
                                                              

University of Dundee

Cross-scenario transfer person reidentification

Wang, Xiaojun; Zheng, Wei-Shi; Li, Xiang; Zhang, Jianguo

Published in:
IEEE Transactions on Circuits and Systems for Video Technology

DOI:
10.1109/TCSVT.2015.2450331

Publication date:
2016

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Wang, X., Zheng, W-S., Li, X., & Zhang, J. (2016). Cross-scenario transfer person reidentification. IEEE
Transactions on Circuits and Systems for Video Technology, 26(8), 1447-1460. DOI:
10.1109/TCSVT.2015.2450331

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/30664498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/TCSVT.2015.2450331
http://discovery.dundee.ac.uk/portal/en/research/crossscenario-transfer-person-reidentification(7fe25075-3133-4042-83ab-502fc67e7a8e).html


THIS IS THE COPY OF AUTHOR ACCEPTED MANUSCRIPT (APPEARED IN IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 26:8 2015)1

Cross-scenario Transfer Person Re-identification
Xiaojuan Wang, Wei-Shi Zheng, Xiang Li, and Jianguo Zhang

Abstract—Person re-identification is to match images of the same person captured in disjoint camera views and at different time. In
order to obtain a reliable similarity measurement between images, manually annotating a large amount of pairwise cross-camera-view
person images is deemed necessary. However, such a kind of annotation is both costly and impractical for efficiently deploying a
re-identification system to a completely new scenario, a new setting of non-overlapping camera views between which person images
are to be matched. To solve this problem, we consider utilizing other existing person images captured in other scenarios to help the
re-identification system in a target (new) scenario, provided that a few samples are captured under the new scenario. More specifically,
we tackle this problem by jointly learning the similarity measurements for re-identification in different scenarios in an asymmetric way.
To model the joint learning, we consider that the re-identification models share certain component across tasks. A distinct consideration
in our multi-task modeling is to extract the discriminant shared component that reduces the cross-task data overlap in the shared latent
space during the joint learning, so as to enhance the target inter-class separation in the shared latent space. For this purpose, we
propose to maximize the cross-task data discrepancy (CTDD) on the shared component during asymmetric multi-task learning, along
with maximizing the local inter-class variation and minimizing local intra-class variation on all tasks. We call our proposed method
the constrained asymmetric multi-task discriminant component analysis (cAMT-DCA). We show that cAMT-DCA can be solved by a
simple eigen-decomposition with a closed form, getting rid of any iterative learning used in most conventional multi-task learning. The
experimental results show that the proposed transfer model gains a clear improvement against the related non-transfer and general
multi-task person re-identification models.

Index Terms—person re-identification, cross-scenario transfer, visual surveillance

F

1 INTRODUCTION

S URVEILLANCE systems have become almost ubiquitous in
large public spaces, even in private places [1], [2]. A most

recent topic generating more and more interests in surveillance
is person re-identification (Re-ID). Re-ID aims to re-identify
an individual who has been previously observed over spatially
disjoint cameras views in a wide area surveillance system,
which is an important task for continuous object tracking and
human behavior analysis over large-scale camera networks.
Notable progress has been made in Re-ID in the last few years,
including the attempt of designing cross-view invariant and
discriminant features [3]–[16] and developing metric learn-
ing methods for the similarity measurement between images
across non-overlapping camera views [17]–[27].

One of the essential requirements for a Re-ID system is its
deployability and applicability in a new scenario1 (e.g., from
the street to the underground). However, this goal has hardly
been achieved. The main challenges are different lighting
conditions, the change of camera viewing angles, posture
variation and occlusion change, etc. The raw features shown
robust for one type of scene do not always work well for
another type of scene. The model of a Re-ID system often
needs to be built with capability of feature learning either
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1. In this work, a scenario is regarded as a setting of non-overlapping
camera views from which person images are to be matched.

explicitly or implicitly. Furthermore, to train a robust Re-
ID system, one consensus is to collect a large amount of
labeled training data, ideally for the specific working sce-
nario considered. Though this could work well in principle,
generating such a dataset at a large scale in Re-ID is not a
trivial task, as one needs to manually label pairwise pedestrian
images from different camera views, and this often involves
another difficult task, which is tracking by hand each person
across non-overlapping camera views. Therefore, it is cost
prohibitive, especially in a crowded public space such as
airport. There exist many datasets already collected for training
Re-ID systems in different scenarios. Although each of them
might be of its own limited scope, a question arises: can they
help enrich each other? In other words, is it possible to use
other datasets collected at different scenarios to enrich the
learning on a target one? In addition, considering utilizing
other datasets to assist the person re-identification on a target
one is also helpful for deploying a new Re-ID system in a
new scenario shortly without heavy annotation for this new
scenario. In this work, we call the problem of transferring data
collected from other scenarios to help set up a Re-ID system
in a new scenario without re-collecting a lot of labeled data
as the cross-scenario transfer person re-identification.

If we consider training a Re-ID system with data from a
new scenario as a target task and the training on an existing
source dataset from another scenario elsewhere as a source
task, then using the learning on large amounts of source data
to improve the target one can be treated as an asymmetric
multi-task learning (MTL) problem [28], where “asymmetric”
means the joint learning does not aim to benefit both target
and source tasks but mainly the target one. The underlying
motivation is that, we consider pedestrians in all scenarios



THIS IS THE COPY OF AUTHOR ACCEPTED MANUSCRIPT (APPEARED IN IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 26:8 2015)2

share certain common variations such as pose variations which
are potentially independent of the scenarios. And the shared
variations could be preserved in a low rank dimensional
subspace, which we call the shared latent space. As typical
multi-task learning does, there is a common component shared
by all tasks and there is an individual specific component
for each task to constitute the similarity measurement. In this
work, we consider learning the common component used for
both tasks by exploring a shared latent subspace and consider
learning each task-specific component by exploring a task-
specific subspace.

Different from existing multi-task learning methods, we par-
ticularly consider further exploring discriminant modeling in
the shared latent space. That is to say, we consider separation
of different task data points in the shared latent space for our
cross-scenario transfer person re-identification modeling. This
is motivated by the fact that sometimes the intra-class variation
and inter-class variation are similar [25]. As shown in our
analysis (see Fig. 2 and Fig. 3 for details), data samples from
different tasks could overlap in the shared latent space. This is
not a desired behavior as the person identities from different
tasks are usually different. Unfortunately, such a problem is
not investigated in existing multi-task learning methods. To
solve this problem, we propose a cross-task data discrepancy
(CTDD) criterion to measure the discrepancy across tasks in
the shared latent subspace, so as to enhance the target inter-
class separation modeling there.

With the above ideas, we learn the similarity measurement
for each task in cross-scenario transfer person re-identification
by a joint learning of the shared latent subspace and the
corresponding task-specific subspace. Since the appearances
of person images have dramatic variations due to changes
caused by pose, action, and lighting, we hope the learned
measurement is locally discriminant. Therefore, we maxi-
mize local inter-class variation and CTDD, and meanwhile
minimize local intra-class variation. We call our method the
constrained asymmetric multi-task discriminant component
analysis (cAMT-DCA) model. Distinct to most existing multi-
task learning methods that optimize the objective functions
through an iterative technique, we present the derivation of
a closed-form solution and thus a globally optimal solution
can be guaranteed. An illustration of our proposed asymmetric
multi-task Re-ID system is shown in Fig. 1.

We evaluate the proposed model on different cross-scenario
transfer settings combined by commonly used Re-ID datasets,
including 3DPeS [29], i-LIDS [25], CAVIAR [30] and VIPeR
[8]. The results on Re-ID demonstrate that the proposed
method is better than other related state-of-the-art methods.

2 RELATED WORK

Person re-identification has received considerable attention in
recent years. Given a query image (also known as a probe
image), the task is to find its best match from a pool of
candidate images (also known as gallery images) captured
from different camera views. Most of the research to date
follows a two-step paradigm. Firstly, a feature representation
is built for each image, and the query is paired with each of

the gallery images. Secondly, the similarity of images in each
pair is calculated based on a certain metric, which is then used
as a ranking criterion to determine whether a gallery image
contains the same person as the query image. The majority
of existing methods focus on either building invariant and
robust feature representations or developing reliable metrics
for matching [25], [31]. In the following, we review previous
works that are most relevant to ours.

