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Abstract 1 

 2 

Grass evapotranspiration (ET) have been recognised to potentially affect shallow slope 3 

stability due to additional soil suction induced by root-water uptake. Some limited field 4 

studies showed higher suction induced in vegetated soil than that in bare soil, but some 5 

reported the opposite. In order to improve the understanding of the hydrological role of 6 

grass ET, this study newly-interprets suction responses of grassed slopes based on the 7 

current knowledge of soil-water-root interaction on root-water uptake in unsaturated soil. 8 

Three case histories, which included measurements of suction in both bare and grassed 9 

slopes, are selected for investigation. It is revealed that during drying, ET-induced suction 10 

in grassed slope was not necessarily higher than that by evaporation in bare slope. When 11 

grass ET took place in relatively wet soil that has insufficient soil aeration (i.e., suction 12 

lower than that corresponding to anaerobiosis point; 5 – 12 kPa for sandy soil), induced 13 

suction in grassed slope could be 20% lower. During rainfall, the presence of grass 14 

appears to help retaining higher suction in slope comprising of silty clay, as compared to 15 

bare slope. On the contrary, for sandy soil, no discernible difference of suction retained 16 

between grassed and bare slopes is observed. 17 

 18 

 19 

Keywords chosen from ICE Publishing list 20 

Geotechnical Engineering; Environment; Field testing & monitoring 21 

 22 

 23 

List of notation 24 

AEV Air-entry value [kPa] 25 

AT Actual transpiration [mm] 26 

  Slope of the vapour pressure curve [kPa oC-1] 27 

es  Saturated vapour pressure [kPa] 28 

ea  Actual vapour pressure [kPa] 29 

ET Evapotranspiration [mm] 30 

G Soil heat flux density [J m-2 d-1] 31 

  Psychometric constant [kPa oC-1] 32 

Kc  Crop factor [-] 33 

ks Saturated water permeability of soil [m s-1] 34 

LAI Leaf Area Index [-] 35 

PET Potential evapotranspiration [mm] 36 

PT Potential transpiration [mm]  37 

PWP Pore-water pressure [kPa] 38 

Rn  Net radiation intercepted by plant leaves [J m-2 d-1] 39 
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RH Relative humidity in air [%] 1 

T Air temperature [oC] 2 

u  Wind speed [m s-1] 3 

WRC Water retention curve [-] 4 

an  Suction corresponding to anaerobiosis point [kPa] 5 

fc  Suction corresponding to field capacity [kPa] 6 

wp  Suction corresponding to wilting point [kPa]7 



1. Introduction 1 

Vegetation has been recognised to potentially affect shallow slope stability through mechanical 2 

and hydrological effects (Barker 1995). In past decades, mechanical properties of vegetated 3 

soils have been researched for decades (Wu et al. 1988; Stokes and Mattheck 1996). The 4 

beneficial effects of mechanical root reinforcement are sometimes considered in slope stability 5 

calculation (Greenwood et al. 2004). In contrast, hydrological effects of plant evapotranspiration 6 

(ET) on induced soil suction (or negative pore-water pressure) receive relatively less attention. 7 

Although there were studies from agricultural literature investigating soil responses during plant 8 

ET, they mainly focused on changes of soil moisture and hydrological water balance due to the 9 

concern on crop yields (Wetzel and Chang 1987; Zhang et al. 2004; among others). As far as 10 

slope stability is concerned, it is more relevant to interpret and relate plant ET with suction, 11 

which has been generally recognised as one of the important stress-state variables governing 12 

unsaturated soil behaviour (Coleman 1962). Extensive research has demonstrated that an 13 

increase in suction would not only increase shear strength (Gan et al. 1988) but also decrease 14 

water permeability (Ng and Leung 2012), and hence rainfall infiltration. 15 

 16 

In engineering literature, a number of field studies have been conducted to measure suction 17 

induced in vegetated soil slopes (Leung et al., 2011; Smethurst et al. 2012; Leung and Ng 18 

2013a, b; among others). A few of them (Lim et al. 1996; Simon and Collison 2002; Kim and 19 

