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ABSTRACT 

When undertaking centrifuge studies on seismic soil–structure interaction, it is useful to be able 

to define the pseudo-static “pushover” response of the structure. Normally, this requires 

separate centrifuge experiments with horizontal actuators. This paper describes an alternative 

procedure, using Ricker ground motions to obtain the pushover response, thereby allowing 

both this and the response to seismic shaking to be determined using a centrifuge–mounted 

shaker. The paper presents an application of this technique to a 1:50 scale model bridge pier 

with two different shallow foundations, as part of a study on seismic protection using rocking 

isolation. The moment rotation (“backbone”) behaviour of the footings was accurately 

determined in the centrifuge to large rotations, as verified though independent 3D dynamic 

nonlinear finite element modelling. Ricker wavelet ground motions are therefore shown to be a 

useful tool for the identification of pushover response without requiring additional actuators. 

Furthermore, a simplified analytical methodology is developed allowing prediction of the 

maximum foundation rotation induced by a specific Ricker pulse. This methodology may be 

useful in predicting the characteristics (frequency and acceleration magnitude) of the Ricker 

pulse required to describe the pushover response of any (practically) rigid oscillator supported 

on shallow foundations. 

Main Text
Click here to download Main Text: Ricker-pushover-DOC-R1.docx 
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NOTATION LIST 

The following symbols are used in this paper: 

a Acceleration  

adeck Deck acceleration 

aE Acceleration at the model base (Excitation) 

aFF Free field acceleration 

B Foundation width 

d Displacement 

Dr Relative density of the soil 

E Young's Modulus 

fE  Excitation frequency 

FSE  Factor of safety in seismic loading 

FSV  Factor of safety in vertical loading 

H Pier height 

M Moment load 

Mdeck Deck mass 

N Vertical load 

PGA Peak ground acceleration 

Q Horizontal load 

Sa Spectral acceleration 

Sd Spectral displacement 

t Time 

T Period 

z depth 

γ Unit weight 

δ Horizontal displacement 

δF Horizontal displacement due to column bending 

δR Horizontal displacement due to foundation rotation 

δres Residual horizontal displacement 

δs Horizontal displacement due to foundation sliding 

δtot Total horizontal displacement 

θ Rotation 

θc Critical rotation causing overturning on a rigid base 

θuplift Rotation causing onset of uplifting  

σv Total vertical stress 
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φ Soil friction angle  

φ′peak Peak friction angle  

φ′peak Peak friction angle  

 

INTRODUCTION 

The understanding of seismic soil–structure interaction (SSI) has been developed to the point 

where it is possible to utilize the ductile characteristics of foundation rocking to protect 

structures from more catastrophic brittle forms of failure (e.g. Gajan et al., 2005; Pecker, 2005; 

Paolucci et al., 2007; Gajan&Kutter 2008; Anastasopoulos et al., 2010; Gelagoti et al., 2012).  

The key concept underpinning this design approach is that the moment capacity of the 

foundation is lower than that which causes damage to the supported column or pier, resulting 

in shallow foundations which are smaller than those produced by conventional design 

approaches (aiming to prevent inelastic foundation response). This relies on adequate 

characterization of the moment–rotation pushover response of the system. 

A recent collaborative study has been undertaken between the National Technical 

University of Athens and the University of Dundee.  This study, reported in Loli et al. (2014), 

focussed on the use of rocking isolation to seismically protect Eurocode 2/8 (2005/2004, 

respectively) compliant reinforced concrete bridge structures.  Figure 1showsthe conceptual 

prototype problem, where a 10.75 m tall bridge pier, carrying the dead load of the deck (300 

Mg), is founded on a shallow, 10 m thick, layer of medium density sand (relative density, Dr = 

60%) with a square (B x B) footing. This was structurally designed to resist a ground motion of 

0.2g to Eurocode 8 design principles, as outlined in Loli et al. (2014).  Two models were tested, 

the only difference between them being the foundation dimensions, with the aim of comparing 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



two different approaches to aseismic foundation design as summarized in Table 1. The larger 

footing (B       m   o  o e  c rrent co e  rovisions ens rin  minima   is  acements o  the soi    

foundation interface under the design earthquake, i.e. the factor of safety against seismic 

loading (FSE) is greater than one. The alternative design (B = 4 m) promoted the newly 

introduced concept of foundation rocking isolation with FSE < 1. 

