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Abstract 

 

The present study discusses findings that replicate and extend the original work of 

Burns and Vollmeyer (2002), which showed that performance in problem solving 

tasks was more accurate when people were engaged in a non-specific goal than in 

a specific goal. The main innovation here was to examine the goal specificity 

effect under both observation-based and conventional action-based learning 

conditions. The findings show that goal specificity affects the accuracy of problem 

solving in the same way, both when the learning stage of the task is observation-

based and when it is action-based. Additionally, the findings show that, when 

instructions do not promote goal specificity, observation-based problem solving is 

as effective as action-based problem solving. 
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Observation Can Be as Effective as Action in Problem Solving 

1. Introduction 

Case 1. A food services manager requires, for his food products, a new 

warming display cabinet that can maintain a more even temperature across the shelf 

surfaces. The manager must first watch the engineer install and demonstrate the new 

multi-functioning thermal control system, based only on the precise temperature at 

which to display their food, and must then restart and control the system himself.  

Case 2. A medical research unit that is conducting a field experiment requests 

a blood analyzing instrument that requires a specialized miniature air heater that must 

reach 380°F within 3.5 seconds. A member of the research unit is assigned to examine 

and learn to use the new custom-built air heater, according to the strict specifications 

that are outlined.  

 These cases have in common a precise goal that involves controlling a 

complex dynamic control system (hereafter CDCS) (i.e., thermal control system, 

blood analyzing instrument) by adhering to specific criteria (i.e., temperature 

regulation). The critical distinction between these cases is that, in the former case, 

learning to control the system takes place indirectly through observation, whereas in 

the latter the individual must learn to control the system by interacting with it. This 

difference raises the question whether the execution of the specific goal is more 

accurate after learning in Case 2, in which acquisition of knowledge is an interactive 

activity, compared to Case 1, in which knowledge acquisition occurs indirectly 

through observation. It also raises the question whether learning to control a CDCS to 

specific criteria benefits an overall understanding of the system, in comparison to 

learning that takes place with no specific outcome set out.  
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These questions have been separately addressed in studies of CDCS in 

problem solving research. Recent evidence (Burns & Vollmeyer, 2002; Vollmeyer, 

Burns, & Holyoak, 1996) has shown that, when presented with a specific goal (SG) 

instruction—that is, when problem solvers are required to learn about a system whilst 

also controlling it to a specific criterion—they later show decrements in their 

knowledge of the underlying structure of the system and in their ability to control the 

system to criteria other than those they were trained on, compared with when they are 

given a non-specific goal (NSG): i.e., they simply learn about the system they are 

presented with. Decrements in control performance have also been reported when 

learning about the control task is observation-based (i.e., acquiring knowledge 

indirectly) compared to when it is procedural-based (i.e., acquiring knowledge 

directly) (Berry, 1991; Lee, 1995). Although the effects of goal specificity and 

learning phase (i.e., observation-based, procedural-based) on problem solving have 

been examined using the same paradigm (i.e., CDCS), the two sets of findings remain 

independent of each other. The present study addresses this by examining whether 

action is a necessary component in the acquisition of skilled knowledge in a complex 

dynamic control task, as some theorists (e.g., Berry, 1991) have argued. If it is the 

case that procedural-based learning, rather than the goal the problem solver 

undertakes, is necessary for skill learning to take place, then decrements in problem 

solving ability, evidenced as control performance, should be found when learning of a 

CDCS is observation-based, regardless of the specificity of the goal in which the 

learner is engaged.  

1.1. Complex Dynamic Control Tasks (CDCTs) 

CDCTs have been a popular task environment for examining motivational and 

affective processes in complex decision making (Earley, Connolly, & Ekegren, 1989; 
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Locke & Latham, 2002; Vancouver, 1997), skill learning in naturalistic decision 

making (Brehmer, 1992; Kerstholt, 1996; Lipshitz, Klein, Orasanu, & Salas, 2001), 

memory and attentional processes in problem solving (Burns & Vollmeyer, 2002; 

Miller, Lehman, & Koedinger, 1999; Vollmeyer et al., 1996), and implicit learning 

(Berry, 1991; Berry & Broadbent, 1988; Dienes & Fahey, 1995, 1998). The reason for 

this popularity is that tasks using CDCS are dynamic learning environments. Rarely is 

it the case that a decision or plan that is made in the real world is isolated from prior 

decisions or plans (Funke, 2001), and in this sense CDCTs provide a good model of 

actual situations in the world (Brehmer, 1992; Funke, 2001). This makes them ideal 

for studying the acquisition and transfer of skill-based knowledge in a variety of 

complex interactive environments (Campbell, 1988; Cañas, Quesada, Antoli, & 

Fajardo, 2003; Funke, 2001).  

To illustrate, a typical CDCT includes several inputs (e.g., concentration levels 

of salt, carbon, and lime) that are connected via a complex causal structure or rule to 

several outputs (e.g., Chlorine concentration, Oxygenation levels, Temperature) (See 

Figure 1). The CDCS presented in Figure 1 is taken from Burns and Vollmeyer’s 

(2002) task, which was based on a water purification plant and will be used in the 

present study.  

Insert Figure 1 about here 

The process by which a problem solver learns about the system is revealed by 

the values of the inputs that they change and the strategy that they adopt (e.g., vary all 

inputs at once, vary one input on each trial, vary one input by one unit on each trial). 

Through this process, problem solvers acquire knowledge about the underlying 

structure of the system. They do this by monitoring the continuous feedback that they 

receive on the output variables that change as a result of the interventions that they 
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perform on the inputs. That is, by manipulating the input values, problem solvers can 

then track the effects on the outputs, which enables them to reason from cause (input 

changes) to effect (output changes), via acquisition of the causal structure or the rule 

that relates inputs and outputs. In Burns and Vollmeyer’s example, the input-output 

relations are linear, but with a constant value added to each input-output connection. 

