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Abstract 

This research seeks to better understand what drives performance in computation. To 

develop this understanding the researcher investigates the literature on computational  

performance within the classical and quantum paradigm for both binary and multi-value 

logic. Based on the findings of the literature the researcher evaluates through an 

experiment of addition what drives performance and how performance can be improved. 

For the evaluation of this research, a realist research paradigm employs two research 

methods. The first is an automaton model of computation to model each of the 

computing paradigms and computational logic. The second is computational complexity 

theory for measuring the performance of addition. Through this evaluation the 

researcher seeks to gain a better understanding of what drives computational 

performance and how addition can be performed more efficiently. 

The results of the research lead the researcher to conclude that modernisation of 

machinery caused the birth start of automated computing and the binary number system 

in computers. As this research indicated that computation through increasing the radix 

can improve performance of computation for addition. Based on reported findings in the 

science of quantum mechanics research, it would be possible to implement a model of 

computation with increased radix. Through embracing state discrimination/ 

distinguishability this research calls to review the current quantum computing paradigm 

based on state duality.   
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Glossary 

Abacus Instrument through which arithmetic can be performed. 

Abstraction Within the context to the research abstractions refers to the 

model of computation as an abstraction of how computer 

function. 

Academics Academic in this thesis refer to scholars that have contributed 

to the body of knowledge. 

Adder An electronic circuit through which addition can be 

performed. 

Adiabatic Computing Computer circuit through which the amount of inputs are equal 

to the outputs. 

Algorithm A set of computer instructions through which an 

computational task can be achieved. 

Approaches to 

Addition 

Within the context of this research a general term is used for 

the different types of adders. 

Architecture Description of how the components within a computational 

system inter-relate to each other. 

Automata Model of 

Computation 

Model of computation used within this research to describe a 

computation. 

Binary Number base system based on one and zero. 

Bit Most fundamental unite within a classical computational 

system. 

Boolean Logic Computational logic with classical computing. 

Carry Term used for adders when an overflow of the number base 
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system occurs. 

Circuit Model of computation through which a computation is 

implemented. 

Classical Computation Computation based on classical physics. 

Computation Process of performing a series of calculations through machine 

instructions with the purpose of attaining an outcome. 

Computational 

Complexity Theory 

Method for classifying the amount of resources required by a 

model of computation to perform a computational task. 

Computational Logic The logic I.E. Boolean logic, used by a computation. 

Computational Model Abstraction of how a machine performs computation. 

Computational 

Performance 

The rate at which a computation is completed by a predefined 

model of computation measure in unites of time. 

Cryptography Computational task that encodes information. 

Decimal Number base system based on ten values. 

Decoherence Quantum phenomena through which is the state of Qbits 

change by interaction with the environment. 

Deduction A form of logic through which reason is used to form 

conclusions. 

Duality Quantum phenomena through which two states can be 

identified within a single Qbit. 

Entanglement Quantum phenomena through which multiple Qbits are joined 

to form a complex state. 

Epistemology Description of what is considered knowledge within this 

research and how knowledge is ascertained. 

Everettian Quantum mechanics interpretation. 
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Exponential Computational complexity class describing growth rate of 

computational instructions. 

Fourier Transform Mapping of a function as a signal which is used to perform a 

computation. 

Halting Problem Computer science theory that tries to determine whether an 

algorithm will come to an end. 

Lambda Calculus Computational model based on calculus. 

Linear Computational complexity class describing growth rate of 

computational instructions. 

Logarithmic Computational complexity class describing growth rate of 

computational instructions. 

Logic Gates Computation operations based on Boolean logic. 

Many Worlds 

Interpretation 

Quantum mechanics interpretation. 

Quantum 

Measurement 

Quantum science of determining the state of a Qbit. 

Methodology Description of methods used to perform research. 

Modulo Arithmetic operation of division resulting in the remainder 

Multi Value Logic For of logic based on a higher number based. 

Multipliers Computational circuit for performing multiplication. 

Ontology Description of the domain of discourse under investigation. 

Paradigm Shift Change in the mainstream view of the research that affects the 

underlying fundamental principles. 

Parallelism Computing thesis stating that multiple computational tasks can 

be performed concurrently. 
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Polynomial Computational complexity class describing growth rate of 

computational instructions. 

Probabilistic Algorithm through which the successful completion of a 

computational task is based on probability 

Quantum Computing Computational paradigm based on quantum physics. 

Quantum Phenomena Particular characteristic unique to quantum physics. 

Quaternary Logic Computational logic with number base four. 

Qubits Most fundamental unite within a quantum computational 

system. 

State Discrimination/ 

Distinguishability 

Quantum science that seeks to find how many different states 

can be identified within a single Qbit. 

Ternary Logic Computational logic with number base three. 

Truth Tables Listing of all possible combination of a logic gate. 

Turing Model Universal model of computation. 
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Chapter 1 Introduction 

Within academic research scholars have studied algorithms with the purpose of defining 

a finite set of instructions that can solve a particular problem. As a subset of this 

research, the problems found are unsolvable while others may be solvable in theory. In 

practice the algorithm is not feasible as the level of computational complexity is too 

high. The algorithms that are solvable in theory are classified according to 

computational complexity theory as hard to solve or of high complexity. Within this 

research the fundamental principles that underlie a hard to compute problem is 

investigated. This is with the purpose of being able to solve such algorithms both in 

practice and in theory. 

This research investigates the fundamental principles of computation through 

understanding the underlying model of computation. The revision of models of 

computation is performed, paradigms and different types of logic. By understanding 

how each of the different models of computation function and perform computation, the 

research aims to determine what the driving force of computational performance. By 

comparing and contrasting different models of computation the computational 

performance difference should be visible. Based on those findings, with regard solving 

high complexity algorithms in practice can be speculated. 

The basic arithmetic is not of high complexity and easily can be performed by 

computers. Basic arithmetic is the most often performed operation for a general purpose 

computer, in particular addition. This is because through addition other arithmetic 

operations can be derived through ‘two’s complement’ computation can do subtraction, 

and multiple additions lead to multiplication. As basic arithmetic is such a fundamental 

and integral part of how a computer operates. This research uses addition to evaluate the 

performance of the different models of computation identified. 
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Through each of the models of computation the researcher aims to develop an 

understanding of how computations are performed. Through a set of pre-defined rules 

computational arithmetic can be performed as humans, who just perform this arithmetic 

according to the rules thought to pupils at school. On the other hand computers tend to 

follow a very different set of rules. Models of computation are used to evaluate these 

rules by which a computer do a computation. It is easier to understand if the desired 

outcome is archived.  

Models of computation are diverse and must be distinguished from computational 

models. Although used for same purpose, modelling, the difference is that a model of 

computation is dedicated to modelling computation. Because computational models 

compute models of different types for example: the strength of a particular chemical 

composition under specific pressures. As models of computation evaluate how a 

computation is performed by a computer based on a specific rule set. Different types of 

models of computation can be produced based on a variation of the underlying rule used 

to do the computation.  

Models of computation are tools used to simulate computation such that behaviour can 

be studied in a closed environment. These models can be used to study several aspects 

of computation. Two key references to models of computation are used for this research 

(Fernández, 2009, Savage, 1998). Within the models of computation that these studies 

show, two groups can be distinguished. These groups are: the models of computation 

that are used to represent how the machine functions, and models of machine 

instructions. For this research the focus is on machine based modelling to gain a better 

understanding of how addition can be performed.  

Both types of models have the same aim, to model the computation of a specific 

problem. However, when using a programming language based model of computation 
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the exact functioning of the machine is not considered. These can be performed through 

a set of known machine operations. This means that the performance of programming 

languages depends on how effective these machine operations are performed. So this 

research seeks to understand whether the most fundamental operation of addition can be 

performed more efficiently.  

Within computer science the theory of computational complexity is used to determine 

the efficiency of an algorithm. As there are different types of criteria for measurement, 

time and space are most common factors. For this research measurement is performed 

based on the amount of operations. Where fewer operations are required by a model of 

computation to do an arithmetic computation, higher efficiency is attained which 

determines the computational complexity. 

The notion of being fast is a subjective matter. This is so when evaluating the 

performance of a model of computation when performing arithmetic (addition). 

Through computational complexity rates of performance can be found and classified. So 

the evaluation of computing arithmetic can be objectively evaluated through models of 

computation against the computational complexity theory. This allows the researcher to 

draw aim conclusions with regards to the computational performance of computation. 

The key to the research is the computational modelling of arithmetic. Through the 

model of computation the rules are defined of how each operation is performed. By 

using a uniform model of computation the paradigms and computational logic can be 

evaluated. These aim evaluations allow for computational performance comparison 

through computational complexity theory. The researcher seeks to derive how 

computational performance can be improved within the model of computation.  
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Chapter 2 Literature review 

Introduction 

The following chapter lays out the fundamental bricks to understand the research, 

methodology, analysis and how the findings are concluded. Most of the content is 

background knowledge and is essential to understand the computing paradigms and 

computational logic referred to within this research. The first section looks at how 

models of computation developed. This is followed by a revision of classical 

computation focusing on how addition is performed through Boolean and multi value 

logic. The second section of this chapter performs the same function for the quantum 

computing paradigm. Throughout each of the revisions for the different approaches to 

addition the circuit model of computation are evaluated. 

Historic developments 

Ancient methods of computation 

Counting and recording of calculations goes back to the most ancient civilisations. The 

oldest existing tools are tally sticks on which carves are made as recordings of a count 

(Rizvi et al., 1991). Speculated stipulates use for counting moon occurrences. Tally 

sticks are marked per five. Addition of one is applied when the event is repeated 

allowing for the total amount to be summarised by the end. There are no real means for 

determining how fast a computation is done. Recording of the event depends on when 

the moon is visible, which is once a day. Calculating the total, grow at a linear rate 

which when tallied is at a rate of (N/5) + X where X is the remainder. 

Not all methods of counting and arithmetic have existing evidence in the form of a tool. 

This is for example: finger counting which is used by many civilisations in the world. 

Different civilisations use their own methods that depend on culture. Evidence of this 
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are numerical recordings with different number bases (Nordhaus, 2001b, Simon, 1997). 

The most common is the decimal one most used representing ten fingers. But the 

Babylonians are believed to start counting on their hands by representing twelve on one 

hand, the second hand to multiply by up to five forming the sexagesimal system. 

Decimal number counting is performed at the same rate as the tally stick. However, 

subtraction can also be done. With the sexagesimal system perform of multiplication is 

possible. 

One of the more sophisticated methods of calculation still used today is the abacus. 

Existent in different forms around the world this tool allows for the four basic forms of 

arithmetic (Bae and Hwang, 2013). Most abaci exist based on the decimal number base 

which enables arithmetic to be performed at the rate log10(n). This represents ten to the 

factor of X. X being defined by the position in the number base.  Other abaci use the bi-

quinary number system. This is like a tally system in which bi symbolises two hands of 

which each has five fingers. The advantage over the decimal abacus is the decimal 

number system is fewer rods, as only six rods are required in a bi-quinary system. This 

implies that arithmetic can be performed at a rate of log10(N-4).  This is the same as the 

decimal abacus less five rods per number position. 

In summary, several different methods of counting and arithmetic existed since ancient 

times. This ranges from more basic tools such as: a tally stick, to counting on fingers 

and abacus which has increased capacity over finger counting. Finger counting is one 

of the most fundamental methods that defined the number base is used in the abacus. At 

the same time those methods of arithmetic were in use, complex forms of logic were 

developed. For example Aristotle, referred to as the father of logic developed syllogistic 

logic and model logic (Hurley, 2006). However, at that time no sign is observed of this 

logic being used for computational purposes. 
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Computation during the middle ages 

During the early Middle Ages mechanical calculators improved from abaci for 

astronomical purposes. Based on a sexagesimal number system through a set of 

mechanisms involving gearing to track celestial body movement (Borrelli et al., 2013). 