During this study, the model bridge piers were realistically modelled using new scale-

model reinforced concrete (“mo e -RC”) developed at the University of Dundee and described 

in Knappett et al. (2010), Knappett et al. (2011) and Al-Defae & Knappett (2014a; 2014b).  The 

structural design and validation of the properties of the model piers is described in Loli et al. 

(2014).  In addition to testing the response of these damageable structures under historical 

ground motions, it was necessary to check the moment–rotation response of the foundation 

designs, to ensure that the structural moment capacity fell between the moment capacities of 

the two foundations which were associated with FSE< 1.  The yield surfaces for the two 

foundations in N–Q–M space (N = vertical load; Q = horizontal load; M = moment) for these 

foundations on the test soil (dry sand, properties given below) were estimated after Butterfield 

& Gottardi (1994) and are shown in Figure 2. Two yield surfaces are shown in each case with 

the outer representing peak friction angle conditions (φ′peak) and the inner based upon the 

critical state friction angle for the soil (φ′crit).  It can be seen that the combination of loads acting 

on the structure lies between the yield surfaces implying that the small foundation will isolate 

the structure through rocking, while the larger one will not.  

Determining the capacity of the footings posed a significant challenge as the timescale of 

the project meant that producing different centrifuge setups using horizontal actuators would 
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not have been achievable.  Therefore, it was decided to investigate the possibility of using a 

carefully selected dynamic  ro n  motion to  ro  ce a “virtual pushover” of the structure–

foundation model.  This latter set of tests was conducted on a geometrically identical pier 

model, but with the model RC piers replaced with elastic columns, made of aluminium, to 

supress concrete failure and focus on foundation response. Initially it was intended to match 

these to the initial linear elastic bending stiffness of the model-RC columns ( = 10.76 GNm2 at 

prototype scale); however, preliminary numerical modelling (described later) indicated that 

using a stiffer structure, approximately 2.7 times stiffer in bending, would suppress flexural 

oscillations and ensure that the dynamic response of the pier be dominated by foundation 

rocking. Although this lead to unrealistic modelling of the bridge pier stiffness characteristics, 

promoting foundation rocking in this way was essential in facilitating the approximation of the 

foundation moment capacity and moment‒rotation backbone curve through shaking which was 

the main objective of the herein presented work. 

 

RICKER WAVELETS 

When using a ground motion to simulate a pushover test, possible excitation alternatives 

include a step-type motion or various types of pulse input, inc   in  sin  e sine    ses, “  in ” 

pulses and Ricker wavelets.  All of these are capable of producing a peak spectral displacement 

of significant magnitude to induce substantial rocking, provided that the dynamic 

characteristics of the structural system are tuned to have a suitably long natural period.  

Preliminary numerical modelling was conducted, as described in the following section, to 

evaluate these different possibilities. Thanks to their single characteristic pulse, Ricker wavelets 
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were found to be most efficient in accurately approximating the monotonic static response. It 

was observed that they are generally able to mobilise a larger amount of the rotation capacity 

than the other pulse types, while also having the advantage that the earthquake actuator slip 

table automatically comes back to rest in its original starting position, without having a 

permanent displacement offset.  This removes the need to re-centre the table before 

subsequent motions. 

A total of 15 different Ricker wavelets were considered involving three different dominant 

frequencies, fE = 2 Hz, 1 Hz, and 0.5 Hz, scaled to peak accelerations of 0.2 g, 0.4 g, 0.6 g, 0.8 g 

and 1.0 g. Figure 3 shows the acceleration (α) time histories of the Ricker wavelets used in the 

numerical analysis and the respective elastic displacement spectra (Sd) for PGA = 1.0 g. 

