Making local changes is often referred to as a tree rearrangement

operation. Besides playing an important role in designing algorithms,

these operations are also useful in measuring the similarity between two

given trees [50]. For both purposes, it is natural to consider the metric

induced by the following operation graphs: the vertex set consists of all

trees with a given leaf set and two trees are adjacent if and only if they

differ by exactly one operation.

The maximal and minimal degree of such graphs are of special interest
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for studying the performance of heuristic algorithms as they are closely

related to the complexity of a local move. Among the three most common

operations: NNI, SPR and TBR (see Section 5.1), in the literature, it is well

known that both the NNI graphs and the SPR graphs are regular. But for

the TBR graphs, this problem is more involved and we refer the reader

to [31] for the best known bounds.

To fill in this gap, we present here the first closed-form formula to

calculate the degree of the vertices in the TBR graphs, a quantity also

referred to as “the size of the TBR unit-neighborhood” (cf. [31]), and show

that it is determined by Γ-index (see Chapter 6), a tree index introduced

here to measure the shape of trees. By this formula, we obtain the

maximal and minimal degree, as well as the average degree, of the TBR

graphs.

Among the trees with a given maximum degree, we show that the tree

achieves the minimal Γ-index is a “good tree”, which has been extensively

studied in computer science [39] and also coincides with the extremal tree

of several other graphical indices [33, 25, 57]. Note that some authors

(e.g. [39]) have used different terminology, referring good trees as “com-

plete trees”. The approach presented here is naive and arguably simpler.

More interestingly, here we also obtain a structural characterization of

good trees, and provide a principle that may be employed to a general

solution to the extremal problems for other indices.

With a multivariate contraction method developed in the context of

random searching trees [46], we obtain the mean and variance of the size

of the TBR unit-neighborhood of a random tree generated by the Yule-

Harding model [66, 29], one of the most famous stochastic models used

to generate random phylogenetic trees [1, 2].

By a technique related to homoplasy scores [12], we obtain a current

best known lower bound on the diameter of the TBR graphs [28]. Finally,

we also characterize the extremal trees for the Γ-index among the trees

with given degree sequence and apply the semi-regularity principle to

other graphical indices.
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The remainder of this part is organized as follows. In Section 5.1 we

collect some definitions and notation. Chapter 6 is devoted to the Γ-index

and related topics, including a new characterization of good trees by the

semi-regularity property. In Chapter 7 we study various properties of

TBR graphs, such as the maximal and minimal degree of the TBR graphs,

the size of the TBR unit-neighborhood of Yule-Harding random trees, and

the diameter of the TBR graphs. The results in Chapter 6 are contained

in the author’s joint work with Hua Wang [61], and Section 7.1 is based

on a joint work with Peter Humphries [32].

5.1 Definitions and notation

Some basic definitions and notation for Part II are collected in this

section and we refer the readers to [53] for a more detailed exposition of

the concepts mentioned here.

All graphs in this part will be finite, simple and undirected. For any

vertex v in a graph, let deg(v) denote the degree of v, i.e., the number

of edges incident to v. A tree T = (V, E) is a connected, acyclic graph.

V (T ) and E(T ) denote the vertex set and edge set of a tree T . We refer

to vertices of degree 1 of T as leaves, which form the leaf set L(T ) . The

edges incident to some leaf are called pendant edges, and a cherry is a

pair of leaves {x, y} adjacent to the same interior vertex.

The unique path connecting two vertices v, u in T will be denoted by

PT (v, u). For a tree T and two vertices v, u of T , the distance distT (v, u)

between them is the number of edges on the path PT (v, u).

In this part, our main concern is unrooted binary phylogenetic trees,

that is, bijectively leaf-labelled trees without a specified root in which

every interior vertex has degree 3. We denote by Tn the set of all such

trees with the same leaf set {1, . . . , n}.
For our purpose, we also need to consider rooted trees. Here we call

a tree (T, r) rooted at the vertex r (or just T if it is clear what the root

is) by specifying a vertex r ∈ V (T ). The height of a vertex v of a rooted
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tree T with root r is hT (v) = distT (r, v), and the height of T is just the

greatest height of its vertices. Note that this concept is also referred to

as the depth in many literatures.

For any two different vertices u, v in a rooted tree (T, r), we say that

v is a successor of u and u is an ancestor of v if PT (r, u) ⊂ PT (r, v). For

a vertex v in a rooted tree (T, r), we use T (v) or Tv to denote the subtree

rooted at v, induced by v and all its successors.

In this thesis, we are mainly interested in unrooted binary phyloge-

netic trees, but the families of trees in the following list are also consid-

ered:

• T ∗
n : the set of all rooted binary phylogenetic trees with n leaves;

• Rd
n: the set of rooted trees with n leaves such that the number of

the successors of any vertex is at most d;

• Ud
n: the set of unrooted trees with vertex degrees not exceeding d.

We will put T := ∪∞
n=1Tn and similarly we can define T ∗, Ud and Rd.

In the remainder of this section, we give a brief introduction to three

tree rearrangement operations that are commonly studied in literature.

Following [3], they are presented below from the most restrictive one to

the most general one.

• NNI: Any internal edge of a tree T ∈ Tn has four subtrees attached

to it. A nearest neighbor interchange (NNI) occurs when one subtree

on one side of an internal edge is swapped with a subtree on the

other side of the edge.

• SPR: A subtree prune and regraft (SPR) operation on a tree T ∈ Tn

involves deleting some edge e from T and thereby pruning a subtree

t, and then regrafting the subtree by the same cut edge to a new

vertex obtained by subdividing a pre-existing edge in T − t.
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• TBR: A tree bisection and reconnection (TBR) on a tree T ∈ Tn

consists of two steps: deleting some edge e from T to obtain two

subtrees, and subsequently inserting an edge in one (in the case

that the other one is an isolated labelled vertex) or both subtrees

to form a new tree T ′ that is distinct from T .

Here we will use the convention that in each step the vertices with

degree 2 will be contracted, i.e., any vertex of degree 2 will be deleted and

the two edges incident to it will be replaced by a single edge. Therefore

any tree in Tn will remain in the same category after any operations

mentioned above.

Clearly, every NNI operation is a SPR operation, and each SPR opera-

tion is a TBR operation. For each operation Θ ∈ {NNI, SPR, TBR}, we can

associate it with a family of graphs GΘ(n) = (Vn, En) with Vn = Tn and

En consisting of all pairs {T1, T2} such that T1 and T2 differ by one Θ

operation. For abbreviation, given any T ∈ Tn, we let deg
Θ
(T ) stand for

the degree of T in the Θ graph GΘ(n). To avoid trivial cases, in this part

we will always assume that n ≥ 4 holds.
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Chapter 6

Γ-index

In this chapter, we introduce Γ-index, a tree index that will be used in

Chapter 7 to study the degree distribution of TBR graphs. The extremal

trees for this index are studied for several families of trees. In addition,

we also obtain a structural characterization of good trees.

6.1 Tree index

Recall that a split A|B of a set X is a bipartition of X into two non-

empty disjoint subsets and each edge in a tree T induces canonically a

L(T )-split. Denoting the number of leaves in a tree or a set A ⊆ V (T )

by |T | or |A|, then we have

Definition 6.1.1. For any tree T , the Γ-index of T is defined as

Γ(T ) :=
∑

{u,v}⊆L(T )

distT (u, v) =
∑

e∈E

|Ae| · |Be|, (6.1)

where Ae|Be denotes the L(T )-split induced by e.