Several types of astronomical clocks were built around the world. The most significant 

in this context is programmable and able to play music at predefined times when a 

celestial event occurred. At a linear computational rate it could determine the location of 

celestial bodies in the past or the future. With modern non-linear mechanics solution the 

process is sped-up. However the first developments of mechanical calculator did 

improve to this extent this is a complex task to archive. 

Throughout the middle ages the need for performing arithmetic increased for tax 

collection. The developments in mechanics lead to more robust of gearing mechanisms. 

This was a significant improvement to the weaker wooden astronomic clocks that 

undergone excessive wear. The main difference is the number base system that 

represents the decimal radix (Ketelaars, 2001). Operating through twisting rods with 

one gear a number from 0 to 9 is represented with a gear for every position within the 

decimal number system. This lead to developments in mechanics calculators such that 

the four arithmetic functions are performable (Kidwell, 1992). However multiplication 

became faster because there was no need for operation in a sequence of additions. This 

implied it was X times faster than the first calculators where X is the multiplicand. A 

1909 study demonstrated that a trained clerk is able to do addition six faster than on a 

piece of paper (Nordhaus, 2001a). 

At the start of the industrial age Babage started work on the differential engine (Swade 

and Babbage, 2001). This implied a set of improvements in terms of mathematical 

ability. Around the same time, punch cards which was used in the weaver. To reduced 

the time to process a consensus from ten to five years and save five million dollars 
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(Truesdell, 1965). These phenomenal achievements in data management (processing) 

demonstrated to be the foundation of computer programming by the developments of 

Babbage his analytical engine (Bromley, 1998). Notably the concept of the punch card 

caused further developments towards a computer using binary. 

The developments of Babbage forced further research to rethink how computers would 

be built in the future. Through this process the concept of a ‘model of computation’ 

came into existence in the beginning of the twentieth century. The developments of 

Boolean logic inspired through George Boole are central to the design of computational 

models. As defined through its axioms the possible operations that can be performed 

(Shao, 2008). The usage of logic in computation distinguishes classical computation 

from mechanical computing devices during the middle ages.  
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Section one: Classical computation 

The transition from mechanical computation to electronic computation meant in first 

instance computing devices becoming smaller. However more importantly, increased 

functionality can be attained as well as increased performance. Electronic computation 

adopted Boolean logic to operate on binary information. Through a combination of 

Boolean logic operations it became possible to perform arithmetic. As multiple Boolean 

logic operations are required to do a single arithmetic operation, its performance is 

questioned. However, this research seeks to understand how computers perform 

arithmetic through Boolean logic. What the models of computations are and the 

components these consist out of as well as the underlying rule set. 

Classical addition 

In classical computing bits consist out of one and zero are used to compute through 

Boolean logic. To develop an understanding of how classical computers perform 

addition, the classical full adder is built up from most fundamental components known 

as logic gates. It is reviewed how those logic gates function and can be used to do 

computation. 

Gates 

In classical computations a series of computational gates available that are analogous to 

Boolean logic. For this research the relevant logic gates are presented. These logic gates 

are depicted in pictures one, two and three below and are known as the ‘AND’ gate, 

‘OR’ gate and ‘EXCLUSIVE OR’ gate respectively. Through these gates addition is 

 

Figure 1 ‘AND’ Gate 

 

Figure 2 ‘OR’ Gate 

 

 

Figure 3 ‘XOR’ Gate 

 

http://en.wikipedia.org/wiki/File:AND_ANSI.svg
http://en.wikipedia.org/wiki/File:OR_ANSI.svg
http://en.wikipedia.org/wiki/File:XOR_ANSI.svg
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perform in classical computers through sequencing the inputs and output through a 

series of combined logic gates.  Classical logic gates take two input values that are 

either zero or one to produce a result. The result computed through a logic gate depends 

on Boolean logic by which the logic gate abides. For the three logic gates used in the 

classical full adder a truth table is included to show what the output is for any given two 

inputs for each of the logic gates. 

Truth tables 

The truth tables show the results for computing with the logic gates using any given 

combination of input allows to gain an overview of how the results are derived. For the 

first logic gate, ‘AND’ logic is applied. This means both inputs need to be one for the 

output to be one. In all other cases the output will be zero. On the contrary the ‘OR’ gate 

has an output of one whenever any of the input combinations has a one. The 

‘EXCLUSIVE OR’ gate is the same as the ‘OR’ gate. It has an output whenever the any 

of the inputs is one, except when both inputs are equal. In itself those logic gates 

provide little functionality as they are limited in the amount of operations they can 

perform. However, through applying a series of logic gates to an input it’s possible to 

do very complex algorithms, for demonstrative purposes these logic gates are used to do 

addition. 

Table 1 ‘AND’ truth table 

INPUT OUTPUT 

A B A AND B 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

 Table 2 ‘OR’ truth table 

INPUT OUTPUT 

A B A OR B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

Table 3 ‘XOR’ truth table 

INPUT OUTPUT 

A B A XOR B 

0 0 0 

0 1 1 

1 0 1 

1 1 0 
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The simplest model of computation designed to do addition is known as the ‘half adder’ 

(Norman, 1960). In the classical computing paradigm, this consists of two logic 

operation. The ‘XOR’ operation that is based on two binary inputs determines the 

‘SUM’ and the ‘AND’ operation which calculates whether there is a carry. The ‘half 

adder’ can be extended into what is known as the ‘full adder’. The difference from the 

half adder is that it accounts for a carry input. This implies, more operations must be 

performed as there would be three and four inputs in the classical (Zhuang and Wu, 

1992). This adder represents the simplest method of performing addition electronically 

with Boolean logic. Although efficient it is not optimal through its abstraction. 

Full classical adder 

Figure 4 depicts a full classical adder. The classical adder enables three inputs and two 

outputs. Inputs A and B are the values being added together and C in is a carry value 

from an earlier operation. The outputs are S and Cout. S holds the result for the addition 

of A and B while Cout is the carry value for addition. The classical adder exists out of 

two ‘Exclusive OR’ gates two ‘AND’ gates and a single ‘OR’ gate. The ‘Exclusive OR’ 

gates are used to determine whether the addition of the two input value will result in one 

 

Through the ‘Exclusive OR’ gate the result will only be one when either of the two 

input values is one. No addition occurs when the inputs are both zero or both one. This 

gate is applied to input A and B as well as to the output and the earlier carry which will 

determine the sum. In the event that both input values to either of the two ‘Exclusive 

OR’ gates was one the carry are to be computed. so two ‘AND’ gates are included 

which will output one if both inputs are one. Through the final ‘OR’ gate both ‘AND’ 

gates reduced to one output determining whether the computation yielded a carry. The 

‘OR’ gate outputs a one if either of the two ‘AND’ gates outputs one. 
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Figure 4: Full classical adder 

The electronic methods of computation provided the advantage of being faster than 

mechanical computational devices. This was through achievement of full 

automatisation. On the other hand electronic circuits added a layer of complexity 

through its logic abstraction. This meant in fact it’s slower than earlier methods of 

computation identified. Through this abstraction researcher were able to search for 

different approaches of performing addition with the purpose of optimising 

performance. 

Extended adders 

The simplest extension of the full adder to perform addition on numbers comprises of 

multiple bits and is known as the ‘ripple carry adder’ (Knauer, 1989). This is achieved 

through joining multiple ‘full adders’. This is possible because as stated above, the ‘full 

adder’ has a carry input and is able to propagate a carry bit to the next ‘full adder’. For 

the classical computing paradigm demonstration showed the ‘ripple carry adder’ to be 

an inefficient approach to performing addition (Knauer, 1989). The ‘ripple carry adder’ 

is inefficient because in the worst case it is required to propagate a carry for every 

binary addition performed. This increases the amount of operations significantly.  

A further development to improve the performance of addition is the ‘carry look ahead 

adder’ (Doran, 1988). This is achieved through the usage of an additional model known 

as a ‘carry look ahead unit’, which reduces the amount of gate operations required to 
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propagate the carry. Some variants are known to have optimal performance under 

certain circumstances within the classical paradigm. Examples include: ‘Manchester 

carry chain’ (Needles, 1990), ‘Brent-Kung adder’ (Nowick, 1996), ‘Kogge-Stone 

adder’  (Knowles, 2001). This are interesting for reference purposes but do not add any 

value as the performance is insignificant. 

Within the classical paradigm several other types of adders are known to exist. One of 

these types is known as the ‘carry by pass adder’ or ‘carry skip adder’ (Kobayashi et al., 

2004). This adder makes use of propagation delay to decrease the amount of operations 

used. Similarly, the ‘carry select adder’ predetermines the propagation of the carry 

(Bedrij, 1962). The final alternative adders are the ‘carry save adder’ (Leininger and 

Taylor, 1978), and ‘conditional sum adder’ (Cho, 2003). Each of these has its own 

advantages and drawbacks in how they deal with performing addition.  

Classical multi-value adder 

A revision of the literature found there to be a significant amount of research done to 

achieve higher number base computation through multi-value logic, as an alternative to 

‘binary’ and ‘Boolean logic’. Application of multi-value logic can solve more 

efficiently binary problems, as well as improve circuit design (Dubrova, 1999, 

Dubrova, 2002). The advantages are summarised as: a reduction in signals; the ability 

to store two bits of memory instead of one, and improved arithmetic operations 

(Dubrova et al., 2002). Most common applications of multi-value logic are ‘ternary’ 

(Gang et al., 2009) and ‘quaternary’ (Dornajafi et al., 2008, Gaidhani and Kalbande).  

Furthermore, demonstration showed how addition can be performed through multi-

value logic (Gonzalez and Mazumder, 1998). So, its application to the performance of 

addition is further investigated in this study. 
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Similar to the development of adders with binary Boolean logic, a ternary (A. Rizvi et 

al., 1991) and quaternary (Mingoto, 2006) half adder were created. Likewise these 

developments extended to ‘full adders’ with ternary (Srivastava and Venkatapathy, 

1996) and quaternary logic (Thoidis et al., 2001). Notable the research in multi-value 

logic takes a lower level view in how gates are produced.  It’s very much based on 

electronic diagrams, rather than the circuit models used in Binary Boolean logic. 

Furthermore, the focus is not on the concept of performance. This may be in part 

because demonstration showed computation through multi-value logic will provide a 

computational speed-up. Instead, most of these researches are concerned with power 

consumption and reducing its voltage. As there are no performance metrics. This study 

evaluates the performance of the multi-value ternary and quaternary full adders to be 

compared against the results for the binary logic full adder identified in the previous 

section. 

Computational logic 

The concept of many value logic is the next step where rather than looking at the 

possible truth values were the proposition is true or false. Or in the case of modal logic 

where the degree to which it is so is defined. Many value logic allows to specify other 

values then true or false that are not the degree of its verity but could be used as such. 

This logic allows for any number of outcomes to be the result of the proposition 

(Gottwald, 2005). Academics argued logic to not be depend on one pre-defined axioms 

defining the outcome and so can’t be considered a real logic. This is not necessarily true 

as it could be possible for the outcome is dependent on logic. The key difference is, in 

Boolean logic the output being either true or false. Instead some different combinations 

can be formed based on the amount of inputs specified determining unique outputs. The 

development of these concepts was around the time when quantum mechanics started to 

become better understood. It can be argued to be a product of a physics discovery. 
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Gates 

The ternary logic gates are the same as classical logic gates as they have two inputs and 

one output. Even so ternary logic gates distinguish themselves from their classical 

counterparts because they operate on ternary bits. This is different because opposed to 

classical bits that can hold one of two values, ternary bits can hold one of three values. 

Consequently, ternary logic gates operate differently on the ternary bit inputs. The key 

difference here is in the different combinations can be output. 

