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LOCALLY PERIODIC UNFOLDING METHOD AND TWO-SCALE
CONVERGENCE ON SURFACES OF LOCALLY PERIODIC
MICROSTRUCTURES*

MARIYA PTASHNYK f

Abstract. In this paper we generalize the periodic unfolding method and the notion of two-scale
convergence on surfaces of periodic microstructures to locally-periodic situations. The methods that
we introduce allow us to consider a wide range of non-periodic microstructures, especially to derive
macroscopic equations for problems posed in domains with perforations distributed non-periodically.
Using the methods of locally periodic two-scale convergence (l-t-s) on oscillating surfaces and the lo-
cally periodic (I-p) boundary unfolding operator, we are able to analyze differential equations defined
on boundaries of non-periodic microstructures and consider non-homogeneous Neumann conditions
on the boundaries of perforations, distributed non-periodically.

1. Introduction. Many natural and man-made composite materials comprise
non-periodic microscopic structures, e.g. fibrous microstructures in heart muscles
[23, 48], exoskeletons [27], industrial filters [52], or space-dependent perforations in
concrete [50]. An important special case of non-periodic microstructures is that of
the so-called locally-periodic microstructures, where spatial changes are observed on
a scale smaller than the size of the domain under consideration, but larger than
the characteristic size of the microstructure. For many locally-periodic microstruc-
tures spatial changes cannot be represented by periodic functions depending on slow
and fast variables, e.g. plywood-like structures of gradually rotated planes of paral-
lel aligned fibers [13]. Thus, in these situations the standard two-scale convergence
and periodic unfolding method cannot be applied. Hence, for a multiscale analysis
of problems posed in domains with non-periodic perforations, in this paper we ex-
tend the periodic unfolding method and two-scale convergence on oscillating surfaces
to locally-periodic situations (see Definition 3.4, Definition 3.2, Definition 3.3, and
Definition 3.5). These generalizations are motivated by the locally-periodic two-scale
convergence introduced in [49)].

Two-scale convergence on surfaces of periodic microstructures was first introduced
in [5, 43]. An extension of two-scale convergence associated with a fixed periodic Borel
measure was considered in [55]. The unfolding operator maps functions defined on
perforated domains, depending on small parameter ¢, onto functions defined on the
whole fixed domain, see [20, 22] and references therein. This helps to overcome one of
the difficulties of perforated domains which is the use of extension operators. Using the
boundary unfolding operator we can prove convergence results for nonlinear equations
posed on oscillating boundaries of microstructures [22, 24, 36, 46]. The unfolding
method is also an efficient tool to derive error estimates, see e.g. [28, 31, 32, 33, 47].

The main novelty of this article is the derivation of new techniques for the multi-
scale analysis of non-linear problems posed in domains with non-periodic perforations
and on the surfaces of non-periodic microstructures. The 1-p unfolding operator al-
lows us to analyze nonlinear differential equations posed on domains with non-periodic
perforations. The l-t-s convergence on oscillating surfaces and the l-p boundary un-
folding operator allow us to show strong convergence for sequences defined on oscillat-
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ing boundaries of non-periodic microstructures and to derive macroscopic equations
for nonlinear equations defined on boundaries of non-periodic microstructures. Until
now, this was not possible using existing methods.

The paper is structured as follows. First, in Section 2, we present a mathematical
description of locally periodic microstructures and state the definition of a locally
periodic approximation for a function ¢ € C(Q; Cper(Yz)). In Section 3 we introduce
all the main definitions of the paper, i.e. the notion of a I-p unfolding operator, two-
scale convergence for sequences defined on oscillating boundaries of locally periodic
microstructures, and the l-p boundary unfolding operator. The main results are sum-
marized in Section 4. The central results of this paper are convergence results for se-
quences bounded in LP and W1, with p € (1, 00) (see Theorems 4.1, 4.2, 4.3, and 4.4).
The proofs of the main results for the l-p unfolding operator are presented in Section 5.
The properties of the decomposition of a WP-function with one part describing the
macroscopic behavior and another part of order ¢, are shown in Section 6. The proofs
of the main results for the l-p unfolding operator in perforated domains are given
in Section 7. The convergence results for locally-periodic two-scale convergence on
oscillating surfaces and the l-p boundary unfolding operator are proved in Section 8.
In Section 9 we apply the 1-p unfolding operator to derive macroscopic problems for
microscopic models of signaling processes in cell tissues comprising locally-periodic
microstructures. As examples of tissues with locally-periodic microstructures we con-
sider plant tissues, epithelial tissues, and non-periodic fibrous structure of heart tissue.

There are some existing results on the homogenization of problems posed on
locally-periodic media. The homogenization of a heat-conductivity problem defined in
domains with non-periodic microstructure consisting of spherical balls was studied in
[14] using the Murat-Tartar H—convergence method [42], and in [3] by applying the 6—
2 convergence. The non-periodic distribution of balls is given by a C2- diffeomorphism
0, transforming the centers of the balls. Estimates for a numerical approximation
of this problem were derived in [53]. The notion of a Young measure was used in
[38] to extend the concept of periodic two-scale convergence and to define the so-
called scale convergence. The definition of scale convergence was motivated by the
derivation of the I'-limit for a sequence of nonlinear energy functionals involving non-
periodic oscillations. Formal asymptotic expansions and the technique of two-scale
convergence defined for periodic test functions, see e.g. [4, 44], were used to derive
macroscopic equations for models posed on domains with locally periodic perforations,
i.e. domains consisting of periodic cells with smoothly changing perforations [9, 17, 18,
37, 39, 45]. The H—convergence method [12, 13], the asymptotic expansion method
[8], and the method of locally-periodic two-scale (I-t-s) convergence [49] were applied
to analyze microscopic models posed on domains consisting of non-periodic fibrous
materials. The optimization of the elastic properties of a material with locally-periodic
microstructure was considered in [6, 7].

To illustrate the difference between the formulation of non-periodic microstructure
by using periodic functions and the locally-periodic formulation of the problem, we
consider a plywood-like structure, given as the superposition of gradually rotated
planes of aligned parallel fibers. We consider layers of cylindrical fibers of radius e a
orthogonal to the xs-axis and rotated around the z3-axis by an angle ~, constant
in each layer and changing from one layer to another, see Fig.l. To describe the
difference in the material properties of fibers and the inter-fibre space with the help
of a periodic function, we define a function

(1) A(w) = Arii(ROy(wa))w/2) + Az [1 = i (R(y(w))o/2) ],
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Fic. 1. Schematic representation of slow rotating and fast rotating plywood-like structures.

where A;, Ay are constant tensors and 7 is the characteristic functions of a fibre of
radius a in the direction of x;-axis, i.e.

(1.2) ’7 0 for |§—(1/2,1/2)] > a,

1 for |:’97 (1/271/2)| < a,
(y) =
and extended Y-periodic to the whole R?, with a < 1/2, § = (y2,93), Y = [0,1])3,
and Y = [0,1]2. The inverse of the rotation matrix around the x3-axes with rotation
angle a with the z1-axis is defined as

cos(a) sin(a) O
(1.3) R(a) = | —sin(a) cos(a) 0],
0 0 1

and v € C'(R) is a given function, such that 0 < «(s) < 7 for all s € R. Then,
considering for example an elliptic problem with a diffusion coefficient or elasticity
tensor in the form (1.1) and using a change of variables & = R(y(x3))x, we can apply
periodic homogenization techniques to derive corresponding macroscopic equations
(see [10, 12] for details). However, in the representation of the microscopic structure
by (1.1), every point of a fibre is rotated differently and the cylindrical structure of the
fibers is deformed. Hence, A® represent the properties of a material with a different
microstructure than the plywood-like structure, and for a correct representation of
a plywood-like structure, a locally-periodic formulation of the microscopic problem
is essential. Also, applying periodic homogenization techniques we obtain effective
macroscopic coefficients different from the one obtained by using methods of locally-
periodic homogenization (see [13, 49] for more details).

To define the characteristic function of the domain occupied by fibers in a domain
with a locally-periodic plywood-like structure, we divide R? in layers L = R? x
((k — 1)e", ke™) of height " and perpendicular to the x3-axis, where k € Z and
0 < r < 1. In each Lj we choose an arbitrary point zj, € L7. Using the locally-
periodic approximation of ) € C(€2, L, (Y;)), with n(z,y) = 7(R(z)y) for z € Q and
y € Y,, given by

(L) (@) = D7 (R(v(a.5) w/e) xrg(x)  for w € Q,

kEZ

the characteristic function of the domain occupied by fibers is given by

(1.4) xas (#) = xa(x)(Ln)(z).
3



Here 77 € L%, (Y) is as in (1.2) and Y, = R™'(y(x3))Y. For a microstructure
composed of fast rotating planes of parallel aligned fibrous, see Fig. 1, we consider
an approximation by locally-periodic plywood-like structure with shifted periodicity

D(z)Y = R~Y(z)W(2)Y, see [13, 49] for more details.

2. Locally periodic microstructures and locally periodic perforated do-
mains. In this section we give a mathematical formulation of locally periodic mi-
crostructures. We also define the approximation of functions, where the periodicity
with respect to the fast variable is dependent on the slow variable, by locally-periodic
functions, i.e. periodic in subdomains smaller than the domain under consideration
but larger than the representative size of the microstructure.

Let © ¢ R? be a bounded Lipschitz domain. For each 2 € R? we consider a
transformation matrix D(z) € R4*? and its inverse D~!(x), such that D,D~! €
Lip(R%R?*4) and 0 < Dy < |det D(x)| < Dy < oo for all z € Q. We consider the
continuous family of parallelepipeds Y, = D,Y on Q, where Y = (0,1)? is the ‘unit
cell’ and denote D, := D(x) and D! := D~ !(z).

For € > 0, in a manner similar to [14, 49], we consider the partition covering of
Q2 by a family of open non-intersecting cubes {Q% }1<,<n. of side €”, with 0 < r < 1,

NE
Qc 9 and 2 NQ#D.
n=1

For arbitrary chosen fixed points z,,Z5 € 5 N ) we consider a covering of Qf by
parallelepipeds e Dy= Y

O, Caf,+ | eDaz (VY +¢), where 25 ={{ € Z%: & +eDye (Y + &) NQ5, # 0},

fEEfL

with Dy = D(x5,) and 1 <n < N.. For eachn = 1,..., N, &7, is a fixed shift in the
representation of the microscopic structure of Q7. Often we can consider 77, = €D, §
for some ¢ € Z4. B

We consider the space C(€2; Cper(Yz)) given in a standard way, i.e. for any ¢ €
C(Q; Cper(Y)) the relation ¢(z,y) = U(z,D;'y) with € Q and y € Y, yields
Y € C(Q; Cper(Yz)). In the same way the spaces LP(; Cper(Yz)), LP( L, (Yz))
and C(§%; L, (Y)), for 1 <p < oo, 1 < ¢ < oo, are defined.

To describe locally-periodic microscopic properties of a composite material and to
specify test functions associated with the locally-periodic microstructure of a material,
as well as for the definition of the locally-periodic two-scale convergence, we shall
consider a locally-periodic approximation of functions with space-dependent periodi-
city, functions in C(Q; Cper(Yz)), LP(Q; Cper(Yz)), or C(; LE, (Y,)). The locally-

per
periodic approximated function is Y:-periodic in each subdomain Qf, with n =
1,..., N, and is related to a test function associated with the periodic structure of

Q¢ . Since the microscopic structure of €25 is represented by a union of periodicity
cells €Y= shifted by a fixed point z7, € 27 N, with n = 1,..., V¢, this shift is also
reflected in the definition of the locally-periodic approximation.

Often coefficients in a microscopic model posed in a domain with locally-periodic
microstructure depend only on the microscopic fast variables /¢ and the points
x5, x5 € QFNQ), describing the periodic microstructure in each €25, withn =1,..., Ng,
and are independent of the macroscopic slow variables z. To define such functions
we shall introduce a notion of a locally-periodic approximation L£§ of a function

4



¥ € C(; Cper(Yz)) (or in LP(€%; Cper(Yz)), C (€4 LY, (Yz))). In each 2, the function
L5(1) is Yy< -periodic and depend only on the fast variables z/e. This specific locally-
periodic approximation is important for the derivation of macroscopic equations for a
microscopic problem with coefficients discontinuous with respect to the fast variable,
since for 1 € C(Q; LP(Y,)) we have that £5(¢)) converges strongly locally-periodic
(l-p) two-scale, see [49].

As a locally periodic (1-p) approximation of ¢ we name L : C(Q; Cper(Yz)) —
L>(Q) given by

N, N D
(2.1) (L)) = Y o,

We consider also the map L5 : C(€; Cper(Yz)) — L() defined for z € Q as

Zw( 75,

E
— 'T’n,

))XQ; () forxz e

(x — 75

—T) o, (1) Zw( mi"))m;(x»

If we choose 77, = D,: € for some § € 74, then the periodicity of 1; implies

Zw( "’”Ex)ms()and v Zw(

for x € Q. In the following, we shall consider the case 7, = eD,:§, with § € VA

Ial‘

)XQE( )

However, all results hold for arbitrary chosen %, € QF with n = 1,..., N., see [49].
In a similar way we define £ and L5 for ¢ in C(Q; Lger( ) or LP(Q Cper(Yz)).

The locally-periodic approximation reflects the microscopic properties of 2, where
in each €)f, the microstructure is represented by a ‘unit cell’ Y- = D, Y for arbitrary
fixed z, € €2, see Figs. 1 and 2.

In the context of admissible test functions in weak formulations of partial differ-
ential equations, we define a regular approximation of L% by

Z¢< )(2595( ) forxzeQ,

where ¢qo- are approximations of xqs such that ¢o- € C§°(€2;,) and

N
(2.2) D ldaz —xaz| = 0 in L*(Q), |[V™¢as [|po@a < Ce™™ for 0<r<p<1,

n=1

see e.g. [12, 14, 49]. In the definition of the l-p unfolding operator we shall use
subdomains of ), given by unit cells €Y,- that are completely included in €25 N €,
see Fig. 2.

N. Ne
(2.3) Q° = Q. with O —Int( D, Y+§)) and A° = | JASNQ,
n=1 geze, =

where A5 = Q5 \ QF and 25 = {€ € 25, : €D, (Y +&) C (25N Q)}.



FIG. 2. Schematic representation of subdomains QS and QE,.

As it is know from the periodic case, the unfolding operator provides a powerful
technique for the multiscale analysis of problems posed in perforated domains and
nonlinear equations defined on oscillating surfaces of microstructures. Thus, the main
emphasis of this work will be on the development of the unfolding method for domains
with locally-periodic perforations. Therefore, next we introduce perforated domains
with locally-periodic changes in the distribution and in the shape of perforations.

