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Abstract A state-of-the-art data analysis procedure is pre-
sented to conduct hierarchical Bayesian inference and hy-
pothesis testing on delay discounting data. The delay dis-
counting task is a key experimental paradigm used across
a wide range of disciplines from economics, cognitive sci-
ence, and neuroscience, all of which seek to understand how
humans or animals trade off the immediacy verses the mag-
nitude of a reward. Bayesian estimation allows rich infer-
ences to be drawn, along with measures of confidence, based
upon limited and noisy behavioural data. Hierarchical mod-
elling allows more precise inferences to be made, thus us-
ing sometimes expensive or difficult to obtain data in the
most efficient way. The proposed probabilistic generative
model describes how participants compare the present sub-
jective value of reward choices on a trial-to-trial basis, esti-
mates participant- and group-level parameters. We infer dis-
count rate as a function of reward size, allowing the mag-
nitude effect to be measured. Demonstrations are provided
to show how this analysis approach can aid hypothesis test-
ing. The analysis is demonstrated on data from the popular
27-item monetary choice questionnaire (Kirby, 2009), but
will accept data from a range of protocols, including adap-
tive procedures. The software is made freely available to re-
searchers.

Keywords Decision making · Delay discounting · Inter-
temporal choice · magnitude effect · Time preference ·
Bayesian estimation · MCMC · Financial psychophysics

The analysis code is freely downloadable from https://github.

com/drbenvincent/delay-discounting-analysis.

B. T. Vincent
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1 Introduction

Appropriately trading off immediacy versus magnitude of a
reward is a fundamental aspect of decision making across
many domains. Would you like 1 marshmallow now, or 2
in 15 minutes? Should you spend your wages on a holiday
now, or contribute to a larger pension in a few decades time?
Should society consume fossil fuels now or maintain the
biosphere in the long run? Learning how people discount
future rewards is crucial across many fields of study, so that
we can understand, predict, and nudge people’s decisions.

Psychologists attempt to survey the behavioural phenom-
ena and propose cognitive mechanisms (Mischel et al., 1972;
Green et al., 1994; Weatherly and Weatherly, 2014). Neuro-
scientists study the neural mechanisms (Cohen et al., 2004;
Kable and Glimcher, 2007; Kalenscher and Pennartz, 2008;
Peters and Büchel, 2011). Theorists attempt to explain why
discounting behaviour might arise in the first place (Kurth-
Nelson et al., 2012; Killeen, 2009; Fawcett et al., 2012; Stevens
and Stephens, 2010; Cui, 2011; Sozou, 1998). Economists
attempt to understand microeconomic decision making with
focus upon any violations of rationality (Frederick et al.,
2002). And policy theorists study how groups with differ-
ent time preferences could come to a collective decision
over issues such as climate change (Millner and Heal, 2014).
Therefore, making accurate and rich inferences about how
people discount future rewards is important in a wide vari-
ety of domains.

The delay discounting (or inter-temporal choice) task is
one way in which people study this trade-off between the
immediacy and magnitude of a reward (see Figure 1). The
task consists of participants repeatedly answering questions
of the form “Would you prefer £A now, or £B in D days.”
Most people would choose an immediate reward of £100
now over £101 in 1 year, but as the value of the delayed
reward increases there will be a point at which the delayed

AUTHOR ACCEPTED MANUSCRIPT: A few minor issues and typo’s will be corrected in the final version which will be available from Behaviour Research Methods (published by Springer)

https://github.com/drbenvincent/delay-discounting-analysis
https://github.com/drbenvincent/delay-discounting-analysis


2 Benjamin T. Vincent

Fig. 1 Estimating a discount function from data of a single hypothet-
ical participant in the delay discounting task. A total of 28 questions
were asked (points; filled = chose delayed, unfilled = chose immedi-
ate reward) with 2 possible response errors. The normalised discount
function A

V defines the indifference point, where the subjective value
of a larger future reward B is equal to a smaller immediate reward A.
It is estimated by finding the indifference point where preferences re-
verse from immediate to delayed. Which of the 3 functions shown is
the correct one, and how can we infer this from the data?

reward becomes preferable. Behaviour in delay discounting

tasks will depend upon how a participant discounts future

rewards, and this is often measured in the form of a discount

function describing how the present subjective value of a re-

ward decreases as its delivery is delayed. A more general

form of the delay discounting question has also been ex-

plored in the form “Would you prefer £A in DA days, or £B
in DB days.”