Lee 2010) included also suction measurements in bare slope, as control, to quantify any 20 

additional suction induced through root-water uptake. Based on these limited comparative 21 

studies, the hydrological effects of plant ET on induced suction is identified not to be consistent. 22 

It is found that vegetated soil could induce higher suctions than bare soil, but in some occasions 23 

opposite findings are observed, even within one single set of field data. The underlying reason 24 

causing this inconsistent observation is not well-understood. 25 

 26 

In order to improve the understanding and identify the hydrological role of vegetation on the 27 

suction response in slope, this study newly-interprets the three field studies (Lim et al. 1996; 28 

Simon and Collison 2002; Kim and Lee 2010). The suction measurements reported in each 29 

study are analysed not only based on engineering properties of unsaturated soil, but also on the 30 

current understanding of soil-water-root interaction on root-water uptake in unsaturated soil. 31 

Due to limited case histories available in the literature, only hydrological effects of grass are 32 

investigated, whereas the effects of other plant species are not considered in this study. 33 

 34 

2. Review of governing parameters of ET and grass-induced suction 35 

Evapotranspiration of grassed soil is the sum of soil evaporation and grass transpiration. These 36 

processes depend on soil type, grass type, climatic condition and their interaction. Under given 37 

climatic conditions, potential evapotranspiration (PET) refers to the maximum value of ET when 38 

there is unlimited supply of water to replenish the associated loss of soil moisture. According to 39 

the well-known Penman-Monteith equation (Allen et al. 1998), which was derived based on 40 
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energy balance, PET [mm] is revealed to be a function of a series of atmospheric parameters, 1 

and can be determined by: 2 

 3 

{ 

EMBED Equation.DSMT4

 }      (1) 4 

 5 

where  is slope of the vapour pressure curve [kPa oC-1]; Rn is net radiation intercepted by plant 6 

leaves [J m-2 d -1]; G is soil heat flux density [J m-2 d -1] (usually negligible due to the relatively 7 

small magnitude when compared to Rn; Allen et al. 1998);  is psychometric constant [kPa oC-1]; 8 

T is air temperature [oC]; u is wind speed [m s-1]; (es – ea) is vapour pressure deficit [kPa] (i.e., 9 

difference between saturated vapour pressure es and actual one ea). The vapour pressure 10 

deficit is equivalent to relative humidity (RH) in air, which is defined as the ratio ea to es; and Kc 11 

is crop factor (typically taken to be 1.0 for grass species; Allen et al. 1998). 12 

 13 

Depending on Leaf Area Index (LAI), part of the PET would partition to potential transpiration 14 

(PT) based on the Beer’s law (Ritchie 1972). PT refers to the maximum value of transpiration 15 

when root-water uptake is unlimited for a given soil type. For clipped grass investigated in the 16 

three studies, the LAI typically ranges from 1.5 to 2.2 (Allen et al. 1998). This means that about 17 

55% – 65% of PET would contribute to PT. In most cases, actual transpiration (AT) is, however, 18 

lower than PT when soil becomes unsaturated. In plant physiology research, the relationship 19 

between AT and suction is represented by the so-called transpiration reduction function 20 

(Feddes et al. 1976; van Genuchten 1987), which reflects the ability of root-water uptake when 21 

ET takes place in soil having different initial wetness. When ET happens in relatively wet soil 22 

that has suction less than that corresponding to anaerobiosis point, an, transpiring stops (AT = 23 

0) due to a lack of soil aeration (i.e., oxygen stress; Dasberg and Bakker 1970). When ET takes 24 

place in drier soil that has suction higher than an but lower than that corresponding to field 25 

capacity (fc), grass is considered to be at the most favourable condition for water uptake (AT = 26 

PT). In dry soil that has suction higher than fc, capillary force in soil becomes significant to 27 

retain water and hence suppress root-water uptake, commonly referred to as water stress (Hillel 28 

1998; AT < PT). Transpiration ceases when suction reaches the wilting point wp (AT = 0). 29 

 30 

In the literature, the an and fc is empirically reported to range from 1 to 5 kPa and from 40 to 31 

