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RESEARCH ARTICLE

A role for the Cajal-body-associated SUMO isopeptidase USPL1 in
snRNA transcription mediated by RNA polymerase II

Saskia Hutten1, Georgia Chachami2, Ulrike Winter2, Frauke Melchior2 and Angus I. Lamond1,*

ABSTRACT

Cajal bodies are nuclear structures that are involved in biogenesis of

snRNPs and snoRNPs, maintenance of telomeres and processing of

histone mRNA. Recently, the SUMO isopeptidase USPL1 was

identified as a component of Cajal bodies that is essential for

cellular growth and Cajal body integrity. However, a cellular function

for USPL1 is so far unknown. Here, we use RNAi-mediated

knockdown in human cells in combination with biochemical and

fluorescence microscopy approaches to investigate the function of

USPL1 and its link to Cajal bodies. We demonstrate that levels of

snRNAs transcribed by RNA polymerase (RNAP) II are reduced

upon knockdown of USPL1 and that downstream processes such as

snRNP assembly and pre-mRNA splicing are compromised.

Importantly, we find that USPL1 associates directly with U snRNA

loci and that it interacts and colocalises with components of the Little

Elongation Complex, which is involved in RNAPII-mediated snRNA

transcription. Thus, our data indicate that USPL1 plays a key role in

RNAPII-mediated snRNA transcription.
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INTRODUCTION
The eukaryotic cell nucleus contains multiple compartments, or

bodies, including the nucleolus, PML bodies, Cajal bodies and

splicing speckles (reviewed by Dundr and Misteli, 2010;

Handwerger and Gall, 2006; Spector, 2001; Spector, 2006;

Spector and Lamond, 2011; Zhao et al., 2009). By concentrating a

defined set of protein and/or RNA components, nuclear bodies

have been suggested to act as sequestration or reaction sites for

specific factors and/or cellular processes, thereby regulating

complex formation and gene expression (Mao et al., 2011).

Cajal bodies are dynamic structures that vary in size and

number according to the cell cycle stage, differentiation and

developmental status of the cell (reviewed by Cioce and Lamond,

2005; Machyna et al., 2013; Morris, 2008). They have been

associated with roles in biogenesis of spliceosomal small nuclear

(snRNPs) and small nucleolar RNPs (snoRNPs), maintenance of

telomeres and histone mRNA processing. snRNPs represent the

major constituents of the spliceosome, which is a complex

machinery involved in removing introns from pre-mRNA

(reviewed by Wahl et al., 2009; Will and Lührmann, 2011).
Each snRNP is composed of a unique RNA component in
complex with a specific set of proteins (reviewed by Fischer

et al., 2011; Kiss, 2004; Patel and Bellini, 2008). Most snRNAs
are transcribed by RNA polymerase (RNAP) II and require a
cytoplasmic maturation step. RNAPII-transcribed snRNA gene

loci have been observed in proximity to Cajal bodies (Frey and
Matera, 1995; Gao et al., 1997; Jacobs et al., 1999; Smith et al.,
1995), and several components involved in RNAPII transcription
of snRNAs are enriched in Cajal bodies (Hu et al., 2013; Polak

et al., 2003; Smith et al., 2011). Exceptions are U6 and U6atac
snRNAs, which are transcribed by RNAPIII and pass through the
nucleolus for their maturation process (Ganot et al., 1999; Kunkel

et al., 1986; Lange and Gerbi, 2000; Reddy et al., 1987; Tycowski
et al., 1998).

After export of snRNAs into the cytoplasm, the SMN complex

directs the assembly of snRNAs with the common Sm proteins
(B/B9, D1, D2, D3, E, F, G) (Fischer et al., 1997; Kambach
et al., 1999; Massenet et al., 2002; Pellizzoni et al., 2002).
Subsequently, the 59 end of the snRNA is hypermethylated to

form the TMG-cap and snRNP complexes are re-imported into
the nucleus (Fischer and Lührmann, 1990; Fischer et al., 1993;
Hamm et al., 1990; Mattaj, 1986; Mouaikel et al., 2003; Plessel

et al., 1994). Here, they initially concentrate within Cajal bodies
prior to forming the typical ‘speckled’ pattern seen for mature
snRNPs (Sleeman and Lamond, 1999). In Cajal bodies, scaRNAs

can mediate post-transcriptional RNA modifications and
additional snRNP assembly steps can take place before snRNP
complexes are released into the nucleoplasm (Darzacq et al.,

2002; Jády et al., 2003; Kiss, 2001). There is evidence that the
formation of di-snRNPs (U4/6 snRNP) and tri-snRNPs (U4/6/5
snRNP) as well as their reassembly after each round of splicing
occurs within Cajal bodies (Schaffert et al., 2004; Stanek and

Neugebauer, 2004; Stanek et al., 2008).

Coilin is generally considered a marker protein for Cajal bodies
(Raška et al., 1991). Whereas knockdown of coilin has been

shown to lead to defects in snRNP biogenesis and embryonic
lethality in zebrafish (Strzelecka et al., 2010), neither coilin nor
the presence of Cajal bodies appears to be essential for viability in

mammalian cell lines, mice, Drosophila or Arabidopsis (Collier
et al., 2006; Lemm et al., 2006; Liu et al., 2009; Tucker et al.,
2001). However, coilin-induced Cajal bodies might serve to
increase the efficiency of complex assembly by providing a

structural scaffold to enrich components involved in snRNP
biogenesis (Klingauf et al., 2006; Matera et al., 2009; Novotný
et al., 2011).

Recently, an essential SUMO isopeptidase (USPL1) that
localises to Cajal bodies has been described (Schulz et al.,
2012). RNAi-mediated knockdown of USPL1 in HeLa cells leads

to disruption of Cajal bodies, relocalisation of coilin to the
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nucleolus and impaired cell proliferation. Strikingly, these effects
are not dependent on the catalytic activity of USPL1 as a SUMO

isopeptidase, suggesting additional functions for USPL1 linked
with the Cajal body. Therefore, we undertook a detailed study on
the effects of USPL1 knockdown on nuclear function and
architecture.

We show here that upon knockdown of USPL1 there are
changes in the localisation and/or mobility of both snRNA- and
mRNA-associated proteins and the splicing pattern of specific

pre-mRNAs is altered. We demonstrate that this phenotype is
associated with reduced snRNP biogenesis and low levels of
RNAPII-transcribed snRNAs. We further show an interaction

of endogenous USPL1 with members of the snRNA-specific
transcription complex and an enrichment of USPL1 at snRNA
gene loci, suggesting a key role for USPL1 in snRNA

transcription.

RESULTS
Knockdown of USPL1 affects Cajal bodies and splicing speckles
After siRNA-mediated knockdown of USPL1, the Cajal body
marker protein coilin relocalises into the nucleolus (Schulz et al.,
2012). Because other Cajal body components form nuclear bodies

without coilin (Bauer and Gall, 1997; Jády et al., 2003; Lemm

et al., 2006; Tucker et al., 2001), we compared the Cajal-body-
associated protein SMN in control cells and in cells after

knockdown of USPL1. USPL1 often colocalised in Cajal bodies
with both SMN and coilin (Fig. 1A, arrows in top panel).
Occasionally, we observed USPL1 in nuclear foci that did not
obviously label with coilin. Upon knockdown of coilin, USPL1

still formed nuclear foci, similar to SMN (Fig. 1A, arrows in
middle panel). As described previously (Schulz et al., 2012), coilin
concentrates in the nucleolus after knockdown of USPL1 (Fig. 1A,

open arrowhead in bottom panel). In these cells, SMN localises in a
larger number of nuclear foci (Fig. 1A, arrowheads in bottom
panel). USPL1 levels were efficiently reduced as detected by

immunoblotting (supplementary material Fig. S1A). By contrast,
levels of SMN protein appeared not or only mildly altered by
siRNA against USPL1, despite the drastic changes to SMN foci in

the nucleus upon knockdown of USPL1. Controls confirmed no
change in the levels of coilin upon knockdown of USPL1 (Fig. 4A;
supplementary material Fig. S1A) (Schulz et al., 2012).

