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Income stratification and the measurement of interdistributional inequality 

between multiple groups 

 

 

Paul Allanson1 

Economic Studies, University of Dundee, United Kingdom 

 

Abstract 

This paper proposes a new class of stratification indices that measure interdistributional 

inequality between multiple groups.  The class is based on a conceptualisation of 

stratification as a process that results in a hierarchical ordering of groups and therefore seeks 

to capture not only the extent to which groups form well-defined strata in the income 

distribution but also the scale of the resultant differences in income standards between them, 

where these two factors play the same role as identification and alienation respectively in the 

measurement of polarisation.  The properties of the class as a whole are investigated as well 

as those of selected members of it: the first two integer members may be interpreted as 

measuring the overall incidence and depth of stratification, while higher-order members are 

directly sensitive to the severity of stratification between groups.  An illustrative application 

provides an empirical analysis of global income stratification by regions in 1993. 
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1. Introduction 

The concept of stratification is deeply embedded within sociology, most notably in relation to 

the analysis of social class, but has only been of relatively recent concern within the 

economics literature.  Thus Yitzhaki and Lerman (1991) in their seminal article quote a 

definition by the sociologist Lasswell (1965, p.10): “In its general meaning a stratum is a 

horizontal layer, usually thought of as between, above or below other such layers or strata.  

Stratification is the process of forming observable layers, or the state of being comprised of 

layers.”  Key to this definition is the idea that stratification, unlike segregation, implies a 

hierarchical ordering of groups according to some metric where in many economic settings it 

will be possible to quantify the scale of the resultant differences in outcomes between groups.  

For example, occupational segregation in a labour market context will only lead to 

stratification in the earnings distribution if one group is crowded into lower paid occupations, 

with the resultant scale of economic disadvantage due to employment discrimination 

depending not only on the degree of segregation but also on the size of occupational pay 

differentials.  Conversely, direct wage discrimination may not lead to significant stratification 

if groups are distributed equally among higher and lower paid occupations.  In this paper we 

propose a class of stratification measures that depend in general on both the extent to which 

groups form well-defined layers or strata in the distribution of some economic outcome and 

the scale of between-group differences in those outcomes, since both are necessary 

consequences of the process of stratification.  For expositional purposes we refer to “income 

stratification” though the measures are equally applicable to consumption, wealth or earnings. 

 The measurement of stratification from our perspective requires a comparison of 

inequality between two or more distributions, rather than the conventional focus of inequality 

analysis on the dispersion of outcomes within one distribution, where this may be expected to 

generate additional insights into the relative economic position of different groups.  For 
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example, examining gender pay differentials over the whole of the wage distribution rather 

than just in terms of the average wage gap can shed more light on the nature of the 

disadvantage faced by women in the labour market (e.g. Jenkins, 1994; van Kerm 2013).  

Similarly, the comparison of income distributions by race in South Africa (e.g. Allanson and 

Atkins, 2005; Gradin, 2012) or by country in the world (e.g. Milanovic and Yitzhaki, 2002; 

Lakner and Milanovic, 2013) may be informative about the legacy of apartheid and the 

impact of globalisation respectively.   

A small but distinct literature on ‘interdistributional inequality’ has sought to develop 

graphical tools to facilitate such comparisons of distributions along with summary measures 

of economic distance between them (see Deutsch and Silber (1999) for an overview).  One 

major limitation of this literature is that it is very largely restricted to the comparison of one 

distribution with another.
2
 Thus, whereas the standard tools for the decomposition of 

inequality by population group yield measures of between-group inequality that are 

applicable to two or more groups, all but one of the summary measures of economic distance 

or group disadvantage reviewed in Yalonetsky (2012) are only applicable to pairwise 

comparisons.  The sole exception is the class of ‘ethical distance functions‘ in which an 

equally distributed equivalent (EDE) income standard
3
 is first computed for each distribution 

and then the two income standards are compared (Shorrocks, 1982).  The main contribution 

of this paper is to propose a class of indices that is both applicable to multiple groups and 

more informative about the nature of interdistributional inequality than ethical distance 

functions.  

                                                           

2
 See, for example, Bishop et al. (2010).  Andreoli and Zoli (2012) provides a recent exception but does not 

proceed to define any corresponding multilateral summary indices. 

3 An income standard summarizes an entire distribution as a single ‘representative income’ level and should 

ideally satisfy various axioms including linear homogeneity and sub-group consistency (see Foster et al., 2013). 
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The indices are built up by aggregating the economic distance between each distinct 

pair of distributions in the population of interest to yield a class of measures that are defined 

as weighted averages with weights that depend solely on group frequencies.  These measures 

are given in general as increasing functions of both the extent to which groups constitute 

distinct strata in the income distribution and between-group differences in income standards, 

where these two factors play the same role as identification and alienation respectively in the 

measurement of polarisation (Esteban and Ray, 1994; Duclos et al., 2004).  An important 

difference is that pairwise identification in our approach is equal to the difference in the odds 

that the income of a randomly chosen member of the richer group is more rather than less 

than that of a randomly selected member of the poorer group, rather than being a function of 

relative frequencies within income classes or at particular levels of income.  We therefore 

refer to our proposed class of measures as stratification rather than polarisation indices, 

although the two sets of measures do exhibit similar properties in many respects.  

Alienation between each pair of groups is in turn defined as a power function of the 

absolute difference in income standards between them, where the choice of power determines 

the ‘disadvantage’ sensitivity of the measure.  Analogously to the interpretation of Foster-

Greer-Thorbecke (FGT) poverty measures (Foster et al., 1984), the first two integer members 

of the class may be interpreted as measuring the overall incidence and depth of stratification, 

while higher-order members are directly sensitive to the severity of stratification between 

groups in the population.  More specifically, the first member may be interpreted as the 

population weighted mean difference in the odds that the income of a randomly chosen 

member of a richer group is more rather than less than that of a randomly selected member of 

a poorer group.  The second further takes into account the depth of stratification and can be 

represented graphically on a generalised Lorenz curve diagram given that it is simply equal to 

the absolute Yitzhaki and Lerman (1991) between-group Gini index if the income standard is 
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specified as the arithmetic mean.  Higher-order members measure alienation as convex 

functions of pairwise income standard gaps and are therefore directly sensitive to the 

distribution of disadvantage among pairs of groups.   

The paper is organised as follows.  The next section introduces some basic notation 

and definitions employed in the paper.  Section 3 focuses on the choice of a suitable measure 

of stratification in the two group case for which aggregation is not an issue.  Section 4 

extends the analysis to more than two groups, obtaining the new class of multilateral 

stratification indices by aggregation of the pairwise indices.  Consideration is given to the 

properties of both the class as a whole and specific members of it.  Section 5 compares the 

new class of indices with the Yitzhaki (1994) overlapping measures and briefly considers the 

properties of two sets of related measures based on alternative normalisations of the 

alienation function.  Section 6 provides an empirical illustration based on the Milanovic and 

Yitzhaki (2002) analysis of world inequality in 1993 by regions.  The final section 

summarises the contribution and offers some suggestions for further research. 

 

2.  Notation and definitions 

We consider a population divided into K≥2 mutually exclusive and exhaustive groups that are 

ordered by some income standard from the poorest to the richest group.  Let kY , ( )k kF Y , 

( )k kf Y , kn , kp , k , ks  and k  represent respectively the income variable, cumulative 

distribution function, probability density function, population, population share, expected 

value, income share and income standard of group k (k=1,…K).  The overall population 

1 2u KY Y Y Y    is the union of all groups with size kk
N n , distribution function 

( ) ( )u u k k kk
F Y p F Y  and expected value 

u k kk
p  .  All incomes are assumed to be 

positive to allow for the general definition of income standards.  The (fractional) ranking of 

group k incomes in the group l and overall income distributions are given as ( )l kF Y  and 
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( )u kF Y  respectively, with corresponding mean ranks klF  and kuF .  Assuming continuity of 

the income distributions, P( )k l klY Y F   denotes the probability that the income of a random 

member of group k is more than that of a random member of group l, where this is known as 

the probability of transvariation (Gini, 1916, 1959) if groups are ordered by the arithmetic 

mean of income with k and l denoting the poorer and richer groups respectively.
4
  If two or 

more groups have identical income standards then they are ranked such that 

P( ) 0.5 P( )k l l kY Y Y Y     for all relevant pairwise comparisons, where this secondary 

criterion for ranking distributions will generate a transitive ordering if the probability 

relationship between the sub-set of groups exhibits mutual rank transitivity (see De Baets et 

al., 2010).
5
  Finally if the two distributions cannot be ranked on the basis of either criteria (e.g. 

if the two income distributions are identical) then the various indices to be considered below 

are invariant to the ordering of the groups, which is therefore chosen arbitrarily.  