80 kPa (Feddes et al. 1976, Indraratna et al. 2006; Nyambayo and Potts 2010), respectively, 32 

while wp is generally taken to be 1500 kPa. Based on the physical meanings of an and fc, 33 

they are anticipated to be strongly dependent upon the particle size distribution and hydraulic 34 

properties of unsaturated soils. The an is a measure of soil aeration and it thus depends on the 35 

diffusion rate of oxygen in soil. Many past experimental studies (Wesseling and van Wijk 1957; 36 

Vomocil and Flocker 1961; Kirkham 1994; MacKay et al. 1997) have shown that the gas 37 

diffusion practically stops when the air-filled porosity (i.e., volumetric air content) of soil is less 38 
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than 5% – 10% for a wide range of soil types. The inability of gas diffusion in relatively wet soil 1 

would mean to have suppressed root metabolism and water uptake (Vartapetian and Jackson 2 

1997; Armstrong and Drew 2002). For fc, it has been experimentally (Hillel 1998; Zacharias 3 

and Bohne 2008) and analytically (Meyer and Gee 1999; Twarakavi et al. 2009) identified that 4 

for various types of soil (1578 soil samples from the databases reported by Schaap et al. 2001 5 

and Minasny et al. 2004), this parameter is related to water permeability and desorption rate 6 

(i.e., amount of water content drop due to an increase in suction) of soil. The higher the 7 

permeability or the desorption rate, the lower the soil moisture content is held at equilibrium, 8 

and hence the higher the fc is. 9 

 10 

In addition, the ability of root-water uptake would also be affected by the characteristics of grass 11 

leaves and roots. This includes LAI, which controls the amount of solar radiation intercepted by 12 

grass leaves for partitioning PET to PT. Another governing parameter is Root Length Density 13 

(RLD), which is defined as the length of roots per unit volume of soil. At a given soil depth inside 14 

a root zone, higher RLD means to have more roots existed in soil for water uptake. Moreover, 15 

one possible mechanism that has been generally overlooked in literature is that the presence of 16 

root in soil pore space is likely to have altered soil pore size and its distribution. This would 17 

consequently results in a change of WRC and water permeability due to the potential blockage 18 

of water flow channels in soil pore (Scanlan and Hinz 2010; Scholl et al. 2014). 19 

 20 

3. Selected case histories 21 

Three case histories from three countries (Singapore, South Korea, and United States of 22 

America, USA) that are all situated in tropical, sub-tropical climate regions are selected for 23 

investigation. The three test sites are namely (i) Nanyang Technological University, Singapore 24 

(Lim et al. 1996), (ii) an express highway, South Korea (Kim and Lee 2010), and (iii) Goodwin 25 

Creek Experimental Watershed, USA (Simon and Collison 2002). In each case history, suction 26 

measurements in both bare and grassed soil slopes are available for direct comparisons. 27 

 28 

3.1 Nanyang Technological University, Singapore (Case SGP) 29 

The grassed slope tested in this site was 17 m high and has a uniform slope with an inclination 30 

of 30o. The soil type was mainly silty clay, which has in situ saturated water permeability, ks, of 31 

1.0 x 10-6 m/s. A measured water retention curve (WRC) of the soil is shown in Figure 1. It can 32 

be seen that the air-entry value (AEV) of this fine-grained silty clay is considerably high (~150 33 

kPa). The grass species covered on the slope was pasture, which has an average root depth of 34 

0.1 m. More index properties of the soil and the grass are summarised in Table 1. 35 

 36 

In this field study, the grassed slope was divided into two sections, one of which the top 0.1 m of 37 

the soil containing roots was excavated to form a bare slope, while the other section remained 38 
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as is (i.e., grassed slope). In each slope, a number of tensiometers were installed to measure 1 

negative pore-water pressure (PWP) or suction at 0.5, 1.0, and 1.5 m depths. 2 

 3 

3.2 An express highway, South Korea (Case SK) 4 

The study slope in this case was also 17 m high and has a gradient of 29o. The soil type was 5 

clayey sand with gravel. The measured ks of the soil was 1.2 x 10-5 m/s, which is an order of 6 

magnitude higher than that of the relatively finer soil type in Case SGP. The in situ measured 7 

