

1

Models of computation: A numeric

analysis and performance evaluation

Ricardo B. Verschueren Bcs (Hons)

University of Gloucestershire

Department of Computer science and Information Technology

Faculty of Media, Art and Technology

For the fulfilment of a Masters by research degree

August 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Gloucestershire Research Repository

https://core.ac.uk/display/30665405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Abstract

This research seeks to better understand what drives performance in computation. To

develop this understanding the researcher investigates the literature on computational

performance within the classical and quantum paradigm for both binary and multi-value

logic. Based on the findings of the literature the researcher evaluates through an

experiment of addition what drives performance and how performance can be improved.

For the evaluation of this research, a realist research paradigm employs two research

methods. The first is an automaton model of computation to model each of the

computing paradigms and computational logic. The second is computational complexity

theory for measuring the performance of addition. Through this evaluation the

researcher seeks to gain a better understanding of what drives computational

performance and how addition can be performed more efficiently.

The results of the research lead the researcher to conclude that modernisation of

machinery caused the birth start of automated computing and the binary number system

in computers. As this research indicated that computation through increasing the radix

can improve performance of computation for addition. Based on reported findings in the

science of quantum mechanics research, it would be possible to implement a model of

computation with increased radix. Through embracing state discrimination/

distinguishability this research calls to review the current quantum computing paradigm

based on state duality.

3

Declaration

I declare that the work in this thesis was carried out in accordance with the regulations

of the University of Gloucestershire and is original except where indicated by specific

reference in the text. No part of the thesis has been submitted as part of any other

academic award. The thesis has not been presented to any other education institution in

the United Kingdom or overseas.

Any views expressed in the thesis are those of the author and in no way represent those

of the University.

Ricardo Verschueren

 2014

4

Copyright by Ricardo B. Verschueren, 2014

All Rights Reserved

5

Acknowledgement

In the name of the lord the greatest, most merciful and sustainer of the heavens and

earth this research was completed. With the hope that it may be recognised on the day

of judgement as not all my time could be dedicated to prayer. I ask for this research to

be accepted as an act of worship.

In sincerity this research was completed as an act of worship to which I have been true

over a period of four years. With intent of accomplishing every detail worshipfully, and

therefore urge readers to read this research as though its an act of worship to gain the

full extent of the research.

6

The Author

Ricardo B. Verschueren, for Masters by Research degree in Computer Science,

presented for submission on August 2014, at The University of Gloucestershire.

Title: Models of computation: A numeric analysis and performance evaluation

First supervisor: Dr. Hapeshi

Second supervisor: Dr. Jayal

7

Contents

Abstract __ 2

Declaration __ 3

Acknowledgement __ 5

The Author __ 6

Contents __ 7

List of tables __ 10

Glossary ___ 12

Chapter 1 Introduction __ 16

Chapter 2 Literature review __ 19

Introduction __ 19

Historic developments __ 19

Section one: Classical computation __ 23

Section Two: Quantum computing ___ 32

Literature review summary __ 48

Chapter 3 Methodology ___ 51

Introduction __ 51

Research questions ___ 52

Research objectives __ 52

Research paradigm ___ 52

Epistemology ___ 54

Ontology ___ 55

8

Subjectivity ___ 58

Research methods ___ 60

Chapter 4 Analysis ___ 67

Introduction file ___ 67

Evaluation ___ 67

Binary automaton adder __ 67

Ternary automaton adder ___ 70

Decimal adder automaton ___ 73

Summary and findings __ 76

Chapter 5 Conclusion ___ 81

Answer to research questions __ 81

Contribution to knowledge __ 86

Further research __ 87

References ___ 89

9

List of illustrations

Figure 1 ‘AND’ Gate ___ 23

Figure 2 ‘OR’ Gate __ 23

Figure 3 ‘XOR’ Gate ___ 23

Figure 4: Full classical adder __ 26

Figure 5 Ternary ‘SUM’ Gate __ 29

Figure 6 Ternary ‘CONSENSUS’ Gate __ 29

Figure 7 Ternary ‘ANY’ Gate __ 29

Figure 8: Full ternary adder ___ 31

Figure 9 Quantum ‘CNOT’ Gate ___ 38

Figure 10: Quantum ‘TOFFOLI’ Gate __ 38

Figure 11: Quantum full adder __ 40

Figure 12 Sample Quantum Ternary Gate ___ 43

Figure 13 Quantum Ternary Buffer ___ 43

Figure 14 Quantum Ternary Single shift ___ 43

Figure 15 Quantum Ternary Dual shift __ 43

Figure 16 Quantum Ternary Self shift ___ 43

Figure 17 Quantum Ternary Self single shift ___ 43

Figure 18 Quantum Ternary Self dual shift ___ 43

Figure: 19 Full Ternary adder ___ 47

Figure 20 Binary automaton adder ___ 68

Figure 21 Ternary automaton adder __ 71

Figure 22 Decimal adder automaton ___ 74

Figure 23 Forecast of growth output ___ 79

Figure 24 Forecast of growth output as growth ___ 80

file:///C:/Users/s2109665/Downloads/Thesis%20Models%20of%20computation%2028072014%20(1).docx%23_Toc403825766
file:///C:/Users/s2109665/Downloads/Thesis%20Models%20of%20computation%2028072014%20(1).docx%23_Toc403825767
file:///C:/Users/s2109665/Downloads/Thesis%20Models%20of%20computation%2028072014%20(1).docx%23_Toc403825768
file:///C:/Users/s2109665/Downloads/Thesis%20Models%20of%20computation%2028072014%20(1).docx%23_Toc403825770

10

List of tables

Table 1 ‘AND’ truth table ___ 24

Table 2 ‘OR’ truth table __ 24

Table 3 ‘XOR’ truth table ___ 24

Table 4 Ternary SUM truth table ___ 30

Table 5 Ternary CONSENSUS truth table ___ 30

Table 6 Ternary ANY truth table ___ 30

Table 7 Quantum ‘CNOT’ truth table __ 39

Table 8 Quantum ‘TOFFOLI’ truth table ___ 39

Table 9 Quantum Ternary Buffer truth table ___ 43

Table 10 Quantum Ternary Single shift truth table __ 43

Table 11 Quantum Ternary Dual shift truth table __ 43

Table 12 Quantum Ternary Self shift truth table __ 44

Table 13 Quantum Ternary Self single shift truth table _______________________________________ 44

Table 14 Quantum Ternary Self dual shift truth table __ 44

Table 15 Quantum Ternary adder Gate 1 __ 46

Table 16 Quantum Ternary adder Gate 3 __ 46

Table 17 Quantum Ternary adder Gate 3 __ 46

Table 18 Quantum Ternary adder Gate 4 __ 46

Table 19 Quantum Ternary adder Gate 5 __ 46

Table 20 Quantum Ternary adder Gate 6 __ 46

Table 21 Quantum Ternary adder Gate 7 __ 46

Table 22 Quantum Ternary adder Gate 8 __ 46

Table 23 Quantum Ternary adder Gate 9 __ 46

Table 24 Quantum Ternary adder Gate 10 ___ 46

Table 25 Binary automaton computational steps 5 + 10 ______________________________________ 69

Table 26 Binary automaton computational steps 5 + 5 _______________________________________ 69

Table 27 Binary automaton computational steps 7 + 7 _______________________________________ 70

Table 28 Ternary automaton computational steps 5 + 10 _____________________________________ 72

11

Table 29 Ternary automaton computational steps 5 + 5 ______________________________________ 72

Table 30 Ternary automaton computational steps 7 + 7 ______________________________________ 73

Table 31 Decimal automaton computational steps 5 + 10 ____________________________________ 75

Table 32 Decimal automaton computational steps 5 + 5 _____________________________________ 75

Table 33 Decimal automaton computational steps 7 + 7 _____________________________________ 76

Table 34 Growth rate of output per computational step _____________________________________ 78

12

Glossary

Abacus Instrument through which arithmetic can be performed.

Abstraction Within the context to the research abstractions refers to the

model of computation as an abstraction of how computer

function.

Academics Academic in this thesis refer to scholars that have contributed

to the body of knowledge.

Adder An electronic circuit through which addition can be

performed.

Adiabatic Computing Computer circuit through which the amount of inputs are equal

to the outputs.

Algorithm A set of computer instructions through which an

computational task can be achieved.

Approaches to

Addition

Within the context of this research a general term is used for

the different types of adders.

Architecture Description of how the components within a computational

system inter-relate to each other.

Automata Model of

Computation

Model of computation used within this research to describe a

computation.

Binary Number base system based on one and zero.

Bit Most fundamental unite within a classical computational

system.

Boolean Logic Computational logic with classical computing.

Carry Term used for adders when an overflow of the number base

13

system occurs.

Circuit Model of computation through which a computation is

implemented.

Classical Computation Computation based on classical physics.

Computation Process of performing a series of calculations through machine

instructions with the purpose of attaining an outcome.

Computational

Complexity Theory

Method for classifying the amount of resources required by a

model of computation to perform a computational task.

Computational Logic The logic I.E. Boolean logic, used by a computation.

Computational Model Abstraction of how a machine performs computation.

Computational

Performance

The rate at which a computation is completed by a predefined

model of computation measure in unites of time.

Cryptography Computational task that encodes information.

Decimal Number base system based on ten values.

Decoherence Quantum phenomena through which is the state of Qbits

change by interaction with the environment.

Deduction A form of logic through which reason is used to form

conclusions.

Duality Quantum phenomena through which two states can be

identified within a single Qbit.

Entanglement Quantum phenomena through which multiple Qbits are joined

to form a complex state.

Epistemology Description of what is considered knowledge within this

research and how knowledge is ascertained.

Everettian Quantum mechanics interpretation.

14

Exponential Computational complexity class describing growth rate of

computational instructions.

Fourier Transform Mapping of a function as a signal which is used to perform a

computation.

Halting Problem Computer science theory that tries to determine whether an

algorithm will come to an end.

Lambda Calculus Computational model based on calculus.

Linear Computational complexity class describing growth rate of

computational instructions.

Logarithmic Computational complexity class describing growth rate of

computational instructions.

Logic Gates Computation operations based on Boolean logic.

Many Worlds

Interpretation

Quantum mechanics interpretation.

Quantum

Measurement

Quantum science of determining the state of a Qbit.

Methodology Description of methods used to perform research.

Modulo Arithmetic operation of division resulting in the remainder

Multi Value Logic For of logic based on a higher number based.

Multipliers Computational circuit for performing multiplication.

Ontology Description of the domain of discourse under investigation.

Paradigm Shift Change in the mainstream view of the research that affects the

underlying fundamental principles.

Parallelism Computing thesis stating that multiple computational tasks can

be performed concurrently.

15

Polynomial Computational complexity class describing growth rate of

computational instructions.

Probabilistic Algorithm through which the successful completion of a

computational task is based on probability

Quantum Computing Computational paradigm based on quantum physics.

Quantum Phenomena Particular characteristic unique to quantum physics.

Quaternary Logic Computational logic with number base four.

Qubits Most fundamental unite within a quantum computational

system.

State Discrimination/

Distinguishability

Quantum science that seeks to find how many different states

can be identified within a single Qbit.

Ternary Logic Computational logic with number base three.

Truth Tables Listing of all possible combination of a logic gate.

Turing Model Universal model of computation.

16

Chapter 1 Introduction

Within academic research scholars have studied algorithms with the purpose of defining

a finite set of instructions that can solve a particular problem. As a subset of this

research, the problems found are unsolvable while others may be solvable in theory. In

practice the algorithm is not feasible as the level of computational complexity is too

high. The algorithms that are solvable in theory are classified according to

computational complexity theory as hard to solve or of high complexity. Within this

research the fundamental principles that underlie a hard to compute problem is

investigated. This is with the purpose of being able to solve such algorithms both in

practice and in theory.

This research investigates the fundamental principles of computation through

understanding the underlying model of computation. The revision of models of

computation is performed, paradigms and different types of logic. By understanding

how each of the different models of computation function and perform computation, the

research aims to determine what the driving force of computational performance. By

comparing and contrasting different models of computation the computational

performance difference should be visible. Based on those findings, with regard solving

high complexity algorithms in practice can be speculated.

The basic arithmetic is not of high complexity and easily can be performed by

computers. Basic arithmetic is the most often performed operation for a general purpose

computer, in particular addition. This is because through addition other arithmetic

operations can be derived through ‘two’s complement’ computation can do subtraction,

and multiple additions lead to multiplication. As basic arithmetic is such a fundamental

and integral part of how a computer operates. This research uses addition to evaluate the

performance of the different models of computation identified.

17

Through each of the models of computation the researcher aims to develop an

understanding of how computations are performed. Through a set of pre-defined rules

computational arithmetic can be performed as humans, who just perform this arithmetic

according to the rules thought to pupils at school. On the other hand computers tend to

follow a very different set of rules. Models of computation are used to evaluate these

rules by which a computer do a computation. It is easier to understand if the desired

outcome is archived.

Models of computation are diverse and must be distinguished from computational

models. Although used for same purpose, modelling, the difference is that a model of

computation is dedicated to modelling computation. Because computational models

compute models of different types for example: the strength of a particular chemical

composition under specific pressures. As models of computation evaluate how a

computation is performed by a computer based on a specific rule set. Different types of

models of computation can be produced based on a variation of the underlying rule used

to do the computation.

Models of computation are tools used to simulate computation such that behaviour can

be studied in a closed environment. These models can be used to study several aspects

of computation. Two key references to models of computation are used for this research

(Fernández, 2009, Savage, 1998). Within the models of computation that these studies

show, two groups can be distinguished. These groups are: the models of computation

that are used to represent how the machine functions, and models of machine

instructions. For this research the focus is on machine based modelling to gain a better

understanding of how addition can be performed.

Both types of models have the same aim, to model the computation of a specific

problem. However, when using a programming language based model of computation

18

the exact functioning of the machine is not considered. These can be performed through

a set of known machine operations. This means that the performance of programming

languages depends on how effective these machine operations are performed. So this

research seeks to understand whether the most fundamental operation of addition can be

performed more efficiently.

Within computer science the theory of computational complexity is used to determine

the efficiency of an algorithm. As there are different types of criteria for measurement,

time and space are most common factors. For this research measurement is performed

based on the amount of operations. Where fewer operations are required by a model of

computation to do an arithmetic computation, higher efficiency is attained which

determines the computational complexity.

