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Abstract

The anti-tumour and pro-tumour roles of Th1/Th2 immune cells and M1/M2
macrophages have been documented by numerous experimental studies. How-
ever, it is still unknown how these immune cells interact with each other to
control tumour dynamics. Here, we use a mathematical model for the inter-
actions between mouse melanoma cells, Th2/Th1 cells and M2/M1 macro-
phages, to investigate the unknown role of the re-polarisation between M1
and M2 macrophages on tumour growth. The results show that tumour
growth is associated with a type-II immune response described by large num-
bers of Th2 and M2 cells. Moreover, we show that: (i) the ratio k of the
transition rates k12 (for the re-polarisation M1→M2) and k21 (for the re-
polarisation M2→M1) is important in reducing tumour population, and (ii)
the particular values of these transition rates control the delay in tumour
growth and the final tumour size. We also perform a sensitivity analysis to
investigate the effect of various model parameters on changes in the tumour
cell population, and confirm that the ratio k alone and the ratio of M2 and
M1 macrophage populations at earlier times (e.g., day 7), cannot always
predict the final tumour size.
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1. Introduction1

The anti-tumour role of the immune system has been documented for2

more than a century (McCarthy, 2006). Despite recent success with some3

types of immunotherapies (e.g., involving antibodies or cancer vaccines),4

many anti-tumour therapies are still not leading to the expected outcomes5

(Rosenberg et al., 2004). One reason is that there are still numerous ques-6

tions regarding the biological mechanisms behind the interactions between7

the immune cells and tumour cells. The complexity of these interactions is8

acknowledged by the immunoediting hypothesis, which emphasises the dual9

role of the immune response: tumour-promoting and tumour-suppressing10

(Schreiber et al., 2011; Dunn et al., 2004). One of the mechanisms thought11

to be involved in the persistence and growth of tumours is the transition from12

a Th1- to a Th2-dominated environment, which appears to happen when the13

cancer microenvironment is dominated by cytokines such as IL-4 (synthes-14

ised by CD4+T cells) and growth factors like CSF1 and GM-CSF (Noy and15

Pollard, 2014). However, other studies have shown that both Th1- and Th2-16

dominated environments can successfully eliminate tumours independent of17

CD8+T cells (Nishimura et al., 1999; Hung et al., 1998; Perez-Diez et al.,18

2007), and in some cases the Th2-dominated environments are better at19

eliminating tumours compared to the Th1-dominated environments (Mattes20

et al., 2003). Overall, the mechanisms controlling the ratio of Th1/Th2 cells,21

and its role on tumour elimination are still not completely understood.22

A second ratio that seems to have predictive outcome on tumour growth23

and patient prognosis involves the M1 and M2 macrophages (Ohri et al.,24

2009; Heusinkveld and van der Burg, 2011; Chen et al., 2011; Zhang et al.,25

2014). These macrophages were named after the Th1-Th2 cell nomenclature,26

despite the fact that there is actually a full spectrum of phenotypes between27

these two types of macrophage polarisation (Mantovani et al., 2004).28

While many studies focused on the total numbers of tumour-infiltrating29

macrophages and their role on tumour growth and patient prognosis (Mattes30

et al., 2003; Zeni et al., 2007; Hammes et al., 2007; Bingle et al., 2002; Clear31

et al., 2010; Steidl et al., 2010), some of the results in these studies were32

contradictory (Heusinkveld and van der Burg, 2011). For example, several33

studies have shown that increased macrophage numbers correlate with poor34

patient prognosis (Bingle et al., 2002; Clear et al., 2010; Leek et al., 1996;35

Breems), r.a.eftimie@dundee.ac.uk (Raluca Eftimie)

2



Steidl et al., 2010; Zeni et al., 2007; Hammes et al., 2007; Zijlmans et al.,36

2006). Other studies have shown that increased macrophage numbers correl-37

ate with better patient survival (Welsh et al., 2005). Note that many of these38

contradictory results were for the same type of cancer: e.g., non-small cell39

lung cancer in Zeni et al. (2007); Welsh et al. (2005). A possible explanation40

for these results is the type of macrophages that infiltrate the tumours: M141

versus M2 cells (Heusinkveld and van der Burg, 2011). However, detailed in-42

vestigation of the phenotype of these tumour-infiltrating macrophages some-43

times generated even more contradictory results. For example, Ohri et al.44

(2009) revealed that improved survival in patients with non-small cell lung45

cancer was associated with a higher density of M1 macrophages compared to46

M2 macrophages inside tumour islets (see Figure 2(a) in Ohri et al. (2009)).47

Moreover, the overall number of M1 and M2 macrophages was increased in48

patients with long survival times compared to patients with short survival49

times. In a different study, Ma et al. (2010) also showed an increase in the50

number of M1 macrophages inside islets of non-small lung cancers, for pa-51

tients with improved survival. However, in contrast to the results in (Ohri52

et al., 2009), Ma et al. (2010) observed a slight decrease in the number of53

M2 macrophages in patients with long survival times compared to patients54

with short survival times (see Table 2 in Ma et al. (2010)). Moreover, in55

Ma et al. (2010), improved survival was associated with similar M1 and M256

densities in tumour islets. One last difference between the studies in (Ohri57

et al., 2009) and (Ma et al., 2010), which was not emphasised by the au-58

thors themselves but can be deduced by comparing the data for macrophage59

densities inside tumour islets, is the ratio of M2/M1 in long-term survival60

patients (with M2/M1≈ 1 in Ma et al. (2010) and M2/M1< 1 in Ohri et al.61

(2009)) and short-term survival patients (with M2/M1> 1 in Ma et al. (2010)62

and M2/M1≈ 1 in Ohri et al. (2009)). Note that none of these studies did63

associate the number of macrophages with tumour size, but only with the64

percentage of patient survival.65

To propose hypotheses regarding the biological mechanisms behind the66

observed discrepancies in experimental and clinical data, we need to have67

a better understanding of the interactions between the M1 and M2 macro-68

phages and other cells in the microenvironment, such as the Th1 and Th269

cells with which the macrophages interact via type-I (e.g., IFN-γ, IL-12) and70

type-II (e.g., IL-4, IL-10) cytokines (Biswas and Mantovani, 2010).71

While there are mathematical models that focus on the Th2/Th1 balance72

(Kogan et al., 2013; Kim et al., 2013; Gross et al., 2011; Eftimie et al.,73
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2010) and models that focus on the M2/M1 balance (Wang et al., 2012;74

Louzoun et al., 2014) in various immunological contexts, including cancer75

immunotherapies, there are no mathematical models that combine these two76

aspects.77

The goal of this study is to investigate whether the variation in the78

M2/M1 ratio and the re-polarisation of macrophages accounts for the dif-79

ference in tumour growth or tumour decay. To this end, we derive a new80

non-spatial mathematical model that describes the interactions between the81

tumour cells (which can be recognised or not by the immune cells) and two82

types of immune cells, namely macrophages (M1 and M2) and T helper83

(Th1 and Th2) cells. For the macrophages dynamics, we explicitly model84

the plasticity of these cells that can re-polarise into a M1 or M2 pheno-85

type depending on the cytokine environment (i.e., type I cytokines such as86

IFN-γ can lead to M1 macrophages, while type-II cytokines such as IL-1087

can lead to M2 macrophages). While this model cannot address any ques-88

tions regarding the spatial aspects of tumour-immune interactions, it offers a89

much simpler framework within which we can investigate these interactions.90

We then use this mathematical model to investigate the effect of the ratio91

M2/M1 on tumour growth for early and advanced tumours. We first invest-92

igate all possible steady states, and study the role of the ratio k = k12/k2193

of the re-polarisation rates between the M1 and M2 macrophages on these94

states and their stability. Next we investigate numerically the role of model95

parameters on the long-term dynamics of the tumour growth. Since the nu-96

merical results depend on various parameters, we also conduct a sensitivity97

analysis to decide which parameters are most likely to influence the tumour98

growth. Our analysis reveals that a ratio M2/M1> 1 can explain the growth99

in tumour size. However, for M2/M1< 1, the variation in tumour growth100

cannot be explained by this ratio alone (see the discussion in Section 5.4).101

We emphasise from the beginning that the results of this study depend on102

the mice experimental data we used to parametrise the model. In particular,103

we use mice melanoma data from (Chen et al., 2011) since it shows multiple104

time points and thus allows for better model parametrisation (as opposed to105

the data in Ohri et al. (2009); Ma et al. (2010) for small-cell lung cancers,106

that shows only one time point). While it will be interesting to investigate107

how the results change if we use human data, such an investigation is beyond108

the scope of current study.109

The article is structured as follows. In Section 2 we describe in detail the110

new mathematical model for tumour-immune interactions. In Section 3 we111
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investigate the steady states of this model, and their stability. In Section 4112

we study the dynamics of the model using numerical simulations. In Section113

5 we perform a sensitivity analysis for the parameters and initial conditions114

of the model. We conclude in Section 6 with a summary and discussion of115

the results.116

2. Model Description117

inhibition/eliminationactivation transition

(not recognised)

M1 M2

Th2

(recognised)

type−I cytokines

type−II cytokines

Anti−tumour Pro−tumour

Tumour Tumour
M1

Th1

M2

Figure 1: Schematic description of possible tumour-immune interactions, as suggested by
various experimental results (Mattes et al., 2003; Mantovani et al., 2008; Baba et al., 2008;
Biswas and Mantovani, 2010).