WRC depicted in Figure 1 shows that the AEV of the coarse-grained soil is less than 1 kPa. The 8 

slope in this field study was partially vegetated with pasture, which has an average root depth of 9 

0.2 m. The area where pasture was present is designated as grassed slope, whereas that 10 

without pasture is bare slope. In both the bare and grassed slopes, three tensiometers were 11 

installed at relatively shallower depths of 0.15, 0.3, and 0.45 m for measuring suction.  12 

 13 

3.3 Goodwin Creek Experimental Watershed, Northern Mississippi, USA (Case USA) 14 

The vegetated streambank investigated in this study was 3 m high and was made up of layers 15 

of loess-derived alluvium (fine sand). The bank was steep, generally between 70o and 90o. As 16 

shown in Figure 1, the AEV of the soil is 4 kPa. The grass species covered the streambank was 17 

clump grass, which has an average root depth of 0.5 m. Five tensiometers were installed at 0.3, 18 

1.0, 2.0, 2.7, and 4.3 m depths in both the bare and grassed slopes for measuring suction. 19 

 20 

In the following discussion, any effects of grass ET on (i) suction induced during drying period 21 

and (ii) suction retained during wetting period are explored. The magnitude and distribution of 22 

suction recorded in each case history are interpreted based on the current understanding of 23 

soil-water-root interaction on root-water uptake in unsaturated soil, as summarised in Section 2. 24 

 25 

4. Results and discussions 26 

4.1 Field observed pore-water pressure induced during drying periods 27 

Figure 2 shows the measured responses of PWP distributions during two typical drying periods 28 

for all three selected case histories. In each case, a hydrostatic line representing the respective 29 

location of groundwater table is depicted for reference. After drying for 3 days in period 1 in 30 

Case SGP (Figure 2(a)), suctions in both the bare and grassed slopes increased, and the 31 

magnitude at 0.5 m depth in the grassed slope was 15% higher. In contrast, the peak suction 32 

induced in the bare slope in period 2 was higher than that in the grassed slope by not more than 33 

10% (Figure 2(b)). However, it should not be misled that the comparisons between periods 1 34 

and 2 are made under different suctions before drying. In fact, the amount of suction increase in 35 

the grassed slope in both periods 1 and 2 were larger than that in the bare slope consistently. 36 

 37 

At deeper depths of 1 and 1.5 m, the difference of suction induced in the bare and the grassed 38 

slope is found to be indiscernible during both periods. This seems to suggest that the depth of 39 
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influence zone of suction due to grass ET was less than 1 m, below which the suction was not 1 

likely to be affected by root-water uptake within the root zone (i.e., the top 0.1 m). 2 

 3 

Similar to Case SGP, the suction gained in the grassed slope in Case SK (70 kPa) were more 4 

than that in the bare slope (40 kPa) during summer in period 1 (Figure 2(c)). However, in period 5 

2 (Figure 2(d)), much higher suction (30 kPa) was recorded in the bare slope, whereas any 6 

suction induced by ET in the grassed slope seems to be negligible. This may be attributed to 7 

the reduction of root-water capability when grass ET took place in relatively wet soil (i.e., low 8 

suction; < 3 kPa) in period 2. The lack of soil aeration in wet soil (i.e., low oxygen diffusion rate) 9 

may have developed oxygen stress to grass, which consequently suppressed root metabolism 10 

and hence root-water uptake. More detailed discussion on any effects of oxygen stress on ET-11 

induced suction is given in the next section. 12 

 13 

During summer in Case USA (period 1; Figure 2(e)), larger suction increase was also recorded 14 

in the grassed slope than in the bare slope. In contrast, the response of suction recorded during 15 

winter (period 2; Figure 2(f)) were different from those exhibited in period 1 and those observed 16 

in the previous two cases. In this occasion, it is found that the amount of suction increase at 0.3 17 

m depth in the bare slope (30 kPa) was twice as much as that in the grassed slope (15 kPa). 18 