The notion of being fast is a subjective matter. This is so when evaluating the

performance of a model of computation when performing arithmetic (addition).

Through computational complexity rates of performance can be found and classified. So

the evaluation of computing arithmetic can be objectively evaluated through models of

computation against the computational complexity theory. This allows the researcher to

draw aim conclusions with regards to the computational performance of computation.

The key to the research is the computational modelling of arithmetic. Through the

model of computation the rules are defined of how each operation is performed. By

using a uniform model of computation the paradigms and computational logic can be

evaluated. These aim evaluations allow for computational performance comparison

through computational complexity theory. The researcher seeks to derive how

computational performance can be improved within the model of computation.

19

Chapter 2 Literature review

Introduction

The following chapter lays out the fundamental bricks to understand the research,

methodology, analysis and how the findings are concluded. Most of the content is

background knowledge and is essential to understand the computing paradigms and

computational logic referred to within this research. The first section looks at how

models of computation developed. This is followed by a revision of classical

computation focusing on how addition is performed through Boolean and multi value

logic. The second section of this chapter performs the same function for the quantum

computing paradigm. Throughout each of the revisions for the different approaches to

addition the circuit model of computation are evaluated.

Historic developments

Ancient methods of computation

Counting and recording of calculations goes back to the most ancient civilisations. The

oldest existing tools are tally sticks on which carves are made as recordings of a count

(Rizvi et al., 1991). Speculated stipulates use for counting moon occurrences. Tally

sticks are marked per five. Addition of one is applied when the event is repeated

allowing for the total amount to be summarised by the end. There are no real means for

determining how fast a computation is done. Recording of the event depends on when

the moon is visible, which is once a day. Calculating the total, grow at a linear rate

which when tallied is at a rate of (N/5) + X where X is the remainder.

Not all methods of counting and arithmetic have existing evidence in the form of a tool.

This is for example: finger counting which is used by many civilisations in the world.

Different civilisations use their own methods that depend on culture. Evidence of this

20

are numerical recordings with different number bases (Nordhaus, 2001b, Simon, 1997).

The most common is the decimal one most used representing ten fingers. But the

Babylonians are believed to start counting on their hands by representing twelve on one

hand, the second hand to multiply by up to five forming the sexagesimal system.

Decimal number counting is performed at the same rate as the tally stick. However,

subtraction can also be done. With the sexagesimal system perform of multiplication is

possible.

One of the more sophisticated methods of calculation still used today is the abacus.

Existent in different forms around the world this tool allows for the four basic forms of

arithmetic (Bae and Hwang, 2013). Most abaci exist based on the decimal number base

which enables arithmetic to be performed at the rate log10(n). This represents ten to the

factor of X. X being defined by the position in the number base. Other abaci use the bi-

quinary number system. This is like a tally system in which bi symbolises two hands of

which each has five fingers. The advantage over the decimal abacus is the decimal

number system is fewer rods, as only six rods are required in a bi-quinary system. This

implies that arithmetic can be performed at a rate of log10(N-4). This is the same as the

decimal abacus less five rods per number position.

In summary, several different methods of counting and arithmetic existed since ancient

times. This ranges from more basic tools such as: a tally stick, to counting on fingers

and abacus which has increased capacity over finger counting. Finger counting is one

of the most fundamental methods that defined the number base is used in the abacus. At

the same time those methods of arithmetic were in use, complex forms of logic were

developed. For example Aristotle, referred to as the father of logic developed syllogistic

logic and model logic (Hurley, 2006). However, at that time no sign is observed of this

logic being used for computational purposes.

21

Computation during the middle ages

During the early Middle Ages mechanical calculators improved from abaci for

astronomical purposes. Based on a sexagesimal number system through a set of

mechanisms involving gearing to track celestial body movement (Borrelli et al., 2013).

Several types of astronomical clocks were built around the world. The most significant

in this context is programmable and able to play music at predefined times when a

celestial event occurred. At a linear computational rate it could determine the location of

celestial bodies in the past or the future. With modern non-linear mechanics solution the

process is sped-up. However the first developments of mechanical calculator did

improve to this extent this is a complex task to archive.

Throughout the middle ages the need for performing arithmetic increased for tax

collection. The developments in mechanics lead to more robust of gearing mechanisms.

This was a significant improvement to the weaker wooden astronomic clocks that

undergone excessive wear. The main difference is the number base system that

represents the decimal radix (Ketelaars, 2001). Operating through twisting rods with

one gear a number from 0 to 9 is represented with a gear for every position within the

decimal number system. This lead to developments in mechanics calculators such that

the four arithmetic functions are performable (Kidwell, 1992). However multiplication

became faster because there was no need for operation in a sequence of additions. This

implied it was X times faster than the first calculators where X is the multiplicand. A

1909 study demonstrated that a trained clerk is able to do addition six faster than on a

piece of paper (Nordhaus, 2001a).

At the start of the industrial age Babage started work on the differential engine (Swade

and Babbage, 2001). This implied a set of improvements in terms of mathematical

ability. Around the same time, punch cards which was used in the weaver. To reduced

the time to process a consensus from ten to five years and save five million dollars

22

(Truesdell, 1965). These phenomenal achievements in data management (processing)

demonstrated to be the foundation of computer programming by the developments of

Babbage his analytical engine (Bromley, 1998). Notably the concept of the punch card

caused further developments towards a computer using binary.

The developments of Babbage forced further research to rethink how computers would

be built in the future. Through this process the concept of a ‘model of computation’

came into existence in the beginning of the twentieth century. The developments of

Boolean logic inspired through George Boole are central to the design of computational

models. As defined through its axioms the possible operations that can be performed

(Shao, 2008). The usage of logic in computation distinguishes classical computation

from mechanical computing devices during the middle ages.

23

Section one: Classical computation

The transition from mechanical computation to electronic computation meant in first

instance computing devices becoming smaller. However more importantly, increased

functionality can be attained as well as increased performance. Electronic computation

adopted Boolean logic to operate on binary information. Through a combination of

Boolean logic operations it became possible to perform arithmetic. As multiple Boolean

logic operations are required to do a single arithmetic operation, its performance is

questioned. However, this research seeks to understand how computers perform

arithmetic through Boolean logic. What the models of computations are and the

components these consist out of as well as the underlying rule set.

Classical addition

In classical computing bits consist out of one and zero are used to compute through

Boolean logic. To develop an understanding of how classical computers perform

addition, the classical full adder is built up from most fundamental components known

as logic gates. It is reviewed how those logic gates function and can be used to do

computation.

Gates

In classical computations a series of computational gates available that are analogous to

Boolean logic. For this research the relevant logic gates are presented. These logic gates

are depicted in pictures one, two and three below and are known as the ‘AND’ gate,

‘OR’ gate and ‘EXCLUSIVE OR’ gate respectively. Through these gates addition is

Figure 1 ‘AND’ Gate

Figure 2 ‘OR’ Gate

Figure 3 ‘XOR’ Gate

http://en.wikipedia.org/wiki/File:AND_ANSI.svg
http://en.wikipedia.org/wiki/File:OR_ANSI.svg
http://en.wikipedia.org/wiki/File:XOR_ANSI.svg

24

perform in classical computers through sequencing the inputs and output through a

series of combined logic gates. Classical logic gates take two input values that are

either zero or one to produce a result. The result computed through a logic gate depends

on Boolean logic by which the logic gate abides. For the three logic gates used in the

classical full adder a truth table is included to show what the output is for any given two

inputs for each of the logic gates.

Truth tables

The truth tables show the results for computing with the logic gates using any given

combination of input allows to gain an overview of how the results are derived. For the

first logic gate, ‘AND’ logic is applied. This means both inputs need to be one for the

output to be one. In all other cases the output will be zero. On the contrary the ‘OR’ gate

has an output of one whenever any of the input combinations has a one. The

‘EXCLUSIVE OR’ gate is the same as the ‘OR’ gate. It has an output whenever the any

of the inputs is one, except when both inputs are equal. In itself those logic gates

provide little functionality as they are limited in the amount of operations they can

perform. However, through applying a series of logic gates to an input it’s possible to

do very complex algorithms, for demonstrative purposes these logic gates are used to do

addition.

Table 1 ‘AND’ truth table

INPUT OUTPUT

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

 Table 2 ‘OR’ truth table

INPUT OUTPUT

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

Table 3 ‘XOR’ truth table

INPUT OUTPUT

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

25

The simplest model of computation designed to do addition is known as the ‘half adder’

(Norman, 1960). In the classical computing paradigm, this consists of two logic

operation. The ‘XOR’ operation that is based on two binary inputs determines the

‘SUM’ and the ‘AND’ operation which calculates whether there is a carry. The ‘half

adder’ can be extended into what is known as the ‘full adder’. The difference from the

half adder is that it accounts for a carry input. This implies, more operations must be

performed as there would be three and four inputs in the classical (Zhuang and Wu,

1992). This adder represents the simplest method of performing addition electronically

with Boolean logic. Although efficient it is not optimal through its abstraction.

Full classical adder

Figure 4 depicts a full classical adder. The classical adder enables three inputs and two

outputs. Inputs A and B are the values being added together and C in is a carry value

from an earlier operation. The outputs are S and Cout. S holds the result for the addition

of A and B while Cout is the carry value for addition. The classical adder exists out of

two ‘Exclusive OR’ gates two ‘AND’ gates and a single ‘OR’ gate. The ‘Exclusive OR’

gates are used to determine whether the addition of the two input value will result in one

Through the ‘Exclusive OR’ gate the result will only be one when either of the two

input values is one. No addition occurs when the inputs are both zero or both one. This

gate is applied to input A and B as well as to the output and the earlier carry which will

determine the sum. In the event that both input values to either of the two ‘Exclusive

OR’ gates was one the carry are to be computed. so two ‘AND’ gates are included

which will output one if both inputs are one. Through the final ‘OR’ gate both ‘AND’

gates reduced to one output determining whether the computation yielded a carry. The

‘OR’ gate outputs a one if either of the two ‘AND’ gates outputs one.

26

Figure 4: Full classical adder

The electronic methods of computation provided the advantage of being faster than

mechanical computational devices. This was through achievement of full

automatisation. On the other hand electronic circuits added a layer of complexity

through its logic abstraction. This meant in fact it’s slower than earlier methods of

computation identified. Through this abstraction researcher were able to search for

different approaches of performing addition with the purpose of optimising

performance.

Extended adders

The simplest extension of the full adder to perform addition on numbers comprises of

multiple bits and is known as the ‘ripple carry adder’ (Knauer, 1989). This is achieved

through joining multiple ‘full adders’. This is possible because as stated above, the ‘full

adder’ has a carry input and is able to propagate a carry bit to the next ‘full adder’. For

the classical computing paradigm demonstration showed the ‘ripple carry adder’ to be

an inefficient approach to performing addition (Knauer, 1989). The ‘ripple carry adder’

is inefficient because in the worst case it is required to propagate a carry for every

binary addition performed. This increases the amount of operations significantly.

A further development to improve the performance of addition is the ‘carry look ahead

adder’ (Doran, 1988). This is achieved through the usage of an additional model known

as a ‘carry look ahead unit’, which reduces the amount of gate operations required to

27

propagate the carry. Some variants are known to have optimal performance under

certain circumstances within the classical paradigm. Examples include: ‘Manchester

carry chain’ (Needles, 1990), ‘Brent-Kung adder’ (Nowick, 1996), ‘Kogge-Stone

adder’ (Knowles, 2001). This are interesting for reference purposes but do not add any

value as the performance is insignificant.

Within the classical paradigm several other types of adders are known to exist. One of

these types is known as the ‘carry by pass adder’ or ‘carry skip adder’ (Kobayashi et al.,

2004). This adder makes use of propagation delay to decrease the amount of operations

used. Similarly, the ‘carry select adder’ predetermines the propagation of the carry

(Bedrij, 1962). The final alternative adders are the ‘carry save adder’ (Leininger and

Taylor, 1978), and ‘conditional sum adder’ (Cho, 2003). Each of these has its own

advantages and drawbacks in how they deal with performing addition.

Classical multi-value adder

A revision of the literature found there to be a significant amount of research done to

achieve higher number base computation through multi-value logic, as an alternative to

‘binary’ and ‘Boolean logic’. Application of multi-value logic can solve more

efficiently binary problems, as well as improve circuit design (Dubrova, 1999,

Dubrova, 2002). The advantages are summarised as: a reduction in signals; the ability

to store two bits of memory instead of one, and improved arithmetic operations

(Dubrova et al., 2002). Most common applications of multi-value logic are ‘ternary’

(Gang et al., 2009) and ‘quaternary’ (Dornajafi et al., 2008, Gaidhani and Kalbande).

Furthermore, demonstration showed how addition can be performed through multi-

value logic (Gonzalez and Mazumder, 1998). So, its application to the performance of

addition is further investigated in this study.

28

Similar to the development of adders with binary Boolean logic, a ternary (A. Rizvi et

al., 1991) and quaternary (Mingoto, 2006) half adder were created. Likewise these

developments extended to ‘full adders’ with ternary (Srivastava and Venkatapathy,

1996) and quaternary logic (Thoidis et al., 2001). Notable the research in multi-value

logic takes a lower level view in how gates are produced. It’s very much based on

electronic diagrams, rather than the circuit models used in Binary Boolean logic.

Furthermore, the focus is not on the concept of performance. This may be in part

because demonstration showed computation through multi-value logic will provide a

computational speed-up. Instead, most of these researches are concerned with power

consumption and reducing its voltage. As there are no performance metrics. This study

evaluates the performance of the multi-value ternary and quaternary full adders to be

compared against the results for the binary logic full adder identified in the previous

section.

Computational logic

The concept of many value logic is the next step where rather than looking at the

possible truth values were the proposition is true or false. Or in the case of modal logic

where the degree to which it is so is defined. Many value logic allows to specify other

values then true or false that are not the degree of its verity but could be used as such.

This logic allows for any number of outcomes to be the result of the proposition

(Gottwald, 2005). Academics argued logic to not be depend on one pre-defined axioms

defining the outcome and so can’t be considered a real logic. This is not necessarily true

as it could be possible for the outcome is dependent on logic. The key difference is, in

Boolean logic the output being either true or false. Instead some different combinations

can be formed based on the amount of inputs specified determining unique outputs. The

development of these concepts was around the time when quantum mechanics started to

become better understood. It can be argued to be a product of a physics discovery.