Clearly, the above definition is well defined, i.e., the equality in (6.1)

indeed holds for any tree T . In other words, the sum of the distances

between all pairs of leaves in T is equal to the sum of the “weight” of all

L(T )-splits. There two slightly different formulations are both useful in

different contexts.
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Note that a similar tree index, the Wiener Index

W (T ) :=
∑

{u,v}⊆V (T )

distT (v, u)

of a tree T , was introduced by Harold Wiener [63] and has been one of

the most widely used descriptors in quantitative structure activity rela-

tionships. Since the majority of the chemical applications of the Wiener

index deal with chemical compounds with acyclic molecular graphs, the

Wiener index of trees has been extensively studied over the past years,

see [21] and the references therein for details.

For (strict) binary trees, i.e., the degree of each node is either 1 or 3,

the Γ-index and the Wiener index are strongly correlated. More precisely,

we have W (T ) = 4Γ(T ) − (8n2 − 18n + 6) in this case, which does not

hold for general cases. As we will see in Section 7.2, the Γ-index can also

be defined for rooted trees, which is closely related to that of unrooted

trees.

6.2 Good trees

In this section, we investigate good trees, a family of trees that has

been intensively studied in many areas. For the extremal problem for

graphical indices, it was known, although stated differently due to dif-

ferent terminology, that they minimize the Wiener index [25, 33], and

maximize the number of subtrees [57].

Good trees are usually defined by a recursive or algorithmic way [39];

in this section, we present a structural characterization of them in term

of semi-regularity property and show that they minimize the Γ-index

among trees with a given maximum degree. The results obtained here

will be used in Section 7.1 to study the minimal degree of Gn
TBR.

Before introducing good trees, we need some further definitions and

notation. For any edge e = (u, v) in T , then there is a canonical de-

composition of T into two disjoint rooted subtrees Tu and Tv with roots
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u and v, respectively. Similarly, we also associate a canonical pair of

disjoint rooted trees {Tu, Tv} with any pair {u, v} ∈ V (T ). On the other

hand, for any vertex v ∈ T with neighborhood {v1, . . . , vp}, there exists

a canonical decomposition of T (with respect to v) into p subtrees Tvi

rooted at vi for each i ∈ {1, . . . , p}. Unless stated otherwise, we assume

in this section that all rooted subtrees of T are obtained by one of these

three ways.

A tree T ∈ Rd
n is called complete (of height k) if |T | = dk and the d

subtrees attached to the root r are all complete of height k − 1. A tree

T ∈ Rd
n with n ≥ d is called good of height k if among the d subtrees

attached to the root, one is a good tree of height k − 1 and the others

are complete with height k−1 or k−2. Here we use the convention that

a single vertex is a complete tree and a tree T ∈ Rd
n with 1 < n ≤ d is

good if and only if h(T ) = 1. Note that if T is good (resp. complete),

then every rooted subtree of T is also good (resp. complete).

Clearly, if T ∈ Rd
n is a good tree of height k, then we have |T | ∈

(dk−1, dk]. Furthermore, there is essentially (i.e., up to isomorphism) a

unique good tree T in Rd
n.

Now we have

Definition 6.2.1. A tree T ∈ Ud
n (with n > d) is called good if there

exists a vertex v in T with degree d such that all rooted subtrees in the

canonical decomposition of T with respect to v are complete with height

k or k − 1 except one good rooted tree with height k.

Note that a tree T ∈ Ud
n with n ≤ d is good if and only if T is a star,

and that there is essentially (i.e., up to isomorphism) one good tree T in

Ud
n.

Intuitively, we get the graphs described above by simply filling the

distance levels as long as there are still vertices (leaves) available, see

Fig. 6.1 below.

Now we are ready to introduce the semi-regularity property. Suppose

that {Tu, Tv} is the canonical pair of rooted subtrees associated with
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Figure 6.1: The good tree in U4
27.

{u, v} in a tree T ∈ Ud
n, and denote the set of subtrees attached to u in

Tu by {T 1
u , . . . , T a

u} (a ≤ d − 1) and the set of subtrees attached to v by

{T 1
v , . . . , T b

v} (b ≤ d − 1). Then we have the following

Definition 6.2.2. With the above notation, {u, v} is called semi-regular

if one of the following two conditions holds:

(i) a = d − 1 and min{|T 1
u |, . . . , |T a

u |} ≥ max{|T 1
v |, . . . , |T b

v |};

(ii) b = d − 1 and max{|T 1
u |, . . . , |T a

u |} ≤ min{|T 1
v |, . . . , |T b

v |}.

Furthermore, a tree T in Ud
n is semi-regular if each pair of its vertices is

semi-regular.

The following observations show some characteristics of a semi-regular

tree. We use Ud+1
n instead of Ud

n in the next two results, for convenience

of the notation. Note that if T ∈ Ud+1 and Tv is a rooted subtree of T

(obtained by some decompositions), then Tv belongs to Rd.

Lemma 6.2.1. Given a semi-regular tree T in Ud+1
n , and two disjoint

rooted subtrees Tu and Tv of T , then the following holds,

(i): If Tu and Tv have the same height k, then dk−1 < |Tu|, |Tv| ≤ dk

holds and either Tu or Tv is complete.

(ii): If |Tu| = dk for some k, then Tu is a complete tree with height k.

(iii): If dk−1 < |Tv| ≤ |Tu| = dk, then Tv is a good tree with height k.

Proof. (i): The proof is by induction; the statement is clearly true for

k = 1, 2. For larger k, suppose that Tu and Tv both have height k. We

want to show that dk−1 < |Tu|, |Tv| ≤ dk holds and either Tu or Tv is
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complete. First, if neither Tu nor Tv is complete, then by induction we

can assume without loss of generality that one of the following two cases

occurs:

Case 1: Among the subtrees attached to the roots of Tu or Tv, there are

complete subtrees with height k − 1 and less than k − 1;

Case 2: Among the subtrees attached to the root of Tu, there are com-

plete subtrees with height k − 1 and less than k − 1, and an incomplete

subtree of height k − 1 is attached to v in Tv.

Now it is easy to verify that in both cases {u, v} is not semi-regular,

a contradiction.

By the remark of Lemma 6.2.4, dk−1 < |Tu|, |Tv| ≤ dk follows from

our induction hypothesis.

(ii): This is obvious since the complete tree is the only tree of height

k in Rd.

(iii): We establish this assertion by induction; the base cases for

k = 1, 2 follow from the remark of Lemma 6.2.4. For larger k with dk−1 <

|Tv| ≤ |Tu| = dk, we need to show that Tv is good with height k. First

note that the root in Tv has d successors {v1, . . . , vd} by Lemma 6.2.4,.

On the other hand, Tu is a complete tree with height k from Assertion

(ii) and hence Tu1
is a complete tree with height k − 1 for an arbitrary

successor u1 of u. Since {u, v} and {u1, v} are both semi-regular, we have

dk−2 ≤ |Tvi
| ≤ dk−1 for each i. Together with Assertion (i), this implies

that h(Tvi
) ∈ {k − 2, k − 1} holds for each i and there are at most one

incomplete subtree, say Tvj
, in {Tv1

, . . . , Tvd
} with h(Tvj

) = k − 1. By

induction, Tvj
is a good rooted subtree with height k − 1, and hence Tv

is a good tree with height k, which completes the induction.

Now we can state our main result in this section.

Theorem 6.2.2. A tree T in Ud+1
n is semi-regular if and only if T is

good.

Proof. “⇐” This direction clearly holds by noting that if {u, v} is a pair

of interior vertices for a good tree T , then Tu and Tv are both good and
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hence they are semi-regular.

“⇒” Assume that n = |T | ∈ ( (d + 1)dk−1, (d + 1)dk ] for some k ≥ 2

(the case for small values of k is trivial). Then there exists at least one

pair of rooted subtrees of height k; by Assertion (i) in Lemma 6.2.1 one

of them is complete, say Tu where uv ∈ E(T ). Now we complete the

proof of this direction by considering the decomposition Tu ∪e Tv for the

following two cases:

Case 1: n ∈ ( (d + 1)dk−1, 2dk ]. In this case, we have |Tv| ∈ (dk−1, dk].