 

NUMERICAL MODELLING 

Finite Element Discretisation 

3D dynamic nonlinear finite element (FE) modelling was conducted using ABAQUS to 

investigate the behaviour of the bridge structure and underlying soil under different ground 

motions for simulating pushover. These analyses also serve the function of predicting the 

centrifuge test results which will be described later in the paper.  Figure 4 displays the 

sufficiently refined FE mesh and indicates the main features of the numerical model. The 

geometry is that of the centrifuge model at prototype scale. The deck and the footing were 

simulated using 8-noded hexahedral continuum elements, attributed the elastic properties of 

steel and aluminium respectively. The same element type, incorporating nonlinear material 

response, was used to model the sand layer. The 1.5 m × 1.5 m square section pier was 
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simulated with 3D elastic beam elements assigned the geometric and elastic stiffness 

properties of the aluminium section used in the centrifuge tests (E = 70 GPa, γ = 26 kN/m3).   

Given the relatively high position of the deck mass, second-order (P–δ) effects are of 

great importance and were therefore taken into account. The lateral boundaries of the model 

are free to move horizontally and were assigned suitable stiffness properties so as to 

realistically reproduce the response of the equivalent shear beam (ESB) flexible wall container 

used in the centrifuge and described in Bertalot (2012). Taking advantage of symmetry upon 

the plane that crosses the foundation midpoint in the direction of shaking allowed simulation of 

only half of the full 3D model, achieving greater computational efficiency. 

 

Soil Properties 

The nonlinear behaviour of medium density silica sand (relative density Dr = 60%, unit weight γ 

= 15.5 kN/m3), which was used in the experiments, was simulated using a simplified kinematic 

hardening model with Von Mises failure criterion and associated flow rule, modified 

appropriately so as to reproduce the pressure-dependent behaviour of sands as well as that of 

clays. Details of this model can be found in Anastasopoulos et al.(2011). Despite its lack of 

generality, the model has been shown to capture satisfactorily the nonlinear response of a 

shallow foundation upon compliant soil (Anastasopoulos et al., 2011). Moreover, in an attempt 

to provide a more realistic representation of the pressure-dependent sand behaviour, a user 

subroutine was encoded to provide variation of strength and stiffness properties with depth 

according to the φ – σv and E–z relationships shown in Figure 5.  The data in the figure is based 

on basic characterisation testing for the sand used in the centrifuge model tests, which may be 
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found in Al-Defae et al. (2013). The soil–foundation interface was modelled using contact 

elements, which allow sliding and uplifting to take place whilst being governed by a hard-

contact law and Coulomb's friction law in the normal and tangential directions, respectively. 

Response under Ricker Excitation 

A series of dynamic analyses were conducted in the time domain, wherein the model base was 

excited by a variety of idealized pulses (namely, sine, fling and Ricker pulses). Their intensity 

characteristics, such us peak acceleration and frequency, were parametrically varied in order to 

determine the pulse most appropriate to use in the centrifuge tests. Yet, this selection of 

excitation time histories was limited by a requirement for maximum displacement lower than 

0.25 m, which is the capacity of the shaking table in prototype scale. Figures 6a−6b show 

acceleration and displacement time histories of four of the pulses used in the numerical study. 

It may be observed that in all cases the input displacement does not exceed the limit of 0.25 m. 

Given this restriction, the Ricker pulse appears to have two significant advantages: it ensures 

greater spectral response over a wide range of periods (Figure 6e); and it gives zero permanent 

displacement facilitating the simulation of the excitation time history with a shaking table. 

Figure 7 shows the numerically computed dynamic response of the two foundations in 

the moment–rotation plane under excitation with 1 Hz and 0.5 Hz Ricker pulses (for two 

different PGA magnitudes). This is compared to the monotonic backbone curves calculated 

through numerical analysis of the same systems under horizontal pushover loading applied 

statically at the centre-of-mass of the deck. It is important to note that the calculated ultimate 

moment capacities are in good agreement with theoretical estimates (refer to Figure 2).  
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Strongly nonlinear behaviour may be identified in the shape of the single significant loop 

produced during each excitation pulse, this being presumably more pronounced with increasing 

excitation acceleration and/or dominant period. Having substantially greater displacement 

spectral ordinates over the entire range of periods (see Figure 3), the 0.5 Hz Ricker pulses 

naturally cause both foundations to respond well within the nonlinear regime, pushing them to 

much larger rotation amplitudes in comparison to shaking with the 1Hz Ricker pulse. Excessive 

material nonlinearity is manifested especially in the case of the smaller foundation leading to 

some considerable permanent rotation for both PGA cases shown. On the other hand, the 

response of the larger foundation is mainly associated with uplifting (loss of contact with the 

supporting soil), rather than soil yielding, and hence the M–θ loop resembles the well-known 

characteristic S–shape. Most importantly, in both cases the dynamic loops approximated the 

backbone curves satisfactorily indicating that Ricker pulses, especially those having 

substantially large dominant period, may be used in centrifuge tests to indirectly measure the 

ultimate lateral load foundation capacity. 