29

Gates

The ternary logic gates are the same as classical logic gates as they have two inputs and

one output. Even so ternary logic gates distinguish themselves from their classical

counterparts because they operate on ternary bits. This is different because opposed to

classical bits that can hold one of two values, ternary bits can hold one of three values.

Consequently, ternary logic gates operate differently on the ternary bit inputs. The key

difference here is in the different combinations can be output.

To construct, a full ternary adder three ternary logic gates are required. These are the

‘SUM’ logic gate, consensus logic gate and ‘ANY’ logic gate that are depicted below.

The ‘SUM’ logic gate is used as an alternative to the exclusive ‘OR’ gate in the classical

adder. The ‘Exclusive OR’ gate computes modulo two and the ‘SUM’ gate computes

modulo three. Similarly the consensus logic gate is used to replace the ‘AND’ logic gate

which performs the inverse function of exclusive by acting only when both inputs are

the same. Hence the gate is able to show a consensus between both inputs. The third

gate named ‘ANY’, functions as the ‘OR’ gate in classical computing.

Truth tables

To understand how those logic gates function each of their truth tables are depicted

below. For the ‘SUM’ logic gate in table four demonstrations showed how modulo three

is attained, when the output reaches three the value is reset to zero. Considerably, when

the inputs are one and two, the output is zero and when both inputs are two the output is

Figure 5 Ternary ‘SUM’

Gate

Figure 6 Ternary

‘CONSENSUS’ Gate

Figure 7 Ternary ‘ANY’

Gate

30

one. This is an effect of modulo three restarting counting at zero when three is reached.

The second ternary logic gate is known as the consensus gate because its output is

determined by whether both inputs are the same. In the case of a consensus between

both inputs the output is equal to the input or defaults to one. The final logic gate any

input to be matched to its output. This means both inputs don’t have to be zero for the

outputs to be zero. Except when the inputs are the extreme thresholds the output is one.

As a general rule for the ‘ANY’ gate both inputs can be added together and divided by

two to determine the output.

Table 4 Ternary SUM

truth table

SUM 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Table 5 Ternary

CONSENSUS truth table

CONS 0 1 2

0 0 1 1

1 1 1 1

2 1 1 2

Table 6 Ternary ANY truth

table

ANY 0 1 2

0 0 0 1

1 0 1 2

2 1 2 2

Full ternary adder

The full ternary adder is a circuit through which ternary bits can be added together.

Figure 8 depicts a full ternary adder which resembles the binary classical adder. As the

classical adder has three inputs, two outputs, and five logic gates. Also it is noticed that

to determine the sum output two ‘SUM’ gates are used in a similar way to the classical

adder which used two ‘EXCLUSIVE OR’ gates. As previously described the ‘SUM’

gate performs the same functionality that is to do modulo three. This means both values

will be added together and ignore the carry. To perform the carry in the consensus gate

is used that is like the ‘AND’ logic gate. The Outputs of the consensus gates are then

merged through the ‘ANY’ logic gate and output the carry for the addition. The

functionality of the gates and the sequence in which the inputs are passed to the logic

gates resembles the classical full adder.

31

Figure 8: Full ternary adder

Multi-value Ripple carry adder

The ‘ripple carry adder’ is known to be the simplest extension and is shown to be rather

inefficient with Boolean logic. Perhaps the reason no implementation of this of addition

approach in multi-value logic exists. Studies of binary and ternary multi-value logic

demonstrated ‘binary adders’ to be faster, (Vranesic and Hamacher, 2009). This is a

contradiction to the first findings in the literature that claimed ‘multi-value logic’ to be

more efficient than the ‘binary Boolean logic’. It’s possible that for the task addition

this is not the case.

Extended adders

The amount of variants developed for the ‘adder’ based on ‘multi-value logic’ is

limited. One of the alternatives is an implementation of a ‘ternary select adder’ within

the classical paradigm. However, there is little concrete indication of performance

improvement enabling comparison with other models. Further research must be

conducted to demonstrate its advantages (Burgess, 2001).

Classical computation Summary

In the first section of the literature review the classical computing paradigm its

approaches to addition are evaluated. Starting with the fundamental concepts of how

32

computational logic is utilised to perform addition, followed by the full adder. Several

of the large scale adder implementations are reviewed and evaluated based on the

literature findings for performance. Within the classical computing paradigm

comparison is made with multi-value logic. In attempt of comparing the performance

results of addition for binary logic based computation opposed to multi-value logic

computation. Although the meta-literature suggests multi-value logic is more efficient,

little evidence is found to back-up this claim (Dubrova, 1999, Dubrova, 2002). With an

overview of computation of addition in the classical paradigm for binary and multi-

value logic, the quantum paradigm is reviewed in the following section.

Section Two: Quantum computing

Current computing is on the verge of a transition from a classical to a quantum

computing paradigm. This transition is based on discoveries in the science of physics,

in which quantum mechanics developed enabling a computational speed-up (Feynman,

1982). This is demonstrated through a series of algorithms (Deutsch and Jozsa, 1992,

Grover, 1996, Shor, 1994). However, the effect of quantum speed-up applies to these

algorithms, which are very specific tasks of computation such as integer factorisation

and searching. Furthermore, identified computers are dependent on the computational

task of addition, as all other arithmetic depends on; for example, it’s found in the

literature that Shor’s (1994) algorithm depends on modular exponentiation, which

cannot be performed without addition (Berman et al., 2001). Shor’s (1994) algorithm is

demonstrated a quantum speed-up (Shor, 1994), but not for the part of addition. so, this

study seeks to investigate whether such an improvement in speed is possible through

the revision of computational model and approached to addition.

As described by (Barenco, 1996) quantum computing is different from classical

computing at its most fundamental level. For example: the ‘Bit’ in the case of a

classical computing and ‘Qubit’ in the case of a quantum computer. While the classical

33

‘Bit’ can hold either the values one or zero, the ‘Qubit’ is able to hold both in the same

time. This scales as more ‘Qubits’ are included. When two ‘Qubits’ are used, four

values between zero and four can be stored. In the case of three values this becomes

eight. These values are stored in a universe. A further advantage enables computation

to be performed on all values at the same time; however at the end of a computation

only one result can be retrieved. This is known as the ‘quantum parallelism thesis’, the

key reason quantum computers are faster than classical computers (Duwell, 2007).

Quantum computing is the science that seeks to understand how quantum mechanics

can be used to perform computation. The research on quantum computing is driven by

the potential to miniaturise computers and make possible a computational speed-up.

This all started when a physicist who tried to demystify quantum mechanics through

simulating its phenomena on a computer (Feynman, 1982). This is impossible because

the rate at which the complexity of quantum mechanics increases is higher than a

computer. Based on these findings and speculation, research began to understand how it

could be possible to use quantum mechanics to solve computational problems currently

unsolved due to their inherent complexity.

The research in quantum mechanics applied to computer science is active research and

is so far only partially successful. The complexity in developing a quantum computer is

in the quantum mechanics, which is not completely understood. There are several

different interpretation to quantum mechanics, some of which have been disproved

while other are subject to interpretation (Schmelzer, 2011). The most common view is

the ‘Copenhagen interpretation’ that is most accepted for teaching purposed (Mermin,

2003), and is accepted by early scientists working on a quantum computer.

However, more recent research suggests the ‘many world interpretation’ is more

suitable for quantum computing enabling parallel computations through its multi-

34

universe (Osnaghi et al., 2009, Wallace, 2002). Multi-universe view of quantum

mechanics is the underlying theory that explains the quantum parallel thesis. The

researcher of this study does not seek to elaborate on the mysticism of what is

uncertainly known for the science of quantum mechanics. But rather seeks to exploit

what is known about the states of particles (Audenaert et al., 2012, Bergou et al., 2012)

in quantum mechanics. And evaluate whether it’s possible to improve computational

performance through a hypothetical model of computation.

In principle, quantum computing and classical computing are the same. However, in

theory quantum computing is shown to be able to solve some computational problems

in less time than in classical computing. Richard Feynman demonstrated quantum

mechanics enabled an increased computational speed-up, based on the idea of the multi-

universe interpretation of quantum mechanics (Deutsch, 1985).

The research into building a computer based on quantum phenomena according to the

multi-universe interpretation as previously described is on-going. There have been

claims that a quantum computer has been built. However, significant criticisms of

academics who stated this implementation is not valid and does not provide a

computational speed-up (Van Dam, 2007). More recently, the University of Bristol

developed a universal quantum photonic chip for educational purposes (Shadbolt et al.,

2011).

The Business school Said of Oxford University in 2005 developed an interesting study

during which questioned leading researchers in quantum computing. Based on their

findings, a marketing study is completed. This study brings together the research

potential of quantum computers and the application for which they can be used in direct

relation to market demand of computer use (Corker, 2005). According to this study the

following applications are market demanding: ‘quantum cryptography, quantum

35

computer, quantum auctions, quantum gaming, quantum scheduling and optimisation,

and quantum meteorology’. Interestingly, they have developed a timeline on which is

demonstrated where they expect those technologies to emerge and become available on

the market. Notably, wide spread commercial application will take several years to

become available; however quantum encryption from point to point is implemented and

used since 2005. Such applications are not commercially available; it is suspected that

they are used for government maters. Small scale prototype developments in quantum

computing labs are a clear development towards building quantum computers on a large

scale that may become available within the foreseeable future (Lloyds 2008).

Decoherence

While researchers are running ahead trying to determine how quantum computing will

revolutionise computing, scientists are still resolving a fundamental problem known as

‘Decoherence’. Even though, it’s been possible so far to design and implement a

quantum chip, because of the problem of scaling up the quantity of ‘Qubits’ involved.

This is caused by the problem of ‘Decoherence’, which occurs when ‘Qubits' interact

with the environment and ‘Decoherence’ or undergo a state change (Golubev and

Zaikin, 1998).

Nevertheless active research seeks to overcome ‘Decoherence’ known as: quantum

error correction (Steane, 1998), stabiliser codes (Gottesman, 1997), entanglement

assisted quantum error correction (Hsieh et al., 2007), and quantum convolutional

codes (Chau, 1999). For this research it’s important to be aware of Decoherence and the

implication is for the performance of computation, as additional equipment is required

to prevent ‘Decoherence’. Nevertheless, the prevention of ‘Decoherence’ is outside the

scope of this research

36

Quantum logic

The concept of quantum logic developed by (Birkhoff and Von Neumann, 1936). The

leading scientist in this field interested in developing the field of logic based on the

findings of quantum mechanics. Through these developments, the basics of quantum

computing are established. However, the developments in quantum physics developed

over time. One of the key contributors of quantum theory is (Mackey and Benjamin,

1967) who had a renaissance effect quantum logic its algebra. This became the

standard quantum logic deviated from the quantum logic in the complete orthomodular

lattice based on the closed subspace in a Hilbert space (Birkhoff and Von Neumann,

1936). The most common form is ‘Orthomodular Quantum Logic’ (OQL) of which

modal interpretation exists.

According to (Greechie, 1981) OQL rectified by ‘Hilbert Quantum Logic’ (HQL).

Furthermore, research conducted to use the concepts of first order logic in quantum

logic. (Takeuti, 1981) further developed quantum logic in the field set theory through

creating equivalent concepts of Boolean logic, based on the algebraic structure of a

complete orthodular lattice. At a later stage, started off some serious criticism against

the standard logic (Ludwig and Hein, 1985). In favour of the initial concepts developed

(Birkhoff and Von Neumann, 1936). And support developed for the concepts in

quantum mechanics referring to pure and mixed states. Subsequently, other forms of

quantum logic developed.

The science in quantum mechanics allows for quantum computing is known as state

duality. This means two states can be held simultaneously. This is the fundamental

principle behind the quantum bit which distinguishes itself from the classical bit. The

quantum bit state determines the information that can be stored. For a pure state this

means the simple representations of the quantum bits are represented. For example: with

a register of three quantum bits the value eight can be stored. In contrast with mixed

37

states any of the parallel universes can be accessed to perform a computation on the

register. This is because they can represent any of the possible outcomes to a certain

extent based on its statistical properties.

This is the most fundamental concept behind quantum computing and the potential of

performing hard computational tasks in the classical computing paradigm solvable.

Therefore this research investigates how quantum addition is performed and whether

the research is able to take advantage of quantum states to attain improved

performance when computing addition. Also, the research in quantum computing

investigates the amount of states that can be identified. This research is known as

quantum state discrimination(Bae and Hwang, 2013) or distinguishability (Borrelli et

al., 2013). Based on this research in quantum states, this research seeks to re-evaluate

how quantum computing performs addition, by using the different states identified as a

number base system. This different view, on how to use the science of quantum

mechanics in applied computer science, is compared against conventional computation

in the classical and quantum paradigm for both binary and multi-value logic.

Quantum addition

The first two full adders described so far are within the same computing paradigm

known as classical computing. They are distinct in the number base used. Where the

first one employed binary the second one is based on ternary. This implied both

required a similar form of logic to perform computation. The following full adder

distinguishes itself in terms of its computing paradigm. This is because it operated on

quantum bits rather than on classical bits. A quantum full adder has a unique set of

logic gates. To perform addition two distinct logic gates are required in the quantum

paradigm.

38

Quantum gates

The logic gates used in quantum computing are very distinguished from its classical

counter parts. This is predominantly due to having to operate on quantum bits.

Furthermore, the quantum gates used in the quantum full adder differ from classical

binary and ternary gates in an equal amount of inputs and outputs used for every logic

gate. More important is the concept of quantum control bits which are used to operate

of quantum target bits. In figure 9 a ‘CNOT’ logic gate is depicted. It consists of one

quantum control bit and one quantum target bit. While the gate in figure 10 the

quantum ‘TOFFOLI’ gate has two quantum control bits and one target bit. Quantum

control bits are used to determine the target bit. The ‘CNOT’ gate inverts the quantum

target bit depending on the state of the quantum control bit. The ‘TOFFOLI’ gate

performs the same function as the ‘CNOT’ gate, with the difference that the inverting of

the target bit depends on both control bits. With different types of bits quantum

computing requires logic gates function differently. To gain a better understanding the

truth tables of the quantum logic gates need to be examined.

