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ABSTRACT 

Motivation: The 14-3-3 family of phosphoprotein-binding proteins 

regulate many cellular processes by docking onto pairs of phos-

phorylated Ser and Thr residues in a constellation of intracellular 

targets. Therefore, there is a pressing need to develop new predic-

tion methods that use an updated set of 14-3-3-binding motifs for the 

identification of new 14-3-3 targets, and to prioritize the downstream 

analysis of >2000 potential interactors identified in high-throughput 

experiments.  

Results: Here, a comprehensive set of 14-3-3-binding targets from 

the literature was used to develop 14-3-3-binding phosphosite pre-

dictors. Position-specific scoring matrix (PSSM), support vector 

machines (SVM), and artificial neural network (ANN) classification 

methods were trained to discriminate experimentally-determined 14-

3-3-binding motifs from non-binding phosphopeptides. ANN, PSSM 

and SVM methods showed best performance for a motif window 

spanning from -6 to +4 around the binding phosphosite, achieving 

Matthews correlation coefficient of up to 0.60. Blind prediction 

showed that all three methods outperform two popular 14-3-3-

binding site predictors, Scansite and ELM. The new methods were 

used for prediction of 14-3-3-binding phosphosites in the human 

proteome. Experimental analysis of high-scoring predictions in the 

FAM122A and FAM122B proteins confirms the predictions and sug-

gests the new 14-3-3-predictors will be generally useful.  

Availability: A standalone prediction webserver is available at 

http://www.compbio.dundee.ac.uk/1433pred. Human candidate 14-

3-3-binding phosphosites were integrated in ANIA: ANnotation and 

Integrated Analysis of the 14-3-3 interactome database. 

Contact: cmackintosh@dundee.ac.uk and gjbarton@dundee.ac.uk 

Supplementary information: Supplementary data are available at 

Bioinformatics online. 

 

1 INTRODUCTION  

The 14-3-3 phosphoprotein-binding proteins interact with many 

intracellular targets. Changes in the engagement of 14-3-3s with 

different sets of target phosphoproteins cause coordinated shifts in 

cellular behavior in response to growth factors and other stimuli 

  
*To whom correspondence should be addressed.  

(Mackintosh, 2004; Bridges and Moorhead, 2005; Johnson et al., 

2010, 2011). 14-3-3s are boat-shaped dimers that dock onto specif-

ic pairs of phosphorylated Ser and Thr residues (Obsil and 

Obsilova, 2011). The phosphosite pairs are often located in tandem 

on the same target protein, and are typically >15 amino acid resi-

dues apart to allow engagement with both docking sites in the cen-

tral groove of the 14-3-3 dimer (Yaffe et al., 1997; Yaffe, 2002; 

Zhu et al., 2005). The 14-3-3s also have strong preferences with 

respect to the sequences immediately flanking the phosphorylated 

residues (Yaffe et al., 1997; Yaffe, 2002; Zhu et al., 2005).  

Early analyses of known 14-3-3-binding sites indicated 

R(S)X1,2(pS)X(P) as a 14-3-3-binding motif (Muslin et al., 1996; 

Mackintosh, 2004). Later screening of libraries for phosphopep-

tides that displayed optimal binding to 14-3-3s, identified two con-

sensus 14-3-3-binding motifs, namely Mode I (RSX(pS/T)XP) and 

Mode II (RX(F/Y)X(pS)XP), with subtle preferences and negative 

determinants for the X residues (Yaffe et al., 1997; Yaffe, 2002; 

Obsilová et al., 2008). These sequence motifs served as the basis 

for a position-specific scoring matrix (PSSM) to predict potential 

14-3-3-binding phosphosites in Scansite (Obenauer, 2003). A more 

recent survey showed that most experimentally determined 14-3-3-

binding sites (dubbed gold-standards) conform to mode I motifs, 

having at least one basic residue in the positions -3 to -5, relative to 

the phosphoSer/Thr, and never a +1 proline. However, the proline 

at +2 is found in fewer than 50% of cases, and often the serine in 

the -2 position relative to the 14-3-3-binding phosphosite is a resi-

due that is annotated as phosphorylated (Johnson et al., 2010). 

Additionally, Mode III sites, in which the phosphorylated residue 

is the penultimate residue in the C-terminal tail of a protein target, 

have also been reported (Coblitz et al., 2006; Panni et al., 2011). 

Recently, a further striking pattern was identified in the human 

14-3-3 interactome. The majority of well-defined human 14-3-3-

binding phosphoproteins were discovered to be 2R-ohnologues 

(Tinti et al., 2012). This means that they belong to protein families 

of two to four members that were generated by the two rounds of 

whole-genome duplication (2R-WGD), which marked the evolu-

tionary origins of the vertebrate animals ~500 million years ago 

(Makino and McLysaght, 2010; Huminiecki and Heldin, 2010). 

