
                                                              

University of Dundee

Locally periodic unfolding method and two-scale convergence on surfaces of locally
periodic microstructures
Ptashnyk, Mariya

Published in:
Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal

DOI:
10.1137/140978405

Publication date:
2015

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Ptashnyk, M. (2015). Locally periodic unfolding method and two-scale convergence on surfaces of locally
periodic microstructures. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 13(3), 1061-
1105. 10.1137/140978405

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/30664402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1137/140978405
http://discovery.dundee.ac.uk/portal/en/research/locally-periodic-unfolding-method-and-twoscale-convergence-on-surfaces-of-locally-periodic-microstructures(c6346d19-8fca-43ef-b053-03c2369c51b6).html


LOCALLY PERIODIC UNFOLDING METHOD AND TWO-SCALE
CONVERGENCE ON SURFACES OF LOCALLY PERIODIC

MICROSTRUCTURES∗

MARIYA PTASHNYK †

Abstract. In this paper we generalize the periodic unfolding method and the notion of two-scale
convergence on surfaces of periodic microstructures to locally-periodic situations. The methods that
we introduce allow us to consider a wide range of non-periodic microstructures, especially to derive
macroscopic equations for problems posed in domains with perforations distributed non-periodically.
Using the methods of locally periodic two-scale convergence (l-t-s) on oscillating surfaces and the lo-
cally periodic (l-p) boundary unfolding operator, we are able to analyze differential equations defined
on boundaries of non-periodic microstructures and consider non-homogeneous Neumann conditions
on the boundaries of perforations, distributed non-periodically.

1. Introduction. Many natural and man-made composite materials comprise
non-periodic microscopic structures, e.g. fibrous microstructures in heart muscles
[23, 48], exoskeletons [27], industrial filters [52], or space-dependent perforations in
concrete [50]. An important special case of non-periodic microstructures is that of
the so-called locally-periodic microstructures, where spatial changes are observed on
a scale smaller than the size of the domain under consideration, but larger than
the characteristic size of the microstructure. For many locally-periodic microstruc-
tures spatial changes cannot be represented by periodic functions depending on slow
and fast variables, e.g. plywood-like structures of gradually rotated planes of paral-
lel aligned fibers [13]. Thus, in these situations the standard two-scale convergence
and periodic unfolding method cannot be applied. Hence, for a multiscale analysis
of problems posed in domains with non-periodic perforations, in this paper we ex-
tend the periodic unfolding method and two-scale convergence on oscillating surfaces
to locally-periodic situations (see Definition 3.4, Definition 3.2, Definition 3.3, and
Definition 3.5). These generalizations are motivated by the locally-periodic two-scale
convergence introduced in [49].

Two-scale convergence on surfaces of periodic microstructures was first introduced
in [5, 43]. An extension of two-scale convergence associated with a fixed periodic Borel
measure was considered in [55]. The unfolding operator maps functions defined on
perforated domains, depending on small parameter ε, onto functions defined on the
whole fixed domain, see [20, 22] and references therein. This helps to overcome one of
the difficulties of perforated domains which is the use of extension operators. Using the
boundary unfolding operator we can prove convergence results for nonlinear equations
posed on oscillating boundaries of microstructures [22, 24, 36, 46]. The unfolding
method is also an efficient tool to derive error estimates, see e.g. [28, 31, 32, 33, 47].

The main novelty of this article is the derivation of new techniques for the multi-
scale analysis of non-linear problems posed in domains with non-periodic perforations
and on the surfaces of non-periodic microstructures. The l-p unfolding operator al-
lows us to analyze nonlinear differential equations posed on domains with non-periodic
perforations. The l-t-s convergence on oscillating surfaces and the l-p boundary un-
folding operator allow us to show strong convergence for sequences defined on oscillat-
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ing boundaries of non-periodic microstructures and to derive macroscopic equations
for nonlinear equations defined on boundaries of non-periodic microstructures. Until
now, this was not possible using existing methods.

The paper is structured as follows. First, in Section 2, we present a mathematical
description of locally periodic microstructures and state the definition of a locally
periodic approximation for a function ψ ∈ C(Ω;Cper(Yx)). In Section 3 we introduce
all the main definitions of the paper, i.e. the notion of a l-p unfolding operator, two-
scale convergence for sequences defined on oscillating boundaries of locally periodic
microstructures, and the l-p boundary unfolding operator. The main results are sum-
marized in Section 4. The central results of this paper are convergence results for se-
quences bounded in Lp and W 1,p, with p ∈ (1,∞) (see Theorems 4.1, 4.2, 4.3, and 4.4).
The proofs of the main results for the l-p unfolding operator are presented in Section 5.
The properties of the decomposition of a W 1,p-function with one part describing the
macroscopic behavior and another part of order ε, are shown in Section 6. The proofs
of the main results for the l-p unfolding operator in perforated domains are given
in Section 7. The convergence results for locally-periodic two-scale convergence on
oscillating surfaces and the l-p boundary unfolding operator are proved in Section 8.
In Section 9 we apply the l-p unfolding operator to derive macroscopic problems for
microscopic models of signaling processes in cell tissues comprising locally-periodic
microstructures. As examples of tissues with locally-periodic microstructures we con-
sider plant tissues, epithelial tissues, and non-periodic fibrous structure of heart tissue.

There are some existing results on the homogenization of problems posed on
locally-periodic media. The homogenization of a heat-conductivity problem defined in
domains with non-periodic microstructure consisting of spherical balls was studied in
[14] using the Murat-TartarH−convergence method [42], and in [3] by applying the θ−
2 convergence. The non-periodic distribution of balls is given by a C2- diffeomorphism
θ, transforming the centers of the balls. Estimates for a numerical approximation
of this problem were derived in [53]. The notion of a Young measure was used in
[38] to extend the concept of periodic two-scale convergence and to define the so-
called scale convergence. The definition of scale convergence was motivated by the
derivation of the Γ-limit for a sequence of nonlinear energy functionals involving non-
periodic oscillations. Formal asymptotic expansions and the technique of two-scale
convergence defined for periodic test functions, see e.g. [4, 44], were used to derive
macroscopic equations for models posed on domains with locally periodic perforations,
i.e. domains consisting of periodic cells with smoothly changing perforations [9, 17, 18,
37, 39, 45]. The H−convergence method [12, 13], the asymptotic expansion method
[8], and the method of locally-periodic two-scale (l-t-s) convergence [49] were applied
to analyze microscopic models posed on domains consisting of non-periodic fibrous
materials. The optimization of the elastic properties of a material with locally-periodic
microstructure was considered in [6, 7].

To illustrate the difference between the formulation of non-periodic microstructure
by using periodic functions and the locally-periodic formulation of the problem, we
consider a plywood-like structure, given as the superposition of gradually rotated
planes of aligned parallel fibers. We consider layers of cylindrical fibers of radius ε a
orthogonal to the x3-axis and rotated around the x3-axis by an angle γ, constant
in each layer and changing from one layer to another, see Fig.1. To describe the
difference in the material properties of fibers and the inter-fibre space with the help
of a periodic function, we define a function

(1.1) Aε(x) = A1η̃
(
R(γ(x3))x/ε

)
+A2

[
1− η̃

(
R(γ(x3))x/ε

)]
,
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Fig. 1. Schematic representation of slow rotating and fast rotating plywood-like structures.

where A1, A2 are constant tensors and η̃ is the characteristic functions of a fibre of
radius a in the direction of x1-axis, i.e.

(1.2) η̃(y) =

{
1 for |ŷ − (1/2, 1/2)| ≤ a,
0 for |ŷ − (1/2, 1/2)| > a,

and extended Ŷ -periodic to the whole R3, with a < 1/2, ŷ = (y2, y3), Y = [0, 1]3,
and Ŷ = [0, 1]2. The inverse of the rotation matrix around the x3-axes with rotation
angle α with the x1-axis is defined as

(1.3) R(α) =

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

 ,

and γ ∈ C1(R) is a given function, such that 0 ≤ γ(s) ≤ π for all s ∈ R. Then,
considering for example an elliptic problem with a diffusion coefficient or elasticity
tensor in the form (1.1) and using a change of variables x̃ = R(γ(x3))x, we can apply
periodic homogenization techniques to derive corresponding macroscopic equations
(see [10, 12] for details). However, in the representation of the microscopic structure
by (1.1), every point of a fibre is rotated differently and the cylindrical structure of the
fibers is deformed. Hence, Aε represent the properties of a material with a different
microstructure than the plywood-like structure, and for a correct representation of
a plywood-like structure, a locally-periodic formulation of the microscopic problem
is essential. Also, applying periodic homogenization techniques we obtain effective
macroscopic coefficients different from the one obtained by using methods of locally-
periodic homogenization (see [13, 49] for more details).

To define the characteristic function of the domain occupied by fibers in a domain
with a locally-periodic plywood-like structure, we divide R3 in layers Lεk = R2 ×
((k − 1)εr, kεr) of height εr and perpendicular to the x3-axis, where k ∈ Z and
0 < r < 1. In each Lεk we choose an arbitrary point xεk ∈ Lεk. Using the locally-
periodic approximation of η ∈ C(Ω, L∞per(Yx)), with η(x, y) = η̃(R(x)y) for x ∈ Ω and
y ∈ Yx, given by

(Lεη)(x) =
∑
k∈Z

η̃
(
R(γ(xεk,3))x/ε

)
χLεk(x) for x ∈ Ω,

the characteristic function of the domain occupied by fibers is given by

(1.4) χΩεf
(x) = χΩ(x)(Lεη)(x).
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Here η̃ ∈ L∞per(Y ) is as in (1.2) and Yx = R−1(γ(x3))Y . For a microstructure
composed of fast rotating planes of parallel aligned fibrous, see Fig. 1, we consider
an approximation by locally-periodic plywood-like structure with shifted periodicity
D(x)Y = R−1(x)W (x)Y , see [13, 49] for more details.

2. Locally periodic microstructures and locally periodic perforated do-
mains. In this section we give a mathematical formulation of locally periodic mi-
crostructures. We also define the approximation of functions, where the periodicity
with respect to the fast variable is dependent on the slow variable, by locally-periodic
functions, i.e. periodic in subdomains smaller than the domain under consideration
but larger than the representative size of the microstructure.

Let Ω ⊂ Rd be a bounded Lipschitz domain. For each x ∈ Rd we consider a
transformation matrix D(x) ∈ Rd×d and its inverse D−1(x), such that D,D−1 ∈
Lip(Rd;Rd×d) and 0 < D1 ≤ |detD(x)| ≤ D2 < ∞ for all x ∈ Ω. We consider the
continuous family of parallelepipeds Yx = DxY on Ω, where Y = (0, 1)d is the ‘unit
cell’ and denote Dx := D(x) and D−1

x := D−1(x).
For ε > 0, in a manner similar to [14, 49], we consider the partition covering of

Ω by a family of open non-intersecting cubes {Ωεn}1≤n≤Nε of side εr, with 0 < r < 1,

Ω ⊂
Nε⋃
n=1

Ωεn and Ωεn ∩ Ω 6= ∅.

For arbitrary chosen fixed points xεn, x̃
ε
n ∈ Ωεn ∩ Ω we consider a covering of Ωεn by

parallelepipeds εDxεn
Y

Ωεn ⊂ x̃εn +
⋃
ξ∈Ξεn

εDxεn
(Y + ξ), where Ξεn = {ξ ∈ Zd : x̃εn + εDxεn

(Y + ξ) ∩ Ωεn 6= ∅},

with Dxεn
= D(xεn) and 1 ≤ n ≤ Nε. For each n = 1, . . . , Nε, x̃

ε
n is a fixed shift in the

representation of the microscopic structure of Ωεn. Often we can consider x̃εn = εDxεn
ξ

for some ξ ∈ Zd.
We consider the space C(Ω;Cper(Yx)) given in a standard way, i.e. for any ψ̃ ∈

C(Ω;Cper(Y )) the relation ψ(x, y) = ψ̃(x,D−1
x y) with x ∈ Ω and y ∈ Yx yields

ψ ∈ C(Ω;Cper(Yx)). In the same way the spaces Lp(Ω;Cper(Yx)), Lp(Ω;Lqper(Yx))

and C(Ω;Lqper(Yx)), for 1 ≤ p ≤ ∞, 1 ≤ q <∞, are defined.
To describe locally-periodic microscopic properties of a composite material and to

specify test functions associated with the locally-periodic microstructure of a material,
as well as for the definition of the locally-periodic two-scale convergence, we shall
consider a locally-periodic approximation of functions with space-dependent periodi-
city, functions in C(Ω;Cper(Yx)), Lp(Ω;Cper(Yx)), or C(Ω;Lqper(Yx)). The locally-
periodic approximated function is Yxεn -periodic in each subdomain Ωεn, with n =
1, . . . , Nε, and is related to a test function associated with the periodic structure of
Ωεn. Since the microscopic structure of Ωεn is represented by a union of periodicity
cells εYxεn shifted by a fixed point x̃εn ∈ Ωεn ∩ Ω, with n = 1, . . . , Nε, this shift is also
reflected in the definition of the locally-periodic approximation.

Often coefficients in a microscopic model posed in a domain with locally-periodic
microstructure depend only on the microscopic fast variables x/ε and the points
xεn, x̃

ε
n ∈ Ωεn∩Ω, describing the periodic microstructure in each Ωεn, with n = 1, . . . , Nε,

and are independent of the macroscopic slow variables x. To define such functions
we shall introduce a notion of a locally-periodic approximation Lε0 of a function
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ψ ∈ C(Ω;Cper(Yx)) (or in Lp(Ω;Cper(Yx)), C(Ω;Lqper(Yx))). In each Ωεn the function
Lε0(ψ) is Yxεn-periodic and depend only on the fast variables x/ε. This specific locally-
periodic approximation is important for the derivation of macroscopic equations for a
microscopic problem with coefficients discontinuous with respect to the fast variable,
since for ψ ∈ C(Ω;Lp(Yx)) we have that Lε0(ψ) converges strongly locally-periodic
(l-p) two-scale, see [49].

As a locally periodic (l-p) approximation of ψ we name Lε : C(Ω;Cper(Yx)) →
L∞(Ω) given by

(2.1) (Lεψ)(x) =

Nε∑
n=1

ψ̃
(
x,
D−1
xεn

(x− x̃εn)

ε

)
χΩεn

(x) for x ∈ Ω.

We consider also the map Lε0 : C(Ω;Cper(Yx))→ L∞(Ω) defined for x ∈ Ω as

(Lε0ψ)(x) =

Nε∑
n=1

ψ
(
xεn,

x− x̃εn
ε

)
χΩεn

(x) =

Nε∑
n=1

ψ̃
(
xεn,

D−1
xεn

(x− x̃εn)

ε

)
χΩεn

(x).

If we choose x̃εn = Dxεn
εξ for some ξ ∈ Zd, then the periodicity of ψ̃ implies

(Lεψ)(x) =

Nε∑
n=1

ψ̃
(
x,
D−1
xεn
x

ε

)
χΩεn

(x) and (Lε0ψ)(x) =

Nε∑
n=1

ψ̃
(
xεn,

D−1
xεn
x

ε

)
χΩεn

(x)

for x ∈ Ω. In the following, we shall consider the case x̃εn = εDxεn
ξ, with ξ ∈ Zd.

However, all results hold for arbitrary chosen x̃εn ∈ Ωεn with n = 1, . . . , Nε, see [49].
In a similar way we define Lεψ and Lε0ψ for ψ in C(Ω;Lqper(Yx)) or Lp(Ω;Cper(Yx)).

The locally-periodic approximation reflects the microscopic properties of Ω, where
in each Ωεn the microstructure is represented by a ‘unit cell’ Yxεn = Dxεn

Y for arbitrary
fixed xεn ∈ Ωεn, see Figs. 1 and 2.

In the context of admissible test functions in weak formulations of partial differ-
ential equations, we define a regular approximation of Lεψ by

(Lερψ)(x) =

Nε∑
n=1

ψ̃
(
x,
D−1
xεn
x

ε

)
φΩεn(x) for x ∈ Ω,

where φΩεn
are approximations of χΩεn

such that φΩεn
∈ C∞0 (Ωεn) and

(2.2)

Nε∑
n=1

|φΩεn
−χΩεn

| → 0 in L2(Ω), ||∇mφΩεn
||L∞(Rd) ≤ Cε−ρm for 0 < r < ρ < 1,

see e.g. [12, 14, 49]. In the definition of the l-p unfolding operator we shall use
subdomains of Ωεn given by unit cells εYxεn that are completely included in Ωεn ∩ Ω,
see Fig. 2.

Ω̂ε =

Nε⋃
n=1

Ω̂εn, with Ω̂εn = Int
( ⋃
ξ∈Ξ̂εn

εDxεn
(Y + ξ)

)
and Λε =

Nε⋃
n=1

Λεn ∩ Ω,(2.3)

where Λεn = Ωεn \ Ω̂εn and Ξ̂εn = {ξ ∈ Ξεn : εDxεn
(Y + ξ) ⊂ (Ωεn ∩ Ω)}.
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Fig. 2. Schematic representation of subdomains Ωε
n and Ω̂ε

n.

As it is know from the periodic case, the unfolding operator provides a powerful
technique for the multiscale analysis of problems posed in perforated domains and
nonlinear equations defined on oscillating surfaces of microstructures. Thus, the main
emphasis of this work will be on the development of the unfolding method for domains
with locally-periodic perforations. Therefore, next we introduce perforated domains
with locally-periodic changes in the distribution and in the shape of perforations.

We consider Y0 ⊂ Y with a Lipschitz boundary Γ = ∂Y0 and a matrix K with
K,K−1 ∈ Lip(Rd;Rd×d), where 0 < K1 ≤ | detK(x)| ≤ K2 < ∞, KxY0 ⊂ Y , and

Y ∗ = Y \Y 0 and Ỹ ∗Kx = Y \KxY 0 are connected, for all x ∈ Ω. Define Y ∗x,K = DxỸ
∗
Kx

with the boundary Γx = DxKxΓ, where Kx = K(x) and Dx = D(x). Then, a domain
with locally-periodic perforations is defined as

Ω∗ε,K = Int
( Nε⋃
n=1

Ω∗,εn,K
)
∩ Ω, where Ω∗,εn,K =

⋃
ξ∈Ξ∗,εn

εDxεn
(Ỹ ∗Kxεn

+ ξ) ∪ Λ∗,εn

Here Λ∗,εn = Ωεn \
⋃
ξ∈Ξ∗,εn

εDxεn
(Y + ξ), with Ξ∗,εn = {ξ ∈ Ξεn : εDxεn

(Y + ξ) ⊂ Ωεn},
Ỹ ∗Kxεn

= Y \ KxεnY 0 and Kxεn = K(xεn) for n = 1, . . . , Nε. The boundaries of the

locally-periodic microstructure of Ω∗ε,K are denoted by

Γε =

Nε⋃
n=1

Γεn ∩ Ω, where Γεn =
⋃

ξ∈Ξ∗,εn

εDxεn
(Γ̃Kxεn + ξ) with xεn ∈ Ω̂εn,

and Γ̃Kxεn = Kxεn
Γ. Notice that changes in the microstructure of Ω∗ε,K are defined

by changes in the periodicity given by D(x) and additional changes in the shape of
perforations described by K(x) for x ∈ Ω.

Along with plywood-like structures (see Fig. 1), examples of locally-periodic mi-
crostructures are e.g. concrete materials with space-dependent perforations, plant and
epithelial tissues, see Fig. 3. In the definition of microstructure of concrete materials
with space-dependent perforations we have e.g. D(x) = I and K(x) = ρ(x)I for such
0 < ρ1 ≤ ρ(x) ≤ ρ2 <∞ that K(x)Y 0 ⊂ Y , see e.g. [17, 45] and Fig. 2. For plant or
epithelial tissues additionally we have space-dependent deformations of cells given by
D(x) 6= I, where I denotes the identity matrix.