Truth tables

The truth tables for the quantum ‘CNOT’ and ‘TOFFOLI’ gate demonstrate the

difference with logic classical gates. Most convenient with the quantum gates is the

control quantum bit never changes; the input is always the same as its output. On the

contrary the target quantum bit is changed in the ‘CNOT’ gate when the quantum

Figure 9 Quantum ‘CNOT’ Gate

Figure 10: Quantum ‘TOFFOLI’ Gate

39

control bit is one, and left to its default value when zero. The same logic is applied for

the ‘TOFFOLI’ gate with the difference that both quantum control bits have to be one to

change the quantum target bit. The logic can be confirmed in truth table 7 and 8 below.

Half quantum adder

The ‘quantum half adder’ is analogous in the quantum paradigm, which performs in

principle the same logical operations (Barbosa, 2006). However, based on the

knowledge that the ‘Qubit’ is different compared to the classical bit, quantum gates are

used to simulate Boolean logic. Most significantly, the quantum adder requires three

‘Qubits’ while the classical adder requires two Qubits’. Furthermore, both models use

an equal amount of operations to perform computation, which means addition is

performed at the same rate. Similarly to the classical adder the same abstraction is used.

Therefore it is questioned how efficient an implementation of addition the quantum

adder is?

Table 7 Quantum ‘CNOT’ truth

table

INPUT OUTPUT

C T C T

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Table 8 Quantum ‘TOFFOLI’ truth table

INPUT OUTPUT

C C T C C T

 0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

Full quantum adder

With quantum bits and quantum logic gates so fundamentally different from their

classical counterparts, it’s questioned how computation can be performed. Below a full

quantum adder is depicted. It contains more inputs and outputs, but has one less logic

gate. Although at first sight the full quantum adder looks very different from the

40

classical full adder, they hold a great deal in common. Essentially, a different approach

is used to attain the same objective of adding two inputs A and B together. The quantum

full adder does this by determining the sum output through ‘CNOT’ logic gates. Thus

when either of the inputs, A or B is one the output sum is inverted. In the case of a carry

it would become zero, and when both inputs are one the second one cancels out the first

one.

Herby the effect of the ‘Exclusive OR’ logic gate in the classical adder are attained. To

determine whether there should by a carry output K the ‘TOFFOLI’ gate is used. A

carry output if one of the inputs is one and the output is one. This cannot occur twice

because the first ‘CNOT’ will negate the carry input, therefore not allowing the carry

output to be reset to zero. The ‘TOFFOLI’ gate has a similar effect as ‘AND’ gates in

the classical full adder. The final ‘OR’ logic gate is not required in the quantum full

adder. Its structure through which the two ‘TOFFOLI’ gates produced a single output,

hence only four logic gates are required. Revision of the quantum full adder found the

underlying logic behind similar to the classical adder (Cheng and Tseng, 2002).This

added to the question of whether they are equal in performance?

Figure 11: Quantum full adder

41

Quantum adders

Classical quantum adders

The ‘quantum ripple carry adder’ consists of multiple ‘full adders’, and is demonstrated

to give increased efficiency to linear time in the quantum paradigm (Beckman et al.,

1996, Cuccaro et al., 2004, Vedral et al., 1996, Gossett, 1998). The ‘quantum carry look

ahead adder’, is a significant improvement over its classical counterpart, as it’s reduced

to logarithmic depth through application of modular arithmetic (Draper et al., 2006).

Other improved implementations are the ‘bypass adder’, which a model based on binary

Boolean logic created implementing skip logic (Islam et al., 2010). The ‘quantum carry

select adder’ is demonstrated to perform addition in squared linear time (Meter III,

2006).

The most efficient implementations are the ‘carry save adder’ (Gossett, 1998) and the

‘conditional sum adder’ (Meter III, 2006). These adders are based on modular

arithmetic rather than being based on Boolean logic in the quantum paradigm. The

‘carry save adder’ has a reduced number of gates at the cost of increasing the amount of

‘Qubit’ used within the computation. On the other hand, the ‘conditional sum adder’

achieves a more successful result, enabling addition in logarithmic time.

Non Classical quantum adders

A number of adders existing only in the quantum paradigm are identified. There is no

classical counterpart as these adders are based on quantum phenomena. One example is

based on the quantum Fourier transform (Draper, 2000). However, performing addition

in linear time is less efficient, but is an improvement in terms of the amount of gates

used. Another example, based on quantum mechanical properties is the carry look

ahead design, is based on quantum measurement (Trisetyarso and Van Meter, 2009).

42

Through the interaction of a measurement the state is changed in such a way that a

computation is performed. This is demonstrated to be more efficient on a larger scale.

For those who have developed a model of computation based on a binary radix through

either binary Boolean logic or modular arithmetic. it’s found within the classical

paradigm the computational task of arithmetic is performed at best in linear time (Pai

and Chen, 2004). The same is demonstrated in the quantum paradigm through the

‘conditional sum adder’ (Meter III, 2006). However, demonstration showed in the

quantum paradigm a faster implementation achieved (Choi and Van Meter, 2008). This

is based on a ‘Kd mesh’ enabling the reduction first to a squared root of linear time,

then cubed, then to the power of four, and so on. Thus, the factor of the square root

increases throughout the lifetime of the computational task. According to the structure

of the ‘Kd mesh’, where K stands for the denominator of the root, and d stands for the

dimensions of the mesh. Similar to using a binary tree enabling a computation in linear

time, this data structure allows for reducing the performance of a computational task to

a rooted time. These claims are very interesting, however are not validated by other

studies.

Quantum multi value logic

Revision of addition in the quantum paradigm leads to several interesting findings

which are improved performance and alternative approaches to quantum addition based

on quantum mechanics. This research is not extended to quantum multi-value logic

within the quantum paradigm. This enables to compare quantum multi-value logic

addition against quantum addition and addition within the classical computing

paradigm. Therefore quantum multi-value addition is further investigated in terms of its

functioning.

43

Gates

Figures 13 to 18 depict the elementary quantum ternary functions of which any three

can be used in conjunction to form a quantum ternary logic gate. The first operation

leaves the input unchanged. The second adds one to the output, the third adds two. The

fourth multiplies the input by two. The fifth multiplies the input with two and adds one.

The last multiplied the input with two and adds two. To form a quantum ternary logic

gate any of these six operations are joined together as depicted in figure 12. It’s

important to consider the order of the operations as the quantum control bit determines

which of the three operations will be performed on the input.

Figure 12 Sample

Quantum Ternary

Gate

Figure 13 Quantum

Ternary Buffer

Figure 14

Quantum Ternary

Single shift

Figure 15

Quantum Ternary

Dual shift

Figure 16 Quantum

Ternary Self shift

Figure 17

Quantum Ternary

Self single shift

Figure 18

Quantum Ternary

Self dual shift

Truth tables

It’s easier to understand the exact functioning of each operation through their truth

table. As identified with the classical ternary adder, modulo three is applied. This is

seen in the single shift operation when one is added to the input, the output is reset to

three. For the last three truth tables including a self-shift the input is first multiplied by

two. Any multiplications with zero have the output of zero.if two is multiplied by itself

it’s reset at zero and becomes one as depicted below in table 9 - 14.

Table 9 Quantum Ternary Table 10 Quantum Ternary Table 11 Quantum Ternary

44

Buffer truth table

Buffer

X = X

Input Output

0 0

1 1

2 2

Single shift truth table

Single shift

X = X + 1

Input Output

0 1

1 2

2 0

Dual shift truth table

Dual shift

X = X + 2

Input Output

0 2

1 0

2 1

Table 12 Quantum Ternary

Self shift truth table

self shift

X = 2X

Input Output

0 0

1 2

2 1

Table 13 Quantum Ternary

Self single shift truth table

Self single shift

X = 2X + 1

Input Output

0 1

1 0

2 2

Table 14 Quantum Ternary

Self dual shift truth table

Self dual shift

X = 2X + 2

Input Output

0 2

1 1

2 0

Quantum ternary adder

The full classical ternary adder is an extension of the full classical adder. And the full

quantum ternary adder is a modified version of the full quantum adder. In both cases

quantum bits are used, however for the quantum ternary adder three states can be

distinguished. Therefore different logic gates are required to operate on ternary

information. Figure 12 demonstrates a full ternary quantum logic gates sub-exists out

three of the six elementary quantum ternary gate operations. Like quantum computing a

control bit that in this case is ternary will determine which of the three operations must

be performed.

45

Full ternary quantum adder

Within the quantum paradigm ‘half and full adders’ are identified for both ternary and

quaternary logic (Chattopadhyay et al., 2009, Hung et al., 2004, Khan, 2004a, Khan and

Perkowski, 2007). While some of the quantum implementations are described through

specific quantum technologies. This is not always the case when theoretical designs are

made of how an ‘adder’ would operate, based on what is known about quantum

mechanics. Nevertheless, at this stage it has not been possible to determine whether a

‘quantum adder’ for either ternary or quaternary multi-value logic could yield higher

performance. But it’s identified that multi-value logic adders require more gates

(Jahangir and Das, 2010).

The full quantum ternary adder is most distinguished from all previous adders

demonstrated. This is because within a single ternary logic gate it’s possible to perform

one of three operations based on the quantum ternary control bit. This makes the full

quantum ternary adder more complex. It consists in total out of ten logic gates which is

a double of the classical adder. It is different from the quantum full adder because there

are no logic gates with two quantum control bits. Also there are five inputs and output

quantum bits. Unlike the previous reviewed full adders, the full quantum ternary adder

bears no resemblance in terms of the underlying logic used to perform addition between

two quantum ternary values. Its difference with the full classical ternary adder is that its

logic gates have control bits. Also it is different from the full quantum adder in that it

does not have gates with multiple control bits. Therefore the logic used in the previously

investigated full adders cannot be found in full quantum ternary adder. Instead it uses a

convoluted method to determine the carry within the addition which makes it very

inefficient.

46

Table 15

Quantum

Ternary adder

Gate 1

1

In Out

 0 1 2

0 1 0 1

1 1 0 1

2 1 0 1

Table 16

Quantum

Ternary adder

Gate 3

2

In Out

 0 1 2

0 1 2 0

1 2 0 1

2 0 1 2

Table 17

Quantum

Ternary adder

Gate 3

3

In Out

 0 1 2

0 1 2 2

1 2 1 1

2 0 0 0

Table 18

Quantum

Ternary adder

Gate 4

4

In Out

 0 1 2

0 2 1 1

1 1 0 2

2 0 2 0

Table 19

Quantum

Ternary adder

Gate 5

5

In Out

 0 1 2

0 0 0 1

1 2 2 0

2 1 1 2

Table 20

Quantum

Ternary adder

Gate 6

6

In Out

 0 1 2

0 0 1 2

1 2 0 0

2 1 2 1

Table 21

Quantum

Ternary adder

Gate 7

7

In Out

 0 1 2

0 2 0 1

1 0 1 2

2 1 2 0

Table 22

Quantum

Ternary adder

Gate 8

8

In Out

 0 1 2

0 0 1 1

1 1 2 0

2 2 0 2

Table 23

Quantum

Ternary adder

Gate 9

9

In Out

 0 1 2

0 1 0 1

1 2 1 0

2 0 2 2

Table 24

Quantum

Ternary adder

Gate 10

10

In Out

 0 1 2

0 0 1 0

1 1 2 1

2 2 0 2

To be able to evaluate the full quantum ternary adder for verification purposes,

intermediate truth tables are included in tables 15 to 24. The quantum full ternary adder

is depicted in figure 19. For each phase in the diagram a truth table is included with a

corresponding number. These truth tables demonstrate for each possible input in the

input column, what the output would be based on the control bit at the top of the output

column.

47

Figure: 19 Full Ternary adder

48

Literature review summary

Two types of machine based models of computation that are suitable for this research

are identified. The logic model of computation in the form of Boolean circuits is the

most often used to model the computational task addition. It’s used in the classical

paradigm for binary Boolean computation (Bedrij, 1962, Cho, 2003, Doran, 1988,

Knauer, 1989, Knowles, 2001, Kobayashi et al., 2004, Leininger and Taylor, 1978,

Needles, 1990, Norman, 1960, Nowick, 1996, Zhuang and Wu, 1992). The carry save

adder and conditional sum adder are the most efficient in the classical paradigm.

However, performance depends on the magnitude of how large the implementation is

scaled up.

Implementations of multi-value logic within the classical paradigm with the purpose of

improving the performance for computing addition are plentiful (A. Rizvi et al., 1991,

Dornajafi et al., 2008, Dubrova, 1999, Dubrova, 2002, Dubrova et al., 2002, Gonzalez

and Mazumder, 1998, Mingoto, 2006, Srivastava and Venkatapathy, 1996, Thoidis et

al., 2001, Vranesic and Hamacher, 2009). It’s found that for most of the different

approaches to addition a multi-value logic implementation is created and published.

However the performance benefits are not transparent due to insufficient and unclear

reporting.

In the quantum paradigm a different approach to implement Boolean logic are found.

Nevertheless, approaches to the computation of addition are inspired on existing

implementations in the classical paradigm. An implementation is for most different

types (Barbosa, 2006, Beckman et al., 1996, Cheng and Tseng, 2002, Cuccaro et al.,

2004, Gossett, 1998, Islam et al., 2010, Meter III, 2006, Trisetyarso and Van Meter,

2009, Vedral et al., 1996) and binary modular arithmetic (Draper, 2000). The findings

in the quantum paradigm are interesting from the perspective that show significant

49

performance increases over the classical counterparts, especially, when quantum

phenomena is used to perform computation of addition.

Muli-value logic within quantum paradigms is under developed. Few studies implement

an approach to computation addition (Chattopadhyay et al., 2009, Hung et al., 2004,

Khan, 2004b, Khan, 2004a, Khan, 2008, Khan and Perkowski, 2007, Oklobdzija et al.,

2003). Out of the few studies existent it’s impossible to deduce what the performance

implication are for implementing multi-value logic addition in the quantum paradigm.

The findings are mixed, in first instance it’s unclear what the performance results were.

Most of the implementations to the different approaches to addition within each of the

computational paradigms for the computational forms of logic specified. Even in the

cases where performance results are reported, it’s uncertain how comparison can be

performed. In some cases different types of performance are measured and reported.

One of the key findings in this literature review is the link between quantum

phenomena and computational performance. It’s found that for the computation of

addition significant performance results are demonstrated. So this research seeks to

investigate quantum phenomena in relation to computational performance, with

specific focusing on how the concept of state discrimination can be used. The research

in quantum mechanics on state discrimination could enable an alternative approach to

its application in the computation of addition. Through this research, it can be

established whether through quantum state discrimination computation at a higher

number base can allow computation of addition at a higher performance. This means

that the paradigm shift to quantum computing must be reviewed.

