
                                                              

University of Dundee

Seismic analysis of motorway bridges accounting for key structural components and
nonlinear soil-structure interaction
Anastasopoulos, Ioannis; Sakellariadis, L.; Agalianos, A.

Published in:
Soil Dynamics and Earthquake Engineering

DOI:
10.1016/j.soildyn.2015.06.016

Publication date:
2015

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Anastasopoulos, I., Sakellariadis, L., & Agalianos, A. (2015). Seismic analysis of motorway bridges accounting
for key structural components and nonlinear soil-structure interaction. Soil Dynamics and Earthquake
Engineering, 78, 127-141. DOI: 10.1016/j.soildyn.2015.06.016

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

http://dx.doi.org/10.1016/j.soildyn.2015.06.016
http://discovery.dundee.ac.uk/portal/en/research/seismic-analysis-of-motorway-bridges-accounting-for-key-structural-components-and-nonlinear-soilstructure-interaction(af0b71ec-1312-4fb6-9eb3-c18f0bd5ae29).html


© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://
creativecommons.org/licenses/by-nc-nd/4.0/



1 
 

Seismic analysis of motorway bridges accounting for key structural 

components and nonlinear soil–structure interaction 

by 

I. Anastasopoulos1, L. Sakellariadis2 and A. Agalianos3  

 

Abstract 

The paper introduces an efficient methodology to analyze the seismic performance of 

motorway bridges. Rigorous 3D models of a typical overpass bridge are developed and used 

to assess the efficiency of the proposed method. Fixed-base conditions are initially 

considered to focus on the effect of key structural components. The proposed simplified 

model is composed of a SDOF system of a pier with lateral and rotational springs and 

dashpots connected at the top, representing the deck and the abutment bearings. Its 

definition requires section analysis of the pier, and computation of spring and dashpot 

coefficients using simple formulas. It is shown that the lateral and rotational restraint 

provided by the deck and the abutment bearings is not at all negligible and should be taken 

into account. The simplified model is extended to account for nonlinear soil–structure 

interaction, replacing the soil–foundation system with horizontal, vertical, and rotational 

springs and dashpots. While the horizontal and vertical springs and dashpots are assumed 

elastic, the nonlinear rotational spring is defined on the basis of non–dimensional moment–

rotation relations. The simplified model compares well with the full 3D model of the bridge–

abutment–foundation–soil system, and is therefore considered a reasonable approximation. 
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1. Introduction 

Motorway networks are indispensable for day-to-day life in modern societies. They are 

typically composed of various components, including bridges, tunnels, and embankments. 

Bridges are generally acknowledged to be the most vulnerable. Their severe damage or 

collapse, such as that of the Fukae section (Fig. 1a) during the 1995 Kobe earthquake 

[Kawashima & Unjoh, 1997], may pose a severe threat to the motorists (Fig. 1b). Even if the 

main shock doesn’t lead to collapse, a severely damaged bridge may be unsafe during 

subsequent aftershocks [Franchin & Pinto, 2009]. In such a case, emergency inspection is 

necessary and preventive closure of the motorway may be the only safe option. However, 

such an action will unavoidably lead to obstruction of rescue operations, and may inflict 

severe indirect losses. Hence, there is an urgent need for development and implementation 

of emergency response systems for motorway networks.  

A variety of emergency response systems have been developed so far, including global 

earthquake management systems [GDACS, www.gdacs.org, De Groeve et al., 2006; 

WAPMERR, www.wapmerr.org; Erdik et al., 2011], and local systems for real-time damage  

assessment at the city level [Erdik et al., 2003]. In the case of transportation systems, there 

have been some first attempts [e.g., Codermatz et al., 2003], but to the best of our 

knowledge, there are no well documented emergency response systems for motorway 

networks. Such a RApid REsponse (RARE) system is currently being developed, using the 

Attiki Odos Motorway (Athens, Greece) as a case study. As discussed in Anastasopoulos et 

http://www.gdacs.org/
http://www.wapmerr.org/
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al. [2014], the development of such a RARE system requires: (a) a comprehensive GIS 

database of the motorway, including the locations and typologies of the various structures; 

(b) a network of accelerographs to record the seismic motions at characteristic locations 

along the motorway; and (c) a real-time damage assessment method.     

Such a method has been outlined in Anastasopoulos et al. [2014], combining finite 

element (FE) simulations with advanced statistical modeling. For each bridge type, the 

method requires: (i) nonlinear dynamic time history analyses with an adequately large 

number of seismic excitations; (ii) development of a dataset of the seismic damage, 

expressed by appropriate damage indices (DIs), as a function of the seismic excitation, 

expressed by a variety of intensity measures (IMs); and (iii) development of a nonlinear 

regression model, expressing the seismic damage (using one or more DIs) as a function of a 

number of statistically significant IMs. In contrast to previous research, which aimed at 

identifying efficient IMs [e.g., Housner, 1952; Arias, 1970], the proposed method develops 

nonlinear regression models, combining an optimum number of statistically significant IMs.   