We consider Yy C Y with a Lipschitz boundary I' = 9Y; and a matrix K with
K, K¢ Lip(Rd R4*4) where 0 < K; < |det K(x)| < Ky < 00, K. YO CY, and
Y* =Y \Yy and YI’Q =Y\ K.Y are connected, for all z € Q. Define Y, ;o = D, Y*
with the boundary I';, = D, K,T', where K, = K(x) and D, = D(z). Then a domaln
with locally-periodic perforations is defined as

NE
Qe =Int(| %) NQ  where Q5% = |J eDac (Y, +UAS
n=1 fEE;'E o
Here A}° = QF \ Ugezre €Das (Y +¢&), with Z5° = {€ € Z5 : D, (Y + &) C Q5 1,
YK =Y\ K;:Yg and K, = K(af) for n = 1,...,N.. The boundaries of the
locally periodic microstructure of 2% i are denoted by

Ne
re=JrsnQ, where TG = ] €D (Tk,. +&) with 5 € O,
n=1 £eERE
and T' Ko: = = K,:I'. Notice that changes in the microstructure of )} K are defined

by Changes in the periodicity given by D(z) and additional changes in the shape of
perforations described by K(z) for = € Q.

Along with plywood-like structures (see Fig. 1), examples of locally-periodic mi-
crostructures are e.g. concrete materials with space-dependent perforations, plant and
epithelial tissues, see Fig. 3. In the definition of microstructure of concrete materials
with space-dependent perforations we have e.g. D(z) =1 and K (z) = p(x)I for such
0 < p1 < p(z) < pa < oo that K(z)Yo C Y, see e.g. [17, 45] and Fig. 2. For plant or
epithelial tissues additionally we have space-dependent deformations of cells given by
D(z) # 1, where I denotes the identity matrix.

Using the mathematical definition of general locally-periodic microstructures,
next we introduce the definition of the locally-periodic (l-p) unfolding operator, map-

6



Fic. 3. Ezxzamples of locally periodic microstructures with local changes in the shape and the
pertodicity of a microstructure. We observe changes in shape and size of cells in an epithelial tissue
due to maturation, http://www.eastcentral.edu, and changes in the size of plant cells in a wood
tissue, Schoch, Heller, Schweingruber, Kienast, 2004, [51].

ping functions defined on e-dependent domains to functions depending on two vari-
ables (i.e. a microscopic variable and a macroscopic variable), but defined on fixed
domains.

3. Definitions of I-p unfolding operator and l-p two-scale convergence
on oscillating surfaces. The main idea of the two-scale convergence is to consider
test functions which comprise the information about the microstructure and the mi-
croscopic properties of a composite material and of model equations. The same idea is
used in the definition of 1-t-s by considering a I-p approximation of ¢ € L(£2; Cper(Y3))
(reflecting the locally-periodic properties of microscopic problems) as a test function.

DEFINITION 3.1. [49] Let u® € LP(QY) for alle > 0 and p € (1,00). We say the
sequence {u} converges I-t-s to w € LP(Q; LP(Yy)) as € — 0 if [|[u®||1p(q) < C and for
any ¥ € LI(Q; Cper(Yy))

e—0

lim Qus(x)/u’sl/)(m)dx:/ﬂ]{/w u(z, y)(z,y)dydz,

where LE is the l-p approzimation of v, defined in (2.1), and 1/p+1/q=1.

Remark. Notice that the definition of 1-t-s and convergence results presented in
[49] for p = 2 are directly generalized to p € (1, 00).

Motivated by the notion of the periodic unfolding operator and l-t-s convergence
we define the l-p unfolding operator in the following way.

DEFINITION 3.2. For any Lebesque-measurable on 0 function ¢ the locally-
periodic (I-p) unfolding operator Tf is defined as

N,
TE(W) (2, y) = Z $(eDqe Dz w/e]y + 5Dﬂciy)X§2; (x)  for x€Qand yevy.
n=1

The definition implies that 77 (¢) is Lebesgue-measurable on 2 x Y and is zero for
x € A°.

For perforated domains with local changes in the distribution of perforations, but
without additional changes in the shape of perforations, i.e. K =1 and

NE
Qr=Tnt( | J Q) N, where  Qp = | eD. (Y*+ & UAT,
n=1 tezy®

and Y* =Y \ Y, we define the I-p unfolding operator in the following way:
7



DEFINITION 3.3. For any Lebesgue-measurable on 2% function v the l-p unfolding
operator T is defined as

Ne
TEE (W) (,y) = Z V(eDge [D;ilx/s]y + EDwiy)XQ; () for z€Qand yeY™.
n=1

The definition implies that 7:°°(¢) is Lebesgue-measurable on € x Y* and is zero
for z € A°.

In mathematical models posed in perforated domains we often have some pro-
cesses defined on the surfaces of the microstructure (e.g. non-homogeneous Neumann
conditions or equations defined on the boundaries of the microstructure). Therefore
it is important to have a notion of a convergence for sequences defined on oscillating
surfaces of locally-periodic microstructures. Applying the same idea as in the defini-
tion of 1-t-s convergence for sequences in LP(2) (i.e. considering l-p approximations
of functions with space-dependent periodicity as test functions) we define the l-t-s on
surfaces of locally-periodic microstructures.

DEFINITION 3.4. A sequence {u} C LP(I'¢), with p € (1,00), is said to converge
locally-periodic two-scale (I-t-s) to u € LP(; LP(T'y)) if €||u8\|’zp(rg) < C and for any

¥ € C(Q; Cper(Ya))

lims/s u®(x) Lo9%(x) doy :/Q ‘; |/F w(z,y) Y(z,y) doydz,

e—0

where LF is the l-p approzimation of ¢ defined in (2.1).

Often, to show the strong convergence of a sequence defined on oscillating bound-
aries of a microstructure, we need to map it to a sequence defined on a fixed domain.
This can be achieved by using the boundary unfolding operator.

DEFINITION 3.5. For any Lebesgue-measurable on I function ¢ the I-p boundary

. be -
unfolding operator T,* is defined as

Ne
7-2;,5(1/})(% y) = Z w(er;’ [D;;lm/e} vt EDac;K:c;y)XQi () forzeQ andyeT.

n=1

The definition implies that Tf’a(z/}) is Lebesgue-measurable on Q x I' and is zero
for x € A®. The l-p boundary unfolding operator is a generalization of the periodic
boundary unfolding operator, see e.g. [21, 22, 24, 46]. Similar to the periodic unfolding
operator, the l-p unfolding operator maps functions defined in domains depending on
e (on QF or I'?) to functions defined on fixed domains (2 x Y* or Q@ x I"). The locally-
periodic microstructures of domains are reflected in the definition of the I-p unfolding
operator.

4. Main convergence results for the l-p unfolding operator and I-t-s
convergence on oscillating surfaces. In this section we summarize the main re-
sults of the paper. Similar to the periodic case [21, 22], we obtain compactness results
for 1-t-s convergence on oscillating boundaries, for the I-p unfolding operator and for
the I-p boundary unfolding operator. We prove convergence results for sequences
bounded in LP(I'¢), H*(Q), and H'(Q}), respectively. The properties of the transfor-
mation matrices D and K, assumed in Section 3, are used to prove the convergence
results stated in this section.



THEOREM 4.1. For a sequence {w®} C LP(2), with p € (1,00), satisfying
lws||r ) + el V| r) < C
there exist a subsequence (denoted again by {w®}) and w € LP(Q; W)L(Y,)) such that

TEw?) — w(-Dy) weakly in TP(9 W (Y)),
eTE(Vw®) = D;'V,w(-, D, weakly in LP(Q xY).

For a uniformly bounded sequence in W?(Q), in addition we obtain the weak
convergence of the unfolded sequence of derivatives, important for the homogenization
of equations comprising elliptic operators of second order.

THEOREM 4.2. For a sequence {w®} C WHP(Q), with p € (1,00), that converges
weakly to w in WLP(Q), there exist a subsequence (denoted again by {w®}) and a
function wy € LP(; WLP(Y,)) such that

per

TE(w®) = w weakly in LP(; WHP(Y)),
TE(Vw)(,) = Vew()+ Dy TV, wi (-, Dy) weakly in LP(Q X Y).

Two of the main advantages of the unfolding operator are that it helps to overcome
one of the difficulties of perforated domains which is the use of extension operators
and it allows us to prove strong convergence for sequences defined on boundaries of
microstructures. Thus next we formulate convergence results for the 1-p unfolding
operator in perforated domains and the I-p boundary unfolding operator.

THEOREM 4.3. For a sequence {w®} C WP (QF), where p € (1,00), satisfying

(4.1) [w ]l (@) + el Ve |ro:) < C

there exist a subsequence (denoted again by {w®}) and w € LP(Q; W 2(Y;F)) such that

TA(w) = w(-, Dy) weakly in  LP(S; WP (Y™)),

(4.2) L o , .
7.7 (Vw®) = D" Vyw(-,D,) weakly in  LP(Q x Y™).

In the case w® is bounded in WP (£2}) uniformly with respect to e, we obtain weak
convergence of T.°°(Vwe) in LP(2 x Y*) and local strong convergence of 77 (w®).
THEOREM 4.4. For a sequence {w®} C WHP(Q?), where p € (1,00), satisfying

[ wip:) < C

there exist a subsequence (denoted again by {w®}) and functions w € WHP(Q) and
wy € LP(Q; WLELE(YF)) such that

per
T (w®) = w weakly in LP(; WHP(Y™)),
T (Vu®) = Vw+ D;Tvyw1(-, D, weakly in LP(Q x V™),
T (w) = w strongly in LY (Q;WHP(Y™)).

Notice that the weak limit of 7.°(Vw*®) reflects the locally-periodic microstruc-
ture of ¥ and depends on the transformation matrix D.

9



For 1-t-s convergence on oscillating surfaces of microstructures we have following
compactness result.
THEOREM 4.5. For a sequence {w®} C LP(T'¢), with p € (1,00), satisfying

5||w€||€p(ra) <C
there exist a subsequence (denoted again by {w®}) and w € LP(Q; LP(T';)) such that

w® = w locally periodic two-scale (I-t-s).

Similar to the periodic case [21, 22], we show the relation between the l-t-s con-
vergence on oscillating surfaces and the weak convergence of a sequence obtained by
applying the l-p boundary unfolding operator.

THEOREM 4.6. Let {w®} C LP(I'®) with €Hw€||Lp (rey < C, where p € (1,00). The
following assertions are equivalent

(7) w® = w [-t-s, w € LP(Q; LP(T'y)).
(i1) Tﬁb’a(wa) —w(, D, K,") weakly in LP(Q x T).

Theorems 4.5 and 4.6 imply that for {w®} C LP(T"°) with 5||w5||’£p(ra) < C we

have the weak convergence of {’TZE(wE)} in LP(Q2 x T), where p € (1,00).

The definition of the I-p boundary unfolding operator and the relation between
the 1-t-s convergence of sequences defined on l-p oscillating boundaries and the 1-p
boundary unfolding operator allow us to obtain homogenization results for equations
posed on the boundaries of locally-periodic microstructures.

5. The l-p unfolding operator: Proofs of convergence results. First we
prove some properties of the l-p unfolding operator. Similar to the periodic case, we
obtain that the l-p unfolding operator is linear and preserves strong convergence.

LEMMA 5.1. (i) For ¢ € LP(QY), with 1 < p < oo, holds

(5.) [ 1@ el dyds < 17| [ [o(a)? do
Qxy Q
(1) Tf : LP(Q}) — LP(Q2 X Y') is a linear continuous operator, where 1 < p < co.
(iii) For ¢ € LP(2), with 1 < p < oo, we have strong convergence
(5.2) Ti(@)—¢ in LP(QAXY).

() If ¢ — ¢ in LP(Q), with 1 < p < oo, then TF(¢°) = ¢ in LP(QA x Y).
Proof. Using the definition of the l-p unfolding operator we obtain

/Q HOK y>|dedx—ZZ d|Dst|/ 16( D (€ + )P dy

n=1
(5.3) ¢es

Smy

n=l e

wdng§:|yy/' z)|P da.

Dye (64Y
Then estimate (5.1) follows from the properties of the covering of Q by {Q¢ e,
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The result in (ii) is ensured by the definition of the l-p unfolding operator and
inequality (5.1).

(iii) Using the fact that ¢ € LP(Q2) and |A°| — 0 as ¢ — 0 (ensured by the
properties of the covering of Q by {Qi}giﬂ and applying Lebesgue’s Dominated
Convergence Theorem, see e.g. [29], we obtain [,. [¢(z)[P dz — 0 as € — 0.

Considering the approximation of LP-functions by continuous functions, using the
definition of 7F and equality (5.3), and taking the limit as ¢ — 0 in the equality (5.3)
imply the convergence stated in (iii).

(iv) The linearity of the 1-p unfolding operator along with (5.1) and (5.2) yield

1 (3 €
1T2(9°) = Pllriaxyy < Y7167 = dllLr) + 1T (¢) = dllLraxy) = 0 as e = 0.

|
Similar to 1-t-s convergence, the average of the weak limit of the unfolded sequence
with respect to microscopic variables is equal to the weak limit of the original sequence.

LEMMA 5.2. For {w®} bounded in LP(Q), withp € (1,00), we have that {Tf(w*)}
is bounded in LP(2 x Y) and if

Ti(w®) =@  weakly in LP(Q xY),
then

w® A][ wdy weakly in LP(Q).
Y

Proof. The boundedness of {75(w®)} in LP(2 x Y) follows directly from the
boundedness of {w®} in LP(2) and the estimate (5.1). For ¢ € L1(Q), 1/p+1/q =1,
using the definition of 7F (w*®) we have

/ w® Pdr = 1 Ti(w) T (W) dyde + A.,  where A, = w dzx.