Using the mathematical definition of general locally-periodic microstructures,
next we introduce the definition of the locally-periodic (l-p) unfolding operator, map-
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Fig. 3. Examples of locally periodic microstructures with local changes in the shape and the
periodicity of a microstructure. We observe changes in shape and size of cells in an epithelial tissue
due to maturation, http://www.eastcentral.edu, and changes in the size of plant cells in a wood
tissue, Schoch, Heller, Schweingruber, Kienast, 2004, [51].

ping functions defined on ε-dependent domains to functions depending on two vari-
ables (i.e. a microscopic variable and a macroscopic variable), but defined on fixed
domains.

3. Definitions of l-p unfolding operator and l-p two-scale convergence
on oscillating surfaces. The main idea of the two-scale convergence is to consider
test functions which comprise the information about the microstructure and the mi-
croscopic properties of a composite material and of model equations. The same idea is
used in the definition of l-t-s by considering a l-p approximation of ψ ∈ Lq(Ω;Cper(Yx))
(reflecting the locally-periodic properties of microscopic problems) as a test function.

Definition 3.1. [49] Let uε ∈ Lp(Ω) for all ε > 0 and p ∈ (1,∞). We say the
sequence {uε} converges l-t-s to u ∈ Lp(Ω;Lp(Yx)) as ε→ 0 if ‖uε‖Lp(Ω) ≤ C and for
any ψ ∈ Lq(Ω;Cper(Yx))

lim
ε→0

∫
Ω

uε(x)Lεψ(x)dx =

∫
Ω

−
∫
Yx

u(x, y)ψ(x, y)dydx,

where Lε is the l-p approximation of ψ, defined in (2.1), and 1/p+ 1/q = 1.
Remark. Notice that the definition of l-t-s and convergence results presented in

[49] for p = 2 are directly generalized to p ∈ (1,∞).
Motivated by the notion of the periodic unfolding operator and l-t-s convergence

we define the l-p unfolding operator in the following way.
Definition 3.2. For any Lebesgue-measurable on Ω function ψ the locally-

periodic (l-p) unfolding operator T εL is defined as

T εL (ψ)(x, y) =

Nε∑
n=1

ψ
(
εDxεn

[
D−1
xεn
x/ε
]
Y

+ εDxεn
y
)
χΩ̂εn

(x) for x ∈ Ω and y ∈ Y.

The definition implies that T εL (ψ) is Lebesgue-measurable on Ω × Y and is zero for
x ∈ Λε.

For perforated domains with local changes in the distribution of perforations, but
without additional changes in the shape of perforations, i.e. K = I and

Ω∗ε = Int
( Nε⋃
n=1

Ω∗,εn
)
∩ Ω, where Ω∗,εn =

⋃
ξ∈Ξ∗,εn

εDxεn
(Y ∗ + ξ) ∪ Λ∗,εn ,

and Y ∗ = Y \ Y 0, we define the l-p unfolding operator in the following way:
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Definition 3.3. For any Lebesgue-measurable on Ω∗ε function ψ the l-p unfolding
operator T ∗,εL is defined as

T ∗,εL (ψ)(x, y) =

Nε∑
n=1

ψ
(
εDxεn

[
D−1
xεn
x/ε
]
Y

+ εDxεn
y
)
χΩ̂εn

(x) for x ∈ Ω and y ∈ Y ∗.

The definition implies that T ∗,εL (ψ) is Lebesgue-measurable on Ω × Y ∗ and is zero
for x ∈ Λε.

In mathematical models posed in perforated domains we often have some pro-
cesses defined on the surfaces of the microstructure (e.g. non-homogeneous Neumann
conditions or equations defined on the boundaries of the microstructure). Therefore
it is important to have a notion of a convergence for sequences defined on oscillating
surfaces of locally-periodic microstructures. Applying the same idea as in the defini-
tion of l-t-s convergence for sequences in Lp(Ω) (i.e. considering l-p approximations
of functions with space-dependent periodicity as test functions) we define the l-t-s on
surfaces of locally-periodic microstructures.

Definition 3.4. A sequence {uε} ⊂ Lp(Γε), with p ∈ (1,∞), is said to converge
locally-periodic two-scale (l-t-s) to u ∈ Lp(Ω;Lp(Γx)) if ε‖uε‖pLp(Γε) ≤ C and for any

ψ ∈ C(Ω;Cper(Yx))

lim
ε→0

ε

∫
Γε
uε(x)Lεψ(x) dσx =

∫
Ω

1

|Yx|

∫
Γx

u(x, y)ψ(x, y) dσydx,

where Lε is the l-p approximation of ψ defined in (2.1).
Often, to show the strong convergence of a sequence defined on oscillating bound-

aries of a microstructure, we need to map it to a sequence defined on a fixed domain.
This can be achieved by using the boundary unfolding operator.

Definition 3.5. For any Lebesgue-measurable on Γε function ψ the l-p boundary
unfolding operator T b,εL is defined as

T b,εL (ψ)(x, y) =

Nε∑
n=1

ψ
(
εDxεn

[
D−1
xεn
x/ε
]
Y

+ εDxεnKxεny
)
χΩ̂εn

(x) for x ∈ Ω and y ∈ Γ.

The definition implies that T b,εL (ψ) is Lebesgue-measurable on Ω × Γ and is zero
for x ∈ Λε. The l-p boundary unfolding operator is a generalization of the periodic
boundary unfolding operator, see e.g. [21, 22, 24, 46]. Similar to the periodic unfolding
operator, the l-p unfolding operator maps functions defined in domains depending on
ε (on Ω∗ε or Γε) to functions defined on fixed domains (Ω×Y ∗ or Ω×Γ). The locally-
periodic microstructures of domains are reflected in the definition of the l-p unfolding
operator.

4. Main convergence results for the l-p unfolding operator and l-t-s
convergence on oscillating surfaces. In this section we summarize the main re-
sults of the paper. Similar to the periodic case [21, 22], we obtain compactness results
for l-t-s convergence on oscillating boundaries, for the l-p unfolding operator and for
the l-p boundary unfolding operator. We prove convergence results for sequences
bounded in Lp(Γε), H1(Ω), and H1(Ω∗ε), respectively. The properties of the transfor-
mation matrices D and K, assumed in Section 3, are used to prove the convergence
results stated in this section.
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Theorem 4.1. For a sequence {wε} ⊂ Lp(Ω), with p ∈ (1,∞), satisfying

‖wε‖Lp(Ω) + ε‖∇wε‖Lp(Ω) ≤ C

there exist a subsequence (denoted again by {wε}) and w ∈ Lp(Ω;W 1,p
per (Yx)) such that

T εL (wε) ⇀ w(·, Dx·) weakly in Lp(Ω;W 1,p(Y )),

εT εL (∇wε) ⇀ D−Tx ∇yw(·, Dx·) weakly in Lp(Ω× Y ).

For a uniformly bounded sequence in W 1,p(Ω), in addition we obtain the weak
convergence of the unfolded sequence of derivatives, important for the homogenization
of equations comprising elliptic operators of second order.

Theorem 4.2. For a sequence {wε} ⊂W 1,p(Ω), with p ∈ (1,∞), that converges
weakly to w in W 1,p(Ω), there exist a subsequence (denoted again by {wε}) and a
function w1 ∈ Lp(Ω;W 1,p

per (Yx)) such that

T εL (wε) ⇀ w weakly in Lp(Ω;W 1,p(Y )),

T εL (∇wε)(·, ·) ⇀ ∇xw(·) +D−Tx ∇yw1(·, Dx·) weakly in Lp(Ω× Y ).

Two of the main advantages of the unfolding operator are that it helps to overcome
one of the difficulties of perforated domains which is the use of extension operators
and it allows us to prove strong convergence for sequences defined on boundaries of
microstructures. Thus next we formulate convergence results for the l-p unfolding
operator in perforated domains and the l-p boundary unfolding operator.

Theorem 4.3. For a sequence {wε} ⊂W 1,p(Ω∗ε), where p ∈ (1,∞), satisfying

(4.1) ‖wε‖Lp(Ω∗ε) + ε‖∇wε‖Lp(Ω∗ε) ≤ C

there exist a subsequence (denoted again by {wε}) and w ∈ Lp(Ω;W 1,p
per (Y ∗x )) such that

(4.2)
T ∗,εL (wε) ⇀ w(·, Dx·) weakly in Lp(Ω;W 1,p(Y ∗)),

εT ∗,εL (∇wε) ⇀ D−Tx ∇yw(·, Dx·) weakly in Lp(Ω× Y ∗).

In the case wε is bounded in W p(Ω∗ε) uniformly with respect to ε, we obtain weak
convergence of T ∗,εL (∇wε) in Lp(Ω× Y ∗) and local strong convergence of T ∗,εL (wε).

Theorem 4.4. For a sequence {wε} ⊂W 1,p(Ω∗ε), where p ∈ (1,∞), satisfying

‖wε‖W 1,p(Ω∗ε) ≤ C

there exist a subsequence (denoted again by {wε}) and functions w ∈ W 1,p(Ω) and
w1 ∈ Lp(Ω;W 1,p

per (Y ∗x )) such that

T ∗,εL (wε) ⇀ w weakly in Lp(Ω;W 1,p(Y ∗)),

T ∗,εL (∇wε) ⇀ ∇w +D−Tx ∇yw1(·, Dx·) weakly in Lp(Ω× Y ∗),
T ∗,εL (wε) → w strongly in Lploc(Ω;W 1,p(Y ∗)).

Notice that the weak limit of T ∗,εL (∇wε) reflects the locally-periodic microstruc-
ture of Ω∗ε and depends on the transformation matrix D.
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For l-t-s convergence on oscillating surfaces of microstructures we have following
compactness result.

Theorem 4.5. For a sequence {wε} ⊂ Lp(Γε), with p ∈ (1,∞), satisfying

ε‖wε‖pLp(Γε) ≤ C

there exist a subsequence (denoted again by {wε}) and w ∈ Lp(Ω;Lp(Γx)) such that

wε → w locally periodic two-scale (l-t-s).

Similar to the periodic case [21, 22], we show the relation between the l-t-s con-
vergence on oscillating surfaces and the weak convergence of a sequence obtained by
applying the l-p boundary unfolding operator.

Theorem 4.6. Let {wε} ⊂ Lp(Γε) with ε‖wε‖pLp(Γε) ≤ C, where p ∈ (1,∞). The

following assertions are equivalent

(i) wε → w l-t-s, w ∈ Lp(Ω;Lp(Γx)).

(ii) T b,εL (wε) ⇀ w(·, DxKx·) weakly in Lp(Ω× Γ).

Theorems 4.5 and 4.6 imply that for {wε} ⊂ Lp(Γε) with ε‖wε‖pLp(Γε) ≤ C we

have the weak convergence of {T b,εL (wε)} in Lp(Ω× Γ), where p ∈ (1,∞).
The definition of the l-p boundary unfolding operator and the relation between

the l-t-s convergence of sequences defined on l-p oscillating boundaries and the l-p
boundary unfolding operator allow us to obtain homogenization results for equations
posed on the boundaries of locally-periodic microstructures.

5. The l-p unfolding operator: Proofs of convergence results. First we
prove some properties of the l-p unfolding operator. Similar to the periodic case, we
obtain that the l-p unfolding operator is linear and preserves strong convergence.

Lemma 5.1. (i) For φ ∈ Lp(Ω), with 1 ≤ p <∞, holds

(5.1)

∫
Ω×Y

|T εL (φ)(x, y)|p dydx ≤ |Y |
∫

Ω

|φ(x)|p dx.

(ii) T εL : Lp(Ω)→ Lp(Ω× Y ) is a linear continuous operator, where 1 ≤ p <∞.
(iii) For φ ∈ Lp(Ω), with 1 ≤ p <∞, we have strong convergence

T εL (φ)→ φ in Lp(Ω× Y ).(5.2)

(iv) If φε → φ in Lp(Ω), with 1 ≤ p <∞, then T εL (φε)→ φ in Lp(Ω× Y ).
Proof. Using the definition of the l-p unfolding operator we obtain∫

Ω×Y
|T εL (φ)(x, y)|pdydx =

Nε∑
n=1

∑
ξ∈Ξ̂εn

εd|Dxεn
Y |
∫
Y

|φ(Dxεn
(εξ + εy))|p dy

=

Nε∑
n=1

|Y |
∑
ξ∈Ξ̂εn

∫
εDxεn (ξ+Y )

|φ(x)|p dx =

Nε∑
n=1

|Y |
∫

Ω̂εn

|φ(x)|p dx.

(5.3)

Then estimate (5.1) follows from the properties of the covering of Ω by {Ωεn}
Nε
n=1.
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The result in (ii) is ensured by the definition of the l-p unfolding operator and
inequality (5.1).

(iii) Using the fact that φ ∈ Lp(Ω) and |Λε| → 0 as ε → 0 (ensured by the
properties of the covering of Ω by {Ωεn}

Nε
n=1) and applying Lebesgue’s Dominated

Convergence Theorem, see e.g. [29], we obtain
∫

Λε
|φ(x)|p dx→ 0 as ε→ 0.

Considering the approximation of Lp-functions by continuous functions, using the
definition of T εL and equality (5.3), and taking the limit as ε→ 0 in the equality (5.3)
imply the convergence stated in (iii).

(iv) The linearity of the l-p unfolding operator along with (5.1) and (5.2) yield

‖T εL (φε)− φ‖Lp(Ω×Y ) ≤ |Y |
1
p ‖φε − φ‖Lp(Ω) + ‖T εL (φ)− φ‖Lp(Ω×Y ) → 0 as ε→ 0.

Similar to l-t-s convergence, the average of the weak limit of the unfolded sequence
with respect to microscopic variables is equal to the weak limit of the original sequence.

Lemma 5.2. For {wε} bounded in Lp(Ω), with p ∈ (1,∞), we have that {T εL (wε)}
is bounded in Lp(Ω× Y ) and if

T εL (wε) ⇀ w̃ weakly in Lp(Ω× Y ),

then

wε ⇀ −
∫
Y

w̃ dy weakly in Lp(Ω).

Proof. The boundedness of {T εL (wε)} in Lp(Ω × Y ) follows directly from the
boundedness of {wε} in Lp(Ω) and the estimate (5.1). For ψ ∈ Lq(Ω), 1/p+ 1/q = 1,
using the definition of T εL (wε) we have∫

Ω

wε ψ dx =
1

|Y |

∫
Ω×Y

T εL (wε) T εL (ψ) dy dx+Aε, where Aε =

∫
Λε
wεψ dx.

For {wε} bounded in Lp(Ω) and ψ ∈ Lq(Ω), using the properties of the covering of Ω
and the definition of Ω̂εn and Λε, where 1 ≤ n ≤ Nε, we obtain Aε → 0 as ε → 0.
Then, the weak convergence of T εL (wε) and the strong convergence of T εL (ψ), shown
in Lemma 5.1, imply

lim
ε→0

∫
Ω

wε(x)ψ(x) dx =
1

|Y |

∫
Ω

∫
Y

w̃(x, y)ψ(x) dy dx

for any ψ ∈ Lq(Ω).
For the periodic unfolding operator we have that T ε(ψ(·, ·/ε))→ ψ in Lq(Ω×Y )

for ψ ∈ Lq(Ω, Cper(Y )). A similar result holds for the l-p unfolding operator and
ψ ∈ Lq(Ω, Cper(Yx)), but with ψ(·, ·/ε) replaced by the l-p approximation Lεψ(·).

Lemma 5.3. (i) For ψ ∈ Lq(Ω;Cper(Yx)), with q ∈ [1,∞), we have

T εL (Lεψ)→ ψ(·, Dx·) strongly in Lq(Ω× Y ).

(ii) For ψ ∈ C(Ω;Lqper(Yx)), with q ∈ [1,∞), we have

T εL (Lε0ψ)→ ψ(·, Dx·) strongly in Lq(Ω× Y ).
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Proof. (i) For ψ ∈ C(Ω;Cper(Yx)) using the definition of Lεψ and T εL we obtain∫
Ω×Y

|T εL (Lεψ)|qdy dx =

Nε∑
n=1

∫
Ω̂εn×Y

∣∣∣ψ̃(εDxεn

[D−1
xεn
x

ε

]
Y

+ εDxεn
y, y
)∣∣∣qdy dx,

where q ∈ [1,∞) and ψ̃ ∈ C(Ω;Cper(Y )) such that ψ(x, y) = ψ̃(x,D−1
x y) for x ∈ Ω,

y ∈ Yx. Then, using the properties of the covering of Ωεn by εY ξxεn = εDxεn
(Y + ξ),

with ξ ∈ Ξεn, and considering fixed points yξ ∈ Y + ξ for ξ ∈ Ξ̂εn we obtain∫
Ω×Y

|T εL (Lεψ)|qdy dx =

Nε∑
n=1

∑
ξ∈Ξ̂εn

εd|Yxεn |
∫
Y

|ψ̃(εDxεn
(ξ + yξ), y)|q dy + δ(ε),

where, due to the continuity of ψ and the properties of the covering of Ω by {Ωεn}
Nε
n=1,

δ(ε) =

Nε∑
n=1

∑
ξ∈Ξ̂εn

εd|Yxεn |
∫
Y

(
|ψ̃(εDxεn(ξ + yξ), y)|q − |ψ̃(εDxεn

(ξ + y), y)|q
)
dy → 0

as ε→ 0. Then, using the continuity of ψ and D together with the relation between
ψ and ψ̃ we obtain

lim
ε→0

∫
Ω×Y

|T εL (Lεψ)|qdy dx =

∫
Ω×Y

|ψ̃(x, y)|q dy dx =

∫
Ω×Y

|ψ(x,Dxy)|qdy dx.

The continuity of ψ with respect to x ensures the point-wise convergence of T εL (Lεψ)(x, y)
to ψ(x,Dxy) a.e. in Ω× Y .

Considering an approximation of ψ ∈ Lq(Ω;Cper(Yx)) by ψm ∈ C(Ω;Cper(Yx))
and the convergence

lim
m→∞

lim
ε→0

∫
Ω

(
|Lεψm(x)|q − |Lεψ(x)|q

)
dx = 0,

see [49, Lemma 3.4] for the proof, yields T εL (Lεψ)(·, ·) → ψ(·, Dx·) in Lq(Ω × Y ) for
ψ ∈ Lq(Ω;Cper(Yx)).

(ii) For ψ ∈ C(Ω;Lqper(Yx)), we can prove the strong convergence only of T εL (Lε0ψ).
Consider

lim
ε→0

∫
Ω×Y

|T εL (Lε0ψ)(x, y)|qdydx = |Y | lim
ε→0

[ ∫
Ω

|Lε0ψ(x)|qdx−
∫

Λε
|Lε0ψ(x)|qdx

]
.

Then, using Lemma 3.4 in [49] along with the regularity of ψ and the properties of
Λε we obtain

|Y | lim
ε→0

∫
Ω

|Lε0ψ(x)|qdx =

∫
Ω×Y

|ψ(x,Dxy)|qdydx, lim
ε→0

∫
Λε
|Lε0ψ(x)|qdx = 0.

The continuity of ψ with respect to x ∈ Ω implies T εL (Lε0ψ)(x, y)→ ψ(x,Dxy) point-
wise a.e. in Ω× Y .

Remark. Notice that for ψ ∈ C(Ω;Lqper(Yx)) we have the strong convergence
only of T εL (Lε0ψ). However, this convergence result is sufficient for the derivation of
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homogenization results, since the microscopic properties of the considered processes
or domains can be represented by coefficients in the form BLε0A, with some given
functions B ∈ L∞(Ω) and A ∈ C(Ω;Lqper(Yx)).

The strong convergence of T εL (Lεψ) for ψ ∈ Lq(Ω;Cper(Yx)) is now used to show
the equivalence between the weak convergence of the l-p unfolded sequence and l-t-s
convergence of the original sequence. Notice that Lq(Ω;Cper(Yx)) represents the set
of test functions admissible in the definition of the l-t-s convergence.