To examine problem solvers’ knowledge of the system, two types of measures 

are used. Usually, the difference between the learning phase and the test phase of a 

CDCT is that, in the latter, problem solvers are required to control the system to a 

criterion. In the learning phase, the interventions on the system are designed to 

discover the underlying structure of the system, whereas the test phase involves 

making critical interventions that will achieve and maintain specific output values 

(i.e., the specific criterion) on each trial. Thus problem solvers are able to demonstrate 

their understanding of the CDCS by applying this knowledge to manipulate the 

system for the purposes of reaching a specific goal. In addition to this measure, which 

is referred to as the indirect measure (Berry & Broadbent, 1987), direct measures of 

knowledge examine the accuracy of problem solvers’ understanding of the causal 

structure or rule that underlies the system.  

Insert Figure 2 about here 

This involves reporting the input-output connections (see Figure 2) (e.g., 

Burns & Vollmeyer, 2002; Vollmeyer et al., 1996), or the underlying rule that relates 

input to output (Lee, 1995; Lee & Vakoch, 1996), or predicting the output value based 

on specific input states of the system (Berry & Broadbent, 1987, 1988; Buchner, 

Funke, & Berry, 1995; Dienes & Fahey, 1995; Marescaux, Luc, & Karnas, 1989).   
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1.2. Procedural-based vs. Declarative-based Inductive Knowledge  

Some researchers (Berry & Broadbent, 1987, 1988; Dienes & Fahey, 1995, 

1998; Marescaux et al., 1989) have speculated that the knowledge acquired in 

dynamic control tasks is incidental. That is, learning is non-strategic, and that 

knowledge is acquired through direct interaction with a CDCT, and repeated exposure 

to it, which leads to the development of highly specialized specific operations (i.e., 

manipulating specific inputs to attain particular outputs). The proceduralization of 

these operations is identified by their being efficiently executed without concurrent 

conscious awareness of how they come about, and their inaccessibility to conscious 

control. Dissociation, as evidenced by good performance on indirect measures and 

poor performance on direct measures, support the claim that the knowledge gained in 

control tasks is procedural, and inaccessible to conscious awareness (Berry & 

Broadbent, 1987, 1988; Lee, 1995; Lee & Vakoch, 1996). Along with dissociations, 

implicit learning theorists have shown that procedural knowledge fails to generalize 

beyond CDCTs that are perceptually and structurally similar to the original CDCT on 

which problems solvers were trained (Berry & Broadbent, 1988; Dienes & Berry, 

1997; Sun, Merrill, & Peterson, 2001).  

Thus, Berry (Berry, 1991; Berry & Broadbent, 1987, 1988) and others (Lee, 

1995; Lee & Vakoch, 1996; Stanley, Mathews, Buss, & Kotler-Cope, 1989; Sun et al., 

2001) describe control tasks as proceduralized tasks, because knowledge acquisition 

and application is incidental, and is neither regulated nor modulated by top-down 

declarative-based knowledge. This position is empirically supported by Berry’s 

(1991) study in which, in a series of experiments, participants were presented with 

observation-based learning trials (i.e., participants were presented with the learning 

trials of other participants who had already taken part in the control task), and were 



 9

tested under procedural-based conditions, (i.e., they were required to control the 

system to criterion through direct interaction). By so doing, Berry examined the 

potential conflicts that result during the test phase from declarative processes invoked 

by intentional examination of the learning environment through observation, and from 

procedural processes invoked by direct interaction with the control system. Berry 

reasoned that the learning and test phases would engage incongruent processes, and 

that there would be a failure to apply declarative knowledge of the system acquired 

during learning in order to later control it in the test phase. Consistent with this, the 

control performance of observation-based learners was impaired compared to that of 

procedural-based learners. Berry concluded that action is a necessary component of 

learning in a control task, and that, for maximal control performance, decision-making 

must be tied to action early in the learning process. The distinction between 

procedural-based and declarative-based learning has since been reported in a variety 

of CDCTs (e.g., Buchner et al., 1995; Lee, 1995; Lee & Vakoch, 1996).  

In summary, the evidence from studies examining procedural-based learning 

in control tasks suggests that the transferability of the knowledge is dependent on the 

type of learning phase in which knowledge acquisition takes place (i.e. observation-

based, procedural-based), and the properties of task that knowledge is being applied to 

(i.e. the perceptual and structural similarity to the training task). By focusing on 

deliberate strategies to learn about and control a CDCS (i.e., through observation-

based learning), the incidental procedural processes that would typically be invoked 

are disrupted, and the added cognitive effort that is incurred produces poorer control 

performance. Thus, for successful transfer to take place, knowledge acquisition and 

knowledge application require procedural based processing. 



 10

1.3. Goal-specificity 

CDCTs have also been used to examine the presence of skilled rule learning 

and hypothesis-testing behavior (Burns & Vollmeyer, 2002; Sweller, 1988; Vollmeyer 

et al., 1996). Expertise in CDCTs is identified by the ability to call to mind 

appropriate schemas (i.e., structures of knowledge that allow the expert to recognize a 

problem state as belonging to a particular category of problem states that typically 

require a specialized operation), which are developed from past experiences that can 

be transferred across domains (e.g., Trumpower, Goldsmith, & Guynn, 2004). Sweller 

(1988) claimed that achieving expertise in problem solving is dependent on the goal-

directedness or specificity of the goal in which the solver is engaged. When goal 

directed, the solver is focused on achieving a particular outcome through means-end 

analysis (a method of reducing the distance between the current position in the 

problem and the end state), and is unable to develop a deep understanding of the task. 

This process of means-end analysis interferes with the uptake of relevant knowledge 

through hypothesis testing, because during learning the solver is concerned only with 

serving the immediate demands of a specific goal (SG) (Sweller, 1988). 

Consequently, solvers are able to solve the problem according to the specific goal 

they are set, but they have poor knowledge of the general structure of that problem. 

By removing the goal-directed property of the CDCT, schema-based knowledge is 

promoted. This is achieved by presenting non-specific goal (NSG) instructions that 

are characterized as constraint free. This type of instruction is not goalless, because it 

encourages exploration of the problem, and places responsibility on the problem 

solver to determine the relevant properties of the CDCT. In contrast, SG instructions 

are constraint orientated. Typically, they require the solution of specific outcomes, 
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and therefore problem solvers are concerned with the particular operations that must 

be executed to achieve those outcomes. 