Metric learning methods in person re-identification are
related to ours in the sense of learning a robust metric to obtain
a reliable similarity measurement. Among existing works,
some classical metric learning methods in machine learning
were either adopted or further developed for Re-ID. Dikmen
et al. [20] introduced a Large Margin Nearest Neighbor
method, with a rejection option (LMNN-R) to directly learn
the Mahalanobis metric by extending LMNN [17]. Information
Theoretic Metric Learning (ITML) [18] could also be applied
in this framework. Kostinger et al. [22] proposed a novel
method KISSME to learn a distance metric from equivalence
constraints from a statistical inference perspective, and later
a regularized KISS metric learning was further developed
[24]. Mignon et al. introduced Pairwise Constraint Component
Analysis (PCCA) [21], which learns a projection into a low-
dimensional space to deal with the high-dimensional input
space. Li et al. [27] proposed to learn locally-adaptive decision
functions (LADF) for person verification that can be viewed as
a joint model of distance metric and a locally adaptive thresh-
olding rule. The relative-comparison based methods [19],
[25] in person re-identification have also been proposed. In
particular, Zheng et al. [25] formulated person re-identification
as a relative distance comparison (RDC) learning problem.
RDC is formulated to maximize the likelihood of a pair of
true matches having a relatively smaller distance than a pair
of wrong matches in a soft discriminant manner. Nonetheless,
the objective function is not convex and thus a global optimal
solution is not guaranteed. Furthermore, the computational
cost is very high because image distances of every pair
have to be compared. Recently, a subspace learning method
closely related to distance learning, Local Fisher Discriminant
Analysis (LFDA) [26], [32], has been applied to person re-
identification and encouraging results on a few datasets were
reported. All these methods mentioned above focused on the
problem of Re-ID in a single scenario and do not specially
address the challenge of cross-scenario transfer person re-
identification.

Relevant to our multi-task formulation, there are some
existing multi-task metric learning methods either for Re-
ID such as multi-task maximally collapsing metric learning
(MtMCML) [31] or for general purpose such as MT-LMNN
[33] and GPLMNN [34], but they were not developed for
transfer across Re-ID datasets. In particular, MtMCML aimed
to overcome an existing disadvantage of using metric in Re-
ID where only one unique metric was assigned to all image
pairs without considering the different settings of cameras. To
solve this, MtMCML designed one metric for each camera
pair and learned a set of multiple metrics jointly. However,
one of its prerequisites is that different tasks should share
the same label set, which is obviously not applicable to the
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Fig. 1: Asymmetric Multi-task Person Re-identification system: diagrams inside the large dash rectangle box indicate the
principle of training.

problem of cross-scenario transfer. For those multi-task metric
learning models in machine learning community, firstly, they
are not specifically designed for person re-identification, thus
with unknown applicability. Secondly, these multi-task metric
models differ from ours in that although they also learn a
common component across tasks, they do not particularly
ensure that the common component itself is discriminant but
only care that the combination of the task-specific component
and common component as a whole is discriminant. In our
work, we show that reducing the overlap of data across tasks
in the latent shared subspace further enhances the transfer
from auxiliary data, resulting in a notably better identification
performance in our experiments.

It is noted that there are other related works on attempting
transfer learning in Re-ID. Zheng et al. [35] considered using
other non-target data to improve the Re-ID performance on
target data. However, their modeling is only for watch-list
based transfer where the gallery images of probe people
are required during training, while our focus is on cross-
scenario transfer where any probe information is assumed
unknown during training. Li et al. [36] proposed to learn
candidate-specific metrics for inter-camera-view matching and
addressed this by transferring the metrics learned from subsets
of training images that are visually similar to the candidates.
However, this technique assumes all candidates are from
the same scenario as the training data, and does not seek
to resolve the source-target difference issue. Therefore, the
transferred metric may not be generalizable across scenar-
ios. There exist quite a few other related subspace/metric
learning based transfer learning methods, such as TCA [37],
TFLDA [38] and DAML [39]. However, these methods are
not for transfer of general purpose but particularly designed
for domain adaptation which assumes that samples from the
target domain (i.e. target dataset) and source domains (i.e.
datasets collected in other scenarios) share the same label sets.
In principle, the cross-scenario transfer person re-identification
is not a domain adaptation problem, since persons present in
the target task do not necessarily appear in the source tasks in
most cases. And thus the underlying assumption of data label

sharing across tasks made by domain adaptation methods is
not applicable.

In summary, our main contributions are:
1) We formulate the problem of cross-scenario transfer

person Re-ID as a model of asymmetric multi-task
learning. To the best of our knowledge, it is the first
attempt to address this issue, since it is a largely
unaddressed problem in person re-identification.

2) A constrained asymmetric multi-task discriminant
component analysis model (cAMT-DCA) has been
proposed, in which the Cross-task Data Discrepancy
(CTDD) is designed for learning a discriminant
shared latent space.

3) We show that our multi-task formulation can be
solved by a generalized eigen-decomposition, so that
a globally optimal solution can be obtained.

3 CROSS-SCENARIO TRANSFER MODELING
FOR PERSON RE-IDENTIFICATION

Here we refer the datasets collected elsewhere as source
datasets and the datasets collected in our concerned surveil-
lance system as target datasets. Without loss of generality, we
firstly elucidate our method in the case where only one source
is available. We then present the formulation in the case of
multiple sources.
Notations. In the reminder of this paper, we use the superscript
′ to denote the transpose of a vector or a matrix. We define Id
as the d × d identity matrix and Od×m as the d ×m matrix
of all zeros.

3.1 Transfer One Source Dataset
Let Xs and Xt be the labeled source dataset and target dataset,
respectively. Samples in both datasets are of dimensionality
d. Let ns and nt be the numbers of samples in Xs and Xt

respectively, with ns � nt.
The purpose of cross-scenario transfer Re-ID is to train

a robust system on a limited target dataset by leveraging
existing relevant source datasets, which are often captured in
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different scenarios. This requirement could be assembled well
by the prime idea of asymmetric MTL [28], which aims to
train multiple related tasks simultaneously and mainly benefit
the target one from the propagation of the shared informa-
tion across tasks. Motivated by this, we propose to model
the commonalities between the target and source datasets
through a shared latent subspace, spanned by the columns of
a projection matrix W0 ∈ Rd×r. We also introduce a task-
specific subspace through a task-specific projection matrix
Ws for the source dataset and a projection matrix Wt for
the target dataset. Ws and Wt are set to have the same
size as W0 to ensure that the resulting subspaces have the
same dimensionality, and the projected features can be easily
compared. Intuitively, the shared latent space defined by W0

is a critical component beneficial to the learning on limited
target data during the transfer. In this way, the projection of a
target sample xt could be represented as a linear combination
of the projections in the two subspaces by

zt = ((1− β)W0 + βWt)
′xt, (1)

where 0 ≤ β ≤ 1 is to explicitly control the strength of
the connection between the shared latent projection and the
target data-specific projection during the unification. Similarly,
a source sample xs is represented by the projections in the
subspaces as

zs = ((1− β)W0 + βWs)
′xs, (2)

With the above formulation, we wish to perform a joint
learning of the projections in Eq. (1) and Eq. (2) such that the
intra-class variance is minimized and the inter-class variance is
maximized simultaneously in both tasks after the projections.
We start the formulation from modeling local intra- and inter-
class variations. More specifically, as in [26], [40], let Ss

b

and Ss
w denote the local inter-class and intra-class covariance

matrices on source dataset, respectively, and let St
b and St

w

be the ones on target dataset. Those locally-weighted scatter
matrices are computed as follows:

Sq
b =

1

2

n∑
i,j=1

A
b

i,j(x
q
i − xq

j)(x
q
i − xq

j)
′ (3a)

Sq
w =

1

2

n∑
i,j=1

A
w

i,j(x
q
i − xq

j)(x
q
i − xq

j)
′ (3b)

where q ∈ {s, t} is the task indicator. Let nc be the number
of samples of class c and n the total number of samples from
all classes. In the above formulation, each pair of samples xi

and xj is weighted based on their affinity Ai,j , which could
be computed as follows: A

b

i,j =
Ai,j

n −
Ai,j

nc
and A

w

i,j =
Ai,j

nc

if xi,xj are from the same class, and A
b

i,j =
1
n and A

w

i,j = 0
if otherwise.

In order to jointly maximize the ratio between inter-class
covariance and intra-class covariance in both target and source
datasets, we propose the following objective function:

max
W1,W2

(1− γ) tr(W
′
1S

s
bW1)

tr(W′
1S

s
wW1)

+ γ
tr(W′

2S
t
bW2)

tr(W′
2S

t
wW2)

, (4)

where W1 = (1−β)W0+βWs,W2 = (1−β)W0+βWt.
The first term measures the separability (Fisher criterion)
on the source dataset, while the second term measures the
separability on the target dataset. Note that here the weighted
average through γ is actually on the score level rather than on
the feature-level because of the trace operation. It controls
the contribution of source and target data in the objective
function. The transfer is mainly achieved through the shared
latent projection component W0 in Eq. (1) and Eq. (2).
This shared component and the task-specific components are
simultaneously learned through the above asymmetric joint
optimization parameterized by γ.

Based on the formula (4), we can have a further insight
into our multi-task modeling in Eq. (1) and Eq. (2). Taking
the source inter-class variance tr(W′

1S
s
bW1) as an example

(intra-class variance could be illustrated in the same way),
tr(W′

1S
s
bW1) can be rewritten as

tr(W′
1S

s
bW1)

=
1

2

n∑
i,j=1

A
b
i,j

r∑
k=1

W1(:, k)
′(xs

i − xs
j)(x

s
i − xs

j)
′W1(:, k)

=
1

2

n∑
i,j=1

A
b
i,j

r∑
k=1

[
(1− β)W0(:, k)

′(xs
i − xs

j) + βWs(:, k)
′(xs

i − xs
j)
]2

where W1(:, k) is the kth column of W1. From the above
we can see the projection scores of each sample difference
(e.g. xs

i −xs
j) onto each of W0 and each of Ws (or Wt) are

actually measured on the discriminative directions (shared and
task-specific), and adding those measures together gives us a
stronger cue on overall discriminativeness.