Throughout this article, we model and investigate the interactions of118

tumour cells (xT ) with macrophages (xM) and Th cells (xTh). For the im-119

mune response, we model separately the dynamics of Th1 (xTh1) and Th2120

(xTh2) cells, as well as the dynamics of M1 (xM1) and M2 (xM2) macro-121

phages. For the tumour cells, we model the dynamics of immunogenic tu-122

mour cells (xTs) that can be recognised (i.e., “seen”) by the immune cells,123

and non-immunogenic tumour cells (xTn) that escape the surveillance by the124

immune system. To keep our mathematical model relatively simple, we will125

not model explicitly the type-I and type-II cytokines that mediate the inter-126

actions between M1 and Th1 cells, and between M2 and Th2 cells. These127

cytokine-mediated interactions will be modelled implicitly, by assuming that128
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the cytokines are produced by the macrophages and the Th cells. Thus, the129

time-evolution of all these cell densities is given by:130

dxTn
dt

=rxTn

(
1− xTn + xTs

βT

)
+ ksnxTs − δmnxM1xTn + rmnxTnxM2, (1a)

dxTs
dt

=rxTs

(
1− xTn + xTs

βT

)
− ksnxTs − δmsxM1xTs − δtsxTsxTh1, (1b)

dxM1

dt
=(asxTs + am1xTh1)xM1

(
1− xM1 + xM2

βM

)
− δm1xM1

− k12xM1xM2 + k21xM1xM2, (1c)

dxM2

dt
=(anxTn + am2xTh2)xM2

(
1− xM1 + xM2

βM

)
− δm2xM2

+ k12xM1xM2 − k21xM1xM2, (1d)

dxTh1
dt

=ah1xM1 + rh1xM1xTh1

(
1− xTh1 + xTh2

βTh

)
− δh1xTh1, (1e)

dxTh2
dt

=ah2xM2 + rh2xM2xTh2

(
1− xTh1 + xTh2

βTh

)
− δh2xTh2. (1f)

These equations incorporate the following biological assumptions:131

• Both tumour cell populations proliferate logistically at a rate r, to ac-132

count for the slow-down in tumour growth due to lack of nutrients, as133

observed experimentally (Diefenbach et al., 2001; Laird, 1964). The xTs134

cells can mutate at a rate ksn and become xTn cells. Also, the xTs cells135

can be eliminated at a rate δts by the adaptive immune response rep-136

resented by the Th1 cells (Hung et al., 1998). Moreover, experimental137

studies have shown that the nonspecific macrophage reaction following138

the inoculation of tumour cells leads to the production of nitric oxide139

(cytotoxic for tumours; Xu et al. (2002)) in both immunogenic and140

non-immunogenic tumours (Kisseleva et al., 2001). Thus, we make the141

assumption that the M1 macrophages could eliminate the xTn cells at142

a rate δmn and xTs cells at a rate δms, where we choose δmn = δms;143

see Table A.2. Moreover, we assume that the xTn cells can proliferate144

in the presence of M2 cells (Mills, 2012) at a rate rmn. Even if the145

extracellular signals released by M2 cells could contribute also to the146

growth of xTs cells, the large mutation rate of mouse melanoma (Cillo147

et al., 1987) will lead to a fast transition from xTs to xTn cells. Thus,148
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for this study, we decided to ignore the potential contribution of xM2149

macrophages to the growth of xTs cancer cells. Finally, we assume that150

the tumour cells die at rate much lower compared to the immune cells,151

and thus we ignore the natural death rate of xTn and xTs cells.152

• The M1 macrophages proliferate at rate as in the presence of xTs153

tumour-specific antigens, and at rate am1 in the presence of type I cy-154

tokines (which can be produced by Th1 cells, once these cells become155

activated) (Mantovani et al., 2004). Moreover the M1 macrophages156

have a half-life of 1/δm1. In addition, the cross-talk between the M1157

and M2 macrophage-polarising signalling pathways can lead to a re-158

polarisation, at rate k12, of M1 cells into M2 cells (Sica and Bronte,159

2007).160

• The M2 macrophages proliferate at rate an in the presence of cytokines161

and growth factors produced by xTn cells, and at rate am2 in the pres-162

ence of type II cytokines (e.g., IL-4, which can be produced by Th2163

cells, once these cells become activated) (Mantovani et al., 2004; Gor-164

don and Martinez, 2010). The half-life of M2 macrophages is 1/δm2.165

For simplicity, throughout this study we will assume that δm2 = δm1.166

Finally, the cross-talk between the M1 and M2 cells can lead to a re-167

polarisation, at rate k21, of M2 macrophages into M1 macrophages (Sica168

and Bronte, 2007).169

• The Th1 cells are activated, at rate ah1, by type-I cytokines (e.g., IFN-170

γ) that can be produced by the M1 macrophages (Romagnani, 1999;171

Sica and Mantovani, 2012). Also, they proliferate at rate rh1 in the172

presence of type-I cytokines produced by M1 cells, and have a half-life173

of 1/δh1.174

• The Th2 cells are activated, at rate ah2, by type-II cytokines that175

can be produced by the M2 macrophages (Romagnani, 1999; Sica and176

Mantovani, 2012). These Th cells proliferate at rate rh2 in the presence177

of type-II cytokines produced by the M2 cells, and have a half-life of178

1/δh2.179

Note that the terms that appear in model (1) are one of the multiple pos-180

sible ways of describing the dynamics of tumour and immune cells. There are181

various models in the mathematical literature, where the growth and inter-182

action rates of cells are assumed linear (not depending on direct or indirect183
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interactions with other cells); see, for example, Louzoun et al. (2014). Never-184

theless, the goal of our study is not to investigate all these possible modelling185

approaches; rather is to choose one way of describing the interactions, and186

use it to investigate the anti-tumour type-I and type-II immune responses.187

3. Steady states and their stability188

To investigate the dynamics of system (1), we first focus on its long-term189

behaviour as described by the number and stability of the steady states.190

By calculating these states, we aim to emphasise the complex dynamics of191

equations (1), and the difficulty of fully understanding this dynamics.192

3.1. Tumour-free steady states193

We first study the case when xTn = xTs = 0. For the baseline para-194

meter values used here and listed in Table A.2, these tumour-free states are195

generally unstable (see the discussion in AppendixC). We therefore expect196

the dynamics of system (1) to move away from these states - as it will be197

confirmed in Sections 4,5 by the numerical simulations.198

• Tumour-Free Immune-Free (TFIF) state:199

(x∗Tn, x
∗
Ts, x

∗
M1, x

∗
M2, x

∗
Th1, x

∗
Th2) = (0, 0, 0, 0, 0, 0).