Lemma 5.4. Let {wε} be a bounded sequence in Lp(Ω), where p ∈ (1,∞). Then
the following assertions are equivalent

(i) wε → w l-t-s, w ∈ Lp(Ω;Lp(Yx)),
(ii) T εL (wε)(·, ·) ⇀ w(·, Dx·) weakly in Lp(Ω× Y ).
Proof. [(ii) ⇒ (i)] Since {wε} is bounded in Lp(Ω), there exists (up to a subse-

quence) a l-t-s limit of wε as ε → 0. For an arbitrary ψ ∈ Lq(Ω;Cper(Yx)) the weak
convergence of T εL (wε), and the strong convergence of T εL (Lε(ψ)) ensure

lim
ε→0

∫
Ω

wεLε(ψ)dx = lim
ε→0

[ ∫
Ω

−
∫
Y

T εL (wε) T εL (Lε(ψ))dydx+

∫
Λε
wεLε(ψ)dx

]
=

∫
Ω

−
∫
Y

ŵ(x, y)ψ(x,Dxy) dydx =

∫
Ω

−
∫
Yx

wψ dydx,

where ŵ(x, y) = w(x,D(x)y) for a.a. x ∈ Ω, y ∈ Y . Thus the whole sequence wε

converges l-t-s to w.
[(i)⇒ (ii)] On the other hand, the boundedness of {wε} in Lp(Ω) implies the bound-
edness of {T εL (wε)} and (up to a subsequence) the weak convergence of T εL (wε) in
Lp(Ω× Y ). If wε → w l-t-s, then

lim
ε→0

∫
Ω

−
∫
Y

T εL (wε) T εL (Lε(ψ)) dydx = lim
ε→0

[ ∫
Ω

wεLε(ψ) dx−
∫

Λε
wεLε(ψ) dx

]
=

∫
Ω

−
∫
Yx

wψ dydx

for ψ ∈ Lq(Ω;Cper(Yx)). Since T εL (Lε(ψ))(·, ·) → ψ(·, Dx·) in Lq(Ω × Y ), we obtain
the weak convergence of the whole sequence T εL (wε) to w(·, Dx·) in Lp(Ω×Y ). Notice
that the boundedness of {wε} in Lp(Ω) and the fact that |Λε| → 0 as ε→ 0 imply∫

Λε
|wε Lε(ψ)| dx ≤ C

(∫
Λε

sup
y∈Y
|ψ(x,Dxy)|qdx

)1/q

→ 0 as ε→ 0

for ψ ∈ Lq(Ω;Cper(Yx)) and 1/p+ 1/q = 1.
Next, we prove the main convergence results for the l-p unfolding operator, i.e.

convergence results for {T εL (wε)}, {εT εL (∇wε)} and {T εL (∇wε)}.
The definition of the l-p unfolding operator yields that for w ∈W 1,p(Ω)

(5.4) ∇yT εL (w) = ε

Nε∑
n=1

DT
xεn
T εL (∇w)χΩεn

.

Due to the regularity of D, the uniform boundedness of ε∇wε implies the uniform
boundedness of ∇yT εL (wε). Thus, assuming the boundedness of {ε∇wε} we obtain
convergence of the derivatives with respect to the microscopic variables, but have no
information about the macroscopic derivatives.
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Proof. [Proof of Theorem 4.1] The assumptions on {wε} together with in-
equality (5.1), equality (5.4), and regularity of D ensure that {T εL (wε)} is bounded
in Lp(Ω;W 1,p(Y )). Thus, there exists a subsequence, denoted again by {wε}, and a
function w̃ ∈ Lp(Ω;W 1,p(Y )), such that T εL (wε) ⇀ w̃ in Lp(Ω;W 1,p(Y )). We define
w(x, y) = w̃(x,D−1

x y) for a.a. x ∈ Ω, y ∈ Yx. Due to the regularity of D, we have
w ∈ Lp(Ω;W 1,p(Yx)). For φ ∈ C∞0 (Ω×Y ), using the convergence of T εL (wε), we have

lim
ε→0

∫
Ω×Y

εT εL (∇wε)φdydx = − lim
ε→0

∫
Ω×Y

T εL (wε)

Nε∑
n=1

divy(D−1
xεn
φ(x, y))dy χΩεn

dx

= −
∫

Ω×Y
w(x,Dxy) divy(D−1

x φ(x, y))dydx =

∫
Ω×Y

D−Tx ∇yw(x,Dxy)φ(x, y) dydx.

Hence, εT εL (∇wε)(·, ·) ⇀ D−Tx ∇yw(·, Dx·) in Lp(Ω × Y ) as ε → 0. To show the Yx–
periodicity of w, i.e. Y –periodicity of w̃, we show first the periodicity in ed–direction.
Then considering similar calculations in each ej–direction, with j = 1, . . . , d− 1 and
{ej}j=1,...,d being the canonical basis of Rd, we obtain the Yx–periodicity of w. For
ψ ∈ C∞0 (Ω;C∞(Y ′)) we consider

I =

∫
Ω×Y ′

[T εL (wε)(x, (y′, 1))− T εL (wε)(x, (y′, 0))]ψ(x, y′)dy′dx,

where Y ′ = (0, 1)d−1. We define

Ω̃ε,dn = Int
( ⋃
ξ∈Ξ

ε,d
n

εDxεn
(Y + ξ)

)
, Λ̃εn,j = Int

( ⋃
ξ∈Ξ̃ε,dn,j

εDxεn
(Y + ξ)

)
for j = 1, 2,

where Ξ
ε,d

n = {ξ ∈ Ξ̂εn : εDxεn
(Y + ed + ξ) ⊂ Ω̂εn and εDxεn

(Y − ed + ξ) ⊂ Ω̂εn}, and

Ξ̃ε,dn = Ξ̂εn \ Ξ
ε,d

n , with Ξ̃ε,dn = Ξ̃ε,dn,1 ∪ Ξ̃ε,dn,2, where Ξ̃ε,dn,1 corresponds to upper cells in

the ed direction and Ξ̃ε,dn,2 corresponds to lower cells in the ed direction in Ω̂εn \ Ω̃ε,dn .
Then using the definition of T εL we can write

I =

Nε∑
n=1

∫
Ω̃ε,dn ×Y ′

T εL (wε)(x, y0)
[
ψ(x− εDxεn

ed, y
′)− ψ(x, y′)

]
dy′dx

+

Nε∑
n=1

[ ∫
Λ̃εn,1×Y ′

T εL (wε)(x, y1)ψ(x, y′)dy′dx−
∫

Λ̃εn,2×Y ′
T εL (wε)(x, y0)ψ(x, y′)dy′dx

]
,

where y1 = (y′, 1) and y0 = (y′, 0). Using the continuity of ψ, the boundedness of
the trace of T εL (wε) in Lp(Ω × Y ′), ensured by the assumptions on wε, and the fact

that
∑Nε
n=1 |Λ̃εn,j | ≤ Cε1−r → 0 as ε→ 0, with 0 < r < 1 and j = 1, 2, we obtain that

I → 0 as ε→ 0. Similar calculations for ej , with j = 1, . . . , d−1, and the convergence
of the trace of T εL (wε) in Lp(Ω× Y ′), ensured by the weak convergence of T εL (wε) in
Lp(Ω;W 1,p(Y )), imply the Yx-periodicity of w.

If ‖∇wε‖Lp(Ω) is bounded uniformly in ε, we have the weak convergence of wε in
W 1,p(Ω) and of T εL (∇wε) in Lp(Ω×Y ). Hence we have information about the macro-
scopic and microscopic gradients of limit functions. The proof of the convergence
results for T εL (∇wε) makes use of the Poincaré inequality for an auxiliary sequence.
For this purpose we define a local average operatorMε

L, i.e. an average of the unfolded
function with respect to the microscopic variables.
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Definition 5.5. The local average operator Mε
L : Lp(Ω) → Lp(Ω), p ∈ [1,∞],

is defined as

(5.5) Mε
L(ψ)(x) = −

∫
Y

T εL (ψ)(x, y)dy =

Nε∑
n=1

−
∫
Y

ψ
(
εDxεn

(
[D−1

xεn
x/ε] + y

))
dy χΩ̂εn

(x).

Proof. [Proof of Theorem 4.2] The proof of the convergence of T εL (∇wε) follows
similar ideas as in the case of the periodic unfolding operator. However, the proof of
the periodicity of the corrector w1 involves new ideas and technical details.

The convergence of T εL (wε) follows from Lemma 5.2 and the fact that due to the
assumption on {wε} and regularity of D we have

‖∇yT εL (wε)‖Lp(Ω×Y ) ≤ Cε→ 0 as ε→ 0.

To show the convergence of T εL (∇wε) we consider a function V ε : Ω× Y → R defined
as

(5.6) V ε = ε−1 (T εL (wε)−Mε
L(wε)) .

Then, the definition of T εL and Mε
L implies

∇yV ε =
1

ε
∇yT εL (wε) =

Nε∑
n=1

DT
xεn
T εL (∇wε)χΩεn

.

The boundedness of {wε} in W 1,p(Ω) together with (5.1) and regularity assumptions
on D imply that the sequence {∇yV ε} is bounded in Lp(Ω× Y ). Considering

−
∫
Y

V ε dy = 0 and −
∫
Y

yεc · ∇w dy = 0 with yεc =

Nε∑
n=1

Dxεn
yc χΩεn

,

where yc = (y1 − 1
2 , . . . , yd −

1
2 ) for y ∈ Y , and applying the Poincaré inequality to

V ε − yεc · ∇w yields

‖V ε − yεc · ∇w‖Lp(Ω×Y ) ≤ C1‖∇yV ε −DT
xεn
∇w‖Lp(Ω×Y ) ≤ C2.

Thus, there exists a subsequence (denoted again by {V ε − yεc · ∇w}) and w̃1 ∈
Lp(Ω;W 1,p(Y )) such that

(5.7) V ε − yεc · ∇w ⇀ w̃1 weakly in Lp(Ω;W 1,p(Y )).

For φ ∈W 1,p(Ω) we have the following relation

T εL (∇φ)(x, y) = ε−1
Nε∑
n=1

D−Txεn ∇yT
ε
L (φ)(x, y)χΩεn

(x).

Then the convergence in (5.7) and the continuity of D yield

(5.8) T εL (∇wε) =

Nε∑
n=1

D−Txεn ∇yV
εχΩεn

⇀ ∇w +D−Tx ∇yw̃1 weakly in Lp(Ω× Y ).
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We show now that w̃1(x, y) is Y –periodic. Then the function w1(x, y) = w̃1(x,D−1
x y)

for a.a. x ∈ Ω, y ∈ Yx will be Yx–periodic. For ψ ∈ C∞0 (Ω;C∞0 (Y ′)) we consider∫
Ω

∫
Y ′

[
V ε(x, y1)− V ε(x, y0)

]
ψ(x, y′)dy′dx =

Nε∑
n=1

(I1,n + I2,n)

with

I1,n =

∫
Ω̃ε,dn

∫
Y ′
T εL (wε)(x, y0)

1

ε

[
ψ(x− εDxεn

ed, y
′)− ψ(x, y′)

]
dy′dx,

I2,n =
1

ε

[ ∫
Λ̃εn,1×Y ′

T εL (wε)(x, y1)ψ(x, y′)dy′dx−
∫

Λ̃εn,2×Y ′
T εL (wε)(x, y0)ψ(x, y′)dy′dx

]
= Iu2,n − Il2,n,

where y1, y0, Ω̃ε,dn , and Λ̃εn,j , with j = 1, 2, are defined in the proof of Theorem 4.1.
Then Lemma 5.1 and the strong convergence of {wε} in Lp(Ω), ensured by the
boundedness of {wε} in W 1,p(Ω), imply the strong convergence of {T εL (wε)} to w
in Lp(Ω × Y ). The boundedness of {∇yT εL (wε)} (ensured by the boundedness of
{∇wε}) yields the weak convergence of {T εL (wε)} in Lp(Ω;W 1,p(Y )) to the same w.
Applying the trace theorem in W 1,p(Y ) we obtain that the trace of T εL (wε) on Ω×Y ′
converges weakly to w in Lp(Ω × Y ′) as ε → 0. This together with the regularity of
ψ and D gives

lim
ε→0

Nε∑
n=1

I1,n = −
∫

Ω

∫
Y ′
w(x)Dd(x) · ∇xψ(x, y′) dy′dx,

where Dd(x) = (D1d(x), . . . , Ddd(x))T . As next we consider the integrals over the
upper (in ed direction) cells Iu2,n1

and over the lower cells Il2,n2
in neighboring Ωεn1

and Ωεn2
, i.e. for such 1 ≤ n1, n2 ≤ Nε that Θn1,2

= (∂Ωεn1
∩∂Ωεn2

)∩{xd = const} 6= ∅,
dim(Θn1,2) = d− 1, and xεn1,d

< xεn2,d
, and write

Iu2,n1
+ Il2,n2

=
1

ε

[ ∫
Λ̃εn1,1

×Y ′
T εL (wε)(x, y0)ψdy′dx−

∫
Λ̃εn2,2

×Y ′
T εL (wε)(x, y0)ψdy′dx

]
+

∫
Λ̃εn1,1

1

ε

[ ∫
Y ′
T εL (wε)(x, y1)ψ dy′ −

∫
Y ′
T εL (wε)(x, y0)ψ dy′

]
dx = I1,2

2,n + I1
2,n.

The second integral I1
2,n can be rewritten as

I1
2,n =

1

ε

∫
Λ̃εn1,1

×Y
∂ydT εL (wε)(x, y)ψ(x, y′)dydx =

∫
Λ̃εn1,1

×Y
Dd(x) · T εL (∇wε)ψ dydx.

Using the boundedness of {∇wε} in Lp(Ω), p ∈ (1,∞), and
∑Nε
n1=1 |Λ̃εn1,1| ≤ Cε1−r,

we conclude that
∑Nε
n=1 I1

2,n → 0 as ε → 0 and r < 1. In I1,2
2,n we shall distinguish

between variations in x1, . . . , xd−1−directions and in xd−direction. For an arbitrary
fixed xεn1,2

∈ Θn1,2
we define D̂j

xεn1,2
= (D1(xεn1,2

), . . . , Dd−1(xεn1,2
), Dd(x

ε
nj )), where

Di(x) = (D1i(x), . . . , Ddi(x))T with i = 1, . . . , d, and j = 1, 2. We introduce

Λ̂εnj =
⋃

ξ∈Ξ̃ε,jn1,2

εD̂j
xεn1,2

(Y + ξ) for j = 1, 2,
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where

Ξ̃ε,1n1,2
=
{
ξ ∈ Zd : εD̂1

xεn1,2
(Y + ξ + ed) ∩Θn1,2

6= ∅ and εD̂1
xεn1,2

(Y + ξ) ⊂ Ωεn1

}
,

Ξ̃ε,2n1,2
=
{
ξ ∈ Zd : εD̂2

xεn1,2
(Y + ξ − ed) ∩Θn1,2

6= ∅ and εD̂2
xεn1,2

(Y + ξ) ⊂ Ωεn2

}
.

Then each of the integrals in I1,2
2,n we rewrite as

1

ε

∫
Λ̃εnj,j

∫
Y ′
T εL (wε)(x, y0)ψdy′dx =

1

ε

∫
Λ̂εnj

∫
Y ′
wε(εD̂j

xεn1,2
([xjD,n/ε] + y0))ψdy′dx

+
1

ε

[ ∫
Λ̃εnj,j

∫
Y ′
T εL (wε)(x, y0)ψdy′dx−

∫
Λ̂εnj

∫
Y ′
wε(εD̂j

xεn1,2
([xjD,n/ε] + y0))ψdy′dx

]
= J1

j,n + J2
j,n,

where xjD,n = (D̂j
xεn1,2

)−1x and j = 1, 2. Using the definition of Λ̂εnj , for j = 1, 2, and

the fact that |Ξ̃ε,1n1,2
| = |Ξ̃ε,2n1,2

| = Iεn1,2
yields

J1
1,n − J1

2,n = εn
Iεn1,2∑
i=1

∫
Y

∫
Y ′

1

ε

[
wε
(
εD̂1

xεn1,2
(ξ1
i + y0)

)
ψ(εỹin1,ξ, y

′)

−wε
(
εD̂2

xεn1,2
(ξ2
i + y0)

)
ψ(εỹin2,ξ, y

′)
]∣∣D̂1

xεn1,2

∣∣ dy′dỹ
−εr−1

∑
ξ∈Ξ̃ε,2n1,2

∫
ε(Y+ξ)

∫
Y ′
wε
(
εD̂2

xεn1,2

(
ξ + y0

))
ψ dy′

1

εr

[
d(D̂2

xεn1,2
x̃)− d(D̂1

xεn1,2
x̃)
]
,

where ỹinj ,ξ = D̂j
xεn1,2

(ỹ+ ξji ) for j = 1, 2. The first integral in the last equality can be

estimated by

Cεrd+(1−r)‖wε‖W 1,p(Ω)‖ψ‖C1
0 (Ω;C1

0 (Y ′)).

In the second integral we have a discrete derivative of an integral over an evolving
domain, which convergences to the divergence of the velocity vector Dd as ε → 0.
Then, using the fact that |Nε| ≤ Cε−dr and xεn1,d

< xεn2,d
together with the regularity

of D and the definition of D̂j
xεn1,2

, where j = 1, 2, yields

Nε∑
n=1

(
J1

1,n − J1
2,n

)
→ −

∫
Ω

∫
Y ′
w(x)ψ(x, y′) divDd(x) dy′dx as ε→ 0.

For J2
1,n − J2

2,n using the definition of Λ̃εnj ,j and Λ̂εnj , the regularity of D and ψ, the

boundedness of {wε} in W 1,p(Ω), along with the the properties of the covering of Ω
by {Ωεn}

Nε
n=1 we obtain

Nε∑
n=1

|J2
1,n − J2

2,n| ≤ Cε1−r
d−1∑
k=1

‖divDk‖L∞(Ω)‖wε‖W 1,p(Ω)‖ψ‖C∞0 (Ω;C0(Y ′)) → 0

as ε→ 0 for r ∈ (0, 1). Combining the obtained results we conclude that

Nε∑
n=1

(I1,n + I2,n)→ −
∫

Ω×Y ′

[
w(x)Dd(x) · ∇xψ(x, y′) + w(x)ψ(x, y′)divDd(x)

]
dy′dx
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as ε→ 0. The definition of ycε · ∇w implies

(yεc · ∇w(x))(y′, 1)− (yεc · ∇w(x))(y′, 0) =

Nε∑
n=1

Dd(x
ε
n) · ∇w(x)χΩεn

(x)

for y′ ∈ Y ′ and x ∈ Ω. Taking the limit as ε→ 0 yields

lim
ε→0

∫
Ω×Y ′

[
(yεc · ∇w)(y1)− (yεc · ∇w)(y0)

]
ψ dy′dx =

∫
Ω×Y ′

Dd(x) · ∇wψ dy′dx

= −
∫

Ω×Y ′
w(x)

[
Dd(x) · ∇ψ(x, y′) + divDd(x)ψ(x, y′)

]
dy′dx.

Then using the convergence of V ε − ycε · ∇w to w̃1 in Lp(Ω;W 1,p(Y )) we obtain∫
Ω

∫
Y ′

[w̃1(x, (y′, 1))− w̃1(x, (y′, 0))]ψ(x, y′) dy′dx = lim
ε→0

∫
Ω

∫
Y ′

[
V ε(x, (y′, 1))

−(yεc · ∇w)(x, (y′, 1))− V ε(x, (y′, 0)) + (yεc · ∇w)(x, (y′, 0))
]
ψ(x, y′) dy′dx = 0.

Carrying out similar calculations for yj with j = 1, . . . , d− 1 yields the Y –periodicity
of w̃1 and, hence, Yx–periodicity of w1, defined by w1(x, y) = w̃1(x,D−1

x y) for x ∈ Ω
and y ∈ DxY .