Q |Y| Qxy A=

For {w®} bounded in LP(§2) and ¢ € L7(£2), using the properties of the covering of €2
and the definition of QZ and A®, where 1 < n < N., we obtain A, - 0 as ¢ — 0.
Then, the weak convergence of T£(w®) and the strong convergence of 77 (1)), shown
in Lemma 5.1, imply

e—0

: E _ 1 .
lim Qw (x)qlz(x)dxm/g/yw(sc,y)w(:r)dydm

for any ¢ € LI(Q2). O
For the periodic unfolding operator we have that 7¢(¢(-,-/¢)) = ¢ in LI(Q2 xY)
for € LY(Q, Cper(Y)). A similar result holds for the l-p unfolding operator and
1 € LI(Q, Cper(Yz)), but with 9(-,-/¢) replaced by the l-p approximation £ (-).
LEMMA 5.3. (i) For ¢ € LI(Q; Cper(Yy)), with ¢ € [1,00), we have

TE(LSY) = (-, Dy-)  strongly in LY x Y).
(ii) For+p € C(Q; LI, (Yz)), with ¢ € [1,00), we have

per

TE(L5Y) = (-, Dy)  strongly in LI X Y).
11



Proof. (i) For ¢ € C(£%; Cper(Yz)) using the definition of £5¢ and T we obtain

Dle q
|z |Qdydm—z/sxy\w (0 [252] +eDrzyes)|'ayas,

where ¢ € [1,00) and ¢ € C(€; Cper(Y)) such that ¢(z,y) = {/;(x,D;ly) for z € Q,
y € Y,. Then, using the properties of the covering of Qf by 6Y =Dy (Y + ),
with £ € =5, and considering fixed points ye € Y 4 & for £ € :E we obtaln

/Q |TE (L4 )\qdydac—z > d|ym5|/ [ (eDys (€ + ye),y) |9 dy + 8(c),
XY n= 156”5

where, due to the continuity of ¥ and the properties of the covering of Q by {0}

n=1>

Yy Y| [ (19(eDug (€ + 5 0l = DD €+ ). 9)I7) dy = 0

n=1 ﬁe“s

as € — 0. Then, using the continuity of ¢ and D together with the relation between
1 and 1 we obtain

; ()| _
i [ TRy ds = [

D)7 dy o = / (2, Day)|dy de.
QxYy QOxY

QxY

The continuity of ¢ with respect to « ensures the point-wise convergence of T£ (L59)(z, y)
o Y(z,Dyy) ae.in 2 x Y.

Considering an approximation of ¢ € L4(%; Cper(Yz)) by ¥m € C(Q; Cper(Ya))
and the convergence

it [ (120 (0] = |£70(0) 1) ds =
see [49, Lemma 3.4] for the proof, yields 75 (L£¢)(-,-) = ¥(-,Dy-) in LI(Q x Y) for
Y € LI(; Cper(Ya))-
(ii) For ¢ € C(S2; L, (Yz)), we can prove the strong convergence only of Tz (L51)).
Consider

tim [ T2 ) dyde = V| i [ [ (5ot~ [ (cgito)aa].

e=0 Joxy

Then, using Lemma 3.4 in [49] along with the regularity of ¢ and the properties of
A% we obtain

Y| hm/ | Lo |qd:17*/ [¢(z, Dyy)|?dyde, hm/ |L5w(x)|9dx = 0.
QxYy

The continuity of ¢ with respect to = € Q implies 77 (L§¥)(z,y) — ¥(x, Dyy) point-
wise a.e. in @ x Y. 0O

Remark.  Notice that for ¢ € C(Q; LY, (Y,)) we have the strong convergence
only of T£(L§). However, this convergence result is sufficient for the derivation of

12



homogenization results, since the microscopic properties of the considered processes
or domains can be represented by coefficients in the form BLjA, with some given
functions B € L>(Q) and A € C(Q; LY, (Yz)).

The strong convergence of TF (L) for ¢ € LI(Q; Cper(Ys)) is now used to show
the equivalence between the weak convergence of the 1-p unfolded sequence and 1-t-s
convergence of the original sequence. Notice that L(€2; Cper(Y)) represents the set
of test functions admissible in the definition of the I-t-s convergence.

LEMMA 5.4. Let {w®} be a bounded sequence in LP(Q), where p € (1,00). Then
the following assertions are equivalent

(i) we = w l-t-s, w € LP(Q; LP(Yy)),

(i)  TE(w)(-,-) = w(-,Dy) weakly in LP(Q x Y).

Proof. [(i1) = (i)] Since {w®} is bounded in LP(12), there exists (up to a subse-
quence) a l-t-s limit of w® as ¢ — 0. For an arbitrary ¢ € LI(; Cper(Ys)) the weak
convergence of Tf(w®), and the strong convergence of 75 (L£%(¢))) ensure

tiy [ wee e = tim [ [ 720 T @)dydo+ [ wt @)

/][ w(z,y) Y(x, Dyy) dydx—/][ w Y dydz,

where w(z,y) = w(z, D(z)y) for a.a. v € Q, y € Y. Thus the whole sequence w*®
converges l-t-s to w.

[() = (i7)] On the other hand, the boundedness of {w®} in LP(§) implies the bound-
edness of {77 (w®)} and (up to a subsequence) the weak convergence of 7S (w®) in
LP(Q xY). If w® — w l-t-s, then

ti [ 7)) T2 (5w dde =ty [ [ et o= [ et (w)aal

:/][ w Y dydz
QJY,

for i € LI(Q; Cper(Yz)). Since TF(LE(Y))(-,-) = ¥(-,Dg-) in LI x Y'), we obtain
the weak convergence of the whole sequence 75 (w®) to w(-, D,-) in LP(Q xY"). Notice
that the boundedness of {w®} in LP(Q2) and the fact that |[A°| — 0 as € — 0 imply

1/
/ w® L5 ()| dz < c(/ sup |4(z, ny)|qd3:) "50 as e—0
A= A yeY

for ¢ € LI(Q; Cher(Yy)) and 1/p+1/¢=1.0

Next, we prove the main convergence results for the I-p unfolding operator, i.e.
convergence results for {75 (w®)}, {7 (Vw®)} and {75 (Vw®)}.

The definition of the 1-p unfolding operator yields that for w € W1 (£2)

(5.4) YV, TE (w —EZD TE (V) xo: -

Due to the regularity of D, the uniform boundedness of eVw® implies the uniform
boundedness of V, 77 (w®). Thus, assuming the boundedness of {eVw®} we obtain
convergence of the derivatives with respect to the microscopic variables, but have no
information about the macroscopic derivatives.

13



Proof. [Proof of Theorem 4.1] The assumptions on {w®} together with in-
equality (5.1), equality (5.4), and regularity of D ensure that {75 (w®)} is bounded
in LP(Q; WHP(Y)). Thus, there exists a subsequence, denoted again by {w®}, and a
function w € LP(Q; WLP(Y)), such that TZ(w®) — @ in LP(Q; WHP(Y)). We define

w(z,y) = w(x, D ly) for a.a. x € Q, y € Y. Due to the regularity of D, we have
w € LP(Q;WHP(Y,)). For ¢ € C§°(Q x Y), using the convergence of T£(w®), we have

N

lim eT:(Vw®) ¢pdyde = — hm 75 (w®) Z div, (D, é(z,y))dy Xas d
e=0 Jaxy QxYy el " )
= —/ w(@, Doy) divy (D7 ¢(w, y))dyda = DTV w(z, Dyy) d(,y) dydz.
Qxy QxY

Hence, €7 (Vw®)(,-) = D; TV w(-, Dy-) in LP(Q2 x Y) as € — 0. To show the Y,—
periodicity of w, i.e. Y—periodicity of w, we show first the periodicity in e;—direction.
Then considering similar calculations in each e;—direction, with j =1,...,d — 1 and

{ej }j:1~,~~,d being the canonical basis of R¢, we obtain the Y,—periodicity of w. For
P € C§°(Q; C°(Y")) we consider

I= / (75 () (&, (4, 1)) — TE ) (&, (', 0))] ¥z, ')y dz,
QxYy’
where Y/ = (0,1)471. We define

fzi,d:mt( U 5D$;(?+§)), K;].:Im( U sDxi(?-i-f)) for j = 1,2,

¢eE! €€E75
where Z,)" = {€ € 25 ¢ eDue (Y +eq+ &) C Q5 and eDye (Y —eq + &) € Q51 and
~ d = .
Bod = "n \ )", with 259 = :ffi u :idz, where E;dl corresponds to upper cells in

the eq direction and Hn’% corresponds to lower cells in the ey direction in QF \ Q59.

Then using the definition of 77 we can write

1230 [ T ) e~ <Dagea)) — vl 'l
Ne

[ TR e~ [ TRy )y ]
n=1 fl XY’ fL,QXY/

where y* = (y/,1) and y° = (¢/,0). Using the continuity of v, the boundedness of
the trace of 77 (w®) in LP(Q2 x Y”), ensured by the assumptions on w®, and the fact
that ETJY; |/~\fL]| <Cel™™ - 0ase— 0, with 0 <7 < 1and j = 1,2, we obtain that
I — 0 as e — 0. Similar calculations for e;, with j = 1,...,d—1, and the convergence
of the trace of 77 (w®) in LP(Q2 x Y”), ensured by the weak convergence of 75 (w®) in
LP(Q; WEP(Y)), imply the Y,-periodicity of w. O

If [ Vw®|| £r(q) is bounded uniformly in e, we have the weak convergence of w*® in
WhP(Q) and of T (Vw®) in LP(2 x Y). Hence we have information about the macro-
scopic and microscopic gradients of limit functions. The proof of the convergence
results for 77 (Vw®) makes use of the Poincaré inequality for an auxiliary sequence.
For this purpose we define a local average operator M£%, i.e. an average of the unfolded
function with respect to the microscopic variables.
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DEFINITION 5.5. The local average operator M% : LP(QQ) — LP(Q), p € [1, o0],
is defined as

(5:5) Mz(0)(@) = § T ,ydyfzfqp (eDss (ID52/2] + 1)) dy X, (@)

n=1

Proof. [Proof of Theorem 4.2] The proof of the convergence of 75 (Vw®) follows
similar ideas as in the case of the periodic unfolding operator. However, the proof of
the periodicity of the corrector w; involves new ideas and technical details.

The convergence of T (w®) follows from Lemma 5.2 and the fact that due to the
assumption on {w®} and regularity of D we have

IVyTE ()|l Lraxy)y < Ce =0 ase—0.

To show the convergence of T (Vw®) we consider a function V¢ : Q x Y — R defined
as

(5.6) Ve =T H(TE(w) = Mz (w?)).

Then, the definition of 77 and M?% implies
1 N.
V,VE=-V Z - TE (V) xos -

The boundedness of {w®} in W1P(Q) together with (5.1) and regularity assumptions
on D imply that the sequence {V,V*¢} is bounded in LP(Q x Y'). Considering

N.
][ Vefdy=0 and ][ yo -Vwdy =0 with ¢S = ZDwiycXQi7
Y Y o
where y. = (y1 — %7 ey Yd — %) for y € Y, and applying the Poincaré inequality to
Ve —ys - Vw yields
IV —ys - Vullrraxy) < C1||VyVE = Dg;vw||LP(Q><Y) < Cs.

Thus, there exists a subsequence (denoted again by {V¢ — y¢ - Vw}) and wy, €
LP(Q; WLP(Y)) such that

(5.7) VE—ys-Vw — wy weakly in  LP(Q; WP (Y)).
For ¢ € W1P(Q) we have the following relation

TE(V) (z,y) = 1ZD 'V, TE(9)(2,y) xo: (2).

n=1

Then the convergence in (5.7) and the continuity of D yield

(5.8)  TE(Vwe) ZD IV, Vexa: = Vw+ DTV, @ weakly in LP(Q x Y).
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We show now that wy (x,y) is Y-periodic. Then the function wy(z,y) = w1 (z, D 'y)
for a.a. x € Q, y € Y, will be Y,—periodic. For ¢ € C§°(Q; C§°(Y")) we consider

NE

/Q/ Ve, y') = V2, y")] dla,y)dy'de =) (Tan + Tom)

n=1

1
Il,n = /N ﬁ(ws)(x,y())g [w(l‘ - €szled7 y/) - w(x7y/)] dy’dx,
Qs Jyr

Lu=| [ TE@O ey dde - [ TE@ @)y iy o

Az XY

where 3, °, Qfld, and AiL , with j = 1,2, are defined in the proof of Theorem 4.1.
Then Lemma 5.1 and the strong convergence of {w®} in LP(Q), ensured by the
boundedness of {w®} in W1P(Q), imply the strong convergence of {T£(w®)} to w
in LP(Q x Y). The boundedness of {V,77(w®)} (ensured by the boundedness of
{Vw®}) yields the weak convergence of {T£(w®)} in LP(Q; W1P(Y)) to the same w.
Applying the trace theorem in W?(Y) we obtain that the trace of 75 (w®) on Q x Y’
converges weakly to w in LP(Q x Y’) as € — 0. This together with the regularity of

1 and D gives

;%ZL,L: /// ) Vatb(z,y') dy'dz,

where Dg(z) = (D14(z),. .., Dgq(x))T. As next we consider the integrals over the
upper (in eg4 direction) cells Z3, and over the lower cells yi) np iN neighboring Q7
and QF, , i.e. for such 1 <ny,ng < N, that ©,, , = (05, QGQE )ﬁ{xd = const} # 0,
dim(©y, ,) =d —1, and z7, ,; <z;, ; and write

1 /
T+ T =2 [ TEO@atdae- [ TR ey ]

o
AE

ny,l

1
| [ T @y edy — | TE @)@y dy [ de = 137 + T3 .
Y Y
The second integral 73 ,, can be rewritten as
1
Izl’n = f/~ Oy, T7 (W) (2, y) ¥(z, y)dydz = /K Dy(z) - T7 (Vw®)y dydz.
S XY

g e
nq,1 nl,lXY

Using the boundedness of {Vw®} in LP(Q2), p € (1,00), and Zm 1 |An1 | < et
we conclude that EnNil 7}, +0ase - 0and r <1. In 732 we shall distinguish

2,n
between variations in xq,... ,xﬁi__lfdirections and in zdfdlrectlon. For an arbitrary
fixed 27, , € Oy, , we define chil . = (D1(23, ,)s - Da—1(z5,, ), Da(25,,)), where
D;(x) = (Dyi(2),...,Dgi(x))T withi=1,...,d, and j = 1,2. We introduce
A = U eDj. (Y +¢) for j =1,2,
E€ERT ,
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where
=, = {g €Z':eD}, (V+&+ea) N0, #0andeD}. (Y +6)C Qf”} :
ni 2

Ze2 _ {geZd EDQ (7+§—ed)ﬁ®m’2 # 0 and sD?Eim(YJrg) cQ;2}.