 

CENTRIFUGE MODELLING 

Model Set-up 

Two dynamic centrifuge tests were conducted on 1:50 scale physical models of the bridge pier 

system, with identical super-structural properties, but with different foundations (B = 7.5 m and 

4.0 m).  In each case, the structures were placed on dry fine Congleton silica sand (HST95, γmax = 

1758 kg/m3, γmin = 1459 kg/m3, D60 = 0.14 mm, D10 = 0.10 mm, critical state friction angle ϕ´crit = 

32o), prepared uniformly by air pluviation to a relative density, Dr ≈ 60%   The  e osit o  san  
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was 200 mm deep (i.e., 10 m at prototype scale) and was prepared within the equivalent shear 

beam (ESB) container described by Bertalot (2012) to minimize dynamic boundary effects.  

Instrumentation consisted of 13 type ADXL78 MEMS accelerometers (± 70-g range) and Linear 

Variable Differential Transformers (LVDTs) as shown in Figure 8.  The models were loaded onto 

the Actidyn Q67-2 servo-hydraulic earthquake simulator (EQS: see Bertalot et al., 2012 and 

Brennan et al., 2014 for a detailed description). Due to the limitations in displacement capacity 

of the EQS, it was not possible to reproduce the desired 0.5 Hz Ricker pulses and therefore the 

1 Hz Ricker wavelet with PGA = 0.6 g was used as excitation in both tests. All subsequent results 

in this paper will be given at prototype scale at 50-g. 

Motion Replication and Dynamic Response 

Figure 9shows the accelerations measured at the centre of mass of the deck in each of the two 

models – these were determined as the average of the instruments at the top and bottom of 

the deck mass as shown in Figure 8.  Also plotted are the demand motion, slip table motion and 

free field ground motion (top-most instrument in the right-hand column of buried 

accelerometers in Figure 8).  It can be seen that the EQS faithfully reproduced the input motion, 

and that there was some free-field amplification within the soil.   

Figure 10shows the lateral drift of the deck of the bridge, the total component δtot (due to 

sliding, δs, flexural displacement of the pier, δF and rotation δR); δres represents the residual 

value of δtot (i.e. the final unrecovered displacement). Due to a failure in one of the LVDTs 

recording the vertical foundation movement, it was not possible to independently measure δR 

for the case of the small foundation. However, geometric and physical properties of the pier 

standing on the small foundation (slenderness, relatively low factor of safety in vertical loading, 
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and significantly lower foundation rotational stiffness in comparison to the large foundation) 

suggest that rocking motion would sufficiently dominate the other two possible modes of 

response (i.e. sliding would be significant for a less slender oscillator and flexural bending was 

intentionally suppressed here by the significantly high column stiffness) so as to assume δR ≈ 

δtot. This dominant role of rocking oscillations, especially in the case of the small foundation, 

was confirmed by the results of the numerical analysis. 

 

PUSHOVER RESPONSE 

The values of δR were used with pier height h to determine the rigid body foundation rotation: 

1sin R

h


   
  

 
          (1) 

The moment at the bottom of the pier (which is the same as the moment input to the 

foundation) was determined using the accelerometer data at the deck (adeck), recognising that 

the system is a cantilever: 

deck deckM m a h       (2) 

In Equation (2), mdeck represents the mass at the top of the pier. Figure 11shows the moment 

rotation loops derived for the centrifuge data, and also plots the static pushover curve 

determined from the FEM. Considering the small foundation first, it is clear that for the case of 

foundations exhibiting substantial rocking, even a single Ricker pulse was sufficient to mobilise 

the moment capacity well into the non-linear (large rotation) domain. The match to the 

numerical backbone curve is very satisfactory, and suggests that this could be determined from 
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the centrifuge test data by fitting an envelope around the centrifuge data within the positive 

quadrant (Figure 11).  

