

University of Dundee

A faster polynomial-space algorithm for Max 2-CSP

Edwards, Keith

Published in:
Journal of Computer and System Sciences

DOI:
10.1016/j.jcss.2015.11.013

Publication date:
2016

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Edwards, K. (2016). A faster polynomial-space algorithm for Max 2-CSP. Journal of Computer and System
Sciences, 82(3), 536-550. DOI: 10.1016/j.jcss.2015.11.013

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. Dec. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/30664974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jcss.2015.11.013
http://discovery.dundee.ac.uk/portal/en/research/a-faster-polynomialspace-algorithm-for-max-2csp(52de8837-38af-4a3a-be6d-0dc67732bc35).html

A faster polynomial-space algorithm for Max 2-CSP

Keith Edwards
School of Computing
University of Dundee
Dundee, DD1 4HN

U.K.
kjedwards@dundee.ac.uk

Tel: +44 1382 384463

November 26, 2014

Abstract

We give an algorithm for Max 2-CSP which runs in time O?(r
m

5.555) and uses
polynomial space. This compares with the previous fastest published algorithm of
Scott and Sorkin [15], which runs in time O?(r

19m
100) = O?(r

m
5.263).

The algorithm uses the deletion-reduction depth of a graph; we also consider
some of the properties of this parameter, and in particular derive a lower bound on
the parameter for cubic graphs.

Keywords: Max 2-CSP; deletion-reduction depth; deletion depth.

1

1 Introduction

There has been a long sequence of exponential time algorithms for problems contained
in Max 2-CSP, particularly for Max Cut and Max 2-Sat, and more recently Max 2-CSP
itself.

Kulikov and Fedin [10] gave an O?(2m/4) algorithm for Max Cut, and this was improved
to O?(2m/5) for general Max 2-CSP by Scott and Sorkin [13]. This was further improved
by Scott and Sorkin [14, 15] and Gaspers and Sorkin [5], who describe an algorithm with
time complexity O?(r19m/100) = O?(rm/5.263) (where r is the domain size for each variable).
This has remained the best published polynomial-space algorithm for Max 2-CSP (and
Max Cut) parameterized by m (the number of edges in the graph), although there have
been subsequent improvements, described below, in the complexity expressed in terms of
the average degree.

For Max 2-CSP parameterized by the average degree d and number of vertices n, Scott

and Sorkin [15] give an algorithm which requires time at most O?(r
(1− 2

d+1
)n

). This is

improved to O?(r
(1− 3

d+1
)n

) by Golovnev and Kutzkov [7] and to O?(r
(1−3.25

d+1
+O(1/d3))n

)
in [3]. Golovnev and Kutzkov also give an algorithm which for very large average degree
d has a smaller exponent of the form (1−O(ln d

d
))n.

We describe an algorithm which runs in time O?(r9m/50+o(m)) = O?(rm/5.555) and polyno-

mial space, or, in terms of average degree, in time O?(r
(1− 3.4

d+1
+O(1/d3))n

).

A very recent preprint by Gaspers and Sorkin [6] also gives an algorithm for Max 2-CSP
running in time O?(r9m/50+o(m)) and polynomial space, or, in terms of average degree, in

time O?(r
(1− 3.3

d+1
)n

). It is based on similar ideas to the ones used in this paper, but the
detailed method is very different. Among the distinctive features of our approach are
the following: (1) We clearly separate the dependency on the underlying graph from the
solution of the CSP instance itself, by using the notions of deletion-reduction depth and
deletion-reduction tree, which depend only on the graph; (2) Our uniform treatment of
all degrees greater than 3, and analysis of the function gα (see Section 2.3), give a better
upper bound in terms of average degree; (3) We use a general reduction theorem to extend
the results from cubic graphs to general graphs, avoiding the need for any new induction
and setting the result in a broader context; (4) Our analysis of the relationship between
deletion-reduction depth and deletion depth allows us (a) to show that essentially the
same upper bound can be obtained using only branching on deleted vertices, without any
other reductions, and (b) to give a lower bound on the deletion-reduction depth in the
cubic case and therefore indicate the probable limits of this approach.

The fastest exponential-space algorithm remains that of Williams [17], which solves con-
straint satisfaction problems in time O?(rωn/3), where ω is the matrix multiplication
constant (ω ≈ 2.373).

2

2 Preliminaries

All graphs G = (V,E) are considered to be simple. We use standard graph terminology
and notation, hence n = |V | and m = |E|, and the minimum degree of G is δ(G). We
describe the efficiency of an exponential-time algorithm using the standard O? notation,
which suppresses polynomial factors in any parameters.

If X ⊆ V (G), we write G − X to mean the graph formed by deleting the vertices in X
(and incident edges) from G. In the case that X = {v}, we will write G− v rather than
G− {v}.

2.1 Max 2-CSP

An instance (G,S) of the maximum 2-constraint satisfaction problem (Max 2-CSP) con-
sists of a simple graph G = (V,E), called the constraint graph, a set of colours [r] =
{0, 1, . . . , r−1}, for some r ≥ 2, a constant S∅ and, for each edge and vertex of G, a score
function, where the score function of an edge uv takes the form Suv : [r]2 → R, and the
score function of a vertex v is of the form Sv : [r]→ R. Note that only one score is defined
for a given colouring of each edge uv, so for colours c1, c2 ∈ [r] we consider Suv(c1, c2) and
Svu(c2, c1) to be equivalent names for the same score.

Any colouring ψ of the vertices of G using the set of colours [r] induces a cost which is
the sum of the vertex and edge functions plus S∅:

S(ψ) = S∅ +
∑
v∈V

Sv(ψ(v)) +
∑
uv∈E

Suv(ψ(u), ψ(v))

A candidate solution, or more simply, a solution of a Max 2-CSP instance is any function
ψ : V → [r] which assigns a colour to each vertex of G. An optimal solution is a solution
which maximizes S(ψ), and the goal of the Max 2-CSP problem is to find an optimal
solution.

A number of problems such as Maximum Cut, Maximum Directed Cut, Maximum In-
dependent Set, Minimum Vertex Cover, and Maximum 2-Sat can be modelled as a Max
2-CSP instance.

2.2 Reduction

We will need below the concept of series-parallel reductions. Let G be a graph, and
consider the following four operations on G:

R0 Delete an isolated vertex of G.

R1 Delete a vertex of degree 1 (and its incident edge).

R2n Let v be a vertex of degree 2 with non-adjacent neighbours x and y; delete v (and
edges vx, vy) and add an edge between x and y.

3

R2a Let v be a vertex of degree 2 with adjacent neighbours; delete v (and incident edges).

Let r(G) be the graph obtained from G by applying operations R0, R1, R2n, R2a above
repeatedly until none is possible (because the graph has minimum degree at least 3 or is
empty). It follows from Theorem 4.1, proved by Kneis et al. [8], that r(G) is well-defined,
i.e., that the resulting graph does not depend on the order of operations. It also follows
from the definition of the series-parallel property that G is series-parallel if and only if
r(G) is empty. The reductions R0 R1, R2n, R2a have been used by many authors.

2.3 Definition and properties of function gα

We now define the important function gα introduced in [3] and restate some of its prop-
erties.