Most of the new genes were negatively selected and lost. However, 

those that were retained in families of two to four members are 

highly enriched in signalling proteins that bind to 14-3-3s (Tinti et 

al., 2012; Huminiecki and Heldin, 2010). In case studies, protein 
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families were identified whose members share one 14-3-3 binding 

site in common (termed the ‘lynchpin’). Lynchpins also align with 

a serine or threonine residue in the pro-orthologue proteins from 

the pre-2R-WGD invertebrate chordates, Branchiostoma (amphi-

oxus, lancelet) and Ciona (tunicates, sea squirts). In contrast, the 

second sites may differ on different family members, and may be 

phosphorylated by different protein kinases. These findings led to 

the proposal that 14-3-3 dimers may have played a mechanistic 

role in the regulatory divergence of 2R-ohnologue families: The 

lynchpin hypothesis proposes that conservation of one ‘lynchpin’ 

14-3-3-binding site gave the freedom for the second site to change, 

and perhaps become a consensus site for phosphorylation by a 

different protein kinase (Johnson et al., 2011). The resulting pro-

tein families therefore operate as ‘signal multiplexing’ systems that 

are regulated by a wider array of protein kinases than would be 

possible if the function were performed by only a single protein.  

Currently, the Scansite 14-3-3 predictor (Obenauer, 2003) is the 

most commonly used software tool to identify potential 14-3-3-

binding phosphosites. Scansite was trained on peptide-libraries 

derived from a limited number of experimentally-defined 14-3-3-

binding sites, but these training datasets no longer accommodate 

the diversity of known 14-3-3-binding phosphopeptides. Another 

source of information on 14-3-3-binding sites is the ‘eukaryotic 

linear motif’ database ELM (Puntervoll, 2003). ELM uses regular 

expressions and context-based filtering to derive pattern probabili-

ties based on a few dozen Mode I, Mode II and non-consensus 

motifs. 

There are now >2000 phosphoproteins that have been found to 

display affinity for 14-3-3 in high-throughput (HTP) proteomics 

experiments (Pozuelo Rubio et al., 2004; Jin et al., 2004; Nishioka 

et al., 2012). Accordingly, there is a need to extend predictors to 

include 14-3-3 binding sites that do not conform to Mode I binding 

and to test the signal multiplexing hypothesis. A more comprehen-

sive picture of potential 14-3-3 binding sites would help to define 

how the complete 14-3-3-interactome system works. The ANIA 

(ANnotation and Integrated Analysis of the 14-3-3 interactome) 

web-service and database (Tinti et al., 2014) integrates multiple 

datasets on 14-3-3-binding phosphoproteins and provides an up-to-

date gold-standard dataset of experimentally determined 14-3-3-

binding phosphosites of all known Modes. In this paper, three new 

classifiers of 14-3-3-binding sites are described that have been 

trained on the ANIA gold-standard dataset. The new predictors are 

compared with Scansite and ELM, predictions for the human 

phosphoproteome performed and a couple of high-scoring sites 

experimentally tested.  

2 METHODS 

2.1 Data collection and preprocessing 

The human proteome was retrieved from the UniProt database (June 2013 

release) and all Ser/Thr residues located in every protein sequence. A col-

lection of annotated phosphoSer/Thr sites (phosphoproteome) was gathered 

from PhosphoSitePlus (October 2013 release) (Hornbeck et al., 2004).  

A list of 300 experimentally determined 14-3-3-binding phosphosites 

was collected from ANIA (Tinti et al., 2014) and further extended from the 

literature to give 322 gold-standard 14-3-3-binding sites (POS) (Supple-

mentary Table S1). A negative dataset (NEG) (Supplementary Table S2) 

was assembled from the literature cited in Johnson et al. (Johnson et al., 

2010), resulting in 93 phosphosites. To prepare balanced sets of POS and 

NEG examples, 230 additional likely non-binding sites were randomly 

selected from a subset of proteins for which two 14-3-3-binding sites had 

been experimentally defined. Although the likely NEG sites are located in 

14-3-3-binding proteins, these sites are thought unlikely to bind 14-3-3s 

since there is currently no evidence of proteins that bind 14-3-3 through 

multiple pairs of phosphosites. The resulting POS and NEG datasets com-

prised balanced numbers of phosphopeptides that were further processed 

for training of the classifiers.  