Many studies of temporal discounting use a common

workflow (see Figure 2). After collecting delay discounting

data, best guess discount rates are estimated for a number

of participants. Hypothesis tests can then be carried out to

probe for relationships between the discount rates and other

participant variables of interest, such as age, reward magni-

tude, fMRI activity in a region of interest, experimental vs.

control condition etc. There are a number of challenges to

drawing robust research conclusions about discounting be-

haviour which are outlined in the next section. The present

work will seek to solve or at least partially address these

using a Bayesian approach by either: producing better best-

guess discount rates to be used in subsequent hypothesis

tests, or through combined parameter estimation and hy-

pothesis testing. The former approach is more general, but

we loose knowledge of how uncertain we are about partici-

pant’s discount rates. The latter approach retains this infor-

mation and so may lead to more robust conclusions, but may

require the model to be extended to deal with particular re-

search contexts.

Fig. 2 The role of the present work (dashed boxes) in delay discount-
ing research. A traditional research workflow may involve estimat-
ing discount rates based upon delay discounting data. Best-guess dis-
count rates are then combined with other participant variables to form
a dataset suitable for hypothesis tests. The present work can aid this
traditional workflow through improved parameter estimation. It also
allows for combined parameter estimation and hypothesis testing. This
could afford more robust research conclusions because participant level
uncertainty can propagate to the group level which is often where hy-
pothesis tests are targeted.

1.1 Challenges

The first challenge is that inferences about a participant’s

discounting behaviour are based upon limited number of

data. For example, given the data points from a hypothetical

participant in Figure 1, we can see that we will have a de-

gree of uncertainty over the discount function; each of the 3

discount functions shown are about equally consistent with

the data. If we had more data points we could better infer the

discount function, but this comes at a cost. Data cost is most

acute in experiments paying real monetary rewards, but even

if the rewards are hypothetical, testing time is still a limiting

factor, particularly so when testing special populations.

Second, participants occasionally make response errors

so some of the data does not accurately represent subjective

preferences. Figure 1 demonstrates two likely response er-

rors; should we let these bias our estimates of a participant’s

discount rate, or should we discount them as response errors.

How can we incorporate this uncertainty when inferring a

participant’s discount rate?

Third, previous research has established that a partic-

ipants’ intertemporal preferences are influenced by many

factors such as age (Green et al., 1994), income (Green et al.,
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1996), and the magnitude of rewards on offer (Kirby and
Maraković, 1996; Johnson and Bickel, 2002). Can we achieve
better parameter estimates and more robust hypothesis tests
by incorporating prior knowledge that discount rates may
vary as a function of covariates of interest?

1.2 Solutions

The challenges set out above involve uncertainty, prior knowl-
edge, and inference, and so it is natural to seek solutions in
the form of Bayesian analysis methods. The overall aim of
this work is to allow more robust research conclusions to be
drawn through improved analysis of delay discounting data.
The approach outlined below is implemented in Matlab code
which is available to download1. The software is simple to
use (see Section 2.3), installation and usage instructions are
provided, and can fit within a research workflow described
in Figure 2. By addressing the challenges set out above, this
work makes a number of contributions to the analysis of de-
lay discounting data:

1. I formulated a novel Bayesian probabilistic generative
model of behaviour in the delay discounting task (Sec-
tion 2). This allows us to: specify prior knowledge about
latent variables driving discounting behaviour, update this
knowledge rationally in the light of new empirical data,
specify our level of confidence (or lack thereof) in our
beliefs, and to conduct Bayesian hypothesis testing. The
proposed model allows hierarchical Bayesian inference
(also known as multi-level modelling) to be conducted
on the trial level, the participant level, and at the group
level. This means, for example, that relationships be-
tween participant covariates (such as age) and discount
rates can affect inferences made at the participant level.
The model is flexible enough to analyse data obtained
from a variety of delay discounting protocols where the
question is in the form “Would you prefer £A in D

A

days, or £B in D

B days.” A rich set of inferences result
from using this model, demonstrated in Section 3 with
a dataset consisting of 15 participants who completed
the widely used 27-item monetary choice questionnaire
(Kirby, 2009).

2. I explicitly account for measurement error, that is erro-
neous responses given by the participant in the delay
discounting task which are not truly reflective of their
discounting preferences. This is done with a psychomet-
ric function which describes how participants’ responses
are probabilistically related to the present subjective value
of the sooner and later rewards (Section 2.1.2). This ap-
proach is common in visual psychophysics, and I pro-
pose it is useful to incorporate it into what is essentially

1
https://github.com/drbenvincent/

delay-discounting-analysis

financial psychophysics. This allows us to distinguish
between a participant’s baseline response error rate, and
errors that may arise from their imprecise comparison
between the present subjective values of A and B.

