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Homogenization of oxygen transport in biological tissues

Anastasios Matzavinos and Mariya Ptashnyk

(Received 00 Month 20XX; final version received 00 Month 20XX)

In this paper, we extend previous work on the mathematical modeling of oxygen transport
in biological tissues [23]. Specifically, we include in the modeling process the arterial and
venous microstructure within the tissue by means of homogenization techniques. We focus
on the two-layer tissue architecture investigated in [23] in the context of abdominal tissue
flaps that are commonly used for reconstructive surgery. We apply two-scale convergence
methods and unfolding operator techniques to homogenize the developed microscopic model,
which involves different unit-cell geometries in the two distinct tissue layers (skin layer and
fat tissue) to account for different arterial branching patterns.

Keywords: Oxygen transport; homogenization; two-scale convergence; unfolding method;
thin domains; arterial branching pattern; tissue engineering; DIEP tissue flap; reconstructive
surgery.

AMS Subject Classifications: 35-XX, 74Q10, 74Q15, 96-XX

1. Introduction

Flow of blood and delivery of oxygen within a tissue is an area of intense research
activity [11]. At the larger end of the scale, flows through branching vessels have
been studied extensively [5, 31, 32]. At the capillary scale, detailed experimental
and simulation studies of flows in the microvasculature have been carried out [13,
24, 30, 33], taking into account such factors as changes in the apparent blood
viscosity with vessel diameter, and separation of red blood cells and plasma at
bifurcations [20].

A more coarse-grained approach, pursued by several authors, has been to treat
blood flow through the vascular network as akin to fluid flow through a porous
medium. On a smaller scale, this approach was used by Pozrikidis and Farrow
[29] to describe fluid flow within a solid tumor. More recent work by Chapman
et al. [7] extended this approach to consider flow through a rectangular grid of
capillaries within a tumor, where the interstitium was assumed to be an isotropic
porous medium, and Poiseuille flow was assumed in the capillaries. Through the
use of formal asymptotic expansions, it was found that on the lengthscale of the
tumor (i.e., a lengthscale much longer than the typical capillary separation) the
behavior of the capillary bed was also effectively that of a porous medium. A
more phenomenological approach was taken by Breward et al. [6], who developed a
multiphase model describing vascular tumor growth. Here, the tumor is composed
of a mixture of tumor cells, extracellular material, and blood vessels, with the model
being used to investigate the impact of angiogenesis or blood vessel occlusion on
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tumor growth. A similar model was used by O’Dea et al. [28] to describe tissue
growth in a perfusion bioreactor.

Matzavinos et al. [23] adopted a similar multiphase modeling approach to inves-
tigate the transport of oxygen in abdominal tissue flaps, commonly used for plastic
and reconstructive surgery. Among existing types of abdominal tissue flaps, the
deep inferior epigastric perforator (DIEP) flap is a central component in the current
practice of several reconstructive surgical procedures [14]. Nonetheless, complica-
tions such as fat necrosis and partial (or even total) tissue flap loss due to poor
oxygenation still remain an important concern. Gill et al. [12] reported that in
their study of 758 DIEP cases, 12.9 percent of the flaps developed fat necrosis and
5.9 percent of the patients had to return to the operating room. In view of these
data, Matzavinos et al. [23] investigated computationally the level of oxygenation
in a tissue given its size and shape and the diameters of the perforating arteries.
The approach adopted in [23] considered a multiphase mixture of tissue cells, ar-
terial blood vessels, and venous blood vessels, distributed throughout a domain of
interest according to specified volume fractions.

In this paper, we improve upon the coarse-grained description of [23] by employ-
ing a homogenization approach that takes into account the detailed microstructure
of arterial and venous blood vessels. The microscopic model under consideration
tracks the flow of blood in a specified geometry of arteries and veins within a tissue
flap and the transport of oxygen in arteries, veins, and tissue. A two-layer tissue
architecture is adopted that involves different unit-cell geometries (accounting for
different arterial branching patterns) in the two distinct tissue layers. We apply a
combination of two-scale convergence methods [3, 27] and unfolding operator tech-
niques [8–10] to homogenize the microscopic model. Our main results are Theorems
2.1, 2.2, 2.5 and 2.6 on the macroscopic equations for the blood velocity fields and
the oxygen concentrations under different scaling assumptions for the two tissue
layers. Moreover, in Theorems 5.3 and 5.6, we generalize to thin domains existing
convergence results for the periodic unfolding method.

Derivations of the effective macroscopic equations are important for an accurate
numerical simulation of the oxygen distribution in biological tissue. To address
different structures of tissues, we consider two different cases which correspond to
different scaling regimes: (i) the depth of the skin layer is of the same order as the
representative size of the microstructure and (ii) the depth of the skin layer is much
larger than the size of the microstructure, but much smaller than the depth of the
fat tissue. For both cases we obtain the Darcy law as the macroscopic equation for
blood flow in fat tissue. In the skin layer, we reduce the interface at the bound-
ary of the fat tissue layer to two dimensions and obtain the Darcy law with the
force term defined by inflow or outflow of blood from the fat tissue layer. We obtain
reaction-diffusion-convection and reaction-diffusion equations as macroscopic mod-
els for oxygen transport in blood and tissue oxygen concentrations, respectively.
The transport of oxygen between tissue and arterial blood on the surface of the
blood vessels is represented by the reaction terms in the macroscopic equations.
Additionally, in the macroscopic equations for the oxygen concentration in the skin
layer, we obtain the source terms defined by the inflow and outflow of oxygen from
the fat tissue layer.

The main difference in the results for the two cases is that the unit cell problems
are distinct, hence we obtain different effective permeability tensors and diffusion
matrices. Thus we obtain different flow velocity and oxygen concentration transport
equations depending on the relationship between the thickness of the skin layer
and the structure of the blood vessel networks. The macroscopic equations derived
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Figure 1. Two dimensional schematic representation of a three-dimensional rectangular domain repre-

senting an abdominal tissue flap. The top layer of unit cells (denoted by Λε in the text) corresponds to
the dermic and epidermic layers of the skin, whereas the remainder of the domain (denoted by Ω in the

text) corresponds to fat tissue. Only the arterial blood vessels are shown in the fat tissue layer. Arteries

(in red) and veins (in blue) are shown in the skin tissue layer, which is characterized by the presence of
arterial-venous connections, i.e. geometric regions where arteries and veins meet.

from the microscopic description of the processes take into account the microscopic
structure of blood vessels network and provide a more realistic model for the oxygen
transport in biological tissues.

The literature on the homogenization of fluid flows in porous media is vast (see,
e.g., [2, 4, 16, 25, 34] and the references therein). Some representative results in this
area are as follows. The macroscopic equations for water flow between two porous
media with different porosities were first derived in [19]. A multiscale analysis of the
Stokes and Navier-Stokes problems in a thin domain was conducted in [22], where
the authors considered applications to lower-dimensional models in fluid mechanics.
Various results on the multiscale analysis of reaction-diffusion-convection equations
in perforated domains with reactions on the surfaces of the microstructure can
be found in [1, 16–18]. Macroscopic equations for elliptic and parabolic reaction-
diffusion equations posed in domains separated by a thin perforated layer (e.g., a
sieve or a membrane) were derived in [10, 26]. From a mathematical perspective,
the novelties of this paper include (a) the analysis of the flow between a fixed-size
domain (fat tissue layer) and an ε-thin layer (skin layer) under an appropriate
scaling of the transmission conditions, and (b) a different scaling of the reaction-
diffusion-convection equations than the one commonly used in the literature (see,
e.g., [26]).

The paper is organized as follows. In section 2, we collect the main results of
the paper. In section 3, we formulate the microscopic model to be analyzed in the
remainder of the paper, initially under the assumption that the depth of the top
(skin) layer has the same length scale ε as the unit cell of the fat tissue layer. In
section 4, we define the notion of weak solution used in the paper, and in section 5
we provide a priori estimates for the solutions of the microscopic model and prove
convergence results for the unfolding operator for functions defined in thin domains.

3
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Figure 2. Two-dimensional schematic representation of the two distinct, three-dimensional unit-cell ge-

ometries used in the microscopic model: (a) unit-cell geometry corresponding to the lower layer, i.e. the

fat tissue layer; (b) unit-cell geometry corresponding to the upper layer, which represents the dermic and
epidermic layers of the skin. Only the arterial blood vessels are shown in the fat tissue layer.

These estimates are used in combination with an unfolding operator approach [8–
10] to prove the convergence of the solutions of the microscopic equations as ε→ 0.
In sections 6 and 7 we derive the homogenized, macroscopic equations for the blood
velocity fields (in arteries and veins) and the oxygen concentrations (in arteries,
veins, and tissue), respectively. Finally, in section 8, we relax some of the scaling
assumptions of the previous sections, and we assume that the depth of the top
(skin) layer is of a different length scale than the unit cell of the fat tissue layer.

2. Formulation of the main results

In this section, we collect the main results of the paper. The notation used is
further explained in section 3. As discussed in the introduction, we are mainly
concerned with the derivation of macroscopic equations for oxygen transport in
a two-layer tissue architecture using different scaling assumptions for the distinct
layers. The microscopic geometry that leads to the macroscopic models of this
section is discussed in sections 3 and 8.

2.1. Macroscopic coefficients and unit cell problems

First, we formulate the macroscopic coefficients and the unit cell problems that
will be obtained in the derivation of the macroscopic equations. We differentiate
between two cases which correspond to skin tissue layers of different relative thick-
nesses (see section 3 for an explanation of the terms involved).

Case 1

If the thickness of the skin layer (see Fig. 1) is of the same order as the microscopic

structure, then the macroscopic permeability matrices Kl and K̂ for the blood flow
are defined by

Kjil =
1

|Y |

∫
Yl

ωil,j(y) dy, K̂jm =
1

|Ẑ|

∫
Zav

ω̂mj (y) dy, (1)

4
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where ωil and ω̂m are solutions of the unit cell problems

{
−µ∆yω

i
l +∇yπil = ei, divy ω

i
l = 0 in Yl, i = 1, . . . , n, l = a, v,

ωil = 0 on Γl, ωil , π
i
l Yl − periodic,

(2)

and
−µ∆yω̂

m +∇yπ̂m = em, divy ω̂
m = 0 in Zav, m = 1, . . . , n− 1,

(2µSyω̂
m − π̂mI)n× n = 0, ω̂m · n = 0 on Ẑ0

av,

ω̂m = 0 on Rav ∪ Ẑ1
av, ω̂m, π̂m Ẑ − periodic.

(3)

The macroscopic diffusion coefficients Al and Âm in the limit equations for the
oxygen concentration are given by

Aijl =
1

|Y |

∫
Yl

[
Dij
l (y) +

n∑
k=1

Dik
l (y)

∂wjl
∂yk

]
dy,

Âijm =
1

|Ẑ|

∫
Zm

[
D̂ij
m(y) +

n∑
k=1

D̂ik
m(y)

∂ŵjm
∂yk

]
dy,

(4)

where l = a, v, s and m = av, s. The functions wl and ŵm are solutions of the unit
cell problems

{
−divy(Dl(y)(∇ywjl + ej)) = 0 in Yl, for l = a, v, s, j = 1, . . . , n,

Dl(y)(∇ywjl + ej) · n = 0 on Γl, wjl Y − periodic
(5)

and
−divy(D̂m(y)(∇yŵjm + ej)) = 0 in Zm,

D̂m(y)(∇yŵjm + ej) · n = 0 on Rav, on Ẑ0
m ∪ Ẑ1

m,

ŵjm Ẑ − periodic, for m = av, s and j = 1, . . . , n− 1.

(6)

Case 2

If the thickness of the skin layer is (a) considerably larger than the characteristic
size of the microscopic structure and (b) significantly smaller than the thickness
of the fat tissue layer, then, in the fat tissue layer, the macroscopic permeability
tensors Kl, l = a, v, and the macroscopic diffusion coefficients Aα, α = a, v, s,
are identical to those defined in (1) and (4). However, different permeability and
diffusion coefficients are obtained for the macroscopic equations describing the
blood flow and oxygen transport in the skin layer. Specifically, we obtain

K̃ji =
1

|Z̃|

∫
Z̃av

ω̃ij(y)dy, Ãijm =
1

|Z̃|

∫
Z̃m

[
D̂ij
m(y) +

n∑
k=1

D̂ik
m(y)∂ykw̃

j
m(y)

]
dy, (7)

5
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where m = av, s, and ω̃i and w̃jm are solutions of the unit cell problems

{
−µ∆yω̃

i +∇yπ̃i = ei, divy ω̃
i = 0 in Z̃av,

ω̃i = 0 on R̃av, ω̃i, π̃i Z̃ − periodic.
(8)

and

{
−divy(D̂m(y)(∇yw̃jm + ej)) = 0 in Z̃m, m = av, s,

D̂m(y)(∇yw̃jm + ej) · n = 0 on R̃av, w̃jm Z̃ − periodic .
(9)

2.2. Macroscopic equations for velocity fields and oxygen
concentrations

Given the definitions of the macroscopic coefficients and the unit cell problems in
section 2.1, we are now in a position to state the theorems that are proved in the
remainder of the paper. We start by defining the spaces

H(div; Ω) = {v ∈ L2(Ω)n, div v ∈ L2(Ω)},

W (Ω) = {w ∈ H1(Ω), w = 0 on ΓD}.

Case 1

The main results of the paper under the scaling assumptions of Case 1, as discussed
in section 2.1, are theorems 2.1 and 2.2. These provide the macroscopic equations
for the blood velocity fields (in arteries and veins) and oxygen concentrations (in
arteries, veins, and tissue) respectively. The notation used in the statements of the
theorems is introduced in section 3.