To construct, a full ternary adder three ternary logic gates are required. These are the 

‘SUM’ logic gate, consensus logic gate and ‘ANY’ logic gate that are depicted below. 

The ‘SUM’ logic gate is used as an alternative to the exclusive ‘OR’ gate in the classical 

adder. The ‘Exclusive OR’ gate computes modulo two and the ‘SUM’ gate computes 

modulo three. Similarly the consensus logic gate is used to replace the ‘AND’ logic gate 

which performs the inverse function of exclusive by acting only when both inputs are 

the same.  Hence the gate is able to show a consensus between both inputs. The third 

gate named ‘ANY’, functions as the ‘OR’ gate in classical computing. 

Truth tables 

To understand how those logic gates function each of their truth tables are depicted 

below. For the ‘SUM’ logic gate in table four demonstrations showed how modulo three 

is attained, when the output reaches three the value is reset to zero.  Considerably, when 

the inputs are one and two, the output is zero and when both inputs are two the output is 

 

Figure 5 Ternary ‘SUM’ 

Gate 

 

Figure 6 Ternary 

‘CONSENSUS’ Gate 

 

Figure 7 Ternary ‘ANY’ 

Gate 
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one. This is an effect of modulo three restarting counting at zero when three is reached. 

The second ternary logic gate is known as the consensus gate because its output is 

determined by whether both inputs are the same. In the case of a consensus between 

both inputs the output is equal to the input or defaults to one. The final logic gate any 

input to be matched to its output. This means both inputs don’t have to be zero for the 

outputs to be zero. Except when the inputs are the extreme thresholds the output is one. 

As a general rule for the ‘ANY’ gate both inputs can be added together and divided by 

two to determine the output. 

Table 4 Ternary SUM 

truth table 

SUM 0 1 2 

0 0 1 2 

1 1 2 0 

2 2 0 1 

 

Table 5 Ternary 

CONSENSUS truth table 

CONS 0 1 2 

0 0 1 1 

1 1 1 1 

2 1 1 2 

 

Table 6 Ternary ANY truth 

table 

ANY 0 1 2 

0 0 0 1 

1 0 1 2 

2 1 2 2 

 

Full ternary adder 

The full ternary adder is a circuit through which ternary bits can be added together. 

Figure 8 depicts a full ternary adder which resembles the binary classical adder. As the 

classical adder has three inputs, two outputs, and five logic gates. Also it is noticed that 

to determine the sum output two ‘SUM’ gates are used in a similar way to the classical 

adder which used two ‘EXCLUSIVE OR’ gates. As previously described the ‘SUM’ 

gate performs the same functionality that is to do modulo three. This means both values 

will be added together and ignore the carry. To perform the carry in the consensus gate 

is used that is like the ‘AND’ logic gate. The Outputs of the consensus gates are then 

merged through the ‘ANY’ logic gate and output the carry for the addition. The 

functionality of the gates and the sequence in which the inputs are passed to the logic 

gates resembles the classical full adder. 
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Figure 8: Full ternary adder 

Multi-value Ripple carry adder 

The ‘ripple carry adder’ is known to be the simplest extension and is shown to be rather 

inefficient with Boolean logic. Perhaps the reason no implementation of this of addition 

approach in multi-value logic exists. Studies of binary and ternary multi-value logic 

demonstrated ‘binary adders’ to be faster, (Vranesic and Hamacher, 2009). This is a 

contradiction to the first findings in the literature that claimed ‘multi-value logic’ to be 

more efficient than the ‘binary Boolean logic’. It’s possible that for the task addition 

this is not the case.  

Extended adders 

The amount of variants developed for the ‘adder’ based on ‘multi-value logic’ is 

limited. One of the alternatives is an implementation of a ‘ternary select adder’ within 

the classical paradigm. However, there is little concrete indication of performance 

improvement enabling comparison with other models. Further research must be 

conducted to demonstrate its advantages (Burgess, 2001).  

Classical computation Summary 

In the first section of the literature review the classical computing paradigm its 

approaches to addition are evaluated. Starting with the fundamental concepts of how 
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computational logic is utilised to perform addition, followed by the full adder. Several 

of the large scale adder implementations are reviewed and evaluated based on the 

literature findings for performance. Within the classical computing paradigm 

comparison is made with multi-value logic. In attempt of comparing the performance 

results of addition for binary logic based computation opposed to multi-value logic 

computation. Although the meta-literature suggests multi-value logic is more efficient, 

little evidence is found to back-up this claim (Dubrova, 1999, Dubrova, 2002). With an 

overview of computation of addition in the classical paradigm for binary and multi-

value logic, the quantum paradigm is reviewed in the following section. 

Section Two: Quantum computing 

Current computing is on the verge of a transition from a classical to a quantum 

computing paradigm. This transition is based on discoveries in the science of physics, 

in which quantum mechanics developed enabling a computational speed-up (Feynman, 

1982). This is demonstrated through a series of algorithms (Deutsch and Jozsa, 1992, 

Grover, 1996, Shor, 1994). However, the effect of quantum speed-up applies to these 

algorithms, which are very specific tasks of computation such as integer factorisation 

and searching. Furthermore, identified computers are dependent on the computational 

task of addition, as all other arithmetic depends on; for example, it’s found in the 

literature that Shor’s (1994) algorithm depends on modular exponentiation, which 

cannot be performed without addition (Berman et al., 2001). Shor’s (1994) algorithm is 

demonstrated a quantum speed-up (Shor, 1994), but not for the part of addition. so, this 

study seeks to investigate whether such an improvement in speed is possible through 

the revision of computational model and approached to addition. 

As described by (Barenco, 1996) quantum computing is different from classical 

computing at its most fundamental level. For example: the ‘Bit’ in the case of a 

classical computing and ‘Qubit’ in the case of a quantum computer. While the classical 
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‘Bit’ can hold either the values one or zero, the ‘Qubit’ is able to hold both in the same 

time. This scales as more ‘Qubits’ are included. When two ‘Qubits’ are used, four 

values between zero and four can be stored. In the case of three values this becomes 

eight.  These values are stored in a universe. A further advantage enables computation 

to be performed on all values at the same time; however at the end of a computation 

only one result can be retrieved. This is known as the ‘quantum parallelism thesis’, the 

key reason quantum computers are faster than classical computers (Duwell, 2007). 

Quantum computing is the science that seeks to understand how quantum mechanics 

can be used to perform computation. The research on quantum computing is driven by 

the potential to miniaturise computers and make possible a computational speed-up. 

This all started when a physicist who tried to demystify quantum mechanics through 

simulating its phenomena on a computer (Feynman, 1982). This is impossible because 

the rate at which the complexity of quantum mechanics increases is higher than a 

computer. Based on these findings and speculation, research began to understand how it 

could be possible to use quantum mechanics to solve computational problems currently 

unsolved due to their inherent complexity. 

The research in quantum mechanics applied to computer science is active research and 

is so far only partially successful. The complexity in developing a quantum computer is 

in the quantum mechanics, which is not completely understood. There are several 

different interpretation to quantum mechanics, some of which have been disproved 

while other are subject to interpretation (Schmelzer, 2011). The most common view is 

the ‘Copenhagen interpretation’ that is most accepted for teaching purposed (Mermin, 

2003), and is accepted by early scientists working on a quantum computer.  

However, more recent research suggests the ‘many world interpretation’ is more 

suitable for quantum computing enabling parallel computations through its multi-
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universe (Osnaghi et al., 2009, Wallace, 2002). Multi-universe view of quantum 

mechanics is the underlying theory that explains the quantum parallel thesis. The 

researcher of this study does not seek to elaborate on the mysticism of what is 

uncertainly known for the science of quantum mechanics. But rather seeks to exploit 

what is known about the states of particles (Audenaert et al., 2012, Bergou et al., 2012) 

in quantum mechanics. And evaluate whether it’s possible to improve computational 

performance through a hypothetical model of computation. 

In principle, quantum computing and classical computing are the same. However, in 

theory quantum computing is shown to be able to solve some computational problems 

in less time than in classical computing. Richard Feynman demonstrated quantum 

mechanics enabled an increased computational speed-up, based on the idea of the multi-

universe interpretation of quantum mechanics (Deutsch, 1985).  

The research into building a computer based on quantum phenomena according to the 

multi-universe interpretation as previously described is on-going. There have been 

claims that a quantum computer has been built. However, significant criticisms of 

academics who stated this implementation is not valid and does not provide a 

computational speed-up (Van Dam, 2007). More recently, the University of Bristol 

developed a universal quantum photonic chip for educational purposes (Shadbolt et al., 

2011).  

The Business school Said of Oxford University in 2005 developed an interesting study 

during which questioned leading researchers in quantum computing. Based on their 

findings, a marketing study is completed. This study brings together the research 

potential of quantum computers and the application for which they can be used in direct 

relation to market demand of computer use (Corker, 2005). According to this study the 

following applications are market demanding: ‘quantum cryptography, quantum 
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computer, quantum auctions, quantum gaming, quantum scheduling and optimisation, 

and quantum meteorology’. Interestingly, they have developed a timeline on which is 

demonstrated where they expect those technologies to emerge and become available on 

the market. Notably, wide spread commercial application will take several years to 

become available; however quantum encryption from point to point is implemented and 

used since 2005. Such applications are not commercially available; it is suspected that 

they are used for government maters. Small scale prototype developments in quantum 

computing labs are a clear development towards building quantum computers on a large 

scale that may become available within the foreseeable future (Lloyds 2008). 

Decoherence 

While researchers are running ahead trying to determine how quantum computing will 

revolutionise computing, scientists are still resolving a fundamental problem known as 

‘Decoherence’. Even though, it’s been possible so far to design and implement a 

quantum chip, because of the problem of scaling up the quantity of ‘Qubits’ involved. 

This is caused by the problem of ‘Decoherence’, which occurs when ‘Qubits' interact 

with the environment and ‘Decoherence’ or undergo a state change (Golubev and 

Zaikin, 1998). 

Nevertheless active research seeks to overcome ‘Decoherence’ known as: quantum 

error correction (Steane, 1998), stabiliser codes (Gottesman, 1997), entanglement 

assisted quantum error correction (Hsieh et al., 2007), and quantum convolutional 

codes (Chau, 1999). For this research it’s important to be aware of Decoherence and the 

implication is for the performance of computation, as additional equipment is required 

to prevent ‘Decoherence’. Nevertheless, the prevention of ‘Decoherence’ is outside the 

scope of this research 
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Quantum logic 

The concept of quantum logic developed by (Birkhoff and Von Neumann, 1936). The 

leading scientist in this field interested in developing the field of logic based on the 

findings of quantum mechanics. Through these developments, the basics of quantum 

computing are established. However, the developments in quantum physics developed 

over time. One of the key contributors of quantum theory is (Mackey and Benjamin, 

1967) who had a renaissance effect quantum logic its algebra. This became the 

standard quantum logic deviated from the  quantum logic in the complete orthomodular 

lattice based on the closed subspace in a Hilbert space (Birkhoff and Von Neumann, 

1936). The most common form is ‘Orthomodular Quantum Logic’ (OQL) of which 

modal interpretation exists.  

According to (Greechie, 1981) OQL rectified by ‘Hilbert Quantum Logic’ (HQL). 

Furthermore, research conducted to use the concepts of first order logic in quantum 

logic. (Takeuti, 1981) further developed quantum logic in the field set theory through 

creating equivalent concepts of Boolean logic, based on the algebraic structure of a 

complete orthodular lattice. At a later stage, started off some serious criticism against 

the standard logic (Ludwig and Hein, 1985). In favour of the initial concepts developed 

(Birkhoff and Von Neumann, 1936). And support developed for the concepts in 

quantum mechanics referring to pure and mixed states. Subsequently, other forms of 

quantum logic developed.  