We next tested whether other nuclear bodies might also be

affected by knockdown of USPL1. Therefore, we investigated the
effect of USPL1 knockdown on nucleoli, PML bodies and
splicing speckles by immunostaining. Whereas in the nucleoli of

some cells UBF and fibrillarin appeared less condensed upon

Fig. 1. Consequences of USPL1 knockdown on nuclear architecture. (A) Immunofluorescence of U2OS cells transfected with siRNA as indicated were
stained against USPL1, SMN and coilin. Closed arrows in top row indicate Cajal bodies with USPL1, SMN and coilin present. Open arrows in middle row
highlight USPL1 nuclear foci in the absence of coilin; arrowheads (middle and bottom row) indicate SMN nuclear foci upon treatment with siRNA against
coilin or USPL1. A maximum intensity projection in the right column demonstrates the increase in SMN nuclear foci (foci indicated by arrowheads, nucleus
indicated by the dotted line). Similar effects were observed with HeLa cells (data not shown). (B) Immunofluorescence of siRNA transfected U2OS cells stained
against USPL1, coilin and UBF. Similar effects were observed with HeLa cells. (C) A maximum intensity projection of siRNA treated HeLa cells stained with
antibodies against PML and coilin. Similar effects were observed with U2OS cells (data not shown). (D) Immunofluorescence of HeLa cells transfected with siRNA
as indicated were stained against ASF and coilin. Arrows highlight splicing speckles in control and coilin-depleted cells (top and middle row, respectively),
arrowheads indicate enlarged splicing speckles upon USPL1 knockdown (bottom row). Similar effects were observed with U2OS cells (Fig. 7). Scale bars: 10 mm.
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depletion of USPL1 (Fig. 1B and supplementary material Fig.
S1B, respectively), no dramatic loss of nucleolar integrity could

be observed, which is consistent with earlier observations (Schulz
et al., 2012). The integrity of PML bodies showed no apparent
change upon knockdown of USPL1 (Fig. 1C). This suggests that
knockdown of USPL1 causes only a minor effect on nucleoli and

little or no effect on PML bodies.
Splicing factors are often concentrated in interchromatin

granule clusters, also called nuclear speckles (reviewed by

Spector and Lamond, 2011). In control cells, nuclear speckles
exhibited an irregular fine-structured pattern, as shown for ASF/
SF2 and Sm proteins (Y12 antibody) (arrows in top panel Fig. 1D

and supplementary material Fig. S1C, respectively). By contrast,
USPL1-knockdown cells displayed enlarged, rounded nuclear
speckles (Fig. 1D and supplementary material Fig. S1C, arrow-

heads in bottom panel). In comparison, splicing speckles in cells
transfected with siRNA targeting coilin did not differ from
control cells, demonstrating that this effect on speckles is not

caused directly by loss of Cajal bodies (Fig. 1D, arrows in middle
panel).

Knockdown of USPL1 affects splicing
The observed reorganisation of splicing speckles into enlarged,
rounded structures, typically occurs upon inhibition of transcription

and/or pre-mRNA splicing (Carmo-Fonseca et al., 1992; O’Keefe
et al., 1994; Spector et al., 1984). To analyse whether general
transcription is affected by the knockdown of USPL1, we visualised

nascent RNA synthesis by 5-ethynyl uridine labelling (Jao and Salic,
2008) (Fig. 2A). To improve comparison of transcription levels, an
excess of cells transfected with the siRNA against USPL1 were mixed

with cells treated with control siRNA the day before analysis
(Fig. 2A). On the basis of the good correlation of nucleolar
localisation for coilin with knockdown of USPL1, we used

immunostaining for coilin to monitor USPL1 knockdown.
Cells with reduced levels of USPL1 (identified by nucleolar

coilin stain; Fig. 2A, arrowheads) still exhibited transcriptional

Fig. 2. Knockdown of USPL1 affects pre-mRNA
splicing. (A) An excess of HeLa (top panel) or U2OS
(bottom panel) cells treated with siRNA against USPL1
were mixed with control cells and analysed by 5-
ethynyl uridine pulse labelling to monitor nascent RNA
transcription. siControl- and siUSPL1-treated cells can
be distinguished by parallel immunostaining for coilin:
arrows indicate control cells with coilin in Cajal bodies,
whereas arrowheads highlight USPL1-knockdown cells
with coilin in nucleoli. Note, to allow visibility of
nucleolar coilin, Cajal-body-localised coilin was allowed
to saturate the camera during image acquisition. Scale
bar: 10 mm. (B) Changes in pattern of pre-mRNA
splicing detected by qualitative RT-PCR on total RNA
isolated from siRNA-transfected U2OS cells and
subsequent ethidium bromide agarose gel
electrophoresis. Similar effects were observed with
HeLa cells (data not shown). Splicing products from
either HeLa or U2OS USPL1-knockdown cells were
sequenced and their positions are indicated next to the
gel. White boxes indicate exons, filled black boxes
introns, with the position of respective primers
corresponding to the first and last box, respectively
(size of box not to scale). An asterisk indicates a
nonspecific band.
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activity at levels either similar to, or only slightly reduced, in
comparison to control cells (coilin in Cajal bodies, arrows;

Fig. 2A). This is consistent with the fact that we did not observe
nucleolar cap formation upon knockdown of USPL1, which
would be expected upon a general inhibition of transcription
(Carmo-Fonseca et al., 1992; Shav-Tal et al., 2005).

Because a general loss of transcription did not cause the
enlarged nuclear speckles upon USPL1 knockdown, we next
analysed pre-mRNA splicing of endogenous pre-mRNAs

extracted from either control, or USPL1-knockdown cells
(Fig. 2B). We detected changes in the alternative splicing
pattern of several pre-mRNAs by qualitative RT-PCR and

agarose gel electrophoresis (CCNA2, FAS, MCL1, RBM5,
ASF/SF2 and Caspase 9 mRNA; Fig. 2B). Additionally, using a
combination of primers located in introns and exons of pre-

mRNA, we detected different ratios of intermediate splicing
products of the constitutively spliced pre-mRNAs encoding b-
tubulin and b-actin (Fig. 2B). This demonstrates that the pattern
of pre-mRNA splicing was altered following USPL1 knockdown

in this cell system, at least for a subset of pre-mRNAs.

Knockdown of USPL1 alters the localisation and abundance of
snRNP components
We next analysed whether there were changes in overall protein
abundance and localisation after siRNA knockdown of USPL1,
combining siRNA knockdown with stable isotope labelling by
amino acids in cell culture (SILAC)-based mass spectrometry

(MS) (Ong et al., 2002) and cellular fractionation. After
metabolic labelling, HeLa cells were transfected with the
respective siRNAs (R0K0/light: siControl; R10K8/heavy:

siUSPL1). Equal numbers of cells were mixed and fractionated
into cytoplasm, nucleoplasm and nucleoli, as previously
described (Andersen et al., 2002; Boisvert et al., 2010)

(Fig. 3A). The knockdown and fractionation efficiency was
checked by immunofluorescence staining for coilin and
immunoblot analysis, respectively (data not shown).

