
A PROGRAMMING SYSTEM FOR

END-USER FUNCTIONAL PROGRAMMING

ABU SALEH MOHAMMED MAHBUBUL ALAM

A thesis submitted to
The University of Gloucestershire

in accordance with the requirements of the degree of
Doctor of Philosophy

in the Faculty of Media, Arts and Technology

July, 2015

Abstract

This research involves the construction of a programming system, HASKEU,

to support end-user programming in a purely functional programming lan-

guage. An end-user programmer is someone who may program a computer

to get their job done, but has no interest in becoming a computer program-

mer. A purely functional programming language is one that does not require

the expression of statement sequencing or variable updating. The end-user is

offered two views of their functional program. The primary view is a visual

one, in which the program is presented as a collection of boxes (representing

processes) and lines (representing dataflow). The secondary view is a textual

one, in which the program is presented as a collection of written function defi-

nitions. It is expected that the end-user programmer will begin with the visual

view, perhaps later moving on to the textual view. The task of the program-

ming system is to ensure that the visual and textual views are kept consistent

as the program is constructed. The foundation of the programming system

is a implementation of the Model-View-Controller (MVC) design pattern as a

reactive program using the elegant Functional Reactive Programming (FRP)

framework. Human-Computer Interaction (HCI) principles and methods are

considered in all design decisions. A usabilty study was made to find out the

effectiveness of the new system.

Keywords. Functional Programming, Visual Programming, End-User Pro-

gramming, Visual Dataflow Language, Usability, Human-Computer Interac-

tion, Model-View-Controller, Functional Reactive Programming, Programming

Systems, HASKEU

Author’s Declaration

I declare that the work in this thesis was carried out in accordance with the

regulations of the University of Gloucestershire and is original except where

indicated by specific reference in the text. No part of the thesis has been sub-

mitted as part of any other academic award. The thesis has not been presented

to any other education institution in the United Kingdom or overseas. Any

views expressed in the thesis are those of the author and in no way represent

those of the University.

Signed .Date .

Acknowledgements

I have been very fortunate to have both Dr. David Wakeling and Dr. Vicky

Bush as my first supervisor. Their guidance and advice throughout this re-

search has been invaluable.

I would like to express my heartfelt appreciation and thanks to my super-

visor Dr. David Wakeling who has been a tremendous mentor for me. I would

like to thank him for his insight and guidance throughout my Ph.D. work and

for encouraging my research and allowing me to grow as a research scientist.

He helped me with any concern related to my study. Many thanks. It was sad

and heartbreaking for me when he had to leave the University after providing

a three and half years of supervision. He has continued to support me by

reading and commenting on this thesis.

I am also very thankful for the feedback and support of Dr. Vicky Bush

who became my first supervisor and provided my immediate support after Dr.

Wakeling left. I would like to thank her for her brilliant comments and sugges-

tions. Her questions and comments and her careful reading of this thesis and

her vast knowledge have been very valuable. I am very grateful for the many

hours that she spent discussing and critiquing my thesis. This thesis would

not have been possible without her help, support and patience. Outside of this

research, I have also been learning the qualities of a good academic from her

and I wish I had a little pinch of her excellence. A heartfelt thanks go to her

too.

I would like to thank my second supervisor Dr. Shujun Zhang for his

support and encouragement. At many stages in the course of this research I

benefited from his advice.

A very special thanks to a special person, outside the faculty, Dr. Robin

Reeves, for reading and commenting, and helping in the many phases of my

writing. A tireless, sporting and a man of great knowledge, who read the thesis

patiently, and his comments were particularly useful for the end-user section.

It would not have been possible to write this thesis without the help and sup-

port of this kind person.

Many thanks to all of the participants in my usability study. Thanks to

many additional friends who have helped me in various ways.

Especially, I would like to express my gratitude to all my family members

for their support and encouragement. Words cannot express how grateful I am

to them for all of their sacrifices that they have made on my behalf. I dedicate

this dissertation to all my family members.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Statement . 2

1.3 Who are the End-Users? . 3

1.4 What are End-Users’ Problems? 3

1.5 Choice of Functional Language 10

1.6 Design Inspiration . 11

1.7 Research Aims . 14

1.8 Research Methodology . 15

1.9 Design, Implementation and Testing Approach 17

1.10 Contribution . 22

2 Background and Literature Review 24

2.1 End-user programmers . 24

2.2 Functional Programming Languages 27

2.2.1 Motivation . 27

2.2.2 A Functional Language : Haskell 27

i

2.2.3 An Example Haskell Program 32

2.2.4 Other Functional Programming Languages 34

2.3 Support for Language Learning: Syntax-Directed Editor 35

2.4 Support for Language Learning: Visual Programming 39

2.4.1 Motivation . 39

2.4.2 Visual Programming: Overview 40

2.4.3 Visual Programming: Classification 43

2.4.4 An Early Visual Language : Prograph 50

2.4.5 An Example Prograph Program 52

2.4.6 A Useful Visual Language : LabVIEW 54

2.4.7 An Example LabVIEW Program 57

2.4.8 Other Visual Programming Languages 59

2.5 Visual Functional Programming Languages 60

2.5.1 Motivation . 60

2.5.2 A Visual Functional Programming Language : Visual

Haskell . 61

2.5.3 An Example Visual Haskell Program 65

2.5.4 Other Visual Functional Programming Languages 66

2.6 Conclusion . 68

3 The Model View Controller as a Functional Reactive Program 70

3.1 Introduction . 70

3.2 The MVC Design Pattern . 72

3.3 The FRP Framework . 74

ii

3.3.1 Monad and Monadic IO 75

3.3.2 The FRP . 83

3.4 An implementation of the “MVC as FRP” framework 88

3.5 An Example . 96

3.6 Related Work . 100

3.7 Conclusion . 101

4 The Design of HASKEU 102

4.1 Visual Programming . 104

4.1.1 Organization . 104

4.1.2 Content . 107

4.1.3 Dataflow and Scope . 113

4.1.4 Direct-Manipulation . 114

4.1.5 One Function Per Page 118

4.2 Exploratory Programming . 118

4.2.1 Error Reporting . 119

4.2.2 Infinite Undo . 126

4.3 Textual Programming . 129

4.4 Design of Concepts . 130

4.4.1 Synchronization between Textual and Visual view 132

4.4.2 The choice of a tree structure 136

4.4.3 Higher-order functions in visual view 136

4.5 Conclusion . 138

iii

5 Implementation 141

5.1 The Model . 143

5.2 The Controllers . 149

5.2.1 Visual Layout . 151

5.2.2 Type Management . 157

5.2.3 Infinite Redo/Undo . 161

5.2.4 To Select an Item . 164

5.2.5 To Add a New Item . 165

5.2.6 To Delete/Edit an Item 168

5.2.7 To Validate Syntax Error 170

5.2.8 To Adjust wxHaskell Events 171

5.3 The Views . 173

5.3.1 To Draw the Shape Tree 173

5.3.2 To Show the Annotation Text Editor 175

5.3.3 To Calculate Row and Column of a Text Control from

Insertion Point . 176

5.3.4 To Enable/Disable Redo/Undo Buttons 177

5.3.5 To Add More wxHaskell Attributes 178

5.3.6 Difficulties and Achievements 178

6 Usability Experiment and Result 180

6.1 Experiment . 180

6.1.1 User Manual . 181

6.1.2 Selection of End-Users 181

iv

6.1.3 To Devise a Programming Exercise 182

6.1.4 Instructions for the Exercise 183

6.1.5 Usability Goals . 186

6.1.6 Experiment Process . 187

6.2 Result . 188

6.2.1 Performance Comparison Using Quantitative Data . . . 188

6.2.2 Suggestion from the Qualitative Data 193

6.3 Conclusion . 194

7 Conclusions 196

7.1 Achievements . 196

7.2 Limitations and Suggested Future Developments 198

Appendices 203

A Appropriateness of Using Software Analysis and Design, and

UML Diagrams for Functional Programs 204

A.1 Appropriateness of using software analysis and design 205

A.2 Appropriateness of using UML 208

B Spaghetti Code 217

C User Manual 220

D Usability Test - Questionnaire and Consent Form 260

D.1 Usability Test - Questionnaire 261

D.2 Usability Test - Consent Form 264

v

E The Library API - MVC WX 266

F Source Code of Functor, Applicative and Monad 278

vi

List of Figures

1.1 The spiral development. 19

2.1 An electrical circuit. 33

2.2 Example programs in HOPS. 37

2.3 Splicing of two graphs. 46

2.4 Example of a program in extended HI-VISUAL. 48

2.5 Find the names of employees who work in the toy department

and earn more than 10000. 49

2.6 Some Prograph constructs. 51

2.7 Prograph - Reversing order of a list. 53

2.8 A non-empty list icon. 54

2.9 The LabVIEW control pallete. 55

2.10 The LabVIEW function pallete. 56

2.11 The LabVIEW tool pallete. 56

2.12 Front panel for the series circuit example in Figure 2.1. 57

2.13 Block diagram for the series circuit example in Figure 2.1. . . . 58

2.14 The Visual Haskell definition of map. 62

vii

2.15 Illustrating type annotation in Visual Haskell: i) (a,b); ii)

[[a]]; iii) Stream (Vector a). 62

2.16 a) Source pads; b) Sink pads. 63

2.17 a) A data arc; b) A binding arc; c) Attached objects. 63

2.18 Shared object. 64

2.19 Currying. 65

2.20 Illustrating the series circuit (in Figure 2.1) implementation in

Visual Haskell. 66

2.21 Commonly Used Arrow Combinators. 68

3.1 MVC Example - a volume controller system 73

3.2 The volume control system using the MVC-FRP architecture. . 99

4.1 The visual display area. 106

4.2 Pictures of some data fields. 107

4.3 Compact view of a module. 109

4.4 Parameter icons. 110

4.5 Expression icons. 111

4.6 Data display of reverse. 112

4.7 Showing dataflow of function max. 113

4.8 Adding a new function. 115

4.9 Adding a new parameter. 116

4.10 Adding an argument. 117

4.11 Adding an annotation. 117

4.12 Extended window to show error textually. 121

viii

4.13 Type representation in map application. 121

4.14 Overview of errors. 122

4.15 Error - type mismatch. 123

4.16 Showing all errors. 124

4.17 Error - unification. 125

4.18 Error - undefined function. 125

4.19 Error - unused argument. 126

4.20 Changes propagate from textual to visual. 129

4.21 Changes propagate from visual to textual. 130

4.22 System views before and after a syntax error. 134

4.23 User and system defined textual layout of a program. 135

4.24 Tree vs DAG. 137

4.25 Higher-order functions in HASKEU visual view. 139

5.1 General outline of the MVC layout in the system. 144

5.2 Tree structure and dataflow graph of expression map ((+) a) b. 155

5.3 The redo/undo stack. 162

5.4 Heap profile to evaluate infinite redo/undo. 163

6.1 Performance of all participants - visually vs textually. 189

6.2 Transition rate from one system to the other of two groups. . . . 191

6.3 Transition ability of the system. 192

6.4 Performance difference rate between two groups. 193

A.1 Class diagram of user login system. 213

ix

A.2 Sequence diagram of user login action. 215

B.1 Spaghetti Code in LabVIEW (Carr, 2011) 218

B.2 A illustration of Spaghetti Code in early HASKEU. 219

x

List of Tables

6.2 The completion times (in minutes) by the participants using the

both textual and visual systems 189

xi

Chapter 1

Introduction

This thesis demonstrates an experiment to implement a novel programming

system for end-user functional programming. This end-user programming sys-

tem was developed to support both visual and textual programming, aiming

to allow end-users to perform some useful visual programs with a small invest-

ment of time and for them then go on to more advance levels of understanding

textually when they are ready.

1.1 Motivation

The aim of this thesis is to make it easier for end-users to learn how to use

a general purpose functional programming system. The new visual system

produced for this thesis supports the current textual syntax so that switch-

ing between the two will be easy. Hopefully, the new system will eliminate

some of the harder syntax in functional programming and make learning the

1

Haskell type system easier for them at a later stage. There are some interesting

areas of functional programming which may attract end-users to attempt to

learn functional programming languages. Researchers have long maintained

that computer programs will be developed and easily maintained in func-

tional programming languages. Unlike traditional imperative programming

languages, functional programming languages have no notion of sequence or

state (Hughes, 1989). A function call computes its result without any side-

effects, because variables, once given a value, can never be changed, which

eliminates a major source of bugs. A functional programmer does not need

to specify the flow of control and an expression can be evaluated at any time.

While conventional programming languages place limits on the way that con-

trol theory, hybrid systems, vision, artificial intelligence, and human-computer

interaction can be expressed, functional programming languages push back

these limits (Hughes, 1989).

1.2 Research Statement

It is feasible to develop an end-user functional programming system that con-

sists of a visual programming system and a textual programming system and

for the end-user to have a smooth transition between the two, particularly as

the end-users’ programming expertise improves and increases. This end-user

functional programming system can be implemented in a functional paradigm.

2

1.3 Who are the End-Users?

The target audience for this new programming system are end-users such as

chemists, librarians, teachers, architects, and accountants, who need to use

their computers for calculation purposes and who intend to use their com-

puter seriously. They are not “casual”, “novice”, or “naive” computer users;

and they don’t want to be a professional programmer (Nardi, 1993). The key

difference between professional programmers and end-users is that professional

programmers write programmers as their primary occupation, and end-users

write programs as just one of a range of tools to achieve a particular purpose.

Many end-users use computers daily, at least for a certain period of intensive

work on a project, and the development of this end-user programming system

is targeted at these users. Instead of training large numbers of professional pro-

grammers, end-user computing is becoming the major trend. It has become

obvious that a radical departure from traditional programming is necessary if

programming is to be made more accessible to a large population (Shu, 1988).

1.4 What are End-Users’ Problems?

Programmers who are already experienced with general programming con-

structs such as types and recursion who have learnt them in imperative lan-

guages, still find it difficult to use them in functional languages (Chambers

et al., 2012; Segal, 1994; Joosten et al., 2008; Ebrahimi, 1994; Lau et al., 1994).

3

The end-users have the same difficulties. As well as studies showing the main

difficulties of learning a functional programming language, there have also been

observational studies and investigations about what information sources peo-

ple use when they encounter these difficulties. These studies have also shown

how effective the different information sources are in enabling them to over-

come problems. It was observed that people who were learning to program

frequently referred to information sources that did not help them to success-

fully overcome their problems (Chambers et al., 2012). These results helped

this research to analyze the learning barriers of functional programming. The

following barriers to learning functional programming have been identified as

well as the barriers to learning experienced by end-users. In this thesis, the

opportunities of supporting the learning process in a more effective way by us-

ing visual programming techniques will be revealed and shown in more detail

in Chapter 4.

• People commonly encounter several conceptual difficulties when learn-

ing functional languages. In particular, it was found in studies that

they struggle to implement recursive functions (Segal, 1994), iteration

(Joosten et al., 2008), and nested operations (Ebrahimi, 1994) while

using functional languages. Recursive application, clauses, patterns and

local functions are the features of functional languages which enable re-

cursive functions, iteration and nested operations to be implemented.

The visual system in this research allows these features to be illustrated

4

and can be used to assist with the editing (see sections 4.1.2 to 4.1.4) .

• While doing programming tasks, a novice programmer frequently re-

ferred to information sources, particularly for overcoming compiling er-

rors encountered when passing functions as arguments to other functions.

Learners can easily be overwhelmed by the concept of higher-order func-

tions. This concept had therefore to be included after their introduc-

tory course (Chakravarty and Keller, 2004). The visual system of this

research provides support for understanding and implementing higher

order functions (see sections 4.2.1 and 4.4.3) .

• Functional languages also present challenges to learners such as the dif-

ficulty of understanding

(a) the type of functional expressions (Joosten et al., 2008). (To see

how support is provided in representing types by the visual system

of this research to represent types, see Section 4.2.1);

(b) the meaning of error messages (Joosten et al., 2008). (Go to Section

4.2.1 to see the support provided).

There is existing research which has focused on developing some innova-

tive integrated development environments to assist learners to overcome

these problems such as DrScheme for the functional programming lan-

guage Scheme (Findler et al., 2002).

DrScheme is designed to catch typical student mistakes and explain them

5

in terms that the students understand. DrScheme is a graphics-enriched

editor which includes a stepper, a context-sensitive syntax checker, and a

static debugger. The stepper is useful for explaining the semantics of lin-

guistic facilities and for studying the behaviour of small programs. The

syntax checker changes the font of keywords and the text color in the

place where the syntax error had occurred. The static debugger provides

type inferences which are selectively overlaid on the program text.

The stepper enables students to make a program to calculate a value in

a series of steps analogous to BODMAS calculations in secondary school

algebra. The stepper tool has been found useful particularly for those

students who prefer to learn by generalizing from examples, rather than

working directly from an abstract model. DrScheme’s syntax checker

helps programmers to understand the syntactic and lexical structure of

their programs and has also been found very useful by beginner program-

mers. The static debugger tool of DrScheme has been found very useful

for programmers to perform type inference and to mark potential errors.

DrScheme has important features (syntax and semantic error checking,

and error reporting for functional programming) and they have been

implemented to support textual programming. These same features have

been implemented in the visual system of this research. Some features

such as a stepper may be implemented in future research.

6

• Apart from these barriers to learning functional languages, a study (Ko

et al., 2004) has also found six barriers to end-users’ learning program-

ming systems. These are

1. Design barriers - the inherent cognitive complications of a program-

ming problem, which occur in using the correct notation to repre-

sent a solution (i.e. words, diagrams, code). For example, a learner

working on a program so that it sorts the names in a list into reverse-

alphabetical order, might be unable to conceive a systematic way

to sort the names. His/ her best solution might be to just keep

moving the names until they look right! The declarative nature of

functional programming and the ability to show program flow visu-

ally may help programmers to overcome design barriers (Burnett

et al., 2001). The visual system in this research helps to illustrate

the declarative function features and program flow (see Sections sec-

tions 4.1.2 and 4.1.3)

2. Selection barriers - the problem of finding what programming in-

terfaces are available and what can be used to achieve a particular

behaviour. For example, a learner working on designing an alarm

clock may find difficulties in using a library function to get current

time, to select how store alarm time (globally or locally) and then to

compare it with the global/local alarm time variable. In functional

programming languages, the alarm time needs to pass through func-

tions as argument, and the visual system in this research shows a

7

function icon with its argument slots and it shows the type informa-

tion of each argument. This is how visual functional programming

can aid to overcome selection barrier.

3. Coordination barriers - the programming system’s boundaries es-

tablish how a programming language’s user interfaces and libraries

can be connected to achieve complex behaviours. For example, a

learner may correctly assume that there is inter-module communi-

cation involved in creating a new module by writing a program and

accessing its data. However, he/she can make invalid assumptions

about how to access data and how to try to “pull” values from the

new module instead of “pushing” values to the old module. Again,

as functional programming languages have no side-effects and vari-

ables can never be changed, so pulling values from a function is

something a user does all the time and so the coordination over-

head is simpler.

4. Understanding barriers - the properties of external behaviour such

as compile and run-time errors that hide what a program did or

did not do at compile or runtime. For example, when a learner

writes a function without a ‘=’, he/she receives the error message

“expected: =”. The learner needs to learn and understand where

the ‘=’ should be placed, and why it is “expected.” The visual sys-

tem in this research prevents users from making syntax errors. The

direct-manipulation technique helps users to construct a program

8

without any prior knowledge of syntax. This research also imple-

ments visual error reporting which can help users to gain a better

understanding and more ability to locate an error.

5. Use barriers — when learners know about the interface they want to

use, but are misled by their difficulties in using them. For example,

a learner can make invalid assumptions about how to use a method

or what effects they would have, passing syntactically correct but

semantically incorrect arguments (e.g., when a function can take

two arguments, but it was given four arguments). The use of a

strongly typed functional language in this research allows users to

construct only semantically correct programs. Also, the visual sys-

tem in this research shows standard library functions, non-standard

library functions and user-defined functions as icons with a number

of input slots and type information which can help users to choose

a specific function.

6. Information barriers — the properties of an integrated development

environment that make it hard to acquire information about a pro-

grams’ internal behaviour such as a value of a variable or what calls

what. For example, a learner might accidentally close a panel win-

dow/ toolbar and then can not be able to determine how to redisplay

it. This is a problem caused by the user interface design of the IDE.

In the end-user programming system developed in this research, the

8 golden rules of user interface design have been followed to resolve

9

this barrier.

The design of the end-user programming system developed in this research

will aim to address, these barriers. It combines visual programming techniques

with HCI techniques. The HCI techniques include rules of user interface de-

sign, data display design, icon design, and direct manipulation. The end-user

programming system in this research aids end-users to overcome the barriers

to learning a programming system and particularly to learning a functional

one. For details, see Chapter 4.

1.5 Choice of Functional Language

The target domain of the new programming system in this research is a gen-

eral purpose functional programming in Haskell. Haskell is a strongly typed

functional language. The main difference between HASKELL and some other

functional programming languages (for example, ML and Scheme) is in strict-

ness. In Haskell, a function does not evaluate its arguments unless, and until

their values are needed, which is known as lazy evaluation. The functional pro-

gramming language, Haskell, has been tackling some of the interesting prob-

lems faced by computers scientists for more than 30 years. Nondeterminism,

concurrency, state, time, efficiency, and decidability are all issues that func-

tional languages address (Peyton Jones et al., 1996). Concurrent programming

by using coroutines is a natural consequence of lazy evaluation, for example

(Hughes, 1989). However, existing functional programs are textual with unfa-

miliar syntax, and involve unfamiliar concepts such as the use of higher-order

10

functions which have other functions as their arguments and/or their results.

It is all too common for these programs to be surprisingly difficult to develop,

especially when they are developed by end-user programmers (Nardi, 1993).

The next section will go on to describe the inspiration for a functional pro-

gramming development system that combines textual and visual elements to

enable such languages to be more widely accessible.

1.6 Design Inspiration

It has been found that non-programmers can write quite complex programs

in visual programming systems with little training (Halbert, 1984; Cypher,

1993). Different visual languages have developed many systems (such as sig-

nal processing, image processing and instrumentation) which perform their

task satisfactorily using dataflow programming techniques (Bier et al., 1990;

Rasure and Williams, 1991). This is an indication that a visual functional

programming system may improve the learnability of functional languages by

end-users. Visual representations aid understanding and memory retention,

and may provide an incentive to learn how to program without language bar-

riers. In more main-stream programming languages, representation of opera-

tions in different notations, such as visual versions of textual languages can

ease program understanding (Green, 1990). The visual system discussed in

this thesis can be seen as a support for programming using the Haskell textual

language. Visual notations can be used effectively to give the programmer an

11

overview of a program’s structure such as UML notations representing aspects

of object-oriented languages (Larman, 2004). Similarly, relations, connectivity

and type information may be grasped more easily through visual representa-

tions than through textual representations.

The use of Human-Computer Interaction (HCI) techniques to design visual

programming systems is relevant to this investigation (Pane, 1998; Pane et al.,

2002). One of the popular HCI styles is direct manipulation (Shneiderman

and Plaisant, 2004) which is a continual depiction of the objects of interest,

and involves fast, undo-able, and incremental actions and feedback. The ben-

efits that can be gained by using direct-manipulation in the design of visual

programming system are: control-display compatibility; less syntax leading to

reduced error rates; help provided with language semantics; the avoidance of

syntactic and semantic errors before compilation is attempted; errors are more

preventable; faster learning and higher retention; encouragement to explore;

the programmer is always kept aware of the result by the representation pro-

viding continual feedback; and the object of interest being immediately visible.

This is not the first time the concept of a visual functional language pro-

gramming system has been proposed. A previous attempt, called Visual

Haskell (Reekie, 1994), a visual programming system for Haskell can be found

in the literature. The Visual Haskell by Reekie was more of a visualization

tool than a visual programming system. The end-user programming system in

12

this thesis makes use of ideas from visual programming in general, and Visual

Haskell by Reekie in particular. The relevant aspects of the Visual Haskell by

Reekie are described in Chapter 2. This thesis contributes to original research

by creating an alternative programming system which has many advantages

(see Section 1.10) beyond Visual Haskell by Reekie. Not many attempts have

been made since that one, possibly because pure functional languages such

as Haskell are not widely used and the challenge of creating such a system

whilst being true to the functional paradigm. A recent, nominally visual, pro-

gramming system to support Haskell is also called Visual Haskell (Angelov

and Marlow, 2005), which is a Haskell development system to support textual

programs, rather than visual ones.

This research also uses the idea of the Model-View-Controller (MVC) design

pattern (Fowler, 2002) and Functional Reactive Programming (FRP) (Elliott

and Hudak, 1997; Hudak, 2000; Peterson et al., 1999; Reid et al., 1999; Court-

ney and Elliott, 2001). MVC has been found to be a very useful and widely

used design pattern for implementing user interfaces in object-oriented pro-

gramming languages. The aim of functional reactive programming (FRP) is

to provide a powerful way to describe reactive systems. So, it was worth inves-

tigating how easily MVC could be implemented in a functional programming

language with the use of FRP (see Chapter 3), as the new reactive program-

ming system in this research consists of two views (textual and visual) and

many controllers.

13

The aim of this research was to develop a programming system for Haskell

and the focus will be on solving the technical problems. Here, focusing on

solving the technical problems means analyzing technological aspects such as

Haskell’s syntax tree, Haskell’s type system, making use of FRP and laziness,

making use of MVC, the use of HCI and finding a suitable solution to designing

and implementing a supportive programming system for Haskell. Combining

all these technologies to implement a new programming system in a pure func-

tional paradigm is a challenge. A usability test was conducted with a range of

end-users to evaluate the resulting system (see Chapter 6).

1.7 Research Aims

RESEARCH QUESTIONS:

The main research question “Is it is possible to build a usable programming

system for the end-user development of functional programming?” can be split

into the following three relevant questions:

1. How suitable is textual programming for the end-user development of

functional programming?

2. How suitable is visual programming for the end-user development of

functional programming?

3. How can textual and visual programming be effectively combined in a

14

functional programming system?

RESEARCH OBJECTIVES:

These research questions will be answered by achieving the following objectives.

1. The development of a programming system based on textual functional

programming, and a subsequent evaluation of the suitability of textual

functional programming for end-user development.

2. The development of a programming system based on visual functional

programming, and a subsequent evaluation of the suitability of this visual

functional programming for end-user development.

3. The production of a single system that combines textual and visual pro-

gramming using a Model-View-Controller (MVC) design pattern. This

will allow end-users to program using both notations at the same time,

and for them to compare their effectiveness.

1.8 Research Methodology

The research in this thesis is actually an implementation research rather than

an action research. It refines the implementation after evaluation, at each

step. Action research involves finding an answer to an instant issue, or it is a

reflective continuous process, where finding an answer is led by people working

with others in a group, or as part of a “community of practice”, to improve

their ways of addressing and solving issues (McNiff, 1988). Implementation

research is of great importance when satisfying challenges, and it gives a basis

15

for the context-specific, evidence-informed decision-making necessary to make

what is possible in theory a reality in practice. Implementation research is a

problem-focused, action-oriented research (Denicolo and Becker, 2012).

Data will be collected in user studies and by running tests. In the user stud-

ies both quantitative and qualitative data will be collected. The quantitative

data will be a measure of the learning time and the accuracy of the program

development. The qualitative data will be how well the program meets its

specification. By running tests only quantitative data will be collected to un-

derstand behavioural characteristics of the system.

The following steps were taken as a research methodology:

1. The first step taken was to become familiar with the literature about

functional programming, end-users, visual programming and Human-

Computer Interaction (HCI). It was important to become conversant

with the way that functional programs are developed using traditional

textual notation. It included an examination of the typical functional

programming styles in programming some Prelude functions. There fol-

lowed an investigation into how GUI programming has been achieved in a

functional programming language using standard libraries, and in partic-

ular how to implement the Model-View-Controller (MVC) design pattern

in a functional programming language. This provided the springboard

for research objectives 1, 2 and 3.

16

2. The next step was to create a textual programming system for func-

tional programming, taking Prelude functions as an example domain.

The textual representation of a program may be seen as one “view” of the

underlying “model” that represents it. This model is, in fact, a syntax

tree. This achieved research objective 1. A visual programming sys-

tem for functional programming was then created, again taking Prelude

functions as an example domain. The visual representation of the pro-

gram produces another “view” of the underlying “model” that represents

it. This achieved research objective 2.

3. Then, there was a further literature review to determine the criteria by

which textual and visual programming systems would be fairly compared.

A study was conducted of a small set of end-users recruited by invitation,

but with no previous involvement with this research. These end-users

performed the same programming tasks with both the textual and visual

programming systems in order to provide a qualitative and quantitative

comparison between them. The findings were recorded anonymously,

consistent with the Handbook of Research Ethics. This achieved research

objective 3.

It was decided to call the newly developed programming system “HASKEU”

which stands for — Haskell for End-Users.

17

1.9 Design, Implementation and Testing Ap-

proach

To achieve the goal of this research and hence to design and implement HASKEU,

a choice of a suitable software development life cycle (SDLC) model was im-

portant (Ruparelia, 2010). There are different SDLC models for various types

of projects. The oldest SDLC model is the Waterfall model (Sommerville,

1995). Its main disadvantage is that it is not possible to make changes to the

project as requirements change at a later stage. The Agile model is useful

for projects with a large team where customer collaboration is also important

(Beck et al., 2001). In Agile, requirements and solutions develop gradually

through collaboration between the self-organizing and cross-functional teams.

Agile supports flexible planning, progressive development, early delivery, ongo-

ing advancement, and it supports fast and easy responses to change. SCRUM

is one of the many iterative and incremental Agile methods. In SCRUM, the

basic unit of development is called a sprint. Each sprint begins with a planning

meeting. In the planning meeting, the tasks for the sprint are established and

an approximate outcome is set. The Rational Unified Process (RUP) is an-

other classification of waterfall model and it has a strict cut-off between phases

(Sommerville, 1995). The Spiral model uses iterative methods and it allows for

there to be as many changes as are needed (Boehm, 1988). There is no uni-

versal SDLC model that fits all projects. The development of the HASKEU

system was a Spiral development. The main benefits gained of using spiral

18

development in HASKEU project are outlined below:

1. Because the project was developed in an iterative way, the complexities

of the problems were discovered in stages along the way rather than one

major problem at the beginning.

2. In each stage, a review was undertaken and this clarified the key things

which needed to be done in the next stage.

3. It was possible to add extra functionality at a later date;

The spiral development consists of four phases: Planning, Risk Analysis,

Engineering and Evaluation. In this iterative approach, a software project

repeatedly passes through the four phases Figure 1.1.

Figure 1.1: The spiral development.

19

The scheduling and development of different parts of the project was care-

fully planned and documented at each of the iterative stages. The documen-

tation created at each stage could then be easily referred to and used to create

the technical documentation of the final version of HASKEU. Two of the main

parts of the HASKEU system are - the visual programming and textual pro-

gramming. Although they are very interdependent and changes propagate

between them, the functions to make these propagations possible were written

separately and in a completely declarative way (see Chapter 5). The declara-

tive nature of functional programming is very suitable for iterative development

as is demonstrated in Spiral SDLC. The concept of the HASKELL syntax tree

became clear by first analysing, designing and implementing the textual sys-

tem and then the same stages of the visual system were realized. Similarly, to

support the type checking and error reporting etc. in the visual system, it was

important to know how to store the type information, how to check individual

expressions etc.

The Design/Implementation/Testing was divided into the following steps:

• Prototype 01: Develop the textual programming system in HASKEU.

• Prototype 02: Develop the visual programming system in HASKEU.

In the evaluation phase, it was felt that the design was not simple

enough for end-users to do programming and it could produce spaghetti

code (Van Tassel, 1974). The term “Spaghetti code” refers to those codes

which are intricate and poorly organized. It was first appeared when the

20

jump was made from assembler to structured programming. Now, for

the same reason, many developers create visual spaghetti code (Whitley

and Blackwell, 1997). Examples of visual spaghetti code are given in

the Appendix B. The separation into pieces and automatic layout of a

screen program have been implemented in some visual programming sys-

tems (such as IBM’s VisualAge) for decreasing the complexity of a visual

spaghetti code (Gibbons, 2002). In the first visual system of HASKEU, a

module and all its functions were shown in one graphical window. Users

could draw visual programs in which functions, nodes and lines could

overlap each other. Changing any part of the module was likely to affect

the functionality of other parts and caused unintended changes.

• Prototype 03: After a further literature review, stage three was an im-

plementation of the refined visual programming system with support for

“one function definition per page” (see Section 4.1.5) and “automatic

layout” (see Section 4.1.3).

• Prototype 04: Production of the combined textual and visual program-

ming system with the use of MVC and FRP. The “MVC as a FRP”

theory was introduced (for more details, see Chapter 3).

• Prototype 05: Changes were made in the textual implementation. Pre-

viously the text editor did not need to be updated as it was the only

system. When the textual and visual were combined, the text in the

text editor was updated by the model value and the cursor position was

lost. The syntax tree did not contain the cursor position, so then it was

21

decided to explicitly save the cursor position in the model.

• Prototype 06: Changes were made in the visual implementation to syn-

chronize it with the textual system, as the visual system is syntax error

free and the textual system can have syntax errors (for more details, see

Section 4.4.1). Version 1 of HASKEU was released to support both vi-

sual and textual programming. This first version had no type checking

facility.

• Prototype 07: Version 2 of HASKEU was designed to support type check-

ing.

• Prototype 08: Reimplementation of the visual system so that types and

type errors could be shown visually (see Section 4.2.1).

• Prototype 09: The system was exhaustively tested and the final version

of HASKEU was released.

Although the Software Engineering Life Cycle (SDLC) gives a general

overview of ordering different phases of software engineering, the implementa-

tion and documentation of the phases (from analysis to maintenance) depend

on the underlying programming paradigm of the programming language on

which the system will be developed. HASKEU was developed in a pure func-

tional programming language (Haskell) and did not use a formal analysis and

design method. Appendix A gives more explanation about appropriateness of

using analysis and design for functional programs.

22

The implemention of the above mentioned prototypes of HASKEU demon-

strates the research contribution outlined in the following section.

1.10 Contribution

As well as the design of a programming system, the implementation demon-

strates the purely functional Model-View-Controller (MVC) design pattern as

a reactive program using the elegant Functional Reactive Programming (FRP)

framework. This implementation is the foundation of the programming system,

HASKEU. This thesis has produced the following new features for end-users

functional programming in Haskell:

1. Support for both visual and textual functional programming allowing

for a smooth transition from one to the other as programming expertise

increases;

2. The propagation of changes between the visual and textual interfaces, so

that they are always consistent;

3. Extensive use of Human-Computer Interaction (HCI) techniques have

been included.

4. No syntax errors can be created in the visual system;

5. The provision of an automatic layout to display the dataflow graph in

the visual system;

23

6. The use of a block-based architecture to represent the scope of expres-

sions in the visual system;

7. An on-time visual display of the textual notation of the type of a function

application and its individual arguments;

8. The provision of visual error reporting;

9. Unnecessary and unused argument slots are clearly shown;

10. Guidelines for the display of data in visual systems are satisfied;

The remaining six chapters of this thesis cover the following areas: Chap-

ter 2 shows a literature review and related research which influenced this study.

It also includes a comparison of the programming of some typical instructions

using a functional programming language, a visual programming language,

and a visual functional programming language. Chapter 3 shows the imple-

mentation of the Model-View-Controller (MVC) design pattern as a reactive

program. Chapter 4 describes the design of HASKEU - data display, icon de-

sign, use of HCI, dataflow of functional program, organization of the display,

and error reporting. Chapter 5 shows the implementation of the system in

the following order: the model, the controllers and the views. This chapter

also shows the results of the functional test of the infinite redo/undo facility

of HASKEU. Chapter 6 shows the usability test process and the results of this

usability test. Chapter 7 presents conclusions containing the achievements,

the limitations and suggestions for future developments.

24

Chapter 2

Background and Literature

Review

2.1 End-user programmers

As mentioned in the introduction, according to Nardi, end-user programmers

are not “casual”,“novice”, or “naive” computer users; rather, they are people

such as chemists, librarians, teachers, architects, and accountants, who want

to make serious use of computers, but who are not interested in becoming pro-

fessional programmers (Nardi, 1993). Such end-users may program computers

daily, at least for a period of intensive work on a project. End-user systems

should be targeted at them; others with infrequent computational needs can

enlist contract or in-house programmers to write the few programs they need.

Although end-users represent a continuum of people with different techni-

24

cal skill levels, Nardi and Miller classified them into three discrete user groups

— non-programmers, local developers and programmers (Nardi and Miller,

1990). Non-programmers have little or no programming education and lack

an intrinsic interest in computers. Local developers have a good knowledge of

specific programs. Programmers have a good education in the general use of

computers and therefore have a broader technical knowledge than the other

groups. If an appropriate design principle can be created for non-programmers,

it is obvious that local developers and programmers can use the system as

well. Also, the total number of experienced programmers and local developers

is substantially smaller than the number of inexperienced non-programmers

(Ko et al., 2011).