In the case of the large foundation, much lower rotations were mobilised. This is due to 

the fact that the large foundation has significantly greater stiffness and capacity, therefore 

leading the pier to respond primarily through swaying and secondarily through rocking (as 

indicated by Figure 10a, where δR is a smaller proportion of the total deck drift δtot) as opposed 

to the small foundation pier, which responds primarily through rocking. Nevertheless, the 

maximum and minimum points of the loops agree well with the backbone curve.  In this case, it 

is suggested that centrifuge testing with a single Ricker pulse was perhaps more useful for 

validating the pushover response determined from FE modelling. However, it is noted, and will 

be further elaborated in the following section, that this pulse would be much more efficient in 

describing the M–θ behaviour of the large foundation as well, had the pier column been stiffer 

or rigid enough to supress swaying in favour of rocking. 

The centrifuge models were subsequently subjected to further consecutive and identical 

Ricker pulses which demonstrated that the foundations could be pushed further into the large 

rotation range to provide a more complete determination/validation of the pushover response, 

as shown in Figure 12 (note change in scales compared to Figure 11).  In the case of the large 

foundations (Figure 12a), the point of peak moment and rotation in the positive quadrant 

(shown by a circular marker) tracks laterally to the right along the backbone curve, confirming 

that the foundation is moving into the elasto-plastic plateau, while for the small foundation the 

successive pulses capture the descending branch of the backbone curve, though the moment 

capacity appears to be slightly higher than that predicted from the FEM. Although not tested 
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here, a smaller magnitude pulse (or pulses) could first have been used with both foundations to 

determine a point (or multiple points) on the initial elastic section of the backbone curve.  

The results shown in Figure 12 suggest that the use of multiple sequential Ricker pulses 

allows the virtual pushover to be conducted to a desired amount of rotation.  The maximum 

moment points can then be joined together to provide a good estimate of the backbone curve 

(or, preferentially, to validate an independent calculation, e.g. by FEM).   

 

SIMPLIFIED ANALYTICAL METHODOLOGY 

Following validation of the new procedure, it was considered desirable to develop a simple 

analytical methodology to allow estimation of the characteristics of the Ricker pulse (fE, PGA) 

required to describe the monotonic pushover response of similar single–degree–of–freedom 

equivalent oscillator systems having height to centre-of-mass = H and contact width with the 

soil = B for use in experimental modelling without the need to employ preliminary numerical 

analysis. To do so, it was necessary to make the simplification of considering the pier as rigid 

enough to respond predominantly through rocking and minimize flexural deformation of the 

column. This would be a valid assumption in the case of a relatively slender pier (H/B > 1.5) 

supported on a shallow foundation designed according to the principle of rocking isolation (see 

Gelagoti et al., 2012; and Loli et al., 2014). In a few words, this refers to an under-designed 

foundation (with FSE < 1) and moment capacity lower than the capacity of the supported 

column section. 

A series of further numerical analyses were conducted, including all the aforementioned 

Ricker pulses (Figure 3) for the same numerical model, with the only difference being the 
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stiffness of the column, which was 100 times larger than in the centrifuge tests, so as to be 

close to rigid. Results are summarized in Figure 13 for both foundation sizes. For PGA > B/(2H), 

i.e. when uplifting is expected, the maximum rotation experienced by the foundations was 

found to have a very strong correlation with the spectral displacement of the free field motion 

at large periods (here a period of 5 sec was taken as reference). More specifically, the following 

relationship may be deduced: 

  5secsin max( ) /T

dS   , for  θuplift > θ > θc      (3) 

Knowing the desired maximum foundation rotation, one may use Equation (3) to determine the 

spectral displacement required and hence the characteristics of a suitable pulse. It should be 

noted that this methodology is valid in the large displacement domain, where the foundation 

response id well off the linear regime and uplifting or soil yielding takes place. This is to say, the 

desired maximum rotation may be a fraction of the critical rotation causing overturning on a 

rigid base, θc = atan(B/(2H), and presumably greater than the rotation causing onset of uplifting 

(θuplift). The latter may be approximated making use of the Winkler foundation model as 

described by Apostolou et al. (2007). 