Theorem 2.1 The sequence of solutions of the microscopic model (22)–(27) con-

verges to functions v0
l ∈ H(div; Ω), pl − p0

l ∈ W (Ω), v̂0
av ∈ L2(Λ̂), and p̂ ∈ H1(Λ̂)

that satisfy the macroscopic equations

v0
l = −Kl∇pl, div (Kl∇pl) = 0 in Ω,

pl = p̂ on Λ̂ ,

pl = p0
l on ΓD, Kl∇pl · n = 0 on ∂Ω̂× (−L, 0),

(10)

where l = a, v, and

v̂0
av = −2K̂∇x̂p̂, 2divx̂(K̂∇x̂p̂) = Ka∇pa · n +Kv∇pv · n in Λ̂,

K̂∇x̂p̂ · n = 0 on ∂Λ̂.
(11)

Theorem 2.2 The sequence of solutions of the microscopic model (28)–(35) con-

6
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verges to a solution of the macroscopic equations

θl∂tcl − div(Al∇cl − v0
l cl) = λlγl(cs − cl) in ΩT ,

θs∂tcs − div(As∇cs) =
∑
l=a,v

λlγl(cl − cs)− θs−
∫
Ys

ds dy cs in ΩT ,

cl(t, x̂, 0) = ĉ(t, x̂), cs(t, x̂, 0) = ĉs(t, x̂) on Λ̂T ,

(Al∇cl − v0
l cl) · n = 0 on (∂Ω \ (Λ̂ ∪ ΓD))× (0, T ),

cl(t, x) = cl,D(t, x) on ΓD,T ,

As∇cs · n = 0 on (∂Ω \ Λ̂)× (0, T ),

cl(0, x) = c0
l (x), cs(0, x) = c0

s(x) in Ω,

(12)

where θl = |Yl|/|Y |, γl = |Γl|/|Y |, l = a, v, and θs = |Ys|/|Y |. Moreover, in the

domain Λ̂T , we have

θ̂av∂tĉ− divx̂(Âav∇x̂ĉ− v̂0
av ĉ) = Rav(ĉs − ĉ)−

∑
l=a,v

(Al∇cl − v0
l cl) · n,

θ̂s∂tĉs − divx̂(Âs∇x̂ĉs) = Rav(ĉ− ĉs)−As∇cs · n− θ̂s−
∫
Zs

d̂s dy ĉs,

(Âav∇x̂ĉ− v̂0
av ĉ) · n = 0 on (0, T )× ∂Λ̂, ĉ(0, x̂) = ĉ0(x̂) in Λ̂,

Âs∇x̂ĉs · n = 0 on (0, T )× ∂Λ̂, ĉs(0, x̂) = ĉ0
s(x̂) in Λ̂,

(13)

where θ̂av = |Zav|/|Ẑ|, θ̂s = |Zs|/|Ẑ|, and Rav = λ̂a|Ra|/|Ẑ| + λ̂v|Rv|/|Ẑ|. The
macroscopic transport velocities v0

l , v̂0
av are given by

v0
l (x) =

1

|Y |

∫
Yl

vl(x, y)dy, v̂0
av(x̂) =

1

|Ẑ|

∫
Zav

v̂av(x̂, y)dy, l = a, v. (14)

The solutions of equations (12)–(13) satisfy cl − cl,D ∈ L2(0, T ;W (Ω)) ∩
H1(0, T ;L2(Ω)) for l = a, v, and cs ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)). Mo-

roever, ĉ, ĉs ∈ L2(0, T ;H1(Λ̂)) ∩ H1(0, T ;L2(Λ̂)). Finally, ĉ, ĉs ∈ L∞(Λ̂T ) and
cl ∈ L∞(ΩT ) for l = a, v, s.

Case 2

If we consider the scaling assumptions of Case 2, then we have to introduce two
parameters: a parameter ε > 0 that characterizes the length scale of the microstruc-
ture and a parameter δ > 0 that represents the thickness of the skin tissue layer.

We first derive a system of “intermediate” equations by letting ε → 0 while
keeping δ fixed, as follows.

Theorem 2.3 As ε→ 0 the sequence of solutions of the microscopic model given
by (22), (24), (27), and (68)–(70) converges to functions vδl ∈ H(div; Ω), pδl −p0

l ∈
W (Ω), ṽδav ∈ H(div; Λδ), and p̂δ ∈ H1(Λδ), respectively, with l = a, v, that satisfy

7
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the macroscopic model

vδl = −Kl∇pδl , div(Kl∇pδl ) = 0 in Ω,

ṽδav = −K̃∇p̂δ, div(K̃∇p̂δ) = 0 in Λδ,

Kv∇pδv · n +Ka∇pδa · n =
1

δ
K̃∇p̂δ · n, pδl = p̂δ on Λ̂ ,

Kl∇pδl · n = 0 on ∂Ω \ (ΓD ∪ Λ̂) , pδl = p0
l on ΓD,

K̃∇p̂δ · n = 0 on ∂Λδ \ Λ̂.

(15)

Theorem 2.4 As ε → 0 the sequence of solutions of the microscopic equations
(28)–(35) with δ instead of ε in the transmission conditions converges to functions
cδl − cl,D ∈ L2(0, T ;W (Ω)), cδs ∈ L2(0, T ;H1(Ω)), cδl ∈ H1(0, T ;L2(Ω)), and ĉδj ∈
L2(0, T ;H1(Λδ)) ∩H1(0, T ;L2(Λδ)) that satisfy the macroscopic problem

θl∂tc
δ
l − div(Al∇cδl − vδl c

δ
l ) = λlγl(c

δ
s − cδl ), in ΩT ,

θ̃av∂tĉ
δ
av − div(Ãav∇ĉδav − ṽδav ĉ

δ
av) = Rav(ĉδs − ĉδav), in Λδ,T ,

cδl = ĉδav,
∑
l=a,v

(Al∇cδl − vδl c
δ
l ) · n =

1

δ
(Ãav∇ĉδav − ṽδav ĉ

δ
av) · n on Λ̂T ,

(Al∇cδl − vδl c
δ
l ) · n = 0 on (∂Ω \ (Λ̂ ∪ ΓD))× (0, T ),

cδl = cl,D on ΓD × (0, T ),

(Ãav∇ĉδav − ṽδav ĉ
δ
av) · n = 0 on (∂Λδ \ Λ̂)× (0, T ),

cδl (0, x) = c0
l (x) in Ω, ĉδav(0, x) = ĉδ,0(x) in Λδ,

(16)

where l = a, v and j = av, s, and

θs∂tc
δ
s − div(As∇cδs) =

∑
l=a,v

λlγl(c
δ
l − cδs)− θs−

∫
Ys

dsdy c
δ
s in ΩT ,

θ̃s∂tĉ
δ
s − div(Ãs∇ĉδs) = Rav(ĉδav − ĉδs)− θ̃s−

∫
Z̃s

d̂sdy ĉ
δ
s in Λδ,T ,

cδs = ĉδs, As∇cδs · n =
1

δ
Ãs∇ĉδs · n on Λ̂T ,

As∇cδs · n = 0 on (∂Ω \ Λ̂)× (0, T ), cδs(0, x) = c0
s(x) in Ω,

Ãs∇ĉδs · n = 0 on (∂Λδ \ Λ̂)× (0, T ), ĉδs(0, x) = ĉδ,0s (x) in Λδ.

(17)

Here the following notation has been used:

θ̃m =
|Z̃m|
|Z̃|

, m = av, s, θl =
|Yl|
|Y |

, Rav =
λ̂v|R̃v|+ λ̂a|R̃a|

|Z̃|
, γl =

|Γl|
|Y |

, l = a, v, s,

and the macroscopic transport velocities are defined as

vδl (x) =
1

|Y |

∫
Yl

vδl (x, y) dy, ṽδav(x) =
1

|Z̃|

∫
Z̃av

v̂δav(x, y) dy, l = a, v. (18)

8
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Given these “intermediate” results, we derive the final macroscopic equations by
letting δ → 0 in (15), as follows.

Theorem 2.5 As δ → 0 the sequence of solutions of the equations (15) converges

to functions vl ∈ H(div; Ω), pl − p0
l ∈ W (Ω), ṽav ∈ L2(Λ̂), and p̂ ∈ H1(Λ̂),

respectively, with l = a, v, that satisfy the problem

vl = −Kl∇pl, div (Kl∇pl) = 0 in Ω,

pl(x̂, 0) = p̂(x̂) on Λ̂, pl = p0
l on ΓD,

ṽav = −K̃∇x̂p̂, divx̂(K̃∇x̂p̂) = Ka∇pa · n +Kv∇pv · n on Λ̂,

Kl∇pl · n = 0 on ∂Ω \ (ΓD ∪ Λ̂), K̃∇x̂p̂ · n = 0 on ∂Λ̂.

(19)

Theorem 2.6 As δ → 0 we obtain the macroscopic problem

θl∂tcl − div(Al∇cl − vlcl) = λlγl(cs − cl), in ΩT ,

θs∂tcs − div(As∇cs) =
∑
l=a,v

λlγl(cl − cs)− θs−
∫
Ys

ds(t, y)dy cs in ΩT ,

cl(t, x̂, 0) = ĉav(t, x̂) cs(t, x̂, 0) = ĉs(t, x̂) on Λ̂T ,

(Al∇cl − vlcl) · n = 0 on (∂Ω \ (Λ̂ ∪ ΓD))× (0, T ) ,

cl(t, x) = cl,D on ΓD,T ,

As∇cs · n = 0 on (∂Ω \ Λ̂)× (0, T ),

cl(0, x) = c0
l (x) cs(0, x) = c0

s(x) in Ω,

(20)

where l = a, v, and in Λ̂T we have

θ̃av∂tĉav − divx̂(Ãav∇ĉav − ṽav ĉav) = Rav(ĉs − ĉav)−
∑
l=a,v

(Al∇cl − vlcl) · n,

θ̃s∂tĉs − divx̂(Ãs∇ĉs) = Rav(ĉav − ĉs)−As∇cs · n− θ̃s−
∫
Z̃s

d̂s(t, y)dy ĉs,

(Ãav∇ĉav − ṽav ĉav) · n = 0, Ãs∇ĉs · n = 0 on ∂Λ̂T ,

ĉav(0, x̂) = ĉ0(x̂) ĉs(0, x̂) = ĉ0
s(x̂) in Λ̂.

(21)
Moreover, the solutions of equations (20) and (21) satisfy cl − cl,D ∈
L2(0, T ;W (Ω)), cs ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)), cl ∈ H1(0, T ;L2(Ω)),

ĉj ∈ L2(0, T ;H1(Λ̂)) ∩H1(0, T ;L2(Λ̂)) for l = a, v, j = av, s.

We remark that the structure of the macroscopic equations for the blood velocity
fields is the same in both cases, i.e. in Theorem 2.1 and Theorem 2.5. However,
the permeability tensors for the flow in the skin layer are different, since they
are determined by solutions of different unit cell problems; see equations (2), (3),
and (8). These results reflect the differences in the microscopic structure and the
microscopic equations for the skin layer in the two different cases. We also remark
that the factor of 2 in the macroscopic equations (11) is specific to Case 1.

A similar situation appears in the macroscopic equations for oxygen transport.

9
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In both cases, we obtain the same structure for the equations; see Theorem 2.2
and Theorem 2.6. However, the macroscopic diffusion coefficients and transport
velocities are different, as manifested by equations (4) and (7) for the diffusion
coefficients and equations (14) and (18) for the transport velocities. Again, these
results reflect the differences in the microscopic structure of the the skin tissue
layer in the two different cases.

Finally, the “intermediate” system obtained in Case 2, when we let ε → 0 but
keep δ fixed, represents the macroscopic equations for the blood flow and oxygen
concentration in the two domains with different microscopic structures (skin layer
and fat tissue layer).

3. The microscopic model

We now introduce the microscopic model that leads to the asymptotic (macro-
scopic) results stated in the previous section. As in [23] we adopt a three-
dimensional rectangular geometry for a DIEP tissue flap with a two-layer tissue ar-
chitecture. The approach in this paper differs from that in [23] in that the geometry
of the vascular microstructure is explicitly defined. A two-dimensional schematic
representation of the three-dimensional geometry used is shown in Fig. 1. The top
layer of unit cells in Fig. 1 corresponds to the dermic and epidermic layers of the
skin, whereas the remainder of the domain corresponds to fat tissue.

We denote the fat tissue layer by Ω = Ω̂×(−L, 0), with some L > 0 and Ω̂ ⊂ R2.
The top (skin) layer is assumed to be thin as compared to the fat tissue layer

and is denoted by Λε = Ω̂ × (0, ε) with Λ1 = Ω̂ × (0, 1), Λ̂ = Ω̂ × {0}. The small
positive parameter ε represents both the scale of the unit cell describing the arterial
branching pattern and the depth of the skin layer (this assumption is relaxed in
section 8).

The vascular microstructure is assumed to differ in the two layers of the domain.
Specifically, Ω is constructed by a periodic arrangement of a (scaled) unit cell
Y = Y a ∪ Y v ∪ Y s, where Ya, Yv, and Ys partition Y into the geometric domains
of arteries, veins, and tissue, respectively. Figure 2(a) shows an example of such
a unit cell that represents a specific arterial branching pattern for the fat tissue
layer. We define the domains occupied by arteries, veins and tissue in Ω as Ωε

a =
Int
(
∪ξ∈Z3 ε(Y a + ξ)

)
∩ Ω, Ωε

v = Int
(
∪ξ∈Z3 ε(Y v + ξ)

)
∩ Ω, and Ωε

s = Int
(
∪ξ∈Z3

ε(Y s + ξ)
)
∩ Ω, respectively. The small parameter ε corresponds to the size of the

arterial microscopic structure. In particular, ε is the ratio between the size of the
periodically repeating unit cell and the size of the whole tissue domain.

Similarly, we define a (different) unit cell Z = Za ∪ Zv ∪ Zs that describes the
arterial and venous geometry in Λε. We define Λεa = Int

(
∪η∈Z2 ε(Za+ (η, 0))

)
∩Λε,

Λεv = Int
(
∪η∈Z2 ε(Zv + (η, 0))

)
∩ Λε, and Λεs = Int

(
∪η∈Z2 ε(Zs + (η, 0))

)
∩ Λε

as the domains in Λε of arteries, veins, and tissue respectively. Figure 2(b) shows
an example of a unit cell for Λε. Throughout the paper, it is assumed that the
skin layer Λε is characterized by the presence of arterial-venous connections that
facilitate the exchange of blood between the arterial and venous systems (see, e.g.,
[15, 23]). A simple example of an arterial-venous connection is shown in Fig. 2(b)

We first consider that the depth of the skin layer is of order ε. This condition
is later modified in section 8. In the arteries and veins located in Ω, blood is
assumed to flow with velocities vεa(x) and vεv(x), respectively, according to the
Stokes equation with zero-slip boundary conditions. Specifically, we let pεa(x) and
pεv(x) denote the arterial and venous pressures, respectively, and we assume that

10
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Table 1. Macroscopic domains (see text for details)

Notation Description

Ω = Ω̂× (−L, 0) Fat tissue layer

Λ̂ = Ω̂× {0} Upper boundary of Ω

Λε = Ω̂× (0, ε) Skin layer (scaling of section 3)

Λδ = Ω̂× (0, δ) Skin layer (scaling of section 8)

Table 2. Unit cell domains (see text for details)

Notation Description

Y = Y a ∪ Y v ∪ Y s Unit cell for Ω
Ya, Yv, Ys ⊂ Y Open subsets with Lipschitz boundaries Γa and Γv,

Ya ∩ Yv = ∅
Z = Za ∪ Zv ∪ Zs Unit cell for Λε

Za, Zv, Zs ⊂ Z Open subsets with Lipschitz boundaries Ra and Rv,
Za ∩ Zv = ∅

Z̃ = Z̃a ∪ Z̃v ∪ Z̃s Unit cell for Λδ
Z̃a, Z̃v, Z̃s ⊂ Z̃ Open subsets with Lipschitz boundaries R̃a and R̃v,

Z̃a ∩ Z̃v = ∅

(vεa, p
ε
a) and (vεv, p

ε
v) satisfy−ε

2µ∆vεl +∇pεl = 0 , div vεl = 0 in Ωε
l ,

vεl = 0 on Γεl ,
(22)

where l = a, v, and Γεa and Γεv denote the outer surface of arteries and veins,
respectively, in Ω. As usual, the scaling in the viscosity term is such that the
velocity field has a non-trivial limit as ε→ 0 (see, e.g., [16]). Similarly, we assume
that in the skin tissue layer Λε, (v̂εa, p̂