End-user programming (EUP) is defined as “programming to achieve the

result of a program, rather than the program itself” (Ko et al., 2011). The

developer’s goal in EUP is to use the program for a specific, personal pur-

pose, whereas the goal in professional programming is to create a commercial

program for other people to use. An end-user development can be an exten-

sion of an existing application, or it can be a new application, which runs

separately from existing applications. Some popular EUP systems are spread-

sheets, computer aided design systems and statistical packages. A key feature

of these systems is that a useful subset of their functionality can be learned

after no more than a few hours of instruction.

25

EUP does not mean using only simple languages. Many scientists use

general-purpose languages like Java to analyze scientific research, with no in-

tention of sharing the program for commercial use or polishing it for future use

(Segal, 2007). An end-user programmer may use any of the wide range of lan-

guages, from task-specific languages to high-level general-purpose languages.

SPSS (SPSS Inc., 2007) and Mathematica (Wolfram, 2003) are examples of

task-specific language. The choice of language is important only to achieve the

end-user’s personal goal. However, task-specific languages lack the power of

general-purpose programming languages. Also, it is expensive to build many

different task-specific languages. Users would be forced to switch between

many different languages and it is difficult to know how specific a task-specific

system should be (Nardi, 1993).

Many end-users have serious difficulties learning general-purpose program-

ming languages. One of the major barriers in learning such languages is be-

coming familiar with low-level programming primitives and assembling them

into a functioning program (Lewis and Olson, 1987). Many end-user get dis-

couraged at the amount of work needed to master a conventional programming

language (Nardi, 1993). Novice programmers often have great difficulty un-

derstanding control constructs in programming languages (Lewis and Olson,

1987; Spohrer et al., 1985). End-users also face many of the same software en-

gineering challenges as professional developers do. They need to choose APIs,

libraries, and functions to use (Ko and Myers, 2004). Their programs contain

26

errors, and they also face the critical consequences of failure (Panko, 1998).

Error rates increase when they work on large programs (Panko, 2000).

End-user capabilities can be summarised as follows:

• they may not be expert programmers (Nardi and Miller, 1990);

• they may be unskilled, and make false steps (Lewis and Olson, 1987);

• they may be uncertain, and make false starts (Ko and Myers, 2004);

• they find large programs daunting (Panko, 2000).

The next section will go on to look at properties of functional languages.

2.2 Functional Programming Languages

2.2.1 Motivation

For many years, researchers have argued that computer programs would be

easier to develop and maintain if they were written in functional programming

languages (Backus, 1978; Darlington et al., 1982; Hughes, 1989). Unlike tradi-

tional imperative programming languages, functional programming languages

do not allow functions to have any side-effect — they compute only results.

This constrains the use of sequence and state, which often cause programmers,

and especially end-user programmers, to make mistakes.

27

2.2.2 A Functional Language : Haskell

This section describes a modern functional programming language, Haskell

(Peyton Jones, 2002) which is proposed as a suitable language for EUP.

Functions

A function determines a result, which depends on one or more arguments. It

may be defined by one or more equations, which may be recursive; that is, a

function defined in terms of itself. For example, the factorial function may be

defined as follows:

fac 0 = 1

fac n = n * fac (n - 1)

Here, the first equation will be applied when the argument value is zero, and

the second otherwise. Parentheses are used to group parts of an expression

explicitly, but operator precedence often allows them to be omitted. Haskell

assigns numeric precedence values to operators, giving function application by

juxtaposition a higher priority than all other operations. So, fac n - 1 is

equivalent to (fac n) - 1.

Types

Types describe values. Among the basic types are Integer (infinite-precision

integers), Char (characters) and Bool (booleans). Among the function types

are Integer -> Integer (functions mapping infinite-precision integers to infinite-

precision integers). Polymorphic types contain variables. For example, the

28

identity function may be defined as follows:

id :: a -> a

id x = x

Here, the type a -> a can be read as “for all types a, a function from a to a”.

By convention, a specific type begins with capital letter, and a variable type

with a lower-case one.

A new type is defined by a data declaration. For example, a binary tree

may be defined as follows:

data Tree a

= Leaf a

| Branch (Tree a) (Tree a)

Here, the identifiers Leaf and Branch are the constructors of the type Tree.

Data types may be recursive and include polymorphic components.

Lists are one of the built-in types. All items in a list have the same type.

There are two list constructors, [] and (:), so that [] is an empty list, 3 : []

is a list of one item, and 1 : 2 : 3 : [] is a list of three items, which may

be more conveniently written as [1, 2, 3].

A tuple type is another built-in type. The items in a tuple may have

different types. For example, (t1, t2,. . . , tn) is a tuple type of values

29

(v1, v2,. . . , vn), where each value vi has the type ti given in the corre-

sponding position in the tuple type. These objects are usually called pairs,

triples, quadruples and so on.

Higher-order functions

A higher-order function is one that takes one or more functions as arguments

or returns a function as a result. Two important higher-order functions for

list-processing are map and filter. A map constructs a list by applying a

function, passed as the first argument, to all items in a list, passed as the

second argument:

map :: (a->b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

A filter constructs a list from the items of a list passed as the second argu-

ment that satisfy a predicate passed as the first argument:

filter :: (a->Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) =

if p x

then x:filter p xs

else filter p xs

30

Multiple arguments and currying

All functions of more than one argument are curried : i.e. they take a single

argument and return another function if more arguments are needed. The

following example is a function with three integer arguments:

multiplySum x y z = x * (y + z)

Given a single integer as an argument multiplySum yields a function of type

Int -> Int -> Int as result.

By convention function application is left-associative, taking one argument

at a time. So, the above function definition multiplySum x y z is equivalent

to (((multiplySum x) y) z); that is, an application of multiplySum to x,

the result of which is applied to y; so (multiplySum x) must be a function.

The result of this application, ((multiplySum x) y), is then applied to z, so

((multiplySum x) y) must also be a function.

The advantage of currying is that a function can be applied by binding

some but not all of its arguments. Hence, the function yields a specialized

version with the given arguments “frozen in”, which is also known as partial

application (Bird and Wadler, 1988).

Local definitions

Frequently, Local definitions are used to break a big calculation into a num-

ber of smaller ones. The following example uses where to make two local

31

definitions:

sumSquares :: Int -> Int -> Int

sumSquares m n =

squareM + squareN

where

squareM = m * m

squareN = n * n

Another way to make a local definition uses let:

sumSquares m n =

let squareM = m * m

squareN = n * n

in squareM + squareN

Input and output

Haskell accommodates input and output using special values called actions.

An action of type IO t may perform an input/output operation with a result

of type t. For example, a function to read a string from a file handle has type:

hGetStr :: Handle -> IO String

The keyword do may be used to introduce a sequence of actions. For

example, to read a string from a file handle and print it on the standard

output, the coding is the instructions are:

do

s <- hGetStr

putStr s

32

2.2.3 An Example Haskell Program

Below is an example functional program, which shows how Haskell may be

used to calculate the voltage in the electrical circuit shown in Figure 2.1.

Figure 2.1: An electrical circuit.

Suppose the values of the resistors in this circuit are: R1 = 8.0 Ω, R2 = 6.0

Ω, R3 = 4.0 Ω, and that the current through each resistor is: I = 0.5 A. By

Ohm’s law, the total voltage of the circuit can be found by simply adding up

the voltages at each resistor, where each is calculated as V = IR.

In Haskell, the calculation is implemented as follows:

totalVoltage :: Double

totalVoltage = sum (map (* 0.5) [8.0,6.0,4.0])

The function sum adds up all items in a list passed as an argument. The list

that results from applying map is [4.0, 3.0, 2.0], and the value that results

from applying sum is 9.0.

33

The next section explains the main difference between Haskell and other

functional programming languages.

2.2.4 Other Functional Programming Languages

Other commonly used functional programming languages are Standard ML

(Milner, 1984) and Scheme, a dialect of LISP (Steele Jr. and Sussman, 1978).

The main difference between these languages and Haskell is in strictness. In

ML and Scheme, a function call of the form

f (e1, e2,. . . , en)

causes the argument expressions, e1. . . en, to be evaluated before the body of

the function f is executed. In Haskell, however, a function does not evaluate

its arguments unless, and until their values are needed, which is also known

as lazy evaluation. The main benefits of lazy evaluation are: it increases per-

formance by avoiding unnecessary calculations and it is possible to construct

infinite lists (Hudak, 1989). Haskell was chosen as a target domain for this

research because of its laziness so that end-users do not need to put much

effort into thinking about the performance of the program they develop. For

the same reason, it was chosen as the development language for HASKEU.

Existing functional languages usually have an unfamiliar textual syntax,

and programming in them involves unfamiliar concepts such as the use of

34

higher-order functions (functions having other functions as their arguments

and/or their results). Hence, the development of these programs is “surpris-

ingly difficult”, especially by end-user programmers (Nardi, 1993). In the next

sections, various ways to support language learning will be discussed.

2.3 Support for Language Learning: Syntax-

Directed Editor

To make textual programming easier, syntax-directed editing is particularly

useful (Bai, 2003). A syntax-directed editor provides alternative ways for

manipulating programs by creating or modifying programs in such a way that

correct syntax is always produced. In most syntax directed editors, the display

cursor indicates where to enter the program text, and the program display on

the screen is automatically updated. A syntax-directed editor differs from a

text editor as a text editor only updates the text, whereas a syntax directed ed-

itors updates the syntactic structure of the program as well as the text. When

a user enters text, the syntax-directed editor immediately checks for errors

and displays appropriate messages to the user. This prevents the user from

writing syntactically incorrect programs. Program text is entered by making

a template or a skeleton of a syntactic construct, and filling in the detail later.

Novice users can benefit by using syntax-directed editing because these editors

are considered to be a good medium to learn a new language and its construct.

Advanced users benefit from using a syntax-directed editor for program main-

35

tenance (Horwitz and Teitelbaum, 1986; Reiss, 1985; Hubbell et al., 2006).

A syntax-directed editor can allow more rapid program construction by auto-

matically managing many of the syntactic structures, such as keywords and

syntactic sugar. In spite of these advantages, the use of a syntax-directed ed-

itor for trivial tasks can be expensive and it can add more difficulty for users

learning more complex tools (Hubbell et al., 2006). It was found that the

syntax directed editor is too complicated and irritating for inputting programs

or for performing simple editing tasks as it involves a sequence of operations to

be performed (e.g., select a menu, select a tree node, restriction in editing for

syntactically incorrect input, press enter when finished). Also, in a complex

tool, selecting and learning the right menu can be a complex task. Research

has found that syntax-directed editors with some ability for “free typing” can

be more effective (Waters, 1984). Many programmers find it easier to do

some editing by entering text (e.g., inputing infix expressions, changing an

if-statement to a while-statement).

As with other syntax-directed editors, the HOPS (Higher Object Program-

ming System) is a graphically interactive term graph programming system

which is designed for transformational program development (West and Kahl,

2009). Term graphs are closely related to the terms that are encoded in the

textual representation of conventional programs, but their visual appearance

is different. In HOPS, with the use of an extended syntax directed editor, only

syntactically correct and well-typed programs can be constructed. It makes the

36

program’s structure and program’s typing structure explicit and interactively

accessible in the shape of term graphs. A visualisation of program execution

can be achieved by displaying all intermediate graphs of an automatic transfor-

mation and it has been found useful for debugging complex purely functional

programs. Below are some example programs in HOPS (see Figure 2.2).

The black arrows indicates successor edges and their sequence is indicated by

the left-to-right order of their attachment to their source. The thick, usually

curved arrows indicate binding edges. The Figure 2.2a corresponds to the

terms 5 * 5 + 5 * 5 * 2 in arithmetic. The Figure 2.2b corresponds to the

terms λx f = f x in lambda-calculus. In Figure 2.2b , it should be noticed

that in the linear notation the two different bound variables need different

names f and x since they occur in the same scope, but in the term graph of

HOPS, different nodes are labelled x because they represent different binding

variables.

(a) Terms 5 * 5 + 5 * 5 * 2 (b) Terms λx f = f x

Figure 2.2: Example programs in HOPS.

HOPS is remarkable because of its support of the program transforma-

37

tion feature and proof assistant facility for a Haskell-like functional program

by showing the program as a term graph instead of a textual representation

(Vangheluwe and de Lara, 2003). The interactive program transformation and

editing environment in HOPS ensures that it will always construct syntacti-

cally correct and well-typed programs (West and Kahl, 2009). The HASKEU

system developed in this thesis has a different purpose from that of HOPS:

• HOPS is a text-based term-graph programming system and is not a

visual programming system by any means, so it was not intended to

be used to support learners. HASKEU is a hybrid textual and visual

programming system and is intended to help end-users to learn functional

programming.

• HOPS has an extended textually based syntax-directed editor that does

not allow any syntax errors. This thesis analyses the pros and cons of a

syntax directed-editor at the beginning of this section and has concluded

that a program editor with the support of both a syntax directed-editor

and free-typing can be helpful for both learners and expert programmers.

The HASKEU system use free-typing in its textual editor and syntax-

directed editing in its visual editor.

• HOPS does not allow any type errors. This research argues that high-

lighting type errors in a visual way can help end-users to learn functional

programs. To support this, the HASKEU system allows end-users to

make type errors in the visual system and gives feedback about the type

38

errors in such a way that end-users can understand and correct their

errors efficiently (See Section 4.2.1).

Some features in HOPS such as debugging support can be useful to carry-

ing out functional programming tasks, and would be a useful feature if imple-

mented in a future version of HASKEU.

This thesis explores the use of a visual representation as well as textual

notation. The visual system incorporates the ideas gained from syntax-directed

editing to allow the user to construct only a syntactically correct program. At

the same time, the textual system has the flexibility of “free typing”. The next

section examines the characteristics of visual programming languages.

2.4 Support for Language Learning: Visual

Programming

2.4.1 Motivation

Learning to program is often a time-consuming and frustrating endeavor.

Moreover, even after the skill is learned, writing and testing programs may be a

laborious activity. Conventional programming exploits our ability to think an-

alytically, logically, and verbally, whereas visual programming (Zhang, 2007;

Cox and Nicholson, 2008; Cox and Gauvin, 2011) — defined as “the use of

meaningful graphical representations in the process of programming” — ex-

ploits our ability to think nonverbally (Shu, 1988). Visual representations aid

39

understanding and memory retention, and may provide an incentive to learn

to program without language barriers. In generic programming, notations,

such as visual versions of textual languages, can ease program understanding

(Green, 1990).

2.4.2 Visual Programming: Overview

Computer programming is a very difficult and challenging area and it places

a very cognitive load on learners. Still after a few years of learning, novice

programmers struggle to be skilled (Mow, 2008). The modern form of textual

programming has been around for over 60 years, and it has been taught in

universities since the 1960s. Since then, many different techniques and tools

have been developed to aid in learning computer programming (Newby and

Nguyen, 2010). The visualization of a program provides valuable information

to the programmer while programming and thus it has the potential to result

in a better and faster understanding of the program’s functionality, and can

save time while programming is being carried out. As a program consists of

huge amount of information, visualisation of the program is not very easy.

So, it is very important to consider the human perception of information and

cognitive factors required to visualize a program and hence the program un-

derstanding will be improved with the aid of the visualizations (Caserta and

Zendra, 2011). The principal goal of the visualization of a program to be visu-

alized is to increase code comprehension. (Marques et al., 2012). The purpose

40

of visual programming is not only to help users to learn a new program but

also to help them with the development and maintenance of programs. These

processes just mentioned have been found to be time-consuming activities in

practice. Especially while maintain a program, a developer does not want to

read the entire code of a huge program. Hence, they can benefit from the vi-

sualization of the program which can help them to get a rapid understanding

of the source code (Haiduc et al., 2010). Now-a-days, end-user programming

has become the most popular form of programming. This trend has led to

the situation that there are now now more end-user programmers than profes-

sional programmers (Hofer et al., 2013). Though the growth of the end-user

programming is rapid, not much research has been conducted about how to

bring the advantages of visual programming to the awareness of end-users,

especially in the functional programming area.

The following section describe the differences between two common terms

(“Visual programming” and “program visualizations”) used in computer sci-

ence research to improve programming support.

Visual Programming vs Program Visualizations

These two terms “Visual programming” and “program visualizations” are com-

monly used when there is a need to improve programming support in computer

science research (Bentrad and Meslati, 2011). As there are significant differ-

ences between the two systems, it would be better to give some short definitions

of these two to avoid any confusions. Program visualization tools can be easily

41

marked incorrectly as visual programming (Myers, 1990).

As a broad definition, a system can be called a visual programming sys-

tem if it allows the user to build a program in a two or more dimensions way.

Textual program are one dimensional as the system treats them as a long one

dimensional stream. A software which is used to define pictures, such as X-II

Window Manager Toolkit (McCormack and Asente, 1988), is not a visual pro-

gramming language. Similarly, drawing packages, such as Adobe Photoshop

(Aaland, 1998), are not visual programming language either as they cannot

make programs.

On the other hand program visualization is a completely different approach

to visual programming. In visual programming, the program itself can be built

using various graphics but in program visualization, the program is actually a

textual program and graphics are used to visualize some features of the pro-

gram such as the run-time values. Program visualization is mainly used in

research and training to improve the understanding of the structure, the exe-

cution mechanism and the gradual development of the software.

The main goal of both visual programming and program visualisation is

to use graphics to show the program in a multi - dimensional visual way as

human eye-sight and visual information processing are clearly optimized for

multi-dimensional data. A conventional program shown in one-dimensional

42

textual form does not help to utilize the full power of the brain. It has been

known for a long time that some two-dimensional visual forms of programs,

such as flowcharts or even the indentations of a textual program are useful aids

in program understanding (Smith, 1993). The format used in visual program-

ming is very similar to a user’s mental representation of problems (Petre and

Blackwell, 1999). Users, especially end-users find a visual style of program-

ming easier to understand. Also, visual programming can make programming

tasks easier even for expert programmers by showing them in graphics, bet-

ter descriptions of the desired actions which are to take place. The use of

direct manipulation, where items in a software interface can be pointed and

manipulated with the use of a mouse, can contribute to showing such better

descriptions (Ohshima et al., 2013).

It is generally believed that learnability is a most fundamental attribute

of usability (Grossman et al., 2009). Although a visual program can be very

useful in aiding learnability, there are others issues to consider such as HCI

while designing the interface. Recent research (Lazar et al., 2006) shows that

a user can have frustrating experiences which can lead to up to 40% wastage

of the user’s time while learning the interface. This can be because if useful

features are missing or they are hard to find or there are unusable features in

the interface. In this thesis HCI issues have been carefully considered in order

to make the learning of the user interface easier and while depicting visualiza-

tion of a program. Also, direct-manipulation has been carefully implemented

43

to help users to perform their desired actions (Mow, 2008).

The following section discusses the classification of visual programming

languages.

2.4.3 Visual Programming: Classification

In a visual programming language, a visual representation is used instead of

words and numbers displayed in a traditional one-dimensional programming

representation. It is of no real importance that the object being operated on

or being displayed in the visual language is textual, numeric, pictorial, or even

audio. The visual representation must convey the meaning what the program

is intended to do (Reiss, 1986; Chang, 1987; Shu, 1988; Burnett and Ambler,

1993). Shu (Shu, 1988) has classified visual programming languages into

Diagrammatic Systems, Iconic Systems, and Table / Form-Based Systems.

Diagrammatic Systems (Visual Dataflow Programming)

Using diagrams in connection with programming is a technique almost as old

as programming itself (Shu, 1988). Control flow diagrams consider the flow of

control but ignore the flow of data. In these diagrams, nodes represent state-

ments or decision points and arcs represent the transfer of control between

them (Cox and Nicholson, 2008)— for example, Nassi-Shneiderman diagrams

(Nassi and Shneiderman, 1973). Dataflow diagrams consider the flow of data

but ignore the flow of control (Cox and Nicholson, 2008). In these diagrams,

44

nodes represent either primitives, predicates or procedures, and arcs represent

the movement of data between them — for example, programs for the Manch-

ester dataflow machine (Gurd et al., 1985).

A dataflow model does not have either global updatable memory or a single

program counter. It only deals with values. A function can be enabled when all

its required input values have been computed. Then, the function is applied to

the computed input values and results produced, which are sent to other func-

tions that need these values. A dataflow model does not introduce sequencing

constraints other than ones imposed by data dependencies. Dataflow program-

ming languages share some features with functional languages (Uustalu and

Vene, 2006). A function call in a functional language is similar to a node call

in a dataflow language. The immutable way of passing data between functions

in functional languages is identical to the way of flowing data between nodes

in dataflow programming languages.

The reasons for describing a dataflow visually are the following:

(a) Dataflow languages sequence program actions by data availability: a node

is said to be executable when its arguments are available. The node’s result

is then sent to other functions, which need these results as their arguments.

This means that a program can be suitably drawn as a directed graph

in which each node represents a function and data item flows through a

directed arc.

45

(b) Smaller dataflow programs can be easily combined into larger programs

(see Figure 2.3).

(c) Graphs presents a natural view of the execution of a program.

(d) Using graphs, a formal meaning can be attributed to components of a

program.

Figure 2.3: Splicing of two graphs.

The visual programming system in this research used the concept of visual

46

dataflow programming and then functional programming concepts were added

(e.g. to show higher-order functions in a dataflow graph, larger programs to

be split into smaller graphs). For more details see Chapter 4.

Iconic Systems

Incorporating graphics or pictures into the programming process adds an in-

teresting and useful dimension (Shu, 1988). A significant number of iconic

languages have been reported in the literature. In general, they have basically

the same goal: to use icons as programming language constructs. In Tinkertoy,

programs are built out of icons and interconnections that can be snapped to-

gether (Gittins, 1986). The icons have input and output sites through which

they can be connected to form structures. HI-VISUAL was originally reported

as a language supporting visual interaction in programming (Reiss, 1986). It

is now being extended to be an iconic programming language in image pro-

cessing. Figure 2.4 shows an example of a program in extended HI-VISUAL.

Another example of an iconic system is Prograph (Cox and Mulligan, 1985)

which is a functional, dataflow oriented language expressed graphically (more

details of Prograph are given in Section 2.4.4). Iconic systems have some dis-

advantages such as icons can be inherently ambiguous, where some icons can

be interpreted within a certain context (Lodding, 1983). As there are no

universally accepted icons, evolving icons may take much time (Korfhage,

1984). Hence, visual iconic languages can be designed based on the concept of

generalized icons. In such concept, object icons consist of a logical part and

a physical part. Each icon has an image, which is the physical part of the

47

icon. Each icon also has a name and some additional attributes, which are

the logical part of the icon. The HASKEU visual system was built upon the

concept of generalized icons (see Section 4.1.2).

Figure 2.4: Example of a program in extended HI-VISUAL.

Table / Form-Based Systems

In 1979, the CODASYL End-User Facilities Committee (EUFC) stated that

“The forms approach was considered the most natural interface between an

end-user and data because a large number of end-users employ forms (e.g.,

purchase order forms, expense report forms, etc.) or versions of forms (e.g.

reports, memos, etc.) in their daily work activities as well as their personal

48

life (e.g tax forms, employment application forms, etc.)” (Lammers, 1986).

Figure 2.5 shows a typical QBE system (a database query language) of per-

forming a simple query operation. The table/ form - oriented approach in-

cludes electronic spreadsheet systems as a subclass. Although table/ form

based approach can be found very appealing and simple by end-users, research

on experienced spreadsheet users has found that 44 percent of them tend to

create user-generated faults in their spreadsheets (Brown and Gould, 1987).

The table/ form - based approach is actually task-specific and it has high

maintenance costs for end-users, so is not relevant to this research.

Figure 2.5: Find the names of employees who work in the toy department and
earn more than 10000.

The following sections describe examples of some visual languages, an as-

sessment of their value and lessons incorporated into HASKEU.

2.4.4 An Early Visual Language : Prograph

In the imperative programming world during the Prograph development pe-

riod of the 1980s, when a programmer was given a problem, he/she often

determined a sort of flow chart for the program’s functionality. Then, the

programmer translated the visual concept into textual code. This translation

was difficult because of “the translation of a multi-dimensional process to a

49

one-dimensional textual form” (Cox et al., 2012; Cox and Mulligan, 1985).

The visual programming language, Prograph, was invented as a solution to

this problem. Prograph showed visually the flow of data movement and it was

significantly different from control-flow languages. When the object-oriented

concept became more popular and later became the accepted programming

method, Prograph’s modularity and object abilities were announced. Prograph

was successful and was used for various applications, mainly on the Macintosh.

Icons

There were 29 different constructs in Prograph, where 4 were main constructs,

9 were basic constructs, 6 were external constructs, and 10 were control con-

structs. The 4 main constructs were section, universal, class, and persistent. A

section was made up of one or more universal, class, and persistent constructs.

Universals constructs were functions, procedures, and subprograms. Classes

are consisted of methods and fields as in object-oriented programming. Persis-

tents were same as global variables in many programming languages. Figure 2.6

shows some of the constructs used to build programs in Prograph.

Dataflow

The fundamental construct of Prograph was the definition frame, the body of

which consisted of a network of method boxes and nodes connected by lines. A

method box performed the function indicated by the name or symbol inside it.

The flow of information was represented by lines. Each method box had nodes

50

Figure 2.6: Some Prograph constructs.

51

for inputs and outputs. The methods showed the input to output mapping

from one or more inputs to one or more outputs.

2.4.5 An Example Prograph Program

The Figure 2.7 shows a definition of the reverse function in Prograph which

reverses the order of a list of elements. The IF-THEN box has a logical and

a transformational compartment. The banner portion labelled by IF is the

logical compartment. The result of the operation in the oval-shaped box is

Boolean. The banner portion labelled by THEN or ELSE is the transfor-

mational compartment and it specifies what operations are to be executed

when appropriate conditions are met. The THEN compartment in the RE-

VERSE definition uses two system operations which deal specifically with lists.

FIRSTREST can take a single input which is a list. It has two outputs - the

first element of the list is the left output and the remainder of the list is the

right output. APPEND can take two inputs. The data from the right input

is added as the last element to the list from the left input and passed to the

output.

It was time consuming to learn how to use Prograph. Once the visual

nature of the language had been learnt, the programmer had to face the chal-

lenge of learning a large number of constructs. Some constructs had their own

Prograph version that required a lot of attention to detail. For example, the

52

Figure 2.7: Prograph - Reversing order of a list.

conditional construct had 16 different implementations. Unfortunately Pro-

graph, in common with some other visual programming languages, had the big

disadvantage that it produced spaghetti code. As mentioned, Prograph had

some drawbacks but it’s use of diagrams and icons was effective. HASKEU has

used these visual ideas from Prograph but taken them in an entirely different

direction:

• HASKEU supports functional programming whereas Prograph was aimed

at object-oriented programming. These two programming styles are

significantly different in their approach to mutable states, program se-

quences and higher-order functions.

• Prograph used many different constructs. For example, even a condi-

53

tional construct had 16 different implementations. In HASKEU, the

conditional construct is generalized as a function application (See Sec-

tion 4.1.2).

• HASKEU aimed to avoid spaghetti code in its dataflow-graph. The use

of symbols and automatic layout have avoided the appearance of any

line-crossings (see Section 4.1.3).

• HASKEU uses HCI concepts in its icon design; hence HASKEU icons

convey more meaning than Prograph icons do. For example, a non-

empty list in HASKEU is displayed as in Figure 2.8a and in Prograph

as in Figure 2.8b.

(a) in HASKEU (b) in Prograph

Figure 2.8: A non-empty list icon.

• Functions in HASKEU show their argument slots in a very clear way

and also the type information of each argument. This is not displayed

in Prograph.

• HASKEU shows visual error reporting which is a very useful tool to

enable an end-user to understand errors (see Section 4.2.1). Again, this

is another feature which is not available in Prograph.

54

2.4.6 A Useful Visual Language : LabVIEW

This section describes a useful visual programming language, the Labora-

tory Virtual Instrumentation Engineering Workbench (LabVIEW) (John-

son, 1997). LabVIEW programming involves constructing graphs consisting

of nodes and arcs that can be compiled into executable code. In these graphs,

nodes represent iconic virtual instruments (VIs), and arcs represent dataflow

between them.

Icons

In LabVIEW, icons are selected from the control or function palette (see Fig-

ures B.1 and B.2), and are placed on either the front panel screen, where con-

trols and indicators show the input and output parameters, or on the block di-

agram screen, where the detailed graphical representations show the wire con-

nections needed to form a VI. Among the advantages of this scheme are quick

identification of dataflow, a logical layout and easy editing/troubleshooting by

the developer or others. Among the disadvantages of this scheme are the effort

required to learn the meanings of icons or images, and to manage the (often

large) program graph.

Dataflow

LabVIEW uses dataflow diagrams to connect virtual instruments with “wires”

using the tool palette. See Figure 2.11.

55

Figure 2.9: The LabVIEW control pallete.

Figure 2.10: The LabVIEW function pallete.

56

Figure 2.11: The LabVIEW tool pallete.

A virtual instrument (VI) executes when it receives all of the required

inputs, producing output data that is passed to the next VI in the dataflow

path. The movement of data through VIs is all that determines their execution

order.

2.4.7 An Example LabVIEW Program

Using LabVIEW, the series circuit of Figure 2.1 can be implemented as follows.

In the Front Panel, five numeric controls are added by selecting “Numeric Con-

trol” from the “Control Pallete” (see Figure 2.12 below). Four of these controls

are “I”, “R1”, “R2” and “R3” (for the current and resistor values); the fifth is

an indicator (for the total voltage value).

Figure 2.12: Front panel for the series circuit example in Figure 2.1.

57

In the block diagram screen, three “multiply” and two “add” functions from

the “mathematics” option of the “Function Pallete” are selected and dragged

on to the block diagram as shown in Figure 2.13. This figure also shows all

the wirings of the program. Putting all the input values in the the front panel

window, and then hitting the run button in the tool bar causes the result (i.e.

the total voltage) to be displayed as in Figure 2.12.

Figure 2.13: Block diagram for the series circuit example in Figure 2.1.

Comparing this example with one in Haskell (see Section 2.2.3), it clearly

demonstrates that visual programming can improve program understanding

by providing a visualisation of the program and that program development

can be made easier by providing the support of different tools and palletes.

LabVIEW is aimed at the particular domains of measurement and control sys-

58

tems and for these areas it is ideal. The HASKEU system took the dataflow

iconic programming idea from LabView. Then the key concept of functional

programming was added to it. In LabView, a graph can be saved and can

be used it on the block diagram of another VI to make a modular program.

In the HASKEU visual system, functions and local functions are displayed in

separate windows and it also uses a block-based architecture to clearly repre-

sent the scope of expressions (see Section 4.1.3). The idea of using a different

pallette in LabVIEW, was also used in the HASKEU user interface design.

2.4.8 Other Visual Programming Languages

A large number of iconic languages have been described in the literature. In

VennLISP (Tanimoto and Glinert, 1990), visual objects are used to direct

computations, and the results of the computations are also visual objects.

VennLISP is an example of having executable graphics based on Lisp. In Tin-

kertoy (Gittins, 1986), programs are built out of icons and interconnections

that can be snapped together. The icons have input and output sites through

which they can be connected to form structures. In extended HI-VISUAL

(Reiss, 1987), there are seven types of icons — 1) Data icon, 2) Data Class

icon, 3) Primitive icon, 4) Panel icon, 5) Program icon, 6) Control icon, and

7) Command icon. It is an iconic programming language in image processing.

In Show and Tell (Kimura et al., 1986), a boxgraph consists of one or more

boxes connected by a set of arrows. A box may contain a data object, a pred-

59

icate or an operation, and can be nested, and arrows direct the flow of data

from one box to another. Visual Programming Language (VPL) (Microsoft

Corporation, n.d.) is a visual dataflow-based programming logic system. It

allows robotics programs to be created and debugged by dragging and drop-

ping service blocks and a collection of connected blocks can be reused as a

single block elsewhere. In VPL, the program is represented as sequences of

blocks with connected inputs and outputs, which looks more like a logic dia-

gram rather than a program. Also, to do some significant work, knowledge of

textual coding is also required.

Other nominally visual programming languages are Visual Basic (Patrick

et al., 2006), Oracle Application Express (APEX)

(Aust et al., 2011) and Unified Modeling Language (UML) (Roff, 2003). These,

however, are designed to aid the development of textual programs, rather than

being visual programming languages in their own right.

Though the area of visual programming languages has matured after long

research, purely visual languages are still not generally used as everyday pro-

gramming tools as software developers have a strong tendency to keep to well-

established textual languages (Erwig and Meyer, 1995; Banyasad and Cox,

2013). In brief, hybrid visual languages which integrate visual languages with

textual languages are more likely to meet the requirements of real-world soft-

ware development than highly ambitious purely visual languages. In such hy-

60

brid languages, each notation supports the other where it is superior. Examples

can be found in the domains of logical, functional and procedural languages.

The next section will review the area of visual programming for functional

languages.

2.5 Visual Functional Programming Languages

2.5.1 Motivation

Using dataflow programming techniques various visual languages have suc-

cessfully developed many systems such as signal processing, image processing

and instrumentation (Bier et al., 1990; Rasure and Williams, 1991). Visual

programming languages speed up learning and help understanding of a new

programming language for both end-users and experienced programmers as

they attempt to extend or modify an existing system or to build a new one

(Browne et al., 1995). This indicates that if visual techniques can be applied to

a functional programming system (currently textual), they can offer end-users

the possibility to learn functional languages more quickly.

2.5.2 A Visual Functional Programming Language : Vi-

sual Haskell

This section describes a visual functional programming language, Visual Haskell

(Reekie, 1994). Visual Haskell is a visual programming system for Haskell. A

recent, nominally visual, programming system to support Haskell is also called

61

Visual Haskell (Angelov and Marlow, 2005), which is a Haskell development

system to support textual programs, rather than visual ones. No other at-

tempts to create a visual programming system for Haskell have been found in

any research of computer science literature. In Visual Haskell by Reekie, nodes

represent function applications, arguments, operators, etc, and arcs represent

dataflow between them.

Functions

The Visual Haskell definition of the standard map function is shown in Fig-

ure 2.14. The icon defined for the function is displayed next to the text “map”.

Its two inputs and one output are indicated by the triangular pads on the out-

side of the box, and its two clauses are stacked one above the other. Each

clause shows its argument patterns immediately inside the box. Annotations

are used to aid understanding the program. The application of a function f

is shown as a plain box labeled with its name, and list-carrying arcs are deco-

rated with an asterisk.

Types

Arcs are optionally annotated with their types. List carrying arcs are deco-

rated with an asterisk and streams (infinite lists) with circles (see Figure 2.15).

Two objects are connected by drawing an arc from a source pad of one

object to a sink pad of the other. The pads are the triangular, rectangular and

62

Figure 2.14: The Visual Haskell definition of map.

Figure 2.15: Illustrating type annotation in Visual Haskell: i) (a,b); ii) [[a]];
iii) Stream (Vector a).

half circle shapes on the outside of the main enclosing box. Figure 2.16 shows

source and sink pads.

(a) (b)

Figure 2.16: a) Source pads; b) Sink pads.

Data arcs, which are used for function application are drawn with an arrow

(see Figure 2.17a); binding arcs, which are used in pattern matching parame-

ters are drawn without an arrow (see Figure 2.17b). Two objects are attached

if they are physically located so that at least one point of each is at the same

63

physical location (see Figure 2.17c).

(a) (b)

(c)

Figure 2.17: a) A data arc; b) A binding arc; c) Attached objects.

A variable or named pattern object can have more than one arc connected

to its output pad. Such an object is called shared. For example, in Figure 2.18,

the variable x is shared.

Figure 2.18: Shared object.

Higher-order functions

The above example of map (in Figure 2.14) shows how a functional argument

is shown in the function definition. The application of a functional argument

is displayed in the same way as any other function application in a plain box

labeled with its name. Visual Haskell also helps the visualization of the pattern

of computation of higher order functions.

64

Multiple arguments and currying

Any function application has one or more argument slots. If an argument is

supplied to a pad which has a slot, and it is “able to fit into” the slot, then the

argument is displayed in the box and the corresponding pad is not displayed.

Annotation is used to indicate function values: the output pad of an expression

producing a function-valued result is rectangular rather than triangular.

Figure 2.19a shows the application map f in the core syntax, and Fig-

ure 2.19b shows the application using the map’s icon and with the name of the

argument, f, placed into the argument slot. Larger arguments can also fit (see

Figure 2.19b).

(a) (b) (c)

Figure 2.19: Currying.

Local definitions

A let expression is treated as an unguarded scoping expression with a null

pattern (null pattern means it has no patterns). The use of a null pattern can

be seen to be merely a mechanism to fit all Haskell constructs into a single

visual construct.