The individual fractions were analysed by 1D-SDS-PAGE and
the peptides obtained from in-gel tryptic digestion analysed by
LC-MS/MS (see supplementary material Table S1). To relate
changes of protein levels in subcellular fractions to possible

changes in overall protein levels, total cell lysate (TCL) was

Fig. 3. SILAC MS-based analysis reveals impact of USPL1 knockdown on localisation and mobility of spliceosome-associated proteins.
(A) Experimental workflow of the cellular fractionation process and 1D SDS-PAGE for subsequent SILAC-MS analysis upon USPL1 knockdown. (B–D) SILAC
analysis of cellular fractionation of HeLa cells upon USPL1 knockdown. Only hits identified with .1 peptide in an individual fraction are displayed here. The log2
ratio heavy (H; siUSPL1)/light (L; siControl) of each cellular fraction is displayed as frequency histogram for cytoplasm (B) and nucleolus (C). Protein
groups above/below the arbitrary threshold are indicated by a red lined box (B,C). The log2 ratios [H (siUSPL1)/L (siControl)] of the cytoplasmic versus nucleolar
fraction are displayed as a scatter plot with each dot representing an individual protein (D). Spliceosome proteins (green, based on Hegele et al., 2012)
and ribosomal proteins (purple) are highlighted as indicated. The red lined box highlights protein groups enriched in the cytoplasmic fraction. Note, for clarity, the
three major environmental contaminants (keratins) are not displayed in D.
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analysed in parallel. When displayed as a histogram of the log2

ratio H/L (Fig. 3B,C and supplementary material Fig. S2A,B),

most protein groups from the cellular fractions fell into a
distribution centred around zero, indicating that their intracellular
localisation is unaffected by knockdown of USPL1. However,
,5% of all proteins identified in the cytoplasm and ,2% of all

proteins in the nucleolar fraction were more abundant in these
fractions upon knockdown of USPL1 (indicated by red box in
Fig. 3B,C). As expected, we found that coilin was enriched in the

nucleolar fraction (log2 H/L ratio nucleolus ,4, cytoplasm N/A;
Fig. 3D), confirming our previous immunofluorescence data
showing its nucleolar relocalisation upon knockdown of USPL1.

An enrichment analysis based on functional annotation for
proteins using the bioinformatics database DAVID (Huang et al.,
2009a; Huang et al., 2009b) revealed a highly significant

enrichment for proteins associated with the spliceosome and
RNA splicing in the cytoplasmic and/or nucleolar fractions
upon knockdown of USPL1 [corrected P-value (Benjamini):
,1610210; supplementary material Table S2]. This enrichment is

illustrated by highlighting splicing factors in Fig. 3D in green
(see list of protein group IDs in supplementary material
Table S1).

When analysed by immunostaining, none of the non-snRNP
proteins displaying enrichment in the cytoplasm upon cellular
fractionation (such as ASF/SF2 or snRNP A1) showed any

detectable relocalisation into the cytoplasm of intact cells (see

Fig. 1D and data not shown). The increase seen by SILAC could
either be below the detection limit for microscopy and/or reflect

‘leaking’ of proteins upon cellular fractionation as a result of their
increased mobility.

As shown in supplementary material Fig. S2A, a subset of proteins
was reduced in overall protein levels upon USPL1 knockdown (,2%

of all identified proteins in the TLC; indicated by red box), including
the U5 snRNP proteins PRPF6 and snRNP40, and the U1 snRNP
protein snRNP70. These MS data were confirmed for PRPF6 by

immunoblotting of total cell lysates obtained from USPL1-depleted
U2OS cells (see Fig. 4A). The blotting data showed that PRPF6
protein levels were reduced by ,50%, which is consistent with the

SILAC data. Importantly, siRNA-mediated knockdown of coilin had
no comparable effect, demonstrating that the changes in total protein
levels were specific for knockdown of USPL1 (Fig. 4A). In

comparison, levels of neither coilin nor SMN were affected by
USPL1 knockdown, in agreement with earlier observations
(supplementary material Fig. S1A). In conclusion, knockdown of
USPL1 causes dramatic changes in the abundance and nucleocyto-

plasmic distribution of specific spliceosome components.

Assembly and recycling of snRNPs are compromised upon
knockdown of USPL1
We next investigated whether snRNP formation was affected by
knockdown of USPL1. Considering that PRPF6 is required for the

formation of the tri-snRNP complex (Makarov et al., 2000;

Fig. 4. Defects in snRNP production upon USPL1 knockdown.
(A) Total cell lysates of siRNA-treated U2OS cells were analysed
by immunoblotting using antibodies as indicated. Different
amounts of control lysate (100%, 50%, 25%) provide an internal
standard for protein levels. Similar effects were observed with
HeLa cells (data not shown). (B) Immunoblot of total cell lysate of
U2OS GFP–SmB cells without (2dox) or 18 hours after (+dox)
induction using the Y12 or an anti-GFP antibody showing
expression of GFP–SmB at its expected molecular mass. Alpha-
tubulin (TUB) stain serves as loading control. (C) U2OS GFP–
SmB cells were analysed without (2dox) or 18 hours after (+dox)
induction for expression and localisation of GFP-SmB by
immunostaining using the Y12 and anti coilin antibody as marker
for nuclear speckles (arrowheads) and Cajal bodies (arrows),
respectively. Scale bar: 10 mm. (D) Formation of nascent snRNPs
was analysed by TMG immunoprecipitation in siRNA-treated
U2OS GFP–SmB cells. Empty Protein-G–agarose beads (-) serve
as a control. Bound proteins were eluted from the beads using
25 mM 7-methylguanosine (7-mG) and analysed for the presence
of GFP–SmB by immunoblotting for GFP. Input corresponds to
0.75% of the material used in the immunoprecipitation.
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Schaffert et al., 2004), we first investigated tri-snRNP formation.
For this, we immunoprecipitated PRPF4, a component of the U4/6

di-snRNP, from nuclear extracts prepared from either control,
coilin-knockdown or USPL1-knockdown HeLa cells, respectively.
All immunoprecipitates were tested for the U5 snRNP components
PRPF8, snRNP200 and EF-TUD, by immunoblot analysis

(supplementary material Fig. S2C). All these proteins were
reduced in the PRPF4 immunoprecipitates from USPL1-knock-
down cells (right lane, supplementary material Fig. S2C),

demonstrating a reduction in tri-snRNP formation. By contrast,
little or no reduction in the amount of co-precipitated U5 snRNP
proteins could be detected upon treatment with siRNA against

coilin. This is consistent with previous reports showing that tri-
snRNP formation still occurs in the nucleoplasm in the absence of
coilin, albeit with reduced efficiency compared with Cajal bodies

(Stanek and Neugebauer, 2004). This suggests that reduced tri-
snRNP formation is a phenotype specifically associated with the
knockdown of USPL1.

The altered localisation pattern for spliceosome components

seen upon cellular fractionation in USPL1-knockdown cells
might indicate either a reduction in complex assembly, and/or a
change in the stability of snRNP complexes (Fig. 3D). We

therefore analysed whether nascent snRNP production in general
was affected upon knockdown of USPL1. It has been reported
previously that Sm proteins that are N-terminally tagged with

fluorescent proteins localise correctly and assemble into the
heptameric Sm complex (Sleeman et al., 1998). We took
advantage of this to distinguish newly assembled snRNPs,

formed after we reduced levels of USPL1 using siRNA, from
the pool of previously assembled snRNPs. Thus, we generated a
U2OS cell line stably expressing GFP–SmB under a doxycycline
(dox)-inducible promoter. When analysed by immunoblotting, a

major band of the predicted size for GFP–SmB was detectable
after 18 hours of dox induction (Fig. 4B). GFP–SmB localised
correctly in Cajal bodies and nuclear speckles, as shown by

immunostaining for coilin in combination with the Y12 anti-Sm
antibody as markers for Cajal bodies and snRNPs, respectively
(Fig. 4C). Equal amounts of protein lysate prepared from either

control, or USPL1-knockdown cells after 18 hours of dox
induction were subjected to immunoprecipitation with either
empty beads (control), or beads pre-coupled to anti-TMG
antibody, which recognises the 59-terminal snRNA trimethyl

cap structure. Precipitated snRNP complexes were eluted from
the beads using 7-methylguanosine (7-mG) and GFP–SmB
detected by immunoblotting (Fig. 4D). GFP–SmB was detected

in TMG-eluates from control cells, but was reduced in cells
transfected with siRNA against USPL1. This indicates that the
production of nascent snRNPs is reduced upon knockdown of

USPL1.

USPL1 is involved in maintenance of snRNA levels
After detecting a reduced assembly of snRNPs upon knockdown
of USPL1, we wondered whether snRNA levels in general were
affected. To address changes in snRNA expression upon USPL1
knockdown quantitatively, we performed qRT-PCR for the major

snRNAs that are transcribed by either RNAPII or RNAPIII. In
both HeLa and U2OS cells, primarily all RNAPII-transcribed
snRNAs tested (U1, U2, U4 and U5 snRNA) exhibited reduced

levels upon knockdown of USPL1 compared with control cells
(Fig. 5A and supplementary material Fig. S3A). U1 and U2
snRNAs are transcribed as longer precursor snRNAs that get

trimmed at their 39 end by the Integrator complex before their

export into the cytoplasm (Baillat et al., 2005; Chen and Wagner,
2010; Cuello et al., 1999; Egloff et al., 2008; Medlin et al., 2003).

