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Abstract

Pattern formation in self-organised biological aggregation is a phenomenon that has been
studied intensively over the past twenty years. In general, the studies on pattern forma-
tion focus mainly on identifying the biological mechanisms that generate these patterns.
However, identifying the mathematical mechanisms behind these patterns is equally impor-
tant, since it can offer information on the biological parameters that could contribute to the
persistence of some patterns and the disappearance of other patterns. Also, it can offer in-
formation on the mechanisms that trigger transitions between different patterns (associated
with different group behaviours). In this article, we focus on a class of nonlocal hyperbolic
models for self-organised aggregations, and show that these models are O(2)-equivariant. We
then use group-theoretic methods, linear analysis, weakly nonlinear analysis and numerical
simulations to investigate the large variety of patterns that arise through O(2)-symmetric
codimension-two bifurcations (i.e., Hopf/Hopf, Steady-state/Hopf and Steady-state/Steady-
state mode interactions). We classify the bifurcating solutions according to their isotropy
types (subgroups) and we determine the criticality and stability of primary branches of so-
lutions. We show numerically the existence of these solutions and determine scenarios of
secondary bifurcations. Also, we discuss the secondary bifurcating solutions from the bio-
logical perspective of transitions between different group behaviours.
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1 Introduction

Collective dynamics of self-organised aggregations is an area that has been investigated inten-
sively over the past twenty years. The great interest in these aggregations is generated by
the multitude of complex spatial and spatiotemporal patterns exhibited by them: from trav-
elling or rotating schools of fish [43, 42], to rippling waves of Myxobacteria [29], zigzagging
flocks of birds [41, 40] or various stationary aggregations. To investigate the biological mech-
anisms necessary for the formation and persistence of these patterns, a wide range of mathe-
matical models (both individual-based models and continuum models – parabolic, hyperbolic
and kinetic) have been proposed. These mathematical models are used to suggest plausible
biological mechanisms regarding the interactions at the micro-scale level (e.g., changes in in-
dividuals’ speed or turning, or changes of inter-individual social interaction ranges) that could
explain the observed macro-scale level dynamics (e.g., the shape, size and dynamics of the
group)[10, 21, 20, 24, 29, 23, 28, 4, 47, 2, 8, 34, 38, 39]. Generally, these models either (i) focus
on numerical simulations with the purpose of comparing the simulated aggregation patterns
with the available data (and thus ascertain the correctness of the micro-scale level assumptions
incorporated into the models), or (ii) focus on the analytical results, e.g., show the existence of
particular solutions exhibited by these models, or try to connect biological interactions at the
micro-scale and macro-scale levels [12]. The first approach can be found mainly in individual-
based models, for which studies into the mathematical mechanisms behind the patterns are still
a difficult task. The second approach can be found in continuum models, for which numerical
simulations can sometimes become too complicated (see the review in [12]). There are, however,
models that combine analytical results with numerical simulations. For example Fetecau and
Eftimie[16] showed that discontinuous kernels could cause gradient blow-up patterns. Focusing
on milling patterns (i.e., rotating groups of individuals), Chuang et al. [9] have shown that the
hydrodynamics framework can support these patterns, but it cannot support the double milling
patterns (groups formed if individuals rotate in both directions), due to velocity averaging inside
a mesh cell.

In general, these models for self-organised aggregations (either individual-based or continuum
models) exhibit only a few types of patterns: stationary pulses (resting aggregations)[45], trav-
elling pulses (migrating aggregations)[36] or tori (rotating aggregations)[44]. Moreover, these
models usually associate specific patterns to specific parameter values, with eventual transitions
between patterns being correlated to changes in parameter values [10]. One type of models
that has been shown to exhibit a much larger variety of patterns was introduced in [14, 13].
There, the authors developed a class of nonlocal hyperbolic models for self-organised aggrega-
tions, which incorporate different ways individuals could interact with their neighbours based
on different communication mechanisms. Numerical investigations of these models have shown
that they can exhibit various spatial and spatio-temporal patterns: from classical stationary and
travelling waves, to travelling trains and quasi periodic solutions, and even more exotic patterns
(such as ripples and feather-like patterns) [13]. The bifurcation of some of the simpler patterns,
namely travelling trains and stationary pulses, has been investigated in [15] for one particular
communication sub-model (called M2) via weakly nonlinear analysis. In particular, it was shown
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that these two patterns arise through subcritical Hopf and Steady-state (codimension-1) bifurca-
tions, suggesting that the persistence of these patterns requires a density threshold mechanisms
(i.e., groups that have a population density higher than a certain threshold – which depends on
some bifurcation parameter – will persist for very long term, while groups that have a population
density lower than this threshold will disperse). This mechanism has actually been observed in
nature (e.g., in ants [3] and locusts [6]).

The goal of this article is to focus on the class of nonlocal hyperbolic models introduced in
[14, 13], and to investigate the role of model symmetries on the formation of various patterns.
Mathematically, the occurrence of symmetry in differential equations leads to many interesting
consequences, such as multiple bifurcating branches at a bifurcating point and enable a clas-
sification of solutions using their symmetry group. Biologically, understanding and classifying
the bifurcation dynamics of the observed patterns allows us to understand the transitions be-
tween different patterns (i.e., between different group behaviours). In particular, if multiple
bifurcating branches (which are usually associated with different behaviours/patterns) exist for
similar parameter values, it could suggest that transitions between patterns might not always be
associated with changes in parameter values (i.e., such transitions could be intrinsic to the mod-
els, being associated with secondary or tertiary bifurcations from unstable patterns [7]). Also,
understanding the bifurcation dynamics of the model allows us to understand how asymmetries
in the interactions between individuals (e.g., asymmetric communication) could influence the
patterns observed at the group level. This aspect is related to the symmetry-breaking process,
and it is known to correlate to increased complexity in biological systems [32].

The main contributions of this paper are the following. We begin by showing that all
communication-based sub-models from [13] defined on a finite domain [0,L] with periodic bound-
ary conditions are invariant with respect to the symmetry group O(2). Using this symmetry
perspective, we then discuss steady-state solutions and their symmetry properties. We focus on
the O(2)-symmetric steady-states and investigate the linearization using group-theoretic meth-
ods as outlined in [19, 18]. In particular, symmetry enables one to decompose the tangent
space at steady-state solutions into symmetry-invariant subspaces (i.e., the isotypic decompo-
sition). The existence of so many patterns in the nonlocal hyperbolic models introduced in
[13], raises the question of possible codimension-two bifurcations. Therefore, we consider one
particular sub-model (model M4 in [13]) and show that it can display Steady-state/Steady-state
(SS/SS), Steady-state/Hopf (SS/H) and Hopf/Hopf (H/H) codimension-two bifurcations with
O(2) symmetry. In a recent paper [7], we partially investigated the patterns emerging near the
H/H bifurcation via weakly-nonlinear analysis [7]. In this paper, we focus mainly on the SS/H
and SS/SS codimension-two bifurcations for which we classify the eigenfunction patterns that
arise near these codimension-two bifurcations. The contour plots of the eigenfunctions associ-
ated with various isotropy types (subgroups) at bifurcation gives an approximation of the main
patterns emerging from the SS/H bifurcation point. This is particularly useful as a tool to dis-
tinguish between patterns obtained by numerically solving the full model. For a different class
of models (describing Taylor-Couette flows) Hill and Stewart [25] studied the O(2)-symmetric
SS/H mode interactions: they determined the normal form equations (after centre manifold
or Lyapunov-Schmidt reduction), obtained branching equations and then computed the eigen-
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values of the bifurcating branches (to investigate the stability of these branches). Here, we
follow their approach to investigate the neighborhood of the SS/H point. In particular, we show
that the amplitude equations to third order derived via a rigorous weakly nonlinear analysis
are O(2)-equivariant and identical to the third order truncation of the normal form equations
from [25]. We determine primary bifurcating branches (stationary pulse, rotating waves and
standing waves) and their stability and discuss scenarios for secondary bifurcations. Finally, we
discuss the stability of bifurcating branches and the existence of secondary bifurcations from a
biological perspective.

In Section 2 we present the model and the symmetry properties. This section also contains a
discussion of the steady-states. In Section 3 we show a detailed analysis of the linearization near
the O(2)-symmetric steady-state using group-theoretic methods. Codimension-two bifurcation
points are discussed in Section 4. In this section we also describe the linear eigenfunctions
at bifurcations, plot them and compare with numerical simulations. Section 5 presents the
bifurcation results from the weakly-nonlinear analysis and we discuss secondary bifurcation
scenarios. The paper concludes with a discussion section, which includes also a description of
future research problems.

2 The model

The following 1D model of hyperbolic partial differential equations describes the evolution of
densities of right-moving (u+) and left-moving (u−) individuals, which travel with constant
velocity γ and change their movement direction from right to left (with rate λ+) and from left
to right (with rate λ−) [13]:

∂tu
+(x, t) + ∂x(γu

+(x, t)) = −λ+[u+, u−]u+(x, t) + λ−[u+, u−]u−(x, t), (1a)

∂tu
−(x, t)− ∂x(γu

−(x, t)) = λ+[u+, u−]u+(x, t)− λ−[u+, u−]u−(x, t), (1b)

u±(x, 0) = u±0 (x). (1c)

The density-dependent turning rates λ± describe the social response of an individual to the
signals received from its neighbours. This social response can be: attraction towards individuals
further away (y±a ), repulsion from nearby neighbours (y±r ) or alignment with neighbours at
intermediate distances (y±al):

λ±[u+, u−] = λ1 + λ2f(y
±
r [u

+, u−]− y±a [u
+, u−] + y±al[u

+, u−]), (2)

=
(
λ1 + λ2f(0)

)
+ λ2

(
f(y±r − y±a + y±al)− f(0)

)
. (3)

The terms λ1 + λ2f(0) and λ2
(
f(y±) − f(0)

)
describe the baseline random turning rate and

the bias turning rate, respectively. These assumptions of a random and a bias turning rates
are biologically realistic, since, as noted by Lotka [33], “the type of motion presented by living
organisms ... can be regarded as containing both a systematically directed and also a random
element”. When f(0) ≪ 1, we can approximate the random turning by λ1 and the bias turning
by λ2f(y

±). For biological realism, we consider f to be a positive, increasing and bounded
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function that depends on the attractive/repulsive/alignment social interactions mentioned pre-
viously. (An example of such function is f(y) = 0.5 + 0.5 tanh(y) [13].) Since attraction and
repulsion have opposite effects, note that they enter equation (3) with different signs. Eftimie et
al. [13] pointed out that whether individuals turn away or towards their neighbours depends on
whether they can perceive these neighbours. Therefore, function f should contain mechanisms
through which individuals can emit/perceive signals to/from their neighbours. To address this
issue, Eftimie et al. [13] defined the attractive, repulsive and alignment interactions in terms of
the possible communication mechanisms among group members. This lead to the derivation of
five possible models, labelled M1 to M5, each describing a particular interaction (via a commu-
nication mechanism) between individuals (see Table 1). These interactions depend on whether
a reference individual perceives its neighbours (positioned ahead or behind it) moving in the
same or opposite direction. A detailed description of models M1-M5 can be found in [13].

Table 1: Nonlocal social interaction terms (y±
j , j ∈ {a, al, r}) introduced in [13]. Constants qa, qal, qr describe

the magnitudes of the attractive, alignment and repulsive interactions, respectively. Kernels Ka,al,r(s) describe
the spatial ranges for each of these social interactions. Note that u = u+ + u−.

Communication Interaction terms: attraction (y±a ), repulsion (y±r ), alignment (y±al)

models

M1 y±a,r = qr,a
∫∞
0 Ka,r(s)

(
u(x± s)− u(x∓ s)

)
ds

y±al = qal
∫∞
0 Kal(s)

(
u∓(x± s)− u±(x∓ s)

)
ds

M2 y±a,r = qr,a
∫∞
0 Ka,r(s)

(
u(x± s)− u(x∓ s)

)
ds

y±al = qal
∫∞
0 Kal(s)

(
u∓(x∓ s) + u∓(x± s)− u±(x∓ s)− u±(x± s)

)
ds

M3 y±r,a = qr,a
∫∞
0 Kr,a(s)u(x± s)ds

y±al = qal
∫∞
0 Kal(s) (u

∓(x± s)− u±(x± s)) ds

M4 y±r,a = qr,a
∫∞
0 Kr,a(s) (u

∓(x± s)− u±(x∓ s)) ds

y±al = qal
∫∞
0 Kal(s) (u

∓(x± s)− u±(x∓ s)) ds

M5 y±a,r = qr,a
∫∞
0 Ka,r(s)u

∓(x± s)ds

y±al = qal
∫∞
0 Kal(s)u

∓(x± s)ds

Parameters qj , j = r, a, al, that appear in front of the integrals in Table 1, describe the
magnitude of the repulsive (r), attractive (a) and alignment (al) interactions. Kernels Kr,a,al

indicate whether the interactions take place inside the repulsion range (Kr), attraction range
(Ka) or alignment range (Kal). Although these kernels can be described by a variety of con-
tinuous and discontinuous functions [12], in this article we consider only translated Gaussian
kernels:
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Kj(s) =
1

2πm2
j

e−(s−sj)2/(2m2
j ), with j = r, a, al, and mj = sj/8. (4)

Here, sj , j = r, a, al describe the length of interaction ranges. The description of model (1) is
completed by imposing periodic boundary conditions on a finite domain of length L: u±(0, t) =
u±(L, t). These conditions approximate the motion of organisms on an infinite domain. Note
that this type of boundary conditions has an impact on the symmetries of the system, as we
show below. A more detailed description of model (1) with all its sub-models can be found in
[13].