Definition of functions gα and g′α

For any n ≥ 2, and α with 0 ≤ α ≤ 1, define the function gα(n) by setting gα(2) = 0,
gα(3) = α, and for any n ≥ 4,

ngα(n) = (n− 2)gα(n− 1) + gα(n− 2) + 1.

We extend gα to all real numbers at least 2 by linear interpolation, i.e. if r = n+x, where
n ≥ 2 is an integer, and 0 ≤ x ≤ 1, then we set gα(r) = (1− x)gα(n) + xgα(n+ 1).

Also, for any n ≥ 3, define g′α(n) = gα(n)− gα(n− 1).

Properties of gα

We now give the properties of gα which we will use later. The first three are proved in [3],
the fourth is proved for α = 1

4
in [2], and this proof carries over to α ∈ [1

6
, 3

10
].

G1. For any integer n ≥ 2,

gα(n) = (4− 3α)
A(n)

n!
+ (2− 3α)

(−1)n

n!
− (3− 3α)

where A(n) is the alternating factorial function given by

A(n) = n!− (n− 1)! + . . .− (−1)n · 1!.

G2. For all real d ≥ 2,

gα(d) = 1− 4− 3α

d+ 1
+O(1/d3).

G3. If 1/6 ≤ α ≤ 3/10, gα(n)/n is strictly decreasing for n ≥ 5.

4

G4. If G is a graph with average degree d, and either G is connected and d ≥ 2, or d ≥ 5,
then for α ∈ [1

6
, 3

10
], ∑

v∈V (r(G))

gα(dr(G)(v)) ≤ gα(d)|V (G)|.

In this paper we use the function g1/5. The first few values of this function are given
below:

d 2 3 4 5 6 7 8

g1/5(d) 0 1
5

7
20

9
20

21
40

163
280

281
448

Definitions of functions fα, f
−
α

We now define the functions which will be used as upper bounds. For any graph G with
minimum degree at least 2, define fα(G) by:

fα(G) =
∑

v∈V (G)

gα(dG(v)).

Although fα(G) is the main upper bound of interest, the inductive proof relies crucially
on a small negative term, which depends on the minimum degree of each component. If
G has minimum degree at least 3, with connected components G1, . . . , Gk, set

f−α (G) = fα(G)−
k∑
i=1

g′α(δ(Gi)) =
k∑
i=1

f−α (Gi).

2.4 The general reduction theorem

In [3] we prove the following general reduction theorem, which we will use later. We need
one further definition.

Definition of basic graph

We will say a connected graph of minimum degree at least 3 is basic if either G is cubic
or r(G− v) is empty for some v ∈ V . A graph is basic if every component is basic.

Theorem 2.1 ([3]) Let G = (V,E) be a graph with n vertices and minimum degree
δ ≥ 3. Then there is a set XG ⊆ V such that (i) r(G−XG) is non-empty and basic, and
(ii) |XG|+ f−α (r(G−XG)) ≤ f−α (G) for any α, 1/6 ≤ α ≤ 3/10.

5

3 Deletion-Reduction depth

Let G be a graph. By a deletion-reduction operation we mean an operation which replaces
G by r(G − v), where v is any vertex of G. We define the deletion-reduction depth of
a graph to be the least number of times that applying a deletion-reduction operation on
each component of the graph, starting from r(G), can result in an empty graph.

3.1 Definition of deletion-reduction depth

The deletion-reduction depth drd(G) is the least integer k such that there exists a sequence
G0 = r(G), G1, . . . , Gk, with Gk the empty graph, and a sequence V0, . . . , Vk−1 of vertex
sets, such that for each i = 1, . . . , k,

(a) Vi−1 is a subset of V (Gi−1) containing at most one vertex from each component of
Gi−1;

(b) Gi = r(Gi−1 − Vi−1).

3.2 Deletion-reduction tree

The notion of deletion-reduction depth naturally suggests a corresponding tree of reduc-
tions and deletions, which turns out to be just the reduction tree defined by Scott and
Sorkin [15]. (Note we restrict ourselves here to the case where G is connected, for the
case where G is not connected we would obtain a deletion-reduction forest consisting of
a tree for each component of G.)

Definition of deletion-reduction sequence

Let G be a graph with n vertices. A deletion-reduction sequence on G is a sequence of
operations φ1, . . . , φn, where each operation is either one of R0, R1, R2n, R2a or is the
deletion of a single vertex, such that if G(0) = G and G(i) = φi(G

(i−1)) for i = 1, . . . , n,
then G(n) is empty. Note that each operation removes exactly one vertex from the graph.

Definition of deletion-reduction tree

Let G be a graph with n vertices, and let φ1, . . . , φn be a deletion-reduction sequence on
G. Then the deletion-reduction tree T for this sequence is a rooted tree, as follows:

The vertex set of T is the same as that of G. The root of T is the vertex removed by
the first operation φ1. Now consider any operation φi, and suppose that φi removes a
vertex v. Let C be the component (of G(i−1)) containing v; the operation will have no
affect on any other component. Let C1, . . . , Cc be the components of φi(C); here the
number of components, c, will be 0 in the case of an R0 reduction, 1 for an R1, R2n
or R2a reduction, and at least 1 for a deletion. Let v1, . . . , vc be the vertices removed

6

first from C1, . . . , Cc respectively, and make these the children of v in T . Finally we label
each vertex in T with the type of the operation which removes it from G, i.e., one of
R0, R1, R2n, R2a for a reduction, or D for a deletion (these labels are usually redundant
because they are implicit in the structure, but are included for completeness to allow for
an arbitrary deletion-reduction sequence possibly including deletions of vertices of degree
less than 3).

Remarks: (1) Thus the root of the tree is the first node to be reduced or deleted, its
children are the vertices first reduced/deleted from each resulting component, and so on.

(2) The set of vertices in the subtree rooted at any vertex v is exactly the vertex set of
the component C containing v when it is removed from the graph.

Relationship to deletion-reduction depth

Consider a graph G with deletion-reduction depth k. Let V0, . . . , Vk−1 be the sets of
vertices deleted at each stage, and let G0 = r(G), G1, . . . , Gk, with Gk the empty graph,
be the corresponding sequence of graphs.

Let ri be a sequence of series-parallel reductions which forms Gi from Gi−1 − Vi−1 (for
i = 0, r0 forms G0 from G), and di be a sequence of deletions (one vertex at a time)
of the vertices in Vi. Then concatenating the sequences r0, d0, r1, d1, . . . , dk−1, rk gives a
deletion-reduction sequence for G. Furthermore, it is easy to see that in the corresponding
deletion-reduction tree, the number of deletions on any path from the root to a leaf is at
most k = drd(G).

3.3 Deletion-reduction depth and Max 2-CSP

As mentioned above the concepts of deletion-reduction tree and deletion-reduction depth
are not really new; a deletion-reduction tree is just the reduction tree defined by Scott
and Sorkin [15] in their description of their algorithm B for Max 2-CSP. They also define
the III-reduction depth of a reduction tree as the largest number of III-reductions (i.e.,
deletions) on any path from the root to a leaf of the tree, and so for an optimal tree this
is the deletion-reduction depth. (Note that they refer to our R0, R1 and R2 reductions
as 0-, I- and II-reductions respectively.)