To explore motif patterns that are in agreement with the modes of bind-

ing previously proposed, five non-symmetrical motif windows around the 

phosphoSer/Thr site were defined, including: [-3:1], [-4:2], [-5:3], [-6:4], 

and [-7:5]. These motif windows ranged from 4 to 12 residues in width not 

including the central phosphoSer/Thr residue. The peptides in the POS and 

NEG datasets were also filtered for sequence redundancy at a range of 

identity thresholds for all pairwise peptide comparisons. When working 

with small peptides, a single amino acid difference can be critical for de-

termining specificity. Thus, determining redundancy in short peptides is not 

straightforward. In this paper, redundancy is defined by differences of 

1…k/2 amino acids, where k is length of the peptide. Thus, redundancy 

thresholds ranged from a minimum of one residue difference up to half of 

the size of the motif window (equivalent to 50% redundancy level). For 

example: for motif window [-6:4] that comprises 10 residues, five levels of 

redundancy were investigated with a minimum number of differences rang-

ing from one to five. Since the number of redundancy thresholds investi-

gated depends on the size of the motif window in analysis, all combinations 

of windows and redundancy thresholds were tested in model training and 

testing. 

In order to reduce the risk of bias, the resulting pairs of balanced POS 

and NEG datasets from different combinations of motif windows and re-

dundancy thresholds were further split into two independent training and 

testing subsets. This gave 240 (75%) and 78 (25%) peptides for training 

and testing respectively. After selecting the best overall models in training 

and testing, final methods were trained using the full non-redundant train-

ing and testing subsets, comprising 318 POS and 318 NEG peptide exam-

ples in total (100%) (Supplementary Table S1 and S2). An additional inde-

pendent and ‘blind’ test dataset (BLIND) comprising 38 experimentally-

defined 14-3-3-binding sites was collected from the literature (Supplemen-

tary Table S3). Following the same strategy used for preparing the training 

datasets, 32 likely non-binding phosphosites were selected as BLIND nega-

tives (Supplementary Table S4).  

2.2 Classification methods 

2.2.1. Artificial neural network (ANN) 

ANN models were trained using the R package RSNNS (Bergmeir and 

Benítez, 2012) and the Stuttgart Neural Network Simulator (SNNS; 

http://www.ra.cs.uni-tuebingen.de/SNNS). For ANN training, each of the 

20 different amino acids was encoded as a binary vector of length 20. For 

example: Ala was encoded as [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], 

whereas Arg was encoded as [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]. This 

pattern was followed for all 20 amino acids while gaps or other ambiguous 

amino acids were encoded as [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]. Ac-

cordingly, phosphopeptides of length k (4 ≤ k ≤ 12) were encoded by vec-

tors of length 20k. The final ANN model had 20 input nodes, a single hid-

den layer with 20 nodes, and one output layer with one output node. Train-

ing was performed by the backpropagation algorithm with momentum term 

(‘Backpropmomentum’), learning parameter η = 0.2, and momentum term 

µ  = 0.05. 

2.2.2. Position-specific scoring matrix (PSSM) 

PSSMs were implemented in Python (http://www.python.org) and assem-

bled by adapting the procedure described by Ferrari and colleagues (Ferrari 

et al., 2011). Amino acid frequency matrices were derived from POS and 
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NEG datasets and from a background (BGD) dataset, made up of all pep-

tides that have annotated phosphoSer/Thr sites (phosphoproteome). For 

each motif window of length k of the alignment (4 ≤ k ≤ 12); a PSSM was 

assembled with 21 rows (20 amino acids plus gaps or ambiguous (X), AA = 

(A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V, X)) and k col-

umns, where the values represent the frequency of amino acid i {i ∈ AA} at 

the jth position {j = 1…k} in the multiple alignment of all peptides. Equa-

tion 1 defines the final score S(p) assigned to each queried phosphopeptide 

p which is calculated by adding up the scores for all the positions, where  

S( p) =
POS

i , j
− NEG

i , j

BGD
i , jj

k

∑       (1) 

POSi,j, NEGi,j, and BGDi,j are the frequency values for amino acid i at posi-

tion j, in the POS, NEG and BGD matrices, respectively. 

2.2.3. Support vector machines (SVM) 

SVM models were trained and parameterized using the Python module 

PyML (http://pyml.sourceforge.net), which contains a set of non-linear 

kernels specifically developed for training and classification of biological 

sequences (Ben-Hur et al., 2008). The final SVM model employed the 

weighed-degree kernel (Sonnenburg et al., 2005), with soft margin constant 

C, which specifies the degree of separation between the two training classes 

of support vectors in the hyperplane, was set to one. Lastly, the cosine 

kernel was applied to normalize the kernel values.  

2.3 Feature selection for the ANN models 

Two independent alphabet reduction systems were tried. Both methods 

grouped the 20 amino acids in 10 classes according their physicochemical 

properties, and were encoded as an orthogonal 10-length binary (Li et al., 

2003; Livingstone and Barton, 1993). 