The science in quantum mechanics allows for quantum computing is known as state 

duality. This means two states can be held simultaneously. This is the fundamental 

principle behind the quantum bit which distinguishes itself from the classical bit. The 

quantum bit state determines the information that can be stored. For a pure state this 

means the simple representations of the quantum bits are represented. For example: with 

a register of three quantum bits the value eight can be stored. In contrast with mixed 
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states any of the parallel universes can be accessed to perform a computation on the 

register. This is because they can represent any of the possible outcomes to a certain 

extent based on its statistical properties.  

This is the most fundamental concept behind quantum computing and the potential of 

performing hard computational tasks in the classical computing paradigm solvable. 

Therefore this research investigates how quantum addition is performed and whether 

the research is able to take advantage of quantum states to attain improved 

performance when computing addition. Also, the research in quantum computing 

investigates the amount of states that can be identified. This research is known as 

quantum state discrimination(Bae and Hwang, 2013) or distinguishability (Borrelli et 

al., 2013). Based on this research in quantum states, this research seeks to re-evaluate 

how quantum computing performs addition, by using the different states identified as a 

number base system. This different view, on how to use the science of quantum 

mechanics in applied computer science, is compared against conventional computation 

in the classical and quantum paradigm for both binary and multi-value logic. 

Quantum addition 

The first two full adders described so far are within the same computing paradigm 

known as classical computing. They are distinct in the number base used. Where the 

first one employed binary the second one is based on ternary. This implied both 

required a similar form of logic to perform computation. The following full adder 

distinguishes itself in terms of its computing paradigm. This is because it operated on 

quantum bits rather than on classical bits. A quantum full adder has a unique set of 

logic gates. To perform addition two distinct logic gates are required in the quantum 

paradigm.  
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Quantum gates 

The logic gates used in quantum computing are very distinguished from its classical 

counter parts. This is predominantly due to having to operate on quantum bits. 

Furthermore, the quantum gates used in the quantum full adder differ from classical 

binary and ternary gates in an equal amount of inputs and outputs used for every logic 

gate. More important is the concept of quantum control bits which are used to operate 

of quantum target bits. In figure 9 a ‘CNOT’ logic gate is depicted. It consists of one 

quantum control bit and one quantum target bit. While the gate in figure 10  the 

quantum ‘TOFFOLI’ gate has two quantum control bits and one target bit. Quantum 

control bits are used to determine the target bit. The ‘CNOT’ gate inverts the quantum 

target bit depending on the state of the quantum control bit. The ‘TOFFOLI’ gate 

performs the same function as the ‘CNOT’ gate, with the difference that the inverting of 

the target bit depends on both control bits. With different types of bits quantum 

computing requires logic gates function differently. To gain a better understanding the 

truth tables of the quantum logic gates need to be examined. 

Truth tables 

The truth tables for the quantum ‘CNOT’ and ‘TOFFOLI’ gate demonstrate the 

difference with logic classical gates. Most convenient with the quantum gates is the 

control quantum bit never changes; the input is always the same as its output. On the 

contrary the target quantum bit is changed in the ‘CNOT’ gate when the quantum 

 

Figure 9 Quantum ‘CNOT’ Gate 

 

Figure 10: Quantum ‘TOFFOLI’ Gate 
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control bit is one, and left to its default value when zero. The same logic is applied for 

the ‘TOFFOLI’ gate with the difference that both quantum control bits have to be one to 

change the quantum target bit. The logic can be confirmed in truth table 7 and 8 below. 

Half quantum adder 

The ‘quantum half adder’ is analogous in the quantum paradigm, which performs in 

principle the same logical operations (Barbosa, 2006). However, based on the 

knowledge that the ‘Qubit’ is different compared to the classical bit, quantum gates are 

used to simulate Boolean logic. Most significantly, the quantum adder requires three 

‘Qubits’ while the classical adder requires two Qubits’. Furthermore, both models use 

an equal amount of operations to perform computation, which means addition is 

performed at the same rate. Similarly to the classical adder the same abstraction is used. 

Therefore it is questioned how efficient an implementation of addition the quantum 

adder is? 

Table 7 Quantum ‘CNOT’ truth 

table 

INPUT OUTPUT 

C T C T 

0 0 0 0 

0 1 0 1 

1 0 1 1 

1 1 1 0 
 

Table 8 Quantum ‘TOFFOLI’ truth table 

INPUT OUTPUT 

C C T C C T 

 0   0   0   0   0   0  

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 0 1 1 

1 0 0 1 0 0 

1 0 1 1 0 1 

1 1 0 1 1 1 

1 1 1 1 1 0 
 

 

Full quantum adder 

With quantum bits and quantum logic gates so fundamentally different from their 

classical counterparts, it’s questioned how computation can be performed. Below a full 

quantum adder is depicted. It contains more inputs and outputs, but has one less logic 

gate.  Although at first sight the full quantum adder looks very different from the 
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classical full adder, they hold a great deal in common. Essentially, a different approach 

is used to attain the same objective of adding two inputs A and B together. The quantum 

full adder does this by determining the sum output through ‘CNOT’ logic gates. Thus 

when either of the inputs, A or B is one the output sum is inverted. In the case of a carry 

it would become zero, and when both inputs are one the second one cancels out the first 

one.  

Herby the effect of the ‘Exclusive OR’ logic gate in the classical adder are attained. To 

determine whether there should by a carry output K the ‘TOFFOLI’ gate is used. A 

carry output if one of the inputs is one and the output is one. This cannot occur twice 

because the first ‘CNOT’ will negate the carry input, therefore not allowing the carry 

output to be reset to zero. The ‘TOFFOLI’ gate has a similar effect as ‘AND’ gates in 

the classical full adder. The final ‘OR’ logic gate is not required in the quantum full 

adder. Its structure through which the two ‘TOFFOLI’ gates produced a single output, 

hence only four logic gates are required. Revision of the quantum full adder found the 

underlying logic behind similar to the classical adder (Cheng and Tseng, 2002).This 

added to the question of whether they are equal in performance?  

 

Figure 11: Quantum full adder 
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Quantum adders 

Classical quantum adders 

The ‘quantum ripple carry adder’ consists of multiple ‘full adders’, and is demonstrated 

to give increased efficiency to linear time in the quantum paradigm (Beckman et al., 

1996, Cuccaro et al., 2004, Vedral et al., 1996, Gossett, 1998). The ‘quantum carry look 

ahead adder’, is  a significant improvement over its classical counterpart, as it’s reduced 

to logarithmic depth through application of modular arithmetic (Draper et al., 2006). 

Other improved implementations are the ‘bypass adder’, which a model based on binary 

Boolean logic created implementing skip logic (Islam et al., 2010). The ‘quantum carry 

select adder’ is demonstrated to perform addition in squared linear time (Meter III, 

2006). 

The most efficient implementations are the ‘carry save adder’ (Gossett, 1998) and the 

‘conditional sum adder’ (Meter III, 2006). These adders are based on modular 

arithmetic rather than being based on Boolean logic in the quantum paradigm. The 

‘carry save adder’ has a reduced number of gates at the cost of increasing the amount of 

‘Qubit’ used within the computation. On the other hand, the ‘conditional sum adder’ 

achieves a more successful result, enabling addition in logarithmic time. 

Non Classical quantum adders 

A number of adders existing only in the quantum paradigm are identified. There is no 

classical counterpart as these adders are based on quantum phenomena. One example is 

based on the quantum Fourier transform (Draper, 2000). However, performing addition 

in linear time is less efficient, but is an improvement in terms of the amount of gates 

used. Another example, based on quantum mechanical properties is the carry look 

ahead design, is based on quantum measurement (Trisetyarso and Van Meter, 2009). 
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Through the interaction of a measurement the state is changed in such a way that a 

computation is performed. This is demonstrated to be more efficient on a larger scale.  

For those who have developed a model of computation based on a binary radix through 

either binary Boolean logic or modular arithmetic. it’s found within the classical 

paradigm the computational task of arithmetic is performed at best in linear time (Pai 

and Chen, 2004). The same is demonstrated in the quantum paradigm through the 

‘conditional sum adder’ (Meter III, 2006). However, demonstration showed in the 

quantum paradigm a faster implementation achieved (Choi and Van Meter, 2008). This 

is based on a ‘Kd mesh’ enabling the reduction first to a squared root of linear time, 

then cubed, then to the power of four, and so on. Thus, the factor of the square root 

increases throughout the lifetime of the computational task. According to the structure 

of the ‘Kd mesh’, where K stands for the denominator of the root, and d stands for the 

dimensions of the mesh. Similar to using a binary tree enabling a computation in linear 

time, this data structure allows for reducing the performance of a computational task to 

a rooted time. These claims are very interesting, however are not validated by other 

studies. 

Quantum multi value logic 

Revision of addition in the quantum paradigm leads to several interesting findings 

which are improved performance and alternative approaches to quantum addition based 

on quantum mechanics. This research is not extended to quantum multi-value logic 

within the quantum paradigm. This enables to compare quantum multi-value logic 

addition against quantum addition and addition within the classical computing 

paradigm. Therefore quantum multi-value addition is further investigated in terms of its 

functioning. 



 

43 

Gates 

Figures 13 to 18 depict the elementary quantum ternary functions of which any three 

can be used in conjunction to form a quantum ternary logic gate. The first operation 

leaves the input unchanged. The second adds one to the output, the third adds two. The 

fourth multiplies the input by two. The fifth multiplies the input with two and adds one. 

The last multiplied the input with two and adds two. To form a quantum ternary logic 

gate any of these six operations are joined together as depicted in figure 12. It’s 

important to consider the order of the operations as the quantum control bit determines 

which of the three operations will be performed on the input. 

 

Figure 12 Sample 

Quantum Ternary 

Gate 

 

Figure 13 Quantum 

Ternary Buffer 

 

 

Figure 14 

Quantum Ternary 

Single shift 

 

Figure 15 

Quantum Ternary 

Dual shift 

 

Figure 16 Quantum 

Ternary Self shift 

 

Figure 17 

Quantum Ternary 

Self single shift 

 

Figure 18 

Quantum Ternary 

Self dual shift 

Truth tables 

It’s easier to understand the exact functioning of each operation through their truth 

table. As identified with the classical ternary adder, modulo three is applied. This is 

seen in the single shift operation when one is added to the input, the output is reset to 

three. For the last three truth tables including a self-shift the input is first multiplied by 

two. Any multiplications with zero have the output of zero.if two is multiplied by itself 

it’s reset at zero and becomes one as depicted below in table 9 - 14. 

Table 9 Quantum Ternary Table 10 Quantum Ternary Table 11 Quantum Ternary 
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Buffer truth table 

Buffer 

X  =  X 

Input Output 

0 0 

1 1 

2 2 

 

Single shift truth table 

Single shift 

X  =  X + 1 

Input Output 

0 1 

1 2 

2 0 

 

Dual shift truth table 

Dual shift 

X  =  X + 2 

Input Output 

0 2 

1 0 

2 1 

 

Table 12 Quantum Ternary 

Self shift truth table 

self shift 

X  =  2X 

Input Output 

0 0 

1 2 

2 1 

 

Table 13 Quantum Ternary 

Self single shift truth table 

Self single shift 

X  =  2X + 1 

Input Output 

0 1 

1 0 

2 2 

 

Table 14 Quantum Ternary 

Self dual shift truth table 

Self dual shift 

X  =  2X + 2 

Input Output 

0 2 

1 1 

2 0 

 

Quantum ternary adder 

The full classical ternary adder is an extension of the full classical adder. And the full 

quantum ternary adder is a modified version of the full quantum adder. In both cases 

quantum bits are used, however for the quantum ternary adder three states can be 

distinguished. Therefore different logic gates are required to operate on ternary 

information. Figure 12 demonstrates a full ternary quantum logic gates sub-exists out 

three of the six elementary quantum ternary gate operations. Like quantum computing a 

control bit that in this case is ternary will determine which of the three operations must 

be performed.  
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Full ternary quantum adder 

Within the quantum paradigm ‘half and full adders’ are identified for both ternary and 

quaternary logic (Chattopadhyay et al., 2009, Hung et al., 2004, Khan, 2004a, Khan and 

Perkowski, 2007). While some of the quantum implementations are described through 

specific quantum technologies. This is not always the case when theoretical designs are 

made of how an ‘adder’ would operate, based on what is known about quantum 

mechanics. Nevertheless, at this stage it has not been possible to determine whether a 

‘quantum adder’ for either ternary or quaternary multi-value logic could yield higher 

performance. But it’s identified that multi-value logic adders require more gates 

(Jahangir and Das, 2010). 