Following Mookherjee and Shorrocks (1982), the conventional group-wise 

decomposition of the Gini index  2cov , ( )u u u uG Y F Y   may be written as 

W BG G G R    where W k k kk
G p s G  with  2cov , ( )kk k k k kG Y F Y   denoting the 

Gini index of group k; 0.5B k l l k uk l
G p p      ; and the residual R is interpreted as 

an ‘interaction effect’.  The alternative decomposition of Yitzhaki and Lerman (1991) yields 

the identity w bG G G   where w k kuk
G s G  with  2cov , ( )ku k u k kG Y F Y  ; and 

  2 0.5b k k u ku uk
G p F     .  Following Yitzhaki and Lerman (1991), Yitzhaki 

                                                           

4
 Continuity is assumed for notational convenience, implying that the probability of a randomly chosen member 

of group k having the same income as a randomly selected member of group l will have measure zero.  The 

treatment of ties is discussed below in footnote 8. 

5
 The need for the transitivity condition arises iff there are more than two groups with the same income standard 

given that P( ) 0.5l kY Y   and P( ) 0.5m lY Y   does not necessarily imply P( ) 0.5m kY Y  .  The empirical 

significance of the issue is likely to be limited but the condition can always be checked should the need arise.   

Note that ku luF F  does not imply P( ) 0.5k lY Y   so ranking in ascending order of average ranks in the overall 

distribution may not be sufficient to order groups that are distinguishable on a pairwise basis.   
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(1994) sets out to measure stratification in terms of the relationship between the within-group 

measures kkG  and kuG , whereas the class of indices defined in this paper build on links that 

have recently been established between the between-group indices BG  and bG .  We discuss 

the construction of the new class of indices in the following two sections and compare them 

with the Yitzhaki (1994) overlapping measures in Section 5.  

 

3.  The choice of stratification measure in the two group case 

This section proposes a class of pairwise stratification measures that are defined as the 

product of an identification index and an alienation function.  We first consider the choice 

and properties of the identification index, which is a modified version of the Gastwirth (1975) 

index of earnings differentials, before proceeding to the specification of the class of 

stratification indices.   

Gastwirth (1975) considers the problem of comparing male and female earning 

distributions in the light of the observation that men earn more than women on average, 

proposing a measure of earnings differentials TPROB that is equal to twice the ‘probability 

that a randomly chosen woman earns at least as much as a randomly selected man’ (p.32).  In 

our notation, the index is defined by Gastwirth as    1 1 2 2 20
12 F Y fTPROB Y Y


     with 

groups 1 and 2 referring to women and men respectively.  TPROB provides a unit free 

measure that will take a minimum value of zero if the highest paid women earns less than the 

lowest paid man and an “ideal” value of one when the two earnings distributions are 

identical.  Gastwirth (1975, p.33) argues that TPROB “will detect any advancement of 

women relative to men”
6
 and is therefore superior to measures such as the Theil (1971) 

overlap measure     1 1 2 20
min ,OVL f Y f Y y



  ,
7
 which is only sensitive to movements 

                                                           

6
 This is not strictly accurate.  See below for further discussion. 

7
 Following Deutsch and Silber (1997), Anderson et al. (2009) consider OVL as a polarization measure.   
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across the income level(s) at which the density functions intersect, and the ratio of medians 

which is open to similar criticism. 

We consider here the complementary index 12 1I TPROB   as a measure of the degree 

of identification of the two groups in a binary setting.  Given continuity of the income 

distributions,  12 1 21 2PI Y Y        1 2 1 21 P PY Y Y Y        2 1 1 2P PY Y Y Y    so the 

index may be interpreted as the difference in the odds that a randomly chosen man will 

receive more rather than less than a randomly selected woman.
8
  It follows immediately that 

the index is symmetric since 12 21I I  .  12I  will take its maximum value of 1 if the two 

groups are fully identified in the sense that group membership can be unequivocally 

determined from an individual’s position in the income distribution: no man will earn less 

than any woman if there is complete segregation of the groups into separate layers in the 

income distribution so not only are all men among the highest earners but also all the highest 

earners are men.  Conversely 12I  will equal zero if the two distributions are identical such that 

knowledge of an individuals’ position in the income distribution is entirely uninformative of 

their group identity: a randomly chosen man is equally likely to earn more rather than less 

than a randomly selected woman if the two groups are indistinguishable.   

12I  has appeared in the recent literature both as a measure of discrimination (Le 

Breton et al., 2008, 2012) and of the loss of between-group inequality due to overlapping 

(Monti and Santoro, 2011).  Le Breton et al. (2008) obtain the result that 12I  is equal to the 

first-order discrimination index   
1 1

1 0
2 q q dq    where     1 1

2 1q F F q   is 

interpreted as a first-order discrimination curve and defined as the proportion of men with 

incomes no more than the female income quantile associated with the poorest proportion q of 

                                                           

8
 Note that if  1 2P 0Y Y   then the definition of the identification indices may be extended to give 

   12 1 2 1 2
[ ]1 2 P 0.5PI Y Y Y Y      and    21 2 1 1 2

[ ]1 2 P 0.5PI Y Y Y Y      such that 

   12 2 1 1 2 21P PI Y Y Y Y I       as before, with this treatment also providing a feasible solution to the 

problem of ties in empirical work. 
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women: for example, if  1 0.5 0.2   then only 20% of men have incomes no more than the 

female median income.  Figure 1 illustrates  1 q  which is an ‘interdistributional Lorenz 

curve of the first type’ (Butler and McDonald, 1987) and takes the form of an increasing 

function that will coincide with the 45º line only if the two distributions are identical.  1  is 

defined as twice the area between this diagonal and  1 q with portions of  1 q  below the 

diagonal counting positively to the measure while those above it contribute negatively.  Thus 

1  provides a measure of ‘net’ discrimination, with  1 q  only lying everywhere below the 

diagonal if male incomes first-order stochastically dominate female incomes, and may equal 

zero even if the two distributions are not identical (see Yalonetsky, 2012).  1  is responsive 

to changes in individual male and female incomes over the common support of the two 

distributions but not, for example, to progressive income transfers between women receiving 

less than the lowest male income min
2y  or between men with more than the highest female 

income max
1y . 

 Monti and Santoro (2011) show that the ratio of the alternative between-group Gini 

indices bG  and BG  is equal to  12 1 2/ 1 2Pb BI G G Y Y     in the two group case, and 

follow Milanovic and Yitzhaki (2002, p.161) in interpreting the index in terms of the loss of 

between-group inequality due to overlapping.  In particular, 12I  will take its maximum value 

of one when the two groups occupy exclusive income ranges such that there is perfect 

stratification in the sense of Lasswell (1965).  It is also shown that the minimum value of 12I  

is not zero since bG , unlike BG , can be negative when mean incomes by group are 

negatively correlated with mean ranks. 

Monti and Santoro (2011) proceed to give a graphical interpretation of 12I  similar to 

that in Le Breton et al. (2008, 2012) but the link with between-group Gini indices suggests an 

alternative representation in terms of Lorenz and concentration curves that will prove useful 

in the multilateral case.  Specifically, if we consider the smoothed distribution 
k

Y obtained   
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Figure 1  Construction of first-order discrimination curve  

 
 

Source: Adapted from Le Breton et al. (2012) 

 

Figure 2  Representation of 12I  based on Lorenz and concentration curves  
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by assigning to each individual in the population the mean income of the group to which they 

belong then 
1 1 1 2 2 2( ) ( ) ( )

k k
F Y p F p F     ,  2cov , ( )

k k kB uG Y F Y     is the Gini index of 

smoothed income and  2cov , ( )
kb u u uG Y F Y   is the concentration index of smoothed 

income with ranks based on the original income distribution.  Hence 12I  is in general equal to 

the ratio of the concentration index to the Gini index for the smoothed distribution.  Figure 2 

plots the proportion of smoothed income received by the first 100q per cent of people when 

ranked from poorest to richest in the smoothed and original distributions, ( )
k

L q  and 

( )
k

C q  respectively, with 12I  equal to the ratio of area A to area (A+B) if ( )
k

C q  lies 

everywhere below the line of equality.   