For the bifurcation analysis in this paper, we focus on one particular mechanism (model
M4 in [13] and Table 1), where the turning behaviour of an individual is influenced only by
the information it receives from neighbours facing towards it (see Figure 1). More precisely,
we assume that a reference individual at position x changes its moving direction only upon
interaction with neighbours at x+ s moving left towards it (i.e, u−(x+ s) neighbours) and with
neighbours at x− s moving right towards it (i.e., u+(x− s) neighbours). We assume here that
individuals moving away from the reference individual cannot be perceived. This assumption
can describe, for example, communication through directional sound signals, as observed in
some species of birds [5, 48]. To decide its movement direction, the individual at x weighs the
information received from all neighbours ahead and behind it within an interaction range, i.e.,∫∞
0 Kj(s)(u

∓(x± s)−u±(x∓ s))ds (see also Table 1). If this integral is positive, the interaction
term y±j is positive, and thus the turning rate increases. Otherwise, the turning rate is close to
zero, and the individual keeps moving in the same direction.

To simplify our analysis, throughout most of this paper we ignore the alignment interactions
(i.e., qal = 0). We only look at the case with qal > 0 when investigating the Steady-state/Steady-
state mode interactions in Section 4. This assumption of zero alignment reduces the applicability
of model (1) to biological aggregations where organisms interact only via attractive and repulsive
interactions (e.g., swarms of insects).

2.1 O(2)-symmetry of the models

In this section, we show that all five models M1-M5 in Table 1 areO(2)-invariant. Let Tz : R → R
be the translation operator by z ∈ R: Tz(x) = x + z. Then the group of all translations Tz is
isomorphic to R. This operator acts on functions u via the domain of u:

(Tz.u)(x) := u(T−z(x)) = u(x− z). (5)

We begin the discussion of the symmetries of model (1) by noting that λ± are Tz-invariant
because the integrals in Table 1 are translation invariant. Rewriting system (1) as

∂tu
+(x, t) = −λ+u+(x, t) + λ−u−(x, t)− ∂x(γu

+(x, t)) = F1(u
+, u−),

∂tu
−(x, t) = λ+u+(x, t)− λ−u−(x, t) + ∂x(γu

−(x, t)) = F2(u
+, u−),

and considering the Tz-invariance of λ± and the translation invariance of ∂x, we obtain

Fi(Tz.(u
+, u−), t) = Tz.Fi(u

+, u−, t), i = 1, 2.
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x x+sx−sx+sx−s

λ λ
(a) (b)

x

u+
u

+

Figure 1: The behaviour of a reference individual positioned at x upon interaction with its neighbours positioned
at x+ s and x− s. Here s can be inside the repulsion/alignment/attraction ranges – depending on the interaction
kernel Kj(s), j = r, al, a, used to describe the nonlocal interactions (see also Table 1). (a) A right-moving
individual (u+); (b) A left-moving individual (u−). The reference individual at x will change its direction of
movement (with rate λ±) only after receiving information from those neighbours moving towards it.

Hence, equation (1) is Tz-equivariant. Because of the periodic boundary conditions imposed
on (1) on the interval [0, L], the action of the translation group on solutions (u+, u−) of (1) is
isomorphic to R/LZ ≃ SO(2) and we use θ ∈ [0, L] to parametrize SO(2). We now introduce
the following Z2 action on pairs of functions (u+, u−):

κ.(u+(x), u−(x)) = (u−(L− x), u+(L− x)). (6)

Concretely, the κ action sends right moving individuals at x to left moving individuals at L− x
and vice-versa. Naturally, the turning rate attached to u+ at x becomes the turning rate of u−

at L−x via κ, that is: κ.λ+(x) = λ−(L−x). This can be verified algebraically by looking at the
expressions for the repulsion, attraction and alignment formulae. Consider for instance the M4
model (see Table 1). The terms describing the social interactions for a right-moving individual
(+) are transformed as follows under the action of κ:

κ.y+j (x) = qj
∫∞
0 Kj(s)(u

+(L− (x+ s))− u−(L− (x− s))) ds

= qj
∫∞
0 Kj(s)(u

+(L− x− s))− u−(L− x+ s))) ds = y−j (L− x),

(7)

for j = r, a, al. We remark here that all other communication models shown in Table 1 have the
same property because in all cases, as u+ is changed for u−, x+ s goes to x− s and vice-versa.

Finally, it is easy to check that Tθ ◦ κ = κ ◦ T−θ. Thus, O(2) ≃ SO(2) o Z2(κ) acts on
(u+(x), u−(x)). The O(2)-invariance of (1) is verified by showing that if (u+(x), u−(x)) is a
solution, then κ.(u+(x), u−(x)) is also a solution. We can rewrite system (1) as

±u±t − γu±x = −λ+(x)u+ + λ−u− = F1(u
+, u−).

Then, substituting (u+(x, t), u−(x, t)) → (u−(L− x, t), u+(L− x, t)) we obtain

±u∓t (L− x, t)− γu∓x (L− x, t) = F1(u
−(L− x, t), u+(L− x, t)),

−(±u±t (L− x, t) + γu∓x (L− x, t)) = −F1(u
+(L− x, t), u−(L− x, t)),
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where, since κ.λ+(x) = λ−(L− x), we have

F1(u
−(L− x, t), u+(L− x, t)) = −F1(u

+(L− x, t), u−(L− x, t)).

This result is summarized in the following statement:

Proposition 2.1 The five systems of partial differential equations (1) labelled M1 to M5, defined
on [0, L] with periodic boundary conditions u±(0, t) = u±(L, t) are O(2)-invariant, where O(2)
acts on solutions of (1) via (5) and (6).

We begin our analysis of system (1) with a brief look at the steady-state solutions.

2.2 Steady-states

The steady-states of the model are obtained by setting the time derivatives ∂tu
± = 0 in (1). For

the remainder of this section, we drop the time dependence of u±. As shown in Eftimie [11], the
steady-state solutions must satisfy

γ∂xu
+(x) = −λ+u+(x) + λ−u−(x),

−γ∂xu−(x) = λ+u+(x)− λ−u−(x).

Since the equations for u+ and u− are now equal, it implies that ∂xu
+(x) = ∂xu

−(x). Therefore,
all steady-states must satisfy

u−(x) = u+(x) + C, (8)

where C is some arbitrary constant. Note that if u−(x0) = u+(x0) for some x0 ∈ [0, L], then
C = 0. The case where equation (1) is defined on R is briefly discussed in [11] where it is shown
that if u+(±∞) = u−(±∞) = 0 then C = 0.

In our context, we impose the boundary conditions u±(0) = u±(L) which implies the O(2)
symmetry of the model. To classify the solutions with respect to their symmetry groups, we
define isotropy subgroups and fixed-point subspaces as follows. Consider the action of a group
Γ on a vector space V . The isotropy subgroup of the point v ∈ V is

Γv := {ρ ∈ Γ | ρ.v = v}.

Let Σ1 and Σ2 be two subgroups. Σ1 and Σ2 are conjugate in Γ if there exists γ ∈ Γ such that
γ−1Σ1γ = Σ2. The conjugacy class of Γv consists of all isotropy subgroups conjugate to Γv, and
it is called the isotropy type. In particular, if v1, v2 ∈ V are on the same group orbit (v1 = γv2
for some γ ∈ Γ) then v1 and v2 have the same isotropy type. It is common [19, 18] to keep using
isotropy subgroup rather than the more accurate isotropy type when discussing the classification
of solutions with respect to symmetry, but one must always keep in mind that the results are
valid for the whole group orbit.

For an isotropy subgroup Σ ⊂ Γ, the fixed point subspace of Σ is

Fix(Σ) = {v ∈ V | σ.v = v, for all σ ∈ Σ}.

We have the following result.
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Theorem 2.2 If (u+(x), u−(x)) is a steady-state solution of (1) with isotropy subgroup Σ and
(θ, κ) ∈ Σ for some θ ∈ [0, L], then u+(x) = u−(x).

Proof: Consider a steady-state solution (u+(x), u−(x)) of (1), which satisfies equation (8).
Without loss of generality we can assume that (u+(x), u−(x)) is κ-symmetric. Then,

κ.(u+(x), u−(x)) = (u−(L− x), u+(L− x)) = (u+(x), u−(x)).

This means that u∓(L−x) = u±(x). In particular set x = L/2, from which we have u−(L/2) =
u+(L/2). Substituting these values of u±(L/2) into equation (8) forces C = 0 (with C the
arbitrary constant in (8)). Therefore u+(x) = u−(x) on [0, L].

In general, the steady-states are solutions to the boundary value problem

γ∂xu(x) =
(
− λ+[u] + λ−[u]

)
u(x) + λ−[u]C, u(0) = u(L). (9)

Equation (9) is an advanced-retarded distributed functional differential equation, or a mixed-
type distributed functional differential equation. After simplifying the terms in the parenthesis,
one obtains

γ∂xu(x) = −0.5λ2
(
tanh(y+r − y+a + y+al)− tanh(y−r − y−a + y−al)

)
u(x) + λ−[u]C.

with boundary conditions u(0) = u(L). An interesting family of non-homogeneous steady-state
solutions of (1) are the Dn-symmetric spatially periodic patterns. These can be obtained from
symmetry-breaking steady-state bifurcation from anO(2) symmetric equilibrium of (1) as shown
below.

Another way of studying theseDn-symmetric patterns would be via Hopf bifurcation directly
from (9). Recent results about Hopf bifurcation in mixed-type functional differential equations
have been obtained by Hupkes and Verduyn-Lunel [27] for fixed shift using centre manifold
reduction and by Guo [22] in the fixed shift equivariant case using Lyapunov-Schmidt reduction.
Note that (9) has distributed shifts and so the results in [22] would need to be generalized to
this case.

We now focus on the case of homogeneous solutions, u+(x) = u∗+ and u−(x) = u∗− where u∗+
and u∗− are constants and u∗+ + u∗− = A, where the total population density A = 1

L

∫ L
0 (u+(x) +

u−(x))dx is fixed. Because the kernels are given by Gaussian functions and u∓ − u± = ∓C, a
simple calculation shows that the terms λ+ and λ− have constant values. Thus, homogeneous
steady-state solutions are solutions of the algebraic equation

0 = −λ+u∗+ + λ−(A− u∗+).

It is shown in [14, 13] that model (1) can have up to five spatially homogeneous steady states of
the form: (u+, u−) = (u∗, A− u∗) or (u+, u−) = (A− u∗, u∗) (throughout this article we assume
A = 2). The steady state (u+, u−) = (A/2, A/2) exists for all parameter values, and is left fixed
by (5) and (6). In fact, all elements of Fix(O(2)) are of the form (A/2, A/2) for some A ≥ 0.
Moreover, κ.(u∗, A−u∗) = (A−u∗, u∗) and so these equilibria are on the same group orbit. The
steady-states of the form (u∗, A − u∗) are fixed by any translation (5), and therefore have the
isotropy subgroup SO(2).
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Remark 2.3 The existence of the four states with u± ̸= A/2 depends on particular parameter
values (see Figure 2 for model M4). Since these steady states are not all unstable at the same
time [14], it is possible that a solution that starts near an unstable state eventually approaches
a stable spatially homogeneous state. We return to this aspect in Section 4.2 in the context of
numerical simulations of patterns near codimension-two points.

(a)

3

u1*

*u5

u*5

3u* u*

1u*

u4*

2u*

(b)

Figure 2: Spatially homogeneous steady states exhibited by equation (1) corresponding to model M4, for different
values of λ2. (a) For λ2 = 0.9, there are five steady states. (b) For λ2 = 4.5, there are three steady states. The
other parameter values are λ1 = 0.2, A = 2.0, γ = 0.1, qa = 2.0, qr = 2.0.

3 The Linear Operator

The focus in this paper is on the bifurcations of heterogeneous patterns from an homogeneous
steady-state (A/2, A/2) with isotropy subgroup O(2). The results in the previous sections are
valid for all sub-models M1-M5 described in Table 1. Now, we restrict our analysis to model
M4 which, as it is shown in the next sections, can display all three types of codimension-two
bifurcations with O(2) symmetry (i.e., Hopf/Hopf, Steady-state/Hopf, Steady-state/Steady-
state). We note that it is possible that other sub-models could also exhibit these bifurcations.
However, it is not the goal of this article to investigate all codimension-two bifurcations in all
sub models M1-M5. Rather, it is to show the reader that such bifurcations can exist in one
single model.

3.1 Model M4: computing the linear term L
To linearise equations (1), consider small perturbations of the spatially homogeneous steady
states u∗ = A/2: u± = u∗ + u±1 , with u±1 ≪ 1. Substituting these values into equations (1),
expanding λ±[u∗+u+1 , u

∗+u−] in Taylor series (i.e., λ± ≈ λ1+λ2[f(0)+f
′(0)(y±r −y±a )]+ · · · ),

neglecting the nonlinear terms and finally introducing the notations L1 = λ1 + λ2f(0), R1 =
λ2f

′(0) and K(s) := qrKr(s)− qaKa(s) + qalKal(s), leads to the following linearised model M4:
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∂tu
+
1 + ∂x(γu

+
1 ) = −L1(u

+
1 − u−1 )−R1u

∗
∫ ∞

0

K(s)(u−1 (x+ s)− u+1 (x− s)− u+1 (x− s) + u−1 (x+ s)) ds,

(10a)

∂tu
−
1 − ∂x(γu

−
1 ) = L1(u

+
1 − u−1 ) +R1u

∗
∫ ∞

0

K(s)(u−1 (x+ s)− u+1 (x− s)− u+1 (x− s) + u−1 (x+ s)) ds.

(10b)

To simplify these equations, let us define K+ ∗ v :=
∫∞
0 K(s)v(x + s) ds and K− ∗ v :=∫∞

0 K(s)v(x − s) ds. The linear operator L associated with system (10) can be rewritten as
L = L0− γLd, where Ld is the differential operator Ld(u+1 , u

−
1 )

T = diag(∂x,−∂x)(u+1 , u
−
1 )

T , and

L0

(
u+1
u−1

)
=

(
−L1 +R2K

− ∗ · L1 −R2K
+ ∗ ·

L1 −R2K
− ∗ · −L1 +R2K

+ ∗ ·

)(
u+1
u−1

)
, (11)

with R2 = 2R1u
∗. Consider now the linearized system (10) written as an abstract differential

equation
∂tu = L(u, µ), (12)

with µ a vector of parameters. Because L0 is a bounded operator on Lp([0, L],R2), using a result
from Hillen [26] (Theorem 3.4), it can be shown that the linear operator L with domain

X := {u = (u+, u−) ∈W 1,p([0, L],R2) | u±(0) = u±(L0)}

generates a strongly continuous semigroup on Lp([0, L],R2). We now use X as the phase space
to (12). Since we consider an equilibrium with isotropy subgroup O(2), there is an action of
O(2) on X, given by (5) and (6). We can now write the isotypic decomposition of X. Let
kn = 2πn/L and we decompose u± using Fourier series

u±(x) = a±0 + a±1 e
ik1x + · · ·+ a±n e

iknx + · · ·+ c.c.