ε
a) and (v̂εv, p̂

ε
v) satisfy−ε

2µ∆v̂εl +∇p̂εl = 0 , div v̂εl = 0 in Λεl ,

v̂εl = 0 on Rεl ,
(23)

where l = a, v, and Rεa and Rεv denote the outer surface of arteries and veins,

respectively, in Λε. We define ∂Ω = ΓD ∪ (∂Ω̂ × (−L, 0)) ∪ Λ̂, where ΓD denotes
the lower horizontal boundary of the fat tissue layer, and impose the boundary
conditions

pεl = p0
l , vεl × n = 0 on ΓD ∩ ∂Ωε

l , vεl = 0 on (∂Ω̂× (−L, 0)) ∩ ∂Ωε
l , (24)

where l = a, v. We consider Dirichlet boundary conditions for the blood velocities
on ∂Λε = (∂Ω̂× (0, ε)) ∪ Λ̂ ∪ (Ω̂× {ε})

v̂εl = 0 on ∂Ω̂× (0, ε)∩ ∂Λεl , v̂εl = 0 on Ω̂× {ε} ∩ ∂Λεl , l = a, v, (25)

11
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Table 3. Microscopic domains (see text for details)

Notation Description

Ωε
a = Int

( ⋃
ξ∈Z3

ε(Y a + ξ)
)
∩ Ω Arteries in fat tissue layer

Ωε
v = Int

( ⋃
ξ∈Z3

ε(Y v + ξ)
)
∩ Ω Veins in fat tissue layer

Ωε
s = Int

( ⋃
ξ∈Z3

ε(Y s + ξ)
)
∩ Ω Tissue domain

Λεa = Int
( ⋃
η∈Z2

ε(Za + (η, 0))
)
∩ Λε Arteries in skin layer (section 3)

Λεv = Int
( ⋃
η∈Z2

ε(Zv + (η, 0))
)
∩ Λε Veins in skin layer (section 3)

Λεs = Int
( ⋃
η∈Z2

ε(Zs + (η, 0))
)
∩ Λε Tissue in skin layer (section 3)

Λδa = Int
( ⋃
ξ∈Z3

ε(Z̃a + ξ)
)
∩ Λδ Arteries in skin layer (section 8)

Λδv = Int
( ⋃
ξ∈Z3

ε(Z̃v + ξ)
)
∩ Λδ Veins in skin layer (section 8)

Λδs = Int
( ⋃
ξ∈Z3

ε(Z̃s + ξ)
)
∩ Λδ Tissue domain in skin layer (section 8)

Table 4. Microscopic boundaries (see text for details)

Notation Description

Γεa =
⋃
ξ∈Z3

ε(Γa + ξ) ∩ Ω Boundaries of arteries in fat tissue layer

Γεv =
⋃
ξ∈Z3

ε(Γv + ξ) ∩ Ω Boundaries of veins in fat tissue layer

Rεa =
⋃
η∈Z2

ε(Ra + (η, 0)) ∩ Λε Boundaries of arteries in skin layer (section 3)

Rεv =
⋃
η∈Z2

ε(Rv + (η, 0)) ∩ Λε Boundaries of veins in skin layer (section 3)

R̃εa =
⋃
ξ∈Z3

ε(R̃a + ξ) ∩ Λδ Boundaries of arteries in skin layer (section 8)

R̃εv =
⋃
ξ∈Z3

ε(R̃v + ξ) ∩ Λδ Boundaries of veins in skin layer (section 8)

and we impose transmission conditions on Λ̂:(−2 ε2µSvεl + pεl I) · n = (−2 ε2µ Sv̂εl + p̂εl I) · n on ∂Ωε
l ∩ Λ̂ ,

vεl = 1
ε v̂

ε
l on ∂Ωε

l ∩ Λ̂ ,
(26)

where l = a, v, and Su denotes the symmetric gradient Su = 1/2(∂xiuj + ∂xjui)ij .
The ε−1 scaling in the velocity boundary condition balances the blood velocity field
in the skin layer with the depth of the layer.

We let Σε denote the arterial-venous connections in Λε. In other words, Σε de-

12
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notes the n − 1-dimensional surfaces, where arteries and veins meet in Λε ⊂ Rn.
We impose continuity conditions for blood velocities and forces on Σε, as follows.(−2ε2µ Sv̂εa + p̂εaI) · n = (−2ε2µ Sv̂εv + p̂εvI) · n on Σε,

v̂εa = v̂εv on Σε .
(27)

The oxygen concentrations in the tissue and the arterial and venous blood within
the fat tissue layer are denoted by cεs(x, t), c

ε
a(x, t), and cεv(x, t), respectively. Sim-

ilarly, the corresponding concentrations in the skin tissue layer are denoted by
ĉεs(x, t), ĉ

ε
a(x, t), and ĉεv(x, t), respectively. Oxygen in the blood is transported by

the flow and diffuses within the fluid. Hence, the equations describing oxygen trans-
port in the blood are given by∂tc

ε
l − div(Dε

l∇cεl − vεl c
ε
l ) = 0 in Ωε

l × (0, T ) ,

1
ε∂tĉ

ε
l −

1
εdiv(D̂ε

l∇ĉεl − v̂εl ĉ
ε
l ) = 0 in Λεl × (0, T ) ,

(28)

where l = a, v. Oxygen diffuses within the tissue with diffusion coefficient Dε
s, and

it is assumed to decay and/or be consumed by the tissue cells at a rate proportional
to oxygen concentration. The equations for cεs(x, t) and ĉεs(x, t) are then∂tc

ε
s − div(Dε

s∇cεs) = −dεscεs in Ωε
s × (0, T ) ,

1
ε∂tĉ

ε
s − 1

εdiv(D̂ε
s∇ĉεs) = −1

ε d̂
ε
sĉ
ε
s in Λεs × (0, T ) .

(29)

The boundary conditions on the surface of the blood vessels describe the flux of
oxygen from the blood into the tissue at a rate proportional to the difference in
the oxygen concentrations.(Dε

l∇cεl − vεcεl ) · n = −ελl(cεl − cεs) on Γεl × (0, T ),

(D̂ε
l∇ĉεl − v̂εl ĉ

ε
l ) · n = −ελ̂l(ĉεl − ĉεs) on Rεl × (0, T ),

(30)

for l = a, v, and D
ε
s∇cεs · n = ελl(c

ε
l − cεs) on Γεl × (0, T ),

D̂ε
s∇ĉεs · n = ελ̂l(ĉ

ε
l − ĉεs) on Rεl × (0, T ),

(31)

where the constants λl and λ̂l, l = a, v, are the oxygen permeability coefficients of
the arterial and venous blood vessels.

In addition to the exchange of oxygen between blood vessels and tissue, oxygen
in arterial blood is transported to the venous system through the arterial-venous
connections in the upper (skin) layer of the domain. In the following, we assume
continuity of concentrations and fluxes at the arterial-venous connections Σε

ĉεa = ĉεv, (D̂ε
a∇ĉεa − v̂εaĉ

ε
a) · n = (D̂ε

v∇ĉεv − v̂εv ĉ
ε
v) · n on Σε × (0, T ) (32)

We also impose transmission conditions between the fat tissue layer and the skin

13
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layerc
ε
l = ĉεl , (Dε

l∇cεl − vεl c
ε
l ) · n = 1

ε (D̂ε
l∇ĉεl − v̂εl ĉ

ε
l ) · n on (∂Ωε

l ∩ Λ̂)× (0, T ),

cεs = ĉεs, D
ε
s∇cεs · n = 1

ε D̂
ε
s∇ĉεs · n on (∂Ωε

s ∩ Λ̂)× (0, T ),
(33)

where l = a, v. We remark that the ε−1 scaling in (33) balances the oxygen flux
terms in the skin layer with the depth of the layer.

At the external boundaries we consider Dirichlet boundary conditions that define
the prescribed oxygen concentration at the arterial/venous blood vessel boundaries
and zero-flux boundary conditions at the tissue boundaries:

cεl = cl,D on (ΓD ∩ ∂Ωε
l )× (0, T ), for l = a, v,

Dε
l∇cεl · n = 0 on

(
(∂Ω̂× (−L, 0)) ∩ ∂Ωε

l

)
× (0, T ), for l = a, v,

Dε
s∇cεs · n = 0 on

(
ΓD ∪ (∂Ω̂× (−L, 0)) ∩ ∂Ωε

s

)
× (0, T ),

D̂ε
l∇ĉεl · n = 0 on ((Ω̂× {ε} ∪ ∂Ω̂× (0, ε)) ∩ ∂Λεl )× (0, T ), for l = a, v, s.

(34)

The initial conditions for the oxygen concentrations are given by

cεl (0, x) = c0
l (x) in Ωε

l , ĉεl (0, x) = ĉε,0l (x) in Λεl , where l = a, v, s. (35)

In the following, we make use of the notation ΩT = Ω×(0, T ), Ωε
l,T = Ωε

l ×(0, T ),

ΓD,T = ΓD×(0, T ), ∂ΩT = ∂Ω×(0, T ), and Λεl,T = Λεl×(0, T ) for l = a, v, s. We also

use the notation Λ̂T = Λ̂× (0, T ), ∂Λ̂T = ∂Λ̂× (0, T ), and Ẑ = Z ∩ {xn = 0}. The

diffusion coefficients Dε
l , D̂

ε
l and the oxygen degradation rates dεs, d̂

ε
s are defined by

Y -periodic and Ẑ-periodic functions Dl, ds and D̂l, d̂s, respectively. Specifically,

Dε
l (x) = Dl(x/ε), D̂

ε
l (x) = D̂l(x/ε), d

ε
s(t, x) = ds(t, x/ε), and d̂εs(t, x) = d̂s(t, x/ε),

for a.a. t ≥ 0, x ∈ Ω, x ∈ Λε, and l = a, v, s. Finally, the following assumption is
made throughout the paper.

Assumption 3.1 The following hold:

(i) The diffusion coefficients Dl ∈ L∞(Y ), D̂l ∈ L∞(Z) are uniformly elliptic,

i.e., (Dl(y)ξ, ξ) ≥ D0|ξ|2, (D̂l(z)ξ, ξ) ≥ D̂0|ξ|2 for all ξ ∈ Rn and a.a. y ∈ Y
and z ∈ Z, where l = a, v, s, and D0 > 0, D̂0 > 0.

(ii) It is assumed that ds, ∂tds ∈ L∞((0, T )× Y ) and d̂s, ∂td̂s ∈ L∞((0, T )× Z).
(iii) With respect to the initial conditions, it is assumed that c0

l ∈ H2(Ω)∩L∞(Ω),

ĉε,0l ∈ H
2(Λε)∩L∞(Λε), c0

l (x) ≥ 0 for x ∈ Ω, ĉε,0l (x) ≥ 0 for x ∈ Λε, l = a, v, s,

ĉε,0a = ĉε,0v = ĉε,0, and c0
l (x) = cl,D(0, x) on ΓD, where l = a, v. Moreover,

ε−1‖ĉε,0l ‖
2
H2(Λε) ≤ C, ‖ĉε,0l ‖L∞(Λε) ≤ C,

c0
l (x) = ĉε,0l (x), Dε

l (x)∇c0
l (x) · n =

1

ε
D̂ε
l (x)∇ĉε,0l (x) · n on ∂Ωε

l ∩ Λ̂.

(iv) It is assumed that the boundary conditions for the oxygen concentration
in arteries and veins satisfy cl,D ∈ H1(0, T ;H2(Ω)) ∩ L∞(ΩT ), ∂tcl,D ∈

14
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L∞(ΩT ) ∩ H1(0, T ;L2(Ω)), cl,D(t, x) ≥ 0 a.e. in ΩT , and cl,D(t, x) = 0 on

Λ̂T , for l = a, v.
(v) Finally, it is assumed that µ > 0, λl > 0, λ̂l > 0, and p0

l > 0 for l = a, v.

4. Weak solutions and functional spaces

The microscopic system under consideration consists of equations (22)–(27) for the
blood velocity fields and pressures in arteries and veins, and equations (28)–(35)
for the oxygen concentrations in arteries, veins, and tissue. We now define a notion
of weak solution for the system of equations (22)–(35) and the functional spaces
that are used in this paper. We start by defining the spaces

V (Ωε
l ) =

{
v ∈ H1(Ωε

l ), v × n = 0 on ΓD ∩ ∂Ωε
l ,

v = 0 on Γεl ∪ (∂Ω̂× (−L, 0) ∩ ∂Ωε
l )
}
,

V̂ (Λεl ) = {v ∈ H1(Λεl ), v = 0 on Rεl and ((∂Ω̂× (0, ε)) ∪ (Ω̂× {ε})) ∩ ∂Λεl },

W (Ωε
l ) = {w ∈ H1(Ωε

l ), w = 0 on ΓD ∩ ∂Ωε
l },

W (Ω) = {w ∈ H1(Ω), w = 0 on ΓD},

Vd(Ω
ε
l ) = {v ∈ V (Ωε

l ), divv = 0}, V̂d(Λ
ε
l ) = {v ∈ V̂ (Λεl ), divv = 0},

where l = a, v. For φ, ψ ∈ L2((0, σ)× Ω) we make use of the notation

〈φ, ψ〉Ω,σ =

∫ σ

0

∫
Ω
φψ dxdt.

In the remainder of the paper we make use of the auxiliary variable p̃εl instead
of pεl , where

p̃εl (x) = pεl (x) +
xn
L
p0
l in Ωε

l ,

l = a, v. The introduction of p̃εl allows us to focus on zero Dirichlet boundary
conditions for the pressure. Also, for the sake of notational simplicity, in what
follows we omit the tilde ∼ and write pεl instead of p̃εl . We remark that the use of
vεl ×n = 0 on ΓD ∩ ∂Ωε

l and div vεl = 0 in Ωε
l , along with the fact that ΓD is a flat

boundary, lead to ∂xnv
ε
l ·n = 0 and, hence, 〈Svεl ·n, φl〉ΓD∩∂Ωεl = 0 for vεl ∈ Vd(Ωε

l )
and φl ∈ V (Ωε

l ), where l = a, v.
We are interested in the existence of weak solutions to the system of equations

(22)–(35).

Definition 1 A weak solution of the problem (22)–(27) consists of functions vεl ∈
Vd(Ω

ε
l ), p

ε
l ∈ L2(Ωε

l ), v̂εl ∈ V̂d(Λ
ε
l ), and p̂εl ∈ L2(Λεl ), l = a, v, that satisfy the

equation

∑
l=a,v

[
〈2µε2 Svεl ,Sφl〉Ωεl − 〈p

ε
l , divφl〉Ωεl −

1

L
〈p0
l , φl,n〉Ωεl

]
+

1

ε

∑
l=a,v

[
〈2µε2 Sv̂εl , Sφ̂l〉Λεl − 〈p̂

ε
l , div φ̂l〉Λεl

]
= 0

(36)
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for all φl ∈ V (Ωε
l ) and φ̂l ∈ V̂ (Λεl ) with φl = 1

ε φ̂l on Λ̂ ∩ ∂Ωε
l and φ̂a = φ̂v on Σε.