6. Micro-macro decomposition: The interpolation operator QεL. Similar
to the periodic case [20, 22], in the context of convergence results for the unfolding
method in perforated domains as well as for the derivation of error estimates, [28, 31,
32, 33, 47], it is important to consider micro-macro decomposition of a function in
W 1,p and to introduce an interpolation operatorQεL. For any ϕ ∈W 1,p(Ω) we consider
the splitting ϕ = QεL(ϕ) +RεL(ϕ) and show that QεL(ϕ) has a similar behavior as ϕ,
whereas RεL(ϕ) is of order ε.

We consider a continuous extension operator P : W 1,p(Ω)→W 1,p(Rd) satisfying

‖P(ϕ)‖W 1,p(Rd) ≤ C‖ϕ‖W 1,p(Ω) for all φ ∈W 1,p(Ω),

where the constant C depends only on p and Ω, see e.g. [29]. In the following we use
the same notation for a function in W 1,p(Ω) and its continuous extension into Rd.

We consider Y = Int
(⋃

k∈{0,1}d(Y + k)
)

and define

ΩεY = Int
( Nε⋃
n=1

Ω
ε

n,Y
)
, with Ωεn,Y = Int

( ⋃
ξ∈Ξεn,Y

εDxεn
(Y + ξ)

)
,

ΛεY = Ω \ ΩεY , Ω̃εb = Int
( Nε⋃
n=1

⋃
ξ∈Ξεn,b

εDxεn
(Y + ξ)

)
∩ Ω,

where Ξεn,Y = {ξ ∈ Ξεn : εDxεn
(Y + ξ) ⊂ (Ωεn ∩ Ω)} and Ξεn,b = {ξ ∈ Ξεn : εDxεn

(Y +
ξ) ∩ ∂Ω 6= ∅ or εDxεn

(Y + ξ) ∩ ∂Ω 6= ∅}.
In order to define an interpolation between two neighboring Ωεn and Ωεm we in-

troduce Y− = Int
(⋃

k∈{0,1}d(Y − k)
)
.

For 1 ≤ n ≤ Nε and m ∈ Zn = {1 ≤ m ≤ Nε : ∂Ωεn ∩ ∂Ωεm 6= ∅} we shall consider
unit cells near the corresponding neighboring parts of the boundaries ∂Ω̂εn and ∂Ω̂εm,
respectively. For ξn ∈ Ξ̄εn, where Ξ̄εn = {ξ ∈ Ξ̂εn : εDxεn

(Y +ξ)∩∂Ω̂εn 6= ∅}, we consider

Ξ̃εn,m =
{
ξm ∈ Ξ̄εm : εDxεn

(Y + ξn) ∩ εDxεm
(Y− + ξm) 6= ∅

}
18



Fig. 4. Schematic diagram of the covering of Ω by Ωε
n, of Dxεn

Y and Dxεn
Y−, and of the

interpolation points ξn and ξm for Qε
L and Q∗,εL .

and

K̂n = {k ∈ {0, 1}d : ξn + k ∈ Ξ̄εn}, K̂−m = {k ∈ {0, 1}d : ξm − k ∈ Ξ̄εm}.

One of the important part in the definition of QεL is to define an interpolation
between neighboring Ωεn and Ωεm. For two neighboring Ωεn and Ωεm we consider trian-
gular interpolations between such vertices of εDxεn

(Y + ξn) and εDxεm
(Y + ξm) that

are lying on ∂Ωεn,Y and ∂Ωεm,Y , respectively.

Definition 6.1. The operator QεL : Lp(Ω)→W 1,∞(Ω) is defined by

(6.1) QεL(ϕ)(εξ) = −
∫
Y

ϕ(Dxεn
(εξ + εy))dy for ξ ∈ Ξεn and 1 ≤ n ≤ Nε,

and for x ∈ Ωεn,Y ∪ Ω̃εb we define QεL(ϕ)(x) as the Q1-interpolant of QεL(ϕ)(εξ) at the

vertices of ε[D−1
xεn
x/ε]Y + εY , where 1 ≤ n ≤ Nε.

For x ∈ ΛεY \ Ω̃εb we define QεL(ϕ)(x) as a triangular Q1-interpolant of the values

of QεL(ϕ)(εξ) at ξn+kn and ξm such that ξm ∈ Ξ̃εn,m for m ∈ Zn and kn ∈ K̂n, where
1 ≤ n ≤ Nε.

The vertices of εDxεn(Y + ξn + kn) and εDxεm
(Y + ξm) for ξn ∈ Ξ̄εn, ξm ∈ Ξ̃εn,m

and kn ∈ K̂n, in the definition of QεL, belong to ∂Ωεn,Y and ∂Ωεm,Y , see Figure 4.
For QεL(ϕ) and RεL(ϕ) = ϕ−QεL(ϕ) we have the following estimates.
Lemma 6.2. For every ϕ ∈W 1,p(Ω), where 1 ≤ p <∞, we have

(6.2)
‖QεL(ϕ)‖Lp(Ω) ≤ C‖ϕ‖Lp(Ω), ‖RεL(ϕ)‖Lp(Ω) ≤ Cε‖∇ϕ‖Lp(Ω),

‖∇QεL(ϕ)‖Lp(Ω) + ‖∇RεL(ϕ)‖Lp(Ω) ≤ C‖∇ϕ‖Lp(Ω),

where the constant C is independent of ε and depends only on Y , D, and d = dim(Ω).
Proof. Similar to the periodic case [20], we use the fact that the space of Q1-

interpolants is a finite-dimensional space of dimension 2d and all norms are equivalent.
Then for ξ ∈ Ξεn,Y ∪ Ξεn,b, where n = 1, . . . , Nε, we obtain

‖QεL(ϕ)‖pLp(εDxεn (ξ+Y )) ≤ C1ε
d
∑

k∈{0,1}d

∣∣QεL(ϕ)(εξ + εk)
∣∣p.(6.3)
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For ξn ∈ Ξ̄εn and triangular elements ωεξn,m between Ωεn,Y and Ωεm,Y , with m ∈ Zn,
holds

‖QεL(ϕ)‖pLp(ωεξn,m ) ≤ C2ε
d
∑
k∈K̂n

∑
m∈Zn

ξm∈Ξ̃εn,m

[∣∣QεL(ϕ)(εξn + εk)
∣∣p +

∣∣QεL(ϕ)(εξm)
∣∣p],

where |Zn| ≤ 2d and |Ξ̃εn,m| ≤ 22(d−1) for every n = 1, . . . , Nε. Thus for ΛεY \ Ω̃εb holds

‖QεL(ϕ)‖p
Lp(ΛεY\Ω̃εb)

≤ C3ε
d
Nε∑
n=1

∑
ξn∈Ξ̄εn,k∈K̂n

∑
m∈Zn,ξm∈Ξ̃εn,m

[∣∣QεL(ϕ)(εξn + εk)
∣∣p +

∣∣QεL(ϕ)(εξm)
∣∣p].(6.4)

From the definition of QεL it follows that

|QεL(ϕ)(εξ)|p ≤ −
∫
Y

|ϕ(εDxεn
(ξ + y))|pdy =

1

εd|Dxεn
Y |

∫
εDxεn (ξ+Y )

|ϕ(x)|pdx

for ξ ∈ Ξεn and n = 1, . . . , Nε. Then using (6.3) and (6.4) implies

‖QεL(ϕ)‖pLp(εDxεn (ξ+Y )) ≤ C4

∑
k∈{0,1}d

∫
εDxεn (ξ+k+Y )

|ϕ(x)|pdx(6.5)

for ξ ∈ Ξεn,Y ∪ Ξεn,b and n = 1, . . . , Nε, and in ΛεY \ Ω̃εb we have

‖QεL(ϕ)‖p
Lp(ΛεY\Ω̃εb)

≤ C5

Nε∑
n=1

∑
m∈Zn

∑
j=n,m

∑
ξ∈Ξ̄εj

∫
εDxε

j
(ξ+Y )

|ϕ(x)|pdx.(6.6)

Summing up in (6.5) over ξ ∈ Ξεn,Y ∪ Ξεn,b and n = 1, . . . , Nε, and adding (6.6) we
obtain the estimate for the Lp-norm of QεL(ϕ), stated in the Lemma.

From the definition of Q1-interpolants we obtain that for ξ ∈ Ξεn,Y ∪ Ξεn,b

(6.7) ‖∇QεL(φ)‖pLp(εDxεn (ξ+Y )) ≤ Cε
d−p

∑
k∈{0,1}d

|QεL(φ)(εξ + εk)−QεL(φ)(εξ)|p.

For the triangular regions ωεξn,m between neighboring Ωεn,Y and Ωεm,Y we have

‖∇QεL(φ)‖pLp(ωεξn,m ) ≤ Cε
d−p

∑
m∈Zn

ξm∈Ξ̃εn,m

∑
kn∈K̂n,km∈K̂−m

[
|QεL(φ)(ε(ξn + kn))−QεL(φ)(εξn)|p

+|QεL(φ)(ε(ξn + kn))−QεL(φ)(ε(ξm − km))|p + |QεL(φ)(ε(ξm − km))−QεL(φ)(εξm)|p
]
.

For φ ∈W 1,p(Dxεn
Y ), using the regularity of D and the Poincaré inequality, we obtain∥∥∥φ−−∫

DxεnY

φdy
∥∥∥
Lp(DxεnY )

≤ C‖∇yφ‖Lp(DxεnY ),(6.8)∣∣∣−∫
DxεnY

φdy −−
∫
DxεnY

φdy
∣∣∣p +

∣∣∣−∫
Dxεn (Y+k)

φdy −−
∫
DxεnY

φdy
∣∣∣p ≤ C‖∇yφ‖pLp(DxεnY),∣∣∣−∫

DxεnY

φdy −−
∫
DxεnY

−
φdy

∣∣∣p +
∣∣∣−∫
Dxεn (Y−k)

φdy −−
∫
DxεnY

−
φdy

∣∣∣p ≤ C‖∇yφ‖pLp(DxεnY
−),
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where 1 ≤ n ≤ Nε, k ∈ {0, 1}d and the constant C depends on D and is independent
of ε and n. Using a scaling argument we obtain for every ξ ∈ Ξεn∥∥∥φ−−∫

εDxεn (ξ+Y )

φdx
∥∥∥
Lp(εDxεn (ξ+Y ))

≤ Cε‖∇φ‖Lp(εDxεn (ξ+Y )) .(6.9)

Hence, for ξ ∈ Ξεn,Y ∪ Ξεn,b and k ∈ {0, 1}d as well as for ξj ∈ Ξ̄εj , with j = n,m and

kn ∈ K̂n, km ∈ K̂−m we have

|QεL(ϕ)(εξ + εk)−QεL(ϕ)(εξ)|p =
∣∣∣−∫
Y+k

ϕ(εDxεn
(ξ + y))dy −−

∫
Y

ϕ(εDxεn
(ξ + y))dy

∣∣∣p
≤ Cεp−d‖∇ϕ‖pLp(εDxεn (ξ+Y)),

|QεL(ϕ)(εξn + εkn)−QεL(ϕ)(εξn)|p ≤ Cεp−d‖∇ϕ‖pLp(εDxεn (ξn+Y)),

|QεL(ϕ)(εξm − εkm)−QεL(ϕ)(εξm)|p ≤ Cεp−d‖∇ϕ‖pLp(εDxεn (ξm+Y−)),

(6.10)

where C depends on D and is independent of ε, n, and m.
For ξn ∈ Ξ̄εn, ξm ∈ Ξ̃εn,m and kn ∈ K̂n, km ∈ K̂−m, using the fact εDxεm

(ξm+Y−)∩
εDxεn

(ξn + Y) 6= ∅, and applying the inequalities (6.8) with a connected domain

Ỹξn =
⋃

m∈Zn,ξm∈Ξ̃εn,m

⋃
k∈{0,1}d

Dxεm
(ξm + Y− + k) ∪Dxεn

(ξn + Y − k),

instead of Y and Y−, together with a scaling argument, yield

|QεL(ϕ)(εξn + εkn)−QεL(ϕ)(εξm − εkm)|p ≤
∣∣∣−∫
Dxεn (ξn+Y+kn)

ϕ(εy)dy −−
∫
Ỹξn

ϕ(εy)dy
∣∣∣p

+
∣∣∣−∫
Dxεm (ξm+Y−km)

ϕ(εy)dy −−
∫
Ỹξn

ϕ(εy)dy
∣∣∣p ≤ Cεp−d‖∇ϕ‖p

Lp(εỸξn )
,

(6.11)

where C depends on D and is independent of ε, n, and m. Thus in ΛεY \ Ω̃εb we have

‖∇QεL(ϕ)‖p
Lp(ΛεY\Ω̃εb)

≤ C1

Nε∑
n=1

∑
ξn∈Ξ̄εn
m∈Zn

∑
ξm∈Ξ̃εn,m

‖∇ϕ‖p
Lp(εỸξn )

≤ C2‖∇ϕ‖pLp(Ω).(6.12)

Applying (6.10) in (6.7), summing up over ξ ∈ Ξεn,Y ∪ Ξεn,b and n = 1, . . . , Nε and
combining with the estimate for ‖∇QεL(ϕ)‖Lp(ΛεY\Ω̃εb)

in (6.12) we obtain the estimate

for ‖∇QεL(ϕ)‖Lp(Ω) in terms of ‖∇ϕ‖Lp(Ω), as stated in the Lemma.
To show the estimates for RεL(ϕ) we consider first

‖ϕ(x)−QεL(ϕ)(x)‖Lp(εDxεn (ξ+Y )) ≤ ‖ϕ(x)−QεL(ϕ)(εξ)‖Lp(εDxεn (ξ+Y ))

+ ‖QεL(ϕ)(εξ)−QεL(ϕ)(x)‖Lp(εDxεn (ξ+Y ))

for ξ ∈ Ξεn,Y ∪Ξεn,b. Using the definition of QεL and (6.9) we obtain for ξ ∈ Ξεn,Y ∪Ξεn,b

‖ϕ−QεL(ϕ)(εξ)‖Lp(εDxεn (ξ+Y )) ≤ Cε‖∇ϕ‖Lp(εDxεn (ξ+Y )) .

The definition of QεL(ϕ) and the properties of Q1-interpolants along with (6.10) imply

‖QεL(ϕ)−QεL(ϕ)(εξ)‖Lp(εDxεn (ξ+Y )) ≤ Cε‖∇ϕ‖Lp(εDxεn (ξ+Y)) for ξ ∈ Ξεn,Y ∪ Ξεn,b.
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For triangular elements ωεξn,m ⊂ ΛεY \ Ω̃εb with ξn ∈ Ξ̄εn and ξm ∈ Ξ̃εn,m we have

ωεξn,m ⊂ εỸξn . Then, the inequalities in (6.8) with Ỹξn and a scaling argument imply

‖ϕ(x)−QεL(ϕ)(εξn)‖Lp(ωεξn,m ) ≤ ‖ϕ(x)−QεL(ϕ)(εξn)‖Lp(εỸξn ) ≤ Cε‖∇ϕ‖Lp(εỸξn ),

whereas (6.10) and (6.11) together with the properties of Q1-interpolants ensure

‖QεL(ϕ)−QεL(ϕ)(εξn)‖pLp(ωεξn,m ) ≤ Cε
p‖∇ϕ‖p

Lp(εỸξn )
.

Thus, combining the estimates from above we obtain the following estimate

‖RεL(ϕ)‖Lp(Ω) ≤
Nε∑
n=1

‖ϕ−QεL(ϕ)‖Lp(Ωεn) ≤
Nε∑
n=1

∑
ξ∈Ξεn,Y∪Ξεn,b

‖ϕ−QεL(ϕ)‖Lp(εDxεn (ξ+Y ))

+

Nε∑
n=1

∑
ξn∈Ξ̄εn,m∈Zn

∑
ξm∈Ξ̃εn,m

‖ϕ−QεL(ϕ)‖Lp(ωεξn,m ) ≤ Cε‖∇ϕ‖Lp(Ω).

The estimate for ∇QεL(ϕ) and the definition of RεL(ϕ) yield the estimate for ∇RεL(ϕ).

To show convergence results for sequences obtained by applying the l-p unfolding
operator to sequences of functions defined on locally-periodic perforated domains, we
have to introduce the interpolation operator Q∗,εL for functions in Lp(Ω∗ε). We define

Ω̂∗ε = Int
( Nε⋃
n=1

Ω̂∗,εn
)
, Λ∗ε = Ω∗ε \ Ω̂∗ε, where Ω̂∗,εn =

⋃
ξ∈Ξ̂εn

εDxεn
(Y
∗

+ ξ),

and

Ω∗ε,Y = Int
( Nε⋃
n=1

Ω
∗,ε
n,Y
)
, Λ∗ε,Y = Ω∗ε \ Ω∗ε,Y , where Ω∗,εn,Y = Int

( ⋃
ξ∈Ξεn,Y

εDxεn
(Y
∗

+ ξ)
)
,

as well as Ω̃∗ε = Ω∗ε ∩ Ω̃ε, where Ω̃ε is defined as

(6.13) Ω̃ε = {x ∈ Ω : dist(x, ∂Ω) > 4ε max
x∈∂Ω

diam(D(x)Y )}.

We also consider Y∗ = Int
(⋃

k∈{0,1}d(Y
∗

+ k)
)

and Y∗,− = Int
(⋃

k∈{0,1}d(Y
∗ − k)

)
.

Similar to QεL, in the definition of the interpolation operator Q∗,εL we shall dis-

tinguish between ΩεY and ΛεY ∩ Ω̃ε. For x ∈ ΩεY we can consider Q1-interpolation

between vertices of the corresponding unit cells, whereas for x ∈ ΛεY ∩ Ω̃ε we consider
triangular Q1-interpolation between vertices of unit cells in two neighboring Ωεn and

Ωεm. This approach ensures that Q∗,εL (φ) is continuous in Ω̃ε.

Definition 6.3. The operator Q∗,εL : Lp(Ω∗ε)→W 1,∞(Ω̃ε) is defined by

(6.14) Q∗,εL (φ)(εξ) = −
∫
Y ∗
φ(Dxεn

(εξ + εy))dy for ξ ∈ Ξ̂εn and n = 1, . . . , Nε,

and for x ∈ Ωεn,Y ∩ Ω̃ε we define Q∗,εL (φ)(x) as the Q1-interpolant of the values of

Q∗,εL (φ)(εξ) at vertices of ε[D−1
xεn
x/ε]Y + εY , where 1 ≤ n ≤ Nε.
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For x ∈ ΛεY ∩ Ω̃ε we define Q∗,εL (φ)(x) as a triangular Q1-interpolant of the values of

QεL(φ)(εξ) at ξn + kn and ξm such that ξm ∈ Ξ̃εn,m for m ∈ Zn and kn ∈ K̂n, where
1 ≤ n ≤ Nε, see Figure 4.

In a similar way as for QεL(φ) and RεL(φ) we obtain estimates for Q∗,εL (φ) and
R∗,εL (φ) = φ−Q∗,εL (φ).