65

2.5.3 An Example Visual Haskell Program

A Visual Haskell illustration of the Haskell implementation of the circuit ex-

ample (see section 2.2.3) can be drawn as in Figure 2.20.

Figure 2.20: Illustrating the series circuit (in Figure 2.1) implementation in
Visual Haskell.

Visual Haskell shows some ways to express Haskell syntax in a visual way.

However, it lacks the use of HCI techniques in its design. The icons used to

show types are not generalized and only a few types can be shown using icons.

Higher-order functions need to be recognized without knowing the meaning of

the specific icon. They are not easy to understand by looking at the dataflow

graph. In the original version of Visual Haskell it was not specified how in-

teraction could be carried out in visual programming. Visual Haskell is more

of a visualization tool than a visual programming language. Another problem

is that it does not display any error messages. HASKEU is an attempt to

66

overcome the limitations of Visual Haskell and HASKEU makes a functional

programming system easier to learn for end-users.

2.5.4 Other Visual Functional Programming Languages

ML is a general-purpose textual functional programming language and one of

the major languages in the ML family is CAML (Gordon, 2000). CAMLFLOW

(S’erot, 2000) is a custom CAML to data-flow graph (DFG) compiler. It al-

lows large and complex DFGs to be described in a textual and concise manner,

using the facilities of the CAML LIGHT functional language. The main orig-

inality of CAMLFLOW lies in its ability to define higher-order polymorphic

graph patterns. It offers powerful facilities for describing DFGs, and it has ab-

straction capabilities. Functional values can be used to define and manipulate

sub-graphs. It offers the possibility to declare external types and functions in

so-called interface files (.mli in CAML). It also offers multi-output function and

product types, conditional sub-graphs, recursive values and data parallelism.

This research has taken ideas from CAMLFLOW implementation, specifically

how parsing and type-checking are performed to produce a type-annotated

abstract syntax tree (see Section 5.2.2).

Arrowized Functional Reactive Programming (AFRP) is a form of FRP

that uses the arrow combinators (Hughes, 2000) to solve the problems of

time- and space-leaks in a radical way: the programmer may only build signal

function using a certain signal functions that maps signals to signals.

67

SF a b = Signal a -> Signal b

The representation of the type SF is hidden (i.e. SF is abstract), so one can-

not directly build signal functions or apply them to signals. Instead AFRP

provides a set of primitive signal functions and combinators. There is a set

of eight combinators that are often used in AFRP programming. Figure 2.21

shows the visual “wiring of arguments” of the five combinators. However, this

is only a concept of how AFRP programs could be visualized, not a visual

programming tool.

Figure 2.21: Commonly Used Arrow Combinators.

In the early research for this thesis, an attempt was made to develop a vi-

sual programming tool for this Arrowized Functional Reactive Programming,

but it was decided to broaden the research to general purpose functional pro-

gramming rather than a domain specific one.

68

2.6 Conclusion

This chapter began by showing the impact of visual languages on end-users

who are learning programming languages. It has included an overview of

the functional programming language, Haskell and looked at visual programs

in different notations, including an early Haskell visual system, and shown

an example program in different systems. So far, there has not been any

suitable functional programming system in the literature that has targeted

end-users. This chapter has contained an investigation of the suitability of

both the existing textual programming approach on end-user development,

and the suitability of a visual programming approach. In the next chapter the

implementation will be shown which sets the stage to produce a single system

that combines textual and visual programming using a Model-View-Controller

(MVC) design pattern. This single system will allow end-users to program

using both notations at the same time, and to compare the effectiveness of

each method.

69

Chapter 3

The Model View Controller as a

Functional Reactive Program

The Model-View-Controller (MVC) design pattern is very useful and widely

used for implementing user interfaces in object-oriented programming lan-

guages. The Functional Reactive Programming (FRP) framework is an el-

egant one for implementing reactive systems (including user interfaces) in a

purely functional manner. This chapter presents the fact that the MVC design

pattern matches to the FRP framework very closely.

3.1 Introduction

The purpose of many modern computer systems is to manage the flow (retrieve

and store) of information between the data store and the user interface, and a

natural approach to implementing such systems is to tie these two pieces to-

gether to reduce the amount of coding and to improve application performance.

70

However, two significant problems of such a natural approach are — the user

interface tends to change much more frequently than the data storage system,

and business applications tend to incorporate business logic that goes far be-

yond data transmission. The Model-View-Controller (MVC) pattern separates

a system into the modelling of the domain, the presentation, and the actions

based on user input (Burbeck, 1987). The MVC is very popular for creating

web applications or software because this MVC structure ensures efficiency

and consistency. Many of the most popular frameworks use the MVC archi-

tecture, including ASP.NET (Freeman, 2012), CodeIgniter (Argudo, 2009),

Zend (Allen, Rob and Lo, Nick and Brown, Steven, 2008), Django (Bennett,

2008), and Ruby on Rails (Tate and Hibbs, 2006).

A computer system that reacts to user actions is a reactive system, and

it responds in a timely way to events in its environment. The aim of func-

tional reactive programming (FRP) (Elliott and Hudak, 1997) is to provide a

powerful way to describe reactive systems in a functional language. Among

the systems based on FRP are: Functional Reactive Animation (Fran), a do-

main specific language (DSL) for graphics and animation (Elliott and Hu-

dak, 1997); Functional Animation Language (FAL), a framework for drawing

graphics and animations on the screen (Hudak, 2000); Functional ROBotics

(FROB), a robot programming language embedded in the Haskell program-

ming language (Peterson et al., 1999); Visual Tracking System (FVision), built

using FRP to express interaction in a purely functional manner (Reid et al.,

71

1999); and Functional Reactive User Interface (Fruit), a graphical user inter-

face library for Haskell based on a formal model of user interfaces (Courtney

and Elliott, 2001).

This chapter presents how the MVC design pattern may naturally be im-

plemented in the FRP framework, and how a new framework “MVC as FRP”

has been implemented with the use of FRP types and combinators. Program-

mers brought up on object-oriented programming languages who also use the

MVC design pattern may benefit from this “MVC as FRP” framework by be-

ing able to use an MVC design pattern in functional programming languages.

Because it is implemented in a pure functional language, Haskell, this “MVC

as FRP” framework has no side-effects. No reporting of a similar purely func-

tional implementation of an MVC framework has been found in the literature.

The chapter is organised as follows. Section 3.2 introduces the MVC design

pattern, and Section 3.3 introduces the FRP framework. Section 3.4 presents

the implementation of “MVC as FRP” framework, and Section 3.5 presents

a worked example. Section 3.6 refers to a way of developing user interfaces

in command oriented functional programs using the MVC framework, and

Section 3.7 concludes.

3.2 The MVC Design Pattern

Originally, the Model-View-Controller (MVC) was developed as a design pat-

tern for building user interfaces (Fowler, 2002). The key notions in the MVC

72

are the model, which provides a way to represent an object, the view, which

provides a way to display it, and the controller, which provides a way to

change it. Usually, there is a single model, with many views and many con-

trollers (Krasner and Pope, 1988; Gamma et al., 1995). The “interface logic”

functions allow the views to be developed independently, and the “business

rules” functions allow the controllers to be developed independently. All these

three key notions in the MVC design pattern are time-varying values. In the

implementation of “MVC as FRP”, these key notions will be represented using

fundamental FRP constructs and will be shown later in Section 3.4.

As an example of an MVC system, consider an interface that allows a vol-

ume level to be set using a slider or a dial. See Figure 3.1. Both the slider (a

view/controller) and the dial (also a view/controller) may change the volume

level (the model). Once the model is changed, both a view/controllers are

updated with the changed model value.

3.3 The FRP Framework

A reactive system is one that responds in a timely way to events in its envi-

ronment. Examples of such systems might be games that react to controller

button presses by moving figures on the screen, music synthesizers that react

to keyboard presses by sounding different notes and robots that react to colli-

sions by changing direction. Developing software for reactive systems is a hard

73

Figure 3.1: MVC Example - a volume controller system

task because it combines the already hard tasks of concurrent, embedded and

real-time programming (Pembeci et al., 2002). Current approaches involve

the explicit identification and management of concurrent processes by the pro-

grammer, often leading to undesirable non-deterministic behaviour, deadlock

or livelock (Coulouris and Dollimore, 1988). To use a synchronous dataflow

programming language, such as Signal (Le Guernic et al., 1991), Lustre (Caspi

et al., 1987), or Lucid (Wadge and Ashcroft, 1985) was a common style to

implementing reactive systems. Using lazy lists, Haskell programs can also be

built in this style. In the synchronised dataflow model at the top level, a pro-

gram is represented by a function that yields a stream of requests and accepts

a stream of responses. In a lazy language a stream may be represented by a

list. The problem with such an approach is one must take care to ensure that a

request is always issued before the corresponding response is consumed and the

modular program designs that are needed for large scale applications, cannot

74

always be produced. Monads hide this level of detail and are more modular

than synchronous streams (Wadler, 1997). Hence the move was made from

stream based to monadic IO (O’Sullivan et al., 2008). Monads are commonly

used to order sequences of computations. Functional Reactive Programming

(FRP) is designed to integrate reactivity in a direct way into the functional

programming style and to hide the mechanism that controls time flow under

an abstraction layer.

The following sub-sections first give a bit more explanation of Monad and

monadic IO and then explain the FRP architecture.

3.3.1 Monad and Monadic IO

Haskell library includes the Monad class for working with data types with par-

ticular properties (monadic data types), as explained below. So, it will be bet-

ter to introduce the Haskell data type before explaining Monad. The Haskell

data type can be used to allow a value with an added context. For example,

"John" is just a string value, whereas Student "John" has some added con-

text. Another example, the integers 0 0 255 are just integer values, whereas

RGB 0 0 255 has some added context. A data declaration for Colour can

be given as:

data Colour = RGB Int Int Int

| Red

| Green

| Blue

| Undefined

75

A data declaration consists of two parts - a type constructor and data

constructor(s). The left hand side of the equal sign is the type constructor

and the right hand side of the equal sign has the data constructor(s). Each

data constructor is separated by a | sign. A type constructor can be used in

a type signature and data constructors can be used where a value is expected,

as shown in the following example for the rgbToValue function type signature

and implementation.

rgbToColour :: Colour -> Colour

rgbToColour (RGB 255 0 0) = Red

rgbToColour (RGB 0 255 0) = Green

rgbToColour (RGB 0 0 255) = Blue

rgbToColour _ = Undefined

Type parameters can also be used in a data type declaration. For example,

the type parameter a has been used in the following tree type declaration:

data Tree a = Leaf a

| Branch (Tree a) (Tree a)

So, if Tree String is used in a type signature, it will denote a tree with string

elements. Again, here Tree, Leaf and Branch are the contexts and a is the

type of values taken.

In Haskell, it is possible to implement polymorphic functions that can work

on different data types. Haskell type classes can be used to implement such a

76

polymorphism at a higher level than possible in other languages. The purpose

of type classes is to make sure that certain operations are available for values

of chosen data types. For example, the Functor type class is shown below,

where fmap is the operation which can be used to map a function (a -> b)

to any data type with context f and value of type a.

class Functor f where

fmap :: (a -> b) -> f a -> f b

So, the fmap function for the Tree data type can be implemented as follows:

instance Functor Tree where

fmap f (Leaf x) = Leaf (f x)

fmap f (Branch left right) = Branch (fmap f left) (fmap f right)

Note that without type classes it was necessary to implement different func-

tions for different data types (e.g. fmapTree to map over Tree, fmapGraph to

map over Graph etc.).

Similar to Functor, Applicative and Monad are type classes which con-

tain some operations/functions that can be used with data types defined as

Applicative and Monad below:

class (Functor f) => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

In the above three lines, the code (Functor f) => in the first line introduces

a class constraint which means that to make a type constructor an instance of

77

the Applicative type class, it has to be in Functor first. The Applicative

class is used to add strength to the Functor class. For example, the result of

this expression fmap (*5) (Leaf 3) is Leaf 15 which can be used as a sec-

ond argument of the fmap. However, the expression fmap (*) (Leaf 3) gives

a result of type Leaf (Int -> Int) which cannot be used with fmap. This is

a typical scenario when Applicative is very useful and Leaf (Int -> Int)

can be used as a first argument of <*>.

The applicative library in Haskell also defines <$> which is a synonym of

fmap in the Functor class:

(<$>) :: Functor f => (a -> b) -> f a -> f b

Another operator <$ in the applicative library is used to replace a value in a

context:

(<$) :: Functor f => a -> f b -> f a

The function liftA2 in the applicative library is used to lift a binary function

to actions:

liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c

The following is the class definition of Monad:

78

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

return :: a -> m a

fail :: String -> m a

Monad return, like Applicative pure, takes a value from a plain type and

puts it in a context (e.g. return "John" => Student "John" puts the String

in the Student context).

The operators >>= and >> are used to sequence two functions. Using >>=,

if a function (e.g. f1) result type is m a (first argument of >>=), and the value

of type a is fed to another function (e.g. f2) of type (a -> m b) (second argu-

ment of >>=), then these two functions (f1 and f2) are sequenced (f1 >>= f2)

in a functional way.

In the real world, input/output functions need to be sequenced and to

bind input/output value with a context, the IO a type is used in Haskell. For

example, to take an input from a console, the getLine function is used

getLine :: IO String

This means that getLine does some input interaction with the real-world and

it returns a string value in the context of IO. Similarly, to display some value

at a console, the putStrLn function is used

putStrLn :: String -> IO ()

79

This means that the putStrLn function takes a string value as its argument,

and does some output interaction with the real-world and returns nothing

(Haskell’s unit data type () is used to denote a nothing value). However,

sometimes an IO function has something to feed on to a subsequent IO func-

tion. For example, in getLine >>= putStrLn, the getLine passes its result

as an argument to the next function putStrLn which will generate an output.

But in many cases an IO function does not need to pass an argument to

the next function in the queue. This is true for the four functions below which

need to be sequenced in order:

1. putStrLn "Please enter the user name"

2. getLine

3. putStrLn "Please enter the password"

4. getLine

None of the above functions pass a value to the next function. In order to

sequence these functions in a functional way, the Haskell IO type has a hidden

value which is passed to the next function. The type synonym IO is defined

(using a RealWorld type for the hidden value) in the following way:

type IO a = RealWorld -> (a, RealWorld)

The value is kept hidden, rather than having an extra data constructor, oth-

erwise passing it between functions would look unsightly and confusing to the

80

programmer. The >> operator implicitly passes the hidden values between

functions (IO actions) and the definition of >> can be thought as below:

action1 >> action2 =

action

where

action world0 = let (a, world1) = action1 world0

(b, world2) = action2 world1

in (b, world2)

Using >>, the above four functions can be sequenced as shown below.

putStrLn "Please enter the user name" >>

getLine >>

putStrLn "Please enter the password" >>

getLine

If only the hidden value needs to be passed, the >> operator is used . If

both the hidden value and the actual return value of a IO function needs to be

passed, then the >>= operator is used. The do notation is a sugared version of

monad operators enabling the above four functions to be sequenced as shown

below

do

putStrLn "Please enter the user name"

getLine

putStrLn "Please enter the password"

getLine

81

The <- operator can be used within a do block to unpack an IO value from

the context (e.g. a <- getLine where a is a value without context).

The value within an IO Monad can be accessed only by using the Monad

operators/functions. Also, any function which uses an IO function has to be an

IO function too. According to monad law, all the four functions as defined in

the Monad class have the result type either m a or m b. This way, Haskell forces

a function to be either pure or impure (a pure function is a function that has

no side-effects, the return value is only determined by its input arguments).

Once a function has worked with an impure value (a real-world value i.e. not

an argument value), then it becomes an impure function.

Functor, Monad and Applicative are all used in the definition of FRP.

The full list of all functions of these classes and their default instances are

shown in the Appendix F. The following section gives an overview of the

FRP framework. The core of FRP is that, as a reactive system responds

in a timely way to events in its environment, a time value needs to be passed

between functions to implement such an environment. FRP hides these details

of passing the time from the programmer (just as the >> and >>= operators hide

the details of sequencing in an IO monad). While using Monad, the perception

of the programmer is that they are programming in a imperative way, the

monadic do blocks especially look like chunks of imperative code. FRP brings

a declarative feel back to the programmer.

82

3.3.2 The FRP

Originally, Functional Reactive Programming (FRP) was developed as a frame-

work for building reactive multimedia graphics and animations (Elliott and

Hudak, 1997). Now it is applied more generally for robot programming, visual

tracking, user interfaces and music synthesizers (Peterson et al., 1999; Reid

et al., 1999; Courtney and Elliott, 2001; Giorgidze and Nilsson, 2008). One

recent FRP implementation is reactive-banana (Apfelmus, 2012) which is used

here in the implementation of MVC. There is a rich set of operators (combi-

nators) in this FRP library but only the operators relevant to this chapter are

briefly described here. The full list of reactive-banana operators (combinators)

can be found on the Haskell website (Haskell Website - reactive-banana, n.d.).

The key notions in FRP are behaviours and events (Wan and Hudak, 2000).

The type Behavior , which can be thought of as

type Behavior t a = Time -> a

is that of behaviours — time-varying values of type a. The Time can be thought

of as synonym of integer to represent time. Some examples of behaviours might

be animation, represented by the value

animation :: Behavior t Picture, and the speed of a car in a racing game,

of type speed :: Behavior t Int. The type Event , which can be thought

of as

type Event t a = [(Time,a)]

is that of events — a time-ordered sequence of event occurrences of type a. Ba-

sic events might be left mouse button depressions of type lbp :: Event t ()

83

and key strokes, represented by the value key :: Event t Char. A basic

event like lbp (or key) should be thought of as an event sequence containing

all of the left button depressions (or key presses), not just the last one.

A rich set of operators (combinators) can be used to create new behaviours

and events. For example, new behaviours and events can be created by trim-

ming existing ones by start time (Elliott, 2008). Without trimming, a new

phase would begin by responding to all the old input instead of from that new

input directly after the old, which would result in incorrect behaviour. Also,

without trimming, a new phase would contain all the previous inputs, which

would result in inefficient behaviour as these old inputs would need responding

to before reacting to the new inputs. The trimming functions discard all event

occurrences upto and including those occurring at a given start time. The

relevant combinators to create new behaviours and events by trimming are:

trimB :: Behavior t a

-> Moment t (forall s. Moment s (Behavior s a))

trimE :: Event t a

-> Moment t (forall s. Moment s (Event s a))

where Behaviour or Event are tagged with a start time by wrapping it up

with a Moment type. The Moment type can be thought of as

Moment t a = t -> (a, t)

which is similar to IO a = RealWorld -> (a, RealWorld). In this way it

can pass the t value around. As the Moment type has the parameter t, which

84

is the type of the time value, the parameters t in Behaviour and Event are

superfluous in the reactive-banana library, though used internally. The occur-

rence of time in Moment types are given implicitly in reactive-banana. Moment

is a monad so that it hides the “unsightly plumbing” (Wadler, 1995) necessary

to thread time values through the computation, as described in the previous

section. Moment is also an applicative functor, so that the Moment types can be

mapped over.

The forall used in the above trimming functions is a keyword. It is a

GHC/Hugs extension and can be used to explicitly bring type variables into

scope. In formal logic, forall (or ∀) is a quantifier and it quantifies whatever

comes after it. For example, ∀x means that what follows is true for every x

of that type, e.g. For example, ∀x, x2 >= 0. In Haskell, forall allows the

programmer to specify the type variables in a signature definition should be

scoped over the body of that definition. The examples below demonstrate a

typical usage of forall. In the code below, the local functions listSorted

and listNubbed do not have explicit type signatures. They use the library

functions, zip :: [a] -> [b] -> [(a,b)] (takes two list and makes a new

list of tuples containing elements of both lists occuring at the same posi-

tion), sort :: Ord a => [a] -> [a] (implements a sorting algorithm) and

nub :: Eq a => [a] -> [a] (removes duplicates elements from a list).

testForAll :: Ord a => [a] -> [(a, a)]

testForAll aList = zip listSorted listNubbed

85

where

listSorted = sort aList

listNubbed = nub aList

If the two local functions were given type signatures as below,

testForAll :: Ord a => [a] -> [(a, a)]

testForAll aList = zip listSorted listNubbed

where

listSorted :: [a]

listSorted = sort aList

listNubbed :: [a]

listNubbed = nub aList

then the Haskell compiler will give an error message that “ ‘a’ is a rigid type

variable bound by the type signature for testForAll”. This means that

Haskell does not recognize that we want the a’s in the inner definitions to

be the same as the a in the outer definition. The two occurrence of a in the

inner definition are not recognized as the same type by the Haskell system,

either. The forall contruct enables a to be scoped over the whole definition,

including the where clause, as follows:

testForAll :: forall a. Ord a => [a] -> [(a, a)]

testForAll aList = zip listSorted listNubbed

where

listSorted :: [a]

86

listSorted = sort aList

listNubbed :: [a]

listNubbed = nub aList

A useful basic combinator in FRP is accumB which starts with an initial value

and combines it with incoming events (Hudak, 2000). Using accumB, the

function associated with each event is applied to the last value of the behaviour,

to yield a new behaviour. For example, whenever the up key is pressed, the

speedometer count is incremented to yield a new behaviour. The function

union is used to concatenate streams of event mapping functions. For example,

this behaviour speedometer in a car racing game:

speedometer =

0 ‘accumB‘

((+1) <$> upKeyPressed)

‘union‘

((subtract 1) <$> downKeyPressed)

is, as the name implies, a speedometer; its value is initially 0 and increases by

1 each time the event up arrow key is pressed, and decreases by 1 whenever

the down arrow key is pressed. The applicative functor <$> essentially maps

a function over a stream of events. In this example it maps the function (+1)

over the event upKeyPressed. Later in Section 3.4, the use of the combinator

accumB to implement the mvc function to control the model, views and con-

trollers in a MVC system will be demonstrated.

87

Another combinator changes enables explicit control over updates of be-

haviours. It can observe when a Behavior changes and create an event firing

which can produce an output.

changes :: Frameworks t => Behavior t a -> Moment t (Event t a)

For example, to display the value of a speedometer (a behaviour) in a speed

gauge, the explicit control of the speedometer is necessary. Every time a

speedometer value is changed, to explicitly tell the system to change the gauge,

the code below would be written:

display speedometer =

changeGauge <$> (changes speedometer)

3.4 An implementation of the “MVC as FRP”

framework

This section will demonstrate that the MVC design pattern can be charac-

terised by the FRP framework in functional programming, hence the “MVC

as FRP” framework has been implemented with the use of the essence of FRP

as below:

A model corresponds to a behaviour

type Model t m = Moment t (Behavior t m)

88

for time-varying values of type m, at times of type t. Consider the volume

control example given in Section 3.2. A volume can be changed at different

times, and the model of the volume control system is a behaviour. The volume

level can take the value of any integer between 0 to 11, and the type of m can

be an integer.

A view corresponds to a behaviour.

type View t v = Moment t (Behavior t v)

for displays of type v, at times of type t. In the volume control example, there

would be two views — dial and slider. The view of a dial is a behaviour that

changes the dial view at certain times, and the same is true for the slider. A

view changes when the model changes and the view has a type IO (although a

view is intended to have type IO, this is not enforced by this definition). The

complete view (consisting of all individual views) has to be isomorphic to the

model. It is a good software engineering practice for the complete view to be

isomorphic to the model.

89

A controller corresponds to an event mapping function.

type Controller t m

= Moment t (Event t (m -> m))

for event-triggered updaters of values of type m, at times of type t. In the

volume control example, if any event on the dial (click on dial) changes the

volume level, it should change the underlying model first, then both views have

to be updated with the new model value. So, the controller of the dial is an

event mapping function that changes the model value.

The business rule is the function that is mapped with an event in the

controller and it changes the model value. A business rule function has the

type

type BusinessRule e m

= e -> m -> m

where e is the event value and m is the model value. To give an example, if a

click is made on the dial on mark 5, it sets the event value e equal to 5, and

the model value has to be replaced by 5. The same should happen for a slider.

So, a common business rule for both the controller of the slider and the dial

can be coded as below:

brSetVolume :: BusinessRule Int ModelType

brSetVolume e m = e

If the business rule needs to ensure that if the event value exceeds 11 the model

value is not changed, then the function becomes:

90

brSetVolume :: BusinessRule Int ModelType

brSetVolume e m = if (e > 11)

then m

else e

An interface logic function maps from one view to another and has the type

type InterfaceLogic v m

= v -> m -> v

where v is the view value and m is the model value. So, if the model value

in the volume control system is 5, then both the dial and slider view should

both display 5. An interface logic for a dial widget can be coded as below:

ilSetVolumeDial :: InterfaceLogic ViewType ModelType

ilSetVolumeDial v m =

v >>= (\v -> set (vDial v) [selection := m]) >> v

A portable and a native GUI library for Haskell is wxHaskell (Leijen,

2004). The wxHaskell library uses the := operator to combine a value (a) with

an attribute (denoted by the data type Attr w a, w is the widget type) and

the combination of an attribute with a value is called a property (denoted by

the data type Prop w)

(:=) :: Attr w a -> a -> Prop w

The set in wxHaskell is a function to assign a list of properties to a widget.

set :: w -> [Prop w] -> IO ()

91

If a dial colour also needs to be changed when its value is greater than 7,

the interface logic would be as below:

ilSetVolumeDial :: InterfaceLogic ViewType ModelType

ilSetVolumeDial v m =

if (m > 7)

then

v >>= (\v -> set (vDial v) [selection := m]) >>

v >>= (\v -> set (vDial v) [color := red]) >> v

else

v >>= (\v -> set (vDial v) [selection := m]) >>

v >>= (\v -> set (vDial v) [color := white]) >> v

In this functional MVC implementation, the following two functions

controller and view do the decoupling of a user-control and separate it into

a controller and a view. The function controller maps a business rule with a

specific event and returns a Controller type. The m and e in the type declara-

tion are the types of model value and event value respectively. Frameworks t,

as defined in reactive-banana, is the class constraint on the type parameter

t of the Moment monad. Having Frameworks t as a constraint on a function

type indicates that any input and/or output operation within the function can

be added to an event network.

controller :: Frameworks t

=> Event t e

-> (BusinessRule e m)

-> Controller t m

controller ev br = return (br <$> ev)

92

The following function unionController can be used to concatenate two

controllers. The function liftA2 is used here to lift the union function to

concatenate streams of event wrapped by Moment as in the Controller type.

unionController :: Frameworks t

=> Controller t m

-> Controller t m

-> Controller t m

unionController = liftA2 union

The following function mergeController can be used to concatenate a list of

controllers. The library function foldr1 :: (a -> a -> a) -> [a] -> a is

used here to repeatedly apply a function to reduce a list to a value as follows: it

takes the last two items of the list (second argument) and applies the function

(first argument), then it takes the result and the third item from the end of

the list, applies the function, and so on.

mergeController :: Frameworks t

=> [Controller t m]

-> Controller t m

mergeController = foldr1 unionController

The function view shown below maps the interface logic with view and model

and returns a View type. The v and m are the types of the view value and the

model value respectively.

93

view :: Frameworks t

=> View t v

-> Model t m

-> InterfaceLogic v m

-> View t v

view v m il =

v >>= (\v -> (m >>= (\m -> (return $ il <$> v <*> m))))

The following function unionView can be used to sequence two views of

type IO:

unionView :: Frameworks t

=> View t (IO v)

-> View t (IO v)

-> View t (IO v)

unionView v1 v2 =

v1 >>= (\v1 -> changes v1)

>>= (\ev -> reactimate $ (\v -> v >> return ()) <$> ev) >>

v2 >>= (\v2 -> changes v2)

>>= (\ev -> reactimate $ (\v -> v >> return ()) <$> ev) >>

v2

Here, the reactimate function, as defined in reactive-banana, is an inter-

face between event functions and the views (of a potentially impure external

world), and it executes an IO action whenever an event occurs to display the

new view at that moment.

The following function mergeView can be used to sequence a list of views

of type IO:

94

mergeView :: Frameworks t

=> [View t (IO v)]

-> View t (IO v)

mergeView lstV =

foldr1 unionView lstV

The mvc function below takes an initial model value, an initial view value, a

concatenated view mapping function of all views and a concatenated controller

of all controllers in the system, and then combines the model, the view and

the controller. This is done in such a way that the user does not have to

pay any attention to the individual controller or view in order to change the

model value or to update a view, and it makes the whole MVC system operate

successfully. With the use of the FRP combinator accumB, the model value is

updated every time a controller is in action. More precisely, on the occurrence

of any event, the business rule associated with that event is applied to the

last value of the model, and the business rule returns an updated model value.

Using another accumB, the view value is updated every time a model value is

changed.

mvc :: Frameworks t => m -> v

-> (View t v -> Model t m -> View t v)

-> Controller t m -> View t v

mvc minit vinit fnv c =

let m = c >>= (\c -> pure $ accumB minit $ c)

v = m >>= (\m -> changes m)

>>= (\ev -> pure $ accumB vinit $ ((\v -> v) <$ ev))

in fnv v m

95

3.5 An Example

The volume control example given in Section 3.2 is implemented here using

the “MVC as FRP” framework given in Section 3.4. The wxHaskell library

is used to build the volume control example GUI. The full list of wxHaskell

functions can be found on the Haskell website (Haskell Website - wxHaskell,

n.d.).

In this volume control system, the volume level takes the integer values

between 0 to 11. So, the following type of ModelType can be used for the type

parameter m of the underlying Model:

type ModelType = Int

The ViewType is the complete view of the volume control system. It consists

of wxHaskell widgets (a slider and a dial) and has the type IO:

type ViewType =

IO ViewOfWxWidgets

data ViewOfWxWidgets =

ViewOfWxWidgets

{

vSlider::Slider (),

vDial::Dial ()

}

96

Events in the existing event-based framework, wxHaskell , need to be adjusted

in order to be used in the “MVC as FRP” framework. In contrast to a wx-

Haskell event, an FRP event (see Section 3.3) is more declarative and is an

event stream, not just a single event. The wxHaskell events can be represented

as FRP events using the functions, event0 and event1 as below, and wx-

Haskell widget views are updated via the library function sink. The function

event0 represents any wxHaskell event with no parameter, and the function

event1 represents any wxHaskell event with one parameter as a FRP event.

These three functions, event0, event1 and sink, are defined in the reactive-

banana-wx library. The reactive-banana-wx library provides functionalities to

use reactive-banana FRP with wxHaskell .

The following coding of the eventSelect function shows how a selec-

tion event of any wxHaskell widget can be adjusted to an FRP event. The

Selecting and Selection classes in the wxHaskell library are used here as

type constraints. The widgets which are instances of the Selecting class fire

a select event when an item is selected. The widgets which are instances

of the Selection class have their values changed or retrieved by calling the

selection atribute function. The operator (<@) :: f a -> g b -> g a in

the reactive-banana Apply class is used to apply a time-varying behaviour to

a stream of events.

eventSelect :: (Frameworks t, Selecting w, Selection w)

=> w -> Moment t (Event t Int)

eventSelect w = do eSelect <- event0 w select

97

b <- (behavior w selection)

return (b <@ eSelect)

The business logic for both the slider and dial controllers are the same, and

they just replace the model value by the event value of the slider or dial

brSetVolume :: BusinessRule Int ModelType

brSetVolume e _ = e

The interface logic for both slider and dial change the display of slider and dial

with the model value

ilSetVolumeSlider :: InterfaceLogic ViewType ModelType

ilSetVolumeSlider v m =

v >>= (\v -> set (vSlider v) [selection := m]) >> v

ilSetVolumeDial :: InterfaceLogic ViewType ModelType

ilSetVolumeDial v m =

v >>= (\v -> set (vDial v) [selection := m]) >> v

Below, instances of the slider and the dial widget are created, and then

positioned in a window panel. The function liftIONow, as defined in reactive-

banana, lifts an IO action to a Moment monad. The hslider function creates

a horizontal slider in a window win with a specified minimum (0) and max-

imum (11). The second argument of hslider is set to True to show labels

(minimumn, maximum, and current value).

s <- liftIONow

$ hslider win True 0 11 [selection := 0]

d <- liftIONow

$ makeDial win 0 11 []

98

Then, the business logic and interface logic (created above) of the slider

and dial are mapped to create the controllers and the views

evSldComm <- eventCommand s

evDialSel <- eventSelect d

let cSld = controller evSldComm brSetVolume

let cDial = controller evDialSel brSetVolume

let vSld = \v m -> view v m ilSetVolumeSlider

let vDial = \v m -> view v m ilSetVolumeDial

The two lists of controllers and views are merged to a single view and a

single controller, and with the initial model value (e.g. 0) and the initial view

value, are passed to the mvc function

let lstC = [cSld, cDial]

let lstV = [vSld, vDial]

let viewInit = return $ ViewOfWxWidgets s d

let c = mergeController lstC

let fnv = \v m -> mergeView [vw v m| vw <- lstV]

mvc modelInit viewInit fnv c

Now, the volume control reactive system is ready to use (see Figure 3.2).

Figure 3.2: The volume control system using the MVC-FRP architecture.

99

3.6 Related Work

Alley Stoughton has devised a way of developing user interfaces in command-

oriented functional programs using the Model-View-Controller framework

(Stoughton, 2008). However, her design is not purely functional. When com-

municating with users, her design has side-effects, and the widgets of graphical

views have a state. The MVC framework approached in this chapter has all the

advantages of the FRP (safe programming, efficient programming and compos-

ability), and there are no side-effects.

Functional Reactive Animation (Fran) (Elliott and Hudak, 1997), Func-

tional Animation Language (FAL) (Hudak, 2000), Functional Reactive User

Interface (Fruit) (Courtney and Elliott, 2001), and reactive-banana (Apfel-

mus, 2012) are the systems based on FRP. They have been designed to aid

GUI programming in pure functional languages. However, none of them say

explicitly that their designs can serve MVC. The “MVC as FRP” design is an

abstraction layer to FRP and has the defined types and functions necessary

to show MVC explicitly. This design has also used higher-order functions and

polymorphic types so that it is not dependent on any specific GUI library.

In this PhD work (Alam, 2014), the Haskell programming environment,

HASKEU, has been implemented to aid end-users to learn Haskell program-

ming using this “MVC as FRP”. The HASKEU programming system has been

designed as an MVC system with both visual and textual interfaces, and hence

100

changes propagate between the visual and textual interfaces, so that they are

always consistent.

3.7 Conclusion

This chapter described a software architecture — “MVC as FRP” — for func-

tional programs which makes the development of reactive systems easier, as it

has all the strengths of both the MVC and FRP frameworks. It was tested by

implementing a complete program that was chosen to be complex enough to

cover all eventualities in the Model-View-Controller architecture and in Func-

tional Reactive Programming, but also simple enough to be suitable as an

example for research and teaching. Building on the textual and visual display

of Haskell programs in HASKEU, it is a natural step, using “MVC as FRP”

to implement a GUI builder as provided in IDEs for languages such as Java or

Visual Basic, and it is a future project. As is the case in imperative languages,

such a GUI builder can be seen as an abstraction layer for the implemented

“MVC as an FRP”, but now in a functional development environment.

101

Chapter 4

The Design of HASKEU

In Section 2.1, the capabilities of end-user programmers were listed as:

(a) they may not be expert programmers;

(b) they find large programs daunting;

(c) they may be unskilled, and make false steps;

(d) they may be uncertain, and make false starts.

HASKEU caters for end-user programmers by providing:

• support for visual and textual programming which helps with end-user

capabilities (a) and (b) above;

• support for exploratory programming which helps with end-user capa-

bilities (c) and (d) above.

The support contains the following topics which form the structure of this

chapter:

102

• visual programming which helps with end-user capability (a) above;

• one function per page which helps with end-user capability (b) above;

• error reporting which helps with end-user capability (c) above;

• infinite undo which helps with end-user capability (c) and (d) above;

• textual programming which will make HASKEU a more useful system

when end-user’s expertise increases;

The design of HASKEU makes extensive use of Human-Computer Interaction

(HCI) techniques (Card et al., 1983). The following 8 golden rules of user

interface design (Shneiderman and Plaisant, 2004) are applied to the design

of HASKEU in order to improve the usability of the system:

1. Strive for consistency — the user interface is consistent for all the oper-

ations.

2. Enable frequent users to use shortcuts — users do not have to work very

hard to go from one point to another, especially for those users who use

the interface regularly.

3. Offer informative feedback — for every action performed by the user,

feedback should be provided by the system.

4. Design dialog to yield closure — complicated tasks are require to be split

into several steps with a beginning, middle and end.

5. Offer simple error handling — this is to make sure the user does not

make serious errors.

103

6. Permit easy reversal of actions — this provides the facility that the user

can undo an error.

7. Support internal locus of control — this lets the experienced users feel

that they are in control of the system.