Also, the peak induced suction in the bare slope (67 kPa) was 10% higher. Since any grass ET 19 

in this case took place in relatively dry soil (i.e., suction as high as 25 kPa or degree of 20 

saturation < 60%; see Figure 1), any effects of oxygen stress on root-water uptake might not be 21 

pronounced. Simon and Collison (2002), who reported this case history, argued that the lower 22 

suction induced in the grassed slope in winter time was attributed to grass dormancy, during 23 

which any root-water uptake might have ceased. 24 

 25 

4.2 Identified hydrological effects of grass on induced suction during drying 26 

To identify any hydrological effects of grass ET during drying periods, suctions measured before 27 

and after drying in all three cases are related in Figure 3. Note that every pair of data points 28 

taken from bare and grassed slopes has the same drying duration for fair comparison. When 29 

grass ET takes place in relatively wet soil having suctions less than 15 kPa, suction induced in 30 

grassed slopes by ET is 20% – 100% lower than that induced in bare slopes by evaporation 31 

(see inset). This is likely attributed to the lack of soil aeration as the build-up of oxygen stress 32 

may have suppressed root metabolism and hence root-water uptake. As discussed in Section 2, 33 

soil aeration is experimentally found to be sufficient when air-filled porosity of soil is higher than 34 

5%–10%. It can be estimated from the WRC (Figure 1) that the suction (i.e., an) corresponding 35 

to this range of air-filled porosity is 1 – 5 kPa and 5 – 12 kPa for the soil in Cases SK and USA, 36 

respectively. When root-water take happened in soil having suction higher than this range of an, 37 

ET-induced suction in grassed slopes, in turn, became higher than evaporation-induced suction 38 

in bare slopes by at least 15% (Figure 3). This is because suction higher than the an 39 
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corresponds to degree of saturation below 70% (Figure 1), and any oxygen stress developed is 1 

likely to have relieved as air permeability at such low degree of saturation may be high enough 2 

for sufficient soil aeration. 3 

 4 

For Case SGP, it is similarly observed that suction induced in the grassed slope was higher 5 

than that in the bare slope, when ET happened in soil that has initial suction ranging between 6 

15 – 40 kPa (Figure 3). This is, however, somewhat unexpected. According to the WRC shown 7 

in Figure 1, the soil type (i.e., silty clay) encountered in this case appears to have greater water 8 

retention capability than those in the other two cases. For air-filled porosity of 5% – 10%, the 9 

corresponding suction (i.e., an) of this particular soil type is higher than 200 kPa. In other 10 

words, oxygen stress is anticipated to have been developed to suppress root metabolism when 11 

root-water uptake took place in the relatively wet soil with suction ranged between 15 and 40 12 

kPa. While an seems to be a crucial factor that governs the ability of root-water uptake, this 13 

parameter is not only a function of the hydraulic properties of soil, but also depends on the 14 

grass type and its adaptability to climatic conditions. Direct measurement of this characteristic 15 

suction in the field is therefore not straightforward. As far as the author is aware, studies to 16 

quantify such complex dependency of soil-water-plant-atmosphere interaction on an are rare, 17 

even in the literature of plant physiology and agricultural research. Further investigation on an 18 

is needed to clarify the hydrological role of grass on ET-induced suction in relatively wet soil. 19 

 20 

4.3 Field observed suction retained during rainfall periods 21 

Measured PWP profiles before and after rainfall in each case history are shown in Figures 4(a) 22 

– (f). Each PWP response is obtained during a rainfall event, which happened right after the 23 

drying period reported in Figure 2. As shown in Figures 4(a) and (b), suctions in both the bare 24 

and grassed slopes comprising silty clay soil in Case SGP decreased after rainfall. In both 25 

periods 1 and 2, the grassed slope retained higher suctions than the bare slope by 20% – 250%. 26 

The additional suction retained in the grassed slope is, however, less likely attributed to grass 27 

root-water uptake. During rainfall, RH in air is usually high, while solar radiation is low due to 28 

cloudy condition. This is especially the case in humid tropical, sub-tropic climate regions 29 