Lemma 6.4. For every φ ∈W 1,p(Ω∗ε), where 1 ≤ p <∞, we have

‖Q∗,εL (φ)‖Lp(Ω̃ε)
≤ C‖φ‖Lp(Ω∗ε), ‖∇Q∗,εL (φ)‖Lp(Ω̃ε)

≤ C‖∇φ‖Lp(Ω∗ε),

‖R∗,εL (φ)‖Lp(Ω̃∗ε) ≤ Cε‖∇φ‖Lp(Ω∗ε), ‖∇R∗,εL (φ)‖Lp(Ω̃∗ε) ≤ C‖∇φ‖Lp(Ω∗ε),

where the constant C is independent of ε.
Proof. The proof for the first estimate follows the same lines as the proof of

the corresponding estimate in Lemma 6.2. To show the estimates for ∇Q∗,εL (φ) and
R∗,εL (φ) we have to estimate the differences Q∗,εL (φ)(εξ)−Q∗,εL (φ)(εξ+k) for ξ ∈ Ξεn,Y
and k ∈ {0, 1}d, and Q∗,εL (φ)(εξn+εkn)−Q∗,εL (φ)(εξm−εkm) for ξn ∈ Ξ̄εn, ξm ∈ Ξ̃εn,m,

with m ∈ Zn, and kn ∈ K̂n, km ∈ K̂−m, where 1 ≤ n ≤ Nε. As in the proof of
Lemma 6.2, by considering the estimate (6.7), applying the Poincaré inequality and
using the estimates similar to (6.10), with Y ∗ and Y∗ instead of Y and Y, we obtain

(6.15)

∣∣Q∗,εL (φ)(εξ)−Q∗,εL (φ)(εξ + k)
∣∣p ≤ Cεp−d‖∇φ‖pLp(εDxεn (Y∗+ξ)),

‖∇Q∗,εL (φ)(x)‖Lp(εDxεn (Y+ξ)) ≤ C‖∇φ‖Lp(εDxεn (Y∗+ξ)),

‖φ−Q∗,εL (φ)‖Lp(εDxεn (Y ∗+ξ)) ≤ ‖φ−Q∗,εL (φ)(εξ)‖Lp(εDxεn (Y ∗+ξ))

+ ‖Q∗,εL (φ)−Q∗,εL (φ)(εξ)‖Lp(εDxεn (Y+ξ)) ≤ Cε‖∇φ‖Lp(εDxεn (Y∗+ξ)),

for ξ ∈ Ξεn,Y and n = 1, . . . , Nε. For ξn ∈ Ξ̄εn and ξm ∈ Ξ̃εn,m, with m ∈ Zn, we

consider sets of Dxj (Y0 + ξ) for such Dxj (Y + ξ), with ξ ∈ Ξ̂εj and j = n,m, that have
possible nonempty intersections with a triangular element ωεξn,m between neighboring

Ω∗,εn,Y and Ω∗,εm,Y

Ŷ0
ξn =

⋃
k−n ∈K̂−n

⋃
k+n∈K̂n

Dxn(Y 0 + ξn − k−n ) ∪Dxn(Y 0 + ξn + k+
n ),

Ŷ0,−
ξn

=
⋃

m∈Zn,ξm∈Ξ̃εn,m

l∈Zm,ξl∈Ξ̃εl,m

⋃
k−m∈K̂

−
m

k+l ∈K̂l

Dxm(Y 0 + ξm − k−m) ∪Dxl(Y 0 + ξl + k+
l ),

and sets of cells Dxn(Y +ξ) and Dxm(Y +ξ) that have possible nonempty intersections
with ωεξn,m

Ŷξn = Int
( ⋃
k−n ∈K̂−n

Dxn(Y + ξn − k−n ) ∪Dxn(Y + ξn)
)
,

Ŷ−ξn = Int
( ⋃
m∈Zn,ξm∈Ξ̃εn,m

Dxm(Y− + ξm)
)

and define Ỹ∗ξn = Int
(
(Ŷξn ∪ Ŷ−ξn) \ (Ŷ0

ξn
∪ Ŷ0,−

ξn
)
)
. We have that Ỹ∗ξn is connected and

εỸ∗ξn ⊂ Ω∗ε for all ξn ∈ Ξ̄εn, n = 1, . . . , Nε. Applying the Poincaré inequality in Ỹ∗ξn
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and using the regularity of D yields

(6.16)

∣∣∣−∫
Dxεn (Y ∗+ξn+kn)

φ(y)dy −−
∫
Ỹ∗ξn

φ(y)dy
∣∣∣p ≤ C ∫

Ỹ∗ξn

|∇yφ(y)|pdy,∣∣∣−∫
Dxεm (Y ∗+ξm−km)

φ(y)dy −−
∫
Ỹ∗ξn

φ(y)dy
∣∣∣p ≤ C ∫

Ỹ∗ξn

|∇yφ(y)|pdy,∥∥∥φ−−∫
Dxεn (Y ∗+ξn)

φ(y)dy
∥∥∥
Lp(Ỹ∗ξn )

≤ C‖∇yφ‖Lp(Ỹ∗ξn ),

for ξn ∈ Ξ̄εn, ξm ∈ Ξ̃εn,m, with m ∈ Zn, and kn ∈ K̂n, km ∈ K̂−m, where the constant
C depends on D and is independent of ε, n and m. Then, using a scaling argument
in (6.16) implies

(6.17)
∣∣Q∗,εL (φ)(εξn + εkn)−Q∗,εL (φ)(εξm − εkm)

∣∣p ≤ Cεp−d‖∇φ‖p
Lp(εỸ∗ξn )

for ξn ∈ Ξ̄εn, ξm ∈ Ξ̃εn,m, with m ∈ Zn, and kn ∈ K̂n, km ∈ K̂−m. Hence, taking into

account that |Zn| ≤ 2d and |Ξ̃εn,m| ≤ 22(d−1), we obtain

(6.18) ‖∇Q∗,εL (φ)‖p
Lp(ΛεY∩Ω̃ε)

≤ C1

Nε∑
n=1

∑
ξn∈Ξ̄εn

‖∇φ‖p
Lp(εỸ∗ξn )

≤ C2‖∇φ‖pLp(Ω∗ε).

Applying a scaling argument in (6.16) and using the properties of Q1-interpolants and
the estimate (6.17) yields

(6.19)

‖φ−Q∗,εL (φ)‖Lp(Λ∗ε,Y∩Ω̃ε)
≤

Nε∑
n=1

∑
ξn∈Ξ̄εn

[∥∥φ−Q∗,εL (φ)(εξn)
∥∥
Lp(εỸ∗ξn )

+
∑

m∈Zn,ξm∈Ξ̃εn,m

∥∥Q∗,εL (φ)(εξn)−Q∗,εL (φ)
∥∥
Lp(ωεξn,m )

]
≤ Cε‖∇φ‖Lp(Ω∗ε).

Summing in (6.15) over Ξεn,Y and 1 ≤ n ≤ Nε, adding (6.18) or (6.19), respectively,

and using the definition of R∗,εL (φ) we obtain the estimates stated in the Lemma.

7. The l-p unfolding operator in perforated domains: Proofs of con-
vergence results. In this section we prove convergence results for the l-p unfolding
operator in domains with locally-periodic perforations. First, we show some properties
of the l-p unfolding operator in perforated domains.

Lemma 7.1.
(i) T ∗,εL is linear and continuous from Lp(Ω∗ε) to Lp(Ω× Y ∗), where p ∈ [1,∞),

‖T ∗,εL (w)‖Lp(Ω×Y ∗) ≤ |Y |1/p‖w‖Lp(Ω∗ε) .

(ii) For w ∈ Lp(Ω), with p ∈ [1,∞), T ∗,εL (w)→ w strongly in Lp(Ω× Y ∗).
(iii) Let wε ∈ Lp(Ω∗ε), with p ∈ (1,∞), such that ‖wε‖Lp(Ω∗ε) ≤ C. If

T ∗,εL (wε) ⇀ ŵ weakly in Lp(Ω× Y ∗) ,

then

w̃ε ⇀
1

|Y |

∫
Y ∗
ŵ dy weakly in Lp(Ω).
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(iv) For w ∈ Lp(Ω;Cper(Y
∗
x )) we have T ∗,εL (Lεw) → w(·, Dx·) in Lp(Ω × Y ∗),

where p ∈ [1,∞).
(v) For w ∈ C(Ω;Lpper(Y

∗
x )) we have T ∗,εL (Lε0w)→ w(·, Dx·) in Lp(Ω×Y ∗), where

p ∈ [1,∞).
By w̃ we denote the extension of w by zero from Ω∗ε into Ω.
Proof. [Sketch of the Proof] The proof of (i) follows directly from the definition

of T ∗,εL and by using similar calculations as in the proof of Lemma 5.1.
For wk ∈ C∞0 (Ω) the convergence in (ii) results from the definition of T ∗,εL , the

properties of the covering of Ω∗ε by Ω∗,εn and the following simple calculations

lim
ε→0

∫
Ω×Y ∗
|T ∗,εL (wk)|pdydx = lim

ε→0

[
Nε∑
n=1

|Ω̂εn||Y ∗||wk(xεn)|p + δε

]
=

∫
Ω×Y ∗
|wk(x)|pdydx.

We used the fact that |Λε| → 0 as ε→ 0 and, due to the continuity of wk, we have

δε =

Nε∑
n=1

∑
ξ∈Ξ̂εn

|Y |
∫
εDxεn (ξ+Y ∗)

|wk(x)− wk(xεn)|p dx → 0 as ε→ 0 .

The approximation of w ∈ Lp(Ω) by {wk} ⊂ C∞0 (Ω) and the estimate for the norm of
T ∗,εL (ϕ) in (i), yield the convergence for w ∈ Lp(Ω). The proof of the convergence in
(iii) is similar to the proof of Lemma 5.2 and the corresponding result for the periodic
unfolding operator.

The proof of (iv) follows the same lines as the proof of the corresponding result
for T εL in Lemma 5.3. In a similar way as in [49, Lemma 3.4] we obtain that

lim
ε→0

∫
Ω∗ε

|Lε0(w)(x)|pdx =

∫
Ω

1

|Yx|

∫
Y ∗x

|w(x, y)|pdydx =

∫
Ω

1

|Y |

∫
Y ∗
|w(x,Dxỹ)|pdỹdx,

lim
ε→0

∫
Λ∗ε

|Lε0(w)(x)|pdx = 0.

Then, the last two convergence results together with the equality

lim
ε→0

∫
Ω×Y ∗

|T ∗,εL (Lε0w)|pdydx = |Y | lim
ε→0

[ ∫
Ω∗ε

|Lε0w|pdx−
∫

Λ∗ε

|Lε0w|pdx
]

imply the convergence result stated in (v).

Similar to T εL we have ∇yT ∗,εL (w) = ε
∑Nε
n=1D

T
xεn
T ∗,εL (∇w)χΩεn

for w ∈W 1,p(Ω∗ε).

Using the definition and properties of T ∗,εL , we prove convergence results for T ∗,εL (wε),
εT ∗,εL (∇wε), and T ∗,εL (∇wε). We start with the proof of Theorem 4.3. Here the proof
of the weak convergence follows the same steps as for T εL in Theorem 4.1, whereas the
periodicity of the limit-function we show in a different way.

Proof. [Proof of Theorem 4.3] The boundedness of {T ∗,εL (wε)} and {∇yT ∗,εL (wε)},
ensured by (4.1) and the regularity of D, imply the weak convergences in (4.2). To
show the periodicity of w we consider for φ ∈ C∞0 (Ω× Y ∗) and k = 1, . . . , d∫

Ω×Y ∗
T ∗,εL (wε)(x, ỹ + ek)φdxdỹ =

∫
Ω×Y ∗

Nε∑
n=1

T ∗,εL (wε)φ(x− εDxεn
ek, ỹ)χΩ̃ε,kn

dxdỹ

+

Nε∑
n=1

[ ∫
Λ̃εn,2×Y ∗

T ∗,εL (wε)φdxdỹ −
∫

Λ̃εn,1×Y ∗
T ∗,εL (wε)(x, ỹ + ek)φdxdỹ

]
,
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where Ω̃ε,kn and Λ̃εn,j , with j = 1, 2, are defined in the proof of Theorem 4.1, Section 5,

with ek instead of ed. Considering the weak convergence of T ∗,εL (wε) along with the

fact that |
∑Nε
n=1 Λ̃εn,j | ≤ Cε1−r, for j = 1, 2, and taking the limit as ε→ 0 implies∫

Ω×Y ∗
w(x,Dx(ỹ + ek))φ(x, ỹ)dỹdx =

∫
Ω×Y ∗

w(x,Dxỹ)φ(x, ỹ)dỹdx

for all φ ∈ C∞0 (Ω×Y ∗) and k = 1, . . . , d. Thus, we obtain that w(x, y) is Yx-periodic.

Similar to the periodic case, we use the micro-macro decomposition of a function
φ ∈W 1,p(Ω∗ε), i.e. φ = Q∗,εL (φ)+R∗,εL (φ), to show the weak convergence of T ∗,εL (∇wε).
Here we use the fact that for {wε} bounded in W 1,p(Ω∗ε) the sequence {Q∗,εL (wε)} is
bounded in W 1,p(G), for every relatively compact open subset G ⊂ Ω.

Notice that for wε ∈W 1,p(Ω∗ε) the function Q∗,εL (wε) is defined on Ω̃ε. Thus, we
can apply T εL toQ∗,εL (wε) and use the convergence results for the l-p unfolding operator
T εL (shown in Theorems 4.1 and 4.2) to prove the weak convergence of T εL (Q∗,εL (wε)∼)

and T εL ([∇Q∗,εL (wε)]∼), where ∼ denotes an extension by zero from Ω̃ε to Ω.

Lemma 7.2. If ‖wε‖W 1,p(Ω∗ε) ≤ C, where p ∈ (1,∞). Then there exist a subse-
quence (denoted again by wε) and a function w ∈W 1,p(Ω) such that

T εL (Q∗,εL (wε)∼)→ w strongly in Lploc(Ω;W 1,p(Y )),

T εL (Q∗,εL (wε)∼) ⇀ w weakly in Lp(Ω;W 1,p(Y )),

T εL ([∇Q∗,εL (wε)]∼) ⇀ ∇w weakly in Lp(Ω× Y ).

Proof. Similar to the periodic case [22], the estimates for Q∗,εL in Lemma 6.4
ensure that there exists a function w ∈W 1,p(Ω) such that, up to a subsequence,

Q∗,εL (wε)∼ → w strongly in Lploc(Ω) and weakly in Lp(Ω),

[∇Q∗,εL (wε)]∼ ⇀ ∇w weakly in Lp(Ω).

Then, the first two convergences stated in the Lemma follow directly from the esti-
mates, estimate ‖∇yT εL (Q∗,εL (wε)∼)‖Lp(Ω×Y ) ≤ C1ε‖[∇Q∗,εL (wε)]∼‖Lp(Ω) ≤ Cε, and
convergence results for T εL in Lemmas 5.1, 5.2 and Theorem 4.1. To prove the final
convergence stated in the Lemma we observe that Q∗,εL (wε)|G is uniformly bounded
in W 1,p(G), where G ⊂ Ω is a relatively compact open set, see Lemma 6.4. Then, by
Theorem 4.2 there exists ŵ1,G ∈ Lp(G;W 1,p

per(Yx)) such that

T εL (∇Q∗,εL (wε)|G) ⇀ ∇w +D−Tx ∇yŵ1,G(·, Dx·) weakly in Lp(G× Y ) .

The definition of QεL implies that ŵ1,G is a polynomial in y of degree less than or
equal to one with respect to each variable y1, . . . , yd. Thus, the Yx-periodicity of ŵ1,G

yields that it is constant with respect to y and

T εL ([∇Q∗,εL (wε)]∼) ⇀ ∇w weakly in Lploc(Ω;Lp(Y )).

The boundedness of [∇Q∗,εL (wε)]∼ in Lp(Ω) implies the boundedness of T εL ([∇Q∗,εL (wε)]∼)
in Lp(Ω× Y ) and we obtain the last convergence stated in Lemma.

For R∗,εL (wε) = wε −Q∗,εL (wε) we have the following convergence results.
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Lemma 7.3. Consider a sequence {wε} ⊂ W 1,p(Ω∗ε), with p ∈ (1,∞), satisfying
‖∇wε‖Lp(Ω∗ε) ≤ C. Then, there exist a subsequence (denoted again by wε) and a
function w1 ∈ Lp(Ω;W 1,p

per (Y ∗x )) such that

ε−1 T ∗,εL (R∗,εL (wε)∼) ⇀ w1(·, Dx·) weakly in Lp(Ω;W 1,p(Y ∗)),

T ∗,εL (R∗,εL (wε)∼)→ 0 strongly in Lp(Ω;W 1,p(Y ∗)),

T ∗,εL ([∇R∗,εL (wε)]∼) ⇀ D−Tx ∇yw1(·, Dx·) weakly in Lp(Ω× Y ∗),
(7.1)

where ∼ denotes the extension by zero from Ω̃∗ε to Ω∗ε.
Proof. The estimates in Lemma 6.4 imply that ε−1 T ∗,εL (R∗,εL (wε)∼) is bounded in

Lp(Ω;W 1,p(Y ∗)) and there exists w̃1 ∈ Lp(Ω;W 1,p(Y ∗)) and w1(x, y) = w̃1(x,D−1
x y)

for x ∈ Ω, y ∈ Y ∗x , where Y ∗x = D(x)Y ∗, such that the convergences in (7.1) are
satisfied. To show that w1 is Yx-periodic we consider the restriction of ε−1R∗,εL (wε)
on G∗ε, which belongs to W 1,p(G∗ε). Here G∗ε = G ∩ Ω∗ε and G ⊂ Ω is a relatively
compact open subset of Ω. Using Lemma 6.4 we obtain

‖ε−1R∗,εL (wε)‖Lp(G∗ε) + ε‖ε−1∇R∗,εL (wε)‖Lp(G∗ε) ≤ C.

Applying Theorem 4.3 to ε−1R∗,εL (wε)|G∗ε yields w1|G×Y ∗x ∈ L
p(G;W 1,p

per(Y ∗x )). Since
G can be chosen arbitrarily we obtain that w1 ∈ Lp(Ω;W 1,p

per(Y ∗x )).
Combining the convergence results from above we obtain directly the main conver-

gence theorem for the l-p unfolding operator in locally-periodic perforated domains.
Proof. [Proof of Theorem 4.4] Similar to the periodic case the convergence results

stated in Theorem 4.4 follow directly from the fact that wε = Q∗,εL (wε) + R∗,εL (wε)
and from the convergence results in Lemmas 7.2 and 7.3.

Remark. In the definition of Ω∗ε we assumed that there no perforations in layers

(Ω∗,εn \ Ω̂∗,εn ) ∩ Ω̃ε/2, with Ω̃ε/2 = {x ∈ Ω : dist(x, ∂Ω) > 2ε max
x∈∂Ω

diam(D(x)Y )} and

1 ≤ n ≤ Nε. In the proofs of convergence results only local estimates for Q∗,εL (wε) and
R∗,εL (wε) are used, thus no restrictions on the distribution of perforations near ∂Ω are
needed. For the macroscopic description of microscopic processes this assumption is

not restrictive since
∣∣⋃Nε

n=1(Ω∗,εn \ Ω̂∗,εn )∩Ω
∣∣ ≤ Cε1−r → 0 as ε→ 0, r < 1. If we allow

perforations in layers between two neighboring Ω̂∗,εn and Ω̂∗,εm in Ω̃ε/2, then using that

Y ∗ = Y \ Y 0 is connected, the transformation matrix D is Lipschitz continuous and

dist(Ω̃ε/2, ∂Ω) > 0, it is possible to construct an extension of wε ∈ W 1,p(Ω∗ε) from

(Ω∗,εn \ Ω̂∗,εn ) ∩ Ω̃ε/2 to (Ωεn \ Ω̂εn) ∩ Ω̃ε/2, such that the W 1,p-norm of the extension
is controlled by the W 1,p-norm of the original function, uniform in ε, and apply
Lemmas 7.2, 7.3 and Theorem 4.4 to the sequence of extended functions.

8. Two-scale convergence on oscillating surfaces and the l-p boundary
unfolding operator. To derive macroscopic equations for the microscopic problems
posed on boundaries of locally-periodic microstructures or with non-homogeneous
Neumann conditions on boundaries of locally-periodic microstructures we have to
show convergence properties for sequences defined on oscillating surfaces. To show
the compactness result for l-p two-scale convergence on oscillating surfaces (see The-
orem 4.5) we first prove the convergence of the Lp(Γε)-norm of the l-p approximation
of ψ ∈ C(Ω;Cper(Yx)).