8. Reduce short-term memory load — by designing screens where options

are clearly visible, short term memory load can be reduced.

The usage of HCI will be discussed throughout this chapter. The following

sections go on to discuss the design in detail.

4.1 Visual Programming

4.1.1 Organization

Five desirable attributes of any data display are — consistency, efficient infor-

mation assimilation, minimal memory load, compatibility of display with entry

and flexibility of control (Smith and Mosier, 1986). There are correspondence

between these five desirable attributes and the above 8 golden rules. Even

though these five desirable attributes pre-date 8 golden rules, there is a broad

agreement: both emphasise consistency and reducing short-term memory load.

The five desirable attributes emphasise flexibility of control which is in tune

with the principles of allowing short-cuts, easy reversal and supporting internal

locus of control. Some are not so clear-cut but not incompatible (e.g. Feed-

back in 8 golden rules and compatibility of display with entry in five desirable

attributes). The golden rule of designing dialogue to yield closure supports ef-

104

ficient information assimilation, one of Smith and Mosier’s desirable attributes.

The visual display area of HASKEU has a layout inspired by that of the

textual syntax of a function definition, which is —

{function name} {pattern parameters} = {function body}

where

{local functions}

Figure 4.1 shows the organization of the visual display area, which is split

into five panes. The main properties of this design are: a similar mechanism is

used to select and edit any item (consistency and flexibility of control); a com-

pact module view as well as an elaborate function description (efficient infor-

mation assimilation); function parameters, function body and local functions

are displayed in separate panes (efficient information assimilation); tooltip text

to show types, menus (minimal memory load); only one function description is

displayable at a time (efficient information assimilation); every displayed item

is editable (compatibility of display with entry); each pane is resizable and

scrollable (flexibility of control).

105

Figure 4.1: The visual display area.

106

4.1.2 Content

All items in this system are displayed as annotated icons (another example of

data consistency). Different icons are designed by applying semiotics as a guide

to five levels of icon design, where the first four levels were guided by Marcus

(Marcus, 1992) and the fifth one was guided by Shneiderman (Shneiderman

and Plaisant, 2004):

1. Lexical Machine-generated marks — colour, brightness

2. Pragmatics Identifiable, memorable, overall legibility

3. Syntactics Appearance and movement — modular parts, patterns, shape

4. Semantics Items represented — part versus whole, concrete versus ab-

stract. This level incorporates the functionality of an item: what can be

expressed

5. Dynamics Receptivity to click — highlighting, combining

Figure 4.2 shows some icons used in this system.

(a) Function name (b) Variable parameter

(c) Integer constant parameter (d) Parameter in function body

Figure 4.2: Pictures of some data fields.

Applying lexical semiotics, items on the left side of a function definition,

which can be used in a function body, use a grey-blue rectangle (see Figure 4.2a

and 4.2b) (for example, a function name or a parameter variable). All the

107

other items use a white rectangle (see Figure 4.2d and 4.4h) (for example, all

items in a function body or a wild card parameter in a pattern). Applying

pragmatic semiotics, parameter variables have a triangle on their right-hand

side (see Figure 4.2b), to suggest to the user that they will be immediately

used, and so that they can be spotted easily among other parameters (e.g.,

wild cards (see Figure 4.4h), constants (see Figure 4.2c)). Similarly, if an item

used in the function body is a parameter, then it uses a triangle to its left (see

Figure 4.2d). As syntactic semiotics, any item annotated with 123 on its right

side, denotes an integer constant (see Figure 4.2c). In the same manner, abc de-

notes a string constant (see Figure 4.4c), ’c’ denotes a character constant (see

Figure 4.4b), T/F denotes a boolean constant (see Figure 4.4d). The visual

programming system also facilitates the creation of local functions. Only one

level of local definition is allowed. In informal observation (four libraries were

checked, not including the prelude (which is a standard library accessible by

all Haskell programs) — wxHaskell, Reactive.Banana, Reactive.Banana.WX,

haskell.type.exts, and among 240 local functions, only six used nested local

definitions) it was noticed that one level of local function can serve many com-

plex problems. End-users wish for simplicity, and so the initial system provides

only simpler methods (Nardi and Miller, 1990; Nielsen, 1992, 1993).

Four standard colours and markings are used in this system to attract at-

tention (Wickens and Hollands, 1999). They are: a blue rectangle to indicate

focus on a selected item (an example of dynamic semiotics), a purple rectan-

108

gle to indicate focus on a group of items in a scope of an expression (another

example of dynamic semiotics), green lines to show dataflow and magenta to

denote any unused argument slot (an example of semantic semiotics).

Function Names and Clauses

Function clauses are numbered in order underneath the function name (another

example of syntactic semiotics). This avoids repetition of function names.

Figure 4.3 shows a compact view of a small part of the Prelude module. This

module includes four functions foldr, foldl, map and reverse. The first

three functions have two clauses each, and the last (reverse) has just one

clause.

Figure 4.3: Compact view of a module.

109

Pattern Parameters

Eight kinds of pattern parameters are used in this design: constants (integers,

characters, strings and booleans), variables, lists (empty and non-empty) and

wild cards. This small set of parameters is sufficient to define simple functions

such as those listed in this section. Figure 4.4 shows the icons chosen for these

parameters. These icons are designed to be self-explanatory, and another ex-

ample of using syntactic semiotics.

(a) Integer constant (b) Character constant (c) String constant

(d) Boolean constant (e) Variable (f) Empty list

(g) Non-Empty list (x:xs) (h) Wild Card

Figure 4.4: Parameter icons.

Function Bodies

Nine kinds of expression are used: constants (integers, characters, strings and

booleans), function applications, operators, lists (empty and non-empty) and

a conditional. The icons used for the constants in the function bodies are

the same as those used for constant parameters. Figure 4.5 shows the non-

constant expression icons. This small set of expressions is sufficient to define

simple functions, as well as those listed in Section 4.1.2 (although perhaps

clumsily). A function application icon contains argument slots on its upper

left side as little boxes. An operator has two argument slots and a +/- symbol

110

sets it apart from a function application (this symbol is a general indication of

any operator). A rectangle with a bold outline denotes one of the two list con-

structors, [] or :. In functional programming, the primary control construct is

a function (Burstall, 2000), and hence in HASKEU the if-then-else syntax

is replaced by a predefined function, cond::Bool -> a -> a -> a.

(a) A Function application reverse (b) An Operator +

(c) The list constructor [] (d) The list constructor :

(e) The cond function

Figure 4.5: Expression icons.

Local Functions

Local functions and their patterns are displayed in the same way as global

functions and their patterns, but in separate areas. While working on a local

function, a user can see the parameters of the global function along with the rel-

evant local parameters (see Figure 4.6c). This is another way in which minimal

memory load is achieved. Figure 4.6 shows the display of the Prelude reverse

function, the textual equivalent of which is given below:

reverse l = rev l []

where rev [] a = a

rev (x:xs) a = rev xs ((:) x a)

111

(a) Function reverse

(b) First clause of local function rev

(c) Second clause of local function rev

Figure 4.6: Data display of reverse.

112

4.1.3 Dataflow and Scope

A function body is represented by a dataflow graph. An automatic layout algo-

rithm is used to draw the dataflow graph based on the grid standard (Batini,

1986; Tamassia et al., 1988). The dataflow graph is embedded in a rectangular

grid so that item boxes are placed in grid cells, and the edges follow horizontal

and vertical tracks. Figure 4.7 shows the body of max function, where the flow

of data, and scope of operators and applications can be clearly seen.

Figure 4.7: Showing dataflow of function max.

In HASKEU, the dataflow direction is left-to-right and top-to-bottom (see

Figure 4.7). The reason for choosing left-to-right is that it is the same direc-

tion in which data flows in textual programs. The reason for choosing top-

to-bottom is that it avoids edges crossing. Hence, argument slots are drawn

at the top-left corner of an item and aligned horizontally, and the value edge

comes out of the right-hand side of an item. The result of a function is that of

the bottom-right-most item. The dataflow graph is redrawn after each editing

action. This is another way in which data consistency is achieved.

113

Any item in a function body is represented as a box with/without argu-

ment slots and/or value edge. A block-based architecture is used to represent

the scope of expressions (Bernini and Mosconi, 1994). A block consists of a

function application or operator, with its arguments. Two items are linked by

a directed edge (Trudeau, 1993).

Connector symbols are used to reduce the number of flow lines (Nassi and

Shneiderman, 1973). For example, an arrowed arc is used on the right-top of a

recursive application (see Figure 4.6c, the rev application in function body).

To prevent the dataflow graph from having crossing lines, the same argument

is included more than once in the the dataflow graph. A triangle symbol on

the left-hand edge of these repeated items remind the end-users that they are

parameters.

4.1.4 Direct-Manipulation

Program editing uses direct-manipulation. This can lower the barrier to learn-

ing the syntax of a new programming language by constraining syntax and

providing concrete visual representations on which to operate (Shneiderman

and Plaisant, 2004; Fekete and Beaudouin-Lafon, 1996; Hundhausen et al.,

2006; Read, 1996). End-users of this system may not be aware of the syntax

and semantics of the programming language (Minor, 1991). Direct manipu-

114

lation techniques are used in the five panes as follows:

Adding a New Item

The mouse cursor changes in the relevant panes to indicate the mode of opera-

tion. Figure 4.8 shows how a new function is added. Figure 4.8a shows a list of

existing functions. When the user positions the mouse cursor over an existing

function, a horizontal double line appears to indicate the position of the new

function (see Figure 4.8b). When the user clicks on the mouse, a placeholder

is inserted into the list as shown in Figure 4.8c. There is similar procedure for

creating a new clause by showing vertical double lines.

(a) List of functions (b) Selecting new position (c) New function inserted

Figure 4.8: Adding a new function.

Adding a new parameter follows the same procedure as adding a new func-

tion. Figure 4.9 shows the steps of adding a new parameter variable, a, after

115

an existing parameter variable, f.

(a) List of parameters (b) Selecting new position (c) New parameter inserted

Figure 4.9: Adding a new parameter.

Figure 4.10 illustrates the procedure for adding an argument. A new ar-

gument can be added to an existing item and also an existing item can also

be added as an argument to a new item. If the mouse cursor is positioned at

the upper part of an item (in this example, map), then a symbol indicating

“add argument” appears (see Figure 4.10a), and if it is positioned at the lower

part of an item, then a symbol indicating “add as argument” appears (see

Figure 4.10b). No symbol appears in the illegal case of applying a constant to

an argument.

Selecting/Editing an Item

Item views change to indicate selection or editing. A blue outlined rectangle

indicates selection and an annotation indicates an editing. Figure 4.11 shows

the different item views as different keys are pressesed.

116

(a)

(b)

Figure 4.10: Adding an argument.

Figure 4.11: Adding an annotation.

117

4.1.5 One Function Per Page

Typically, a user can focus well on only one task at a time (Medina, 2010;

Crenshaw, 2008). Each time a person switches tasks, the brain runs through

some processes to disconnect the neurons committed to one task and then con-

nects them to the other task, and hence task switching creates delays and is

inclined to produce errors. When a user wants to perform many tasks at one

time, or to switch rapidly between them, it results in a very high rate of errors

and it takes much longer (sometimes more than twice as long) to complete the

tasks than if they were done alone sequentially (Wallis, 2006). This is because

the human brain is compelled to restart and refocus. This system does not

allow users to view two function bodies at a time in the same window. They

need to select the function from the globals or locals pane to view its definition

or to work with it. So, the user is not overwhelmed by the amount of work

that needs to be done to complete a module or a single function and hence the

perceived workload is also reduced (Carrier et al., 2009).

4.2 Exploratory Programming

This section aims to make the design of HASKEU suitable for the end-users

who would like to explore the HASKEU system.

118

4.2.1 Error Reporting

Error reporting is an example of “offer simple error handling” in the 8 golden

rules. Giving good error reports to novice users is very important (Norman,

1989; Shneiderman, 1986; Shneiderman and Plaisant, 2004). Since errors oc-

cur because of lack of knowledge, incorrect understanding, or inadvertent slips,

users are likely to be confused, to feel inadequate or to be anxious. Error re-

ports with an imperious tone that condemn users can heighten anxiety, making

it more difficult to correct the error and increasing the chances of further errors.

Messages that are too generic or obscure offer little assistance to end-users. Er-

ror reports should be understandable and state to the intended user what the

problem is and how to solve it (Lewis and Norman, 1995). Best practices have

been identified to produce better system with suitable error messages.

While the user is developing a program, HASKEU continually checks for

errors and provides feedback. Unnecessarily hostile messages using violent ter-

minology can disturb non-technical users (Shneiderman and Plaisant, 2004).

HASKEU does not make use of violent language or colour to indicate errors,

and hence the end-user will not be discouraged.

No syntactic errors are possible in their visual system — one cannot draw

a broken dataflow graph or give it any invalid annotation, Semantic errors

(type errors) are likely to happen all the time while end-users are developing a

program. End-user will find it very difficult to understand the details of type

119

error messages, when it is hard even for experienced programmers to under-

stand them (Chitil, 2001). Type error messages can be unsatisfactory if the

meaning of these type error message, the meaning of the reported types and

their relation to the program, is not well-defined. Furthermore, if the program

position given in an error message is far from the source of the error, it makes

it very hard for the end-users to locate the source of the error. The visual type

error reporting in HASKEU is designed to aid end-users to understand and lo-

cate an error more precisely. HASKEU still allows users to see the type error

details textually in an extended window (just below the visual data display

area in Figure 4.12 outlined in green) in order to show the differences between

visual and textual error reporting and also to allow the end-users prefer to

work separately in the textual programming environment, where a visual re-

port is not available, if they prefer.

Type Representation

The user’s attention span was considered when designing the visual represen-

tation of the type system to provide good usability (Eberts, 1994). In order

to give the user a minimal mental workload when starting with a function

application or an operator, they initially see an annotated box with a number

of argument slots. Then, when the user wants to know about the argument or

result type of an application or operator, perhaps after a complaint was made

by the system about a type error, the visual interface guides the user using

concise tooltips. The type information of an individual argument is shown with

120

Figure 4.12: Extended window to show error textually.

descriptions when the mouse pointer hovers over that argument slot and the

whole type information of an application is shown when the mouse pointer is

over the application box (see Figure 4.13). During the program editing phase,

the availability of type information for an application and its individual ar-

guments and the visual dataflow display of applied and unapplied arguments

can improve the user’s understandibilty about partial applications and higher

order functions.

Visual vs Textual Error Reporting

An overview (a list) of all errors can be seen visually in the globals pane. Any

function name and/or clause number with a cross mark indicates the existence

121

(a) First argument (b) Second argument

(c) Whole Type

Figure 4.13: Type representation in map application.

of errors in it. Figure 4.14 denotes that the clause number “1” in function

foldl and the clause number “2” in function map contain errors. Using this

information, a user can track and trace all the type errors in the order of their

existence in the code hierarchy.

Figure 4.14: Overview of errors.

A user can see the detail of errors visually in the individual function body.

Consider the following small Haskell program:

f a = map ’c’

The Glasgow Haskell compiler gives detailed type error messages textually as

122

below:

TestProg.hs:1:12:

Couldn’t match expected type ‘a0 -> b0’ with actual type ‘Char’

In the first argument of ‘map’, namely ’c’

In an equation for ‘fn’: fn a = map ’c’

The visual error report in HASKEU can express the above error details in

a single view (see Figure 4.15). Cross marks in the dataflow arc in function

body indicate type errors and both end-points contain the type information as

tooltip text.

Figure 4.15: Error - type mismatch.

The function body shows all the type errors in the dataflow graph, not just

the first one. Another small Haskell program is given below as an example:

fn a = map (map b)

As b is undefined, applying map to b is incorrect, and hence (map b) cannot

produce anything, applying another map to this (map b) is also incorrect. The

Glasgow Haskell compiler shows only the first error message, whereas the vi-

sual error reporting in this system shows both errors in the dataflow graph (see

123

Figure 4.16). In functional programming, a previous error may be the cause

of some later errors and the ability to show them all in one view may improve

the end-user’s understanding of the functional program.

Figure 4.16: Showing all errors.

A type mismatch can happen during unification. Unification of two types

means that they are assumed to be of the same type. In the case of type

mismatch during unification, it is hard for the type checker to tell which wrong

parameter makes the other parameters wrong, only the user will know. The

following program highlights part of the problem:

fn a = map a a

The Glasgow Haskell compiler gives the following error message:

TestProg.hs:1:14:

Couldn’t match expected type ‘[a0]’ with actual type ‘a0 -> b0’

In the second argument of ‘map’, namely ‘a’

In the expression: map a a

In an equation for ‘fn’: fn a = map a a

Here, map is using the same parameter a in its two arguments where one

is correct and the other is not. From the visual view of this function, the user

124

can see all the uses of a and how many of them have been used incorrectly (see

Figure 4.17).

Figure 4.17: Error - unification.

This system allows users to work with undefined functions, because some

users like to define those functions later, and because one could not define

mutually recursive functions otherwise. Also while editing an application’s

annotation the annotated text can be turned into an undefined application

many times. An unobtrusive “!” symbol is shown at the top-right corner of an

undefined application and also a tooltip text “Function not defined” will be

shown (see Figure 4.18).

Figure 4.18: Error - undefined function.

Any unused argument slot is shown in the colour magenta (see Figure 4.19),

so that the user will know an unnecessary argument has been used.

The The Glasgow Haskell compiler says after compilation:

125

Figure 4.19: Error - unused argument.

TestProg.hs:1:12:

The function ‘map’ is applied to three arguments,

but its type ‘(a0 -> b0) -> [a0] -> [b0]’ has only two

In the expression: map a b k

In an equation for ‘fn’: fn a b k = map a b k

Whereas this visual system in HASKEU shows a magenta argument slot,

as soon as any unnecessary argument has been used during program editing.

4.2.2 Infinite Undo

Infinite undo is an example of “permit easy reversal of actions” in the 8 golden

rules. While programming, the user may frequently find that a change needs

to be undone. The undo ability of any programming environment helps a user

to be more adventurous while learning a new system. The ability to undo a

long sequence of operations lets the user feel that the interface encourages ex-

ploration. While learning the interface, users can experiment with it, confident

126

that they aren’t making irrevocable changes – even if they do something acci-

dentally. This is true for users of all levels of skill, not just beginners. Undo is

thus a primary tool for supporting exploration in software user interfaces. It

allows the user to reverse one or more previous actions if they decide to change

their mind. The significant benefits of undo are: It saves time/keystrokes and

it reassures the user (Cooper et al., 2007).

In HASKEU, undo is a global, program-wide function, which can undo ac-

tions made by direct manipulation, by clicking a button or through a dialog

box both in the textual interface and the visual interface. Hence, the undo but-

ton stays in the global toolbar with other global tools such as open, save, exit

etc. Multiple undo functionality is used which can reverse more than one pre-

vious operation, in reverse temporal order. The HASKEU maintains a stack of

operations, the depth of which is infinite, to allow users complete flexibility in

the way they program. Some will use the undo facilities more frequently than

others. HASKEU has also a redo function which can prevent the situation

created by a multiple undo where if the user has undone something desirable,

they can restore the last good action using redo. Program elements such as

undo and redo allow the user to manipulate pieces of information needed in

multiple places and within a particular task and relieve short-term memory

(Mandel, 1997).

Some operations which need to be undoable have been chosen which keeps

127

it consistent with other development systems. Any action that might change a

file, or anything that could be permanent, should be undoable, while transient

or view-related states often are not. Useless undos often irritate the user by

cluttering up the undo stack. Specifically, the followings actions are set as

undoable and non-undoable in HASKEU:

Undoable Operations

• Adding a new function or function clause

• Adding a new parameter

• Adding an argument

• Adding an annotation

• Deleting items

Non-Undoable Operations

• Selecting

• Navigating between functions or clauses

• Moving the mouse cursor and text cursor locations

• Changing the scrollbar position

• Changing the window position and size

The next section will go on to describe how conventional textual program-

ming fits into the design of HASKEU.

128

4.3 Textual Programming

This integrated Visual-Textual programming system has been designed to help

end-user programmers to develop functional programming skills. As visual and

textual program representations are both useful, integrating the two may give

more strength in program development (Meyers, 1991; Scaffidi et al., 2012).

The combination of a visual language and a textual language is intended to

support the end-user in developing an understanding of functional program-

ming concepts as well as the skills to use these concepts effectively. Any

editing operations in the visual interface update their textual equivalent and

vice-versa. Figure 4.20) shows textual changes reflected in the visual view after

a function name changes (character l deleted), and Figure 4.21 shows visual

changes reflected in the textual view after parameter z is deleted.

(a) Before

(b) After

Figure 4.20: Changes propagate from textual to visual.

129

(a) Before

(b) After

Figure 4.21: Changes propagate from visual to textual.

4.4 Design of Concepts

Design often involves diagrams, especially in the OOP paradigm (e.g. UML

diagrams), whereas functional programming hardly uses diagrams to show the

design of a program. The appropriateness of using UML diagrams for func-

tional programs is discussed in Appendix A.

The overview of the design of the HASKEU implementation is described

here very briefly by writing down function types to encapsulate the design

relationship. The architecture of the HASKEU system is based on “The

Model View Controller as a Functional Reactive Program” as given in Chap-

ter 3. The global data structure of the the HASKEU system state in called

SystemState which contains the textual state, visual state, source file infor-

mation, type information and state changes history. The SystemState is also

mentioned as a model in this thesis. HASKEU architecture has mainly two

130

function types — BusinessRule and InterfaceLogic. The business logic

function is the prototype of the declarative functions that make changes in the

model. It takes the model value m and the event value e as parameters and

has the type

type BusinessRule e m

= e -> m -> m

The interface logic is the prototype of the declarative functions that change

the view of the system as system state change. It takes the model value m and

the previous view value v as parameters and has the type

type InterfaceLogic v m

= v -> m -> v

Below are the list of main business rule functions in the HASKEU system, a

function name summarizes its purpose.

brTextEditorChanged :: BusinessRule (String, Int) SystemState

brModuleNameChanged :: BusinessRule (String, Int) SystemState

brFnNameChanged :: BusinessRule (String, Int) SystemState

brLclFnNameChanged :: BusinessRule (String, Int) SystemState

brFnPatNameChanged :: BusinessRule (String, Int) SystemState

brLclFnPatNameChanged :: BusinessRule (String, Int) SystemState

brExpNameChanged :: BusinessRule (String, Int) SystemState

brListTxtErrSelected :: BusinessRule Int SystemState

brMseLeftClickGblFn :: BusinessRule EventMouse SystemState

brMseLeftClickFnArg :: BusinessRule EventMouse SystemState

brMseLeftClickLclFnPat :: BusinessRule EventMouse SystemState

brMseLeftClickExp :: BusinessRule EventMouse SystemState

131

Below are the list of main interface logic functions in the HASKEU system.

ilSetWindowTitle :: InterfaceLogic ViewType SystemState

ilSetTextEditorText :: InterfaceLogic ViewType SystemState

ilSetSelectedTextualError :: InterfaceLogic ViewType SystemState

ilShowTextualErrors :: InterfaceLogic ViewType SystemState

ilShowLineRowColStatus :: InterfaceLogic ViewType SystemState

ilIsEndOfUndo :: InterfaceLogic ViewType SystemState

ilIsEndOfRedo :: InterfaceLogic ViewType SystemState

ilSetModuleName :: InterfaceLogic ViewType SystemState

ilDrawFnView :: InterfaceLogic ViewType SystemState

ilDrawLclFnView :: InterfaceLogic ViewType SystemState

ilDrawFnArgView :: InterfaceLogic ViewType SystemState

ilDrawLclFnPatView :: InterfaceLogic ViewType SystemState

ilDrawFnBodyView :: InterfaceLogic ViewType SystemState

ilShowMseCoordinateStatus :: InterfaceLogic ViewType SystemState

ilShowVisualErrors :: InterfaceLogic ViewType SystemState

The following sections describe the concepts in the HASKEU system that

were challenging to design and some novel solutions:

(a) Synchronization between textual and visual view;

(b) Tree structure in the dataflow;

(c) Higher-order functions in visual view;

4.4.1 Synchronization between Textual and Visual view

Any editing operations in the visual interface update their textual equivalent

and vice-versa. However, allowing syntax errors in the textual editor and

132

not allowing them in the visual editor forced a decision to be made about

how the synchronization should work. It might be possible to have an error

free syntax-directed textual editor, but the disadvantage of using a syntax-

directed editor is that it prevents the user from making a radical change quickly

(Bai, 2003). This was seen as a barrier to program development by end-users.

Consequently a major effort was put into implementing a new visual system

rather than devoting time and effort to implementing a syntax directed textual

editor (research has already been conducted in this area). The following shows

the adjustments in synchronization:

• If an editing in the textual editor contains a syntax error in the program,

nothing will be shown in the visual editor. Though it is possible to keep

the visual program at the same state as the last syntactically correct

program, the visual view will not reflect the textual program and will be

misleading to the user.

• The following solution was adopted: the syntax error will be shown in

the textual error list, and a message will be shown in the visual error list

that “The visual view can not be created as there is a syntax error in

the textual view”.

Figure 4.22a shows the system view before a syntax error, and Figure 4.22b

shows the system view after a syntax error was made by editing in the textual

view.

133

(a) Before

(b) After

Figure 4.22: System views before and after a syntax error.

134

As a syntax-directed textual editor is not being used, users can use their

own layout while editing in the textual system, but while editing in the visual

editor, a pretty-print is generated with a default layout for the textual view.

It is always possible to have a textual version with the layout set by the user

the last time he/she edited in the textual editor, but it is beyond the scope of

this thesis to look at textual editing, the focus of this research is visual editing.

Figure 4.23a shows the textual view when a user set his/her own layout by

editing in the textual view, and Figure 4.23b shows the textual view generated

by the system when the user edited it in the visual view.

(a) User defined textual layout

(b) System defined textual layout

Figure 4.23: User and system defined textual layout of a program.

135

4.4.2 The choice of a tree structure

The dataflow in the visual representation of HASKEU uses a tree

structure, i.e. a rooted graph, instead of a more general acyclic graph. A

tree is a Directed Acyclic Graph (or a DAG) that does not contain cycles

where a child can only have one parent (Christofides, 1975).

In HASKEU, it was chosen to use a tree structure with automatic layout

and special symbols (see Section 4.1.3) to avoid edges crossing (so as to avoid

spaghetti code). See Figure 4.25 below to see a comparison between a tree

structure in HASKEU and a possible DAG of the second clause of the map

function. In Figure 4.24b where a DAG has been used, the parent-child rela-

tionships are not obvious because of edges crossing.

4.4.3 Higher-order functions in visual view

HASKEU can express higher-order language features very effectively. Taking

the simple function fn f = f, then from the function body in the visual view

it can seen that f has no argument slot (see Figure 4.25a). As soon as an ar-

gument is added to f as in fn f a = f a, it can be seen that an argument slot

has been dynamically created (see Figure 4.25b). If the function is expressed

as fn f a = f (f a), then all the occurrences of f shown in the function

body have one argument slot (see Figure 4.25c). Again, if another argument

is added to the first f in the function body as in fn f a b = f (f a b),

136

(a) map function as a tree structure in HASKEU

(b) map function as a DAG

Figure 4.24: Tree vs DAG.

137

all the f occurrences in the function body have two argument slots now (see

Figure 4.25d). The second f in the function body has an unused argument

slot which clearly indicates that it has a function as an output (which also

indicates that this second f is a partial application).

4.5 Conclusion

As a summary, the end-user programming system (HASKEU) designed for

this research will support both visual and textual programming, allowing

for a smooth transition from one to the other as programming expertise im-

proves. The primary interface will allow end-users to write programs in a visual

dataflow language consisting of boxes and arrows — a box representing a pro-

cess and an arrow representing the dataflow between processes. Experiments

have shown that novice users find this kind of dataflow language easier to un-

derstand (Kimura et al., 1986). The secondary interface will allow end-users to

write programs in a conventional textual language, which is not entirely intu-

itive for novice end-users, but will become more meaningful as their expertise

increases. Changes will propagate between the visual and textual interfaces, so

that they are always consistent. The HASKEU system will not be task-specific;

but instead it is intended to aid end-users to do general purpose programming.

The visual programming system in HASKEU is purposely incomplete in

that it does not aim to include all of Haskell’s vast syntax, and only very

simple Haskell functions can be expressed visually in this system. The visual

138

(a) f has no argument slot (in function fn f = f).

(b) f is a function and has one argument slot (in function fn f a = f a).

(c) All the occurrences of f have one argument slot (in function fn f a = f (f a)).

(d) All the occurrences of f have two argument slots and the second f is a partial
application (in function fn f a b = f (f a b)).

Figure 4.25: Higher-order functions in HASKEU visual view.

139

system of HASKEU aims to give the user the feeling that functions are as

simple as lambda calculus. If the users type a textual program into HASKEU

that the visual system cannot handle, then an error message is shown in the vi-

sual view as “Some of the code in the textual system is incompatible with this

version of the visual system”. In a future version of HASKEU, those currently

unsupported syntax will be included and will be shown in as simple a form as

possible by considering HCI issues. However, end-users should find the visual

programming system in HASKEU a useful starting point upon the learning

ladder of functional programming. Users are not asked to give type signa-

tures of functions explicitly, which is also optional in the Haskell programming

language. In the next chapter the implementation of this design will be shown.

140

Chapter 5

Implementation

The implementation of HASKEU follows the “MVC as a FRP” framework as

described in Chapter 3. The HASKEU system was implemented in a pure

functional paradigm which was a big challenge. It is natural to think of a

programming development environment in terms of the state of the program

under development and the events that the programmer creates to change the

state. This challenge was overcome with the use of the “MVC as a FRP”

framework. The challenges which were anticipated when implementing this

system are outlined below:

1. Synchronizing the textual state (which can contain syntax errors) and

the visual state (which is free from any syntax errors).

2. Drawing a visual layout of the syntax tree which involves recursive tree

traversal.

3. Manipulating different data types of different nodes in the syntax tree

using higher-order types

141

4. Representing type information and errors, as this involve type checking

in different levels in the syntax tree.

5. Building an infinite redo/undo data structure which uses lazy evaluation.

6. Selecting an item, adding a new item or deleting an existing item in the

syntax tree which also involves recursive tree traversal and checking the

state of a node for its position in the visual layout, and also understanding

the data structure of the syntax tree.

7. Validating syntax errors from different key presses, which involve value

matching of different characters and value checking after a key is pressed.

8. Adjusting the existing GUI library for the “MVC as a FRP” framework.

9. Drawing shapes with low-level graphics.

10. Adjusting unexpected behaviours of some widgets taken from the existing

GUI library.

The following external libraries have been chosen for this implementation, as

it was discovered that they fulfill the purpose by experimenting with them and

by reviewing literature on the web:

1. reactive-banana : a practical library for functional reactive programming

(Apfelmus, 2015a).

2. wxHaskell : wxHaskell is a portable and native GUI library for Haskell

(Leijen, 2014).

142

3. reactive-banana-wx : provides some GUI examples for the reactive-banana

library, using wxHaskell (Apfelmus, 2015b).

4. haskell-src-exts : a suite of annotable datatypes describing the abstract

syntax of Haskell (Broberg, 2014).

5. haskell-type-exts : a type checker for Haskell as embodied syntactically

by the haskell-src-exts (Broberg, 2012a).

Figure 5.1 shows a general outline of the MVC layout (the connections be-

tween the model, the controllers and the views) in this system. The arrows

in the figure indicate that controllers are changing the model and the views

are generated from the model. The lines indicate which part of the model

the controllers are changing and from which part of the model the views are

displayed. The main two views and controllers manage the textual and visual

state of the system. Other views and controllers have the following operations

- to open and save files, to manage type information, and to manage the model

change history to redo and undo any operation. The details of this system will

be discussed in the following order: the model, the controllers and the views.

5.1 The Model

The model represents the core information that the system is being used to ac-

cess and manipulate. The model is the centre of the system, the views/controllers

(visual, textual, file information, type information, and history of model changes)

143

Figure 5.1: General outline of the MVC layout in the system.

manipulate and visualize the model. The controller interprets event inputs and

updates the model state. The views reflect the state of the model as appropri-

ate.

The model contains information about the the state of the system. The

high-level definition of the system state (model) data type is as follows:

data SystemState =

SystemState

{

textualState ::TextualState,

visualState ::VisualState,

fileInfo ::FileInfo,

typeInfo ::TypeInfo,

modelChangeHistory ::ModelChangeHistories

}

deriving (Show)

144

In this implementation, a textual program, that does not parse, has no

syntax tree. So, the textual state is the program as a list of characters. On

the other hand, syntactic errors are not possible in the visual system because

of validation. So, the visual state of the program is in the form of a shape tree

(a syntax tree in which items are annotated with visual information). Any

visual item is a node in the syntax tree, so nodes will also be referred as items

in this chapter. The TextualState and VisualState also hold the state of

the editors (widgets), because the widget’s views are always changed with a

model change, hence the original value of the widget is lost. For example, while

editing in the textual editor, the model is changed with an updated value, and

as soon as the model is changed the textual editor view is also changed. At

this time the textual editor’s state of the insertion point goes to the end of

the list of characters. So, it is necessary to keep track of the insertion point

too. FileInfo contains information about the source file as provided by the

user of the system. TypeInfo contains information about the type of all the

defined and undefined functions in the current module and also information

about the type of the functions in the other embedded modules for test pur-

poses. ModelChangeHistories keeps the history of the changes to the model

such as to implement undo and redo operations.

TextualState includes the textual program textStr, the detailed textual

error messages and error location textualErrors, the index of selected error

message by the user selectedTxtErr, and the cursor position in the text editor

145

insertionPt.

data TextualState =

TextualState

{

textStr :: String,

textualErrors :: [ErrorMsg],

selectedTxtErr :: Int,

insertionPt :: Int

}

deriving (Show)

The VisualState data type is given below:

data VisualState =

VisualState

{

shapeTree :: HSE.Module (SrcSpanInfo, ItemState),

visualErrors :: [ErrorMsg],

selectedVisualErr :: Int,

mouseCoordinate :: (Int,Int),

modeOfOperation :: ModeOfOperation,

areaOfOperation :: AreaOfOperation,

fnClButtons :: [VirtualButton],

patButtons :: [VirtualButton],

expButtons :: [VirtualButton],

146

scrlPosAnnEdtGbl :: Point,

scrlPosAnnEdtLcl :: Point,

scrlPosAnnEdtGblPat :: Point,

scrlPosAnnEdtLclPat :: Point,

scrlPosAnnEdtBody :: Point

}

deriving (Show)

Here, shapeTree is the syntax tree where visual attributes of items are in-

dividually stored, and the Haskell syntax tree data type is used as defined

in the Haskell-Src-Exts library (Sheard and Jones, 2002); the ItemState

datatype contains visual attributes of an item and SrcSpanInfo is the tex-

tual correspondence to it; visualErrorMsg contains textual detail of visual

error information; selectedVisualErr is the index of selected error message

by the user; mouseCoordinate contains the coordinates of the mouse cursor

in a pane; modeOfOperation is either selection mode or edit mode or one of

the add new item modes; areaOfOperation is where the mouse cursor is po-

sitioned among the five panes; some virtual buttons are used for adding new

items in the visual program (fnClButtons, patButtons, expButtons), so that

these occupy minimal space in the user interface; the scrolled positions on the

different panes are needed to adjust the positions of the editable text controls

in a wxHaskell panel, and these text controls are used to edit annotation of

the items in the five panes.

147

The ItemState contains the following visual attributes of an item:

data ItemState =

ItemState

{

itemPosition :: Point,

itemSize :: Size,

mseInside :: Bool,

selected :: Bool,

annEditMode :: Bool,

annInsertionPoint ::Int,

argSelected :: Int,

outputSelected :: Bool,

nodeType :: (TyDefined, Maybe Sigma),

nodeTypeArgs :: [ItemState],

typeErr :: String,

synonym ::String,

toolTipText ::String,

joinToChildNodes :: JoinToChildNodes,

groupBox :: (Point, Size)

}

deriving (Show)

Here, itemPosition is the position of an item on the screen, and itemSize is

the size of an item; mseInside is set to True or False when the mouse cursor

148

enters or leaves the edge of an item; the selected and annEditMode denote an

item’s selected and editable modes respectively; argSelected is the argument

number of an item when the mouse cursor focuses on an argument slot, and it

is used to show the type information for a specific argument and also to add

an argument to an item; outputSelected is used to add an existing item as

an argument to a new item; nodeType is the type information of an individual

item and nodeTypeArgs contains type information and visual attributes of an

individual argument slot; typeErr contains the type error message if an item is

applied incorrectly; synonym is used to show the clause number of a function;

toolTipText is the tooltip text of an item to show some error description or

type information; joinToChildNodes is the list of dataflow arcs to connect

the parent with the child items; groupBox is a rectangular box to focus items

in a scope of expression as a group.

