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Abstract

Glucose hypometabolism and impaired mitochondrial function in neurons have been
suggested to play early and perhaps causative roles in Alzheimer’s disease (AD)
pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein
(APP) cleaving enzyme 1 (BACE1), responsible for beta amyloid peptide generation, has
recently been demonstrated to modify glucose metabolism. We therefore examined, using a
human neuroblastoma (SH-SY5Y) cell line, whether increased BACEI activity is responsible
for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a
protease-dead mutant BACEL, protein in SH-SY5Y cells reduced glucose oxidation and the
basal oxygen consumption rate, which was associated with a compensatory increase in
glycolysis. Increased BACE]1 activity had no effect on the mitochondrial electron transfer
process but was found to diminish substrate delivery to the mitochondria by inhibition of key
mitochondrial decarboxylation reaction enzymes. This BACE]1 activity-dependent deficit in
glucose oxidation was alleviated by the presence of beta hydroxybutyrate or a-lipoic acid.
Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose
oxidation in a human neuronal cell line through impairments in the activity of specific
tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by
neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1
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inhibitors, may be an effective therapeutic strategy in the early-stage management or
treatment of AD.

Introduction

Alzheimer’s disease (AD) is an age-related neurodegenerative disease, with the vast majority
of cases described as sporadic and not currently linked with a specific gene defect. There are
approximately 44 million people living with AD in the world, and this number is predicted to
increase dramatically over the next three decades, severely impacting on healthcare systems
and the socio-economic environment. Presently, we have a limited understanding of the early
events in sporadic AD disease aetiology. While the progression of AD is closely associated
with dysfunctional tau protein and cholinergic deficits, it is generally observed by biomarker
analysis that changes in the hallmark amyloid plaque pathology precedes these other
pathogenic drivers [1-4]. There has also been increasing interest in the role of brain
mitochondrial dysfunction and reduced metabolic activity [5-7].

It has long been recognised that glucose is the predominant substrate utilised by the adult
brain under physiological conditions [8]. Indeed, while only constituting 2% to body weight,
the brain consumes around 20 and 25% of the total body oxygen consumption and glucose
respectively [9]. Furthermore, the respiratory quotient of the brain is almost exactly 1,
indicating near universal carbohydrate metabolism [10]. Although glucose is the dominant
substrate for brain metabolic activity, alternative substrates, such as glycogen and amino
acids can play a role in central metabolism. However due to limited supply and storage
capacity, this is thought to be relatively minor under physiological conditions [11]. Glucose
metabolism in the brain is tightly coupled to the generation of intracellular adenosine
triphosphate (ATP), largely to support neurotransmitter production and release.
Consequently, this reliance on glucose coupled with a high-energy consumption makes the
brain, and synaptic transmission in particular, vulnerable to events, which lead to diminished
metabolism.

Brain hypometabolism is a universal change observed during Alzheimer’s disease (AD)
progression and recently, it has been proposed to have a major causative role in AD
pathogenesis [12,13]. Through the use of neuroimaging techniques, impaired brain glucose
metabolism has been demonstrated to occur: before atrophy in autosomal AD cases, during
the progression towards non-familial AD and in individuals at high risk of AD (i.e. APOE &4
carriers) prior to symptom manifestation [14-18]. This reduced brain glucose metabolism has
been postulated to result from impaired mitochondrial functioning [19-21], with similar
changes observed in a variety of transgenic mouse models of AD [7,22-24]. Recent evidence
suggests a putative link between neuronal glucose metabolism and the presence of beta
amyloid (AP) peptides, considered by many to be the primary pathogenic driver of AD. A
peptides derive from increased cleavage of amyloid precursor protein (APP), which is
ubiquitously expressed in tissues, with highest levels in the brain. APP is cleaved by two
competing enzyme processes; an alpha secretase pathway, resulting in the soluble cleaved
product sAPPo and no A production and a beta secretase pathway, which releases sAPPf
and following additional cleavage of the remaining protein by y-secretase, releases AP. AP
accumulates in the mitochondria of AD patients and AD mouse models, prior to the
appearance of amyloid deposits [25-27]. Indeed, exogenous A has been reported to decrease
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mitochondrial respiratory chain function and the activity of various mitochondrial
dehydrogenase enzymes [28-31], indicative of an A-mediated bioenergetic deficit in cells.