(typically RH > 80% and radiation < 10 MJ/m2/d; Leung and Ng 2013b), including the three 30 

cases investigated in this study. Under such climatic conditions, any grass ET during rainfall is 31 

likely to be negligible (refer to Equation (1)). Instead, the amount of suction retained appears to 32 

be dependent upon the amount of suction gained from previous drying period. It can be seen 33 

that suctions retained in the grassed slope at 0.5 m depth (25 and 50 kPa in periods 1 and 2, 34 

respectively) were higher when the suctions gained before rainfall (58 and 80 kPa in periods 1 35 

and 2, respectively) were higher. 36 

 37 

For Case SK (see Figures 4(c) and (d)), almost all suctions were reduced to less than 10 kPa in 38 

both the bare and grassed slopes after small rainfall intensity of 6.7 mm/d in period 1 and large 39 
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intensity of 78.7 mm/d in period 2. It can be seen that the suction profiles measured after rainfall 1 

in the bare and grassed slopes comprising of clayey sand were close to each other, unlike the 2 

case observed in finer silty clay slopes in Case SGP. This means that for the soil type 3 

investigated in Case SK, higher suction gained from previous drying period in either bare or 4 

grassed slope did not necessarily help retaining higher suctions after subjecting to both rainfall 5 

events in periods 1 and 2. Any benefit due to higher suction gained from previous drying period 6 

by evaporation (for bare slope) and ET (for grassed slope) was not significant.  7 

 8 

On the contrary, for the fine sand slopes investigated in Case USA, it is similar to Case SGP 9 

that suctions retained after both the rainfall with an intensity of 14 mm/d in period 1 (Figure 4(e)) 10 

and the rainfall with smaller intensity (3 mm/d) in period 2 (Figure 4(f)) were higher when suction 11 

induced before each rainfall event was higher. It should be noted that for the rainfall event in 12 

period 2, the increase in suction observed in the grassed slope below 2 m depth is because the 13 

influence zone of suction due to the small rainfall intensity was shallower than 2 m. 14 

 15 

4.4 Identified hydrological effects of grass on suction retained during rainfall 16 

To identify any hydrological mechanisms of grass that affects PWP responses during rainfall, 17 

correlations between PWP before and after rainfall are established in Figure 5 for the top 0.5 m 18 

near grass root zone. As shown in the figure, suctions (negative PWP) retained in Case SGP 19 

(both the bare and grassed slopes comprising of silty clay) after rainfall were higher when 20 

suction gained from previous drying periods were higher. This is because when suction before 21 

rainfall was higher, water permeability of soil would be lower (Ng and Leung 2012). This hence 22 

reduces infiltration when rainfall happens subsequently. 23 

 24 

For a given initial suction, it can be seen that the final suction retained in the grassed slope in 25 

Case SGP was higher than that in the bare slope after rainfall. Moreover, the amount of suction 26 

drop in the grassed slope (33% – 66%) is much smaller than that in the bare slope (50% – 90%). 27 

One possible mechanism resulting in higher suction retained in the grassed slope might be 28 

attributed to the reduction of water permeability due to blockage of water flow channels by grass 29 

roots. This is consistent to the dataset interpreted by Huat et al. (2006) and Leung et al. (2014), 30 

who showed that infiltration rate in grassed soil was lower than that in bare soil. Such observed 31 

suction responses due to the presence of roots might be explained by a conceptual model 32 

proposed by Scanlan and Hinz (2010). This model suggests that if soil pore space is idealized 33 

as a capillary tube partially filled with water, the presence of roots in soil pore for a given RLD 34 

would lead to a decrease in the diameter of the water meniscus, and the associated change in 35 

soil suction would hence affect both WRC and water permeability (Scholl et al. 2014). 36 