Given the identification index 12I , an obvious candidate for a stratification index in 

the binary case is the absolute between-group inequality measure 

 12 2 1 12u b u BG G I I       where, following Esteban and Ray (1994),  2 1 0    

may be interpreted as a measure of alienation between groups.  In practice, we employ a 

generalised alienation function  12 ,A    that yields the following class of pairwise 

stratification indices: 

             12 12 12 2 1 2 1 1 2, , P P ; 0; 0 1S A I Y Y Y Y


                   (1) 

where    

 

1

1

0 1

; 1,2

0

j

j
j

n

iji

j
j j

n
n

iji

y
if

n j

y if







  



 
    

   

 






, (1a) 

Thus alienation  12 ,A    is given as a power function of the difference in income standards 

between the groups and will be non-negative by definition since    2 1 0     by 

construction.  Income standards  j   are defined as generalised or α−order means and 

may therefore be interpreted, following Blackorby et al. (1981), as social welfare measures 

with  being the Atkinson (1970) inequality aversion parameter.  The parameter   may be 

interpreted as an indicator of “group disadvantage” aversion in that a society in which the gap 


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in income standards between the two groups is twice as large will have 2  times the level of 

stratification for any given degree of pairwise identification.  Alternatively,   is the elasticity 

of stratification with respect to the income standard gap, so that a 1% increase in the gap 

leads to a % increase in between-group stratification ceteris paribus.  In general there seems 

no reason to believe that aversion to individual income inequality and to group disadvantage 

will be the same so   and  are treated as independent parameters.   

The parametric class of measures  12 ,S    gives analysts and policymakers an 

instrument to evaluate stratification with varying sensitivity to distributional issues depending on 

social preferences. In particular,  2 1 12 u bI G       2 1 1 22 Pu BG Y Y       is 

obtained as a special case when 1   , where the final term may be interpreted as a 

measure of the loss of absolute between-group inequality due to overlapping.  Additional 

flexibility can be gained through the normalisation of the alienation function, which is considered 

in Section 5 following the generalisation of the stratification index to allow for multiple groups. 

 

4. Generalisation to the case of two or more groups  

This section considers the generalisation of the pairwise measures  12 ,S    to provide a 

class of multilateral stratification indices that are applicable to two or more groups.  The key 

to our approach is to build up the multilateral indices by aggregating the pairwise indices 

over each distinct pair of distributions so as to yield an overall index that is a weighted 

average of the pairwise indices.  The pairwise index provides an attractive building block for 

this purpose as the contribution of each pair of groups to the value of the overall measure can 

be interpreted in a straightforward manner given the inherent symmetry of  12 ,S   .  

Following the definition of the new class of multilateral stratification indices, we explore the 

properties of both the class as a whole and specific members of it.   

 
  




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4.1 Definition of the class of indices   

Let    , ,kl kl klS A I     be the pairwise index for two groups l k  such that

  0l k
     by definition.  We propose the following class of multilateral indices: 

     

      

    

, , , ; 0; 0 1

P P

sgn( ) P P ;

kl kl kl klk l k k l k

kl l k l k k lk l k

k
kl l k l k k lk l k

k l

S p S A I

p Y Y Y Y

p
p l k Y Y Y Y

p p


 


 

       

 

 

 





    

    

 
      

 

   

 

 

 (2) 

where 
2

2 2
;

1

k l k l
kl lk

k l jk l k j

p p p p
p p

p p p


  
    

        
 (2a) 

  
1 0

sgn
1 0

if l k
l k

l k

 
  

  
. (2b) 

Thus  ,S    is a population weighted average of the pairwise indices  ,klS    with non-

negative weights klp  that are defined to sum to one over the set of distinct pairs of groups, 

i.e. for all l k .  Hence, klp  may be interpreted as the probability that two individuals 

randomly selected with replacement from the population will be members of groups k and l 

conditional on them not being members of the same group.  The third line of (1) follows since 

kl lkI I   and    l k k l
          , with the use of the sign function sgn( )l k  allowing 

for the possibility that     P Pl k k lY Y Y Y    may be less than zero even if l k , and 

makes use of the convention that the relative contribution of each group to the pairwise 

weight klp  is in proportion to group sizes. 

 

4.2  General properties of the class of indices   

For two or more groups the properties of  ,S    are as follows: 

(I) Normalisation 

The index  ,S    is normalised to take a value of zero if for each pair of groups then 

either 0klI   or  , 0klA     or  , 0kl klA I    .  Thus stratification will only be 

non-zero if there is at least one pair of groups that is both identified to some extent and 
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consists of groups with non-identical income standards.  Conversely, as with the binary 

index, zero values do not necessarily imply that all distributions are identical. 

The index will be unit free with a maximum value of one if the disadvantage 

aversion parameter   is set equal zero.  Otherwise  ,S    is unbounded from either 

above or below with the same units as  ,klA   .  To see that negative values of 

 ,S    are possible with multiple groups, consider a population that consists of three 

groups k, l, and m with population shares of 2/5, 1/5 and 2/5 respectively and incomes 

Yk={5, 5, 5, 5, 5, 5}; Yl={3, 9, 9} and Ym={4, 4, 4, 4, 13, 13} measured in dollars.  Hence 

k l m    , with 5k  , 7l   and 9m  ; and 1/ 3klI  , 1/ 9lmI   and 

1/ 3kmI    since  P 1/ 3k lY Y  ,  P 4 / 9l mY Y   and  P 2 / 3k mY Y  .  For the 

first three integer members of the class with 1  , we obtain from (2) that 

 0,1 1/18S   ,  1,1 4 / 9S    dollars and  2,1 20 / 9S    dollars squared.  

(II) Invariance axioms 

a. Symmetry:  ,S    is unaffected by the permutation of groups 

b. Population replication:  ,S    is invariant to the replication of the population 

within each group while holding the population shares of the groups constant.   

c. Income measurement invariance: The pairwise identification indices klI  are 

invariant to affine transformations of individual welfare levels,
9
 while the 

alienation functions  ,klA    are homogeneous of degree   in the difference in 

income standards   0l k
    .  Hence  ,S    is invariant to affine 

transformations of individual welfare levels if 0   and translation invariant 

otherwise, with these properties extending to invariance in individual incomes if 

additionally 1  .  Alternative normalisations of  ,klA   , to be discussed in the 

                                                           

9
 Note that the klI ’s are not in general invariant to order-preserving transformations of individual welfare levels 

because such transformations can have an effect on identification through the ordering of groups by income 

standards. 
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next section, yield stratification measures that are invariant to scalar and affine 

transformations with 0  .   

d. Continuity:  Assuming continuous income distribution functions than  ,S    

will be continuous for all 0  .  In the case of  0,S   a small change in an 

individual income that leads to a change in the ordering of groups by income 

standards may give rise to a discontinuous change in the value of index, where 

this property is similar to the discontinuity of the FGT poverty measure P(0) at 

the poverty line when a small change in income takes an individual either above 

or below the line.  In all other cases the transition will be smooth because 

pairwise stratification tends to zero as the difference in income standards between 

the pair of groups tends to zero.  

(III) Dominance axioms: The dominance properties of the index may be characterised in 

terms of identification and alienation axioms, as in Esteban and Ray (1994) and Duclos 

et al. (2004).  For the sake of generality the discussion is couched in terms of the 

distribution of welfare and income standards, rather than of income and mean incomes: 

the two approaches coincide for the sub-class of indices with 1  , i.e.  ,1S  .  

a. Identification: We define the identification axiom with reference to a population 

consisting of two or more groups with symmetric, unimodal welfare densities 

with compact supports ( )k kf Y  and corresponding income standards k
 .