Here, a±n ∈ C and “c.c.” stands for “complex conjugates”.

Theorem 3.1 For all n ≥ 1, the subspaces

Xn =
{
aeiknx + c.c. | a = (a+, a−) ∈ C2

}
⊂ X.

are isomorphic to C2, O(2)-invariant, and can be decomposed as Xn = X1
n ⊕X2

n. This decom-
position is defined as follows. Given f1 = (1, 1)T and f2 = (1,−1)T , then

X1
n = {(v0eiknx + v0e

−iknx)f1 | v0 ∈ C} and X2
n = {(v1eiknx + v1e

−iknx)f2 | v1 ∈ C} (13)

are real two-dimensional O(2)-irreducible representations (written in complex notation). The
action (5) and (6) induces the following action on C2:

θ.(v0, v1) = (ekniθv0, e
kniθv1) and κ.(v0, v1) = (v0,−v1). (14)
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Proof: The subspaces

Vn =
{
zeiknx + c.c. | z ∈ C

}
are invariant with respect to the SO(2) action (5), since the translation x → x + θ acts on
elements of Vn as

zeiknx + c.c. → zeikn(x+θ) + c.c = (zeiknθ)eiknx + c.c. (15)

This induces the action z → eiknθz on C. Moreover, the κ-action (6) leaves Xn invariant:

κ.

(
a+

a−

)
eiknx + c.c. =

(
a−

a+

)
eikn(L−x) + c.c. =

(
a−

a+

)
eiknx + c.c..

Thus, Xn is O(2)-invariant, but it is not irreducible. It is straightforward to check that Xn

can be decomposed into a sum of isomorphic O(2) irreducible representations X1
n and X2

n given
by (13). Thus, Xn is parametrized by (v0, v1) ∈ C2, with the action given by (14).

The subspaces Xn are called isotypic components of the isotypic decomposition of X. By
the O(2)-equivariance of L, each Xn is L-invariant and one can restrict L along each isotypic
component Xn. We now obtain the decomposition of L along the isotypic decomposition Xn:
Ln := L|Xn . To compute Ln explicitly, we let K̂+(kn) :=

∫∞
0 K(s)eikns ds and so

K+ ∗ eiknx = K̂+(kn)e
iknx, K− ∗ eiknx = K̂+(kn)e

iknx,

K+ ∗ e−iknx = K̂+(kn)e
−iknx, K− ∗ e−iknx = K̂+(kn)e

−iknx.

We obtain

L(v0eiknxf1) =
(
R2(K̂+(kn)− K̂+(kn))− γikn

)
v0e

iknxf2,

L(v1eiknxf2) = −γiknv1eiknxf1 +
(
−2L1 +R2(K̂

+(kn) + K̂+(kn))
)
v1e

iknxf2.

Therefore, for a1, a2 ∈ C,

Ln

(
a1

a2

)
eiknx =

(
0 −iknγ

R2(K̂+(kn)− K̂+(kn))− iknγ −2L1 +R2(K̂
+(kn) + K̂+(kn))

)(
a1

a2

)
eiknx.

(16)

3.1.1 Critical eigenvalues of Ln and dispersion relations

The eigenvalues of Ln are

σ±(kn) = −(L1 −R2Re(K̂
+(kn)))±

√
(L1 −R2Re(K̂+(kn)))2 − (k2nγ

2 − 2R2knγIm(K̂+(kn))).
(17)
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Note that the matrix in (16) has an eigenvalue σ = 0 if R2(K̂+(kn)− K̂+(kn))− iknγ = 0.
The corresponding eigenspace is C{(1, 0)T }. For σ = iω, the non-trivial solution of(

iω iknγ

−R2(K̂+(kn)− K̂+(kn)) + iknγ iω + (2L1 −R2(K̂
+(kn) + K̂+(kn)))

)(
a1

a2

)
= 0

leads to ωa1 + knγa2 = 0, and so the eigenspace is C{(knγ,−ω)T }.
The linear analysis above is equivalent to computing the dispersion relation, which is obtained

by substituting
u+ = u∗ + a1e

σt+knxi, u− = u∗ + a2e
σt+knxi,

into ∂tu = Lu. After simplification, this can be rewritten as a matrix-vector product(
σ + iknγ + L1 −R2K̂+(kn) −L1 +R2K̂

+(kn)

−L1 +R2K̂+(kn) σ − kniγ + L1 −R2K̂
+(kn)

)(
a1

a2

)
= 0. (18)

The previous equation has a nonzero solution if the determinant of the matrix is zero, that is

σ2 + 2(L1 −R2Re(K̂
+(kn)))σ + (k2nγ

2 − 2knγR2Im(K̂+(kn))) = 0. (19)

Equation (19) is the dispersion relation. The roots of this equation (i.e., the eigenvalues) are
given by (17).

If one considers the total population density A as a parameter of the system, then this
parameter enters the eigenvalues through the term R2 = 2R1u

∗, where u∗ = A/2. The following
results investigate the stability of the spatially homogeneous equilibrium as R2 (and implicitly
A) is varied.

Proposition 3.2 Suppose that qr, qa and qal are fixed, and consider the parabola given by

Pn := Re(K̂+(kn))R
2
2 + (2knγIm(K̂+(kn))− 2L1Re(K̂

+(kn)))R2 + (L2
1 − k2nγ

2).

Then, the equilibrium with isotropy subgroup O(2) is asymptotically stable if and only if for all
n ∈ N, either

(1) Pn ≤ 0 and R2Re(K̂
+(kn)) < L1, or

(2) Pn > 0 and 2R2Im(K̂+(kn)) < knγ.

The first set of inequalities corresponds to the case of a complex eigenvalue with non-zero
imaginary part and negative real part, while the second set of inequalities corresponds to real
negative eigenvalues.
Proof: Write (17) as σ± = αn ±

√
α2
n − 4βn. Define Pn = α2

n − 4βn. If Pn ≤ 0, then σ± has
a nonzero imaginary part. The real part of σ± is negative if αn < 0. This inequality can be
rewritten as R2Re(K̂

+(kn)) < L1. If Pn > 0, then σ+ is negative when βn > 0, and this can be
rewritten as 2R2Im(K̂+(kn)) < knγ.
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We now analyze the spectrum of (1) for a fixed domain size L. One can verify that for
R2 = 0, the conditions of Proposition 3.2 are satisfied and the equilibrium at the origin is
asymptotically stable. As R2 is increased from 0, there exists a critical value R∗

2 for which the
inequality conditions in Proposition 3.2 are not satisfied for a first value of n ∈ N. Therefore,
the equilibrium with isotropy subgroup O(2) generically loses stability to either a steady-state
pattern or a periodic pattern. This is summarized in the following.

Corollary 3.3 For fixed values of qr, qa and qal, there exists a value R∗
2 > 0 for which at least

one eigenvalue σ of the equilibrium solution with isotropy subgroup O(2) crosses the imaginary
axis with nonzero speed.

This shows that for a given species with fixed social behaviour parameters, aggregation
patterns can emerge in a fixed domain if the total population density increases beyond a threshold
at which equal left- and right-moving homogeneous distributions are no longer sustainable.
Density dependent patterning is seen, for instance, in locust aggregation outbreaks [6, 46].

For the remainder of the paper, we consider the total population A to be fixed and the
bifurcation parameters to be qr and qa. Since we are working on finite domains [0, L], the wave
numbers kj that appear in the dispersion relation (19) and the eigenvalues (17) are discrete.

4 Codimension-two bifurcations

In this section, we show the existence of codimension-two bifurcations, and calculate the linear
terms at the bifurcation and the eigenfunctions of the bifurcating solutions. Since near a bifurca-
tion point, the eigenfunctions give an approximation to the bifurcating solutions, we create plots
of these eigenfunctions. Then, we use these plots as a guide for classifying solutions obtained
via numerical simulations of (1) near the codimension-two points. In particular, fine details in
the plots of the eigenfunctions are useful for identifying the isotropy subgroups of numerical
solutions. Moreover, numerical simulations with initial conditions close to the bifurcation point
often evolve towards several intermediate unstable states before settling into a seemingly asymp-
totically stable solution which may not be close to the bifurcation point. Using the eigenfunction
plot as comparison, one can speculate on the unstable states visited.

The section is structured as follows. We begin by identifying the presence of codimension-
two points. Then, in Section 4.1, we obtain explicit expressions for the solutions of the linear
system near the codimension-two points along with the O(2) group actions on the respective
eigenspaces. Section 4.2 looks in detail at the orbit representatives of solutions with isotropy
subgroups for the SS/H. We present numerical simulations near the SS/H point and use the
plots of eigenfunctions to proceed to a possible classification of the states obtained. A similar
investigation is performed in Section 4.3, near the SS/SS point.

The graphical linear stability analysis below reveals that model (1) can exhibit three types
of codimension-two bifurcations: Hopf/Hopf, Steady-state/Hopf and Steady-state/Steady-state
bifurcations. These codimension-two points are obtained by studying the intersection between
different neutral stability curves (that is, curves described by Re

(
σ(kn)

)
= 0). Figures 3 (a) and

(c) show the neutral stability curves corresponding to various modes kn, n = 1, . . . , 14, as two
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parameters, qa and qr are varied. For qal = 0 (Figure 3(a)), we identify the 3:4 H/H point (located
near (qa, qr) = (0.64, 3.61)) as well as the 1:4 SS/H point (located near (qa, qr) = (1.56, 2.71)).
For qal = 3 (Figure 3(c)) we identify the 13:14 SS/SS point (located near (qa, qr) = (1.02, 1.02)).
All these codimension-two bifurcation points are at the boundary of the stability region for the
O(2)-symmetric steady-state. The hatched areas show the stability regions for each of these
cases. Figures 3 (b) and (d) show the real and imaginary parts of the dispersion relations
corresponding to each of the wave numbers involved in the H/H, H/S and SS/SS bifurcations.
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Figure 3: (a) Real parts of the dispersion relation σ(kn) corresponding to wave numbers kn, n = 1, . . . , 6, as two
parameters, qr and qa, are varied. The hatched area shows the stability region. (b) The n = 1, n = 3 and n = 4
neutral stability curves. The shaded areas show the region where Im(σ(kn)) = 0, n = 1, 3, 4. (c) is similar to
(a), but for qal = 3. The SS/SS point is at the intersection of k13 and k14. The hatched area shows the stability
region. (d) is similar to (b) but for qal = 3. The shaded area corresponds to Im(σ(k13)) = Im(σ(k14)) = 0.

Since the stability curves corresponding to various modes are sometimes very close to each
other, it is possible to have multiple mode interactions, which may influence the final patterns.
One such example is given by the SS/H bifurcation (Figure 3 (a)), where the intersection point
between k1 and k4 is very close to the intersection point between k4 and k5. This can be seen
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Hopf/Hopf (k  :k   ) Steady−state/Steady−state (k    :k    )Steady−state/Hopf (k  :k   ) 1444 3

k k k k1k 4 5 3 4
k13 k14

(a) (b) (c)
1 13

Figure 4: Real and imaginary parts for the dispersion relation σ(kn), for different wave numbers and different
parameter ranges, as two parameters, qr and qa, are varied. (a) Steady-state/Hopf bifurcation for qal = 0,
qa = 1.56, qr = 2.71, λ1 = 0.2, λ2 = 0.9. The modes that become first unstable are k1 (Steady state) and
k4 (Hopf). (b) Hopf/Hopf bifurcation for qal = 0, qa = 0.64, qr = 3.61, λ1 = 0.2, λ2 = 0.9. The modes that
become first unstable are k3 and k4. (c) Steady-state/Steady-state bifurcation for qal = 3.0, qa = 1.02, qr = 1.02,
λ1 = 0.2/0.29, λ2 = 0.9/0.29. The modes that become first unstable are k13 and k14.

more clearly in Figure 4, which shows the real and imaginary parts of the dispersion relation
σ(kn), as functions of the wave numbers kn, n > 0. For the SS/H bifurcation (Figure 4(a)), the
curve that passes through k1 and k4 is also very close to k5. This may lead to more complex
spatial and spatio-temporal patterns.

4.1 Linear modes at bifurcation

Consider the linear system
∂tU(x, t) = LnU(x, t), (20)

where U(x, t) = (u+(x, t), u−(x, t)). Using the basis {f1, f2}, we can write the solutions

U(x, t) = Re

((
v0

v1

)
eiknxeσt

)
= Re(v0e

iknxeσt)f1 +Re(v1e
iknxeσt)f2.

As seen in Section 3.1.1, the eigenvalue σ = 0 has the eigenspace C{(1, 0)T }, and therefore

U(x, t) = Re(v0e
iknx)f1.

For σ = ±iω, the eigenspaces are C{(knγ,−ω)T } and C{(knγ, ω)T }, respectively. Letting Φn1 =
knγf1 and Φ2 = −ωf2, solutions of the linear system (20) can be written as

U(x, t) = Re(w1e
iknxeiωt)(Φn1 +Φ2) + Re(w2e

iknxe−iωt)(Φn1 − Φ2).

O(2) has the following action: κ.(Φn1 + Φ2) = Φn1 − Φ2, and θ acts trivially on Φn1 and Φ2.
Therefore, we can rewrite U(x, t) as follows:

U(x, t) = w1e
iω1t(eiknx(Φn1 +Φ2)) + w2e

iω1t(e−iknx(Φn1 − Φ2)) + c.c..
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Now, we consider a new basis given by {hn1 , hn2} = {eiknx(Φn1 +Φ2), e
−iknx(Φn1 −Φ2)}. The action

of O(2) on the elements of this basis is

κ.hn1 = hn2 , θ.hn1 = eiknθhn1 and θ.hn2 = e−iknθhn2 .