Lemma 8.1. For ψ ∈ C(Ω;Cper(Yx)) and 1 ≤ p <∞, we have that

lim
ε→0

ε

∫
Γε
|Lεψ(x)|p dσx =

∫
Ω

1

|Yx|

∫
Γx

|ψ(x, y)|pdσydx.
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Proof. The definition of the l-p approximation Lε implies

ε

∫
Γε
|Lεψ|pdσx = ε

Nε∑
n=1

∑
ξ∈Ξ̂εn

∫
εΓξxn

∣∣∣ψ̃(x, D−1
xεn
x

ε

)∣∣∣p − ∣∣∣ψ̃(xεn, D−1
xεn
x

ε

)∣∣∣pdσx
+ ε

Nε∑
n=1

[ ∑
ξ∈Ξ̂εn

∫
εΓξxn

∣∣∣ψ̃(xεn, D−1
xεn
x

ε

)∣∣∣pdσx +
∑
ξ∈Ξ̃εn

∫
εΓξxn

∣∣∣ψ̃(xεn, D−1
xεn
x

ε

)∣∣∣pχΩεn
dσx

]
= I1 + I2 + I3,

where Ξ̃εn = Ξεn \ Ξ̂εn and Γξxn = Dxεn
(ξ + Γ̃Kxεn ). Then, the continuity of ψ, the

properties of Ωεn, and the inequality ||a|p − |b|p| ≤ p|a − b|(|a|p−1 + |b|p−1) imply
I1 → 0 as ε→ 0. Using the properties of the covering of Ω by {Ωεn}

Nε
n=1 we obtain

|I3| ≤ C sup
1≤n≤Nε

εd|Ξ̃εn||Dxεn
Γ̃Kxεn | ≤ Cε

1−r → 0 as ε→ 0 for 0 ≤ r < 1 .

Considering the properties of the covering of Ω̂εn by Dxεn(Y + ξ), where ξ ∈ Ξ̂εn and

1 ≤ n ≤ Nε, and Y -periodicity of ψ̃ the second integral can be rewritten as

I2 =

Nε∑
n=1

εd|Ξ̂εn|
∫
Dxεn Γ̃Kxεn

|ψ̃(xεn, D
−1
xεn
y)|pdσy =

Nε∑
n=1

|Ω̂εn|
|Yxεn |

∫
Dxεn Γ̃Kxεn

|ψ(xεn, y)|pdσy.

Then, the regularity assumptions on ψ, D and K, the definition of Ω̂εn and the prop-
erties of the covering of Ω by {Ωεn}

Nε
n=1 imply the convergence result stated in the

Lemma.

Similar to l-t-s convergence and two-scale convergence for sequences defined on
surfaces of periodic microstructures, the convergence of l-p approximations (shown in
Lemma 8.1) and the Riesz representation theorem ensure the compactness result for
sequences {wε} ⊂ Lp(Γε) with ε‖wε‖pLp(Γε) ≤ C.

Proof. [Proof of Theorem 4.5] The Banach space C(Ω;Cper(Yx)) is separable
and dense in Lp(Ω;Lp(Γx)). Thus, using the convergence result in Lemma 8.1, the
Riesz representation theorem and similar arguments as in [49, Theorem 3.2] we obtain
l-t-s convergence of {wε} ⊂ Lp(Γε) to w ∈ Lp(Y ;Lpper(Γx)), stated in the theorem.

Using the structure of Ω∗,εn,K and the covering properties of Ω∗ε,K by {Ω∗,εn,K}
Nε
n=1

we can derive the trace inequalities for functions defined on Γε. Applying first the
trace inequality in Y ∗,ξxεn,K

= Dxεn
(Ỹ ∗Kxεn

+ ξ), with ξ ∈ Ξ̂εn, yields

‖u‖p
Lp(Dxεn (Γ̃Kxεn

+ξ))
≤ µΓ

[
‖u‖p

Lp(Y ∗,ξ
xεn,K

)
+ ‖∇u‖p

Lp(Y ∗,ξ
xεn,K

)

]
,

‖u‖p
Lp(Dxεn (Γ̃Kxεn

+ξ))
≤ µΓ

[
‖u‖p

Lp(Y ∗,ξ
xεn,K

)
+

∫
Y ∗,ξ
xεn,K

∫
Y ∗,ξ
xεn,K

|u(y1)− u(y2)|p

|y1 − y2|d+βp
dy1dy2

]
,

for u ∈ W 1,p(Y ∗,ξxεn,K
) or u ∈ W β,p(Y ∗,ξxεn,K

), for 1/2 < β < 1, respectively, where the

constant µΓ depends only on D, K, and Y ∗, see e.g. [29, 54]. Then, scaling by ε and
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summing up over ξ ∈ Ξ̂εn and 1 ≤ n ≤ Nε implies the estimates

ε‖u‖p
Lp(Γ̂ε)

≤ µΓ

[
‖u‖pLp(Ω∗ε,K) + εp‖∇u‖pLp(Ω∗ε,K)

]
(8.1)

for u ∈W 1,p(Ω∗ε,K), p ∈ [1,∞),

ε‖u‖p
Lp(Γ̂ε)

≤ µΓ

[
‖u‖pLp(Ω∗ε,K) + εβp

∫
Ω∗ε,K

∫
Ω∗ε,K

|u(x1)− u(x2)|p

|x1 − x2|d+βp
dx1dx2

]
(8.2)

for u ∈W β,p(Ω∗ε,K) with 1/2 < β < 1, p ∈ [1,∞),

where the constant µΓ depends on D, K, and Y ∗ and is independent of ε, where

Γ̂ε =

Nε⋃
n=1

Γ̂εn with Γ̂εn =
⋃
ξ∈Ξ̂εn

εDxεn
(Γ̃Kxεn + ξ).

Since Γxεn is given by a linear transformation of Γ, for a parametrization y = y(w)
of Γ, where w ∈ Rd−1, we obtain by x(w) = εDxεn

Kxεn
y(w) the parametrization of

εΓxεn . We consider for Γ that dσy =
√
gdw with w ∈ Rd−1 and for Γxεn we have

dσnx = εd−1√gxεndw, where g = det(gij), gxεn = det(gxεn,ij) and gij , gxεn,ij are the cor-

responding first fundamental forms (metrics). We have also
∫

Γε
dσεx =

∑Nε
n=1

∫
Γεn
dσnx

and Γx = D(x)K(x)Γ with dσx =
√
g(x)dw.

Using the definition of the l-p boundary unfolding operator, the trace inequalities
(8.1), and the assumptions on D and K we show the following properties of T b,εL .

Lemma 8.2. For ψ ∈W 1,p(Ω∗ε,K), with 1 ≤ p <∞, we have

(i)

∫
Ω×Γ

Nε∑
n=1

√
gxεn√
g|Yxεn |

|T b,εL (ψ)(x, y)|pχΩεn
dσydx = ε

∫
Γ̂ε
|ψ(x)|pdσεx,

(ii)

∫
Ω×Γ

|T b,εL (ψ)(x, y)|p dσydx = ε

Nε∑
n=1

∫
Γ̂εn

√
g|Yxεn |√
gxεn

|ψ(x)|pdσnx ≤ Cε
∫

Γ̂ε
|ψ(x)|pdσεx,

(iii) ‖T b,εL (ψ)‖Lp(Ω×Γ) ≤ C
(
‖ψ‖Lp(Ω∗ε) + ε‖∇ψ‖Lp(Ω∗ε)

)
,

where the constant C depends on D and K and is independent of ε.
Proof. Equality (i) follows directly from the definition of T b,εL , i.e.∫

Ω×Γ

Nε∑
n=1

√
gxεn√
g|Yxεn |

|T b,εL (ψ)|pχΩεn
dσydx

=

Nε∑
n=1

∑
ξ∈Ξ̂εn

εd
∫

Γ

√
gxεn√
g
|ψ(εDxεn

(ξ +Kxεn
y))|pdσy = ε

∫
Γ̂ε
|ψ(x)|pdσεx.

Similar calculations and the regularity assumptions on D and K imply the equality
and the estimate in (ii). The estimate in (iii) is ensured by (ii) and (8.1).

Remark. Due to the second estimate in Lemma 8.2 and the assumptions on D
and K, the boundedness of ε‖wε‖p

Lp(Γ̂ε)
implies the boundedness of ‖T b,εL (wε)‖pLp(Ω×Γ)

and, hence, the weak convergence of T b,εL (wε) in Lp(Ω× Γ).
Applying the properties of the l-p boundary unfolding operator shown in Lemma 8.2

we prove the relation between the l-t-s convergence on oscillating boundaries and the
l-p boundary unfolding operator.

29



Proof. [Proof of Theorem 4.6] Using the definition of T b,εL and considering

ψ ∈ C(Ω;Cper(Yx)) together with the corresponding ψ̃ ∈ C(Ω;Cper(Y )) yields

∫
Ω

∫
Γ

Nε∑
n=1

√
gxεn√
g|Yxεn |

T b,εL (wε) ψ̃(x,Kxεn
y)χΩεn

dσydx

=

Nε∑
n=1

∑
ξ∈Ξ̂εn

ε

∫
εΓξ
xεn

wε(z)ψ̃
(
z,D−1

xεn

z

ε

)
dσnz

+

Nε∑
n=1

∑
ξ∈Ξ̂εn

ε1−d 1

|Yxεn |

∫
εΓξ
xεn

wε(z)

∫
εY ξ
xεn

[
ψ̃
(
x,D−1

xεn

z

ε

)
− ψ̃

(
z,D−1

xεn

z

ε

)]
dx dσnz ,

where Γξxεn = Dxεn
(Γ̃Kxεn + ξ) and Y ξxεn = Dxεn

(Y + ξ). The continuity of ψ and

the boundedness of ε‖wε‖pLp(Γε) ensure the convergence of the last integral to zero as

ε→ 0. Consider first that wε → w l-t-s. The assumption on wε, i.e. ε‖wε‖pLp(Γε) ≤ C,

with p ∈ (1,∞) ensures that, up to a subsequence, T b,εL (wε) ⇀ ŵ weakly in Lp(Ω×Γ).

Using the continuity of ψ, D, and K, along with |Γε \ Γ̂ε| → 0 as ε→ 0, yields

(8.3)

∫
Ω

∫
Γ

√
gx

|Yx|
√
g
ŵ(x,DxKxy) ψ̃(x,Kxy) dσydx

= lim
ε→0

∫
Ω

∫
Γ

Nε∑
n=1

√
gxεn

|Yxεn |
√
g
T b,εL (wε)ψ̃(x,Kxεn

y)χΩεn
dσydx

= lim
ε→0

ε

∫
Γε
wε(x)Lε(ψ) dσεx =

∫
Ω

1

|Yx|

∫
Γx

w(x, y)ψ(x, y) dσydx

for all ψ ∈ C∞0 (Ω;C∞per(Yx)). Applying the coordinate transformation in the integral
on the left hand side yields ŵ(x, y) = w(x, y) for a.a. x ∈ Ω, y ∈ Γx and, hence the

whole sequence {T b,εL (wε)} converges to w(·, DxKx·).
Consider T b,εL (wε) ⇀ w(·, DxKx·) in Lp(Ω×Γ). The boundedness of ε‖wε‖pLp(Γε)

implies that, up to a subsequence, wε → ŵ l-t-s and ŵ ∈ Lp(Ω;Lp(Γx)). Interchanging
in (8.3) ŵ and w, we obtain that the whole sequence wε l-t-s converges to w.

For functions in W β,p(Ω), with p ∈ (1,∞), and 1/2 < β or for sequences defined
on oscillating boundaries and converging in the Lp(Γε)-norm, scaled by ε1/p, we obtain
the strong convergence of the corresponding unfolded sequences.

Lemma 8.3. For u ∈W β,p(Ω), with p ∈ (1,∞), and 1/2 < β, we have

(8.4) T b,εL (u)→ u strongly in Lp(Ω× Γ).

If for {vε} ⊂ Lp(Γε) and some v ∈ C(Ω;Cper(Yx)) holds ε‖vε − Lεv‖pLp(Γε) → 0 as

ε→ 0, then

(8.5) T b,εL (vε)→ v(·, DxKx·) strongly in Lp(Ω× Γ).
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Proof. For an approximation of u by uk ∈ C1(Ω) we can write∫
Ω×Γ

|T b,εL (uk)|pdσydx =

Nε∑
n=1

∫
Ω×Γ

∣∣uk(εDxεn

[
D−1
xεn
x/ε
]
Y

+ εDxεn
Kxεn

y
)∣∣pχΩ̂εn

dσydx

=

Nε∑
n=1

∑
ξ∈Ξ̂εn

εd|Yxεn |
∫

Γ

|uk(εDxεn
(ξ +Kxεn

y))|pdσy =

Nε∑
n=1

∑
ξ∈Ξ̂εn

|εYxεn ||Γ||uk(x̃εn,ξ)|p + δε,

for some fixed x̃εn,ξ ∈ εDxεn(KxεnΓ + ξ), where, due to the continuity of uk, we have

δε =

Nε∑
n=1

∑
ξ∈Ξ̂εn

εd|Dxεn
Y |
∫

Γ

|uk(εDxεn
(ξ +Kxεn

y))− uk(x̃εn,ξ)|pdσy → 0 as ε→ 0.

The properties of the covering of Ω by {Ωεn}
Nε
n=1 and |Ωεn \ Ω̂εn| → 0 as ε→ 0 imply

lim
ε→0

Nε∑
n=1

∑
ξ∈Ξ̂εn

εd|Dxεn
Y ||Γ||uk(x̃εn,ξ)|p =

∫
Ω

∫
Γ

|uk(x)|pdσydx.

Then, the density of C1(Ω) in W β,p(Ω), the relation (ii) in Lemma 8.2, and the trace
estimate (8.2) ensure the convergence result for u ∈W β,p(Ω).

To show the convergence in (8.5) we consider

‖T b,εL (vε)− v(·, DxKx·)‖Lp(Ω×Γ) ≤ ‖T b,εL (vε)− T b,εL (Lεv)‖Lp(Ω×Γ)

+ ‖T b,εL (Lεv)− v(·, DxKx·)‖Lp(Ω×Γ).

Then, the estimate (ii) in Lemma 8.2, the regularity of v, D, and K, and the conver-
gence

lim
ε→0

∫
Ω×Γ

|T b,εL (Lεv)|pdσydx = lim
ε→0

Nε∑
n=1

|εYxεn |
∑
ξ∈Ξ̂εn

∫
Γ

|ṽ(εDxεn
(ξ +Kxεn

y),Kxεn
y)|pdσy

=

∫
Ω

∫
Γ

|v(x,DxKxy)|pdσydx,

where ṽ(x, y) = v(x,Dxy) for x ∈ Ω and y ∈ Y , ensure (8.5).
The results in Lemma 8.3 ensure the strong convergence of coefficients in equa-

tions defined on oscillating boundaries and are used in the derivation of macroscopic
problems for microscopic equations defined on surfaces of locally-periodic microstruc-
tures.

9. Homogenization of a model for a signaling process in a tissue with
locally-periodic distribution of cells. In this section we apply the methods of the
l-p unfolding operator and l-t-s convergence on oscillating surfaces to derive macro-
scopic equations for microscopic models posed in domains with locally-periodic per-
forations. We consider a generalization of the model for an intercellular signaling
process presented in [36] to tissues with locally-periodic microstructures. As exam-
ples for tissues with space-dependent changes in the size and shape of cells we consider
epithelial and plant cell tissues, see Fig. 3. As an example of a tissue which has a
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Fig. 5. Images of laminar cleavage planes in longitudinal-radial (A) and circumferential-radial
(B) tissue sections from basal and apical measurement sites in anterior LV free wall. Reproduced
from Costa, Takayana, McCulloch, Covell, 1999[23]. Cardiac muscle fiber orientations vary con-
tinuously through the left ventricular wall from a negative angle at the epicardium to positive values
toward the endocardium. Reproduced from McCulloch [41].

plywood-like structure we consider the cardiac muscle tissue of the left ventricular
wall, see Fig. 5.

The microstructure of cardiac muscle is described in the same way as a plywood-
like structure considered in the introduction, where D(x) = R−1(γ(x3)) and the
rotation matrix R is as defined in the introduction. Additionally we assume that the

radius of fibers may change locally, i.e. K(x)Y0 ⊂ Y , with K(x) =

1 0 0
0 ρ(x) 0
0 0 ρ(x)

,

Y0 = {(y1, y2, y3) ∈ Y : |y2 − 1/2|2 + |y3 − 1/2|2 < a2}, 0 < a < 1/2, and ρ ∈ C1(Ω)
with 0 < ρ1 ≤ ρ(x)a < 1/2 for all x ∈ Ω. Then, for the plywood-like structure Dxεn

=

R−1(γ(xεn,3)), Ỹ ∗Kx = Y \ K(x)Y 0, Y ∗x,K = R−1(γ(x3))Ỹ ∗Kx , and the characteristic
function of fibers is given by

χΩεf
(x) = χΩ(x)

Nε∑
n=1

η̃(xεn, R(γ(xεn,3))x/ε)χΩεn
,

where

η̃(x, y) =

{
1 for |K̂(x)−1ŷ − (1/2, 1/2)| ≤ a,
0 elsewhere,

and extended Ŷ -periodically to the whole of R3. Here ŷ = (y2, y3), Ŷ = [0, 1]2, and
K̂(x) = ρ(x) I2, where I2 denotes the identity matrix in R2×2

In the case of an epithelial tissue consider Yx = D(x)Y , with e.g.D(x) =

(
I2 0
0T κ(x)

)
,

where κ ∈ C1(Ω) and 0 < κ1 ≤ κ(x) < 1 for all x ∈ Ω defines a compression of
cells in x3-direction. The changes in the size and shape of cells can be defined by
the boundaries of the microstructure Γx = S(x)Γ ⊂ Yx = DxY for all x ∈ Ω and
S ∈ Lip(Ω;R3×3). Then, in the definition of the intercellular space Ω∗ε,K we have

Y ∗x,K = D(x)Ỹ ∗Kx = D(x)(Y \K(x)Y 0), where K(x) = D(x)−1S(x).

We define the intercellular space in a tissues as

Ω∗ε,K = Int
( Nε⋃
n=1

Ω
ε

n,K

)
∩ Ω, where Ω∗,εn,K = Ωεn \

⋃
ξ∈Ξ̂εn

Dxεn
(Kxεn

Y 0 + ξ).
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We shall use the notation Ω̂∗ε,K =
Nε⋃
n=1

⋃
ξ∈Ξ̂εn

εDxεn
(Ỹ ∗Kxεn

+ ξ) and Λ∗ε,K = Ω∗ε,K \ Ω̂∗ε,K .

In the model for a signaling process in a cell tissue we consider diffusion of signal-
ing molecules lε in the inter-cellular space and their interactions with free and bound
receptors rεf and rεb located on cell surfaces. The microscopic model reads

(9.1)

∂tl
ε − div(Aε(x)∇lε) = F ε(x, lε)− dεl (x)lε in (0, T )× Ω∗ε,K ,

Aε(x)∇lε · n = ε
[
βε(x)rεb − αε(x)lεrεf

]
on (0, T )× Γε,

Aε(x)∇lε · n = 0 on (0, T )× (∂Ω ∩ ∂Ω∗ε,K),

lε(0, x) = l0(x) in Ω∗ε,K ,

where the dynamics in the concentrations of free and bound receptors on cell surfaces
are determined by two ordinary differential equations

(9.2)

∂tr
ε
f = pε(x, rεf )− αε(x)lεrεf + βε(x)rεb − dεf (x)rεf on (0, T )× Γε,

∂tr
ε
b = αε(x)lεrεf − βε(x)rεb − dεb(x)rεb on (0, T )× Γε,

rεf (0, x) = rεf0(x), rεb(0, x) = rεb0(x) on Γε.

The coefficients Aε, αε, βε, dεj and the functions F ε(·, ξ), pε(·, ξ), rεi0 are defined as

Aε(x) = Lε0(A(x, y)), F ε(x, ξ) = Lε0(F (x, y, ξ)), pε(x, ξ) = Lε0(p(x, y, ξ)),

αε(x) = Lε0(α(x, y)), βε(x) = Lε0(β(x, y)), dεj(x) = Lε0(dj(x, y)),

rεi0(x) = Lε(ri0(x, y)), j = l, f, b, i = f, b,

for x ∈ Ω, y ∈ Yx and ξ ∈ R, where A(x, ·), α(x, ·), β(x, ·), dj(x, ·), p(x, ·, ξ), F (x, ·, ξ),
and ri0(x, ·) are Yx-periodic functions. We assume also that αε(x) = 0 and βε(x) = 0
for x ∈ Λε. The last assumption is not restrictive, since the domain Λε is very small
compared to the size of the whole domain Ω and |Λε| ≤ Cε1−r → 0 as ε → 0 for
0 ≤ r < 1.