10
  The 

need to define the population to which the axiom applies reflects the absence of 

simple stratification dominance properties that might apply to all populations, 

unlike the corresponding dominance axioms - such as the Pigou-Dalton transfer 

principle - in inequality analysis.  In particular, identification is inherently a 

                                                           

10
 Symmetry implies that ( ) ( )k k k kf w f w     for all [0, ]kw   and unimodality that (Y )k kf 

is non-

decreasing on [0, ]k
 . 
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characteristic of groups so the impact on identification of any particular change in 

individual welfare levels will inevitably depend on the configuration of groups in 

the population (see Esteban and Ray (1994) for further discussion). 

 Given this setting, a symmetric, income standard-preserving “squeeze” in 

the welfare distribution of one group, as shown in Figure 3a, cannot reduce 

identification and hence stratification.  As in the measurement of polarisation (cf. 

Esteban and Ray, 1994), it is the identification axiom that distinguishes 

stratification from inequality, since a reduction in within-group variation holding 

between-group differences constant will lead to a fall in inequality according to 

the Pigou-Dalton transfer principle.   

 More specifically, we follow Duclos et al. (2004) in defining a λ-squeeze of 

the density ( )k kf Y as:   

 11
( ) ; 0 1

k k
k k k

Y
f Y f

 
   


 

  
   

 
 

  (3) 

where ( )k kf Y   is also symmetric and has the same income standard as ( )k kf Y  

but is second-order stochastically dominant.  To see that  ,S    cannot fall due 

to a λ-squeeze note that the contribution of group k to overall stratification can be 

written from (2) as: 

 , sgn( ) ;k
k kl l k kl

k ll k

p
S p l k I

p p


    



 
   

 
  (4) 

which will not fall if the degree of identification of group k does not fall with 

respect to either poorer or richer groups, i.e. the pairwise indices klI  do not fall if 

l k  and do not rise if k l .   
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Figure 3a.  Income-standard preserving “squeeze” of group k welfare distribution 

 

Figure 3b.  Graphical proof of identification axiom 
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 We demonstrate that the condition will hold in the former case in which 

( ) 0l k
    ,

11
 with extension to the latter case immediate given the symmetry 

assumptions.  The proof is illustrated in Figure 3b which shows the original and 

squeezed group k distribution functions ( )k kF Y  and ( )k kF Y   respectively.  Note 

that ( ) ( )k k k kF Y F Y    if k kY   and vice versa, with the absolute difference 

between the two curves being symmetric about the income standard given the 

symmetry of the welfare distributions.  For l k , we need to show that

0
[ ( ) ( )] ( )2 0k k k k l l lkl kl
F Y F Y f Y YI I
     


    , where kl klI I   is a weighted sum 

of the differences at each welfare level with weights given by the group l welfare 

density  l lf Y .  Consider first the limiting case l k
    in which the weights 

 l lf Y  will also be symmetric about the common income standard such that 

0kl klI I    by construction, with both 0klI    and 0klI  .  For l k
   , the mode 

of  l lf Y  will lie to the right of k
 , as shown in the diagram, and we can 

proceed to sign kl klI I   as follows.  First note that  l lf Y  is strictly increasing 

over the range ( )k l k
       so    l k l kf w f w      for any pair of points 

k w   with 0 ( )l kw      .  Moreover  l lf Y  is symmetric about the mode 

at l
  so it will also be the case that    l k l kf w f w      for any pair of 

points k w   for which ( )l kw     .  Hence we can conclude that 

0kl klI I    since    l k l kf w f w      for all possible w. 

 Finally, it should be recognised that the characterisation of identification is 

substantially different in the measurement of stratification and polarisation 

despite the superficial similarities.  In particular, Duclos et al. (2004) apply the 

                                                           

11
 Le Breton et al. (2008) seek to establish an analogous relationship between second-order stochastic 

dominance and second-order discrimination (i.e. identification in our terminology) but only manage to show that 

it will hold if the density of the reference function ( )l lf Y  is decreasing over the entire support of ( )k kF Y , 

implying that the group l distribution must be positively skewed with mode of zero.  
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“squeeze” operator to so-called “basic densities” that would be fully identified in 

our framework even before the application of the operator because they are 

assumed to have disjoint supports.  More generally, the identification function (4) 

for any group k depends in our approach on the extent to which group 

membership can be determined from individuals’ ranks within the income 

distribution rather than on the density ( )k kf Y  at any given welfare level.  This 

difference fundamentally distinguishes the measurement of income stratification 

between a set of exogenously classified groups from that of income polarisation 

whether with or without predetermined groups.  

b.  Alienation:  The specification of the alienation axiom is more straightforward as 

it will apply to any population consisting of two or more groups.  Given the 

invariance properties of the pairwise identification indices 
klI  and the 

homogeneity in welfare levels of the alienation functions  ,klA   , an 

identification-preserving scalar expansion of all welfare differences about the 

overall population income standard u
  will unambiguously increase alienation.  

Thus we define a global or γ−spread of population welfare levels uY  as: 

 ( ) ; 1u u u uY Y             (5) 

where ( )uY   will have the same population income standard u
  as uY  but give 

rise to higher levels of alienation and hence stratification if 1  .  Figure 4 

illustrates the idea of a γ−spread about the population mean u
 , clearly 

capturing the idea that stratification is an increasing function of between-group 

differences in income standards.  The parallel with the polarisation literature is 

again clear but, in the spirit of FGT poverty measures, we additionally allow for 

different degrees of group disadvantage aversion through the choice of the 

parameter  .   
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Figure 4.  Illustration of alienation axiom 

(A)  Original welfare levels 

 

(B)  γ-spread welfare levels 
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(IV) Decomposability and population composition:  The index  ,S    is a weighted 

average of the pairwise stratification indices  , ,klS    which provide estimates of the 

contribution of each distinct pair of groups to overall stratification.  Furthermore, the 

pairwise indices may be meaningfully aggregated, given symmetry, to yield unique 

estimates  ,kS    of the contribution of each group to overall stratification using (4).  

 Overall stratification will unambiguously rise if stratification between any pair of 

groups increases holding population shares constant.  Nevertheless it is important to 

remember that stratification is a property of groups and therefore not independent of the  

partition of the population into groups.
12

  For example, splitting one group into two or 

more sub-groups that each possesses the same income distribution as the parent group 

will lead to a fall in the population average level of stratification  ,S    given that 

 , 0klS     by definition for all pairs of sub-groups.  By extension  ,S    is not 

invariant to the replication of the population by the replication of groups.   

For any given set of K groups with income distributions ( )k kF Y , stratification 

will be maximised if the population is equally divided between the two groups with the 

largest pairwise index  ,klS   .  In the case of  0,S   this will be the pair of groups 

that exhibits the highest degree of differentiation from each other into separate layers as 

measured by the pairwise identification indices 
klI , where this pair may usually be 

expected to consist of the richest and poorest groups in the population although this 

need not always be the case.  For 0  , stratification will also depend on the degree of 

alienation and it will more likely be the case that  ,klS    will be maximised with the 

population equally split between the richest and poorest groups, given that these two 

groups must exhibit the greatest alienation as measured by the pairwise alienation 

                                                           

12
  We have previously noted a link between the measurement of stratification and between-group inequality: 

subgroup consistency in the measurement of inequality requires overall inequality, not the within-group and 

between-group components, to be invariant to the partition. 
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functions  ,klA   .  The parallel with the measurement of polarisation is once again 

obvious (cf. Estaban and Ray, 1994, p.837) 

 

4.3  Properties of  0,S   

The first member of the class,  0,S  , may be re-written from (1) as: 

        0, P 1 2 P ;kl kl kl l k k l kl k l

k l k k l k k l k

S p I p P Y Y Y Y p Y Y
  

           (6) 

where  0,S   is the population-weighted average level of pairwise identification since 

1klk l k
p


  by definition.  More explicitly,  0,S   measures the difference in the odds 

that the income of a randomly chosen member of a richer group is more rather than less than 

that of a randomly selected member of a poorer group, where groups are first ordered by 

income standards k
  and then by pairwise comparison of ranks in the case of tied groups.  