• Tumour-Free Type-I Immune response Present (TF1IP) state:200

(x∗Tn, x
∗
Ts, x

∗
M1, x

∗
M2, x

∗
Th1, x

∗
Th2) = (0, 0, x∗M1, 0, x

∗
Th1, 0),

with x∗M1 and x∗Th1 given implicitly by the following equations:201

x∗M1 =
δh1x

∗
Th1

ah1 + rh1x∗Th1(1−
x∗Th1

βTh
)

and x∗Th1 =
δm1

am1(1−
x∗M1

βM
)
. (2)

For the parameter values used throughout this article and given in202

Table A.2, there is a unique TF1IP steady state (see AppendixB).203

• Tumour-Free Type-II Immune response Present (TF2IP) state:204

(x∗Tn, x
∗
Ts, x

∗
M1, x

∗
M2, x

∗
Th1, x

∗
Th2) = (0, 0, 0, x∗M2, 0, x

∗
Th2),

with205

x∗M2 =
δh2x

∗
Th2

ah2 + rh2x∗Th2(1−
x∗Th2

βTh
)

and x∗Th2 =
δm2

am2(1−
x∗M2

βM
)
. (3)

This state is also unique (see AppendixB).206
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• Tumour-Free Type-I and Type-II Immune-Present (TFIP) states:207

(xTn, xTs, xM1, xM2, xTh1, xTh2) = (0, 0, x∗M1, x
∗
M2, x

∗
Th1, x

∗
Th2),

with x∗M1, x
∗
M2, x

∗
Th1, x

∗
Th2 given implicitly by the following relations:208

x∗M1 =
δh1x

∗
Th1

ah1 + rh1x∗Th1(1−
x∗Th1+x

∗
Th2

βTh
)
, x∗M2 =

δh2x
∗
Th2

ah2 + rh2x∗Th2(1−
x∗Th1+x

∗
Th2

βTh
)
,

(4a)

x∗Th1 =
δm1 + k12x

∗
M2 − k21x∗M2

am1(1−
x∗M1+x

∗
M2

βM
)

, x∗Th2 =
δm2 − k12x∗M1 + k21x

∗
M1

am2(1−
x∗M1+x

∗
M2

βM
)

.

(4b)

In contrast to the TF1IP and TF2IP states that are unique, there is209

an infinite number of TFIP states - see Figure B.13(A) in AppendixB.210

This emphasises the complexity of system (1), and the difficulty to211

predict its dynamics.212

3.2. Tumour-present steady states213

Next, we discuss the states where xTn > 0. Note that if xTn = 0, then214

we have also xTs = 0. The stability of the steady states with xTs = 0 is215

discussed in AppendixC. The case xTs 6= 0 is more complicated and it is very216

difficult to investigate analytically.217

• Tumour-only (TO) states:218

(x∗Tn, x
∗
Ts, x

∗
M1, x

∗
M2, x

∗
Th1, x

∗
Th2) = (x∗Tn, βT − x∗Tn, 0, 0, 0, 0),

where for x∗Ts = 0 we have x∗Tn = βT . For the baseline parameter values219

used in this article and described in Table A.2, these states are always220

unstable (see AppendixC). Thus the dynamics of system (1) will never221

approach the TO states.222

• Tumour-Present Type-I Immune Response Present (TP1IP) states:223

(x∗Tn, x
∗
Ts, x

∗
M1, x

∗
M2, x

∗
Th1, x

∗
Th2) = (x∗Tn, 0, x

∗
M1, 0, x

∗
Th1, 0),

9



with

x∗Tn =
βT
r

(r − δmnx∗M1), (5a)

x∗M1 =
δh1x

∗
Th1

ah1 + rh1x∗Th1(1−
x∗Th1

βTh
)
, x∗Th1 =

δm1

am1(1−
x∗M1

βM
)
. (5b)

For the baseline parameter values used in this article, the TP1IP state224

is unique (see AppendixB). Moreover this state is unstable and the225

dynamics of system (1) will not evolve towards it (see AppendixC).226

• Tumour-Present Type-II Immune Response Present (TP2IP) states:227

(x∗Tn, x
∗
Ts, x

∗
M1, x

∗
M2, x

∗
Th1, x

∗
Th2) = (x∗Tn, 0, 0, x

∗
M2, 0, x

∗
Th2),

with

x∗Tn =
βT
r

(r + rmnx
∗
M2), (6a)

x∗M2 =
δh2x

∗
Th2

ah2 + rh2x∗Th2(1−
x∗Th2

βTh
)
, x∗Th2 =

δm2 − anx∗Tn(1− x∗M2

βM
)

am2(1−
x∗M2

βM
)

. (6b)

Also this state is unique and stable for the parameter values used in228

this article - as confirmed by the numerical simulations in Figure 3.229

• Tumour-Present Immune-Present (TPIP) states:230

(x∗Tn, x
∗
Ts, x

∗
M1, x

∗
M2, x

∗
Th1, x

∗
Th2),

with x∗Ts = 0 or x∗Ts > 0. As we will see throughout the next sec-231

tions, for the parameter values used in this article, system (1) usually232

approaches a TPIP state with x∗Ts = 0. We emphasise here that the233

TPIP states are not unique, as shown in Figure B.13(B). The existence234

of these multiple states makes it difficult to investigate analytically their235

stability. However, the numerical results in the next sections suggest236

that the stability of these states depends also on the ratio k = k12/k21.237

4. Numerical results238

Next, we study the dynamics of model (1) through numerical simula-239

tions using ODE23tb in MATLAB c©2013b. Since we want to understand240

10



the mechanisms behind the change in the M2/M1 ratio, we fit several model241

parameters to experimental data from Chen et al. (2011), who focused on242

melanoma studies in mice (see Figure 2). In particular we study numer-243

ically the effect of injecting on day zero 106 xTs tumour cells and 103 xTn244

tumour cells. We also assume that xTh1(0) = 0, xTh2(0) = 0 (i.e., no activ-245

ated immune cells at the time of the injection). However, a small number of246

tissue macrophages can be present at the injection site: xM1(0) = 100 and247

xM2(0) = 100. For an extended overview of the model variables and paramet-248

ers, and a description of the experimental setup see AppendixA and Tables249

A.1 & A.2. Figure 2A compares the dynamics of xTn+xTs cells with tumour250

data from Chen et al. (2011), to identify the parameter values for tumour251

growth. Figure 2B compares the numbers of xM1 and xM2 cells on days 7252

and 14 with macrophages data from Chen et al. (2011) (to identify parameter253

values that govern the macrophage dynamics; see also AppendixA).254
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Figure 2: (A) Numerical simulation of tumour growth in model (1) compared to data
from Chen et al. (2011) for the melanoma growth in mice; (B) The change in percentage
of M1 and M2 macrophages at day 7 and day 14 for our numerical simulations and the
experimental values shown in Chen et al. (2011).
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Figure 3 shows the dynamics of tumour and immune cells, for the para-255

meter values identified through comparison with the data (see Tables A.1 and256

A.2). We first notice that the xTn cells grow to the carrying capacity while257

the xTs cells are eliminated (Fig. 3A). Moreover, as seen in the experimental258

results (Fig. 2B), there is a shift in the macrophage profile: from a xM1259

profile for t < 10 days to a xM2 profile for t > 10 days (Fig. 3B). This shift260

is accompanied by a shift in the Th profile: from a Th1-dominated dynamics261

during the first ≈ 15 days (Fig. 3C) to a Th2-dominated dynamics at a later262

time (Fig. 3D). Finally, we emphasise that for these particular parameter263

values, the long-term dynamics of model (1) approaches the TP2IP steady264

state; see equations (6).265
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Figure 3: Dynamics of tumour and immune cells, for the initial conditions and parameter
values described in Tables A.1 and A.2. (A) Total number of tumour cells (dashed curve),
xTn cells (crosses) and xTs cells (continuous curve). For comparison purposes, we also
show tumour data from Chen et al. (2011); (B) xM1 and xM2 macrophages; (C) xTh1

cells; (D) xTh2 cells.
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smaller maximum size (dotted curve), to exemplify how we calculate ∆X and ∆Z. ∆X
gives the percentage change in maximum tumour size, as model parameters are varied.
∆Z gives the change in the number of days until the tumour reaches half the size obtained
with the baseline model on day 20.

5. Sensitivity analysis266

Even if we estimated some parameter values using tumour and macro-267

phages data from Chen et al. (2011), other parameters values were guessed.268

To ensure that the general conclusions of the model are still valid if we change269

slightly the model parameters and the initial conditions of the simulations,270

we perform a local sensitivity analysis (where we change one value while keep-271

ing all other values fixed). This analysis also helps us identify the parameter272

space where we could see an improvement in cancer outcomes.273

For the sensitivity analysis, we vary the initial conditions within the range274

shown in Table A.4, the model parameters within the range shown in Table275

A.6, and the ratio k = k12/k21 within the range shown in Table A.3.276

For each baseline value q of model parameters and initial conditions277

(that generated the simulations in Figure 3 and which will be referred to278
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as the baseline model), we consider the effect of changing q to q+ ∆q, where279

