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Abstract. Electron irradiation of silicon thin films creates localised states, which degrade their 

opto-electronic properties. We present a series of transient photocurrent spectroscopy (TPC) 

measurements on electron-irradiated amorphous and microcrystalline silicon films, annealed at 

progressively increasing temperatures. This has enabled localised states associated with both 

dangling bonds and conduction band tails to be examined over a wide energy range. Trends in 

the evolution of the DOS following electron irradiation followed by isochronal annealing steps 

indicate reductions in the deep defect density, which correlate with spin density. We also find a 

steepening of the conduction band tail slope in amorphous silicon on annealing. Both defect 

density and tail slope may be restored close to as-prepared material values. Earlier CPM data 

are re-examined, and a similar trend in the valence band tail slope is indicated. Computer 

simulations predict that following e-irradiation changes in deep defect density primarily control 

solar cell performance, and will tend to obscure effects related to band tails.  

1. Introduction 

The effects of energetic charged particles on films of hydrogenated amorphous silicon (a-Si:H) [1-4] 

and microcrystalline silicon (c-Si:H) [5-10] solar cells and the transport properties of single films 

[11-16] have been studied extensively, due mainly to potential applications in space PV. It is generally 

agreed that the predominant effect of radiation damage is to create silicon dangling bonds (DBs), 

detected as unpaired spins in ESR measurements, which are metastable and can largely be removed by 

thermal annealing. While there is debate over the detailed process of DB creation [4], the outcome is 

evidently similar to that of light-induced degradation (Staebler-Wronski effect, SWE) [17]. However 

higher spin densities, approaching 10
19

 cm
-3

, can be generated by low-temperature e-irradiation, a 

figure only reached by light-soaking using pulsed lasers [18] or within small volumes [19]. 

The effect of increased defect densities on the performance of thin-film silicon solar cells is 

predominantly a consequence of increased carrier recombination in the absorber layer, which reduces 

the short-circuit current density JSC, coupled with a reduction in electric field strength in certain 

regions due to increased trapped space-charge, which degrades the fill-factor FF. Reduction in open-

circuit voltage VOC is comparatively minor. Remarkably, cells heavily degraded by e-irradiation  

(JSC < 1 mA/cm
2
, FF < 30%) may be restored to performance approaching that of a pristine cell by 

annealing for an hour at 180 C [7].  

As well as improving our ability to predict performance of cells in space applications, defects 

created by laboratory e-irradiation may be used to gain a more general understanding of solar cell 
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physics and material limitations. By using annealing steps to control the defect density in the absorber 

layer, laboratory measurements of solar cell properties, coupled with computer simulations, enable a 

detailed optoelectronic model and material parameter sets to be developed [8, 9]. 

Here we investigate the effect of 2 MeV electron fluences of up to 10
17

 cm
-2

 on thin film silicon 

using transient photocurrent (TPC) density of states (DOS) spectroscopy and ESR spin density 

measurements following successive 30 min. annealing periods between room temperature and 180 C. 

Some earlier constant photocurrent (CPM) measurements are also re-visited. Results are linked to the 

performance of solar cells with varying defect distributions by computer simulations. 

 

2. Experimental 

2.1. Film deposition 

Intrinsic thin film silicon layers were prepared by PECVD using optimized conditions [20], and 

deposited on glass substrates. The chamber pressure, RF power and silane concentration respectively 

were: a-Si:H samples: 3 mbar, 3 W, 10%; μc-Si:H samples: 1.5 mbar, 20 W, 4.9%. A substrate 

temperature of 180C was used throughout. Crystallinity of μc-Si:H absorber layers was determined 

from Raman measurements. 

2.2. e-irradiation and annealing protocols 

Films on glass and ESR powder samples underwent identical 2 MeV electron bombardments and 

subsequent stepwise isochronal thermal annealing procedures. Irradiation was performed at 

approximately 100K in a liquid nitrogen flow cryostat. Samples were exposed to a beam of 2 MeV 

electrons with current density 5 µA/cm
2
 for 50 min., giving a fluence of 9.410

16
 cm

-2
. Further details 

may be found elsewhere [11].  

Between the electron bombardment and commencement of the annealing and measurement cycles, 

samples were transported and stored in liquid nitrogen to prevent uncontrolled annealing of defects. 