Alternatively, the index is equal to one less twice the population weighted average probability 

that a randomly chosen member of a poorer group receives more than a randomly selected 

member of a richer group.   

Thus  0,S   may be interpreted as a headcount or incidence measure of stratification 

that captures the extent to which individuals’ positions within the income distribution are 

determined by group membership: if group membership is entirely uninformative as a 

predictor of relative rank then  0, 0S   , whereas if membership of a particular group 

restricts individuals to a single interval or range of ranks exclusively occupied by members of 

their own group then  0, 1S   .  With only two groups, the reduction in headcount 

stratification caused by a unit increase in individual welfare levels would be greatest for 

members of the poorer group with incomes equal to the modal welfare level in the richer 

group.  With more than two groups, the issue is more complicated as there is a need to 

consider which group to target as well as to identify which members of the targeted group to 

support, where this will depend for intermediate groups on the net change in identification 
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due to unit changes in individual welfare levels.  Nevertheless it is readily apparent that 

increasing the welfare of the poorest group, let alone the welfare of the poorest members of 

that group, will not necessarily have the most impact on headcount stratification: indeed 

 0,S   is invariant to changes in the incomes of individuals in the poorest group who receive 

less than the lowest income level in any other group so long as these changes do not increase 

any of their incomes above that level.  

Zhou (2012) has independently proposed a stratification measure SZHOU that is identical 

to  0,S   except that the groups are ordered by kuF  alone on the assumption of no ties 

between groups.  Zhou defends his choice of measure on the grounds that it is invariant to all 

rank-preserving transformations of income but this is achieved by conflating the 

determination of the hierarchical ordering of groups with the measurement of the degree of 

identification between them given that 
ku l kll

F p F .
13

  In our view these are independent 

steps with income standards providing a more compelling primary criterion for the 

establishment of the relative economic standing of groups.  Nevertheless SZHOU will prove 

useful in applications in which only an ordinal measure of wellbeing is available such that is 

not possible to calculate representative welfare levels as a basis for ordering groups.   

The main virtue of the headcount index is that it is easy to understand as it only 

depends on the extent to which groups form more or less distinct strata and not on the 

associated differences in income standards.  But stratification is more than identification and 

alienation must also be taken into account in order to obtain an index that fully captures the 

richness of the concept. 

                                                           
13

 Zhou further conjectures that SZHOU≥0, which would imply that the index is bounded within the unit interval. 

However the following variant on the main text example shows this not to be the case: let the population shares 

of the three groups k, l, and m be 4/14, 3/14 and 7/14 with incomes Yk={5, 5, 5, 5}; Yl={3, 9, 9} and Ym={4, 4, 4, 

4, 13, 13, 13} then lu ku muF F F   since 1
27kuF  , 1

37luF   and 4
77muF  . Hence 7 / 21lkI   , 

5 / 21lmI   and 3/ 21kmI   , since  P 2 / 3l kY Y  ,  P 8 / 21l mY Y   and  P 4 / 7k mY Y  , to give 

3/ 61ZHOUS   .   
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4.4  Properties of  1,S   

The second member of the class,  1,S  , may be re-written from (1) as: 

          

      

1, 1, P P

0, cov 1, ,

kl kl kl kl l k l k k l

k l k k l k

kl kl

S p A I p Y Y Y Y

S D A I

    

  

 

     

 

 
 (7) 

where    kl l kk l k
D p    


    is the population mean income standard gap and 

          cov 1, , 0,kl kl kl l k klk l k
A I p D I S     


      is the population 

covariance between pairwise income standard gaps and identification indices.  

 1,S   is again interpretable as a population weighted average but the contribution 

that any particular pair of groups makes to the value of the overall index now depends not 

only on the pairwise identification index klI  but also on the (absolute) difference in income 

standards between them.  For example, the lack of overlap between a rich and a poor group 

will count more towards the ‘stratification gap’ as measured by  1,S   than the same lack 

between two moderately well-off groups: in the limit, two groups with identical income 

standards will not figure at all however large the difference in odds that a randomly chosen 

member of one group will be better off than a randomly selected member of the other group.   

 1,S   therefore reflects not only the incidence but also the depth of stratification, 

differentiating between pairs of groups on the basis of the size of the income standard or 

disadvantage gap between them.  More specifically, the last line of (7) shows that  1,S   is 

equal to the product of the mean levels of identification  0,S   and alienation  D  , plus 

the covariance between pairwise alienation and identification which will typically be positive.  

With only two groups, the reduction in the stratification gap caused by a unit increase in 

individual welfare levels would again be greatest for members of the poorer group with 

incomes equal to the modal welfare level in the richer group.  And, more generally, it will 

also be the case that increasing the welfare of members of the poorest group may not 

necessarily have the most impact on the stratification gap given that alienation is a linear 
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function of the income standard gap.  For the specific index  1,1S , it may be noted that the 

minimum cost of eliminating alienation through a policy of group-specific lump sum 

transfers will be equal to  K k kk K
n 


  if transfers were perfectly targeted, i.e. the sum 

over all but the richest group of the product of the mean income gap with the richest group 

and group size.   

Allanson (2014) has recently generalised the Monti and Santoro (2011) result on the 

relationship between bG  and BG  to more than two groups, implicitly identifying  1,1S  in 

the process as 2cov( , ( ))
ku b u uG Y F Y   where 

k
Y is the smoothed distribution defined in the 

previous section.  This correspondence suggests a graphical interpretation of  1,1S  along 

the lines of that provided for 12I  in Section 3 but based on the generalised Lorenz curve.  

Figure 5 plots the cumulative mean smoothed income (i.e. cumulated smoothed income 

divided by the total population) of the first 100q per cent of people when ranked from poorest 

to richest in the smoothed and original distributions, ( )
k

GL q  and ( )
k

GC q  respectively, 

with  1,1S  simply equal to twice the area A if ( )
k

GC q  lies everywhere below the line of 

equality.  More generally,  1,S   is simply the generalised concentration index of the 

smoothed distribution 
k

Y 
 obtained by assigning to each individual in the population the 

income standard k
  of the group to which they belong, i.e. 

 1, 2cov( , ( ))
k

u b u uS G Y F Y
 


   .   

The sub-class of indices  1,S   thus provides a direct link between the measurement 

of stratification and between-group inequality and has the further advantage of a simple 

graphical representation using a familiar tool from stochastic dominance analysis.  Unlike 

 0,S  , the concept of stratification implied by  1,S   requires the joint presence of 

identification and alienation.  However  1,S   is not directly related to the distribution of 

disadvantage among groups, as pairwise alienation is simply given as the size of the income 

standard gap, which may not be an appropriate assumption in all cases. 
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Figure 5.  Representation of  1,1S  using generalised Lorenz and concentration curves 

 

 

4.6  Properties of  ,S    with 1    

All indices  ,S    with 1   have alienation functions that are convex functions of 

pairwise income standard gaps and are therefore directly sensitive to the distribution of 

disadvantage among pairs of groups.  For example, consider a population consisting of three 

equal sized groups with 
12 23I I , i.e. the middle group is equally identified with respect to 

the two other groups.  It then follows from Jensen’s inequality that stratification will be 

minimised if 2 1 3 2
         , i.e. the income standard of the middle group is also 

equidistant between those of the two other groups.  By implication, stratification will be 

higher in this population the closer the income standard of the middle group to that of either 

the richest or the poorest group, holding all other things constant.   
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Thus  ,S    reflects not only the incidence and depth but also the severity of 

stratification if 1  .  In particular, if 2   then the alienation function is equal to the 

squared income standard gap and one pair of groups with income standards twice as far apart 

as another pair will contribute four times as much to the stratification index holding all other 

factors equal.
14

  Higher values of   imply greater disadvantage aversion: in the limit as 

  then the value of the index will be dominated by the pairwise stratification between 

the richest and the poorest groups, with the poorest group − though not necessarily the 

poorest members of it − providing the most cost-effective target for an anti-stratification 

support policy.   