Although the proposed multi-task method differs from ex-
isting ones, the weighting strategy is often used in other multi-
task learning methods for general purpose such as MT-LMNN
[33]. If γ > 0.5, target task is treated more importantly than
the source task in the objective function. Therefore, more
learning efforts are put on the target task in optimization. Once
the optimal W2 is learned, we can perform re-identification
on the target dataset after the projection in Eq. (1) using the
simple Euclidean distance between projected features.

However, the above objective function is non-convex, and
it is difficult to find a globally optimal solution, since W1

and W2 are not independent and are shared by a common
component W0. To make it tractable, we propose a relaxed
objective function as follows:

max
W1,W2

tr((1− γ)W′
1S

s
bW1 + γW′

2S
t
bW2)

tr((1− γ)W′
1S

s
wW1 + γW′

2S
t
wW2)

, (5)

Compared to formula (4), the above formulation maximizes
the joint inter-class covariances of source and target tasks and
meanwhile minimizes their joint intra-class covariances. Hence
to some extent it also reflects the separability of the projected
source data and target data. A trade-off parameter 0 ≤ γ ≤ 1
is also used to control the learning strength of each task. If
γ = 1, the learning is only performed on target dataset, and
if γ = 0, it is only on source dataset. Hence, we call the
above model as asymmetric multi-task discriminant component
analysis (AMT-DCA).

Note that when β = 1, γ = 1, the model degrades to
LFDA [26], [32] on the target dataset in a single task setting.



THIS IS THE COPY OF AUTHOR ACCEPTED MANUSCRIPT (APPEARED IN IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 26:8 2015)5

However, LFDA is not a multi-task method and its original
formulation cannot cope with the multi-task learning.

Optimization. How to optimize the objective function in for-
mula Eq. (5) with respect to W0,Ws and Wt simultaneously
seems a challenging problem. However, by using the form of
block matrix, we show that the above problem can be solved
by a simple eigen-decomposition. In particular, let W =
[W0;Ws;Wt] ∈ R3d×r, and Θs = [(1−β)Id, βId,Od×d] ∈
Rd×3d,Θt = [(1 − β)Id,Od×d, βId] ∈ Rd×3d, the optimiza-
tion problem in Formula (5) can be converted to

W∗ = argmax
W

tr(W′AW)

tr(W′BW)
(6)

where
A = (1− γ)(Θ

′

sS
s
bΘs) + γ(Θ

′

tS
t
bΘt) (7a)

B = (1− γ)(Θ
′

sS
s
wΘs) + γ(Θ

′

tS
t
wΘt) (7b)

Both A and B are positive semi-definite matrices, making the
globally optimal solution guaranteed. Formula (6) is a well-
known form and could be solved by a typical generalized
eigenvalue problem:

AW = λBW (8)

Compared to other multi-task learning methods, a very promi-
nent property of our method is that we have a closed-form
solution. In practice, if B becomes non-invertible, a simple
perturbation can be done to avert it.

3.2 Transfer Multiple Source Datasets

Suppose that there are m source datasets available, and X i
s is

the i-th labeled source dataset. Let Ss,i
b and Ss,i

w be the corre-
sponding local inter-class and intra-class covariance matrices
of the i-th labeled source dataset, respectively, i = 1, 2, . . . ,m.
Similarly, we introduce the task-specific projection Wi

s for
each source dataset and Wt for the target dataset. All tasks
are connected by a shared latent projection W0. Similarly, we
define

W = [W0;W
1
s ; . . . ;W

i
s; . . . ;W

m
s ;Wt] ∈ R(m+2)d×r. (9)

Let Θi
s = [(1 − β)Id, . . . , βId, . . . ,Od×d] ∈ Rd×(m+2)d,

and Θi
s can be partitioned into 1 × (m + 2) sub-matrices of

size d×d, where the first sub-matrix is (1−β)Id, the last is a
zero matrix Od×d, and all of the sub-matrices in the between
are Od×d except for the ith sub-matrix, which is βId. Here
Θt = [(1 − β)Id,Od×d, . . . ,Od×d, βId]. To perform a joint
learning on target and multiple source datasets, we derive an
objective function of the same form as in Eq. (6) by redefining

A = (1− γ)( 1
m

m∑
i=1

(Θi
s)
′Ss,i

b Θi
s) + γ(Θ

′

tS
t
bΘt) (10a)

B = (1− γ)( 1
m

m∑
i=1

(Θi
s)
′Ss,i

w Θi
s) + γ(Θ

′

tS
t
wΘt). (10b)

Similarly, the solution can be obtained by Eq. (8).

Fig. 2: A schematic illustration of the motivation behind
CTDD. Different shapes represent data from different tasks,
and different colors represent different classes. In the shared
latent space, different classes from different tasks could col-
lapse together.

4 CONSTRAINED ASYMMETRIC MULTI-TASK
DISCRIMINANT COMPONENT ANALYSIS

A key idea of MTL is to share common component across
tasks. Particularly in multi-task metric learning, the common
component induces a shared low-dimensional representation
across tasks, which means data points across tasks are all
projected to the same subspace, namely the shared latent sub-
space. The shared latent subspace can be used for all intra-task
discriminant modeling. However, none of the existing methods
has ever considered separating data between different tasks
in the shared latent subspace. As a result, data samples from
different tasks may collapse together in that shared latent space
(see Fig. 2 and Fig. 3). This is not a desired behavior in cross-
scenario transfer Re-ID. We are interested in separating the
data from different tasks as they normally represent different
cohorts of people in different scenarios. Therefore, intuitively,
maximizing the difference between samples of different tasks
can enhance the discriminant modeling on target data in the
shared latent space.

To solve this problem, we further propose a discriminant
model for separating data of different tasks. Specifically,
we consider the cross-task data separation by introducing a
criterion called cross-task data discrepancy (CTDD) in the
shared latent subspace induced by the columns of W0 as
below:

CTDD(W0) =
1

N
tr(W

′

0

{∑
k 6=l

∑
i,j

(xk
i −xl

j)(x
k
i −xl

j)
′}W0)

(11)
where k and l are task indices, i, j are indices of samples in
each task (e.g. xk

i denotes the ith sample in the task k), and
N is the total number of cross-task image pairs.

We illustrate our motivation in Fig. 3 by taking the transfer
from CAVIAR to i-LIDS as an example. When there is no
CTDD, namely no cross-task data separation imposed in the
shared latent space, we got W0 based on Eq. (5), then
randomly selected a set of persons in source dataset (in red
colour) and in target dataset (in blue colour), and finally
projected them into the shared latent space W0. The 2D
visualization of these samples in the shared latent space is
achieved using PCA. As shown in Fig. 3(a), some target
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Fig. 3: Illustration of the effect of CTDD in the transfer from CAVIAR (source) to i-LIDS (target), where three source classes
(in red) and four target classes (in blue) are used for demonstration. Different markers indicate different persons (classes). The
x-axis and y-axis are the first two PCA scores of the samples in the shared latent space. When there is no CTDD, blue circles
and blue hexagrams collapse with red diamonds, blue plus signs collapse with red asterisks. However, after imposing CTDD,
data from different tasks are well separated.

samples collapse with the source samples (e.g. blue circles
and blue hexagrams collapse with red diamonds, blue plus
signs collapse with red asterisks). When imposing CTDD,
we obtained the newly learned W0, and projected the same
samples into the shared latent subspace induced by the new
W0 in the same way. As shown in Fig. 3(b), after imposing
CTDD, data from different tasks are well separated.

CTDD is essentially an averaged pairwise distance in the
shared space between data samples from different tasks. In
the case of two tasks (one source task and one target task),
the above CTDD model could be simplified as follows:

CTDD(W0) =
1

N
tr(W

′

0

{∑
i,j

(xs
i − xt

j)(x
s
i − xt

j)
′}W0)

(12)
where xs

i is the ith sample from source task and xt
j is the

jth sample from target task. Ideally, we want a large value of
cross task data discrepancy.

We incorporate the above CTDD criterion in Eq. (11) into
the AMT-DCA developed in the last section and therefore
present a new model:

W∗ = argmax
w

tr(W′AW) + αCTDD(W0)

tr(W′BW)
(13)

where W follows the same definition in Eq. (9). We call
the above model as constrained asymmetric multi-task dis-
criminant component analysis (cAMT-DCA). The parameter
α indicates the contribution of CTDD in the shared latent
space to the overall objective function. By redefining A ←
A + α(Θ0)

′{ 1
N

∑
k 6=l

∑
i,j(x

k
i − xl

j)(x
k
i − xl

j)
′}Θ0, where

Θ0 = [Id,Od×d, . . . ,Od×d] ∈ Rd×(m+2)d, a block matrix
where except for the first identity block, all the other blocks
are Od×d and m ≥ 1, W0 = Θ0W, the solution can be
obtained by Eq. (8).