3. We utilise prior knowledge of factors that influence dis-
count rates in two ways. Firstly, the structure of the model
incorporates our knowledge that participant’s discount
rate decreases as the reward magnitude increases (the
magnitude effect, see Section 2.1.1). So rather than es-
timating a discount rate, we estimate how the discount
rate varies as a function of reward magnitude. Secondly,
Appendix B discusses the approach to extend the model
to consider linear relationships between participant co-
variates (such as age) and group level parameters.

2 The model

2.1 The probabilistic generative model

A probabilistic generative model was created to describe the
putative causal processes which give rise to observed par-
ticipant response data, given a set of monetary choices (see
Figure 3). Readers are directed to Lee and Wagenmakers
(2014) for a thorough and approachable introduction to the
methods used here.

2.1.1 Calculating present subjective value

On each trial, participants make a comparison between the
sooner smaller reward (£A) and the longer larger reward
(£B), see next section. However the participant’s do not com-
pare these quantities directly, but the present subjective value
of each reward. That is, the present subjective value of a re-
ward V

reward is equal to the actual reward multiplied by a
discount factor. We assume the simple 1-parameter hyper-
bolic discount function2 (Mazur, 1987),

V

reward = reward⇥ 1
1+ kD| {z }

discount factor

=
reward
1+ kD

. (1)

Note that in the special case where the sooner reward is to
be delivered immediately (DA = 0), then V

A = A. No strong
claim is being made that Equation 1 is a true description of
how people discount future rewards (e.g. Luhmann, 2013), it
was chosen because of its ubiquitous use in the literature, but
also see Section 4.1. However, the magnitude effect shows
that the discount rate k varies as a function of the magnitude

2 This class of discounting model assumes it is the value of the re-
ward itself that is discounted. Models where it is the utility of a reward
that is discounted may offer a broader explanation of discounting be-
haviour (Killeen, 2009).

https://github.com/drbenvincent/delay-discounting-analysis
https://github.com/drbenvincent/delay-discounting-analysis
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Fig. 3 A graphical model of the delay discounting task. Shaded nodes correspond to observed data, unshaded nodes are latent variables. Double
bordered nodes are deterministic quantities. Circles represent continuous variables, and the square node represents a discreet variable. P is the
number of participants, T

p

the total number of trials available for participant p. Throughout this paper, normal distributions are parameterised by
mean and standard deviation.

of the delayed reward (see Figure 4), so the actual function
used was

V

reward =
reward

1+ f (reward)D
(2)

where f (reward) describes the magnitude effect. Based upon
Figure 8 of Johnson and Bickel (2002) we assume log(k) =
m log(reward)+ c, where m and c describe the slope and in-
tercept of a line describing how the log discount rate de-
creases linearly as log reward magnitude increases (also see
Appendix A). Therefore

k = f (reward) = exp(m log(reward)+ c). (3)

and the resulting subjective present value is

V

reward =
reward

1+ exp(m log(reward)+ c)D
. (4)

While the magnitude effect is not a new idea, Equations 2 –
4 constitute, as far as the author is aware, a novel proposal
to specify the discount factor as a function of both delay and
reward magnitude (see Figure 4).

2.1.2 Choosing between options

Intuitively, a participant will prefer the option with higher
present subjective value, so a simple decision rule would be
to choose the delayed reward if V

B �V

A > 0, or the immedi-
ate reward otherwise. Participant’s responses may not be so
clear cut however, so we model the participant’s probability
of choosing the delayed reward using a psychometric func-
tion (see Figure 5). This relates the difference between the
present subjective value of the delayed and immediate re-
wards (V B �V

A) to the probability of choosing the delayed
reward,

P(choose delayed) = e +(1�2.e).F
✓

V

B �V

A

a

◆
(5)

where F() represents the standard cumulative normal distri-
bution. The parameter a defines the ‘acuity’ of the compar-
ison between options (Figure 5). The mechanisms responsi-
ble for this uncertainty are not explored further here. But if
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Fig. 4 Modelling the magnitude effect with a discount surface. Shown
are two examples (rows) with different slope and intercept parame-
ters (m,c). These parameters describe the magnitude effect (a, c), how
discount rate is related to delayed reward magnitude. This function in
turn describes a range of discount functions (b, d) which together form
a discount surface.

a = 0, then the psychometric function would be a step func-
tion and participants would always choose the reward with
highest present subjective value (Figure 5a). As a increases
however, it means there is more error in this comparison be-
tween V

A and V

B. Comparison acuity a takes on positive
values, and we define a simple Normal prior distribution
(truncated at zero) with uninformative uniform priors over
the mean µa and standard deviation sa . The psychometric
function also incorporates that participants make response
errors at some unknown rate e (Figure 5c, d) regardless of
the proximity of the present subjective values of the rewards.