A weak solution of the problem (28)–(35) consists of functions cεl − cl,D ∈
L2(0, T ;W (Ωε

l )), ∂tc
ε
l ∈ L2(Ωε

l,T ), cεs ∈ L2(0, T ;H1(Ωε
s)), ĉ

ε
l ∈ L2(0, T ;H1(Λεl )) ∩

H1(0, T ;L2(Λεl )), c
ε
l ∈ L∞(Ωε

l,T ), and ĉεl ∈ L∞(Λεl,T ), l = a, v, s, which satisfy the
equations

∑
l=a,v

[
〈∂tcεl , ψl〉Ωεl ,T + 〈Dε

l∇cεl − vεl c
ε
l ,∇ψl〉Ωεl ,T − ε〈λl(c

ε
s − cεl ), ψl〉Γεl ,T

]
(37)

+
1

ε

∑
l=a,v

[
〈∂tĉεl , ψ̂l〉Λεl ,T + 〈D̂ε

l∇ĉεl − v̂εl ĉ
ε
l ,∇ψ̂l〉Λεl ,T − ε〈λ̂l(ĉ

ε
s − ĉεl ), ψ̂l〉Rεl ,T

]
= 0

for all ψl ∈ L2(0, T ;W (Ωε
l )) and ψ̂l ∈ L2(0, T ;H1(Λεl )) with ψl = ψ̂l on (Λ̂∩∂Ωε

l )×
(0, T ) and ψ̂a = ψ̂v on Σε × (0, T ), and

〈∂tcεs, ψs〉Ωεs,T + 〈Dε
s∇cεs,∇ψs〉Ωεs,T + 〈dεscεs, ψs〉Ωεs,T

+
1

ε

[
〈∂tĉεs, ψ̂s〉Λεs,T + 〈D̂ε

s∇ĉεs,∇ψ̂s〉Λεs,T + 〈d̂εsĉεs, ψ̂s〉Λεs,T
]

=ε
∑
l=a,v

〈λl(cεl − cεs), ψs〉Γεl ,T +
∑
l=a,v

〈λ̂l(ĉεl − ĉεs), ψ̂s〉Rεl ,T ,

(38)

for all ψs ∈ L2(0, T ;H1(Ωε
s)) and ψ̂s ∈ L2(0, T ;H1(Λεs)) with ψs = ψ̂s on (Λ̂ ∩

∂Ωε
s)× (0, T ), and cεl → c0

l in L2(Ωε
l ), ĉ

ε
l → ĉε,0l in L2(Λεl ) as t→ 0, for l = a, v, s.

Theorem 4.1 For each ε > 0 there exists a unique weak solution of the micro-
scopic model (22)–(35).

Sketch of proof. A priori estimates similar to those shown below in Lemma 5.1,
along with well-known results on the well-posedness of the Stokes equations and
parabolic systems, ensure the existence and uniqueness of a solution to the system
(22)–(35). We remark that the Dirichlet boundary conditions for the pressure on
the boundary ΓD, see (24), ensure the uniqueness of the pressure. �

5. A priori estimates and convergence results

We now turn our attention to deriving a priori estimates for the weak solutions of
the microscopic model (22)–(35). The a priori estimates are then used in conjunc-
tion with the notion of two-scale convergence and an unfolding operator approach
to establish the convergence of the solutions as ε→ 0.

Lemma 5.1 Under Assumption 3.1 the solutions of the problem (22)–(27) satisfy
the a priori estimates

‖vεl ‖L2(Ωεl )
+ ε ‖∇vεl ‖L2(Ωεl )

+
1√
ε
‖v̂εl ‖L2(Λεl )

+
√
ε ‖∇v̂εl ‖L2(Λεl )

≤ C, (39)

where l = a, v. Moreover, there exist extensions P εa , P εv and P̂ ε of pεa, pεv and
p̂ε = p̂εaχΛεa + p̂εvχΛεv respectively, such that

‖P εa‖L2(Ω) + ‖P εv ‖L2(Ω) +
1√
ε
‖P̂ ε‖L2(Λε) ≤ C. (40)

16
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Finally, the solutions of the problem (28)–(35), i.e. the oxygen concentrations in
arteries, veins, and tissue, satisfy the estimates

‖cεl ‖L∞(0,T ;L2(Ωεl ))
+ ‖∇cεl ‖L2((0,T )×Ωεl )

≤ C,
1√
ε
‖ĉεl ‖L∞(0,T ;L2(Λεl ))

+
1√
ε
‖∇ĉεl ‖L2((0,T )×Λεl )

≤ C,

cεl (t, x) ≥ 0 a.e. in Ωε
l,T , ĉεl (t, x) ≥ 0 a.e. in Λεl,T ,

‖cεl ‖L∞(Ωεl,T ) + ‖ĉεl ‖L∞(Λεl,T ) ≤ C,

‖∂tcεl ‖L∞(0,T ;L2(Ωεl ))
+ ‖∂t∇cεl ‖L2((0,T )×Ωεl ))

≤ C,
1√
ε
‖∂tĉεl ‖L∞(0,T ;L2(Λεl ))

+
1√
ε
‖∂t∇ĉεl ‖L2((0,T )×Λεl ))

≤ C,

(41)

where l = a, v, s. Here the constant C is independent of ε.

Proof. Using vεl = 0 on Γεl and
(
∂Ω̂ × (−L, 0)

)
∩ ∂Ωε

l , and v̂εl = 0 on Rεl and(
∂Ω̂ × (0, ε) ∪ Ω̂ × {ε}

)
∩ ∂Λεl , and applying Poincaré’s and Korn’s inequalities

[2, 4, 17, 34], we obtain

‖vε‖2L2(Ωεl )
+ ε2‖∇vε‖2L2(Ωεl )

≤ Cε2‖ Svε‖2L2(Ωεl )
,

‖v̂ε‖2L2(Λεl )
+ ε2‖∇v̂ε‖2L2(Λεl )

≤ Cε2‖ Sv̂ε‖2L2(Λεl )
,

(42)

with a constant C independent of ε. Considering vεl and v̂εl , where l = a, v, as test
functions in the weak formulation (36), using the divergence-free property of the
blood velocity fields, and applying (42) imply the estimates in (39).

Due to the continuity conditions on Σε we can define p̂ε = p̂εaχΛεa + p̂εvχΛεv . As in
[2] we can construct a restriction operator, which is a linear continuous operator
Rεl : H1

0 (Ω)→ H1
0 (Ωε

l ) such that

(i) u ∈ H1
0 (Ωε

l ) implies Rεl ũ = u in Ωε
l , where ũ is an extension of u by zero in Ω.

(ii) div u = 0 in Ω implies div(Rεl u) = 0 in Ωε
l .

(iii) For each u ∈ H1
0 (Ω) the following estimate holds

‖Rεl u‖L2(Ωεl )
+ ε‖∇Rεl u‖L2(Ωεl )

≤ C
[
‖u‖L2(Ω) + ε‖∇u‖L2(Ω)

]
with the constant C being independent of ε. A similar restriction operator can be
defined for Λε = Ω̂×(0, ε) as a linear continuous operator R̂ε : H1

0 (Λε)→ H1
0 (Λεav),

where Λεav = Λεa ∪ Σε ∪ Λεv. Using the properties of Rεl and R̂ε, where l = a, v, we
can extend pεl from Ωε

l into Ω, and p̂ε from Λεav into Λε. These extensions satisfy
the a priori estimates in (40) (see e.g., [2]). In particular, for the construction of
the extension of p̂ε, we consider a linear functional F ε in H−1(Λε) defined as

〈F ε, ψ〉H−1,H1
0 (Λε) = 〈∇p̂ε, R̂εψ〉H−1,H1

0 (Λεav) for ψ ∈ H1
0 (Λε),

Using equation (23), the properties of the restriction operator R̂ε and the estimates
in (39) we obtain

〈F ε, ψ〉H−1,H1
0 (Λε) = 〈ε2µ∆v̂εav, R̂εψ〉H−1,H1

0 (Λεav) = −〈ε2µ∇v̂εav,∇R̂εψ〉Λεav ,∣∣〈F ε, ψ〉H−1,H1
0 (Λε)

∣∣ ≤ C1

√
ε
[
‖ψ‖L2(Λε) + ε‖∇ψ‖L2(Λε)

]
≤ C2ε

√
ε‖∇ψ‖L2(Λε),

17
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where v̂εav = v̂εaχΛεa + v̂εvχΛεv . Thus

1√
ε
‖F ε‖H−1(Λε) ≤ Cε.

Additionally, we have 〈F ε, ψ〉H−1,H1
0 (Λε) = 0 for all ψ ∈ H1

0 (Λε) with divψ = 0 in

Λε. Hence, there exists P̂ ε ∈ L2(Λε)/R such that F ε = ∇P̂ ε and, using the Nec̆as
inequality [22],

1√
ε
‖P̂ ε‖L2(Λε)/R ≤

1√
ε

C1

ε
‖F ε‖H−1(Λε) ≤ C2.

In the same way as in [2] we obtain that P̂ ε is an extension of p̂ε. The fact that p̂ε

is uniquely defined implies that P̂ ε ∈ L2(Λε).

Using that cεl − cl,D = 0 on ΓD ∩ ∂Ωε
l and cl,D = 0 on Λ̂, in conjunction with (a)

the divergence-free property of vεl and v̂εl , (b) the zero-boundary conditions for vεl
and v̂εl , and (c) the continuity of concentrations on Λ̂ ∩ ∂Λεl , we obtain

〈vεl cεl ,∇(cεl − cl,D)〉Ωεl +
1

ε
〈v̂εl ĉεl ,∇ĉεl 〉Λεl = 〈vεl cl,D,∇(cεl − cl,D)〉Ωεl

+
1

2
〈vεl · n, |cεl |2〉Λ̂∩∂Λεl

− 1

2ε
〈v̂εl · n, |ĉεl |2〉Λ̂∩∂Λεl

≤ 1

2σ
‖vεl ‖2L2(Ωεl )

‖cl,D‖2L∞(Ωεl )

+
σ

2

(
‖∇cεl ‖2L2(Ωεl )

+ ‖∇cl,D‖2L2(Ωεl )

) (43)

for some σ > 0. Applying the trace inequality [17, 21] we obtain

ε‖w‖2L2(Γεl )
≤ C

[
‖w‖2L2(Ωεl )

+ ε2‖∇w‖2L2(Ωεl )

]
,

ε‖w‖2L2(Rεl )
≤ C

[
‖w‖2L2(Λεl )

+ ε2‖∇w‖2L2(Λεl )

]
,

(44)

where l = a, v, s, C is independent of ε, Γs = Γa ∪ Γv, and Rs = Ra ∪ Rv. Now
considering cεl − cl,D and ĉεl as test functions in (37)–(38) and applying estimates
(43) and (44) we obtain the first estimates in (41).

In order to show the non-negativity of cεl and ĉεl , we consider cε,−l = min{cεl , 0}
and ĉε,−l = min{ĉεl , 0} as test functions to derive:

∑
l=a,v

[
∂t‖cε,−l ‖

2
L2(Ωεl )

+ ‖∇cε,−l ‖
2
L2(Ωεl )

+ ε‖cε,−l ‖
2
L2(Γεl )

− 〈vεl c
ε,−
l ,∇cε,−l 〉Ωεl

]

+
∑
l=a,v

[
1

ε
∂t‖ĉε,−l ‖

2
L2(Λεl )

+
1

ε
‖∇ĉε,−l ‖

2
L2(Λεl )

+ ‖ĉε,−l ‖
2
L2(Rεl )

− 1

ε
〈v̂εl ĉ

ε,−
l ,∇ĉε,−l 〉Λεl

]
−
∑
l=a,v

[
λ̂l〈ĉε,+s , ĉε,−l 〉Rεl + ελl〈cε,+s , cε,−l 〉Γεl

]
≤ C

∑
l=a,v

[
ε〈cε,−s , cε,−l 〉Γεl + 〈ĉε,−s , ĉε,−l 〉Rεl

]
.
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Similarly, for the oxygen concentration in the surrounding tissue, we have

∂t‖cε,−s ‖2L2(Ωεs)
+ ‖∇cε,−s ‖2L2(Ωεs)

+
1

ε
∂t‖ĉε,−s ‖2L2(Λεs)

+
1

ε
‖∇ĉε,−s ‖2L2(Λεs)∑

l=a,v

[
ε‖cε,−s ‖2L2(Γεl )

+ ‖ĉε,−s ‖2L2(Rεl )
− ελl〈cε,−s , cε,+l 〉Γεl − λ̂l〈ĉ

ε,−
s , ĉε,+l 〉Rεl

]
≤ C

∑
l=a,v

[
ε〈cε,−s , cε,−l 〉Γεl + 〈ĉε,−s , ĉε,−l 〉Rεl

]
,

where cε,+l = max{0, cεl } and ĉε,+l = max{0, ĉεl }. Using the boundary conditions for
vεl , v̂εl , c

ε
l and ĉεl , we obtain that

−〈vεl c
ε,−
l ,∇cε,−l 〉Ωεl −

1

ε
〈v̂εl ĉ

ε,−
l ,∇ĉε,−l 〉Λεl = 0

for l = a, v. Combining the last two inequalities and applying estimates (44) and
the Gronwall inequality, we obtain that cε,−l (t, x) = 0 a.e. in Ωε

l,T and ĉε,−l (t, x) = 0
a.e. in Λεl,T for l = a, v, s.

To show the boundedness of cεl and ĉεl we consider (cεl −A)+ and (ĉεl −A)+ as test

functions in (37)–(38), where A ≥ max
l=a,v,s

{supΩT cl,D(t, x), supΩ c
0
l (x), supΛε ĉ

ε,0
l (x)}.

Then, due to the prescribed boundary conditions, we have

−〈vεl cεl ,∇(cεl −A)+〉Ωεl −
1

ε
〈v̂εl ĉεl ,∇(ĉεl −A)+〉Λεl = 0

for l = a, v, and thus∑
l=a,v,s

[
∂t‖(cεl −A)+‖2L2(Ωεl )

+ ‖∇(cεl −A)+‖2L2(Ωεl )
+ ε‖(cεl −A)+‖2L2(Γεl )

1

ε
∂t‖(ĉεl −A)+‖2L2(Λεl )

+
1

ε
‖∇(ĉεl −A)+‖2L2(Λεl )

+ ‖(ĉεl −A)+‖2L2(Rεl )

]
≤ C

∑
l=a,v

[
ε〈(cεs −A)+, (cεl −A)+〉Γεl + 〈(ĉεs −A)+, (ĉεl −A)+〉Rεl

]
.