Although the form of CTDD is similar to the scatter matrix
of data used in the last section (Sq

b , S
q
w, q ∈ {s, t}), the role

of CTDD is distinct from theirs. CTDD aims to separate data
across tasks (between-task data separation), while the scatter
matrices are to compute either the inter-class or intra-class
variance within a single task (within-task data separation). On

the other hand, the CTDD is a function of W0 (Eq. (11))
and introduced to constrain the shared latent space W0 across
tasks rather than the entire projection for each task.

5 EXPERIMENTS

5.1 Datasets and Settings

Datasets. We selected four benchmark datasets in Re-ID:
VIPeR [8], 3DPeS [29], i-LIDS [25] and CAVIAR [30]. VIPeR
consists of 1264 outdoor images of 632 individuals, with two
images of size 128× 48 per individual. View angle change is
one major cause of appearance change. For instance, most
of the matched pairs contain one front/back view and one
side-view (see Fig. 4(a)). Brightness change is also present,
but there is little occlusion. 3DPeS includes 1011 images of
192 individuals captured on an academic campus, from eight
different surveillance cameras with significantly different view
angles. Images were collected during different periods of the
day, resulting in strong variations of lighting conditions (see
Fig. 4(b)). In the i-LIDS dataset, which was captured indoor
at a busy airport arrival hall, there are 119 people with a
total 476 person images with an average of four images per
person. Many of these images undergo large lighting variation,
considerable view angle change, and are subject to large
occlusions (see Fig. 4(c)). CAVIAR contains 1220 images of
72 individuals captured from two cameras in a shopping center
scenario. Images from the second camera present large lighting
variation, and blurring effect due to low resolution (see Fig.
4(d)).

Transfer Setting. We set each of these four datasets as target
dataset. When the target dataset was fixed, we transferred other
datasets (called source datasets) to each of them separately.
Each target dataset was paired with either a single source
dataset (termed as single transfer) or multiple source datasets
(termed as multiple transfer). For example, when CAVIAR was
used as a target dataset, all the other three datasets (VIPeR,
i-LIDS, or 3DPeS) were used as source datasets, either indi-
vidually or jointly in model learning. In our experiment, we
use ‘→’ to indicate the direction of transfer. For instance, we
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(a) VIPeR (b) 3DPeS (c) i-LIDS (d) CAVIAR

Fig. 4: Illustration of person images of the four datasets.
Images in the same column are from the same person.

denote “VIPeR→CAVIAR” as the transfer from source VIPeR
dataset to target CAVIAR dataset. In total, we have 28 cases
of transfer including 12 different cases of single transfer, and
16 different cases of multiple transfer.

Experiment Protocol. For all of the methods in each transfer
case, we selected all images in source dataset for training,
and randomly split the target dataset into two halves, one half
as a target training set and the other half as the target test
set. The performance of matching rate on target test set is
the average over 10 random splits. Our split is carried out at
the person (class) level to ensure that there is no overlap of
persons between the target training set and the target test set,
i.e., no person participating the training will be seen in the
test set.

We randomly selected p images per person in the target
training set for training. As a default setting, we set p = 2, i.e.,
only one matched pair per person. This setting is consistent
in all of our experiments unless stated otherwise. The purpose
of this setting is to test the performance of our algorithm in
the case of only limited training samples available in a target
task for a Re-ID system. For testing, we adopted a single-shot
setting. When each of 3DPeS, i-LIDS and CAVIAR was used
as a target dataset, we followed the standard protocol [23]–
[26], [36], and randomly selected 1 image from each person
in the target test set as a gallery image, and the rest as probe
images. Since VIPeR (and only) has camera view label for
each image, so when VIPeR was used as target dataset, for
each person in the test set, one image in camera view A was
set as gallery image and the other image in camera view B
was set as probe image. In this way, the target test set was
partitioned into a gallery set and a probe set. The number of
gallery images equals to the number of persons in the test set.
For each probe image, Re-ID aims to find the best match from
the gallery images. We will discuss the performance when
more training target images were used in Sec. 5.6.

The performance was evaluated in terms of cumulative
matching characteristic curve (CMC), which is a standard
measurement for Re-ID [23]–[26], [36]. The CMC curve
represents the probability of finding the correct match over
the top r in the gallery image ranking, with r varying from 1
to 20.

Feature Representation. In our experiments, all images were
resized to 128×48 pixels. We described the appearance of each
pedestrian image by a set of three basic features: color, LBP
and HOG features, capturing local color, texture and shape
respectively. Each type of feature was extracted based on local
spatial partition. Specifically, we partitioned each image into

a number of overlapping blocks of size 16× 16 each, with a
step size of every 8 pixels in both the horizontal and vertical
directions. We then extracted features from each block. For
each block, the color feature was created by concatenating 16-
bin histogram of 8 color channels (RGB, YCbCr, HS). HOG
features and LBP features were also extracted for each block.
Therefore, each block was represented by a 484-dimensional
feature vector. For each image, a total of 75 blocks were
extracted resulting in a 36300-dimensional feature vector by
concatenating all of the block features. These vectors were
then compressed into 100-dimensional vectors using PCA
before applying all subspace-based methods.

Parameter Setting. For all subspace learning/metric learning
methods (including ours) except for RDC 2, we extracted the
largest 100 eigenvectors for discriminant modeling, except for
the case with VIPeR as target dataset, where we extracted
the largest 40 eigenvectors. Setting the final dimension of the
learned subspace to 40 performs much better than setting to
100 in this case. As default settings of the proposed cAMT-
DCA, we set β = 0.1 , γ = 0.8. α was set as 1−β, reflecting
its role on weighting the common component W0 in CTDD.
This setting is consistent with Eq. (1), and convenient for
parameter tuning. Detailed discussions and analysis of these
two parameters are presented in Sec. 5.5.

Our methods are compared favorably with the following
methods in Re-ID or related, broadly in three categories: 1)
six single-task metric learning based methods 2) two multi-
task metric learning methods and 3) two domain adaptation
methods. All of the methods for comparison used exactly the
same features and were conducted under the same training
and test setting. Detailed descriptions of the comparison are
presented in the subsequent sections.

5.2 cAMT-DCA vs. Single-task Methods

Comparison Protocol. In order to show that whether the
learning of single-task methods on source datasets could
generalize well on target dataset, we selected six recent metric
learning algorithms in Re-ID for comparison including LFDA
[26], LMNN [17], the popular discriminant distance learning
method KISSME [22], LADF [27], PCCA [21], and RDC [25],
because our approach is also a subspace method. Note none
of them is exclusively designed for transfer. Therefore, for a
fair and complete comparison, each of them was trained in
three different cases: 1) using target training data only, where
the results are shown in Table 1; 2) using source data only for
training and then directly applying the learned model to target
test set, where the results are shown in Table 2; 3) using a
pooled set of source data and target training set for training,
where the results are shown in Table 3. In the three different
cases, the results of cAMT-DCA were obtained based on a
pooled set of source and target training set as required by the
algorithm.

It is worth noting that both RDC and PCCA suffer from the
huge computational cost with increasing size of training set. In

2. In the RDC model, dimension reduction is not needed. As shown in [25],
dimension reduction will degrade the performance drastically.



THIS IS THE COPY OF AUTHOR ACCEPTED MANUSCRIPT (APPEARED IN IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 26:8 2015)8

Methods VIPeR→i-LIDS 3DPeS→i-LIDS CAVIAR→i-LIDS
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 36.47 60.59 72.13 84.17 33.79 54.96 67.89 81.38 33.85 57.46 69.79 81.27
LFDA T 30.32 51.81 64.46 79.86 30.32 51.81 64.46 79.86 30.32 51.81 64.46 79.86
LMNN T 27.14 46.61 56.41 74.00 27.14 46.61 56.41 74.00 27.14 46.61 56.41 74.00

KISSME T 20.31 40.95 53.43 70.11 20.31 40.95 53.43 70.11 20.31 40.95 53.43 70.11
LADF T 14.20 36.49 49.60 69.59 14.20 36.49 49.60 69.59 14.20 36.49 49.60 69.59
PCCA T 13.48 34.14 50.30 71.01 13.48 34.14 50.30 71.01 13.48 34.14 50.30 71.01
RDC T 30.42 51.19 61.88 77.10 30.42 51.19 61.88 77.10 30.42 51.19 61.88 77.10

Methods VIPeR→CAVIAR 3DPeS→CAVIAR i-LIDS→CAVIAR
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 34.39 59.84 72.63 90.67 33.54 57.76 73.61 91.88 35.39 60.68 75.53 92.23
LFDA T 28.41 49.91 63.79 82.19 28.41 49.91 63.79 82.19 28.41 49.91 63.79 82.19
LMNN T 24.41 39.71 55.78 79.40 24.41 39.71 55.78 79.40 24.41 39.71 55.78 79.40