Further features were also explored as inputs to the ANN model. Protein 

secondary structure predictions and solvent accessibility were computed by 

Jpred (Cole et al., 2008), which provides predictions of α-helix, β-strand, 

random coil, and solvent accessible or buried. In addition to the 20-length 

binary vector of amino acid encodings, every residue position including the 

central Ser/Thr was encoded as a 5-length binary vector or alternatively 

encoded as a vector of raw Jpred prediction scores [0.0:1.0], resulting in a 

vector of length 20k + 5(k + 1). Similarly, three methods for predicting 

natively unstructured/disordered regions in proteins (Dosztányi et al., 2005; 

Linding, 2003; Linding et al., 2003) were computed using the JABAWS 

package (Troshin et al., 2011). Peptide motifs were classified as disordered 

or structured by four methods, and were encoded as a binary vector of 

length 2, which resulted in an encoding vector of length 20k + 2(4). IUPred 

prediction scores ≥0.5 were used to define disordered regions, whereas for 

GlobPlot, the Dydx algorithm with a threshold of ≥0.0 was used. Regions 

predicted by both DisEMBL algorithms: HOTLOOPS and REM465; were 

considered for disorder classification. 

2.4 Evaluation methods 

The performance of each classifier was evaluated by Jackknife (leave-one-

out cross-validation) on the training and testing data, before a final test on 

the BLIND dataset. The performance of each method was assessed by re-

ceiver operating characteristic (ROC) curves which were plotted at various 

thresholds (Fawcett, 2004). The area under the ROC curve (AUC) (Sonego 

et al., 2008) was used as the primary performance measure. Additional 

standard metrics were calculated for each method including: sensitivity 

(SN, equivalent to recall) (Eq. 1), specificity (SP) (Eq. 2), positive predic-

tive value (PPV, equivalent to precision) (Eq. 3), accuracy (ACC) (Eq. 4), 

and Matthews correlation coefficient (MCC) (Eq. 5), where TP, FP, TN, 

FN denote the number of true positives, false positives, true negatives and 

false negatives, respectively. 

          SN =
TP

TP + FN
                                                                          (1)         

          SP =
TN

TN + FP
                                                                           (2)  

       PPV =
TP

TP + FP
                                                                       (3)  

          ACC =
TP +TN

(TP +TN + FP + FN )
                                                 (4) 

        MCC =
TP ×TN − FP ×FN

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
        (5) 

 

Evaluation and statistical analysis was performed in the R statistical lan-

guage (http://www.r-project.org) and ROCR package (Sing et al., 2005). 

Sample correlation analysis was performed by the Pearson correlation 

coefficient (r). For two-sample paired tests, the Wilcoxon-Mann-Whitney 

test and the Student’s t-test were performed. The null hypothesis was in-

ferred at a 95% level of confidence. 

2.5 Biochemical methods 

The cDNA encoding human FAM122A (Q96E09) was amplified from 

IMAGE consortium EST clone 6182641(coding for NM_138333.3 CDS) 

and FAM122B (Q7Z309) was from IMAGE consortium EST clone 

3841054 (coding for NM_145284.3 CDS). Three isoforms of FAM122C 

(Q6P4D5) were cloned: NP_620174.1 amplified from IMAGE clone 

4699951 (152 residues); Q6P4D5.1, amplified from IMAGE clone 

5229041 (195 residues); and AAH65225.1, amplified from IMAGE clone 

5724414 (96 residues). cDNAs were cloned as BamHI/NotI inserts into the 

multiple cloning site of pcDNA5 FRT/TO that adds a C-terminal GFP tag 

to the expressed protein. Mutants were made using PCR mutagenesis and 

DNA sequencing was performed by The Sequencing Service, University of 

Dundee (www.dnaseq.co.uk). Plasmids are available from the MRC-PPU 

reagents website (mrcppureagents.dundee.ac.uk).  

Proteins were isolated using GFP-Trap® (ChromoTek) from lysates of 

transfected human embryonic kidney 293 (HEK293) cells, using a lysis 

buffer that preserves their in vivo phosphorylation status. The isolated 

proteins were tested for retention of co-purified endogenous 14-3-3 pro-

teins (K19 pan-14-3-3 antibody, Santa Cruz Biotech), and for their ability 

to bind directly to 14-3-3s in Far-Western overlays, as in X(ANIA). Where 

indicated, isolated proteins were dephosphorylated, or not, as in X,(ANIA) 

prior to analysis of their interaction with 14-3-3. 

