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Tale of two transcription factors: NF-jB and HIF crosstalk
D Bandarra, S Rocha*

Abstract
Introduction 
Hypoxia-inducible factor is a key 
transcriptional factor involved in 
the cellular response to low levels of 
oxygen, hypoxia. Moreover, hypoxia-
inducible factor has been recently as-
sociated with a role in inflammation 
and immunity. Importantly, hypoxia-
inducible factor is regulated by the 
major inflammatory responsive tran-
scription factor, nuclear factor-κB. 
These two major pathways have been 
intimately linked. On one hand, they 
share a number of common target 
genes; on the other hand, physi-
cal interactions between hypoxia-
inducible factor subunits and nuclear 
factor-κB  have been observed. Even 
though the role of nuclear factor-κB 
over hypoxia-inducible factor  is fair-
ly well-known, the involvement of  
hypoxia-inducible factor over the nu-
clear factor-κB  pathway is not. Given 
the overlap between these pathways, 
it would not be surprising to find a 
functional involvement of hypoxia-
inducible factor in processes where 
nuclear factor-κB is involved. In this 
review, we will describe the commu-
nalities between hypoxia-inducible 
factor and nuclear factor-κB path-
ways, highlighting the crosstalk that 
occurs in a variety of conditions.
Conclusion 
Taken together all the communali-
ties between hypoxia-inducible 
factor and nuclear factor-κB path-
ways, there is no doubt that a cross-

talk occurs, which can potentially 
bring new insights for therapeutic 
intervention in situations of disease 
such as cancer, stroke or rheumatoid  
arthritis.

Introduction
Oxygen is essential for multicellu-
lar organisms. As such, being able 
to respond to variations in oxygen 
availability is a requirement for the 
survival and homoeostasis of the 
organism. Sensing and responding 
appropriately to oxygen changes is 
important for a variety of impor-
tant physiological processes, which 
include high altitude living, intense 
exercise and embryo development. 
However, lowering of the oxygen con-
centration or availability (hypoxia) is 
part and/or contributes to a number 
of human pathologies, such as cancer, 
stroke/infarction, diabetes and age-
ing1–2. Understanding the molecular 
mechanisms controlling the cellular 
response to hypoxia is, therefore, 
of great importance. One master 
regulator of the cellular response to 
oxygen changes is the family of tran-
scription factors, hypoxia-inducible 
factor (HIF). However, HIF activity 
has been associated with additional 
stimuli that do not involve changes in 
oxygen, such as infection and inflam-
mation3. These findings led to the 
discovery that HIF is controlled by a 
transcription factor, mostly involved 
in immune responses, nuclear factor-
κB (NF-κB). In this review, we will 
highlight the shared features of these 
transcription factors, from activating 
stimulus to common targets.

Discussion
The authors have referenced some 
of their own studies in this review. 

The protocols of these studies have 
been approved by the relevant ethics 
committees related to the institution 
in which they were performed.

HIF pathway
At the molecular level, the cellular 
response to hypoxia relies on HIF. 
HIF was first identified in 1995 to-
gether with hypoxia response el-
ement (HRE, 5ʹ-RCGTG-3ʹ) of the 
erythropoietin gene (EPO). Further 
studies revealed that HIF is actually 
a heterodimeric complex comprising 
an α- and a β-subunit, which exist as 
a series of isoforms: -1α, -2α, and 3α. 
HIF-1α is constitutively expressed, 
while HIF-2α and HIF-3α expression 
is restricted to a subset of tissues. 

Even though HIF-1β expression 
and protein are not dependent on 
oxygen changes, HIF-α subunits are 
extremely labile at normal oxygen 
levels. This occurs mostly at the pro-
tein level, with HIF-α half-life being 
very short (~ 5 min), while tran-
scription changes in response to oxy-
gen have not been widely reported 
thus far. 

The activity of the complex HIF-1α–
HIF-1β is determined by the stabilisa-
tion of the α subunit during hypoxia. 
In the presence of oxygen (normoxia), 
HIF-α is regulated by a class of dioxy-
genases called prolyl hydroxylases 
(PHDs), of which four isoforms have 
been identified so far (PHD1, PHD2, 
PHD3 and PHD4). These proteins use 
iron, 2-oxoglutarate, ascorbate and 
molecular oxygen as co-factors to cat-
alyse the hydroxylation of HIF-α. The 
hydroxylation of specific prolyl resi-
dues promotes the interaction of HIF 
with von Hippel-Lindauprotein (VHL) 
containing E3 ligase complex, which 
mediates proteasomal-mediated 
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much lower levels of oxygen when 
compared to PHD-mediated regu-
lation4. This offers the cell an ad-
ditional level of control over HIF, 
highlighting the importance of cor-
rect control over this system. To 
date, HIF has more than 100 target 
genes identified, involved in key cel-
lular processes such as angiogenesis, 
glucose/energy metabolism and cell 
growth/apoptosis. Of these, genetic 
studies have demonstrated that 40% 
of HIF-dependent genes are also reg-
ulated by FIH5.