5.2 The Controllers

The definition of the system state (see Figure 5.1) shows that the textual and

visual state of a program are two different parts in the model — a list of char-

acters and a syntax tree. This is because a textual program cannot create a

syntax tree if it cannot be parsed. So, to keep both states consistent, an active

synchronization is needed between all the controllers of the visual and textual

systems, which means that a textual controller must update both the textual

and visual state, and similarly for a visual controller update. Any change in

the programming system also updates the model history stack to implement

149

a redo/undo operation, so all the controllers that change a program need a

default history update operation.

According to the MVC as a FRP framework (as described in Chapter 3,

each controller has to have a business rule. To keep both states (visual and

textual) synchronized, a class called BRSync has been created, where managing

the history of the model changes and synchronization from textual to visual

and vice-versa are embedded in the business rule functions. The coding for

the BRSync is given below:

class BRSync e where

br :: BRName -> BusinessRule e SystemState

brSyncV :: BRName -> BusinessRule e SystemState

brSyncT :: BRName -> BusinessRule e SystemState

brSyncV b e m = manageHistory VisualChange $

convertFromVisual (br b e m)

brSyncT b e m = manageHistory TextualChange $

convertFromTextual (br b e m)

Here, every controller implements a br function to have a business rule where

BRName is the identifier of the business rule. The two default functions brSyncV

and brSyncT are responsible for doing the actual synchronization and manag-

ing the history of the model changes. All the visual controllers are attached to

the brSyncV function which updates the textual state from the visual state and

all the textual controllers are attached to the brSyncT function which updates

150

the visual state from the textual state in the MVC system. This way, all the

controllers stay compatible in synchronizing the two views and keep records

of all the changes. If any third view-controller were needed to be added (e.g.,

braille for blind programmers), then new information would need to be added

in the model data structure. It may be necessary to add another function to

the class, which could have a name of brSyncB. This function will change the

textual and visual states from a braille state. Also, the brSyncV and brSyncT

functions need to be changed in order to change the braille state.

5.2.1 Visual Layout

The visual system uses an automatic layout to display a program. Any add,

edit or delete operation in the program structure recalculates the item’s visual

attributes automatically. All the program items exist in a syntax tree. An

ordinary module tree structure is defined in the Haskell.Src.Exts library as

below:

data Module l

= Module l (Maybe (ModuleHead l))

[ModulePragma l] [ImportDecl l] [Decl l]

where l is the annotation type. By default it is set to textual annotation

by the Haskell.Src.Exts library. The automatic layout algorithm calcu-

lates the position of items in the syntax tree, and assign them dimensions.

ModuleHead l includes module name information. [Decl l] includes all the

151

function definitions. A single function is represented by the data constructor

FunBind l [Match l] where [Match l] is the list of clauses. A single clause

is represented by the data constructor as below:

Match l (Name l) [Pat l] (Rhs l) (Maybe (Binds l))

Where [Pat l] is the list of parameters, Rhs l contains the tree structure of the

function body and (Maybe (Binds l)) contains the local functions inside a

where block. Among the guarded and unguarded Rhs l, only the unguarded

one UnGuardedRhs l (Exp l) is implemented.

data Rhs l

= UnGuardedRhs l (Exp l) -- unguarded right hand side (/exp/)

As different items in the syntax tree have different data types, higher-order

types (Peyton Jones, 2002) are used in class TreeManager to generalize the

functions which set the layout of items as below:

class (Functor t, Annotated t) => TreeManager t a b where

setAutoLayout :: b -> t a -> (b, t (a,b))

setAutoLayoutPrec :: b -> Bool -> (Int, Int) -> t a

-> ((Int, Int), t (a,b))

mapAutoLayout :: b -> [t a] -> (b, [t (a,b)])

makeChildNodesJoins :: [b] -> t (a,b) -> t (a,b)

mapAutoLayout lp lstNode =

mapAccumL setAutoLayout lp lstNode

In this class declaration, t is the type variable of the data constructor of

an item in the syntax tree, a is the textual annotation type and b is the visual

152

annotation type. The function setAutoLayout takes the visual attributes of

the last item and the current item as arguments. Then, setAutoLayout cal-

culates the position and sets other visual attributes of the current item and

returns the current item’s visual attributes and the item with both textual and

visual annotation as a pair. The reason for returning the visual attributes of

the current item separately is that we can use the Haskell function mapAccumL

to calculate the visual attributes for a list of items (for example, list of func-

tion, list of local function, list of parameter) by using a common method. The

function mapAutoLayout applies the auto layout operation to a list of items.

Its default definition is given above.

The function setAutoLayoutPrec is used to set the layout of items of

expressions in a precedence order (items in function body). The Haskell ex-

pression data Exp l is the recursive tree-shaped data type. Among all the Exp

data constructors the followings have been used:

data Exp l

= Var l (QName l) -- variable

| Con l (QName l) -- data constructor

| Lit l (Literal l) -- literal constant

| App l (Exp l) (Exp l) -- ordinary application

| List l [Exp l] -- list expression

| Paren l (Exp l) -- parenthesised expression

In this implementation, an infix application expression has not been used,

so all the operators are function applications. An infix application does not

153

show differently in the dataflow graph because this graph shows which op-

erations must be performed before others in a clear way. Using the above

definition of Exp, only the App data constructor can create branches and

the other data constructors can be either a leaf or another node, the only

child of which can be another sub-tree. The App l (Exp l) (Exp l) will be

called App Left Right to describe the algorithm. From the above definition

of Exp l, it can be seen that the syntax tree is a binary one.

To give an example, the syntax tree structure and the dataflow graph in

the system of the expression map ((+) a) b are shown in Figure 5.2. It uses

a left-to-right and a top-to-bottom approach to show the dataflow of items in

a grid layout. There is a two step process to map the syntax tree to a dataflow

graph. These two steps involve two different recursive traversals of the tree —

the first one is to find the row and column positions of an item in the grid lay-

out and the second one is to find the children of an item in order to join all the

children to their parent using dataflow arcs. The first one involves traversing

all the children and grandchildren of an item, while the second one involves

traversing only the direct children.

To Calculate the Position of a Node

The reverse in-order traversal is used to calculate the row and column num-

ber of items in the grid by using the setAutoLayoutPrec function recursively.

The right-most leaf in the tree is set as the top-left-most (first) item in the

154

(a) Tree structure (b) Dataflow graph

Figure 5.2: Tree structure and dataflow graph of expression map ((+) a) b.

dataflow graph, and the items in the tree are shown in reverse order in the

dataflow graph. If a leaf item is found in the right sub-tree, the row position

is increased by 1. If a leaf item is found in the left sub-tree, both the row and

column positions are increased by 1. To sequence of operations between left

and right sub-tree, the values of row and column positions returned by the

operation on the right sub-tree are passed to the operation of the left sub-tree.

The algorithm is defined as a series of recursive operations at each node and

starting with the row and column position of -1 and 0 respectively as follows:

1. Traverse the right sub-tree and increase the row by 1 for each leaf node.

2. Visit the root.

155

3. Traverse the left sub-tree and increase both the row and column by 1 for

each leaf node.

When items are annotated with their positions the root of the tree or subtree

is also annotated with the position of the left leaf or only leaf item. This makes

the next step of finding the children quicker by reducing the time complexity

of the recursion.

To Find the Children of a Node

The pre-order traversal is used to find the direct children of each leaf item

in the tree by using the makeChildNodesJoins function recursively. While

traversing the left sub-tree, the function adds the annotation of the right node

(which is actually the item state of the left leaf or only leaf item in the sub-

tree) to a list with each iteration until a leaf item found. While traversing

the right sub-tree the list of children is reset to an empty list [] and then its

left sub-tree is traversed. It does not matter whether the left or right subtree

operation is performed first.

The algorithm is defined as a series of recursive operations at each node

and starting with a empty list of children [] as follows:

1. Visit the root.

2. Traverse the left sub-tree and add the item state of the right nodes in a

list.

3. Traverse the right sub-tree by setting the list of children as [].

156

5.2.2 Type Management

The haskell-type-exts library has been used primarily to implement the type

checking in the syntax tree (Broberg, 2012b). This library lacks the follow-

ing functionalities to comply with this implementation. The purpose is not to

build a type checker system, but to show the type of items and type errors in

the system. So, the haskell-type-exts library is updated as given below to meet

the requirements.

1. The haskell-type-exts does not support an annotated tree, so a function

has been implemented to unannotate an item before giving it to the

library for a type check.

2. If any undefined function is found in a module, this library stops type

checking and throws out an error message. A function is implemented so

that when any undefined function is found, it gives the function a type

of a, and continues type checking the rest.

3. The type checker does not support a full list of parameters, so the pa-

rameters we needed have been added.

4. The type checker returns a list of functions with their type, but a syntax

tree with the type result of each expression is needed. A TypeManager

class (details given below) is implemented which returns a syntax tree

with type check results of each expression.

157

The TypeManager class has the same type variables as tree manager, and it has

an additional type variable to pass the parent node in the setType function.

Take as an example of passing the parent node, to find the type of an expression

in a function body, the parameter types and function name are needed, as the

syntax tree does not tell us if an expression is a parameter or a recursive

function.

class (TreeManager t a b) => TypeManager t1 t a b where

setType :: TypeInfo -> t1 (a, b) -> t (a,b) -> t (a,b)

setType _ _ t = t

mapSetType :: TypeInfo -> t1 (a, b) -> [t (a,b)] -> [t (a,b)]

mapSetType ty t1 lstNode =

map (setType ty t1) lstNode

The setType function traverses the syntax tree and finds the type of

individual parameters and expressions, and also finds any type error. The

mapSetType function applies the setType operation to a list of similar items,

for example to a list of clauses.

The following function unAnn as given in the the UnAnnotation class is

frequently used to unannotate an item before giving it to the haskell-type-

exts library for a type check, where t1 is the annotated tree and t2 is the

unannotated tree.

class UnAnnotation t1 t2 where

unAnn :: t1 a -> t2

158

The following function getAllVarEnv is used to find all the undefined functions

in a program. When an undefined function is found, it is given a temporary

type, and this operation is repeated recursively until all the undefined functions

have been given types. The first parameter of this function which is a tuple, are

the types and temporary types of functions in the embedded modules (which

have been used for test purposes), the second parameter (also a tuple), are the

types and temporary types in current module, and the third parameter is the

unannotated syntax tree of the module.

getAllVarEnv :: ([(QName, Sigma)], [(QName, Sigma)])

-> ([(QName, Sigma)], [(QName, Sigma)])

-> Module

-> IO ([(QName, Sigma)], [(QName, Sigma)])

getAllVarEnv (embeddedVar, tempEmbedVar) (moduleVar, tempVar) mod =

do

let Tc tc = typecheckModule mod

env <- mkTcEnv (embeddedVar ++ tempEmbedVar ++

moduleVar ++ tempVar) [] []

tcRes <- tc env

case tcRes of

Left e ->

getAllVarEnv (embeddedVar, tempEmbedVar)

(moduleVar, (tempVar ++ (mkTempVar $ show e)))

mod

Right e -> return (moduleVar ++ e, tempVar)

The type of any item TcType is a recursive tree-shaped data type as defined

in the haskell-type-exts library.

159

data TcType = TcForAll [TcTyVarBind] [TcAsst] Rho -- Forall type

| TcTyFun TcType TcType -- Function type

| TcTyCon QName -- Type constants

| TcTyVar TyVar -- Always bound by a ForAll

| TcTyApp TcType TcType -- Type application

| MetaTv MetaTv -- A meta type variable

To get the individual argument type of an item, the following function is

created which converts the recursive tree-shaped type into a list consisting of

argument types and a return type. This way, the arguments of a function and

unused arguments can be found.

mkTypeToList :: TcType -> [TcType] -> [TcType]

mkTypeToList (TcForAll a b r) lst = lst ++ (mkTypeToList r lst)

mkTypeToList a@(TcTyFun r1 r2) lst = lst ++ [(r1)]

++ (mkTypeToList r2 lst)

mkTypeToList a@(TcTyCon _) lst = lst ++ [(a)]

mkTypeToList a@(TcTyVar _) lst = lst ++ [(a)]

mkTypeToList a@(TcTyApp _ _) lst = lst ++ [(a)]

mkTypeToList a@(MetaTv _) lst = lst ++ [(a)]

To find the type error of an expression, the setType function checks an

application for all of its arguments recursively. For example, in an expression

map a b, it checks both map a (to check a is a correct argument here) and

map a b (to check b is a correct argument here), and to find out which of the

arguments are incorrect. If the type checker returns an error then the type

error is set in the incorrect argument node.

160

5.2.3 Infinite Redo/Undo

The system allows infinite redo/undo. An infinite list is used to simulate

the redo/undo operations, and this infinite list is commonly known as stream.

Haskell’s lazy evaluation makes it possible to implement this infinite redo/undo

facility nicely in the system.

The infinite list should work like a first-in last-out stack to sequence the

redo/undo operations. To make the infinite list work like a first-in last-out

stack, a current position of the redo/undo stack is kept of which value is set to

the position of the last item if a new system state is added, is decreased by one

if a undo button is pressed and increased by one if an redo button is pressed.

A system state is needed in a specific position when a redo/undo button is

pressed.

In Section 5.2, it was shown that all redo/undoable events are mapped

with the manageHistory function in the system. The manageHistory adds the

current system state (which is actually the output of an event mapping function

BusinessRule) to the redo/undo stack. With the use of lazy evaluation, the

infinite list of system states are expressed in a recursive form, and when a

specific system state from the list is needed, no further evaluation is necessary

because that system state has already been evaluated by an redo/undoable

event. Figure 5.3 shows the process between the redo/undo stack with the

redo/undoable events and the redo/undo events. A redo/undo event is not a

161

redo/undoable event, which means any redo/undo button pressed doesn’t add

any system state to the stack because it would break the redo/undo sequence.

Figure 5.3: The redo/undo stack.

Evaluation of the Space and Time Behaviour of the Infinite Redo/Undo

An experiment has been conducted to evaluate the infinite redo/undo feature

of HASKEU using the profiling facilities of the HASKELL system. The pur-

pose of profiling is to improve the understanding of a program’s execution

behaviour. This profiling system assigns costs to cost centres. The time or

space required to evaluate an expression is a cost. The program annotations

around expressions are called cost centres. All the costs incurred by an anno-

tated expression are then assigned to an enclosing cost centre. At run-time,

the profiling system remembers the stack of the enclosing cost centres for any

expression and at the end, it generates a call-graph of cost attributions. To

test the infinite redo/undo feature, the system was used for a distinct number

of events (100, 200, 500, and 1000). First all the undos were carried out and

162

then afterwards all the redos. Figure 5.4 shows the heap profile graph after

1000 events have been undone and then redone.

Figure 5.4: Heap profile to evaluate infinite redo/undo.

In an interactive program, time usage is surely governed by how fast the

user can move the mouse and type text. So, the evaluation of the space and

time behaviour of the infinite redo/undo in HASKEU should care about space

usage only, not the time. If there was a growth in space consumption then, as

time goes by more space is consumed (and not freed). On a graph, that would

appear as a steady upward slope from left to right. The heap profile graph in

Figure 5.4 does not have such a slope. This proves that there is no growth in

space consumption by using infinite redo/undo in HASKEU.

163

5.2.4 To Select an Item

Three types of selection of an item are needed:

1. Select to show sub-items or to delete. It works on mouse click when the

system’s mode of operation is selected as ModeSelection.

2. Select to edit annotation. It also works on mouse click but when the

system’s mode of operation is selected as ModeLabelEdit.

3. Select to show tool-tips or to show the position of a new item. It works

on mouse move on the screen for any mode of operation.

Any visual item in the system has a start position and a size information. Any

mouse operation on the screen checks if the mouse position is inside an item

boundary. A syntax tree traversal is needed to deselect and select an item. Any

selection operation must deselect other previous selected items first. Selecting

or deselecting items in the tree is as simple as calling the Functor typeclass

method fmap as well-defined in the haskell.src.exts library for syntax tree.

selectTree p selTy tree =

fmap (selectAnn p selTy) tree

deselectTree tree =

fmap deselectAnn tree

selectAnn p selTy svi@(s, vi) =

selectAnnOnType p selTy (insideGIArea p vi) svi

deselectAnn (s, vi) =

(s, vi {selected=False, annEditMode=False, mseInside=False})

164

Selection of an item also checks in which part (upper or lower) of the item

the mouse is positioned (p in the above code), because while adding a new

item it is necessary to know if the new item will be added as an argument or

as an application to the existing item.

As there are five panes for the five types of syntax tree nodes, a mouse click

on a specific pane involves traversing a specific part in the syntax tree which

can save time by not traversing the whole tree. Once an item is found to be

selected, it stops traversing the rest of the tree. For example, the following

code is used to select items in the pattern only of a selected function:

selFnPat p selTy lstMtch =

map checkSelMtch lstMtch

where

checkSelMtch mtch@(Match a b lstP d e)

| (isSel mtch) = Match a b (map checkInPat lstP) d e

| otherwise = mtch

checkSelMtch mtch = mtch

-- as user can also write program textually,

-- can create other |Match| pattren

checkInPat pat = selectTree p selTy pat

5.2.5 To Add a New Item

Adding a new item means adding a new node in the syntax tree. The following

function node with default values is added to the syntax tree when a user

adds a new function in the visual system. The function body must have a

165

default value, because of the function body structure defined in the syntax

tree. The default function body is set as a literal string with the value of

"--FunctionIsNotDefinedYet--". A function body containing this default

value is not shown to the user.

newFunc =

let var = Lit sviInit (String sviInit

"--FunctionIsNotDefinedYet--"

"--FunctionIsNotDefinedYet--")

rhs = UnGuardedRhs sviInit var

mtch = Match sviInit (Ident sviInit "f") [] rhs Nothing

in FunBind sviInit [mtch]

The following code shows new pattern item nodes, in which some items

have default values.

newPat patTy = case patTy of

ModePatVar -> PVar sviInit (Ident sviInit "a")

ModePatWild -> PWildCard sviInit

ModePatEmptyLst -> PList sviInit []

ModePatListCons -> PParen sviInit (PInfixApp sviInit p1 sCons p2)

where

p1 = PVar sviInit (Ident sviInit "x")

sCons = Special sviInit (Cons sviInit)

p2 = PVar sviInit (Ident sviInit "xs")

ModePatStr -> PLit sviInit (String sviInit "abc" "abc")

ModePatInt -> PLit sviInit (Int sviInit 0 "0")

ModePatChar -> PLit sviInit (Char sviInit ’c’ "c")

ModePatBool -> PApp sviInit

(UnQual sviInit (Ident sviInit "True")) []

166

To add a new node in the function body the following code is used, which

creates different exp nodes with default values. The if-then-else syntax is

replaced by the predefined function cond, whose type cond::Bool -> a -> a -> a

is given in the embedded test module.

expVar expTy = case expTy of

ModeExpApp -> Var sviInit (UnQual sviInit (Ident sviInit "a"))

ModeExpOp -> Var sviInit (UnQual sviInit (Symbol sviInit "+"))

ModeListCons -> Con sviInit (Special sviInit (Cons sviInit))

ModeEmptyList -> List sviInit []

ModeCnstStr -> Lit sviInit (String sviInit "abc" "abc")

ModeCnstInt -> Lit sviInit (Int sviInit 0 "0")

ModeCnstChar -> Lit sviInit (Char sviInit ’c’ "c")

ModeCnstBool -> Con sviInit (UnQual sviInit (Ident sviInit "True"))

ModeIfStmt -> Var sviInit (UnQual sviInit (Ident sviInit "cond"))

The illegal case of applying a constant to an argument while adding a new

item in the function body is checked. Any item can be added as an argument

to an existing item, but an existing item cannot be added as an argument to

the new item (e.g., constants). The following code validates this criteria of

adding new items in the function body:

data ExpTy = ExpInput | ExpOutput

newExp expTy prevExp ExpInput =

App sviInit prevExp (expVar expTy)

newExp expTy prevExp ExpOutput = case expTy of

ModeExpApp -> App sviInit (expVar expTy) prevExp

167

ModeExpOp -> App sviInit (expVar expTy) prevExp

ModeListCons -> App sviInit (expVar expTy) prevExp

ModeEmptyList -> prevExp

ModeCnstStr -> prevExp

ModeCnstInt -> prevExp

ModeCnstBool -> prevExp

ModeIfStmt -> App sviInit (expVar expTy) prevExp

5.2.6 To Delete/Edit an Item

Items can be deleted from any of the five panes. When an user selects an item

in a specific pane, the value of areaOfOperation is set to that specific pane,

and then when a user clicks on the delete button the item in the specific pane

is deleted. This is because two items can be selected in two different panes at

the same time, but only the last selected item has to be deleted. The following

code checks the area of operation before deleting an item:

deleteNode :: SystemState -> SystemState

deleteNode (SystemState f t g ty h) =

let Module (s, vi) mh mp imp lstDecl = shapeTree g

mod = case (areaOfOperation g) of

GblFn -> Module (s, vi) mh mp imp (delSelFn lstDecl)

LclFn -> Module (s, vi) mh mp imp (delSelLclFn lstDecl)

FnArg -> Module (s, vi) mh mp imp (delSelFnPat lstDecl)

LclFnPat-> Module (s, vi) mh mp imp (delSelLclFnPat lstDecl)

FnBody -> Module (s, vi) mh mp imp (delSelFnExp lstDecl)

in (SystemState f t g{shapeTree = mod} ty h)

A cascade delete is implemented in this system, so that after deleting an

168

item there will not be any syntax error. Cascade delete in this system means

all the sub-items of a node will be deleted if a node is deleted. Deleting an

item from global functions, local functions, global function pattern, or local

function pattern is as simple as deleting an item from a Haskell list. Deleting

an item in a function body involves a recursive call of a function delExp (given

below) to check which item is selected in the tree. If an item is selected from

two items in an App node, then the function returns the other unselected node.

If none of the items in the App node is selected, then the function calls itself

recursively to check any selected item in the subtrees. If a selected item is the

last item in the tree, then the function body is set as the literal string with

the default value of "--FunctionIsNotDefinedYet--".

delExp exp@(App svi eOne eTwo)

| (isSel eTwo) = eOne

| (isSel eOne) = eTwo

| otherwise = App svi (delExp eOne) (delExp eTwo)

delExp exp@(Paren svi eOne) =

Paren svi (delExp eOne)

delExp exp@(Var _ _) =

if (isSel exp)

then Lit sviInit (String sviInit

"--FunctionIsNotDefinedYet--"

"--FunctionIsNotDefinedYet--")

else exp

Editing the annotation of an item also involve traversing the syntax tree

to find a selected item first, and then the annotation is replaced by the value

169

contained in an annotation text control.

5.2.7 To Validate Syntax Error

The annotation value is always checked before it is changed to avoid syntax

errors in the visual system. Some of the coding which performs the checks are

shown below.

The function chkModuleNameBeginsWith checks if a module name begins

with a upper case letter or not:

chkModuleNameBeginsWith prevStr newStr

| (((ord $ head newStr) >= 97) && ((ord $ head newStr) <= 122))

= prevStr

| otherwise

= newStr

The following function checks if a function name is valid:

chkValidFuncName prevStr newStr

| (newStr == "")

= prevStr

| (((ord $ head (newStr)) >= 65) && ((ord $ head (newStr)) <= 90))

= prevStr

| isNotAnString newStr

= prevStr

| otherwise

= newStr

The following function checks if a string is an invalid operator:

170

isNotAnOperator newStr =

or $ map chkEachChar newStr

where

chkEachChar ch = ((ord ch < 32) || (ord ch > 63))

The following function checks if a string is an invalid integer:

isNotAnInt newStr =

or $ map chkEachChar newStr

where

chkEachChar ch = ((ord ch < 48) || (ord ch > 57))

5.2.8 To Adjust wxHaskell Events

The wxhaskell events need to be adjusted in order to be used in this functional

reactive programming based framework. There were a small number of events

missing in the wxHaskell library, but they were necessary for the implementa-

tion of this system. wxHaskell is built on top of wxWidgets which is a com-

prehensive C++ library portable across all major GUI platforms. wxHaskell

consists of two libraries, WXCore and WX. The WXCore library provides the

core interface to wxWidgets its functionality. The WX library is implemented

on top of WXCore and provides many useful functional abstractions to make

the raw wxWidgets interface easier to use. The function newEvent has been

used to create new events. Some examples are given below:

The windowScroll event works when a user scrolls a window pane using

the mouse or keyboard:

171

windowScroll :: WX.Event (Window a) (EventScroll -> IO ())

windowScroll = WX.newEvent "windowScroll"

windowGetOnScroll windowOnScroll

The keyboardUp event works when a user releases a keyboard button:

keyboardUp :: WX.Event (Window a) (EventKey -> IO ())

keyboardUp = WX.newEvent "keyboardUp"

windowGetOnKeyUp (windowOnKeyUp)

The keyboardUp event works when a user presses a keyboard button:

keyboardDown :: WX.Event (Window a) (EventKey -> IO ())

keyboardDown = WX.newEvent "keyboardDown"

windowGetOnKeyDown

(windowOnKeyDown)

All the wxHaskell events need to be represented as FRP events to be used in

this design pattern. We used some functions provided in the reactive-banana.wx

library for this representation process.

The function shown below represents the windowScroll event in the wx-

Haskell library to an FRP event using the event1 function.

evSwScroll :: Frameworks t =>

ScrolledWindow () -> Moment t (Event t EventScroll)

evSwScroll sw = do

eScroll <- event1 sw windowScroll

return (eScroll)

172

5.3 The Views

5.3.1 To Draw the Shape Tree

The visual view of a program is drawn from the shape tree. Any occurrence of

an event (keyboard press, mouse click, mouse move, button click etc) in any

program editor (textual or visual) changes the shape tree and the visual layout

of the program is created. Then, the visual display of the program is drawn

from the shape tree by rendering graphics on wxHaskell panes. So, to draw

the visual items on the screen required a tree traversal. The following class is

used to traverse the tree to draw items of the shape tree:

class DrawShapeTree a where

drawItem :: DC () -> ModeOfOperation -> a -> IO ()

drawItemMB :: DC () -> ModeOfOperation -> Maybe a -> IO ()

drawListItems :: DC () -> ModeOfOperation -> [a] -> IO ()

drawItem dc dMode shp = return ()

drawItemMB dc dMode Nothing = return ()

drawItemMB dc dMode (Just shp) = drawItem dc dMode shp

drawListItems dc dMode lstShp =

sequence_ (map (drawItem dc dMode) lstShp)

where drawItem function draws a single item, drawItemMB draws a item

with a Maybe data type, and drawListItems draws a list of items. We always

pass the ModeOfOperation value of the SystemState is always passed to these

functions, because the item view depends on the ModeOfOperation (eg, if the

mode of operation is selection then “add new item” icons will not be shown).

173

The rendering of graphics is not a huge operation in this system, because the

whole shape tree is not drawn at one time, rather only the list of function

names of the module and the details of a selected function are shown. Because

of lazy programming, the auto layout does not have to calculate position and

size information of all the items. So, a user can get immediate feedback of the

visual layout while editing a program on the screen. An item can be drawn

using low-level graphic operations on the screen. By low-level it is meant that

an item consists of some or all of rectangles, triangles, lines and text. The

coding shown below display an function item on the screen:

let Point x y = itemPosition vi

drawRect dc (rect (itemPosition vi) (itemSize vi))

[color := black,

brush := brushSolid (colorRGB 96 123 139)]

drawText dc (synonym vi) (pt (x+5) y) []

The drawing of an item includes some or all of the following operations:

1. Drawing the boundary of an item.

2. Drawing specific icons for items (eg, list icon, integer icon etc).

3. Drawing argument boxes for function applications.

4. Drawing a group box and joining it to child nodes for function applica-

tions.

5. Drawing the annotation of an item.

6. Drawing another boundary if the item is selected.

174

7. Drawing cross marks if an item contains errors.

8. Displaying tooltip text when the mouse hovers on an item.

9. Drawing special icons for certain items (undefined application, recursive

application, an item in the function body which is also parameter).

5.3.2 To Show the Annotation Text Editor

When an item’s editing mode is true, a text editor becomes visible with the

same size and position of the item, and shows the item annotation in it. The

following code shows how to set the attributes of an annotation text editor

(the view of the text editor) by the interface logic function (starting with “il”)

to edit the annotation of a local function name.

let vAnnEdtVisiLclFn = \m ->

view (txtAnnEdtLclFnVw, "visible") m ilAnnEdtVisiLclFn

let vAnnEdtTxtLclFn = \m ->

view (txtAnnEdtLclFnVw, "text") m ilAnnEdtTxtLclFn

let vAnnEdtPosLclFn = \m ->

view (txtAnnEdtLclFnVw, "position") m ilAnnEdtPosLclFn

let vAnnEdtInsPtLclFn = \m ->

view (txtAnnEdtLclFnVw, "insertionPoint") m ilAnnEdtInsPtLclFn

The wxHaskell text controls do not change their position with the scrolling

of their container pane. So, a function called origToVirtuScroll is used to

force the text control by calculating an item’s virtual position (the original

position of an item less how much the pane is scrolled) in a scrolled screen.

175

origToVirtuScroll :: SystemState

-> (String, ItemState)

-> (String, ItemState)

origToVirtuScroll m (s, origVi) =

let sp = getSpecificScrollPos m

origP = itemPosition origVi

virtuVi = origVi {itemPosition = pt

(pointX origP - pointX sp)

(pointY origP - pointY sp)}

in (s, virtuVi)

Then, any editing in the annotation text editor is controlled by its controller

to change the system state.

5.3.3 To Calculate Row and Column of a Text Control

from Insertion Point

A wxHaskell text control does not provide row and column numbers of the

current cursor position. Rather it gives an insertion point which combines the

row and column numbers into one number. In contrast, the syntax tree created

by the haskell.src.exts module works with the row and column positions

of a program. So, the row and column positions need to be calculated to focus

the visual item of a textual item in the current cursor position and vice-versa.

Also, the current row and column positions need to be shown on the screen in

order to aid textual programming. The following function is used to get row

and column positions from the insertion point:

176

getRowColFromInsPt :: String -> Int -> (Int, Int)

getRowColFromInsPt s ins =

let lenLines = map length (lines s)

in getLnCol (-1) 0 0 ins lenLines

The function below is used to get insertion point from the row and column

positions:

getInsPtFromRowCol :: String -> Int -> Int -> Int

getInsPtFromRowCol s l c =

let lenLines = map length (lines s)

linesErr = take (l-1) lenLines

in sum linesErr + (l-1) + (c-1)

5.3.4 To Enable/Disable Redo/Undo Buttons

To implement Redo/Undo, the states of the system are stored. Undo brings

the previous state back and redo moves forward to the next state. A stack

is used to support redo/undo, and the current position contains the index

of the current state in the stack. The disable state of the redo or the undo

button indicates that there is no more redo or undo operation to be done. The

following functions are used to find the disable/enable states of the redo/undo

buttons.

isEndOfUndo :: SystemState -> Bool

isEndOfUndo (SystemState _ _ _ _ (ModelHistories h cPos)) =

177

cPos > 0

isEndOfRedo :: SystemState -> Bool

isEndOfRedo (SystemState _ _ _ _ (ModelHistories h cPos)) =

(length h) > (cPos + 1)

5.3.5 To Add More wxHaskell Attributes

There are some wxHaskell attributes missing in the the current wxHaskell

library, but they are necessary for the implementation of this system. The

following functions are used to create new attributes: some of the code created

is given below:

insertionPoint :: WX.Attr (TextCtrl a) Int

insertionPoint = newAttr "insertionPoint"

textCtrlGetInsertionPoint (textCtrlSetInsertionPoint)

mouseCursor :: WX.Attr (Window a) (Cursor ())

mouseCursor = newAttr "mouseCursor" windowGetCursor

(\w c -> do windowSetCursor w c

return ())

5.3.6 Difficulties and Achievements

It was difficult to find the relevant libraries and to learn what they do from

little documentation in some cases, and then to apply and customize them.

Using wxHaskel library widgets was also difficult. Sometimes some alterna-

tives were chosen as some widgets were found not to be in working order. Some

178

new widget events and attributes needed to be added. More work needed to

be done in order to draw shapes with low-level graphics. There were also

difficulties while adjusting the wxHaskell library with the functional reactive

library reactive.banana, because the reactive.banana.wx library to do this job

is not complete for the purposes needed. Understanding the syntax tree in the

haskell.src.exts library was difficult as there is very little documentation and

examples provided.

A library was developed in HASKEU which called MVC_WX.lhs (given in

Appendix E), where many other wxHaskell events and attributes were created

and adjusted for the reactive.banana libraray. This may be useful for devel-

opers who want to work with wxHaskell and reactive.banana. Some of the

functionality from this library was sent to the author of reactive.banana and

was much appreciated. In the next chapter the experiment process and result

of a usability test will be shown.

179

Chapter 6

Usability Experiment and

Result

6.1 Experiment

A usability test was conducted to evaluate the system by testing it on end-

users. This way, direct feedback from the real users were obtained about the

usability of the system.

The usability test was designed as follows: a programming exercise was

devised; some instructions were written (as suggested by Robins and Roun-

tree (Robins et al., 2003)) to complete this exercise and a pilot test conducted

with one user; the problems with the instructions were fixed, and then tried

with four users; the following details were measured — the time taken to com-

plete the test, accuracy (correctness or incorrectness), and emotional response

180

(what the users think) using a questionnaire (given in Appendix D.1). The

next step was to check whether the usability testing met the usability goals

(described in Section 6.1.5)) as suggested by Mayhew and Nielsen (Mayhew,

1999; Nielsen, 1993).

6.1.1 User Manual

A user manual was prepared to give assistance to the end-users while us-

ing the programming system as suggested by Blake and Bly (Blake and Bly,

1993). This manual was provided in a traditional printed format as well as

in an electronic (pdf) format as suggested by Price and Brockmann (Price

and Apple Computer, 1984; Brockmann, 1990). The user manual is given in

Appendix C.

6.1.2 Selection of End-Users

This experiment focused on the programming knowledge aspect of the end-

users, and two groups of participants were selected based on their programming

experience. The first group consisted of skilled programmers, and the second

group were of non-programmers and the both groups had no prior knowledge of

functional programming. The skill level in programming was measured based

on how long a person had been working with programming languages, and

how many programming languages they knew. The programming skill of each

end-user was observed before the selection process, and then a decision was

181

taken if the person was to be selected.

It was decided to recruit end-users by invitation from different professions,

but with no previous involvement with this research. A plan was set to con-

duct studies of a small set of five end-users where two of them were skilled pro-

grammers and the others were non-programmers. Each person in the skilled

programmer group knew of at least three programming languages (other than

purely functional programming languages), and they had used these languages

regularly in the previous four years. The three non-programmers were two

business administrators and a physicist. The first person to test the system

was one business administrator who was only able to fix problems with the

instructions for the programming exercise and was not included in the final

test. (the instructions are shown later in Section 6.1.4). It was assumed that

if the instructions were easily understandable by a non-programmer, then the

skilled programmers could also understand it. The age group of all partici-

pants was between 30 and 40, and each person had at least an undergraduate

degree. Three of the participants were former graduates of the University of

Gloucestershire.

6.1.3 To Devise a Programming Exercise

After the selection of the end-users was finalised, these end-users performed

the same programming tasks with both the textual and visual programming

182

systems in order to collect data to perform a qualitative and quantitative

comparison between the two sets of users and between the textual and visual

approaches. The quantitative data measured in this programming exercise

were both the speed with which end-users could create functional programs

(how long does it take?) and the accuracy (correctness or incorrectness) of the

completed program. The qualitative data were appropriateness of those pro-

grams (how well do they meet their specification?). The end-users were also

encouraged to ask questions as they worked. The qualitative data was also

taken from the questionnaire (given in Appendix D.1), but recorded anony-

mously.

The purpose of this programming exercise was to write a reverse function.

The reason this function was chosen was because most of the visual actions of

the system (globals, locals, clauses, patterns, function body and recursion) are

involved in building this function. Two of the selected end-users (one program-

mer and one non-programmer) were asked to complete the program textually

first and the other two were asked to complete the program visually first.

6.1.4 Instructions for the Exercise

After the first user had completed this exercise as a pilot, the instructions were

adjusted as shown below:

183

Exercise: Write a Haskell function to return the elements of a finite list in

reverse order.

Sample Input/Output:

Input : [6,2,4,9,5]

Output : [5,9,4,2,6]

Important Concepts (Pattern matching, Recursion):

The two important concepts needed to complete the reverse function are

pattern matching and recursion. In Haskell, very concise and elegant solutions

to problems can be worked out using these two concepts. Recursion is the way

of defining a function in which the function is called inside its own definition.

Pattern matching is a dispatch mechanism of choosing which pattern can be

matched by a given function invocation.