3 RESULTS AND DISCUSSION 

3.1 Development and evaluation of 14-3-3 classifiers  

Three new 14-3-3 classifiers were developed in this work. Data 

preprocessing was performed so that all combinations of motif 

window length and redundancy thresholds were evaluated in model 

training and model testing. The comparison of the area under the 

ROC curve (AUC) scores by Jackknife for the resulting classifiers 

showed that the highest performance was achieved at a redundancy 

threshold of at least one residue difference (sequence identi-

ty <90%), for a motif region spanning from -6 to 4. A motif win-

dow [-6:4] agrees with observed 14-3-3-binding modes (Johnson et 

al., 2010) and performed better in this study than [-7:7] which has 

been previously selected for this kind of classification task 

(Obenauer, 2003; Miller et al., 2008)).  
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 As shown in Fig. 1A, all three methods performed similarly well 

in model training and model testing, with AUC scores ranging 

from 0.84 (for the SVM in model training) to 0.87 (for PSSM and 

SVM in model testing). Fig. 1B shows the performance of the final 

models trained using balanced and non-redundant POS and NEG 

datasets (318 POS and 318 NEG peptide examples), generated by 

combining non-redundant training and testing sub-sets. ANN and 

PSSM showed an AUC of 0.86, whereas the SVM showed an 

AUC of 0.85. Although globally the performance of the final 

methods is not significantly different, the ANN presented the high-

est Matthews correlation coefficient (MCC) score of 0.59±0.01 

(SD), accuracy (ACC) of 79.6±0.6% and a positive predictive val-

ue (PPV) of 79.8±1.6%.  

Since phosphorylated Ser/Thr usually lie at the protein surfaces 

enabling kinase/phosphatase activity, as well as regulation by the 

14-3-3s (Vandermarliere and Martens, 2013), additional features 

such as secondary structure, solvent accessibility, and protein dis-

order, were tested to see their effect on performance, as was fea-

ture-selection by amino acid alphabet reduction. Although these 

approaches have proved useful in a number of classification tasks 

(for example (McDowall et al., 2009; Aytuna et al., 2005)), here 

they added complexity, but did not give a significant improvement 

in the performance of the methods developed here (data not 

shown).  

3.2  Comparison with other predictors 

The performance of the new classification methods developed here 

was compared with Scansite (Obenauer, 2003) and ELM 

(Puntervoll, 2003), using an additional dataset (the BLIND set) that 

was not used for training the methods. The BLIND dataset com-

prises 38 experimentally-defined 14-3-3-binding phosphopeptides 

and 32 non-14-3-3-binding sites. Raw Scansite prediction scores 

were obtained by querying Netphorest (Miller et al., 2008), that 

fully implements the original Scansite PSSM. Categorical classifi-

cation scores were also obtained for each BLIND phosphoprotein, 

from the Scansite2 (Obenauer, 2003), Scansite3 (unpublished work 

by Tobias Ehrenberger, 2012), and ELM webservers (Dinkel et al., 

2013). Scansite2 provides prediction scores based on 14-3-3 Mode 

I motifs that fall into three stringency levels: high, medium, and 

low. Scansite3, a Java implementation of Scansite2, enables search 

for a fourth stringency level: minimum. ELM uses context-based 

filtering and text-mining to improve the accuracy of assigned pat-

tern-matching probabilities based on Mode I and Mode II 14-3-3-

binding as well as non-consensus 14-3-3-binding. Overall, any 

phosphoSer/Thr site for which a prediction score was provided (at 

a particular stringency level, in the case of Scansite), was consid-

ered to be classified as 14-3-3-binding. All the remaining sites 

were classified as non-14-3-3-binding. Although other methods 

exist to predict 14-3-3 binding sites (Chan et al., 2011; Panni et al., 

2011) no software or pre-computed predictions were available for 

comparison to the methods developed here. 

As shown in Table 1, all three methods developed here showed 

higher MCC scores (up to 0.60 for ANN and PSSM), when com-

pared Netphorest Scansite, Scansite2 and Scansite3 at different 

stringency levels, and ELM (up to 0.52 for Scansite2 low and 

ELM). Indeed, the new methods present the best accuracy (ACC of 

80.0% for the ANN and 78.6% for PSSM and SVM), compared to 

 

Fig. 1. Performance of the classifiers tested by Jackknife. ROC curves and 

the area under the ROC curves (AUC) scores for: (A) model training (bold 

line) and model testing (dotted line); (B) final models; (C) comparison to 

Netphorest Scansite on the BLIND dataset. ANN, PSSM and SVM models 

were trained at the redundancy level of at least one residue difference and 

for a [-6:4] motif window. 
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accuracies of the other predictors, which are generally lower than 