NF-κB pathway
NF-κB is the collective name for a 
family of transcription factors that 
include RelA (p65), RelB, c-Rel, NF-
κB1 (p105/p50) and NF-κB2 (p100/
p52). NF-κB is normally held inactive 
in the cytoplasm by the IκB family of 
inhibitory proteins. However, in the 
presence of a stress stimulus, such 
as the inflammatory cytokine tu-
mour necrosis factor-α (TNF-α), IκB 
is phosphorylated by the IκB kinase 
(IKK) complex. This creates a rec-
ognition motif for the Skp1-Cul1-F 
box (SCF)–βTRCP(beta-transducin 
repeat containing) complex, which 
promotes lysine 48 ubiquitination 
and proteasomal degradation. Degra-
dation of IκB results in NF-κB dimer 
release and translocates into the nu-
cleus (Figure 2). 

There are three major pathways 
leading to NF-κB activation: (1) the 
canonical, (2) the non-canonical, and 
(3) atypical pathways (Figure 2). The 
canonical pathway is activated by ex-
ternal ligands binding to a specific 
membrane receptor, resulting in the 
recruitment of a number of adap-
tor molecules and activation of the 
TAK1–IKK complex. Upon activation, 
IKK mediates the phosphorylation of 
IκBα at Ser 32 and 36, which signals 
it for proteasomal degradation. This 
results in NF-κB dimer release and 
translocation into the nucleus. 

In the non-canonical pathway, li-
gand binding results in the activation 
of NIK, which leads to the activation 

inhibiting HIF (FIH) takes place at 
the transactivation domain of HIF-α. 
This hydroxylation prevents the 
association of the transcriptional 
co-activators p300/CBP, and con-
sequently HIF activation (Figure 1). 
FIH-mediated repression occurs at 

degradation (Figure 1). Thus, when 
oxygen levels are reduced or any of 
the PHD’s co-factors are not available, 
there is an increase in HIF-α subunit 
levels due to inhibition of PHD activity. 

An extra oxygen-dependent hy-
droxylation event mediated by factor 

Figure 1: Hypoxia-inducible factor pathway. The HIF system and its regulation 
are shown in the figure. In the presence of oxygen (e.g. during normoxia), 
PHDs bind to HIF-α and catalyse the hydroxylation of specific proline residues 
within the ODD domain (Pro402 and Pro564). Once hydroxylated, HIF-α binds 
rapidly to the VHL tumour-suppressor protein (an E3 ligase), which results in 
its polyubiquitination. This targets HIF-α for proteasome-mediated degradation. 
An extra oxygen-dependent hydroxylation event takes place on HIF-α, which 
concerns a single asparagine residue within the C-terminal transactivation 
domain (Asn803). Asparagine hydroxylation is mediated by FIH, and this 
modification prevents the association between HIF-α and p300/CBP (not shown). 
In the presence of low oxygen, HIF-α is stabilised and can translocate to the 
nucleus. HIF-α dimerises with its partner HIF-1β and transactivates target genes 
containing hypoxia responsive elements (A/GCGTG). Note: Molecules are not 
drawn to scale. bHLH, basic helix–loop–helix; CTAD, C-terminal transactivation 
domain; FIH, factor inhibiting HIF; NLS, nuclear localisation signal; ODD, oxygen-
dependent-degradation domain; PAS, Per/ARNT/Sim domain; PHD, prolyl 
hydroxylases; VHL, von Hippel–Lindau tumour-suppressor protein. 
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All the NF-κB subunits share a Rel 
homology domain responsible for 
DNA binding and dimerisation. These 
transcription factors bind to κB sites 
in promoters and enhancers of a va-
riety of genes, inducing or repressing 
accordingly with the cellular context. 
The specificity of target genes acti-
vation is achieved, not only through 
the combination of the different NF-
κB dimers, but also by the forma-
tion of complexes with co-activators 
and co-repressors, and with other 
transcription factors, such as STATs 
(Signal transducer and activator of 
transcription), c-Fos, c-Jun, AP-1, and 
interestingly HIF7. NF-κB regulates 
several crucial cellular pathways, 
such as proliferation, apoptosis, an-
giogenesis and metastasis. It is also 
known that aberrant activation of 
NF-κB is associated with many dis-
eases, namely cancer. 