The reduction tree is constructed, as above, in part B.1 of Scott and Sorkin’s algorithm
B. Parts B.2 and B.3 each take as their input an instance (G,S) of Max 2-CSP together
with a reduction tree T for the graph G, and perform a depth-first (pre-order) traversal
of the tree. Part B.2 outputs the optimum cost and part B.3 a colouring realising this
optimum cost.

They prove the following lemma (Claims 9 and 10 of [15]):

Lemma 3.1 ([15]) For a CSP instance (G,S) where G has n nodes and has a reduction
tree with III-reduction depth d, Algorithms B.2 and B.3 run in time O(nr3+d) and in
linear space.

7

It follows immediately from this lemma that Max 2-CSP can be solved in time O?(rdrd(G)),
and polynomial space, on a graph G.

3.4 Cubic Graphs

We first show that for a cubic graph G on n vertices, the deletion-reduction depth drd(G)
is at most (1

5
+ o(1))n. We make use of a result of Monien and Preis [11] which bounds

the size of a cut dividing a cubic graph into two (almost) equal parts.

The bisection width bw(G) of a graph G is defined as follows (from [11]). Let π : V →
{0, 1} be a bisection of G, dividing the vertices into parts A = V0 and B = V1. A
balanced bisection is one in which the number of vertices in the parts differ by at most 1.
Let cut(π) := |{vw ∈ E | π(v) 6= π(w)}| be the cut size of π. The bisection width of a
graph G is bw(G) := min{cut(π);π is a balanced bisection of G}.

Theorem 3.2 (Monien, Preis [11]) For any ε > 0 there is a value n(ε) such that the
bisection width of any 3-regular graph G = (V,E) with |V | > n(ε) is at most (1

6
+ ε)|V |.

It is noted in [4] that Theorem 3.2 is constructive and can be turned into polynomial time
algorithm which constructs a cut of the required size.

We first give a very rough sketch of the main idea. Given a cubic graph, we can find
a cut of size roughly n/6. We apply deletion-reduction to one endpoint of each edge
in the cut, with n/12 of the endpoints in each part of the partition. Each deletion-
reduction results in 3 vertices being removed in the same part of the partition, and 1 in
the other part. In total roughly n/3 vertices are removed from each part, and the two
parts become disconnected. Hence we obtain a graph with no component larger than n/6.
By induction this graph has deletion-reduction depth at most n/30 approximately, giving
a total deletion-reduction depth of roughly n/6 + n/30 = n/5. To make this argument
precise, we need to take account of a number of complications, in particular that a vertex
may be incident with more than one edge of the cut, and that a cut with fewer than n/6
edges will result in larger parts in the final partition, so it is really the balance between
the number of deletion-reduction operations and the size of the resulting parts which is
important. We give details below.

We start with a lemma which concerns the use of deletion-reduction operations on the
endpoints of the cut to disconnect the graph.

Lemma 3.3 Let G be a cubic graph with n vertices, and with bisection width bw(G).
Then there is a sequence of k deletion-reduction operations which will leave a graph with
no component of more than c vertices, such that

λk + c ≤ n

2
+ (λ− 2)bw(G) + 1

for any λ ≥ 3.

8

Proof. First let π = (A,B) be any partition of the vertices of a cubic graph into sets A
and B, and let cut(π) be the number of edges between parts A and B. Also let D be a
set disjoint from A ∪B (below, D will be the set of vertices deleted from the graph).

Consider the following operation:

Cut-decreasing step: (i) If some vertex v is incident with two or three
edges in the cut, then move v to the other part of the partition; otherwise (ii)
choose an edge of the cut, and let v be the endpoint of this edge belonging to
the larger of A and B (choose arbitrarily if |A| = |B|). Perform a deletion-
reduction operation on v, i.e. delete v from the graph and reduce the resulting
graph to form r(G− v). Add v to the set D.

To analyse the effect of the cut-decreasing step, it is helpful to introduce a function
max(x, y) which differs from max(x, y) by at most one, but has a useful property (prop-
erty M5 below) which the maximum function itself lacks. For any real numbers x, y,
define the function max(x, y) by

max(x, y) = min(max(x, y − 1),max(x− 1, y)).

It is easy (see the Appendix) to verify that max has the following properties:

M1. max is monotone non-decreasing in each argument;

M2. max(x, y) ≥ max(x, y) ≥ max(x, y)− 1;

M3. If |x− y| ≤ 1, max(x, y) = min(x, y);

M4. max(x− 1, y + 1) ≤ max(x, y) + 1;

M5. If x′ ≤ max(x, y)− 3, and y′ ≤ min(x, y)− 1, then max(x′, y′) ≤ max(x, y)− 2.

Now suppose that λ ≥ 3, and consider the following quantity:

λ|D|+ max(|A|, |B|) + (λ− 2)cut(π).

We show that the cut-decreasing step does not increase this quantity. The first operation
(i), i.e. moving a vertex from A to B or vice versa, increases max(|A|, |B|) by at most 1
(by property M4 above), and decreases cut(π) by at least 1, while D is not changed. Thus
since λ− 2 ≥ 1, the quantity λ|D|+ max(|A|, |B|) + (λ− 2)cut(π) does not increase.

The second operation (ii) is a deletion-reduction of a vertex in the larger part of the
partition. Since the deleted vertex v is incident with exactly one edge of the cut, deleting
v will leave two vertices of degree two in this larger part and one in the other part. These
will be removed by reduction. Some further reductions may take place, but it is easy to
see that these cannot increase any of |A|, |B| or cut(π). This is because the only reduction
which adds a new edge xy is one of type R2n. In that case the vertex v reduced is already
adjacent to both x and y, and the reduction removes both of the edges vx and vy and
replaces them with the edge xy. But if xy is in the cut, then so was one of vx and vy,
hence cut(π) does not increase.

9

Thus in case (ii), the size of the larger of A and B reduces by at least 3 and the smaller
by at least 1, so by property M5 of the function max, the value of max(|A|, |B|) reduces
by at least 2. Also cut(π) reduces by at least 1, and |D| increases by 1. Hence λ|D| +
max(|A|, |B|) + (λ− 2)cut(π) does not increase.

Now let πI = (AI , BI) be a balanced bisection of size bw(G) which divides the graph G
into sets AI and BI . Also let DI = ∅.

Starting with the partition πI , we iterate the cut-decreasing step as long as possible, i.e.,
as long as the cut is non-empty. Let the final partition be πF = (AF , BF), and let DF be
the final set of deleted vertices.

Then since the cut-decreasing step does not increase λ|D|+max(|A|, |B|)+(λ−2)cut(π),
we have

λ|DF |+ max(|AF |, |BF |) + (λ− 2)cut(πF) ≤ λ|DI |+ max(|AI |, |BI |) + (λ− 2)cut(πI).

Now max(|AI |, |BI |) ≤ min(|AI |, |BI |) ≤ n
2

by property M3, |DI | = 0 and cut(πI) =
bw(G) so

λ|DI |+ max(|AI |, |BI |) + (λ− 2)cut(πI) ≤
n

2
+ (λ− 2)bw(G).