75.7% (obtained for Scansite2 low). The performance scores of the  

new methods agree with the performance observed in model train-

ing and testing (Fig. 1). However, the PPV observed for the BLIND 

dataset is higher (from 79.8% for the final models compared to 

≥85.3% PPV for the BLIND dataset), which might be an outcome 

of the unbalanced composition of the BLIND dataset. A consensus 

predictor achieved 0.61 MCC and 80.0% ACC by averaging the 

scores from the three methods. Both Scansite2 and Scansite3 high 

stringency showed 100% PPV and 100% specificity (SP). This 

results from the fact that both methods incorrectly classify most 

sites as non-14-3-3 binding and give small numbers of TP and FP 

(zero FP in this particular case) but high FN. In terms of sensitivity 

(SN), the best method was Scansite3 minimum with 84.2% SN, 

compared to the ANN that showed 76.3% SN. Here, Scansite3 

minimum correctly predicted 32 out of 38 POS examples, whereas 

the ANN correctly predicted 29/38. Although Scansite predictors 

show higher SN and SP, the new predictors show a better balance 

between these two metrics, which leads to superior ACC and MCC 

scores.  

Two-sample sequence analysis of the final POS and NEG da-

tasets revealed that Mode I is indeed the most common, accounting 

for ~46% enrichment of Arg at position -3, ~31% enrichment of 

Pro at +2 position. Additionally, poorer enrichment of Ser and Leu 

at positions -2 and +1, respectively, as well as depletion of Pro at 

+1, is also observed. A similar profile is observed for the BLIND 

dataset which might explain why Scansite low and minimum cor-

rectly classifies POS examples equally well as the consensus pre-

dictor. However, non-consensus binding motifs are better covered 

by the methods introduced here since the consensus motifs I and II 

represent less than 30% of POS in both training and blind datasets. 

The correlation between the consensus predictor and Netphorest 

Scansite scores, for prediction of 14-3-3-binding phosphopeptides 

in the human proteome (section 3.3), is only r = 0.65 (p < 0.001), 

indicating that a fair number of peptides produce discordant pre-

dictions by Scansite and the methods developed here. 

Overall, based on the performance measures and benchmark re-

sults shown in Table 1 and Fig. 1C, all methods introduced in this 

study outperform the previous predictors with Scansite2 low and 

ELM the closest rivals. The Consensus predictor is significantly 

better than all the Scansite predictors and ELM, based on the MCC 

scores obtained for the BLIND dataset (p<0.05). Since the exact 

peptide datasets used for training Scansite are not known, it is like-

ly that the real performance of Scansite will be lower, as some of 

the tested examples could have been used for its training. Similar-

ly, ELM adds literature annotation for known 14-3-3-binding 

phosphosites when available, so its prediction performance is per-

haps over-optimistic. In fact, ~60% (15/24) TP were annotated 

from the literature, making this benchmark evaluation moderately 

biased in favour of ELM. Intriguingly, Scansite2 and Scansite3 

presented some classification differences at high and low stringen-

cy levels. Whether this difference is the result of the new imple-

mentation of Scansite3, potentially setting new underlying strin-

gency thresholds, or due to the addition of a minimum stringency 

level is not clear.  

3.3 Prediction and experimental testing of 14-3-3-

binding phosphosites in the human proteome 

 All 1,543,965 Ser/Thr residues in the 20,245 proteins of the 

human proteome as released in June 2013, were considered as 

potential 14-3-3 sites and ranked according to the methods devel-

oped here. The consensus classifier predicted a total of 75,891 

potential binding sites in 17,214 proteins. This corresponds to 

4.9% of all Ser/Thr sites with an average of 4 sites per protein. 

Considering only the set of 117,640 proteins for which phos-

Table 1. Comparison of the predictors developed in this study with Scansite and ELM, for an external BLIND dataset comprising 38 literature-curated 

14-3-3-binding sites and 32 non-binding sites. The table is sorted by MCC score. 

Predictor TP FP TN FN SN (%) SP (%) PPV (%) ACC (%) MCC * 

Consensus 
a, b

 28 4 28 10 73.7 87.5 87.5 80.0 0.61 

ANN 
a
 29 5 27 9 76.3 84.4 85.3 80.0 0.60 

PSSM 
a
 26 3 29 12 68.4 90.6 89.7 78.6 0.60 

SVM 
a
 27 4 28 11 71.1 87.5 87.1 78.6 0.59 

Netphorest Scansite 
c
 28 7 25 10 73.7 78.1 80.0 75.7 0.52 

Scansite2 low 
d
 28 7 25 10 73.7 78.1 80.0 75.7 0.52 

ELM 
d
 24 4 28 14 63.2 87.5 85.7 74.3 0.52 

Scansite3 low 
d
 27 7 25 11 71.1 78.1 79.4 74.3 0.49 

Scansite3 minimum 
d
 32 13 19 6 84.2 59.4 71.1 72.9 0.45 

Scansite2 high 
d
 12 0 32 26 31.6 100.0 100.0 62.9 0.42 

Scansite2 medium 
d
 17 4 28 21 44.7 87.5 81.0 64.3 0.35 

Scansite3 high 
d
 9 0 32 29 23.7 100.0 100.0 58.6 0.35 

Scansite3 medium 
d
 17 4 28 21 44.7 87.5 81.0 64.3 0.35 

 a 
The results shown were calculated based on optimal thresholds derived from accuracy/cut-off plots for the final models. The cut-offs are 0.55, 0.80, 0.25 and 0.50, for 