∆q is either positive or negative. In particular, if q is a parameter value,280

then q is changed with 7 incremental steps ∆q = 30%q within the range281

(−80%q,+190%q) (see Table A.6). If q is an initial condition value, then282

q is changed with 6 incremental steps within the ranges shown in Table283

A.4. Finally, if q = k = k12/k21, then we change k12 and k21 simultan-284

eously from 4 × 10−7 to 4 × 10−3 in 100 steps creating 10.000 simulations.285

However, to keep the results tractable, in Table A.3 we present the most286

informative 7-steps changes in the ratio k, with k12 ∈ (5 × 10−5, 2 × 10−5)287

and k21 ∈ (4× 10−5, 1.6× 10−5).288

The change from q to q + ∆q leads to a change in the total tumour size289

xT = xTs + xTn (see Figure 4). Denoting by X = xT (20) the tumour size on290

day 20, as obtained with the baseline parameter values and initial conditions291

(see Figure 3A), then the change in q leads to a change from X to X + ∆X,292

where ∆X is the percentage change on day 20. We chose to focus on tumour293

size on day 20 since the experimental studies in Chen et al. (2011) show that294

the carrying capacity βT = 2 × 109cells (corresponding to a tumour volume295

of ≈ 3cm3) is reached after 20 days. However, to ensure that the tumour is296

indeed at the carrying capacity and to investigate long term prognosis, we297

also investigate the percentage change in tumour population on day 50.298

Moreover, many experimental studies investigate the effect of the ratio299

M2/M1 on tumour size, to test whether this ratio can be used as a biomarker300

for tumour development (Herwig et al., 2013). Therefore, we will use sensit-301

ivity analysis to quantify the relationship between the ratio M2/M1 at day 7302

(for comparison with the data; see Figure 2) and the changes in the tumour303

population at days 20 and 50, as a result of varying k in the simulations.304

While a decrease in the tumour might be the most desirable outcome,305

an increase in the number of days to reach a certain tumour size can extend306

the life expectancy. Therefore, we introduce a second value, Z, to represent307

the time the tumour grows to half the carrying capacity, i.e., to half the size308

obtained on day 20 with the baseline model (see Figure 4). Thus, a change309

from q to q + ∆q will lead to a change from Z to Z + ∆Z, which might310

not correlate with the change X to X + ∆X (as shown in Figure 4). Note311

here that we refer to the growth until the tumour reaches half the carrying312

capacity as early tumour growth.313

In the following subsections we show the change in the tumour size at days314

20 & 50, and in the number of days to reach half the tumour size on day315

20, when we vary the initial conditions (Section 5.1), the parameter values316
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(Section 5.2), the ratio k (Section 5.3) and the ratio M2/M1 (Section 5.4).317

5.1. Sensitivity to initial conditions318

Figure 5 shows that changing xTs(0) (within the interval shown in Table319

A.4) has the greatest effect on the final tumour population (panel A), and on320

the number of days to reach half of tumour size on day 20 (panel B). A change321

in xTn(0) (within the interval shown in Table A.4) does not have a significant322

effect, which is not surprising since these cells can grow uncontrolled by the323

immune response. In regard to the change in the initial conditions for the324

immune cells, only a change in xM2(0) has some effect: (i) it can decrease325

the total tumour size by −3% or increase it by +4% (Table A.4), or (ii) it326

can decrease/increase by ∓2 the number of days until the tumour reaches327

half the size obtained on day 20 with the baseline model (Table A.5).328
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Figure 5: Change in tumour as a result of variation in initial conditions from the baseline
values, as described in Tables A.4 and A.5. (A) Percentage of change from the baseline
tumour population after 20 days of simulation (Table A.4). (B) Change in the number of
days until the tumour reaches half the tumour size obtained in the baseline model on day
20 (Table A.5).

15



5.2. Sensitivity to parameters329

Figure 6 shows the effect that varying model parameters has on the per-330

centage change in the tumour size (panel A; see also Table A.6) and on the331

number of days to reach half the tumour size obtained on day 20 with the332

baseline model (panel B; see also Table A.7). As expected, the proliferation333

rate r and the carrying capacity βT have the largest influence on the tumour334

population. However, it is unexpected that the re-polarisation rates k12 and335

k21 for the M2 and M1 macrophages, also have a large impact on tumour.336

These parameters appear in the steady states for xM1 and xM2, and are in-337

volved in the ratio of M2/M1 macrophages. We will return to these rates in338

Section 5.3, when we will investigate in more detail the role of k = k12/k21339

on tumour growth.340

Other parameters that influence tumour dynamics are: ksn, the rate at341

which the xTs cells become xTn cells; δmn, the rate at which xTn cells are342

eliminated by M1 macrophages; δms, the elimination rate of xTs tumour cells343

by the M1 macrophages; δm2, the death rate of M2 cells. These results344

support the theory that both M1 and M2 cells influence tumour dynamics.345

5.3. Sensitivity to the ratio k = k12/k21346

In Figure 7A we show the percentage change from the baseline model, in347

tumour size on day 20 versus the ratio k = k12/k21. For k < 1 the tumour is348

reduced by 40%, while for k > 1 the changes in tumour at day 20 can vary349

from -40% to +5%, depending on the exact values of the rates k12 and k21.350

In Figure 7B we show the percentage change in tumour size on day 50 versus351

k. In this case, for k ≥ 1 the tumours stay at their carrying capacity (i.e., no352

change from the value obtained with the baseline parameters). However, for353

k < 1, the tumour size on day 50 is reduced between 0-35%, again depending354

on the specific values of the macrophage re-polarisation rates k12 and k21.355

We deduce from here that the ratio k = k12/k21 is not a clear indicator of356

tumour dynamics; the particular values of k12 and k21 that lead to the same357

ratio k influence whether the tumour decreases or increases.358

In Figure 8 we plot the time-dynamics of tumour population xTn + xTs359

for different values of k12 and k21 with the same ratio k (k = 3.3 top panel;360

k = 1.2 middle panel; k = 0.6 bottom panel). The results clearly show that361

changing k12 and k21 while keeping k = k12/k21 constant leads to different362

medium-term (0 < t < 25) and long-term (t > 35) tumour dynamics.363

To understand better the role of k12 and k21 rates on tumour dynamics,364

in Figure 9 we graph the changes in tumour size and tumour growth versus365
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Figure 6: Change in tumour size, from the baseline model, as a result of the change in
model parameters from -80% to +190% of their baseline values (shown in Tables A.6 and
A.7.). (A) Percentage change of tumour size on day 20 (Table A.6). (B) Change in the
number of days until tumour reaches half the tumour size observed on day 20 with the
baseline model (Table A.7 ).

the difference k12 − k21. When k12 − k21 ∈ (0, 1 × 10−5), there is an abrupt366

shift for the percentage change in tumour size at day 20 (see Figure 9A),367

leading to a reduction in tumour up to 42%. A similar shift, occurring for368

k12 − k21 ∈ (−2× 10−5, 0), can be observed also in the percentage change in369

tumour size at day 50 (see Figure 9B), although this is accompanied by a370

smaller reduction in tumour.371

5.4. Sensitivity to M2/M1 ratio372

Changing the ratio k = k12/k21 also leads to a change in the ratio of M2373

and M1 macrophages: xM2/xM1. In Figure 10 we graph the time-dynamics374
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Figure 7: Percentage change from the baseline model (see the open circle for k = 1.2) in:
(A) tumour cells on day 20, and (B) tumour cells on day 50, for different values of the
ratio k = k12/k21 (as given by Table A.3). (A) For k > 1, tumour size on day 20 can
increase or decrease depending on the actual values of k12 and k21. For k < 1, tumour
size on day 20 always decreases. (B) For k > 1, the tumours always reach the carrying
capacity on day 50. For k < 1 the tumours can be reduced in size by varying degrees,
depending on the actual values of k12 and k21.

of these macrophages for three different ratios of k (k = 3.3 in top panel,375

k = 1.2 in middle panel, k = 0.6 in bottom panel). The dashed curves376

show the baseline dynamics of M1 macrophages and the crosses show the377

baseline dynamics of M2 macrophages (for the baseline k12 and k21 values; as378

in Figure 3). The dashed-dotted and continuum curves show the dynamics379

of M1 and M2 macrophages, respectively, for various k12 and k21 values that380

lead to specific k ratios. In none of these cases is the tumour completely381

eliminated; however the final tumour sizes approach different steady-state382

values (as shown in Figure 8). This analysis indicates that the same ratio383

k can produce different M2/M1 profiles, with the shift between type-I and384
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Figure 8: Change in tumour population, from the baseline model, as a result of the change
in the ratio k = k12/k21. Simulations are performed by changing the values k12 and k21
for different ratios k (k = 3.3, k = 0.6, and the baseline value k = 1.2). Since different
combinations of k12 and k21 result in the same ratio but with different tumour dynamics,
it implies that the ratio k cannot be used to predict the tumour dynamics.