Responses are modelled as Bernoulli trials (a biased coin
flip) where P(choose delayed) is the bias, and a value of R =
1 means the delayed choice (B) was preferred.

2.2 Hierarchical modelling

Figure 3 shows that we model at the trial, participant, and
group levels. Interested readers are referred to Lee (2011)
for an introduction to hierarchical Bayesian modelling. The
model presented here is useful when analysing data from
participants assumed to be drawn from a single group level
population.

In terms of the magnitude effect, each participant is as-
sumed to have a discount rate that varies as a function of re-
ward magnitude. This relationship is described by slope and
intercept parameters (m

p

,c
p

) for each participant p. We also

Fig. 5 Example psychometric functions which relate the difference
between V

B and V

A to the probability of choosing the delayed re-
ward. Panels a and c represent participants with precise comparison
of present subjective values, panels b and d show examples when this
comparison is imprecise. Panels a and b represent a participant who
does not make systematic response errors, in contrast to a systemati-
cally ‘clumsy’ responder in panels c and d.

assume that all the participants being considered are random
samples from a single group level population with group
level slope and intercepts G

m ⇠ Normal(µm,sm), and G

c ⇠
Normal(µc,s c), respectively. These hyperpriors and param-
eters were estimated from the literature, see Appendix A.

Hierarchical modelling is also used for the psychometric
function parameters. Each participant is assumed to have an
error rate e

p

and a comparison acuity a
p

. Again, participants
are assumed to be drawn from a population. Group level er-
ror rates G

e are Beta distributed, where the parameterisation
is that w is the mode and k is the concentration parameter:
G

e ⇠ Beta(0,0.5)(w(k � 2)+ 1,(1 � w)(k � 2 + 1)). Values
above 0.5 were not allowed as this flips the psychometric
function, implying that participants prefer the small of the
present subjective values. We set a mild prior for w that the
most likely error rate is 1%, but specify an uninformative
prior over the concentration parameter k . Group level com-
parison acuity was modelled as G

a ⇠ Normal(�•,0)(µa ,sa).

2.3 Using the software

Figure 2 shows the broader context in which this analy-
sis software can be used. While the model presented above
may look complex, practical use of the software is straight-
forward, consisting of a few steps:

1. Collect experimental data and save it in a tab-delimited
text file with columns representing A, D

A, B, D

B, R, and
each row representing a trial. Example datasets are pro-
vided.
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2. Start Matlab, navigate to the folder containing the anal-
ysis software downloaded from the webpage above.

3. An analysis session can be run with a few simple com-
mands, outlined in full in the software documentation.
Example analysis scripts are provided. Functions are pro-
vided to export publication-quality figures such as those
shown in Section 3, and best-guess (point estimate) pa-
rameters for later use in hypothesis testing.

One complexity however will be ensuring that the prior dis-
tributions over magnitude effect parameters are appropriate
for the particular research context (see Appendix A). Full in-
stallation and usage instructions are provided online3 where
the software is freely available to download.

2.4 Inference using MCMC

The analysis code is written with Matlab. The JAGS package
was used to conduct Markov chain Monte Carlo (MCMC)
sampling based inference (Plummer, 2003). By default, the
posterior distributions are estimated with a total of 100,000
MCMC samples over 2 chains. This excludes the first 1,000
samples of each chain which were discarded (the burn-in
interval). Convergence upon the true posterior distributions
was checked by visual inspection of the MCMC chains, and
by the R̂ statistic being closer to 1 than 1.001 for all esti-
mated parameters.

3 An example

3.1 Delay discounting dataset

The analysis software was applied to delay discounting data
from 15 participants who completed a 27-item monetary
choice questionnaire (Kirby, 2009), denominated in pounds
sterling rather than U.S. dollars. This questionnaire does not
include a front-end delay, so the smaller sooner reward was
to be delivered immediately (DA = 0). No particular research
question was posed, the example is provided to demonstrate
the nature of the inferences drawn, and how to use the soft-
ware.

3.2 Summarising our inferences about delay discounting
behaviour

Figure 6 shows a summary of our inferences about each pa-
rameter. Not only do we obtain a single most likely param-
eter value (posterior mode; points) but we also obtain a dis-
tribution of belief over each parameter which expresses our

3
https://github.com/drbenvincent/

delay-discounting-analysis

Fig. 6 A summary of the inferred parameter distributions. 95% credi-
ble intervals are shown along with the posterior mode (points).

confidence (or lack thereof) in these estimates. This is sum-
marised by plotting 95% credible intervals which are differ-
ent from, and superior to, confidence intervals (Morey et al.,
2015).