The main obstacle identified within the literature review is the inconsistency between

different studies on the topic of addition between each of the paradigms and

computational logic. This lead to finding results of different metric types which are not

50

readily comparable. Therefore, this research seeks to take an academic approach to the

evaluation of performance. Through the usage of an automaton model, the computation

of addition is modelled and measure for performance with computational complexity

theory. This should enable objective comparison between different approaches of

addition.

51

Chapter 3 Methodology

Introduction

The following chapter seeks to outline the mind set the research adopted during the

research to allow other researchers to validated and evaluate the findings. The research

questions and objectives are reiterated as a reminder of what the purpose of the research

is. This will help to understand how the methodology enables this research.

The research methodology consists out of two parts which are the researchers mind set

and the practical methods used to attain the research objectives. To outline the mind-set

required be adopted when reading this research a research paradigm based on the

epistemic stance reason and a realist ontology, the researcher seeks to deduce answers to

the research questions. As part of this mind set it’s questioned through critical

evaluation whether the experiment is subjective. Also the research questions the current

paradigm shift in computer science based on research findings in quantum mechanics.

The research experiment is based on two primary research methods known as

automaton model of computation and computational complexity. The automaton model

of computation is used to model the computation addition for the different paradigms

and computational logic which allows for comparison while computational complexity

theory is used to determine the performance of each approach to with the purpose of

understanding how performance can be increased. As the automaton model of

computation is a universal model of computation it’s able to demonstrate how an

alternative view on the application of quantum mechanics can enable a performance

increase in the computation of addition through emulating a higher number base,

opposed to binary.

52

Research questions

1. What are the available computational models and how can these be used to

evaluate the computational performance of addition?

2. Find out what the performance implications are for addition in different

paradigms and logic, and how can this be measured systematically?

3. Based on the findings of research question two, can the performance of addition

be improved?

Research objectives

1. Identify a suitable model of computation for evaluating different approaches to

addition.

2. Model the addition in the chosen model for each paradigm and logic and

evaluate their performance.

3. Identify what is the contributing factor for performance in computation of

addition.

Research paradigm

Within the research community a broad scope of research methods. To provide an

overview (Clear, 2004) reiterated three paradigms as: “scientific, interpretivistic, and

critical enquiry”. Whilst his purpose is to demonstrate how critical enquiry can be used

in computer science research, he states, most research in computer science is within the

scientific paradigm. This is true for this study, this is because formal statements are

made about the models of computation presented and use a formal method for accessing

their computational complexity. This is instead of using methods that look at

understanding complicated phenomena (quantum mechanics) which is complex to

understand. However, this study is based on such complex phenomena nevertheless

remains superficial of it. Furthermore quantitative methods are used in this study

53

regardless of whether the statement of computational performance holds true for the

models of computation. It’s the distinction in quantitative methods over qualitative

methods that make this study of scientific nature. In favour of the scientific paradigm

this study does not consider any sociological implication so the critical paradigm is

excluded as well.

The educational field of computer science (scientific paradigm) has diversified and

evolved into different theoretical views. (Eden, 2007) was able to categorise those views

into three paradigms which can be summarised into rationalists who take a more

theoretical position, technocratic for engineering and scientific when natural science is

involved. The method used to define in which category the research belongs is

determined by why priori or/and posteriori knowledge is obtained. Its actual methods

are deductive reasoning, test cases, “formal deduction and scientific experiment”

respectively to the three paradigms. By means of reviewing study one and study two

with regard to their method of deriving knowledge it’s possible to obtain which

paradigm they operate in.

This study is considered within the scientific paradigm to hold a rationalist position.

This is determined through the fact that the method used to evaluate the computation

addition is referred to in an abstraction. Despite, the computation of addition being

performed based on the knowledge of quantum mechanics, the researcher does not

search to find out his research based on this knowledge, and therefore, it cannot be

considered within the scientific paradigm, however in essence quantum computing does

fall within this paradigm. Nevertheless this research is not considered to be strictly

rationalist because only priori knowledge is sought through deductive logic. This is not

so for the technocratic paradigm which is not applied in this study which seeks

posteriori knowledge through practical application.

54

As this study does not base itself on quantum phenomena, but instead uses physical

objects in the described model of computation. Nevertheless this research does evaluate

how quantum phenomena are used in the application and is critical of it by suggesting

an alternative approach. The description of this model of computation is an abstraction

of a machine its instructions which is rationalist in nature. This concludes this study to

fall within the scientific paradigm as described by (Clear, 2004) and adopts a rationalist

theoretical viewpoint.

Epistemology

The research paradigm defines how knowledge is obtained. The concept of how

knowing what is true is explained by (Holloway, 1995) to be either a matter of

authority, reason, or experience. The authoritive epistemology is divided into two

possible forms of authority. These can be omniscient authority and human authority.

This study seeks not to justify its findings through authoritive epistemology. Because

this study does not obtain the findings form an authorative source. It’s more likely that

this epistemology is used in an interpretative paradigm or even in a critical enquiry.

The epistemological stance of experience claims to find what is true through using

senses (Holloway, 1995). Out of the wide variety of experience based epistemologies

available, of which the most relevant in this context is experimental evidence. This is

because experimental evidence can be used within the technocratic paradigm to present

posterior knowledge through practical tests. These studies do not engage in practical

experiments from which they derive conclusions forming the purpose of the research.

Instead, this study refers to a model of computation and presents a method for accessing

computational performance. Through the method priory knowledge is derived verifying

the postulates of computational performance are right.

55

Within the epistemological stance reason, it’s required to prove truth with deductive

logic rules. Having previously identified both studies to fall within this category, this

study adopted an epistemology of reason. Through evaluating different approaches to

computing addition with a uniform model of computation it’s deduced whether there are

any differences and reasoned as which of the evaluated approached yields greater

performance.

For this research the ultimate objective is to develop an understanding of how

performance of computation in particular addition can be improved. Therefore,

knowledge derived through this research allows the reader to understand the

significance of the computation of addition, different approaches to addition within the

classical and quantum paradigm through different forms of computational logic. As the

shift to quantum computing is questioned for its approach to how computations is

performed, and an alternative approach to the computation of addition is suggested

based on quantum mechanics research in state discrimination as a contribution to

knowledge.

Ontology

With consideration of what knowledge is in this study, it’s required to consider how the

world under observation also known as the ontology is defined. It’s required to have a

thorough understanding of the model of computation, this is an ontologically

description. Copeland and Shagrir (2011) evaluated and compared two ontological

positions are used to describe models of computation. These two ontological positions

are purist and realist which describe the models of computation at different levels. It’s

significant for the research they present as it has implications for their findings in that

under one conception they find different computational ability. They also review

Turing’s description of his model of computation and find him to fall under the realist

conception.

56

Under the purism conception a model of computation is a mathematical object. It’s

important to distinguish between the design of what a physical computer would be like

and its mathematical abstraction (Copeland and Shagrir, 2011), this is because a

mathematical abstraction can multiple different physically implementations. An

example of a purist (Shor, 1994). This is because the study of Shor presented a

mathematical formulation of a quantum algorithm to perform integer factorisation on a

quantum model of computation. The revision of this algorithm hence is expressed

mathematically.

This study focuses on the computational task of addition through a model of

computation documented in the literature. However the literature found most use a

different type of model of computation known as a circuit model. Both the circuit model

of computation and the automaton model of computation are within the realist ontology

group rather than purist as they do not use a mathematical description. Instead the

models of computation us a diagrammatic means of presenting the operations of the

approach to addition.

The difference between the circuit model of computation and the automaton model of

computation is visible at different levels. The circuit model of computation is a direct

representation of the wiring within the hardware used to implement the addition while

the automaton model of computation is a machine representation like the circuit model

of computation, but differs in its level of abstraction. Therefore the same approach is

presented differently.

The current mainstream usage model of computation for addition is the circuit model of

computation because it enables intricate optimisation for implementation, while the

automaton model of computation is more for academic purposes. This research has

adopted the automaton model of computation because the objective of this research is to

57

evaluate different approaches to addition within different paradigms and with different

types of logic.

This research is focused on evaluating the difference in terms of computational

performance between computing paradigms. It’s important for the model of

computation (automation model of computation) used within this research is able to

represent each of the computational paradigms. Although the research paradigm of this

research is clear about the idea that the research is based on the underlying physics of

the computational paradigms. It does not contribute to its development. However the

research does evaluate the underlying physics are used to perform the computation of

addition more efficiently. This is based on the usage of state discrimination as the

primary science of quantum mechanics over the current application of quantum

computing based on quantum phenomena of particle duality.

The research therefore evaluated three ontological views of physics and compares those

with regards to performance when computing addition. For each of the three views the

ontology is based on the most fundamental unite of computation with is the bit, as

previously described in classical physics a qubit is either one or zero. Based on particle

duality in quantum mechanics under the many world interpretation a quantum bit can

represent both one and zero at the same time, through which several researchers have

claimed to be able to attain a computational speed-up (Simon, 1997). As an alternative

view to the usage of quantum mechanics for the computation of addition the science of

state discrimination is suggested through which a finite amount of single states can be

represented (Bae and Hwang, 2013). Based on this science an alternative paradigm with

a number base equal to the amount of states can be represented opposed to the other

binary paradigms.

58

To compare those three ontological views, it’s required to use an automaton model of

computation to perform this research. The automaton model of computation brings the

computation approach of addition to a higher level of abstraction not attainable by the

circuit model of computation as to close a representation of the physical material from

which the implementation consists. The level of abstraction provided by the automaton

model of computation enables to compare between the different approaches to addition

independent of how they would be physically implemented.

Subjectivity

The application of computational complexity theory has a significant set of ontological

implication in terms of objectivity and subjectivity. These implications can undermine

the epistemological justification of knowledge derived through the application of the

methodology. To understand the implication, it’s required to understand what

constitutes objective measurement of complexity. According to Fioretti (2000) there are

two prerequisites to objectivity. The first is to be able to identify the most fundamental

required components in the system relevant to the study without the need for in-depth

analysis of subcomponents. The second requirement is the links between those

components and the action undertaken is defined. For this study a clear explanation is

provided of the above stated requirements, which implies an objective measure of

complexity is conducted.

It’s expected to be the case as according to Fioretti (2000) the discipline of computer

science is primarily objective. He states: “the components are objectively given: they

are the symbols a computer works with, and they do not arise out of measurement of a

physical magnitude”. This study is in accordance with this statement, however (Fioretti,

2000) continued by stating “contrary to computer science classical physics does involve

a translation of continues and open ended phenomena into symbols”. This would imply

measures of complexity become subjective. As this study relies to a certain extent on

59

the concept of quantum phenomena to perform computation which raises the question

as to whether the measure of complexity measurement becomes subjective?

Under the condition of a universal consensus within a scientific community that agreed

on the components of the system. It’s possible to define a computational complexity

measurement as objective. With regard to the this study, on-going debate within the

research community on the several interpretations of quantum mechanics (Osnaghi et

al., 2009) despite the many world interpretation taking a lead within the applied field of

computer science. Based on the understanding of this interpretation an objective

measure of complexity should are established in this study.

True objectivity within this study remains uncertain. This is based on the fact that the

components within the model of computation are agreed upon at the start of the study.

This is true for both paradigms and forms of logic in the different approaches to

addition. It’s when these components predefined that an objective measure of

complexity is considered to be subjective to some extent. This means, the measure is

objective but the experiment is subjective. Furthermore Fioretti (2000) discussed that

being able to meet the requirements to an objective complexity measurement can be

done by an algorithm. This means that the measurement of an addition algorithm would

have been objective independently of its possible initial flaw suggested by this study.

Fioretti (2000) also stated objective measurement of complexity to retain a subjectivist

flavour because it’s a machine which is executing the algorithm. This study does have

in some sense subjective influence through the model of computation. With regard to

the critical evaluation of the approaches to addition and there is no implication towards

their finding in terms of accuracy of knowledge found using the computational

complicity measurement. It means the researcher is expecting to obtain those findings at

the start of the research.

60

Research methods

Models of computation

This study seeks to evaluate whether computation through a higher number base system

would be computationally more efficient than classical computation or even quantum

computation based on the multi-universe interpretation of quantum mechanics. To

model computation a specific model of computation is required. According to the

literature there are two types (Fernández, 2009, Savage, 1998). These are those

representing machine instructions and those used to model programming languages;

this study is interested in modelling machine instructions. For those models of

computation, a further two types are identified, which are logic based on circuit models

and automaton models. This research seeks to use universal automation models of

computation, so computation between the different paradigms can be accurately

compared.

The Turing model of computation is a form of automata. These automata are described

through the Chomsky hierarchy, which categorises those models of computation

(Chomsky, 1956). The categorisation of those models starts with the universal Turing

model of computation at the bottom, which can compute any computational task as long

as expressed as a function. Each category in the hierarchy symbolizes how complex a

computational task a model of computation can perform. At the highest level of the

hierarchy is the finite state model or automaton, as the simplest form of automata. The

models of computation can all be visualised as finite state models. As the hierarchy is

traversed towards the universal Turing model, it’s found that each category is an

extended finite model: the Turing model consists of multiple finite models which

enables its universality. As the computational task addition is so simple, the finite state

61

model of computation is used throughout this research to determine computability and

computational performance.

Revision of models of computation revealed it impossible to compare each of the

ontological views described when performing addition and measuring performance. To

establish an objective evaluation a universal model of computation is to be used to

represent each of the states that the different ontological views stand for. The automaton

model of computation is able to represent each of the different states the three

ontological positions can be in and the transitions required as part of the computation

that changes the states.

Computational complexity theory

The secondary research method in this research is computational complexity theory.

This method is used in conjunction with the automaton model of computation. Through

application of a consistent singular method of measurement each of the ontological

views presented can be compared in terms of performance. As computational

complexity theory is key to the successful evaluation of this research an overview is

provided to understand the origin of computational complexity theory, its application

and limitations with regards to this research.