Defect densities in the layers were determined using Electron Spin Resonance (ESR) measurements on 

a-Si:H and μc-Si:H powder samples [21] deposited under identical deposition conditions to the 

samples on glass substrates.  

Spin densities following successive isochronal annealings are shown in figure 1. Identical 

annealing regimes were followed, so that ESR spin densities were aligned as closely as possible with 

the films measured using TPC. 

2.3 Transient Photocurrent Spectroscopy 

A VSL337 nitrogen laser and dye attachment generates a 3 ns width 620 nm wavelength pulse at the 

sample, defined by two Ag contacts deposited on the Si film separated by a 1 mm gap, across which a 

300 volt dc bias was maintained. An initial carrier density of some 10
16

 cm
-3

 was established by 

adjusting the pulse intensity using neutral density filters. Following pre-amplification, the 

photocurrent decay was recorded by a Tektronix TDS3052 oscilloscope. Repetitive averaging was 

used to reduce the noise to an acceptable level, and the data transferred to a PC for analysis, display 

and storage [22]. Each TPC current vs. time data file used subsequently to calculate the DOS is 

obtained from several sets of overlapping measurements (typically five), over progressively increasing 

time-scales from ns to seconds. Measurements were conducted at several experimental temperatures, 

typically 130, 160, 220, 250 and 298 K, giving plots of the DOS extending typically from 0.1 eV to 

0.7 eV. Successive annealing steps (between 50 C and 180 C, in order of lowest temperature to 

highest temperature) were carried out on the films, followed by TPC measurements in the same 

cryostat as described above. 

The TPC data files were then processed to extract the DOS present after each annealing step. A 

spectroscopic method was used in which the current-time data firstly undergo discrete Fourier 

transformation [23, 24] and are then analysed using techniques developed for modulated photocurrent 

spectroscopy (MPC). Within a multiple-trapping model, the DOS Nti at the i
th
 level, corresponding to   
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Figure 1. Spin density of a-Si:H and µc-Si:H 

samples measured after deposition, e-irradiation, 

transit at liquid nitrogen, 24 h at room 

temperature, and successive 30 min. annealings. 

 

an energy depth E is 

  
 


IC
N

n

ti

sin
 , where )/(ln  kTE  .    (1) 

 

Here k is Boltzmann’s constant, T the absolute temperature,   the attempt-to-escape frequency and Cn 

the carrier capture coefficient. In this derivation Cn and  are assumed constant for all localized states, 

and related by detailed balance to the band-edge DOS: NC =  / Cn. An attempt-to-escape frequency of 

10
12

 s
-1

 combined with an effective band-edge DOS of 10
20

 cm
-3

 was found to offer a suitable overlap 

between DOS sections measured at different temperatures, and was used throughout this work. 

As the spectroscopic method is susceptible to noise, especially at short times, an alternative 

quantitative analysis is to force-fit the current-time data to the form appropriate for an exponential 

‘band-tail’ of states [25]. Assuming multiple-trapping transport at an experimental temperature T 

below the conduction band tail temperature TC, in the ‘pre-transit’ quasi-equilibrium regime, 

 

  )1(  ttI ,     (2) 

 

where the dispersion parameter  = kT / kTC. One may thus obtain  and hence an assumed TC from 

fitting a straight line to a log-log plot of the current-time data at short times and low temperatures, 

where the decay is controlled by band-tail thermalisation prior to the onset of deep trapping or 

recombination. 

2.4 Solar cell simulations 

Computer simulation of solar cells was carried out using the SC-Simul program developed at the 

University of Oldenburg. This is a one-dimensional numerical simulation which solves the Poisson 

equation, the continuity equations for electrons and holes, and the current transport equations 

including drift, diffusion, and thermionic emission over barriers, if present, in the valence and 

conduction bands. The thermal equilibrium and steady-state solutions are obtained by Newton 

iteration. Further details are provided elsewhere [26, 27]. 