Also, we have cut(πF) = 0 and k = |DF |. Thus

λ|DF |+ max(|AF |, |BF |) + (λ− 2)cut(πF) = λk + max(|AF |, |BF |),

and so
λk + max(|AF |, |BF |) ≤

n

2
+ (λ− 2)bw(G).

Also it is clear that the maximum component size c in the final graph satisfies c ≤
max(|AF |, |BF |) ≤ max(|AF |, |BF |) + 1, so

λk + c ≤ n

2
+ (λ− 2)bw(G) + 1,

as required.

Lemma 3.4 Let G be a cubic graph with n vertices. Then

drd(G) ≤
(

1

5
+ o(1)

)
n.

Proof. We will show that for any µ > 0, there is a constant Cµ such that drd(G) ≤
n
5

+ µn + Cµ for any cubic graph G on n vertices. The result follows immediately from
this.

Let ε = min(µ
12
, 1

6
) and Cµ = max{n(ε), 12, d 6

µ
e} (here n(ε) is the constant provided by

Theorem 3.2 of Monien and Preis [11]). We proceed by induction on n. First if n ≤ Cµ,
then it is immediate that drd(G) ≤ Cµ, so the result holds. So suppose that n ≥ Cµ.

Then since n ≥ n(ε), we have bw(G) ≤ (1
6

+ ε)n. Since ε ≤ 1
6
, we have in particular

bw(G) ≤ n
3
.

10

By Lemma 3.3 there is a sequence of k deletion-reduction operations which will leave a
graph G′ with no component of more than c vertices, such that

λk + c ≤ n

2
+ (λ− 2)bw(G) + 1

for any λ ≥ 3. Taking first λ = 3, we obtain

c ≤ n

2
+
n

3
+ 1 =

5

6
n+ 1 ≤ 5

6
n+

1

12
n =

11

12
n

since n ≥ 12. Then taking λ = 5, we obtain

5k + c ≤ n

2
+ 3bw(G) + 1 ≤ n

2
+ 3

(
1

6
+ ε

)
n+ 1 = n+ 3εn+ 1

or

k +
c

5
≤ n

5
+

3εn

5
+

1

5
. (1)

It is clear that drd(G) ≤ k + drd(G′), and, if G′ has components C1, . . . , Cr, then

drd(G′) = max{drd(C1), . . . , drd(Cr)}.

Since each component Ci has at most c vertices, and c < n, then by the inductive hy-
pothesis,

drd(Ci) ≤
c

5
+ µc+ Cµ

so
drd(G) ≤ k +

c

5
+ µc+ Cµ.

Hence by (1)

drd(G) ≤ n

5
+

3εn

5
+

1

5
+ µc+ Cµ

≤ n

5
+

3µn

60
+
µn

30
+ µ

11n

12
+ Cµ

=
n

5
+ µn+ Cµ

as required (here we also use ε ≤ µ/12, and n ≥ 6/µ, from which 1/5 ≤ µn/30).

Remark We note that if the upper bound on bw(G) for cubic graphs were improved,
for example to αn+ o(n) with α < 1/6, this would yield (by the same argument) a bound
on drd(G) of βn+ o(n), where β = 2α

1+4α
.

Lemma 3.5 Let G = (V,E) be a graph with n vertices and minimum degree δ ≥ 3. Then

drd(G) ≤
∑

v∈V (G)

g1/5(d(v)) + o(n).

Proof. We will show that drd(G) ≤ f−1/5(G) + o(n).

We first show that for any basic graph G, we have

drd(G) ≤ f−1/5(G) + o(n).

11

For a connected cubic graph G, this follows immediately from Lemma 3.4. If r(G− v) is
empty, then drd(r(G− v)) = 0, and it follows from the result of Kneis et al.(see Theorem
4.1) or from Lemma 4.11, that drd(G) ≤ 1, so certainly drd(G) = o(n) as required. If G
is basic with connected components G1, . . . , Gk, then

drd(G) = max
i

drd(Gi)

≤ max
i

(
f−1/5(Gi) + o(n)

)
≤ f−1/5(G) + o(n).

Now, by Theorem 2.1, for any graph G with minimum degree at least 3, there is a set XG

such that
|XG|+ f−1/5(r(G−XG)) ≤ f−1/5(G)

and r(G−XG) is basic and non-empty. From the construction of XG (or from Lemma 4.11)
it follows immediately that drd(G) ≤ |XG|+ drd(r(G−XG)), so we have

drd(G) ≤ |XG|+ drd(r(G−XG))

≤ |XG|+ f−1/5(r(G−XG)) + o(n) (since r(G−XG) is basic)

≤ f−1/5(G) + o(n),

as required.

Corollary 3.6 Let G be a graph, and r(G) be the reduced graph of G. Let nd be the
number of vertices of degree d in r(G). Then

drd(G) ≤
∑

v∈V (r(G))

g1/5(dr(G)(v)) + o(|V (G)|) =
∑
d≥3

g1/5(d)nd + o(|V (G)|).

Lemma 3.7 Let G be a graph with m edges. Then

drd(G) ≤ 9

50
m+ o(m).

Proof. We can assume that G is connected since the general result follows from the
connected case. Recall (Property G3) that g1/5(d)/d is strictly decreasing for d ≥ 5; it
follows easily that 2g1/5(d)/d attains its maximum value (of 9/50) at d = 5. Let m′ be
the number of edges of r(G), so that m′ ≤ m, and let nd be the number of vertices of
degree d in r(G). Then from above we have

drd(G) ≤
∑
d≥3

g1/5(d)nd + o(n)

=
∑
d≥3

(
2g1/5(d)

d

)(
dnd
2

)
+ o(n)

≤
(

2g1/5(5)

5

)∑
d≥3

dnd
2

+ o(n)

=
9

50
m′ + o(n)

≤ 9

50
m+ o(m).

12

For average degree, we obtain the following (by property G4 of gα):

Theorem 3.8 Let G be a graph of average degree d ≥ 2, with n vertices and m edges.
Then if G is connected, or d ≥ 5,

drd(G) ≤ (g1/5(d) + o(1))n = (2g1/5(d)/d+ o(1))m = (1− 17/5
d+1

+O(1/d3))n.

The bound on deletion-reduction depth from Theorem 3.8 leads immediately to a faster
algorithm for Max 2-CSP.

Theorem 3.9 Let G be a graph, and r(G) the reduced graph of G. Then an instance of
Max 2-CSP on graph G can be solved in time

O?(rβ(G)),

and polynomial space, where β(G) =
∑

v∈V (r(G)) g1/5(dr(G)(v)) + o(|V (r(G)|).

In terms of edges, we obtain the following from Lemma 3.7:

Theorem 3.10 Let G be a graph with m edges. Then an instance of Max 2-CSP on
graph G can be solved in time

O?(r
9m
50

+o(m))

and polynomial space.

Thus we obtain an algorithm which runs in time O?(r
m

5.555), compared with the previous

fastest algorithm of Scott and Sorkin [15], which runs in time O?(r
19m
100) = O?(r

m
5.263).