ANN, PSSM, SVN and Consensus, respectively. 
b 

The consensus predictor averages the scores obtained by the three methods: ANN, PSSM and SVM. 
c 

Scansite PSSM 

prediction scores were obtained by querying Netphorest. An optimal cut-off of 0.15 resulted in the balanced performance observed for Scansite2 low; 
d
 Based on categorical 

classification of the queried phosphoproteins. 
*
 The significance level of each method’s MCC score was assessed against the MCC score of the Consensus predictor by 

computing a distribution of MCC scores for 100 bootstrap replicates with replacement, randomly selecting examples from the BLIND dataset. Underlined MCC scores 

indicate that the method is significantly worse than the consensus predictor (p < 0.05) whereas double underline indicates high significance (p < 0.001). 

SN – Sensitivity; SP – Specificity; PPV – Positive predictive value; NPV – Negative predictive value; ACC – Accuracy; MCC – Matthews correlation coefficient. 
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phoSer/Thr sites have already been annotated, the number of pre-

dicted sites falls to 10,881 in 5,483 proteins. This corresponds to 

9.2% of all Ser/Thr sites in the phosphoproteome and an average 2 

candidate phosphosites per protein, which reduces the potential 

number of FP, since proteins known to be phosphorylated poten-

tially bind to 14-3-3 dimers. This approach makes it more amena-

ble for prioritizing experimental investigation. As shown below, 

two high-ranking ANN predictions were further tested by experi-

ment. 

Table 2 shows the top 20 high-scoring candidates sites predicted 

by the three methods on the phosphoproteome. Predicted proteins 

include: Sperm-specific antigen 2 (3rd); Sorbin and SH3 domain-

containing protein 1 (5th); Negative elongation factor E (6th); E3 

ubiquitin-protein ligase HUWE1 (17th); E3 ubiquitin-protein ligase 

UBR4 (18th); and Centrosomal protein of 170 kDa (19th): all of 

which had been previously detected in 14-3-3-binding capture 

experiments (Tinti et al., 2014; Wang et al., 2011), but whose 14-

3-3-binding sites remained elusive. High-scoring predictions by the 

consensus predictor support that these proteins partner with 14-3-

3s, however further experiments have to be performed to validate 

these candidate binding-sites.  

Two of the predicted sites, ranked at 2nd and 11th with consensus 

scores of 1.88 and 1.67, are for Family with sequence similarity 

122A and 122B (FAM122A and FAM122B). FAM122 is a family 

of three uncharacterized proteins (A, B and C). FAM122A and 

FAM122B is a pair of 2R-ohnologues, while FAM122C evolved 

by tandem duplication of FAM122B in mammals (adjacent genes 

at Xq26.3). Such tandem duplication of 2R-ohnologues is rare 

(Makino and McLysaght, 2010).  

Consistent with the 14-3-3-Pred results (Table 2), all three 

FAM122 family members displayed phosphorylation-dependent 

binding to 14-3-3 proteins when isolated from transfected cells 

(Fig. 2A). The binding of 14-3-3 to FAM122A was abolished by 

its dephosphorylation (Fig. 2B) and by substitution of Ser37 of 

FAM122A with alanine (Fig. 2C). Although phosphoSer62 and 

phosphoThr64 of FAM122A also had relatively high 14-3-3-Pred 

scores (0.614 and 1.076 respectively), mutation of these residues 

did not affect 14-3-3 binding to FAM122A isolated from cells 

cultured in standard serum-containing medium (Fig. 2C). Howev-

er, in the absence of Ser37, stimulating cells with the adenylate 

cyclase activator forskolin caused a marked increase in 14-3-3 

binding to FAM122A, which was abolished when Ser62 was also 

mutated to alanine and when cells were pre-treated with H89, 

which is a non-specific cAMP-dependent protein kinase (PKA) 

inhibitor (Fig. 2D). These data indicate that a 14-3-3 dimer binds 

to both phosphoSer37 and phosphoSer62 on FAM122A, the latter 

likely phosphorylated by PKA. Similar experiments showed that 

14-3-3 binds to phosphoSer25 and forskolin-regulated phos-

phoSer50 of FAM122B, and to phosphoSer29 (ILRRVNSAPLI)  

Table 2. Top 20 high scoring predictions and their respective scores. Proteins that have shown affinity to 14-3-3 in high-throughput (HTP) experi-

ments and 2R-ohnologue members were identified by querying ANIA. FAM122A and FAM122B were experimentally verified to bind 14-3-3 in this 

study.   