Previous studies have shown that a single IM is not always adequate to capture all of 

the characteristics of a seismic motion [e.g., Garini & Gazetas, 2013]. In Anastasopoulos et 

al. [2014], this was demonstrated using an idealized (single) bridge pier as an illustrative 

example. One such example is shown in Fig. 2a, referring to the correlation of the maximum 

drift ratio δr,max (a typical DI): 

𝛿𝑟,𝑚𝑎𝑥 =
𝛿𝑚𝑎𝑥

ℎ
∗ 100%                      (1) 

with one of the most efficient IMs, the Velocity Spectrum Intensity, VSI [Von Thun et al., 

1988]. It is worth observing that for VSI = 3 m, the maximum drift ratio δr,max varies from less 

than 1 (minor damage) to more than 3 (severe damage or collapse).  
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An example of the efficiency of the nonlinear regression equations [Anastasopoulos et 

al., 2014] is depicted in Fig. 2b, which compares the observed δr,max to the predicted value, 

according to the equation:  

𝛿𝑟,𝑚ax = EXP[
 
 
 
 
 
 0.70612∗LN(PGA)+ 12.97257∗

1

PGV
– 2.50142∗

1

√PGD
– 3.18861∗𝐴𝑅𝑀𝑆

2+  

+1.46808∗
1

√𝐷𝑅𝑀𝑆
 –  0.18791∗

1

√𝐼𝑐
– 11.8121∗

1

√𝑆𝐸
+ 212.77053∗

1

CAV
 +

+ 0.10551∗√VSI– 0.04486∗√𝐻𝐼– 0.02203∗
1

SMA
+ 3.05564∗

1

SMV
 +

+ 0.1741∗LN(𝑇𝑃)– 0.28233∗
1

T𝑚𝑒𝑎𝑛
+ 0.18476∗√𝐷𝑠𝑖𝑔 ]

 
 
 
 
 
 

           (2) 

where PGA, PGV, and PGD: peak ground acceleration, velocity, and displacement; ARMS and 

DRMS: RMS acceleration and displacement; IC: characteristic intensity; SE: specific energy 

density; CAV: cumulative absolute velocity; HI: Housner intensity; SMA and SMV sustained 

maximum acceleration and velocity; TP and Tmean: predominant and mean period; and Dsig : 

significant duration. The efficiency of the equation is expressed additionally in terms of 

Adjusted R-squared (R2), average deviation, and mean absolute percentage error (MAPE):  

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |𝑃𝐸𝑖|

𝑛
𝑖=1                       (3) 

where 𝑃𝐸𝑖 = 100% (𝑌𝑖 − 𝑌�̂� )  𝑌𝑖⁄  is the percentage error for observation i of the actual 

damage index value Y, and the model-estimated damage index value 𝑌�̂� , for observation. 

From such results, it can be concluded that the nonlinear regression model equations 

reduce significantly the deviations between the predicted and the observed results.  

Such equations are easily programmable and can be employed for real-time damage 

assessment. As sketched in Fig. 3, in the event of an earthquake the real-time system will 

record seismic accelerations at various locations along the motorway. This way, the seismic 

motion will be available in real time, right after the occurrence of the earthquake. For each 

bridge (or other kind of structure), the nearest record(s) will be used to assess the seismic 

damage employing the developed equations. Such knowledge of the seismic excitation is a 
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major difference to traditional risk assessment, in which case the seismic excitation cannot 

possibly be predicted, and hence probabilistic approaches are much more appropriate.  

Still though, developing such equations for all the bridges of a motorway requires 

quite substantial computational effort. For example, for the idealized bridge pier that was 

analyzed in Anastasopoulos et al. [2014], about 350 nonlinear dynamic time history analyses 

were required to generate a statistically significant dataset. Such an effort would be much 

more arduous if an actual bridge system was analyzed, and would not be easily 

implementable at the level of an entire motorway which typically includes a few hundreds 

of bridges. Hence, in order to implement a RARE system, there is a need to develop 

adequately simplified models of typical motorway bridges. The key objective of the present 

paper is to develop an efficient analysis methodology, taking account of the key 

components of the structural system of the bridge (deck, abutment bearings), as well as the 

effect of soil–structure interaction (SSI).  

 

2. Bridge typologies of the Attiki Odos motorway  

A variety of bridge typologies can be found around the world, rendering the task of 

developing a global classification rather ambitious. The present study focuses on modern 

motorway bridges, such as those encountered in the newly built Attiki Odos motorway in 

Athens, Greece. The latter is used as a case study for a RARE system that is currently being 

developed, and is therefore of particular interest. With a total length of 65 km, Attiki Odos is 

a modern motorway serving as a ring road of the greater metropolitan area of Athens. It 

includes a variety of critical structures, such as bridges, tunnels, retaining walls, slopes, and 

embankments. A total of 192 bridges can be found along the motorway, including 29 

interchanges (Fig. 4a), and 163 overpass or underpass (road or rail) bridges (Fig. 4b).  
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With such a large number of motorway bridges, there is a need for classification in 

representative classes. Such a classification is performed herein following the corresponding 

classification schemes of ATC-13 [1985], NBI [FHWA 1995], HAZUS [FEMA-NIBS 2004], and 

the work of Argyroudis et al. [2003], Nielson & DesRoches [2007], and Moschonas et al. 

[2009]. A comprehensive review of the state of the art on the subject can be found in 

Pitilakis et al. [2014] and Pitilakis & Crowley [2014]. More specifically, the following 

parameters are considered: (a) the number of spans; (b) the type of the deck (continuous or 

simply supported); and (c) the type of the pier-to-deck connection (fixed, bearings, or 

combination). Based on these criteria, the 192 bridges of the Attiki Odos motorway can be 

classified as summarized in Table 1 and Fig. 5. 