 

3. Results and discussion 

3.1. TPC Spectroscopy – general features 

An example of current-time decays for a-Si:H and c-Si:H at 220 K is shown in figure 2. From similar 

data recorded at experimental temperatures between 130 K and 360 K, we obtain the spectroscopic 

DOS plots for a-Si:H and c-Si:H, shown in figures 3 and 4 respectively, proceeding through the 30 

min. annealing steps identified in the legend. In both cases a general trend of decreasing ‘integrated’ 
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Figure 2. TPC current decay series for a-Si:H and µc-Si:H films measured at 220 K, following 

annealing of as-received samples for 30 min. at the temperatures indicated. 

 

DOS with increasing anneal temperature is evident. In figure 5 we compare the deep defect density (at 

0.5 eV) with the ESR spin density (NS) data from figure 1. While the data are quite noisy, which may 

reflect the uncertainties introduced when matching the DOS sections obtained at different 

temperatures, the relationship is reasonably linear. A similar correlation has been reported previously 

for the CPM ‘defect shoulder’ vs. spin density for a-Si:H films, although the situation is less clear for 

c-Si:H, with a correlation evident for low crystalline volume fraction films but no general trend for 

higher volume fractions [11]. Bronner et al [16] have found a systematic reduction in defect density on 

annealing c-Si:H films when measured using MPC, although samples could not be returned to their 

as-deposited condition. Our TPC results therefore largely support previous findings in the case of  

a-Si:H. Given the rather arbitrary scaling procedure for the TPC DOS, little significance should be 

attached to the absolute TPC DOS magnitudes. 

3.2. Conduction band tails 

Switching attention to the shallower states, steepening of the band tail slopes with progressive 

annealing steps is evident, most clearly for a-Si:H as shown in figure 3. Trends in the c-Si:H shallow  

states are less clear; the DOS sections obtained are noisier and overlap with temperature is poorer. An 
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Figure 3. DOS plots for e-irradiated a-Si:H sample, as received and following successive 30 

min. anneals. Dashed line is extrapolation to the conduction band edge (assumed 3×10
21

 units). 
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alternative measure of the band-tail DOS may be obtained using the force-fit approach defined by  

equation 2. Figure 6(a) indicates that for a-Si:H the short-time data at low temperatures (160 K data 

shown) does indeed follow a power law, and the band-tail slopes extracted by this method are plotted 

in figure 6(b). This confirms the trend evident in the spectroscopic data, and further reveals that the 

reduction in band-tail slope occurs predominantly after annealing at 120C with a more gradual 

reduction between 120 C and 180 C.  

Apparent inconsistencies in overlap between sections of the DOS in the region of the band tails 

evident in figure 3 are known to be due to resolution limitations in the MPC DOS method [24]. This 

becomes more apparent as annealing proceeds and the band tail becomes steeper, where it is only 

properly resolved below 220 K. The ‘envelope’ curve formed by the overlapping sections is however, 

reliable. A general comparison between a-Si:H and c-Si:H in figures 3 and 4 shows that the band tail 

slope in the former case is somewhat steeper, in keeping with previous reports [28, 29].  

Quantitative changes in CB tail states in a-Si:H following e-irradiation do not appear to have 

previously been reported explicitly in the literature. There have however been reports of changes in 

band tail state densities or slopes in a-Si:H following light soaking. Longeaud et al [30] and Roy et al 
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Figure 5. Correlation between relative TPC DOS at 0.5 eV 

and spin density NS for a-Si:H and µc-Si:H samples. Lines 
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Figure 4. DOS plots for e-irradiated µc-Si:H sample, as received and following 

successive 30 min. anneals. Dashed line is extrapolation to the band edge (assumed 

3×10
21

 units). 
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[31] carried out MPC measurements following increasing periods of light illumination, and found that 

above a certain exposure threshold, increased densities of CB tail states were created. However, in 

contrast to our results, the changes they report in CB tail states created above the exposure threshold 

could not be annealed out.  

Band tails arise from intrinsic disorder in the amorphous structure, with distortions of the bond 

lengths and angles of tetrahedral coordination frozen-in as a consequence of the deposition process. 

The implication is therefore that in addition to creating a high density of DBs, electron irradiation 

introduces greater disorder, or modifies the existing disorder, in a manner which broadens the CB tail. 