type-II immune responses occurring at different days. The change in the385

tumour dynamics is related to the day when the M2 cells outnumber the M1386

cells.387

In Figure 11 we show the ratio M2:M1 at day 7 and 14 (i.e., xM2(7)/xM1(7)388

and xM2(14)/xM1(14)) for different k values. For k < 1.2 the dynamics on389

days 7&14 is dominated by the M1 macrophages. For k > 1.2, the dynamics390

on days 7&14 is dominated by the M2 macrophages. For k = 1.2 (see the391

plots on the main diagonal), there are different percentages of M2 and M1392

macrophages on day 7 and day 14, depending on the particular values of k12393

and k21 used.394

In Figure 12 we show the change in tumour size on day 20 (panel A) and395
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Figure 9: Percentage of change, from baseline value (open circle), in tumour size on day
20 (panel A) and on day 50 (panel B) when k12− k21 is varied while keeping constant the
ratio k = k12/k21 (k = 3.3 continuous curve, k = 1.2 dashed curve, k = 0.6 asterisk).

day 50 (panel B), as we vary k12 and k21 within the range shown in Table A.3,396

which then leads to a change in xM2/xM1 at day 7. The results show that the397

tumour sizes on day 20 corresponding to xM2(7)/xM1(7) ≤ 1 are completely398

different from the tumour sizes corresponding to xM2(7)/xM1(7) > 1. Note399

here the lower median value for tumour size when xM2/xM1 ≤ 1 compared to400

the case xM2/xM1 > 1. These results persist also for the tumour sizes calcu-401

lated at day 50, however, in this case the median value for tumour size when402

xM2/xM1 ≤ 1 is slightly higher. This is consistent with the experimental403

results by Herwig et al. (2013), who classified melanoma in 2 different classes404

of tumour gene expression profiles based on the M2/M1 ratio (for a group of405

20 patients).406

6. Summary and Discussion407

The role of M1 and M2 macrophages on tumour growth, and the use of408

M2/M1 ratio as an early-time marker for tumour prognosis, have attracted409
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Figure 10: Time-dynamics of M1 and M2 macrophages for different values of k = k12/k21:
k = 3.3, k = 1.2 (baseline ratio), and k = 0.6. In addition to showing the baseline
dynamics of M1 and M2 macrophages, we also run simulations with multiple k12 and
k21 values resulting in the same ratio. For k > 1 the M2 macrophages dominate the
dynamics, and the tumour reaches the carrying capacity (see also Fig. 8 top two panels).
For k = 0.6 the M1 macrophages dominate the dynamics, and the tumour is reduced below
the carrying capacity (see also Fig. 8 bottom panel).

lots of interest over the last few years. Despite numerous experimental studies410

on the topic, we still lack a deeper understanding of the dynamics between411

the M1 and M2 macrophages and the tumour environment.412

In this paper, we introduced a mathematical model that investigated the413

dynamics between the M1 and M2 macrophages, Th1 and Th2 immune cells,414

immunogenic and non-immunogenic tumour cells. We first focused on the415

steady states exhibited by this model and their stability. The results in-416

dicated that, when the tumour and immune cells were present, the steady417

states were not unique (see also Figure B.13B). The existence of multiple418
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Figure 11: The percentage of M2&M1 macrophages on days 7 and 14, for different ratios
of k = k12/k21. The ratio is shown above each small figure. Simulations are performed
by changing k21 from 4× 10−5 to 1.6× 10−5 (see vertical axis) and k12 from 5× 10−5 to
2× 10−5 (see horizontal axis) in 7 steps.

states emphasised the complexity of the model dynamics, and the difficulty419

to understand analytically the role of the M2:M1 ratio on tumour persist-420

ence/elimination. Then, we performed an in-depth local sensitivity analysis421

to investigate the role of model parameters and of initial conditions on tu-422

mour outcome. Particular attention was paid to the role of k = k12/k21 on423

the shift from a type-I immune response to a type-II immune response.424

The sensitivity analysis allowed us to identify the parameter values that425

can lead to a slow-down in tumour growth or to smaller tumour sizes. In426
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Figure 12: (A) Total tumour size on day 20, when the ratio of M2/M1 macrophages
on day 7 is either xM2(7)/xM1(7) > 1 or xM2(7)/xM1(7) ≤ 1, as a result of varying
k21 ∈ (1.6× 10−5, 4× 10−5) and k12 ∈ (2× 10−5, 5× 10−5) in 7 steps. (B) Total tumour
size on day 50, for xM2(7)/xM1(7) > 1 and xM2(7)/xM1(7) ≤ 1, as a result of varying
k21 ∈ (1.6× 10−5, 4× 10−5) and k12 ∈ (2× 10−5, 5× 10−5) in 7 steps.

addition to the expected importance of tumour growth rate r and tumour427

carrying capacity βT on overall tumour dynamics, two other parameters,428

k12 and k21, showed unexpected impact on tumour growth and decay (see429

Figures 6, 10). Moreover, we showed that while the ratio k = k12/k21 is430

important in predicting long-term tumour control or growth to the carrying431

capacity, the exact tumour sizes are given by the particular values of the432

re-polarisation rates k12 and k21 (Figures 7-10). In addition, the rates k12433

and k21 influenced the day of the shift from a type-I to a type-II immune434

response (and subsequent tumour growth); see Figure 10.435

The results explain the importance of role of the M2:M1 ratio on tumour436

progression and prognosis. While in environments with M2:M1 ratio > 1437

the tumour will grow to the carrying capacity (Figure 12), in environments438
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with M2:M1 ratio < 1 the tumour growth can not be predicted with the439

macrophage and re-polarisation ratios k alone and also depends on the values440

of the re-polarisation rates (Figure 9).441

We emphasise that the results of our study were based on available data442

from mice experiments. However, even if mouse models have been used443

widely to study the interactions between the immune system and cancer to444

propose hypotheses in regard to human cancers, it is possible that data from445

human clinical trials (still scarce at this moment) would lead to different446

results. Nevertheless, it was not the goal of our study to compare the results447

for mouse and human data sets. Rather, our study focused on investigating448

the role of ratio of M1 and M2 macrophages as a marker for tumour prognosis449

in mouse models. As mentioned before, we showed that the ratio of mouse450

macrophage populations can be a suitable predictor of tumour outcome if451

M2/M1 > 1 in early tumour stages, i.e., before the tumour reaches half452

the carrying capacity (in Figure 12 we focused on the value of this ratio at453

day 7). If these results can be confirmed also for human data, then they454

can have implications to human treatment protocols, since clinicians could455

use the ratio M2/M1 > 1 as a biomarker for decisions regarding various456

long-term patient treatments. Moreover, the possibility of re-programming457

the environment towards a M1 phenotype (as suggested, for example, by458

Heusinkveld and van der Burg (2011); Tang et al. (2013)), could also impact459

positively the outcome of cancer treatments, by creating the possibility of460

a reduced long-term tumour burden that can be further reduced with other461

types of treatment (e.g., combinations of immune therapies, viral therapies462

and/or chemotherapies).463

To understand better the molecular-level mechanisms that control the464

dynamics of M1 and M2 cells, and their interactions with the tumour cells465

(with the purpose of designing treatments that would re-program the M2466

macrophages to a M1-phenotype) it is necessary to add more detail to the467

model (1). Further investigation should focus on the role of molecular-level468

dynamics (i.e., the pro- and anti-tumour cytokines produced by both Th cells469

and macrophages) on the pro-tumour and anti-tumour immune responses.470

Finally, we stress that the model introduced in this article has a number471

of limitations. First, as mentioned before, the results of the model are valid472

only for mouse data. While it would be interesting to parametrise the model473

also for human data (to test the validity of these results in the context of hu-474

man clinical trials), such an investigation is beyond the scope of the current475

study. Second, we focused only on the non-spatial dynamics of tumour and476
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immune cells. However, tumours are highly heterogeneous and the immune477

cells might be localised in particular regions of the tumour. For example, the478

tumour-associated macrophages are usually found in the perivascular and479

cortical regions of the tumour, where they contribute to tumour growth and480

invasion (Carmona-Fontaine et al., 2013). In general, the mechanisms of481

immune cells localisations in particular areas of the tumours are still quite482

poorly understood, and future studies are necessary to understand the poten-483

tial for new therapeutic avenues based on influencing this spatial localisation484

of immune cells. Last but not the least, the complex interactions between485

the tumour and immune cells give rise to highly nonlinear dynamics, which486

cannot be fully understood only via steady-state analysis, numerical simu-487

lations and sensitivity analysis. Nonlinear analysis and bifurcation theory488

should be used in the future to shed light on the observed dynamics.489
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AppendixA. Summary of model parameters and variables495

Table A.1 summarises the variables used in model (1), together with their496

initial values (i.e., the initial conditions for the simulations) and the ranges497

within which we varied these initial values for the local sensitivity analysis.498

Table A.2 summarises the parameters used throughout this paper, along499

with their values and units. Next, we describe how we estimated some of the500

parameters in Table A.2.501

Parameter estimation.502

• To approximate the tumour growth rate r, we fit equation (1a) with503

no immune response to the melanoma growth data from Chen et al.504

(2011). We thus obtain r = 0.565 cells/day, in line with the values505

reported by Eikenberry et al. (2009) (see Fig 2A).506

• Most experimental studies euthanise the mice when the tumour reaches507

2-3 cm3. In Chen et al. (2011), the tumour reached a volume of ≈ 3508
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Table A.1: Summary of variables used in the model, the baseline initial conditions (IC)
and the range of IC used for the local sensitivity analysis.