This basis is the standard one, see [19], for the classification of isotropy subgroups in the O(2)
Hopf bifurcation. The general real solution, which spans the generalised eigenspaces at the mode
interaction points, can be obtained from the solutions of (20) for eigenvalues σ = 0 and σ = iω.
At the 1 : 4 SS/H point, we have

U(x, t) = Re(z0e
ik1x)f1 + z1e

iωth41 + z2e
iωth42 + c.c., (21)

and the group action on (z0, z1, z2) is

θ.(z0, z1, z2) = (eik1θz0, e
ik4θz1, e

−ik4θz2),

κ.(z0, z1, z2) = (z0, z2, z1).
(22)

The complex eigenvalue iω generates an additional S1 symmetry on the critical eigenspace:
ψ.(z0, z1, z2) = (z0, e

ik4ψz1, e
ik4ψz2). The general real solution at the 3 : 4 H/H bifurcation point

is therefore

U(x, t) = (z1h
3
1 + z2h

3
2)e

iω1t + (z3h
4
1 + z4h

4
2)e

iω2t + c.c. (23)

The action of O(2) on (z1, z2, z3, z4) is

θ.(z1, z2, z3, z4) = (eik3θz1, e
−ik3θz2, e

ik4θz3, e
−ik4θz4),

κ.(z1, z2, z3, z4) = (z2, z1, z4, z3).
(24)

The frequencies at the Hopf/Hopf bifurcation point are estimated to be ω3 ≈ 0.2461539166 and
ω4 ≈ 0.3454406196, and therefore it is safe to assume that they are not rationally dependent.
Therefore a T2 = S1 × S1 action generated (after a convenient rescaling) by e(ik1/ω3)ψ1ω3 ⊕
e(ik1/ω4)ψ2ω4 , with ψ1, ψ2 ∈ [0, L), acts on the critical eigenspace C2 ⊕ C2 as follows:

(ψ1, ψ2).(z1, z2, z3, z4) = (eik1ψ1z1, e
ik1ψ1z2, e

ik1ψ2z3, e
ik1ψ2z4). (25)

Together, (24) and (25) generate the action of O(2)×T2 on the critical eigenspace and implicitly
on the linear patterns given by U(x, t). Finally, at the 13 : 14 SS/SS point we have

U(x, t) = Re(w0e
ik13x)f1 +Re(w1e

ik14x)f1. (26)

The classification of solutions in the H/H mode interaction is studied in greater details in [7]
(which includes also a weakly-nonlinear analysis of the bifurcation patterns). The SS/H and
SS/SS mode interactions are investigated below.
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4.2 Study of the 1 : 4 SS/H linear modes

Using equation (21), we obtain expressions for the primary bifurcating solutions at the 1 : 4
SS/H mode interaction. These solutions are: (a) stationary pulses (SP) which are spatially het-
erogeneous steady-state solutions, (b) rotating wave periodic solutions (RW), and (c) standing
wave periodic solutions (SW). The isotropy subgroups and orbit representatives for these bifur-
cating solutions are shown in Table 2 (see Hill and Stewart [25] for details). In the following, we
give the analytical expressions for each of these solutions. Let Z(θ,ψ) be the discrete subgroup

Isotropy subgroup Orbit representative Type

O(2)× S1 (0, 0, 0) homogeneous steady-state

Z2(κ)× S1 (a, 0, 0) stationary pulse (SP)

S̃O(2) (0, b, 0) rotating wave (RW)

Z2(κ)× Z(π/4,π) (0, b, b) standing wave (SW).

Table 2: Isotropy subgroups, orbit representatives and type of the primary bifurcating solutions on the centre
manifold at a SS/H bifurcation (as described in Golubitsky et al. [19]), where a, b ∈ R.

generated by (θ, ψ) ∈ O(2) × S1. The cyclic group Z(π/4,π) has order eight, and its action
on U(x, t) is given by (L/8, π/ω), where L/8 is half the length of one fundamental domain in
[0, L] under the partition by the elements of the kernel of the SO(2) action. Using the orbit
representatives in Table 2, we obtain the linear solutions for the primary bifurcating solution
branches, and the total density u(x, t) = u+(x, t) + u−(x, t) in each case. For example, in the

case of the rotating wave (corresponding to the S̃O(2) subgroup), because the spatial translation
corresponds to phase shift on the periodic solution, the period is linked with the wave number.
The rotating wave is fixed by (ϕ,−4ϕ), and therefore

(ϕ,−4ϕ).U(x, t) = beiω(t−4ϕ)eik4xh41 + c.c. = U(x, t)

requires that ω = 2π/L. For the complete list of primary bifurcating solutions, see Table 3.
To help the reader identify these solutions, and for further comparison with the results of the
numerical simulations, we show these solutions in Figure 5, for some arbitrary parameter values:
γ = 1, a = 3, b = 1.3, ω = 0.5 and L = 10.

We also look for solutions with submaximal isotropy subgroups with fixed point subspaces
of dimension three, namely Z2(κ) and Z2(κL/8, π/ω). The solutions corresponding to these
subgroups are shown in Table 4. Again, to help the reader identify these solutions, we show
them in Figure 6, for some arbitrary parameter values: γ = 1, a = 3, b = 1.3, ω = 0.5 and
L = 10. Close inspection of the contour plots in Figure 6(a) shows the solution Z2(κ) with the
reflection line for the symmetry κ near x = 5 (i.e., the white ellipses inside the red patterns are
larger at x ≈ 5, hence the density is slightly higher at this point). In Figure 6(b), the solution
with isotropy subgroup Z2(κL/8, π/ω) has eight reflection symmetries with vertical axes near
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Isotropy subgroup U(x, t) u(x, t)

Z2(κ)× S1 Re(aeik1x)f1 2Re(aeik1x)

S̃O(2) beik1th41 + c.c. 2k4γbe
ik1teik4x + c.c.

Z2(κ)× Z(π/4,π) beiωth41 + beiωth42 + c.c. 4k4γbe
iωt cos(k4x) + c.c.

Table 3: Maximal isotropy subgroups with representative solutions U(x, t) and total density u(x, t). For the

S̃O(2) solution ω = k1 is forced by symmetry.

x = 3 + 1.25j, j = 0, . . . , 7. Reflection across any of those vertical lines along with a time-shift
by a half-period (corresponding to one row of cells) leaves the pattern unchanged.

Isotropy U(x, t) u(x, t)

subgroup

Z2(κ) Re(aeik1x)f1 + beiωt(h41 + h42) + c.c. 2Re(aeik1x) + 4k4γbe
iωt cos(k4x) + c.c.

Z2(
κL
8 ,

π
ω ) Re(ia′eik1x)f1 + beiωt(h41 + h42) + c.c. 2Re(ia′eik1x) + 4k4γbe

iωt cos(k4x) + c.c.

Table 4: Submaximal isotropy subgroups with representative solutions U(x, t) and total density u(x, t).

Comparison with numerical simulations Numerically simulated patterns of (1) that emerge
around the SS/H bifurcation point are compared with the contour plots of the eigenfunctions
obtained previously. The initial conditions for the numerical simulations are random perturba-
tions of the spatially homogeneous steady states u± = u∗3 = 1. Figure 7 shows the spatial and
spatio-temporal patterns that emerge at some randomly-chosen points (1)-(10) located around
the 1 : 4 SS/H point (see also Figures 3(a),(b) and Figure 4(a)). At points (1), (2), (3), (4), (9),
(10), the small random perturbations of u∗3 = 1 first evolve to standing wave patterns (panel
(b)). These patterns are generally unstable, and after a while they evolve to quasi-periodic
solutions (panel (e)) or to rotating waves (panel (f)). Both types of patterns seem stable (at
least for t ≤ 4000).

At points (5) and (6), the small perturbations of u∗3 lead to the emergence of stationary
pulses. These stationary pulses are unstable and further evolve into the quasi periodic solutions
shown in panel (e). However, at point (6), we observed that the stationary pulse first evolves into
a pulse pattern with Z2(κ) symmetry (panel (d)). Finally, at points (7) and (8), the spatially
homogeneous solutions u∗3 are stable, and the perturbations which initially lead to modulated
standing wave (MSW) patterns (panel (g)) eventually evolve towards the steady state u∗3 (panel
(h)).

We remark here that the solutions with the submaximal isotropy subgroups Z2(κ) and
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(a) (b) (c)

Figure 5: (a) Contour lines of u(x, t) corresponding to the stationary pulse with isotropy subgroup Z2 ×S1 and
wavenumber k1. (b) Contour lines of u(x, t) corresponding to the rotating wave with wavenumber k4. (c) Contour
lines of u(x, t) corresponding to the standing wave with wavenumber k4. To obtain these contour lines we choose
the length of the domain L = 10. The rest of the parameters are γ = 1, a = 3, b = 1.3, ω = 0.5.

(a) (b)

Figure 6: Contour lines of u(x, t) for the solutions with submaximal isotropy subgroup (a) Z2(κ) (b) Z2(
κL
8
, π
ω
).

To obtain these contour lines we choose the length of the domain L = 10. The rest of the parameters are γ = 1,
a = 3, a′ = 100, b = 1.3, ω = 0.5.

Z2(κL/8, π/ω) are sometimes difficult to be distinguished numerically from each other and from
the standing wave solutions. Figure 8 shows the surfaces (panels (a),(c)) and the contour lines
(panels (b),(d)) for two solutions that seem very similar. However, closer inspection of the con-
tour lines shows that the symmetry of the patterns is quite different. In panel (b), contour lines
suggest a solution with isotropy subgroup Z2(κL/8, π/ω), where the axes of symmetry are the
vertical lines between neighboring cells, and the phase shift by a half-period seems to correspond
to an upward shift by three-rows of cells. In panel (d), there are four translated copies of pairs of
cells along the x-axis, and x ≈ 5 is a reflection symmetry for the pattern; this suggests a standing
wave. (Compare these patterns with the contour plots in Figure 6(b) and Figure 5(c)). Note
that from the numerical simulations, these states are likely unstable and therefore the trajectory
is bounded away from the actual state. This explains the fact that the patterns exhibit only
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Figure 7: (a) Neutral stability curves for wave numbers k1 and k4. The points (1)-(10) are randomly chosen
around the SS/H bifurcation point located at (qa, qr) = (1.5686, 2.7178). (b) The patterns that emerge at points
(1), (2), (3), (4), (9) and (10) all evolve first to standing waves. (c) The patterns that emerge at points (5),(6)
evolve towards a spatially heterogeneous steady state (i.e., stationary pulse). (d) The stationary pattern at (6)
first evolves into a pattern with Z2(κL/8, π/ω) symmetry. (e) The patterns starting at (1),(2),(3),(4),(5) and
(6) eventually evolve from standing waves and stationary solutions to quasi-periodic solutions. (f) The patterns
starting at (9) and (10), after the excursion near a standing wave, eventually approach rotating wave solutions.
(g) At points (7) and (8), small perturbations of the spatially homogeneous steady states evolve first to modulated
standing waves, i.e., patterns with Z2(κL/8, π/ω). (h) Since the points (7),(8) are in the parameter region where
the spatially homogeneous solutions u∗

3 are stable, no spatially heterogenous patterns can persist at these points,
and thus the total density shown is u∗

3 +u∗
3 = 2(= A). The parameters are: qal = 0.0, λ1 = 0.2, λ2 = 0.9, γ = 0.1,

L = 10.
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approximate symmetries (see, for instance, the slight tilt of the cells, and the differences in some
contour lines, shown more clearly in panel (b)). We expect that a numerical corrector method
starting at these patterns should converge to the actual periodic solution. (Such a corrector is
under construction [31].) In the following, we summarize the output suggested by the numerical
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Figure 8: (a) Solution with submaximal isotropy subgroup Z2(κL/8, π/ω); (b) Contour lines of u(x, t) for the
solution in panel (a); (c) Standing wave solution; (d) Contour lines of u(x, t) for solution in panel (c). The
parameters are: qal = 0.0, λ1 = 0.2, λ2 = 0.9, γ = 0.1, L = 10, A = 2

simulations.

• The stationary pulse bifurcates supercritically. It is unstable at this parameter value.

• The standing wave and rotating wave bifurcate subcritically (so, they are unstable near
bifurcation).

• RW and Modulated Rotating Wave (MRW) are observed to be asymptotically stable.
MRW stable over a wide parameter range.

• Z2-symmetric periodic solutions are unstable and are observed in the region of asymptotic
stability of the equilibrium.
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• Note that panels (d) and (g) in Figure 7 have the same isotropy subgroup and may lie on
a mixed-mode branch of periodic solutions connecting SP and SW.

We return to these features in Section 5, where we use them along with formal normal form
analysis and weakly nonlinear analysis to propose a bifurcation diagram near the SS/H point.

4.3 13 : 14 SS/SS: linear modes

For the details of the analysis of the O(2) steady-state mode interaction, we refer the reader
to [19], which investigates the case of interacting wavenumbers m and ℓ, with m = ℓ + 1. In
our case, ℓ = 13 and m = 14. The orbit representatives for the fixed-point subspaces of the
isotropy subgroups corresponding to the O(2) action on the critical eigenspace C2, can be found
in [19](Chapter XX, Table 1.1). In the following, we write the eigenfunctions corresponding to
each of these orbit representatives.

(a) The isotropy subgroups D13 and D14 have the orbit representatives (i) w0 = x0, w1 = 0,
and (ii) w0 = 0, w1 = y0, respectively. The corresponding eigenfunctions are

(i) U(x, t) = Re(x0e
ik13x)f1, (ii) U(x, t) = Re(y0e

ik14x)f1.

(b) The isotropy subgroup Z2 has the orbit representative w0 = x0, w1 = y0. The corresponding
eigenfunction is

U(x, t) = Re(x0e
ik13x)f1 +Re(y0e

ik14x)f1.