 

5. Discussion. 

The class of stratification indices    , ,kl kl klk l k
S p A I   


   builds on links between 

the alternative definitions of the between-group Gini with each pairwise identification index 

klI  equal to the ratio of bG  to BG  in the sub-population consisting of groups k and l only, 

and  1,1S  identical to u bG  in the overall population.  In contrast, Yitzhaki (1994) builds 

on Yitzhaki and Lerman (1991) to provide an alternative approach to the measurement of 

stratification based on the relationship between the alternative within-group Gini measures 

kkG  and kuG .  This section compares the relative merits of the two sets of measures and also 

                                                           

14
 The index in this case may be written as: 

     

               

2

2

2, 2,

0, var 1, cov 1, , cov 2, ,

kl kl kl kl l k klk l k k l k

kl kl kl kl kl

S p A I p I

S A D A I D A I

    

     

 
  

   

   
 

where          
2

var 1, varkl l k kl l kk l k
A p D        


       is the variance of the income 

standard gap,           
2

cov 2, , 0,kl kl kl l k klk l k
A I p D I S     


      is the (unstandardized) 

co-skewness between the income standard gap and the identification index, and the last equality holds since 

      
22

2( ) 2 ( ) ( )l k l k l kD D D                    . 
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briefly considers the properties of two simple variants on  ,S    based on normalised 

versions of the alienation functions  ,klA   .  

 

5.1. Comparison with the Yitzhaki (1994) overlapping measures 

Yitzhaki (1994) shows that the within-group component wG  from the exact decomposition of 

the Gini index w bG G G   can be written as w k ku k kk kk k
G s G s G O    where kO  denotes 

the ‘overlapping’ index of group k with the entire population.  In turn 
k l lkl

O p O  where 

the pairwise index    cov , ( ) cov , ( )lk k l k k k kO Y F Y Y F Y  lies in the open interval [0, 2] and is 

an increasing function of the fraction of group l that is located in the income range of group k.  

In other words, each 
lkO  measures the degree of ‘overlapping’ of group l by group k, where 

‘overlapping’ is interpreted as non-stratification in the sense of Lasswell (1965), and kO  is 

given as the population-weighted average of these indices.  The properties of the pairwise 

indices are fully expounded in Yitzhaki (1994) so discussion here is limited to the 

observation that the asymmetry of the pairwise indices, 
lkO  and 

klO , gives rise to problems 

of both interpretation and aggregation.   

With regard to interpretation, knowledge of the values of both 
lkO  and 

klO  is required 

to understand the relationship between the income distributions of the two groups.  In 

particular, a zero value of 
lkO  may arise either if the two distributions have no common 

support in which case 
klO  equals zero as well, or if all the incomes in group l are 

concentrated at a point in the income distribution of group k in which case 0klO   with 
klO

taking the maximum value of 2 when all group l incomes are equal to the group k mean 

income.  The first of these two cases corresponds in our framework to a state of perfect 

identification in which the unit-free index  0,klS   would equal one; while the limit of the 

second case implies zero stratification according to all  ,1klS   measures due to the complete 

absence of both identification and mean income-gap alienation.  Hence individual pairwise 

overlapping indices cannot really be interpreted as measuring pairwise stratification, and even 
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in combination can only be thus interpreted with care in the absence of clearly defined 

identification and alienation functions.  In contrast, pairwise stratification in our framework is 

based on explicit identification and alienation axioms that give rise to symmetric functions 

that are readily interpretable. 

The asymmetry of the pairwise indices also prevents aggregation to the population 

level, with the groupwise indices kO  capturing the extent of overlapping of the overall 

population distribution ( )u uF Y  by the group distribution ( )k kF Y , not the overall degree of 

overlapping per se.  In contrast our framework allows for the construction of both group 

 ,kS    and overall population  ,S    indices, where the contribution of any pairwise 

index  ,klS    to the value of each can be interpreted in a straightforward manner.  This is 

of considerable practical importance because it is therefore possible to judge not only 

whether the overall level of stratification is higher in one population compared to another but 

also to estimate the contribution of individual groups to observed levels of overall 

stratification with the further potential to identify the characteristics or factors that contribute to 

stratification.   

 

5.2 Normalisations 

We have already noted that the framework provides analysts and policymakers with the 

flexibility to evaluate stratification with varying sensitivity to distributional issues through the 

parameterisation of the alienation function.  Additionally, it is possible to normalise these 

functions so that alienation is not measured in absolute terms but in relative or standardised 

terms.  We consider two variants on  ,S    that normalise the absolute income standard gap 

 l k
    with respect to the group l income standard l

 and the population average income 

standard gap D( ) , with both reducing to the unnormalised incidence measure  ,S    if 0  . 
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5.2.1 Relative stratification measures 

Treating the income standard of the richer group as the relevant “poverty line” in each 

pairwise comparison, it is possible to define a class of relative stratification gap measures: 

        , , P P ;l k
kl kl kl kl l k k l

k l k k l k l

S p A I p Y Y Y Y


 



 
   

 

 
      

 
   (9) 

where  ,klA    captures the relative rather than the absolute disadvantage faced by the 

poorer group.  Both  ,klA    and  ,klA   may be interpreted as measures of the magnitude 

of relative deprivation inasmuch as they capture “the extent of the difference between the 

desired situation and that of the person desiring it” (Runciman, 1966, p.10), but the income 

standard gap is expressed in proportional terms in the case of  ,klA   .  This results in a 

stratification index  ,S   that is more sensitive to absolute differences in income standards 

between the poorest groups in the income distribution since the same income standard gap 

between two groups will contribute more to  ,S    the lower is the income standard of the 

richer of the two groups with the level of identification held constant.  For example, consider 

again the example of a population consisting of three equal sized groups with the middle 

group equally identified with respect to the two other groups then stratification will be 

maximised if  2 1 3 1 3 2           , i.e. the income standard of the middle group 

is closer to the bottom than the top group.  Thus, in contrast to  1,S  ,  1,S   is not 

invariant to the distribution of absolute income standard gaps among pairs of groups all other 

things equal, nor is it symmetric to the distribution of income standard gaps about the overall 

mean unlike higher-order  ,S    measures.   

By definition,  ,S    are unit free measures that are invariant to the scalar 

transformation of welfare levels and bounded from above by unity.  These properties may 

prove particularly useful for the comparison of (relative) stratification gaps either over time 
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or across countries.   ,S    will be a decreasing function of the disadvantage aversion 

parameter   as with FGT poverty measures. 

 

5.2.2 Standardised stratification measures 

It may also be useful to normalise each income standard gap by the population-weighted mean 

income standard gap, to yield a class of standardised stratification gap measures: 

        , , P P ;
( )

l k
kl kl kl kl l k k l

k l k k l k

S p A I p Y Y Y Y
D


  

   
 

 
      

 
   (10) 

where the standardised alienation function  ,klA    is unit free.   

In particular if 1   then the normalised index may be written as:  

   
 

 
1, 1, ;

k l l k

kl kl kl kl kl kl

k l k k l k k l kk l l k

k l k

p p
S p A I I w I

p p

 

 

 
 

   




  


  


 (11) 

where the weights klw  are non-negative and sum to unity.  Thus  1,S   may be interpreted 

as a weighted average identification index like  0,S   but with pairwise weights equal to 

shares in the total income standard gap  ND  .  It is easily shown that  1,S   is equal to 

 0,S   plus  cov( 1, , )kl klA I  where the covariance between the standardised alienation 

function and pairwise identification indices may be expected to be positive.  Like  0,S  , 

 1,S   is invariant to affine transformations of income but also to the replication of 

population by the replication of groups.  Allanson (2014) has previously identified  1,S  as 

the ratio of bG  to BG , given that the denominator in the weights function is simply equal to 

0.5 u BG , with Heller and Yitzhaki (2006) interpreting this ratio as a measure the ‘quality of 

identification’ achieved in the classification of individual groups by means of some 

continuous characteristic. 

By extension,  ,S    may in general be interpreted as a class of weighted 

identification indices where the form of the weighting functions    , ,kl kl klw p A   
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resembles those employed in the definition of the class of general additive decomposable 

(GAD) inequality indices (Foster and Shneyerov, 1999) but specified in terms of mean 

normalised differences in income standards between pairs of groups, rather than mean 

normalised income standards of individual groups, since the concern is to measure the 

distance between distributions.  However it should be noted that the resultant weights only 

sum to one if either 0   or 1  , as is also the case with GAD inequality indices. 