To differentiate between the possibility of USPL1 knockdown
affecting either 39 processing or snRNA transcription directly, we
used primers specific for the 39-precursor of U2 snRNA (Broome
and Hebert, 2012) (U2pre, Fig. 5A,B and supplementary material

Fig. S3A). Interestingly, the levels of this nascent transcribed
form of the U2 snRNA were also reduced in a similar manner to
the final processed form. This indicates that the transcription of

snRNAs is compromised upon knockdown of USPL1.
In addition, we analysed snRNA localisation by RNA-FISH.

This showed that snRNAs localise to nuclear speckles and Cajal

bodies in control cells (Fig. 5C and supplementary material Fig.
S3B, arrowheads and arrows, respectively). In agreement with
our qRT-PCR data, the signal for RNAPII-transcribed snRNAs

was reduced upon knockdown of USPL1. Moreover, it concen-
trated in enlarged nuclear speckles that were similar to the
structures detected by immunostaining for ASF/SF2 and Sm
proteins after knockdown of USPL1 (compare Fig. 5C and

supplementary material Fig. S3B with Fig. 1D and supplementary
material Fig. S1C).

USPL1 interacts with LEC components involved in RNAPII-mediated
snRNA transcription
Previously, ELL and Ice1/KIAA0947 were identified in a large-

scale screen for human de-ubiquitylating enzymes as two good
candidate interactors for overexpressed USPL1 (Sowa et al.,
2009). Both proteins have recently been shown to be involved in

the regulation of snRNA transcription as components of the little
elongation complex (LEC) in Drosophila and mammalian cells
(Hu et al., 2013; Smith et al., 2011). To confirm the interaction of
USPL1 with members of the LEC, we first used transient

transfection of FLAG–ELL and HA–USPL1. As shown in
Fig. 6A, HA–USPL1 was detected by protein immunoblotting
following immunoprecipitation of FLAG–ELL, but was not

detected following immunoprecipitation from extracts expressing
the FLAG tag alone. We next employed affinity-purified
antibodies against USPL1 to immunoprecipitate endogenous

USPL1 from both HEK293 and HeLa cells. In both cell lines,
we detected endogenous ELL by immunoblotting following
immunoprecipitation of USPL1 (arrow, Fig. 6B), but not
following the control immunoprecipitation.

USPL1, ELL and Ice1 have all been reported to localise to
Cajal bodies (Hu et al., 2013; Polak et al., 2003; Schulz et al.,
2012; Smith et al., 2011). As shown in Fig. 6C (arrows), both

Ice1 and ELL colocalised with USPL1 in Cajal bodies. To
address the possible interdependence of these proteins with
respect to their recruitment to nuclear bodies, HeLa cells were

transfected with either siRNA against Ice1, or against USPL1,
and their localisation was analysed by immunostaining (Fig. 7A).
As seen upon reduced levels of USPL1, knockdown of Ice1

resulted in disassembly of Cajal bodies and redistribution of
coilin into the nucleolus (open arrowheads, Fig. 7A). We did
not detect any remaining nuclear foci containing USPL1 after
transfection of siRNAs against Ice1, suggesting that the

recruitment of USPL1 into foci might depend on the presence
of Ice1. However, knockdown of USPL1 did not lead to the
disappearance of Ice1-containing nuclear foci, at least in HeLa

cells. Instead, some HeLa cells showed an increase in the number
of nuclear foci containing Ice1 (Fig. 7A, arrows in bottom panel).
However, we were unable to detect persistent Ice1 nuclear foci

after transfection of siRNA against USPL1 in U2OS cells.
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Interestingly, enlarged, rounded nuclear speckles for ASF/SF2

(Fig. 7B arrows in middle panel) were detected upon efficient
knockdown of Ice1, similar to those observed with USPL1
knockdown (Fig. 7B, arrows in bottom panel). Additionally, the

number of nuclear SMN foci increased compared with that in
control cells (Fig. 7C, arrows in projection). Therefore,
knockdown of the LEC component Ice1 results in similar
phenotypes regarding nuclear localisation of SMN and splicing

speckles as seen following knockdown of USPL1.

USPL1 is associated with U snRNA gene loci
Components of the LEC have been shown to be enriched on
RNAPII-transcribed snRNA genes (Hu et al., 2013; Smith et al.,
2011). Our findings, together with other data (Sowa et al., 2009),

indicate an association of USPL1 with components of the LEC.
Therefore, we decided to investigate whether USPL1 itself could
be found associated with snRNA gene loci. Previously, Cajal

bodies defined by the marker protein coilin were shown to be
associated with several snRNA gene loci by DNA-FISH (Frey
and Matera, 1995; Gao et al., 1997; Jacobs et al., 1999; Smith

et al., 1995). The U2 genes are located in a 120 kb cluster of

,6 kb long repeat units on the q-arm of chromosome 17
(Lindgren et al., 1985; Van Arsdell and Weiner, 1984; Westin
et al., 1984). We designed a set of fluorescently labelled FISH

probes consisting of four individual fragments, covering the
entire U2 gene locus. The probes hybridised with exactly two
loci on two different chromosomes on metaphase spreads of
normal human male lymphocytes, which is consistent with

specificity for the U2 gene locus (Fig. 8A, arrows). When tested
on HeLa interphase cells, the U2 FISH probe frequently
associated with Cajal bodies, as judged by co-staining for

coilin (data not shown), consistent with previous reports (Frey
and Matera, 1995; Smith et al., 1995). When we performed U2
DNA-FISH on HeLa cells in conjunction with immunostaining

for USPL1, nuclear foci containing USPL1 were detected in
close association with the FISH signal for the U2 gene locus
(Fig. 8B, arrows).

As a complementary approach to test for association of USPL1
with U snRNA genes, we used chromatin immunoprecipitation
(ChIP) (Fig. 8C). USPL1 protein was precipitated from

Fig. 5. Cellular snRNA levels are reduced upon
knockdown of USPL1. (A) qRT-PCR for different
major U snRNA species in HeLa cells treated with
siRNA against USPL1. U2pre represents the
unprocessed U2 snRNA. Respective expression
levels were normalised for levels of b-actin and
snRNA levels of siControl-treated cells were set to 1.
Bars represent the s.e.m. of four independent
experiments, each measured in technical replicates
of 2. (B) Schematic representation of the initial U2
snRNA transcript (adapted from Broome and Hebert,
2012) depicting additional 634 bp after the end of the
U2 snRNA coding sequence and the position of the
respective primers for qRT-PCR used for U2 snRNA
in A. (C) HeLa cells treated with control siRNA or
siRNA against USPL1 were subjected to RNA-FISH
for U2, U5 and U6 snRNA using Alexa-Fluor-488-
labelled probes. The immunostaining against coilin
was used to monitor the efficiency of the siRNA
treatment against USPL1. Cajal bodies are indicated
by arrows, splicing speckles by arrowheads and
nucleolar coilin by an open arrowhead. Scale bar:
10 mm.
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formaldehyde-crosslinked HeLa cells and associated DNA was
tested for the presence of U snRNA gene sequences using U1 and
U2 specific primers. We detected a significant enrichment for the

U1 and U2 gene regions using the USPL1 antibody compared
with the IgG control. By contrast, no significant enrichment for
either the GAPDH gene promoter, or a region 2000 bp upstream

of the U2 promoter (U2, 22 kb), was detected (Fig. 8C). To
further test whether USPL1 is directly involved in RNAPII-
mediated snRNA transcription, we performed ChIP for RNAPII

upon knockdown of USPL1. The results obtained by using two
different antibodies clearly show a significant reduction in
RNAPII occupancy at the U1 and U2 gene regions in cells
treated with siRNA against USPL1 (Fig. 8D and supplementary

material Fig. S4). We conclude that USPL1 is required for
RNAPII-dependent snRNA transcription and is a component of
complexes that can bind to U snRNA genes.