We also have

Theorem 3.11 Let G be a connected graph with n vertices and m edges, of average degree
d ≥ 2. Then an instance of Max 2-CSP on graph G can be solved in time

O?(r(g1/5(d)+o(1))n) = O?(r(2g1/5(d)/d+o(1))m) = O?(r
(1−

17/5
d+1

+O(1/d3))n
)

and polymonial space.

This improves on the algorithm with complexity O?(r
(1−

13/4
d+1

+O(1/d3))n
) given in [3].

Extension to polynomial 2-CSP

A wider class of problems called polynomial 2-CSP is defined by Scott and Sorkin [16].
They show that several existing algorithms, including their Algorithm B from [15] which
uses reduction trees, can be extended to deal with these problems. It is clear that the
new algorithm above can be extended in the same way.

13

4 Deletion depth

As well as deletion-reduction depth defined above, it seems natural to also consider the
simpler concept of deletion depth, in which series-parallel reductions are not used. Thus
the deletion depth is the least number of times that deleting a vertex from each component
of a graph leads to an empty graph.

4.1 Definition of deletion depth

The deletion depth dd(G) is the least integer k such that there exists a sequence G0 =
G,G1, . . . , Gk, with Gk the empty graph, and a sequence V0, . . . , Vk−1 of vertex sets, such
that for each i = 1, . . . , k,

(a) Vi−1 is a subset of V (Gi−1) containing at most one vertex from each component of
Gi−1;

(b) Gi = Gi−1 − Vi−1.

Note that whereas in the definition of deletion-reduction depth, deletions were only per-
formed on vertices of degree at least 3 (because others were removed by reduction), here
vertices of any degree may be deleted.

4.2 Definition of deletion tree

Just as in the case of deletion-reduction depth, we can construct a rooted tree T with k
levels, which we will call a deletion tree of G. The deletion tree is uniquely determined
by the sets V0, . . . , Vk−1.

First note that there is a one-to-one correspondence between the vertices of G and the
components of all the graphs Gi; we denote by v(C) the vertex deleted from component
C and by C(v) the component from which v is deleted.

The tree T is constructed as follows: the vertices of T are the same as the vertices of G.
The root of the tree is v(G0). A vertex v is the parent of each vertex v(C), where C is a
component of C(v)− v. (Note that the fact that two vertices are adjacent in T does not
imply that they are adjacent in G.)

This is essentially the same as a deletion-reduction tree. If di is a sequence of deletions
(one vertex at a time) of the vertices in Vi, then the concatenation of d0, . . . , dk−1 is a
deletion-reduction sequence containing no reductions. Then the deletion-reduction tree
for this sequence (minus the vertex labels, which are all D in any case) is exactly the
deletion tree T .

4.3 Deletion depth vs. deletion-reduction depth

We consider the relationship between the values of the two parameters.

14

Valid reduction sequences

We will use the results of Kneis et al. [8]. For a subset D of V , they define a valid
reduction sequence to be a sequence of vertices, each of which is either not in D and can
be removed by a series-parallel reduction, or is in D and is deleted. They prove that any
two maximal valid reduction sequences produce the same graph. We give details below.

We first quote the definition of a reduction from [8] (note that the notation and termi-
nology are slightly different from ours):

Definition of reduction [8]

Let G = (V,E) be a graph and D ⊆ V an arbitrary subset of its nodes. We define the
following reduction rules:

R0: If there is a v 6∈ D with deg(v) = 0, then remove v.

R1: If there is a v 6∈ D with deg(v) = 1, then remove v.

R2: If there is a v 6∈ D with deg(v) = 2, then contract v, i.e., remove v and insert a new
edge between its two neighbors, if no such edge exists.

RD: If G contains a node v ∈ D, then remove v.

R: If any of the above rules can be applied, do so.

R∗: Iterate R as long as possible.

Note that it is not obvious that R∗ is well-defined, but Kneis et al. show that this is so
in Theorem 4.1 below.

Now we also quote the definition of a valid reduction sequence.

Definition of valid reduction sequence [8]

Let G = (V,E) be a graph, let D ⊆ V , and let v ∈ V be a node that can be reduced
according to R0, R1, R2, or RD. Then v is called reducible and G〈v〉 denotes the graph
obtained from G by applying the respective rule on v. For r ≥ 2 we define G〈v1, . . . , vr〉 =
G〈v1〉〈v2, . . . , vr〉 inductively. If vi is reducible in G〈v1, . . . , vi−1〉 for all 1 ≤ i ≤ r, then
(v1, . . . , vr) is a valid reduction sequence for G with respect to D. By ε we denote the
(valid) empty reduction sequence.

We can now quote a key theorem from [8], which says that any two maximal reduction
sequences give the same graph:

Theorem 4.1 (Kneis et al. [8]) Let G = (V,E) be a graph and D ⊆ V . Then R∗(G)
is well defined; i.e., if τ1 and τ2 are two valid reduction sequences for G of maximal length,
then G〈τ1〉 = G〈τ2〉.

15

As remarked in Section 2.2, it follows by taking D = ∅ that the reduced graph r(G) is
well-defined.

4.4 Upper bounds for deletion depth

We first show that deletion depth is not much larger than deletion-reduction depth.

We will need the fact that series-parallel graphs have small separators. This follows from
the fact that series-parallel graphs have treewidth at most two [1], and the following
theorem of Robertson and Seymour:

Theorem 4.2 ([12]) Suppose we have a tree decomposition of G. If the tree decomposi-
tion has width < w and Q ⊆ V (G), then there exists X ⊆ V (G) with |X| ≤ w such that
every component of G−X has at most 1

2
|Q−X| vertices which are in Q.

Lemma 4.3 Let G be a graph with n vertices. Then dd(G) ≤ drd(G) +O(log n).

Proof. Suppose that drd(G) = k, and let G0 = r(G), G1, . . . , Gk, with Gk the empty
graph, and vertex sets V0, . . . , Vk−1, satisfy (a) Vi−1 is a subset of V (Gi−1) containing at
most one vertex from each component of Gi−1; (b) Gi = r(Gi−1 − Vi−1).

Define the graphs G′i, i = 0, . . . , k, by G′0 = G and G′i = G′i−1 − Vi−1. We will prove that
(a) Vi contains at most one vertex from each component of G′i, and (b) r(G′k) is empty.

First, it is clear that for each i, V (Gi) ⊆ V (G′i), hence Vi ⊆ V (G′i) for each i.

Let D = V0 ∪ · · · ∪ Vi−1 for some i. Enumerate the vertices in D as w1, . . . , wt, where we
list first those in V0, then those in V1 etc. Then we can define two maximal valid reduction
sequences starting from G as follows:

(i) First do series-parallel reduction to form r(G), then alternately delete the next wj
in the enumeration of D, and do series-parallel reduction as long as possible.

Note that none of the series-parallel reductions can be of a vertex in D, since these
vertices all have degree at least 3 when deleted (and therefore also earlier in the
sequence). Thus this reduction sequence is valid, and clearly maximal.

(ii) Delete in turn all of the vertices in D, then perform series-parallel reductions as
long as possible. This sequence is clearly valid and maximal.

By Theorem 4.1, these two sequences lead to the same graph, which is Gi (since sequence
(i) corresponds with the definition of G0, . . . , Gi).