States Description Baseline Range
IC IC

xTn Density of non-immunogenic tumour cells 103 (1,107 )
xTs Density of immunogenic tumour cells 106 (1,107 )
xM1 Density of M1 macrophages 100 (10, 104)
xM2 Density of M2 macrophages 100 (10, 104)
xTh1 Density of Th1 helper cells 0 (0, 105)
xTh2 Density of Th2 helper cells 0 (0, 105)

cm3 on day 14. Therefore, we choose the carrying capacity for the509

tumour to be βT = 2 × 109 (on the same order of magnitude as other510

theoretical studies; see Eftimie et al. (2010)).511

• To calculate the death rate δx of various cells, we use the formula512

t1/2 = ln(2)/δx, where t1/2 is their half-life. The half-life of mouse513

circulating blood monocytes, the precursor of macrophages, varies from514

about 17.4hr (Van Furth, 1989; Kuroda, 2010) to 5 days (Ginhoux and515

Jung, 2014). For macrophages, we assume an average half-life of 3 days516

and calculate δm1,m2 = ln(2)/3 ≈ 0.23 (similar to the value in Wang517

et al. (2012)). In regard to the effector CD4+ T cells, about 90% of518

cells dies within the 7-14 days of the contraction phase (Pepper and519

Jenkins, 2011). Therefore we calculate δh1,h2 ∈ (ln(2)/14, ln(2)/7) ≈520

(0.049, 0.099). Throughout this article, we choose δh1,h2 = 0.05.521

• Experimental results in Chen et al. (2011) have shown that on day 7522

there were only 15% M2 macrophages, while on day 14 this percentage523

increased to 85% M2 macrophages. We use these values to fit k12, the524

rate at which M1 macrophages become M2, and k21, the rate at which525

M2 macrophages become M1 (see Figure 2C), rmn the proliferation rate526

of xTn cells in the presence of M2 macrophages, and βM the carrying527

capacity of macrophages.528

• The metastatic mouse melanoma tumour cells have a very high muta-529

tion rate compared to other tumour lines (Cillo et al., 1987). For ex-530

ample, the B16F10 melanoma cells have a rate of generation of drug-531

resistant clones of at least 10−5/ cell/generation (Cillo et al., 1987;532

Hill et al., 1984), while lower metastatic tumours can have a muta-533
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Table A.2: Summary and description of parameters that appear in model (1). Parameters
are estimated by fitting model (1) to the experimental data from (Chen et al., 2011) and
data from other experimental papers - as described in the Parameter estimation section
in AppendixA, or they are sourced directly from the existent mathematical literature -
indicated by a “*”.

Param.Value Units Description Reference

r 0.565 day−1 proliferation rate of tumour cells (Chen et al., 2011)
βT 2× 109 cells carrying capacity of tumour cells (Chen et al., 2011)
ksn 0.1 day−1 rate at which xTs become xTn guess
δmn 2× 10−6 (day cells)−1 killing rate of xTn by xM1 (Baba et al., 2008)
δms 2× 10−6 (day cells)−1 killing rate of xTs by xM1 (Baba et al., 2008)
rmn 1× 10−7 (day cells)−1 proliferation rate of xTn cells in

the presence of xM2 cells
guess

δts 5.3× 10−8 (day cells)−1 killing rate of xTs by xTh1 (Hung et al., 1998)
as 1× 10−6 (day cells)−1 activation rate of xM1 triggered

by xTs antigens
guess

an 5× 10−8 (day cells)−1 activation rate of xM2 mediated
by cytokines and growth factors
produced by xTn

guess

am1 5× 10−8 (day cells)−1 activation rate of xM1 by type-I
cytokines produced by xTh1

guess

am2 5× 10−8 (day cells)−1 activation rate of xM2 by type-II
cytokines produced by xTh2

guess

βM 1× 105 cells carrying capacity of M1,M2 cells guess
δm1 0.2 day−1 death rate of xM1 cells (Wang et al., 2012)*
δm2 0.2 day−1 death rate of xM2 cells (Wang et al., 2012)*
k12 5× 10−5 (day cells)−1 rate at which xM1 become xM2 (Chen et al., 2011)
k21 4× 10−5 (day cells)−1 rate at which xM2 become xM1 (Chen et al., 2011)
ah1 8× 10−3 day−1 activation rate of xTh1 by type-I

cytokines produced by xM1

(Ribeiro et al.,
2002)*

ah2 8× 10−3 day−1 activation rate of xTh2 by type-II
cytokines produced by xM2

(Ribeiro et al.,
2002)*

rh1 9× 10−6 (day cells)−1 proliferation rate of xTh1 in the
presence of type-I cytokines pro-
duced by xM1 cells

guess

rh2 9× 10−6 (day cells)−1 proliferation rate of xTh2 in the
presence of type-II cytokines pro-
duced by xM2 cells

guess

δh1 0.05 day−1 natural death rate of xTh1 cells (Pepper and Jen-
kins, 2011)

δh2 0.05 day−1 natural death rate of xTh2 cells (Pepper and Jen-
kins, 2011)

βTh 1× 108 cells carrying capacity of Th cells guess
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tion rate of ≈ 10−7/ cell/generation (Mareel et al., 1991). To model534

these high melanoma mutation rates, we assume an average growing535

cell population of ≈ 104 cells/generation, a 1-day generation of cells536

(since the doubling time is about 1.2 days), and take the mutation rate537

ksn = 10−5/cell/day ×104cells= 0.1/day.538

• To approximate the maximum rate at which the effector cells kill the539

tumour cells (at an effector:target ratio of 1:1), we use the following540

formula (where we ignore the proliferation of tumour cells, since we541

assume that cells do not proliferate anymore in vitro):542

dT

dt
= −δkillTE, (A.1)

with T describing the target cells (T = xTn or T = xTs) and E de-543

scribing the effector cells (E = xM1 or E = xTh1). To approximate544

δkill for macrophages (i.e., δkill = δms = δmn), we note that Baba et al.545

(2008) incubated for 18 hours CD4+CD8+ macrophages of M1 pheno-546

type with four different tumour cell lines. The killing of tumour cells547

reached maximum rate at an effector:target ratio of 30:1 (i.e., 1.2×106
548

effector cells and 4 × 104 target cells). Moreover, the percent specific549

lysis varied between 10%-97%. Integrating equation (A.1) with respect550

to time from t = 0 hrs to ti = 18 hrs, replacing E with E = 30T (for551

an effector:target ratio of 30), and assuming that the total number of552

target cells at the end of the incubation time ti is T (ti) = 100−%Lysis,553

we obtain554

δkill =
%Lysis

T (0)(100−%Lysis)30ti
. (A.2)

Therefore, for ti = 18 hrs=0.75 days and T (0) = 4×104cells, we obtain555

δkill = 3.6× 10−5, for %Lysis=97%, (A.3)

δkill = 1.2× 10−7, for %Lysis=10%. (A.4)

For the purpose of this article, we will consider δmn = δms = 2× 10−6,556

corresponding to an average tumour %Lysis = 65%.557

Finally, to approximate δkill for Th1 cells (i.e., δkill = δts), we note that558

Hung et al. (1998) incubated 106 B16 tumour cells with CD4 T cells.559

The maximum %Lysis was 30%, and was obtained at an effector:target560
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ratio of about 32:1. Using again (A.1), and the assumption that cells561

were incubated for about 6 hours (=0.25 days), we obtain a killing rate562

δkill = δts = 5.3× 10−8. (A.5)

Next, we introduce Tables A.3-A.7 that contain the values of parameters563

and initial conditions used for the sensitivity analysis in Section 5.564

Table A.3: Changes in the ratio k = k12/k21 for the sensitivity analysis. k12 is changed
from 5× 10−5 to 2× 10−5, and k21 is changed from 4× 10−5 to 1.6× 10−5 in 7 steps.

k21 k k k k k k k
4× 10−5 1.2 1.1 1 0.88 0.75 0.63 0.51

3.6× 10−5 1.4 1.2 1.1 0.98 0.84 0.7 0.56
3.2× 10−5 1.6 1.4 1.2 1.1 0.94 0.79 0.63
2.8× 10−5 1.8 1.6 1.4 1.2 1.1 0.9 0.72
2.4× 10−5 2.1 1.9 1.7 1.5 1.2 1 0.84
2× 10−5 2.5 2.2 2 1.7 1.5 1.2 1

1.6× 10−5 3.1 2.8 2.5 2.2 1.9 1.6 1.2
k12 5× 10−5 4.5× 10−5 4× 10−5 3.5× 10−5 3× 10−5 2.5× 10−5 2× 10−5

Table A.4: Percentage change in tumour size on day 20 (columns 4&6), for simulations
with different initial conditions (IC). Columns 1&2 show the baseline values for the IC
and the range within which they are varied. Columns 3&5 show the initial conditions that
lead to a maximum decrease/increase in tumour size on day 20.