Thus, applying estimates (44) together with the Gronwall inequality, we conclude
that (cεl (t, x) − A)+ = 0 a.e. in Ωε

l,T and (ĉεl (t, x) − A)+ = 0 a.e. in Λεl,T with

l = a, v, s. Therefore, the second part of the estimates in (41) follows.
Finally, differentiating equations (28) and (29) with respect to time, and using (a)

∂t(c
ε
l −cl,D) and ∂tĉ

ε
l , respectively, as test functions, and (b) the regularity assump-

tions on the initial values c0
l and ĉε,0l , yield the estimates for the time derivatives

in (41). �

To derive the macroscopic equations we employ the notion of two-scale con-
vergence [3, 27] and the unfolding method [8, 9]. We denote by T ∗ε : Lp(Ωε

l ) →
Lp(Ω× Yl) the unfolding operator and by T bε : Lp(Γεl )→ Lp(Ω× Γl) the boundary
unfolding operator, for p ∈ [1,∞) (see, e.g., [8, 9]). As in [10, 26] we also define
unfolding operators in the thin layer Λεl and on Rεl , where l = a, v, s, as follows.

Definition 2 For a measurable function φ on Λε we define the unfolding operator
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T blε as

T blε (φ)(x, y) = φ(ε[(x̂, 0)/ε] + εy) for x̂ ∈ Λ̂, y ∈ Z .

For a measurable function φ on Λεl we define the unfolding operator T ∗,blε as

T ∗,blε (φ)(x, y) = φ(ε[(x̂, 0)/ε] + εy) for x̂ ∈ Λ̂, y ∈ Zl .

For a measurable function φ on Rεl we define the boundary unfolding operator T b,blε

as

T b,blε (φ)(x, y) = φ(ε[(x̂, 0)/ε] + εy) for x̂ ∈ Λ̂, y ∈ Rl .

The definition of the unfolding operator implies directly (see e.g., [10, 26]) that

‖T ∗,blε φ‖p
Lp(Λ̂×Zl)

≤ ε−1|Ẑ|‖φ‖pLp(Λεl )
and εT ∗,blε (∇φ) = ∇yT ∗,blε (φ) in Λ̂× Zl.

Theorems 5.2 and 5.3 below are proven in the same manner as the corresponding
results in [8, 9]. For the convenience of the reader, we provide short sketches of the
proofs.

Theorem 5.2 Let {wε} ⊂ W 1,p(Λε), where p ∈ (1,∞) and 1
ε‖w

ε‖pW 1,p(Λε) ≤ C.

Then, there exist a subsequence (denoted again by wε) and functions w ∈W 1,p(Λ̂)

and w1 ∈ Lp(Λ̂;W 1,p(Z)) such that w1 is Ẑ–periodic and

T blε (wε) ⇀ w weakly in Lp(Λ̂;W 1,p(Z)),

T blε (∇wε) ⇀ ∇x̂w +∇yw1 weakly in Lp(Λ̂× Z) .

Sketch of proof. By rescaling w̃ε(x̂, y) = wε(x̂, εy) and using the assumptions on

{wε} we obtain that there exists a function w ∈ W 1,p(Λ̂) with w̃ε → w in Lp(Λ1)
and ∇x̂w̃ε ⇀ ∇x̂w in Lp(Λ1). Also, the assumptions on {wε} ensure that T blε (wε),

T blε (∇wε), and ∇yT blε (wε) are bounded in Lp(Λ̂ × Z). Hence, T blε (wε) ⇀ w in

Lp(Λ̂;W 1,p(Z)). We now define

V ε =
1

ε
(T blε (wε)−Mbl

ε (wε)), where Mbl
ε (wε) =

1

|Z|

∫
Z
T blε (wε)( · , y)dy.

Using the assumptions on wε and applying Poincaré’s inequality, we have that

‖∇yV ε‖Lp(Λ̂×Z) = ‖T blε (∇wε)‖Lp(Λ̂×Z) ≤ C1,

‖V ε − ŷc · ∇x̂w‖Lp(Λ̂×Z) ≤ C2‖∇yV ε −∇x̂w‖Lp(Λ̂×Z) ≤ C3,

where ŷc = (y1 − a1/2, . . . , yn−1 − an−1/2). Then, there exists a function w1 ∈
Lp(Λ̂;W 1,p(Z)) such that, up to a subsequence,

V ε − ŷc · ∇x̂w ⇀ w1 in Lp(Λ̂;W 1,p(Z)).

Hence, we have the second convergence result stated in the theorem.
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The proof of Ẑ-periodicity of w1 follows the same lines as in the case of Tε, see e.g.
[9]. Specifically, one considers the differences V ε(x̂, y1

j )−V ε(x̂, y0
j ) and ŷc,1j ·∇x̂w−

ŷc,0j ·∇x̂w, and shows that w1(x̂, y1
j ) = w1(x̂, y0

j ) in the weak sense for j = 1, . . . , n−
1, where y1

j = (y1, . . . , yj−1, aj , yj+1, . . . , yn), y0
j = (y1, . . . , yj−1, 0, yj+1, . . . , yn),

and Ẑ = (0, a1)× . . .× (0, an−1). �

Theorem 5.3 Let {wε} ⊂W 1,p(Λεl ) , where p ∈ (1,∞) and l = a, v, s, with

ε−1‖wε‖pLp(Λεl )
≤ C, εp−1‖∇wε‖pLp(Λεl )

≤ C.

Then, there exist a subsequence (denoted again by wε) and a Ẑ-periodic function

ŵ ∈ Lp(Λ̂;W 1,p(Zl)), such that

T ∗,blε (wε) ⇀ ŵ weakly in Lp(Λ̂;W 1,p(Zl)),

εT ∗,blε (∇wε) ⇀ ∇yŵ weakly in Lp(Λ̂× Zl) .

Proof. Due to the assumptions on {wε}, we obtain that T ∗,blε (wε) is bounded in

Lp(Λ̂;W 1,p(Zl)). Thus, there exists a function ŵ such that the stated convergences

are satisfied. The Ẑ-periodicity follows by the fact that for ψ ∈ C0(Λ̂× Z),∫
Λ̂×Zl

[
T ∗,blε (wε)(x̂, y + (êj , 0))− T ∗,blε (wε)(x̂, y)

]
ψ(x̂, y)dx̂dy

=

∫
Λ̂×Zl

T ∗,blε (wε)(x̂, y)(ψ(x̂− εêj , y)− ψ(x̂, y))dx̂dy → 0 as ε→ 0,

where êj are standard basis vectors for j = 1, . . . , n− 1. �

To prove convergence results for the unfolding operator in the perforated thin

layer Λεl , with l = a, v, s, we define an interpolation operator Q∗,blε . First, we intro-
duce the notation:

Y = Int
⋃

k∈{0,1}d−1

(Z + (k, 0)), Λ̂εY = Int
⋃
ξ∈ΞεY

ε(Ẑ + ξ), ΛεY,l = Int
⋃
ξ∈ΞεY

ε(Z l + (ξ, 0)),

ΞεY = {ξ ∈ Zn−1 : ε(Y + (ξ, 0)) ⊂ Λε}, Ξ̂ε = {ξ ∈ Zn−1 : ε(Z + (ξ, 0)) ⊂ Λε}.

Then, the definition of Q∗,blε is similar to the one for perforated domains in [8].

Definition 3 The operator Q∗,blε : Lp(Λεl,T ) → Lp(0, T ;W 1,∞(Λ̂εY × (0, ε))) for

p ∈ [1,+∞] is defined by

Q∗,blε (φ)(t, εξ) =
1

|Zl|

∫
Zl

φ(t, ε(ξ, 0) + εy)dy for ξ ∈ Ξ̂ε, a.a. t ∈ (0, T ).

For x ∈ Λ̂εY × (0, ε), Q∗,blε (φ)(t, x) is defined as the Q1- interpolant of Q∗,blε (φ)(t, εξ)

at the vertices of the cell ε([x̂/ε] + Ẑ) with respect to x1, . . . , xn−1 and constant in
xn, for a.a. t ∈ (0, T ).

We remark that ∂tQ∗,blε (φ) = Q∗,blε (∂tφ) and ∂tR∗,blε (φ) = ∂t(φ − Q∗,blε (φ)) =
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R∗,blε (∂tφ). Lemma 5.4 and Theorem 5.5 below are proven in a similar manner as
the corresponding results in [8].

Lemma 5.4 For all φ ∈ W 1,p(Λεl,T ), where p ∈ (1,+∞), the following estimates
hold

‖Q∗,blε (φ)‖Lp((0,T )×Λ̂εY×(0,ε)) ≤ C‖φ‖Lp(Λεl,T ),

‖∇x̂Q∗,blε (φ)‖Lp((0,T )×Λ̂εY×(0,ε)) ≤ C‖∇φ‖Lp(Λεl,T ),

‖R∗,blε (φ)‖Lp((0,T )×ΛεY,l)
≤ Cε‖∇φ‖Lp(Λεl,T ),

‖∇R∗,blε (φ)‖Lp((0,T )×ΛεY,l)
≤ C‖∇φ‖Lp(Λεl,T ),

‖∂tQ∗,blε (φ)‖Lp((0,T )×Λ̂εY×(0,ε)) ≤ C‖∂tφ‖Lp(Λεl,T ),

‖∂tR∗,blε (φ)‖Lp((0,T )×ΛεY,l)
≤ Cε‖∂tφ‖Lp(Λεl,T ),

where the constant C is independent of ε.

Theorem 5.5 Assume that the sequence {wε} ⊂ Lp(0, T ;W 1,p(Λεl )) ∩
W 1,p(0, T ;Lp(Λεl )), with p ∈ (1,+∞), satisfies ε−1‖wε‖pLp(0,T ;W 1,p(Λεl ))

+

ε−1‖∂twε‖pLp((0,T )×Λεl )
≤ C. Then, there exists a function w ∈ Lp(0, T ;W 1,p(Λ̂))

such that

T blε (Q∗,blε (wε)∼) ⇀ w weakly in Lp(Λ̂T ;W 1,p(Z)),

T blε (Q∗,blε (wε)∼)→ w strongly in Lp(0, T ;Lploc(Λ̂;W 1,p(Z))),

T blε (∇x̂Q∗,blε (wε)∼) ⇀ ∇x̂w weakly in Lp(Λ̂T × Z),

(45)

where Q∗,blε (wε)∼ is the extension by zero of Q∗,blε (wε) from (0, T )× Λ̂εY× (0, ε) into
ΛεT .

Sketch of proof. The assumptions on wε, the estimates in Lemma 5.4, and the

definition of Q∗,blε ensure the boundedness of Q∗,blε (wε)∼, its time derivative, and

∇x̂Q∗,blε (wε)∼ in Lp(Λ̂T ). Hence, there exists a function w ∈ Lp(0, T ;W 1,p(Λ̂))

such that Q∗,blε (wε)∼ → w weakly in Lp(Λ̂T ) and strongly in Lp(0, T ;Lploc(Λ̂)), and

∇x̂Q∗,blε (wε)∼ ⇀ ∇x̂w weakly in Lp(Λ̂T ). Then, by the properties of T blε (see e.g.,

[10, 26]), and using the fact that Q∗,blε (wε) is constant in xn, we obtain the first
two convergence results in (45).

Lemma 5.4 and the definition of Q∗,blε ensure the boundedness of Q∗,blε (wε)|K̂×(0,ε)

in Lp(0, T ;W 1,p(K̂ × (0, ε))), where K̂ ⊂ Λ̂ is a relatively compact open set and

Q∗,blε (wε)|K̂×(0,ε) is constant with respect to xn. Then, using Theorem 5.2, we obtain

the existence of a function w1,K̂ ∈ L
p(K̂T ;W 1,p(Z)), which is constant in yn and

Ẑ-periodic, such that

T blε (∇x̂Q∗,blε (wε)|K̂) ⇀ ∇x̂w +∇ŷw1,K̂ weakly in Lp(K̂T × Z).

Due to the fact that w1,K is a polynomial of degree less or equal to one in each yj ,

j = 1, . . . , n−1, and it is constant with respect to yn and Ẑ-periodic, it follows that

w1,K is constant in y. Then, since ∇x̂Q∗,blε (wε)∼ is bounded in Lp(Λε× (0, T )), and
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hence T blε (∇x̂Q∗,blε (wε)∼) is bounded in Lp(Λ̂T ×Z), we obtain the last convergence
in (45). �

The estimates for R∗,blε (wε) along with the convergence of T ∗,blε (ε−1R∗,blε (wε)),
given by Theorem 5.3, (and by using Theorem 5.5) imply the following result.

Theorem 5.6 Let {wε} ⊂ Lp(0, T ;W 1,p(Λεl )) ∩W 1,p(0, T ;Lp(Λεl )), p ∈ (1,+∞),
with 1

ε‖w
ε‖pLp(0,T ;W 1,p(Λεl ))

+ 1
ε‖∂tw

ε‖pLp((0,T )×Λεl )
≤ C. Then there exist a subse-

quence (denoted again by {wε}) and functions w ∈ Lp(0, T ;W 1,p(Λ̂)) and w1 ∈
Lp(Λ̂T ;W 1,p(Zl)) such that w1 is Ẑ−periodic and

T ∗,blε (wε) ⇀ w weakly in Lp(Λ̂T ;W 1,p(Zl)),

T ∗,blε (wε)→ w strongly in Lp(0, T ;Lploc(Λ̂;W 1,p(Zl))),

T ∗,blε (∇wε) ⇀ ∇x̂w +∇yw1 weakly in Lp(Λ̂T × Zl) .

Finally, using the notion of two-scale convergence and the properties of the un-
folding operator, we can prove the following lemma.

Lemma 5.7 The following hold.

1. There exist subsequences of {vεl }, {pεl }, {v̂εl }, and {p̂εl } (denoted again by
{vεl }, {pεl }, {v̂εl }, and {p̂εl }) and functions vl ∈ L2(Ω;H1

per(Yl)), pl ∈ L2(Ω×
Yl), v̂l ∈ L2(Λ̂;H1(Zl)), and p̂ ∈ L2(Λ̂× Z) such that v̂l is Ẑ−periodic, p̂l =
p̂|Λ̂×Zl, and as ε→ 0

vεl → vl, ε∇vεl → ∇yvl, pεl = P εl χΩεl → pl two-scale,

v̂εl → v̂l, ε∇v̂εl → ∇yv̂l, P̂ ε → p̂, p̂εl = P̂ εχΛεl → p̂l two-scale.