 

3. Problem definition and analysis methodology 

A typical overpass bridge (A01-TE20) of the Attiki Odos Motorway, belonging to the MSCF/B 

class, is selected as an illustrative example. Besides its simplicity, the selected bridge system 

is representative for about 30% of the bridges of the specific motorway, and is also 

considered quite common for metropolitan motorways in general. As shown in Fig. 6a, the 

selected system is a symmetric 3-span  bridge with a continuous pre-stressed concrete box-

girder deck, supported on two reinforced concrete (RC) cylindrical piers of diameter d = 2 m 

and height h = 8.8 m. The piers are monolithically connected to the deck, which is supported 

by 4 elastomeric bearings at each abutment. Each bearing is 0.3 m x 0.5 m (longitudinal x 

transverse) in plan and has an elastomer height t = 63 mm. The piers are founded on B = 8 m 

square footings, while the abutments consist of retaining walls of 9 m height and 1.5 m 

thickness. The latter are connected to two side walls of 0.6 m thickness and founded on a 

rectangular 7 m x 10.4 m rectangular footing.     
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The seismic performance of the bridge is analyzed employing the FE method. Two 

detailed models are developed for this purpose: (a) a simpler 3D model assuming fixed base 

conditions (Fig. 6b); and (b) a more rigorous 3D model, taking account of the foundations, 

the abutments, and the soil (Fig. 6c). In both cases, the deck and the piers are modeled with 

elastic and inelastic beam elements, respectively. The reinforcement of the d = 2 m RC piers 

has been computed according to the provisions of the Greek Code for Reinforced Concrete 

(ΕΚΩΣ, 2000) for columns with large ductility demands. The inelastic behavior of the piers is 

simulated with a nonlinear model, calibrated against the results of RC section analysis using 

the USC_RC software [2001]. The result of such a calibration is shown in Fig. 6b. 

Linear elastic springs and dashpots are used to model the compression (Kc,b) and shear 

stiffness (Ks,b) and damping (Cc,b , Cs,b) of the bearings [e.g., Koh & Kelly, 1988]: 

𝐾𝑐,𝑏 =
𝐸𝑐 𝐴

𝑡 𝑛
           (4) 

𝐾𝑠,𝑏 =
𝐺 𝐴

𝑡 𝑛
            (5) 

𝐶𝑐,𝑏 =
2 𝐾𝑐,𝑏 𝜉

𝜔
           (6) 

𝐶𝑠,𝑏 =
2 𝐾𝑠,𝑏 𝜉

𝜔
           (7) 

where Ec: the compression modulus of the elastomer; A: the plan area of the bearing; t: the 

thickness of the individual elastomer layers; n: the number of individual elastomer layers;                  

G: the shear modulus of the elastomer; ξ: the damping coefficient of the bearing; and ω: the 

angular frequency of reference (assumed to be equal to the dominant mode of the bridge). 

In the case of the full 3D model of the bridge–foundation–abutment–soil system                   

(Fig. 6c), the footings and the abutments are modeled with elastic hexahedral continuum 

elements, assuming the properties of RC (E = 30 GPa). An idealized 20 m deep substratum of 

homogeneous stiff clay is considered, having undrained shear strength Su = 150 kPa. The 
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latter is also modeled with hexahedral continuum elements. Nonlinear soil behavior is 

modeled with a kinematic hardening model, with a Von Mises failure criterion and 

associated flow rule [Anastasopoulos et al., 2011]. The evolution law of the model consists 

of a nonlinear kinematic hardening component, which describes the translation of the yield 

surface in the stress space, and an isotropic hardening component, which defines the size of 

the yield surface as a function of plastic deformation [Gerolymos & Gazetas, 2005]. 

Calibration of model parameters requires knowledge of: (a) the undrained shear strength Su 

; (b) the small–strain stiffness (expressed through Go or Vs); and (c) the stiffness degradation 

(G–γ and ξ–γ curves). More details on the model can be found in Anastasopoulos et al. 

[2011]. 

Appropriate “free–field” boundaries are used at the lateral boundaries of the model, 

while dashpots are installed at the base of the model to simulate the half-space underneath 

the 20 m of the soil that is included in the 3D model. Special contact elements are 

introduced at the soil–footing interfaces to model possible separation (uplifting) and sliding. 

A friction coefficient μ = 0.7 is assumed, which is considered realistic for the soil conditions 

investigated herein. The same applies to the interfaces between the abutment and the 

embankment soil. A reinforced soil embankment is considered, which is quite common in 

such motorway bridges (due to space limitations). The latter is modeled in a simple manner, 

by installing appropriate kinematic constraints in the transverse direction.     

   

4. Simplified models for fixed–base conditions 

The previously described detailed models of the bridge (Fig. 6) are used as reference in 

order to test the efficiency of the proposed simplified models. Initially, SSI is ignored to 

focus on the effect of the structural components of the bridge (deck and abutment 
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bearings). In the next section, the simplified models are extended to account for nonlinear 

SSI. The predictions of the simplified models are compared to the detailed model of the 

bridge, assuming fixed–base conditions (Fig. 6b). The comparison is performed in terms of 

static and dynamic loading. In the first case, the models are subjected to monotonic 

pushover loading, while dynamic time history analyses are performed for the latter. For this 

purpose, 29 real seismic records are used as seismic excitation, carefully chosen to cover a 

wide range of excitation characteristics (Fig. 7). The seismic performance is compared in 

terms of maximum (δr,max) and residual (δr,res) drift ratio, and with respect to the ratio of 

ductility demand over ductility capacity (μd/μc).   

 

Transverse direction 

The response of a bridge in the transverse direction is usually considered straight–forward 

and a SDOF system is a typical, very common, approximation. While for long multi–span 

bridges this may be acceptable, for the cases examined herein it may lead to gross errors if 

the contribution of the deck and of the abutment bearings are not taken into account. To 

illustrate the effect of each structural component, three simplified systems (Fig. 8) are 

developed and comparatively assessed.  