The effects of goal specificity on problem solving ability were first reported 

by Sweller (Sweller & Levine, 1982; Sweller, Mawer, & Ward, 1983) and have since 

been replicated (e.g., Burns & Vollmeyer, 2002; Geddes & Stevenson, 1997; Miller et 

al., 1999; Owen & Sweller, 1985; Sweller, 1988; Vollmeyer et al., 1996). Typically, 

the findings show that, when provided with an NSG instruction, problem solvers 

showed better performance on direct and indirect measures than SG instructed 

problem solvers, and were able to transfer their knowledge across a variety of 

contexts. 

Burns and Vollmeyer (2002) offer an alternative to Sweller’s (1988) Cognitive 

Load theory of the goal specificity effect. Rather than relating the effects of goal 

specificity to different demands of cognitive load, the Dual Space hypothesis (Klahr 

& Dunbar, 1988; Simon & Lea, 1974) describes the goal specificity effect in terms of 

the problem solver’s focus of attention in the problem solving environment. Burns and 

Vollemeyer claim that a problem can be deconstructed into spaces: the rule space, 

which determines the relevant relationship between inputs and outputs; and the 

instance space, which includes examples of the rule being applied. Under SG 

instructions, the instance space is relevant because it is integral to the goal: that is, the 

solver’s attention is focused primarily on achieving a particular instantiation of the 

rule, and not on discovering the rule itself. Under NSG instructions, because searching 

through the problem is unconstrained, both rule and instance spaces are relevant. 

Attention is distributed across all relevant properties of the task, because no one 

instantiation of the rule is more important that any other. In turn, searching through 

the rule space encourages hypothesis testing, which leads to a richer understanding of 
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the underlying structure of the problem (e.g., Burns & Vollmeyer, 2002; Geddes & 

Stevenson, 1997; Renkl, 1997; Trumpower et al., 2004; Vollmeyer et al., 1996).  

 In summary, there is strong empirical evidence that during learning knowledge 

acquired under SG instructions is only relevant for those problems that follow the 

same goal structure as training, whereas knowledge gained under NSG instructions is 

transferable and so control performance generalizes across different set goals. 

Sweller’s (1988) theory claims that the greater expenditure of cognitive effort 

incurred under SG instructions helps to guide the problem solver to the problem goal, 

but not to a deep understanding of the problem. This position differs somewhat from 

the Dual Space account, which claims that SG instructions focus attention towards 

specific states of the system, but away from learning about the underlying structure 

that relates inputs to outputs. The superficial knowledge that is acquired during SG 

instructions is in contrast with the extensive knowledge that is acquired during NSG 

instruction, which, for both theories, encourages hypothesis testing, and which both 

agree is necessary in the acquisition and application of relevant knowledge in CDCTs.

  

 

2. The Present Study 

 

 The claims made by learning theorists studying differences between 

procedural and declarative processing in CDCTs conflict with those made by theorists 

concerned with the effects of goal specificity on skill learning. The former approach 

to studying CDCTs suggests that the learning processes that underlie skill acquisition 

are bottom-up and unavailable for conscious inspection (e.g., Berry & Broadbent, 

1988; Dienes & Berry, 1997). The latter approach claims that top-down processes, 
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such as hypothesis testing behavior, can be skill-based, and that control tasks help 

identify factors like goal specificity, that mitigate this kind of behavior (e.g., Burns & 

Vollmeyer, 2002; Sweller, 1988).  

The principal objective of the present study was to compare the effects on 

control performance of a dynamic control task when learning is observation-based 

with the effects when it is procedural-based; and to establish whether this, rather than 

the goal specificity of the instructions, impairs problem solving ability. To examine 

this, the present study used Burns and Vollmeyer’s (2002) water-tank system, and 

included four conditions: two in which the instructions presented in the learning phase 

of the control task were SG (SG-action, SG-observe), and two in which NSG 

instructions were presented (NSG-action, NSG-observe). If procedural processes are 

necessary to accurately control CDCTs, then performance on indirect measures for 

both observation-based conditions should be inferior to that of both procedural-based 

conditions. If, however, hypothesis testing is a necessary component in the acquisition 

of knowledge in CDCTs, then, regardless of the learning phase (i.e., observation-

based, procedural-based), SG learning should produce poorer performance on direct 

and indirect measures than NSG learning; because SG prevents hypothesis testing 

behavior, which is critical in the uptake of relevant knowledge in CDCTs. 

 

2.1. Participants 

Sixty-four students from University College London volunteered to take part 

in the experiment, and were paid £4 for their participation. Because participants in the 

observation-based learning conditions were yoked to a participant from the action-

based learning conditions, the action-based conditions were run first. Participants 

were randomly allocated to one of two conditions (NSG-action, SG-action) and, when 
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these conditions were run, a second randomization procedure was used to allocate 

participants to one of the two observation-based learning conditions (NSG-observe, 

SG-observe), with sixteen in each of the four conditions. Participants were tested 

individually and were presented with a fully automated version of Burns and 

Vollmeyer’s (2002) water purification system, which was run on Dell Optiplex 

computers. The experimental program was written in Visual Basic 6.  

2.2. Materials 

The study was based on Burns and Vollmeyer’s water purification system. 

This involved three inputs (Salt, Carbon, Lime) and three outputs (Chlorine 

Concentration, Temperature, Oxygenation). The input-output relations are depicted in 

Figure 1. At the beginning of each trial during the learning phase, and both tests of 

control, the starting values of the inputs were set to 0, and the values of the outputs 

were Chlorine Concentration = 500 units, Temperature = 1000 units, and Oxygenation 

= 100 units.   

 

2.3. Design 

The present study included two types of goal specificity instructions (NSG, 

SG) and two types of learning phase (action, observation), for a total of four 

conditions (NSG-action, SG-action, NSG-observe, SG-observe). Participants were 

presented with a learning phase that was divided into two short blocks, each with 6 

trials. After the end of each block, participants were given a structure test, in which 

they were asked to report what the causal structure of the CDCS was. After this, 

participants were presented with a test phase (Control Test 1, Control Test 2). The 

difference between conditions was in the instructions received (NSG, SG), and in the 

method by which learning took place during the learning phase (action, observation). 
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The effects of this were indexed using a direct measure of knowledge (Structure Test 

1, Structure Test 2) during the learning phase, and an indirect measure of knowledge 

(Control Test 1, Control Test 2) during the control test phase.  