KISSME T 20.28 35.21 52.32 77.18 20.28 35.21 52.32 77.18 20.28 35.21 52.32 77.18
LADF T 20.68 46.07 62.23 81.55 20.68 46.07 62.23 81.55 20.68 46.07 62.23 81.55
PCCA T 16.45 37.98 53.81 76.30 16.45 37.98 53.81 76.30 16.45 37.98 53.81 76.30
RDC T 28.75 45.86 58.55 75.25 28.75 45.86 58.55 75.25 28.75 45.86 58.55 75.25

Methods VIPeR→3DPeS i-LIDS→3DPeS CAVIAR→ 3DPeS
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 31.88 53.49 63.94 75.08 30.19 52.59 63.37 74.56 29.51 51.03 62.29 74.32
LFDA T 26.57 48.90 61.42 72.35 26.57 48.90 61.42 72.35 26.57 48.90 61.42 72.35
LMNN T 23.68 43.91 55.45 67.88 23.68 43.91 55.45 67.88 23.68 43.91 55.45 67.88

KISSME T 13.96 31.90 44.04 58.68 13.96 31.90 44.04 58.68 13.96 31.90 44.04 58.68
LADF T 15.53 35.48 49.27 65.28 15.53 35.48 49.27 65.28 15.53 35.48 49.27 65.28
PCCA T 8.56 25.13 37.55 54.12 8.56 25.13 37.55 54.12 8.56 25.13 37.55 54.12
RDC T 25.58 44.74 54.59 65.07 25.58 44.74 54.59 65.07 25.58 44.74 54.59 65.07

Methods i-LIDS → VIPeR CAVIAR→VIPeR 3DPeS→ VIPeR
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 23.39 52.75 67.12 81.14 22.18 50.44 64.94 80.32 21.61 50.92 66.27 81.36
LFDA T 20.89 48.39 63.96 78.51 20.89 48.39 63.96 78.51 20.89 48.39 63.96 78.51
LMNN T 8.13 21.80 31.52 44.65 8.13 21.80 31.52 44.65 8.13 21.80 31.52 44.65

KISSME T 20.25 48.01 63.23 79.81 20.25 48.01 63.23 79.81 20.25 48.01 63.23 79.81
LADF T 9.72 29.53 44.34 61.14 9.72 29.53 44.34 61.14 9.72 29.53 44.34 61.14
PCCA T 16.65 44.24 61.27 78.45 16.65 44.24 61.27 78.45 16.65 44.24 61.27 78.45
RDC T 17.78 40.66 52.88 67.18 17.78 40.66 52.88 67.18 17.78 40.66 52.88 67.18

TABLE 1: Matching rate(%): cAMT-DCA vs. single-task methods. ’ T’ indicates the single-task methods are learned on target
datasets only. Two sample images (p = 2) are used for each target person.

Methods VIPeR→i-LIDS 3DPeS→i-LIDS CAVIAR→i-LIDS
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 36.47 60.59 72.13 84.17 33.79 54.96 67.89 81.38 33.85 57.46 69.79 81.27
LFDA S 31.32 51.93 62.56 79.24 28.42 49.25 62.35 79.58 31.50 53.99 66.71 78.18
LMNN S 29.16 50.41 63.96 79.19 27.52 46.61 60.32 76.38 29.43 52.37 62.84 76.33

KISSME S 32.22 51.87 63.34 80.97 27.86 49.46 65.81 81.65 30.73 54.23 68.61 80.80
LADF S 14.16 35.21 49.04 66.44 10.85 34.58 52.99 71.75 9.28 33.66 46.35 64.14
PCCA S 22.83 40.97 54.41 71.25 23.55 46.44 61.45 80.02 19.64 43.20 59.31 76.77

Methods VIPeR→CAVIAR 3DPeS→CAVIAR i-LIDS→CAVIAR
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 34.39 59.84 72.63 90.67 33.54 57.76 73.61 91.88 35.39 60.68 75.53 92.23
LFDA S 32.43 51.82 64.73 83.66 30.09 52.70 67.94 84.80 33.91 53.14 67.02 87.38
LMNN S 28.01 48.40 64.56 84.16 27.18 47.59 63.04 83.57 28.97 48.09 64.04 84.04

KISSME S 30.19 52.45 67.62 84.37 30.60 52.81 67.86 84.03 30.69 53.58 70.26 88.08
LADF S 25.08 50.17 65.04 82.02 18.65 46.27 60.33 83.46 25.48 51.52 67.65 84.13
PCCA S 23.07 41.67 57.47 83.27 24.04 46.79 61.91 83.51 20.78 50.12 69.50 85.64

Methods VIPeR→3DPeS i-LIDS→3DPeS CAVIAR→ 3DPeS
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 31.88 53.49 63.94 75.08 30.19 52.59 63.37 74.56 29.51 51.03 62.29 74.32
LFDA S 26.85 46.18 55.88 66.36 25.41 43.75 53.66 65.30 26.48 45.49 54.50 65.32
LMNN S 26.93 47.04 56.12 66.72 24.43 43.20 52.04 63.00 25.72 44.57 53.94 64.74

KISSME S 27.64 47.48 56.14 67.28 25.74 45.60 56.35 68.36 26.91 46.33 55.52 66.24
LADF S 12.23 32.28 43.32 57.83 11.85 28.90 41.05 56.51 6.49 17.84 27.33 42.63
PCCA S 19.67 39.70 51.11 63.93 17.03 35.72 47.90 63.09 16.53 35.31 46.30 61.86

Methods i-LIDS → VIPeR CAVIAR→VIPeR 3DPeS→ VIPeR
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 23.39 52.75 67.12 81.14 22.18 50.44 64.94 80.32 21.61 50.92 66.27 81.36
LFDA S 8.16 22.47 33.32 44.59 8.23 21.11 30.06 43.26 8.64 22.18 33.61 48.10
LMNN S 7.06 23.01 34.59 46.30 7.63 20.82 31.20 44.97 6.46 18.23 27.85 40.38

KISSME S 8.13 22.15 31.96 44.78 9.87 20.00 29.37 41.65 6.87 20.95 29.43 42.94
LADF S 2.72 10.35 17.85 28.35 1.08 4.94 9.91 16.71 3.04 11.11 19.68 31.68
PCCA S 5.57 16.58 23.26 33.39 5.57 13.29 20.57 31.23 5.54 16.77 26.71 39.18

TABLE 2: Matching rate(%): cAMT-DCA vs. single-task methods. ’ S’ indicates the single-task methods are learned on source
datasets only. Two sample images (p = 2) are used for each target person.
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Methods VIPeR→i-LIDS 3DPeS→i-LIDS CAVIAR→i-LIDS
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 36.47 60.59 72.13 84.17 33.79 54.96 67.89 81.38 33.85 57.46 69.79 81.27
LFDA-Mix 31.82 51.59 63.96 80.24 30.10 51.26 63.30 78.86 30.53 49.62 62.39 79.03
LMNN-Mix 30.15 51.20 63.57 79.98 27.69 47.84 60.33 75.95 29.26 49.30 62.23 76.17

KISSME-Mix 35.24 54.95 67.54 83.32 26.87 45.22 58.38 75.17 27.35 44.65 57.27 73.60
LADF-Mix 16.18 38.51 52.00 69.85 11.67 38.72 57.41 76.09 14.55 38.12 52.56 68.60
PCCA-Mix 23.96 47.39 62.06 77.85 18.02 44.51 61.40 78.92 20.04 45.74 59.78 74.94

Methods VIPeR→CAVIAR 3DPeS→CAVIAR i-LIDS→CAVIAR
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 34.39 59.84 72.63 90.67 33.54 57.76 73.61 91.88 35.39 60.68 75.53 92.23
LFDA-Mix 32.32 53.39 65.44 85.22 31.12 50.99 65.60 85.64 33.70 53.66 69.41 87.56
LMNN-Mix 27.80 49.62 65.00 85.17 27.05 46.87 62.15 83.45 27.94 47.20 62.07 82.55

KISSME-Mix 32.11 53.30 67.96 85.89 27.64 45.61 60.50 81.59 30.76 50.89 67.51 86.65
LADF-Mix 25.85 50.85 66.59 84.38 25.85 50.85 66.59 84.38 30.41 56.04 70.28 88.67
PCCA-Mix 25.63 48.43 64.26 85.79 24.72 49.69 67.73 87.64 26.38 52.26 69.20 88.01

Methods VIPeR→3DPeS i-LIDS→3DPeS CAVIAR→ 3DPeS
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 31.88 53.49 63.94 75.08 30.19 52.59 63.37 74.56 29.51 51.03 62.29 74.32
LFDA-Mix 27.38 48.48 58.79 69.59 26.82 48.85 60.21 71.79 23.79 43.43 54.59 66.57
LMNN-Mix 27.44 47.92 58.01 69.42 24.92 45.64 55.59 67.28 25.29 45.15 55.62 67.75

KISSME-Mix 28.94 49.82 60.66 71.28 26.31 47.00 59.51 71.50 22.34 39.81 51.20 63.26
LADF-Mix 13.13 34.15 47.76 63.35 9.25 27.55 41.86 59.53 10.29 26.32 39.80 54.82
PCCA-Mix 22.39 45.66 58.18 71.89 22.36 44.23 56.63 71.97 19.32 40.26 52.38 67.84

Methods i-LIDS → VIPeR CAVIAR→VIPeR 3DPeS→ VIPeR
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 23.39 52.75 67.12 81.14 22.18 50.44 64.94 80.32 21.61 50.92 66.27 81.36
LFDA-Mix 19.24 45.44 59.18 75.25 16.68 40.73 56.61 72.47 16.90 42.63 58.23 74.78
LMNN-Mix 8.13 21.93 33.45 46.17 7.72 21.17 31.36 46.27 7.78 20.89 31.30 44.46

KISSME-Mix 15.03 35.47 49.34 64.46 9.05 20.66 29.72 39.94 12.22 32.18 44.15 58.48
LADF-Mix 6.61 21.11 33.58 49.08 6.30 21.42 33.45 49.15 8.96 28.70 42.85 58.83
PCCA-Mix 14.34 41.61 56.71 72.37 - - - - 14.37 39.94 55.60 72.34

TABLE 3: Matching rate(%): cAMT-DCA vs. single-task methods. ’-Mix’ indicates the single-task methods are learned on a
pooled set of source and target datasets. Two sample images (p = 2) are used for each target person.