Then each of the integrals in 1'21 2 we rewrite as

1/ T2 (W) (@,y")pdy/do = / / (eDle ([wh,/e] + 4"y da
+ é [/n v T (w®) (@, )pdy' da — /E /,wa(gDiil,z ([x%n/s] + yo))zﬁdy’dx}
=Jjn+ J2

g
where xbn = (Djs ,2)’133 and j = 1,2. Using the definition of f&fw for j = 1,2, and
the fact that |25, Pral = 222 | = 11, Yields

ni,2

77'12

o= Bu=e"3 | /Y [0t Dl (& )i, )
w (2D (€2 +y)Y(eih, )] D | dy'dp

/ / “(eD2. g+y))wdy’%[d(bis #) - d(Dy;, #)].
& Jeorve v e R

EEENT ,

where g;j,g = ﬁiiu (g +§§) for j = 1,2. The first integral in the last equality can be
estimated by '

Cerd+=) W lwre @ 1V llca it vy

In the second integral we have a discrete derivative of an integral over an evolving
domain, which convergences to the divergence of the velocity vector Dy as € — 0.
Then, using the fact that [N.| < Ce%" and 25, , < 5, ; together with the regularity

of D and the definition of Dis , where j = 1,2, yields
ny 9

Ne
Z (Jin = J3n) = —/ / w(z) Y(z,y)divDy(z) dy'de  as e — 0.
n=1 Q2 !

For J¢, — J3, using the definition of As . and f\zj, the regularity of D and %, the

;.
boundedness of {w®} in W1P(Q), along with the the properties of the covering of 2
by {2} we obtain

N d—1
Z [T — T3, S Ce" Z |divDg || oo () 1w [[wre @)l loge (@:00(vry) — 0
n=1 k=1

as € — 0 for r € (0,1). Combining the obtained results we conclude that
N
>+ Tan) 5= [ [0@)Dale) - Vo)) + wle)bla,y JivDa(a)]dy'da
n=1 QxY’
17



as € — 0. The definition of y¢ - Vw implies

(5 - Vu(@) (s 1) — (5 - V(@) 0) = 3 Da(a5) - Vao(w)xas (2)
for ' € Y’ and z € Q. Taking the limit as € — 0 yields

im [ [ Vo)u) - (58 - V) )] §dy'de = / Dy(x) - Ve dy de

e—0 QxY’ Qxy’

= _/Q y w(z) [Dy(z) - Vip(z,y') + div Dg(z)¢(z, y') | dy' da.

Then using the convergence of V¢ — y¢ - Vw to w; in LP(Q; WHP(Y)) we obtain

///wl (v, 1) — 1 (. (v, O) (e, o) dyd:c—hm//l Ve, (o', 1))
S V), (1, 1) — VE(, (1, 0)) + (4 - Vo) (o, (', 0)] ez, o) dy'da = 0.

Carrying out similar calculations for y; with j =1,...,d — 1 yields the Y—periodicity
of w; and, hence, Y,—periodicity of w;, defined by w;(z,y) = w(x, D 'y) for x € Q
andy € D, Y. O

6. Micro-macro decomposition: The interpolation operator Q%. Similar
to the periodic case [20, 22], in the context of convergence results for the unfolding
method in perforated domains as well as for the derivation of error estimates, [28, 31,
32, 33, 47], it is important to consider micro-macro decomposition of a function in
WP and to introduce an interpolation operator Q%. Forany ¢ € WLP(2) we consider
the splitting ¢ = 9% () + R%(p) and show that O%(p) has a similar behavior as ¢,
whereas R% () is of order e.

We consider a continuous extension operator P : W1P(Q) — WLP(R?) satisfying

IP@wismasy < Clglwing — forall ¢ €W (Q),

where the constant C' depends only on p and €, see e.g. [29]. In the following we use
the same notation for a function in I/Lfl’p (£2) and its continuous extension into R%.
We consider Y = Int ( Ukego,13a(Y + k)) and define

N,
5 = Int( U ﬁiy), with Q= Int( U €Dy (Y 4€)),
n=1

g€zt
~ NE p—
5 =0\05, O =Int(|J |J eDes (Y +9) N0
n=1¢EET |
where =5y, = {{ € 5, 1 €D, (V+&) C (2, NV} and =5, ) = {§ € 5, 1 €D, (Y +

g)mém;é(b or gDIE(erg)maQ;A(Z)}

In order to define an interpolation between two neighboring €27, and Qf, we in-
troduce Y~ = Int( Ukego,13a(Y — k)).

For1<n<N;andme€ Z, ={1 <m < N, : 905 N9QE, # 0} we shall consider
unit cells near the correspondlng nelghbormg parts of the boundaries 895 and 8an,
respectively. For &, € 25, where 25 = {€ € E5 : eDy= (Y +¢) NAQE # 0}, we consider

={&n €E5,t €Dy (V+E&)NeDy: (V7 + &) #0}
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FIG. 4. Schematic diagram of the covering of Q by Q3,, of DyeY and Dge Y™, and of the
interpolation points &n and &m for QF and QZ’E.

and
Kn:{kE{O,l}dgn—eréi s K”_”L:{ke{ovl}dgm_kEEm}

One of the important part in the definition of Q% is to define an interpolation
between neighboring €27, and €25,. For two neighboring €2}, and {25, we consider trian-
gular interpolations between such vertices of eD,= (Y + &) and eD,e (Y + ;) that
are lying on 0€)7 y, and 9817, ,, respectively.

DEFINITION 6.1. The operator Q% : LP(Q) — W1°°(Q) is defined by

01 Qi@ = p(Dus(ct ey forg €= and1 <0< N.

and for x € QF 5, U ﬁlf we define Q7 (p)(x) as the Q1-interpolant of Q% () () at the
vertices of E[D;ilx/a}y + Y, where 1 <n < N,.

For x € A5, \ ﬁ‘z we define Q% (p)(x) as a triangular Q1 -interpolant of the values
of Q7 (p)(e€) at &, +ky and &y, such that &, € Z5, ,,, form € Z,, and k,, € K,,, where
1<n< N, _ ~

The vertices of €Dye (Y + &, + k) and €Dge (Y + &) for &, € Z5, & € Z5,,,
and k, € K,,, in the definition of Q7. belong to 99, y, and 99y, ), see Figure 4.

For Q%(¢) and R%(¢) = ¢ — Q%(v) we have the following estimates.

LEMMA 6.2. For every ¢ € WHP(Q), where 1 < p < oo, we have

1QZ(P)llLr) < CllellLe(ay, IRz ()l ey < Cel|VollLe (),
IVRZ()r) + IVRL(O)Lr (@) < ClIVellLr (),
where the constant C' is independent of ¢ and depends only onY, D, and d = dim(£2).

Proof. Similar to the periodic case [20], we use the fact that the space of Q-
interpolants is a finite-dimensional space of dimension 2¢ and all norms are equivalent.

Then for € € =Ly UE; p, where n=1,..., N, we obtain
(6.3) ||Q6£(@)||Zz,p(gpzi (€+Y)) < Clgd Z |Qi:(§0>(5§ + 5k)|p
ke{0,1}d
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For &, € =% and triangular elements wgnv between (27 5, and QF, y,, with m € Z,,
holds

192N, < Coe" 3o D [| Q20N + <R + Q2 () (e8m) ],

k€K, ™MEZn

Em€ES .
where |Z,,| < 2¢ and |§i7m| < 22(d=1 for every n =1, ..., N.. Thus for A;\ﬁi holds

||Q[,( )HLP(A& \Qa

scgedz 3 S [Nt + <R + | Qz (o) eEm)”).

n=lg,eZs k€K, meZ, Em€Es, ,,

(6.4)

From the definition of Q% it follows that

QA < f oD+l =y [ fetwlds

Dye (€4Y)

for £ € 25 and n=1,..., N.. Then using (6.3) and (6.4) implies

65 1), (¢ vy < Ci / o) |Pdz
(6.5) LP(eDye (64Y)) ke{%}d b (erry)

for (€ 5]y UE] ,andn=1,..., N, and in Aj \ Qi we have
68) 10 SGYS S XY Ly @I
n=1meZ, j= nmge:s EDE

Summing up in (6.5) over £ € =}, UE; , and n = 1,..., N, and adding (6.6) we
obtain the estimate for the LP-norm of Q% (y), stated in the Lemma.
From the definition of @;-interpolants we obtain that for £ € =7 y, UE]

6.7 IVOZ(ALrep, . e+vy < Ce*" Y 19z()( + k) — Qz () ()"

ke{0,1}d

For the triangular regions WE, between neighboring €17, 5, and (27, 5, we have

IV @y, <O 3 Y [Q2(@) el + k) — Q2(6)(e)?

me~Z" kn ekn km ER;L
.

+1QL(D)(e(n + Fn)) = Qz()((ém — km))I” + [QL(0)(e(€m — Fm)) — QL(d)(em)|-

For ¢ € Whp (DysY'), using the regularity of D and the Poincaré inequality, we obtain

(6.8) H¢>—]{J Eyqﬁ yH - < ClIVyollLr(p.s v)»

’]{JEYW@’ ]{3 sy ‘J{;EW ddy - ][ o] < CIVublL,, )

i oa-f 7¢dy| Hf eay-f 7¢dy\ e A -
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where 1 <n < N., k € {0,1}¢ and the constant C' depends on D and is independent
of € and n. Using a scaling argument we obtain for every & € =,

(6.9) H¢>—][ qbdx‘
EszL (€+Y)

Hence, for £ € 25 5, UZE , and k € {0,1}% as well as for &; € 25, with j = n,m and
kn € Kn, km € IA(;L we have

Vo e .
LP(eDye (E4+Y )) ” ¢||L (eDge (64Y)) -

Q2(0)et +¢k) =zl = [f | PED €+ )y - # ecnstc+ ]
< C Vel ep,. e4v):

Q% () (c6n + 2hn) — Q2 () (&))" < C VIR, . 43
1Q2(¢) (cm — kim) = Q2 (P)(EEm)I < eIVl ey

(6.10)

where C depends on D and is independent of £, n, and m.
For ¢, € 55,&, € 55, and k), € Kn, kn,, € K , using the fact eDye (£ +Y7)N
€D,z (& +Y) # 0, and applymg the inequalities (6 8) with a connected domain

MEZn Em €S, ,, k{0,139

instead of ) and Y~ , together with a scaling argument, yield

Q)6 +okn) = Qe kP <[f ey~ [ elepa’
e (&n n &n

(6.11) ;
+f ey~ feens] < cr ey,
Dye (Em+Y —km) YV, €n

n

where C' depends on D and is independent of ¢, n, and m. Thus in AS, \ ?22 we have

Ne
612) VORI, SC Y 3 D IVelY, 5 < Call Vol

n=l¢,e=;

n 6771 6‘:‘51,171
mesn

Applying (6.10) in (6.7), summing up over & € Eny UEL,and n=1,..., N and
combining with the estimate for ||V Q% () HLP(A;\QE) n (6. 12) we obtain the estimate

for [VQZ(#)l|Lr (o) in terms of [[V| rr(q), as stated in the Lemma.
To show the estimates for R% () we consider first

lo(x) = Qz(O) (@) Lr (e, (e4v)) < ll0(x) = QZ(©)(EQ) Lo (. (64v))
+ 1QZ(¢)(e€) — QZ(W)(UT?)\|LP(ED$5L (£+Y))

for § € =5, ), UE; ;. Using the definition of Q7 and (6.9) we obtain for § € E5, y,UZS |
o = Qz() (€& Lr (e, (e4v)) < CelVllLr(en,s (4v)) -
The definition of Q% (¢) and the properties of Q1-interpolants along with (6.10) imply

1QZ(v) — Q%(@)(Ef)ﬂm(smi(&yn < CEHVSDHL”(ED:E% (e+y)y for§e€Z] ) UE,
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For triangular elements wg — C A5\ Qf with ¢, € 5 and &, € E5,, we have

wémm - Efgn. Then, the inequalities in (6.8) with JN)&L and a scaling argument imply

(@) - Q2(@)etn)lre, ) < 0@ — Q2()EE re, ) < Cel Vel o,
whereas (6.10) and (6.11) together with the properties of ():-interpolants ensure

15 £ p
192(0) — Q2(@)Enllhn, ) < CIVEIL, 5 -

Thus, combining the estimates from above we obtain the following estimate

NE
IRZ (@)l < Y lle = Qz(#)l| o (os) < Z Z I = Qz(@)llLr D,z (47
n=1

n=1£€E; ,UE] |

JFZ Z Z o — QZz(p ”Lp(w )S Cel|VollLr()-

n=1¢,€E;5,meZn ¢, eEs,

The estimate for VOZ () and the definition of R%(¢) yield the estimate for VRZ ().
0

To show convergence results for sequences obtained by applying the 1-p unfolding
operator to sequences of functions defined on locally-periodic perforated domains, we
have to introduce the interpolation operator Q¢ for functions in LP(£2). We define

QF = Int( Q ), Ar=:\Qr  where 0= | ) eDoe (Y +9).

tezg

ic3

and

=z

JOU5). ALy = @2\ 02y where 55 = Int( | eDus (7" +6)).
1 gezi,y

n

as well as (NZ: =Qin Q., where Q. is defined as

(6.13) Q. = {z e Q: dist(z,00) > 4e max diam(D(x)Y)}.

We also consider V* = Int(Uke{OJ}d(?* +k)) and Y*~ = Int(Uke{O,l}d(?* —k)).
Similar to Q%, in the definition of the interpolation operator Q7 we shall dis-
tinguish between €5, and Aj, N Q.. For x € Qf, we can consider (;-interpolation

between vertices of the corresponding unit cells, whereas for z € A5, N ﬁe we consider
triangular ()1-interpolation between vertices of unit cells in two neighboring % and
Q¢,. This approach ensures that Q°(¢) is continuous in Q..

DEFINITION 6.3. The operator Q7% : LP(QF) — WL (Q,) is defined by
(6.14)  QF(¢)(e€) =1 ¢(Dys (€ +ey))dy — for E€E5 andn=1,...,N,,
Y*
and for x € QF 5 N Q. we define Q7°(¢)(z) as the Qq-interpolant of the values of

Q7 (¢)(£€) at vertices of E[D;ilm/a}y +¢eY, where 1 <n < N..
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Forxz € A5, N Q. we define Q7 (¢)(z) as a triangular Q:-interpolant of the values of
Q7 (9)(e) at &, + ki and &, such that &, € Ef%m form € Z, and k,, € K,,, where
1 <n < N, see Figure 4.

In a similar way as for Q%(¢) and R%(¢) we obtain estimates for Q7°(¢) and
R5(8) =0 — Q. (¢).

LEMMA 6.4. For every ¢ € WLP(Q2), where 1 < p < oo, we have

195°(6) o @) < Clldllra), IVQ ()l sy < CIVSloar):
IRE () oasy < CelVOlocas). IVRE (@)l oqgis) < CIVSlLras,

where the constant C' is independent of €.