By Assertion (iii) in Lemma 6.2.1, we know that Tv is a good tree of

height k. In other words, T is good by considering the canonical decom-

position of T with respect to u.

Case 2: n ∈ ( 2dk, (d + 1)dk ]. In this case we have |Tv| ∈ (dk, dk+1] and

h(Tv) > k. First note that by the remark of Lemma 6.2.4, we can assume

that there are d successors {v1, · · · , vd} of v in Tv, and that each vi also

has d successors. Clearly we have |Tvi
| ≥ dk−1 and hence h(Tvi

) ≥ k − 1

for each i by considering the semi-regular pair {u, v}.
Now it suffices to prove the claim that h(Tvi

) ≤ k and hence |Tvi
| ≤ dk

holds for each i because together with Lemma 6.2.1, this claim implies

that h(Tvi
) ∈ {k − 1, k} holds for each i and all Tvi

are complete except

at most one, which (if exists) is good of height k.

We shall prove this claim by contradiction. Without loss of generality,

assume it fails for v1, i.e., h(Tv1
) > k; then Tv1

contains a subtree Ta with

h(Ta) = k. Let b be the ancestor of a in Tv1
. Since h(Ta) = h(Tu) = k,

we know |Ta| > dk−1 from Assertion (i) in Lemma 6.2.1. By considering

the semi-regular pair {v, b}, this implies min{|Tv2
|, . . . , |Tvd

|} ≥ dk. On

the other hand, since {u, v1} is semi-regular, |Ta| > dk−1 also implies that

each subtree attached to v1 in Tv1
has size greater than or equal to dk−1,

and hence |Tv1
| > dk. Therefore we have |T | = |Tu|+ |Tv1

|+ · · ·+ |Tvd
| >

dk+1, a contradiction as required.
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We conclude this section with the following theorem, which shows

that the good trees are extremal for the Γ-index.

Theorem 6.2.3. Among trees with maximum vertex degree d and given

number of leaves, precisely the good tree minimizes Γ(T ).

Clearly, the above theorem follows directly from Theorem 6.2.2 and

the following

Lemma 6.2.4. If T is a tree in Ud
n with Γ(T ) ≤ Γ(T ′) for any T ′ ∈ Ud

n,

then T is semi-regular.

Proof. It suffices to show that any pair of nonleaf vertices {u, v} in T

is semi-regular. Let u := u0, u1, · · · , ut := v be the unique path in T

connecting u and v. To simplify notation, we put α = α1 + · · · + αa

with αi := |T i
u| for each i and β = β1 + · · · + βb with βj := |T j

v | for

each j. Without loss of generality, we can assume α1 ≤ α2 · · · ≤ αa and

β1 ≤ β2 · · · ≤ βb.

For 0 < j < t, let Tuj
be the subtree of T containing uj obtained

by removing the edges on PT (u, v) and put zj = |Tuj
|,we also use the

convention that z0 = zt = 0

Putting p := p0 + · · ·+ pt with pi := z0 + · · ·+ zi and q = q0 + · · ·+ qt

qi := zt + · · ·+ zt−i, we will prove the lemma for the case p ≤ q, the other

case is similar.

If a + b ≥ d, let s be the (d − 1)-th largest element in the set

{α1, · · · , αa, β1, · · ·βb}

with respect to the order (N,≤), otherwise put s = 0. Let J := {j ∈
[1, b] : βj < s} and

I := {i ∈ [1, a] : αi ≥ s and i ≥ a + b − 2 − d − |J |}.

Note that |I| + (b − |J |) ≤ d − 1 by the above definition.

For the sake of contradiction, assume that neither (i) nor (ii) in Def-

inition 6.2.2 holds, that is, at least one of the sets I and J is not empty.
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Now let T ′ be a tree obtained from T by reattaching every subtree T j
v

with j ∈ J to u and reattaching every subtrees T i
u with i ∈ I to v. Simi-

larly, we can define the notation α′, β ′ for the tree T ′. Note that a+b < d

implies α′ = 0 and T ′ ∈ Ud
n follows from the construction.

Since (ii) does not hold, from the construction we know α′ < min{α, β},
which implies that

2Γ(T ) − 2Γ(T ′) =
t∑

i=0

[(α + pi)(n − α − pi) + (β + qi)(n − β − qi)

− (α′ + pi)(n − α′ − pi) − (β ′ + qi)(n − β ′ − qi)]

=
t∑

i=0

[(α′)2 + (β ′)2 − α2 − β2 +

(α − α′)(n − 2pi) + (β − β ′)(n − 2qi)]

= 2(α′ − α)[(α′ − β)(t + 1) + (p − q)]

> 0,

a contradiction as required.

Remark: Following Lemma 6.2.4 is the fact that there is at most one

vertex not of the maximum degree d, and such a vertex (if exists) must

contain at most one nonleaf vertex in its neighborhood.

6.3 Semi-regularity principle

In this section, we will further investigate the semi-regularity property

introduced in Section 6.2. We first apply it to other graphical indices,

and then to the trees with a given degree sequence.

6.3.1 Applications to other graphical indices

In this subsection we will focus on trees with a given maximum degree

and illustrate the idea of applying ‘semi-regularity’ to other graphical
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indices, namely the Wiener index, the number of subtrees and the weight

of a tree. One can refer to Definition 6.2.2 and Lemma 6.2.4.

For the Wiener index, recall that |V (T )| is the number of vertices in

a tree T . Let u, v be any pair of vertices defined as in Definition 6.2.2,

the same argument shows the following ‘semi-regularity’:

Lemma 6.3.1. If T is a tree in Ud
n with W (T ) ≤ W (T ′) for any T ′ ∈

Ud
n, then one of the following must hold:

(i) a = d−1 and min{|V (T 1
u )|, · · · , |V (T a

u )|} ≥ max{|V (T 1
v )|, · · · , |V (T b

v )|};

(ii) b = d−1 and max{|V (T 1
u )|, · · · , |V (T a

u )|} ≤ min{|V (T 1
v )|, · · · , |V (T b

v )|}.

Given a tree T , a subtree of T is just a connected induced subgraph

of T , the number of subtrees as well as related subjects were studied, see

[57] and the references therein for details. Denote by F (T ) the number

of subtrees of T and fT (v) the number of subtrees of T that contain the

vertex v, then once again, we have

Lemma 6.3.2. If T is a tree in Ud
n with F (T ) ≥ F (T ′) for any T ′ ∈ Ud

n,

then one of the following must hold:

(i) a = d−1 and min{fT 1
u
(r1

u), · · · , fT a
u
(ra

u)} ≥ max{fT 1
v
(r1

v), · · · , fT b
v
(rb

v)};

(ii) b = d−1 and max{fT 1
u
(r1

u), · · · , fT a
u
(ra

u)} ≤ min{fT 1
v
(r1

v), · · · , fT b
v
(rb

v)}.

Here we use ri
u (rj

v) to denote the obvious root of the subtree T i
u (T j

v ),

the proof is a little more involved but the idea is still to reattach the

branches and then compare.

Another well known index in chemistry is the Randić index,

wα =
∑

uv∈E(T )

(deg(u))(deg(v))α,

where the sum is over all pairs of adjacent vertices and α 6= 0. Also

called the connectivity index, the Randić index is vigorously studied in

mathematics in the recent years, see [19] and the references therein for
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details. When α = 1, w(T ) := w1(T ) is called the weight of T , it is

sufficient for us to work with w(T ) to study the extremal cases.