 

2.4. Procedure 

Participants were told that they would be taking part in a problem solving task, 

and that they would be given an opportunity to learn about a water purification system 

during the learning phase of the task. They were also told that their knowledge of the 

system would be examined during the learning phase, and that their ability to apply 

this knowledge would be examined in two tests of control of the system in a later 

presented control test phase. The critical differences between the four conditions 

included in the present study were the learning phase, and the specificity of the 

instructions presented in that phase (for actual instructions used see Appendix).   

 2.4.1. Action-based CDCT version. In the learning phase, participants were 

presented with a computer display (see Figure 3) with three input variables and three 

output variables. The underlying structure that connects the inputs and outputs is 

presented in Figure 1.  

Insert Figure 3 about here 

 

The learning phase comprised 12 trials, which were divided into two blocks of 

6 trials. Each trial consisted of participants changing the value of any number of 

inputs, by using the slider corresponding to each.1 Each slider ranged on a scale from -

100 to 100 units. When participants were satisfied with their changes to the inputs, 

they clicked on a button labeled “output readings,” which revealed the values of all 

three outputs. When they were ready to start the next trial, they clicked a button “next 
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trial,” which hid the output values from view. On the next trial, participants made 

their changes to the inputs, and these affected the output values from the previous 

trial: thus, the effects on the outputs were cumulative from one trial to the next. After 

the first block of 6 trials, participants were presented with a structure test that was 

designed to index knowledge of the causal structure of the control system. A diagram 

of the water system was shown on screen, and participants were asked simply to 

indicate which input was connected to which output (see Figure 2). The direction of 

the input-output connection was implicit in the way that participants interacted with 

the CDCT, and was also indicated in the instructions to the task, and so it was not 

necessary to examine the directionality of the input-output relations, only which 

connections existed. After this, they began the next set of 6 trials, followed by a 

second structure test: at the beginning of the first trial of the second block, the input 

values were set to 0 and the outputs were also reset to their respective starting values.  

The NSG-action condition was given general instructions about the CDCT and 

some guidelines as to how to interact with it (See Appendix). In addition to this, the 

SG-action condition was told that, from the outset, they had to learn about the system 

by trying to achieve, and then maintain, specific output values (i.e., Oxygenation = 

50, Chlorine CL Concentration = 700, Temperature = 900) throughout the two blocks 

of the learning phase.  

2.4.2. Observation-based CDCT version. With the exception that participants 

themselves could not manipulate input values during the learning phase, but were 

instead yoked to the values chosen by a participant (hereafter “model”) from the SG-

action condition, the observation-based and action-based versions of the learning 

phase were identical. Observers began by clicking a button to reveal the input values 

generated by the model for the first trial. (No time limit was imposed on the time 
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spent studying the input values or output values on each trial.) For example, if the 

model changed the input Salt by 50 units on Trial 1, this would in turn change the 

output value of Chlorine Concentration to 556 (i.e., Chlorine Concentration starting 

value = 500 units, + Salt value change = 50 units, + constant added noise on input-

output connection = 6 units). The observer would also see the input Salt change by 50 

units. Then, when they were ready, participants clicked a second button to reveal the 

corresponding output values for that trial: in this case, the starting values of the 

outputs Temperature and Oxygen remained the same, but the corresponding output 

Chlorine Concentration changed to 556 units. As soon as they were ready, participants 

clicked a button to indicate that they were proceeding to the next trial: the button hid 

the output values from view. They Participants then repeated the process of seeing the 

input values, and then the corresponding changes to the output values. As in the 

action-based version, after Trial 6, and after Trial 12, participants were presented with 

a structure test.  

The NSG-observe condition was given general instructions as to which 

features of the system they should attend to when pressing particular buttons. In 

addition, the SG-observe condition was told that, from the outset, they had to assess 

how effective the changes made to the system were in achieving and then maintaining 

specific output values (i.e., Oxygenation = 50, Chlorine CL Concentration = 700, 

Temperature = 900) throughout the 12 trials. The output values that the SG-observe 

condition monitored, and the output values that the SG-action condition had to 

achieve and maintain, were identical.  

 2.4.3. Test Phase (Control Test 1, Control Test 2). After the learning phase, all 

participants completed two tests of control. In Control Test 1, they were required to 

change the input values to achieve and maintain the output values (Oxygen = 50, 
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Chlorine concentration = 700, Temperature = 900) throughout 6 trials. For the NSG 

conditions (NSG-observe, NSG-action), this test was unfamiliar, whereas the SG-

action condition had been performing exactly the same task for 12 trials in their 

version of the learning phase, and the SG-observe condition had been focused on 

assessing how effective the changes made to the system were in achieving and then 

maintaining the same output criteria. In Control Test 2, the output values (i.e., Oxygen 

= 250, Chlorine concentration = 350, Temperature = 1100) that participants had to 

achieve and maintain for 6 trials were unfamiliar to all four conditions. Thus, for the 

SG conditions, but not for the NSG condition, this was the first opportunity to apply 

their knowledge to a different goal to that on which they had been trained.  

2.5. Scoring 

2.5.1. Structure Test scores. The scoring scheme used to score performance on 

Structure Tests 1 and 2 involved computing the proportion of input-output links 

correctly identified for each test. A correction for guessing was incorporated, and was 

based on the same procedure used by Vollmeyer et al. (1996), which was simply 

correct responses (i.e., the number of correct links included, and incorrect links 

avoided) – incorrect responses (i.e., the number of incorrect links included, and 

correct links avoided) / N (the total number of links that could be made). The 

maximum value for each structure score was 1. This scoring scheme was applied to 

score performance on both the structure tests presented during the learning phase.  

2.5.2. Control Test 1 and 2 scores. The scoring procedure used was based on 

Burns and Vollmeyer’s scoring system. Control performance was measured as error 

scores. Error scores were based on calculating the difference between each target 

output value (i.e., the criterion according to the solution phase) and the actual output 

values produced by the participant, for each trial of the Control Test. To minimize the 
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skewedness of the distribution of scores, a log transformation (base 10) was applied to 

the error scores of each individual participant for each trial.  