IC Range IC for Max % IC for Max %
baseline for IC max decrease max increase
value tumour in tumour in

decrease tumour increase tumour

xTn(0) = 103 (1,107) 1 0 % 107 4 %
xTs(0) = 106 (1,107) 1 -98 % 107 0 %
xM1(0) = 102 (10, 104) 10 0 % 104 0 %
xM2(0) = 102 (10, 104) 10 -3 % 104 4 %
xTh1(0) = 0 (0, 105) 0 0 % 3× 104 1 %
xTh2(0) = 0 (0, 105) 0 0 % 105 0 %

AppendixB. Number of steady states565

To investigate the number of TF1IP states, we substitute x∗Th1 given by566

(2) into the expression for x∗M1 (given by the same equation), which leads to567
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Table A.5: Maximum increase/decrease in the number of days to reach half the tumour
population obtained on day 20 with the baseline model (see also Figure 4), as we vary the
initial conditions (IC). Columns 1&2 show the baseline values for the IC and the range
within which they are varied. Columns 3&5 show the initial conditions that lead to a
maximum decrease/increase in the number of days to reach half the tumour population
on day 20.

Baseline Range IC for Max IC for Max
IC for max time decrease max time increase

value IC decrease in nbr. days increase in nbr. days

xTn = 103 (1,107) 5× 106 -1 days 1 0 days
xTs = 106 (1,107) 107 0 days 1 7 days
xM1 = 100 (10, 104) 10 0 days 10 0 days
xM2 = 100 (10, 104) 5010 -2 days 10 2 days
xTh1 = 0 (0, 105) 0 0 days 104 0 days
xTh2 = 0 (0, 105) 0 0 days 0 0 days

A1(x
∗
Th1)

3 +B1(x
∗
Th1)

2 + C1(x
∗
Th1) +D1 = 0, (B.1)

where

A1 =− am1rh1βM
βTh

, B1 = am1βMrh1 − am1δh1 +
δm1βMrh1
βTh

, (B.2a)

C1 =am1βMah1 − δm1βMrh1, D1 = −δm1βMah1. (B.2b)

This equation has a unique real solution (for the parameter values given in568

Table A.2), and hence there is a unique TF1IP steady state.569

Similarly, we can investigate the number of TF2IP states by substituting570

x∗Th2 given by (3) into the expression for x∗M2 (also given by (3)), which leads571

to a cubic equation similar to (B.1). Since this cubic equation has a unique572

solution, we deduce that also the TF2IP state is unique.573

Due to the complexity of the TFIP states, we can investigate their unique-574

ness only numerically. In Figure B.13(a) we show that the solution curves of575

(4) intersect for an infinite number of values, and thus system (1) can have576

an infinite number of steady states.577

To investigate the number of TP1IP states, note that in (5) neither x∗M1578

nor x∗Th are affected by x∗Tn (x∗M1 is influenced only by x∗Ts = 0). Thus the579

states x∗M1 and x∗Th1 in (5) are also solutions of equation (B.1), and they are580

unique. Similarly, the TP2IP state is unique (which can be checked easily by581

substituting (6b) into (6a)). As discussed in AppendixC, this state is stable.582
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Table A.6: Percentage of change in tumour size on day 20 (columns 4&6), for simulations
with different parameter values. Columns 1&2 show the baseline values of parameters that
appear in model (1) and the range within which they are varied. Columns 3&5 show the
parameter values that lead to the max decrease/increase in tumour population on day 20.

Baseline Simulation Param. Max % Param. Max %
param. range for max % decrease for max % increase
values decrease tumour increase tumour

size size

r = 0.565 (0.113, 1.6385) 0.113 -99 1.638 4
βT = 2× 109 (4× 108, 5.8× 109) 4× 108 -80 5.8× 109 175
ksn = 0.1 (0.02, 0.29) 0.02 -21 0.29 4
δmn = 2× 10−6 (4× 10−7, 5.8× 10−6) 5.8× 10−6 -21 4× 10−7 4
δms = 2× 10−6 (4× 10−7, 5.8× 10−6) 5.8× 10−6 -2 2.2× 10−6 0
rmn = 1× 10−7 (2× 10−8, 2.9× 10−7) 2× 10−8 -2 2.9× 10−7 4
δts = 5.3× 10−8 (1.06× 10−8, 1.53× 10−7) 9.01× 10−8 0 1.06× 10−8 1
as = 1× 10−6 (2× 10−7, 2.9× 10−6) 2.90× 10−6 -3 2× 10−7 2
an = 5× 10−8 (1× 10−8, 1.45× 10−8) 1× 10−8 -5 1.45× 10−7 1
am1 = 5× 10−8 (1× 10−8, 1.45× 10−8) 1.45× 10−7 0 1× 10−8 0
am2 = 5× 10−8 (1× 10−8, 1.45× 10−8) 1× 10−8 0 1.45× 10−7 0
βM = 1× 105 (2× 104, 2.9× 105) 5× 104 -12 2.9× 105 6
δm1 = 0.2 (0.04, 0.58) 0.04 -1 5.8× 10−1 1
δm2 = 0.2 (0.04, 0.58) 0.58 -12 4× 10−2 3
k12 = 5× 10−5 (1× 10−5, 1.5× 10−4) 2.5× 10−5 -42 1.45× 10−5 5
k21 = 4× 10−5 (8× 10−6, 1.16× 10−5) 6.8× 10−5 -42 8× 10−6 5
ah1 = 8× 10−3 (1.6× 10−3, 2.32× 10−3) 1.36× 10−2 0 1.6× 10−3 1
ah2 = 8× 10−3 (1.6× 10−3, 2.32× 10−3) 1.6× 10−3 0 2.32× 10−2 0
rh1 = 9× 10−6 (1.8× 10−7, 2.61× 10−5) 9.9× 10−6 0 1.53× 10−5 1
rh2 = 9× 10−6 (1.8× 10−7, 2.61× 10−5) 1.8× 10−6 0 2.61× 10−5 0
δh1 = 0.05 (0.01, 0.145) 0.01 0 0.145 1
δh2 = 0.05 (0.01, 0.145) 0.07 0 0.115 0
βTh = 1× 108 (2× 107, 2.9× 108) 2.9× 108 0 2× 107 0

Finally, the number of TPIP states is investigated graphically in Figure583

B.13(B). Note that the surface curves given by the right-hand-side of equa-584

tions (1a), (1c) and (1d) (obtained after we substitute into these equations585

the values of x∗M1 and x∗M2 calculated from (1e)-(1f)), intersect for an infinite586

number of x∗Tn values. Therefore, there is an infinite number of TPIP states.587

AppendixC. Jacobian matrix588

The Jacobian matrix associated with system (1) is given by:589
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Table A.7: Maximum decrease/increase in number of days (columns 4&6) to reach half the
tumour size obtained on day 20 with the baseline model. Columns 1&2 show the baseline
values of parameters that appear in model (1) and the range within which they are varied.
Columns 3&5 show the parameter values that lead to the max decrease/increase in the
number of days to reach half the tumour population obtained on day 20 with the baseline
parameter values.