The full quantum ternary adder is most distinguished from all previous adders 

demonstrated. This is because within a single ternary logic gate it’s possible to perform 

one of three operations based on the quantum ternary control bit. This makes the full 

quantum ternary adder more complex. It consists in total out of ten logic gates which is 

a double of the classical adder. It is different from the quantum full adder because there 

are no logic gates with two quantum control bits. Also there are five inputs and output 

quantum bits. Unlike the previous reviewed full adders, the full quantum ternary adder 

bears no resemblance in terms of the underlying logic used to perform addition between 

two quantum ternary values. Its difference with the full classical ternary adder is that its 

logic gates have control bits. Also it is different from the full quantum adder in that it 

does not have gates with multiple control bits. Therefore the logic used in the previously 

investigated full adders cannot be found in full quantum ternary adder. Instead it uses a 

convoluted method to determine the carry within the addition which makes it very 

inefficient. 
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Table 15 

Quantum 

Ternary adder 

Gate 1 

1 

In Out 

 0 1 2 

0 1 0 1 

1 1 0 1 

2 1 0 1 

 

Table 16 

Quantum 

Ternary adder 

Gate 3 

2 

In Out 

 0 1 2 

0 1 2 0 

1 2 0 1 

2 0 1 2 

 

Table 17 

Quantum 

Ternary adder 

Gate 3 

3 

In Out 

 0 1 2 

0 1 2 2 

1 2 1 1 

2 0 0 0 

 

Table 18 

Quantum 

Ternary adder 

Gate 4 

4 

In Out 

 0 1 2 

0 2 1 1 

1 1 0 2 

2 0 2 0 

 

Table 19 

Quantum 

Ternary adder 

Gate 5 

5 

In Out 

 0 1 2 

0 0 0 1 

1 2 2 0 

2 1 1 2 

 

 

Table 20 

Quantum 

Ternary adder 

Gate 6 

6 

In Out 

 0 1 2 

0 0 1 2 

1 2 0 0 

2 1 2 1 

 

 

Table 21 

Quantum 

Ternary adder 

Gate 7 

7 

In Out 

 0 1 2 

0 2 0 1 

1 0 1 2 

2 1 2 0 

 

 

Table 22 

Quantum 

Ternary adder 

Gate 8 

8 

In Out 

 0 1 2 

0 0 1 1 

1 1 2 0 

2 2 0 2 

 

 

Table 23 

Quantum 

Ternary adder 

Gate 9 

9 

In Out 

 0 1 2 

0 1 0 1 

1 2 1 0 

2 0 2 2 

 

 

Table 24 

Quantum 

Ternary adder 

Gate 10 

10 

In Out 

 0 1 2 

0 0 1 0 

1 1 2 1 

2 2 0 2 

 

To be able to evaluate the full quantum ternary adder for verification purposes, 

intermediate truth tables are included in tables 15 to 24. The quantum full ternary adder 

is depicted in figure 19. For each phase in the diagram a truth table is included with a 

corresponding number. These truth tables demonstrate for each possible input in the 

input column, what the output would be based on the control bit at the top of the output 

column. 
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Figure: 19 Full Ternary adder 
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Literature review summary 

Two types of machine based models of computation that are suitable for this research 

are identified. The logic model of computation in the form of Boolean circuits is the 

most often used to model the computational task addition. It’s used in the classical 

paradigm for binary Boolean computation (Bedrij, 1962, Cho, 2003, Doran, 1988, 

Knauer, 1989, Knowles, 2001, Kobayashi et al., 2004, Leininger and Taylor, 1978, 

Needles, 1990, Norman, 1960, Nowick, 1996, Zhuang and Wu, 1992). The carry save 

adder and conditional sum adder are the most efficient in the classical paradigm. 

However, performance depends on the magnitude of how large the implementation is 

scaled up. 

Implementations of multi-value logic within the classical paradigm with the purpose of 

improving the performance for computing addition are plentiful (A. Rizvi et al., 1991, 

Dornajafi et al., 2008, Dubrova, 1999, Dubrova, 2002, Dubrova et al., 2002, Gonzalez 

and Mazumder, 1998, Mingoto, 2006, Srivastava and Venkatapathy, 1996, Thoidis et 

al., 2001, Vranesic and Hamacher, 2009). It’s found that for most of the different 

approaches to addition a multi-value logic implementation is created and published. 

However the performance benefits are not transparent due to insufficient and unclear 

reporting. 

In the quantum paradigm a different approach to implement Boolean logic are found. 

Nevertheless, approaches to the computation of addition are inspired on existing 

implementations in the classical paradigm. An implementation is for most different 

types (Barbosa, 2006, Beckman et al., 1996, Cheng and Tseng, 2002, Cuccaro et al., 

2004, Gossett, 1998, Islam et al., 2010, Meter III, 2006, Trisetyarso and Van Meter, 

2009, Vedral et al., 1996) and binary modular arithmetic (Draper, 2000). The findings 

in the quantum paradigm are interesting from the perspective that show significant 
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performance increases over the classical counterparts, especially, when quantum 

phenomena is used to perform computation of addition. 

Muli-value logic within quantum paradigms is under developed. Few studies implement 

an approach to computation addition (Chattopadhyay et al., 2009, Hung et al., 2004, 

Khan, 2004b, Khan, 2004a, Khan, 2008, Khan and Perkowski, 2007, Oklobdzija et al., 

2003). Out of the few studies existent it’s impossible to deduce what the performance 

implication are for implementing multi-value logic addition in the quantum paradigm.  

The findings are mixed, in first instance it’s unclear what the performance results were. 

Most of the implementations to the different approaches to addition within each of the 

computational paradigms for the computational forms of logic specified. Even in the 

cases where performance results are reported, it’s uncertain how comparison can be 

performed. In some cases different types of performance are measured and reported. 

One of the key findings in this literature review is the link between quantum 

phenomena and computational performance. It’s found that for the computation of 

addition significant performance results are demonstrated. So this research seeks to 

investigate quantum phenomena in relation to computational performance, with 

specific focusing on how the concept of state discrimination can be used. The research 

in quantum mechanics on state discrimination could enable an alternative approach to 

its application in the computation of addition. Through this research, it can be 

established whether through quantum state discrimination computation at a higher 

number base can allow computation of addition at a higher performance. This means 

that the paradigm shift to quantum computing must be reviewed. 

The main obstacle identified within the literature review is the inconsistency between 

different studies on the topic of addition between each of the paradigms and 

computational logic. This lead to finding results of different metric types which are not 
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readily comparable. Therefore, this research seeks to take an academic approach to the 

evaluation of performance. Through the usage of an automaton model, the computation 

of addition is modelled and measure for performance with computational complexity 

theory. This should enable objective comparison between different approaches of 

addition. 
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Chapter 3 Methodology 

Introduction 

The following chapter seeks to outline the mind set the research adopted during the 

research to allow other researchers to validated and evaluate the findings. The research 

questions and objectives are reiterated as a reminder of what the purpose of the research 

is. This will help to understand how the methodology enables this research. 

The research methodology consists out of two parts which are the researchers mind set 

and the practical methods used to attain the research objectives. To outline the mind-set 

required be adopted when reading this research a research paradigm based on the 

epistemic stance reason and a realist ontology, the researcher seeks to deduce answers to 

the research questions. As part of this mind set it’s questioned through critical 

evaluation whether the experiment is subjective. Also the research questions the current 

paradigm shift in computer science based on research findings in quantum mechanics.  

The research experiment is based on two primary research methods known as 

automaton model of computation and computational complexity. The automaton model 

of computation is used to model the computation addition for the different paradigms 

and computational logic which allows for comparison while computational complexity 

theory is used to determine the performance of each approach to with the purpose of 

understanding how performance can be increased. As the automaton model of 

computation is a universal model of computation it’s able to demonstrate how an 

alternative view on the application of quantum mechanics can enable a performance 

increase in the computation of addition through emulating a higher number base, 

opposed to binary. 
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Research questions 

1. What are the available computational models and how can these be used to 

evaluate the computational performance of addition? 

2. Find out what the performance implications are for addition in different 

paradigms and logic, and how can this be measured systematically? 

3. Based on the findings of research question two, can the performance of addition 

be improved? 

Research objectives 

1. Identify a suitable model of computation for evaluating different approaches to 

addition. 

2. Model the addition in the chosen model for each paradigm and logic and 

evaluate their performance. 

3.  Identify what is the contributing factor for performance in computation of 

addition. 

Research paradigm 

Within the research community a broad scope of research methods. To provide an 

overview (Clear, 2004) reiterated three paradigms as: “scientific, interpretivistic, and 

critical enquiry”. Whilst his purpose is to demonstrate how critical enquiry can be used 

in computer science research, he states, most research in computer science is within the 

scientific paradigm. This is true for this study, this is because formal statements are 

made about the models of computation presented and use a formal method for accessing 

their computational complexity. This is instead of using methods that look at 

understanding complicated phenomena (quantum mechanics) which is complex to 

understand. However, this study is based on such complex phenomena nevertheless 

remains superficial of it. Furthermore quantitative methods are used in this study 
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regardless of whether the statement of computational performance holds true for the 

models of computation. It’s the distinction in quantitative methods over qualitative 

methods that make this study of scientific nature. In favour of the scientific paradigm 

this study does not consider any sociological implication so the critical paradigm is 

excluded as well.  

The educational field of computer science (scientific paradigm) has diversified and 

evolved into different theoretical views. (Eden, 2007) was able to categorise those views 

into three paradigms which can be summarised into rationalists who take a more 

theoretical position, technocratic for engineering and scientific when natural science is 

involved. The method used to define in which category the research belongs is 

determined by why priori or/and posteriori knowledge is obtained. Its actual methods 

are deductive reasoning, test cases, “formal deduction and scientific experiment” 

respectively to the three paradigms. By means of reviewing study one and study two 

with regard to their method of deriving knowledge it’s possible to obtain which 

paradigm they operate in. 

This study is considered within the scientific paradigm to hold a rationalist position. 

This is determined through the fact that the method used to evaluate the computation 

addition is referred to in an abstraction. Despite, the computation of addition being 

performed based on the knowledge of quantum mechanics, the researcher does not 

search to find out his research based on this knowledge, and therefore, it cannot be 

considered within the scientific paradigm, however in essence quantum computing does 

fall within this paradigm. Nevertheless this research is not considered to be strictly 

rationalist because only priori knowledge is sought through deductive logic. This is not 

so for the technocratic paradigm which is not applied in this study which seeks 

posteriori knowledge through practical application. 
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As this study does not base itself on quantum phenomena, but instead uses physical 

objects in the described model of computation. Nevertheless this research does evaluate 

how quantum phenomena are used in the application and is critical of it by suggesting 

an alternative approach. The description of this model of computation is an abstraction 

of a machine its instructions which is rationalist in nature. This concludes this study to 

fall within the scientific paradigm as described by (Clear, 2004) and adopts a rationalist 

theoretical viewpoint.  