 

6. Empirical illustration. 

By way of illustration, this section follows Allanson (2014) in further elaborating the 

empirical analysis presented in Milanovic and Yitzhaki (2002) of world inequality by regions 

in 1993.
15

  The top panel in Table 1 presents estimates from their Tables 4 and 7 of 

population shares, kp ; mean incomes, k ; and mean rankings in the income distributions of 

each region,  kl k lF P Y Y  , and the world  ku k uF P Y Y  .  This shows that Africa was the 

poorest region in per capita terms followed by Asia; Eastern Europe and the Former Soviet 

Union (EFSU); Latin America and the Caribbean (LAC); and Western Europe/North 

America/Oceania (WENAO).  However the mean rank of Africans in the Asian income 

distribution was 0.515, implying that an African chosen at random was likely to have been 

better off than a randomly chosen Asian, and the mean rank of Africans in the world 

distribution was also higher than that of Asians.  Mean ranks for all other pairs of regions are 

consistent with the ordering of mean incomes.  

 The remaining panels show the constituent elements of the stratification indices as 

identified in the last line of (2), with the stratification indices themselves given in Table 2.  

Note that the population weights / ( )kl k k lp p p p  reflect the relative frequencies of distinct 

regional pairs and do not sum across columns to give the population shares kp .  The pattern 

of pairwise signed identification indices sgn( ) kll k I  and absolute mean income gaps 

                                                           
15

 These regions are referred to as ‘continents’ in Milanovic and Yitzhaki (2002) though the correspondence is 

not exact.  
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l k   reveals that the regions of the world are broadly divided into three broad layers or 

strata – with Africa and Asia at the bottom, EFSU and LAC in the middle and WENAO on its 

own at the top of the world income distribution – where the degree of both identification and 

alienation between regions in the same layer was much lower than that between regions in 

different strata.  Indeed, there was virtually no stratification of the African and Asian 

distributions in the bottom stratum nor of the EFSU and LAC distributions in the middle 

layer, with pairwise identifications indices close to zero and mean income gaps less than 

$1000.  In contrast, the WENAO income distribution was highly stratified from those of 

every other region, with the relevant pairwise identification indices ranging between 0.656 

and 0.902 and all mean income gaps greater than twice the mean world income level of 

$3000.  All other pairwise measures were intermediate with the population-weighted mean 

identification index and mean income gap equal to 0.518 and $4007 respectively.   

 The top panel of Table 2 reports the headcount index (0,1)S , which is equal to the 

population-weighted mean identification index reported in Table 1.  Thus the difference in 

the odds that the income of a randomly chosen member of a richer region was more rather 

than less than that of a randomly selected member of a poorer region was equal to 0.518.  It  

follows immediately that the population-weighted mean probability of transvariation was 

equal to 0.241.  The pairwise decomposition shows that the overall level of identification was 

mainly driven by the existence of the largely separate WENAO stratum at the top of the 

world income distribution, with the Asia/WENAO pair alone contribute nearly half of the  

total value of (0,1)S 16
 as a result of the populousness of the two regions and the low degree of 

overlap between their income distributions.  At the other extreme, the EFSU/LAC and 

Africa/Asia pairs made a negligible contribution to the total due to the lack of pairwise 

identification of their income distributions, with the negative value of the latter arising 

because the probability of transvariation between the two regions, i.e.  Africa AsiaP Y Y , was 

greater than 0.5.    

                                                           

16
 Since (0.0475+0.1981)/0.518=0.474. 
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Table 1.  Constituent elements of income stratification calculations 

 

Pop
n
 

share  

(%) 

Mean 

income 

($PPP) Mean rank in income distribution of: 

Column (l) 

Row (k)   

Africa 

 

Asia 

 

EFSU 

 

LAC 

 

WENAO 

 

World 

 

Africa 10.0 1310.0 0.500 0.515 0.275 0.261 0.049 0.407 

Asia 59.5 1594.6 0.485 0.500 0.265 0.247 0.064 0.397 

EFSU 7.8 2780.9 0.725 0.735 0.500 0.483 0.136 0.609 

LAC 8.4 3639.8 0.739 0.753 0.517 0.500 0.172 0.629 

WENAO 14.3 10012.4 0.951 0.936 0.864 0.828 0.500 0.861 

World 100.0 3031.8      0.500 

   Population weights: ( )kl k k lp p p p  Sum 

Africa   ~ 0.029 0.015 0.015 0.020 0.078 

Asia   0.169 ~ 0.136 0.146 0.227 0.678 

EFSU   0.011 0.018 ~ 0.010 0.013 0.053 

LAC   0.013 0.021 0.011 ~ 0.015 0.060 

WENAO   0.028 0.055 0.024 0.025 ~ 0.131 

World        1.000 

Signed pairwise identification indices: sgn( ) kll k I  
Weighted

mean 

Africa   ~ -0.030 0.450 0.478 0.902 0.393 

Asia   -0.030 ~ 0.470 0.506 0.872 0.488 

EFSU   0.450 0.470 ~ 0.034 0.728 0.443 

LAC   0.478 0.506 0.034 ~ 0.656 0.448 

WENAO   0.902 0.872 0.728 0.656 ~ 0.811 

World        0.518 

   Absolute mean income gaps: l k   
Weighted

mean 

Africa   ~ 284.6 1470.9 2329.8 8702.4 3021.7 

Asia   284.6 ~ 1186.3 2045.2 8417.8 3567.8 

EFSU   1470.9 1186.3 ~ 858.9 7231.5 2678.7 

LAC   2329.8 2045.2 858.9 ~ 6372.6 2957.0 

WENAO   8702.4 8417.8 7231.5 6372.6 ~ 7871.9 

World        4007.4 

Notes: Top panel. Source: Milanovic and Yitzhaki (2002) Tables 4 and 7 - see also Table 1 for the list of 

countries in each region (EFSU – Eastern Europe and Former Soviet Union; LAC – Latin America and 

Caribbean; WENAO – Western Europe, North America and Oceania).  Other panels.  Author’s own 

calculations. 
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Table 2.  Income stratification between regions of the world 

  Africa Asia EFSU LAC WENAO Sum Share 

Headcount stratification 

Africa  ~ -0.0009 0.0066 0.0073 0.0177 0.031 5.9% 

Asia  -0.0051 ~ 0.0639 0.0738 0.1981 0.331 63.9% 

EFSU  0.0051 0.0084 ~ 0.0004 0.0095 0.023 4.5% 

LAC  0.0061 0.0105 0.0004 ~ 0.0097 0.027 5.2% 

WENAO  0.0252 0.0475 0.0174 0.0165 ~ 0.107 20.6% 

 S 0,1        0.518  

Stratification gap $PPP  

Africa  ~ -0.2 9.7 17.0 153.8 180.2 5.8% 

Asia  -1.4 ~ 75.8 150.8 1667.7 1892.9 60.9% 

EFSU  7.5 9.9 ~ 0.3 68.6 86.4 2.8% 

LAC  14.3 21.4 0.3 ~ 62.0 98.0 3.2% 

WENAO  218.9 400.2 125.7 104.9 ~ 849.7 27.3% 

 S 1,1        3107.2  

Relative stratification gap   

Africa  ~ -0.0002 0.0035 0.0047 0.0154 0.023 6.3% 

Asia  -0.0009 ~ 0.0273 0.0414 0.1666 0.234 63.0% 

EFSU  0.0027 0.0036 ~ 0.0001 0.0069 0.013 3.6% 

LAC  0.0039 0.0059 0.0001 ~ 0.0062 0.016 4.3% 

WENAO  0.0219 0.0400 0.0126 0.0105 ~ 0.085 22.8% 

 S 1,1        0.372  

Standardised stratification gap   

Africa  ~ -0.0001 0.0024 0.0042 0.0384 0.045 5.8% 

Asia  -0.0004 ~ 0.0189 0.0376 0.4161 0.472 60.9% 

EFSU  0.0019 0.0025 ~ 0.0001 0.0171 0.022 2.8% 

LAC  0.0036 0.0053 0.0001 ~ 0.0155 0.024 3.2% 

WENAO  0.0546 0.0999 0.0314 0.0262 ~ 0.212 27.3% 

 S 1,1        0.775  

Squared stratification gap ($PPP/1000)
2
 

Africa  ~ -0.0001 0.0142 0.0395 1.3385 1.392 5.9% 

Asia  -0.0004 ~ 0.0900 0.3085 14.0381 14.436 61.0% 

EFSU  0.0110 0.0118 ~ 0.0003 0.4964 0.519 2.2% 

LAC  0.0332 0.0437 0.0003 ~ 0.3951 0.472 2.0% 

WENAO  1.9053 3.3684 0.9089 0.6688 ~ 6.851 28.9% 

 S 2,1        23.671  

Source: Author’s own calculations. 
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 The second panel reports the stratification gap index (1,1)S  which also reflects the 