All analyses of error scores for each control test were based on participants’ 

mean error score, averaged over all 6 trials across all three output variables. Success 

in control performance in both control tests was indexed by the difference between the 

achieved and target output values. Therefore, lower error scores indicate better 

performance.  

2.6. Results 

 This section begins with an analysis of performance on Structure Tests 1 and 2 

(direct measure of knowledge), and then examines participants’ ability to control the 

CDCT in Control Tests 1 and 2 (indirect measure of knowledge). Finally, correlation 

analyses were conducted to examine the potential relationship between indirect and 

direct measures of performance. In all analyses reported in this section, a significance 

criterion of α = .05 was used.  

2.6.1. Structure Test scores. Figure 4 shows that structure test scores increased 

across all conditions after the second block of 6 trials in the learning phase. 

Additionally, the mean structure test scores of the NSG-action and NSG-observe 

conditions were higher than those of the SG-action and SG-observe condition, 

indicating that the NSG conditions’ knowledge of the causal structure of the system 

tended to be more accurate than that of SG conditions. 

 

Insert Figure 4 about here 

 

A 2x2x2 ANOVA was conducted using block (Structure Test 1, Structure Test 2) as 

the within-subjects variable, and goal type (NSG, SG) and learning phase (action, 
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observation) as the between-subjects variables. The analysis revealed a significant 

main effect of block, F(1, 60) = 14.04, MSE = .71, p< .0005, and of goal type F(1, 60) 

= 11.73, MSE = 1.37, p< .001. There was no main effect of learning phase, F(1, 60) = 

.59, MSE = .07, p = .45, and no interactions were significant. Thus, the evidence 

confirms the trends suggested in Figure 4: there was increased accuracy in knowledge 

of the causal structure in the second block. The evidence also indicates that 

differences between conditions in performance on structure tests were the result of the 

specificity of the instruction presented to participants, and not of the learning phase.  

2.6.2. Control Test 1 and 2 scores. Figure 5 includes the overall mean Control 

Test 1 and 2 scores for each condition.  

 

Insert Figure 5 about here 

 

Figure 5 shows that the NSG-action and NSG-observe conditions made fewer errors 

in Control Tests 1 and 2 than the SG-action and SG-observe conditions. In addition, 

Figure 5 suggests that participants made more errors in Control Test 2 than in Control 

Test 1. To analyze this, a 2x2x2 ANOVA was conducted, to examine the patterns of 

behavior across conditions for Control Test 1 and 2 scores, using test (Control Test 1, 

Control Test 2) as the within-subjects variable, and goal type (NSG, SG) and learning 

phase (action, observation) as the between-subjects variables. The analysis revealed a 

significant main effect of test, F(1, 60) = 13.55, p< .0005, and of goal type  F(1, 60) = 

40.33, p< .0005. However, there was no main effect of learning phase, F(1, 60) = .22, 

p = .64, nor were any of the interactions significant. Thus, the evidence confirms the 

trends suggested in Figure 5: control performance in Control Test 1 was superior to 

that in Control Test 2. The evidence also indicates that the difference between 



 21

conditions in control performance was the result of the specificity of the instruction, 

and not of the learning phase.  

2.6.3. Correlation between Structure Test scores and Control Test scores. 

Berry and Broadbent (1987, 1988) have argued that dissociation between performance 

on direct and indirect measures of knowledge of CDCS suggests that the knowledge 

gained in control tasks is procedural. The basis for this is that individuals show good 

control of the system, but fail to express their knowledge when asked explicitly to 

report on the structure or the underlying rule that connects inputs to outputs (Berry & 

Broadbent, 1987, 1988; Buchner et al., 1995; Lee, 1995). To examine this, a 

correlation analysis between Structure Tests 1 and 2 scores and Control Tests 1 and 2 

scores was conducted. The analysis revealed a significant negative relationship 

between Structure Test 2 and Control Test 1, r(64) = -0.49, p < 0.005, and between 

Structure Test 2 and Control Test 2, r(64) = -0.53, p < 0.001. This suggests that, as 

performance on Structure Test 2 increased, ability to control the system also 

increased, as indicated by lower control test scores. To fully explore the distinction 

between declarative and procedural knowledge, the same correlation analyses were 

conducted separately for the observation-based learning conditions (SG-observe, 

NSG-observe), and for the action-based learning conditions (SG-action, NSG-action). 

Focusing only on procedural-based conditions, the analysis revealed a significant 

negative relationship between Structure Test 2 and Control Test 1, r(32) = -0.61, p < 

0.0005, and between Structure Test 2 and Control Test 2, r(32) = -0.46, p < 0.01. In 

the case of observation-based condition, the analysis revealed a significant negative 

relationship between Structure Test 2 and Control Test 1, r(32) = -0.36, p < 0.05, and 

between Structure Test 2 and Control Test 2, r(32) = -0.60, p < 0.001. The findings 

from these sets of analyses strongly indicate that, for both types of learning phases 
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(observation-based, procedural-based), there is a relationship between indirect and 

direct measures of knowledge.  

 

3. Discussion 

The evidence from the present study can be summarized as follows: First, the 

study successfully replicated Burns and Vollmeyer’s findings, which showed that goal 

specificity affects the accuracy of performance in a CDCT. Second, consistent with 

Burns and Vollmeyer’s study, the goal specificity effect was located in both indices of 

knowledge of the control system (i.e., Structure Test scores, Control Test scores). 

Third, there was evidence of practice effects in the structure test scores, suggesting 

that, from Block 1 to Block 2, greater familiarity with the task environment in the 

learning phase led to increased knowledge of the causal structure of the system. This 

is consistent with the findings reported in Burns and Vollmeyer’s (2002) study. 

However, there was poorer performance in Control Test 2 than in Control Test 1, 

suggesting that participants found the criteria of the second control test more difficult 

to reach and maintain than the first.  