The contourplots of u(x, t) = u+(x, t) + u−(x, t) are shown in Figure 9(a,b). Figure 9(c)
shows the contourplots of u(x, t) = u+(x, t) + u−(x, t), for the mixed-mode interaction with
wave numbers k13 and k14.

(b) (a) (c)

Figure 9: (a) and (b): Contour lines of u(x, t) with isotropy subgroups D13 and D14, respectively. (c) Contour
lines of u(x, t) for the mixed mode solution with isotropy subgroup Z2 (with the same two modes as in panel (a)
and (b)). To obtain these contour lines we choose the length of the domain L = 10.
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Comparison with numerical simulations In the following, we include the alignment inter-
action (qal = 3 > 0), and investigate the formation of patterns near a Steady-state/Steady-state
(SS/SS) bifurcation point (see Figure 4(c)). Note that the SS/SS bifurcation can occur also for
qal = 0 (e.g., for qa = 0.2, qr = 1, λ1 = 0.2/0.06, λ2 = 0.9/0.06). However, in this case, the
emergent wavenumbers are k28 and k29, which makes it difficult to distinguish very clearly the
spatial patterns (which now have 28 or 29 peaks). Moreover, the neutral stability curves for
wavenumbers k28 and k29 are very close to the neutral stability curves for wavenumbers k1 and
k30. This proximity influences the patterns (corresponding to k28 and k29) that form near the
codimension-two bifurcation point. For these reasons, we prefer to run simulations with qal > 0.

Figure 10 shows the numerical patterns that emerge at various points around the SS/SS
bifurcation located at (qa, qr) = (1.02, 1.02). The initial conditions for the numerical simulations
are small random perturbations of the spatially homogeneous steady-states u± = u∗3 = 1. First,
the points (8),(9),(1) are in the parameter region where the state u∗3 = 1 is stable, and hence
no pattern can form (see panel (f), which depicts the difference |u+ − u−| = u∗3 − u∗3 = 0).
At points (2)-(7), the unstable spatially homogeneous states u∗3 evolves initially to mixed-mode
spatially heterogeneous solutions formed of 13 peaks (corresponding to wavenumber k13). For
the patterns at (3)-(7), as time progresses, one of the peaks then splits into two other peaks,
thus giving rise to 14 peaks (corresponding to k14). These mixed-mode patterns have the axis
of symmetry near x = 6. At points (2),(3), these mixed-mode patterns then evolve into simple-
mode patterns (panel (c)). At points (3),(5),(6), the patterns then approach a high-amplitude
mixed-mode solution (panel (d)) with 14 peaks. The axis of symmetry of this mixed-mode
solution is also near x = 6. The high-amplitude patterns in panel (d) seem to be asymptotically
stable, while the patterns in panels (b),(c) are unstable and, for longer time integrations, evolve
to other states.

Despite the fact that the points at (2),(7) are in the parameter region where k13 is unstable,
the patterns eventually decay towards the spatially homogeneous steady state u∗3 (see panel (f)).
This is likely an artifact of the numerical scheme (first order upwind scheme), combined with a
lower amplitude of the dispersion relation at point (2). The pattern at (4), after approaching
first an unstable high-amplitude solution similar to the one in panel (d), eventually evolves to
the spatially homogeneous steady state u∗1,5 (see panel (e), which depicts the difference |u+−u−|
that approaches asymptotically the value |u∗1 − u∗5| = 1.44).

Note that when qal = 0 (and qa = 0.2 qr = 1.0), we would obtain similar spatial patterns
around the SS/SS bifurcation point. However, since in this case attraction is much weaker than
repulsion, the spatially heterogeneous solutions would be always decaying towards the spatially
homogeneous steady states (either u∗3 or u∗1,5; see Figure 10(e),(f)).

5 Bifurcation Diagrams

The bifurcation analysis near the Steady-state/Hopf bifurcation point is typically done using
Centre Manifold Reduction (CMR) or Lyapunov-Schmidt Reduction (LSR). However, the un-
boundedness of the derivative operator along with the nonlocal nature of the turning function
prevents the use of current versions of CMR and LSR. To be able to use CMR or LSR, one would
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Figure 10: (a) Neutral stability curves for wave numbers k13 and k14. The points (1)-(9) are randomly chosen
around the SS/SS bifurcation point located at (qa, qr) = (1.02, 1.02). Panels (b)-(d) show the the total density
u+ + u−. Panels (e)-(f) show the difference |u+ − u−|. (b) The patterns that emerge at points (2)-(7) initially
evolve towards an unstable mixed-mode spatially heterogeneous solution formed of 13 or 14 peaks. The inset
shows the total density u+ + u− at time t = 120. (c) The patterns that emerge at points (2), (3) then evolve
towards simple-mode patterns. The inset shows the total density u+ + u− at time t = 400. (d) The unstable
solutions at points (3),(5) and (6) next evolve towards a stable mixed-mode solution with 14 peaks. The inset
shows the total density u+ + u− at time t = 1400. (e) The unstable solutions at points (4) and (7) evolve
asymptotically towards the spatially homogeneous steady states u∗

1,5. Shown is the difference |u+ −u−|, which in
the long term approaches |u∗

1 −u∗
5| = 1.44. (f) Since the points (1), (8), (9) are in the parameter region where the

spatially homogeneous states u∗
3 are stable, no patterns can form. To distinguish this dynamics from the dynamics

in panel (e), we show the difference |u+ − u−| which approaches asymptotically the difference |u∗
3 − u∗

3| = 0. The
parameters are: qal = 3.0, λ1 = 0.2/0.29, λ2 = 0.9/0.29, γ = 0.1, L = 10.
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need to show a spectral gap property for the linear system, or to show that the linear operator
is Fredholm (of index 0). There does not seem to be any obstacle in proving such technical
results. However, because of the complexity of the analysis, we leave this question to another
paper. Instead, we perform a weakly-nonlinear analysis which provides amplitude equations for
bounded solutions corresponding to critical eigendirections near the bifurcation point. In many
cases, the resulting amplitude equations are equivalent to CMR and LSR [1, 15, 17].

5.1 Steady-state/Hopf: bifurcation analysis

Hill and Stewart [25] studied the Steady-State/Hopf bifurcation with O(2)-symmetry. They
assumed that a Lyapunov-Schmidt reduction has been applied to the equation

dx

dt
+ f(x, λ) = 0. (27)

At the 1 : 4 SS/H point, one obtains the following normal form equations. Let z = (z0, z1, z2) ∈
C3, where z0 is the coordinate of the steady-state mode and (z1, z2) are the coordinates of the
Hopf mode. The normal form equations to quintic order, with only a minimal set of relevant
terms, are given by:

ϕ(z, λ, a, τ) =

 p1z0 + i(|z1|2 − |z2|2)p2z0
(q1 + a+ q3|z2|2)z1 − i(q2 + |z2|2q4 − (1 + τ))z1

(q1 + a+ q3|z1|2)z2 − i(q2 + |z1|2q4 − (1 + τ))z2

 , (28)

Parameters pj and ql, j = 1, 2, l = 1, 2, 3 follow the notation in Hill and Stewart [25]. These
parameters are defined in terms of the coefficients of model (1). Parameter a is an unfolding
parameter for the Hopf mode and, in our case, is a function of qa, qr. Parameter τ is associated
with the phase of the Hopf mode, and we ignore it since our focus is only on the amplitudes.
Denoting by λ the unfolding parameter for the steady-state mode (also a function of qa, qr), and
by N0 = |z0|2 and N1 = |z1|2 + |z2|2, we can write

p1 = p1(0) + p1λ(0)λ+ p1N0
(0)N0 + p1N1

(0)N1 +
1
2p

1
N2

0
(0)N2

0 + 1
2p

1
N2

1
(0)N2

1 , p2 = p2(0),

q1 = q1(0) + q1λ(0)λ+ q1N0
(0)N0 + q1N1

(0)N1 +
1
2q

1
N2

1
N2

1 , q3 = q3(0).

The functions q2 and q4 are similar to q1 and q3, respectively. The linear terms at the origin are (p1(0) + p1λ(0)λ)z0

(q1(0) + a+ q1λ(0)λ+ i(q2(0) + q2λλ− (1 + τ)))z1

(q1(0) + a+ q1λ(0)λ+ i(q2(0) + q2λλ− (1 + τ)))z2

 .

At λ = a = 0, the SS/H point forces p1(0) = q1(0) = 0 and q2(0) ̸= 0. The real part of the
eigenvalues at the origin are p1λ(0)λ and q1λ(0)λ+ a. If we assume that an asymptotically stable
origin implies λ < 0, then p1λ(0) < 0.
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5.1.1 Weakly-nonlinear analysis

In the following, we perform a weakly nonlinear analysis of the spatially homogeneous steady
states (u+, u−)=(u∗, u∗), to obtain amplitude equations similar to the normal form equations
(28). To this end, we consider perturbations of the unfolding parameters qa and qr, which, at
the SS/H bifurcation point have the critical values q∗r,a:

qa = q∗a + ϵ2νa, qr = q∗r + ϵ2νr, νr,a = ±1, 0 < ϵ≪ 1. (29)

We then substitute these expressions into the dispersion relation (19):

σ(kn; qa, qr) = σ(kn; q
∗
a, q

∗
r ) +

∂σ

∂qa
ϵ2νa +

∂σ

∂qr
ϵ2νr.

Then, solution u±(x, t) ∝ eiknx+iσt evolves on two different time scales: a fast time scale (t) and
a slow time scale (T = ϵ2t), which, in the limit ϵ→ 0 can be treated as being independent [37].
Expanding u± in powers of ϵ,

u±(x, t, ϵ, T ) = u∗ + ϵu±1 + ϵ2u±2 + ϵ3u±3 + ϵ4u±4 + ϵ5u±5 +O(ϵ6), (30)

and substituting it back into the nonlinear system (1)-(3) we obtain the following abstract
representation of the system:

0 = N

∑
j≥1

ϵjuj

 ≈
∑
j≥1

(L(uj)−Nj − Ej) .

Here, uj = (u+j , u
−
j ), L is the linear operator defined in Section 3.1, Nj is the nonlinear operator

at O(ϵj) that contains the terms u±j−1, u
±
j−2,..., and Ej is the nonlinear operator that contains the

slow-time derivatives (∂u±j /∂T ) and the terms multiplied by νa, νr. At each O(ϵj) we identify

the coefficients of the solutions u±j .

At O(ϵ1), the solution is of the form(
u+1
u−1

)
= α1(T )

(
v11

v12

)
eik1x + β1(T )

(
w11

w12

)
eik4x+iσ4t + β2(T )

(
w21

w22

)
eik4x−iσ4t + c.c.

(31)
Here k1 is the steady-state wavenumber, k4 is the Hopf wavenumber, σ4 = σ(k4) ≈ 0.2932 and
“c.c” stands for complex conjugate. The coefficients that appear in the solution are

v11 = v12 = 1, w11 = w22 = k4γ − σ4, w12 = w21 = γk4 + σ4. (32)

With this notation, we can write w1 = (w11, w12)
⊤=(k4γf1−σ4f2) and w2 = (w21, w22)

⊤=(k4γf1+
σ4f2).

Next, we focus on the solution at O(ϵ2). The nonlinear equation L(u+2 , u
−
2 )

⊤ = N2 +E2 has
a nontrivial solution iff N2 + E2 satisfies the Fredholm alternative, i.e., N2 + E2 is orthogonal
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to the bounded solution û of the adjoint homogeneous problem L∗(û) = 0. The adjoint of the
linear operator L is

L∗ =

(
−∂t − γ∂x + L1 −R2K

+∗ −L1 +R2K
+∗

−L1 +R2K
−∗ −∂t + γ∂x + L1 −R2K

−∗

)
. (33)

Here,
û = αa1v

∗eik1x + βa1w
∗
1e
iσ4t+ik4x + βa2w

∗
2e
iσ4t−ik4x + c.c. (34)

The coefficients v∗ = (v∗1, v
∗
2), w

∗
1 = (w∗

11, w
∗
12) and w∗

2 = (w∗
21, w

∗
22) of the adjoint solution are

given by

v∗1 = 1, v∗2 =
iγk1 − L1 +R2K̂

+(k1)

−L1 +R2K̂+(k1)
, (35)

w∗
11 = w∗

21 = 1, w∗
12 =

σ4 + γk4 +R2Im(K̂+(k4))

R2Im(K̂+(k4))
, w∗

22 =
1

w∗
12

. (36)

Here, we used the fact that at the Hopf bifurcation, L1 = R2Re(K̂
+(k4)), while at the steady-

state bifurcation γik1 = −R2(K̂
+(k1)− K̂−(k1)).

Simple calculations show that N2 + E2 satisfies the Fredholm alternative, that is ⟨û, N2 +
E2⟩ = 0, where the inner product is defined on a Hilbert space Y

Y =

{
u(x, τ)|(x, τ) ∈ [0, L0]× [0,∞), s.t. lim

T→∞

1

T

∫ T

0

∫ L0

0
|u|dxdτ <∞

}
. (37)

The O(2)-invariant inner product of two vectors û = (û+, û−)⊤ and w = (w+, w−)⊤ in Y is

⟨û,w⟩ = lim
T→∞

1

T

∫ T

0

∫ L0=
2nπ
kn

0
(û+w+ + û−w−)dxdτ. (38)

At O(ϵ3), the requirement that N3 +E3 satisfies the Fredholm alternative leads to a system
of differential equations for the amplitudes (α1, β1, β2):

dα1

dT
= g1(α1, β1, β2, qa, qr),

dβ1
dT

= g2(α1, β1, β2, qa, qr),
dβ2
dT

= g3(α1, β1, β2, qa, qr). (39)

A detailed description of these equations (and how we obtain them) can be found in the Ap-
pendix. We now have the following result.

Theorem 5.1 The amplitude equations (39) truncated to third order obtained via the weakly-
nonlinear analysis at the SS/H bifurcation point (q0a, q

0
r ) ≈ (1.5686, 2.7178) are O(2)-equivariant.