DISCUSSION
In this study we have presented data investigating a functional

role for the Cajal-body-associated, SUMO isopeptidase USPL1.
Using a combination of fluorescence microscopy, molecular
biology and proteomic approaches, we demonstrate that USPL1

interacts with components of the RNAPII-associated LEC and is
associated with the U1 and U2 snRNA gene loci. Efficient
knockdown of USPL1 by RNAi leads to reduced RNAPII-
mediated snRNA transcription, diminished production of snRNPs

and altered pre-mRNA splicing. Our data suggest that USPL1 is
involved in snRNA transcription and support the view that Cajal
bodies have a role in snRNP biogenesis.

By using RNAi in combination with cellular fractionation and
MS-based protein analysis we detected a striking effect of
reduced USPL1 levels on proteins associated with snRNP

biogenesis and/or pre-mRNA splicing. This was supported by

our accompanying immunofluorescence studies in cells with
reduced levels of USPL1, showing changes for Cajal bodies and
splicing speckles, but not for either PML bodies, or the nucleolus.

We observed a decrease in RNAPII-transcribed snRNA levels
upon USPL1 knockdown and subsequent defects in snRNP
production. Although it is transcribed by RNAPIII, U6 snRNA

levels were also slightly affected by knockdown of USPL1.
However, it is known that U6 snRNA assembles into a U4/U6 di-
snRNP complex with the RNAPII transcribed U4 snRNA and

non-incorporated U6 snRNA has a higher turnover rate than the
assembled form (Sauterer et al., 1988). A link between RNAPIII-
mediated U6 transcription and RNAPII has also been suggested
(Listerman et al., 2007). The disruption of snRNP biogenesis

probably explains both the small effect of USPL1 knockdown on
U6 snRNA levels and the increase of snRNP proteins in the
cytoplasm detected upon USPL1 knockdown by our cellular

fractionation study (Fig. 3C). This increase could either reflect a
‘leaking’ of nuclear proteins into the cytoplasm during the cell
fractionation procedure and/or proteins that under normal

conditions are imported into the nucleus only in complex with
their respective snRNA.

Interestingly, we also detected changes in the pattern of

specific pre-mRNA splicing after USPL1 knockdown. Previously,
defects in splicing and the composition of the pool of snRNA
species have been reported upon SMN deficiency, depending on
the severity of the SMN reduction (Boulisfane et al., 2011;

Campion et al., 2010; Gabanella et al., 2007; Gao et al., 1997;
Zhang et al., 2008). However, we found that SMN levels were
either not, or only mildly, affected by knockdown of USPL1,

indicating that a distinct mechanism is involved. This raises the
intriguing possibility that splicing could be regulated in vivo,
either during development, or in distinct human tissues, by

varying levels of USPL1.

Fig. 6. USPL1 colocalises and interacts with
members of the LEC complex. (A) Total cell
lysate obtained from HEK293 cells 24 hours
after transfection with the indicated plasmids
were subjected to immunoprecipitation using an
anti-FLAG antibody. 1.5% of the total lysate was
loaded as input (left). Bound proteins were
analysed by immunoblotting using an anti-HA or
anti-FLAG antibody (right). (B) Total cell lysate
from either HEK293 (293) or HeLa cells was
subjected to immunoprecipitation using the
USPL1 antibody. Input corresponds to 1% of the
total cell lysate (left) and a cell lysate sample of
HEK293 cells transfected with either HA–USPL1
or FLAG–ELL was loaded onto the same gel as
positive control for USPL1 or ELL, respectively.
Empty Protein-G–agarose beads served as
immunoprecipitation control. Bound proteins
were analysed using either the USPL1 antibody
or ELL antibody (right). The arrow indicates
endogenous ELL, non-specific bands
recognised by the ELL antibody are marked with
asterisks. (C) Colocalisation of either ELL (top)
or Ice1 (bottom) with USPL1 and coilin in Cajal
bodies (arrows) shown by immunostaining of
HeLa cells. Scale bar: 10 mm.
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Transcription of snRNA genes by RNAPII differs significantly
from the transcription of most protein-coding genes (for recent
reviews see Egloff et al., 2008; Jawdekar and Henry, 2008).

However, the mechanism of snRNA transcription is still not
understood in detail. Most recently, Shilatifard and colleagues
showed by a genome-wide ChIP and RNA-sequencing approach

that ELL and Ice1/2, as part of the LEC, are enriched at RNAPII
snRNA genes and that Ice1 and ELL are required for initiation
and elongation of snRNA expression, respectively (Hu et al.,

2013; Smith et al., 2011).
Here, we show that human USPL1 not only colocalises and

interacts with components of the LEC, but also demonstrate that

endogenous USPL1 is present at snRNA gene loci in human cells.
Our interaction data are supported by the findings of Harper and
colleagues, who identified human ELL and Ice1 in a large-scale

proteomic approach upon USPL1 overexpression (Sowa et al.,
2009). Importantly, knockdown of either USPL1, or the LEC
member Ice1, causes similar phenotypes regarding decreased

snRNA levels (compare our data with Hu et al., 2013; Smith et al.,
2011) and nuclear architecture (Fig. 7A–C). This suggests that
USPL1, similar to the LEC, has an important role in snRNP

biogenesis at the transcriptional level. This is supported by our data
showing a significantly reduced association of RNAPII with
snRNA gene loci upon USPL1 knockdown. We therefore speculate

that USPL1 might either be a component of the LEC, or else is
functionally associated with it. Future studies will show whether
USPL1 is involved in transcription initiation and/or elongation. In

Drosophila, CG8229, a protein with limited homology to the N-
terminus of USPL1, was identified as a binding partner for Ice1 and
Ice2 in Drosophila (Smith et al., 2011), but it lacks a catalytic

Fig. 7. Knockdown of Ice1 has comparable consequences for
nuclear architecture as USPL1 knockdown.
(A) Immunofluorescence of HeLa cells transfected with siRNA as
indicated were stained against USPL1, Ice1 and coilin. The arrowhead
indicates a Cajal body in control cells with all three proteins present
(top). Nucleolar coilin upon Ice1 or USPL1 knockdown is indicated by
open arrowheads (middle and bottom, respectively). Arrows in the
bottom panel highlight nuclear foci containing Ice1 in the absence of
USPL1. (B) Immunofluorescence of siRNA treated U2OS cells against
coilin and ASF. Arrows highlight enlarged, rounded nuclear speckles
for ASF upon siIce1 (middle) or siUSPL1 (bottom) transfection.
(C) Immunofluorescence of siRNA treated U2OS cells against coilin
and SMN. A maximum-intensity projection illustrates the total number
of SMN-containing nuclear foci (arrows in right panel). Scale bars,
10 mm.
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domain. Therefore it will be interesting to analyse whether and to
what extent the desumoylating activity of USPL1 contributes to
snRNA transcription in human cells.

MATERIALS AND METHODS
Plasmids
To generate GFP–SmB, the coding sequences for GFP and SmB were

PCR amplified and inserted into the pcDNA5-FRT/TO vector

(Invitrogen) via HindIII/KpnI and KpnI/NotI sites, respectively. For the

generation of FLAG–ELL, ELL was amplified from pCMV-ELL

(Imagene) and inserted using BamHI/EcoRI sites into pcDNA3.1

(Meulmeester et al., 2008).

Cell culture, transfection and metabolic labelling with 5-ethynyl
uridine
Clonal U2OS GFP–SmB cells were selected and maintained using

150 mg/ml hygromcin B and 15 mg/ml blasticidin-HCl. Expression of

GFP–SmB was induced with 10 ng/ml doxycyclin for 18 hours.

Transfection of DNA was performed using Effectene (Qiagen), Jet

Prime (Polyplus transfection) or polyethylenimine (PEI) (Durocher

et al., 2002). siRNA transfections (20 nM final concentration; see

supplementary material Table S4 for siRNA sequences) were performed

using Lipofectamine RNAiMaxx (Invitrogen) omitting antibiotics and

experiments were analysed after 2 days. For the siRNA transfection in

SILAC medium, OptiMem was replaced with the respective SILAC

medium lacking serum and antibiotics. 5-ethynyl uridine (EU) labelling

was performed using the EU-Click-iT kit (Invitrogen).