 

SUMMARY AND CONCLUSIONS 

In this paper it has been demonstrated that a Ricker wavelet type ground motion can be used in 

a centrifuge earthquake simulator to determine or validate the pushover response of shallow 

foundation systems, without requiring additional actuator set-ups.  This approach was found to 

provide useful information on the foundation response for cases when either small or large 

amounts of rocking are expected.  A structure representing a typical bridge pier tested with two 
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different sizes of shallow foundation was considered, with 3D nonlinear dynamic FE modelling 

used initially to demonstrate the concept and size the Ricker pulses. Centrifuge testing was 

then con  cte   hich  emonstrate  that the sha e o  the ‘backbone’ moment-rotation curve 

for the foundations could be determined be enveloping the moment rotation response from an 

appropriately-sized Ricker pulse, and that this matched the prediction from the FE modelling.  It 

was further shown that the subsequent application of additional pulses could extend the curve 

to larger rotations.  A simple expression was also developed, based on the centrifuge test data 

and further numerical parametric study that can be used in determining the properties of the 

Ricker pulse that will produce a desired amount of rotation for systems with different aspect 

ratios (H/B).  It is expected that the use of Ricker pulses will be particularly useful in 

characterising system response in future centrifuge tests of seismic soil–structure interaction 

problems, particularly given the current trend towards novel foundation designs which employ 

foundation rocking to seismically isolate the structure for which determination of the pushover 

response is extremely important.  

 

LIMITATIONS 

The presented methodology has been developed on the basis of centrifuge testing and 

numerical analysis of single-degree-of-freedom structures supported on shallow footings and 

its implementation naturally refers to such structures. The method relies on the seismically 

induced rocking vibration of the structure and therefore its effectiveness depends on the ability 

of the structure to respond predominantly through rocking as opposed to sliding or flexural 

vibrations. This requirement is related to the geometry (slenderness) and the rigidity of the 
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structure. In particular, the method was shown to provide accurate results for slender 

structures (H/B > 1.5) with foundations designed in accordance with the newly introduced 

concept of rocking isolation.  
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FIGURE CAPTIONS 

Figure 1.Schematic of the problem considered: bridge pier on a shallowfoundation considering 

two different sizes/designs. 

Figure 2.Foundation yield surfaces along with structural capacity shown for comparison. 

Figure 3. Acceleration time histories and elastic (ξ = 5%) displacement response spectra (shown 

only for PGA = 1 g) forthe Ricker wavelets: (a) fE = 2 Hz; (b) fE = 1 Hz; and (c) fE= 0.5 Hz. 

Figure 4.Details of the 3D FE simulation of the centrifuge model. 

Figure 5.Stress and depth dependent soil properties used in the FE model. 

Figure 6. Acceleration and displacement time histories of the idealized pulses used as bedrock 

excitations: (a) Sine 1 Hz, 0.2 g; (b) Sine 1.7 Hz, 0.44 g; (c) Fling 1 Hz, 0.5 g; (d) Ricker 0.7 Hz,           

0.6 g; (e) acceleration response spectra of the bedrock excitation pulses (ξ = 5%). 

Figure 7. N merica  y com  te   o n ation moment‒rotation loops compared to monotonic 

pushover response for: the large foundation model with (a) 1Hz and (b) 0.5 Hz Ricker wavelets; 

and the small foundation model with (c) 1Hz and (d) 0.5 Hz Ricker wavelets for two different 

amplitudes (PGA = 0.6 g and 1.0 g). 

Figure 8.Experimental set-up for centrifuge testing (small foundation shown; large foundation 

indicated by dashed line, all dimensions in millimetres). 

Figure 9. Accelerations recorded during centrifuge tests: (a) deck acceleration, large 

foundation; (b) deck acceleration, small foundation; (c) demand, input and free field motions. 

Figure 10. Deck drift time histories recorded during centrifuge tests for table excitation with 

Ricker 1Hz PGA = 0.6 g: (a) bridge pier on large foundation; and (b) bridge pier on small 

foundation. 