depth of stratification and may loosely be interpreted as a measure of the perceived average 

difference in mean incomes between regions based on individuals’ actual positions in the 

world income distribution, where this would only equal the actual average mean income gap 

if all regional income distributions were fully identified such that the probability of 

transvariation was zero.  Thus the stratification gap of $3107 may be compared to the mean 

income gap  1D  of $4007 reported in Table 1, with the difference reflecting the odds that a 

randomly chosen individual in a poorer region had a higher income than a randomly selected 

individual in a richer region.  Alternatively, following Milanovic and Yitzhaki (2002), the 

difference of $900 represents the loss of absolute between-group inequality due to the 

overlapping of regional income distributions since  1 u BD G  and (1,1) u bS G .  In 

comparison to (0,1)S , WENAO accounts for an even larger share of the total value of the 

index as a result of the above-average mean income differences between WENAO and every 

other region in the world.  In contrast, the shares of the “middle income” regions, EFSU and 

LAC, fall particularly sharply as a result of their intermediate position in the world income 

distribution and correspondingly lower mean income gaps compared to other regions. 

 The next two panels present results on the alternative normalisations of (1,1)S .  The 

relative stratification gap index (1,1)S  was 0.372, which may be interpreted as the perceived 

average relative difference in mean incomes between regions based on individuals’ actual 

positions in the world income distribution.  (1,1)S  is less than the headcount index (0,1)S  by 

construction, since the pairwise mean income gaps reported in Table 1 are all strictly positive.  

The pairwise decomposition shows increases in the relative contributions of all regions 

except WENAO compared to those for (1,1)S , reflecting the greater sensitivity of relative 

stratification gap indices to income standard gaps between pairs of groups at the bottom of 

the income distribution.  In other words, (1,1)S  gives more weight than (1,1)S  to differences in 
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mean incomes between the poorer regions of the world in the calculation of the overall 

measure of the stratification gap. 

 The standardised stratification gap index (1,1)S  was 0.775 and, like (0,1)S , may be 

interpreted as a weighted average identification index but with total income gap rather than 

population weights.  Given that  (1,1) (0,1) cov( 1, , )kl klS S A I  , the larger value of (1,1)S  

reflects the positive correlation between pairwise mean income gaps and identification 

indices, i.e. region pairs that formed more clearly defined regional strata in their combined 

income distribution also tended to have had larger differences in mean incomes.  The value of 

the index may also be identified, following Allanson (2014), as the ratio of bG  to BG , with 

0.775=3107/4007.  The pairwise decomposition is identical to (1,1)S  but differs from that 

given in Allanson (2014) who splits pairwise contributions equally between regions rather 

than by population shares. 

 The final panel reports the squared stratification gap (2,1)S  which was 23.6 million 

dollars squared.  The squared measure puts greater weight on larger mean income gaps 

compared to (1,1)S  leading, as expected, to increases in the relative contributions of the 

regions at the top and bottom of the world income distribution – WENAO, Africa and Asia – 

at the expense of those in the middle – EFSU and LAC.  Higher-order indices (i.e. with 2)   

would place increasingly greater weight on the relative contributions of the regions at the top 

and bottom of the world income distribution, with the pairwise stratification between the 

poorest and richest regions dominating the value of the index in the limit. 

 Overall the various stratification indices all portray a broadly similar picture of the 

pattern of stratification given that the correlation coefficient between the pairwise 

identification indices and mean income gaps was equal to 0.88.  We have argued that 

stratification necessarily results in both pairwise identification and alienation so this positive 

correlation is to be expected but the strength of the association will likely differ depending on 
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the specific nature of the process under consideration.  In any case, reporting a range of 

indices serves to provide a fuller characterisation of the nature of stratification given that each 

individual measure has a clear and distinct interpretation in terms of the outcomes of the 

process.  Recalling that a ceteris paribus increase in within-group inequality will (typically) 

reduce stratification, the combination in some poorer Asian countries, most notably China 

and India, of high per capita growth rates and the emergence of prosperous middle classes 

may be expected to have reduced overall levels of both alienation and identification between 

regions in more recent years.
17

 

 

7. Conclusion 

This paper offers a new class of indices that is based on a conceptualisation of stratification 

as a process that results in a hierarchical ordering of groups and therefore seeks to capture not 

only the extent to which groups form well-defined layers or strata in the income distribution 

but also the scale of the resultant differences in income standards between them, where these 

two factors play the same role as identification and alienation respectively in the 

measurement of polarisation (Esteban and Ray, 1994; Duclos et al., 2004).  One important 

difference is that pairwise identification in our approach is equal to the difference in the odds 

that the income of a randomly chosen member of the richer group is more rather than less 

than that of a randomly selected member of the poorer group, rather than being a function of 

relative frequencies within income classes or at particular levels of income.  Moreover, 

alienation between pairs of groups is defined as a power function of the absolute difference in 

income standards between them, providing a parametric class of measures that may be used 

by analysts and policymakers to evaluate the impact of differing degrees of inequality and 

disadvantage aversion on stratification.  

                                                           
17

  See Milanovic (2012) and Lakner and Milanovic (2013) for further discussion and evidence on trends in 

between-country inequality. 
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The main theoretical advantage of the proposed class of indices over existing 

measures of interdistributional inequality is that the indices are applicable to multiple groups 

and yet provide more information than ethical distance functions.  The dominance properties 

of the indices are similar to those of the Duclos et al. (2004) polarisation measures.  First the 

identification axiom distinguishes stratification from inequality since an income standard-

preserving “squeeze” in the welfare distribution of one group cannot reduce identification 

under certain specified conditions whereas it will lead to a fall in inequality according to the 

Pigou-Dalton transfer principle.  More straightforwardly, an identification-preserving scalar 

expansion of all welfare differences about the overall population income standard will 

unambiguously increase alienation and hence stratification.  Finally stratification will 

typically be maximised if the population is equally divided between the richest and poorest 

groups.  However it is important to recognise that stratification is not the same as polarisation 

due to the different characterisations of identification employed in the two sets of measures, 

with an axiomatic derivation of the proposed class of stratification measures remaining a 

topic for further research.  The link between the stratification gap measure and the 

generalised Lorenz curve further suggests that it may be possible to establish welfare 

foundations for at least some members of the new class of indices.  

The other major attraction of the proposed class of measures is their ease of 

interpretation and practical utility.  In particular, the headcount or incidence measure gives 

the odds that the income of a randomly chosen member of a richer group is more rather than 

less than that of a randomly selected member of a poorer group, while the stratification gap 

also reflects the depth of stratification and index and may be interpreted as a measure of the 

perceived average difference in income standards between groups based on individuals’ 

actual positions in the world income distribution.  Each index is a population-weighted 

average of pairwise indices so it is possible to estimate the contribution of individual groups 
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to observed levels of overall stratification with the further potential to identify the 

characteristics or factors that contribute to stratification.  Reporting a range of measures rather 

than just one enables a fuller characterisation of the nature of stratification as shown by the 

illustrative study of global stratification in this paper.  Estimation and inference procedures 

remain an issue for future work, with the Frick et al. (2006) estimator of the Yitzhaki and 

Lerman (1991) between-group Gini index providing a possible starting point.  Given suitable 

procedures, it would be of interest to examine changes in global stratification over time as 

well as consider applications to a range of other socioeconomic phenomena such as the racial 

wage hierarchy in South Africa and gender pay differentials in earnings.   
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