Baseline Simulation Param. Decrease Param. Increase
param. range value in nbr. value in nbr.
values for max days for max days

decrease increase

r = 0.565 (0.113, 1.6385) 1.63 -9 0.113 7
βT = 2× 109 (4× 108, 5.8× 109) 4× 109 -1 4× 108 7
ksn = 0.1 (0.02, 0.29) 0.08 0 0.02 1
δmn = 2× 10−6 (4× 10−7, 5.8× 10−6) 4× 10−7 -1 5.8× 10−6 3
δms = 2× 10−6 (4× 10−7, 5.8× 10−6) 4× 10−7 -2 4× 10−6 2
rmn = 1× 10−7 (2× 10−8, 2.9× 10−7) 2× 10−8 0 2× 10−8 0
δts = 5.3× 10−8 (1.06× 10−8, 1.53× 10−7) 1.06× 10−8 0 1.06× 10−7 1
as = 1× 10−6 (2× 10−7, 2.9× 10−6) 2× 10−7 0 2× 10−7 0
an = 5× 10−8 (1× 10−8, 1.45× 10−8) 1× 10−8 0 1× 10−8 0
am1 = 5× 10−8 (1× 10−8, 1.45× 10−8) 1× 10−8 0 1× 10−8 0
am2 = 5× 10−8 (1× 10−8, 1.45× 10−8) 1× 10−8 0 1× 10−8 0
βM = 1× 105 (2× 104, 2.9× 105) 2× 104 -2 8× 104 0
δm1 = 0.2 (0.04, 0.58) 0.04 0 0.04 0
δm2 = 0.2 (0.04, 0.58) 0.04 -1 0.46 3
k12 = 5× 10−5 (1× 10−5, 1.5× 10−4) 8.5× 10−5 -3 1× 10−5 5
k21 = 4× 10−5 (8× 10−6, 1.16× 10−5) 8× 10−6 -3 5.6× 10−5 5
ah1 = 8× 10−3 (1.6× 10−3, 2.32× 10−3) 1.6× 10−3 0 1.6× 10−2 1
ah2 = 8× 10−3 (1.6× 10−3, 2.32× 10−3) 1.6× 10−3 0 1.6× 10−3 0
rh1 = 9× 10−6 (1.8× 10−7, 2.61× 10−5) 1.8× 10−6 0 9.9× 10−6 1
rh2 = 9× 10−6 (1.8× 10−7, 2.61× 10−5) 1.8× 10−6 0 1.8× 10−6 0
δh1 = 0.05 (0.01, 0.145) 0.01 0 0.01 0
δh2 = 0.05 (0.01, 0.145) 0.01 0 0.01 0
βTh = 1× 108 (2× 107, 2.9× 108) 2× 107 0 2× 107 0

J =


a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56
a61 a62 a63 a64 a65 a66

 ,
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Figure B.13: Multiple TFIP and TPIP steady states. (A) The states x∗Th1 and x∗Th2 of
the TFIP steady states (see eq. (4)), for k = k12/k21 = 1.2. The inset shows a detailed
picture of these states for x∗Th1, x

∗
Th2 ∈ (107, 108). The overlap of the continuous and

dotted curves, for all x∗Th1 & x∗Th2 values within this interval, suggest the possibility of
having an infinite number of steady states. (B) The TPIP states with x∗Ts = 0 is given
by the intersection of the surfaces described by the right-hand-sides (RHS) of equations
(1a)+(1c) (cyan curves; gray on black/white print) and RHS of equations (1a)+(1d) (black
curves). Here, we consider k = k12/k21 = 5 (although different k generate similar curves).
Note that there seems to be an infinite number of intersection points between the cyan
and black curves. The inset shows the intersection points for x∗Tn ∈ {1, 2, 3}.

with590

a11 = r(1− xTn + xTs
βT

)− rxTn
βT
− δmnxM1 + rmnxM2, a12 = −rxTn

βT
+ ksn,

a13 = −δmnxTn, a14 = rmnxTn, a15 = 0, a16 = 0,

a21 = −rxTs
βT

, a22 = r(1− xTn + xTs
βT

)− rxTs
βT
− ksn − δmsxM1 − δtsxTh1,

a23 = −δmsxts, a24 = 0, a25 = −δtsxTs, a26 = 0,

a31 = 0, a32 = asxM1(1−
xM1 + xM2

βM
), a36 = 0,

a33 = (am1xTh1 + asxTs)(1−
2xM1 + xM2

βM
)− δm1 − (k12 − k21)xM2,

a34 = −xM1

(am1xTh1 + asxTs
βM

+ k12 − k21
)
, a35 = am1xM1(1−

xM1 + xM2

βM
),

a41 = anxM2(1−
xM1 + xM2

βM
), a42 = 0,

a43 = −(am2xTh2 + anxTn)xM2

βM
+ (k12 − k21)xM2,

a44 = (am2xTh2 + anxTn)(1− xM1 − 2xM2

βM
)− δm2 + (k12 − k21)xM1,

a45 = 0, a46 = am2xM2(1−
xM1 + xM2

βM
),

a51 = 0, a52 = 0, a53 = ah1 + rh1xTh1(1−
xTh1 + xTh2

βTh
), a54 = 0,

a55 = rh1xM1(1−
2xTh1 + xTh2

βTh
)− δh1, a56 = −rh1xM1xTh1

βTh
,

a61 = 0, a62 = 0, a63 = 0, a64 = ah2 + rh2xTh1(1−
xTh1 + xTh2

βTh
)

a65 = −rh2xm2xTh2
βTh

, a66 = rh2xM2(1−
xTh1 + 2xTh2

βTh
)− δh2 (C.1)
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At the TF1IP steady state, in addition to the zero components already591

listed in equation (C.1)), the following components of the Jacobian matrix are592

also zero: a13 = a14 = a21 = a23 = a25 = 0, a41 = a43 = a46 = 0, and a65 = 0.593

For the baseline parameter values used throughout this article, eigenvalues594

λ1 = a11 > 0 and λ2 = a22 > 0 (since x∗M1 ≈ 5805 and x∗Th1 ≈ 4333217),595

and thus this state is always unstable. However, it could be possible that596

for different parameter values (e.g., much higher values of δmn, δms, δts),597

λ1,2 < 0. Then the stability could be influenced by the sign of λ3 = a44 =598

xM1(k12 − k21)− δm2: λ3 > 0 if k = k12/k21 > 1, and λ3 < 0 otherwise.599

At the TF2IP steady state, in addition to the zero components listed in600

equation (C.1), the following components of the Jacobian matrix are also601

zero: a13 = a14 = 0, a21 = a23 = a25 = 0, a32 = a34 = a35 = 0, and a56 = 0.602

Since eigenvalue λ1 = x∗M2rmn + r > 0, the TF2IP state is always unstable.603

The stability of the multiple TFIP steady states is difficult to investigate:604

e.g., one of the eigenvalues of the Jacobian matrix is λ1 = a11 = −xM1δmn +605

xM2rmn + r. As shown in Figure B.13(a), some states have xM1 � xM2 and606

hence λ1 < 0, while other states have xM1 � xM2 and hence λ1 > 0.607

The TO steady state is always unstable for the parameter values used in608

this article (since one eigenvalue is λ1 = xTnan − δm2 > 0).609

For the TP1IP state, in addition to the zero components in equation610

(C.1), the following components of the Jacobian matrix are also zero: a21 =611

a23 = a25 = 0, a41 = a43 = a46 = 0, and a65 = 0. The stability of612

this state is governed by the following eigenvalues: λ1 = a11 < 0, λ2 =613

a22 < 0, λ3 = a44 = 90.213 + 5805.95(k12 − k21), λ4 = a66 < 0 and614

λ5,6 = 0.5(a33+a55)±0.5
√

(a33 + a55)2 − 4(a33a55 − a35a53). For the baseline615

parameter values used throughout this article, k = k12/k21 = 1.2 > 1 which616

implies that λ3 > 0 and this state is unstable.617

For the TP2IP state, in addition to the zero components in equation618

(C.1), the following components of the Jacobian matrix are also zero: a21 =619

a23 = a25 = 0, a32 = a34 = a35 = 0, and a56 = 0. The stability of this620

state is governed by the sign of the following eigenvalues: λ1 = a22 < 0,621

λ2 = a33 = −0.2 − 99808.35(k12 − k21), λ3 = a55 < 0 and λ4,5,6 < 0 given622

by the three real roots of a cubic equation. If k = k12/k21 > 1 then λ2 < 0623

and the TP2IP state is stable (as is the case for the baseline model). On the624

other hand, if k < 1 then λ2 > 0 and the TP2IP state is unstable.625

The stability of the TPIP states is difficult to investigate since, as shown626

in Figure B.13(b), there are multiple tumour states x∗Tn. However, the sta-627

bility of these states also depends on the ratio k = k12/k21.628
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