3.3. Constant Photocurrent Method and Valence Band Tail 

TPC spectroscopy enables the DOS of unoccupied artifact states, above the Fermi level, to be 

examined. In order to probe occupied states in undoped a-Si:H, other techniques such as the constant-

photocurrent method (CPM), are required. The CPM optical absorption spectrum α(EP)  integrates 

transitions in which electrons in filled localised states absorb the photon energy EP and enter transport 

states above the CB mobility edge EC. The term dα/dEP is thus proportional to the DOS at (EC – EP) 

[32].  Other transitions are also possible, but probably contribute little here. We have used CPM data 

from a previous publication [12] to construct and examine the DOS below EF in a-Si:H, as shown in 

figure 7(a). While the data are somewhat noisy due to numerical differentiation, the trends exhibited 

are sufficiently clear. As reported earlier, the density of deep states is increased by e- irradiation, and 

reduced by isochronal annealing. However these data also reveal systematic changes in the VB tail 

slope, plotted vs. annealing temperature in figure 7(b). The trend is quite similar to that observed in the 

TPC data plotted in figure 6(b), with a clear reduction in band tail slope occurring after anneals at 

80C and 120C. The peak apparent in figure 7(a) above 1.6 eV is an artifact of strong optical 

absorption in the film (αt > 1 invalidates the CPM assumptions).  

3.4. Band tails, e-irradiation and Disorder 

While an association between exponential band tails and disorder in bond lengths and angles in silicon 

thin films has long been accepted, understanding of the detailed linkage on an atomic scale is still 

developing. Computer modelling studies of amorphous silicon systems [33, 34] suggest that while tail 

states arise from a large number of atoms in the ensemble, there is a statistical (but not necessarily 

causal) association between short bonds and CB tail states, and long bonds and VB tail states. 

 For example Koch et al [35] demonstrate a clear correlation between increasing deposition 

temperature between 50C and 150C, and decreasing EU. It is also known that film stress [36] and 

short  and  medium-range  order [37],  both  linked  to  atomic structure,  are  dependent  on  growth 
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conditions. Danesh et al [38] observed a correlation between EU and the TO phonon frequency TO 

obtained from Raman spectroscopy, and found a systematic reduction in EU with increasing TO which 

supports a linkage between steepening band tails and increased structural order. 

 There are reports of changes in structural order [39] and increases in volume [40] following light-

soaking of a-Si:H samples, associated with structural changes in the lattice. In common with the SWE, 

and with e-irradiation induced changes in optical and electronic properties, these mechanical changes 

are also metastable, and samples may be thermally annealed back to, or close to, the as-deposited state. 

 The implication is therefore that e-irradiation results in reduced structural order, and further, that 

subsequent thermal annealing may improve or even restore the original degree of order to a-Si:H 

films. We have not yet carried out structure-sensitive measurements such as Raman spectroscopy or x-

ray diffraction on e-irradiated samples. However, Köhler et al [41] have done so in the case of strongly 

light-soaked samples, which suggest changes in TO tantalisingly close to the resolution limit. One 

may surmise that the e-irradiation regime used here is more aggressive than extensive light-soaking, 

given that up to 2 orders of magnitude more dangling-bond defects are created. These key experiments 

linking structural order and transport properties remain to be carried out. 

3.5. Computer modelling of a-Si:H solar cells 

Computer modelling enables material parameters to be incorporated into device structures and 

simulated to see if they might account for observed device behaviour. The ‘inner workings’ of the 

device are exposed, and may be used for more detailed analysis and to make informed suggestions for 

improvement. Modelling is thus a powerful tool in ‘closing the loop’ on structure-property 

relationships and performance optimisation. We modelled the a-Si:H device structure using SC-Simul 

[26, 27], and incorporated a range of defect densities and band tail slopes suggested by the above 

experiments to see if test results on e-irradiated cells can be reproduced. Material and device 

parameters are the default values used by SC-Simul except where otherwise stated. Summaries are 

given in figures 8 and 9. The experimental solar cell data is that presented in Astakhov et al [9].  

 The simulations in figure 8 were performed with band tail slopes of 25 meV (CB) and 50 meV 

(VB) to represent a ‘typical’ device, in which only the deep defect density is varied. It can be seen that 

the experimental data are reasonably well reproduced over a wide range of defect densities for both 

0.3 m and 1 m absorber layers. The main discrepancy is with the value of VOC, which is too low in 

the simulation. This may be due to a need to adjust the p- and n-layer simulation parameters, as the 

default settings were used here. The abrupt fall in VOC for NS > 10
17

 cm
-3

 is also not reproduced, and 

remains a topic for future investigation. 