The first one (System A) considers an equivalent SDOF system of a single bridge pier, 

ignoring the contribution of the deck. As illustrated in Fig. 8a, the SDOF system is composed 

of a column having the stiffness, height, and moment–curvature (M–c) response of the pier 

and a concentrated mass mp : 

𝑚𝑝 = 𝑚𝑑  
𝐾𝑝

𝐾𝐵
             (8) 
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where Kp = 3EIp/h3 (E, Ip, and h: the Young’s modulus (RC), the moment of inertia, and the 

height of the pier, respectively) is the stiffness of the pier, and KB is the stiffness of the 

entire bridge, taking account of the shear stiffness Ks,b of the abutment bearings:   

𝐾𝐵 = ∑𝐾𝑠,𝑏 + ∑𝐾𝑝                            (9) 

The second simplified model (System B) incorporates the shear stiffness of the 

abutment bearings. As depicted in Fig. 8b, a lateral spring (Ks,t) and a lateral dashpot (Cs,t) are 

added at the top of the SDOF system, being computed as follows: 

𝐾𝑠,𝑡 = ∑𝐾𝑠,𝑏                     (10) 

𝐶𝑠,𝑡 = 
2 𝐾𝑠,𝑡 𝜉𝑠

𝜔
                         (11) 

where ξs is the damping coefficient and ω the angular frequency of the bridge system. The 

mass of the deck is distributed as before.  

The third and most complete simplified model (System C) also accounts for the 

rotational restraint that is provided by the deck. For this purpose, a rotational spring (Kr,t) 

and a rotational dashpot (Cr,t) are added at the top of the SDOF system, as depicted in in Fig. 

8c. If the deck was rigidly connected to the abutments, the rotational stiffness would be 

equal to the torsional stiffness of the deck:  

𝛫𝑡 = 𝐽𝐺 𝐿⁄                                  (12) 

where J is the torsion constant of the deck, L is the distance from the pier to the abutment, 

and G the shear modulus of the deck. In reality, however, the deck is connected to the 

abutment through the system of bearings, which has its own rotational compliance. Hence, 

the overall rotational stiffness is equal to that of the system of the two rotational springs in 

parallel:   

𝐾𝑟,𝑡 = 
𝐾𝑡 𝐾𝑟,𝑏

𝐾𝑡  +  𝐾𝑟,𝑏
                     (13) 



11 
 

where Kr,b is the rotational stiffness offered by the abutment bearings. Although the 

rotational stiffness of a single bearing is not significant, the rotational stiffness of the 

bearings acting as a system can be quite substantial. As sketched in Fig. 8c, the system of 

bearings resists the rotation of the deck by developing axial forces, and therefore Kr,b can be 

computed as follows:  

𝐾𝑟,𝑏 = ∑𝐾𝑐,𝑏 𝐿2                                                                                   (14) 

where Kc,b is the compressional stiffness of the bearings, and L the distance (in the 

transverse direction) of each bearing to the center of mass of the deck. As for System B, a 

rotational dashpot (Cr,t) is also added at the top of the SDOF system: 

𝐶𝑟,𝑡 = 
2 𝐾𝑟,𝑡 𝜉𝑠

𝜔
                         (15) 

The performance of the three simplified models is comparatively assessed in Fig. 9, 

using as a benchmark the detailed 3D model of the bridge assuming fixed–base conditions 

(see Fig. 6b). The efficiency of the three simplified models is assessed on the basis of static 

pushover and dynamic time history analyses. In the first case, the monotonic pushover (F–δ) 

response of each simplified system is compared to the detailed bridge model (Fig. 9a). In the 

latter case, the results of all the dynamic time history analyses (for the 29 seismic 

excitations) are summarized in terms of predicted (according to the simplified models) vs. 

observed (detailed 3D model) ratio of ductility demand over ductility capacity μd/μc (Fig. 9b).  

System A is proven unrealistically conservative, as it ignores the contribution of the 

lateral and rotational restraint that is provided by the deck and the system of abutment 

bearings. Observe that the pushover capacity predicted by System A is less than half of the 

capacity of the bridge, as computed using the detailed 3D model. The poor performance in 

terms of μd/μc of the dynamic time history analyses is therefore no surprise. As shown in            
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Fig. 9b, in 27% of the examined seismic excitations (8 out of 29) System A predicted total 

collapse of the bridge, in contrast to the results obtained with the detailed 3D model. 

Actually, in most of these cases, the bridge pier (according to the detailed 3D model) did not 

even exceed its ductility capacity (μd/μc < 1). Evidently, the contribution of the deck and of 

the abutment bearings is not at all negligible, and should be taken into account. This is an 

important finding, which denotes the inadequacy of over-simplified SDOF models.  

This is only partially achieved with System B, which can be seen to perform better 

than System A, but cannot be considered as a reasonable approximation. The difference in 

terms of pushover capacity is smaller, but is still of the order of 40%. In terms of μd/μc, the 

differences are still quite substantial: the predicted μd/μc exceeds 2 in about 20% of the 

examined seismic excitations (6 out of 29), but at least total collapse is not erroneously 

predicted. Hence, accounting for the lateral stiffness of the abutment bearings leads to 

better results, but is not an acceptable approximation and the rotational restraint provided 

by the deck and the abutment bearings needs to be accounted for.  

This is achieved with System C, the performance of which compares very well with 

that of the detailed 3D model of the bridge, both in terms of static pushover response and 

with respect to the dynamic time history analyses. The mean average percentage error 

(MAPE) is of the order of 10%. The same comparison has been performed for the maximum 

drift ratio δr,max leading to the same qualitative conclusions [Agalianos & Sakellariadis, 2013]. 