The third order truncation of the right-hand side of (39) is given by the negative of the third
order truncation of (28). For the parameter values used in this article (which can be found in
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the caption of Figure 7), the coefficient values of these third-order truncations of the amplitude
equations are

p1(0) = 0, p1λ(0) = −1, p1N0
(0) ≈ 0.38069, p1N1

(0) ≈ −0.09648, p2(0) ≈ 0.01293,

q1(0) = 0, q1λ(0) ≈ 2.63485, q1N0
(0) ≈ 0.95759, q1N1

(0) ≈ 0.03805, q3(0) ≈ 0.17690,

q2N0
(0) ≈ −0.26016, q2N1

(0) ≈ 0.05666, q4(0) ≈ −0.04353.

(40)
The parameter values λ and a, as functions of Qa = qa − q∗a and Qr = qr − q∗r , are

λ ≈ 0.01858Qa − 0.00496Qr a ≈ 0.06435Qr.

The proof of this theorem is done in the Appendix. Figure 11 shows the relationship between
the qa, qr axes and the λ, a axes in a neighborhood of the SS/H point.

. .qa

.qr
.a

.a+ q1λ(0)λ = 0

.λ

.1.56

.2.71

Figure 11: Relationship between the qa, qr axes and λ, a axes. The a axis is the steady-state
bifurcation curve while a+ q1λ(0)λ = 0 is the Hopf line.

5.1.2 Existence and stability of solution branches

The nondegeneracy conditions for the unfolding of the SS/H point with O(2) symmetry, using
only leading order terms, are derived in [25] and given in Table 5 along with their signs obtained
from Theorem 5.1.

Primary branches Using the third order truncation we can determine the branching and
stability of the primary bifurcating branches: stationary pulse, rotating wave and standing
wave. Recall the notation from Section 4.2. The branching equations are given in Table 6
where (·) are the labels for the expressions in Table 5. For fixed values of a, the stationary
pulse bifurcates supercritically as λ increases across the steady-state bifurcation curve (a-axis).
For small a values, the standing waves and rotating waves bifurcate subcritically as λ increases
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No condition sign No condition sign

(1) p1N0
(0) (+) (6) 2q1N0

(0)p1N1
(0)− (2q1N1

(0) + q3(0))p1N0
(0) (−)

(2) p1λ(0) (−) (7) q1N0
(0)p1λ(0)− q1λ(0)p

1
N0

(0) (−)

(3) q1N1
(0) (+) (8) 2p1N1

(0)q1λ(0)− (2q1N1
(0) + q3)p1λ(0) (−)

(4) q1λ(0) (+) (9) q3 (+)

(5) 2q1N1
(0) + q3(0) (+) (10) q1N1

(0) + q3 (+)

Table 5: Nondegeneracy conditions for unfolding the Steady-State/Hopf bifurcation with O(2) symmetry using
only leading order terms.

across the Hopf curve. We now look at the sign of the eigenvalues at the bifurcation point, the
expressions are taken from [25]. Recall that because the normal form comes from (27), positive

Solution Isotropy Subgroup Branching equation Stability property

SP Z2(κ)× S1 λ = −(1)N0/(2) stable

RW S̃O(2) (4)λ = −(a+ (3)N1) unstable

SW Z2(κ)× Z(π/4,π) (4)λ = −(a+ (5)N1) unstable

Table 6: Isotropy subgroup, branching equation and stability of primary bifurcating solutions:
SP, RW, SW.

real parts correspond to stable directions and negative real parts to unstable directions. For the
stationary pulse, the real parts of the eigenvalues are 0, p1N0

(0) > 0 and q1 evaluated at (x0, 0, 0);
that is,

(q1λ(0)p
1
N0

+ q1N0
(0))x20 ≈ 1.94x20 > 0.

Therefore, the SP branch is asymptotically stable.
For the rotating wave, the eigenvalues are 0, q1N1

(0) > 0 and two other complex eigenvalues
with real parts, q3 and p1 evaluated at (0, x1, 0). We know q3(0) > 0 and so q3 > 0 for (λ, a) in
a small neighborhood of (0, 0). Now, for a fixed a, substituting λ with the branching equation
(see Table 6) we obtain

p1 =
a

(4)
+

(
(3)

(4)
+ p1N1

(0)

)
N1 ≈

a

(4)
− 0.081N1.

Thus, p1 < 0 for a < 0 and p1 > 0 for a > 0 and for N1 small. Therefore, for a < 0, the
RW branch has two eigenvalues with positive real part at bifurcation and one eigenvalue with
negative real part. Moreover, the RW branch is asymptotically stable for a > 0. Note that
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for a > 0, a Hopf bifurcation occurs as p1 changes sign for N1 large enough, and at this point
a MRW bifurcates from RW. We do not investigate the stability of this bifurcating solution.
However, the numerical simulations suggest that it is asymptotically stable for a large range of
parameter values.

For the standing wave branch, the real parts of the eigenvalues are 0, p1, 2q1N1
(0)+ q3(0) and

−q3(0)x21, which are evaluated at (0, x1, x1). We know that 2q1N1
(0) + q3(0) > 0 and −q3(0) < 0

(see Table 5). Thus, the SW branch is unstable. Note that,

p1 =
a

(4)
+

(
(5)

(4)
+ p1N1

(0)

)
N1 ≈

a

(4)
− 0.01N1.

This means p1 < 0 for a < 0 and p1 > 0 for a > 0 small enough.

Secondary bifurcations: fifth-order truncation We now investigate the appearance of
secondary branches of periodic solutions bifurcating from the primary branches. To this end, we
consider the fifth-order truncation of (28). We only need to study a few cases involving p1

N2
1
(0)

and q1
N2

1
(0) which, along with the numerical simulations, enables us to make educated guesses

on possible bifurcation diagrams. Submaximal periodic solutions with isotropy subgroups Z2(κ)
and Z2(κL/8, π/σ4) have both orbit representative (x0, x1, x1). In this case we must solve

p1λ(0)λ+ p1N0
(0)x20 + 2p1N1

(0)x21 + 2p1
N2

1
(0)x41 = 0,

a+ q1λ(0)λ+ q1N0
(0)x20 + 2q1N1

(0)x21 + 2q1
N2

1
(0)x41 + q3x21 = 0.

This is done by solving the first equation for x20, and then substituting it into the second equation.
The second equation is then solved for λ. After substituting λ in the first equation one obtains
(in the notation of [25])

λ =
(1)a

(7)
− (6)

(7)
x21 +

2c1
(7)

x41, a(2) = (8)x21 − (7)x20 − 2c2x
4
1, (41)

where

c1 = q1N2
1
(0)p1N0

(0)− q1N0
(0)p1N2

1
(0) and c2 = 2q1N2

1
(0)p1λ(0)− p1N2

1
(0)q1λ(0).

The first equation can always be satisfied because λ is unconstrained. By fixing parameter a,
the existence of a bifurcating branch only depends on solving the second equation in (41); that
is,

x21 =
(8)

4c2
± 1

4c2

√
(8)2 + 8c2(a− (7)x20). (42)

We now investigate the existence of secondary branches of periodic solutions bifurcating from
SP and SW. For x0 = 0 and N1 > 0 the secondary branch connects to SW, while for x1 = 0 and
N0 > 0 the secondary branch connects to SP. In particular, we show that a secondary branch of
solutions can connect the SP and SW branches. Recall that (7), (8) < 0.
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(1) If c2 < 0, both solutions in (42) exist. In the case a > 0, notice that the right-hand side
of (42) is positive for both “+” and “−” solutions. For x0 = 0, we have two x21 solutions.
If x1 = 0, there are no solutions in x0. Therefore, the secondary branch connects to SW
at two different locations. If a < 0, then x1 = 0 for x20 = a/(7) in the “+” solution.
In the “−” solution, setting x0 = 0 yields a positive right-hand side. The “+” and “−”
branches meet at the x0 value that makes the square root vanish. Thus, the secondary
branch connects the SP and SW primary branches.

(2) If c2 > 0, the “−” solution is negative and the “+” solution is non-negative if and only if
a− (7)x20 > 0. We see that x1 = 0 if and only if a− (7)x20 = 0 which only occurs for a < 0.
Thus, the secondary branch connects to the SP branch. If x0 = 0, then the right-hand
side of the “+” solution is positive if a > 0, and so the secondary branch connects to SW.

Figure 12 shows the bifurcation diagrams obtained for the parameter values discussed in Theo-
rem 5.1 for p1

N2
1
(0) = 0 and q1

N2
1
(0) = ±0.01. Note that in these diagrams, X = x0 + x1.

(a) (b)

(c) (d)

Figure 12: Bifurcation diagrams associated with the two cases c2 > 0 and c2 < 0: (a) c2 > 0, a < 0; (b) c2 > 0,
a > 0; (c) c2 < 0, a < 0; (d) c2 < 0, a > 0.

We now use the rigorous analytical results that gave us the primary branches, combined
with the numerical simulations, to select a possible bifurcation diagram from the two scenarios
for secondary bifurcations (c2 > 0, c2 < 0). Numerical simulations of Figure 7 (d) and (g)



33

each show a Z2(κ) periodic solutions near the steady-state bifurcation line, but with fine details
of the pattern close to SP and SW respectively. This suggests a secondary branch of Z2(κ)
periodic solutions connecting the SP and SW branches. This is the situation seen for c2 < 0
and we conjecture that this is the situation happening in this case. In Figure 13 we produce
a rough gyratory bifurcation diagram illustrating the c2 < 0 situation. In addition, we know
that a MRW bifurcates from RW for a > 0 if N1 is large enough, we added a plausible branch
given that the MRW is observed to be asymptotically stable in the numerical simulations. We
name the periodic solution with isotropy subgroup Z2(κ) modulated standing pulse (MSP) and
the periodic solution with isotropy subgroup Z2(κL/8, π/ω) modulated standing wave (MSW).
The location of those branches is conjectural.

Figure 13: (a) Path around the SS/H point. (b) Potential circular bifurcation diagram corresponding, from
left to right, to the clockwise direction on the path around the SS/H point. The bifurcation diagram is based on
c2 < 0 in Figure 12. The left-hand part correponds to a > 0 and the right-hand part for a > 0 (but reflected
about the X axis). The location of the MRW branch is conjectural, but based on numerical simulations. SP:
stationary pulse, SW: standing wave, RW: rotating wave, MS(P/W): modulated standing pulse/wave.

6 Discussion

In this article, we investigated the bifurcation dynamics of a large variety of complex spatial
and spatio-temporal patterns exhibited by a nonlocal hyperbolic model for self-organised an-
imal aggregation. It is shown in [15] that simple, classical patterns such as stationary waves
(pulses) and travelling trains are the result of codimension-1 subcritical Hopf and steady-state
bifurcations. Here, we focused on the more complex patterns that arise near codimension-two
bifurcation points, and used symmetry and bifurcation theory to provide a rigorous classification
of these patterns.
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6.1 Biological implications

Many of the patterns identified analytically and numerically in the vicinity of codimension-two
bifurcations are unstable (as shown by the sign of the coefficients of the amplitude equations) and
usually undergo a cascade of other bifurcations to heterogenous patterns or to stable spatially
homogeneous steady states (as observed numerically; see Figures 7,10 and 13). This raises the
question of whether all transitions between group patterns observed in nature (e.g., from moving
to stationary aggregations) are actually generated by changes in the needs of individuals (which
are modelled mathematically by changes in parameter values; see [10] for a discussion on group
patterns obtained for different parameter values in a model for self-organised aggregations).
Our results here suggest that it could be possible that some behavioural transitions observed in
nature are actually intrinsic to group dynamics, thus occurring for the same parameter values.

In regard to the stability of solutions (patterns), we also remark that the most common
patterns (e.g., stationary pulses describing resting animals, or rotating waves describing travel-
ling/migrating aggregations) are usually stable, and can be observed for longer periods of time
(as shown in Figures 7 and 10). In contrast, the most complex patterns (e.g., standing waves
and modulated standing waves) are usually transient, as shown numerically and analytically
in Figures 7 and 13(b). This raises the question of whether animal aggregations might also
exhibit some complex spatial and spatio-temporal patterns, which are more difficult to identify
experimentally or through observations because of the very short display time.

6.2 Mathematical observations

A rigorous study of the local bifurcation dynamics for equation (1) requires the use of reduction
methods to investigate the bifurcation equations. This was done in [15] (using weakly nonlinear
analysis) for the steady-state and the Hopf bifurcations in model M2. In particular, it was
shown that stationary pulses and travelling waves bifurcate subcritically. More recently, weakly
nonlinear analysis was used to investigate theO(2) Hopf/Hopf mode interaction in model M4 [7],
and partial results about the existence and stability of bifurcating solutions were computed. In
particular, it was shown that the Rotating Waves (RW) and Standing Waves (SW) are subcritical
(and so unstable) near the bifurcation. In this study we also used weakly nonlinear analysis to
obtain the coefficients of the cubic-order truncation of the amplitude equations. These findings
reinforce the idea that observable patterns of (relatively) large amplitude occur as threshold
conditions via hard loss of stability from a subcritical bifurcation, rather than from incremental
steps which arise from supercritical bifurcations.

In order to perform a centre manifold reduction or a Lyapunov-Schmidt reduction on model (1),
we need to check that those methods can be applied for this system of partial differential equa-
tions. For certain classes of first-order semilinear hyperbolic equations (seen for instance in laser
dynamics [35, 30]), spectral results have been obtained, which guarantee the application of the
centre manifold reduction [35]. Also, results about the Fredholmness of the linear operator have
been obtained in order to perform Lyapunov-Schmidt reductions [30]. However, because of the
nonlocal nature of the turning functions, equation (1) does not fall into the category studied in
these papers. In consequence, new results concerning the use of reduction methods for first-order
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hyperbolic equations with nonlocal terms are the subject of future work.
Although the local study of codimension-two bifurcations can yield some results of more

global nature, many of the patterns observed in numerical simulations occur far from equilib-
rium. In particular, we would be interested in continuing the bifurcated solutions (whether
stable or unstable) and observe the symmetry-breaking process, as we vary certain parameters.
A numerical continuation software for equation (1) is being developed by Kovacic [31]. This soft-
ware will permit to trace the emergence of some of the more exotic symmetry-broken patterns
such as traveling breathers and feathers [13], and also possibly the existence of asymptotically
stable robust heteroclinic cycles.
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A Appendix

In the following, we focus on the SS/H case and show the details of the weakly nonlinear analysis
of the spatially homogeneous steady states (u+, u−)=(u∗, u∗). (The aim of this analysis is to
obtain amplitude equations similar to the normal form equations (28)).