 The simulations in figure 9 represent our first attempt at modelling the effects of degradation of the 
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Figure 8. Effect of e-irradiation and subsequent annealing on PV parameters: (a) VOC, (b) JSC, (c) 

FF, (d) efficiency, measured for a-Si:H solar cells, with i-layer thicknesses of 0.3 µm and 1 µm. Lines 

are computer simulations obtained by changing defect density in line with experimental spin density. 

 

band tails due to e-irradiation. The defect density is varied across a series of curves for band tail slopes 

encompassing those measured experimentally. Device performance is found from these simulations to 

be quite insensitive to the CB tail slope; and not much happens until it approaches the value of the VB 

tail slope. Thus what is shown in figure 9 is largely due to changes in VB tail slope. For an i-layer 

thickness of 0.3 m, efficiency for ND < 310
16

 cm
-3

 varies gradually with kTV and roughly halves 

between 40 meV and 70 meV. For ND > 10
17

 cm
-3

 the curves coalesce, becoming independent of tail 

slope. For an i-layer thickness of 1 m, behaviour is more complex for ND > 10
17

 cm
-3

, with broader 

band tails predicted to actually increase efficiency. This may be due to a redistribution of charge 

between defects and tail states, which improves the electric field profile at some critical point in the 

device. This rather counter-intuitive result requires more detailed analysis of the model predictions. 

 Experimentally, we have no means of independently changing the band tail slopes by e-irradiation 

without simultaneously affecting the deep defect density, and indeed the two may be fundamentally 

inseparable [34]. According to the simulations, ND needs to be below 10
16

 cm
-3

 to reliably distinguish 

the influence of the band tails on cell performance. This may be the case in modern device-quality 

material, as discussed by Liang et al [42] from a different perspective. 
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Figure 9. Simulated PV efficiency vs. defect density ND for a range of band tail 

slopes, for i-layer thicknesses of (a) 0.3 µm, (b) 1 µm.  

 

4. Conclusions 

Hydrogenated amorphous and microcrystalline silicon thin films irradiated with 10
17

 electrons cm
-2

 

contain a density of dangling-bond defects approaching 10
18

 cm
-3

. These films have been investigated 

using the transient photocurrent method to measure the density of localised states above the Fermi 

level vs. energy depth. It is found that the deep DOS detected by TPC increases in keeping with the 

spin density following e-irradiation, and decreases in a similar way after isochronal thermal annealing 
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at progressively increasing temperatures. We have also observed changes in the conduction band-tail 

slope, which reaches a maximum value after e-irradiation of some 36 meV, compared with typically 

20 to 22 meV in as-deposited samples. e-irradiated samples may be returned close to the as-deposited 

state following annealing at 180C for 30 mins. The behaviour of the Urbach tail following e-

irradiation has been reviewed, and evidence for proportionate changes in valence band tail slope is 

present. This reaches a value of some 70 meV after e-irradiation, and returns to the as-prepared value 

of 45 meV when fully annealed. The greatest reduction in slope occurs in both cases after annealing at 

around 120C. Since band tail slopes are thought to be associated with the degree of disorder, we 

suggest that the doses of e-irradiation used here may be sufficient to bring about metastable changes in 

structural order in the amorphous ‘lattice’. As the band-tail effects anneal in a way which mirrors that 

of deep defects, it is suggested that both may be linked by the action of mobile hydrogen in relieving 

strain in the structure, as a by-product of passivating dangling bonds. Since such high defect densities 

(and by inference, degree of disorder) cannot readily be generated by light-soaking these effects 

appear not to have been observed, or at least reported, previously. Natural variations in ‘intrinsic’ 

disorder, typically introduced by varying the material preparation conditions, can be correlated with 

the TO phonon peak in the Raman spectrum. However, detecting any additional disorder caused by 

light-soaking appears to be at the limit of such measurements. Because e-irradiation gives rise to one 

to two orders of magnitude more dangling bonds than standard light-soaking regimes, it seems 

possible that the hydrogen passivation of this larger density of metastable defects may be sufficient to 

enable a more definite connection between structural order and transport properties to be made in 

future. 
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