Figure 11. Foundation moment-rotation behaviour determined from centrifuge tests, compared 

to monotonic pushover (“back-bone”) curves from FE model: (a) large foundation,and (b) small 

foundation. 

Figure 12. Foundation moment-rotation loops recorded for a series of four successive, 

practically identical, Ricker pulses (fE = 1Hz, PGA = 0.6 g), compared with monotonic FE 

predictions: (a) large foundation, and (b) small foundation.  

Figure 13.Summary of the numerical and experimental results:  maximum drift experienced at 

the deck due to foundation rotationδ
R,max

= Ηsin(θ
max

), with respect to the large period spectral 

displacement S
d(T = 5 sec)

of the free field excitation. 
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TABLE CAPTIONS 

Table 1. Footing designs considered in this study (all values at prototype scale). 
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REVIEWER 1 

Reviewer's Comment Author Response 

The authors present a new technique to account 

for pushover response in dynamic soil-structure 

interaction problems. The paper is well written and 

should be accepted in its present form. 

The authors would like to thank the reviewer for 

her/his kind words and approval for publication. 

 

REVIEWER 2 

Reviewer's Comment Author Response 

The paper presents a technique that can be used to 

avoid the need of having an in-flight actuator to 

perform the pushover procedures for SSI centrifuge 

experiments. While the new technique seems to be 

potentially promising, some details are still missing. 

For example, there should be a section discussing 

the limitations of the technique. What if the mass 

is distributed rather than concentrated? Also, how 

would the method work for a yielding pier or 

column? Some other comments are mentioned 

below. 

For the purpose of revision, the page numbers 

mentioned below are based on assigning number 1 

to the title and abstract page. (Please number the 

pages in the revised paper) 

The authors would like to thank the reviewer for 

the thorough review of our manuscript and 

her/his comments which significantly contributed 

in improving the quality of this paper.  

Following the reviewer’s suggestion, a section has 

been added in the paper discussing the limitations 

of the proposed simplified methodology. More 

specifically, it is clearly stated that the latter has 

been developed on the basis of centrifuge testing 

and numerical analysis of single-degree-of-

freedom structures supported on shallow footings 

and its implementation naturally refers to such 

structures. Moreover, the method relies on the 

seismically induced rocking vibration of the 

structure and therefore its effectiveness depends 

on the ability of the structure to respond 

predominantly through rocking as opposed to 

sliding or flexural vibrations. This requirement is 

related to the geometry (slenderness) and the 

rigidity of the structure. In particular, the method 

was shown to provide accurate results for slender 

structures (H/B > 1.5) and practically rigid 

oscillators or structures supported on soft soil. 

Response to Reviewer and Editor Comments



In page 4 "preliminary numerical modelling 

(described later) suggested that the amount of 

pushover could be maximised by using a solid 

aluminium pier, approximately 2.7 times stiffer in 

bending." 

Please elaborate. 

Following the reviewer’s suggestion, the following 

details were added in the text: “…however, 

preliminary numerical modelling (described later) 

suggested that using a stiffer structure, 

approximately 2.7 times stiffer in bending, would 

suppress flexural oscillations and ensure that the 

dynamic response of the pier be dominated by 

foundation rocking. Although this lead to 

unrealistic modelling of a bridge pier, promoting 

foundation rocking in this way was essential in 

facilitating the approximation of the foundation 

moment capacity and moment‒rotation backbone 

curve through shaking which was the main 

objective of the herein presented work.” 

In page 6 "Von Mises failure criterion and 

associated flow rule, modified appropriately so as 

to reproduce the pressure-dependent behaviour of 

sands as well as that of clays. Details of this model 

can be found in Anastasopoulos et al. (2011)." 

Why did not the authors just use Mohr Coulomb 

failure criteria instead of adopting a modified Von 

Mises criterion, which is typically used for clay? 

The Mohr Coulomb model is suitable for 

simulating static problems on sandy soils. Yet, it is 

known to dramatically over-predict damping and 

therefore raising concerns when used in dynamic 

problems. Therefore, in this study, we made use 

of the modified Von Mises model developed by 

Anastasopoulos et al., 2011 which has been 

extensively validated against physical modelling 

tests and shown to reliably reproduce the 

dynamic/cyclic response of shallow foundations 

over both sand and clay.  