Methods VIPeR→i-LIDS 3DPeS→i-LIDS CAVIAR→i-LIDS
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 36.47 60.59 72.13 84.17 33.79 54.96 67.89 81.38 33.85 57.46 69.79 81.27
AMT-DCA 35.75 57.85 70.51 84.39 32.84 55.13 68.11 80.53 32.55 53.89 66.48 79.80

Methods VIPeR→CAVIAR 3DPeS→CAVIAR i-LIDS→CAVIAR
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 34.39 59.84 72.63 90.67 33.54 57.76 73.61 91.88 35.39 60.68 75.53 92.23
AMT-DCA 33.45 55.42 70.81 89.52 33.14 56.18 71.14 91.72 33.87 58.75 73.35 92.52

Methods VIPeR→3DPeS i-LIDS→3DPeS CAVIAR→ 3DPeS
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 31.88 53.49 63.94 75.08 30.19 52.59 63.37 74.56 29.51 51.03 62.29 74.32
AMT-DCA 30.48 52.45 62.49 73.72 29.43 51.23 62.63 73.66 27.59 48.26 59.16 71.08

Methods i-LIDS→VIPeR CAVIAR→VIPeR 3DPeS→ VIPeR
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 23.39 52.75 67.12 81.14 22.18 50.44 64.94 80.32 21.61 50.92 66.27 81.36
AMT-DCA 21.36 50.54 66.20 81.08 20.35 48.13 62.94 77.12 20.13 49.68 65.25 79.11

TABLE 4: Matching rate(%): With and Without CTDD in cAMT-DCA. The AMT-DCA is exactly cAMT-DCA without using
CTDD. Two sample images (p = 2) are used for each target person.

all multiple transfer cases, RDC-Mix and PCCA-Mix could not
be successfully tested on the pooled source training data and
target training data, even on a high performance computing
platform with an Intel-16-core CPU and 144GB RAM. We
have observed that PCCA-Mix costs 120GB RAM on average
and usually gets the server stalled. The computational com-
plexity of RDC is even much higher than PCCA. Therefore,
we tested RDC trained on target dataset only. In Table 3, in
“CAVIAR→VIPeR”, PCCA-Mix could not be tested as well
due to high computational cost.

For PCCA, we tuned the parameter β in the generalized
logistic loss function [21] in a wide range and reported the
best results at β = 3.

Performance Evaluation. In all transfer settings, cAMT-
DCA performs notably better than all of them, and im-
proves a lot at r = 1, with about 7% increase over
LFDA T on “i-LIDS→CAVIAR” and about 6% increase

on “VIPeR→i-LIDS”, as shown in Table 1. In Table 3,
cAMT-DCA achieves about 5% improvement at r = 1
over LFDA-Mix on “VIPeR→i-LIDS”, ”CAVIAR→VIPeR”
and ”3DPeS→VIPeR”, and about 6% improvement on “
CAVIAR→3DPeS”. As r increases, the matching rate of all
methods increases and cAMT-DCA consistently outperforms
others, with approximately 10% improvement over LFDA T
on “VIPeR→CAVIAR”, over LFDA S on “VIPeR→i-LIDS”,
and over LFDA-Mix on “VIPeR→i-LIDS” at r = 5 and
r = 10, as shown in Table 1, Table 2 and Table 3.

When VIPeR was used as a target dataset, compared with
the other transfer cases, the performances of all methods are
overall lower. One of the reasons is that there are 316 persons
in the test set, in comparison with an average of 60 persons in
the test set for each of other datasets. The larger the number
of persons in the test set is, the harder for the probe image to
find the correct match from the gallery images.
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(a) VIPeR→i-LIDS
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(b) 3DPeS→i-LIDS
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(c) CAVIAR→i-LIDS
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(d) VIPeR→CAVIAR
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(e) 3DPeS→CAVIAR

2 4 6 8 10 12 14 16 18 20
10

20

30

40

50

60

70

80

90

100

Rank Score

M
at

ch
in

g 
Ra

te
 (%

)

 

 

cAMT−DCA

TFLDA

TCA

MT−LMNN

GPLMNN

(f) i-LIDS→CAVIAR

2 4 6 8 10 12 14 16 18 20
10

20

30

40

50

60

70

80

Rank Score

M
at

ch
in

g 
Ra

te
 (%

)

 

 

cAMT−DCA

TFLDA

TCA

MT−LMNN

GPLMNN

(g) VIPeR→3DPeS

2 4 6 8 10 12 14 16 18 20
10

20

30

40

50

60

70

80

Rank Score

M
at

ch
in

g 
Ra

te
 (%

)

 

 

cAMT−DCA

TFLDA

TCA

MT−LMNN

GPLMNN

(h) i-LIDS→3DPeS
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(i) CAVIAR→3DPeS
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(j) i-LIDS→VIPeR
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(k) CAVIAR→VIPeR
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(l) 3DPeS→VIPeR

Fig. 5: Matching rates of cAMT-DCA, multi-task methods and domain adaptation methods, with i-LIDS,CAVIAR, 3DPeS and
VIPeR as target dataset. Two sample images (p = 2) are used for each target person.

Discussion. Except for the case with VIPeR as target dataset,
it is observed that only using the source dataset for the chosen
metric learning algorithms often results in better performance
than only using limited target data in other cases. It is probably
due to the following reasons.

Firstly, the number of training images per person would
drastically affect the modeling of metric learning algorithm
when the size of the target training set is very small. In this
case there are not enough pairs of intra-class samples for the
estimation of various intra-person variations for cross-view
person images. On the contrary, the number of intra-person
pairs in source dataset is much larger than that of target dataset.
For example, the number of intra-person pairs is 866, 10490,

3475, and 632 when each of i-LIDS, CAVIAR, 3DPeS and
VIPeR is used as source dataset, in contrast to 59, 36, 96
and 316 when they are used as target datasets, respectively. In
those cases, when source datasets could provide more samples
for each person, it might lead to a more reliable estimation of
the parameters in metric learning methods.

Second, although source and target datasets are from dif-
ferent scenarios, they are not completely irrelevant. Instead
they all present the variations of one big category of “person”.
Intuitively, the knowledge (e.g. feature projections) learned to
recognize and differentiate persons in one group of people
could be used to differentiate persons in another group.

The above could be the potential reasons those non-transfer
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(a) CAVIAR→i-LIDS (b) VIPeR→3DPeS

Fig. 6: Sample results of Person Re-ID over the same probe image using cAMT-DCA (top row), LFDA-Mix (middle row) and
MT-LMNN (bottom row). In each row, the left-most is the probe image; images in the middle are the top 10 matched gallery
images, with a red box highlighting the correct match, and the right-most shows the ground truth.

Methods p = 3 p = 4 p = 5
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 36.63 58.72 74.12 89.94 37.09 59.90 75.34 91.39 39.22 61.88 76.55 89.88
LFDA-Mix 32.73 53.61 66.82 84.78 33.72 54.47 68.03 86.19 34.03 55.10 68.39 86.57
LMNN-Mix 28.34 47.60 62.25 82.87 29.99 47.98 61.53 83.05 28.63 46.81 61.57 83.21

KISSME-Mix 32.89 58.58 72.13 88.02 33.97 60.62 74.51 92.64 36.91 60.84 74.92 91.18
LADF-Mix 23.46 51.65 67.81 83.68 20.76 49.90 67.01 87.26 26.20 56.31 72.38 88.33
PCCA-Mix 27.68 53.52 68.11 87.64 25.81 54.86 72.25 90.15 27.93 55.61 71.37 89.36

TCA 19.10 37.13 50.84 73.94 19.68 36.27 49.59 77.96 19.05 36.58 51.70 74.40
TFLDA 18.67 33.43 49.09 70.68 20.05 33.40 49.27 70.94 19.81 33.42 48.76 71.16

MT-LMNN 29.85 52.90 68.40 85.64 30.92 49.71 64.11 84.55 29.00 51.05 66.22 85.90
GPLMNN 30.04 52.98 68.58 86.37 30.16 49.51 63.63 84.91 29.52 49.83 64.93 85.86

TABLE 5: cAMT-DCA vs. others: matching rate(%) in “VIPeR→CAVIAR”, with respect to different number p of target
training images for each person.