Recall that at O(ϵ1), the solution is of the form(
u+1
u−1

)
= α1(T )

(
v11

v12

)
eik1x + β1(T )

(
w11

w12

)
eik4x+iσ4t + β2(T )

(
w21

w22

)
eik4x−iσ4t + c.c.

(A.43)
At O(ϵ2), the nonlinear terms are N2 = (N1

2 ,−N1
2 )
T and E2 = 0, where N1

2 = R1(K̂
− ∗

u+1 )u1 − R1(K̂
+ ∗ u−1 )u1, with u1 = u+1 + u−1 . To keep the length of the exposition as short as

possible, recall that K̂±(k) = K± ∗ eikx, which means K̂+(k) = K̂−(k) and K̂±(k) = K̂∓(−k).
DefineD(k) := K̂+(k)−K̂−(k), F (k) := K̂+(k)+K̂−(k), which meansD(k) ∈ iR and F (k) ∈ R.
Finally, let H1(k) = k4γD(k) + σ4F (k). Therefore,

N1
2 = E(0,2k1)α2

1e
2ik1x + E(σ4,k1+k4)α1β1e

i((k1+k4)x+σ4t) + E(σ4,k1−k4)α1β2e
i((k1−k4)x+σ4t)

+E(−σ4,k1−k4)α1β1e
i((k1−k4)x−σ4t) + E(−σ4,k1+k4)α1β2e

i((k1+k4)x−σ4t) + E(2σ4,2k4)β21e2ik4x+2iσ4t

+E(2σ4,−2k4)β
2
2e

−2ik4x+2iσ4t + E(0,2k4)β1β2 + E(0,0)(|β1|2 − |β2|2) + c.c.
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with

E(0,2k1) = −2D(k1)R1, E(σ4,k1+k4) = −2R1(k4γD(k1) +H1(k4)),

E(σ4,k1−k4) = −2R1(k4γD(k1)−H1(k4)), E(−σ4,k1−k4) = −2R1(k4γD(k1) +H1(k4)),

E(−σ4,k1+k4) = −2R1(k4γD(k1)−H1(k4)), E(2σ4,2k4) = −2k4γR1H1(k4),

E(2σ4,−2k4) = 2R1k4γH1(k4), E(0,2k4) = −4(k4γ)
2D(k4)R1,

E(0,0) = 2k4γσ4F (k4)R1,

where for (a, b) ̸= (0, 0), E(a,−b) = −E(a,b). Note also that E(−a,−b) = E(a,b).
Simple calculations show that N2 + E2 satisfies the Fredholm alternative, that is ⟨û, N2 +

E2⟩ = 0, with û the solution of the adjoint homogeneous problem L∗(û) = 0. Thus, equation
L(u2) = N2 +E2 has a nontrivial solution given by(

u+2
u−2

)
= α3(T )v3e

ik1xf1 + β3(T )w3e
iσ4t+ik4x + β4(T )w4e

iσ4t−ik4x + G(0,2k1)α
2
1e

2ik1x

+G(σ4,k1+k4)α1β1e
i((k1+k4)x+σ4t) + G(σ4,k1−k4)α1β2e

i((k1−k4)x+σ4t)

+G(−σ4,k1−k4)α1β1e
i(k1−k4)x−σ4t) + G(−σ4,k1+k4)α1β2e

i((k1+k4)−σ4t) (A.44)

+G(2σ4,2k4)β
2
1e

2i(k4x+σ4t) + G(2σ4,−2k4)β
2
2e

2i(−k4x+σ4t) + G(0,2k4)β1β2e
2ik4x

+G(0,0)(|β1|2 − |β2|2) + c.c. (A.45)

with G(a,b) = (G1
(a,b),G

2
(a,b))

T . We let

J(a,b) = ia2 − γ2b2i+ 2aL1 −R2γbD(b)−R2aF (b).

Note that J(−a,b) = −J (a,b) and J(a,−b) = J(a,b). Then, for a ̸= 0

G1
(a,b) =

−(a− γb)E(a,b)
J(a,b)

, G2
(a,b) =

(a+ γb)E(a,b)
J(a,b)

.

In particular, using the symmetry properties of the indices of E(a,b) and J(a,b) we have for i = 1, 2

G1
(−a,b) = G2

(a,b). (A.46)

We also define G12
(a,b) := G1

(a,b) + G2
(a,b). Finally,

G1
(0,b) = G2

(0,b) =
−E(0,b)

2iγb+R2D(b)
∈ R, G1

(0,0) = −G1
(0,0) =

−E(0,0)
2L1 −R2F (0)

∈ R.
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At O(ϵ3), the nonlinear terms E3 = (E1
3 , E

2
3)

⊤ and N3 = (N1
3 ,−N1

3 )
T are given by

E3 =

 −∂u+1
∂T −R2(K̂

+
ν ∗ u−1 ) +R2(K̂

−
ν ∗ u+1 )

−∂u−1
∂T +R2(K̂

+
ν ∗ u−1 )−R2(K̂

−
ν ∗ u+1 )



=



−∂α1
∂T v11e

ik1x − ∂β1
∂T w11e

iσ4t+ik4x − ∂β2
∂T w21e

iσ4t−ik4x−
R2

[(
K̂+
ν (k1)v12 − K̂−

ν (k1)v11
)
α1(T )e

ik1x+

β1(T )
(
K̂+
ν (k4)w12 − K̂−

ν (k1)w11

)
eiσ4t+ik4x+

β2(T )
(
K̂−
ν (k4)w22 − K̂+

ν (k4)w21

)
eiσ4t−ik4x

]
+ c.c

−∂α1
∂T v11e

ik1x − ∂β1
∂T w11e

iσ4t+ik4x − ∂β2
∂T w21e

iσ4t−ik4x+

R2

[(
K̂+
ν (k1)v12 − K̂−

ν (k1)v11
)
α1(T )e

ik1x+

β1(T )
(
K̂+
ν (k4)w12 − K̂−

ν (k1)w11

)
eiσ4t+ik4x+

β2(T )
(
K̂−
ν (k4)w22 − K̂+

ν (k4)w21

)
eiσ4t−ik4x

]
+ c.c


and

N1
3 = R1u2(K̂

− ∗ u+1 − K̂+ ∗ u−1 ) +R1u1(K̂
− ∗ u+2 − K̂+ ∗ u−2 )

+S1(u
−
1 − u+1 )

(
K̂+ ∗ (u−1 )2 − 2

∫∞
0 K(s)u−1 (x+ s)u+1 (x− s) ds+ K̂− ∗ (u+1 )2

)
+2T2(K̂

+ ∗ u−1 )(K̂− ∗ u+1 )(K̂+ ∗ u−1 − K̂− ∗ u+1 ).

Substituting the calculated solutions (u+1 , u
−
1 ) and (u+2 , u

−
2 ) into (E3+N3) = (N1

3+E
1
3 ,−N1

3−
E1

3)
⊤ we obtain:

N1
3 + E1

3 = eik1x
[
− dα1

dT
F 1
1 − α1F

2
1 + α1|α1|2F 3

1 + α1|β1|2F 4
1 + α1|β2|2F 5

1

]
+

eiσ4t+ik4x
[
− dβ1
dT

M1
1 − β1M

2
1 + β1|α1|2M3

1 + β1|β1|2M4
1 + β1|β2|2M5

1

]
+

eiσ4t−ik4x
[
− dβ2
dT

N1
1 − β2N

2
1 + β2|α1|2N3

1 + β2|β2|2N4
1 + β2|β1|2N5

1

]
. (A.47)

The second component of the coefficients vectors F j = (F j1 , F
j
2 )

⊤, M j = (M j
1 ,M

j
2 )

⊤ and

N j = (N j
1 , N

j
2 )

⊤, j = 2, 3, 4, 5 is given by

F j2 = −F j1 , M j
2 = −M j

1 , N j
2 = −N j

1 , j = 2, 3, 4, 5. (A.48)

Finally, we have F 1
1 = v11, F

1
2 = v12, M

1
1 = w11, M

1
2 = w12, N

1
1 = w21 and N1

2 = w22. Set
w1p = w11 + w12 and w1m = w11 − w12. To calculate the coefficient vectors F j1 , M

j
1 and N j

1 ,
j ≥ 2, we define the following expressions which appear as parts of the coefficients of monomials
in N1

3 :

A2 = 2w11K̂
−(k1 + k4) + 2w12K̂

+(k1 + k4)− 2w11K̂
+(k1 − k4)− 2w12K̂

−(k1 − k4) ∈ C
(A.49)
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and

b2 = −G1
(0,0)F (0),

b6 = −G1
(0,2k4)

D(2k4),

b7 = G1
(σ4,k1+k4)

K̂−(k1 + k4)− G2
(σ4,k1+k4)

K̂+(k1 + k4),

b8 = G1
(σ4,k1−k4)K̂

−(k1 − k4)− G2
(σ4,k1−k4)K̂

+(k1 − k4),

b9 = G1
(−σ4,k1−k4)K̂

−(k1 − k4)− G2
(−σ4,k1−k4)K̂

+(k1 − k4),

b10 = G1
(−σ4,k1+k4)K̂

−(k1 + k4)− G2
(−σ4,k1+k4)K̂

+(k1 + k4),

b11 = G1
(2σ4,2k4)

K̂−(2k4)− G2
(2σ4,2k4)

K̂+(2k4). (A.50)

Coefficients of the steady-state mode in the N3 + E3 terms:

Denote by Re(K̂(·)) = Re(K̂±(·)) and Im(K̂(·)) = Im(K̂±(·)). The coefficient of α1(T ) is
F 2 = (F 2

1 , F
2
2 )

⊤, with F 2
1 = F 2,r

1 + iF 2,i
1 , F 2

2 = −F 2
1 and

F 2,r = 0, F 2,i = R2v11Dν(k1).

Thus F 2 ∈ iR. The coefficient of α1|α1|2 is F 3 = (F 3
1 , F

3
2 )

⊤, with F 3
1 = F 3,r

1 + iF 3,i
1 , F 3

2 = −F 3
1

and

F 3,r
1 = 0, F 3,i

1 = −3T2

[
3Re(K̂(k1)) + 3Re(K̂(k1))− Im(K̂(3k1))− Im(K̂(3k1))

]
.

The coefficient of α1|β1|2 is F 4 = (F 4
1 , F

4
2 )

⊤, F 4
1 = F 4,r

1 + iF 4,i
1 , F 4

2 = −F 4
1 and

F 4,r
1 = R1Re

(
−H1(k4)G12

(−σ4,(k1−k4)) −H1(k4)G12
(σ4,k1+k4)

+ 2b2 + w1p(b9 + b7)
)
,

F 4,i
1 = R1Im

(
−D(k1)G12

(0,0) −H1(k4)G12
(−σ4,k1−k4) −H1(k4)G12

(σ4,k1+k4)
+ w1p(b9 + b7)

)
−S1w1m(A2 −A2)− 6T2

[
2(w2

11 + w2
12)Im(K̂(k1)) + 2w11w12Im(K̂(k1 − 2k4))

+2w11w12Im(K̂(k1 + 2k4))
]
.

The coefficient of α1|β2|2 is F 5 = (F 5
1 , F

5
2 ), with F

5
1 = F 5,r

1 + iF 5,i
1 , F 5

2 = −F 5
1 and

F 5,r
1 = R1Re

(
H1(k4)G12

(−σ4,k1+k4) +H1(k4)G12
(σ4,(k1−k4)) − 2b2 + w1p(b10 + b8)

)
,

F 5,i
1 = R1Im

(
−D(k1)G12

(0,0) +H1(k4)G12
(−σ4,k1+k4) +H1(k4)G12

(σ4,k1−k4) + w1p(b10 + b8)
)

−S1w1m(A2 −A2)− 6T2

[
2(w2

11 + w2
12)Im(K̂(k1)) + 2w11w12Im(K̂(k1 − 2k4))

+2w11w12Im(K̂(k1 + 2k4))
]
.