Additionally, it has been shown that the hypometabolic state associated with AD may be
driven, at least in part, by a region-specific shift in neuronal metabolism towards aerobic
glycolysis (reduced oxidative metabolism in the presence of adequate oxygen supply; [32]).
This switch in glucose metabolism was shown to closely correlate with AP deposition and
later vulnerability to cell death during progression towards AD [33]. These findings clearly
implicate the modulation of APP processing as a driver of the altered metabolic state
observed in early, pre-AD states. A key enzyme driving excess AP production, as observed in
AD, is the aspartyl protease, -site APP cleaving enzyme 1 (BACE1l). BACE] was initially
characterised as the enzyme controlling the rate-limiting step in A generation [34-36]. More
recently however, it has also been proposed to play a role in glucose metabolism with whole
body knock out of BACE] resulting in improved insulin sensitivity and glucose homeostasis
[37]. Furthermore, genetic and pharmacological manipulation of APP processing can directly
alter glucose uptake and metabolism in the C2C12 skeletal muscle cell line [38].
Importantly, BACEI is a stress-sensitive protease, with oxidative, hypoxic, inflammatory and
metabolic stress (all associated with AD initiation and/or progression) demonstrated to
increase BACE1 levels and activity, causing APP processing to shift from the physiologically
predominant alpha-secretase, to the beta-secretase, pathway and increasing AP levels.
Indeed, recent work has demonstrated a role for oxidative, lipid and metabolic stressors in
regulating BACEI gene and protein expression as well as activity [39-43]. Furthermore,
alterations in its expression result from changes in micro RNA (miR) regulation of the 5’
untranslated region (UTR) of BACEI have been demonstrated in sporadic AD cases [44-46].
Consequently, chronic stress events and altered translational regulation may in turn culminate
in the consistent reports that BACE1 mRNA, protein and activity are elevated in AD brains
[47-53].

Given that A directly impairs mitochondrial enzyme function and that AD is associated with
impaired glucose metabolism we hypothesised that manipulating APP processing through
BACEI overexpression in SH-SY5Y neuroblastoma cells would phenocopy the defects in
glucose metabolism at the cellular level, allowing us to explore in more detail this initial and
potentially causative change in AD progression.

Materials and Methods

Cell culture

SH-SYSY cells were cultured under aseptic conditions and maintained in a humidified
atmosphere of 95% air and 5% CO,. Cells were maintained in Dulbecco’s Modified Eagle’s
Medium (DMEM) F-12 media (Gibco Life Technologies, Paisley, UK) supplemented with
10% fetal bovine serum (Sera Laboratories, West Sussex, UK), 4 mM L-glutamine (Gibco)
and 2% Penicillin streptomycin (100 units/ml; Gibco). SH-SYS5Y cells were transfected with
12 pg DNA of pcDNA3.1 containing empty vector (SH-SY5Ygy), full-length human BACE1
(SH-SY5Ys1), or BACEI active site mutant (SH-SY5Ymgi) using Lipofectamine 2000
(Invitrogen Life Technologies, Paisley, UK). Stable cells were selected and lines maintained
using 1 and 0.5 mg/ml G418 sulphate respectively (Sigma-Aldrich, Gillingham, UK) as
selection antibiotic. A minimum of 2 independently generated stable cell lines, with
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concurrently produced EV controls, were used for these studies. Prior to some glucose
oxidation assays, cells were treated overnight, as indicated, with the pyruvate dehydrogenase
inhibitor, dichloroacetate (DCA; Sigma-Aldrich) or growth media supplemented with a-
lipoic acid (Sigma-Aldrich) for 48 hours.

Cloning

Full length myc-his tagged human BACEl in pcDNA3.1 was obtained from
GlaxoSmithKline (GSK; Harlow, UK) and mBACE1 (a kind gift from Professor Wolfe
(Brigham and Women’s Hospital, Boston)) was sub-cloned into pcDNA3.1.

Immunoblotting and gene expression

Protein isolation and immunoblotting procedures were as described previously [54]. For
relative quantification of APP cleavage by alpha-secretase (sAPPa) versus beta-secretase
(sAPPp) pathways, cells were incubated for between 20-24 hours in Optimem (Gibco), and
media concentrated (using 30 kDa Amicon Ultra 15 ml filters; Merck Millipore, Livingston,
UK) by centrifugation (4000 x g) and subjected to SDS-PAGE with amounts presented
relative to total protein. Protein antibodies used were: anti-Actin (Sigma-Aldrich; 1:5000),
anti-APP (Ab54, GSK; 1:4000), anti-sAPPa (Cambridge Bioscience, Cambridge, UK;
1:1000), anti-sAPPB (GSK; 1:1000), anti-BACEI1 (Sigma-Aldrich; 1:1000), anti-BAD (New
England Biolabs, Hitchin, UK; 1:1000), with anti-total PDH (1 mg/ml) and anti-pPDHela (1
mg/ml) from Drug Discovery Unit, University of Dundee.

Glucose oxidation assay

SH-SY5YEv, SH-SY5Yg; or SH-SY5Ymg: cells were plated into 6-well cell culture plates
and any pre-treatments carried out as described above and in the results section. To begin the
assay, cells were washed twice with Hepes-buffered saline (HBS (in mM); 140 NaCl, 20
Hepes, 5 KCI, 2.5 MgSO,4 and 1 CaCl,, pH 7.4) and incubated in HBS containing 2.5 mM
glucose and 74 kBq/ml D-[U-"*C]glucose (PerkinElmer) along with any relevant inhibitors or
treatments indicated in the results section for 3 hours at 37 °C. Media were transferred and
'*CO, liberated by acidification with 60% perchloric acid, trapped by Whatman (GF/B) filter
papers discs pre-soaked with 1 M KOH and radioactivity quantified by liquid-scintillation
counting. Cells from the assay were washed twice with ice-cold 0.9 % NaCl and lysed with
Iml of 50 mM NaOH, and the radioactivity contained within the lysate quantified by liquid-
scintillation counting, which served as a measure of the '*C incorporation into the cell during
the assay period. Total protein content was determined in the lysate via the Bradford method
and used to normalize glucose incorporation and oxidation rates for each sample.