Function Structure:

Table 6.1: Function Structure

No Item Description Steps

1 Global func-
tion name

Global function name Create a function with
the name reverse.

2 Global clause
1 pattern

The only input parameter in pat-
tern is a list of items

Add a parameter vari-
able l.

184

3 Global func-
tion body

It calls a local function rev

(which will be defined later). This
function call should be applied to
two arguments — 1) the original
list — l and 2) an empty list —
[] where the items of the origi-
nal list will be added in a reverse
order.

Apply rev to l and
[].

4 Local func-
tion

A local function with two clauses.
Each clause has two parameters
in its pattern. The first param-
eter is the original list, items of
which are added to the second pa-
rameter in a reverse order.

Create a local func-
tion with name rev

which should have two
clauses.

5 Local clause 1
pattern

Clause 1 has the edge condition.
If this condition is not specified
then the function will produce an
infinite loop. The edge condi-
tion is the empty list. When
all the items from the original
list are pulled out, it will become
an empty list and the function
should return the reverse list. So,
the first parameter in the pattern
of the clause 1 is an empty list
[], and the second parameter in
the pattern of the clause 1 is the
reversed list.

Add two parameters
in the pattern —
empty list [] and
parameter variable a.

6 Local clause 1
body

The function body of clause 1 re-
turns just the reversed list a.

Return a.

7 Local clause 2
pattern

In clause 2, the original list is split
into a head and a tail (x:xs), so
that the head can be added at the
end of the reversed list and the
tail is split into a head and a tail
again by calling the function re-
cursively until the tail is empty.
So, the first parameter in the pat-
tern of the clause 2 is a split list
(x:xs), and the second parame-
ter in the pattern of the clause 2
is the reversed list.

Add two parameters
in the pattern — list
(x:xs) and parameter
variable a.

185

8 Local Clause
2 Body

Call of this local function is called
recursively where the first argu-
ment is the tail of the original list
xs and the second argument is the
reversed list with the head added
to it using the (:). So, the second
argument is apply of (:) to two
arguments — head x and reversed
list a.

Apply rev (so that re-
cursively) to two argu-
ments — xs and (:),
where the second ar-
gument (:) also have
two arguments, x and
a.

6.1.5 Usability Goals

The following usability goals were set based on the above task. These usability

goals were checked against the results obtained from the usability testing.

• Both the experienced programmer and non-programmer groups should

complete the task faster visually than textually;

• The system should allow a smooth transition from visual to textual and

vice-versa as the users’ programming expertise increases. For example,

if a person learns the textual system first, he can finish the task visually

faster than a person who has not learnt either system yet.

• The experienced programmer group should complete the task faster than

the non-programmer group both textually and visually, but the percent-

age of performance difference between the two groups should be higher

using the textual interface than the visual one. A percentage measure

to calculate the performance difference between the two groups in either

system (see Section 6.2.1) will be applied to the completion times using

186

both interfaces by the two groups, and it is expected that this measure

will be smaller for the visual task.

The researcher also performed the above task to confirm the possible expected

outcomes.

6.1.6 Experiment Process

All participants were asked to read and sign a consent form (see Appendix D.2)

before the the session started. The purpose of the consent form was to provide

participants with a clear statement that described the aims of the experiment

and the nature of involvement of participants. All participants did the ex-

periment individually. The experiment consisted of two different sessions —

a textual experiment session and a visual one. Each session was followed by

a short training session to introduce each textual and visual system. In this

training session, the end-users were trained to program a function append.

This training was sufficient for them to use the system without making many

mistakes. This append was chosen so that the exercise would be similar to the

training, so that there would no confusion.

The training sessions were followed by a short 30 minutes tutorial. The

textual tutorial was provided by the website http://learnyouahaskell.com/,

written by Miran Lipovaa (Lipovaa, 2011). This was a very good external

validity of the textual training session as it was designed for beginners. The

187

user manual, created by the researcher, was used as the visual tutorial. These

training sessions were also important to bring all participants to the same

level before they did the experiment. During the experiment, the participants

used their own machines and were accompanied by the researcher. If they

had any relevant questions, then these were answered by the researcher. The

participants were always encouraged to see the effects of the textual system in

the visual system and vice-versa while programming, so that one or the other

experiment sessions would be easier to do. At the end of each experiment, par-

ticipants described their experience so far by answering a questionnaire (see

Appendix D.1).

6.2 Result

The completion rate of the above task in both the textual and visual systems

by the four participants was 100%. The correctness of the finished tasks in

visual programming was 100% and in textual programming was 100% and so

the overall correctness was 100%.

6.2.1 Performance Comparison Using Quantitative Data

Performance Comparison for the First Usability Goal

The first usability goal was that both experienced programmer and

non-programmer groups would complete the task faster visually than textu-

ally. The quantitative data obtained from the completion times indicated that

188

three participants (two non-programmers and a programmer) had completed

the task faster visually than textually. One programmer had completed (in

the sequence of visually first textually later) the task faster textually than vi-

sually. This could be because the programmer already knew about some other

textual language and/or in doing the visual exercise first, he/she had learnt

the textual syntax. The completion times of the four participants using the

textual system were recorded as 20 mins, 11 mins, 36 mins, and 22 mins, while

the completion times using the visual system were recorded as 9 mins, 13 mins,

11 mins, and 19 mins (see Table 6.2), thus achieving the first usability goal in

this small sample. Figure 6.1 shows a comparison of completion time between

textual and visual system.

Table 6.2: The completion times (in minutes) by the participants using the
both textual and visual systems

Participant Textually First Visually Later Visually First Textually Later

Programmer 1 20 mins 9 mins
Programmer 2 13 mins 11 mins
Non-Programmer 1 36 mins 11 mins
Non-Programmer 2 19 mins 22 mins

This figure shows that the average completion time textually was 22.25

mins, and average completion time visually was 13 mins. This suggests the

task completion time when performed textually is almost double that when it

is performed visually.

Performance Comparison for the Second Usability Goal

The second usability goal was that the system should allow a smooth tran-

sition from visual to textual system and vice-versa as programming expertise

189

Figure 6.1: Performance of all participants - visually vs textually.

increases. From the quantitative data obtained from the completion times,

it can be seen that each participant could complete a program faster either

visually or textually if he/she had already completed the program in the other

system (see Figure 6.2).

In this programmer group, the participant who completed the task visually

first completed the task textually 9 mins faster than the other participant

who completed the task textually first (see part of Figure 6.2 in Figure 6.3).

In the programmer group, the participant who completed the task textually

first completed the task visually 4 mins faster than the other participant who

completed the task visually first. The same was true in the non-programmer

group. The participant who completed the task visually first completed the

task textually 14 mins faster than the other participant who completed the

task textually first. The non-programmer participant who completed the task

190

(a) Transition rate from one system to the other of programmer group.

(b) Transition rate from one system to the other of non-programmer group.

Figure 6.2: Transition rate from one system to the other of two groups.

191

textually first completed the task visually 8 mins faster than the other non-

programmer participant who completed the task visually first. This suggests

a transition ability of the system from visual to textual and vice-versa as

programming expertise increased.

Figure 6.3: Transition ability of the system.

Performance Comparison for the Third Usability Goal

The third usability goal was that the experienced programmer group should

complete the task faster than the non-programmer group both textually and

visually, but the percentage of performance difference between the two groups

should be higher using textual interface than the visual one. The percentage

performance difference is calculated by using the following formula:

In any system (visually or textually),

the percentage performance difference =

(Average CT by PG - Average CT by NPG) /

192

(Maximum CT by any user) * 100

where

CT = Completion Time

NPG = Non-Programmer Group

PG = Programmer Group

Using this formula, the percentage performance difference rate between the

two groups in the textual system was found to be 37.5% and the performance

difference rate in the visual system was found to be 21.05%. This indicates

that non-programmer group are closer to the programmers when performing

the task visually rather than textually.

Figure 6.4: Performance difference rate between two groups.

193

6.2.2 Suggestion from the Qualitative Data

It was intended to perform qualitative analysis on the reasons why users did

not complete the assigned tasks using HASKEU. However, this was not possi-

ble as all users completed the tasks and this aspect will be deferred to future

work. This exercise was not tested with a programmer with functional pro-

gramming knowledge. From the answers to the questionnaire, a programmer

noticed an inconsistency, which was that in visual system a number is shown

for each clause and in the textual system the function name in a clause is

shown. A programmer suggested a dataflow line would be better than a recur-

sive symbol. The non-programmers did not find the type display very useful.

Maybe later if they work on functional programming they will find it useful.

None of the participants found the textual error reporting very useful, but

they thought that showing errors visually was a good idea. A programmer

commented that preventing syntax errors while editing in the visual system is

a good idea, but he suggested that having a beep or using a colour change if a

user presses a wrong key would be helpful. Both the programmers mentioned

in the free text box on the questionnaire that having the option to use both the

textual and visual systems together really makes program development easier.

An unexpected benefit was noticed while the test was being conducted by one

of the programmers that he was comfortable using the both textual and visual

system simultaneously.

194

6.3 Conclusion

To summarise, for this usability test, the visual system can be seen as a good

starting point for end-users to learn functional programming, and the textual

system was found helpful too as the end-users’ expertise increased. The testing

has been done with a very limited number of end-users and only one exercise

has been given. There could be other suggestions for improvements from the

end-users if the testing was done with larger numbers and over a longer time

period. The next chapter contains the conclusions.

195

Chapter 7

Conclusions

In this thesis, an approach is given for implementing a combined textual and

visual programming system of Haskell. This chapter discusses the achieve-

ments, suggests the limitations and possible future works of this research, and

then concludes.

7.1 Achievements

The following achievements have been realised in this research which are the

direct outcome of fulfilling the research objectives given in Section 1.7:

1. The design and implementation of a novel programming system in Haskell

to support both visual and textual programming allowing for a smooth

transition from one to the other as the end-user’s programming expertise

increases (achievement of research objectives 1, 2, 3).

196

2. The fact that the changes occur in both textual and visual systems si-

multaneously has been found to be helpful by end-users in their program

development (achievement of research objectives 1, 2, 3).

3. An implementation of a framework of the Model-View-Controller (MVC)

design pattern in a functional programming language has been achieved.

Programmers brought up on object-oriented programming languages may

benefit from this framework by being able to use this very useful and

widely used design pattern in functional programming languages (achieve-

ment of research objective 3).

4. The thesis has proposed and implemented a visual system for functional

programming, which produces error-free syntax. Sometimes it is really

hard, specially in textual programming, to understand and fix an error

from a syntax error message. This visual system works with syntax tree

nodes, and it is not possible to create a node in the syntax tree which has

been the result of a syntax error. The system also checks if any editing of

annotation causes a syntax error and does not allow incorrect changes to

be made to an annotation for that specific node (achievement of research

objective 2).

5. As an implementation of an on-time system, this system shows type in-

formation within a visual program while creating/ editing a program,

rather than showing it after compilation (achievement of research objec-

tive 2).

197

6. The system has produced simple but useful visual error reporting of type

errors for end-users. The visual type error reporting has helped end-users

to understand and locate a type error more precisely. As a summary of

this error reporting, cross marks in the dataflow arc in the function body

indicate type errors and both end-points contain the type information

shown as tooltip text (achievement of research objective 2).

7. The system has shown that an infinite redo/undo facility is possible in a

system (theoretically and practically), as a consequence of the lazy evalu-

ation nature of Haskell. During the testing process by the researcher and

during the usability test by the end users, no reports of crashes were de-

tected because of any infinite redo/undo action. Also, an experiment has

been conducted to evaluate the space behaviour of the infinite redo/undo

feature of HASKEU using the profiling facilities of the HASKELL system

(achievement of research objective 3).

7.2 Limitations and Suggested Future Devel-

opments

The visual programming system in HASKEU is incomplete. To design and

implement a complete visual representation of Haskell syntax and a complete

visual programming tool needs a huge amount of work. In HASKEU, only

very simple Haskell syntax can be represented visually. Some other Haskell

constructs (eg, guarding, case, list comprehension) can be expressed from this

198

simple syntax but possibly clumsily, and it is not possible to create some syntax

(e.g., type classes and instances, data structures) from this simple system. To

establish a formal visual programming system, even for end-users, the neces-

sity of a complete visual notation of a Haskell syntax tree needs more detailed

research on cognitive and user-interface design issues, and possibly a prototype

editor implementation. A more detailed usability study will be necessary.

The following limitations of the thesis have been identified and the way to

overcome them in future developments are specified below:

1. Haskell has a vast syntax and only a small portion is covered in this

thesis in a visual representation. A complete visual notation and a pro-

gramming tool to support all the notations can be seen as a future goal.

A complete visual notation can be given by carefully considering HCI

issues to design many other icons and the dataflow between them and

then studying their usability.

2. The system has implemented low-level graphic operations of wxHaskell

on the screen to show the effect of direct manipulation. By low-level is

meant that an effect consists of some or all of rectangles, triangles, lines

and text. The quality of graphics to show the effects of direct manipula-

tion could be improved. Additional graphics quality (e.g., use of picture,

animation, special widgets) to show the effect of direct manipulation

would be beneficial.

3. One important advantage of functional programming languages is the

199

ease with which one can embed a domain-specific language (DSL). This

programming system is currently a general purpose programming lan-

guage. Designing visual programming for task-specific languages has

some advantages to offer end-users, as it affords users ready understand-

ing of what the primitives of the language do. The design of visual

programming editors for domain-specific libraries (eg, animation, music

synthesizers, robots) could be thought about as future plans.

4. A short usability study was organized on a very small set of end-users.

The number of users should be increased to get more useful and accurate

results from the usability study. If an advanced level of visual notation

is created at a later date, then an advance level usability study by actual

Haskell programmers would be beneficial.

5. More complete visual error reporting is one area for research. Right now

the system produced for this thesis has very simplified error reporting.

Some of error representation sometimes may not be understood properly

in order to be fixed by user. A more detailed understanding of textual

error messages, may be helpful to design the visual error reporting for

an advanced level of programming.

6. The textual editor is a very simple, plain text editor. The textual pro-

graming can be improved by implementing some advance techniques such

as syntax directed editing.

7. An automatic dataflow layout has been implemented to show a visual

200

program. Sometimes, manual layout is also useful for some advanced

users or a combination of both can make program development easier. A

future development could be a mixed layout and then to have a usability

study performed using it.

8. An integrated development environment (IDE) for this Haskell program-

ming system could also be considered, where a compiler and a debugger

could be integrated with the system.

From the analysis of the usability test results on end-users, it can be predicted

that visual programming may not be a replacement for textual programming,

and textual programming may not be a replacement for visual programming.

They can support each other in the end-user’s learning, development and main-

tenance activities of functional programming.

Finally, HASKEU is still at an very early stage. Based on the usability

testing on end-users, it can be hoped that HASKEU will inspire end-users to

learn and improve their functional programming skills. Adding more visual

notations would enable advanced users to program with more advanced fea-

tures. In chapter 1, the research statement was specified as “It is feasible to

develop an end-user functional programming system that consists of a visual

programming system and a textual programming system and for the end-user

to have a smooth transition between the two, particularly as the end-users’

programming expertise improves and increases. This end-user functional pro-

gramming system can be implemented in a functional paradigm.”, and this

201

has been validated. The contributions of the HASKEU system, which com-

bines various technologies and the benefit of the combined visual and textual

programming for functional programming described in this thesis promise to

have a broad impact on the usability of functional programming in the future

and the increase in popularity of functional languages.

202

Appendices

203

Appendix A

Appropriateness of Using Software Analysis and Design, and UML

Diagrams for Functional Programs

This Appendix discusses the appropriateness of using software analysis and

design (see Section A.1), and the appropriateness of using UML diagrams (see

Section A.2) for functional programs.

204

A.1 Appropriateness of using software analy-

sis and design

Although the Software Engineering Life Cycle (SDLC) gives a general overview

of ordering different phases of software engineering, the implementation and

documentation of the phases (from analysis to maintenance) depend on the un-

derlying programming paradigm of the programming language on which the

system will be developed.

A programming language can support good software design. The struc-

tured programming paradigm was introduced in 1960 to improve the clarity,

quality, and development time of a program with the use of new features such

as subroutines, block structures and for and while loops (Dahl et al., 1972).

Structured programming is supported by a structured system analysis and

design method (SSADM) (Downs et al., 1988). The structured paradigm is

consistent for all the programming languages it supports (some of the initial

languages were: ALGOL (Grune, 1977), Pascal (Jensen and Wirth, 1974),

PL/I (Hughes, 1986), and Ada (Barnes, 1984)). This SSADM is not used now.

Now, the object-oriented paradigm has succeeded the structured paradigm

with many new concepts such a class, object, inheritance, encapsulation, poly-

morphism etc (Booch, 1994; McLaughlin et al., 2006). Object-oriented de-

velopments are built on small encapsulated units that provide an interface to

205

be used by others. Hence, in a sensibly developed object-oriented program,

reusable elements are identified and changes only have a local effect. Such a

sensible development needs practice and OO developers are fortunate that they

can get support from OO analysis and design methodologies (OOADM). Any

popular methodology like OOADM has a graphical modelling language and a

supporting CASE (computer-aided software engineering) tool which provide a

graphical representation of the system. Examples of popular object-oriented

programming languages are Java (Booch, 1994), C++ (Stroustrup, 2000),

Smalltalk (Kay, 1996), Objective-c (Kochan, 2009). Many earlier OOADMs

can be found such as the Booch method (Booch, 1994), Fusion, (Coleman

et al., 1994), and OMT (Rumbaugh et al., 1991). But the most recent UML

(Unified Modeling Language) (Booch et al., 2005) has eclipsed many of the

earlier development methodologies and is ubiquitous nowadays. It is a fact

that early OOADMs and supporting notations were unified into UML (hence

the name) and this is the most common model now. Consequently, the support

provided by UML has an important role when choosing a software develop-

ment environment. One popular CASE tool is Rational Rose (Software, 1994)

which supports most of the methods just mentioned including UML.

The functional programming paradigm does not need the support of such a

modelling language and case tool. Although the functional programming com-

munity is well-established and with a broad user-base, it still does not feel the

necessity to implement a CASE tool or software development methodology to

206

support analysis and design in a functional language. Some notable progress

can be seen in the areas of testing and debugging such as Hunit (Claessen

et al., 2010) and QuickCheck (Claessen and Hughes, 2011), for testing and

GHCi (Himmelstrup, 2006), and HAT (Chitil and Luo, 2007) for debugging.

This shows that some common software development support tools do exist

for functional programming, so it is not that the functional community does

not like to use tools where necessary. Some people proposed that it would

be good to have a software development analysis and design methodology for

the functional paradigm (Wadler, 1998; Russell, 2001; Ryder and Thompson,

2005). One attempt can be found in the literature to develop a software design

and analysis methodology for functional programs. Russell (Russell, 2001) in

his PhD thesis showed a functional analysis and design (FAD) model which

was intended to support the analysis and design of the functional programming

paradigm. In reality, it is hardly ever used in the functional programming com-

munity (no discussion about it can be seen in the Haskell-Cafe (Haskell-Cafe,

2015) which is the comprehensive Haskell archive network) and no CASE im-

plementation has been seen yet which supports this modelling language. This

shows that the need to use an analysis and design tool for a functional paradigm

is still uncommon.

Functional languages are declarative and they are so high level (because of

the higher-order function, currying, immutable states etc.) that a programmer

uses concepts that do not require a design and analysis methodology. Diagrams

207

are less useful for functional languages than OOP languages. Instead, many

of these design diagrams can be expressed in types, or in signatures or using

type classes in Haskell.

The development of HASKEU was not done using a formal analysis and

design method because such a method does not exist, and the importance of

using such an approach was not the scope of the thesis.

There is always debate/confusion in the programming community about

the differences between programming paradigms, and the use of UML for func-

tional programming can be seen by some people as a debatable issue. The UML

diagrams are based on mutable states where there is no notion of state in a

functional program. Hence, a functional program does not have any mutable

objects. Relationships between immutable objects are of no interest, because

such relationships are invalid. In functional programming, one function may

call another. To design the overall system is not the most challenging aim,

which is to implement the functions doing the calling. Because there are no

side-effects, it is natural to divide a system into functions that may be devel-

oped independently. UML is not an appropriate notation to support this. The

next section gives more explanation about appropriateness of using UML to

support the analysis and design of functional programs.

208

A.2 Appropriateness of using UML

Design often involves diagrams, especially in the OOP paradigm, whereas func-

tional programming hardly uses diagrams to show the design of a program. Be-

cause functional programming does not have a recognized design methodology,

some attempts have been taken to make use of UML-for-OOP-like diagrams

for functional programming. In Wakeling (Wakeling, 2001), it was shown

how three types of UML diagrams could be used for functional programs and

then how functional code in Haskell could be produced from those diagrams.

These three types of diagram are use case diagrams, class diagrams and se-

quence diagrams. In a use case diagram, each of the different courses of action

has an accompanying textual description. The intention of the diagram and

the textual description is to make it obvious to all stakeholders what will be

offered to the user and this should make it easier to agree. Using the use

case diagrams as a basis, a number of classes having the required functional-

ity can be produced. Once the classes have been decided, sequence diagrams

can be drawn to show how they achieve the use cases. Among the three di-

agrams, only the use case diagrams can be created for functional programs

without many restrictions. The other two i.e. class diagrams and sequence

diagrams require the designer to adopt a functional style. Once the func-

tional style has been adopted in drawing UML diagrams, Wakeling thinks the

generated code would look imperative. This is because, apart from use case di-

agrams, the basic premise of UML diagrams rests on the notion of state which

is the main restriction on drawing functional style diagrams in UML. There are

209

some other minor restrictions in class diagrams because functional programs

do not have inheritance features and they only have the multiplicities 1..1,

0..1, and 0..* (as Haskell types can be either a or Maybe a or [a]). Although

this restriction about multiplicities could be lifted by introducing new types

(e.g., data OneDotDotStar a = OneDotDotStar a [a]). The restrictions in

sequence diagrams are that a Haskell function should not have a free variable

and that the local side-effects on the state of an object are disallowed.

Wakeling also mentioned that some other state-based diagrams (state chart

diagram, activity diagram) are not very useful to design functional programs.

Other diagrams (component diagram, deployment diagram) do not relate to a

functional or other programming system development. A component diagram

describes the relationships between the program components. A deployment

diagram describes the relationships between components in a component di-

agram and the processors or the devices. A component diagram could be

mapped to a script for a configuration management system, it is hard to see

what more could be done with either diagram.

The other diagrams include a collaboration diagram which is another form

of a sequence diagram, and an object diagram showing the current state of an

object does not convey much meaning about the design of the system. Wakel-

ing managed to produce Haskell code from UML diagrams, however he believed

that the code produced looks imperative. In order to make it useful it is nec-

210

essary to be converted into a declarative form but this is a time-consuming

process and it is not natural for a functional style of programming.

Another minor work by Marcin Szlenk (Szlenk, 2011) also tried to map

UML to Haskell and only showed how to model class diagrams for functional

programs. In his mapping, the data types and functions of a module need to

be associated to each-other by creating different classes and this may produce

strange module. Szlenk wanted to investigate broadening the scope of the

Haskell included in the UML profile, but the researcher has found no further

work published by Szlenk in this area.

Drawing upon the experience of Wakeling and Szlenk, the decision was

made to investigate in more detail the appropriateness of using UML in func-

tional languages. Wakeling attempted to draw functional style code from UML

diagrams and as reported above, it can be seen that the generated functional

code is actually not in a useful style. Again, as the basic premise of UML dia-

grams rests on the notion of state, the question may arise whether it is possible

to remove that notion and sensibly use the diagrams. To answer this question

the researcher implemented a simple example in a stateful way in Java and in

a stateless way in Haskell. Then it was checked if a UML class or sequence

diagram could be created in a meaningful way for the Haskell program from

a reverse engineering perspective. The example is about a user login system.

In Java, there were two classes - a User class that encapsulated the user name

211

and password attributes and a UserLogIn class that contained the list of users

of the system and had a state for the currently logged in user. The UserLogin

class also had three functions which were to retrieve the existing user list, to

perform the login and to complete the registration.

public class User

{

private String user_ID;

private String password;

}

public class UserLogIn

{

private ArrayList<User> userlist = new ArrayList<User>();

private User currentUser = null;

public void retrieveExistingUserList() {...}

public boolean logIn (User u) {...}

public boolean registration (User u) {...}

}

In Haskell, there was a new data type User which has one constructor with

two fields for the user name and password. The User was defined in a module

called UserLogIn, and the module has the same three functions as in the Java

UserLogIn class.

module UserLogIn where

212

data User = User String String

retrieveExistingUserList :: IO [User]

logIn :: User -> [User] -> User

registration :: User -> IO [User]

The differences between stateless Haskell and stateful Java implementations of

user login system are analysed below:

(a) In Java, the userList and currentUser attributes in the UserLogIn class

are the state of the all users and the current user in the system respec-

tively. The userList can be changed in the retrieveExistingUserList

and registration functions and the currentUser can be changed in the

logIn function.

In Haskell, the current user and the user list are not member variables of

the module. In fact, they are parameters of some functions where necessary

and so these two fields cannot be shown in a class diagram. This actually

means that for functional programs class diagrams will be without any

member variables.

(b) In Java, the User and UserLogIn class have to be in two different classes

(there cannot be even one inner and one outer class) and hence their rela-

tionships are important in a class diagram. See Figure A.1.

213

Figure A.1: Class diagram of user login system.

In Haskell, it is possible to have two modules (one for just declaring the

data type User and one for the three functions) which looks odd from

the modularization point of view, but in this way, a relationship diagram

may be possible between the User and the UserLogIn module which is

the same as in the Java class diagram shown above. If it was wanted just

to have one class diagram for the one implemented module then declaring

the User as an inner class would be a good idea, but it needs the designer

to have functional programming knowledge.

(c) In Java, methods can be distributed into classes by considering how they

are changing and using the class level attributes. For example, the

retrieveExistingUserList and register methods change the private

userList attribute. Another example, the login method accesses the

userList attribute to check the validity of a user and change the value of

the currentUser attribute.

In Haskell, there is no such use of state and the retrieveExistingUserList

and register functions return a completely new user list. A list of users

is always passed as an argument to the logIn function and and then the

logIn function returns a completely new user. So, these three functions

214

can literally belong to anywhere in the program, as they are not shar-

ing any state. However, having them in one class diagram can produce

a one module structure containing the three functions. Nevertheless, it

should be stated that in an encapsulated class diagram, there is no point

in using the “hide state data” feature as this is not relevant for functional

programming.

(d) In Java, the sequence diagram for the user login action function must have

the two functions in sequence a) retrieveExistingUserList (to update

the userList attribute first) and b) logIn to check the user id and pass-

word in the retrieved userList. See Figure A.2.

Figure A.2: Sequence diagram of user login action.

In Haskell, the logIn function needs to have a user list parameter (to be

declarative) and any need to call this function will remind the developer to

retrieve the user list first. The aim of the sequence diagram is to remind the

developer to perform the actions in sequence is redundant for functional

languages.

215

In summary, HASKEU was not developed using a formal analysis and de-

sign method because such methods are not deemed useful in the functional

programming community, as discussed in Section A.1. Functional program-

mers have investigated the utility of using UML style diagrams to develop

functional programs over the years. The conclusion has always been that

UML is not suitable for functional programming development. HASKEU was

not developed using UML notation but followed a standard functional pro-

gramming development process which consists of dividing the problem into

sub-functions and developing these independently.

216

Appendix B

Spaghetti Code

217

Figure B.1: Spaghetti Code in LabVIEW (Carr, 2011) .

218

Figure B.2: A illustration of Spaghetti Code in early HASKEU.

219

Appendix C

User Manual

220

User’s Manual

HASKEU
(Haskell for end-users)

A Programming System for End-User Func-

tional Programming

221

Contents

1 General Information iii

1.1 System Overview . iii

1.2 Installation . iii

1.2.1 Starting HASKEU . iii

1.3 Exploring the Interface . iv

1.3.1 Global Toolbar . vi

1.3.2 Textual Programming Toolbar vii

1.3.3 Display of insertion point position in the Textual Pro-

gram Editor . viii

1.3.4 Textual Program Editing Area ix

1.3.5 Textual Error List . x

1.3.6 Visual Programming “Select/Edit/Delete” Toolbar . . xi

1.3.7 Visual Program Editing Area xii

1.3.8 Display of the mouse cursor position in the Visual Pro-

gram Editor . xiv

1.3.9 Visual Programming “Select/Edit/Delete” Toolbar . . xv

1.3.10 Visual Error List . xix

User’s Manual (HASKEU) Page i

222

2 Programming xx

2.1 Textual Programming . xx

2.2 Visual Programming . xx

2.2.1 Understanding Different Item Icons xxi

2.2.2 To Select an Item . xxv

2.2.3 To Add Annotation . xxv

2.2.4 To Delete an Item . xxv

2.2.5 To Add a New Function/ Local Function xxvi

2.2.6 To Add a New Function Clause/ Local Function Clause xxviii

2.2.7 To Add a New Parameter/ Local Parameter xxx

2.2.8 To Add an Expression xxxi

2.3 Understanding Visual Errors xxxiii

2.4 Testing a Program . xxxvi

2.4.1 To Save a Program . xxxvi

2.4.2 To Compile and Test a Program xxxvii

User’s Manual (HASKEU) Page ii

223

1 General Information

1.1 System Overview

This end-user functional programming system (HASKEU) supports both vi-

sual and textual programming, allowing for a smooth transition from one to

the other as a user’s programming expertise increases. The primary interface

is a visual dataflow language consisting of boxes and arrows — a box repre-

senting a process and an arrow representing the dataflow between processes.

The secondary interface is conventional textual language. Changes flow be-

tween the visual and textual interfaces, so that they are always consistent.

1.2 Installation

Currently full, in-person support is provided for the software installation

including operating system (Linux) installation.

1.2.1 Starting HASKEU

1. Double-click the desktop icon

2. The main screen appears, and the end-user functional programming

User’s Manual (HASKEU) Page iii

224

system (HASKEU) starts.

1.3 Exploring the Interface

The following Figure 1 shows the HASKEU user interface.

Figure 1: The HASKEU user interface.

1. Global Toolbar

2. Textual Programming Toolbar

3. Display of insertion point position in the Textual Program Editor

4. Textual Program Editing Area

User’s Manual (HASKEU) Page iv

225

5. Textual Error List

6. Visual Programming “Select/Edit/Delete” Toolbar

7. Visual Program Editing Area

8. Display of mouse cursor position in the Visual Program Editor

9. Visual Programming “Add new item” Toolbar

10. Textual Error List

All the panes in the textual and visual program editing area are resizable

and scrollable.

User’s Manual (HASKEU) Page v

226

1.3.1 Global Toolbar

The global toolbar (see Figure 2) contains the menus which are common for

both textual and visual programming.

Figure 2: The global toolbar.

Table 1: The global toolbar menus

Menu No Icon Menu Name Description

1 New Module Create a new module

2 Open File Open a file

3 Save Save a file

4 Save as Save as a file

5 Undo Undo the last action

6 Redo Redo the last undo action

7 Quit Exit the program

8 New Window Open a new window

User’s Manual (HASKEU) Page vi

227

1.3.2 Textual Programming Toolbar

The textual programming toolbar (see Figure 3) contains the menus to facil-

itate the textual programming system.

Figure 3: The textual programming toolbar.

Table 2: The textual programming toolbar menus

Menu No Icon Menu Name Description

1 Cut
Deletes a selection of text to move it to an-

other area

2 Copy
Copies a selection of text to duplicate it in

another area, while keeping the original text

3 Paste Places the cut/copied text in a new area

4 Find
Finds the next instance of any string of char-

acters

5 Replace

Finds the next instance of any string of char-

acters and replaces them with another spec-

ified string

User’s Manual (HASKEU) Page vii

228

1.3.3 Display of insertion point position in the Textual Program

Editor

The label (shown as no “3” in Figure 1) shows the line number and column

position of the insertion point in the textual program editor.

User’s Manual (HASKEU) Page viii

229

1.3.4 Textual Program Editing Area

The textual program editing area is where one can write functional programs

textually. Figure 4 shows the textual program editing area with an example

program included in it. This program editing area is resizable and scrollable.

Any editing operations in the textual program updates its visual equivalent

in the visual program editing area.

Figure 4: The textual program editing area.

1. The example textual program

2. Vertical scrollbar

3. Horizontal scrollbar

4. Mouse cursor changes appearance on the edges when resizing the edit-

ing area

User’s Manual (HASKEU) Page ix

230

1.3.5 Textual Error List

The listbox (shown as no “5” in Figure 1) shows all the syntactic and seman-

tic error messages in the textual program. This error display area is resizable

and scrollable. The following format is used in the textual error messages.

The display of the subformats enclosed within the () brackets is optional.

[line no, column no] (Global function name and clause no) (Local function

name and clause no) [Description of error]

User’s Manual (HASKEU) Page x

231

1.3.6 Visual Programming “Select/Edit/Delete” Toolbar

The visual programming “Select/Edit/Delete” toolbar (see Figure 5) con-

tains the menus to select, edit or delete an item in the visual programming

system.

Figure 5: The visual programming “Select/Edit/Delete” toolbar.

Table 3: The visual programming “Select/Edit/Delete” toolbar menus

Menu No Icon Menu Name Description

1 Select

Click on this button to enter selection mode

and then click on any item in the visual pro-

gram to select it

2 Edit

Click on this button to enter edit mode and

then click on any item in the visual program

to modify the annotation

3 Delete
Click on this button to delete a selected item

in the visual program

User’s Manual (HASKEU) Page xi

232

1.3.7 Visual Program Editing Area

Figure 6 shows the organization of the visual program editing area, which is

split into five panes, and each pane is resizable and scrollable.The visual pro-

gram editing area is where one can write functional programs visually. Any

editing operations in the visual program area updates its textual equivalent

in the textual program editing area.

Figure 6: The visual program editing area.

1. The list of global functions and their clauses in a module

2. The list of local functions and their clauses of a selected global function

clause

User’s Manual (HASKEU) Page xii

233

3. The pattern of a selected global function clause

4. The pattern of a selected local function clause

5. The body of a selected global or local function clause

User’s Manual (HASKEU) Page xiii

234

1.3.8 Display of the mouse cursor position in the Visual Program

Editor

The label (shown as no “8” in Figure 1) shows the coordinates of the mouse

cursor position in a pane.

User’s Manual (HASKEU) Page xiv

235

1.3.9 Visual Programming “Select/Edit/Delete” Toolbar

The visual programming “Add new item” Toolbar (see Figure 7) contains

the menus to add new items in the panes of the visual programming system.

Figure 7: The visual programming “Add new item” toolbar.

User’s Manual (HASKEU) Page xv

236

Table 4: The visual programming “Add new item” toolbar menus

Menu No Icon Menu Name Description

1 New function
Adds a new function on the global or

local pane

2 New clause
Adds a new clause on the global or local

pane

3 Variable
Adds a new variable on the pattern or

local pattern pane

4 Wild-Card
Adds a new Wild-Card on the pattern

or local pattern pane

5 Empty List
Adds a new Empty List on the pattern

or local pattern pane

6 List (x:xs)
Adds a new List (x:xs) on the global or

local pattern pane

7 String
Adds a new string on the global or local

pattern pane

8 Int
Adds a new Int on the global or local

pattern pane

User’s Manual (HASKEU) Page xvi

237

Table 4: The visual programming “Add new item” toolbar menus

Menu No Icon Menu Name Description

9 Char
Adds a new Char on the global or local

pattern pane

10 Bool
Adds a new Bool on the global or local

pattern pane

11 Function Application

Adds a new function application or pa-

rameter on the global or local function

clause body

12 Operator
Adds a new operator on the global or

local function clause body

13 List Constructor (:)
Adds a new list constructor (:) on the

global or local function clause body

14 Empty List []
Adds a new empty list constructor on

the global or local function clause body

15 String
Adds a new String on the global or local

function clause body

User’s Manual (HASKEU) Page xvii

238

Table 4: The visual programming “Add new item” toolbar menus

Menu No Icon Menu Name Description

16 Int
Adds a new Int on the global or local

function clause body

17 Char
Adds a Add a new Char on the global

or local function clause body

18 Bool
Adds a new Bool on the global or local

function clause body

19 If-Then-Else

Adds a new function application

“cond” which is a replacement of “If-

Then-Else” on the global or local func-

tion clause body

User’s Manual (HASKEU) Page xviii

239

1.3.10 Visual Error List

The listbox (shown as no “10” in Figure 1) displays all the semantic error

messages in the visual program. This error display area is resizable and

scrollable. The following format is used in the visual error messages. The

sub-formats enclosed within () first brackets are optional by displayed.

[Position in the screen] [Section] (Global function name and clause no)

(Local function name and clause no) [Description of error]

User’s Manual (HASKEU) Page xix

240

2 Programming

2.1 Textual Programming

The syntax of textual programming uses sequences of text and it describes a

combination of regular expressions that form a syntactically correct program.