Proof. The proof for the first estimate follows the same lines as the proof of
the corresponding estimate in Lemma 6.2. To show the estimates for VQ7*(¢) and
R (¢) we have to estimate the differences Q% (¢)(e€) — Q% (¢)(e§ +k) for € € =7,

and k € {0,1}%, and Q7°(¢)(e&n +ckn) — Q7% (9) (e&m —kim) for &, € 5, & € B,
with m € Z,, and k,, € Kn, k,, € IA(;L, where 1 < n < N.. As in the proof of
Lemma 6.2, by considering the estimate (6.7), applying the Poincaré inequality and
using the estimates similar to (6.10), with Y* and Y* instead of Y and ), we obtain

| Q2" (8)(e) = Q@) (€ + k)" < CPIVOlILs cp,. (v 1))
v *,€
(6.15) e o e
16 = Qe (@lr(ep.s ove+en < 16 = QD)D) lr(eps ov-+en
+19%(6) = QX (D) EO)llarep.y (v+e) < CellVollLaena; - +e))

@)ren,e (v+6) < ClIVOIlLreD,: (v-+€):

for € € Eny and n =1,...,N.. For &, Efl and &, € Efum, with m € Z,,, we

consider sets of D, (Y +§) for such D, (Y +¢), with £ € =5 and j = n, m, that have

possible nonempty intersections with a triangular element wg, between neighboring
*,€

*,€
Qn,y and Qm,y

W= U De(Vot&—k;)UD,, (Yo+&+kD),
kn €K, kiek,
o= U U D (Fo+ &m — k) U D, (Vo + & + k),
meznafmeés k- ER;L

n,m “Vm

= + oK
lEZm,&E:lE,m kl €K,

and sets of cells D,, (Y +¢) and D, (Y +¢&) that have possible nonempty intersections
with wg
En,m

j)ﬁnzlnt( U Dxn(?+§n_k;)UDxn(y+fn))v
kn €Ky
Vi = Int( U D0+ gm))

mEZn,meég

n,m

arid define )Nign = Int((jig_n U \)A/gn ) \ (JA)EH U 3}2;)) We have that 37;1 is connected a~nd
eYi C QO forall &, € £}, n=1,...,N.. Applying the Poincaré inequality in Vi
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and using the regularity of D yields

p
/ oy~ owas| <c [ [Py,
Dzi/(y*+§n+kn) yg ygn

e |f st~ o] < [ 19,000,
Dae (Y*+&m—km) A% Yé,

o oW <CIV,0ll

for &, € Efw ¢m € Efmm with m € Z,, and k, € Kn, km € IA(;L, where the constant
C depends on D and is independent of €, n and m. Then, using a scaling argument
in (6.16) implies

(617)  |QL7(#)(ebn + ekn) — Q7 (#)(em — k)| < VI, 5.

for &, € Ei, Em = with m € Z,,, and k,, € I%m k., € IA(;V Hence, taking into

—n,m>

account that |Z,| < 2¢ and |§$7,m| < 22(d=1) "we obtain

Ne
(618) VR @I, xen,) < C1 20 D0 IVOIG, 5. ) < CallVEl -

n=l¢,e=g

Applying a scaling argument in (6.16) and using the properties of Q;-interpolants and
the estimate (6.17) yields

Ne
||¢ _ QZ)E(QS)HLP(A;yﬂﬁE) < Z Z |:||¢ - QZ’E(QS)(E&)HLIJ(J;”)
n:lg &

nEEE

(6.19)
Y E@EE) - Q@ ] < OVl L.

MEZy,Em Eé;ym

Summing in (6.15) over =7, j, and 1 < n < N, adding (6.18) or (6.19), respectively,
and using the definition of R°(¢) we obtain the estimates stated in the Lemma. O

7. The l-p unfolding operator in perforated domains: Proofs of con-
vergence results. In this section we prove convergence results for the 1-p unfolding
operator in domains with locally-periodic perforations. First, we show some properties
of the l-p unfolding operator in perforated domains.

LEMMA 7.1.

(i) T;° is linear and continuous from LP(QF) to LP(2 x Y™*), where p € [1, 00),

177° (W)l e (xy=) < \Y|1/p||w||LP(Q;) .

(ii) For w € LP(QQ), with p € [1,00), T3 (w) — w strongly in LP( x Y*).
(ii) Let w® € LP(QZ), with p € (1,00), such that ||w®| rr(qz) < C. If

T (w®) = weakly in LP(Q x ™),
then

— 1
w® — v wdy weakly in LP(Q).
Y*
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(iv) For w € LP(Q; Cper(Yy)) we have T2 (L5w) — w(-, Dy-) in LP(2 x Y*),
where p € [1,00).
(v) Forw € C(; Lb, (Y;)) we have T2 (Liw) — w(-, Dy-) in LP(QxY™), where
p € [1,00).
By w we denote the extension of w by zero from QF into Q.
Proof. [Sketch of the Proof] The proof of (i) follows directly from the definition
of T;°° and by using similar calculations as in the proof of Lemma 5.1.
For w;, € C§°(2) the convergence in (i7) results from the definition of 7.7, the
properties of the covering of QF by 2° and the following simple calculations

lim [ |77 (wy)Pdyde = lim [ZIQEIIY [ (25)[7 + 8-
e=0 Joxy=

= [Py,
Q

XY *

We used the fact that |A;| — 0 as ¢ — 0 and, due to the continuity of wy, we have

ZZm/ o (2) — we(z)Pde — 0 as £ 0.

n— 156 D aE+Y)

The approximation of w € LP(Q) by {wi} C C5°(€2) and the estimate for the norm of
T () in (i), yield the convergence for w € LP(2). The proof of the convergence in
(iii) is similar to the proof of Lemma 5.2 and the corresponding result for the periodic
unfolding operator.

The proof of (iv) follows the same lines as the proof of the corresponding result
for 77 in Lemma 5.3. In a similar way as in [49, Lemma 3.4] we obtain that

iy [ (i)@Pds = [ o [ pteardyte = [ [ e Deppdzds,
Q *

=0 Jo. o [Ya| Jys

lim |L§(w)(z)|Pdz = 0.
e—=0 A*

€

Then, the last two convergence results together with the equality

: *,€ ([ pE P _ : e, |P _ €, |P
i [Py = VIt [ [ ggerde [ (gl

imply the convergence result stated in (v). O

Similar to 7 we have V, 7 (w) = ¢ ZNE DT 25 (Vw)xqs for w e WHP(QF).
Using the definition and properties of 7., we prove convergence results for 7.7 (w®),
eT/%(Vw®), and T7°(Vw®). We start with the proof of Theorem 4.3. Here the proof
of the weak convergence follows the same steps as for 77 in Theorem 4.1, whereas the
periodicity of the limit-function we show in a different way.

Proof. [Proof of Theorem 4.3] The boundedness of {7;°(w®)} and {V, T/ (w®)},
ensured by (4.1) and the regularity of D, imply the weak convergences in (4.2). To
show the periodicity of w we consider for ¢ € C*(Q2 xY*) and k=1,...,d

Ne

[ T+ eodedi = [ ST w)ole — Du e Dy sdedi
QxY* QxY*
Ne
+Z [/ ﬁ’e(wa)eﬁd:cdg]—[ ﬁ’g(ws)(x,z}—i—ek)(bdxdgj},
n=1 Z2XY* A;1XY*
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where Q%’k and /N\il’ ;j» with 7 = 1,2, are defined in the proof of Theorem 4.1, Section 5,
with ey, instead of e4. Considering the weak convergence of 7.°(w*) along with the
fact that | anil As I < Ce'~7, for j = 1,2, and taking the limit as ¢ — 0 implies

/ (e, Da(§ + o)), §)dijde = / w(z, Dui)d(z, §)djde
QxY*

QxY*

forall p € CP(2xY™) and k = 1,...,d. Thus, we obtain that w(z,y) is Y;-periodic.
0

Similar to the periodic case, we use the micro-macro decomposition of a function
¢ € WhP(Q2), ie. ¢ = QF°(¢) +R (), to show the weak convergence of T, (Vw®).
Here we use the fact that for {w®} bounded in W'?(Q) the sequence {Q°(w®)} is
bounded in W1P(G), for every relatively compact open subset G C €.

Notice that for w® € WP (Q2) the function Q3 (w®) is defined on Q.. Thus, we
can apply T£ to Q7 (w?) and use the convergence results for the 1-p unfolding operator
T£ (shown in Theorems 4.1 and 4.2) to prove the weak convergence of T£(Q " (w®)™)
and T£([VQy* (we)]™), where ~ denotes an extension by zero from Q. to .

LeMMA 7.2, If |[w®|lwirs) < C, where p € (1,00). Then there exist a subse-
quence (denoted again by w®) and a function w € W1P(Q) such that

TE(QF (w)™) — strongly in LY (Q; W'P(Y)),
TF(QF (w)™) — weakly in LP(Q; WHP(Y)),
([VQ “(w®)]™ ) Vw  weakly in IP(Q xY).

Proof. Similar to the periodic case [22], the estimates for Q7° in Lemma 6.4
ensure that there exists a function w € W1?(Q2) such that, up to a subsequence,

Q (W)™ s w strongly in L} () and weakly in LP(Q),
VO (w®)]™” = Vw  weakly in LP(1).

Then, the first two convergences stated in the Lemma follow directly from the esti-
mates, estimate ||V, T£(Qy(w)™)|raxy) < Ciel|[VQE(w)] ™| 1r(@) < Ce, and
convergence results for 77 in Lemmas 5.1, 5.2 and Theorem 4.1. To prove the final
convergence stated in the Lemma we observe that Q7 (w®)|¢ is uniformly bounded
in WHP(Q), where G C  is a relatively compact open set, see Lemma 6.4. Then, by
Theorem 4.2 there exists Wy g € LP(G; WE(Y,)) such that

TE(VOS (wf)|g) = Vw+ Dy TV (-, D) weakly in LP(G x Y) .

The definition of Q% implies that w; ¢ is a polynomial in y of degree less than or
equal to one with respect to each variable yy,...,yq. Thus, the Y, -periodicity of @, q
yields that it is constant with respect to y and

TF([VQFS(w)]™) = Vw  weakly in L} (€; LP(Y)).

The boundedness of [VQ° (w®)]™ in LP(£2) implies the boundedness of T ([VQ(w®)]™)
in LP(2 x Y') and we obtain the last convergence stated in Lemma. O
For R (w) = w® — Q7 (w®) we have the following convergence results.
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LEMMA 7.3. Consider a sequence {w®} C WHP(QF), with p € (1,00), satisfying
[Vw|[Lraxy < C. Then, there exist a subsequence (denoted again by w®) and a
function wy € LP(; WLP(YF)) such that

per
e TS (RE (wf)™) = wi (-, Dy) weakly in LP(Q; WP(Y*)),
(7.1) TR (w®)™) — 0 strongly in LP(Q; WHP(Y™)),

TS (VRS (w)]™) — DTV, wi(-,Dy-)  weakly in LP(Q x Y*),

where ~ denotes the extension by zero from fl: to QF.

Proof. The estimates in Lemma 6.4 imply that e =1 7% (R (w®)"~) is bounded in
LP(Q; WHP(Y™*)) and there exists wy € LP(Q; WHP(Y™*)) and w1 (x,y) = w1 (z, D, 'y)
for v € Q, y € Y5, where Y = D(z)Y™*, such that the convergences in (7.1) are
satisfied. To show that wy is Y,-periodic we consider the restriction of e "R (w*)
on G%, which belongs to W1P(G%). Here G: = GNQ: and G C Q is a relatively
compact open subset of 2. Using Lemma 6.4 we obtain

e " Rz (W) | Lo () + lle ™' VRE (W) || o(gx) < C.
Applying Theorem 4.3 to e "R (w)|q: yields wi|axy: € LP(G; WaE(Y;r)). Since

per

G can be chosen arbitrarily we obtain that wy € LP(; WLE(Y,r)). O
Combining the convergence results from above we obtain directly the main conver-
gence theorem for the l-p unfolding operator in locally-periodic perforated domains.
Proof. [Proof of Theorem 4.4] Similar to the periodic case the convergence results
stated in Theorem 4.4 follow directly from the fact that w® = Q7% (w®) + R (w®)
and from the convergence results in Lemmas 7.2 and 7.3. O

REMARK. In the definition of {2} we assumed that there no perforations in layers

Q55 \ Q)N 65/2, with ﬁe/g = {z € Q: dist(z,09) > 2¢ max diam(D(z)Y)} and
e

1 < n < N.. In the proofs of convergence results only local estimates for Q7°(w®) and

R (we) are used, thus no restrictions on the distribution of perforations near 9 are
needed. For the macroscopic description of microscopic processes this assumption is

not restrictive since | UM, (55 \ ) NQ| < Cel™ - 0ase — 0, r < 1. If we allow
perforations in layers between two neighboring Q;‘Ls and Q;f in €2, /5, then using that

Y* =Y \ Yy is connected, the transformation matrix D is Lipschitz continuous and
dist(€2./2,0Q) > 0, it is possible to construct an extension of w® € WhP(QF) from
Q55 \ Q) N (NZE/2 to (25 \ Q)N (NZE/Q, such that the W1P-norm of the extension
is controlled by the W!P-norm of the original function, uniform in e, and apply
Lemmas 7.2, 7.3 and Theorem 4.4 to the sequence of extended functions.

8. Two-scale convergence on oscillating surfaces and the I-p boundary
unfolding operator. To derive macroscopic equations for the microscopic problems
posed on boundaries of locally-periodic microstructures or with non-homogeneous
Neumann conditions on boundaries of locally-periodic microstructures we have to
show convergence properties for sequences defined on oscillating surfaces. To show
the compactness result for l-p two-scale convergence on oscillating surfaces (see The-
orem 4.5) we first prove the convergence of the L?(I'®)-norm of the I-p approximation
of i € C(Q; Crer(Yz)). B

LEMMA 8.1. For ¢ € C(€; Cper(Yy)) and 1 < p < 0o, we have that

1
lime/ LF acpdamz/ / xz,y)|[Pdo,dx.
time [ (et [ 1 L e,
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Proof. The definition of the l-p approximation £° implies

/|£5¢|pd0z—522/ " D ‘T) w0
n= 156_5
3 P ~ D;EI.’L' P
w2 [, i %) dmg [ 1565 250 o]
=L+ L+

where EfL = 2¢\ 2% and I = Dae(&+ meE ). Then, the continuity of v, the

properties of Qf, and the 1nequality llal? — |b]P] < pla — b|(JaP~! + [b[P~1) imply
I, — 0 as € — 0. Using the properties of the covering of Q by {QZ}"= we obtain

n=1

|13\<C’ sup 6d|un||DzaI‘K |§C€1*THO as e =0 for0<r<1.
<n<N.