Epistemology 

The research paradigm defines how knowledge is obtained. The concept of how 

knowing what is true is explained by (Holloway, 1995) to be either a matter of 

authority, reason, or experience. The authoritive epistemology is divided into two 

possible forms of authority. These can be omniscient authority and human authority. 

This study seeks not to justify its findings through authoritive epistemology. Because 

this study does not obtain the findings form an authorative source. It’s more likely that 

this epistemology is used in an interpretative paradigm or even in a critical enquiry. 

The epistemological stance of experience claims to find what is true through using 

senses (Holloway, 1995). Out of the wide variety of experience based epistemologies 

available, of which the most relevant in this context is experimental evidence. This is 

because experimental evidence can be used within the technocratic paradigm to present 

posterior knowledge through practical tests. These studies do not engage in practical 

experiments from which they derive conclusions forming the purpose of the research. 

Instead, this study refers to a model of computation and presents a method for accessing 

computational performance. Through the method priory knowledge is derived verifying 

the postulates of computational performance are right. 
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Within the epistemological stance reason, it’s required to prove truth with deductive 

logic rules. Having previously identified both studies to fall within this category, this 

study adopted an epistemology of reason. Through evaluating different approaches to 

computing addition with a uniform model of computation it’s deduced whether there are 

any differences and reasoned as which of the evaluated approached yields greater 

performance. 

For this research the ultimate objective is to develop an understanding of how 

performance of computation in particular addition can be improved. Therefore, 

knowledge derived through this research allows the reader to understand the 

significance of the computation of addition, different approaches to addition within the 

classical and quantum paradigm through different forms of computational logic. As the 

shift to quantum computing is questioned for its approach to how computations is 

performed, and an alternative approach to the computation of addition is suggested 

based on quantum mechanics research in state discrimination as a contribution to 

knowledge. 

Ontology 

With consideration of what knowledge is in this study, it’s required to consider how the 

world under observation also known as the ontology is defined. It’s required to have a 

thorough understanding of the model of computation, this is an ontologically 

description. Copeland and Shagrir (2011) evaluated and compared two ontological 

positions are used to describe models of computation. These two ontological positions 

are purist and realist which describe the models of computation at different levels. It’s 

significant for the research they present as it has implications for their findings in that 

under one conception they find different computational ability. They also review 

Turing’s description of his model of computation and find him to fall under the realist 

conception.  
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Under the purism conception a model of computation is a mathematical object. It’s 

important to distinguish between the design of what a physical computer would be like 

and its mathematical abstraction (Copeland and Shagrir, 2011), this is because a 

mathematical abstraction can multiple different physically implementations. An 

example of a purist (Shor, 1994). This is because the study of Shor presented a 

mathematical formulation of a quantum algorithm to perform integer factorisation on a 

quantum model of computation. The revision of this algorithm hence is expressed 

mathematically.  

This study focuses on the computational task of addition through a model of 

computation documented in the literature. However the literature found most use a 

different type of model of computation known as a circuit model. Both the circuit model 

of computation and the automaton model of computation are within the realist ontology 

group rather than purist as they do not use a mathematical description. Instead the 

models of computation us a diagrammatic means of presenting the operations of the 

approach to addition.  

The difference between the circuit model of computation and the automaton model of 

computation is visible at different levels. The circuit model of computation is a direct 

representation of the wiring within the hardware used to implement the addition while 

the automaton model of computation is a machine representation like the circuit model 

of computation, but differs in its level of abstraction. Therefore the same approach is 

presented differently. 

The current mainstream usage model of computation for addition is the circuit model of 

computation because it enables intricate optimisation for implementation, while the 

automaton model of computation is more for academic purposes. This research has 

adopted the automaton model of computation because the objective of this research is to 
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evaluate different approaches to addition within different paradigms and with different 

types of logic. 

This research is focused on evaluating the difference in terms of computational 

performance between computing paradigms. It’s important for the model of 

computation (automation model of computation) used within this research is able to 

represent each of the computational paradigms. Although the research paradigm of this 

research is clear about the idea that the research is based on the underlying physics of 

the computational paradigms. It does not contribute to its development. However the 

research does evaluate the underlying physics are used to perform the computation of 

addition more efficiently. This is based on the usage of state discrimination as the 

primary science of quantum mechanics over the current application of quantum 

computing based on quantum phenomena of particle duality. 

The research therefore evaluated three ontological views of physics and compares those 

with regards to performance when computing addition. For each of the three views the 

ontology is based on the most fundamental unite of computation with is the bit, as 

previously described in classical physics a qubit is either one or zero. Based on particle 

duality in quantum mechanics under the many world interpretation a quantum bit can 

represent both one and zero at the same time, through which several researchers have 

claimed to be able to attain a computational speed-up (Simon, 1997). As an alternative 

view to the usage of quantum mechanics for the computation of addition the science of 

state discrimination is suggested through which a finite amount of single states can be 

represented (Bae and Hwang, 2013). Based on this science an alternative paradigm with 

a number base equal to the amount of states can be represented opposed to the other 

binary paradigms. 
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To compare those three ontological views, it’s required to use an automaton model of 

computation to perform this research. The automaton model of computation brings the 

computation approach of addition to a higher level of abstraction not attainable by the 

circuit model of computation as to close a representation of the physical material from 

which the implementation consists. The level of abstraction provided by the automaton 

model of computation enables to compare between the different approaches to addition 

independent of how they would be physically implemented. 

Subjectivity 

The application of computational complexity theory has a significant set of ontological 

implication in terms of objectivity and subjectivity. These implications can undermine 

the epistemological justification of knowledge derived through the application of the 

methodology. To understand the implication, it’s required to understand what 

constitutes objective measurement of complexity. According to Fioretti (2000) there are 

two prerequisites to objectivity. The first is to be able to identify the most fundamental 

required components in the system relevant to the study without the need for in-depth 

analysis of subcomponents. The second requirement is the links between those 

components and the action undertaken is defined. For this study a clear explanation is 

provided of the above stated requirements, which implies an objective measure of 

complexity is conducted. 

It’s expected to be the case as according to Fioretti (2000) the discipline of computer 

science is primarily objective. He states: “the components are objectively given: they 

are the symbols a computer works with, and they do not arise out of measurement of a 

physical magnitude”. This study is in accordance with this statement, however (Fioretti, 

2000) continued by stating “contrary to computer science classical physics does involve 

a translation of continues and open ended phenomena into symbols”. This would imply 

measures of complexity become subjective. As this study relies to a certain extent on 
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the concept of quantum phenomena to perform computation which raises the question 

as to whether the measure of complexity measurement becomes subjective? 

Under the condition of a universal consensus within a scientific community that agreed 

on the components of the system. It’s possible to define a computational complexity 

measurement as objective. With regard to the this study, on-going debate within the 

research community on the several interpretations of quantum mechanics (Osnaghi et 

al., 2009) despite the many world interpretation taking a lead within the applied field of 

computer science. Based on the understanding of this interpretation an objective 

measure of complexity should are established in this study.  

True objectivity within this study remains uncertain. This is based on the fact that the 

components within the model of computation are agreed upon at the start of the study. 

This is true for both paradigms and forms of logic in the different approaches to 

addition. It’s when these components predefined that an objective measure of 

complexity is considered to be subjective to some extent. This means, the measure is 

objective but the experiment is subjective. Furthermore Fioretti (2000) discussed that 

being able to meet the requirements to an objective complexity measurement can be 

done by an algorithm. This means that the measurement of an addition algorithm would 

have been objective independently of its possible initial flaw suggested by this study.  

Fioretti (2000) also stated objective measurement of complexity to retain a subjectivist 

flavour because it’s a machine which is executing the algorithm. This study does have 

in some sense subjective influence through the model of computation. With regard to 

the critical evaluation of the approaches to addition and there is no implication towards 

their finding in terms of accuracy of knowledge found using the computational 

complicity measurement. It means the researcher is expecting to obtain those findings at 

the start of the research. 
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Research methods 

Models of computation 

This study seeks to evaluate whether computation through a higher number base system 

would be computationally more efficient than classical computation or even quantum 

computation based on the multi-universe interpretation of quantum mechanics. To 

model computation a specific model of computation is required. According to the 

literature there are two types (Fernández, 2009, Savage, 1998). These are those 

representing machine instructions and those used to model programming languages; 

this study is interested in modelling machine instructions. For those models of 

computation, a further two types are identified, which are logic based on circuit models 

and automaton models. This research seeks to use universal automation models of 

computation, so computation between the different paradigms can be accurately 

compared. 

The Turing model of computation is a form of automata. These automata are described 

through the Chomsky hierarchy, which categorises those models of computation 

(Chomsky, 1956). The categorisation of those models starts with the universal Turing 

model of computation at the bottom, which can compute any computational task as long 

as expressed as a function. Each category in the hierarchy symbolizes how complex a 

computational task a model of computation can perform. At the highest level of the 

hierarchy is the finite state model or automaton, as the simplest form of automata. The 

models of computation can all be visualised as finite state models. As the hierarchy is 

traversed towards the universal Turing model, it’s found that each category is an 

extended finite model: the Turing model consists of multiple finite models which 

enables its universality. As the computational task addition is so simple, the finite state 
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model of computation is used throughout this research to determine computability and 

computational performance. 

Revision of models of computation revealed it impossible to compare each of the 

ontological views described when performing addition and measuring performance. To 

establish an objective evaluation a universal model of computation is to be used to 

represent each of the states that the different ontological views stand for. The automaton 

model of computation is able to represent each of the different states the three 

ontological positions can be in and the transitions required as part of the computation 

that changes the states. 

Computational complexity theory 

The secondary research method in this research is computational complexity theory. 

This method is used in conjunction with the automaton model of computation. Through 

application of a consistent singular method of measurement each of the ontological 

views presented can be compared in terms of performance. As computational 

complexity theory is key to the successful evaluation of this research an overview is 

provided to understand the origin of computational complexity theory, its application 

and limitations with regards to this research. 

Although the old Greeks had a sense of what an efficient algorithm was, this would was 

limited to the abacus. Computational complexity was something which was unknown to 

Alan Turing. However the lack of a method to measure computational resources for the 

Turing model of computation. Out of this requirement computational complexity was 

born (Fortnow and Homer, 2003). This developed over the years through the addition of 

classes demonstrating different levels of complexity of which polynomial and 

exponential are most often used. Within the complexity theory different types of 

resources such as time and space have been defined as individual complexity classes. 
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Therefore the time and space complexity per computational task can be specified 

individually. Each of the complexity classes is specified for the Turing model of 

computation according to determinism. The understanding between these two 

complexity classes proved too difficult for to resolve.  

The problem of being able to determine an algorithm able to complete a computational 

task in polynomial time and being able to verify whether the answer is correct provides 

the answer to the question is the polynomial time complexity class equal to the non-

deterministic polynomial complexity class. This problem is an academic interest for 

which the Clay Mathematics institute currently award an academic prize of one million 

dollars to who is able to solve the question (Institute, 2000). Rather than the inability of 

being able to solve the problem of developing an algorithm able to perform a 

computational task in polynomial time, the usage of an algorithm that is able to verify 

an answer became significant in solving computational problems within this complexity 

class (Gill, 1977).  This is because by being able to verify an answer allowed usage of 

probabilistic computational tasks are able to solve some computational problems to 

some degree of accuracy. By being able to verify the result in polynomial time the 

computation can be completed multiple times until its correct answer is verified. 

Through this probabilistic approach it becomes possible to solve non-deterministically 

hard problems. 