The meaning given to a combination of what is handled by the semantics.

Please refer to read textbooks on functional programming to learn textual

syntax and semantics.

2.2 Visual Programming

The main benefits that can be gained by using this visual programming

system are:

1. Less syntax reduces the error rates.

2. Help with language semantics is provided.

3. Syntactic and semantic errors are avoided before attempting compila-

tion.

4. Faster learning and higher retention rates can be achieved.

5. Exploration is encouraged.

User’s Manual (HASKEU) Page xx

241

6. The programmer is always kept aware of the result by feedback being

continually provided.

7. The object of interest is immediately visible.

The following sections describe different actions to construct a program

visually.

2.2.1 Understanding Different Item Icons

All items in this system are displayed as annotated icons. An item’s view

changes to indicate its selection or edit mode. Figure (see Figure 8) shows a

function application rev in three different modes — unselected, selected and

edit. A blue outlined rectangle indicates the selection mode, and annotation

appears as an editable text field. A purple rectangle focuses on a group of

items in the scope of an expression.

(a) Unselected (b) Selected (c) Edit

Figure 8: An item view in unselected, selected and editable modes.

The following three tables shows different item icons used to visualize

items in different parts of a function:

User’s Manual (HASKEU) Page xxi

242

Table 5: Icons for global or local function name and clauses

Icon Description

Function clauses are numbered in order underneath the

function name

Table 6: Icons for items in patterns

Icon Description

An Integer constant

A Character constant

A String constant

A Boolean constant

A variable. Parameter variables are shown with triangle

at the right.

An empty list

A non-empty list (x : xs)

A wild-card

User’s Manual (HASKEU) Page xxii

243

Table 7: Icons for items in the function body

Icon Description

An Integer constant

A Character constant

A String constant

A Boolean constant

A Function application reverse. Argument slots are

drawn on the top-left corner of an item and aligned hor-

izontally. The type information of individual argument

with their description is shown when the mouse pointer

is over that argument slot and the whole type informa-

tion of an application, shown when the mouse pointer is

over the application box, is displayed as tooltip text.

if an item used in the function body is a parameter, then

it is displayed with a triangle at the left.

An Operator +

User’s Manual (HASKEU) Page xxiii

244

Table 7: Icons for items in the function body

Icon Description

The list constructor []. A rectangle with a bold outline

denotes one of the two list constructors.

The list constructor :. A rectangle with a bold outline

denotes one of the two list constructors.

The cond function. This is a replacement of the if −

then−else syntax. The first argument is the condition,

the second argument is the result if the condition is true,

and the third argument is the result if the condition is

false.

A recursive symbol. An arrowed arc is used on the top

right-hand corner of the box for a recursive application.

Undefined symbol. An unobtrusive “!” symbol is shown

at the top-right corner of an undefined application.

User’s Manual (HASKEU) Page xxiv

245

2.2.2 To Select an Item

To select an item in the five panes of the visual program area, do the following:

1. Click the button

2. Click on the item to make a selection.

3. A blue outlined rectangle indicates the item has been selected.

2.2.3 To Add Annotation

Any item in our visual system can be displayed with annotated icons.

1. Click the button

2. Click on the item to edit its annotation.

3. Change the annotation by typing characters using the keyboard.

2.2.4 To Delete an Item

To delete an item, do the following:

1. Select an item to delete.

2. Click the button

3. The selected item disappears.

User’s Manual (HASKEU) Page xxv

246

2.2.5 To Add a New Function/ Local Function

1. Click the button

2. Bring the mouse cursor to the global or local pane. The mouse cursor

changes to a icon.

3. When the user positions the mouse cursor over an existing function,

a horizontal double line appears to indicate the position of the new

function (see Figure 9b). If there is no existing function, click anywhere

in the pane to insert a placeholder.

4. When the user clicks on the mouse, a placeholder is inserted with a

default annotation “f” into the list as shown in Figure 9c.

5. Edit the default annotation to give the function a name.

User’s Manual (HASKEU) Page xxvi

247

(a) List of functions (b) Selecting new position (c) New function inserted

Figure 9: Adding a new function.

User’s Manual (HASKEU) Page xxvii

248

2.2.6 To Add a New Function Clause/ Local Function Clause

1. Click the button

2. Bring the mouse cursor to the global or local pane. The mouse cursor

changes to a icon.

3. When the user positions the mouse cursor over an existing clause, a

vertical double line appears to indicate the position of the new clause

(see Figure 10b).

4. When the user clicks on the mouse, a placeholder is inserted into the

list as shown in Figure 10c. The clause number will be automatically

given by the system.

User’s Manual (HASKEU) Page xxviii

249

(a) List of clauses (b) Selecting new position (c) New clause inserted

Figure 10: Adding a new clause.

User’s Manual (HASKEU) Page xxix

250

2.2.7 To Add a New Parameter/ Local Parameter

1. Click any of the buttons below to add a specific parameter

2. Bring the mouse cursor to the pattern or local pattern pane. The mouse

cursor changes to a icon.

3. When the user positions the mouse cursor over an existing parameter,

a horizontal double line appears to indicate the position of the new

parameter (see Figure 11b). If there is no existing parameter, click

anywhere in the pane to insert a placeholder.

4. When the user clicks on the mouse, a placeholder is inserted into the

list as shown in Figure 11c.

5. Edit the annotation to give the parameter a name.

User’s Manual (HASKEU) Page xxx

251

(a) List of parameters (b) Selecting new position (c) New parameter inserted

Figure 11: Adding a new parameter.

2.2.8 To Add an Expression

1. Click any of the buttons below to add a specific expression

2. Bring the mouse cursor to the body pane. The mouse cursor changes

to a icon.

3. A new argument can be added to an existing item and also an existing

item can also be added as an argument to a new item. If the mouse

cursor is positioned in the upper part of an item (in this example, map),

User’s Manual (HASKEU) Page xxxi

252

then a symbol indicating “add argument” appears (see Figure 12a), and

if it is positioned in the lower part of an item, then a symbol indicating

“add as argument” appears (see Figure 12b). No symbol appears in

the illegal case of applying a constant to an argument. If there is no

existing expression, click anywhere in the pane to insert a placeholder.

4. When the user clicks on the mouse, a placeholder is inserted into the

function body. Figure 12 illustrates the procedure for adding an argu-

ment.

(a)

(b)

Figure 12: Adding an argument.

User’s Manual (HASKEU) Page xxxii

253

2.3 Understanding Visual Errors

An overview (a list) of all errors can be seen visually in the globals pane. Any

function name and/or clause number with a cross mark against it indicates

the existence of errors. Figure 13 denotes that the clause number “1” in

function foldl and the clause number “2” in function map contain errors.

Figure 13: Overview of errors.

The visual error report can express error details in a single view (see Fig-

ure 14). Cross marks in the dataflow arc in the function body indicate type

errors and both end-points contain the type information as tooltip text.

The function body shows all the type errors in the dataflow graph, not

User’s Manual (HASKEU) Page xxxiii

254

Figure 14: Error - type mismatch.

just the first one. Another small Haskell program (see Figure 15) is given

below as an example: Here b is undefined, hence applying map to b is incor-

rect, and hence (map b) cannot produce anything. Applying another map to

this (map b) is also incorrect. In functional programming, a previous error

may be the cause of some later errors.

Figure 15: Showing all errors.

A type mismatch can be caused during unification. Unification of two

types means that they are assumed to be of the same type. In the case of

User’s Manual (HASKEU) Page xxxiv

255

a type mismatch during unification, it is hard for the type checker to tell

which wrong parameter makes the other parameters wrong, only the user

would know. The following program (see Figure 16) highlights part of the

problem. Here, map uses the same parameter a in its two arguments where

one is correct and the other is not. From the visual view of this function,

the user can see all the uses of a and how many of them have been used

incorrectly.

Figure 16: Error - unification.

An unobtrusive “!” symbol is shown on the top-right corner of an unde-

fined application and also a tooltip text “Function not defined” is shown (see

Figure 17).

Any unused argument slot is shown in the colour magenta (see Figure 18),

so that the user will know an unnecessary argument has been used.

User’s Manual (HASKEU) Page xxxv

256

Figure 17: Error - undefined function.

Figure 18: Error - unused argument.

2.4 Testing a Program

2.4.1 To Save a Program

You must save your program if you want to quit the program without losing

your work, and if you want to test a program. When you save the program,

it is stored as a file on your computer. Later, you can open the file, and

change it.

1. Click the Save button in the Global toolbar.

User’s Manual (HASKEU) Page xxxvi

257

2. Specify the location where you want to save the document in the Save

in box. Type a file name in the File name box.

3. Click Save.

4. The document is saved as a file with an extension “.hs”. The file name

in the Title Bar changes to reflect the saved file name.

2.4.2 To Compile and Test a Program

1. Press (Ctrl+Alt+T) on your keyboard to open a terminal.

2. Use the command

cd folderLocation

Here “folderLocation” is the location of the folder where the “.hs” file

has been saved.

3. Type in the command

ghci fileName.hs

Here “fileName” is the name of the saved file. If it shows some compile

time errors, then go back to the program and try to fix the errors.

4. If there are no compile time errors, then type in the command

functionName arguments

Here “functionName” is the name of the function to be tested, and

User’s Manual (HASKEU) Page xxxvii

258

“arguments” are the argument values to test the function.

5. Check the results.

User’s Manual (HASKEU) Page xxxviii

259

Appendix D

Usability Test - Questionnaire

and Consent Form

260

D.1 Usability Test - Questionnaire

261

Questions about the usability of HASKEU

1) Which system did you find easier to write a program?

a) Textual

b) Visual

2) Did the system allow a easy transition from visual to textual and vice-
versa?

a) Yes

b) No
If not, please specify why .
. .

3) Were the icons used in the visual programming easier to understand,
and could they be easily remembered for use next time?

a) Yes

b) No
If not, please specify why .
. .

4) Did you find the dataflow of the program more understandable when
it was shown visually or textually?

a) Textually

b) Visually

5) Which way of showing error messages was easier to understand and
then fix?

a) Textual

b) Visual

6) Which way of showing error messages was easier to understand and
then fix?

a) Yes

b) No
If not, please specify why .
. .

Page i of ii

262

Questions about the usability of HASKEU

7) Did you find it a good thing that the system did not allow you to make
syntax error?

a) Yes

b) No
If not, please specify why .
. .

8) Did you find any inconsistencies between the two systems?

a) Yes

b) No
If not, please specify where .
. .

9) Please write your comments about the system and specify where the
system could be improved?

Page ii of ii

263

D.2 Usability Test - Consent Form

264

HASKEU Usability Test
Participant Consent Form

This usability study will evaluate the end-user functional programming sys-
tem. We would like to see how participants can complete some tasks using
this system. The aim is not to evaluate your ability, but this testing will
evaluate the system to provide information on how it can be improved.

During this test, participants will be asked to do some tasks using the system
and then they will be asked to fill out a questionnaire. The testing session
will last no longer than three hours.

If you feel uncomfortable during this testing session or if you do not want to
finish a task, then simply move on the next task. Also, you can leave at any
time if you want to.

It is hoped that about 5 people will be involved in this usability test. The
results will be included in a report. No names of participants will be included
in this report and no identification detail will be associated with any data.

I, . ,
have read and fully understand the extent of the study and I agree to take
part in this user testing session. I have been given a blank copy of this con-
sent form for my records.

Signed . Date .

265

Appendix E

The Library API - MVC WX

266

The Library API of the MVC WX Module in

HASKEU Implementation

-- ---

--

-- Module : MVC_WX.lhs

-- Author : Abu Alam

--

-- Maintainer : Abu Alam, s0408730@connect.glos.ac.uk

--

-- Purpose : Utility functions for creating wxHaskell events and attributes

-- and adjusting them for the reactive.banana libraray.

-- ---

module MVC_WX where

import qualified Graphics.UI.WX as WX

import Graphics.UI.WX hiding (Event, Attr)

import Graphics.UI.WXCore hiding (View, Event)

import Reactive.Banana.WX

import Reactive.Banana

import FindReplaceUtil

-- Wx Widget Events to Wx Banana Events

-- Event occurs when user clicks a button

evButtonCommand :: (Frameworks t, Reactive w, Commanding w)

=> w -> Moment t (Event t ())

evButtonCommand w = do

eCommand <- event0 w command

return (eCommand)

267

-- Event occurs when user opens a file open dialog box

evButtonCommandFileOpen :: Frameworks t

=> BitmapButton ()

-> Frame ()

-> Moment t (Event t (Maybe FilePath, String))

evButtonCommandFileOpen b w = do

addHandler <- liftIONow $ event1ToAddHandler b (event0ToEvent1 command)

fromAddHandler

$ mapIO (const $ openPage w) addHandler

-- open a file open dialog box

openPage :: Frame () -> IO (Maybe FilePath, String)

openPage win =

do

maybePath <- fileOpenDialog win True True

"Open file..." [("Haskells (*.hs)",["*.hs"]),

("Texts (*.txt)", ["*.txt"]),

("Any file (*.*)",["*.*"])] "" ""

case maybePath of

Nothing -> return (maybePath, "")

Just path -> do

fileContents <- readFile path

return (maybePath, fileContents)

-- Event occurs when user opens a file save dialog box

evButtonCommandFileSave :: Frameworks t

=> BitmapButton ()

-> Frame ()

-> TextCtrl()

-> Moment t (Event t (Maybe FilePath))

268

evButtonCommandFileSave b w t = do

addHandler <- liftIONow $ event1ToAddHandler b (event0ToEvent1 command)

fromAddHandler

$ mapIO (const $ savePage w t) addHandler

-- Open a file save dialog box

savePage :: Frame () -> TextCtrl() -> IO (Maybe FilePath)

savePage w t = do

winTitle <- get w text

--infoDialog w winTitle winTitle

case (winTitle==windowTitle) of

True -> savePageAs w t

False->

do

let path = drop (length windowTitle + 3) winTitle

textCtrlSaveFile t path

return (Just path)

-- Event occurs when user opens a file save as dialog box

evButtonCommandFileSaveAs :: Frameworks t

=> BitmapButton ()

-> Frame ()

-> TextCtrl()

-> Moment t (Event t (Maybe FilePath))

evButtonCommandFileSaveAs b w t = do

addHandler <- liftIONow $ event1ToAddHandler b (event0ToEvent1 command)

fromAddHandler

$ mapIO (const $ savePageAs w t) addHandler

269

-- Open a file save as dialog box

savePageAs :: Frame () -> TextCtrl () -> IO (Maybe FilePath)

savePageAs win txtEditor =

do

maybePath <- fileSaveDialog win True True

"Save file..." [("Haskells (*.hs)",["*.hs"]),

("Texts (*.txt)", ["*.txt"]),

("Any file (*.*)",["*.*"])] "" ""

case maybePath of

Nothing -> return Nothing

Just path ->

do

textCtrlSaveFile txtEditor path

return maybePath

-- Event occurs when user uses cut in a text control

evButtonCommandCut :: Frameworks t =>

BitmapButton () -> TextCtrl() -> Moment t (Event t ())

evButtonCommandCut b t = do

addHandler <- liftIONow $ event1ToAddHandler b (event0ToEvent1 command)

fromAddHandler

$ mapIO (const $ textCtrlCut t) addHandler

-- Event occurs when user uses copy in a text control

evButtonCommandCopy :: Frameworks t =>

BitmapButton () -> TextCtrl() -> Moment t (Event t ())

evButtonCommandCopy b t = do

addHandler <- liftIONow $ event1ToAddHandler b (event0ToEvent1 command)

fromAddHandler

$ mapIO (const $ textCtrlCopy t) addHandler

270

-- Event occurs when user uses paste in a text control

evButtonCommandPaste :: Frameworks t =>

BitmapButton () -> TextCtrl() -> Moment t (Event t ())

evButtonCommandPaste b t = do

addHandler <- liftIONow $ event1ToAddHandler b (event0ToEvent1 command)

fromAddHandler

$ mapIO (const $ textCtrlPaste t) addHandler

-- Event occurs when user opens a find dialog box

evButtonCommandFind :: Frameworks t

=> BitmapButton ()

-> Frame ()

-> TextCtrl()

-> FindReplaceData ()

-> Moment t (Event t ())

evButtonCommandFind b w t fr = do

addHandler <- liftIONow $ event1ToAddHandler b (event0ToEvent1 command)

let guiCtx = GUICtx w t fr

fromAddHandler

$ mapIO (const $ justFind guiCtx) addHandler

-- Event occurs when user opens a replace dialog box

evButtonCommandReplace :: Frameworks t

=> BitmapButton ()

-> Frame ()

-> TextCtrl()

-> FindReplaceData ()

-> Moment t (Event t ())

evButtonCommandReplace b w t fr = do

addHandler <- liftIONow $ event1ToAddHandler b (event0ToEvent1 command)

271

let guiCtx = GUICtx w t fr

fromAddHandler

$ mapIO (const $ findReplace guiCtx) addHandler

-- Event occurs when user changes text in a text control

evTextChanged :: Frameworks t =>

TextCtrl w -> Moment t (Event t (String, Int))

-- Text Editor String, Insertion Point, Textua Errs, Gra Errs

evTextChanged w = do

addHandler <- liftIONow $ event1ToAddHandler w (event0ToEvent1 onText)

fromAddHandler

$ filterAddHandler (const $ textCtrlIsModified w)

$ mapIO (const $ (liftA2 (,)) (get w text) (get w insertionPoint)) addHandler

-- Event occurs when user releases a key in a text control

evTextKBUp :: Frameworks t =>

TextCtrl w -> Moment t (Event t (String, Int))

-- Text Editor String, Insertion Point, Textua Errs, Gra Errs

evTextKBUp txt = do

eKeyboardUp <- event1 txt keyboardUp

bText <- (behavior txt text)

bInsertionPoint <- (behavior txt insertionPoint)

let eTextInsPt = (uncurry (liftA2 (,))

(bText, bInsertionPoint)) <@ eKeyboardUp

return eTextInsPt

-- Event occurs when user selects an item in the choice box

evSelChoice :: Frameworks t =>

Choice () -> Moment t (Event t Int)

evSelChoice w = do

272

addHandler <- liftIONow $ event1ToAddHandler w (event0ToEvent1 select)

fromAddHandler $ mapIO (const $ get w selection) addHandler

-- Event occurs when user selects an item in the list box

evSelListBox :: Frameworks t => -- From wx Banana

SingleListBox b -> Moment t (Event t Int)

evSelListBox w = do

liftIONow $ fixSelectionEvent w

addHandler <- liftIONow $ event1ToAddHandler w (event0ToEvent1 select)

fromAddHandler $ mapIO (const $ get w selection) addHandler

-- Fix @select@ event not being fired

-- when items are *un*selected. -- From wx Banana

fixSelectionEvent listbox =

set listbox [on unclick := handler]

where

handler _ = do

propagateEvent

s <- get listbox selection

when (s == -1) $ (get listbox (on select)) >>= id

-- Event occurs when user moves the mouse

evMouseMove :: (Frameworks t, Reactive w)

=> w

-> Moment t (Event t EventMouse)

evMouseMove w = do

eMouse <- event1 w mouse

let eMouseMove = filterE (\event -> (isMouseMove event)) $ eMouse

return (eMouseMove)

evMouseLeftUp :: (Frameworks t, Reactive w)

273

=> w

-> Moment t (Event t EventMouse)

evMouseLeftUp w = do

eMouse <- event1 w mouse

let eMouseLeftUp = filterE (\event -> (isMouseLeftUp event)) $ eMouse

return (eMouseLeftUp)

-- Event occurs when user releases mouse left button

evMouseLeftDown :: (Frameworks t, Reactive w)

=> w

-> Moment t (Event t EventMouse)

evMouseLeftDown w = do

eMouse <- event1 w mouse

let eMouseLeftDown = filterE (\event -> (isMouseLeftDown event)) $ eMouse

return (eMouseLeftDown)

-- Event occurs when user depresses the enter key

evReturnKeyPressed :: (Frameworks t, Reactive w)

=> w

-> Moment t (Event t EventKey)

evReturnKeyPressed w = do

eKB <- event1 w keyboard

let eKBReturn = filterE (\event -> isKBEnterPressed event) $ eKB

return (eKBReturn)

-- Event occurs when user clicks on a slider

evSliderCommand :: Frameworks t => Slider () -> Moment t (Event t Int)

evSliderCommand w = do

addHandler <- liftIONow $ event1ToAddHandler w (event0ToEvent1 command)

fromAddHandler

$ mapIO (const $ get w selection) addHandler

274

-- Fix scrolled window @repaint@ event not being fired when Model change

evTxtChgRepaintSw :: Frameworks t =>

TextCtrl w -> [ScrolledWindow ()] -> Moment t (Event t ())

evTxtChgRepaintSw t lstSw = do

addHandler <- liftIONow $ event1ToAddHandler t (event0ToEvent1 onText)

fromAddHandler

$ filterAddHandler (const $ textCtrlIsModified t)

$ mapIO (const $ (swRepaints lstSw)) addHandler

evBtnCommRepaintSw :: Frameworks t =>

BitmapButton () -> [ScrolledWindow ()] -> Moment t (Event t ())

evBtnCommRepaintSw b lstSw = do

addHandler <- liftIONow $ event1ToAddHandler b (event0ToEvent1 command)

fromAddHandler

$ mapIO (const $ (swRepaints lstSw)) addHandler

evSwMouseRepaintSwAll :: Frameworks t =>

ScrolledWindow () -> [ScrolledWindow ()] -> Moment t (Event t ())

evSwMouseRepaintSwAll w lstSw = do

addHandler <- liftIONow $ event1ToAddHandler w mouse

fromAddHandler

-- $ mapIO (const $ (swRepaint w)) addHandler

$ mapIO (const $ (swRepaints lstSw)) addHandler -- we may need this

swRepaints lstW =

sequence_ (map swRepaint lstW)

swRepaint w =

do

propagateEvent

repaint w

275

-- Event occurs when user scrolls a scrolled window

evSwScroll :: Frameworks t =>

ScrolledWindow () -> Moment t (Event t EventScroll)

evSwScroll sw = do

eScroll <- event1 sw windowScroll

return (eScroll)

-- new wx attributes/ Events

onText :: WX.Event (Control a) (IO ())

onText = WX.newEvent "onText" controlGetOnText controlOnText

windowScroll :: WX.Event (Window a) (EventScroll -> IO ())

windowScroll = WX.newEvent "windowScroll"

windowGetOnScroll windowOnScroll

keyboardUp :: WX.Event (Window a) (EventKey -> IO ())

keyboardUp = WX.newEvent "keyboardUp"

windowGetOnKeyUp (windowOnKeyUp)

keyboardDown :: WX.Event (Window a) (EventKey -> IO ())

keyboardDown = WX.newEvent "keyboardDown"

windowGetOnKeyDown (windowOnKeyDown)

insertionPoint :: WX.Attr (TextCtrl a) Int

insertionPoint = newAttr "insertionPoint"

textCtrlGetInsertionPoint (textCtrlSetInsertionPoint)

mouseCursor :: WX.Attr (Window a) (Cursor ())

mouseCursor = newAttr "mouseCursor" windowGetCursor

(\w c -> do windowSetCursor w c

return ())

276

-- Event Filters

isKBEnterPressed :: EventKey -> Bool

isKBEnterPressed (EventKey KeyReturn _ _) = True

isKBEnterPressed _ = False

isMouseLeftUp :: EventMouse -> Bool

isMouseLeftUp (MouseLeftUp _ _) = True

isMouseLeftUp _ = False

isMouseLeftDown :: EventMouse -> Bool

isMouseLeftDown (MouseLeftDown _ _) = True

isMouseLeftDown _ = False

isMouseLeftDrag :: EventMouse -> Bool

isMouseLeftDrag (MouseLeftDrag _ _) = True

isMouseLeftDrag _ = False

isMouseMove :: EventMouse -> Bool

isMouseMove (MouseMotion _ _) = True

isMouseMove _ = False

277

Appendix F

Source Code of Functor,

Applicative and Monad

This Appendix shows the full list of all functions of Haskell’s Functor, Applicative

and Monad classes and their default instances. The source code is taken from

the Haskell website (Haskell Website - Base, n.d.).

278

-- |

-- Module : GHC.Base

-- Copyright : (c) The University of Glasgow, 1992-2002

-- License : see libraries/base/LICENSE

--

-- Maintainer : cvs-ghc@haskell.org

-- Stability : internal

-- Portability : non-portable (GHC extensions)

--

-- Basic data types and classes.

--

#include "MachDeps.h"

module GHC.Base

(

module GHC.Base,

module GHC.Classes,

module GHC.CString,

module GHC.Magic,

module GHC.Types,

module GHC.Prim,

module GHC.Err

)

where

import GHC.Types

import GHC.Classes

279

import GHC.CString

import GHC.Magic

import GHC.Prim

import GHC.Err

import GHC.IO (failIO)

import GHC.Tuple ()

import GHC.Integer ()

infixr 9 .

infixr 5 ++

infixl 4 <$

infixl 1 >>, >>=

infixr 1 =<<

infixr 0 $, $!

infixl 4 <*>, <*, *>, <**>

default ()

#if 0

data Bool = False | True

data Ordering = LT | EQ | GT

data Char = C# Char#

type String = [Char]

data Int = I# Int#

data () = ()

data [] a = MkNil

not True = False

(&&) True True = True

otherwise = True

280

build = error "urk"

foldr = error "urk"

#endif

data Maybe a = Nothing | Just a

deriving (Eq, Ord)

class Monoid a where

mempty :: a

mappend :: a -> a -> a

mconcat :: [a] -> a

mconcat = foldr mappend mempty

instance Monoid [a] where

mempty = []

mappend = (++)

mconcat xss = [x | xs <- xss, x <- xs]

instance Monoid b => Monoid (a -> b) where

mempty _ = mempty

mappend f g x = f x ‘mappend‘ g x

instance Monoid () where

mempty = ()

_ ‘mappend‘ _ = ()

mconcat _ = ()

instance (Monoid a, Monoid b) => Monoid (a,b) where

mempty = (mempty, mempty)

(a1,b1) ‘mappend‘ (a2,b2) =

(a1 ‘mappend‘ a2, b1 ‘mappend‘ b2)

281

instance (Monoid a, Monoid b, Monoid c) => Monoid (a,b,c) where

mempty = (mempty, mempty, mempty)

(a1,b1,c1) ‘mappend‘ (a2,b2,c2) =

(a1 ‘mappend‘ a2, b1 ‘mappend‘ b2, c1 ‘mappend‘ c2)

instance (Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a,b,c,d) where

mempty = (mempty, mempty, mempty, mempty)

(a1,b1,c1,d1) ‘mappend‘ (a2,b2,c2,d2) =

(a1 ‘mappend‘ a2, b1 ‘mappend‘ b2,

c1 ‘mappend‘ c2, d1 ‘mappend‘ d2)

instance (Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) =>

Monoid (a,b,c,d,e) where

mempty = (mempty, mempty, mempty, mempty, mempty)

(a1,b1,c1,d1,e1) ‘mappend‘ (a2,b2,c2,d2,e2) =

(a1 ‘mappend‘ a2, b1 ‘mappend‘ b2, c1 ‘mappend‘ c2,

d1 ‘mappend‘ d2, e1 ‘mappend‘ e2)

instance Monoid Ordering where

mempty = EQ

LT ‘mappend‘ _ = LT

EQ ‘mappend‘ y = y

GT ‘mappend‘ _ = GT

instance Monoid a => Monoid (Maybe a) where

mempty = Nothing

Nothing ‘mappend‘ m = m

m ‘mappend‘ Nothing = m

Just m1 ‘mappend‘ Just m2 = Just (m1 ‘mappend‘ m2)

instance Monoid a => Applicative ((,) a) where

282

pure x = (mempty, x)

(u, f) <*> (v, x) = (u ‘mappend‘ v, f x)

class Functor f where

fmap :: (a -> b) -> f a -> f b

(<$) :: a -> f b -> f a

(<$) = fmap . const

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

(*>) :: f a -> f b -> f b

a1 *> a2 = (id <$ a1) <*> a2

(<*) :: f a -> f b -> f a

(<*) = liftA2 const

(<**>) :: Applicative f => f a -> f (a -> b) -> f b

(<**>) = liftA2 (flip ($))

liftA :: Applicative f => (a -> b) -> f a -> f b

liftA f a = pure f <*> a

liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c

liftA2 f a b = fmap f a <*> b

liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d

liftA3 f a b c = fmap f a <*> b <*> c

join :: (Monad m) => m (m a) -> m a

join x = x >>= id

class Applicative m => Monad m where

(>>=) :: forall a b. m a -> (a -> m b) -> m b

283

(>>) :: forall a b. m a -> m b -> m b

m >> k = m >>= _ -> k

return :: a -> m a

return = pure

fail :: String -> m a

fail s = error s

(=<<) :: Monad m => (a -> m b) -> m a -> m b

f =<< x = x >>= f

when :: (Applicative f) => Bool -> f () -> f ()

when p s = if p then s else pure ()

sequence :: Monad m => [m a] -> m [a]

sequence = mapM id

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

mapM f as = foldr k (return []) as

where

k a r = do { x <- f a; xs <- r; return (x:xs) }

liftM :: (Monad m) => (a1 -> r) -> m a1 -> m r

liftM f m1 = do { x1 <- m1; return (f x1) }

liftM2 :: (Monad m) => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r

liftM2 f m1 m2 = do { x1 <- m1; x2 <- m2; return (f x1 x2) }

liftM3 :: (Monad m) => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r

liftM3 f m1 m2 m3 = do { x1 <- m1; x2 <- m2; x3 <- m3; return (f x1 x2 x3) }

liftM4 :: (Monad m) => (a1 -> a2 -> a3 -> a4 -> r)

-> m a1 -> m a2 -> m a3 -> m a4 -> m r

liftM4 f m1 m2 m3 m4 = do { x1 <- m1;

284

x2 <- m2;

x3 <- m3;

x4 <- m4;

return (f x1 x2 x3 x4)

}

liftM5 :: (Monad m) => (a1 -> a2 -> a3 -> a4 -> a5 -> r)

-> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r

liftM5 f m1 m2 m3 m4 m5 = do { x1 <- m1;

x2 <- m2;

x3 <- m3;

x4 <- m4;

x5 <- m5;

return (f x1 x2 x3 x4 x5)

}

ap :: (Monad m) => m (a -> b) -> m a -> m b

ap m1 m2 = do { x1 <- m1; x2 <- m2; return (x1 x2) }

instance Functor ((->) r) where

fmap = (.)

instance Applicative ((->) a) where

pure = const

(<*>) f g x = f x (g x)

instance Monad ((->) r) where

return = const

f >>= k = \ r -> k (f r) r

instance Functor ((,) a) where

fmap f (x,y) = (x, f y)

285

instance Functor Maybe where

fmap _ Nothing = Nothing

fmap f (Just a) = Just (f a)

instance Applicative Maybe where

pure = Just

Just f <*> m = fmap f m

Nothing <*> _m = Nothing

Just _m1 *> m2 = m2

Nothing *> _m2 = Nothing

instance Monad Maybe where

(Just x) >>= k = k x

Nothing >>= _ = Nothing

(>>) = (*>)

return = Just

fail _ = Nothing

infixl 3 <|>

class Applicative f => Alternative f where

empty :: f a

(<|>) :: f a -> f a -> f a

some :: f a -> f [a]

some v = some_v

where

many_v = some_v <|> pure []

some_v = (fmap (:) v) <*> many_v

many :: f a -> f [a]

many v = many_v

where

286

many_v = some_v <|> pure []

some_v = (fmap (:) v) <*> many_v

instance Alternative Maybe where

empty = Nothing

Nothing <|> r = r

l <|> _ = l

class (Alternative m, Monad m) => MonadPlus m where

mzero :: m a

mzero = empty

mplus :: m a -> m a -> m a

mplus = (<|>)

instance MonadPlus Maybe

instance Functor [] where

fmap = map

instance Applicative [] where

pure x = [x]

fs <*> xs = [f x | f <- fs, x <- xs]

xs *> ys = [y | _ <- xs, y <- ys]

instance Monad [] where

xs >>= f = [y | x <- xs, y <- f x]

(>>) = (*>)

return x = [x]

fail _ = []

instance Alternative [] where

empty = []

(<|>) = (++)

287

instance MonadPlus []

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr k z = go

where

go [] = z

go (y:ys) = y ‘k‘ go ys

build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]

build g = g (:) []

augment :: forall a. (forall b. (a->b->b) -> b -> b) -> [a] -> [a]

augment g xs = g (:) xs

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

mapFB :: (elt -> lst -> lst) -> (a -> elt) -> a -> lst -> lst

mapFB c f = \x ys -> c (f x) ys

(++) :: [a] -> [a] -> [a]

(++) [] ys = ys

(++) (x:xs) ys = x : xs ++ ys

otherwise :: Bool

otherwise = True

type String = [Char]

eqString :: String -> String -> Bool

eqString [] [] = True

eqString (c1:cs1) (c2:cs2) = c1 == c2 && cs1 ‘eqString‘ cs2

eqString _ _ = False

288

maxInt, minInt :: Int

id :: a -> a

id x = x

assert :: Bool -> a -> a

assert _pred r = r

breakpoint :: a -> a

breakpoint r = r

breakpointCond :: Bool -> a -> a

breakpointCond _ r = r

data Opaque = forall a. O a

const :: a -> b -> a

const x _ = x

(.) :: (b -> c) -> (a -> b) -> a -> c

(.) f g = \x -> f (g x)

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = f y x

($) :: (a -> b) -> a -> b

f $ x = f x

($!) :: (a -> b) -> a -> b

f $! x = let !vx = x in f vx

until :: (a -> Bool) -> (a -> a) -> a -> a

until p f = go

where

go x | p x = x

| otherwise = go (f x)

289

asTypeOf :: a -> a -> a

asTypeOf = const

--

-- Functor/Applicative/Monad instances for IO

--

instance Functor IO where

fmap f x = x >>= (return . f)

instance Applicative IO where

pure = return

(<*>) = ap

instance Monad IO where

m >> k = m >>= \ _ -> k

return = returnIO

(>>=) = bindIO

fail s = failIO s

returnIO :: a -> IO a

returnIO x = IO $ \ s -> (# s, x #)

bindIO :: IO a -> (a -> IO b) -> IO b

bindIO (IO m) k = IO $ \ s -> case m s of (# new_s, a #) -> unIO (k a) new_s

thenIO :: IO a -> IO b -> IO b

thenIO (IO m) k = IO $ \ s -> case m s of (# new_s, _ #) -> unIO k new_s

unIO :: IO a -> (State# RealWorld -> (# State# RealWorld, a #))

unIO (IO a) = a

getTag :: a -> Int#

getTag !x = dataToTag# x

290

--

-- Numeric primops

--

quotInt, remInt, divInt, modInt :: Int -> Int -> Int

(I# x) ‘quotInt‘ (I# y) = I# (x ‘quotInt#‘ y)

(I# x) ‘remInt‘ (I# y) = I# (x ‘remInt#‘ y)

(I# x) ‘divInt‘ (I# y) = I# (x ‘divInt#‘ y)

(I# x) ‘modInt‘ (I# y) = I# (x ‘modInt#‘ y)

quotRemInt :: Int -> Int -> (Int, Int)

(I# x) ‘quotRemInt‘ (I# y) = case x ‘quotRemInt#‘ y of

(# q, r #) ->

(I# q, I# r)

divModInt :: Int -> Int -> (Int, Int)

(I# x) ‘divModInt‘ (I# y) = case x ‘divModInt#‘ y of

(# q, r #) -> (I# q, I# r)

divModInt# :: Int# -> Int# -> (# Int#, Int# #)

x# ‘divModInt#‘ y#

| isTrue# (x# ># 0#) && isTrue# (y# <# 0#) =

case (x# -# 1#) ‘quotRemInt#‘ y# of

(# q, r #) -> (# q -# 1#, r +# y# +# 1# #)

| isTrue# (x# <# 0#) && isTrue# (y# ># 0#) =

case (x# +# 1#) ‘quotRemInt#‘ y# of

(# q, r #) -> (# q -# 1#, r +# y# -# 1# #)

| otherwise =

x# ‘quotRemInt#‘ y#

shiftL# :: Word# -> Int# -> Word#

291

a ‘shiftL#‘ b | isTrue# (b >=# WORD_SIZE_IN_BITS#) = 0##

| otherwise = a ‘uncheckedShiftL#‘ b

shiftRL# :: Word# -> Int# -> Word#

a ‘shiftRL#‘ b | isTrue# (b >=# WORD_SIZE_IN_BITS#) = 0##

| otherwise = a ‘uncheckedShiftRL#‘ b

iShiftL# :: Int# -> Int# -> Int#

a ‘iShiftL#‘ b | isTrue# (b >=# WORD_SIZE_IN_BITS#) = 0#

| otherwise = a ‘uncheckedIShiftL#‘ b

iShiftRA# :: Int# -> Int# -> Int#

a ‘iShiftRA#‘ b | isTrue# (b >=# WORD_SIZE_IN_BITS#) = if isTrue# (a <# 0#)

then (-1#)

else 0#

| otherwise = a ‘uncheckedIShiftRA#‘ b

iShiftRL# :: Int# -> Int# -> Int#

a ‘iShiftRL#‘ b | isTrue# (b >=# WORD_SIZE_IN_BITS#) = 0#

| otherwise = a ‘uncheckedIShiftRL#‘ b

#ifdef __HADDOCK__

data RealWorld

#endif

292

Bibliography

Aaland, M. (1998). Photoshop for the Web, O’Reilly & Associates, Inc., Se-

bastopol, CA, USA.