Now deleting V0, . . . , Vi−1 from G results in G′i, hence sequence (ii) results in the graph
r(G′i). Thus we obtain r(G′i) = Gi. Also Vi contains at most one vertex from each
component of Gi. If two vertices are in the same component of G′i then (if still present)
they are also in the same component of r(G′i). Hence Vi contains at most one vertex from
each component of G′i, as required.

16

Also, since r(G′k) = Gk which is empty, we know that G′k is series-parallel. It follows
from Theorem 4.2 (with Q the whole vertex set) that any series-parallel graph has a set
of at most 3 vertices whose deletion from the graph leaves all components of size at most
1
2
(n − 2). From this it is easy to show that dd(G) ≤ 3(log2 n) + 1 for any series-parallel

graph G.

It is clear that dd(G) ≤ k + dd(G′k). Hence since k = drd(G) we have dd(G) ≤ drd(G) +
O(log n), as required.

In view of Lemma 4.3, the upper bounds on deletion-reduction depth from Section 3 carry
over unchanged to deletion depth (the O(log n) term can be absorbed into existing terms).

Theorem 4.4 Let G be a graph with m edges, and r(G) be the reduced graph of G. Let
nd be the number of vertices of degree d in r(G). Then

dd(G) ≤
∑

v∈V (r(G))

g1/5(dr(G)(v)) + o(|V (G)|) =
∑
d≥3

g1/5(d)nd + o(|V (G)|)

and

dd(G) ≤ 9

50
m+ o(m).

Theorem 4.5 Let G be a graph of average degree d ≥ 2, with n vertices and m edges.
Then if G is connected, or d ≥ 5,

dd(G) ≤ (g1/5(d) + o(1))n = (2g1/5(d)/d+ o(1))m = (1− 17/5
d+1

+O(1/d3))n.

Somewhat surprisingly, these results show that series-parallel reductions of Max 2-CSP
instances are not really needed to obtain the time bounds in Theorems 3.9–3.11. Although
series-parallel reductions are used in the construction of the deletion tree (specifically to
determine the sets V0, . . . , Vk−1), once the deletion tree for G has been constructed, any
instance of Max 2-CSP on G can be solved using only delete and branch operations,
treating all vertices, regardless of degree, in the same way.

4.5 dd(G) > drd(G)

It seems, intuitively, very likely that the deletion depth cannot be smaller than the
deletion-reduction depth, and this is indeed the case. To prove this we first need the
following lemma.

Lemma 4.6 Let w be a vertex of G, and H be a subgraph of G. Then one of the following
holds (i) r(H) is empty, (ii) r(H) = r(H ′) for some subgraph H ′ of G− w, or (iii) there
exists a vertex v of r(H) such that r(r(H)− v) = r(H ′) for some subgraph H ′ of G− w.

17

Proof. The result is immediate if r(H) is empty, so suppose r(H) is nonempty. If v is a
vertex of r(H), then by Theorem 4.1 with D = {v}, it is easy to see that r(r(H)− v) =
r(H − v).

If w is not a vertex of H, then H is a subgraph of G−w. Hence (ii) is true with H ′ = H.

If w is a vertex of r(H), then (iii) is true if we choose v = w, since H − w is a subgraph
of G− w.

The remaining case is when w is a vertex of H but not of r(H), i.e. w is removed by the
series-parallel reduction of H. So consider a sequence r1, . . . , rt of series-parallel reductions
which reduces H to r(H). One of these must remove the vertex w. If this reduction is
of type R0, R1 or R2a, then the reduction is identical with the deletion of w. Then
taking D = {w}, this sequence of reductions must give the same result as deleting w and
then using series-parallel reductions, so that r(H) = r(H − w). Hence (ii) is true with
H ′ = H − w.

So suppose that the reduction rj which removes w is of type R2n. Since a reduction of
type R2n does not change the degree of any other vertex, it is clear that we can postpone
this reduction and continue with the other reductions until either a neighbour of w is
deleted by a reduction rk of type R1 or R2a, or no further reductions can be done.

In the first case, the removal of the neighbour of w leaves w with degree 1, so it can
then be deleted by a reduction r′j of type R1. The resulting graph, obtained from the
sequence r1, . . . , rj−1, rj+1, . . . , rk, r

′
j is identical with the one obtained from the original

sequence r1, . . . , rk. Thus the graph r(H), which results from r1, . . . , rt, also results from
r1, . . . , rj−1, rj+1, . . . , rk, r

′
j, rk+1, . . . , rt, where r′j, which removes w, is of type R1. Then

from above r(H) = r(H − w) and (ii) is true with H ′ = H − w.

So assume that no further reductions can be done. Then the sequence r1, . . . , rj−1, rj+1, . . . , rt
results in the graph r(H) except for the vertex w subdividing one edge uv say. Then delet-
ing v leaves w with degree 1, so w can then be removed by a reduction of type R1 (which
is just a deletion). Further series-parallel reduction gives the graph r(r(H) − v). Let
D = {v, w} in Theorem 4.1. Then we have a maximal valid reduction sequence which
obtains r(r(H) − v) from H. However another maximal valid reduction sequence is to
delete w, then delete v, then do series-parallel reductions as long as possible. This clearly
gives r(H − {v, w}), hence by Theorem 4.1, r(r(H)− v) = r(H − {v, w}). But then (iii)
is true with H ′ = H − {v, w}, as required.

DC operations

Define a DC operation to be the deletion of at most one vertex from each component of
a graph (but at least one vertex overall).

Lemma 4.7 Let G be a nonempty graph, and H a subgraph of G. Let φ1, . . . , φk be a
sequence of operations each of which is one of R0, R1, R2n, R2a, or DC. Suppose that
G(0) = G, G(i) = φi(G

(i−1)) for i = 1, . . . , k, and G(k) is empty. Then drd(H) ≤ t, where
t is the number of DC operations in the sequence.

18

Proof. We will use induction on k. If k = 0, then G is the empty graph, and then H is
empty , so drd(H) = 0 as required. So suppose that k > 0, and that G has s components
C1, . . . , Cs. Let the corresponding components of H be H1, . . . , Hs (some of these may be
empty).

First suppose that φ1 is one of R0, R1, R2n, R2a, and let v be the vertex removed by
φ1. If H does not contain v, then H is a subgraph of G(1). If H does contain v, then
it is easy to see that we can choose an operation φ, one of R0, R1, R2n, R2a, so that
φ(H) is a subgraph of G(1). Since G(1) can be transformed into the empty graph by
a sequence of k − 1 operations, then by the inductive hypothesis we have in the first
case drd(H) ≤ t, as required. In the second case we have drd(φ(H)) ≤ t, and since
drd(φ(H)) = drd(r(H)) = drd(H), the result follows.