Antibodies
A list of all primary antibodies used in this study can be found in

supplementary material Table S3. Except for goat anti-chicken FITC

(Sigma, F-8888), Alexa Fluor 488, Alexa Fluor 594 or Alexa Fluor 647

dye-conjugated secondary antibodies from donkey (Molecular Probes)

were used for immunofluorescence. For immunoblotting, either a Li-Cor

Odyssey CLx (Li-Cor Biosciences) in combination with goat secondary

antibodies conjugated to Alexa Fluor 680 or Alexa Fluor 800 (Tebu-Bio/

Invitrogen) (Fig. 4 and supplementary material Fig. S2C) or HRP-

conjugated secondary antibodies (Jackson Immunoresearch) with ECL

detection (Thermo) (Fig. 6A,B; supplementary material Fig. S1A) were

used.

Immunofluorescence and fluorescence microscopy
Immunofluorescence and image acquisition was essentially performed as

described (Hutten et al., 2011) except that 1% normal donkey serum was

used as blocking buffer. Images were acquired with a DeltaVision Core

Restoration microscope (Applied Precision) mounted on an Olympus

IX71 stand with a 606 /1.42 NA oil immersion objective lens using 161

bin with a section spacing of 0.2 mm. Exposure time was set to provide an

intensity of at least ,1000 counts on a 12-bit Coolsnap HQ2 camera at

gain 4 (Roper) for control cells. Note, that for reasons of visibility of

nucleolar coilin, longer exposure times were used and different image

processing applied on siRNA-treated cells compared with control cells.

Coilin-knockdown cells were treated identically to cells transfected with

siIce1 or siUSPL1 for image acquisition and processing. Images were

corrected by flat field calibration, deconvolved and corrected for

Fig. 8. USPL1 is associated with U snRNA gene loci by DNA-FISH and ChIP. (A) Specificity of the probe for the U2 gene array (Cy5, shown in green; arrows)
demonstrated on a metaphase spread from normal human male lymphocytes. (B) HeLa cells were subjected to DNA-FISH for the U2 gene locus (Cy5,
shown in red) in combination with immunostaining for USPL1 (Alexa Fluor 488, shown in green). Arrows indicate nuclear foci containing both USPL1 and the
U2 gene locus. Scale bars: 10 mm. (C) ChIP from HeLa cells using the USPL1 antibody is displayed in comparison to IgG control for the respective gene locus
(U1, U2 or GAPDH). Bars represent the s.e.m. of six independent experiments, each analysed as technical replicate of two in the qPCR-reaction. Statistical
significance was determined using an unpaired, heteroscedastic Student’s t-test. (D) RNAPII occupancy detected by ChIP against the CTD of RNAPII (4H8
antibody) in comparison to IgG control for the respective gene region (U1, U2, U2 22 kb) upon USPL1 knockdown. Bars represent the s.e.m. of four
independent experiments, each analysed as technical replicate of two in the qPCR reaction. Statistical significance was determined using an unpaired,
heteroscedastic Student’s t-test. *P,0.05.
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chromatic aberration using SoftWorx (Applied Precision). Processing and

image analysis was performed using SoftWorx and Adobe Photoshop/

Illustrator. Unless stated otherwise, a single z-stack is shown in the

figures. Maximum intensity projections were adjusted differently than

corresponding single z-sections for clarity of the staining.

For supplementary material Fig. S1C, cells were fixed using 3.7%

formaldehyde, permeabilised for 10 minutes in 0.2% Triton X-100 on ice

and blocked in 3% BSA, 0.1% Tween-20 in PBS for 1 hour. Antibody

incubation was performed in blocking buffer for 1.5 hours at room

temperature. Cells were mounted in mounting medium (Dako) and

images acquired using an Axioskop (Observer zl, Zeiss) and an Axiocam

Mrm camera (Zeiss).

RNA and DNA fluorescence in-situ hybridisation (FISH)
RNA-FISH
The protocol for FISH against U snRNAs was adapted from Taneja

and colleagues (Taneja et al., 1992) with the following modifications:

cells were fixed and permeabilised as described above for

immunofluorescence. The hybridisation buffer contained 0.02% BSA

and additional 0.4 mM ribovanadyl complex. Probes were obtained as 59

Alexa Fluor 488 derivatives (sequences according to Schaffert et al.,

2004) (supplementary material Table S8). After hybridisation, cells were

washed with 0.5% Triton X-100 in PBS, re-fixed with paraformaldehyde

and subjected to immunofluorescence.

DNA-FISH
A pool of four different, Cy5-dCytosine nick-labelled (nick-translation

kit; GE Healthcare), 1.5–2 kb long PCR-products (see supplementary

material Table S9) covering the whole 6 kb U2 gene locus was used as a

probe. The labelled probe (,130 ng) was ethanol precipitated in the

presence of sodium acetate and human Cot-1 DNA and resuspended in

hybridisation buffer (Hybrisol, Abbot Molecular). Before hybridisation,

cells grown on microscopy glass slides were subjected to immunofluor-

escence using antibodies twice (primary) to four times (secondary) as

concentrated, re-fixed and dehydrated in 70%, 90% and absolute ethanol.

Dehydration was repeated after denaturing genomic DNA for 5 minutes

in 26 SSC, 70% formamide at 80 C̊ in an adaptation of published

methods (Matera et al., 1995). The probe was prewarmed to 37 C̊, added

to air-dried, prewarmed slides, denatured for 2 minutes at 80 C̊ and

hybridisation was performed overnight in a humidified chamber at 37 C̊.

After successive washing steps in 26SSC, 50% formamide (5 minutes at

40 C̊) and 16SSC (three times for 5 minutes at room temperature), cells

were briefly rinsed in PBS and nuclei were counterstained with Hoechst

33342 (Sigma) before mounting as above. Metaphase spreads of normal

human male lymphocytes were obtained from Abbot Molecular

(Maidenhead, UK).

Non-quantitative and real-time quantitative RT-PCR (qRT-PCR)
Total RNA was isolated from siRNA-treated cells using either the

miRNeasy kit (Qiagen; qRT-PCR) or NucleoSpin RNA kit (Macherey

and Nagel; qualitative RT-PCR) including a DNase digest. Equal

amounts of RNA from control or USPL1-knockdown cells were

subjected to qualitative RT-PCR using the 1-Step RT-PCR kit from

Qiagen with gene-specific primers (see supplementary material Table S5)

and analysed by ethidium bromide agarose gel electrophoresis. qRT-PCR

was performed on 0.4 ng of RNA per reaction (or 4 ng RNA in the case

of U2pre-snRNA) in duplicate using the QuantiFast RT-PCR SYBR-

Green Mix (Qiagen) in a Roche Light Cycler 480. Primers (see

supplementary material Table S6) were tested for their PCR efficiency

and the formation of primer dimers under qRT-PCR conditions.

Chromatin immunoprecipitation (ChIP)
ChIP using the RNAPII and USPL1 antibody was performed as described

(Yin et al., 2012) using ,1–26107 HeLa cells. ChIP for USPL1 was

performed using 1 mg of antibody in the presence of 0.3% Brij-35

overnight. For comparison of RNAPII gene locus occupancy in siRNA-

treated cells, total protein concentration was determined by a

bicinchoninic acid assay (Thermo Scientific) and a SpectraMax MSe

(Molecular Devices) and equal amounts of total cell lysate were

subjected to ChIP using either 1 mg (mouse) or 2 mg (rabbit) anti

RNAPII antibody in the presence of 0.1% Brij-35 overnight. In general,

10% of the lysate was retained as input, the rest was split for incubation

with either control IgG (Goat, Santa Cruz Biotechnology, rabbit/mouse,

Jackson ImmunoResearch) or USPL1/RNAPII antibody. Antibodies were

captured using Protein-G dynabeads, After RNase treatment, reversal of

crosslinks and protein K digestion (125 mg/ml) of input and eluates, DNA

was purified using the PCR purification kit (Qiagen) and enriched

sequences analysed by qPCR using a Roche 480 Light cycler and the

Quantitect SYBR-Green PCR mix (Qiagen) (for primers, see

supplementary material Table S7). For quantification, crossing point

(Cp) values were calculated using the absolute quantification analysis/fit

points method (Light cycler 480 Software module) and ChIP values were

normalised for the input for each primer pair.