Using the same definition for ri
u and rj

v, we have the following ‘semi-

regularity’ property:

Lemma 6.3.3. If T is a tree in Ud
n with w(T ) ≥ w(T ′) for any T ′ ∈ Ud

n,

then one of the following must hold:

(i) a = d−1 and min{deg(r1
u), · · · , deg(ra

u)} ≥ max{deg(r1
v), · · · , deg(rb

v)};

(ii) b = d−1 and max{deg(r1
u), · · · , deg(ra

u)} ≤ min{deg(r1
v), · · · , deg(rb

v)}.

This time the proof is even easier due to the nature of this concept.

We only need to consider the degrees of u and v, the proof is skipped.

With Lemmas 6.3.1, 6.3.2 and 6.3.3, one can easily modify the proof

of Theorem 6.2.2 to show that the corresponding extremal tree is a good

tree.

6.3.2 Trees with a given degree sequence

In this subsection, we consider the extremal trees with a given degree

sequence. Note that both the numbers of the vertices and the number of

leaves are fixed when the degree sequence is given. The extremal trees

obtained here are the same as those obtained in [60], but here we use

an approach based on the following observation that analogous to the

semi-regularity property.

Lemma 6.3.4. Let T be a tree such that Γ(T ) ≤ Γ(T ′) holds for all

tree T ′ that has the same vertex degree of T . Given any path u :=

u0, u1, · · · , ut := v with u, v 6∈ L(T ), then for the set of subtrees {T 1
u , · · · , T a

u}
attached to u and {T 1

v , · · · , T b
v} attached to v such that v 6∈ T i

u and u 6∈ T j
v

holds for each i and j, we have either

a ≥ b and min{|T 1
u |, · · · , |T a

u |} ≥ max{|T 1
v |, · · · , |T b

v |} (6.2)
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or

b ≥ a and max{|T 1
u |, · · · , |T a

u |} ≤ min{|T 1
v |, · · · , |T b

v |}. (6.3)

Proof. The proof is similar to that of Lemma 6.2.4: Let α, β, p, q be

defined in the same way and we also need only to show the case p ≤ q

here since the other one is similar. Let I and J be the two sets such that

|I| = min{a, b}, |J | = max{a, b},

I ∪ J = {T 1
u , . . . , T a

u , T 1
v , . . . , T b

v}

and the number of leaves of each subtree in I is smaller than or equal to

that of any subtree in J .

Now let T ′ be a tree obtained from T by reattaching every subtree in

I to u and reattaching ever subtrees in J to v. Similarly, we can define

the notation α′, β ′ for the tree T ′. Note that T ′ and T have the same

vertex degree sequence.

Now if (6.3) does not hold, then from construction we know α′ <

min{α, β}. Using an argument similar to that in Lemma 6.2.4 we have

2Γ(T ) − 2Γ(T ′) = 2(α′ − α)[(α′ − β)(t + 1) + (p − q)] > 0,

a contradiction as required.

Minimization

For convenience, we will call a tree optimal if it minimizes Γ(T ) among

all trees with the same degree sequence.

Consider a path in an optimal tree, after the removal of the edges on

this path, some connected components will remain. Take an edge that

is in the middle (or as middle as possible) of this path and label the

vertices on its right as x1, x2, . . ., and the vertices on the left as y1, y2, . . ..

Let Xi , Yi denote the component that contains the corresponding vertex

(Fig. 6.2).
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We shall try to find how to arrange these components (through this

operation the degree sequence stays the same) in order to minimize this

index. This is the content of the next lemma.

r rrr. . . . . .x1 x2y1y2

X1 X2Y1Y2

rr r r

ykyk+1. . .

Yk

xk xk+1. . .

Xk

Figure 6.2: The components resulted from a path without z

Lemma 6.3.5. In an optimal tree T , we can label the vertices such that

|X1| ≥ |Y1| ≥ |X2| ≥ |Y2| ≥ . . . ≥ |Xm| = |Ym| = 1

if the path is of odd length (2m − 1); and

|X1| ≥ |Y1| ≥ |X2| ≥ |Y2| ≥ . . . ≥ |Ym| = |Xm+1| = 1

if the path is of even length (2m).

Proof. We will prove the case when the path is of odd length, the other

case is similar.

Recall that Γ(T ) =
∑

e∈E |Ae||Be|, since |Ae||Be| stays the same

through the rearrangement for any edge e in any components Xi or Yi,

therefor

Γ(T ) = C +
∑m

i=1 |Xi|
∑m

i=1 |Yi| +
∑m−1

i=1

(
(
∑i

j=1 |Xj|)(|T | −∑i
j=1 |Xj|)

+(
∑i

j=1 |Yj|)(|T | −∑i
j=1 |Yj|)

)

=
∑

1≤i,j≤m(2m + 1 − i − j)|Xi||Yj|
+
∑

1≤i<j≤m(j − i)(|Xi||Xj| + |Yi||Yj|) + C

(6.4)

where C is a constant regardless of the order of the components.

As pointed out in [60], simple application of a classic number theory

88



result [30] yields that (6.4) is minimized when

|X1| ≥ |Y1| ≥ |X2| ≥ |Y2| ≥ . . . ≥ |Xm| = |Ym| = 1.

With Lemma 6.3.4, the following immediately follows, we skip the

proof here:

Corollary 6.3.6. In an optimal tree, for a path with labelling as in

Lemma 6.4, we have

deg(x1) ≥ deg(y1) ≥ deg(x2) ≥ deg(y2) ≥ . . . ≥ deg(xm) = deg(ym) = 1

if the path is of odd length (2m − 1); and

deg(x1) ≥ deg(y1) ≥ deg(x2) ≥ . . . ≥ deg(xm) ≥ deg(ym) = deg(xm+1) = 1

if the path is of even length (2m).

From Corollary 6.3.6, exactly the same proof as in [60] yields:

Theorem 6.3.7. Given the degree sequence, the greedy tree minimizes

Γ(T ).

While the greedy tree is similar to the ‘good’ tree, we still list its

definition here for completeness, Fig. 6.3 shows a greedy tree with degree

sequence {4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2}.

Definition 6.3.1. Suppose the degrees of the non-leaf vertices are given,

the greedy tree is achieved by the following ’greedy algorithm’:

i) Label the vertex with the largest degree as v (the root);

ii) Label the neighbors of v as v1, v2, . . ., assign the largest degrees

available to them such that deg(v1) ≥ deg(v2) ≥ . . .;

iii) Label the neighbors of v1 (except v) as v11, v12, . . . such that they

take all the largest degrees available and that deg(v11) ≥ deg(v12) ≥ . . .,

then do the same for v2, v3, . . .;
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iv) Repeat (iii) for all the newly labelled vertices, always start with

the neighbors of the labelled vertex with largest degree whose neighbors

are not labelled yet.
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Figure 6.3: A greedy tree

Maximization

For a tree T with given degree sequence that maximizes Γ(T ), we get

a similar result as Lemma 6.4 (refer to Fig. 6.2):

Lemma 6.3.8. In a tree with a given number of vertices and degree

sequence that maximizes Γ(T ), we can label the vertices on the path such

that:

|X1| ≤ |Y1| ≤ |X2| ≤ |Y2| ≤ . . . ≤ |Xm−1| ≤ |Ym−1|

if the path is of odd length (2m − 1); and

|X1| ≤ |Y1| ≤ |X2| ≤ |Y2| ≤ . . . ≤ |Ym−1| ≤ |Xm|

if the path is of even length (2m).

Then again, similar arguments as in [60] lead us to:

Theorem 6.3.9. Given the degree sequence, the greedy caterpillar max-

imizes Γ(T ).