Hence, System C is considered a reasonable approximation of the actual response of the 

bridge.   
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Longitudinal Direction 

As illustrated in Fig. 10, three simplified models are introduced for the longitudinal 

direction. As for the transverse direction, the simpler one (System A) considers an 

equivalent SDOF system of a single bridge pier, assuming rotational fixity conditions at the 

top of the pier to account for the monolithically connected deck. This is a very common 

approximation for the longitudinal direction of such a bridge, based on the reasonable 

assumption that the flexural stiffness of the deck is much larger than that of the pier, and 

hence the rotation at the top of the pier is fully restrained.  As depicted in Fig. 10a, the 

SDOF system is composed of a column having the stiffness, height, and moment–curvature 

(M–c) response of the pier and a concentrated mass mp computed according to Eq. 8, but 

assuming Kp = 12EIp/h3 to account for the assumed full fixity conditions at the top of the 

pier.  

As for the transverse direction, System B incorporates the shear stiffness of the 

abutment bearings. As sketched in Fig. 10b, a lateral spring (Ks,l) and a lateral dashpot (Cs,l) 

are added at the top of the SDOF system, calculated according to Eqs. 10 and 11, 

respectively. 

Finally, System C (Fig. 10c) accounts for the true bending stiffness of the deck, 

replacing the fixity at the top of the SDOF system with a rotational spring (Kr,l) and a rotation 

dashpot (Cr,l). The rotational spring represents the flexural stiffness of the deck, and is 

computed considering a continuous beam of three equal spans: 

𝐾𝑟,𝑙 =
9 𝐸𝐼𝑑

𝐿𝑠
                                 (16) 

where E and Id : the Young’s modulus (RC) and the moment of inertia of the deck, and Ls : 

the length of each span. For a different number of spans, the equivalent rotational spring 
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can be computed in exactly the same manner, using similar simple formulas. The rotational 

dashpot (Cr,l) is computed as in the previous cases: 

𝐶𝑟,𝑙 = 
2 𝐾𝑟,𝑙 𝜉𝑠

𝜔
                         (17) 

The three simplified models are comparatively assessed in Fig. 11. In contrast to the 

transverse direction, the performance of the simplest System A is not that poor. Thanks to 

the developing frame action, the stiffness of the bridge in the longitudinal direction is 

substantially larger (12EIp/h3 as opposed to 3EIp/h3 for the transverse direction) and the 

contribution of the abutment bearings is much less pronounced. As depicted in Fig. 11a, the 

pushover capacity predicted by System A is only 12% lower than the capacity of the bridge, 

as computed using the detailed 3D model. It is interesting to observe that the differences 

become more pronounced with the increase of the imposed displacement δ. This is simply 

because the piers unavoidably yield at some point (δ ≈ 0.04 m), while the bearings remain 

elastic for larger displacements. Especially after the piers have consumed their ductility 

capacity (δ > 0.12 m), the contribution of the (still elastic) abutment bearings becomes more 

important. Naturally, the assumption of elastic bearing response is a simplification. In 

reality, the bearings will also yield at some point and their contribution will be limited 

thereon.  

As a result of the above, and in contrast to the transverse direction, the dynamic 

performance of System A in terms of μd/μc is acceptable. There is only one case in which 

System A erroneously predicted collapse, while according to the detailed 3D model μd/μc 

had just exceeded 1.2. It is worth observing that the differences are in general more 

pronounced when the observed (i.e., according to the detailed 3D model) μd/μc exceeds 1. 

This is totally consistent with the pushover analysis results, and the previously discussed 

enhanced contribution of the abutment bearings for larger displacements.  
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The performance is ameliorated when the abutment bearings are taken into account. 

As shown in Fig. 11b, the pushover capacity predicted by System B is only 3% lower than the 

capacity of the bridge, as computed using the detailed 3D model. The simplified model 

compares well with the detailed 3D model in terms of μd/μc, and there is no erroneous 

prediction of collapse. Therefore, it may be concluded that the lateral stiffness of the 

abutment bearings plays a role in the longitudinal direction and should be taken into 

account. Admittedly, however, their role is not as pronounced as in the transverse direction. 

The assumption of rotational fixity at the top of the pier also seems to be reasonable. 

The effect of the true bending stiffness of the deck can be quantified by examining the 

performance of System C. As shown in Fig. 11c, the static pushover response of System C 

compares very well with that of the detailed 3D model, especially before yielding of the pier 

(δ < 0.04 m). For this range of δ, while Systems A and B were stiffer than the detailed 3D 

model, the F–δ response of System C is a perfect match. Before yielding of the piers, the 

assumption of full fixity plays a role and introducing the true bending stiffness of the deck 

leads to substantial improvement. After yielding of the piers, and especially after their 

ductility capacity is consumed (δ > 0.12 m), the effective stiffness of the pier becomes much 

lower than that of the deck, rendering the assumption of full rotational fixity a realistic 

approximation. This also becomes evident when examining the dynamic analysis results: the 

match between System C and the detailed 3D model is profoundly ameliorated for                           

μd/μc < 0.5. The mean average percentage error (MAPE) does not exceed 8%, and hence 

System C is considered as a reasonable approximation.  
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5. Simplified models accounting for nonlinear SSI 

The proposed models (and specifically System C) have been shown to offer a reasonable 

approximation for both directions of seismic loading (longitudinal and transverse). So far, 

fixed base conditions have been considered. An extension of System C is proposed in order 

to account for SSI. Before proceeding to the definition of the simplified model, the effect of 

the flexibility of the abutments is briefly examined. The full 3D model of the bridge–

abutment–foundation–soil system (Fig. 6c) is used for this purpose. The latter requires 

substantial computational effort, calling for careful selection of the seismic excitations. 