Although the old Greeks had a sense of what an efficient algorithm was, this would was

limited to the abacus. Computational complexity was something which was unknown to

Alan Turing. However the lack of a method to measure computational resources for the

Turing model of computation. Out of this requirement computational complexity was

born (Fortnow and Homer, 2003). This developed over the years through the addition of

classes demonstrating different levels of complexity of which polynomial and

exponential are most often used. Within the complexity theory different types of

resources such as time and space have been defined as individual complexity classes.

62

Therefore the time and space complexity per computational task can be specified

individually. Each of the complexity classes is specified for the Turing model of

computation according to determinism. The understanding between these two

complexity classes proved too difficult for to resolve.

The problem of being able to determine an algorithm able to complete a computational

task in polynomial time and being able to verify whether the answer is correct provides

the answer to the question is the polynomial time complexity class equal to the non-

deterministic polynomial complexity class. This problem is an academic interest for

which the Clay Mathematics institute currently award an academic prize of one million

dollars to who is able to solve the question (Institute, 2000). Rather than the inability of

being able to solve the problem of developing an algorithm able to perform a

computational task in polynomial time, the usage of an algorithm that is able to verify

an answer became significant in solving computational problems within this complexity

class (Gill, 1977). This is because by being able to verify an answer allowed usage of

probabilistic computational tasks are able to solve some computational problems to

some degree of accuracy. By being able to verify the result in polynomial time the

computation can be completed multiple times until its correct answer is verified.

Through this probabilistic approach it becomes possible to solve non-deterministically

hard problems.

Computational complexity theory has proved to be sound through its adaptations to

quantum complexity for measuring resource usage (Bernstein and Vazirani, 1997). This

complexity class also known as bounded error quantum polynomial time represents the

quantum version of the classical probability computational complexity class. The

importance for this class comes with the fact two significant algorithms is developed

which are able to perform database searching and integer factorisation more efficiently

than their classical counterparts. However the complexity of NP and BQP are not

63

analogues. This means some computational problems which are within the

computational boundaries using a quantum model of computation but do not satisfy

these criteria when using a classical model of computation. A thorough understanding

of computational complexity is required to answer the question: what is the

computational performance of a non-binary computational model?

With the purpose of determining how efficiently ‘addition’ can be computer. The theory

of computational complexity is used. Through computational complexity problems can

be categorise according to how hard it is to compute them (Papadimitriou, 2003). This

can only be determined based on the model of computation used (Fortnow and Homer,

2003). Through computational complexity a set of measures can be applied to represent

the taxonomy of the resources required for a predetermined model of computation to

perform a computational task. The amount of resources used by the model of

computation is expressed as a function. Through this function the required resources

used over time can be determined.

In view of the current shift from the classical to the quantum paradigm the measurement

of computational performance must be taken into consideration. Within the literature

classical computational complexity theory is adapted to quantum computational

complexity theory (Watrous, 2008), which includes classes in which it’s possible to

categorise the complexity of performing computational tasks through a quantum model

of computation. This research questions to what extent it’s possible to capture any

computational speedup through computational complexity theory of the task addition.

While most of the limitations of computational complexity theory are discussed in the

research methodology chapter, they are addressed below.

Computational complexity is demonstrated to be a coherent theory. This is because

throughout the paradigm shift from classical to quantum computing easy adaption took

64

place. However, a study has demonstrated computational complexity theory does not

account for all aspects of a computation (Blakey, 2011). This is an important concept

within this research. Furthermore, computational complexity theory is objective in

nature and is affected by the subjective considerations of the researcher’s experiment

(Fioretti, 2000). Therefore, when computational complexity theory is applied, the

experiment needs to be well thought out to maintain objectivity. This affects how

computational complexity should be applied, and how the performance of addition is

measured for the specified models of computation.

Computational complexity uses several different types of metrics. The most common

are those bound the computational model by ‘time’ and/or ‘space’. Throughout the

literature the circuit model of computation is most often applied. With this model of

computation the most used metrics which are frequently cited are gate depth and gate

count. This represents the amount of sequential operations required to traverse a

complete computation, and the total amount of operation performed throughout the

computation. Other metrics included in the quantum paradigm, the amount of ‘Qubits’

used throughout the computation and the amount of garbage outputs. As a limited

number of studies have used the finite state model of computation, these metrics cannot

be applied to this research, as they are very specific to the logic model of computation.

Therefore the metrics used to measure computational complexity of the finite state

model when performing addition is ‘time’ and ‘space’.

Once the computation is evaluated through the universal automation model of

computation its performance must be measured. Computational complexity can be used

to determine the computational performance of each implementation to compare the

performance (Papadimitriou, 2003). However, some considerations must be made

during the application of computational complexity. In the first instance is the tests

must be applied objectively as possible to define a subjective test as an experiment for

65

which the result is predetermined (Fioretti, 2000). Further investigation found

computational complexity to have limitation (Blakey, 2011). Therefore, it should be

considered whether computational complexity does actually demonstrate a

computational performance increase through a higher number base system. This could

be critical for the outcomes of this research. This is because if it’s required to use

alternative means of demonstrating the performance difference between the ontological

positions then objectivity can be lost.

Research experiment

To evaluate the performance of different approaches to addition an experiment is

applied for each approach with one calculation. It’s expected to find through performing

the same calculation through different approaches the results is determined accordingly.

The experiment simply evaluates the steps that a computation goes through for each of

the different approaches to addition evaluated. Three tests are used to evaluate the

performance of each approach. Each test evaluates the operations, and test different

cases. The three tests are summarised below in binary, decimal and ternary

1. 0101 + 1010 = 5 + 10 = 012 + 101

2. 0101 + 0101 = 5 + 5 = 012 + 012

3. 0111 + 0111 = 7 + 7 = 021 + 021

Each of the three computations is shown below as a different computation in terms of its

number base system. This is because for the research experiment that will compare

between the classical and quantum research paradigm both binary and ternary

computational logic are used. This will reveal whether quantum computation of addition

is more efficient than the traditional classical computational paradigm. Also within each

of those paradigms the different types of logic are compared in terms of performance.

66

The research is set with the expectation of multi-value logic enabling higher

performance for the computation of addition.

The subsequent comparison within the quantum computing paradigm seeks to evaluate

the computational performance between what is binary and a higher number base

system. For this experiment number base ten is assumed. The number base would be

defined through the amount of states which can be distinguished in a single particle In

this case ten states are required for the number base system.

67

Chapter 4 Analysis

Introduction file

In this chapter the research experiment described in the methodology is implemented.

First fundamental logic gates for each paradigm and computational logic are described.

Then the adder circuit model of computation is evaluated and abstracted through the

automaton model of computation. This allows for a better understanding of the

computational performance differences between each paradigm and computational logic

for the different approaches to addition.

Evaluation

Based on the revision of the four presented full adders, a comparison is made to

determine the most efficient approach for a computer to perform addition. The first

comparison demonstrated between the full classical and the full quantum adder, are

similar in underlying logic. The comparison is performed through an automata model of

computation through which both full adders can be compared. This means there is no

constraints of hardware that needs to be considered in adders. A subsequent comparison

is made between the Binary based adders and the classical Ternary adder to develop an

understanding of performance implications, when using adders with different number

base systems.

Binary automaton adder

The Binary automaton adder depicted below in figure 20 is an abstraction of both the

classical full adder and quantum full adder. Through abstraction the physical

constraints are removed. Each of the adders performs addition through similar logic. So,

it’s concluded both are equal in computational performance. This means that both

adders have an equal number of operations when modelled by the automaton model of

computation.

68

The Binary automaton adder depicted in figure twenty consists out of five states

between, which the automaton can switch provided there is a connection. Each

connection has a box in which the two values are added recorded. After the forward

slash a carry from the previous operation is recorded. Once an operation has occurred, a

state transition takes place. Every operation involves a state transition even if that is to

the same state.

Computation

For the experiment three computations are performed. These computations are based on

three different calculations that will demonstrate a computation, when there are no carry

values; the other two computations involve some carry values. Through these

experiments demonstrated how efficient these approach is in performing addition by the

amount of computational steps required.

0101 + 1010 = 5 + 10 = 15

Figure 20 Binary automaton adder

1/Sta

rt

5/1

4/0

2/0

3/1
11/1

10/0

00/0

00/0

11/0

11/0

00/0

10/0

10/0

11/0

11/1

00/1

01/1

00/1

01/1

69

Table 25: Binary automaton computational steps 5 + 10

Computational

step

Computational

state

Input /

carry

Carry Output Result

1 1 10/0 0 1 1

2 3 01/0 0 1 3

3 3 10/0 0 1 7

4 3 01/0 0 1 15

0101 + 0101 = 5 + 5 = 10

Table 26 Binary automaton computational steps 5 + 5

Computational

step

Computational

state

Input Carry Output Result

1 1 11/0 1 0 0

2 4 00/1 0 1 2

3 3 11/0 1 0 2

4 4 00/1 0 1 10

70

0111 + 0111 = 7 + 7 = 14

Table 27 Binary automaton computational steps 7 + 7

Computational

step

Computational

state

Input Carry Output Result

1 1 11/0 1 0 0

2 4 11/1 1 1 2

3 5 11/1 1 1 6

4 5 00/1 0 1 14

Ternary automaton adder

The Ternary automaton adder depicted below in figure 21 demonstrates how Ternary

addition can be performed without physical constraint. Although more complicated and

harder to follow, the ternary automaton adder functions like the Binary automaton adder

depicted in figure 20. The difference being, that there are more states and inputs for

addition reflect the Ternary number system.

71

Figure 21 Ternary automaton adder

1/start

6/1

5/0

3/1

2/0

4/2

02/0

00/0

01/0

02,11/0

12/0

22/0

00/0

01/0

02/0

01/0

00/1

00/0

00/0

22/0

02,11/0

02,11/1

12/0

22/0

12/0

12/0

22/0

01/0

01/1

12/1

00/1

01/1

7/1

12/1

22/1

22/1

02,11/1

01/1
02,11/1

22/1

22/1

72

Computation

The same three test cases are used to evaluate the Ternary adder automaton as for the

binary automaton. Using the same type of computational model and the same test cases

any significant difference between both the approaches is verifiable. Through this

method the significance of performing addition with differences in the radix of the

number base system are evaluated.

012 + 101 = 5 + 10 = 15

Table 28 Ternary automaton computational steps 5 + 10

Computational

step

Computational

state

Input /

carry

Carry Output Result

1 1 21/0 1 0 0

2 5 10/1 0 2 6

3 3 01/0 0 1 10

012 + 012 = 5 + 5 = 10

Table 29 Ternary automaton computational steps 5 + 5

Computational

step

Computational

state

Input Carry Output Result

1 1 22/0 1 1 1

2 6 11/1 1 0 1

3 3 00/1 0 1 10

73

021 + 021 = 7 + 7 = 14

Table 30 Ternary automaton computational steps 7 + 7

Computational

step

Computational

state

Input Carry Output Result

1 1 11/0 0 2 2

2 4 22/1 1 1 5

3 6 00/1 0 1 14

Decimal adder automaton

Based on the revision of full adders in different paradigms with different number base

systems, abstractions are made into automaton models of computation to compare

between them. Some improvement of computational efficiency is observed between the

classical full adder and the classical Ternary adder. Further investigation into the

increase in number base results in improved performance of computing addition. To

evaluate whether this holds true, a Decimal adder automaton model of computation is

depicted through which a further experiment is conducted using the same test cases.

The Decimal automaton adder functions similarly to the Binary and Ternary automaton

adders. For complexity reasons the Decimal automation adder is depicted in part. In

total twenty one states are exist, and have a connector between most states, this high

amount of connectors is not depictable in figure 22 below. Based on figures 20 and 21

it’s easy to understand how the Decimal automaton adder would fit together.

74

Figure 22 Decimal adder automaton

14/3

13/2

12/1

11/0

2/0

10/8

9/7

8/6

7/5

6/4

5/3

4/2

3/1

1

0+0/0

0+3, 3+0, 2+1, 1+2/0

0+2, 2+0, 1+1/0

0+1, 1+0/0

0+4, 4+0, 3+1, 1+3, 2+2/0

0+5, 5+0, 4+1, 1+4, 2+3, 3+2/0

0+6, 6+0, 5+1, 1+5, 2+4, 4+2, 3+3/0

0+7, 7+0, 6+1, 1+6, 2+5, 5+2, 3+4, 4+3/0

0+8, 8+0, 7+1, 1+7, 2+6, 6+2, 3+5, 5+3, 4+4/0

0+9, 9+0, 8+1, 1+8, 2+7, 7+2, 3+6, 6+3, 4+5, 5+4/0

1+9, 9+1, 8+2, 2+8, 3+7, 7+3, 4+6, 6+4, 5+5, 5+5/0

2+9, 9+2, 8+3, 3+8, 4+7, 7+4, 5+6, 6+5/0

3+9, 9+3, 8+4, 4+8, 5+7, 7+5, 6+6/0

4+9, 9+4, 8+5, 5+8, 6+7, 7+6/0

5+9, 9+5, 8+6, 6+8, 7+7/0

6+9, 9+6, 8+7, 7+8/0

7+9, 9+7, 8+8/0

8+9, 9+8/0

9+ 9/0

17/7

16/6

16/5

15/4

19/9

18/8

0+0/1

0+3, 3+0, 2+1, 1+2/1

0+2, 2+0, 1+1/1

0+1, 1+0/1

0+4, 4+0, 3+1, 1+3, 2+2/1

0+5, 5+0, 4+1, 1+4, 2+3, 3+2/1

0+6, 6+0, 5+1, 1+5, 2+4, 4+2, 3+3/1

0+7, 7+0, 6+1, 1+6, 2+5, 5+2, 3+4, 4+3/1

0+8, 8+0, 7+1, 1+7, 2+6, 6+2, 3+5, 5+3, 4+4/1

0+9, 9+0, 8+1, 1+8, 2+7, 7+2, 3+6, 6+3, 4+5, 5+4/1

1+9, 9+1, 8+2, 2+8, 3+7, 7+3, 4+6, 6+4, 5+5, 5+5/1

2+9, 9+2, 8+3, 3+8, 4+7, 7+4, 5+6, 6+5/1

3+9, 9+3, 8+4, 4+8, 5+7, 7+5, 6+6/1

4+9, 9+4, 8+5, 5+8, 6+7, 7+6/1

5+9, 9+5, 8+6, 6+8, 7+7/1

6+9, 9+6, 8+7, 7+8/1

7+9, 9+7, 8+8/1

8+9, 9+8/1

9+ 9/1

75

Computation

For consistency the same three test cases are used in this experiment to measure the

performance of the Decimal automaton adder. Through using the same test cases, it’s

possible to compare the results against the previous computations that where performed

using the Binary and Ternary automaton model of computation. The tables below

demonstrate the steps of the computation include the computational step, which is just a

count of the amount of operations. Computational state signifies where in the automaton

model the computation is. Input and carry defines the data used to perform the

computation. Output is the result of the operation and the result is the overall outcome

of the computation.