This particular dataset shows, for all parameters, little
between-participant variance. The parameter distributions for
each participant are broadly similar to the group level pa-
rameter distributions. This could be because participants dis-
play similar discounting behaviour, or it could be because
the the data is insufficient to draw more precise conclusions
about each participant. This should not be surprising as we
only have 27 questions per participant, and the fact that the
rewards cover a limited range of magnitudes (£11 – £85)
means that a priori we should not expect the data to maxi-
mally constrain our estimates of the magnitude effect.

3.3 Rich forms of analysis

However, we are able to present much richer forms of anal-
ysis. Figure 7 (top row) shows the group-level inferences as
well as participant-level analyses (subsequent rows) of par-
ticipants 1–3. The posterior distribution of error rates and
comparison acuity parameters are plotted in a bivariate den-
sity plot (column 1). These parameters determine the psy-
chometric function, which is plotted along with 95% credi-
ble regions in column 2. The magnitude effect parameters
(m,c) are also shown as a bivariate density plot (column
3). This magnitude effect function is visualised in column
4, again with 95% credible regions. The MAP estimate m

and c parameters were used to visualise the discount surface

https://github.com/drbenvincent/delay-discounting-analysis
https://github.com/drbenvincent/delay-discounting-analysis
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(column 4). Participant level plots also show raw response
data. This is not present at the group level because the hier-
archical inference does not operate by simply pooling all the
participant-level data; there is no group level data, just latent
parameters describing the group’s properties.

Visualising the psychometric function (column 2) is in-
formative. A perfect financial decision maker would have a
psychometric curve that was a step function, which means
they would always choose the higher of the immediate re-
ward V

A = A and the present subjective value of the delayed
reward V

B. Inspecting the response data and discount sur-
faces (column 5) we can see that with rare exceptions, the
discount surface successfully separates immediate and de-
layed choices.

The bivariate density plots of the magnitude effect pa-
rameters (column 3) demonstrates our uncertainty about the
parameters is anti-correlated, which is expected for slope
and intercept parameters. This knowledge was not available
from the univariate summary in Figure 6.

When the posterior of these parameters is used to gen-
erate a magnitude effect plot (column 4) we can see that
our certainty is highest around the reward magnitudes in
the monetary choice questionnaire, between £11 – £85. We
rightly have less confidence in the group and participant dis-
count rates at much lower or higher reward magnitudes.

3.4 Hypothesis tests

In order to demonstrate how the parameter estimation can
contribute to research conclusions, we test whether there is
evidence that participants exhibit a magnitude effect, more
specifically that the slope of the magnitude effect at the group
level is less than zero.

3.4.1 Traditional workflow

Using the traditional workflow (see Figure 2), point esti-
mates (posterior mode) of m

p

were analysed using JASP sta-
tistical software (Love et al., 2015). A Bayesian one-sample
t-test (Rouder et al., 2009) was conducted to evaluate if the
population mean µ was less than 0: H0 : µ = 0,H1 : µ < 0.
The resulting log Bayes Factor was log(BF10) = 43.2 mean-
ing that, under the scale of Jeffreys (1961), we have decisive
evidence for H1, that there is a population level magnitude
effect.

3.4.2 Fully Bayesian methods

However, we can achieve more robust research conclusions
by using the more advanced workflow (see Figure 2). By ex-
porting point estimates of the slope of the magnitude effect
for each participant m

p

, we lost all knowledge of how certain
or uncertain we were in those estimates. A fully Bayesian

Fig. 8 Both a hypothesis test (left) and an estimation approach (right)
indicate that the slope of the magnitude effect at the group level is less
than zero. For the Bayes Factor, the lighter and darker grey distribu-
tions represent the prior and posterior distributions (respectively) of
belief over G

m under the directional hypothesis H1. The Bayes Fac-
tor is the ratio of the probability density of the prior and posterior at
G

m = 0 (points). For the estimation approach (right), light and dark dis-
tributions represent the prior and posterior over G

m, and the bar shows
the 95% credible interval of the posterior.

approach can be taken by drawing research conclusions from
posterior distributions directly, in this case the group level
magnitude effect slope G

m.

There are two approaches that could be taken. The first
is Bayesian hypothesis testing and results in a Bayes Factor
summarising the evidence for or against competing hypothe-
ses. The second approach is parameter estimation, where for
example the focus is on estimating an effect size of value of
a parameter. Rather than one being more correct than an-
other, they achieve different goals (Kruschke, 2011). There
is a lively debate over which of these methods will be most
scientifically useful (e.g. Morey et al., 2014; Kruschke and
Liddell, 2015; Wagenmakers et al., 2015) and so I demon-
strate both methods applied to the question, is the magnitude
effect slope less than zero at the group level?