Cellular respiration

The Seahorse Extracellular Flux Analyser utilises solid sensors that simultaneously monitor
the oxygenation and pH of the media. The rate of oxygen consumption (OCR) and
extracellular acidification rates (ECAR) can therefore be assessed in near real time allowing
for high resolution changes in a range of metabolic parameters. SH-SY5Ygy, SH-SY5Y5; or
SH-SY5Yme:1 cell monolayers were seeded into XF 24-well culture microplates (Seahorse
Bioscience, Copenhagen, Denmark) the day prior to treatment or assay as indicated in the
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results section. Optimal cell number was determined following a cell titration assay taking
into account oxygen consumption rate (OCR) and extracellular acidification rate (ECAR),
oxygen tension values and the appearance of the cell monolayers and was determined to be
40,000 cells. On the day of the assay, cells were placed in unbuffered DMEM with relevant
inhibitors/treatments as indicated and placed in a non-CO; incubator for 1 hour (to de-gas
solutions) prior to assay initiation. Standard 3 minute mix, 2 minute wait and 3 minute
measure cycles were used; with 5 baseline measurements taken before, and a subsequent 3
measurements acquired following, drug additions.

Enzyme activity assays

Activity assays for pyruvate dehydrogenase (PDH; Abcam, Cambridge, UK), a-ketoglutarate
dehydrogenase (a-KGDH; Antibodies Online, Aachen, Germany), isocitrate dehydrogenase
(IDH; Sigma-Aldrich) and fumarase (Abcam) were performed according to the
manufacturer’s instructions.

Results

Overexpression of BACE1 increases amyloidogenic APP processing and suppresses
glucose oxidation

Control, empty vector-treated (SH-SY5Ygy) and BACE1 overexpressing (SH-SY5Y3,) cells
displayed equivalent APP protein levels, showing the three predominant APP transcript
protein isoforms present in neurons ([55]; Fig. 1A,B). As expected, SH-SY5Yp, cells
exhibited significantly higher BACE1 protein levels (Fig. 1A,C), which resulted in altered
APP cleavage; promoting a substantial shift from non-amyloidogenic to amyloidogenic
processing (as denoted by increased sSAPPP and decreased sAPPa levels (Fig. 1A,D,E).
Overexpression of BACE] resulted in a marked reduction in the rate of '‘C-glucose
oxidation, compared to SH-SY5Ygy cells (Fig. 1F), in agreement with recent findings in
C,Cy, skeletal muscle cells [34]. The decrease in glucose oxidation is not due to impaired
glucose incorporation into the cell (Fig. 1G), and suggests that increased BACEI protein
levels and activity cause a fundamental change in the ability of SH-SYSY cells to oxidise
glucose (Fig. 1H).

In an attempt to discern whether the changes in glucose oxidation rate were dependent upon
the secretase activity of BACEI, a concomitant group of cells that overexpress a mutant form
of BACE], devoid of secretase activity (SH-SY5Y mp1; [56]) were examined. BACE]1 protein
levels in SH-SY5Y g1 cells were raised to a similar extent to that observed for SH-SY5Yg;
cells, with no alteration in APP protein levels (Fig. 2A-C). Interestingly, the overexpression
of the secretase-dead BACE1 mutant exerted a dominant negative effect over APP processing
with reduced sAPPJ release, compared with SH-SY5Yg; and SH-SY5Y s cells, into the
culture media (Fig. 2A,D). The reduced p-secretase cleavage of APP in the presence of
mBACE1 was also mirrored in its effect on glucose oxidation rate, with no reduction in
glucose oxidation concomitant with comparable glucose incorporation between cell types
(Fig. 2E,F), indicating that increased BACEI activity is required to depress glucose oxidation
in SH-SYS5Y cells (Fig. 2G).

Chronic elevation of BACE1 stimulates aerobic glycolysis in SH-SYSY cells
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The cellular pathways that facilitate glucose metabolism are glycolysis (and the pentose
phosphate pathway), which occurs in the cytoplasm and the TCA cycle and oxidative
phosphorylation, which are present in the matrix and inner mitochondrial membrane,
respectively. Actively respiring mitochondria consume oxygen and therefore oxygen
consumption rate (OCR) can be taken as a measure of substrate flux through the oxidative
phosphorylation pathway while extracellular acidification rate (ECAR) reflects the release of
lactate (lactic acid) converted from pyruvate following glycolysis. SH-SY5Yg, cells exhibit
decreased OCR concurrent with increased ECAR in comparison to SH-SY5Ygy cells (Fig.
3A,B). Taken together these changes reflect a robust shift between these metabolic processes
as shown by the change in the ratio of oxidative phosphorylation to glycolytic metabolism in
cells with increased BACE] activity (Fig. 3C).