2. There exist subsequences of {cεl } and {ĉεj} (denoted again by {cεl }, {ĉεj})
and cl ∈ L2(0, T ;H1(Ω)), ∂tcl ∈ L2(ΩT ), c1

l ∈ L2(ΩT ;H1
per(Yl)), ĉj ∈

L2(0, T ;H1(Λ̂)), ĉ1
j ∈ L2(Λ̂T ;H1(Zj)), and ∂tĉj ∈ L2(Λ̂T ) such that ĉ1

j is

Ẑ−periodic and as ε→ 0

T ∗ε (cεl ) ⇀ cl weakly in L2(ΩT ;H1(Yl)) ,

T ∗ε (cεl )→ cl strongly in L2(0, T ;L2
loc(Ω;H1(Yl))),

∂tT ∗ε (cεl ) ⇀ ∂tcl weakly in L2(ΩT × Yl),

T ∗ε (∇cεl ) ⇀ ∇cl +∇yc1
l weakly in L2(ΩT × Yl),

(46)

T ∗,blε (ĉεj) ⇀ ĉj weakly in L2(Λ̂T ;H1(Zj)),

T ∗,blε (ĉεj)→ ĉj strongly in L2(0, T ;L2
loc(Λ̂;H1(Zj))),

∂tT ∗,blε (ĉεj) ⇀ ∂tĉj weakly in L2(Λ̂T × Zj),

T ∗,blε (∇ĉεj) ⇀ ∇ĉj +∇y ĉ1
j weakly in L2(Λ̂T × Zj),

(47)
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and

T bε (cεl ) ⇀ cl weakly in L2(ΩT × Γl),

T b,blε (ĉεj) ⇀ ĉj weakly in L2(Λ̂T ×Rav),
(48)

where l = a, v, s and j = av, s. Here, ĉεav = ĉεaχΛεa + ĉεvχΛεv , Γs = Γa ∪ Γv, Rav =

Ra ∪Rv, and Zav = Int(Za ∪ Zv).

Sketch of proof. Due to the continuity of concentrations on Σε, we can define ĉεav =
ĉεaχΛεa + ĉεvχΛεv . The a priori estimates in (39), (40) and (41) along with (a) the
compactness theorem for two-scale convergence, (b) related convergence results for
unfolded sequences [3, 8, 22, 26, 27], and (c) Theorem 5.6 imply the convergence
results in the statement of the lemma.

The last two convergence results in (48) follow from the weak convergence of

T ∗ε (cεl ) and T ∗,blε (ĉεj) in L2(ΩT ;H1(Yl)) and L2(Λ̂T ;H1(Zj)), respectively, along

with the trace theorem applied in H1(Yl) and H1(Zj), where l = a, v, s and j =
av, s. �

6. Derivation of macroscopic equations for velocity fields

We now derive the homogenized, macroscopic equations for the arterial and venous
blood velocity fields in the two tissue layers (skin tissue layer and fat tissue layer)
of the adopted tissue geometry. We start with Theorem 2.1, which is the first of
the main results of the paper.

Proof of Theorem 2.1. We first use the following test functions in (36):

(a) φl(x) = εψl
(
x, xε

)
with ψl ∈ C∞0 (Ω, C∞per(Y )) and ψl(x, y) = 0 on Ω×Γl, and

(b) φ̂l(x) = εψ̂
(
x̂, xε

)
with ψ̂ ∈ C∞0 (Λ̂, C∞per(Ẑ;C∞0 (0, 1))) and ψ̂(x̂, y) = 0 on

Λ̂× (Ra ∪Rv).

Using the derived a priori estimates and applying the two-scale convergence of pεa,
p̂εa, p

ε
v, and p̂εv, established in section 5, we obtain that

|Y |−1〈pa, divyψa〉Ω×Ya + |Y |−1〈pv, divyψv〉Ω×Yv + |Ẑ|−1〈p̂,divyψ̂〉Λ̂×Zav = 0. (49)

The last equation implies that

(a) pl ∈ L2(Ω;H1(Yl)) with ∇ypl = 0 a.e. in Ω× Yl, and

(b) p̂ ∈ L2(Λ̂;H1(Zav)) with ∇yp̂ = 0 a.e. in Λ̂× Zav,

where l = a, v. Thus, pa = pa(x), pv = pv(x) in Ω and p̂ = p̂(x̂) in Λ̂.
The two-scale convergence of vεl and v̂εl at the oscillating boundaries Γεl , R

ε
l , and

Λεl ∩{xn = ε} is ensured by the a priori estimates (39) and the boundary estimate
(44). This implies that

vl(x, y) = 0 on Ω× Γl, v̂l(x, y) = 0 on Λ̂× (Rl ∪ Ẑ1
av), l = a, v,(50)

where Ẑ1
av = ∂Zav ∩ {yn = 1}. Using div vεl = 0 in Ωε

l and considering ψl ∈
C∞0 (Ω;C∞per(Y )), we obtain

0 = 〈div vεl (x), ψl(x, x/ε)〉Ωεl = −〈vεl (x),∇ψl(x, x/ε) + 1/ε∇yψl(x, x/ε)〉Ωεl .
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The two-scale convergence of vεl implies that

0 = lim
ε→0
〈vεl (x),∇yψl(x, x/ε)〉Ωεl = −|Y |−1〈divyvl(x, y), ψl(x, y)〉Ω×Yl . (51)

Similarly, using div v̂εl = 0 in Λεl with v̂εa = v̂εv on Σε and ψ̂ ∈
C∞0 (Λ̂;C∞per(Ẑ;C∞0 (0, 1))), we obtain

0 = lim
ε→0
〈div v̂εav(x), ψ̂(x̂, x/ε)〉Λεav = −|Ẑ|−1〈v̂av(x̂, y),∇yψ̂(x̂, y)〉Λ̂×Zav

= |Ẑ|−1〈divyv̂av(x̂, y), ψ̂(x̂, y)〉Λ̂×Zav ,

where Λεav = Λεa ∪ Σε ∪ Λεv. Therefore, divyvl = 0 in Ω × Yl and divyv̂av = 0 in

Λ̂× Zav, where l = a, v.
We now consider the normal velocity v̂εl ·n on Λ̂∩ ∂Λεl . The transmission condi-

tions (26) yield

〈v̂εl · n, ψ̂(x̂, x̂/ε, 0)〉Λ̂∩∂Λεl
= ε〈vεl · n, ψ(x̂, 0, x̂/ε, 0)〉Λ̂∩∂Λεl

= ε〈divvεl , ψ(x, x/ε)〉Ωεl + ε〈vεl ,∇ψ(x, x/ε)〉Ωεl ,

where ψ̂ ∈ C∞(Λ̂;C∞per(Ẑ;C∞[0, 1])), ψ ∈ C∞(Ω;C∞per(Y )) with ψ = 0 on ΓD × Y ,

and ψ̂(x̂, x̂/ε, 0) = ψ(x̂, 0, x̂/ε, 0) on Λ̂. Then using divvεl = 0 in Ωε
l and divyvl = 0

in Ω× Yl, along with the two-scale convergence of vεl and v̂εl , implies

|Ẑ|−1〈v̂l · n, ψ̂(x̂, ŷ, 0)〉Λ̂×Ẑ0
l

= |Y |−1〈vl,∇yψ(x, y)〉Ω×Yl = 0.

Hence, v̂l · n = 0 on Λ̂× Ẑ0
l , where Ẑ0

l = ∂Zl ∩ {yn = 0}.
Using div vεl = 0 in Ωε

l and taking ψ ∈ C∞(Ω) yield

0 = lim
ε→0
〈div vεl , ψ〉Ωεl = lim

ε→0

[
− 〈vεl ,∇ψ〉Ωεl + 〈vεl · n, ψ〉∂Ωεl∩(ΓD∪Λ̂)

]
. (52)

Applying two-scale convergence in the first term on the right-hand side of (52) and
integrating by parts imply

−
〈

div
[ 1

|Y |

∫
Yl

vl(·, y)dy
]
, ψ
〉

Ω
+
〈 1

|Y |

∫
Yl

vl(·, y)dy · n, ψ
〉
∂Ω

= lim
ε→0
〈vεl · n, ψ〉∂Ωεl∩(ΓD∪Λ̂).

(53)

Since C∞0 (Ω) is dense in L2(Ω), the last equation yields

div

(
1

|Y |

∫
Yl

vl(x, y)dy

)
= 0 a.e. in Ω, for l = a, v. (54)

Taking ψ ∈ C∞(Ω) with ψ(x) = 0 on ΓD ∪ Λ̂ in (53), and using the calculations
above, we obtain( 1

|Y |

∫
Yl

vl(·, y)dy
)
· n = 0 on ∂Ω̂× (−L, 0). (55)
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Similarly, taking ψ ∈ C∞(Ω) with ψ(x) = 0 on Λ̂ in (53) we obtain

lim
ε→0
〈vεl · n, ψ〉∂Ωεl∩ΓD =

〈 1

|Y |

∫
Yl

vl(·, y)dy · n, ψ
〉

ΓD
. (56)

These calculations imply that

lim
ε→0
〈vεl · n, ψ〉∂Ωεl∩Λ̂ =

〈 1

|Y |

∫
Yl

vl(·, y)dy · n, ψ
〉

Λ̂
for ψ ∈ C∞(Ω). (57)

We now consider a test function φ̂ ∈ C∞(Λε), such that φ̂ is constant in xn
and φ̂(x) = 0 on ∂Ω̂ × (0, ε). Applying div v̂εl (x) = 0 in Λεl with v̂εl (x) = 0 on the

boundaries Rεl , (∂Ω̂ × (0, ε)) ∩ ∂Λεl , and (Ω̂ × {ε}) ∩ ∂Λεl , along with v̂εa = v̂εv on
Σε, yields

0 = lim
ε→0

1

ε
〈div v̂εav, φ̂〉Λεav = lim

ε→0

(
− 1

ε
〈v̂εav,∇x̂φ̂〉Λεav +

1

ε
〈v̂εav · n̂, φ̂〉∂Λεav∩Λ̂

)
, (58)

where v̂εav = v̂εaχΛεa + v̂εvχΛεv . The transmission condition 1
ε v̂

ε
l · n̂ = vεl · n̂ on Λ̂∩∂Ωε

l
along with the two-scale convergence of v̂εl and the convergence in (57) imply

|Ẑ|−1〈v̂av,∇x̂φ̂〉Λ̂×Zav = 〈|Y |−1va · n̂, φ̂〉Λ̂×Ya + 〈|Y |−1vv · n̂, φ̂〉Λ̂×Yv ,

where n̂ is the external normal vector to ∂Λε ∩ Λ̂. Thus

divx̂

( 1

|Ẑ|

∫
Zav

v̂av dy
)

=
1

|Y |

∫
Ya

va dy · n +
1

|Y |

∫
Yv

vv dy · n on Λ̂, (59)

where n is the external normal vector to ∂Ω ∩ Λ̂, and

1

|Ẑ|

∫
Zav

v̂av(x, y)dy · n = 0 for x ∈ ∂Λ̂.

Considering vε = vεaχΩεa + vεvχΩεv + ε−1v̂εaχΛεa + ε−1v̂εvχΛεv we obtain

0 =

∫
Ωεav∪Λεav

divvεdx =

∫
ΓD∩∂Ωεa

vεa · n dx̂+

∫
ΓD∩∂Ωεv

vεv · n dx̂,

where Ωε
av = Ωε

a ∪ Ωε
v. Then the convergence in (56) yields

1

|Y |

∫
ΓD

[ ∫
Ya

va(·, y)dy +

∫
Yv

vv(·, y)dy
]
· n dx̂ = 0. (60)

Considering div
( ∫

Ya
vady +

∫
Yv

vvdy
)

= 0 in Ω and using (60) imply∫
Λ̂

[ ∫
Ya

va(·, y) dy +

∫
Yv

vv(·, y) dy
]
· n dx̂ = 0. (61)

We now consider functions ψl and ψ̂ such that
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(a) ψl ∈ C∞(Ω;C∞per(Y )), divyψl = 0 in Ω×Y , ψl = 0 on (∂Ω̂×(−L, 0)∪ΓD)×Y
and on Ω× Γl,

(b) ψ̂ ∈ C∞0 (Λ̂;C∞per(Ẑ;C∞[0, 1])), divyψ̂ = 0 in Λ̂×Z, ψ̂ = 0 on Λ̂× (Rav ∪ Ẑ1
av).

Then we choose φl(x) = ψl(x,
x
ε ) and φ̂l(x) = ψ̂(x, xε ), l = a, v, as test functions in

(36). The two-scale convergence of (vεl , p
ε
l ) and (v̂εl , p̂

ε
l ), with l = a, v, implies

1

|Y |
∑
l=a,v

(
〈2µSyvl, Syψl〉Ω×Yl − 〈pl, divxψl〉Ω×Yl −

1

L
〈p0
l , ψl,n〉Ω×Yl

)
+

1

|Ẑ|

(
〈2µSyv̂av, Syψ̂〉Λ̂×Zav − 〈p̂,divx̂ψ̂〉Λ̂×Zav

)
= 0.

(62)

We consider functions ψl and ψ̂ such that

(a) ψl ∈ C∞0 (Ω, C∞per(Y )) with divyψl = 0, ψl = 0 on Ω× Γl, and

(b) ψ̂ ∈ C∞0 (Λ̂, C∞per(Ẑ;C∞0 (0, 1))) with divyψ̂ = 0, divx̂〈ψ̂, 1〉Zav = 0, and

ψ̂(x̂, y) = 0 on Λ̂×Rav.

Using the characterization of the orthogonal complement to the space of divergence-
free functions (see, e.g., [16]), we obtain the existence of p1

l ∈ L2(Ω× Yl)/R, p̂1
av ∈

L2(Λ̂× Zav)/R, and p̃ ∈ H1(Λ̂)/R such that

− µ∆yvl +∇xpl +∇yp1
l =

1

L
p0
l en in Ω× Yl, l = a, v,

− µ∆yv̂av +∇x̂p̃+∇yp̂1
av = 0 in Λ̂× Zav.

(63)

Combining equations (63) and (62), and considering ψ̂ ∈ C∞(Λ̂;C∞per(Ẑ;C∞[0, 1]))

with divyψ̂ = 0 in Λ̂×Z, 〈ψ̂, 1〉Zav ·n = 0 on ∂Λ̂, and ψ̂ = 0 on Λ̂×(Rav∪Ẑ0
av∪Ẑ1

av),
we obtain

|Ẑ|−1〈p̂− p̃,divx̂ψ̂〉Λ̂×Zav + |Y |−1〈pa, ψ · n〉Λ̂×Ya + |Y |−1〈pv, ψ · n〉Λ̂×Yv = 0.

Thus using equality (59) we obtain pa = pv = p̂ and p̃ = 2p̂ on Λ̂.

Relaxing now the assumptions on ψ̂ and using ψ̂ · n = 0 on Λ̂× Ẑ0
av imply

(2µSyv̂av − p̂1
avI) n× n = 0 on Λ̂× Ẑ0

av.

Setting p̄l = pl − p0
l
xn
L and omitting the bar for the sake of clarity, we obtain the

two-scale model

−µ∆yvl +∇xpl +∇yp1
l = 0, divyvl = 0 in Ω× Yl, l = a, v

vl = 0 on Ω× Γl, vl, p
1
l are Y − periodic,

pl = p0
l on ΓD × Yl

(64)
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and

− µ∆yv̂av + 2∇x̂p̂+∇yp̂1
av = 0, divyv̂av = 0 in Λ̂× Zav,

(2µSyv̂av − p̂1
avI) n× n = 0, v̂av · n = 0 on Λ̂× Ẑ0

av,

v̂av = 0 on Λ̂× (Rav ∪ Ẑ1
av), v̂av, p̂

1
av are Ẑ − periodic.