Hence, from the 29 records of Fig. 7, three characteristic records are selected: (a) Aegion, 

which is considered representative of moderate intensity shaking; (b) Lefkada-2003, which 

contains multiple strong motion cycles and can be considered representative of medium 

intensity shaking; and (c) the notorious Rinaldi-228 record (Northridge 1994), containing a 

very strong forward rupture directivity pulse, and being representative of very strong 

seismic shaking.  

Figure 12 illustrates the time histories of deck displacement δ to the response of 

abutment A1 using the Rinaldi-228 record as seismic excitation in the longitudinal and the 

transverse direction. It may be concluded that the displacement of the abutment is minor 

compared to that of the deck. The same conclusion is drawn for all three seismic excitations, 

and for both directions of loading. Hence, the assumption of fixed base conditions at the 

abutments can be considered realistic, at least for the purposes of developing adequately 

simplified models for the purposes of a RARE system. Therefore, it may be considered 

reasonable to focus on the piers and the additional compliance that is provided by the soil–

foundation system.   
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A simplified method to analyse the seismic performance of foundation–structure 

systems accounting for nonlinear SSI has been introduced in Anastasopoulos & Kontoroupi 

[2014]. The latter is extended to the bridge systems studied herein, as schematically 

illustrated in Fig. 13a. The bridge is represented by System C, which has been shown to 

perform adequately well for both directions of seismic loading. The soil–foundation system 

is replaced by horizontal, vertical, and rotational springs and dashpots. The horizontal (KH 

and CH) and vertical (KV and CV) springs and dashpots are assumed elastic, and can be 

directly obtained by published solutions [Gazetas, 1983]. This may be considered a 

reasonable approximation for most bridge piers, the response of which has been shown to 

be rocking–dominated, provided that h/B > 1 [Gajan & Kutter, 2009]. For the rotational 

degree of freedom, a nonlinear rotational spring is employed, accompanied by a linear 

dashpot. The nonlinear rotational spring is defined on the basis of moment–rotation (M–θ) 

relations, computed through displacement–controlled monotonic pushover analyses using a 

3D FE model of the soil-foundation system. As discussed in Anastasopoulos & Kontoroupi 

[2014], the M–θ response is divided in three characteristic phases: (i) quasi–elastic response 

(θ → 0); (b) plastic response (ultimate state, large θ); and (c) nonlinear response 

(intermediate stage).  

The initial quasi-elastic rotational stiffness has been shown to be a function of the 

factor of safety against vertical loading FS :  

𝐾𝑅,0 = 𝐾𝑅,𝑒𝑙𝑎𝑠𝑡𝑖𝑐  (1 − 0.8
1

𝐹𝑠
)                               (18) 

where KR,elastic is the purely elastic rotational stiffness [Gazetas, 1983]: 

𝐾𝑅,𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 3.65
𝐺 𝑏3

1−𝜈                     (19) 

in which b is the half width of the footing (= B/2), G is the small strain shear modulus of soil, 
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and ν the Poisson’s ratio. 
 

The plastic response refers to the ultimate capacity of the footing, and can be defined 

on the basis of published failure envelopes [e.g., Gazetas et al., 2012]:  

𝑀𝑢 = 0.55 𝑁𝑢𝐵 (1 −
𝑁𝑢

𝑁𝑢𝑜
)                               (20) 

where Nuo is the bearing capacity for purely vertical loading [Meyerhof, 1953;                       

Gourvenec, 2007]:  

𝑁𝑢𝑜 ≈ (𝜋 + 3)𝑆𝑢𝐵3
                         (21) 

Finally, the nonlinear response corresponds to the intermediate phase between the 

quasi-elastic and plastic response. A non-dimensional formulation has been proposed in 

Anastasopoulos & Kontoroupi [2014], expressing the M–θ relations in non-dimensional 

form:  

𝑀 𝑆𝑢𝐵3⁄ = 𝑓(𝜃 𝜃𝑠⁄ )                                     (22) 

where θS is a characteristic rotation, defined as follows: 

𝜃𝑠 ≈ 
𝛮 𝛣

4  𝛫𝑅,0
                                                  (23) 

As shown in Fig. 13b, this normalization leads to a single non–dimensional moment–rotation 

curve. The latter is simplified through a piecewise linear approximation, encompassing:                      

(a) a quasi-elastic branch (θ/θs ≤ 1/3); (b) a plastic branch (θ/θs > 10); and (c) a four-segment 

intermediate nonlinear branch (1/3 < θ/θs ≤ 10).  

As discussed in Anastasopoulos & Kontoroupi [2014], a nonlinear rotational dashpot 

would ideally be required. However, most FE codes accept a single value of CR, and hence a 

simplifying approximation is necessary to maintain simplicity. CR is assumed to be a function 

of the effective rotational stiffness KR, the hysteretic damping ratio ξ, and a characteristic 

frequency ω:  
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𝐶𝑅 ≈ 
2 𝐾𝑅 𝜉

𝜔
                                                  (24) 

KR is directly computed from the M–θ relations of Fig. 13b. The damping ration ξ is 

computed through the M–θ loops of displacement–controlled cyclic pushover analyses, 

employing the 3D FE model of the soil-foundation system. As shown in Fig. 13c, the 

normalized damping coefficient CR/KR,elasticω-1 with respect to θ is a “bell shaped” curve, with 

its maximum at θ ≈ 10-3 rad (for the studied foundation). As shown in Anastasopoulos & 

Kontoroupi [2014], the maximum value of the curve can be used as a reasonable simplifying 

approximation, in order to compute CR as a function of FS only.   