05 + 10 = 15

Table 31 Decimal automaton computational steps 5 + 10

Computational

step

Computational

state

Input /

carry

Carry Output Result

1 1 50/0 0 5 5

2 7 01/1 0 1 15

05 + 05 = 10

Table 32 Decimal automaton computational steps 5 + 5

Computational

step

Computational

state

Input Carry Output Result

1 1 55/0 1 0 0

2 11 00/1 0 1 10

76

07 + 07 = 14

Table 33 Decimal automaton computational steps 7 + 7

Computational

step

Computational

state

Input Carry Output Result

1 1 77/0 0 2 2

2 15 00/1 0 1 14

Summary and findings

The evaluation of full adders within this research found several significant findings.

These are the similarities between the different types of full adders, to the extent that the

classical full adder and quantum full adder can be generalised as the same automaton

adder. Furthermore, significant are similarities in the way that the full classical Ternary

adder is modified based on the fundamental concept of modulo two into modulo three.

Although it’s not possible to prove the same similarities between the classical Ternary

adder and quantum Ternary adder as with their classical counterparts. This is believed

to be due to the constraints of physical realisation. In principles the quantum Ternary

adder should be reducible to the same ternary automaton adder.

This lead the research into comparing the adders based on the radix of their number

base system. The first comparison between the Binary automaton adder of computation

and the Ternary automaton model of computation presented a few differences. This is

an increase in complexity depicted in figure 21. This has more connectors between the

states in the automaton compared to its Binary alternative. When evaluating the actual

computation it’s found that the Binary automaton requires four steps of computation

while the Ternary automaton is able to perform the computation in three steps. While

77

this is an improvement, according to computational complexity, it’s found that the

output is linearly bounded to the input. The Binary automaton has four input and so

four outputs, the reason the Ternary automaton has three computational steps is because

the inputs can be represented in less significant values.

Through the usage of the method computational complexity it’s possible to evaluate and

compare the computational performance between models of computation based on

different number base systems. Significantly, the higher the number base system the

lower the number of computational steps required to perform the computation. For the

first model based on the Binary number system four steps where required. The second

based on Ternary required three steps. And the final model based on Decimal required

two steps to compute a simple addition of five and ten.

As the findings indicated a difference for computational steps required in relation to the

number base used. It’s questioned whether a further experiment could be performed to

find out how significant this difference would be on large scale computation. As it’s not

be possible to illustrate in a diagram a computation with greater values. It’s

hypothesised how great a value can be computed in each of the number base systems.

The assumption is that the growth rate of output per computational step increases

according to the base unit of the radix used within the computational model. This is

based on the findings in the experiment above. Below a table is presented in which the

growth per number systems is displayed in sequence with the computational steps. The

growth rate of output is the radix to the power of the computational step expressed in

big O notation.

 Binary O(radix(2)
N
)

 Ternary O(radix(3)
N
)

 Decimal O(radix(10)
N
)

78

Table 34 Growth rate of output per computational step

Computational step Binary Ternary Decimal

1 2 3 10

2 4 9 100

3 8 27 1000

4 16 81 10000

5 32 243 100000

6 64 729 1000000

7 128 2187 10000000

The forecast of expected outcomes of a large scale implementation for each of the

presented models of computation based on increasing number base systems is captured

in the graphs below. Figure 23 demonstrates the total amount of output per

computational step. While in the second figure 23 the output per computational step is

demonstrated as a percentage. This shows that for Binary and Ternary models of

computation the gap for step one is 15%, step 2 10%, and step three 5%. Between

Ternary and Decimal the gap is 65% for the first step, step 2 is 90% and the tird step is

95%. In all cases the trend is an increasing gap between the outputs of each of the

models of computation.

79

Figure 23 Forecast of growth output

80

Figure 24 Forecast of growth output as growth

81

Chapter 5 Conclusion

Answer to research questions

The first research question Sought to find out what the available models of computations

are. Secondary in this question is to identify the most suitable models of computation for

the purpose of computing addition.

During the evaluation of the literature the following types of models of computation are

identified:

 logic circuit models

 Automaton model of computation (finite state machines)

 Turing model of computation

 Formal language model of computation (Lambda calculus)

 Object oriented model of computation

 Quantum model of computation

Different forms of computation have historically taken place, compared to modern day

models of computation. These approaches are significantly distinguished from the models

outlined above. This is based on the idea of computation not being binary as in modern

models of computation.

The research focuses on models of computation that model machines rather than machine

instructions. Identified example of machine instruction models are: formal language and

object oriented models of computation. These models of computation are used to model

programming. So these models of computation are identified as unsuitable to the current

research. Instead this research requires models of computation which model the functioning

of machines.

82

The circuit model of computation is particularly relevant to this research. Most of the

literature focused around the computation of addition is presented through this model of

computation. However, the circuit model of computation is found not suitable for

implementing this research. This is because it’s specific to technology. As this technology

is significantly different between paradigms it’s not possible to compare approaches

between different paradigms or forms of computational logic. The automaton model of

computation on the other hand is to be able to model a computation independent of its

physical existence. Therefore, it’s considered more suitable for this research. The

automaton model of computation is a subset of the Turing model of computation. This

research seeks to evaluate the task of addition which can be achieved through a finite

automaton. The Turing model of computation is more suitable for general purpose

computation for which multiple finite automaton are required.

As found in the literature the circuit model of computation is extended from the classical

computing paradigm into the quantum paradigm to model quantum computation. In this

research, the automaton model of computation is extended to the quantum paradigm. This

means both paradigms with binary and multi-value logic can be evaluated for performance

when performing the task of addition. More importantly it’s possible to compare between

the findings of each evaluation. Therefore, the automaton model of computation is

considered the most suitable model of computation for this research.

The second research question drives the research forth to investigate the current literature

with regard to how researchers have proposed to perform addition. Within the different

given computing paradigms the research seeks to develop an understanding of the different

approaches to addition for each form of computational logic. Furthermore, the evaluation

the research seeks to develop an understanding of the performance, for each of the different

83

approaches to addition, and how the researches have expressed performance and measured

it.

A section within the literature review chapter is devoted to answering the greater part of

this research question. This is in the summary of the different approaches to computation

section. The interesting aspect of this evaluation is the performance measurement. Most

researchers established a metric in term of performance expressed in computational

complexity, although several research papers did not consider this factor. In several cases

where a form of measurement applied, it’s not being compared as some studies investigate

the number of logic gates used, other circuit depth, etc. Therefore, the studies are not

comparable in terms of performance measurement.

In the classical paradigm carry save adder and conditional sum adder are most efficient.

Each of them varies in performance depending on how large scale the implementation is.

For multi-value logic opposed to binary Boolean logic it’s expected to find reported

findings demonstrating a performance increase; however no valid findings are identified in

the literature. Even so, the most significant findings are identified in the quantum

computing paradigm. For binary Boolean logic based approached in the quantum paradigm

similar finding to the classical counterpart found most approaches. The conditional sum

adder is significantly faster in the quantum paradigm for which it’s rated as logarithmic.

The Kd mesh adder performance increases as the computation takes place. The final group

under investigation is multi-value logic addition within the quantum paradigm.

As identified in the first research question, it’s not possible to compare this metrics for

different paradigms and computational logic because of inconsistency. But, the same

methods used to measure and express the computational performance of the different

84

approaches to addition. Throughout the literature and so this research has adopted

computational complexity theory.

Through the usage of the automaton model of computation and computational complexity,

it’s possible to evaluate the different approaches of addition in different paradigms. For

each of the computational logics defined. This lead to the conclusion: no performance

difference between computational paradigms for performing addition. However, it’s found

through ternary logic possible to improve computational performance over binary

computation.

The final research question revolved about questioning the findings of this research. The

aim is to better understand how further research can improve and increase computational

performance of addition.

This research identified performance of computing addition is related to the radix of the

performed computation. As demonstrated in the last experiment, a model of computation

operates with radix ten is able to perform the computation in fewer steps and therefore be

more efficient. This efficiency has become visible for very small computations of addition

involving numbers with two values. However this becomes more significant as the values

in the number increase. In the performance graph (Figure 23 & 24) it’s depicted for binary

logic computation. To add a value up to 128 in four computational steps, 1287 for ternary

logic and 10000000 with a decimal computation. This is a great difference between the

radix, the growth curve is increasingly steeper.

85

Within this research study an attempt is made to standardise the approach to measuring the

performance of computation. As concluded from the literature, several studies have

reported a form of performance metrics; however, even between those studies it’s not

possible to compare performance. This is because some refer to the number of gates used,

other to the amount of computational steps, while several didn't report any performance

metrics. In this study the focus is placed on the number of computational steps required to

perform a specific computation. For which it’s found that with higher number base models

of computation it’s possible to perform the same computation of addition in less

computational steps.

Therefore, further investigation shows how much more can be computed using a model of

computation with a higher number base system. On a large scale a significantly greater

output per computational steps is attained. However, it’s impossible to relay back to the

initial findings in the literature reported to be able to perform addition in different

categories such as O(N), O(log N), O(N), etc according to the different approaches and

paradigms used. To be able to compare the findings of this study and other studies, it’s

required to develop a physical device able to perform modular arithmetic on number base

encoded qubits. Once these logic gates are developed a circuit can then be used to compare

the performance.

It’s important to note: the current research is based on the assumption that qubits can be

held in at least ten different distinct states as described in the literature as state

discrimination. This is distinct from previous research which looks at performing addition

based on the qubit holding two states simultaneously. This is important because it’s

fundamentally different in how quantum mechanics is applied in computation. Also, this

research is based on modular arithmetic for the three experiments. However, in the

86

literature different approaches used such as the quantum fourier transformer, binary tree,

mesh or cube structures.

Contribution to knowledge

The contribution to knowledge is twofold within this research. Firstly the researcher has

systematically evaluated the existing literature to find out what the different approaches are

for performing addition, and found no single approach to this computation.

Secondly the research found several different types of models of computation with

different purposes. As part of this research, it’s required to compare and contrast the

performance between the different approaches of addition independent of the research

paradigm or the computational logic. Although the literature uses predominantly circuit

models of computation, the research found through an automaton model of computation it’s

possible to objectively compare those approaches to addition.

The research findings to this research are considered a contribution to knowledge. This is

because the research informs the reader that the computation of addition is not improved in

performance by quantum computing. But, through different usage of quantum computing to

compute through a higher radix, it’s possible to gain computation performance. Instead of

current quantum computing which exploits the quantum phenomena of state duality, this

research advocated state discrimination should be used. This implies the model of

computation its most fundamental units are able to represent a number of finite unique

states used to form a number base system. Instead of quantum parallelism through state

duality or two states of one or zero in classical computing.

87

Further research

The researcher calls other researchers to evaluate this research and to perform similar

studies such to verify the findings and inconsistencies highlighted. This can be through

setting up modified experiments. Further research can be conducted through evaluating

more specific approaches to addition such as very specific types of adders. This extended

the research in this thesis that evaluated the full adders for each paradigm and

computational logic.

Further research can be performed to do a practical implementation of this theoretical

research. This involves identifying the right physical medium to implement a decimal

model of computation to find out whether the findings of this research are theoretical. This

research can then be extended by developing logic gates capable of performing addition

with a higher number base.

It’s interesting to develop adiabatic logic gates for a higher number base model of

computation able to perform computation with greater performance. The advantage is

computing great numbers with low usage of energy. This would be through using adiabatic

gates where the amount of input energy is equal to the output, and therefore there is no

dissipation of electricity. This means no loss of energy and a possibly environmentally

friendly (green) solution to computation.

As highlighted at the start of the research, the quantum computing paradigm is found to

enable very specific computational tasks to be performed more efficiently. This is based on

the application of quantum phenomena. Of particular interest is the computational task of

integer factorisation demonstrated on a small scale to be more efficient opposed to the

classical computing paradigm. The research question seeks to find whether it’s possible for

a model of computation with a higher number base (based on state discrimination) to be

88

more efficient. At least in theory to compute integer factorisation more efficiently than a

model of computation based on the current quantum mechanics interpretation.

Other areas of interest which are identified during the revision of the research are the

development of logic gates based on the concepts of state discrimination to perform

computation with a higher number base. This can then be built on by developing circuits

and be used to compare against other implementation. Further improvements can then be

made to optimise the circuits be looking at different approaches instead of modular

arithmetic, such as fourier transform, binary tries, or other approaches.

89

References

A. RIZVI, A., ZAHEER, K. & ZUBAIRY, M. S. 1991. Design of ternary half-adder and -

subtractor using frequency modulation in grating structures. Optics Communications, 84,

247-250.

AUDENAERT, K. M. R., MOSONYI, M. & VERSTRAETE, F. 2012. Quantum state

discrimination bounds for finite sample size. Arxiv preprint arXiv:1204.0711.

BAE, J. & HWANG, W.-Y. 2013. Minimum-error discrimination of qubit states: Methods,

solutions, and properties. Physical Review A, 87, 012334.

BARBOSA, G. A. 2006. Quantum half-adder. Physical Review A, 73, 052321.

BARENCO, A. E., A. SANPERA, A. & MACHIAVELLO, C. 1996. A Short Introduction

to Quantum Computation [Online]. Available: http://www.qubit.org/tutorials/25-quantum-

computing.html.

BECKMAN, D., CHARI, A. N., DEVABHAKTUNI, S. & PRESKILL, J. 1996. Efficient

networks for quantum factoring. Physical Review A, 54, 1034.

BEDRIJ, O. 1962. Carry-select adder. Electronic Computers, IRE Transactions on, 340-

346.

BERGOU, J. A., FUTSCHIK, U. & FELDMAN, E. 2012. Optimal Unambiguous

Discrimination of Pure Quantum States. Physical review letters, 108, 250502.

BERMAN, G., DOOLEN, G., LOPEZ, G. & TSIFRINOVICH, V. 2001. A quantum full

adder for a scalable nuclear spin quantum computer. Arxiv preprint quant-ph/0105133.