Considering the properties of the covering of QfL by Dge (Y + &), where § € Z¢ and

n

1 <n < Ng, and Y-periodicity of ’(Z the second integral can be rewritten as

’—‘6 T e QE e
st 1S, Dty o, Z' (e, y)[Pdo,.

Dws 'k e |Y$E| D, EFK e,
n 8

Then, the regularity assumptions on v, D and K, the definition of Qi and the prop-
erties of the covering of Q by {Qi}fj;l imply the convergence result stated in the
Lemma. O

Similar to 1-t-s convergence and two-scale convergence for sequences defined on
surfaces of periodic microstructures, the convergence of l-p approximations (shown in
Lemma 8.1) and the Riesz representation theorem ensure the compactness result for
sequences {w®} C LP(I"¢) with 5Hw5||Lp ey < C.

Proof. [Proof of Theorem 4.5] The Banach space C(Q; Cper(Yz)) is separable
and dense in LP(Q; LP(T';)). Thus, using the convergence result in Lemma 8.1, the
Riesz representation theorem and similar arguments as in [49, Theorem 3.2] we obtain
l-t-s convergence of {w®} C L”(I‘S) tow € LP(Y; LP, (T;)), stated in the theorem. O

per

Using the structure of Q% and the covering properties of QF ;- by {Q5% 1N,

we can derive the trace 1nequahtles for functions defined on I'*. Applying first the
trace inequality in Y, : K = Dg- (YKIS +¢), with € € :m yields

< p p
0, v < 90 ey + 190 e |
|u(yr) — uly2)|?
i HLP(D 5 (T ye +6)) = lHu”Lp 2k / /*5 ly1 — yo|4H5P s — e )
for u € Whr(Y] 8 ) or u € WHP(Y ) for 1/2 < B < 1, respectively, where the

constant ur depends only on D, K, and Y™, see e.g. [29, 54]. Then, scaling by ¢ and
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summing up over £ € éz and 1 <n < N, implies the estimates

(8:1) ellull, gy < e [l )+ IV )]
for w € W'P(QZ ), p € [1,00),
lu(z1) — u(xa) P
(82) elull, ., < [Hu'm v [ e nd
for u € Wﬁ’p(Q;‘)K) Wlth 1/2 <B <1, pe]l,oc0),

where the constant ur depends on D, K, and Y* and is independent of ¢, where

N.
= J T with T5 = |J eDus (Tk,. +9).

n=1 feéi
Since T'z- is given by a linear transformation of T', for a parametrization y = y(w)
of ', where w € R, we obtain by (w) = eDg= K,z y(w) the parametrization of
el'ze. We consider for I' that do, = |/gdw with w € R4! and for [';e we have
do? = gd=1 [Gez dw, where g = det(gi;), gz = det(ges ;) and g;j, go= 45 are the cor-
responding first fundamental forms (metrics). We have also [;.. dog = Zgil re doy
and I';, = D(2) K ()" with do, = /g(x)dw.

Using the definition of the l-p boundary unfolding operator, the trace inequalities

(8.1), and the assumptions on D and K we show the following properties of Tﬁb’s.
LEMMA 8.2. For € Wl’p(Q;K), with 1 < p < oo, we have

/Q FZ\}/; T2 () ()P Xﬂedoyda?—e/ [¢(z)|Pdos,

(if) /Q @) P daydz—sz

(id) | T2 ()|l oxry < C (||w|\m<g;> + eVl ogan) »

where the constant C' depends on D and K and is independent ofs
Proof. Equality (i) follows directly from the definition of 7;; , L.e.

/prz f|Y ( )| XQs dedx

—ZZ /\/gTWsDza(f—kaa |d0y:5/ [ (z)|Pdo.

n= 156_5

——[Y(z)|Pdoy < Ce | [¢(x)|Pdo,
FE gZEfl Te

Similar calculations and the regularity assumptions on D and K imply the equality
and the estimate in (i7). The estimate in (4i7) is ensured by (i¢) and (8.1). O
Remark. Due to the second estimate in Lemma 8.2 and the assumptions on D

. . b,e
and K, the boundedness of ¢||w® ||1£p(f5) implies the boundedness of || 7, (w )||Lp QxT)

and, hence, the weak convergence of Tﬁb’s(ws) in LP(Q x T).

Applying the properties of the I-p boundary unfolding operator shown in Lemma 8.2
we prove the relation between the 1-t-s convergence on oscillating boundaries and the
I-p boundary unfolding operator.
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Proof. [Proof of Theorem 4.6] Using the definition of ’Tﬁb"s and considering
€ C(Q; Cper(Yz)) together with the corresponding ¢ € C(Q; Cper(Y)) yields

//Z\}/;Cs T2 (w°) P(@, Koz y) xos doydx

—225/ w ()P (2 D ) do?

n= 156”% EFiE

55 61*di/ wf(z)/ [0 (2.0:2) = & (2,052 do do
n_lf = ‘YIE| el eYs ’ Tn g T ¢ z)
- eEf’L " IfL Ifl

where FEE = Dy, (FK . +¢) and Yfi = Dy (Y + ). The continuity of ¢ and
the boundedness of EH’LU || Lr(re) ensure the convergence of the last integral to zero as
e — 0. Consider first that w® — w 1-t-s. The assumption on w*, i.e. 5Hw5||i,, ey < C,
with p € (1, 00) ensures that, up to a subsequence, Tﬁb’s(ws) — @ weakly in LP(Q2xT).
Using the continuity of ¢, D, and K, along with |[I'* \ I'*| — 0 as ¢ — 0, yields

= lims/e w®(z) L5 () do, :/Q;| g w(z, y)yY(z,y) doyde

e—0

for all ¢ € CF°(Q; C3e,(Ye)). Applying the coordinate transformation in the integral
on the left hand side yields w(z,y) = w(z,y) for a.a. € Q, y € I, and, hence the
whole sequence {Tf"g(we)} converges to w(-, Dy K,-).

Consider 72”5(105) —w(-, Dy K,-) in LP(2 x T'). The boundedness of 5||w5||ip(rs)
implies that, up to a subsequence, w® — @ I-t-s and w € LP(Q; LP(T',,)). Interchanging
in (8.3) w and w, we obtain that the whole sequence w® l-t-s converges to w. O

For functions in W#?(Q), with p € (1,00), and 1/2 < 3 or for sequences defined
on oscillating boundaries and converging in the LP(I'®)-norm, scaled by e!/P we obtain
the strong convergence of the corresponding unfolded sequences.

LEMMA 8.3. For u € WPP(Q), with p € (1,00), and 1/2 < 3, we have

(8.4) To(u) = u  strongly in - LP(Q x T).

If for {v°} C LP(T°) and some v € C(Q; Cper(Yz)) holds eljv® — C%HLP(FE — 0 as
e — 0, then

(8.5) 72”5(1)5) —v(, Dy K,) strongly in  LP(Q x T).
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Proof. For an approximation of u by uj, € C*(2) we can write
/ | (ug) [Pdoydr = Z/ |uk (e Dgs D;}x/s}y +eDye Kyey) |pXQE doydx
Qxr Qxr " "
_ Z 3y \/m eDye (€ + Koey))Pdo, = Z S (Vo |[Tllup (3, ()P + 6
n= ISE”Z n= lfeﬁs
for some fixed 77, . € €Dge (Kpe '+ §), where, due to the continuity of uy, we have
5. = Z > d|Dan\/ | (eDys (€ + Ko y)) — up(75, ¢ )[Pdoy, — 0 as & — 0.
n= 166._.5

Ne and Q5 \ Q5| — 0 as € — 0 imply

n

. d P
&15%2 > el Dae YIIT Ju (2, ¢)| f//m )|Pdo,da.

n=leess;

The properties of the covering of Q by {Q¢ }

Then, the density of C*(Q) in W#?(Q), the relation (ii) in Lemma 8.2, and the trace
estimate (8.2) ensure the convergence result for u € W5P(Q).
To show the convergence in (8.5) we consider

||7~Lb76(v6) - 'U('yD;EKa:')HLP(QXr‘) S ||7-£b76('U€) - 72{’)76(£€U)||LP(Q><F)
+ 1725 (£50) = v(, DaFo)l| oqaxr)-

Then, the estimate (ii) in Lemma 8.2, the regularity of v, D, and K, and the conver-
gence

lim |’T£b (L) |Pdoydx = hm Z leYze | Z /|v (eDgs (& + Kyzy), Koz y)|Pdoy,

e—0
x 66:21“
://|v(x,DIKIy)\pdaydx,
oJr

where v(z,y) = v(x, Dyy) for x € Q and y € Y, ensure (8.5). O

The results in Lemma 8.3 ensure the strong convergence of coefficients in equa-
tions defined on oscillating boundaries and are used in the derivation of macroscopic
problems for microscopic equations defined on surfaces of locally-periodic microstruc-
tures.

9. Homogenization of a model for a signaling process in a tissue with
locally-periodic distribution of cells. In this section we apply the methods of the
l-p unfolding operator and l-t-s convergence on oscillating surfaces to derive macro-
scopic equations for microscopic models posed in domains with locally-periodic per-
forations. We consider a generalization of the model for an intercellular signaling
process presented in [36] to tissues with locally-periodic microstructures. As exam-
ples for tissues with space-dependent changes in the size and shape of cells we consider
epithelial and plant cell tissues, see Fig. 3. As an example of a tissue which has a
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F1G. 5. Images of laminar cleavage planes in longitudinal-radial (A) and circumferential-radial
(B) tissue sections from basal and apical measurement sites in anterior LV free wall. Reproduced
from Costa, Takayana, McCulloch, Covell, 1999[23]. Cardiac muscle fiber orientations vary con-
tinuously through the left ventricular wall from a negative angle at the epicardium to positive values
toward the endocardium. Reproduced from McCulloch [41].

plywood-like structure we consider the cardiac muscle tissue of the left ventricular
wall, see Fig. 5.

The microstructure of cardiac muscle is described in the same way as a plywood-
like structure considered in the introduction, where D(x) = R~ !(y(z3)) and the
rotation matrix R is as defined in the introduction. Additionally we assume that the

1 0 0
radius of fibers may change locally, i.e. K(x)Yy C Y, with K(x)= [0 p(z) 0 |,
0 0 p)

Yo = {(y1,92,53) €Y : |y2 — 1/2]> + |ys — 1/2|> < a®}, 0 < a < 1/2, and p € C1(Q)
with 0 < p1 < p(x)a < 1/2 for all 2 € 2. Then, for the plywood-like structure D,- =
R (y(25, 3)), f’lﬁz =Y\ K@)Yo, g = R_l('y(scg))f/jgz, and the characteristic
function of fibers is given by

&

xas (@) = xa(x) ) iy, R(y(7, 3))w/)xas
1

n

where

B 1 for |K(z)"'9—(1/2,1/2)| < a,
Nz, y) =
0 elsewhere,

and extended Y—periodically to the whole of R3. Here § = (y2,¥3), Y = [0,1]%, and
K(z) = p(x) Iz, where I denotes the identity matrix in R?*?2

In the case of an epithelial tissue consider Y,, = D(2)Y, with e.g. D(z) = <32T m?x)) ,

where k € C1(Q) and 0 < x; < k(z) < 1 for all x € Q defines a compression of
cells in zg-direction. The changes in the size and shape of cells can be defined by
the boundaries of the microstructure I'y, = S(2)[' C Y, = D,Y for all z € Q and
S € Lip(Q;R3%3). Then, in the definition of the intercellular space Qf ¢ we have
Y} = D(2)Yf, = D(x)(Y \ K(2)Y,), where K(z) = D(z)~15(x).

We define the intercellular space in a tissues as

Ne
O x :Int( ﬁi’,{) NQ,  where Q5% =5\ |J Dus (Ku: Yo +6).
n=1 gesy,
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We shall use the notation QE K= U U EDws [ .t §) and Al g = QF 1\ Q
n=1 &
gegg
In the model for a signaling process in a cell tissue we consider diffusion of signal-
ing molecules ¢ in the inter-cellular space and their interactions with free and bound
receptors 7% and ry located on cell surfaces. The microscopic model reads

Ol® — div(A®(x)VI®) = F*(z,1?) — df (x)I° in (0,7) x Qf g,
(0.1) A% (x)VIF -n = e[ (x)ry — o (x)l°rF]  on (0,T) x T,
A*(x)VIF-n=0 on (0,T) x (02NN k),
1°(0,x) = lp(x) in QF g,

where the dynamics in the concentrations of free and bound receptors on cell surfaces
are determined by two ordinary differential equations

o = p°(z,7%) — o ()15 + B°(z)ry — d3(z)r§ on (0,T) x I'®,
(9.2) Oy = as(z)l5r — B (x)ry — dy(2)rg on (0,T) x I'¢,
7’;(0,:0) = T;O(IE), r5(0, ) = rip(z) on I'°.
The coefficients A%, o, 5°, d5 and the functions Fe(-,6), p°(+,€), 15, are defined as

As(z) = L5(A(z,y),  Fe(z,8) = LG(F(2,9,8)), p°(2,8) = L5(p(=,y,5)),
af(z) = L(a(z,y)), B (x) = L§(B(=,y)), d;(z) = L5(dj(z,y)),
i0(w) = L (rio(z,9)), j=1f0b i=fDb,

forz € Q,y € Y, and § € R, where A(z,-), a(z, ), B(x,-), dj(z,-), p(z,-, &), F(z,-,§),
and r;o(z, -) are Y,-periodic functions. We assume also that a(z) = 0 and 5°(x) =0
for z € A®. The last assumption is not restrictive, since the domain A¢ is very small
compared to the size of the whole domain Q and |[A®| < Cel™" — 0 as e — 0 for
0<r<l.

Here, A : Qp — R denotes the diffusion coefficient for signaling molecules (li-
gands), F'¢ : Qr xR — R models the production of new ligands, p® : Qr — R describes
the production of new free receptors, d5 : Qr — R, j = [, f,b, denote the rates of
decay of ligands, free and bound receptors, respectively, 5 : Q7 — R is the rate of
dissociation of bound receptors, a® : 0 — R is the rate of binding of ligands to free
receptors.

ASSUMPTION 9.1.

o A e O L (Yy)) is symmetric with (A(x,y)E,&) > dolé* for do > 0,
Ry, 2€Q and a.a. y € Y,.

o F(-,-,&) € C(Q; L, (Yy)) is Lipschitz continuous in & uniformly in (x,y) and
F(z,y,£) >0 for £ >0, a.a. x € Q andy € Y.

e p(-,-,&) € C(Q Cper(Ym)) is Lipschitz continuous in & uniformly in (x,y) and
nonnegative for nonnegative &.

o Coefficients o, B,d; € C(Q; Cper(Yy)) are nonnegative, j =1, f,b.

e Initial conditions lo € H*(Q), rjo € C(Q; Cper(Ys)) are nonnegative, j = f,b.