Rank Protein Description Site Motif Consensus 
a
 

1 PPP1R3G Protein phosphatase 1 regulatory subunit 3G 86 CRARSFSLPAD 1.97 

2 FAM122A 
b, c

 Family with sequence similarity 122A 37 GLRRSNSAPLI 1.88 

3 SSFA2 
b
 Sperm-specific antigen 2 739 PLRRSQSLPTT 1.87 

4 ALOX12 
c
 Arachidonate 12-lipoxygenase, 12S-type 246 LLRRSTSLPSR 1.83 

5 SORBS2 
b
 Sorbin and SH3 domain-containing protein 2 259 FRKRRKSEPAV 1.77 

6 NELFE 
b
 Negative elongation factor E 251 PFRRSDSFPER 1.75 

7 ANKRD63 Ankyrin repeat domain-containing protein 63 332 GLRRRSTAPDI 1.74 

8 SECISBP2L 
c
 Selenocysteine insertion sequence-binding protein 2-like 251 GRRRRASHPTA 1.72 

9 FAM13A 
c
 Family with sequence similarity 13A 741 MRQRSNTLPKS 1.72 

10 FAM189A2 
c
 Family with sequence similarity 189A2 275 LRTRSKSDPVL 1.71 

11 FAM122B 
b, c

 Family with sequence similarity 122B 25 TLRRSSSAPLI 1.67 

12 TRAK2 
c
 Trafficking kinesin-binding protein 2 420 TRGRSISFPAL 1.67 

13 CEP57 
c
 Centrosomal protein of 57 kDa 55 DLRRSPSKPTL 1.66 

14 GOLGA5 Golgin subfamily A member 5 116 FVRRKKSEPDD 1.66 

15 CISD2 
c
 CDGSH iron-sulfur domain-containing protein 2 106 RCWRSKTFPAC 1.66 

16 TBC1D22A 
c
 TBC1 domain family member 22A 167 PLQRSQSLPHS 1.65 

17 HUWE1 
b
 E3 ubiquitin-protein ligase HUWE1 649 MRRRRSSDPLG 1.65 

18 UBR4 
b
 E3 ubiquitin-protein ligase UBR4 2715 NKRRHVTLPSS 1.62 

19 CEP170 
b
 Centrosomal protein of 170 kDa 644 GERRRRTLPQL 1.60 

20 TMEM40 Transmembrane protein 40 137 GLRRRGSDPAS 1.59 
a 

The consensus predictor averages the scores obtained by the three methods: ANN, PSSM and SVM. 
b
 Proteins that have shown affinity to 14-3-3 in HTP experiments;  

c
 Protein members of 2R-ohnologue families; 
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of FAM122C. Thus, this is an example of a 2R-ohnologue family 

for which protein members share a conserved 14-3-3-binding 

‘lynchpin’. In fact, half of the top 20 candidate proteins (10/20) 

belong to 2R-ohnologue families.  

The benchmark results for the BLIND dataset, as well as predic-

tion of 14-3-3-binding sites in the human proteome and the analy-

sis of top high-scoring predictions, suggests the new classifiers 

developed in this study will be generally useful for identifying 

potential 14-3-3 sites. Although the methods developed here were 

not specifically developed to predict pairs of 14-3-3-binding sites 

due the limited set of proteins for which two binding sites are 

known, the example of the FAM122 2R-ohnologue family illus-

trates its use to investigate both primary and secondary 14-3-3-

binding phosphosites.  

A standalone web-server providing a simple yet useful interface 

to the new methods to score potential Ser/Thr centered motifs for 

likelihood of binding 14-3-3 proteins is freely available at 

http://www.compbio.dundee.ac.uk/1433pred. The predictions de-

scribed here were also integrated in the ANIA database. ANIA 

adds a functional layer to the peptide-based predictions, by looking 

for pairs of sites >15 residues apart and by the analysis of sequence 

alignments of 2R-ohnologue families to identify potential lynch-

pins (Tinti et al., 2012, 2014). In addition to the human proteome, 

predictions on proteomes of model organisms, such as Arabidopsis 

thaliana, where several 14-3-3-binding targets have been identified 

(Ferl, 1996; de Boer et al., 2013), will be performed and added to 

ANIA in the future. 
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