BERNSTEIN, E. & VAZIRANI, U. 1997. Quantum complexity theory. SIAM Journal on

Computing, 26, 1411-1473.

BIRKHOFF, G. & VON NEUMANN, J. 1936. The logic of quantum mechanics. Annals of

mathematics, 823-843.

http://www.qubit.org/tutorials/25-quantum-computing.html
http://www.qubit.org/tutorials/25-quantum-computing.html

90

BLAKEY, E. 2011. Computational Complexity in Non-Turing Models of Computation::

The What, the Why and the How. Electronic Notes in Theoretical Computer Science, 270,

17-28.

BORRELLI, M., HAIKKA, P., DE CHIARA, G. & MANISCALCO, S. 2013. Non-

Markovian qubit dynamics induced by Coulomb crystals. Physical Review A, 88, 010101.

BROMLEY, A. 1998. Charles Babbage's Analytical Engine of 1938. IEEE Annals of the

History of Computing, 20, 29-45.

BURGESS, N. Accelerated carry-skip adders with low hardware cost. Signals, Systems

and Computers, 2001. Conference Record of the Thirty-Fifth Asilomar Conference on, 4-7

Nov. 2001 2001. 852-856 vol.1.

CHATTOPADHYAY, T., TARAPHDAR, C. & NATH ROY, J. 2009. Quaternary Galois

field adder based all-optical multivalued logic circuits. Applied optics, 48, E35-E44.

CHAU, H. 1999. Quantum convolutional error correction codes. Quantum Computing and

Quantum Communications, 314-324.

CHENG, K. W. & TSENG, C. C. 2002. Quantum full adder and subtractor. Electronics

Letters, 38, 1343-1344.

CHO, K. 2003. Conditional sum adder. EP20020254426 20020625.

CHOI, B. S. & VAN METER, R. 2008. On the Effect of Quantum Interaction Distance on

Quantum Addition Circuits. Arxiv preprint arXiv:0809.4317.

CHOMSKY, N. 1956. Three models for the description of language. Information Theory,

IRE Transactions on, 2, 113-124.

CLEAR, T. 2004. Critical enquiry in computer science education. Computer Science

Education Research: The Field and The Endeavour, Routledge Falmer, Taylor & Francis

Group, London, 101-125.

91

COPELAND, J. & SHAGRIR, O. 2011. Do Accelerating Turing Machines Compute the

Uncomputable? Minds and Machines, 21, 221-239.

CORKER, D., ELLSMORE,P., ABDULLAH,F.,HOWLETT, I.,. 2005. Commercial

Prospects for Quantum Information Processing. Available:

qserver.usc.edu/group/wp.../commercial-prospects-for-qip-v1-1.pdf.

CUCCARO, S. A., DRAPER, T. G., KUTIN, S. A. & MOULTON, D. P. 2004. A new

quantum ripple-carry addition circuit. Arxiv preprint quant-ph/0410184.

DEUTSCH, D. 1985. Quantum theory, the Church-Turing principle and the universal

quantum computer. Proceedings of the Royal Society of London. A. Mathematical and

Physical Sciences, 400, 97-117.

DEUTSCH, D. & JOZSA, R. 1992. Rapid solution of problems by quantum computation.

Proceedings of the Royal Society of London. Series A: Mathematical and Physical

Sciences, 439, 553-558.

DORAN, R. 1988. Variants of an improved carry look-ahead adder. Computers, IEEE

Transactions on, 37, 1110-1113.

DORNAJAFI, M., WATKINS, S. E., COOPER, B. & BALES, M. R. Performance of a

quaternary logic design. 2008. IEEE, 1-6.

DRAPER, T. G. 2000. Addition on a quantum computer. Arxiv preprint quant-ph/0008033.

DRAPER, T. G., KUTIN, S. A., RAINS, E. M. & SVORE, K. M. 2006. A logarithmic-

depth quantum carry-lookahead adder. Quantum Information & Computation, 6, 351-369.

DUBROVA, E. Multiple-valued logic in vlsi: Challenges and opportunities. 1999. 340-350.

DUBROVA, E. 2002. Multiple-valued logic in VLSI design. Multiple-Valued Logic, An

International Journal.

DUBROVA, E., JAMAL, Y. & MATHEW, J. Non-silicon non-binary computing: Why

not. 2002. 23-29.

92

DUWELL, A. 2007. The Many‐Worlds Interpretation and Quantum Computation.

Philosophy of Science, 74, 1007-1018.

EDEN, A. H. 2007. Three paradigms of computer science. Minds and Machines, 17, 135-

167.

FERNÁNDEZ, M. 2009. Models of Computation: An Introduction to Computability

Theory, Springer-Verlag New York Inc.

FEYNMAN, R. P. 1982. Simulating physics with computers. International journal of

theoretical physics, 21, 467-488.

FIORETTI, G. 2000. A subjective measure of complexity. Advances in Complex Systems,

2, 349-370.

FORTNOW, L. & HOMER, S. 2003. A short history of computational complexity. Bulletin

of the EATCS, 80, 95-133.

GAIDHANI, M. Y. A. & KALBANDE, M. M. N. Design of Some Useful Logic Blocks

Using Quaternary Algebra.

GANG, W., LI, C. & QIN, L. 2009. Ternary logic circuit design based on single electron

transistors. Journal of Semiconductors, 30, 025011.

GILL, J. 1977. Computational complexity of probabilistic Turing machines. SIAM Journal

on Computing, 6, 675-695.

GOLUBEV, D. S. & ZAIKIN, A. D. 1998. Interaction and quantum decoherence. Physica

B: Condensed Matter, 255, 164-178.

GONZALEZ, A. F. & MAZUMDER, P. 1998. Multiple-valued signed digit adder using

negative differential resistance devices. Computers, IEEE Transactions on, 47, 947-959.

GOSSETT, P. 1998. Quantum carry-save arithmetic. Arxiv preprint quant-ph/9808061.

GOTTESMAN, D. 1997. Stabilizer codes and quantum error correction. Arxiv preprint

quant-ph/9705052.

93

GOTTWALD, S. 2005. Many-Valued Logics. Available: http://www.uni-

leipzig.de/~logik/gottwald/SGforDJ.pdf.

GREECHIE, R. J. 1981. A non-standard quantum logic with a strong set of states. Current

issues in quantum logic, 8, 375-380.

GROVER, L. K. A fast quantum mechanical algorithm for database search. Proceedings of

the 28th Annual ACM Symposium on Theory of Computing, 1996. ACM, 212-219.

HOLLOWAY, C. M. 1995. Software engineering and epistemology. ACM SIGSOFT

Software Engineering Notes, 20, 20-21.

HSIEH, M. H., DEVETAK, I. & BRUN, T. 2007. General entanglement-assisted quantum

error-correcting codes. Physical Review A, 76, 062313.

HUNG, W. N. N., SONG, X., YANG, G., YANG, J. & PERKOWSKI, M. Quantum logic

synthesis by symbolic reachability analysis. In Proceedings of the 41st Design Automation

Conference, 2004 San Diego, CA,. ACM, 838-841.

HURLEY, P. J. 2006. A concise introduction to logic, Wadsworth Publishing Company.

INSTITUTE, C. M. 2000. Millennium prize problems. Clay Mathematics Institute

ISLAM, M., KARIM, M. R., MAHMUD, A. A. & BABU, H. M. 2010. Variable block

carry skip logic using reversible gates. Arxiv preprint arXiv:1008.3352.

JAHANGIR, I. & DAS, A. On the design of quaternary comparators. 2010. IEEE, 241-246.

KETELAARS, N. 2001. Pascal’s Calculator. AIMe Magazine.

KHAN, M. H. A. Quantum realization of ternary adder circuits. Proceedings of Third

International Conference on Electrical and Computer Engineering, 2004a.

KHAN, M. H. A. Quantum realization of ternary adder circuits. 2004b.

KHAN, M. H. A. 2008. A recursive method for synthesizing quantum/reversible quaternary

parallel adder/subtractor with look-ahead carry. Journal of Systems Architecture, 54, 1113-

1121.

http://www.uni-leipzig.de/~logik/gottwald/SGforDJ.pdf
http://www.uni-leipzig.de/~logik/gottwald/SGforDJ.pdf

94

KHAN, M. H. A. & PERKOWSKI, M. A. 2007. Quantum ternary parallel adder/subtractor

with partially-look-ahead carry. Journal of Systems Architecture, 53, 453-464.

KIDWELL, P., WILLIAMS, M. 1992. The Calculating Machines: Their history and

development, USA, Massachusetts Institute of Technology and Tomash Publishers.

KNAUER, K. 1989. Ripple-carry adder. US patent application.

KNOWLES, S. A family of adders. Proc. 15th IEEE symposium on Computer Arithmetic,

2001. IEEE, 177-182.

KOBAYASHI, Y., SATOH, A. & MUNETOH, S. 2004. Carry skip adder. US patent

application.

LEININGER, J. C. & TAYLOR, G. P. 1978. Carry save adder. US patent application.

LLOYDS , S. 2008. Riding D-wave. Available:

http://www.signallake.com/innovation/RidingD-Wave042408.pdf.

LUDWIG, G. & HEIN, C. A. 1985. Foundations of quantum mechanics, Springer-Verlag.

MACKEY, G. & BENJAMIN, W. 1967. Mathematical foundations of quantum mechanics.

Bull. Amer. Math. Soc. 73 (1967), 499-500. DOI: 10.1090/S0002-9904-1967-11717-8 PII:

S, 2, 11717-8.

MERMIN, N. D. 2003. Copenhagen computation. Studies In History and Philosophy of

Science Part B: Studies In History and Philosophy of Modern Physics, 34, 511-522.

METER III, R. D. V. 2006. Architecture of a quantum multicomputer optimized for Shor's

factoring algorithm. Arxiv preprint quant-ph/0607065.

MINGOTO, C. R., JR. A Quaternary Half-Adder Using Current-Mode Operation with

Bipolar Transistors. Multiple-Valued Logic, 2006. ISMVL 2006. 36th International

Symposium on, 17-20 May 2006 2006. 15-15.

NEEDLES, W. M. 1990. Manchester carry adder circuit. US patent application.

NORDHAUS, W. 2001a. The progress of computing.

http://www.signallake.com/innovation/RidingD-Wave042408.pdf

95

NORDHAUS, W. 2001b. The progress of computing. Available:

nordhaus.econ.yale.edu/prog_030402_all.pdf.

NORMAN, R. H. 1960. Binary half adder circuit. Google Patents.

NOWICK, S. M. Design of a low-latency asynchronous adder using speculative

completion. IEE Proceedings - Computers and Digital Techniques, 1996. IET, 301-307.

OKLOBDZIJA, V. G., ZEYDEL, B. R., DAO, H., MATHEW, S. & RAM, K. Energy-

delay estimation technique for high-performance microprocessor VLSI adders. Computer

Arithmetic, 2003. Proceedings. 16th IEEE Symposium on, 15-18 June 2003 2003. 272-279.

OSNAGHI, S., FREITAS, F. & FREIRE JR, O. 2009. The origin of the Everettian heresy.

Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of

Modern Physics, 40, 97-123.

PAI, Y. T. & CHEN, Y. K. The fastest carry lookahead adder. 2004. IEEE, 434-436.

PAPADIMITRIOU, C. H. 2003. Computational complexity, John Wiley and Sons Ltd.

RIZVI, A. A., ZAHEER, K. & ZUBAIRY, M. S. 1991. Design of ternary half-adder and -

subtractor using frequency modulation in grating structures. Optics Communications, 84,

247-250.

SAVAGE, J. E. 1998. Models of computation, Addison-Wesley Reading, MA.

SCHMELZER, I. 2011. Pure quantum interpretations are not viable. Foundations of

Physics, 41, 159-177.

SHADBOLT, P., VERDE, M., PERUZZO, A., POLITI, A., LAING, A., LOBINO, M.,

MATTHEWS, J., THOMPSON, M. & O'BRIEN, J. 2011. Generating, manipulating and

measuring entanglement and mixture with a reconfigurable photonic circuit. Nature

Photonics, 6, 45-49.

SHAO, Z. 2008. Boolean Algebra. In: SCIENCE, Y. U. D. O. C. (ed.) Chapter Two.

96

SHOR, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In:

GOLDWASSER, S., ed. Proceedings of the 35th

Symposium on Foundations of Computer Science, 1994 Los Alamitos. IEEE, 124-134.

SIMON, D. R. 1997. On the power of quantum computation. SIAM Journal on Computing,

26, 1474-1483.

SRIVASTAVA, A. & VENKATAPATHY, K. 1996. Design and implementation of a low

power ternary full adder. VLSI Design, 4, 75-81.

STEANE, A. M. 1998. Quantum error correction. Introduction to quantum computation

and information, 184.

SWADE, D. & BABBAGE, C. 2001. Difference Engine: Charles Babbage and the Quest to

Build the First Computer, Viking Penguin.

TAKEUTI, G. 1981. Quantum set theory, inCurrent Issues in Quantum Logic, New York,

Plenum Press.

THOIDIS, I., SOUDRIS, D., FERNANDEZ, J. & THANAILAKIS, A. The circuit design

of multiple-valued logic voltage-mode adders. 2001. IEEE, 162-165 vol. 4.

TRISETYARSO, A. & VAN METER, R. 2009. Circuit design for a measurement-based

quantum carry-lookahead adder. Arxiv preprint arXiv:0903.0748.

TRUESDELL, L. E. 1965. The development of punch card tabulation in the Bureau of the

Census, 1890-1940: with outlines of actual tabulation programs, USGPO.

VAN DAM, W. 2007. Quantum computing: In the'death zone'? Nature Physics, 3, 220-221.

VEDRAL, V., BARENCO, A. & EKERT, A. 1996. Quantum networks for elementary

arithmetic operations. Physical Review A, 54, 147.

VRANESIC, Z. & HAMACHER, V. 2009. Ternary Logic in Parallel Multipliers.

Computer Journal, 52, 254.

97

WALLACE, D. 2002. Worlds in the Everett interpretation. Studies In History and

Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 33,

637-661.

WATROUS, J. 2008. Quantum computational complexity. Arxiv preprint

arXiv:0804.3401.

ZHUANG, N. & WU, H. 1992. A new design of the CMOS full adder. Solid-State Circuits,

IEEE Journal of, 27, 840-844.