To further investigate these changes, a glycolysis stress test (which assesses basal glycolysis,
glycolytic capacity and glycolytic reserve) was performed (Fig. 3D). SH-SY5Ygyv and SH-
SY5Ysg: cells were incubated in media containing zero glucose, 2.5 mM pyruvate and 4 mM
L-glutamine for 100 minutes, following which stimulation of basal glycolysis was achieved
by the injection of 2.5 mM glucose into the assay media. The increase in basal ECAR was
significantly higher in SH-SY5Yg; cells, compared to control cells, indicating that the raised
BACEI activity augmented aerobic glycolysis (Fig. 3E). Inhibition of F;Fy ATP synthase by
oligomycin leaves cells wholly reliant on glycolysis for ATP generation (termed maximal
glycolysis). This rate was also significantly increased in SH-SY5Yg;, compared to control,
cells following BACEI overexpression (Fig. 3F). Finally, the cellular glycolytic reserve is
given by the difference between basal and maximal glycolysis, with a significantly higher
glycolytic reserve observed in the SH-SY5Yg; cells (Fig. 3G). Collectively, these data
indicate that raised BACEI activity depresses glucose oxidation in SH-SYS5Y cells and, as a
result, there is a compensatory increase in glucose metabolism through aerobic glycolysis.

Mitochondrial efficiency is unaltered by raised BACEI1 activity in SH-SYSY cells

The marked reduction in oxidative phosphorylation, concurrent with increased glycolytic
metabolism in SH-SY5Yp; cells, indicated that increased BACEI activity reduced substrate
delivery to the mitochondria and/or impaired mitochondrial function. To test mitochondrial
efficiency in these cells, a modified Mitochondrial Stress Test (Seahorse Bioscience) protocol
was utilised. As previously reported, a limited maximal respiration rate is achievable in
undifferentiated SH-SYSY cells [57] in the absence of pyruvate in the assay media.
Consequently, we therefore performed a split assay to investigate the effects of mitochondrial
metabolism perturbation: the first part measuring the proportion of respiration dedicated to
ATP generation (ATP synthase inhibition with oligomycin), the maintenance of
mitochondrial leak (a combination of rotenone (complex I inhibition) and antimycin A
(complex III inhibition) to minimize mitochondrial respiration) and the relative contribution
of non-mitochondrial OCR (Fig. 4A). However, increased BACEI activity in SH-SYS5Y
cells had no effect on any of these oxidative parameters (Fig. 4B-D). The second part
encompasses a test of the cellular reserve capacity via the induction of maximal respiration
through addition of the proton ionophore FCCP. This drug collapses the mitochondrial
membrane potential, leading to uncoupled (no ATP generation) substrate flux through the
mitochondria, promoting an increase in glycolysis in an attempt to maintain intracellular ATP
levels. Raised BACE1 activity also had no effect on SH-SYS5Y mitochondrial reserve
capacity (Fig. 4E,F). The results from these assays show that chronic elevation of BACEI
protein expression and activity does not impair mitochondrial electron transfer function.
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Consequently, this result strongly indicated that the BACEI activity-driven decrease in
glucose oxidation was the result of diminished substrate delivery to the mitochondria.

Raised BACEI activity lesions key metabolic pathways in oxidative glucose metabolism

There are three key control points involved in the regulation of neuronal metabolism, these
are the generation of glucose-6-phosphate, pyruvate and acetyl CoA. In neurons, pyruvate is
predominantly produced directly from metabolism of glucose or indirectly, through the
provision of extracellular lactate via the astrocyte-neuron lactate shuttle [58,59]. Therefore,
in an attempt to better understand the changes in cellular metabolism induced by increased
BACEI activity, lactate utilisation by SH-SY5Y cells was assessed. SH-SYS5Ysg; cells
displayed significantly reduced lactate consumption as assessed by the ability of lactate to
repress ''C-labelled glucose oxidation (Fig. 5A). This deficit could also be observed as a
reduction in OCR when cells were provided physiological concentrations (0.5 or 2 mM; [60])
of lactate as sole substrate, although the reduction in lactate metabolism was overcome by the
presentation of a higher (4 mM) lactate concentration (Fig. 5A,B). As the oxidation of both
glucose and lactate was diminished, we hypothesised that raised BACE] activity resulted in
impairment of the pyruvate dehydrogenase complex activity (PDH). To address this we used
an indirect PDH activity assay and demonstrated that SH-SY5Yg; cells displayed a marked
reduction of PDH activity (Fig. 5C). Consistent with this outcome, SH-SY5Yg; cells
displayed reduced OCR when provided with pyruvate (2.5 mM) as the sole substrate (Fig.
5D).