In page 7, "This confirms that over a wide range of 

periods, the Ricker pulse provides a greater 

spectral response than the other types of motion." 

How can you reach this conclusion from comparing 

base motion of different amplitudes!? 

May be if you fix the amplitude of the base motion, 

the conclusion is not going hold true. 

The reviewer's question is reasonable as the 

concept of motion selection was not explained in 

sufficient detail. The motions were selected with 

respect to a fixed maximum displacement due to 

the shaking table displacement capacity. 

The text was revised to describe this concept 

more clearly: "A series of dynamic analyses were 

conducted in the time domain, wherein the model 

base was excited by a variety of idealized pulses 

(namely, sine, fling and Ricker pulses). Their 

intensity characteristics, such us peak acceleration 

and frequency, were parametrically varied in 

order to determine the pulse most appropriate to 

use in the centrifuge tests. Yet, this selection of 



excitation time histories was limited by a 

requirement for maximum displacement lower 

than 0.25 m, which is the capacity of the shaking 

table in prototype scale. Figures 6a−6b show 

acceleration and displacement time histories of 

four of the pulses used in the numerical study. It 

may be observed that in all cases the input 

displacement does not exceed the limit of 0.25 m. 

Given this restriction, the Ricker pulse appears to 

have two significant advantages: it ensures 

greater spectral response over a wide range of 

periods (Figure 6e); and it gives zero permanent 

displacement facilitating the simulation of the 

excitation time history with a shaking table". 

In page 9 "in this case the pier was expected to 

have experienced almost purely rotational motion 

so <delta>R ?<delta>tot" 

What is the basis of this conclusion?? Previous 

publication?? 

Geometric and physical properties of the pier 

standing on the small foundation (slenderness, 

relatively low factor of safety in vertical loading, 

and significantly lower foundation rotational 

stiffness in comparison to the large foundation) 

suggest that rocking motion would sufficiently 

dominate the other two possible modes of 

response: sliding (would be significant for a less 

slender oscillator), and flexural bending 

(intentionally suppressed here by the significantly 

high column stiffness). This dominant role of the 

rocking mode of response, especially in the case 

of the small foundation, was confirmed by the 

results of the numerical analysis. 

The text was revised accordingly. 



In page 11 "To do so, it was necessary to make the 

simplification of considering the pier as rigid 

enough to respond predominantly through rocking 

and minimize flexural deformation of the column. 

This would be a valid assumption in the case of 

slender structures" 

How are Slender Structures rigid and responding 

predominantly through rocking? 

We thank the reviewer for pointing out this 

inaccuracy in the text. We have revised the text to 

be more clear: 

"This would be a valid assumption in the case of a 

relatively slender pier (H/B > 1.5) supported on a 

shallow foundation designed according to the 

principle of rocking isolation (see Gelagoti et al., 

2012; and Loli et al., 2014). In a few words, this 

refers to an under-designed foundation (with FSE 

< 1) and moment capacity lower than the capacity 

of the supported column section". 

In page 12 "Knowing the desired maximum 

foundation rotation, one may use Equation (3) to 

determine the spectral displacement required and 

hence the characteristics of a suitable pulse." 

How about the frequency of the base motion and 

natural frequency of the structure? 

Do they have an influence? 

The frequency of the base motion is incorporated 

in the calculations through the displacement 

response spectra of the excitation (Sd). The elastic 

natural frequency of the structure does not play 

any role because we refer to the large 

displacement domain, where uplifting takes place 

and the response is strongly nonlinear. In this 

case, while the foundation rotates and uplifting 

becomes more important, the equivalent 

dominant period of the system has been found to 

increase dramatically. Therefore, the presented 

methodology uses spectral ordinates at large 

periods (T = 5 sec was found to give quite 

satisfactory estimates).  

The text was revised to clearly state this. 
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Table 1. Footing designs considered in this study (all values at prototype scale). 

Property Large footing Small footing 

Breadth (m) 7.5 4.0 

Vertical load (MN) 4.9 4.0 

Design shear load (MN) 1.0 0.7 

Design moment (MNm) 10.6 7.6 

FSv (static) 18 3.5 

FSv (seismic) 1.7 0.6 
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