Fourth, in the present study the performance of both NSG conditions was superior 

to the SG conditions in Control Test 1 and 2. This is particularly noteworthy given 

that the SG conditions had 12 trials of prior experience in evaluating the system to the 

same criterion as in Control Test 1, while the NSG conditions had not. However in 

previous studies that used similar simulated systems to the present study (Burns & 

Vollmeyer, 2002; Vollmeyer et al. 1996) the control performance of NSG and SG 

conditions in Control Test 1 was equivalent, and only in Control Test 2 did NSG 

conditions show superior performance. The procedures used in the learning phase 

differed slightly between the present study and Burns and Vollmeyer’s study (2002) 
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(see footnote) which provides an explanation for the difference in findings. In the 

present study, the added effort required in accurately recalling the values of all the 

inputs and outputs imposed on any available resources SG condition had that would 

have otherwise been used to learn the relationship between the inputs and outputs. For 

the NSG conditions paying close attention to the input and output values and 

remembering them for the next trial favoured their method of learning. Through 

hypothesis testing they had to accurately monitor the consequences of their 

own/observed manipulations to the system, thus strengthening their knowledge of the 

system. Therefore, despite the extra experience that SG conditions had in evaluating 

the system to a criterion did not lead to the same results reported in previous studies 

because the extra working memory load made learning about the system that much 

harder than the NSG conditions.  

Fifth, there was evidence that participants’ knowledge of the structure of the 

system was related to their ability to control the system in both Control Test 1 and 

Control Test 2. Moreover, this relationship was found in conditions in which learning 

was observation-based as well as in conditions in which learning was action-based. 

This result challenges the widely held popular view (e.g., Berry, 1991; Berry & 

Broadbent, 1988; Lee, 1995; Lee & Vakoch, 1996; Stanley et al., 1989; Sun et al., 

2001) that CDCTs promote proceduralized knowledge that is inaccessible to 

consciousness, and is therefore independent of declarative knowledge of the CDCS. 

Finally, the present study provides evidence that hypothesis testing, rather than 

procedural processes, is a necessary component in the acquisition of knowledge in 

CDCTs, and that SG learning produces inferior problem solving performance to NSG 

learning. Thus, the findings indicate that observation-based problem solving is 
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sensitive to goal specificity effects, and can be as effective as procedural-based 

problem solving. 

The present study provides evidence that declarative and procedural 

knowledge were associated, and that procedural learning per se is not a necessary 

condition for the acquisition of knowledge in a CDCT. In addition, the evidence 

showed that differences in performance between action and observation-based 

learning conditions were the result of goal specificity instructions, and not of how 

problem solvers interacted with the CDCT during learning. Taken together, the 

findings from the present study raise the following questions: Why is there a 

discrepancy between the present findings and previous studies of CDCTs that show 

dissociation between procedural and declarative knowledge? Should action be 

awarded a special status in learning and problem solving? The following discussion 

will examine issues related to addressing these questions.  

 

3.1. Dissociations and Associations between Procedural and Declarative Knowledge  

Funke’s (2001) recent review suggests that studies of CDCTs have followed 

two separate research histories: one has focused on decision making by experts within 

their domain of expertise (e.g., Dörner, 1996; Klein, 1990; Lipshitz, 1993; Lipshitz et 

al., 2001; Randel, Pugh, & Reed, 1996), whereas the other examines the development 

of expertise in novices (e.g., Berry & Broadbent, 1984, 1987, 1988; Burns & 

Vollmeyer, 2002; Sweller, 1998; Vollmeyer et al., 1996). One of the many differences 

found between experts and novices is that, for experts, their declarative knowledge 

and procedural knowledge are associated (Anderson, 1983; Funke, 2001; Glaser & 

Bassok, 1989), whereas for novices there is dissociation. The reasons for this are that 

experts’ knowledge is closely tied to their conceptions of the goal structures of a 
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problem space (Glaser & Bassok, 1989), and their ability to organize specific 

instances of the CDCS (i.e., input-output states of the system), by chunking them into 

cause-effect sequences that relate goals to sub-goals (Sweller, 1988). Thus, one reason 

proposed for the dissociation between declarative and procedural knowledge reported 

in novices is that they do not acquire sufficient experience for an association to occur 

(e.g., Berry & Broadbent, 1987, 1988; Broadbent, Fitzgerald, & Broadbent, 1986; 

Glaser, 1976; Randel et al., 1996; Sternberg, Wagner, Williams, & Horvath, 1995).  

Increasing experience with CDCSs, to enhance the relationship between 

novices’ declarative and procedural knowledge, has been unsuccessful (e.g., Berry & 

Broadbent, 1987, 1988; Broadbent et al., 1986; Sanderson, 1989). However, 

Sanderson’s (1989) careful manipulations uncovered conditions that revealed 

dissociations between declarative and procedural knowledge (i.e., increased practice, 

graphical representations of the CDCS), but also revealed associations (i.e., removal 

of problem solver’s trial history—a record of input-output changes on each trial 

during learning). The exclusion of a trial history during learning was inspired by 

Berry & Broadbent’s (1984) finding that, when problem solvers gave verbal protocols 

during learning, as a way of tracking the input-output changes in the system and their 

hypothesis testing behavior, associations between declarative and procedural 

knowledge were found. Sanderson proposed that, without a record of their interactions 

with the system, problem solvers would engage in processes that were similar to those 

used in providing verbal protocols. Consistent with Berry and Broadbent’s finding, 

Sanderson showed that, by mentally tracking their hypothesis testing strategies, 

problem solvers continually updated their knowledge of the input-output relations of 

the CDCT, and this led to an association between declarative knowledge and 

procedural knowledge. However, Burns and Vollmeyer (2002) presented their 
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participants a trial history of their learning phase and found an association between 

measures of declarative and procedural knowledge. The evidence from the protocols 

they recorded suggested that the tests of declarative knowledge included after the first 

and second block of the learning phase served as status checks. Participants examined 

their knowledge of the system after the first test after the first block of learning and 

used the remainder of the learning phase to modify this knowledge. Including tests of 

declarative knowledge during learning may have facilitated an association between 

declarative and procedural knowledge because, like Sanderson’s study, participants 

were able to keep track of their knowledge of the system in order to learn to control it 

during learning.  