In response to cellular injury or stress, compensatory metabolic strategies are employed in an
attempt to bypass reduced glucose utilization associated with decreased PDH activity and
obviate impaired mitochondrial TCA function. For example, glutamine metabolism is
diverted from an oxidative to reductive route [61,62], causing increased conversion to
glutamate and, through glutamate dehydrogenase, raised levels of a-ketoglutarate. This
additional source of a-ketoglutarate should supplement ATP generation through the TCA
cycle as it bypasses the block at PDH. Consequently, we examined whether such an
alternative route for TCA substrate replenishment was capable of recovering oxidative
metabolism. Thus OCR and ECAR were measured when SH-SY5Ygy and SH-SY5Yg; cells
were provided glucose (2.5 mM) alone or glucose (2.5 mM) + glutamine (4 mM). However,
the presence of glutamine did not affect the attenuation of OCR or enhancement of ECAR in
SH-SY5Ys; cells (Fig. 5E). Moreover, OCR was reduced in SH-SY5Yg; cells when
glutamine was provided as the exclusive substrate (Fig. 5F). These data indicate that either
glutamine does not play a significant role in SH-SYS5Y basal metabolism and/or that raised
BACET1 activity blunts additional TCA enzymes, such as a-ketoglutarate dehydrogenase (o.-
KGDH), which converts a-ketoglutarate to succinyl-CoA. Indeed, SH-SY5Y3g; cells showed
a large, BACEI secretase activity-dependent, reduction in a-KGDH activity, which is the
rate-controlling step of the TCA cycle (Fig. 5G).

Because PDH and a-KGDH catalyse decarboxylation reactions involved in mitochondrial
bioenergetics, we assayed the activity of the third enzyme utilising this process, isocitrate
dehydrogenase (IDH). Three isoforms of IDH are present in cells, IDH3 in the mitochondrial
matrix, which reduces NAD" to NADH, and IDH1 (cytoplasmic and peroxisomal) and IDH2
(mitochondrial) reducing NADP' to NADPH. Consequently, specific isoform function was
determined by differential supplementation (NAD" or NADP") of the reaction mixes. In
agreement with the results for the decarboxylation enzymes above, raised BACE1 activity
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resulted in depression of NAD'- and NADP'-dependent THD activity (Fig. SH). However
impairment of TCA cycle enzyme activities by increased BACEI activity was not universal.
For example, although fumarase activity was reduced slightly in SH-SY5Yp,; cells, this was
matched in SH-SY5Ymg; cells, with the protein levels of fumarase also decreased in both
these cell lines, resulting in unaltered specific activity of fumarase by raised BACEI in SH-
SYSY cells (Fig. 5I). Thus manipulation of APP cleavage towards amyloidogenic processing
by increased BACEI activity in SH-SYS5Y cells reduces the overall catabolic capacity of the
TCA cycle through specific enzyme lesions rather than a wholesale down-regulation.

Rescue of glucose oxidation in SH-SY5Y3; cells.

As glutamine supplementation was unable to recover BACE1-mediated inhibition of glucose
oxidation, we focused on PDH as a potential target for pharmacological or alternative nutrient
interventions. A key regulator of PDH activity is by phosphorylation of its Ela subunit [63],
which is predominantly controlled by the inhibitory effect of pyruvate dehydrogenase kinases
(PDKs) versus activation through de-phosphorylation by pyruvate dehydrogenase
phosphatase (PDP). Dichloroacetate (DCA) is a PDK1 inhibitor, which enhances oxidative
phosphorylation in the brain [58] and has been promoted clinically for its anti-neoplastic
effects [64]. Consistent with PDH inhibition, SH-SY5Yg; cells exhibited increased
phosphorylation of the ela subunit at serine 293 compared to SH-SY5Ygy cells (Fig. 6A).
Treatment with DCA (10 and 100 puM) resulted in decreased levels of Ser’” ela
phosphorylation of both SH-SY5Y cell types, although Ser*” ela phosphorylation remained
significantly higher in SH-SY5Yp; cells (Fig. 6A,B). In agreement with the reduction in ela
phosphorylation, incubation of SH-SY5Ygy cells with DCA (100 uM) increased the glucose
oxidation rate (Fig. 6C). However, although glucose oxidation of SH-SY5Y3g; cells was also
enhanced by DCA treatment, this remained significantly lower than that of the SH-SY5Ygy
cells, mirroring ela phosphorylation status.