Here the greedy caterpillar is defined as a tree T with given degree

sequence

{d1 ≥ d2 ≥ . . . ≥ dk ≥ 2}, that is formed by attaching pendant edges to a

path v1v2 . . . vk of length k − 1 such that deg(v1) ≥ deg(vk) ≥ deg(v2) ≥
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deg(vk−1) ≥ . . . ≥ deg(v[ k
2
]). Fig. 6.4 shows a greedy caterpillar with

degree sequence {6, 5, 5, 5, 5, 5, 4, 3, 3}.
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Figure 6.4: A greedy caterpillar
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Chapter 7

TBR Graphs

In this chapter, we study various properties of TBR graphs, including

its degree distribution and the diameter.

7.1 Degrees

In this section, we shall investigate the degrees of TBR graphs. We first

establish a formula to calculate the degree of any vertex in TBR graphs

by using the Γ-index introduced in Chapter 6; then apply it to obtain

the maximal and minimal degrees of Gn
TBR. In addition, we also obtain

the average degree of the nodes in the TBR graphs.

Recall that Gn
NNI is a regular graph with degree 2n − 6 and Gn

SPR is

regular with degree 2(n−3)(2n−7). Now our main result in this section

can be stated as the following

Theorem 7.1.1. For each vertex T ∈ Tn with n ≥ 3, we have

degTBR(T ) = 4Γ(T ) − (8n2 − 18n + 6). (7.1)

Let OTBR(T ) be the set of all possible TBR operations θ that can be

applied to the tree T . Note that two TBR operations are distinct if either

they delete different edges in the first step or the insert different edges

to reconnect the two subtrees obtained from the first step. Clearly, two
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different TBR operations may produce the same tree, but the following

lemma shows that this occurs only if both of them are NNI operations.

Lemma 7.1.2. For any two distinct operations θ and θ′ in OTBR(T ),

θ(T ) = θ′(T ) implies that both θ and θ′ are NNI operations.

To prove the above lemma, we need some further definitions (see [53]

for more background). Given a phylogenetic tree T with leaf set X, let

Σ(T ) denote the collection of X-splits that are induced by the edges of

T . Now if X ′ is a subset of X, then the restriction of T to X ′, denoted

by T |X′ , is the unique phylogenetic tree with leaf set X ′ and

Σ(T |X′) = {A ∩ X ′|B ∩ X ′ : A|B ∈ Σ(T ) and A ∩ X ′ 6= ∅ 6= B ∩ X ′}.

Proof. Suppose that we delete some edge e = uv of T in θ and e′ = u′v′ in

θ′. Then clearly we have e 6= e′, because otherwise θ(T ) must be different

from θ′(T ) as the two operations are distinct.

Let A|B and A′|B′ be the splits induced by e and e′ respectively; then

we may assume that A ⊂ A′ and B′ ⊂ B in view of e 6= e′. Suppose that

in θ, the two parts T |A and TB are reconnected by some edge f . Now,

for a ∈ A′ − A, we must have T |A∪a = θ(T )|A∪a. Hence the edges e and

f are incident with the same interior edge of T |A. Following the same

argument with e′ = u′v′, we conclude that θ, θ′ ∈ OSPR(T ).

Without loss of generality, we may assume that dT (u, u′) = dT (v, v′)+

2 and let v0 := u, v1 := v, v2, . . . , vk := v′, vk+1 := u′ be the unique path

of interior vertices in T joining u and u′, such that u, u′ 6∈ {v1, . . . , vk}.
Let ei = vivi+1, and fi be the unique edge incident with vi but not other

vj . Further, let Ci be the leaf set the component of T − fi that does not

contain A. As e 6= e′, we may assume k ≥ 1.

Note that in θ, the pruned subtree T |A cannot be grafted to any edge

incident with v1 because otherwise we have θ(T ) = T , contradicting the

fact that θ ∈ OTBR(T ). We may also not attach the pruned subtree to

any edge within T |B′ in view of A′|B′ ∈ Σ(θ(T )).

Furthermore, Suppose that T |A is grafted to some edge contained in
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T |C1
. Then in view of θ(T )|A′ = T |A′ and A ∪ C1 ⊆ A′, we must have

θ ∈ ONNI(T ). Note this establishes the lemma for the case with k = 1.

Now suppose k > 1; if we regraft T |A to any edge contained in T |Ci

with i > 1, then θ(T )|A∪Ci
6= T |A∪Ci

, which is a contradiction. Hence we

must regraft T |A to some edge in the set {e2, . . . , ek, f2, . . . , fk}.
However, the only way in which we can do this so that θ(T )|A′ = T |A,

is if k = 2 and we regraft T |A to either e2 or f2. But then we have

θ ∈ ONNI(T ), and hence complete the proof.

The proof of Theorem 7.1.1:

By Lemma 7.1.2, we have degTBR(T ) = |OTBR(T )| − 3degNNI(T ).

As degNNI(T ) = 2n − 6 holds for any T ∈ Tn, it suffices to show that

|OTBR(T )| = 4Γ(T )− 8(n2 − 3n +3), which is relatively straightforward.

Note that there are two types of possible TBR operations on T : the

first one consists of those that induce a trivial split on T , and the second

one consists of those that induce a non-trivial split. In the first case, we

have n possible leaves to cut, and for each leaf x there are 2n−6 edges in

T − x to which we can reconnect it so that the resulting tree is different

from T .

Now let A|B be some non-trivial split of T induced by the edge e.

Then we we bisect T by deleting e; there are 2|A| − 3 edge in one com-

ponent of the forest and 2|B| − 3 edges in the other. Hence, there are

(2|A| − 3)(2|B| − 3) ways to choose an edge from each of T |A and T |B.

Precisely one of these results in re-forming T . Hence, by taking a sum

over all non-trivial splits A|B of T , we get

|OTBR(T )| = n(2n − 6) +
∑

A|B∈Σ0(T )

[(2|A| − 3)(2|B| − 3) − 1]

= 2n(n − 3) +
∑

A|B∈Σ0(T )

[4|A||B| − 6(|A| + |B|) + 8]

= 2n(n − 3) + 4(Γ(T ) − n(n − 1)) − (6n − 8)(n − 3)

= 4Γ(T ) − 8(n2 − 3n + 3).
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Here in the third equality we use the fact |Σ0(T )| = n − 3 and the

observation
∑

A|B∈Σ0(T ) |A||B| = Γ(T ) − n(n − 1). �

Theorem 7.1.3. The tree T ∈ Tn maximizes the degree in Gn
TBR if and

only if T is a caterpillar. In this case, we have

degTBR(T ) = (2n3 − 12n2 + 16n + 6)/3.

Proof. By Theorem 7.1.1, to establish the first part of the theorem it

suffices to show that if T ∈ Tn is a tree such that Γ(T ) ≥ Γ(T ′) holds for

all T ′ ∈ Tn, then T is a caterpillar.

Suppose that {x1, x2} (resp. {x3, x4}) is a pair of cherries of T whose

parent is u (resp. v), and u := u0, u1, · · · , ut := v is the unique path

PT (u, v) in T connecting u and v. For 0 < j < t, let Tuj
be the subtree

of T containing uj obtained by removing the edges on PT (u, v) and put

zj := |Tuj
|. Then it suffices to show that zj = 1 for 0 < j < t.

If this fails for some j ∈ {1, · · · , t − 1}, we can regraft the subtree

Tuj
− uj to the edge x1u by a SPR operation to form a second tree T ′.

Now, calculating the different between Γ(T ) and Γ(T ′), we find that

Γ(T ) − Γ(T ′) =

i−1∑

j=0

(j + 2)(n − j − 2) −
i−1∑

j=0

(zi + j + 1)(n − zi − j − 1)

= i(1 − zi)(n − zi − i − 2)

< 0,

a contradiction as required. Note that in the last inequality we use the

fact that zj ≥ 1 for all j ∈ {1, · · · , t − 1} implies zi + (i − 1) ≤ n − 4,

and hence n − zi − i − 2 > 0. This is a contradiction as required.