Similarly, in the present study problem solvers were presented with tests of 

their structural knowledge during learning, and were not presented with their trial 

history during the learning phase. Both these procedures may have contributed to the 

relationship that was found between indirect (i.e. procedural) and direct (i.e. 

declarative) measures of knowledge of the system. Moreover, the exclusion of a trial 

history, along with the inclusion of measure of declarative knowledge during learning 

may have also have contributed to the similar patterns in performance found in 

observation-based and action-based learning conditions. Without a trial history, both 

observation-based and action-based conditions had to keep active in memory the 

input-output changes from trial to trial, and they had to monitor carefully which inputs 

they were attending to, and their prediction of which outputs would be affected, and 

then compare this with the outputs that were actually affected. As Burns and 

Vollmeyer show, compared to NSG instructions, attenuating hypothesis testing 

through SG instructions is detrimental to problem solving. Thus, in the present study, 

the instruction presented to SG conditions interrupted hypothesis testing behavior 
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during the learning phase, because participants’ attention was focused only on 

recalling specific input-output instances that were relevant to the SG they had to reach 

and maintain (e.g., Buchner et al., 1995; Dienes & Fahey, 1998).  

By extension, one reason for the evidence of poorer performance by 

observation based learners, compared to procedural based learners in CDCTs (Berry, 

1991; Lee, 1995), is the inclusion of trial histories during learning along with the 

presentation of SG type instructions (Berry, 1991; Lee, 1995). For example, in 

Berry’s (1991) observation-based problem, solvers were actively discouraged from 

hypothesis testing: “Subjects should be encouraged to pay attention to the observed 

interaction but not be induced to use a more deliberate hypothesis testing mode of 

performance” (Berry, 1991, p. 885). Similarly, in Lee’s observation-based learners 

were required to learn a rule passively without undertaking any evaluative thinking. 

Berry’s and Lee’s active discouragement of hypothesis testing was designed to 

increase control performance in later tests of problem solving ability, because 

hypothesis testing involves explicit monitoring and tracking of representations that 

interfere with procedural processes that are implicit (Berry & Broadbent, 1987). In 

this way, Berry’s and Lee’s instruction to avoid hypothesis testing functioned like an 

SG instruction and, in a similar way, produced poorer control performance than 

procedural-based learners who were not given an explicit instruction to avoid 

hypothesis testing.  

The implication of studies showing associations between declarative and 

procedural knowledge (e.g., Berry & Broadbent, 1984; Burns & Vollmeyer, 2002; 

Sanderson, 1989; Sanderson & Vicente, 1986), along with the present study, is that 

mentally tracking or verbalizing one’s hypothesis testing behavior is important in 

bridging declarative and procedural knowledge. Underlying these two activities is 
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self-monitoring (Bandura, 1991), which has been shown to be critical in the 

acquisition of expertise (Bandura, 1991; Bandura & Locke, 2003; Ericsson & 

Lehman, 1996; Karoly, 1993; Rossano, 2003; Stanovich, 2004). In a given problem, 

selecting relevant information that bears on achieving a goal cannot happen without 

an internal status check of ongoing problem solving performance (Bandura, 1991; 

Bandura & Locke, 2003; Karoly, 1993; Rossano, 2003). Once experts are sufficiently 

practiced in a task, self-monitoring is no longer needed to regulate goal relevant 

information, (Karoly, 1993); but it remains active in order to modify behavior to meet 

potentially new task demands (Rossano, 2003; Stanovich, 2004). In studies of 

CDCTs, findings show that experts’ declarative and procedural knowledge is 

associated (e.g., Funke, 2001), and that self-monitoring is necessary in the acquisition 

of expertise (e.g., Bandura, 1991; Schraw, 1998). When novices are encouraged to 

adopt behaviors that are akin to self-monitoring, associations between declarative and 

procedural knowledge are also found (Berry & Broadbent, 1984; Sanderson, 1989; 

Sanderson & Vicente, 1986). Thus, self-monitoring of one’s behavior, its 

determinants, and its effects is, for experts, an essential method of acquiring, 

organizing, and applying different types of knowledge in problem solving domains 

(Bandura, 2002; Bandura & Locke, 2003; Funke, 2001; Schraw, 1998).  

 

3.2. Should Action be Awarded a Special Status in Learning and Problem Solving? 

 The role of action has been strongly emphasized, not only in learning and 

problem solving research, but also in education and instructional psychology (i.e., the 

methods and conditions under which instruction facilitates human learning and 

development). The Constructivism tradition (Anderson, 1987; Resnick, 1983, 1987; 

Schauble, 1990; von Glasersfeld, 1989) asserts that action plays a crucial role for 
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learners in constructing their own knowledge. In an educational context, active 

engagement entails students examining their own ideas, considering alternative 

explanations for newly taught concepts, and evaluating competing perspectives. Some 

theorists (e.g., Anzai & Simon, 1979) propose that these processes are found when 

learning is by doing. However, a constructivist perspective essentially points to the 

need for instructional formats that allow for self-monitoring (e.g., Covington, 2000; 

Pintrich & De Groot, 1990), which includes reflective activities such as describing, 

explaining, and evaluative thinking (e.g., Covington, 2000; Zimmerman, 1990), and 

these need not occur through action.  

Another example in which the superior status of action over observation is 

emphasized is the intention-superiority effect (e.g., Goschke & Kuhl, 1993). This refers to 

the phenomenon in which items related to activities about to be completed are recalled 

faster and more accurately than observed activities (Goschke & Kuhl, 1993). It has since 

been shown that memory of intended actions is not only superior to that of observed 

actions, but also of completed actions (Marsh, Hicks, & Bink, 1998; Maylor, Chater, & 

Brown, 2001; Maylor, Darby, & Della Sala, 2000). Moreover, there is evidence that the 

effect is dependent on personality variables (i.e., action-dependent vs. state-dependent 

dispositions) that influence self-regulation and self-monitoring (e.g., Goschke & Kuhl, 

1993; Kuhl & Beckmann, 1994; Kuhl & Goschke, 1994; Penningroth, 2005). Penningroth 

(2005) showed that, for action-orientated participants who show a tendency to reflectivity, 

retrieval was more proficient for intended acts than for acts that had taken place, whereas 

there was a reversal of this effect in action-orientated participants who show a tendency to 

be instinctive, spontaneous, and unreflective.  