An alternative means of bypassing PDH is through the application of ketones, such as beta-
hydroxybutyrate (BHB), which is metabolised to acetyl-CoA and enters the TCA cycle at
oxaloacetate. The presence of BHB (0.5 — 10 uM) recovered the relative deficit in glucose
oxidation of SH-SY5Yp, cells, compared to SH-SY5Ygy cells, in a concentration-dependent
manner (Fig. 6D). Previous studies [65,66] have indicated that diminished mitochondrial
consumption of glucose in neurons and the ability to switch substrate preference to ketones is
dependent on the presence and activity of BAD (BCL-2-associated agonist of cell death), a
member of the BCL-2 gene family member of apoptotic control proteins, with increased
mitochondrial usage of BHB in Bad”~ cortical neurons. In agreement with this model, we
find that the increased ability of SH-SYS5Y3; cells to utilise BHB over SH-SY5Ygy cells and
enhance glucose oxidation, is associated with a large reduction of BAD protein expression
(Fig. 6E). Finally we also investigated the ability of the naturally occurring enzyme co-
factor, oa-lipoic acid to modify glucose oxidation of SH-SY5Yp; cells as previous studies
have shown this compound to up-regulate mitochondrial bioenergetics and promote glucose
uptake [67,68]. Indeed PDH and a-KGDH protein complexes require a-lipoic acid as a co-
factor for their acyl transferase activity. Supplementation of the growth media with a-lipoic
acid (25 or 50 uM for 48 hours) resulted in a robust concentration-dependent attenuation of
the impaired glucose oxidation rate displayed by SH-SY5Yg;, compared to SH-SY5Ygy cells
(Fig. 6F). Taken together, these results demonstrate the applicability of alternative nutrient
(BHB) or co-factor (a-lipoic acid) supplementation to alleviate or by-pass the impaired
glucose metabolism elicited by raised BACE]1 activity in SH-SY5Y cells.
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Discussion

In this study we demonstrate that raised BACE1 activity by overexpression in SH-SY5Y
cells, and subsequent modification of APP metabolism, induces a shift from the
physiologically predominant alpha-secretase cleavage pathway to the amyloidogenic beta-
secretase cleavage pathway, which results in decreased glucose metabolism.  This
bioenergetic impairment was dependent upon the secretase activity of BACEI and produced
a fundamental shift in the cellular metabolic profile, characterised by reduced glucose
oxidation in association with a compensatory increase in glycolysis, in an attempt to maintain
ATP production.

Decreased brain glucose metabolism is an invariant pathophysiological event occurring in
AD progression, and it has been hypothesised that this may occur years, and even decades
prior to symptom presentation [15,16,69,70]. Impaired glucose metabolism has also been
noted in central tissues taken from AD animal models [22,23,68]. Furthermore, despite the
observation that reduced glucose metabolism is predictive of later cognitive decline and AD
symptom presentation, relatively little is known about the cellular mechanisms underlying
these changes. Interestingly, the metabolic shift we have observed in favour of aerobic
glycolysis under conditions of increased BACEI activity mirrors early and predictive
changes occurring in the brains of people who later develop AD. The brain areas that display
this profile overlap with regions showing the greatest prevalence of AP pathology, future
susceptibility to cell death and are predictive of cognitive decline [32,33].

The mechanisms underlying glucose hypometabolism in AD are not well understood.
However mitochondrial dysfunction has been widely reported in clinical and experimental
AD studies [19-21] and AP has been reported to accumulate in the mitochondria of AD
patients and transgenic AD mouse models prior to amyloid deposition [25-27,71]. Although
there are numerous reports of impaired electron transfer in mitochondria, for example via
diminished activity in complexes [ to V in AD subjects [72-75], and diminished complex III
and IV activity in a transgenic AD mouse model [76] we found no effect of raised BACE1
activity on mitochondrial electron transfer function in SH-SYSY cells. It may be that
additional injurious processes, such as increased oxidative and/or inflammatory stress are
required to act concurrently with raised BACE1 activity and increased levels of Af to elicit
this outcome.

Thus the driving force for decreased glucose oxidation in SH-SYS5Ysg; cells appears to be
through reduced substrate delivery to mitochondria by a BACEI activity-dependent
impairment of specific TCA cycle enzymes; PDH, aKGDH and IDH each of which utilise
decarboxylation reactions. Previous studies on post-mortem AD brains indicate reduced
levels and/or activity of these key enzymes: PDH, aKGDH and IDH [20,77-81], with PDH
and oKGDH exhibiting the largest decreases in activity. Furthermore, AP peptides have been
demonstrated to inhibit PDH and aKGDH directly [28,31,82]. In contrast we find no change
in the activity of the TCA enzyme fumarase, the activity of which is also unaltered in AD
brains [20]. Our results add to these findings by implicating raised BACE1 activity and
manipulation of APP processing as central to these enzyme deficits and metabolic adaptations
at the cellular level, indicating a key role for BACE1 and its up-regulation in response to
oxidative and inflammatory stress, which are associated with the very early stages of AD
[39,43,83]. Indeed, these results show that raised BACE1 activity effectively phenocopies
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some of the earliest changes in glucose metabolism seen in the brain during the progression
towards AD.