Notice that these assumptions are satisfied by the physical processes described
by our model, since for most signaling processes in biological tissues we have that
A= const, F(Iayaé.) - ,LL1§/(/L2 + .u“3§)7 and p(xayag) = ng/(KQ + H3£) with some
nonnegative constants y; and x;, for 7 = 1,2, 3, and the coefficients «, 3, and d;, with
j =1, f,b, can be chosen as constant or as some smooth functions.
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We shall use the following notations I's, = (0,T) x T, T5, = (0,T) x ¢, Qp =
(0,7) x Q, Ty = (0,T) x T, and Ty 1 = (0,T) x T,

DEFINITION 9.1. A weak solution of the problem (9.1)~(9.2) are functions (15,75, 77)
such that 1° € L*(0,T; H'(Q x)) N HY0,T; L*(Q} i), r5 € H'(0,T;L*(T¢)) N
L>(T%), for j = f,b, satisfying the equation (9.1) in the weak form

(O4lF, Doz 1+ (A (@)VE, Vo)ar 1w = (F*(2,1) — d5 (2) ', $)a v
+ (B (@) — 0% (@)Ir5, B)pe

for all ¢ € L*(0,T; H'Y(QZ i), the equations (9.2) are satisfied a.e. on T'5, and
15(t,-) = lo(+) in L2(% i), 75(t, ) = r5o(-) in L*(T¢) as t — 0.

Here for v,w € L*((0,0) x A) we use the notation (v, w)a,s = [ [, vw dzdt.

In a similar way as in [16, 36] we obtain the existence and uniqueness results and
a priori estimates for weak solutions of the microscopic model (9.1)—(9.2).

LEMMA 9.2. Under Assumption 9.1 there exists a unique non-negative weak
solution of the microscopic model (9.1)—=(9.2) satisfying a priori estimates

(9.3)

1] Lo 0, 7522 (02 o)) + VIl Lo 0,7512(02 ) + 1105 ([ L2((0,7) %027 ) < O
61/2||l6||L2(f§~) + 175 | oo (0,750 (o)) + 51/2||8t7“§||L2(r;) <C,
with j = f,b, where the constant C is independent of €. Additionally, we have that
(9.5) [|(F = MeBt)+||L°°(07T;L2(Q;K)) +[V(IF - MeBt)+||L2((O,T)><Q;K) < Ce'/?,
where v = max{0,v}, M > SISlzp lo(z), B= B(F,S,p), and C is independent of .

Proof. [Proof Sketch] To prove the existence of a solution of the microscopic model
we show the existence of a fix point of an operator B defined on L?(0,T; HC(Q;K)),
with 1/2 < ¢ < 1, by 1§ = B(l5_;) given as a solution of (9.1)—(9.2) with I5_, in the
equations (9.2) and in the nonlinear function F°(x, (%) instead of I5. For a given non-
negative I5,_; € L*(0,T; H* (€ x)) there exists a non-negative solution (7% .nsT5n) Of
(9.2). Then, the non-negativity of solutions, the equality

01+ 1) = 17 (0, 15.0) — 5 ()75, — 5 ()75,
and the Lipschitz continuity of p ensure the boundedness of 75, and ry ,,. Considering
I~ =min{0,[}} as a test function in (9.3) and using the non-negativity of 75 ., 77,
and the initial data we obtain the non-negativity of [5. Applying Galerkin’s method
and using a priori estimates similar to these in (9.4) we obtain the existence of a weak
non-negative solution 15 € H'(0,T; LZ(Q;K)) NL%0,T; H! (Q2% k). The compactness
of the embedding H*(0, T LZ(Q;K)) N L2(0,T; Hl(Q:K)) C L?(0,T; H<(Q ) and
Schauder’s theorem imply the existence of a fixed point I of B. Notice that the strong
convergence of 5 in L?(T'.), as n — oo, implies the strong convergence of 750 J =10
Taking I5 and 0:l¢ as test functions in (9.3) and using the trace estimate (8.1) we
obtain a priori estimates for [5,. Testing (9.2) by 0,5, and 07 ,,, respectively, yields
the estimates for the time derivatives. Then, using the lower semicontinuity of the
norm we obtain the a priori estimates (9.4) for I¥, 75 and rj.

Especially for the derivation of a priori estimates for 9,° we consider

5/ (B 15 — a1 %) 0l do, = 6£ / Bfrplfdo, —e B Opry I¥ doy,
1> FE FE

dt
ed 9 € 9
_§£/rs asr§ |I¥]°do, + 5/1“ as0yr§ |17 do.
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Using the equation for 3tr§, the last integral can be rewritten as

€ 2
3 /E ae(p‘s(xﬂﬁ) —afl°r5 + B ry — df rfc)|le| dog.

Applying the trace estimate (8.1) and using the assumptions on a® and 8¢, along with
the non-negativity of I* and 75, the boundedness of 75, uniform in ¢, and the estimate
5”8757"5”%2(1“;) < C, we obtain

5/0 / (8 15 — 0% 15 1) 0l dorgdt < Gy [[1F() 3aga: ) + IV (D) o )
+Cs [HZEH%?((O,T)XQ;K) + €2||VZ8H%2((O,T)><Q;K)] + C3

for T € (O T). Standard arguments pertaining to the difference of two solutions 1§ —15,
751 — 159, With j = f,b, imply the uniqueness of a weak solution of the HllCI‘OSCOplC
model (9 1)-(9.2). In particular, the non-negativity of a®, 7% and [ along with the
boundedness of r§ ensures

(96)  Bullrgy —rFalllawey < CC Y Ir5a = 5alliewe + 1 = Bl2 50 )-
J=1b

Testing the difference of the equations for 75, +rj; and r§, + 75, by 75, + 715, —
7’?2 — r§72 yields

(9.7) ||T§,1( ™) — Tp, b,2(T )”L?(FE <O/ Z H7’11 ]2||L2(1"E + 115 - ZSHLQ(FE
J=rb

Applying the Gronwall Lemma yields the estimate for |75, (7) — 7’5’2(7)\\%2&5), with
7€ (0,T] and j = f,b, in terms of ||I§ — l€||L2 P

in (9.3) and using the boundedness of 75 we obtam

. Taking (I° — S)™ as a test function

T 1
I = )* Nomorizncor o + 190 = SV laomyen 0 < 25( [ 1025 0lar)”,
’ 0

where S > max{suplo( ),Qbup |ﬁ(m Y|, Qbug la(z,y)|, 175 |~ sy} and Q7 () =

{r € Qf It x) > S} for a.a. ¢ € (0,7). Then, applying Theorem IL.6.1 in
[35] yields the boundedness of ¢ for every fixed ¢ > 0. Considering equation (9.3)
for I and I3 we obtain the estimate for |If — I5]|L2(0,m;m1(0r ), With 7 € (0,77,
in terms of 51/2||r§71 — 15ollL2s), with j = f,b. Then, using the estimates for
75 1(7) = 75 o(7) |2 (re), With 7 € (0,77, in (9.6) and (9.7) yields that I§ =I5 a.e. in
(0,T) x Qf g and hence 75 ; =715, a.e. in I';,, where j = f,b.

To show (9.5), we consider (I° — MeBt)* as a test function in (9.3). Using the

boundedness of 75, uniform in ¢, and the trace estimate (8.1) we obtain for 7 € (0,T’)

1 (7) = MePT) [Tz ) + IV = MeP) 2o (0,0 xe

E,K)
<Gt = MeBt)+H%2((O,T)><Q;’K) + Cae,
where M > suplo( ), MB > (Qbup |F(2,y,0)| + pr Sup B, YlIr§ll e ps. ), with

ur as in (8.1). Applylng Gronwall’s Lemma in the last inequality yields (9.5). O
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Notice, that in the case of a perforated domain where the periodicity and the
shape of perforations vary in space, i.e. K # I, we can not apply the l-p unfolding
operator to functions defined on €27 ;- directly. To overcome this problem we consider

a local extension of a function from sz x to Qi and then apply the I-p unfolding
operator T/, determined for functions defined on Q°. Applying the assumptions on
the microstructure of Q: x considered here, i.e. K;Yy C Y or fibrous microstructure,
we obtain

LEMMA 9.3. For zf, € Qi, where 1 < n < N, and u € Wl’p(Y;s7K), with
p € (1,00), there exists an extension i € WP (Y2 ) such that )
(9-8) allLevag) < pllullzeevy, o IValroer,e) < ullVulloeyy o

where (1 depends on'Y', Yo, D and K and is independent of € and n.
For u € WhP(Q i) we have an extension i € WhP()) from QF - to QF such that

(9.9) ||ﬂHLp(Qs) < MHUHLP(Q;K)’ HVQHLP(QE) < NHVUHLP(Q;K) )

where p depends on'Y, Yy, D and K and is independent of €.

Proof. [Sketch of the Proof] The proof follows the same lines as in the periodic
case, see e.g. [15, 19]. The only difference is that the extension depends on the
Lipschitz continuity of K and D and the uniform boundedness from above and below
of |det K(z)| and |det D(x)|. To show (9.9), we first consider an extension from

Dye (Y . +§) to Dye (Y + &) satisfying estimates (9.8), where £ € éfl Then, scaling

by £ and summing up over £ € éi and n =1,..., N imply the estimates (9.9). O
REMARK. Notice that the definition of Q2 ;- implies that there no perforations

in (7% \ QZEK) N QL o, with Q. jp = {z € Q¢ dist(z,09) > 253&%)5 diam(D(z)Y)}.

Also in the case of a plywood-like structure the fibres are orthogonal to the boundaries
of QF and near 0f);, we need to extend [° only in the directions parallel to 9.
Thus, applying Lemma 9.3 we can extend [¢ from Q;:EK into QfL u (QfL n QE/Q), for
n=1,...,N..

THEOREM 9.4. A sequence of solutions of the microscopic model (9.1)—(9.2)
converges to a solution (I,ry,rp) with | € H'(Qr) and r; € HY(0,T; L*($; L*(Ty)))
of the macroscopic equations

|Y;’K|atz — din(A(@)VI) = —— F(z,y,1)dy
v, TAD
(9.10) + |Y1,r| /Fm(ﬁ(a:,y)rb—a(ac,y)rf l)do, in Qr,
A(x)VI-n=0 on 0%,
Ory =p(@,y,rs) — (@, y) lry + B(@,y)re — dy(w,y)ry  for y €Ty,
Oyry = a(z,y)lry — Blx,y)ry — dp(z,y) 1y for y €Ty,

and for (t,x) € Qr, where Y| o = Dy (Y \ K;Yo) and the macroscopic diffusion matriz
is defined as

1

Aij(x) = m -

[Aij(xvy) + (A(vay)vywj(x7y))i] dy for x € Q,
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fori,7=1,...,d, with

(0.11) divy(A(x,y)(Vywj +e5)=0 inY g
. Az, y)(Vyw! +e;)-n=0 onTy, W Y, — periodic.

We have that [¢ — [ in L2(Q7), OF — 04l and 8,57”; — Oyr; locally-periodic two-scale,
r$ — 1 strongly locally-periodic two-scale, j = f,b, and

VIE = V4V, I-t-s, i € L*(Q7; Hype (Vs 1))

per

lim (A°VIE, VIF)a: 1 = (Ve " Az, ) (VI + Vyla), VI+ Vyli)ap v

d 9l .
where ly(t,z,y) = > oz, —(tr)w I(z,y). Here ¢ denotes the extension as in Lemma 9.3
Jj=1
from (0,T) x Qf  to (O,T) x (Qe/2 UQL i) and then by zero to Q.
Proof. Applying Lemma 9.3 we can extend [° from €} ;- into O U AZ . We
shall use the same notations for original functions and their extensions. The a priori
estimates in Lemma 9.2 imply

(9.12) ”la”L?((),T;Hl(fZEUA;K)) + ”atlsHL?((O,T)X(QEUA;K)) <G,

where the constant C' depends on D and K and is independent of ¢. Then the
sequences {I°}, {Vi¢}, and {0,[°} are defined on €2, and we can determine 77 (I¢),
T£(VIe) and 0,T£(I°). The properties of TF together with (9.12) ensure

172 )22 rxy) + I TZ (V)2 (@rxyy + 10:TE ()| 22 (2rxy) < C.

The a priori estimates in Lemma 9.2 yield the estimates for the I-p boundary unfolding
operator

||7—f’b(l€)||L2(sszr) + ||7—f’b(’"§)\|H1(0,T;L2(er)) + ||725’b(7°§)||H1(0,T;L2(szxr)) <C.
Notice that due to the assumptions on € ;- we have that QE/Q c QU Al

Then, the convergence results in Theorems 4.2,4.4,4.5, and 4.6 1mply that there
exist subsequences (denoted again by I%, %, ) and the functions [ € L*(0,T; H'(Q))N

HY(0,T;L*(Q)), Iy € L*(Qp; H). (Yz)), and r; € H'(0,T; L*(Q; L*(T,))) such that
TE(E) =1 weakly in L*(Qp; HY(Y)),
TE(F) =1 strongly in L*(0,T; L, .(Q; H' (Y))),
O TE(IF) — Ol weakly in L*(Qr x Y),
TE(VIE) = VI+ DTVl (-, D) weakly in L*(Qp x Y),
(9.13)  TRe(5) —1 weakly in L2(Qp x T),
ToE(F) =1 strongly in L2(0,T; L2 .(Q; L*(I))),
T =7y, 0§ — Ory Lt-s, 7;, Or; € L*(Qr; L*(Ty)),
TRE(r5) = 15(, Do Ky weakly in L?(Qp x T),
AT (r5) = Ours (-, Do K, weakly in L?(Qr xT'), j=f,b.
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Notice that for ¢ we have a priori estimates only in L2(0,T; H(QF U A i)
and not in L2(0,T; H'(Q)) and can not apply the convergence results in Theo-
rem 4.2 directly. However using ||l€||L2(0,T;H1(§5/2)) + ”atlEHm((o,T)xﬁE/z) < C, en-
sured by (9.12), applying Lemmas 7.2 and 7.3 to Q%(1°) and R% (%), respectively,
and considering the proof of Theorem 4.4 we obtain the convergences for 77 (l°),
O¢TE(15), and T£(VI®) in (9.13). Lemma 5.4 implies that VI® — VI + V,l; l-t-s
and 9,1° — 0,1 I-t-s. The local strong convergence of T (I¢) together with the esti-
mate ||(I° — MeBt)+||L2((O’T)><Q; o < Ce'/?, shown in Lemma 9.4, yields the strong

convergence of [ in L2(Q7).