Since G12
(−a,b) = G12

(a,b) and b8 + b10 = −(b7 + b9), we then obtain F 4,r
1 = −F 5,r

1 and F 4,i
1 = F 5,i

1 .
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Coefficients of the Hopf mode in the N3 +E3 terms:

The coefficients of the monomials β1, β1|α1|2, β1|β1|2, β1|β2|2 are denoted, respectively, by M j =
(M j

1 ,M
j
2 )
T , j = 2, 3, 4, 5. The coefficients of the monomials β2, β2|α1|2, β2|β2|2, β2|β1|2 are de-

noted, respectively, by N j = (N j
1 , N

j
2 )
T , j = 2, 3, 4, 5. Moreover, M j

2 = −M j
1 and N j

2 = −N j
1

for j = 2, 3, 4, 5. Finally, one can verify that N j
1 = −M j

1 for j = 3, 4, 5, and so we only need to

compute the terms M j
1 for j = 2, 3, 4, 5. Therefore we have

M2,r
1 = −R2Re(w12K̂

+
ν (k4)− w11K̂

−
ν (k4)), M2,i

1 = −R2Im(w12K̂
+
ν (k4) + w11K̂

−
ν (k4)),

N2,r
1 = −R2Re(w22K̂

−
ν (k4)− w21K̂

+
ν (k4)), N2,i

1 = −R2Im(w22K̂
−
ν (k4) + w21K̂

+
ν (k4)),

and

M3,r
1 = R1Re

[
(−D(k1)G1

(σ4,k4−k1) +D(k1)G1
(σ4,k1+k4)

) + 2(b9 + b7)
]
+ 12S1σ4K̂(0)

−6(w11 − w12)T2

[
2Re(K̂(k4))− Re(K̂(k4 + 2k1))− Re(K̂(k4 − 2k1))

]
,

M3,i
1 = R1Im

[
(−D(k1)G1

(σ4,k4−k1) +D(k1)G1
(σ4,k1+k4)

) + 2(b9 + b7)
]
−

6(w11 + w12)T2

[
2Im(K̂(k4))− Im(K̂(k4 + 2k1))− Im(K̂(k4 − 2k1))

]
,

M4,r
1 = R1Re

[
(−H1(k4)G1

(0,0) −H1(k4)G1
(2σ4,2k4)

) + 2γk4(b2 + b11)
]
− S1w1m

(
w2
1pRe(K̂

+(2k4))

+K̂(0)(2(w2
11 + w2

12) + w11w12)
)
− 3T2

[
Re(K̂(k4))

(
w11(w

2
11 + 2w2

12)− w12(2w
2
11 + w2

12)
)

−Re(K̂(3k4))(w12w
2
11 − w2

12w11)
]
,

M4,i
1 = R1Im

[
(−H1(k4)G1

(0,0) −H1(k4)G1
(2σ4,2k4)

) + 2γk4(b2 + b11)
]
− S1w1pw

2
1mIm(K̂+(2k4))−

3T2

[
Im(K̂(k4))

(
w11(w

2
11 + 2w2

12) + w12(2w
2
11 + w2

12)
)
− Im(K̂(3k4))

(
w12w

2
11 + w2

12w11

)]
,

M5,r
1 = R1Re

[
(H1(k4)G1

(0,0) +H1(k4)G1
(0,2k4)

) + 2γk4(−b2 + b6)
]
−

S1

[
2m2

(
(w2

11 + w2
12)K̂(0)− 2w11w12Re(K̂(2k4))

)
+ 2m2

(
K̂(0)(w11 − w12)

2 −

2w11w12Re(K̂(2k4))
)]

− 3T2

[
Re(K̂(k4))w11(2w

2
12 + w2

11)−

Re(K̂(k4))w12(2w
2
11 + w2

12)− Re(K̂(3k4))w
2
11w12 +Re(K̂(3k4))w

2
12w11

]
,

M5,i
1 = R1Im

[
(H1(k4)G1

(0,0) +H1(k4)G1
(0,2k4)

) + 2γk4(−b2 + b6)
]
−

2S1m2

[
w2
12Im( ˆ2k4)− w2

11Im(K̂(2k4))
]
− 3T2

[
Im(K̂(k4))w11(2w

2
12 + w2

11) +

Im(K̂(k4))w12(2w
2
11 + w2

12)− Im(K̂(3k4))(w11)
2w12 − Im(K̂(3k4))(w12)

2w11

]
.
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Cubic Normal Form Equations

The Fredholm alternative requires that N3 + E3 (calculated previously) is orthogonal to the
solution û of the adjoint homogeneous problem L∗(û) = 0. However, some terms in N3 +E3 do
not satisfy the orthogonality condition. By imposing that these terms are zero, it leads to the
following (amplitude) equations:

dα1

dT
= −α1X1 + α1|α1|2X2 + α1|β1|2X3 + α1|β2|2X4, (A.51a)

dβ1
dT

= −β1Y1 + β1|α1|2Y2 + β1|β1|2Y3 + β1|β2|2Y4, (A.51b)

dβ2
dT

= −β2Z1 + β2|α1|2Z2 + β2|β2|2Z3 + β2|β1|2Z4, (A.51c)

with

X1 =
v∗1F

2
1 + v∗2F

2
2

v∗1F
1
1 + v∗2F

1
2

, X2 =
v∗1F

3
1 + v∗2F

3
2

v∗1F
1
1 + v∗2F

1
2

, X3 =
v∗1F

4
1 + v∗2F

4
2

v∗1F
1
1 + v∗2F

1
2

, X4 =
v∗1F

5
1 + v∗2F

5
2

v∗1F
1
1 + v∗2F

1
2

,

Y1 =
w∗

11M
2
1 + w∗

12M
2
2

w∗
11M

1
1 + w∗

12M
1
2

, Y2 =
w∗

11M
3
1 + w∗

12M
3
2

w∗
11M

1
1 + w∗

12M
1
2

, Y3 =
w∗

11M
4
1 + w∗

12M
4
2

w∗
11M

1
1 + w∗

12M
1
2

, Y4 =
w∗

11M
5
1 + w∗

12M
5
2

w∗
11M

1
1 + w∗

12M
1
2

,

Z1 =
w∗

11N
2
1 + w∗

12N
2
2

w∗
11N

1
1 + w∗

12N
1
2

, Z2 =
w∗

11N
3
1 + w∗

12N
3
2

w∗
11N

1
1 + w∗

12N
1
2

, Z3 =
w∗

11N
4
1 + w∗

12N
4
2

w∗
11N

1
1 + w∗

12N
1
2

, Z4 =
w∗

11N
5
1 + w∗

12N
5
2

w∗
11N

1
1 + w∗

12N
1
2

.

The Xj terms: Since F j2 = −F j1 , j = 2, 3, 4, 5, then the Xj terms (with j = 1, 2, 3, 4) can be
re-written as

Xj =
F j+1
1 (v∗1 − v∗2)

v11(v∗1 + v∗2)
.

Recall that v∗1 = 1, v∗2 = γik1−L1+R2K̂+(k1)

−L1+R2K̂+(k1)
, and thus we have

v∗1 − v∗2 =
R2(K̂

+(k1)− K̂−(k1))

L1 −R2K̂−(k1)
and v∗1 + v∗2 =

2L1 −R2(K̂
+(k1) + K̂−(k1))

L1 −R2K̂−(k1)
.

Moreover, since F 4,r = −F 5,r and F 4,i = F 5,i, the real and imaginary parts of X3 = Xr
3 + iXi

3

and X4 = X4
4 + iXi

4 are

Xr
3 =

F 4,iR2Im(K̂+(k1)− K̂−(k1))

v11

(
2L1 − 2R2Re(K̂+(k1) + K̂−(k1))

) = Xr
4 ,

Xi
3 = − F 4,rR2Im(K̂+(k1)− K̂−(k1))

v11

(
2L1 − 2R2Re(K̂+(k1) + K̂−(k1))

) = −Xi
4.

Therefore, the real parts of X3 and X4 are equal, while the imaginary parts have opposite signs,
as in the normal form equations.



41

The Yj, Zj terms: since M j = −N j , M j
1 = −M j

2 , N
j
1 = −N j

2 , and w
∗
11 = w∗

12 = 1, w∗
22 =

1
w∗

12
, we can write (for j = 2, 3, 4):

Yj =
w∗

11M
j+1
1 + w∗

12M
j+1
2

w∗
11M

1
1 + w∗

12M
1
2

=
M j+1

1 (1− w∗
12)

w11 + w12w∗
12

,

Zj =
w∗

21N
j+1
1 + w∗

22N
j+1
2

w∗
21N

1
1 + w∗

22N
1
2

=
N j+1

1 (1− w∗
22)

N1
1 + w∗

22N
1
2

=
N j+1

1 (1− 1
w∗

12
)

w21 +
1
w∗

12
w11

= −N
j+1
1 (1− w∗

12)

w11 + w∗
12w12

= Yj .

Thus, the coefficients of the two Hopf equations are equal.
To compare these amplitude equations with the normal form equations, let us split the

coefficients into real and imaginary parts: Yj = Y r
j + iY i

j and Zj = Zrj + iZij , j = 1, 2, 3, 4:

Y r
j =M j+1,r

1

(w∗
11 − w∗

12)

(w∗
11w11 + w∗

12w12)
, Y i

j =M j+1,i
1

(w∗
11 − w∗

12)

(w∗
11w11 + w∗

12w12)
,

Zrj = N j+1,r
1

(w∗
11 − w∗

12)

(w∗
11w11 + w∗

12w12)
, Zij = N j+1,i

1

(w∗
11 − w∗

12)

(w∗
11w11 + w∗

12w12)
,

with M j,r
1 , M j,i

1 , N j,r
1 and N j,i

1 the real and imaginary components calculated previously. Com-
paring these terms with the normal form terms leads to:

Xr
1 = −(p1λ(0)λ), Xr

2 = p1N0
(0), Xr

3 = p1N1
(0) = Xr

4 , Xi
3 = p2 = −Xi

4,

Y r
1 = −(a+ q1λ(0)λ), Y r

2 = q1N0
(0), Y r

3 = q1N1
(0), Y r

4 − Y r
3 = q3(0),

Y i
1 = −(q2(0) + q2λ(0)λ)− (1 + τ), −Y i

2 = q2N0
(0), −Y i

3 = q2N1
(0), −(Y i

4 − Y i
3 ) = q4(0),

Zrj = Y r
j , Zij = Y i

j , j = 1, 2, 3, 4. (A.52)

Finally, set λ = Re(X1r) and solve Qa as a function of λ and Qr. Substitute in Re(Y1r) and
normalize the Qr term to a. Therefore, Theorem 5.1 holds true.

References

[1] T. Allen and I.M. Moroz. Hopf-Hopf and Hopf-Steady mode interactions with O(2) sym-
metry in Langmuir circulations. Geophys. Astrophys. Fluid Dynamics, 85:243–278, 1997.

[2] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte,
A. Orlandi, G. Parisi, A Procaccini, M. Viale, and V. Zdravkovic. Interaction ruling animal
collective betavior depends on topological rather than metric distance: evidence from a
field study. Proc. Natl. Acad. Sci., 105(5):1232–1237, 2008.

[3] M. Beekman, D. J. T. Sumpter, and F. L. W. Ratnieks. Phase transitions between disor-
dered and ordered foraging in Pharaoh’s ants. Proc. Natl. Acad. Sci., 98(17):9703–9706,
2001.



42

[4] C.M. Breder. Equations descriptive of fish schools and other animal aggregations. Ecology,
35:361–370, 1954.

[5] H. Brumm. Causes and consequences of song amplitude adjustment in a territorial bird:
a case study in nightingales. Annal of the Brazilian Academy of Sciences, 76(2):289–295,
2004.

[6] J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller, and S. J.
Simpson. From disorder to order in marching locusts. Science, 312:1402–1406, 2006.

[7] P-L. Buono and R. Eftimie. Analysis of Hopf/Hopf bifurcations in nonlocal hyperbolic
models for self-organised aggregations. Math. Models Methods Appl. Sci., 24(2):327–357,
2014.

[8] A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, and
R. Tavarone. From empirical data to inter-individual interactions: unveiling the rules of
collective animal behavior. Math. Models Methods Appl. Sci., 20:1491–1510, 2010.

[9] Y.-L. Chuang, M.R. D’Orsogna, D. Marthaler, A.L. Bertozzi, and L.S. Chayes. State
transitions and the continuum limit for a 2D interacting, self-propelled particle system.
Physica D, 232:33–47, 2007.

[10] I. D. Couzin, J. Krause, R. James, G.D. Ruxton, and N. R. Franks. Collective memory and
spatial sorting in animal groups. J. Theor. Biol., 218:1–11, 2002.

[11] R. Eftimie. Modeling group formation and activity patterns in self-organizing communities
of organisms. PhD thesis, University of Alberta, 2008.

[12] R. Eftimie. Hyperbolic and kinetic models for self-organised biological aggregations and
movement: a brief review. J. Math. Biol., 65(1):35–75, 2012.

[13] R. Eftimie, G. de Vries, and M. A. Lewis. Complex spatial group patterns result from
different animal communication mechanisms. Proc. Natl. Acad. Sci., 104(17):6974–6979,
2007.

[14] R. Eftimie, G. de Vries, M. A. Lewis, and F. Lutscher. Modeling group formation and
activity patterns in self-organizing collectives of individuals. Bull. Math. Biol., 69(5):1537–
1566, 2007.

[15] R. Eftimie, G. de Vries, and M.A. Lewis. Weakly nonlinear analysis of a hyperbolic model
for animal group formation. J. Math. Biol., 59:37–74, 2009.

[16] R. Fetecau and R. Eftimie. An investigation of a nonlocal hyperbolic model for self-
organization of biological groups. J. Math. Biol., 61(4):545–579, 2010.

[17] S.E. Folias. Nonlinear analysis of breathing pulses in a synaptically coupled neural network.
SIAM J. Applied Dynamical Systems, 10(2):744–787, 2011.



43

[18] M. Golubitsky and I. Stewart. The Symmetry Perspective: from equilibrium to chaos in
phase space and physical space. Birkhäuser, Basel, 2002.
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[39] J.K. Parrish, S.V. Viscido, and D. Grünbaum. Self-organised fish schools: an examination
of emergent properties. Biol. Bull., 202:296–305, 2002.

[40] H. Pomeroy and F. Heppner. Structure of turning in airborne rock dove (Columba Livia)
flocks. The Auk, 109:256–267, 1992.

[41] W. K. Potts. The chorus-line hypothesis of manoeuvre coordination in avian flocks. Nature,
309:344–345, 1984.

[42] D. V. Radakov. Schooling in the ecology of fish. John Willey & Sons Inc, New York, 1973.

[43] S. Springer. Some observations of the behavior of schools of fishes in the gulf of mexico and
adjacent waters. Ecology, 38:166–171, 1966.

[44] C. M. Topaz and A. L. Bertozzi. Swarming patterns in a two-dimensional kinematic model
for biological groups. SIAM J. Appl. Math, 65(1):152–174, 2004.

[45] C. M. Topaz, A. L. Bertozzi, and M. A. Lewis. A nonlocal continuum model for biological
aggregation. Bull. Math. Biol., 68:1601–1623, 2006.

[46] C. M. Topaz, M.R. D’Orsogna, L. Edelstein-Keshet, and A.J. Bernoff. Locust dynamics:
behavioral phase change and swarming. PLoS, Comput. Biol., 8:e1002642, 2012.

[47] K. Warburton and J. Lazarus. Tendency-distance models of social cohesion in animal
groups. J. Theor. Biol., 150:473–488, 1991.

[48] J.L. Yorzinski and G.L. Patricelli. Birds adjust acoustic directionality to beam their anti
predatory calls to predators and conspecifics. Proc. R. Soc. B, 277(1683):923–932, 2010.