Now it remains to calculate degTBR(T ) for a caterpillar T in Tn, which

is straightforward in view of Theorem 7.1.1 and the observation that

Γ(T ) = n(n − 1) +
∑n−2

i=2 i(n − i) holds for any caterpillar T in Tn.

On the other hand, the following theorem presents the result for the

minimal degrees of Gn
TBR.
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Theorem 7.1.4. The tree T ∈ Tn minimizes the degree of Gn
TBR if and

only if T is a good tree. If the binary expansion of n is (akak−1 · · ·a1a0)2,

that is, we have n =
∑k

i=0 αi2
i with αk = 1 and αi ∈ {0, 1} for 0 ≤ i < k,

then for any good tree T ∈ Tn, we have

degTBR(T ) = 2k+αk−1(2n − αk−12
k−1 − 2k) − 2(4n2 − 9n + 3) +

4
k−2∑

j=0

(
−2j +

k∑

i=j

αi2
i

)(
2n −

k∑

i=j

αi2
i

)
.

Before presenting the proof of the above theorem, we have the follow-

ing corollary, which is obtained by some straightforward calculations.

Corollary 7.1.5. Let T ∈ Tn be a good tree; then

degTBR(T ) = 4n2⌊log2 n⌋ + O(n2).

In particular, for a good tree T ∈ Tn we have

degTBR(T ) =





n2(4k − 32

3
) + 22n − 6 if n = 3 · 2k−1 for some k,

n2(4k − 13) + 22n − 6 if n = 2k for some k.

�

The proof of Theorem 7.1.4

The first part of the theorem clearly follows from Theorem 6.2.3 and

Theorem 7.1.1. To establish the second part, we put βj := 1
2j

∑k
i=j αi2

i,

and note from the definition that there are exactly βj distinct subtrees

of height j in T , among which all are of size 2j (i.e., they are complete)

with at most one exception, which has size n − 2j(βj − 1).

Now we shall prove the theorem by considering the following two

cases:

Case 1: αk−1 = 1. In this case, there exists a canonical one-one and

onto correspondence between the subtrees of height t with 0 ≤ t ≤ k − 1
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and edges in T . Therefore, we have

Γ(T ) =
k−1∑

j=0

[(βj − 1)(2j − 1)(n − 2j) + (n − 2j(βj − 1))2j(βj − 1)

=
k−1∑

j=0

2j(βj − 1)(2n − 2jβj)

=
k−1∑

j=0

(
−2j +

k∑

i=j

αi2
i

)(
2n −

k∑

i=j

αi2
i

)
.

Together with (7.1), this completes the proof of this case.

Case 2: αk−1 = 0. The proof of this case is similar to the first one.

But we need to note that in this case we have βk−1 = 2 and hence the

two subtrees of height k − 1 are mapped to the same interior edge in T

in the canonical correspondence. �

We conclude this section with a brief discussion on the average degree

of the nodes in the TBR graph. In other words, if a tree T ∈ Tn is

generated by the uniform model, where each tree in Tn is chosen with

equal probability, then it is not difficult to obtain the following theorem

by previous results on the expected distance between leaves.

Theorem 7.1.6. Let Tn be a random tree in Tn generated by the uniform

model; then we have E(degTBR(Tn)) ∼ 2
√

πn5/2.

Proof. Following Theorem 3.1 in [56], the expected distance between a

pair of leaves in the tree Tn is asymptotic to
√

πn, and hence we have

E(Γ(Tn)) ∼ √
πn5/2/2, which implies the theorem in view of (7.1).

7.2 The Yule-Harding model

In this section, we study the distribution of the size of the unit-

neighborhood of trees generated by the Yule-Harding model.
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Denoting the set of rooted binary phylogenetic trees with n leaves

by T ∗
n , this model generates a random element of T ∗

n as follows. Start-

ing with a subtree with just three leaves that are randomly labelled by

three distinct elements in {1, . . . , n}, recursively select a random pendant

edge with uniform probability and make the next leaf, which is labelled

by choosing with uniform probability one of the labels from {1, . . . , n}
that does not used so far, adjacent to the midpoint of that edge. This

procedure stops when the resulting tree has n leaves.

This model has been widely studied and has many attractive prop-

erties. Note that if we suppress the root in the trees generated by the

Yule-Harding model, then we can also regard it generates a random ele-

ment in Tn.

Now we can state our main result in this section.

Theorem 7.2.1. Let Tn be a random element in Tn generated by the

Yule-Harding model and let Dn be the random variable defined as degTBR(Tn);

then we have

E(Dn) = 8n(n + 1)Hn − 70n2 − 56n + 18

3
∼ 8n2 ln(n)

and

Var(Dn) ∼ 11284 − 480π2

45
n4,

where Hn :=
∑n

j=1 1/j denotes the n-th harmonic number.

In order to establish the above theorem, we shall first consider the

Γ-index for rooted trees, which is related to that of unrooted trees by the

following observation: For any rooted tree T ∗ ∈ T ∗, let T ∗
1 and T ∗

2 be the

left and right subtree of the root of T ∗; then we have

Γ(T ∗) = Γ(T ) + |T ∗
1 | · |T ∗

2 |, (7.2)

where T is the tree obtained from T ∗ by suppressing the root r.
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Furthermore, the Sackin index of a rooted tree T ∗ is defined as

S(T ∗) :=
∑

u∈L(T ∗)

distT ∗(u, r).

Now we have

S(T ∗) = S(T ∗
1 ) + S(T ∗

2 ) + n (7.3)

and

Γ(T ∗) = Γ(T ∗
1 ) + Γ(T ∗

2 ) + b(T ∗
1 , T ∗

2 ), (7.4)

where b(T ∗
1 , T ∗

2 ) := 2|T ∗
1 ||T ∗

2 | + |T ∗
1 |S(T ∗

2 ) + |T ∗
2 |S(T ∗

1 ). It is known

(cf. [38]) that for a random tree T ∗
n in T ∗

n generated by the Yule-Harding

model, we have

E(S(T ∗
n)) = 2n(Hn − 1), (7.5)

where Hn :=
∑n

j=1 1/j = ln(n)+O(1) denotes the n-th harmonic number.

To investigate the Γ-index of a random Yule-Harding tree, we need

to introduce some further definitions and notation. We denote by At the

transpose of a vector or matrix A; by
D
= the equality in distribution of

the left and right hand side; by L(X ) the distribution of X; by Xn
D−→ X

the convergence of L(Xn) to L(X). Finally, let M2 be the space of all

centered probability measures on R
2 with finite second moments.

Now we can state the following theorem, a key step to establish The-

orem 7.2.1.

Theorem 7.2.2. Let (Γ∗
n, S

∗
n) denote the vector of the Γ and Sackin

index of a random tree in T ∗
n generated by the Yule-Harding model; then
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we have

E(Γ∗
n) = 2n(n + 1)Hn − 4n2,

Var(Γ∗
n) ∼ 188 − 6π2

9
n4,

Cov(Γ∗
n, S

∗
n) ∼ 68 − 6π2

9
n3,

Cor(Γ∗
n, S

∗
n) ∼ 68 − 6π2

√
63 − 6π2

√
188 − 6π2

(
Γ∗

n − EΓ∗
n

n2
,
S∗

n − ES∗
n

n

)
D−→ (Γ∗, S∗),

where L(Γ∗, S∗) is the unique fixed-point of the map T : M2 → M2 given

for ν ∈ M2 by

T(ν) := L
([

U2 U(1 − U)

0 U

](
Z1

Z2

)

+

[
(1 − U)2 U(1 − U)

0 1 − U

](
Z ′

1

Z ′
2

)

+

(
b̂1

b̂2

))

,

with

(
b̂1

b̂2

)
:=

(
2U ln U + 2(1 − U) ln(1 − U) − 10U(1 − U)

2U ln U + 2(1 − U) ln(1 − U) + 1

)
,

where (Z1, Z2), (Z ′
1, Z

′
2), U are independent with L(Z1, Z2) = L(Z ′

1, Z
′
2) =

ν and U uniform [0, 1] distributed.