Here, Aε : ΩT → R denotes the diffusion coefficient for signaling molecules (li-
gands), F ε : ΩT×R→ R models the production of new ligands, pε : ΩT → R describes
the production of new free receptors, dεj : ΩT → R, j = l, f, b, denote the rates of
decay of ligands, free and bound receptors, respectively, βε : ΩT → R is the rate of
dissociation of bound receptors, αε : ΩT → R is the rate of binding of ligands to free
receptors.

Assumption 9.1.
• A ∈ C(Ω;L∞per(Yx)) is symmetric with (A(x, y)ξ, ξ) ≥ d0|ξ|2 for d0 > 0,

ξ ∈ Rd, x ∈ Ω and a.a. y ∈ Yx.
• F (·, ·, ξ) ∈ C(Ω;L∞per(Yx)) is Lipschitz continuous in ξ uniformly in (x, y) and
F (x, y, ξ) ≥ 0 for ξ ≥ 0, a.a. x ∈ Ω and y ∈ Yx.

• p(·, ·, ξ) ∈ C(Ω;Cper(Yx)) is Lipschitz continuous in ξ uniformly in (x, y) and
nonnegative for nonnegative ξ.

• Coefficients α, β, dj ∈ C(Ω;Cper(Yx)) are nonnegative, j = l, f, b.
• Initial conditions l0 ∈ H1(Ω), rj0 ∈ C(Ω;Cper(Yx)) are nonnegative, j = f, b.

Notice that these assumptions are satisfied by the physical processes described
by our model, since for most signaling processes in biological tissues we have that
A = const, F (x, y, ξ) = µ1ξ/(µ2 + µ3ξ), and p(x, y, ξ) = κ1ξ/(κ2 + κ3ξ) with some
nonnegative constants µi and κi, for i = 1, 2, 3, and the coefficients α, β, and dj , with
j = l, f, b, can be chosen as constant or as some smooth functions.
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We shall use the following notations Γ̂εT = (0, T ) × Γ̂ε, ΓεT = (0, T ) × Γε, ΩT =
(0, T )× Ω, ΓT = (0, T )× Γ, and Γx,T = (0, T )× Γx.

Definition 9.1. A weak solution of the problem (9.1)–(9.2) are functions (lε, rεf , r
ε
b)

such that lε ∈ L2(0, T ;H1(Ω∗ε,K)) ∩ H1(0, T ;L2(Ω∗ε,K)), rεj ∈ H1(0, T ;L2(Γε)) ∩
L∞(ΓεT ), for j = f, b, satisfying the equation (9.1) in the weak form

(9.3)
〈∂tlε, φ〉Ω∗ε,K ,T + 〈Aε(x)∇lε,∇φ〉Ω∗ε,K ,T = 〈F ε(x, lε)− dεl (x) lε, φ〉Ω∗ε,K ,T

+ ε〈βε(x)rεb − αε(x)lεrεf , φ〉Γ̂ε,T ,

for all φ ∈ L2(0, T ;H1(Ω∗ε,K)), the equations (9.2) are satisfied a.e. on ΓεT , and

lε(t, ·)→ l0(·) in L2(Ω∗ε,K), rεj (t, ·)→ rεj0(·) in L2(Γε) as t→ 0.

Here for v, w ∈ L2((0, σ)×A) we use the notation 〈v, w〉A,σ =
∫ σ

0

∫
A
v w dxdt.

In a similar way as in [16, 36] we obtain the existence and uniqueness results and
a priori estimates for weak solutions of the microscopic model (9.1)–(9.2).

Lemma 9.2. Under Assumption 9.1 there exists a unique non-negative weak
solution of the microscopic model (9.1)–(9.2) satisfying a priori estimates

‖lε‖L∞(0,T ;L2(Ω∗ε,K)) + ‖∇lε‖L∞(0,T ;L2(Ω∗ε,K)) + ‖∂tlε‖L2((0,T )×Ω∗ε,K) ≤ C,

ε1/2‖lε‖L2(Γ̂εT ) + ‖rεj‖L∞(0,T ;L∞(Γε)) + ε1/2‖∂trεj‖L2(ΓεT ) ≤ C,
(9.4)

with j = f, b, where the constant C is independent of ε. Additionally, we have that

(9.5) ‖(lε −MeBt)+‖L∞(0,T ;L2(Ω∗ε,K)) + ‖∇(lε −MeBt)+‖L2((0,T )×Ω∗ε,K) ≤ Cε1/2,

where v+ = max{0, v}, M ≥ sup
Ω
l0(x), B = B(F, β, p), and C is independent of ε.

Proof. [Proof Sketch] To prove the existence of a solution of the microscopic model
we show the existence of a fix point of an operator B defined on L2(0, T ;Hς(Ω∗ε,K)),
with 1/2 < ς < 1, by lεn = B(lεn−1) given as a solution of (9.1)–(9.2) with lεn−1 in the
equations (9.2) and in the nonlinear function F ε(x, lε) instead of lεn. For a given non-
negative lεn−1 ∈ L2(0, T ;Hς(Ω∗ε,K)) there exists a non-negative solution (rεf,n, r

ε
b,n) of

(9.2). Then, the non-negativity of solutions, the equality

∂t(r
ε
f,n + rεb,n) = pε(x, rεf,n)− dεb(x)rεb,n − dεf (x)rεf,n,

and the Lipschitz continuity of p ensure the boundedness of rεf,n and rεb,n. Considering

lε,−n = min{0, lεn} as a test function in (9.3) and using the non-negativity of rεf,n, rεb,n
and the initial data we obtain the non-negativity of lεn. Applying Galerkin’s method
and using a priori estimates similar to these in (9.4) we obtain the existence of a weak
non-negative solution lεn ∈ H1(0, T ;L2(Ω∗ε,K))∩L2(0, T ;H1(Ω∗ε,K)). The compactness

of the embedding H1(0, T ;L2(Ω∗ε,K)) ∩ L2(0, T ;H1(Ω∗ε,K)) ⊂ L2(0, T ;Hς(Ω∗ε,K)) and
Schauder’s theorem imply the existence of a fixed point lε of B. Notice that the strong
convergence of lεn in L2(Γε), as n→∞, implies the strong convergence of rεj,n, j = f, b.
Taking lεn and ∂tl

ε
n as test functions in (9.3) and using the trace estimate (8.1) we

obtain a priori estimates for lεn. Testing (9.2) by ∂tr
ε
f,n and ∂tr

ε
b,n, respectively, yields

the estimates for the time derivatives. Then, using the lower semicontinuity of the
norm we obtain the a priori estimates (9.4) for lε, rεf and rεb .

Especially for the derivation of a priori estimates for ∂tl
ε we consider

ε

∫
Γε

(βε rεb − αεrεf lε)∂tlεdσx = ε
d

dt

∫
Γε
βε rεb l

ε dσx − ε
∫

Γε
βε ∂tr

ε
b l
ε dσx

−ε
2

d

dt

∫
Γε
αεrεf |lε|2dσx +

ε

2

∫
Γε
αε∂tr

ε
f |lε|2dσx.
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Using the equation for ∂tr
ε
f , the last integral can be rewritten as

ε

2

∫
Γε
αε
(
pε(x, rεf )− αε lεrεf + βε rεb − dεf rεf

)
|lε|2dσx.

Applying the trace estimate (8.1) and using the assumptions on αε and βε, along with
the non-negativity of lε and rεj , the boundedness of rεj , uniform in ε, and the estimate

ε‖∂trεb‖2L2(ΓεT ) ≤ C, we obtain

ε

∫ τ

0

∫
Γε

(βε rεb − αε rεf lε
)
∂tl

εdσxdt ≤ C1

[
‖lε(τ)‖2L2(Ω∗ε,K) + ε2‖∇lε(τ)‖2L2(Ω∗ε,K)

]
+C2

[
‖lε‖2L2((0,τ)×Ω∗ε,K) + ε2‖∇lε‖2L2((0,τ)×Ω∗ε,K)

]
+ C3

for τ ∈ (0, T ]. Standard arguments pertaining to the difference of two solutions lε1−lε2,
rεj,1 − rεj,2, with j = f, b, imply the uniqueness of a weak solution of the microscopic
model (9.1)–(9.2). In particular, the non-negativity of αε, rεf and lε along with the
boundedness of rεf ensures

∂t‖rεf,1 − rεf,2‖2L2(Γε) ≤ C
( ∑
j=f,b

‖rεj,1 − rεj,2‖2L2(Γε) + ‖lε1 − lε2‖2L2(Γ̂ε)

)
.(9.6)

Testing the difference of the equations for rεf,1 + rεb,1 and rεf,2 + rεb,2 by rεf,1 + rεb,1 −
rεf,2 − rεb,2 yields

‖rεb,1(τ)− rεb,2(τ)‖2L2(Γε) ≤ C
∫ τ

0

∑
j=f,b

‖rεj,1 − rεj,2‖2L2(Γε) + ‖lε1 − lε2‖2L2(Γ̂ε)
dt.(9.7)

Applying the Gronwall Lemma yields the estimate for ‖rεj,1(τ) − rεj,2(τ)‖2L2(Γε), with

τ ∈ (0, T ] and j = f, b, in terms of ‖lε1− lε2‖2L2(Γ̂εT )
. Taking (lε−S)+ as a test function

in (9.3) and using the boundedness of rεj we obtain

‖(lε − S)+‖L∞(0,T ;L2(Ω∗ε,K)) + ‖∇(lε − S)+‖L2((0,T )×Ω∗ε,K) ≤ 2S
(∫ T

0

|Ω∗,Sε,K(t)|dt
) 1

2

,

where S ≥ max{sup
Ω
l0(x), sup

Ω×Yx
|β(x, y)|, sup

Ω×Yx
|α(x, y)|, ‖rεj‖L∞(ΓεT )} and Ω∗,Sε,K(t) =

{x ∈ Ω∗ε,K : lε(t, x) > S} for a.a. t ∈ (0, T ). Then, applying Theorem II.6.1 in
[35] yields the boundedness of lε for every fixed ε > 0. Considering equation (9.3)
for lε1 and lε2 we obtain the estimate for ‖lε1 − lε2‖L2(0,T ;H1(Ω∗ε,K)), with τ ∈ (0, T ],

in terms of ε1/2‖rεj,1 − rεj,2‖L2(ΓεT ), with j = f, b. Then, using the estimates for
‖rεj,1(τ) − rεj,2(τ)‖L2(Γε), with τ ∈ (0, T ], in (9.6) and (9.7) yields that lε1 = lε2 a.e. in
(0, T )× Ω∗ε,K and hence rεj,1 = rεj,2 a.e. in ΓεT , where j = f, b.

To show (9.5), we consider (lε −MeBt)+ as a test function in (9.3). Using the
boundedness of rεj , uniform in ε, and the trace estimate (8.1) we obtain for τ ∈ (0, T )

‖(lε(τ)−MeBτ )+‖2L2(Ω∗ε,K) + ‖∇(lε −MeBt)+‖2L2((0,τ)×Ω∗ε,K)

≤ C1‖(lε −MeBt)+‖2L2((0,τ)×Ω∗ε,K) + C2ε,

where M ≥ sup
Ω
l0(x), MB ≥

(
sup

Ω×Yx
|F (x, y, 0)| + µΓ sup

Ω×Yx
β(x, y)‖rεb‖L∞(Γ̂εT )

)
, with

µΓ as in (8.1). Applying Gronwall’s Lemma in the last inequality yields (9.5).
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Notice, that in the case of a perforated domain where the periodicity and the
shape of perforations vary in space, i.e. K 6= I, we can not apply the l-p unfolding
operator to functions defined on Ω∗ε,K directly. To overcome this problem we consider

a local extension of a function from Ω̂εn,K to Ω̂εn and then apply the l-p unfolding

operator T εL , determined for functions defined on Ω̂ε. Applying the assumptions on
the microstructure of Ω∗ε,K considered here, i.e. KxY0 ⊂ Y or fibrous microstructure,
we obtain

Lemma 9.3. For xεn ∈ Ω̂εn, where 1 ≤ n ≤ Nε, and u ∈ W 1,p(Y ∗xεn,K), with

p ∈ (1,∞), there exists an extension û ∈W 1,p(Yxεn) such that

‖û‖Lp(Yxεn ) ≤ µ‖u‖Lp(Y ∗
xεn,K

), ‖∇û‖Lp(Yxεn ) ≤ µ‖∇u‖Lp(Y ∗
xεn,K

) ,(9.8)

where µ depends on Y , Y0, D and K and is independent of ε and n.
For u ∈W 1,p(Ω∗ε,K) we have an extension û ∈W 1,p(Ω̂ε) from Ω̂∗ε,K to Ω̂ε such that

‖û‖Lp(Ω̂ε) ≤ µ‖u‖Lp(Ω̂∗ε,K), ‖∇û‖Lp(Ω̂ε) ≤ µ‖∇u‖Lp(Ω̂∗ε,K) ,(9.9)

where µ depends on Y , Y0, D and K and is independent of ε.
Proof. [Sketch of the Proof] The proof follows the same lines as in the periodic

case, see e.g. [15, 19]. The only difference is that the extension depends on the
Lipschitz continuity of K and D and the uniform boundedness from above and below
of |detK(x)| and |detD(x)|. To show (9.9), we first consider an extension from

Dxεn
(Ỹ ∗Kxεn

+ ξ) to Dxεn
(Y + ξ) satisfying estimates (9.8), where ξ ∈ Ξ̂εn. Then, scaling

by ε and summing up over ξ ∈ Ξ̂εn and n = 1, . . . , Nε imply the estimates (9.9).
Remark. Notice that the definition of Ω∗ε,K implies that there no perforations

in
(
Ω∗,εn,K \ Ω̂∗,εn,K

)
∩ Ω̃ε/2, with Ω̃ε/2 = {x ∈ Ω : dist(x, ∂Ω) > 2 ε max

x∈∂Ω
diam(D(x)Y )}.

Also in the case of a plywood-like structure the fibres are orthogonal to the boundaries
of Ωεn and near ∂Ωεn we need to extend lε only in the directions parallel to ∂Ωεn.

Thus, applying Lemma 9.3 we can extend lε from Ω∗,εn,K into Ω̂εn ∪
(
Ωεn ∩ Ω̃ε/2

)
, for

n = 1, . . . , Nε.
Theorem 9.4. A sequence of solutions of the microscopic model (9.1)–(9.2)

converges to a solution (l, rf , rb) with l ∈ H1(ΩT ) and rj ∈ H1(0, T ;L2(Ω;L2(Γx)))
of the macroscopic equations

(9.10)

|Y ∗x,K |
|Yx|

∂tl − div(A(x)∇l) =
1

|Yx|

∫
Y ∗x,K

F (x, y, l) dy

+
1

|Yx|

∫
Γx

(β(x, y) rb − α(x, y) rf l) dσy in ΩT ,

A(x)∇l · n = 0 on ∂Ω,

∂trf = p(x, y, rf )− α(x, y) l rf + β(x, y)rb − df (x, y) rf for y ∈ Γx,

∂trb = α(x, y) l rf − β(x, y) rb − db(x, y) rb for y ∈ Γx,

and for (t, x) ∈ ΩT , where Y ∗x,K = Dx(Y \KxY0) and the macroscopic diffusion matrix
is defined as

Aij(x) =
1

|Yx|

∫
Y ∗x,K

[
Aij(x, y) + (A(x, y)∇yωj(x, y))i

]
dy for x ∈ Ω,

36



for i, j = 1, . . . , d, with

(9.11)
divy(A(x, y)(∇yωj + ej)) = 0 in Y ∗x,K ,

A(x, y)(∇yωj + ej) · n = 0 on Γx, ωj Yx − periodic.

We have that l̂ε → l in L2(ΩT ), ∂tl
ε ⇀ ∂tl and ∂tr

ε
j ⇀ ∂trj locally-periodic two-scale,

rεj → rj strongly locally-periodic two-scale, j = f, b, and

∇lε ⇀ ∇l +∇yl1 l-t-s, l1 ∈ L2(ΩT ;H1
per(Y

∗
x,K)),

lim
ε→0
〈Aε∇lε,∇lε〉Ω∗ε,K ,T = 〈|Yx|−1

A(x, y)(∇l +∇yl1),∇l +∇yl1〉ΩT ,Y ∗x,K ,

where l1(t, x, y) =
d∑
j=1

∂l

∂xj
(t, x)ωj(x, y). Here φ̂ denotes the extension as in Lemma 9.3

from (0, T )× Ω∗ε,K to (0, T )× (Ω̃ε/2 ∪ Ω∗ε,K) and then by zero to ΩT .

Proof. Applying Lemma 9.3 we can extend lε from Ω∗ε,K into Ω̂ε ∪ Λ∗ε,K . We
shall use the same notations for original functions and their extensions. The a priori
estimates in Lemma 9.2 imply

(9.12) ‖lε‖L2(0,T ;H1(Ω̂ε∪Λ∗ε,K)) + ‖∂tlε‖L2((0,T )×(Ω̂ε∪Λ∗ε,K)) ≤ C,

where the constant C depends on D and K and is independent of ε. Then the
sequences {lε}, {∇lε}, and {∂tlε} are defined on Ω̂ε and we can determine T εL (lε),
T εL (∇lε) and ∂tT εL (lε). The properties of T εL together with (9.12) ensure

‖T εL (lε)‖L2(ΩT×Y ) + ‖T εL (∇lε)‖L2(ΩT×Y ) + ‖∂tT εL (lε)‖L2(ΩT×Y ) ≤ C.

The a priori estimates in Lemma 9.2 yield the estimates for the l-p boundary unfolding
operator

‖T ε,bL (lε)‖L2(ΩT×Γ) + ‖T ε,bL (rεf )‖H1(0,T ;L2(Ω×Γ)) + ‖T ε,bL (rεb)‖H1(0,T ;L2(Ω×Γ)) ≤ C.

Notice that due to the assumptions on Ω∗ε,K we have that Ω̃ε/2 ⊂ Ω̂ε ∪ Λ∗ε,K .
Then, the convergence results in Theorems 4.2, 4.4, 4.5, and 4.6 imply that there

exist subsequences (denoted again by lε, rεf , rεb) and the functions l ∈ L2(0, T ;H1(Ω))∩
H1(0, T ;L2(Ω)), l1 ∈ L2(ΩT ;H1

per(Yx)), and rj ∈ H1(0, T ;L2(Ω;L2(Γx))) such that

T εL (lε) ⇀ l weakly in L2(ΩT ;H1(Y )),

T εL (lε)→ l strongly in L2(0, T ;L2
loc(Ω;H1(Y ))),

∂tT εL (lε) ⇀ ∂tl weakly in L2(ΩT × Y ),

T εL (∇lε) ⇀ ∇l +D−Tx ∇ỹl1(·, Dx·) weakly in L2(ΩT × Y ),

T b,εL (lε) ⇀ l weakly in L2(ΩT × Γ),

T b,εL (lε)→ l strongly in L2(0, T ;L2
loc(Ω;L2(Γ))),

rεj ⇀ rj , ∂tr
ε
j ⇀ ∂rj l-t-s, rj , ∂trj ∈ L2(ΩT ;L2(Γx)),

T b,εL (rεj ) ⇀ rj(·, DxKx·) weakly in L2(ΩT × Γ),

∂tT b,εL (rεj ) ⇀ ∂trj(·, DxKx·) weakly in L2(ΩT × Γ), j = f, b.