RNA and protein co-immunoprecipitations
For the TMG-immunoprecipitation, siRNA-transfected U2OS cells (,1–

26107 cells) were harvested 18 hours after induction of GFP–SmB

expression and lysed in RIPA buffer [50 mM Tris-HCl, pH 7.5, 150 mM

NaCl, 1% NP40, 0.5% deoxycholate and protease inhibitors (Roche)].

The lysate was sonicated and cleared by centrifugation at 17,000 g. Equal

amounts of protein lysate from control or USPL1-depleted cells were

incubated overnight with 30 ml (slurry) TMG-agarose (Calbiochem) or

Protein-G agarose beads as control. After several washes, bound snRNP

complexes were eluted using 25 mM 7-methylguanosine in PBS (Sigma)

and analysed by immunoblotting for the presence of newly incorporated

GFP–SmB.

For immunoprecipitation of tri-snRNP complexes, nuclear extracts

from ,2–66107 siRNA-transfected HeLa cells were prepared as

follows: Cells were harvested and incubated in one packed cell

volume (PCV) of NE1 buffer (10 mM HEPES, pH 7.6, 1.5 mM

MgCl2, 10 mM KCl, 1 mM DTT) for 15 minutes on ice. Afterwards,

cells were sheared using a 23 gauge needle and the nuclei extracted by

incubation in 2/3 PCV of NE2 buffer (20 mM HEPES, pH 7.6, 1.5 mM

MgCl2, 25% glycerol, 420 mM NaCl, 0.2 mM EDTA, 1 mM DTT,

0.5 mM PMSF) for 30 minutes at 4 C̊. Nuclear extracts were cleared by

centrifugation at 17,000 g. 250–500 mg of nuclear extract was diluted

10- to 16-fold in IPP150 buffer (10 mM Tris-HCl, pH 7.5, 150 mM

KCl, 0.1% NP40) (Blencowe et al., 1993) and subjected to

immunoprecipitation using 2 mg of control rabbit IgG (Jackson

ImmunoResearch) or anti Prp4 antibody (HPA/Sigma) overnight.

Antibodies were captured using Protein-G dynabeads (Invitrogen) and

bound proteins were eluted using 26 LDS sample buffer (Invitrogen)

and analysed by immunoblotting.

For immunoprecipitation of FLAG–ELL and USPL1, HeLa or

HEK293 cells were harvested in lysis buffer (50 mM Tris-HCl, pH 7.5,

150 mM NaCl, 1% NP40, 5 mM EDTA, 5 mM EGTA, 1 mM DTT with

protease inhibitors) for 30 minutes on ice. Cells were sheared using a 21

gauge needle and the extracts were cleared by centrifugation at 10,000 g.

5 mg of lysate was pre-cleared and subjected to immunoprecipitation for

3 hours using beads pre-blocked with 1% ovalbumin protein. Beads were

either loaded with 5 mg anti-FLAG (for the transfected FLAG and

FLAG–ELL) or anti-USPL1 antibodies (for endogenous USPL1).

Empty Protein-G–agarose beads (Roche) served as control in the

immunoprecipitation of endogenous USPL1. After several washes,

bound proteins were eluted using 26 SDS sample buffer and analysed

by immunoblotting.

Cellular fractionation, SILAC and LC-MS/MS
HeLa cells were fully metabolically labelled by growing for at least six

doublings in lysine- and arginine-deficient DMEM SILAC-medium

(Fisher) supplemented with dialysed FBS, 100 U/ml penicillin and

100 mg/ml streptomycin in addition to labelled amino acids (42 mg/ml

arginine and 73 mg/ml lysine; Cambridge Isotope Lab) as follows: R0K0

(L-arginine and L-lysine) or R10K8 (L-arginine 13C/15N and lysine
13C/15N). Two days after siRNA transfection, an equal number of cells

were mixed and cytoplasmic, nucleoplasmic and nucleolar fractions
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prepared as described (Andersen et al., 2002; Boisvert et al., 2010). The

cytoplasmic fraction was cleared from cellular debris by centrifugation at

9600 g at 4 C̊. Lysates were prepared by adding RIPA buffer (final

concentration: 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% NP40, 0.5%

sodium-deoxycholate with protease inhibitors) to the individual fractions.

Protein concentration was determined by a bicinchoninic acid assay

(Thermo Scientific) and a SpectraMax MSe (Molecular Devices). 20 mg

protein of each fraction in loading buffer were separated by one-

dimensional SDS-PAGE (4–12% Bis-Tris Novex mini-gel) and

visualised using colloidal Coomassie Blue staining (Novex, Invitrogen).

The individual gel lanes were cut into eight slices as indicated (Fig. 3A),

destained, reduced with 10 mM DTT and alkylated in 50 mM

iodacetamide prior to in-gel trypsin digest (Shevchenko et al., 1996).

Tryptic peptides were extracted using equal volumes of 5% formic acid

and acetonitrile, dried in a speedvac and resuspended in 5% formic acid.

Peptides were analysed by LC/MS-MS on a Orbitrap Velos mass

spectrometer over a 156 minute gradient (Thermo Fisher Sc.) and data

analysed with MaxQuant (version 1.2.2.5) (Cox and Mann, 2008; Cox

et al., 2011; Ong et al., 2002; Ong and Mann, 2007) and the Human

UniProtKB and TrEmbl Database (retrieval date December 2011).

Carbamidomethylation was set as a fixed modification, and oxidation of

methionine, N-acetyl protein, glutamine to glutamic acid conversion and

deamidation were searched as variable modifications. The match-

between runs function was enabled and the maximum false discovery

rate set to 1%. Those protein identifications that were derived from the

decoy database, listed as common contaminant by MaxQuant or those

only identified by a modification site were excluded from further data

analysis. The mean of the log2 of the normalised H/L ratio was calculated

based only on protein quantification data with .1 unique peptide for an

individual fraction. In order to identify outliers, the arbitrary threshold

was defined as twofold standard deviation (2s) of the mean.

Protein enrichment analysis was performed using the Bioinfomatics

database DAVID (v. 6.7) (Huang et al., 2009a; Huang et al., 2009b).

Protein groups significantly enriched according to the MaxQuant analysis

(.2s) in either cytoplasm or nucleolus were analysed by functional

annotation analysis against the background of all proteins identified with

.1 unique peptide in the respective fraction.

Acknowledgements
We are grateful to Ron Hay (CLS, University of Dundee, UK) for the generous gifts
of PML and anti-chicken IgY (IgG) antibody, to Oliver Gruss (ZMBH, Heidelberg,
Germany) for SMN antibody, to Ali Shilatifard (Stowers Institute, Kansas City, US)
for ELL and Ice1 antibody and to Victoria Cowling (CLS, University of Dundee,
UK) for rabbit anti RNAPII antibody. We are grateful to members of both the
Lamond and Melchior group for helpful comments on the manuscript and for
sharing reagents. From the University of Dundee, we especially would like to
thank Tony Ly for help with the SILAC analysis, Akinori Endo and Anne Seifert for
support in ChIP and light cycler analysis, Andrea Pawellek for advice and
technical assistance regarding pre-mRNA splicing, Franziska Wandrer for
technical assistance, the light microscopy facility of the College of Life Sciences
and especially Sam Swift for technical support; the MS-facility of the College of
Life Sciences for sample analysis. We are also grateful to Greg Matera (University
of North Carolina, USA) for advice for the set-up of the U2 DNA-FISH and Laura
Trinkle-Mulcahy (University of Ottawa, Canada) for further advice regarding
SILAC analysis.

Competing interests
The authors declare no competing interests.