The main technique used in the following proof is a multivariate con-

traction method developed by Neininger [46], which have been used to

study other graphical indices on random trees [9, 47].

Proof. Let T ∗
n be a rooted Yule-Harding random tree with n leaves; then

Γ∗
n := Γ(T ∗

n) and S∗
n := S(T ∗

n). Denote by T ∗
1 and T ∗

2 the left and right

subtree of T ∗
n attached to the root, and put In := |T ∗

1 | and Jn := |T ∗
2 |.

We begin by noting that In + Jn = n and In is a uniform distributed

random variable over {1, 2, . . . , n − 1} (cf [54]).

Next, by (7.3) and (7.4), we have the following two recurrences on
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distributions:

S∗
n

D
= S∗

In
+ (S∗

Jn
)′ + n (7.6)

and

Γ∗
n

D
= Γ∗

In
+ (Γ∗

Jn
)′ + bn (7.7)

with (Γn, Sn), ((Γ∗
n)′, (S∗

n)′) and In being independent and

bn := 2|In||Jn| + |Jn|S∗
In

+ |In|(S∗
Jn

)′.

Here the initial conditions for the above recurrences are Γ∗
1 = b1 = 0 and

Γ∗
2 = b2 = 2.

Now we shall divide the remainder of the proof into three steps.

Step 1: Expectation. To simplify the notation, put αn := E(Γ∗
n) and

βn := E(bn); then from (7.7) and the distribution of In, we have

αn = βn +
2

n − 1

n−1∑

k=1

αk (n ≥ 2)

with α1 = β1 = 0 and α2 = β2 = 2. Solving the above recurrence (see

for example [27]), we can conclude that

αn = βn + 2n
n−1∑

k=2

βk

k(k + 1)
.
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holds for n ≥ 2, which yields the first assertion of the theorem since

βm = E(bm)

=
1

m − 1

m−1∑

k=1

2k(m − k) + (m − k)E(Sk) + kE(Sm−k)

=
2

m − 1

m−1∑

k=1

k(m − k)(Hk + Hm−k − 1))

=
4m

m − 1

m−1∑

k=1

kHk −
4

m − 1

m−1∑

k=1

k2Hk −
2

m − 1

m−1∑

k=1

k(m − k)

=
2m(m + 1)

3
Hm − m(8m + 2)

9

holds for m ≥ 2. Here we refer the reader to [55, Table 1] for the formulas

used in the last equality to calculate
∑m

k=1 kHk and
∑m

k=1 k2Hk.

Step 2: Limit laws. Now considering a rescaled version of the Sackin

and Γ-index:

S
∗

n :=
S∗

n − E(S∗
n)

n
and Γ

∗

n :=
Γ∗

n − E(Γ∗
n)

n2
,

and putting

Xn :=

(
S
∗

n

Γ
∗

n

)
and X ′

n :=

(
(S

∗

n)′

(Γ
∗

n)′

)
,

then from (7.6), (7.7) and (7.5), we have

Xn
D
= An

1XIn
+ An

2X
′
Jn

+ cn,

where

An
1 :=

(
I2
n/n InJn/n

2

0 In/n

)

, An
2 :=

(
J2

n/n InJn/n2

0 Jn/n

)

, cn :=

(
cn
1

cn
2

)
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with

cn
1 =

InE((S∗
Jn

)′) + JnE(S∗
In

) + 2InJn + αIn
+ αJn

− αn

n2

=
2In

n
ln

In

n
+

2Jn

n
ln

Jn

n
− 10InJn

n2
+ o(1)

and

cn
2 =

n + E(S∗
In

) + E((S∗
Jn

)′) − E(S∗
n)

n
=

2In

n
ln

In

n
+

2Jn

n
ln

Jn

n
+ 1 + o(1).

Therefore, by dominated converge, we obtain the following conver-

gences in L2:

An
1 → Â1 :=

[
U2 U(1 − U)

0 U

]

, (7.8)

An
2 → Â2 :=

[
(1 − U)2 U(1 − U)

0 (1 − U)

]

, (7.9)

bn → b̂ :=

(
2U ln U + 2(1 − U) ln(1 − U) − 10U(1 − U)

2U ln U + 2(1 − U) ln(1 − U) + 1

)
,(7.10)

where U denotes a random variable distributed uniform on [0, 1].

Then the multivariate contraction theorem [46] claims that the se-

quence (Xn) converges in distribution and with second moments to a dis-

tribution L(X), which is the unique fixed-point of the map T : M2 → M2

given by

T(ν) := L(Â1Z + Â2Z
′ + b̂), (7.11)

with (Â1, Â2, b̂), Z, Z ′ are independent and L(Z) = L(Z ′) = ν, if the

following conditions are satisfied:

(i) (A
(n)
1 , A

(n)
2 , b(n))

L2−→ (Â1, Â2, b̂), n → ∞,

(ii) E [||(Â1)
tÂ1||op] + E [||(Â2)

tÂ2||op] < 1,

(iii) E

[
1{In≤l}||(A(n)

1 )tA
(n)
1 ||op

]
→ 0, for all l ∈ N, n → ∞,
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(iv) E

[
1{In≤l}||(A(n)

2 )tA
(n)
2 ||op

]
→ 0, for all l ∈ N, n → ∞,

where ||A||op = sup||x||=1 ||Ax|| denotes the operator norm of A and 1B

denotes the indicator function of a set B.

Therefore, to complete this step, it suffices to verify the above con-

ditions: Indeed, (i) follows directly from (7.8), (7.9) and (7.10); (iii) and

(iv) hold since ||(A(n)
r )tA

(n)
r )||op are deterministically bounded (r = 1, 2)

and

P({In ≤ l}) = P({Jn ≤ l}) ≤ l

n
→ 0

holds for all l ∈ N and n → ∞. Finally, we shall check (ii): clearly the

largest eigenvalue λ(U) in absolute value for (Â1)
tÂ1 is

λ(U) = U2

(
1 + U2 + (1 − U)2

2
+

√
(1 + U2 + (1 − U)2)2

4
− U2

)
,

which implies that

E [||(Â1)
tÂ1||op] + E [||(Â1)

tÂ1||op] = 2E [λ(U)]

=
3

10
+

29

60

√
2 +

1

4
ln(

√
2 − 1)

< 1

since (Â1)
tÂ1 and (Â2)

tÂ2 are identically distributed.

Step 3: Second Moments. To simplify the notation, put ε(U) := U ln U+

(1 − U) ln(1 − U). From Step 2, equation (7.11) has a unique solution,

so we can choose two independent copies (Γ∗, S∗) and ((Γ∗)′, (S∗)′) with

L(Γ∗, S∗) = L((Γ∗)′, (S∗)′) being the fixed-point of T in M2. Then EΓ∗ =

ES∗ = 0 and

(
Γ∗

S∗

)
D
=

(
U2Γ∗+U(1−U)(S∗+(S∗)′)+(1−U)2(Γ∗)′−10U(1−U)+2ε(U)

US∗+(1−U)(S∗)′+1+2ε(U)

)
.