In situations of diminished glucose utilization, there are a number of strategies that may be
engaged in an attempt to bypass this block in metabolism. For example, in brain ischemic-
reperfusion injury there is also decline in glucose oxidation and PDH activity [84,85].
Application of glutamine has been demonstrated to offer some protection against ischemic-
reperfusion injury in peripheral tissues by providing an alternative energy source for the cell
to maintain ATP content [86,87]. In addition to providing a source of carbon for
neurotransmitter production, glutamine can also feed into the TCA cycle and be metabolised
to increase levels of a-ketoglutarate and succinate. However, our data demonstrate that
glutamine supplementation is unable to restore oxidative glucose metabolism in cells
overexpressing BACEL. Furthermore, SH-SY5Yg,; cells exhibited diminished oxidation of
glutamine when applied as sole substrate, in line with the reduced activity of a-KGDH
observed in these cells.

The inhibition of PDH activity in SH-SY5Yp; cells was associated with increased
phosphorylation of the elo subunit at Ser””, which is the main inhibitory site for PDH
activity [88]. Although PDKI1 inhibition with dichloroacetate reduced ela phosphorylation
levels, this was also observed in SH-SYS5Ygy cells, in conjunction with a maintained relative
lower glucose oxidation in SH-SY5Yp; cells. This outcome may be owing to the presence of
BACET1 activity-sensitive DCA-resistant PDK isoenzyme, or PDP, or an alternative kinase
that phosphorylates ela at Ser™” (e.g. GSK3). In contrast, application of the ketone, BHB, to
SH-SYS5Y3; cells demonstrates complete recovery of glucose oxidation, relative to SH-
SY5Ygy cells, presumably by directly increasing the availability of acetyl CoA to the TCA
cycle, thus circumventing PDH. The enhanced ability to utilise ketone bodies to aid glucose
oxidation in SH-SY5Yg, cells may result from their reduced BAD levels, compared to SH-
SY5Ygy cells. This finding agrees with the work of Nikita Danial’s group showing that
neurons derived from BAD knock out animals display an augmented bioenergetic profile in
the presence of ketone bodies [66].

a-lipoic acid is synthesised in mitochondria and is a necessary cofactor for PDH and a-
KGDH activity. Our finding that exogenously applied a-lipoic acid also increases glucose
oxidation in SH-SY5Yp;, but not SH-SY5Ygy cells suggests that raised BACE1 activity
either reduces mitochondrial a-lipoic acid levels or lessens the ability of a-lipoic acid to
enhance PDH and a-KGDH activity. The latter mechanism may be favoured as there is
evidence that excess a-lipoic acid provides protection to neuronal cells from the deleterious
effects of exogenously applied AP peptides on PDH activity [89] and AP-induced toxicity
[90]. Regarding the potential to reverse the metabolic deficits associated with age-dependent
cognitive decline and early-stage or mild AD, the data presented herein demonstrate the
capacity of a-lipoic acid and BHB to attenuate impaired glucose oxidation at a cellular level
in face of chronically raised BACEI activity and increased levels of AP peptides. BHB and
a-lipoic acid have been demonstrated to exhibit some positive effects on cognitive decline in
elderly dementia and mild AD patients [11,13,91-93].

Taken together, our findings are supportive for the rationale of targeting these TCA enzyme
deficits in early cognitive impairment and AD. However, so far clinical trials based on
raising circulating levels of ketones or giving a-lipoic acid as a dietary supplement have
provided mixed outcomes and further trials examining a-lipoic acid are currently in progress.
Perhaps a future strategy for AD management and treatment may be through the combination
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of this neutraceutical approach with new therapeutics, such as BACE] inhibitors, currently in
clinical trials [94].
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Figure legends

Figure 1: BACEI] overexpression alters APP processing and glucose oxidation in SH-
SYSY cells. A. Representative immunoblots showing stable overexpression of BACE1 and
resultant changes in cellular APP and sAPPa and sAPPf shed into the culture media,
compared to empty vector (EV) treated controls. B. — E. SH-SY5Y BACEI overexpression
did not change APP protein levels (B; n =4), increased total BACE]1 protein levels (¢; n = 7)
and induced a shift in APP processing, with a reduction in sAPPa (D; n =4) and an increase
in SAPPB (E; n = 4). F. — H. SH-SY5Y BACEI overexpression reduced '*C-glucose
oxidation rate (F; n = 7), with no reduction in '*C-glucose incorporation rate (G; n = 9),
giving an overall reduction in the ratio of '“C-glucose oxidation to incorporation (H; n = 7).
Values are means + SEM. ** p < (.01, *** p <0.001

Figure 2: Glucose oxidation in SH-SYSY cells in not impaired following overexpression
of secretase-dead BACE1l protein. A. Representative immunoblots showing stable
overexpression of wild type BACE1 and a secretase-dead BACE1 mutant (mBACE1) and
resultant changes in cellular APP and sAPPp shed into the culture media. B. — D. SH-SY5Y
mBACE1 overexpression increased total BACEl to levels equivalent to BACEIl
overexpressed cells and ~3-4X greater than empty vector (EV) controls (B; n = 5), with no
effect on APP levels (C; n = 3), but in contrast to BACE1 overexpression, nBACE1 reduced
SAPPp to levels below that of the EV controls (D; n = 6 — 10). E. — G. SH-SY5Y mBACEI
overexpression had no effect on '*C-glucose oxidation compared to EV controls, in contrast
to the reduction in '*C-glucose oxidation observed in BACE1 overexpressing cells (E; n = 5),
with mBACE1 having no effect on '*C-glucose incorporation (F; n = 5), resulting in the ratio
of '*C-glucose oxidation to incorporation being unchanged in mBACEI! cells (G; n = 5).
Values are means + SEM. * p <0.05, ** p <0.01, *** p <0.001.