If φ1 is a DC operation, there is a set V0 containing at most one vertex from each compo-
nent Cj, such that G0−V0 can be transformed into the empty graph by a sequence of k−1
operations, of which t − 1 are DC operations. Suppose that V0 contains a vertex wj in
component Cj. Then from Lemma 4.6, one of the following holds (i) r(Hj) is empty, (ii)
r(Hj) = r(H ′j) for some subgraph H ′j of Gj −wj, or (iii) there exists a vertex vj of r(Hj)
such that r(r(Hj) − vj) = r(H ′j) for some subgraph H ′j of Gj − wj. Let V ′0 consist of all
the vertices vj, for those components Cj for which (iii) holds. Then r(r(H)−V ′0) is equal
to r(H ′) for some subgraph H ′ of G0− V0. By the inductive hypothesis, drd(H ′) ≤ t− 1,
hence drd(r(H ′)) ≤ t − 1. But then r(r(H) − V ′0) has deletion-reduction depth at most
t−1, and V ′0 contains at most one vertex from each component of r(H), so by the definition
of deletion-reduction depth, we have drd(H) ≤ t, as required.

Remarks: (1) In the definition of deletion-reduction depth, we required that the graph be
fully reduced between successive DC operations. The lemma above shows that no advan-
tage would be gained by allowing arbitrary sequences of series-parallel reductions between
successive DC operations. (2) Similarly, it follows that drd(G) equals the minimum, over
all possible deletion-reduction trees for G, of the maximum number of deletions on a path
from the root to a leaf (previously we had only established that drd(G) was an upper
bound for this quantity).

Lemma 4.8 Let G be a nonempty graph, and H a subgraph of G. Then drd(H) < dd(G).

Proof. By definition, G can be transformed into the empty graph by a sequence of dd(G)
DC operations. Hence before the last of these operations, the graph must have no edges,
so the last DC operation can be replaced by a sequence of R0 operations. Then by
Lemma 4.7, drd(H) ≤ dd(G)− 1, as required.

Corollary 4.9 Let G be a nonempty graph. Then drd(G) < dd(G).

Proof. Take H = G in Lemma 4.8.

Lemma 4.10 Let G be a nonempty graph, and H a subgraph of G. Then drd(H) <
drd(G).

19

Proof. By definition, G can be transformed into the empty graph by a sequence consisting
of reductions (R0, R1, R2a, R2n) and at most drd(G) DC operations. Then by Lemma 4.7,
drd(H) ≤ drd(G), as required.

Lemma 4.11 Let G be a graph, and X a subset of the vertices of G. Then drd(G) ≤
|X|+ drd(G−X).

Proof. Consider the sequence of operations consisting of (i) |X| DC operations, delet-
ing one element of X at a time, followed by (ii) a sequence of deletions and reductions
containing at most drd(G − X) DC operations and resulting in the empty graph (this
exists by the definition of drd(G − X)). This contains a total of |X| + drd(G − X) DC
operations, so the result follows from Lemma 4.7.

4.6 A lower bound for deletion depth of cubic graphs

Kostochka and Melnikov [9] show that almost every cubic graph G has bisection width
bw(G) ≥ 1

9.9
n. We can use this to obtain a linear lower bound on the deletion depth of

cubic graphs.

We first bound the bisection width in terms of the deletion depth and maximum degree.

Lemma 4.12 Let G be a connected graph with maximum degree ∆. Then bw(G) ≤
b∆

2
c(dd(G)− 1) + b∆+1

2
c(∆− 2).

Proof. Let k = dd(G). Then there is a sequence G0 = G,G1, . . . , Gk, with Gk the
empty graph, and a sequence V0, . . . , Vk−1 of vertex sets, such that for each i = 1, . . . , k,
Vi−1 is a subset of V (Gi−1) containing one vertex from each component of Gi−1, and
Gi = Gi−1 − Vi−1. Let T be the corresponding deletion tree for G.

We impose a linear ordering on the vertices of T (and G) as follows: for each vertex v
of T , the children of v are the roots of subtrees. We order these subtrees arbitrarily and
make them all greater than v in the ordering (this is the usual pre-order). Enumerate the
vertices as v1 ≤ v2 ≤ · · · ≤ vn.

Then for each vertex vi define a partition πi of V (G) by setting Ai = {v | v ≤ vi} and
Bi = {v | v > vi}. For any node u of T , let P (u) be the path in T from u to the root.

Now consider an edge vw in G with v ∈ Ai and w ∈ Bi, so that v ≤ vi < w. Let y
be the node in T where the paths P (v) and P (w) meet. If y 6= v, w, then v and w are
in different components of G − V (P (y)), which is impossible since vw is an edge. We
cannot have y = w, for then v is a descendent of w, contradicting v < w. Hence y = v
and w is a descendent of v. Let z be the node where the paths P (v) and P (vi) meet,
and suppose that z 6= v. Then we cannot have z = vi, for then v is a strict descendent
of vi, contradicting v ≤ vi. So suppose that z 6= vi. Then v, vi are in subtrees T1, T2

respectively of z, and since v ≤ vi, T1 comes before T2 in the ordering. However since w
is a descendent of v, this means that w is in T1 also, so w < vi, a contradiction. So we
must have z = v, hence v is on the path P (vi) in T .

20

Thus for every edge vw in G with v ∈ Ai and w ∈ Bi, the endpoint in Ai, i.e., v, is on
the path P (vi). Also if vi is a leaf of the tree, then v cannot be equal to vi (because w is
a descendent of v). Hence since |V (P (vi))| ≤ dd(G), at most dd(G)− 1 vertices of Ai are
adjacent in G to a vertex of Bi.

Now for each j = 1, . . . ,∆, let X
(j)
i be the set of vertices of Ai which have j neighbours

in G in the set Bi. Thus
∑∆

j=1 |X
(j)
i | ≤ dd(G)− 1. Also cut(πi) =

∑∆
j=1 j|X

(j)
i |.

Now let Zi =
⋃∆
j=b∆/2c+1X

(j)
i . Thus Zi consists of those vertices of Ai which have more

neighbours in Bi than in Ai. For any two disjoint sets U,W of vertices, let E(U,W) be
the set of edges with one endpoint in U and the other in W . Then from the definition of
X

(j)
i , we have

|E(Zi, Bi)| =
∆∑

j=b∆/2c+1

j|X(j)
i |,

hence

|E(Zi, Ai − Zi)| ≤ |E(Zi, Ai)| ≤
∆∑

j=b∆/2c+1

(∆− j)|X(j)
i |.

Now form a new partition π′i = (A′i, B
′
i) by moving the vertices in Zi from Ai to Bi, i.e.

set A′i = Ai − Zi and B′i = Bi ∪ Zi. Then

|E(A′i, B
′
i)| = |E(Ai − Zi, Bi)|+ |E(Ai − Zi, Zi)|.

Hence we have

cut(π′i) ≤
b∆/2c∑
j=1

j|X(j)
i |+

∆∑
j=b∆/2c+1

(∆− j)|X(j)
i |

≤ b∆/2c
∆∑
j=1

|X(j)
i |

≤ b∆/2c (dd(G)− 1).

Thus each of these cuts is of approximately the right size, but we also need the partition
to be balanced. To achieve this we first choose I so that partition π′I is as nearly balanced

as possible. We have |A′i| = i −
∑∆

j=b∆/2c+1 |X
(j)
i |, so that |A′i| = bn/2c + ri, where

ri = i− bn/2c −
∑∆

j=b∆/2c+1 |X
(j)
i |. Thus we want to choose I such that rI is as small as

possible.

First note that ri+1 − ri ≤ ∆ + 1, since at most ∆ vertices in
⋃∆
j=b∆/2c+1X

(j)
i may be

neighbours of vi+1 and so absent from
⋃∆
j=b∆/2c+1 X

(j)
i+1.