Methods VIPeR+CAVIAR→i-LIDS VIPeR+3DPeS→CAVIAR VIPeR+i-LIDS→3DPeS CAVIAR+i-LIDS→VIPeR
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 35.64 58.86 70.45 83.72 33.70 58.20 75.68 93.45 31.86 52.37 63.06 73.29 20.35 48.26 63.01 77.94
LFDA-Mix 30.27 51.20 64.57 80.07 32.14 53.10 64.73 85.28 28.00 49.50 58.68 70.15 17.25 42.94 58.20 73.13
LMNN-Mix 30.15 51.09 63.57 77.34 26.99 47.49 61.60 83.66 25.93 45.41 54.99 67.05 8.32 21.14 32.44 46.36

KISSME-Mix 26.58 48.57 59.94 75.89 30.58 49.76 61.84 83.94 27.64 48.58 58.65 70.07 8.77 21.68 31.08 41.84
LADF-Mix 18.86 42.35 55.90 71.46 22.76 51.48 68.80 90.11 9.40 27.93 40.79 58.88 6.80 20.76 32.15 47.63
MT-LMNN 31.39 54.44 66.88 81.48 29.14 51.75 65.87 88.42 28.43 49.12 60.19 71.49 16.33 43.61 58.04 72.56
GPLMNN 32.00 52.98 65.70 80.98 29.47 50.70 63.47 87.69 27.26 48.20 59.05 70.75 16.20 43.07 57.37 72.72

TCA 14.51 32.70 44.65 64.55 21.87 41.25 53.79 74.61 14.84 27.85 37.89 50.22 5.89 16.55 24.43 37.06
TFLDA 21.04 41.79 52.88 68.72 18.54 34.71 49.04 73.45 18.28 35.57 46.10 57.66 5.16 13.54 19.68 29.21

TABLE 6: cAMT-DCA vs. others: matching rate(%) with i-LIDS, CAVIAR, 3DPeS and VIPeR as target dataset each, and two
of others are used as sources for transfer. Two sample images (p = 2) are used for each target person.

methods trained only using source datasets often perform
better than using target only, when i-LIDS, 3DPeS or CAVIAR
was used as target.

However, simply training a method on source only is not the
best way to tackle the problem of the cross-scenario person re-
identification. It is because these estimations on source are not
ideal for the target task without identifying the latent features
shared between source and target sets. For these non-transfer
methods, what they learned on source dataset is not all what
are desired on target. This can be evidenced by the lower
matching rate with less than 10% at rank 1 when directly
applying these non-transfer models learned on source datasets
to target dataset VIPeR as shown in Table 2.

In addition, it could be observed that LFDA-Mix, KISSME-
Mix, LADF-Mix and LMNN-Mix perform almost the same
as LFDA S, KISSME S, LADF-S and LMNN S do in some
cases. Sometimes, they perform even worse on ‘3DPeS→i-
LIDS”, “CAVIAR→i-LIDS”, and “3DPeS→CAVIAR” (see
Table 2 and Table 3). It shows that simply pooling all data

from different tasks together would not always help improve
the Re-ID performance on target. This further indicates that
cross-scenario differences indeed exist, and existing single-
task methods did not specifically consider the essential dis-
crepancy across tasks. Therefore they are largely biased by
source datasets. On the contrary, our proposed cAMT-DCA
can efficiently identify the shared latent features and get it
transferred to target task.

5.3 cAMT-DCA vs. Multi-task + Domain Adaptation
Methods
Our proposed method is an asymmetric multi-task learning,
so here we compared some representative multi-task learn-
ing methods, which are subspace/metric based. Multi-Task
LMNN (MT-LMNN) [33] and Geometry Preserving LMNN
(GPLMNN) [34] were selected. The regularization parameter
for the common metric and task-specific metric was set to 1
for MT-LMNN, 0.5 for GPLMNN, achieving their best per-
formance. Von Neumann divergence was used in GPLMNN.
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Methods VIPeR+CAVIAR+3DPeS→i-LIDS VIPeR+i-LIDS+3DPeS→CAVIAR VIPeR+CAVIAR+i-LIDS→3DPeS CAVIAR+i-LIDS+3DPeS→VIPeR
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 36.53 59.31 70.50 84.39 36.22 59.82 75.16 92.58 30.52 51.68 61.43 72.28 19.49 46.77 61.87 77.72
LFDA -Mix 32.51 53.43 66.97 81.37 33.07 53.95 66.49 85.43 26.04 45.18 56.76 68.78 16.80 42.56 56.93 72.28
LMNN-Mix 31.21 50.69 63.01 77.51 28.30 48.30 62.57 83.37 26.22 45.18 55.25 66.94 8.45 22.34 32.15 46.27

KISSME-Mix 29.21 48.06 63.40 78.13 31.85 51.76 66.49 85.30 25.96 44.16 53.79 66.62 9.87 22.18 31.87 44.72
LADF-Mix 16.94 42.97 57.86 72.86 22.27 52.31 71.17 89.36 13.45 34.43 47.57 63.78 6.65 19.08 30.54 44.84
MT-LMNN 31.78 55.56 66.60 81.37 30.58 52.92 67.54 87.22 29.14 49.70 60.57 70.97 16.36 42.28 56.20 72.31
GPLMNN 32.79 53.26 64.86 81.42 30.16 50.81 65.15 87.82 27.89 48.72 59.19 70.94 16.30 41.84 55.57 71.96

TCA 16.20 35.01 46.50 65.32 20.75 38.16 55.02 78.78 14.61 28.49 37.69 50.64 4.56 14.11 21.65 30.89
TFLDA 24.41 41.53 55.98 70.58 19.03 34.21 49.88 73.04 19.30 34.09 43.75 56.12 4.91 13.20 21.58 31.71

TABLE 7: cAMT-DCA vs. others: matching rate(%) with i-LIDS, CAVIAR, 3DPeS and VIPeR as target dataset each, and the
other three are used as sources for transfer. Two sample images (p = 2) are used for each target person.

Methods VIPeR→CAVIAR i-LIDS→CAVIAR 3DPeS→CAVIAR
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 65.97 87.15 93.66 98.97 64.00 83.31 93.75 98.31 65.93 84.26 92.55 98.60
LFDA-Mix 62.46 85.55 92.22 98.42 61.70 82.31 90.99 98.69 62.29 84.04 91.80 97.59
LMNN-Mix 58.58 81.78 90.45 97.06 56.65 80.05 89.52 97.02 57.11 80.20 88.97 97.11

KISSME-Mix 63.58 84.87 92.26 98.20 59.02 82.46 91.51 97.06 58.23 80.68 90.18 96.78
LADF-Mix 34.05 70.54 85.09 97.11 39.32 71.02 84.20 95.48 31.80 64.75 80.51 93.61
PCCA-Mix 46.80 75.02 86.60 95.91 43.94 73.30 84.91 96.44 51.53 77.19 88.83 96.98
MT-LMNN 61.56 83.05 91.58 97.41 58.45 81.54 90.38 97.19 58.75 81.25 90.79 97.15
GPLMNN 60.12 82.70 90.51 97.19 58.01 81.25 89.87 97.22 58.67 80.84 91.03 97.41

TCA 45.08 67.12 78.34 91.11 46.70 69.93 80.35 90.17 45.44 70.65 81.58 92.63
TFLDA 42.57 64.31 77.27 88.66 27.81 50.77 64.61 82.07 48.81 68.57 81.55 93.10

TABLE 8: Matching rate(%) in a multishot setting, single transfer with CAVIAR as target dataset. Two sample images (p = 2)
are used for each person in target training set. Five images are chosen as gallery images for each person in the target test set.

Albeit different from domain adaptation, in order to show
typical domain adaptation methods do not work well for cross-
scenario person re-identification, we compared two represen-
tative subspace-based domain adaptation methods: Transfer
Component Analysis (TCA) [37] and Transfer Fisher Linear
Discriminant Analysis (TFLDA) [38]. TCA is an unsupervised
method without utilizing discriminant information. TFLDA
considers differentiating different classes from the source
dataset in a subspace, but simultaneously minimizing the
Bregman divergence between two distributions of data from
the source and target dataset. The regularization parameter γ
in TFLDA was carefully tuned, the best result was reported
when γ = 0.5. The comparison results are shown in Fig. 5.
It can be seen that, cAMT-DCA obtains the highest matching
rate, with an overall performance gain of 10%−20% over TCA
and TFLDA and up to 10% over MT-LMNN and GPLMNN.