To derive macroscopic equations for I we consider ¥°(z) = ¥1(x) + L (2)(z)
with ¢ € C'(Q) and 93 € Cj(€; Cl.,(Yz)) as a test function in (9.3). Applying the
I-p unfolding operator and the l-p boundary unfolding operator implies

(T2 (e DATEW). TE W ey + (TE (o ITEATE(VI). TV v |

Y]
= [Y[7HTE (@ ) B (2,5, TEW), TE (W) arxy

N
<Z (T2 BT 0R) — TE @O TE VT 0 xas, T,

T
Ty

_<at 7¢ >AZ,T - <AE(I)VZ87 VlPE)A;,T + <F8(x7 la)v/(/)E)A;,Tv

where F*(z,§,1¢) = ZNE F (x5, Dy y,TE(la))XQE( z)forgeY, z e Qand Xoe =
L5(xvy ) Here xyy s the characteristic function of Y - = D (Y\ K, Yp), extended
Y, -periodically to R%. We notice that Fe(x,9,6) = TE(L5(F(x,9,£))).

Applying Lemma 5.3 yields Tz (xq: (%, 9) = xv; (2, Day), TZ(A%)(2,9) —
A(z, D.j), and F=(x,§,1) — F(z,D,,1) in LP(Qp x Y), for 1 < p < o0, as & — 0.
Lemma 8.3 ensures 72”6((;55)(%3}) — ¢(x, D, K,7) in LP(Qp x ') as ¢ — 0, where
¢°(z) = B°(x),a*(x), or d5(z) and ¢(z,y) = a(z,y), B(z,y), or d;(z,y), with j = f,b,
respectively.

For an arbitrary 6 > 0 we consider Q° = {z € Q : dist(x,0Q) > §} and rewrite
the boundary integral in the form

Ne
(2 VI T (Y TR (1T (0 T2 ()

f|Yz5| QS xT'p
N,
= \/ bE £ b,E IS b,E £ b,E g —
+<nzl \TIYW Vil e @) )T rydxes, T (v )><Q\m>er “hth

Using the a priori estimates for [° and 75, the weak convergence of T (I°) in L2(Qr; HY(Y))

and the strong convergence in L(0,T; L2 (Q; H*(Y))) we obtain

im lim [; = vz T re(x x), 1 (x
oy BB (e DA s DA )

lim lim I5 = 0.
§—0e—=0
To obtain (9.14) we also used the strong convergence and boundedness of Tﬁb’s(off)7 the
weak convergence and boundedness of Tll:”g(rfc), the regularity of D and K, and the
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strong convergence of 7, (7,/15) Similar arguments along with the Lipschitz continuity
of F' and the strong convergence of F*(x,7,1) and ’TE(XS%;K) = T;(L5(Xvy ) ensure

(Te(xa: ) F (2§, TE () T arxy = (ovz o (@ Daf) F (@, Dafiy 1), Y1)z v

as ¢ = 0 and § — 0. Using the convergence results (9.13), the strong convergence
of T£(1°) and T;(V¢©) and the fact that [Al x| — 0 as ¢ — 0, taking the limit
as € — 0, and considering the transformation of variables y = D,y for § € Y and
y= DK,y for g € I" we obtain

(Ve ') ve oxor + (1Yl 7T A2, 9) (V4 V), Vi + Vytha)ys  xaq
H(Ye |7 (e, y) rel = B, y) ro), 1) e xor = (Ve 7 E(@,9,0),91) v xop

Considering ¥4 (¢, z) = 0 for (¢,z) € Qp we obtain I3 (¢, z,y) = 2?21 D, 1(t, 2)w? (2, y),
where w’ are solutions of (9.11). Choosing (¢, x,y) = 0 for x € Qp and y € Y,
yields the macroscopic equation for [. Applying the I-p boundary unfolding operator
to the equations on I'* we obtain

DTLE(r5) = 17 (w9, TLE(r5)) — T2 () TEE (1) TEE (r5)
(9.15) + TS (BT () = T2 () T2° (),
OTLE(r5) = TR ()T () TR5(r5) — T2 (BE) TR () — TR°(d5) T25 (),

in Qp xT', where p°(z, g, Tﬁb’e(r;)) = p(as, Dy Kye 9, Tﬁb’g(r;))xgs (x)forg el
and z € Q. In order to pass to the limit in the nonlinear function p°(x, , Tﬁb’e(r;))
we have to show the strong convergence of 72”5( ?) We consider the difference of

the equations for 7. “*(r$*) and Th = (r§m) and use Y (i) - Tom (1 7) as a test
function. Applymg the L1psch1tz contmulty of p along with the strong convergence of
TS (@), TS (8°), and T “(d5), and the non-negativity of I° and o yields

d .
%HTZ’E"(?’? ) = T2 (7 ) xer) < C[ Do NTE 5 = T2 (5 2oy

Jj=fb
b £ b > l b 3 EL b £
L‘E - .cs L2(Q5 xT) L‘E - LS L2((2\Qs) xT)
T ITE ) = T ) e oy HOR TR (154) = T2 (120

+0’(€k,€m)},

where o(ex,em) — 0 as ex,e, — 0. Considering the sum of the equations for

chgk( k) — Tbg’”( 5m), with j = f,b, using 37, be};E’“( ) — Tbe’"( i) as a

test functlon and applylng the Lipschitz continuity of p imply

t
b€k b,em m b.ek J b.em m
1T () = T (r )|%2(er)§01/ T2 ) = T (5 1wy AT

-l—C?/ > T2 (r5%) = T2 ( §7n)‘|%2(QXF)dT+U(Ek7€m)+036%~
i=rb

Using the a priori estimates for [¢ and the local strong convergence of 72”5 (1), col-
lecting the estimates from above, and applying the Gronwall inequality we obtain

T2 (%) = T2 (15 | p2axry < C(0(en, em) +07) for j=/b,
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where o(eg,em) — 0 as €, e, — 0 and § > 0 is arbitrary. Thus, we conclude that
{’721”E (r%)}, for j = f,b, are Cauchy sequences in L?(Qr x T'). Using the strong con-
vergence of 721”5 (%) and the Lipschitz continuity of p we obtain p°(x, 9, Tf’e(r?)) -
p(z, DK, 4,7¢) in L>(Qr x T'). Then, passing in (9.15) to the limit as ¢ — 0 implies
the macroscopic equations (9.10) for r¢ and . This concludes the proof of the con-
vergence up to sub-sequences. The strong convergence of ’7';:)’6(745 ) together with the
estimates in Lemma 8.2, the boundedness of r$, with j = f,b, and the regularity of

7 )
D and K ensure the strong l-t-s convergence of 75, i.e.

. 1 .
2%5”7‘;”%2(1“%) = /QT m/r rj(t, =, y)|*dodzdt, for j=f,b.

The non-negativity of [ and r§ and the uniform boundedness of 75, with j = f,b
(see Lemma 9.2) along with the weak convergence of 7/ (r5) and [° ensure the non-
negativity of ; and ! and the boundedness of 7;(¢,z,y) for a.a. (t,z) € Qr and
y € T',.. Considering (I — M;eM2t)T as a test function in the weak formulation of the

macroscopic model (9.10) and using the boundedness of r; and 7, we obtain
1( = Mye™=) || Lo 0,220y + IV (L = Mie™2") || L2 (g, < 0.

Hence, 0 < I(t,x) < MyeM2T for a.a. (t,z) € Qr, where M, > supg, lo(z) and My My >
(HF(xayvO)HL‘”(Q;LOO(YCE)) + |Y;K|71HB($7y)”L‘X’(Q;L‘”(YCD))”Tb“L‘X’(Q;Ll(Fw)))'

Considering equations for the difference of two solutions of (9.10), taking l; — lo,
T§1—7Tf2, and 11 — 742 as test functions in the weak formulation of the macroscopic
model, and using the Lipschitz continuity of F' and p along with boundedness of r;
and [, we obtain uniqueness of a weak solution of the model (9.10). Thus, we have that
the entire sequence of weak solutions (I%,7%,7;) of the microscopic model (9.1)-(9.2)
convergences to the weak solution of the macroscopic model (9.10).

Applying the lower-semicontinuity of a norm, the ellipticity of A, and the strong
convergence of T£(A®) and TE(XSE); ) in LP(Qp x Y) for any p € (1,400), yields

(Ve T Az, y) (VI + V), VI+ Vyli)ary:
< lim inf YI™UTE (AN TE (o I TE(VE), TE (o I TE (VI Dary
< limsup |Y|7HTE (A% TE (o ) TE(VI), TE (o ) TE (VI )ary

e—0
< limsup(A°VIF, Vif)q: ¢ = limsup {11 Ty 13},
e—0 € e—0

where

L = |Y|71<F5(xag77dﬁs(l€)) - 6t725(l6)77f(ls)>QT,yv
N

gzi b,E 154 b,E g b,& g b,E € b,E >4 b,f;‘ >4
=[S [T ) - T T T 0 [ oo

Iy = (F=(2,1%) — 0%, %) A= 1.

Using the estimates in Lemma 9.2, together with 0 < 1¢ < M + (I* — M)* and the
definition of A} -, we obtain lir% I3 =0.
’ e—
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Considering the strong convergence Tﬁb’s(rj- ), with j = f,b, and the local strong

convergence of 77 (l¢) and 7—2,6(15), together with (9.5), taking ! as a test function in
(9.3) and using the fact that ; is a solution of the unit cell problem yields

lim[1y + o] = (|Val ™ A2, y)(VE+ Vyh), VI Vyh)apy:
Hence, we conclude the convergence of the energy
(9.16)  Lm(A°VI, Vif)g. 1 = (Ve " A, 9) (VI + Vi), VI+ Vyln)apy:
as well as
tim [V|" (TZ(AT)TE (x: ) TE(VE), TE(VE oy
= (Ve T A2, y) (VI + V), VI+ Vyli)apv: . -

This implies also the strong convergence of the unfolded gradient
(917) TE(xa: ITE(VID) = Xy (Do) (VI+ D; TVl (5 D,)) i L2(Qr x Y).
To show the strong convergence in (9.17) we consider

(TE(AYTE (o (TE(VEE) = VI— D;T300), TE(VE) = V- D;7V50)
TE(VE), TE(VE) ),y

)
- JTE(VIE), VI + D;"V;l)
)
)

QTXY

QTXY
VI+ DTV h), TE(VE)) g oy

Vi+D; "V, 1), Vi+D;TV;l)

)
(A°)TE(

(A5)TE (x: )
(A TE (e ) —

Applying the strong convergence of 7/ (A°) and TLE(XE; K) along with the weak con-
vergence of T£(VI¢), the convergence of the energy (9.16), and the uniform ellipticity
of A(z,y), implies the convergence (9.17). O

REMARK. Since in € ;- we have both spatial changes in the periodicity of the
microstructure and in the shape of perforations, the I-p unfolding operator 7?’6 is not
defined on )} ;- directly and in the derivation of the macroscopic equations we used

a local extension of I from Q}}E to Q°. The local extension allows us to apply the
l-p unfolding operator 77 to [°. If we have changes only in the periodicity and no
additional changes in the shape of perforations, then we can apply the l-p unfolding
operator defined in a perforated domain €} directly, without considering an extension
from QZ to Q., and derive macroscopic equations in the same way as in the proof of
Theorem 9.4.

10. Discussions. The macroscopic model (9.10) derived from the microscopic
description of a signaling process in a domain with locally-periodic perforations reflects
spatial changes in the microscopic structure of a cell tissue. The effective coefficients
of the macroscopic model describe the impact of changes in the microstructure on
the movement (diffusion) of signaling molecules (ligands) and on interactions between
ligands and receptors in a biological tissue. The multiscale analysis also allows us to
consider the influence of non-homogeneous distribution of receptors in a cell mem-
brane as well as non-homogeneous membrane properties (e.g. cells with top-bottom
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and front-back polarities) on the signaling process. The dependence of the coefficients
on the macroscopic variables represents the difference in the signaling properties of
cells depending on the size and/or position. For example, the changes in the size and
shape of cells in ephitelium tissues are caused by the maturation process and, hence
cells of different age may show different activity in a signaling process. Expanding
the microscopic model by including equations for cell biomechanics and using the
proposed multiscale analysis techniques we can also consider the impact of mechan-
ical properties of a biological tissue with a non-periodic microstructure on signaling
processes.

Techniques of locally-periodic homogenization allow us to consider a wider range
of composite and perforated materials than the methods of periodic homogenization.
The structures of macroscopic equations obtained for microscopic problems posed in
domains with periodic and locally-periodic microstructures are similar. If we con-
sider the microscopic model (9.1)—(9.2) in a domain with periodic microstructure, i.e.
D(z) =1 and K(z) = I, where I denotes the identity matrix, then the macroscopic
equations (9.10) with D(z) = I and K(x) = I correspond to the macroscopic equa-
tions obtained in [36] by considering the periodic distribution of cells and applying
methods of periodic homogenization. For some locally-periodic microstructures, e.g.
domains consisting of periodic cells with smoothly changing perforations, it is possible
to derive the same macroscopic equations by applying periodic and locally-periodic
homogenization techniques, see e.g. [37, 38, 49]. However, as mentioned in the intro-
duction, for the microscopic description and homogenization of processes defined in
domains with e.g. plywood-like microstructures or on oscillating surfaces of locally-
periodic microstructures the techniques of locally-periodic homogenization are essen-
tial. Methods of locally-periodic homogenization are applied to analyse microscopic
problems posed in domains with non-periodic but deterministic microstructures, in
contrast to stochastic homogenization techniques used to derive macroscopic equa-
tions for problems posed in domains with random microstructures.

The corrector function /; and the macroscopic diffusion coefficient in the macro-
scopic problem (9.10) are determined by solutions of the unit cell problems (9.11),
which depend on the macroscopic variables z. This dependence corresponds to spa-
tial changes in the structure of the microscopic domains. To compute solutions of
the unit cell problems (9.11) (and hence the effective macroscopic coefficients and the
corrector /1) numerically approaches from the two-scale finite element method [40] or
the heterogeneous multiscale method [1, 2, 26] can be applied. Using heterogeneous
multiscale methods one would have to compute the solutions of (9.11) only at the
grid points of a discretisation of the macroscopic domain, which requires much lower
spatial resolution than computing the microscopic model on the scale of a single cell.
Similar approach can be applied for numerical simulations of the ordinary differen-
tial equations determining the dynamics of receptor densities, which depend on the
macroscopic x and the microscopic y variables as parameters.
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