The efficiency of the proposed simplified model is assessed through comparison with 

the full 3D model of the bridge–abutment–foundation–soil system (Fig. 6c). The comparison 

is performed in terms of time histories of deck drift δ and moment–curvature (M–c) 

response of pier P1 (right column). As depicted in Fig. 14, the simplified model compares 

well with the full 3D model when considering the transverse direction of seismic loading. In 

the case of the moderate intensity Aegion seismic excitation (Fig. 14a), the time histories of 

δ are practically identical, and the comparison is excellent in terms of the maximum value. 

There is a phase difference after the main pulse, which is consistent with the observed 

differences in the M–c response. The comparison is equally successful for larger intensity 

seismic shaking using the Lefkada-2003 record as seismic excitation (Fig. 14b). The simplified 

model slightly under-predicts the response, but the comparison is quite acceptable both in 

terms of δ and M–c loops. The performance of the simplified model remains satisfactory 

even for very strong shaking with the Rinaldi-228 record (Fig. 14c). The simplified model 

slightly over-predicts the response in terms of δ, but correctly predicts the exhaustion of 

ductility capacity of the pier, which enters the descending branch of response. 
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The comparison is equally successful when considering the longitudinal direction of 

loading (Fig. 15). The comparison is even better for the Aegion seismic excitation (Fig. 15a), 

with the time histories of δ exhibiting exactly the same maximum value and the M–c 

response being in even better agreement. The same applies to the Lefkada-2003 seismic 

excitation (Fig. 15b), in which case the simplified model nicely captures the time history of δ 

and the  M–c response. The comparison is quite satisfactory for very strong shaking with the 

Rinaldi-228 record (Fig. 15c). As for the transverse direction, the simplified model over-

predicts the response in terms of δ, but to a lesser extent. The comparison in terms of M–c 

loops is considered excellent.  

 

6. Synopsis and conclusions    

The paper has developed a simplified method to analyze the seismic performance of typical 

motorway bridges, accounting for the contribution of the key structural components (deck 

and abutment bearings) and nonlinear soil–structure interaction (SSI). For this purpose, a 

typical overpass bridge of the Attiki Odos Motorway in Athens (Greece) is used as an 

illustrative example. Besides its simplicity, the selected system is representative of about 

30% of the bridges of Attiki Odos, and is also considered rather common for metropolitan 

motorways in general. Attiki Odos is used as a case study for a RApid REsponse (RARE) 

system that is currently being developed, and is therefore of particular interest. The 

development of such a RARE system requires analysis of the seismic performance of a very 

large number of bridges subjected to a variety of seismic excitation scenarios. Conducting 

such analysis with full 3D models of the bridge–abutment–foundation–soil system would 

require substantial computational effort, rendering the use of simplified models a practical 

necessity. 
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The seismic performance of the bridge has been analyzed employing the FE method. 

Two models were developed for this purpose: a detailed 3D model of the bridge assuming 

fixed base conditions; and a full 3D model of the bridge–abutment–foundation–soil system. 

The first model incorporated the piers, accounting for their nonlinear response, the deck, 

and the abutment bearings. In the latter case, all material (superstructure and soil) and 

geometric (uplifting and sliding) nonlinearities were accounted for. The detailed models of 

the bridge were used as reference to assess the efficiency of the simplified method. Initially, 

SSI was ignored to focus on the effect of key structural components of the bridge (deck and 

abutment bearings). Then, the simplified models were extended to account for SSI.  

The proposed simplified model for fixed base conditions (System C, Figs. 8 and 10) is 

composed of an equivalent SDOF system of a single bridge pier, with lateral and rotational 

springs and dashpots connected at the top, representing the deck and the abutment 

bearings. As summarized in the flowchart of Fig. 16, the definition of the simplified model 

requires section analysis of the most vulnerable pier, and computation of spring and 

dashpot coefficients using simple formulas. Comparing three simplified models of varying 

complexity, it is shown that the contribution of the lateral and rotational restraint provided 

by the deck and the system of abutment bearings is not at all negligible and should be taken 

into account. The proposed simplified model compares well with the detailed 3D model of 

the bridge, both in terms of static pushover response and with respect to the dynamic time 

history analyses. It is therefore considered a reasonable approximation of the actual 

response of the bridge, and can be particularly useful in the context of a RARE system. 

  The simplified models were further extended to account for nonlinear SSI. The full 3D 

model of the bridge–abutment–foundation–soil system was used as a benchmark in this 

case. Initial analyses showed that the displacement of the abutments is minor compared to 



22 
 

that of the deck, and therefore it is reasonable to focus on the foundations of the piers. A 

simplified method to analyse the seismic performance of foundation–structure systems 

accounting for nonlinear SSI has been introduced in Anastasopoulos & Kontoroupi [2014], 

and is currently extended to the bridge systems studied herein (Fig. 13). The soil–foundation 

system is replaced by horizontal, vertical, and rotational springs and dashpots. The 

horizontal (KH and CH) and vertical (KV and CV) springs and dashpots are assumed elastic (see 

also Fig.16). The nonlinear rotational spring is defined on the basis of moment–rotation (M–

θ) relations, computed through displacement–controlled monotonic pushover analyses 

using a 3D FE model of the soil–foundation system. In terms of a simplifying approximation, 

the rotational dashpot CR is assumed elastic, being a function of the effective rotational 

stiffness KR, the hysteretic damping ratio ξ, and a characteristic frequency ω. The simplified 

model is shown to compare well with the full 3D model of the bridge–abutment–

foundation–soil system.  

Although the proposed simplified models are based on several simplifying 

approximations, they are considered reasonably accurate especially in the context of 

developing a RARE system for metropolitan motorways. Despite the fact that the paper 

focused on a representative but specific bridge system, the results are considered of more 

general validity. The same methodology can be employed to derive similar simplified models 

for different bridge classes and/or different foundation types.    
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Table 1. Classification of Attiki Odos motorway bridges. 