Author contributions
S.H. performed most experiments, G.C. performed some experiments and U.W.
contributed to experimental design. All authors participated in writing the
manuscript. A.I.L. and F.M. mentored the project.

Funding
This work was supported by grants from the Wellcome Trust [grant number:
083524/Z/07/Z, 073980/Z/03/Z, 08136/Z/03/Z and 0909444/Z/09/Z]; and the EU
EPIGENESYS network [grant number HEALTH-F4-2010-257082]. G.C. is
supported by a postdoctoral fellowship from the Alexander von Humboldt
Foundation. A.I.L. is a Wellcome Trust Principal Research Fellow. Deposited in
PMC for immediate release.

Supplementary material
Supplementary material available online at
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.141788/-/DC1

References
Andersen, J. S., Lyon, C. E., Fox, A. H., Leung, A. K., Lam, Y. W., Steen, H.,
Mann, M. and Lamond, A. I. (2002). Directed proteomic analysis of the human
nucleolus. Curr. Biol. 12, 1-11.
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Ganot, P., Jády, B. E., Bortolin, M. L., Darzacq, X. and Kiss, T. (1999). Nucleolar
factors direct the 29-O-ribose methylation and pseudouridylation of U6
spliceosomal RNA. Mol. Cell. Biol. 19, 6906-6917.

Gao, L., Frey, M. R. and Matera, A. G. (1997). Human genes encoding U3 snRNA
associate with coiled bodies in interphase cells and are clustered on
chromosome 17p11.2 in a complex inverted repeat structure. Nucleic Acids
Res. 25, 4740-4747.

RESEARCH ARTICLE Journal of Cell Science (2014) 127, 1065–1078 doi:10.1242/jcs.141788

1076

http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.141788/-/DC1
http://dx.doi.org/10.1016/S0960-9822(01)00650-9
http://dx.doi.org/10.1016/S0960-9822(01)00650-9
http://dx.doi.org/10.1016/S0960-9822(01)00650-9
http://dx.doi.org/10.1016/j.cell.2005.08.019
http://dx.doi.org/10.1016/j.cell.2005.08.019
http://dx.doi.org/10.1016/j.cell.2005.08.019
http://dx.doi.org/10.1016/j.cell.2005.08.019
http://dx.doi.org/10.1091/mbc.8.1.73
http://dx.doi.org/10.1091/mbc.8.1.73
http://dx.doi.org/10.1074/mcp.M900429-MCP200
http://dx.doi.org/10.1074/mcp.M900429-MCP200
http://dx.doi.org/10.1074/mcp.M900429-MCP200
http://dx.doi.org/10.1093/hmg/ddq508
http://dx.doi.org/10.1093/hmg/ddq508
http://dx.doi.org/10.1093/hmg/ddq508
http://dx.doi.org/10.1093/hmg/ddq508
http://dx.doi.org/10.1371/journal.pone.0036300
http://dx.doi.org/10.1371/journal.pone.0036300
http://dx.doi.org/10.1038/emboj.2010.70
http://dx.doi.org/10.1038/emboj.2010.70
http://dx.doi.org/10.1038/emboj.2010.70
http://dx.doi.org/10.1083/jcb.117.1.1
http://dx.doi.org/10.1083/jcb.117.1.1
http://dx.doi.org/10.1083/jcb.117.1.1
http://dx.doi.org/10.1042/BST0381082
http://dx.doi.org/10.1042/BST0381082
http://dx.doi.org/10.1146/annurev.cellbio.20.010403.103738
http://dx.doi.org/10.1146/annurev.cellbio.20.010403.103738
http://dx.doi.org/10.1091/mbc.E05-12-1157
http://dx.doi.org/10.1091/mbc.E05-12-1157
http://dx.doi.org/10.1091/mbc.E05-12-1157
http://dx.doi.org/10.1038/nbt.1511
http://dx.doi.org/10.1038/nbt.1511
http://dx.doi.org/10.1038/nbt.1511
http://dx.doi.org/10.1021/pr101065j
http://dx.doi.org/10.1021/pr101065j
http://dx.doi.org/10.1021/pr101065j
http://dx.doi.org/10.1093/emboj/18.10.2867
http://dx.doi.org/10.1093/emboj/18.10.2867
http://dx.doi.org/10.1093/emboj/18.10.2867
http://dx.doi.org/10.1093/emboj/21.11.2746
http://dx.doi.org/10.1093/emboj/21.11.2746
http://dx.doi.org/10.1093/emboj/21.11.2746
http://dx.doi.org/10.1101/cshperspect.a000711
http://dx.doi.org/10.1101/cshperspect.a000711
http://dx.doi.org/10.1093/nar/30.2.e9
http://dx.doi.org/10.1093/nar/30.2.e9
http://dx.doi.org/10.1093/nar/30.2.e9
http://dx.doi.org/10.1042/BST0360590
http://dx.doi.org/10.1042/BST0360590
http://dx.doi.org/10.1126/science.2143847
http://dx.doi.org/10.1126/science.2143847
http://dx.doi.org/10.1016/S0092-8674(00)80368-2
http://dx.doi.org/10.1016/S0092-8674(00)80368-2
http://dx.doi.org/10.1002/wrna.87
http://dx.doi.org/10.1002/wrna.87
http://dx.doi.org/10.1002/wrna.87
http://dx.doi.org/10.1073/pnas.92.13.5915
http://dx.doi.org/10.1073/pnas.92.13.5915
http://dx.doi.org/10.1073/pnas.92.13.5915
http://dx.doi.org/10.1371/journal.pone.0000921
http://dx.doi.org/10.1371/journal.pone.0000921
http://dx.doi.org/10.1371/journal.pone.0000921
http://dx.doi.org/10.1371/journal.pone.0000921
http://dx.doi.org/10.1093/nar/25.23.4740
http://dx.doi.org/10.1093/nar/25.23.4740
http://dx.doi.org/10.1093/nar/25.23.4740
http://dx.doi.org/10.1093/nar/25.23.4740


Jo
ur

na
l o

f C
el

l S
ci

en
ce

Hamm, J., Darzynkiewicz, E., Tahara, S. M. and Mattaj, I. W. (1990). The
trimethylguanosine cap structure of U1 snRNA is a component of a bipartite
nuclear targeting signal. Cell 62, 569-577.

Handwerger, K. E. and Gall, J. G. (2006). Subnuclear organelles: new insights
into form and function. Trends Cell Biol. 16, 19-26.

Hegele, A., Kamburov, A., Grossmann, A., Sourlis, C., Wowro, S., Weimann,
M., Will, C. L., Pena, V., Lührmann, R. and Stelzl, U. (2012). Dynamic protein-
protein interaction wiring of the human spliceosome. Mol. Cell 45, 567-580.

Hu, D., Smith, E. R., Garruss, A. S., Mohaghegh, N., Varberg, J. M., Lin, C.,
Jackson, J., Gao, X., Saraf, A., Florens, L. et al. (2013). The little elongation
complex functions at initiation and elongation phases of snRNA gene
transcription. Mol. Cell 51, 493-505.

Huang, W., Sherman, B. T. and Lempicki, R. A. (2009a). Bioinformatics
enrichment tools: paths toward the comprehensive functional analysis of large
gene lists. Nucleic Acids Res. 37, 1-13.

Huang, W., Sherman, B. T. and Lempicki, R. A. (2009b). Systematic and
integrative analysis of large gene lists using DAVID bioinformatics resources.
Nat. Protoc. 4, 44-57.

Hutten, S., Prescott, A., James, J., Riesenberg, S., Boulon, S., Lam, Y. W. and
Lamond, A. I. (2011). An intranucleolar body associated with rDNA.
Chromosoma 120, 481-499.

Jacobs, E. Y., Frey, M. R., Wu, W., Ingledue, T. C., Gebuhr, T. C., Gao, L.,
Marzluff, W. F. and Matera, A. G. (1999). Coiled bodies preferentially associate
with U4, U11, and U12 small nuclear RNA genes in interphase HeLa cells but
not with U6 and U7 genes. Mol. Biol. Cell 10, 1653-1663.
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