Computational complexity theory has proved to be sound through its adaptations to 

quantum complexity for measuring resource usage (Bernstein and Vazirani, 1997). This 

complexity class also known as bounded error quantum polynomial time represents the 

quantum version of the classical probability computational complexity class. The 

importance for this class comes with the fact two significant algorithms is developed 

which are able to perform database searching and integer factorisation more efficiently 

than their classical counterparts. However the complexity of NP and BQP are not 
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analogues. This means some computational problems which are within the 

computational boundaries using a quantum model of computation but do not satisfy 

these criteria when using a classical model of computation. A thorough understanding 

of computational complexity is required to answer the question: what is the 

computational performance of a non-binary computational model? 

With the purpose of determining how efficiently ‘addition’ can be computer. The theory 

of computational complexity is used. Through computational complexity problems can 

be categorise according to how hard it is to compute them (Papadimitriou, 2003). This 

can only be determined based on the model of computation used (Fortnow and Homer, 

2003). Through computational complexity a set of measures can be applied to represent 

the taxonomy of the resources required for a predetermined model of computation to 

perform a computational task. The amount of resources used by the model of 

computation is expressed as a function. Through this function the required resources 

used over time can be determined.  

In view of the current shift from the classical to the quantum paradigm the measurement 

of computational performance must be taken into consideration. Within the literature 

classical computational complexity theory is adapted to quantum computational 

complexity theory (Watrous, 2008), which includes classes in which it’s possible to 

categorise the complexity of performing computational tasks through a quantum model 

of computation. This research questions to what extent it’s possible to capture any 

computational speedup through computational complexity theory of the task addition. 

While most of the limitations of computational complexity theory are discussed in the 

research methodology chapter, they are addressed below. 

Computational complexity is demonstrated to be a coherent theory. This is because 

throughout the paradigm shift from classical to quantum computing easy adaption took 



 

64 

place. However, a study has demonstrated computational complexity theory does not 

account for all aspects of a computation (Blakey, 2011). This is an important concept 

within this research. Furthermore, computational complexity theory is objective in 

nature and is affected by the subjective considerations of the researcher’s experiment 

(Fioretti, 2000). Therefore, when computational complexity theory is applied, the 

experiment needs to be well thought out to maintain objectivity. This affects how 

computational complexity should be applied, and how the performance of addition is 

measured for the specified models of computation. 

Computational complexity uses several different types of metrics. The most common 

are those bound the computational model by ‘time’ and/or ‘space’. Throughout the 

literature the circuit model of computation is most often applied. With this model of 

computation the most used metrics which are frequently cited are gate depth and gate 

count. This represents the amount of sequential operations required to traverse a 

complete computation, and the total amount of operation performed throughout the 

computation. Other metrics included in the quantum paradigm, the amount of ‘Qubits’ 

used throughout the computation and the amount of garbage outputs. As a limited 

number of studies have used the finite state model of computation, these metrics cannot 

be applied to this research, as they are very specific to the logic model of computation. 

Therefore the metrics used to measure computational complexity of the finite state 

model when performing addition is ‘time’ and ‘space’.  

Once the computation is evaluated through the universal automation model of 

computation its performance must be measured. Computational complexity can be used 

to determine the computational performance of each implementation to compare the 

performance (Papadimitriou, 2003). However, some considerations must be made 

during the application of computational complexity. In the first instance is the tests 

must be applied objectively as possible to define a subjective test as an experiment for 
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which the result is predetermined (Fioretti, 2000). Further investigation found 

computational complexity to have limitation (Blakey, 2011). Therefore, it should be 

considered whether computational complexity does actually demonstrate a 

computational performance increase through a higher number base system. This could 

be critical for the outcomes of this research. This is because if it’s required to use 

alternative means of demonstrating the performance difference between the ontological 

positions then objectivity can be lost. 

Research experiment 

To evaluate the performance of different approaches to addition an experiment is 

applied for each approach with one calculation. It’s expected to find through performing 

the same calculation through different approaches the results is determined accordingly.  

The experiment simply evaluates the steps that a computation goes through for each of 

the different approaches to addition evaluated. Three tests are used to evaluate the 

performance of each approach. Each test evaluates the operations, and test different 

cases. The three tests are summarised below in binary, decimal and ternary 

1. 0101 + 1010 =  5 + 10 = 012 + 101 

2. 0101 + 0101 =  5 + 5   = 012 + 012 

3. 0111 + 0111 =  7 + 7   = 021 + 021 

 

Each of the three computations is shown below as a different computation in terms of its 

number base system. This is because for the research experiment that will compare 

between the classical and quantum research paradigm both binary and ternary 

computational logic are used. This will reveal whether quantum computation of addition 

is more efficient than the traditional classical computational paradigm. Also within each 

of those paradigms the different types of logic are compared in terms of performance. 
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The research is set with the expectation of multi-value logic enabling higher 

performance for the computation of addition.  

The subsequent comparison within the quantum computing paradigm seeks to evaluate 

the computational performance between what is binary and a higher number base 

system. For this experiment number base ten is assumed. The number base would be 

defined through the amount of states which can be distinguished in a single particle In 

this case ten states are required for the number base system. 
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Chapter 4 Analysis  

Introduction file  

In this chapter the research experiment described in the methodology is implemented. 

First fundamental logic gates for each paradigm and computational logic are described. 

Then the adder circuit model of computation is evaluated and abstracted through the 

automaton model of computation. This allows for a better understanding of the 

computational performance differences between each paradigm and computational logic 

for the different approaches to addition. 

Evaluation 

Based on the revision of the four presented full adders, a comparison is made to 

determine the most efficient approach for a computer to perform addition. The first 

comparison demonstrated between the full classical and the full quantum adder, are 

similar in underlying logic. The comparison is performed through an automata model of 

computation through which both full adders can be compared. This means there is no 

constraints of hardware that needs to be considered in adders. A subsequent comparison 

is made between the Binary based adders and the classical Ternary adder to develop an 

understanding of performance implications, when using adders with different number 

base systems. 

Binary automaton adder 

The Binary automaton adder depicted below in figure 20 is an abstraction of both the 

classical full adder and quantum full adder. Through abstraction the physical 

constraints are removed. Each of the adders performs addition through similar logic. So, 

it’s concluded both are equal in computational performance. This means that both 

adders have an equal number of operations when modelled by the automaton model of 

computation. 
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The Binary automaton adder depicted in figure twenty consists out of five states 

between, which the automaton can switch provided there is a connection. Each 

connection has a box in which the two values are added recorded. After the forward 

slash a carry from the previous operation is recorded. Once an operation has occurred, a 

state transition takes place. Every operation involves a state transition even if that is to 

the same state. 

 

 

Computation 

For the experiment three computations are performed. These computations are based on 

three different calculations that will demonstrate a computation, when there are no carry 

values; the other two computations involve some carry values. Through these 

experiments demonstrated how efficient these approach is in performing addition by the 

amount of computational steps required. 

0101 + 1010 =  5 + 10 = 15 

Figure 20 Binary automaton adder 
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Table 25: Binary automaton computational steps 5 + 10 

Computational 

step 

Computational 

state 

Input / 

carry 

Carry Output Result 

1 1 10/0 0 1 1 

2 3 01/0 0 1 3 

3 3 10/0 0 1 7 

4 3 01/0 0 1 15 

 

0101 + 0101 = 5 + 5 = 10 

Table 26 Binary automaton computational steps 5 + 5 

Computational 

step 

Computational 

state 

Input Carry Output Result 

1 1 11/0 1 0 0 

2 4 00/1 0 1 2 

3 3 11/0 1 0 2 

4 4 00/1 0 1 10 
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0111 + 0111 =  7 + 7 = 14 

Table 27 Binary automaton computational steps 7 + 7 

Computational 

step 

Computational 

state 

Input Carry Output Result 

1 1 11/0 1 0 0 

2 4 11/1 1 1 2 

3 5 11/1 1 1 6 

4 5 00/1 0 1 14 

 

Ternary automaton adder 

The Ternary automaton adder depicted below in figure 21 demonstrates how Ternary 

addition can be performed without physical constraint. Although more complicated and 

harder to follow, the ternary automaton adder functions like the Binary automaton adder 

depicted in figure 20. The difference being, that there are more states and inputs for 

addition reflect the Ternary number system.  
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Figure 21 Ternary automaton adder 
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Computation 

The same three test cases are used to evaluate the Ternary adder automaton as for the 

binary automaton. Using the same type of computational model and the same test cases 

any significant difference between both the approaches is verifiable. Through this 

method the significance of performing addition with differences in the radix of the 

number base system are evaluated. 

012 + 101 =  5 + 10 = 15 

Table 28 Ternary automaton computational steps 5 + 10 

Computational 

step 

Computational 

state 

Input / 

carry 

Carry Output Result 

1 1 21/0 1 0 0 

2 5 10/1 0 2 6 

3 3 01/0 0 1 10 

012 + 012 = 5 + 5 = 10 

Table 29 Ternary automaton computational steps 5 + 5 

Computational 

step 

Computational 

state 

Input Carry Output Result 

1 1 22/0 1 1 1 

2 6 11/1 1 0 1 

3 3 00/1 0 1 10 
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021 + 021 =  7 + 7 = 14 

Table 30 Ternary automaton computational steps 7 + 7 

Computational 

step 

Computational 

state 

Input Carry Output Result 

1 1 11/0 0 2 2 

2 4 22/1 1 1 5 

3 6 00/1 0 1 14 

Decimal adder automaton 

Based on the revision of full adders in different paradigms with different number base 

systems, abstractions are made into automaton models of computation to compare 

between them. Some improvement of computational efficiency is observed between the 

classical full adder and the classical Ternary adder. Further investigation into the 

increase in number base results in improved performance of computing addition. To 

evaluate whether this holds true, a Decimal adder automaton model of computation is 

depicted through which a further experiment is conducted using the same test cases. 

The Decimal automaton adder functions similarly to the Binary and Ternary automaton 

adders. For complexity reasons the Decimal automation adder is depicted in part. In 

total twenty one states are exist, and have a connector between most states, this high 

amount of connectors is not depictable in figure 22 below. Based on figures 20 and 21 

it’s easy to understand how the Decimal automaton adder would fit together.  
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Figure 22 Decimal adder automaton 
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Computation 

For consistency the same three test cases are used in this experiment to measure the 

performance of the Decimal automaton adder. Through using the same test cases, it’s 

possible to compare the results against the previous computations that where performed 

using the Binary and Ternary automaton model of computation. The tables below 

demonstrate the steps of the computation include the computational step, which is just a 

count of the amount of operations. Computational state signifies where in the automaton 

model the computation is. Input and carry defines the data used to perform the 

computation. Output is the result of the operation and the result is the overall outcome 

of the computation. 

05 + 10 = 15 

Table 31 Decimal automaton computational steps 5 + 10 

Computational 

step 

Computational 

state 

Input / 

carry 

Carry Output Result 

1 1 50/0 0 5 5 

2 7 01/1 0 1 15 

05 + 05 = 10 

Table 32 Decimal automaton computational steps 5 + 5 

Computational 

step 

Computational 

state 

Input Carry Output Result 

1 1 55/0 1 0 0 

2 11 00/1 0 1 10 
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07 + 07 = 14 

Table 33 Decimal automaton computational steps 7 + 7 

Computational 

step 

Computational 

state 

Input Carry Output Result 

1 1 77/0 0 2 2 

2 15 00/1 0 1 14 

 

Summary and findings 

The evaluation of full adders within this research found several significant findings. 

These are the similarities between the different types of full adders, to the extent that the 

classical full adder and quantum full adder can be generalised as the same automaton 

adder. Furthermore, significant are similarities in the way that the full classical Ternary 

adder is modified based on the fundamental concept of modulo two into modulo three. 

Although it’s not possible to prove the same similarities between the classical Ternary 

adder and quantum Ternary adder as with their classical counterparts. This is believed 

to be due to the constraints of physical realisation. In principles the quantum Ternary 

adder should be reducible to the same ternary automaton adder. 