These results indicate that 1) the domain adaptation based
models are not suitable for the cross-scenario transfer in our
case, since the people identities (classes) of the source and
target datasets are usually different in cross-scenario transfer
Re-ID, while the domain adaptation models are designed to
minimize the distribution bias of samples from two domains
for the same group of people; 2) the proposed asymmetric
multi-task learning is more effective for Re-ID. In addition,
unlike other multi-task models, the proposed cAMT-DCA is
not iterative and further exploits the discriminant information
across tasks in the shared latent space with CTDD constraint
enhancing inter-class variation there.

To further illustrate the advantage of the proposed cAMT-
DCA, we show some real matching examples of our method,
LFDA-Mix, and MT-LMNN over the same probe image, on
“CAVIAR→i-LIDS” (see Fig. 6(a)), “VIPeR→3DPeS” (see
Fig. 6(b)) 3. Our proposed cAMT-DCA ranks a correct match
higher (i.e., much closer to the probe image) than LFDA-Mix

3. Due to space limitation, the matching example on “VIPeR→CAVIAR”
is shown in Fig. 1 in the supplementary file.

and MT-LMNN. 4

5.4 With vs. without CTDD in cAMT-DCA

Table 4 shows the results of the proposed model with and
without CTDD, where “AMT-DCA” indicates the proposed
asymmetric multi-task discriminant component analysis with-
out CTDD. We performed a paired sample z test on the results
on Table 4 and confirmed that the improvement is statically
significant with computed p-value approximately zero. In
particular, the improvement with CTDD over without CTDD
is around 3% in many cases, especially when VIPeR and
CAVIAR were used as the source datasets. Note that images in
VIPeR dataset have large intra-class variations mainly due to
viewpoint changes. This implies that the distribution of person
images of the source dataset is likely to overlap with that of the
target data in the shared latent space. The purpose of CTDD
is to reduce such a kind of overlap in the latent subspace.
From Fig. 3, we can see that after using CTDD, the overlap
between the distributions of images from source dataset and
target training set has been noticeably reduced. And the results
in Table 4 confirm the efficacy of the idea of CTDD.

5.5 Effect of Parameters

In the proposed model, we introduced two important param-
eters β and γ to control the coupling of source and target
datasets. To test the effect of those parameters, we evaluated
cAMT-DCA by varying β in the range of [0 : 0.1 : 1] and
γ in the range of [0.1 : 0.1 : 1] 5. To best visualize the
performances, we use AUC (Area Under the CMC Curve)

4. We also present the Re-ID results of a sample set of probe im-
ages using cAMT-DCA on “CAVIAR→i-LIDS”, “VIPeR→CAVIAR”, and
“VIPeR→3DPeS”, in Fig. 2, Fig. 3 and Fig. 4, respectively in the supple-
mentary file.

5. The case when γ = 0 is excluded and not applicable to our method, as
γ = 0 indicates that target dataset is not used in our modeling.
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Fig. 7: Visualization of AUC contour parameterized by β and
γ in VIPeR→i-LIDS, the highest AUC value is highlighted by
the white spot in the figure. Two sample images are used for
each target person.

to quantify the performance 6 , which was shown using CMC
before. We plotted contours to visualize the change of AUC
values with different combinations of β and γ, Fig. 7 shows
the AUC contour plot in ‘VIPeR→i-LIDS’. The highest AUC
value (marked at a white spot when β = 0.1 and γ = 0.8) is
located in the region with strongest redness.

We have tested the effect of these two parameters in all
other transfer cases, and similar conclusions can be drawn,
which indicates that the parameters setting is quite reliable
across different datasets. Therefore, β = 0.1, γ = 0.8 were set
consistently for the experiments in all transfer cases.

5.6 Effect of Number of Target Training Samples

In this experiment, we tested the performance of our algorithm
by varying the number of training images per person from 3
to 5 in the target training set. It is noted that, different persons
have different numbers of instance images in those datasets,
e.g., varying from 2 to 8 in the i-LIDS dataset. For those
persons in the target training set, if the maximum number of
instance images in a person category is less than p (p = 3,
4, 5), all of the images in that person category were used for
training. The testing protocol is the same as that of previous
experiments.

Here for the clarity of presentation, we report the matching
rates against different numbers of target training samples p
per person on “VIPeR→CAVIAR” in Table 57. In most of
the cases, the proposed method outperforms other methods
using exactly the same training set. This further shows that the
proposed cAMT-DCA could still be a preferable choice when
more training samples are available in the target dataset.

5.7 Transfer from Multiple Source Datasets

We report the results when two source datasets were available
in Table 6 and when three source datasets were available in

6. The larger the area under CMC curve (AUC) is, the more steep when
the rank is small. Hence, a larger AUC always implies a better matching
performance over all rank matching.

7. Due to space limitation, the results in “CAVIAR→i-LIDS”, and “ VIPeR
→3DPeS” are presented in the supplementary file.

Table 7. Compared with MT-LMNN and GPLMNN, cAMT-
DCA achieves an improvement of 3% − 4% when r = 1. In
particular, cAMT-DCA performs significantly better than TCA
and TFLDA, with a gain up to 20% at r = 1. This further
shows that the proposed asymmetric multi-task model is more
suitable for cross scenario Re-ID than the related ones.

Through the experiments, it is observed that using more
source datasets does not necessarily mean a better improve-
ment. For example, as shown in Table 1, 6 and 7, always
using VIPeR as source is better than using more except
for the case “VIPeR + CAVIAR + 3DPeS → i-LIDS” and
“ VIPeR + i-LIDS + 3DPeS → CAVIAR”. It is probably
due to the diversity of source scenarios, when using more
source tasks to transfer, the sharing among them may become
more ambiguous, and the transfer learning task becomes more
challenging.

However, there may still exist room for developping algo-
rithms to select a suitable source dataset or a set of sources for
transfer learning for better performance. It is closely related
to the theoretical bottleneck about task selection in machine
learning. Indeed determining the optimal number of tasks
for multi-task modeling remains an open problem in both
machine learning and computer vision fields. A future research
breakthrough in theory might solve this problem.

5.8 cAMT-DCA in Multi-shot Setting
Thus far, all of our experiments were conducted in a single-
shot setting. To further evaluate the proposed method in a
multi-shot setting, we compared it with the related approaches
in the transfer cases where CAVIAR was used as target dataset
(CAVIAR is the best dataset for conducting the experiment
under the multi-shot setting as each person has a minimum
of 10 images). In the test set, we randomly chose five images
per person as gallery images, and the other images were set
as probe images. All the other settings are the same as the
presented in Sec. 5.1. The results are shown in Table 8 and
Table 9.

Methods VIPeR+3DPeS→CAVIAR VIPeR+i-LIDS+3DPeS→CAVIAR
r = 1 r = 5 r = 10 r = 20 r = 1 r = 5 r = 10 r = 20

cAMT-DCA 64.61 84.06 92.52 99.45 64.46 85.11 92.90 99.03
LFDA-Mix 62.81 82.90 91.16 98.18 62.44 83.71 90.53 98.20
LMNN-Mix 57.70 80.66 89.83 97.19 58.08 81.76 91.08 96.97

KISSME-Mix 60.00 80.48 89.54 97.22 63.67 83.47 91.12 96.86
LADF-Mix 39.50 66.83 83.13 93.62 39.64 66.09 82.03 94.52
MT-LMNN 60.14 83.21 92.09 97.94 60.60 82.81 91.89 98.58
GPLMNN 59.57 83.34 91.34 97.63 59.52 82.22 91.78 97.65

TCA 44.58 70.09 82.00 93.94 42.64 67.88 80.16 92.27
TFLDA 45.08 65.41 78.17 89.26 45.07 65.01 77.33 90.40

TABLE 9: Matching rate(%) in a multishot setting, multiple
transfer with CAVIAR as target dataset. Two sample images
(p = 2) are used for each person in target training set. Five
images are chosen as gallery images for each person in the
target test set.

As expected, all methods have gained notable improvement
in the multi-shot setting compared to the corresponding results
in the single-shot setting (see Table 3, 6, 7, and Fig. 5). And
our proposed cAMT-DCA still outperforms all of them.

6 CONCLUSION
We have addressed the problem of person re-identification
across different scenarios and proposed a constrained asym-
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metric multi-task discriminant component analysis (cAMT-
DCA) for leveraging source datasets (i.e. existing datasets) to
improve performance of the target task. In particular, in cAMT-
DCA, we have explored a cross-task data discrepancy (CTDD)
constraint in order to learn a discriminant shared component
across tasks that reduces the overlap between the cross-task
(inter-class) data. Extensive results have shown the proposed
asymmetric multi-task learning approach outperforms seven
different state-of-the-art approaches in the case of cross-
scenario transfer person re-identification. Our study shows that
with limited training samples in target task, it is possible to
build up an efficient target Re-ID system in a new surveillance
system by a cross-scenario transfer modeling, helping avoid
the need to re-collect a lot of labeled data for training.

It is worth noting that an interesting but very challenging
problem is unveiled by our study: how to select the most
important source datasets to transfer, which is similar to the
largely unsolved problem in existing multi-task modeling that
how many tasks are enough and which of them is useful.
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