 37 

For Case USA, both the bare and grassed slopes comprising of fine sand also retained higher 38 

suctions when suctions before rainfall were higher. However, unlike Case SGP, the grassed 39 

slope did not appear to retain higher suction and did not show smaller suction drop than the 40 
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bare slope. Any beneficial effects due to the presence of roots in the grassed slope seem not to 1 

be significant. Simon and Collison (2002) speculated that there was potential stemflow 2 

concentrating rainwater to depths of the grassed slope. The observed negligible difference of 3 

suction retained between the bare and grassed slopes in this case might be the consequence of 4 

the counteraction between the beneficial (reduction of water permeability due to root inclusions) 5 

and the detrimental (stemflow) hydrological effects of grass. 6 

 7 

Rather different suction responses were exhibited in Case SK, as compared to the previous two 8 

cases. Data points collected from both the bare and grassed slopes comprising of clayey sand 9 

in this case distribute almost horizontally within a suction band between 2.7 and 5.3 kPa. Within 10 

this suction band, no major difference is found between the bare and grassed slopes, meaning 11 

that suction retained in both slopes after rainfall were independent of suction gained before 12 

rainfall. This is, however, not found in both Cases SGP and USA. This might be attributed to the 13 

difference of water retention behaviour of soil between the three cases. According to the WRC 14 

shown in Figure 1, it can be seen that for the same given increase in water content (due to 15 

rainfall infiltration), the decrease in suction for the coarser soil in Case SK is generally greater 16 

than that for the finer soil in other cases. Nevertheless, it should be noted that this comparison 17 

is more appropriate to be made based on wetting, rather than drying, WRC. Unfortunately, 18 

wetting WRC is not reported in all three cases for such comparison.  19 

 20 

5. Summary and conclusions 21 

This study explores and improves the understanding of the hydrological effects of grass on 22 

suction responses in grassed slopes situated in tropical, sub-tropical climate regions. Three 23 

case histories, which are the very few field studies documenting measurements of pore-water 24 

pressure responses in both bare and grassed slopes, were selected for new interpretation. 25 

Effects of grass roots on (i) suction induced during evapotranspiration (ET) and (ii) suction 26 

retained during rainfall are investigated in relations to the current understanding of soil-water-27 

root interaction on root-water uptake in unsaturated soil. Based on the new interpretation of the 28 

three limited case histories, some key hydrological roles of grass may be identified, as follows: 29 

 30 

(a) For the given climatic condition, it is revealed that ET-induced suction in grassed slope was 31 

not always higher than that induced by evaporation in bare slope. When ET took place in 32 

relatively wet soil that has suctions lower than that of aerobiosis point (i.e., an; 1 – 5 kPa 33 

for clayey sand and 5 – 12 kPa for fine sand), grassed slope induced lower suctions than 34 

bare slope by almost 20%. These ranges of an are found to correspond to the air-filled 35 

porosity of 5% – 10%. This matches the values identified from various past experimental 36 

studies, which suggested that within this range of air-filled porosity, any gas diffusion in soil 37 

would practically stop. The insufficient soil aeration would hence suppress the root-water 38 

uptake. In contrast, when grass ET took place in drier soil that has suctions higher than an, 39 
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the suction induced in grassed slope was higher than evaporation-induced suction in bare 1 

slope by at least 15%. 2 

 3 

(b) However, it is identified in one of the case histories that even though ET took place in soil 4 

that has suctions less than an, suction induced in the grassed slope comprising of silty 5 

clay was higher than that in the bare slope. While there is scarce research on an, further 6 

investigation is needed to quantify the an in relation to some factors that may account for 7 

the unexpected observation in this case history, including soil hydraulic properties, grass 8 

type, root characteristics as well as the adaptability of grass to climatic conditions. 9 

 10 

(c) The effect of grass on suction retained during rainfall is revealed to be more significant for 11 

slope comprising of finer soil type than that of coarse one. During rainfall with intensity less 12 

than 20 mm/d, it is found that the grassed slope comprising of silty clay retained higher 13 

suction than bare slope, when comparing under the same given initial suction before 14 

rainfall. On the contrary, for sandy soil, no discernible difference of suction retained 15 

between grassed and bare slope is observed, regardless of the intensity of rainfall. 16 