(65)

Finally, for (x, y) ∈ Ω× Yl and (x̂, y) ∈ Λ̂× Zav, we consider the ansatz

vl(x, y) = −
n∑
j=1

∂xjpl(x)ωjl (y), p1
l (x, y) = −

n∑
j=1

∂xjpl(x)πjl (y),

v̂av(x̂, y) = −2
n−1∑
j=1

∂xj p̂(x̂)ω̂j(y), p̂1
av(x̂, y) = −2

n−1∑
j=1

∂xj p̂(x̂)π̂j(y),

(66)

where l = a, v, and (ωjl , π
j
l ), (ω̂j , π̂j) are solutions of the unit cell problems (2) and

(3) respectively. Applying the ansatz (66) to equations (64) and (65), and using
equations (54) and (59), yields the macroscopic equations (10) and (11) for v0

l (·) =
1
|Y |
∫
Yl

vl(·, y)dy, pl, v̂0
av(·) = 1

|Ẑ|

∫
Zav

v̂av(·, y)dy, and p̂. The integral condition in

(61) ensures the well-posedness of the macroscopic model (11). Considering the
differences of two solutions p1

l − p2
l and p̂1 − p̂2 of (10) and (11), and using the

Dirichlet boundary conditions on ΓD and the continuity conditions on Λ̂, we obtain
the uniqueness of the solution of the macroscopic model. �

7. Derivation of macroscopic equations for oxygen concentrations

In this section, we continue our derivation of the homogenized equations for the
microscopic system (22)–(35) by turning our attention to the oxygen concentrations
in arterial blood, venous blood, and tissue. Theorem 2.2 provides the macroscopic
equations dictating the dynamics of the various oxygen concentrations as ε → 0,
and it complements Theorem 2.1 that was proven in the previous section. For the
remainder of this section, we define v̂av(x̂, y) = v̂a(x̂, y)χZa(y) + v̂v(x̂, y)χZv(y) for

a.a. (x̂, y) ∈ Λ̂× Zav.

Proof of Theorem 2.2. We consider ψl(t, x) = φ1
l (t, x)+εφ2

l (t, x,
x
ε ), for l = a, v,

and ψ̂(t, x) = φ̂1(t, x̂) + εφ̂2(t, x̂, xε ) as test functions in (37), where

(a) φ1
l ∈ C∞(ΩT ) ∩ L2(0, T ;W (Ω)) with φ1

l (t, x̂, 0) = φ̂1(t, x̂) in Λ̂T , and φ2
l ∈

C∞0 (ΩT ;Cper(Y ))

(b) φ̂1 ∈ C∞(Λ̂T ) and φ̂2 ∈ C∞0 (Λ̂T ;C∞per(Ẑ;C∞0 (0, 1))).

Considering Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ} and Ω̃ε,δ
l = {x ∈ Ωε

l : dist(x, ∂Ωε
l ) > δ}

we can write

〈vεl cεl ,∇ψl〉Ωεl,T =
1

|Y |
〈T ∗ε (vεl )T ∗ε (cεl ), T ∗ε (∇ψl)〉ΩδT×Yl + 〈vεl cεl ,∇ψl〉Ω̃ε,δl,T .
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Due to the boundedness of cεl and the a priori estimates for vεl , we obtain

|〈vεl cεl ,∇ψl〉Ω̃ε,δl,T | ≤ C‖v
ε
l ‖L2(Ω̃ε,δl )

[
‖∇φ1

l ‖L2(Ω̃δT ) + ε‖∇φ2
l ‖L2(Ω̃δT×Yl)

+‖∇yφ2
l ‖L2(Ω̃δT×Yl)

]
→ 0 as δ → 0 ,

where Ω̃δ = {x ∈ Ω : dist(x, ∂Ω) < δ}. Applying the weak convergence of T ∗ε (vεl ),
the strong convergence of T ∗ε (∇ψl), the local strong convergence of T ∗ε (cεl ), and
letting ε→ 0 and δ → 0 in that order, we obtain

〈vεl cεl ,∇ψl〉Ωεl,T → 1/|Y |〈vlcl,∇φ1
l +∇yφ2

l 〉ΩT×Yl .

In a similar way as for vεl , the regularity of ψ̂ and the a priori estimates and
convergence results for v̂εav and ĉεl imply

1

ε
〈v̂εav ĉεav,∇ψ̂〉Λεav,T → |Ẑ|

−1〈v̂av ĉ,∇φ̂1 +∇yφ̂2〉Λ̂T×Zav as ε→ 0 and δ → 0.

The weak convergence of T ∗ε (cεl ) and T ∗ε (∇cεl ), in conjunction with the strong
convergence of T ∗ε (ψl) and T ∗ε (∇ψl), imply the convergence of 〈∂tcεl , ψl〉Ωεl ,T
and 〈Dε

l∇cεl ,∇ψl〉Ωεl ,T . Similar arguments pertaining to the unfolding operator

T ∗,blε and the convergence results for unfolded sequences prove the convergence

of
1

ε
〈∂tĉεl , ψ̂〉Λεl ,T and

1

ε
〈D̂ε

l∇ĉεl ,∇ψ̂〉Λεl ,T . The weak convergence of T ∗ε (cεl ) in

L2(ΩT × Γl) and of T ∗,blε (ĉεl ) in L2(Λ̂T × Rl) (shown in Lemma 5.7) ensure the
convergence of integrals over Γεl and Rεl .

Thus, we obtain the macroscopic equations

1

|Y |
∑
l=a,v

[
〈∂tcl, φ1

l 〉ΩT×Yl + 〈Dl(y)(∇cl +∇yc1
l )− vlcl,∇φ1

l +∇yφ2
l 〉ΩT×Yl

]
+

1

|Ẑ|

[
〈∂tĉ, φ̂1〉Λ̂T×Zav + 〈D̂av(y)(∇x̂ĉ+∇y ĉ1)− v̂av ĉ,∇x̂φ̂1 +∇yφ̂2〉Λ̂T×Zav

]
=

1

|Y |
∑
l=a,v

〈λl(cs − cl), φ1
l 〉ΩT×Γl +

1

|Ẑ|

∑
l=a,v

〈λ̂l(ĉs − ĉ), φ̂1〉Λ̂T×Rl .

Furthermore, setting φ1
l (t, x) = 0 in ΩT , with l = a, v, and φ̂1(t, x̂) = 0 in Λ̂T we

obtain

1

|Y |
∑
l=a,v

〈Dl(y)(∇cl +∇yc1
l )− vlcl,∇yφ2

l 〉ΩT×Yl

+
1

|Ẑ|
〈D̂av(y)(∇x̂ĉ+∇y ĉ1)− v̂av ĉ,∇yφ̂2〉Λ̂T×Zav = 0.

(67)

We now employ the divergence-free property of the velocity fields in Ω× Yl and
Λ̂ × Zav and the zero-boundary conditions on Γl and Rl ∪ Z0

av ∪ Z1
av. These, and
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the fact that cl and ĉav are independent of y, yield

〈vlcl,∇yφ2
l 〉ΩT×Yl = −〈divy(vl cl), φ

2
l 〉ΩT×Yl + 〈vl · n cl, φ2

l 〉ΩT×∂Yl = 0, l = a, v,

〈v̂av ĉ,∇yφ̂2〉Λ̂T×Zav = −〈divy(v̂av ĉ), φ̂2〉Λ̂T×Zav + 〈v̂av · n ĉ, φ̂2〉Λ̂T×∂Zav = 0.

Thus, taking first φ̂2(t, x̂, y) = 0 in Λ̂T × Z and φ2
l ∈ C∞0 (ΩT ;C∞per(Y )) with

φ2
l (t, x, y) = 0 for y ∈ Y \Yl, (t, x) ∈ ΩT , and then φ̂2 ∈ C∞0 (Λ̂T ;C∞per(Ẑ;C∞0 (0, 1)))

in (67), we have

〈Dl(y)(∇cl +∇yc1
l ),∇yφ2

l 〉ΩT×Yl = 0 for l = a, v,

〈D̂av(y)(∇x̂ĉ+∇y ĉ1),∇yφ̂2〉Λ̂T×Zav = 0.

Using the linearity of the equations above, we consider the ansatz

c1
l (t, x, y) =

n∑
j=1

∂xjcl(t, x)wjl (y) for l = a, v, ĉ1(t, x̂, y) =
n−1∑
j=1

∂xj ĉ(t, x̂)ŵjav(y),

where wjl and ŵjav are solutions of the unit cell problems (5) and (6) respectively.

Then for φ2
l = 0 and φ̂2 = 0, and using the ansatz for c1

l and ĉ1, we obtain

∑
l=a,v

∫
ΩT

(
|Yl|
|Y |

∂tcl φ
1
l + (Al∇cl − v0

l cl)∇φ1
l − λl

|Γl|
|Y |

(cs − cl)φ1
l

)
dxdt

+

∫
Λ̂T

 |Zav|
|Ẑ|

∂tĉ φ̂1 + (Âav∇x̂ĉ− v̂0
av ĉ)∇x̂φ̂1 −

∑
l=a,v

λ̂l
|Rl|
|Ẑ|

(ĉs − ĉ)φ̂1

 dx̂dt = 0,

where Al, v0
l , Âav and v̂0

av are defined in (4) and (14). From the continuity con-

ditions (33), we obtain ca(t, x̂, 0) = ĉ(t, x̂), cv(t, x̂, 0) = ĉ(t, x̂) on Λ̂T . Considering

φ1
l ∈ C∞0 (ΩT ) and φ̂1 = 0 and integrating by parts result in the macroscopic

equations for ca and cv in (12)-(13). Considering

(a) φ̂1 ∈ C∞0 (Λ̂T ), φ1
l ∈ C∞(ΩT ) with φ1

l (t, x) = 0 on ΓD and φ1
l (t, x̂, 0) =

φ̂1(t, x̂) on Λ̂T , and

(b) φ̂1 ∈ C∞(Λ̂T ), φ1
l ∈ C∞(ΩT ) with φ1

l (t, x) = 0 on ΓD and φ1
l (t, x̂, 0) =

φ̂1(t, x̂) on Λ̂T ,

in that order, and integrating by parts result in the macroscopic equation for ĉ
in (12)-(13). Similar arguments imply the macroscopic equations for cs and ĉs.

The assumptions on the initial conditions ensure the existence of ĉ0, ĉ0
s ∈ H1(Λ̂)

such that ĉε,0 → ĉ0, ĉε,0s → ĉ0
s in the two-scale sense. This and the two-scale

convergence of ∂tc
ε
l , ∂tĉ

ε and ∂tĉ
ε
s imply that cl, ĉ and ĉs satisfy the initial con-

ditions, where l = a, v, s. Considering the equations for the difference of two so-
lutions of the macroscopic problem (12)-(13) yields the uniqueness of the solu-
tions. Finally, taking c−l , ĉ−, ĉ−s , (cl − A)+, (ĉ − A)+ and (ĉs − A)+, for some
A ≥ maxl=a,v,s{supΩT cl,D(t, x), supΩ c

0
l (x), supΛ̂ ĉ

0(x̂), supΛ̂ ĉ
0
s(x̂)}, as test func-

tions in (12)-(13) we obtain the non-negativity and boundedness of the solutions
of the macroscopic problem. �
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(a) Lower layer unit cell (b) Upper layer unit cell
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Figure 3. Two-dimensional schematic representation of the two distinct, three-dimensional unit-cell ge-

ometries used in the microscopic model: (a) unit-cell geometry corresponding to the lower layer, i.e. the
fat tissue layer; (b) unit-cell geometry corresponding to the upper layer, which represents the dermic and

epidermic layers of the skin. Only the arterial blood vessels are shown in the fat tissue layer.

δ

δ

Λ Ω

Figure 4. Two dimensional schematic representation of the three-dimensional tissue layers discussed in

the text. The domain on the left (denoted by Λδ in the text) corresponds to the dermic and epidermic

layers of the skin, whereas the domain on the right (denoted by Ω in the text) corresponds to fat tissue.
Only the arterial blood vessels are shown in the fat tissue layer. Arteries (in red) and veins (in blue) are

shown in the skin tissue layer, which is characterized by the presence of arterial-venous connections, i.e.

geometric regions where arteries and veins meet.

8. The δ scaling for the skin layer with 0 < ε << δ << 1

In this final section, we consider an alternative scaling for the depth δ of the skin
layer. Specifically, we assume that the adopted tissue geometry is characterized by
two distinct length scales: a scale δ > 0 representing the depth of the skin layer
and a separate length scale ε > 0 characterizing the distance between arteries. In
the remainder of this section, we assume that 0 < ε << δ << 1, and we let first
ε → 0 and then δ → 0. Under this scaling, the skin layer has a depth of multiple
unit cells (of size ε), and we assume that the arterial branching pattern is such
that flow of blood is permitted between neighboring unit cells in the skin layer.

8.1. Derivation of macroscopic equations for velocity fields

We first derive the macroscopic equations for the arterial and venous blood velocity
fields in the two tissue layers under the scaling assumption 0 < ε << δ << 1. The
microscopic equations for the fluid flow in the main tissue are as in (22). In the
skin layer Λδ, (v̂εa, p̂

ε
a) and (v̂εv, p̂

ε
v) are assumed to satisfy

−ε
2 µ∆v̂εl +∇p̂εl = 0 , div v̂εl = 0 in Λεl,δ,

v̂εl = 0 on R̃εl,δ ,
(68)
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where l = a, v. We impose appropriate transmission conditions on Λ̂
(−2 ε2µSvεl + pεl I) · n = (−2 ε2µ Sv̂εl + p̂εl I) · n on ∂Ωε

l ∩ Λ̂ ,

vεl =
1

δ
v̂εl on ∂Ωε

l ∩ Λ̂ ,
(69)

where l = a, v, along with boundary conditions (24) at the external boundaries
and the continuity conditions given in (27). Moreover,

v̂εl = 0 on ∂Ω̂×(0, δ)∩∂Λδl , v̂εl = 0 on Ω̂×{δ}∩∂Λδl , l = a, v. (70)

Proof of Theorem 2.3. Similarly to Section 4, we derive a priori estimates for
vεl and v̂εl . To derive the macroscopic equations (15), we first consider φl(x) =

εψl
(
x, xε

)
and φ̂(x) = εψ̂

(
x, xε

)
with ψl ∈ C∞0 (Ω, C∞per(Y )), ψ̂ ∈ C∞0 (Λδ;C

∞
per(Z̃)),

ψl = 0 on Ω × Γl, and ψ̂ = 0 on Λδ × R̃av as test functions for the microscopic
problem consisting of equations (22), (24), (27), and (68)–(70). Using the a priori
estimates and applying the two-scale limit, we obtain that pδa = pδa(x), pδv = pδv(x)
in Ω and p̂δ = p̂δ(x) in Λδ.