Under the Bayesian hypothesis testing approach we can
define our hypotheses as H0 : G

m = 0 and H1 : G

m < 0.
The Savage-Dickey method was used to calculate a Bayes
Factor (see Wagenmakers et al., 2010; Lee and Wagenmak-
ers, 2014), achieved by removing positive MCMC samples
of the the prior and posterior distributions because the hy-
pothesis was directional. This resulted in BF01 ⇡ 545 (see
Figure 8a), meaning that again we have decisive evidence
that the slope of the magnitude effect at the group level is
less than 0 (Jeffreys, 1961).

Under the parameter estimation approach however, we
simply examine our posterior over the relevant latent vari-
able G

m (see Figure 8b). We see that the 95% credible region
is far from the value of interest, G

m = 0 and so it is reason-
able to believe the slope of the magnitude effect at the group
level is less than one.
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Fig. 7 An example of hierarchical Bayesian inference conducted on delay discounting data. The top row shows group-level inferences, subsequent
rows correspond to 3 of 15 total participants. Shaded regions represent the 95% credible intervals. Inset text presents posterior mode, and 95%
highest density intervals in parentheses.

3.4.3 Extending the model

The default analysis strategy is to estimate best guess param-
eters and conduct hypothesis testing alongside other partic-
ipant data in an alternative software package (see Figure 2
and Section 3.4.1). In some research contexts however the
‘fully Bayesian’ approach can be taken, as in the above sec-
tion, but in many research contexts this will require extend-
ing the model. Readers are referred to (Kruschke, 2015) for
a thorough overview of Bayesian approaches to general lin-
ear modelling, which can be added on to account for rela-
tionships between latent parameters and observed partici-
pant covariates. Appendix B outlines two examples of how
to do this: when participants are members of 1 of G groups
(a discrete, within participant variable), and when a group-
level parameter varies as a function of a covariate.

4 Discussion

4.1 Choice of the 1-parameter discount function

The aim of this paper is to introduce Bayesian estimation
and hypothesis testing for delay discounting tasks. It is open
for debate whether discounted value or discounted utility is
the best way to frame discounting behaviour and we do not
know the ‘correct’ discount function. The 1-parameter hy-
perbolic discount function (Equation 2) was used for a num-
ber of reasons. First, even though it is unlikely to be a com-
plete description of how people discount future rewards (e.g.
Luhmann, 2013), the 1-parameter hyperbolic model is sim-
ple and provides a good account of discounting in human
(McKerchar et al., 2009) and non-human animals (Freeman
et al., 2009). Second, a comparison of 4 prominent mod-
els shows clear superiority for the 1-parameter hyperbolic
over a 1-parameter exponential model, but there is no clear
rationale for placing attention on one of the more complex
discount functions (McKerchar et al., 2009; Doyle, 2013).
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4.2 Comparison to existing analysis approaches

A common way to analyse data from delay discounting tasks
is to fit a curve to indifference points as a function of delay
(Robles and Vargas, 2008; Reynolds and Schiffbauer, 2004;
McKerchar et al., 2009; Whelan and McHugh, 2009). The
benefit of this approach is its simplicity. However, it does
not easily allow for the number of trials to influence the cer-
tainty we have about the estimates made. Bootstrap proce-
dures may be used, but they do not have the same intuitive
meaning as Bayesian posterior distributions or credible in-
tervals. A straight forward extension to estimating the mag-
nitude effect (by independently estimating discount rates for
different reward magnitudes) would also be limited without
some form of hierarchical treatment They also place empha-
sis upon the parametric form of the discount function rather
than the processes underlying behaviour. The approach pre-
sented does indeed rely upon a parametric form of the dis-
count rate, but the explicit modelling of choices made on
a trial to trial basis means that this model can be extended
in future work to explain causal processes responsible for
discounting behaviour (see Vincent, 2015, for a perceptual
decision making example).

An advantage of the present model is that it utilises all
trial data from each participant. This, in combination with
Bayesian inference methods, allows the confidence in pa-
rameters to be influenced by the number of trials and par-
ticipants. Wileyto et al. (2004) present an analysis approach
which also utilises data from every trial, which was also ap-
plied to the 27 item questionnaire. While this approach is
better than fitting parameters to indifference points, that ap-
proach did not model the magnitude effect, did not include
hierarchical estimation, and did not use a Bayesian inference
approach.

4.3 Advantages of this approach

While the modelling details presented in this paper are more
complex than existing approaches, it is likely that a net ben-
efit is conferred to researchers. Firstly, the complexities of
the model are not as relevant as the ease of using the soft-
ware (see Section 2.3 and online usage instructions). Sec-
ondly, the Bayesian approach taken here provides a range of
non-trivial advantages.