Number 
of spans 

Type of deck 
Pier-to-deck 
connection 

Description 
Code 
name 

Number 
of cases 

Percentage 
(%) 

Single 
span 

Continuous Fixed Frame FR 52 26.9 

Single 
span 

Simply 
Supported 

Bearings 
Single Span 

Simply 
Supported 

SSSS 9 4.7 

Multi span Continuous Fixed 
Multi Span 
Continuous 

Fixed 
MSCF 41 21.2 

Multi span Continuous Bearings 
Multi Span 
Continuous 

Bearings 
MSCB 11 5.7 

Multi span Continuous 
Fixed/ 

Bearings 

Multi Span 
Continuous 

Fixed/Bearings 
MSCF/B 58 30.1 

Multi span 
Simply 

Supported 
Bearings 

Multi Span 
Simply 

Supported 
MSSS 1 0.5 

Varies Varies Varies 
Motorway 
Junctions 

MJ 21 10.9 

 

 



(b)(a)

Figure 1. Direct and indirect consequences of an earthquake: (a) collapse of the Fukae section of
Hanshin Expressway Route No. 3 during the 1995 Kobe earthquake; and (b) bus stopping just before a
collapsed bridge span.
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Figure 2. Seismic performance of an idealized bridge pier [Anastasopoulos et al., 2014]:
(a) correlation of typical DI (maximum drift ratio δr,max) with one of the best IMs (VSI);
and (b) observed vs. predicted δr,max using the nonlinear regression model equation.
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Figure 3. Schematic illustration of the application of the RARE system during a seismic event
[Anastasopoulos et al., 2014].
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Figure 4.  The 65 km of the urban Attica motorway in Athens, Greece and the critical infrastructures

(a)

(b)

Figure 4. Attiki Odos motorway bridges: (a) example of an
interchange; and (b) typical overpass bridge.



Figure 5. Classification of Attiki Odos bridges: (a) structural typologies; (b) typical deck
sections; and (c) typical pier typologies.
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Figure 6. Typical overpass bridge (A01-TE20) of the Attiki Odos motorway used as an example for
the analyses: (a) key attributes of the bridge; (b) model assuming fixed base conditions; and (c) full
3D model of the bridge, including the foundations, the abutments, and the subsoil.
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Figure 7. Real records used for the analyses, covering a wide range of seismic excitation characteristics. 
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Figure 8. Simplified models assuming fixed–base conditions, for the transverse direction:
(a) System A, considering a single pier; (b) System B, taking account of the contribution of
the lateral stiffness of the abutment bearings; and (c) System C, also accounting for the
rotational restraint provided by the torsional resistance of the deck acting in series with the
transverse moment resistance provided by the system of bearings.
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Figure 9. Comparison of the simplified models to the detailed 3D model of the bridge assuming fixed-
base conditions–transverse direction: (a) static pushover (F–δ) response; and (b) summary of dynamic
time history analyses for all seismic excitations–predicted (simplified models) vs. observed (detailed
3D model) ratio of ductility demand over ductility capacity (μd/μc).
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Figure 10. Simplified models assuming fixed–base conditions, for the longitudinal direction: (a) System A,
considering a single pier with rotational fixity at the top; (b) System B, taking account of the contribution
of the lateral stiffness of abutment bearings; and (c) System C, accounting for the true bending stiffness
of the deck, replacing the rotational fixity with a rotation spring and a rotational dashpot.
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Figure 11. Comparison of the simplified models to the detailed 3D model of the bridge assuming fixed-
base conditions–longitudinal direction: (a) static pushover (F–δ) response; and (b) summary of
dynamic time history analyses for all seismic excitations–predicted (simplified models) vs. observed
(detailed 3D model) ratio of ductility demand over ductility capacity (μd/μc).

μ
d

/
μ

c
μ

d
/

μ
c

μd / μc

System C

System B

System A

Detailed model

5

4

1

0

2

3

5

4

1

0

2

3

5

4

1

0

2

3

2

1.5

0

0.5

1

2

1.5

0

0.5

1

2

1.5

0

0.5

1

0 0.1 0.3 0.40.2 0 0.5 1.5 21

Detailed model

Detailed model

Detailed model
System B

Detailed model
System C

(a) 
Static pushover response

(b) 
Summary of seismic performance

collapse

0

1000

2000

3000

4000

5000

0 0.1 0.2 0.3 0.4

0

1000

2000

3000

4000

5000

0 0.1 0.2 0.3 0.4



Figure 12. Dynamic time history analysis using the full 3D model of the bridge–
foundation–abutment–subsoil system, using the Rinaldi-228 record as seismic
excitation in the longitudinal and the transverse direction: time histories of deck
displacement δ and comparison to the response of abutment A1.
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Figure 13. Simplified model accounting for nonlinear SSI: (a) outline of the model, where the
soil–foundation system is replaced by a nonlinear rotational spring KR and a linear dashpot CR ,
accompanied by linear springs and dashpots in the horizontal (KH , CH) and vertical (KV , CV)
direction; (b) definition of KR with non-dimensional moment–rotation (M–θ) relation and
simplified piecewise approximation; and (c) dimensionless damping coefficient CR/KR,elasticω

-1

with respect to θ and Fs [Anastasopoulos & Kontoroupi, 2014].
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longitudinal direction. Time histories of deck drift δ (left column) and moment–curvature response of
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Figure 16. Flowchart summarizing the procedure that is required to set up the simplified model of
the bridge, accounting for key structural components and nonlinear soil–structure interaction.
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