Also rbn/2c ≤ 0, while each set X
(j)
n is empty (since Bn is empty) so that rn = dn/2e > 0.

Then it follows easily that there is an integer I ≥ bn/2c such that |rI | ≤ b∆+1
2
c.

Thus we have |A′I | = bn/2c + rI , where |rI | ≤ b∆+1
2
c. Then we can obtain a balanced

partition of G by moving at most b∆+1
2
c vertices from A′I to B′I or from B′I to A′I . Provided

we choose these to be endpoints of edges in the cut, this will increase the size of the cut

21

π′I by at most b∆+1
2
c(∆− 2), hence we obtain

bw(G) ≤
⌊

∆

2

⌋
(dd(G)− 1) +

⌊
∆ + 1

2

⌋
(∆− 2).

Corollary 4.13 Let G be a connected cubic graph. Then bw(G) ≤ dd(G) + 1.

Note that the cubic graph K3,3 has deletion depth 4 and bisection width 5, so this bound
is best possible.

Applying the result of Kostochka and Melnikov [9] that almost every cubic graph G has
bw(G) ≥ 1

9.9
n, we obtain the following.

Corollary 4.14 Almost all cubic graphs G satisfy dd(G) ≥ 1
9.9
|V (G)| − 1.

Since drd(G) ≥ dd(G)−O(log n) by Lemma 4.3, we have

Corollary 4.15 Almost all cubic graphs G satisfy drd(G) ≥ 1
9.95
|V (G)|.

An improvement on the upper bound of 1
5
n+ o(n) from Lemma 3.4 would lead to a faster

algorithm for Max 2-CSP. Thus it would be of interest to bring the upper and lower
bounds closer together.

Appendix

We now prove the properties of the function max defined in Lemma 3.3. Recall that for
any real numbers x, y,

max(x, y) = min(max(x, y − 1),max(x− 1, y)).

First note the following:

A. max(x+ a, y + a) = max(x, y) + a.
This follows from the corresponding property of max and min.

B. max(x, y) = max(max(x, y)− 1,min(x, y)).
Set M = max(x, y) and m = min(x, y). Then clearly max(x, y) = max(M,m), and

max(M,m) = min(max(M,m− 1),max(M − 1,m))

= min(M,max(M − 1,m))

= max(M − 1,m).

Then the properties of max can be verified as follows:

22

M1. max is monotone non-decreasing in each argument.
This follows from the monotonicity of max and min.

M2. max(x, y) ≥ max(x, y) ≥ max(x, y)− 1.
This follows immediately from B.

M3. If |x− y| ≤ 1, max(x, y) = min(x, y).
This also follows immediately from B.

M4. max(x− 1, y + 1) ≤ max(x, y) + 1.

max(x, y) + 1 = max(x+ 1, y + 1) (by A)

≥ max(x− 1, y + 1) (by M1).

M5. If x′ ≤ max(x, y)− 3, and y′ ≤ min(x, y)− 1, then max(x′, y′) ≤ max(x, y)− 2.

max(x′, y′) ≤ max(x′, y′ − 1) (by definition of max)

= max(x′ + 2, y′ + 1)− 2

≤ max(max(x, y)− 1,min(x, y))− 2

= max(x, y)− 2 (by B).

Acknowledgements

I would like to thank the anonymous referee for a very careful reading of the paper and
a number of helpful comments.

References

[1] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theo-
retical Computer Science 209 (1998) 1–45.

[2] K. J. Edwards and G. E. Farr, Improved upper bounds for planarization and series-
parallelization of average degree bounded graphs, Electronic Journal of Combina-
torics 19 (2) (2012) #P25.

[3] K. J. Edwards and E. McDermid, A general reduction theorem with applications to
pathwidth and the complexity of MAX 2-CSP, Algorithmica, to appear.

[4] F. V. Fomin and K. Høie, Pathwidth of cubic graphs and exact algorithms, Inf.
Process. Lett. 97 (2006) 191–196.

[5] S. Gaspers and G. B. Sorkin, A universally fastest algorithm for Max 2-Sat, Max
2-CSP, and everything in between, J. Comput. System Sci. 78 (2012), 305–335.

[6] S. Gaspers and G. B. Sorkin, Separate, Measure and Conquer: Faster Algorithms for
Max 2-CSP and Counting Dominating Sets, (2014), arXiv:1404.0753v1 [cs.DS].

23

[7] A. Golovnev and K. Kutzkov, New Exact Algorithms for the 2-Constraint Satisfaction
Problem, unpublished manuscript.
http://cims.nyu.edu/~golovnev/papers/max2csp.pdf

[8] J. Kneis, D. Mölle, S. Richter and P. Rossmanith, A bound on the pathwidth of sparse
graphs with applications to exact algorithms, SIAM Journal on Discrete Mathematics
23 (2009) 407–427.

[9] A.V. Kostochka, L.S. Melnikov, On a lower bound for the isoperimetric number
of cubic graphs, in: V.F. Kolchin et al. (Eds.), Probabilistic Methods in Discrete
Mathematics, Proc. third Int. Petrozavodsk Conf., Progress in Pure and Applied
Discrete Mathematics, vol. 1, TVP/VSP, 1993, pp. 251–265.

[10] A. S. Kulikov and S. S. Fedin, Solution of the maximum cut problem in time 2|E|/4

(Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 293
(2002), Teor. Slozhn. Vychisl. 7, 129–138, 183; translation in J. Math. Sci. (N. Y.)
126 (2005), 1200–1204.

[11] B. Monien and R. Preis, Upper bounds on the bisection width of 3- and 4-regular
graphs, J. Discrete Algorithms 4 (2006) 475–498.

[12] N. Robertson and P.D. Seymour, Graph minors. II. Algorithmic aspects of tree-width,
J. Algorithms 7 (1986) 309–322.

[13] A. D. Scott and G. B. Sorkin, Faster algorithms for MAX CUT and MAX CSP, with
polynomial expected time for sparse instances, in: Proc. 7th International Workshop
on Randomization and Approximation Techniques in Computer Science (RANDOM
2003), Lecture Notes in Computer Science 2764, Springer, 2003, pp. 382–395.

[14] A. D. Scott and G. B. Sorkin, A faster exponential-time algorithm for Max 2-Sat, Max
Cut, and Max k-Cut, Tech. Report RC23457 (W0412-001), IBM Research Report,
December 2004.

[15] A. D. Scott and G. B. Sorkin, Linear-programming design and analysis of fast algo-
rithms for Max 2-CSP, Discrete Optimization 4 (2007) 260–287.

[16] A. D. Scott and G. B. Sorkin. Polynomial constraint satisfaction problems, graph
bisection, and the Ising partition function, ACM Trans. Algorithms 5 (2009) Art.
45.

[17] R. Williams, A new algorithm for optimal constraint satisfaction and its implications,
in: J. Dı́az et al. (eds.), Proc. 31st International Colloquium on Automata, Languages
and Programming (ICALP) (Turku, Finland, 2004), Lecture Notes in Computer
Science 3142, Springer, 2004, pp. 1227–1237.

24