First, the full joint posterior distribution over parameters
is calculated which represents our degree of belief in these
parameters having observed the data. Section 3.3 showed
how this can provide greater understanding of our data and
of our uncertainty in latent variables putatively underlying
the participant’s behaviour.

Second, hierarchical Bayesian estimation simultaneously
estimates trial-level responses, and participant- and group-
level parameters. This has numerous benefits, most notably

when it comes to providing additional prior knowledge (see
Appendix B) and incorporating participant level uncertainty
into hypothesis testing.

Third, the widely used and easily interpreted 1-parameter
hyperbolic discount function is used to not only estimate a
participant’s discount rate, but how that varies as a function
of reward magnitude (the magnitude effect). The model is
extendable to investigate alternative, or even multiple, dis-
count functions.

Fourth, the psychometric function incorporates measure-
ment errors (participant response errors). Effects of baseline
error rates and comparison acuity can be separated which
could be informative in comparing theoretical explanations
of discounting behaviour. It could also provide a quantita-
tive justification to exclude participants from a larger dataset
on the basis of a high error rate. However this is optional,
group-level inferences are less likely to be affected by such
individuals as the error rate parameter can account for in-
consistent responding rather than affecting more critical pa-
rameters related to discounting behaviour.

Fifth, the estimation procedure is flexible enough to utilise
data obtained from a variety of different delay discounting
protocols such as: studies with or without a front-end delay
before the sooner reward, the Kirby 27-item test, fixed im-
mediate reward protocol, fixed delayed reward protocol, and
adaptive protocols.

4.4 Conclusion

The probabilistic model (Figure 3) underlying the data anal-
ysis approach described here, and the use of Bayesian in-
ference, offers a number of advantages over traditional ap-
proaches to both estimating discount rates and subsequent
hypothesis tests.

The proposed analysis can fit into traditional research
workflows (see Figure 2) by exporting best guess parameter
estimates which have been derived with all the advantages of
the Bayesian approach and the particular model proposed.
This approach is most flexible in allowing for hypothesis
tests in a wide range of research contexts. The approach
also allows for a more fully Bayesian approach to hypoth-
esis testing however, in that uncertainty at the participant
level propagates to the group level where hypothesis tests
are typically focussed. Examples have also been provided
to show how this latter approach can be extended to more
complex research questions (see Appendix B).

In conclusion, using this hierarchical Bayesian data anal-
ysis approach with the freely available software allows re-
searchers from multiple disciplines to draw more robust re-
search conclusions by making the best use of their prior
knowledge and new delay discounting data.
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Appendix

A Priors for m and c

In the proposed model, each person’s log discount rate is assumed to
be linearly related to log reward magnitude. This is described by par-
ticipant level slope m

p

and intercept c

p

parameters which are assumed
to be drawn from a group-level distribution. We need to define prior
distributions over the group level parameters µm,sm,µc,s c.

In some research situations it may be best to define only weakly
informative priors, in others we may wish to fully incorporate prior
knowledge from previous studies, and so specification of the priors
should be seen as situation dependent. However, as a general guide I
outline an approach to define our prior knowledge based on previous
empirical data. As more studies are conducted, this approach can be
used to update our prior knowledge to help inform inference on future
studies.

A.1 Priors based on previous research

The subsequent analysis used empirical data of the magnitude effect re-
porting discount rates log(k) as a function of reward magnitude log(reward).
Data was obtained from 19 previous studies using hypothetical mon-
etary rewards, summarised in Figure 8 of Johnson and Bickel (2002).
Data points were extracted resulting in a dataset with 3 columns: log(reward),
log(k), and study number. The data were analysed using a Bayesian hi-
erarchical linear regression: a slope and intercept were estimated for
each study, where these are assumed to be samples from a multi-study
level distribution. The analysis resulted in the following priors (note
the parameters are mean and standard deviation; see Figure 9):

µm ⇠ Normal(�0.243,0.027)

sm ⇠ Normal(�•,0)(0.072,0.025)

µc ⇠ Normal(�4.716,0.296)

s c ⇠ Normal(�•,0)(1.085,0.235).

The most important points here are that the mean slope of the mag-
nitude effect (in log-log space) is �0.243, and that the uncertainty of
the intercept s c is quite high at 1.085 (see Figure 9). This latter point
reflects the fact that there is a lot of between-study variation in the
discount rates for any given reward magnitude.

A.2 Priors used in the present study

While the priors above might be reasonable, there are problems directly
using them in the present approach. The analysis above equates data
from studies and multiple-studies in Johnson and Bickel (2002) with
participants and group (study) in the present approach. Therefore the
priors above are probably overconfident.

The priors governing the slope (µm and sm) from above were used
as the basis for those used to analyse the data in the paper. But we
multiply the standard deviations by 10 in order to reflect our increased
uncertainty. The prior distribution of G

m is shown in Figure 8b.