This lead the research into comparing the adders based on the radix of their number 

base system. The first comparison between the Binary automaton adder of computation 

and the Ternary automaton model of computation presented a few differences. This is 

an increase in complexity depicted in figure 21. This has more connectors between the 

states in the automaton compared to its Binary alternative. When evaluating the actual 

computation it’s found that the Binary automaton requires four steps of computation 

while the Ternary automaton is able to perform the computation in three steps. While 
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this is an improvement, according to computational complexity, it’s found that the 

output is linearly bounded to the input. The Binary automaton has four input and so 

four outputs, the reason the Ternary automaton has three computational steps is because 

the inputs can be represented in less significant values.  

Through the usage of the method computational complexity it’s possible to evaluate and 

compare the computational performance between models of computation based on 

different number base systems. Significantly, the higher the number base system the 

lower the number of computational steps required to perform the computation. For the 

first model based on the Binary number system four steps where required. The second 

based on Ternary required three steps. And the final model based on Decimal required 

two steps to compute a simple addition of five and ten.  

As the findings indicated a difference for computational steps required in relation to the 

number base used. It’s questioned whether a further experiment could be performed to 

find out how significant this difference would be on large scale computation. As it’s not 

be possible to illustrate in a diagram a computation with greater values. It’s 

hypothesised how great a value can be computed in each of the number base systems. 

The assumption is that the growth rate of output per computational step increases 

according to the base unit of the radix used within the computational model. This is 

based on the findings in the experiment above.  Below a table is presented in which the 

growth per number systems is displayed in sequence with the computational steps. The 

growth rate of output is the radix to the power of the computational step expressed in 

big O notation. 

 Binary     O(radix(2)
N
) 

 Ternary  O(radix(3)
N
) 

 Decimal  O(radix(10)
N
) 
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Table 34 Growth rate of output per computational step 

Computational step Binary Ternary Decimal 

1 2 3 10 

2 4 9 100 

3 8 27 1000 

4 16 81 10000 

5 32 243 100000 

6 64 729 1000000 

7 128 2187 10000000 

 

The forecast of expected outcomes of a large scale implementation for each of the 

presented models of computation based on increasing number base systems is captured 

in the graphs below. Figure 23 demonstrates the total amount of output per 

computational step. While in the second figure 23 the output per computational step is 

demonstrated as a percentage. This shows that for Binary and Ternary models of 

computation the gap for step one is 15%, step 2 10%, and step three 5%. Between 

Ternary and Decimal the gap is 65% for the first step, step 2 is 90% and the tird step is 

95%. In all cases the trend is an increasing gap between the outputs of each of the 

models of computation.  
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Figure 23 Forecast of growth output 
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Figure 24 Forecast of growth output as growth 
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Chapter 5 Conclusion 

Answer to research questions 

The first research question Sought to find out what the available models of computations 

are. Secondary in this question is to identify the most suitable models of computation for 

the purpose of computing addition.  

During the evaluation of the literature the following types of models of computation are 

identified: 

 logic circuit models  

 Automaton model of computation (finite state machines) 

 Turing model of computation 

 Formal language model of computation (Lambda calculus) 

 Object oriented model of computation 

 Quantum model of computation 

Different forms of computation have historically taken place, compared to modern day 

models of computation. These approaches are significantly distinguished from the models 

outlined above. This is based on the idea of computation not being binary as in modern 

models of computation.  

The research focuses on models of computation that model machines rather than machine 

instructions. Identified example of machine instruction models are: formal language and 

object oriented models of computation. These models of computation are used to model 

programming. So these models of computation are identified as unsuitable to the current 

research. Instead this research requires models of computation which model the functioning 

of machines. 
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The circuit model of computation is particularly relevant to this research. Most of the 

literature focused around the computation of addition is presented through this model of 

computation. However, the circuit model of computation is found not suitable for 

implementing this research. This is because it’s specific to technology. As this technology 

is significantly different between paradigms it’s not possible to compare approaches 

between different paradigms or forms of computational logic. The automaton model of 

computation on the other hand is to be able to model a computation independent of its 

physical existence. Therefore, it’s considered more suitable for this research. The 

automaton model of computation is a subset of the Turing model of computation. This 

research seeks to evaluate the task of addition which can be achieved through a finite 

automaton. The Turing model of computation is more suitable for general purpose 

computation for which multiple finite automaton are required.  

As found in the literature the circuit model of computation is extended from the classical 

computing paradigm into the quantum paradigm to model quantum computation. In this 

research, the automaton model of computation is extended to the quantum paradigm. This 

means both paradigms with binary and multi-value logic can be evaluated for performance 

when performing the task of addition. More importantly it’s possible to compare between 

the findings of each evaluation. Therefore, the automaton model of computation is 

considered the most suitable model of computation for this research. 

The second research question drives the research forth to investigate the current literature 

with regard to how researchers have proposed to perform addition. Within the different 

given computing paradigms the research seeks to develop an understanding of the different 

approaches to addition for each form of computational logic. Furthermore, the evaluation 

the research seeks to develop an understanding of the performance, for each of the different 
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approaches to addition, and how the researches have expressed performance and measured 

it. 

A section within the literature review chapter is devoted to answering the greater part of 

this research question. This is in the summary of the different approaches to computation 

section. The interesting aspect of this evaluation is the performance measurement. Most 

researchers established a metric in term of performance expressed in computational 

complexity, although several research papers did not consider this factor. In several cases 

where a form of measurement applied, it’s not being compared as some studies investigate 

the number of logic gates used, other circuit depth, etc. Therefore, the studies are not 

comparable in terms of performance measurement. 

In the classical paradigm carry save adder and conditional sum adder are most efficient. 

Each of them varies in performance depending on how large scale the implementation is. 

For multi-value logic opposed to binary Boolean logic it’s expected to find reported 

findings demonstrating a performance increase; however no valid findings are identified in 

the literature. Even so, the most significant findings are identified in the quantum 

computing paradigm. For binary Boolean logic based approached in the quantum paradigm 

similar finding to the classical counterpart found most approaches. The conditional sum 

adder is significantly faster in the quantum paradigm for which it’s rated as logarithmic. 

The Kd mesh adder performance increases as the computation takes place. The final group 

under investigation is multi-value logic addition within the quantum paradigm.  

As identified in the first research question, it’s not possible to compare this metrics for 

different paradigms and computational logic because of inconsistency. But, the same 

methods used to measure and express the computational performance of the different 
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approaches to addition. Throughout the literature and so this research has adopted 

computational complexity theory. 

Through the usage of the automaton model of computation and computational complexity, 

it’s possible to evaluate the different approaches of addition in different paradigms. For 

each of the computational logics defined. This lead to the conclusion: no performance 

difference between computational paradigms for performing addition. However, it’s found 

through ternary logic possible to improve computational performance over binary 

computation. 

 

The final research question revolved about questioning the findings of this research. The 

aim is to better understand how further research can improve and increase computational 

performance of addition. 

 

This research identified performance of computing addition is related to the radix of the 

performed computation. As demonstrated in the last experiment, a model of computation 

operates with radix ten is able to perform the computation in fewer steps and therefore be 

more efficient. This efficiency has become visible for very small computations of addition 

involving numbers with two values. However this becomes more significant as the values 

in the number increase. In the performance graph (Figure 23 & 24) it’s depicted for binary 

logic computation. To add a value up to 128 in four computational steps, 1287 for ternary 

logic and 10000000 with a decimal computation. This is a great difference between the 

radix, the growth curve is increasingly steeper. 
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Within this research study an attempt is made to standardise the approach to measuring the 

performance of computation. As concluded from the literature, several studies have 

reported a form of performance metrics; however, even between those studies it’s not 

possible to compare performance. This is because some refer to the number of gates used, 

other to the amount of computational steps, while several didn't report any performance 

metrics. In this study the focus is placed on the number of computational steps required to 

perform a specific computation. For which it’s found that with higher number base models 

of computation it’s possible to perform the same computation of addition in less 

computational steps. 

Therefore, further investigation shows how much more can be computed using a model of 

computation with a higher number base system. On a large scale a significantly greater 

output per computational steps is attained. However, it’s impossible to relay back to the 

initial findings in the literature reported to be able to perform addition in different 

categories such as O(N), O(log N), O( N), etc according to the different approaches and 

paradigms used. To be able to compare the findings of this study and other studies, it’s 

required to develop a physical device able to perform modular arithmetic on number base 

encoded qubits. Once these logic gates are developed a circuit can then be used to compare 

the performance. 

It’s important to note: the current research is based on the assumption that qubits can be 

held in at least ten different distinct states as described in the literature as state 

discrimination. This is distinct from previous research which looks at performing addition 

based on the qubit holding two states simultaneously. This is important because it’s 

fundamentally different in how quantum mechanics is applied in computation. Also, this 

research is based on modular arithmetic for the three experiments. However, in the 
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literature different approaches used such as the quantum fourier transformer, binary tree, 

mesh or cube structures. 

Contribution to knowledge 

The contribution to knowledge is twofold within this research. Firstly the researcher has 

systematically evaluated the existing literature to find out what the different approaches are 

for performing addition, and found no single approach to this computation.  

Secondly the research found several different types of models of computation with 

different purposes. As part of this research, it’s required to compare and contrast the 

performance between the different approaches of addition independent of the research 

paradigm or the computational logic. Although the literature uses predominantly circuit 

models of computation, the research found through an automaton model of computation it’s 

possible to objectively compare those approaches to addition. 

The research findings to this research are considered a contribution to knowledge. This is 

because the research informs the reader that the computation of addition is not improved in 

performance by quantum computing. But, through different usage of quantum computing to 

compute through a higher radix, it’s possible to gain computation performance. Instead of 

current quantum computing which exploits the quantum phenomena of state duality, this 

research advocated state discrimination should be used. This implies the model of 

computation its most fundamental units are able to represent a number of finite unique 

states used to form a number base system. Instead of quantum parallelism through state 

duality or two states of one or zero in classical computing. 
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Further research 

The researcher calls other researchers to evaluate this research and to perform similar 

studies such to verify the findings and inconsistencies highlighted. This can be through 

setting up modified experiments. Further research can be conducted through evaluating 

more specific approaches to addition such as very specific types of adders. This extended 

the research in this thesis that evaluated the full adders for each paradigm and 

computational logic. 

Further research can be performed to do a practical implementation of this theoretical 

research. This involves identifying the right physical medium to implement a decimal 

model of computation to find out whether the findings of this research are theoretical. This 

research can then be extended by developing logic gates capable of performing addition 

with a higher number base. 

It’s interesting to develop adiabatic logic gates for a higher number base model of 

computation able to perform computation with greater performance. The advantage is 

computing great numbers with low usage of energy. This would be through using adiabatic 

gates where the amount of input energy is equal to the output, and therefore there is no 

dissipation of electricity. This means no loss of energy and a possibly environmentally 

friendly (green) solution to computation. 

As highlighted at the start of the research, the quantum computing paradigm is found to 

enable very specific computational tasks to be performed more efficiently. This is based on 

the application of quantum phenomena. Of particular interest is the computational task of 

integer factorisation demonstrated on a small scale to be more efficient opposed to the 

classical computing paradigm. The research question seeks to find whether it’s possible for 

a model of computation with a higher number base (based on state discrimination) to be 



 

88 

more efficient. At least in theory to compute integer factorisation more efficiently than a 

model of computation based on the current quantum mechanics interpretation. 

Other areas of interest which are identified during the revision of the research are the 

development of logic gates based on the concepts of state discrimination to perform 

computation with a higher number base. This can then be built on by developing circuits 

and be used to compare against other implementation. Further improvements can then be 

made to optimise the circuits be looking at different approaches instead of modular 

arithmetic, such as fourier transform, binary tries, or other approaches. 
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