Figure 3: BACE1 overexpression alters glucose metabolism in SH-SYSY cells.

A. — C. BACEI1 overexpression reduces oxygen consumption rate (OCR) (A) and increases
the extracellular acidification rate (ECAR) (B) resulting in a reduced OCR:ECAR ratio (C),
compared to EV cells (n = 7 — 12). D. Glycolysis stress test temporal profile for EV and
BACEI SH-SYS5Y cells showing the effects on ECAR of the sequential addition of 2.5 mM
glucose, 1 uM oligomycin (Oligo) and 25 mM 2-deoxyglucose (2DG). E. — G. BACEI
overexpression increased basal glycolysis (E), maximal glycolysis (F) and glycolytic reserve
(G) compared to EV-treated cells (n = 18 — 21). Values are means + SEM. * p < 0.05, ** p <
0.01, *** p <0.001.

Figure 4: BACE1 overexpression has no effect on ATP-linked, maximal or leak
mitochondrial oxygen consumption.
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A. Modified mitochondrial stress temporal profile for EV and BACE1 SH-SYS5Y cells
showing the effects on the percentage change in normalised OCR of the sequential addition
of 1 uM oligomycin (oligo) and 2 pM rotenone and antimycin (Rot + Ant). B. — D. BACEI
overexpression had no effect on ATP-linked OCR (B), on the OCR required to maintain the
mitochondrial leak (C) or the non-mitochondrial OCR (D) compared to EV cells (n = 8). E.
Temporal profile showing the normalised baseline OCR for EV and BACEI cells and the
maximal OCR (reserve capacity) attained following addition of 0.2 uM carboyl cyanide-p-
trifluoromethoxyphenylhydrazone (FCCP). F. BACE!1 overexpression has no effect on the
percentage OCR increase following FCCP addition compared to EV cells (n = 9-10). Values
are means + SEM.

Figure 5: BACE1 overexpression induces specific mitochondrial TCA cycle enzyme
lesions. A, B. SH-SYS5Y cells overexpressing BACEI exhibit reduced lactate usage at levels
< 2mM compared to EV cells as demonstrated by (A) reduced repression of '*C-glucose
oxidation (n = 6) and (B) direct OCR when lactate provided as sole substrate (n =6 — 11). C.
Pyruvate dehydrogenase activity (PDH) is reduced in BACE1 overexpressing, compared to
EV, cells (n = 5). D. OCR when EV and BACEI cells provided 2.5 mM pyruvate as sole
substrate (n = 5). E. OCR of EV and BACE1 SH-SYS5Y cells when provided with 2.5 mM
glucose alone or 2.5 mM glucose + 4 mM glutamine (n = 4 — 10). F. direct OCR when 4 mM
glutamine provided as sole substrate (n = 8). G. BACEI1, but not mBACEI, overexpression,
reduced the enzyme activity of a-KGDH, compared to EV cells (n = 6). H. IDH activity
(NAD" and NADP" isoforms) is reduced by BACE1 overexpression compared to EV cells (n
= 4). 1. BACE1 or mBACEI overexpression has no effect on fumarase enzyme activity,
protein levels or specific activity compared to EV cells (n = 7). Values are means + SEM. * p
<0.05, ** p <0.01, *** p <0.001.

Figure 6: Reversal of BACE1 mediated impaired glucose oxidation in SH-SYSY cells.
A,B. Representative immunoblots (A) of phosphorylated PDHela (p-PDHela) subunit, total
PDHela and actin loading control in control (EV) and BACE1 overexpressing cells in the
absence and presence of 10 uM or 100 uM dichloroacetate (DCA), with quantification of the
immunoblot data shown in B (n = 4). C. DCA partially reverses BACE1 mediated
impairment of glucose oxidation, but also increases OCR of EV cells (n = 5). D. reduced
OCR associated with BACEI cells is recovered to EV control levels by addition of 1 uM and
10 uM beta hydroxybutyrate (n = 4 — 6). E. Representative immunoblots of BCL-2-
associated agonist of cell death (BAD) and actin loading control with quantification of the
immunoblot data (n = 4). F. BACE1-mediated reduction in OCR is recovered to EV control
levels by addition of 50 uM a-lipoic acid (n = 6). Values are means = SEM. * p < 0.05, ** p
<0.01, *** p <0.001.
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Figure L.TIF
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Figure 2.TIF
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Figure 3.TIF
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Figure4.TIF
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Figure5.TIF
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Figure 6.TIF
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