 17 

(d) It is identified that higher suction induced before rainfall did not necessarily result in higher 18 

suction retained after rainfall. When comparing the responses of suction retained between 19 

clayey sand slope and fine sand slope (both with vegetation), the decrease in suction in the 20 

former, coarser soil type is found to be greater than that in the latter, finer one, for a given 21 

rainfall event with similar intensity. 22 

 23 

It must be emphasised that due to a lack of comparative field studies available in the literature, 24 

the above conclusions are drawn based on three specific case histories. As the response of ET-25 

induced suction depends on many factors including soil type, grass type, climatic condition and 26 

their complicated interaction that are difficult to be differentiated, these conclusions should be 27 

treated with caution and not extrapolate the observations to general case. More comprehensive 28 

sets of field data that cover the measurements of suction and water content in both bare and 29 

grassed slopes and site-specific climatic data are needed to further examine the discussion 30 

given in this paper. 31 
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Figure captions 

Figure 1. Water retention curves of soil investigated in the three selected case histories 

Figure 2. Measured pore-water pressure profiles upon drying for Case SGP in (a) period 1, (b) 

period 2, for Case SK in (c) period 1, (d) period 2, and for Case USA in (e) period 1, (f) period 2 

Figure 3. Correlations of measured suctions before and after drying 

Figure 4. Measured pore-water pressure profiles upon rainfall for Case SGP in (a) period 1, (b) 

period 2, for Case SK in (c) period 1, (d) period 2, for Case USA in (e) period 1 and (f) period 2 

Figure 5. Correlations of measured PWP before and after rainfall near the root zone of grass 

  



Table 1. Detailed comparisons of slope geometry, soil type, grass type and instrumentation among the three selected 
case histories 
 

Case SGP SK USA 

Country Singapore South Korea USA 

Climate 
Tropical 

rainforest 
Humid subtropical 

Slope 
geometry 

Height (m) 17 17 3 

Length (m) 25 30 3 – 4 

Slope angle (o) 30 29 70 – 90 

Water table (m below ground surface) 5 – 20 N.A. 2.75 

Soil 

Type Silty clay 
Clayey sand 
with gravel 

Fine sand 

Particle-size 
distribution 

Gravel (%) 

15 – 50 

25 

N.A. 

Sand (%) 48 

Silt (%) 
27 

Clay (%) 50 – 85 

Plastic limit (%) 15 – 30 
N.A. 

Liquid limit (%) 30 – 60 

In situ saturated water permeability (m/s) 1 x 10-6 1.2 x 10-5 N.A. 

Effective cohesion (kPa) 30 

N.A. 

1.4 – 6.3 

Friction angle, ’ (o) 26 27 – 28.5 

Friction angle with respect to an increase 

in matric suction, b (o) 

26 (suction less 
than 400 kPa) 

10.2 – 17 

Air-entry value (kPa) 150 0.8 4 

Deduced suction value corresponding to 
the anaeriobiosis point (kPa) 

> 200 1 – 5 5 – 12 

Grass 
Type Pasture Pasture Clump grass 

Root depth (m) 0.1 0.2 0.3 

Installation 
depth of 

tensiometers 

Within root zone (m) -- 0.15 0.3 

Below root zone (m) 0.5, 1.0, 1.5 0.3, 0.45 1.0, 2.0, 2.7, 4.3 
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Fig. 1. Water retention curves of soil investigated in the three selected case histories 
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Note: Hydrostatic line is not given for Case SK since the depth of water table is not reported in Kim and Lee (2010) 
 
Fig. 2. Measured pore-water pressure profiles upon drying for Case SGP in (a) period 1, (b) period 2, for Case SK in 
(c) period 1, (d) period 2, and for Case USA in (e) period 1, (f) period 2 
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Fig. 3. Correlations of measured suctions before and after drying 
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Note: Hydrostatic line is not given for Case SK since the depth of water table is not reported in 
Kim and Lee, (2010) 
 
Fig. 4. Measured pore-water pressure profiles upon rainfall for Case SGP in (a) period 1, (b) 
period 2, for Case SK in (c) period 1, (d) period 2, for Case USA in (e) period 1 and (f) period 2 
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Fig. 5. Correlations of measured PWP before and after rainfall near the root zone of grass 
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