µm ⇠ Normal(�0.243,0.027⇥10)

sm ⇠ Normal(�•,0)(0.072,0.025⇥10)

The priors governing the intercept (µc and s c) were changed to be
largely uninformative. The rationale is that these studies were derived

Fig. 9 Establishing priors for the magnitude effect parameters. Data
from Figure 8 of Johnson and Bickel (2002) are shown (points, top)
along with the mean group-level magnitude effect (thick black line) and
1000 samples from the group level distribution of G

m and G

c (transpar-
ent lines). Each of these are described by the parameters µm,sm,µc,s c

(bottom plots) which are estimated from the empirical data. Text anno-
tations describe parametric fits to the MCMC samples.

from experiments where the reward is expressed in terms of US dollars,
whereas the present delay discounting experiment was denominated
in pounds sterling. A conservative set of largely uninformative priors
were used for the group level intercept parameters:

µc ⇠ Normal(0,10000)

s c ⇠ Uniform(0,10000).

A.3 Uninformative priors

In other research contexts it may be appropriate to not specify any
prior knowledge about the slope of the magnitude effect. This can be
achieved by using the negligibly informative intercept priors in the pre-
vious section, and also using largely uninformative priors for the slope,

µm ⇠ Normal(�0.243,10000)

sm ⇠ Uniform(0,10000).

B Extending the models for specific research situations

The traditional workflow of obtaining point estimates of participant
parameters (such as m and c) and subjecting these to hypothesis tests
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was shown in Figure 2 and Section 3.4.1. Whilst that workflow was
very flexible it has two small disadvantages. Firstly, when the best-
guess parameter estimates are used, we loose our representation of the
uncertainty in those parameter estimates. And so it would be appealing
to use the ‘fully Bayesian’ approach, such as that used in Section 3.4.2.
Secondly, there is scope to make even better parameter estimates by
incorporating further prior knowledge. For example, if we know (or
suspect) that discount rates vary as a function of a participant covariate
(such as age, or fMRI activation of a particular brain region) then we
could incorporate this into the structure of the model.

The range of possible research contexts is very high. In one situ-
ation we may have a single continuous participant covariate (such as
age), the relationship between covariates could be linear or non-linear,
or the covariates could be discreet (such as sex, or control v.s. experi-
mental condition). As such it is not possible to create a single proba-
bilistic model to capture all of these research situations, hence the rec-
ommended traditional workflow in Figure 2 and Section 3.4.1. Below I
use two examples to demonstrate the approach researchers could use to
customise the model for their specific research context. The extensive
examples of Bayesian general linear models by Kruschke (2015) is a
recommended resource for further customisation.

B.1 Participants belong to 1 of G groups

The model presented in Figure 3 assumes participants are drawn from a
single group. However we can imagine research questions where each
participant belongs to 1 of G groups. Group is a discrete between-
participant variable, so this model would be appropriate for variables
such as sex, age category, or treatment level.

One straightforward analysis approach would be to use the model
presented in the paper and simply analyse data from different groups
separately. However we could also extend the model to assert that
each participant is drawn from 1 of G groups, and this group mem-
bership is known. In this case, the model presented in Figure 3 can be
extended by simply increasing the number of group-level parameters
(adding a plate around all the group-level magnitude effect parame-
ters G

m,µm,sm,Gc,µc,s c). We would now have multiple instances
of these latent variables, one for each group (Gm

g

,µm

g

,sm

g

,Gc

g

,µc

g

,s c

g

)
where g = 1, . . . ,G. We would also update participant level distribu-
tions to be c

p

⇠ Normal(µc

g

p

,s c

g

p

) and m

p

⇠ Normal(µm

g

p

,sm

g

p

) where
g

p

is the group that participant p belongs to. Hypothesis testing would
then consist of testing for differences in the group-level slope and inter-
cept parameter distributions (Gm

g

⇠ Normal(µm

g

,sm

g

), G

c

g

⇠ Normal(µc

g

,s c

g

)).

B.2 Where group-level parameters are linearly related to a
covariate

If we suspected that discount rates vary linearly as a function of some
covariate then we could update the model using the following approach.
A model could be proposed where the mean group level intercept µc

was a function of a participant level covariate. So we could specify
that µc ⇠ Normal(b0 + b1x

p

,b2) where x

p

is the participant’s covari-
ate value (e.g. age) and b0, b1 represent the intercept, slope of a lin-
ear relationship between x

p

and µc, and b2 is the standard deviation
of participants about this trend line. Of course, similar linear relation-
ships between the covariate and other group level parameters could be
proposed.
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