Choosing now φl(x) = ψl
(
x, xε

)
and φ̂(x) = ψ̂

(
x, xε

)
as test functions, where

ψl ∈ C∞0 (Ω, C∞per(Y )) and ψ̂ ∈ C∞0 (Λδ;C
∞
per(Z̃)) with divyψl = 0 and divyψ̂ = 0, as

well as ψl = 0 on Ω× Γl and ψ̂ = 0 on Λδ × R̃av, we have

∑
l=a,v

1

|Y |

[
〈2µSyvδl , Syψl〉Ω×Yl − 〈pδl , divxψl〉Ω×Yl −

1

L
〈p0
l , ψl,n〉Ω×Yl

]
+

1

δ|Z̃|

[
〈2µSyv̂δav, Syψ̂〉Λδ×Z̃av − 〈p̂

δ,divxψ̂〉Λδ×Z̃av
]
.

(71)

Using the divergence-free property of the velocity fields vεl and v̂εl , we obtain that

divyv
δ
l = 0 in Ω× Yl, div〈vδl , 1〉Yl = 0 in Ω, l = a, v,

divyv̂
δ
l = 0 in Λδ × Z̃l, div〈v̂δav, 1〉Z̃av = 0 in Λδ.

(72)

Then considering ψ ∈ C∞(Ω) with ψ(x) = 0 on ∂Ω \ Λ̂, and using the two-scale
convergence of vεl , we have

0 = − lim
ε→0
〈div vεl , ψ〉Ωεl = |Y |−1〈vδl · n, ψ〉Λ̂×Yl − lim

ε→0
〈vεl · n, ψ〉Λ̂∩∂Ωεl

.

For ψ̂ ∈ C∞(Λδ) with ψ̂(x) = 0 on ∂Λδ \ Λ̂, and using v̂εl = δvεl on Λ̂ ∩ ∂Ωε
l , we

obtain

lim
ε→0
〈div v̂εav, ψ̂〉Λεav,δ = lim

ε→0

[
〈δvεa · n, ψ̂〉∂Ωεa∩Λ̂ + 〈δvεv · n, ψ̂〉∂Ωεv∩Λ̂ − 〈v̂

ε
av,∇ψ̂〉Λεav,δ

]
= 〈δ|Y |−1vδa · n, ψ̂〉Λ̂×Ya + 〈δ|Y |−1vδv · n, ψ̂〉Λ̂×Yv − 〈|Z̃|

−1v̂δav · n, ψ̂〉Λ̂×Z̃av = 0.

Considering ψ ∈ C∞(Ω) and ψ̂ ∈ C∞(Λδ) with ψ(x) = 0, ψ̂(x) = 0 on Λ̂ and
ψ(x) = 0 on ΓD, and applying the divergence-free property of velocity fields and
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the boundary conditions we obtain that

〈vl, 1〉Yl · n = 0 on ∂Ω̂× (−L, 0), 〈v̂av, 1〉Z̃av · n = 0 on ∂Ω̂× (0, δ) ∪ Ω̂× {δ}.

By applying integration by parts in (71), and employing the fact that the
divergence-free space is orthogonal to the space of gradients of functions, we obtain
(in the same maner as in section 6) the macroscopic model

− µ∆yv
δ
l +∇pδl +∇yp1,δ

l = 0, divyv
δ
l = 0 in Ω× Yl,

− µ∆yv̂
δ
av +∇p̂δ +∇yp̂1,δ

av = 0, divyv̂
δ
av = 0 in Λδ × Z̃av,

vδl = 0 on Ω× Γl, v̂δav = 0 on Λδ × R̃av,δ
1

|Y |
∑
l=a,v

〈vδl , 1〉Yl · n =
1

δ|Z̃|
〈v̂δav, 1〉Z̃av · n, pδl = p̂δ on Λ̂,

〈vδl · n, 1〉Yl = 0 on ∂Ω \ (ΓD ∪ Λ̂), pδl = p0
l on ΓD,

〈v̂δav · n, 1〉Z̃av = 0 on ∂Λδ \ Λ̂,

vδl , p
1,δ
l Y − periodic, v̂δav, p̂

1,δ
av Z̃ − periodic,

(73)

where p1,δ
l ∈ L2(Ω;L2(Yl)/R), p̂1,δ

av ∈ L2(Λδ;L
2(Z̃av)/R), and l = a, v. We now

consider the ansatz

vδl (x, y) = −
n∑
i=1

∂xip
δ
l (x)ωil(y), p1,δ

l (x, y) = −
n∑
i=1

∂xip
δ
l (x)πil(y),

v̂δav(x, y) = −
n∑
i=1

∂xi p̂
δ(x) ω̃i(y), p̂1,δ

av (x, y) = −
n∑
i=1

∂xi p̂
δ(x) π̃i(y),

where l = a, v, and (ωil , π
i
l) and (ω̃i, π̃i) are solutions of the unit cell problems (2)

and (8). Using these along with (73) and (72) we obtain the macroscopic equations

in (15), where vδl (·) = |Y |−1
∫
Yl

vδl (·, y)dy and ṽδav(·) = |Z̃|−1
∫
Z̃av

v̂δav(·, y)dy.

We remark that similar results have been obtained in [19]. We also note that
the Dirichlet boundary conditions on ΓD ensure the uniqueness of the solution of
problem (15). �

Proof of Theorem 2.5. We rewrite the equations in (15) in weak form:

〈Ka∇pδa,∇φa〉Ω + 〈Kv∇pδv,∇φv〉Ω +
1

δ
〈K̃∇p̂δ,∇φ̂〉Λδ = 0 (74)

for φl ∈W (Ω), φ̂ ∈ H1(Λδ) and φ(x) = φ̂(x) for a.a. x ∈ Λ̂. Considering pδl + xn
L p

0
l

and p̂δ as test functions in (74), and using the continuity condition pδl = p̂δ on Λ̂,
we obtain

‖pδl ‖H1(Ω) ≤ C,
1

δ
‖p̂δ‖H1(Λδ) ≤ C.
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Hence, considering p̃δ(x̂, yn) = p̂δ(x̂, δyn), we obtain that

‖p̃δ‖L2(Λ̂×(0,1)) ≤ C, ‖∇x̂p̃δ‖L2(Λ̂×(0,1)) ≤ C, ‖∇yn p̃δ‖L2(Λ̂×(0,1)) ≤ Cδ,

and there exist subsequences, denoted again by pδl and p̃δ, and functions pl ∈
H1(Ω), p̂ ∈ H1(Λ̂× (0, 1)), p̂1 ∈ L2(Λ̂;H1(0, 1)), with p̂ being constant in xn, such
that

pδl ⇀ pl in H1(Ω), p̃δ ⇀ p̂, ∇x̂p̃δ ⇀ ∇x̂p̂, δ−1∂yn p̃
δ ⇀ ∂yn p̂

1 in L2(Λ̂× (0, 1)).

The continuity of pressures implies the boundary conditions for pa and pv in
(19). Considering φl ∈ C∞0 (Ω) and φ̂ = 0 as test functions in (74), and using the
weak convergence of pδl , where l = a, v, we obtain the equations for pa and pv in
(19).

We now consider the test functions φl ∈ C∞(Ω) ∩W (Ω) and φ̂(x) = φ̂1(x̂) +

δφ̂2(x̂, xn/δ) with φ̂1 ∈ C∞(Λ̂), φ̂2 ∈ C∞0 (Λ̂×(0, 1)) and φl(x) = φ̂1(x̂) on Λ̂. Using
these in (74) and taking the limit as δ → 0 we obtain

∑
l=a,v

〈Kl∇pl · n, φ̂1〉Λ̂ + 〈K̃(∇x̂p̂+ ∂yn p̂
1en),∇x̂φ̂1 + ∂yn φ̂2en〉Λ̂×(0,1) = 0.

Taking φ̂1 = 0 and using the fact that K̃ does not depend on yn imply that p̂1

is constant with respect to yn. Finally, by considering first φ̂1 ∈ C∞0 (Λ̂) and then

φ̂1 ∈ C∞(Λ̂), we derive the macroscopic equation and boundary conditions for p̂
in (19). �

8.2. Derivation of macroscopic equations for oxygen concentrations

We now turn our attention to the oxygen concentrations in arterial blood, venous
blood, and tissue, under the scaling assumption 0 < ε << δ << 1 that was
delineated in section 8. Theorem 2.4 provides the macroscopic equations for these
quantities as ε→ 0 while keeping δ fixed.

We consider the same microscopic equations as in (28)–(35) with the scaling
1/δ instead of 1/ε in the transmission conditions (33). Also, for the initial data,

we assume that δ−1‖ĉδ,0l ‖
2
H2(Λδ)

+ ‖ĉδ,0l ‖L∞(Λδ) ≤ C instead of the corresponding

assumption on the H2(Λε) and L∞(Λε)-norms.

Proof of Theorem 2.4. Similarly to Lemma 5.1 in Section 5 we can prove a
priori estimates and convergence results for cεl and ĉεl , where l = a, v, s. We consider

ψεl (t, x) = φ1
l (t, x) + εφ2

l (t, x, x/ε) and ψ̂ε(t, x) = φ̂1(t, x) + εφ̂2(t, x, x/ε), with

φ1
l ∈ C∞(ΩT ) ∩ L2(0, T ;W (Ω)), φ2

l ∈ C∞0 (ΩT , C
∞
per(Y )), φ̂1 ∈ C∞(Λδ,T ), and

φ̂2 ∈ C∞0 (Λδ,T , C
∞
per(Z̃)), as test functions in (37) and (38). Similarly to the proof

of Theorem 2.2, using the convergence of T ∗ε (cεl ) and T ∗ε (ĉεj), along with the two-
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scale convergence of vεl and v̂εl , and letting ε→ 0 yield

1

|Y |
∑
l=a,v

〈∂tcδl , φ1
l 〉ΩT×Yl + 〈Dl(y)(∇cδl +∇yc1,δ

l )− vδl c
δ
l ,∇φ1

l +∇yφ2
l 〉ΩT×Yl

+
1

δ

1

|Z̃|

[
〈∂tĉδav, φ̂1〉Λδ,T×Z̃av + 〈D̂av(y)(∇ĉδav +∇y ĉ1,δ

av )− v̂δav ĉ
δ
av,∇φ̂1 +∇yφ̂2〉Λδ,T×Z̃av

]
=

1

|Y |
∑
l=a,v

〈λl(cδs − cδl ), φ1
l 〉ΩT×Γl +

1

δ

1

|Z̃|

∑
l=a,v

〈λl(ĉδs − ĉδav), φ̂1〉Λδ,T×R̃l .

In order to derive the macroscopic model (16) we proceed in a similar way as in

the proof of Theorem 2.2. Choosing first φ1
l = 0 and φ̂1 = 0 and applying the

divergence-free property and the boundary conditions for the velocity fields we
obtain

〈Dl(y)(∇cδl +∇yc1,δ
l ),∇yφ2

l 〉ΩT×Yl = 0, l = a, v,

1

δ
〈D̂av(y)(∇ĉδav +∇y ĉ1,δ

av ),∇yφ̂2〉Λδ,T×Z̃av = 0.

Then we consider the ansatz

c1
l (t, x, y) =

n∑
j=1

∂xjcl(t, x)wjl (y) and ĉ1
av(t, x, y) =

n∑
j=1

∂xj ĉ(t, x)w̃jav(y) ,

where wjl and w̃jav are solutions of the unit cell problems (5) and (9), and we take

φ2
l = 0 and φ̂2 = 0 to arrive at the macroscopic equations (16).
The macroscopic equations (17) for the oxygen concentration in tissue are de-

rived in a similar manner. Standard arguments pertaining to the difference of two
solutions imply the uniqueness of the solutions of the macroscopic model consisting
of equations (16) and (17). �

Proof of Theorem 2.6. Similarly to Lemma 5.1 we can derive a priori estimates
for cδl and ĉδm,

‖cδl ‖L∞(0,T ;H1(Ω)) +
1

δ
‖ĉδm‖L∞(0,T ;H1(Λδ)) ≤ C,

‖c̃δm‖L2(Λ1
T ) + ‖∇x̂c̃δm‖L2(Λ1

T ) ≤ C, ‖∇yn c̃δm‖L2(Λ1
T ) ≤ Cδ,

‖∂tcδl ‖L2(ΩT ) +
1

δ
‖∂tĉδm‖L2(Λδ,T ) + ‖∂tc̃δm‖L2(Λ1

T ) ≤ C

(75)

for l = a, v, s, m = av, s, where c̃δm(t, x̂, yn) = ĉδm(t, x̂, δyn), Λ1
T = Ω̂ × (0, 1) ×

(0, T ), and the constant C is independent of δ. Thus there exist functions cl ∈
L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)), ĉm ∈ L2(0, T ;H1(Λ1)) ∩H1(0, T ;L2(Λ1)), and
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ĉ1
m ∈ L2(Λ̂T ;H1(0, 1)), with ĉm being independent of xn, such that

cδl ⇀ cl in L2(0, T ;H1(Ω)), ∂tc
δ
l ⇀ ∂tcl in L2(ΩT ),

c̃δm ⇀ ĉm in L2(0, T ;H1(Λ1)), ∂tc̃
δ
m ⇀ ∂tĉm in L2(Λ1

T ),

cδl → cl in L2(ΩT ), c̃δm → ĉm in L2(Λ1
T ),

δ−1∂yn c̃
δ
m ⇀ ∂yn ĉ

1
m in L2(Λ1

T ),

(76)

where l = a, v, s and m = av, s. Finally, we use test functions

(a) φl ∈ C∞0 (ΩT ) and φ̂ = 0, and

(b) φl ∈ C∞(ΩT ), φ̂(t, x) = φ̂1(t, x̂) + δφ̂2(t, x̂, xn/δ), with φ̂1 ∈ C∞0 (Λ̂T ), φ̂2 ∈
C∞0 (Λ̂T × (0, 1)), and φl(t, x) = φ̂1(t, x) on Λ̂T

in that order. In the same way as in the proof of Theorem 2.5, using the conver-
gence results in (76), along with the convergence of vδl and ṽδav (ensured by the
convergence of ∇pδl and ∇p̂δ), taking the limit as δ → 0, and applying the fact

that Ãm are independent of yn, we obtain the limit equations in (20) and (21).

The continuity conditions for cδl and ĉδj on Λ̂T ensure the continuity conditions for
the limit functions cl, ĉj for l = a, v, s, j = av, s. The assumptions on the initial

data ensure the existence of ĉ0, ĉ0
s ∈ H1(Λ̂) such that ĉ0,δ(x̂, δyn) → ĉ0(x̂) and

ĉ0,δ
s (x̂, δyn) → ĉ0

s(x̂) in L2(Λ̂ × (0, 1)). Then, using the convergence of ∂tc
δ
l and

∂tc̃
δ
m, we obtain that the initial conditions for cl and ĉm are satisfied. Standard ar-

guments imply the uniqueness of the solution of the macroscopic model consisting
of equations (20) and (21). �
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[17] W. Jäger and U. Hornung. Diffusion, convection, adsorption, and reaction of chemicals
in porous media. J. Differential Equations, 92:199–225, 1991.
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