Alam, A. (2014). A Programming System for End-User Functional Program-

ming, PhD thesis, University of Gloucestershire.

Allen, Rob and Lo, Nick and Brown, Steven (2008). Zend Framework in Action,

Manning Publications Co., Greenwich, CT, USA.

Angelov, K. and Marlow, S. (2005). Visual Haskell: A Full-featured Haskell

Development Environment, Proceedings of the 2005 ACM SIGPLAN Work-

shop on Haskell, Haskell ’05, ACM, New York, NY, USA, pp. 5–16.

Apfelmus, H. (2012). Reactive-banana.

URL: http://www.haskell.org/haskellwiki/Reactive-banana

Apfelmus, H. (2015a). A practical library for functional reactive programming.

URL: http://hackage.haskell.org/package/reactive-banana

Apfelmus, H. (2015b). Provides some GUI examples for the reactive-banana

library, using wxHaskell.

URL: http://hackage.haskell.org/package/reactive-banana-wx

293

Argudo, J. (2009). CodeIgniter 1.7, Packt Publishing.

Aust, D., D’Souza, M. G., Gault, D., Gielis, D., Hartman, R., Hichwa, M.,

Kennedy, S., Kubicek, D., Mattamal, R., McGhan, D., Mignault, F., Nielsen,

A. and Scott, J. (2011). Expert Oracle Application Express, 1st edn, Apress,

Berkely, CA, USA.

Backus, J. W. (1978). Can Programming Be Liberated From the von Neumann

Style? A Functional Style and its Algebra of Programs, Communications of

the Association for Computing Machinery 21(8): 613–641.

Bai, Y. (2003). The design and realization of a common syntax-directed editing

system., IRI, pp. 85–92.

Banyasad, O. and Cox, P. T. (2013). Design and Implementation of an Ed-

itor/Interpreter for a Visual Logic Programming Language, International

Journal of Software Engineering and Knowledge Engineering 23(6): 801–

838.

Barnes, J. G. (1984). Programming in Ada (2Nd Ed.), Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA.

Batini, C. (1986). A layout algorithm for data flow diagrams, IEEE Transac-

tions on Software Engineering 12(1): 538–546.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W.,

Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J.,

294

Marick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J. and

Thomas, D. (2001). Manifesto for Agile Software Development.

Bennett, J. (2008). Practical Django Projects, Apress, Berkely, CA, USA.

Bentrad, S. and Meslati, D. (2011). Visual programming and program visual-

ization towards an ideal visual software engineering system, International

Journal on Information Technology 1(3): 7.

Bernini, M. and Mosconi, M. (1994). VIPERS: A Data Flow Visual Program-

ming Environment Based on the Tcl Language, Proceedings of the workshop

on Advanced visual interfaces, AVI ’94, ACM, New York, NY, USA, pp. 243–

245.

Bier, J. C., Goei, E. E., Ho, W. H., Lapsley, P. D., O’Reilly, M. P., Sih, G. C.

and Lee, E. A. (1990). Gabriel: A Design Environment for DSP, IEEE

Micro 10(5): 28–45.

Bird, R. and Wadler, P. (1988). An introduction to functional programming,

Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK.

Blake, G. and Bly, R. (1993). The elements of technical writing, Longman,

London, England.

Boehm, B. W. (1988). A Spiral Model of Software Development and Enhance-

ment, Computer 21(5): 61–72.

Booch, G. (1994). Object-oriented Analysis and Design with Applications (2Nd

Ed.), Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA.

295

Booch, G., Rumbaugh, J. and Jacobson, I. (2005). Unified Modeling Language

User Guide, The (2Nd Edition) (Addison-Wesley Object Technology Series),

Addison-Wesley Professional, Boston, MA, USA.

Broberg, N. (2012a). A type checker for Haskell as embodied syntactically by

the haskell-src-exts.

URL: http://hackage.haskell.org/package/haskell-type-exts

Broberg, N. (2012b). The Haskell-type-exts package.

URL: http://hackage.haskell.org/package/haskell-type-exts

Broberg, N. (2014). A suite of annotable datatypes describing the abstract

syntax of Haskell.

URL: http://hackage.haskell.org/package/haskell-src-exts

Brockmann, R. (1990). Writing Better Computer User Documentation: From

Paper to Hypertext, Version 2.0, John Wiley & Sons, Inc., New York, NY,

USA.

Brown, P. S. and Gould, J. D. (1987). An Experimental Study of People Creat-

ing Spreadsheets, ACM Transactions on Information Systems 5(3): 258–272.

Browne, J. C., Hyder, S. I., Dongarra, J., Moore, K. and Newton, P. (1995).

Visual Programming and Debugging for Parallel Computing, IEEE Parallel

Distrib. Technol. 3(1): 75–83.

Burbeck, S. (1987). Applications Programming in Smalltalk-80: How to Use

Model-View-Controller (MVC), Softsmarts, Incorporated.

296

Burnett, M., Atwood, J., Walpole Djang, R., Reichwein, J., Gottfried, H. and

Yang, S. (2001). Forms/3: A First-order Visual Language to Explore the

Boundaries of the Spreadsheet Paradigm, Journal of Functional Program-

ming 11(2): 155–206.

Burnett, M. M. and Ambler, A. L. (1993). An Interactive Approach to Visual

Data Abstration for Declarative Visual Programming Languages, Technical

report, Corvallis, OR, USA.

Burstall, R. (2000). Christopher Strachey—Understanding Programming Lan-

guages, Higher-Order and Symbolic Computation 13(1-2): 51–55.

Card, S. K., Newell, A. and Moran, T. P. (1983). The Psychology of Human-

Computer Interaction, L. Erlbaum Associates Inc., Hillsdale, NJ, USA.

Carr, M. E. (2011). Thoughts on LabVIEW.

URL: http://www.paleotechnologist.net/?p=1502

Carrier, L. M., Cheever, N. A., Rosen, L. D., Benitez, S. and Chang, J. (2009).

Multitasking across generations: Multitasking choices and difficulty ratings

in three generations of Americans, Computer Human Behavior 25(2): 483–

489.

Caserta, P. and Zendra, O. (2011). Visualization of the static aspects of soft-

ware: A survey., IEEE Transactions on Visualization and Computer Graph-

ics 17(7): 913–933.

Caspi, P., Pilaud, D., Halbwachs, N. and Plaice, J. A. (1987). LUSTRE: A

297

Declarative Language for Real-time Programming, Proceedings of the 14th

ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-

guages, POPL ’87, ACM, New York, NY, USA, pp. 178–188.

Chakravarty, M. M. T. and Keller, G. (2004). The Risks and Benefits of

Teaching Purely Functional Programming in First Year, Journal of Func-

tional Programming 14(1): 113–123.

Chambers, C., Chen, S., Le, D. and Scaffidi, C. (2012). The Function, and

Dysfunction, of Information Sources in Learning Functional Programming,

Journal of Computing Sciences in Colleges 28(1): 220–226.

Chang, S.-K. (1987). Visual Languages: A Tutorial and Survey, IEEE Software

4(1): 29–39.

Chitil, O. (2001). Compositional explanation of types and algorithmic debug-

ging of type errors, SIGPLAN Notices 36(10): 193–204.

Chitil, O. and Luo, Y. (2007). Structure and properties of traces for functional

programs, Electron. Notes Theor. Comput. Sci. 176(1): 39–63.

Christofides, N. (1975). Graph Theory: An Algorithmic Approach (Com-

puter Science and Applied Mathematics), Academic Press, Inc., Orlando,

FL, USA.

Claessen, K. and Hughes, J. (2011). Quickcheck: A lightweight tool for random

testing of haskell programs, SIGPLAN Not. 46(4): 53–64.

298

Claessen, K., Hughes, J., Palka, M., Smallbone, N. and Svensson, H. (2010).

Ranking programs using black box testing, Proceedings of the 5th Workshop

on Automation of Software Test, AST ’10, ACM, New York, NY, USA,

pp. 103–110.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F. and

Jeremaes, P. (1994). Object-oriented Development: The Fusion Method,

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Cooper, A., Reimann, R. and Cronin, D. (2007). About face 3: the essentials

of interaction design, John Wiley & Sons, Inc., New York, NY, USA.

Coulouris, G. F. and Dollimore, J. (1988). Distributed systems: concepts and

design, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Courtney, A. and Elliott, C. (2001). Genuinely Functional User Interfaces,

Proceedings of the 2001 Haskell Workshop.

Cox, P. T. and Gauvin, S. (2011). Controlled Dataflow Visual Programming

Languages, Proceedings of the 2011 Visual Information Communication -

International Symposium, VINCI ’11, ACM, New York, NY, USA, pp. 9:1–

9:10.

Cox, P. T. and Mulligan, I. J. (1985). Compiling the Graphical Functional Lan-

guage PROGRAPH, Proceedings of the 1985 ACM SIGSMALL Symposium

on Small Systems, SIGSMALL ’85, ACM, New York, NY, USA, pp. 34–41.

Cox, P. T. and Nicholson, P. K. (2008). Unification of Arrays in Spreadsheets

299

with Logic Programming, in P. Hudak and D. S. Warren (eds), PADL, Vol.

4902 of Lecture Notes in Computer Science, Springer, Netherlands, pp. 100–

115.

Cox, P. T., Plimmer, B. and Rodgers, P. J. (eds) (2012). Diagrammatic Repre-

sentation and Inference - 7th International Conference, Vol. 7352 of Lecture

Notes in Computer Science, Springer, Netherlands.

Crenshaw, D. (2008). The Myth of Multitasking: How ”Doing It All” Gets

Nothing Done, The Jossey-Bass business & management series, John Wiley

& Sons, Inc., New York, NY, USA.

Cypher, A. (ed.) (1993). Watch What I Do: Programming by Demonstration,

MIT Press, Cambridge, MA, USA.

Dahl, O. J., Dijkstra, E. W. and Hoare, C. A. R. (eds) (1972). Structured

Programming, Academic Press Ltd., London, UK, UK.

Darlington, J., Henderson, P. and Turner, D. (1982). Functional Program-

ming and Its Applications: An Advanced Course, CREST advanced courses,

Cambridge University Press, Cambridge, UK.

Denicolo, P. and Becker, L. (2012). Developing Research Proposals, Success in

Research, SAGE Publications, London, UK.

Downs, E., Clare, P. and Coe, I. (1988). Structured Systems Analysis and

Design Method: Application and Context, Prentice Hall International (UK)

Ltd., Hertfordshire, UK, UK.

300

Eberts, R. E. (1994). User interface design, Prentice Hall international series

in industrial and systems engineering, Prentice Hall, Englewood Cliffs, NJ,

USA.

Ebrahimi, A. (1994). Novice programmer errors: language constructs and plan

composition, International Journal Human-Computer Studies 41(4): 457–

480.

Elliott, C. (2008). Trimming inputs in functional reactive programming.

URL: http://conal.net/blog/posts/

Elliott, C. and Hudak, P. (1997). Functional Reactive Animation, in S. Peyton

Jones, M. Tofte and A. M. Berman (eds), ICFP, ACM, New York, NY, USA,

pp. 263–273.

Erwig, M. and Meyer, B. (1995). Heterogeneous Visual Languages-integrating

Visual and Textual Programming, Proceedings of the 11th International

IEEE Symposium on Visual Languages, VL ’95, IEEE Computer Society,

Washington, DC, USA, pp. 318–.

URL: http://dl.acm.org/citation.cfm?id=832276.834317

Fekete, J.-D. and Beaudouin-Lafon, M. (1996). Using the multi-layer model

for building interactive graphical applications, Proceedings of the 9th annual

ACM symposium on User interface software and technology, UIST ’96, ACM,

New York, NY, USA, pp. 109–118.

Findler, R. B., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steck-

301

ler, P. and Felleisen, M. (2002). DrScheme: A Programming Environment

for Scheme, Journal of Functional Programming 12(2): 159–182.

Fowler, M. (2002). Patterns of Enterprise Application Architecture, Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Freeman, A. (2012). Pro ASP.NET MVC 4, Apressus Series, Apress, Berkely,

CA, USA.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design pat-

terns: elements of reusable object-oriented software, Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA.

Gibbons, J. (2002). Towards a Colimit-Based Semantics for Visual Program-

ming, Proceedings of the 5th International Conference on Coordination Mod-

els and Languages, COORDINATION ’02, Springer-Verlag, London, UK,

UK, pp. 166–173.

Giorgidze, G. and Nilsson, H. (2008). Switched-On Yampa: Declarative

Programming of Modular Synthesizers, Proceedings of the 10th Interna-

tional Conference on Practical Aspects of Declarative Languages, PADL’08,

Springer-Verlag, Berlin, Heidelberg, pp. 282–298.

Gittins, D. (1986). Icon-based human-computer interaction., International

Journal of Man-Machine Studies 24(6): 519–543.

Gordon, M. (2000). From LCF to HOL: a short history, in G. D. Plotkin,

302

C. Stirling and M. Tofte (eds), Proof, Language, and Interaction, MIT Press,

Cambridge, MA, USA, pp. 169–186.

Green, T. R. G. (1990). Programming languages as information structures, in

J.-M. Hoc, T. R. G. Green, R. Samurcay and D. J. Gilmore (eds), Psychology

of Programming, London: Academic Press.

Grossman, T., Fitzmaurice, G. and Attar, R. (2009). A survey of soft-

ware learnability: Metrics, methodologies and guidelines, Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’09,

ACM, New York, NY, USA, pp. 649–658.

Grune, D. (1977). Towards the design of a super-language of algol 68 for

the standard prelude (excerpt), Proceedings of the Strathclyde ALGOL 68

Conference, ACM, New York, NY, USA, pp. 78–81.

Gurd, J. R., Kirkham, C. C. and Watson, I. (1985). The manchester proto-

type dataflow computer, Communications of the Association for Computing

Machinery 28(1): 34–52.

Haiduc, S., Aponte, J., Moreno, L. and Marcus, A. (2010). On the use of auto-

mated text summarization techniques for summarizing source code, Proceed-

ings of the 2010 17th Working Conference on Reverse Engineering, WCRE

’10, IEEE Computer Society, Washington, DC, USA, pp. 35–44.

Halbert, D. C. (1984). Programming by Example, PhD thesis. AAI8512843.

303

Haskell-Cafe (2015). The Haskell-Cafe Archives.

URL: https://mail.haskell.org/pipermail/haskell-cafe/

Haskell Website - Base (n.d.). Source Code of Functor, Applicative and

Monad.

URL: https://hackage.haskell.org/package/base-4.8.0.0/docs/src/GHC-

Base.html

Haskell Website - reactive-banana (n.d.). Source Code of reactive-banana.

URL: https://hackage.haskell.org/package/reactive-banana-0.7.0.1/docs/

Haskell Website - wxHaskell (n.d.). Source Code of wxHaskell.

URL: https://hackage.haskell.org/package/wx-0.12.1.6/docs/

Himmelstrup, D. (2006). Interactive debugging with ghci, Proceedings of the

2006 ACM SIGPLAN Workshop on Haskell, Haskell ’06, ACM, New York,

NY, USA, pp. 107–107.

Hofer, B., Riboira, A., Wotawa, F., Abreu, R. and Getzner, E. (2013). On the

empirical evaluation of fault localization techniques for spreadsheets, Pro-

ceedings of the 16th International Conference on Fundamental Approaches to

Software Engineering, FASE’13, Springer-Verlag, Berlin, Heidelberg, pp. 68–

82.

Horwitz, S. and Teitelbaum, T. (1986). Generating Editing Environments

Based on Relations and Attributes, ACM Trans. Program. Lang. Syst.

8(4): 577–608.

304

Hubbell, T. J., Langan, D. D. and Hain, T. F. (2006). A Voice-activated

Syntax-directed Editor for Manually Disabled Programmers, Proceedings of

the 8th International ACM SIGACCESS Conference on Computers and Ac-

cessibility, Assets ’06, ACM, New York, NY, USA, pp. 205–212.

Hudak, P. (1989). Conception, Evolution, and Application of Functional Pro-

gramming Languages, ACM Computing Surveys 21(3): 359–411.

Hudak, P. (2000). The Haskell School of Expression: Learning Functional

Programming Through Multimedia, Cambridge University Press.

Hughes, J. (1989). Why functional programming matters, The Computer Jour-

nal, Special issue on Lazy functional programming 32(2): 98–107.

Hughes, J. (2000). Generalising Monads to Arrows, Science of Computer Pro-

gramming 37(1-3): 67–111.

Hughes, J. K. (1986). PL/I Structured Programming, John Wiley & Sons, Inc.,

New York, NY, USA.

Hundhausen, C. D., Farley, S. and Lee Brown, J. (2006). Can Direct Manipu-

lation Lower the Barriers to Programming and Promote Positive Transfer to

Textual Programming? An Experimental Study, Proceedings of the Visual

Languages and Human-Centric Computing, VLHCC ’06, IEEE Computer

Society, Washington, DC, USA, pp. 157–164.

Jensen, K. and Wirth, N. (1974). PASCAL User Manual and Report, Springer-

Verlag New York, Inc., New York, NY, USA.

305

Johnson, G. W. (1997). LabVIEW Graphical Programming: Practical Appli-

cations in Instrumentation and Control, 2nd edn, McGraw-Hill Education,

Berkshire, UK.

Joosten, S., Berg, K. V. D. and Hoeven, G. V. D. (2008). Teaching func-

tional programming to first-year students, Journal of Functional Program-

ming 3: 49–65.

Kay, A. C. (1996). History of programming languages—ii, ACM, New York,

NY, USA, chapter The Early History of Smalltalk, pp. 511–598.

Kimura, T., Choi, J. and Mack, J. (1986). A Visual Language for Keyboard-

less Programming, Technical report, Washington University, Department of

Computer Science, St. Louis, MO, USA.

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig,

M., Scaffidi, C., Lawrance, J., Lieberman, H., Myers, B., Rosson, M. B.,

Rothermel, G., Shaw, M. and Wiedenbeck, S. (2011). The state of the art in

end-user software engineering, ACM Computing Surveys 43(3): 21:1–21:44.

Ko, A. J. and Myers, B. A. (2004). Designing the whyline: a debugging

interface for asking questions about program behavior, Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’04,

ACM, New York, NY, USA, pp. 151–158.

Ko, A. J., Myers, B. A. and Aung, H. H. (2004). Six Learning Barriers in

End-User Programming Systems, Proceedings of the 2004 IEEE Symposium

306

on Visual Languages - Human Centric Computing, VLHCC ’04, IEEE Com-

puter Society, Washington, DC, USA, pp. 199–206.

Kochan, S. (2009). Programming in Objective-C 2.0, 2nd edn, Addison-Wesley

Professional, Boston, MA, USA.

Korfhage, R. (1984). Query Enhancement by User Profiles, SIGIR, pp. 111–

121.

Krasner, G. E. and Pope, S. T. (1988). A Cookbook for Using the Model-

view Controller User Interface Paradigm in Smalltalk-80, Journal of Object

Oriented Programming 1(3): 26–49.

Lammers, S. (1986). Programmers at work, number v. 1 in The At Work

Series, Microsoft Press.

Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and Iterative Development, 3rd edn, Prentice

Hall PTR, Upper Saddle River, NJ, USA.

Lau, K.-K., Bush, V. J. and Jinks, P. J. (1994). Towards an Introductory

Formal Programming Course, SIGCSE Bulletin 26(1): 121–125.

Lazar, J., Jones, A., Hackley, M. and Shneiderman, B. (2006). Severity and

impact of computer user frustration: A comparison of student and workplace

users, Interact. Comput. 18(2): 187–207.

Le Guernic, P., Gautier, T., Le Borgne, M. and Le Maire, C. (1991). Pro-

307

gramming Real-Time Applications with Signal, Proceedings of the IEEE

79(9): 1321–1336.

Leijen, D. (2004). wxHaskell: a portable and concise GUI library for Haskell,

Proceedings of the 2004 ACM SIGPLAN workshop on Haskell, Haskell ’04,

ACM, New York, NY, USA, pp. 57–68.

Leijen, D. (2014). wxHaskell is a portable and native GUI library for Haskell.

URL: http://hackage.haskell.org/package/wx

Lewis, C. and Norman, D. A. (1995). Human-computer interaction, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, chapter Designing for

error, pp. 686–697.

Lewis, C. and Olson, G. (1987). Can principles of cognition lower the barriers to

programming?, Empirical studies of programmers: second workshop, Ablex

Publishing Corp., Norwood, NJ, USA, pp. 248–263.

Lipovaa, M. (2011). Learn You a Haskell for Great Good!

URL: http://learnyouahaskell.com/

Lodding, K. (1983). Iconic Interfacing, IEEE Computer Graphics and Appli-

cations 3: 11–20.

Mandel, T. (1997). The elements of user interface design, John Wiley & Sons,

Inc., New York, NY, USA.

Marcus, A. (1992). Graphic design for electronic documents and user inter-

faces, ACM, New York, NY, USA.

308

Marques, B. R. C., Levitt, S. P. and Nixon, K. J. (2012). Software visuali-

sation through video games, Proceedings of the South African Institute for

Computer Scientists and Information Technologists Conference, SAICSIT

’12, ACM, New York, NY, USA, pp. 206–215.

Mayhew, D. J. (1999). The usability engineering lifecycle : a practioner’s

handbook for user interface design, Morgan Kaufmann, San Francisco, CA,

USA.

McCormack, J. and Asente, P. (1988). An overview of the x toolkit, Proc. of

the 1st Symposium on User Interface Software, Banff, Canada, pp. 46–55.

McLaughlin, B. D., Pollice, G. and West, D. (2006). Head First Object-

Oriented Analysis and Design: A Brain Friendly Guide to OOA&D (Head

First), O’Reilly Media, Inc., Sebastopol, CA, USA.

McNiff, J. (1988). Action Research: Principles and Practice, Routledge, Oxon,

UK.

Medina, J. (2010). Brain Rules: 12 Principles for Surviving and Thriving at

Work, Home, and School, Pear Press, Seattle, WA, USA.

Meyers, S. (1991). Difficulties in Integrating Multiview Development Systems,

IEEE Software 8(1): 49–57.

Microsoft Corporation (n.d.). VPL Documentation. last checked: 15.07.2014.

URL: http://msdn.microsoft.com/en-us/library/bb483088.aspx

309

Milner, R. (1984). A Proposal for Standard ML, LISP and Functional Pro-

gramming, Department of Computer Science, University of Edinburgh, UK,

pp. 184–197.

Minor, S. (1991). Interacting with Structure-Oriented Editors, Department of

Computer Science, Lund University, Lund, Sweden, Lund University, De-

partment of Computer Science, Lund, Sweden.

Mow, I. (2008). Issues and difficulties in teaching novice computer program-

ming, in M. Iskander (ed.), Innovative Techniques in Instruction Technology,

E-learning, E-assessment, and Education, Springer-Verlag, Berlin, Heidel-

berg, pp. 199–204.

Myers, B. A. (1990). Taxonomies of visual programming and program visual-

ization, Journal of Visual Languages and Computing 1(1): 97–123.

Nardi, B. A. (1993). A Small Matter of Programming: Perspectives on End

User Computing, 1st edn, MIT Press, Cambridge, MA, USA.

Nardi, B. A. and Miller, J. R. (1990). An ethnographic study of distributed

problem solving in spreadsheet development, Proceedings of the 1990 ACM

conference on Computer-supported cooperative work, CSCW ’90, ACM, New

York, NY, USA, pp. 197–208.

Nassi, I. and Shneiderman, B. (1973). Flowchart techniques for structured

programming, ACM SIGPLAN Notices 8(8): 12–26.

Newby, M. and Nguyen, T. (2010). Using the same problem with different tech-

310

niques in programming assignments: An empirical study of its effectiveness,

Journal of Information Systems Education 21(4): 375–382.

Nielsen, J. (1992). The Usability Engineering Life Cycle, IEEE Computer

25(3): 12–22.

Nielsen, J. (1993). Usability engineering, Academic Press, Boston, MA, USA.

Norman, D. A. (1989). Perspectives on the computer revolution, Ablex Pub-

lishing Corp., Norwood, NJ, USA, chapter The trouble with UNIX (1981),

pp. 243–260.

Ohshima, Y., Lunzer, A., Freudenberg, B. and Kaehler, T. (2013). Kscript

and ksworld: A time-aware and mostly declarative language and interactive

gui framework, Proceedings of the 2013 ACM International Symposium on

New Ideas, New Paradigms, and Reflections on Programming & Software,

Onward! 2013, ACM, New York, NY, USA, pp. 117–134.

O’Sullivan, B., Goerzen, J. and Stewart, D. (2008). Real World Haskell, 1st

edn, O’Reilly Media, Inc., Sebastopol, CA, USA.

Pane, J. F. (1998). Designing a Programming System for Children with a

Focus on Usability, CHI 98 Cconference Summary on Human Factors in

Computing Systems, CHI ’98, ACM, New York, NY, USA, pp. 62–63.

Pane, J. F., Myers, B. A. and Miller, L. B. (2002). Using HCI techniques to

design a more usable programming system, IEEE, pp. 198–206.

311

Panko, R. R. (1998). What We Know About Spreadsheet Errors, Journal of

End-User Computing 10(2): 15–21.

Panko, R. R. (2000). Spreadsheet Errors: What We Know. What We Think

We Can Do., Proceedings of the Spreadsheet Risk Symposium .

Patrick, T., Roman, S., Petrusha, R. and Lomax, P. (2006). Visual Basic 2005

- in a nutshell: a desktop quick reference, 3rd edn, O’Reilly, Sebastopol, CA,

USA.

Pembeci, I., Nilsson, H. and Hager, G. (2002). System Presentation – Func-

tional Reactive Robotics: An Exercise in Principled Integration of Domain-

Specific Languages, Principles and Practice of Declarative Programming,

Pittsburgh, Pennsylvania, USA, pp. 168–179.

Peterson, J., Hager, G. and Hudak, P. (1999). A Language for Declarative

Robotic Programming, International Conference on Robotics and Automa-

tion, pp. 1144–1151.

Petre, M. and Blackwell, A. F. (1999). Mental imagery in program design and

visual programming, Int. J. Hum.-Comput. Stud. 51(1): 7–30.

Peyton Jones, S. (ed.) (2002). Haskell 98 Language and Libraries: The Revised

Report, http://haskell.org/.

URL: http://haskell.org/definition/haskell98-report.pdf

Peyton Jones, S., Gordon, A. and Finne, S. (1996). Concurrent Haskell, Pro-

ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of

312

Programming Languages, POPL ’96, ACM, New York, NY, USA, pp. 295–

308.

Price, J. and Apple Computer, I. (1984). How to Write a Computer Manual:

a Handbook of Software Documentation, Benjamin/Cummings Publishing

Company, CA, USA.

Rasure, J. and Williams, C. S. (1991). An integrated data flow visual language

and software development environment, Journal of Visual Languages and

Computing 2(3): 217–246.

Read, M. (1996). Specifying Direct Manipulation within Program Editors,

Proceedings of the 6th Australian Conference on Computer-Human Interac-

tion (OZCHI ’96), OZCHI ’96, IEEE Computer Society, Washington, DC,

USA, pp. 346–.

Reekie, J. H. (1994). Visual Haskell: A first attempt, Technical Report 94.5,

Key Centre for Advanced Computing Sciences, University of Technology,

Sydney, PO BOX 123, Broadway, NSW 2007, Australia.

Reid, A., Peterson, J., Hudak, P. and Hager, G. (1999). Prototyping Real-

Time Vision Systems: An Experiment in DSL Design, Proceedings of ICSE

99: International Conference on Software Engineering, ACM, New York,

NY, USA.

Reiss, S. P. (1985). PECAN: Program Development Systems that Support

Multiple Views, IEEE Trans. Software Eng. 11(3): 276–285.

313

Reiss, S. P. (1986). An Object-oriented Framework for Graphical Program-

ming (Summary Paper), Proceedings of the 1986 SIGPLAN Workshop on

Object-oriented Programming, OOPWORK ’86, ACM, New York, NY, USA,

pp. 49–57.

Reiss, S. P. (1987). Visual languages and the GARDEN system, Psychology.

Selected contributions on Visualization in programming, Springer-Verlag,

London, UK, pp. 178–198.

Robins, A., Rountree, J. and Rountree, N. (2003). Learning and Teach-

ing Programming: A Review and Discussion, Computer Science Education

13(2): 137–172.

Roff, J. T. (2003). UML: A Beginner’s Guide, 1st edn, McGraw-Hill, Inc.,

New York, NY, USA.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. (1991).

Object-oriented Modeling and Design, Prentice-Hall, Inc., Upper Saddle

River, NJ, USA.

Ruparelia, N. B. (2010). Software Development Lifecycle Models, SIGSOFT

Software Engineering Notes 35(3): 8–13.

Russell, D. (2001). FAD: A Functional Analysis and Design Methodology, Phd

thesis, Computing Laboratory, University of Kent at Canterbury.

URL: http://www.cs.kent.ac.uk/pubs/2001/1152

Ryder, C. and Thompson, S. J. (2005). Software Metrics: Measuring Haskell,

314

Trends in Functional Programming, Vol. 6 of Trends in Functional Program-

ming, Intellect, UK/The University of Chicago Press, USA, pp. 31–46.

Scaffidi, C., Brandt, J., Burnett, M. M., Dove, A. and Myers, B. A. (2012).

SIG: end-user programming, in J. A. Konstan, E. H. Chi and K. Höök (eds),

CHI Extended Abstracts, ACM, New York, NY, USA, pp. 1193–1996.

Segal, J. (1994). Empirical studies of functional programming learners evalu-

ating recursive functions, Instructional Science 22: 385–411.

Segal, J. (2007). Some Problems of Professional End User Developers, Pro-

ceedings of the IEEE Symposium on Visual Languages and Human-Centric

Computing, IEEE Computer Society, Washington, DC, USA, pp. 111–118.

S’erot, J. (2000). CAMLFLOW: a CAML to data-flow graph translator, in

S. Gilmore (ed.), 2nd Scottish Functional Programming Workshop, Vol. 2,

Intellect, St. Andrews, Scotland, pp. 129–144. ISBN 1-84150-058-5.

Sheard, T. and Jones, S. P. (2002). Template meta-programming for Haskell,

SIGPLAN Notices 37(12): 60–75.

Shneiderman, B. (1986). Seven Plus or Minus Two Central Issues in Human-

Computer Interaction, Proceedings of CHI-86, Boston, MA, USA, pp. 343–

349.

Shneiderman, B. and Plaisant, C. (2004). Designing the User Interface: Strate-

gies for Effective Human-Computer Interaction, 4th edn, Pearson Addison

Wesley, Reading, MA, USA.

315

Shu, N. C. (ed.) (1988). Visual programming, Van Nostrand Reinhold Co.,

New York, NY, USA.

Smith, D. C. (1993). Watch what i do, MIT Press, Cambridge, MA, USA,

chapter Pygmalion: An Executable Electronic Blackboard, pp. 19–48.

Smith, S. and Mosier, J. (1986). Guidelines for Designing User Interface

Software, Mitre Corporation, Bedford, MA, USA.

Software, R. (1994). Getting Started with Rational Rose Revision 2.5, Rational

Rose.

Sommerville, I. (1995). Software Engineering (5th Ed.), Addison Wesley Long-

man Publishing Co., Inc., Redwood City, CA, USA.

Spohrer, J. C., Soloway, E. and Pope, E. (1985). A goal/plan analysis of buggy

pascal programs, Human-Computer Interaction 1(2): 163–207.

SPSS Inc. (2007). SPSS base 16.0 user’s guide, SPSS Inc., Chicago, IL, USA.

Steele Jr., G. L. and Sussman, G. J. (1978). The Revised Report on Scheme, a

Dialect of LISP, Technical Report 452, Massachusetts Institute of Technol-

ogy, Cambridge, MA, USA.

Stoughton, A. (2008). A Functional Model-View-Controller Software Architec-

ture for Command-Oriented Programs, Proceedings of the ACM SIGPLAN

workshop on Generic programming, WGP ’08, ACM, New York, NY, USA,

pp. 1–12.

316

Stroustrup, B. (2000). The C++ Programming Language, 3rd edn, Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Szlenk, M. (2011). Metamodel and uml profile for functional programming lan-

guages, Dependable Computer Systems, Springer-Verlag, Berlin, Heidelberg,

pp. 233–242.

Tamassia, R., Di Battista, G. and Batini, C. (1988). Automatic graph draw-

ing and readability of diagrams, IEEE Transactions on Systems, Man and

Cybernetics 18(1): 61–79.

Tanimoto, S. L. and Glinert, E. P. (1990). Designing Iconic Programming

Systems: Representation and Learnability, in E. P. Glinert (ed.), Visual

Programming Environments: Applications and Issues, IEEE Computer So-

ciety Press, Los Alamitos, CA, USA, pp. 330–336.

Tate, B. and Hibbs, C. (2006). Ruby on Rails: Up and Running, O’Reilly

Media, Inc., Sebastopol, CA, USA.

Trudeau, R. J. (1993). Introduction to Graph Theory, Dover Publications, New

York, NY, USA.

Uustalu, T. and Vene, V. (2006). The Essence of Dataflow Programming,

in Z. Horvth (ed.), Central European Functional Programming School, Vol.

4164 of Lecture Notes in Computer Science, Springer, Berlin Heidelberg,

pp. 135–167.

317

Van Tassel, D. (1974). Program style, design, efficiency, debugging, and testing,

Prentice-Hall, Englewood Cliffs, NJ, USA.

Vangheluwe, H. and de Lara, J. (2003). Foundations of multi-paradigm model-

ing and simulation: Computer automated multi-paradigm modelling: Meta-

modelling and graph transformation, Proceedings of the 35th Conference on

Winter Simulation: Driving Innovation, WSC ’03, Winter Simulation Con-

ference, New Orleans, Louisiana, USA, pp. 595–603.

Wadge, W. W. and Ashcroft, E. A. (1985). LUCID, the Dataflow Programming

Language, Academic Press Professional, Inc., San Diego, CA, USA.

Wadler, P. (1995). Monads for Functional Programming, Advanced Functional

Programming, First International Spring School on Advanced Functional

Programming Techniques-Tutorial Text, Springer-Verlag, London, UK, UK,

pp. 24–52.

Wadler, P. (1997). How to Declare an Imperative, ACM Computing Surveys

29(3): 240–263.

Wadler, P. (1998). Why no one uses functional languages, SIGPLAN Notices

33(8): 23–27.

Wakeling, D. (2001). A design methodology for functional programs, Proceed-

ings of the 2Nd International Conference on Semantics, Applications, and

Implementation of Program Generation, SAIG’01, Springer-Verlag, Berlin,

Heidelberg, pp. 146–161.

318

Wallis, C. (2006). The Multitasking Generation, TIME .

URL: http://www.time.com/time/magazine/article/0,9171,1174696,00.html

Wan, Z. and Hudak, P. (2000). Functional Reactive Programming from First

Principles, Proceedings of the ACM SIGPLAN 2000 Conference on Program-

ming Language Design and Implementation, PLDI ’00, ACM, New York,

NY, USA, pp. 242–252.

Waters, R. C. (1984). The Programmer’s Apprentice: Knowledge Based Pro-

gram Editing, in D. R. Barstow, H. E. Shrobe and E. Sandewall (eds), In-

teractive Programming Environments, McGraw-Hill, New York, NY, USA,

pp. 464–486.

West, S. and Kahl, W. (2009). A Generic Graph Transformation, Visualisation,

and Editing Framework in Haskell, ECEASST 18.

Whitley, K. N. and Blackwell, A. F. (1997). Visual programming: the outlook

from academia and industry, Papers presented at the seventh workshop on

Empirical studies of programmers, ESP ’97, ACM, New York, NY, USA,

pp. 180–208.

Wickens, C. D. and Hollands, J. G. (1999). Engineering Psychology and Human

Performance, 3rd edn, Prentice Hall, Englewood Cliffs, NJ, USA.

Wolfram, S. (2003). The Mathematica book, 5th edn, Wolfram Media Inc.,

Champaign, IL, USA.

Zhang, K. (2007). Visual languages and applications, Springer, Netherlands.

319