The special status that action has been awarded over observation has been 

proposed in learning (e.g., Berry, 1991; Kelly & Burton, 2001; Lee, 1995), memory 
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(e.g., Goschke & Kuhl, 1993), problem solving (e.g., Berry, 1991; Lee, 1995), 

education (e.g., Anzai & Simon, 1979; Resnick 1983, 1987). This is particularly 

because observation is characterized as passive and uninvolved. However, as studies 

of CDCTs (e.g., Berry & Broadbent, 1984; Burns & Vollmeyer, 2002; Sanderson, 

1989) and the present study suggest, the level of involvement of self-monitoring 

during learning may be a critical factor in preserving the distinction between action-

based and observation-based learning in problem solving environments.   

 

4. Conclusions 

 

The evidence convincingly replicated the goal specificity effect, and 

demonstrated that this effect generalized to an observation-based learning mode of 

problem solving. Moreover, the evidence from this study shows that observational 

learning can promote successful and accurate problem solving in a dynamic control 

task, and that it is sensitive to goal specificity effects in the same way as action-based 

problem solving. Finally, the evidence suggests that it is hypothesis testing, rather 

than the procedural element of control tasks, that is necessary for the successful 

uptake of knowledge, and its practical application in mastering a complex system.  
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Footnotes 

 

1. In Burns and Vollmeyer’s study, participants were shown the starting values 

of input and output values before they began the task. They were also 

presented with their own trial history; this included the inputs and outputs that 

changed on each trial. In the present experiment, participants were shown only 

the starting values of the input values, and not the output values, which were 

revealed only on the first trial, and not before. In addition, they were not 

presented with a trial history that they could refer to during the learning phase. 

The rationale for these changes was to encourage participants to pay special 

attention to, and accurately monitor and recall the effects on the outputs 

resulting from the manipulations that were made to the system.   
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Figure Captions. 

 

Figure 1. Water tank system with inputs (salt, carbon, lime) and outputs (oxygenation, 

chlorine concentration, temperature).  

Figure 2. Structure test. 

Figure 3. Screen shot of water tank system. 

Figure 4. Mean Structure Test scores (±SE) after each block of the learning phase for 

each condition; the lower the score, the better the performance. 

Figure 5. Control Test scores (±SE) at Control Test 1 and Control Test 2 for each 

condition; the higher the score, the better the performance. 
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Figure 1. 

Water tank system with inputs (salt, carbon, lime) and outputs (oxygenation, chlorine 

concentration, temperature). 
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Figure 2. 

Structure test. 
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Figure 3 

Screen shot of water tank system  
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Figure 4  

Mean Structure Test scores (±SE) after each block of the learning phase for each 

condition 

 

 

 

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

NSG-action NSG-observe SG-action SG-observe 

Block 1 

Block 2 

   
   

  S
tru

ct
ur

e 
sc

or
e 



 46

Figure 5 

Control Test scores (±SE) at Control Test 1 and Control Test 2 for each condition 
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Appendix 

 

Standard action instructions: 
You are a trainee laboratory technician working in a water filtration unit. As part of 
your training you will learn to control the water tank system by managing three water 
quality measures: Oxygenation; Chlorine CL concentration; Temperature. The quality  
measures are known as outputs and are used to monitor three system inputs: Salt; 
Carbon; Lime. In the following task you will be presented a total of 12 trials in which 
you will see a diagram of the 'Malwart' water filtration unit which you will learn to 
control. You can modify the quality measures by manipulating the amount of Salt, 
Carbon, or Lime inputs; this can be done by moving the slider corresponding to the 
input either to the left or to the right. 
 
NSG-action condition also received:  
For each trial you should try to change one input, however this is only a 
recommendation and you may choose to use a different strategy. Once you have 
changed the value of an input you can then check the output levels by pressing the 
button labeled 'show me readings'; this will reveal the concentration levels of the 
quality measures. After you have studied these you should press the 'restart' button to 
begin the next trial. You should try and pay close attention to the values of the inputs 
you enter into the system and the output levels because this will help you to learn 
about the system. Good Luck! 
 
SG-action condition also received:  
For each trial you should try to change one input, but this is only a recommendation 
and you may chose to use a different strategy. Once you have done this you can check 
the output levels by pressing the button labelled 'show me readings'; this will reveal 
the concentration levels of the quality measures. After you have studied these you 
should press the 'restart' button to begin the next trial. Your task will be to change the 
output levels so that Oxygenation = 50, Chlorine CL Concentration = 700, 
Temperature = 900. Try to get as close to these levels as possible, and once you have 
done this try to maintain these levels throughout. Good Luck! 
 
Standard observation instructions: 
You are a trainee laboratory technician working in a water filtration unit. As part of 
your training you will learn to control the water tank system by managing three water 
quality measures: Oxygenation; Chlorine CL concentration; Temperature. The quality 
measures are known as outputs and are used to monitor three system inputs: Salt; 
Carbon; Lime.                                
In the following task you will be presented with a series of trials in which you will see 
a diagram of the 'Malwart' water filtration unit which you will learn to control. The 
system is set so that the quality measures change according to the values chosen by 
one of the workers of the water plant. You will see the amount of Salt, Carbon, and 
Lime inputs change automatically according to those set by the worker, this is 
indicated by a slider corresponding to each input moving either to the left or the right. 
You will see a total of 12 trials divided into two short sessions of 6 each.  
 
NSG-observe condition also received:  
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For each trial you should watch carefully the changes to the inputs. When you have 
examined the changes to the inputs you can check the output levels by pressing the 
button labeled 'Output readings'. This will reveal the concentration levels of the 
quality measures. After you have studied these you should press the 'Input levels' 
button to begin the next trial. You should try and pay close attention to the values of 
the inputs that are entered and the output levels, this is because you will be required to 
imitate the worker's behavior later. Good Luck! 
 
SG-observe condition also received:  
For each trial you should try to change one input, but this is only a recommendation 
and you may chose to use a different strategy. Once you have done this you can check 
the output levels by pressing the button labeled 'show me readings'; this will reveal the 
concentration levels of the quality measures. After you have studied these you should 
press the 'restart' button to begin the next trial. Your task will be to change the output 
levels so that Oxygenation = 50, Chlorine CL Concentration = 700, Temperature = 
900. Try to get as close to these levels as possible, and once you have done this try to 
maintain these levels throughout. Good Luck! 
 

 