Furthermore, together with the independence property and EΓ∗ =
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ES∗ = 0, the above equality implies

E[Γ∗S∗] = E[U3Γ∗S∗] + E[(1 − U)3(Γ∗)′(S∗)′] + E[U2(1 − U)(S∗)2]

+ E[U(1 − U)2((S∗)′)2] + E[(2ε(U) − 10U(1 − U))(1 + 2ε(U))]

Using the fact that E((S∗)2) = 7 − 2π2/3 (cf. [51, 8]), we obtain

Cov(Γ∗, S∗) = E[Γ∗S∗] =
68 − 6π2

9
,

which will be use to calculate E[(Γ∗)2]. We have

E[(Γ∗)2] = E[(1 − U)4((Γ∗)′)2] + 2E[U3(1 − U)Γ∗S∗] + E[U4(Γ∗)2]

+2E[U(1 − U)3(Γ∗)′(S∗)′] + E[U2(1 − U)2(S∗ + (S∗)′)2]

+E[(−10U(1 − U) + 2ε(U))2],

which implies

E[(Γ∗)2] =
188 − 6π2

9
, and Cor(Γ∗, S∗) =

68 − 6π2

√
63 − 6π2

√
188 − 6π2

Since the convergence

(
Γ∗

n − E(Γ∗
n)

n2
,
S∗

n − E(S∗
n)

n

)
D−→ (Γ∗, S∗)

holds with second moments, this implies

Var(Γ∗
n) ∼ n4Var(Γ∗), Cov(Γ∗

n, S
∗
n) ∼ n3Cov(Γ∗, S∗)

and Cor(Γ∗
n, S∗

n) ∼ Cor(Γ∗, S∗).

With the above theorem, we are ready to prove Theorem 7.2.1.

Proof of Theorem 7.2.1:

We shall use the same notation T ∗
n , T ∗

1 , T ∗
2 , In, Γ∗

n and S∗
n as defined in the
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proof of Theorem 7.2.2. In addition, let Tn be the unrooted tree obtained

from T ∗
n by suppressing the root; put Γn := Γ(Tn) and Yn := |T ∗

1 | · |T ∗
2 |.

First, from the distribution of In, we can assert that

E(Yn) =
1

n − 1

n−1∑

i=1

i(n − i) =
n2 + n

6
(7.12)

and

Var(Yn) = E(Y 2
n ) − (E(Yn))

2 =
1

30
n4 + O(n3). (7.13)

Next, we also have

E(Γ∗
nYn) =

1

n − 1

n−1∑

i=1

E(Γ∗
nYn|In = i)

=
4(n + 1)

n − 1

n−1∑

i=1

i2(n − i)Hi −
2

n − 1

n−1∑

i=1

[i2(n − i)2 − 4i3(n − i)]

=
n4Hn

3
− 119

180
n4 + O(n3),

where in the last equality we use the fact that
∑n−1

i=1 i2Hi = n3Hn/3 −
n3/9 + o(n3) and

∑n−1
i=1 i3Hi = n4Hn/4− n4/16 + o(n4) while the second

equality holds because the recurrence relation (7.4) implies

E(Γ∗
nYn|In = i) = i(n − i)E(Γ∗

n|In = i)

= i(n − i)E(Γ∗
i + Γ∗

n−i + 2i(n − i) + iS∗
n−i + (n − i)S∗

i )

= 2i2(n − i)2(Hi + Hn−i − 1) − 4i(n − i)(i2 + (n − i)2) +

2i2(i + 1)(n − i)Hi + 2i(n − i)2(n − i + 1)Hn−i

for i ∈ {1, . . . , n}. Here we use (7.5) and Theorem 7.2.2 to obtain the

last equality.

Finally, since Γn = Γ∗
n−Yn holds in view of (7.2), from Theorem 7.2.2

we have

E(Γn) = E(Γ∗
n) − E(Yn) = 2n(n + 1)Hn − 23n2 − n

6
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and

Var(Γn) = Var(Γ∗
n) + Var(Yn) + E(Γ∗

nYn) − E(Γ∗
n)E(Yn)

∼ 188 − 6π2

9
n4 +

61

180
n4

=
2821 − 120π2

180
n4.

Together with (7.1), this yields the theorem. �

7.3 Diameter

Given a graph G, its diameter diam(G) is defined to be the maximal

distance between all pairs of vertices in G. In this section, we obtain a

current best known lower bound on the diameter of Gn
TBR. Note that the

best known upper bound is n−⌊√n/2⌋ and a lower bound similar to the

one presented here, n− 2⌈√n ⌉+ 1, is independently obtained by Stefan

Grunewald [28] with a more complicated approach using the technique

of agreement forest.

Theorem 7.3.1. Suppose that n ∈ [k2, (k + 1)2) holds for for some

positive number k ≥ 2; then we have

diam(Gn
SPR) ≥ diam(Gn

TBR) ≥
{

n − 2
√

n + 1 if n = k2;

n − 2k if n > k2.

To establish the above theorem, we need some additional concepts

from phylogenetics. Recall that a character f on X is a surjective map

from X to a finite set C = {1, · · · , r}, which is called the state set of f

and whose size |C| will be denoted by |f |. An extension of f to a tree T

with L(T ) = X is a function f̄ : V (T ) → C such that f(x) = f̄(x) holds

for any leaf x ∈ L(T ); the changing number of f̄ , denoted by ch(f̄), is the

number of edges {u, v} with f̄(u) 6= f̄(v). Now given a pair (T, f) such

that f is a character on L(T ), the parsimony score of f on T , denoted
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by l(T, f), is defined as

min{ch(f̄) : f̄ is an extension of f to T},

while the homoplasy score of (T, f) is defined as

h(T, f) := l(T, f) − |f | + 1.

Now we can state the following lemma, a key step to prove the above

theorem.

Lemma 7.3.2. For any n ≥ 4, we have

max
T∈Tn

max
f

h(T, f) ≤ diam(Gn
TBR) ≤ diam(Gn

SPR).

Proof. The second inequality is trivial. To establish the first one, we use

a result by Bryant [12]: if T differs from T ′ by a single TBR operation,

then l(f, T ′) ≤ l(f, T ) + 1 holds for any character f on L(T ). This

implies that the distance between T and T ′ in Gn
TBR is bounded below

by h(T, f) for any character f with h(T ′, f) = 0. Now consider a pair

(T, f) such that h(T, f) obtained the maximal value in the left side; then

the inequality clearly holds because there always exists some tree T ′ in

Tn with h(T ′, f) = 0.

With the above lemma, we can obtain a lower bound on diam(Gn
TBR)

by choosing a suitable pair (T, f), as indicated by the following proof.

The proof of Theorem 7.3.1:

If n = k2, it suffices to construct a tree T and a character f such that

h(T, f) = (k − 1)2 in view of Lemma 7.3.2. Consider a caterpillar tree

on {1, 2, · · · , n} such that {1, 2} and {n− 1, n} are the only two cherries

and the other leaves are labelled consecutively from 3 to n − 2 .

Let f be the character on X with defined as

f(x) := x mod k for x ∈ {1, 2, · · ·n}.
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Note that the state set of f is Zk and hence |f | = k; then it is clear that

we have l(T, f) = (k − 1)k, and therefore h(T, f) = (k − 1)2.

If k2 < n < (k +1)2, then we can consider the pair (T, f) constructed

as above and a similar analysis shows l(T, f) = k(k − 1) + (n − k2 − 1),

and hence h(T, f) = n − 2k. �

Note that the bound obtained in Theorem 7.3.1 is “optimal” with

respect to the approach in this section. More precisely, we have

max
T∈Tn

max
f

h(T, f) ≤ n − 2
√

n + 1

for any given n: Indeed, consider a pair (T, f) such that h(T, f) is max-

imal and put r := |f |; then there exists a state α ∈ f(X) such that

|f−1(α)| ≥ n/r holds, which implies l(T, f) ≤ n(1 − 1/r), and hence

h(T, f) ≤ n(1 − 1

r
) − (r − 1) = (n + 1) − (r +

n

r
) ≤ (n + 1) − 2

√
n.
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