(9.13)
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Notice that for lε we have a priori estimates only in L2(0, T ;H1(Ω̂ε ∪ Λ∗ε,K))

and not in L2(0, T ;H1(Ω)) and can not apply the convergence results in Theo-
rem 4.2 directly. However using ‖lε‖L2(0,T ;H1(Ω̃ε/2)) + ‖∂tlε‖L2((0,T )×Ω̃ε/2) ≤ C, en-

sured by (9.12), applying Lemmas 7.2 and 7.3 to QεL(lε) and RεL(lε), respectively,
and considering the proof of Theorem 4.4 we obtain the convergences for T εL (lε),
∂tT εL (lε), and T εL (∇lε) in (9.13). Lemma 5.4 implies that ∇lε ⇀ ∇l + ∇yl1 l-t-s
and ∂tl

ε ⇀ ∂tl l-t-s. The local strong convergence of T εL (lε) together with the esti-
mate ‖(lε −MeBt)+‖L2((0,T )×Ω∗ε,K) ≤ Cε1/2, shown in Lemma 9.4, yields the strong

convergence of l̂ε in L2(ΩT ).
To derive macroscopic equations for lε we consider ψε(x) = ψ1(x) + εLερ(ψ2)(x)

with ψ1 ∈ C1(Ω) and ψ2 ∈ C1
0 (Ω;C1

per(Yx)) as a test function in (9.3). Applying the
l-p unfolding operator and the l-p boundary unfolding operator implies

1

|Y |

[
〈T εL (χεΩ∗ε,K )∂tT εL (lε), T εL (ψε)〉ΩT×Y + 〈T εL (χεΩ∗ε,K )T εL (Aε)T εL (∇lε), T εL (∇ψε)〉ΩT×Y

]
= |Y |−1〈T εL (χεΩ∗ε,K ) F̂ ε(x, ỹ, T εL (lε)), T εL (ψε)〉ΩT×Y

+
〈 Nε∑
n=1

√
gxεn√
g|Yxεn |

[
T b,εL (βε)T b,εL (rεb)− T

b,ε
L (αε)T b,εL (lε)T b,εL (rεf )

]
χΩεn

, T b,εL (ψε)
〉

ΩT×Γ

−〈∂tlε, ψε〉Λ∗ε ,T − 〈A
ε(x)∇lε,∇ψε〉Λ∗ε ,T + 〈F ε(x, lε), ψε〉Λ∗ε ,T ,

where F̂ ε(x, ỹ, lε) =
∑Nε
n=1 F (xεn, Dxεn ỹ, T

ε
L (lε))χΩ̂εn

(x) for ỹ ∈ Y , x ∈ Ω and χεΩ∗ε,K
=

Lε0(χY ∗x,K ). Here χY ∗x,K is the characteristic function of Y ∗x,K = Dx(Y \KxY0), extended

Yx-periodically to Rd. We notice that F̂ ε(x, ỹ, ξ) = T εL (Lε0(F (x, y, ξ))).
Applying Lemma 5.3 yields T εL (χεΩ∗ε,K

)(x, ỹ) → χY ∗x,K (x,Dxỹ), T εL (Aε)(x, ỹ) →
A(x,Dxỹ), and F̂ ε(x, ỹ, l) → F (x,Dxỹ, l) in Lp(ΩT × Y ), for 1 < p < ∞, as ε → 0.

Lemma 8.3 ensures T b,εL (φε)(x, ŷ) → φ(x,DxKxŷ) in Lp(ΩT × Γ) as ε → 0, where
φε(x) = βε(x), αε(x), or dεj(x) and φ(x, y) = α(x, y), β(x, y), or dj(x, y), with j = f, b,
respectively.

For an arbitrary δ > 0 we consider Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ} and rewrite
the boundary integral in the form

〈 Nε∑
n=1

√
gxεn√
g|Yxεn |

T b,εL (αε)T b,εL (lε)T b,εL (rεf )χΩεn
, T b,εL (ψε)

〉
Ωδ×ΓT

+
〈 Nε∑
n=1

√
gxεn√
g|Yxεn |

T b,εL (αε)T b,εL (lε)T b,εL (rεf )χΩεn
, T b,εL (ψε)

〉
(Ω\Ωδ)×ΓT

= I1 + I2.

Using the a priori estimates for lε and rεj , the weak convergence of T εL (lε) in L2(ΩT ;H1(Y ))

and the strong convergence in L2(0, T ;L2
loc(Ω;H1(Y ))) we obtain

lim
δ→0

lim
ε→0

I1 =

〈 √
gx√
g|Yx|

α(x,DxKxŷ) rf (x,DxKxŷ) l(x), ψ1(x)

〉
ΩT×Γ

,

lim
δ→0

lim
ε→0

I2 = 0.

(9.14)

To obtain (9.14) we also used the strong convergence and boundedness of T b,εL (αε), the

weak convergence and boundedness of T b,εL (rεf ), the regularity of D and K, and the
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strong convergence of T b,εL (ψε). Similar arguments along with the Lipschitz continuity

of F and the strong convergence of F̂ ε(x, ỹ, l) and T εL (χεΩ∗ε,K
) = T εL (Lε0(χY ∗x,K )) ensure

〈T εL (χεΩ∗ε,K ) F̂ ε(x, ỹ, T εL (lε)), T εL (ψε)〉ΩT×Y → 〈χY ∗x,K (x,Dxỹ)F (x,Dxỹ, l), ψ1〉ΩT×Y

as ε → 0 and δ → 0. Using the convergence results (9.13), the strong convergence
of T εL (ψε) and T εL (∇ψε) and the fact that |Λ∗ε,K | → 0 as ε → 0, taking the limit
as ε → 0, and considering the transformation of variables y = Dxỹ for ỹ ∈ Y and
y = DxKxŷ for ŷ ∈ Γ we obtain

〈|Yx|−1l, ψ1〉Y ∗x,K×ΩT + 〈|Yx|−1A(x, y)(∇l +∇yl1),∇ψ1 +∇yψ2〉Y ∗x,K×ΩT

+〈|Yx|−1
[
α(x, y) rf l − β(x, y) rb

]
, ψ1〉Γx×ΩT = 〈|Yx|−1F (x, y, l), ψ1〉Y ∗x,K×ΩT .

Considering ψ1(t, x) = 0 for (t, x) ∈ ΩT we obtain l1(t, x, y) =
∑d
j=1 ∂xj l(t, x)ωj(x, y),

where ωj are solutions of (9.11). Choosing ψ2(t, x, y) = 0 for x ∈ ΩT and y ∈ Yx
yields the macroscopic equation for l. Applying the l-p boundary unfolding operator
to the equations on Γε we obtain

∂tT b,εL (rεf ) = p̂ε(x, ŷ, T b,εL (rεf ))− T b,εL (αε)T b,εL (lε)T b,εL (rεf )

+ T b,εL (βε)T b,εL (rεb)− T
b,ε
L (dεf )T b,εL (rεf ),

∂tT b,εL (rεb) = T b,εL (αε)T b,εL (lε)T b,εL (rεf )− T b,εL (βε)T b,εL (rεb)− T
b,ε
L (dεb)T

b,ε
L (rεb),

(9.15)

in ΩT ×Γ, where p̂ε(x, ŷ, T b,εL (rεf )) =
∑Nε
n=1 p(x

ε
n, Dxεn

Kxεn
ŷ, T b,εL (rεf ))χΩ̂εn

(x) for ŷ ∈ Γ

and x ∈ Ω. In order to pass to the limit in the nonlinear function p̂ε(x, ŷ, T b,εL (rεf ))

we have to show the strong convergence of T b,εL (rεf ). We consider the difference of

the equations for T b,εkL (rεkf ) and T b,εmL (rεmf ) and use T b,εkL (rεkf )−T b,εmL (rεmf ) as a test
function. Applying the Lipschitz continuity of p along with the strong convergence of
T b,εL (αε), T b,εL (βε), and T b,εL (dεj), and the non-negativity of lε and αε yields

d

dt
‖T b,εkL (rεkf )− T b,εmL (rεmf )‖2L2(Ω×Γ)≤ C

[ ∑
j=f,b

‖T b,εkL (rεkj )− T b,εmL (rεmj )‖2L2(Ω×Γ)

+ ‖T b,εkL (lεk)− T b,εmL (lεm)‖2L2(Ωδ×Γ)+δ
1
2 ‖T b,εkL (lεk)− T b,εmL (lεm)‖L2((Ω\Ωδ)×Γ)

+σ(εk, εm)
]
,

where σ(εk, εm) → 0 as εk, εm → 0. Considering the sum of the equations for

T b,εkL (rεkj ) − T b,εmL (rεmj ), with j = f, b, using
∑
j=f,b T

b,εk
L (rεkj ) − T b,εmL (rεmj ) as a

test function, and applying the Lipschitz continuity of p imply

‖T b,εkL (rεkb )− T b,εmL (rεmb )‖2L2(Ω×Γ) ≤ C1

∫ t

0

‖T b,εkL (lεk)− T b,εmL (lεm)‖2L2(Ωδ×Γ)dτ

+C2

∫ t

0

∑
j=f,b

‖T b,εkL (rεkj )− T b,εmL (rεmj )‖2L2(Ω×Γ)dτ + σ(εk, εm) + C3δ
1
2 .

Using the a priori estimates for lε and the local strong convergence of T b,εL (lε), col-
lecting the estimates from above, and applying the Gronwall inequality we obtain

‖T b,εkL (rεkj )− T b,εmL (rεmj )‖L2(Ω×Γ) ≤ C
(
σ(εk, εm) + δ

1
4

)
for j = f, b,
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where σ(εk, εm) → 0 as εk, εm → 0 and δ > 0 is arbitrary. Thus, we conclude that

{T b,εL (rεj )}, for j = f, b, are Cauchy sequences in L2(ΩT × Γ). Using the strong con-

vergence of T b,εL (rεf ) and the Lipschitz continuity of p we obtain p̂ε(x, ŷ, T b,εL (rεf )) ⇀

p(x,DxKxŷ, rf ) in L2(ΩT × Γ). Then, passing in (9.15) to the limit as ε→ 0 implies
the macroscopic equations (9.10) for rf and rb. This concludes the proof of the con-

vergence up to sub-sequences. The strong convergence of T b,εL (rεj ) together with the
estimates in Lemma 8.2, the boundedness of rεj , with j = f, b, and the regularity of
D and K ensure the strong l-t-s convergence of rεj , i.e.

lim
ε→0

ε‖rεj‖2L2(ΓεT ) =

∫
ΩT

1

|Yx|

∫
Γx

|rj(t, x, y)|2dσxdxdt, for j = f, b.

The non-negativity of lε and rεj and the uniform boundedness of rεj , with j = f, b
(see Lemma 9.2) along with the weak convergence of T εL (rεj ) and lε ensure the non-
negativity of rj and l and the boundedness of rj(t, x, y) for a.a. (t, x) ∈ ΩT and
y ∈ Γx. Considering (l −M1e

M2t)+ as a test function in the weak formulation of the
macroscopic model (9.10) and using the boundedness of rf and rb we obtain

‖(l −M1e
M2t)+‖L∞(0,T ;L2(Ω)) + ‖∇(l −M1e

M2t)+‖L2(ΩT ) ≤ 0.

Hence, 0 ≤ l(t, x) ≤M1e
M2T for a.a. (t, x) ∈ ΩT , whereM1 ≥ supΩ l0(x) andM1M2 ≥(

‖F (x, y, 0)‖L∞(Ω;L∞(Yx)) + |Y ∗x,K |−1‖β(x, y)‖L∞(Ω;L∞(Yx))‖rb‖L∞(Ω;L1(Γx))

)
.

Considering equations for the difference of two solutions of (9.10), taking l1 − l2,
rf,1− rf,2, and rb,1− rb,2 as test functions in the weak formulation of the macroscopic
model, and using the Lipschitz continuity of F and p along with boundedness of rj
and l, we obtain uniqueness of a weak solution of the model (9.10). Thus, we have that
the entire sequence of weak solutions (lε, rεf , r

ε
b) of the microscopic model (9.1)–(9.2)

convergences to the weak solution of the macroscopic model (9.10).

Applying the lower-semicontinuity of a norm, the ellipticity of A, and the strong
convergence of T εL (Aε) and T εL (χεΩ∗ε,K

) in Lp(ΩT × Y ) for any p ∈ (1,+∞), yields

〈|Yx|−1
A(x, y)(∇l +∇yl1),∇l +∇yl1〉ΩT ,Y ∗x,K

≤ lim inf
ε→0

|Y |−1〈T εL (Aε)T εL (χεΩ∗ε,K )T εL (∇lε), T εL (χεΩ∗ε,K )T εL (∇lε)〉ΩT ,Y

≤ lim sup
ε→0

|Y |−1〈T εL (Aε)T εL (χεΩ∗ε,K )T εL (∇lε), T εL (χεΩ∗ε,K )T εL (∇lε)〉ΩT ,Y

≤ lim sup
ε→0

〈Aε∇lε,∇lε〉Ω∗ε,K ,T = lim sup
ε→0

[
I1 + I2 + I3

]
,

where

I1 = |Y |−1
〈
F̂ ε(x, ỹ, T εL (lε))− ∂tT εL (lε), T εL (lε)

〉
ΩT ,Y

,

I2 =

∫
ΩT×Γ

Nε∑
n=1

√
gxεn√
g|Yxεn |

[
T b,εL (βε)T b,εL (rεb)− T

b,ε
L (αε)T b,εL (lε)T b,εL (rεf )

]
T b,εL (lε)χΩεn

dσy,

I3 = 〈F ε(x, lε)− ∂tlε, lε〉Λ∗ε,K ,T .

Using the estimates in Lemma 9.2, together with 0 ≤ lε ≤ M + (lε −M)+ and the
definition of Λ∗ε,K , we obtain lim

ε→0
I3 = 0.
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Considering the strong convergence T b,εL (rεj ), with j = f, b, and the local strong

convergence of T εL (lε) and T b,εL (lε), together with (9.5), taking l as a test function in
(9.3) and using the fact that l1 is a solution of the unit cell problem yields

lim
ε→0

[I1 + I2] = 〈|Yx|−1
A(x, y)(∇l +∇yl1),∇l +∇yl1〉ΩT ,Y ∗x,K .

Hence, we conclude the convergence of the energy

(9.16) lim
ε→0
〈Aε∇lε,∇lε〉Ω∗ε,K ,T = 〈|Yx|−1

A(x, y)(∇l +∇yl1),∇l +∇yl1〉ΩT ,Y ∗x,K ,

as well as

lim
ε→0
|Y |−1〈T εL (Aε)T εL (χεΩ∗ε,K ) T εL (∇lε), T εL (∇lε)〉ΩT ,Y

= 〈|Yx|−1
A(x, y)(∇l +∇yl1),∇l +∇yl1〉ΩT ,Y ∗x,K .

This implies also the strong convergence of the unfolded gradient

(9.17) T εL (χΩ∗ε,K
)T εL (∇lε)→ χY ∗x,K (Dx·)(∇l +D−Tx ∇ỹl1(·, Dx·)) in L2(ΩT × Y ).

To show the strong convergence in (9.17) we consider〈
T εL (Aε)T εL (χεΩ∗ε,K )(T εL (∇lε)−∇l −D−Tx ∇ỹl1), T εL (∇lε)−∇l −D−Tx ∇ỹl1

〉
ΩT×Y

=
〈
T εL (Aε)T εL (χεΩ∗ε,K )T εL (∇lε), T εL (∇lε)

〉
ΩT×Y

−
〈
T εL (Aε)T εL (χεΩ∗ε,K )T εL (∇lε),∇l +D−Tx ∇ỹl1

〉
ΩT×Y

−
〈
T εL (Aε)T εL (χεΩ∗ε,K )(∇l +D−Tx ∇yl1), T εL (∇lε)

〉
ΩT×Y

+
〈
T εL (Aε)T εL (χεΩ∗ε,K )(∇l +D−Tx ∇yl1),∇l +D−Tx ∇ỹl1

〉
ΩT×Y

.

Applying the strong convergence of T εL (Aε) and T εL (χεΩ∗ε,K
) along with the weak con-

vergence of T εL (∇lε), the convergence of the energy (9.16), and the uniform ellipticity
of A(x, y), implies the convergence (9.17).

Remark. Since in Ω∗ε,K we have both spatial changes in the periodicity of the

microstructure and in the shape of perforations, the l-p unfolding operator T ∗,εL is not
defined on Ω∗ε,K directly and in the derivation of the macroscopic equations we used

a local extension of lε from Ω̂∗,εK to Ω̂ε. The local extension allows us to apply the
l-p unfolding operator T εL to lε. If we have changes only in the periodicity and no
additional changes in the shape of perforations, then we can apply the l-p unfolding
operator defined in a perforated domain Ω∗ε directly, without considering an extension
from Ω̂∗ε to Ω̂ε, and derive macroscopic equations in the same way as in the proof of
Theorem 9.4.

10. Discussions. The macroscopic model (9.10) derived from the microscopic
description of a signaling process in a domain with locally-periodic perforations reflects
spatial changes in the microscopic structure of a cell tissue. The effective coefficients
of the macroscopic model describe the impact of changes in the microstructure on
the movement (diffusion) of signaling molecules (ligands) and on interactions between
ligands and receptors in a biological tissue. The multiscale analysis also allows us to
consider the influence of non-homogeneous distribution of receptors in a cell mem-
brane as well as non-homogeneous membrane properties (e.g. cells with top-bottom

41



and front-back polarities) on the signaling process. The dependence of the coefficients
on the macroscopic variables represents the difference in the signaling properties of
cells depending on the size and/or position. For example, the changes in the size and
shape of cells in ephitelium tissues are caused by the maturation process and, hence
cells of different age may show different activity in a signaling process. Expanding
the microscopic model by including equations for cell biomechanics and using the
proposed multiscale analysis techniques we can also consider the impact of mechan-
ical properties of a biological tissue with a non-periodic microstructure on signaling
processes.

Techniques of locally-periodic homogenization allow us to consider a wider range
of composite and perforated materials than the methods of periodic homogenization.
The structures of macroscopic equations obtained for microscopic problems posed in
domains with periodic and locally-periodic microstructures are similar. If we con-
sider the microscopic model (9.1)–(9.2) in a domain with periodic microstructure, i.e.
D(x) = I and K(x) = I, where I denotes the identity matrix, then the macroscopic
equations (9.10) with D(x) = I and K(x) = I correspond to the macroscopic equa-
tions obtained in [36] by considering the periodic distribution of cells and applying
methods of periodic homogenization. For some locally-periodic microstructures, e.g.
domains consisting of periodic cells with smoothly changing perforations, it is possible
to derive the same macroscopic equations by applying periodic and locally-periodic
homogenization techniques, see e.g. [37, 38, 49]. However, as mentioned in the intro-
duction, for the microscopic description and homogenization of processes defined in
domains with e.g. plywood-like microstructures or on oscillating surfaces of locally-
periodic microstructures the techniques of locally-periodic homogenization are essen-
tial. Methods of locally-periodic homogenization are applied to analyse microscopic
problems posed in domains with non-periodic but deterministic microstructures, in
contrast to stochastic homogenization techniques used to derive macroscopic equa-
tions for problems posed in domains with random microstructures.

The corrector function l1 and the macroscopic diffusion coefficient in the macro-
scopic problem (9.10) are determined by solutions of the unit cell problems (9.11),
which depend on the macroscopic variables x. This dependence corresponds to spa-
tial changes in the structure of the microscopic domains. To compute solutions of
the unit cell problems (9.11) (and hence the effective macroscopic coefficients and the
corrector l1) numerically approaches from the two-scale finite element method [40] or
the heterogeneous multiscale method [1, 2, 26] can be applied. Using heterogeneous
multiscale methods one would have to compute the solutions of (9.11) only at the
grid points of a discretisation of the macroscopic domain, which requires much lower
spatial resolution than computing the microscopic model on the scale of a single cell.
Similar approach can be applied for numerical simulations of the ordinary differen-
tial equations determining the dynamics of receptor densities, which depend on the
macroscopic x and the microscopic y variables as parameters.
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