HIF and NF-κB physical crosstalk
Several reports have discussed 
the physical interaction between 
components of the HIF and NF-κB 
pathways. HIF-2α was the first HIF 
subunit to be shown to interact with 
NF-κB8. Here, it was shown that HIF-
2α, but not HIF-1α, interacts with 
the NF-κB regulatory subunit IKKγ 
(ΝΕMΟ) in vitro. Furthermore, it was 
also shown that this interaction en-
hances HIF-2α transcription activity 
in normoxia. 

IκB, p100 and p105 have been 
shown to be hydroxylated by FIH9,  
and a possible functional crosstalk 
between PHDs and IKK activation has 
also been postulated10. However, the 
physiological setting for these obser-
vations has not yet been investigated. 

HIF-1β was also shown to interact 
physically with NF-κB11. In CD30-
stimulated cells, HIF-1β was shown 
to interact with RelB and p52 subu-
nits. HIF-1β binding to RelB was 
also shown to be important on RelB 
bound to NF-κB-responsive promot-
ers11. HIF-2α and HIF-1β are not the 
only HIF subunits interacting with 
NF-κB; HIF-1α has recently been 

manner, leading to either IKK-de-
pendent or -independent modes of 
NF-κB release. In the majority of 
these, IκB is not degraded but disso-
ciated from the NF-κB dimer due to 
modification of IκB proteins6.

of IKKα resulting in the processing of 
p100 to p52 and binding to RelB. p52/
RelB is then able to translocate into 
the nucleus and activate target genes. 

In the atypical pathway, NF-κB is 
activated in a ligand-independent 

Figure 2: NF-κB pathway. Canonical Pathway: The presence of a ligand, such 
as TNF-α, results in the activation of TAK1–IKK complex, which mediates 
the phosphorylation of IκB, which signals it for proteasomal degradation. 
This results in NF-κB dimer release and translocation into the nucleus. Non-
canonical pathway: In the presence of a ligand binding, such as LT-β, NIK is 
activated, which leads to the activation of IKKα. The activation of IKKα results 
in the processing of p100 to p52 and binding to RelB. p52/RelB are then able to 
translocate into the nucleus and activate target genes. Atypical pathway: NF-κB 
is activated in ligand-independent manner, leading to either IKK-dependent or 
-independent modes of NF-κB release. In majority of these, IκB is not degraded 
but dissociation from the NF-κB dimer is possible due to modification of IκB 
proteins (not shown).
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related proteins such as Noxa and 
BNIP3, and other important cellular 
proteins such as PKM2, Tert, Cyclin 
D1, and Cox-2 are also shared HIF 
and NF-κB targets. However, it is not 
known if these genes are targeted 
by these transcription factors at the 
same time or independently of each 
other. Furthermore, whether these 
genes are co-regulated following a 
shared activating stimulus is also un-
clear. Further work is thus needed to 
answer these important questions.

HIF and NF-κB functional 
crosstalk, common regulators
Several proteins have been associated 
in the modulation of both HIF and NF-
κB pathways. One example is tumour 
necrosis factor receptor associated 
factor 6 (TRAF6). TRAF6 is a crucial 
signalling mediator involved in the 
regulation of several physiological 
processes, such as adaptive and in-
nate immunity, development of differ-
ent tissues, and bone metabolism26. 
TRAF6 is an E3-ligase for K63-linked 
polyubiquitination together with the 
E2 enzyme complex that consists of 
UBC13 and UEV1A27. The ubiquit-
ination by TRAF6 induces NF-κB by 
activating TAK1 kinase, which phos-
phorylates IKKβ leading to IKK acti-
vation28. Recently, TRAF6 has been 
shown to regulate HIF-1α expression 
independent of NF-κB29. TRAF6 was 
shown to promote K63 ubiquitination 
of HIF-1α, which results in increased 
protein stability and activity29.

Another point of crosstalk between 
HIF and NF-κB is through the F-box 
and WD repeat domain-containing 
7 (FBW7). FBW7 is a component of 
SCF box ubiquitin ligase responsi-
ble for targeting several apoptosis-, 
growth- and proliferation-related 
proteins, such as cyclin E, c-Myc and 
Notch30. FBW7 was shown to target 
HIF-1α for degradation in hypoxia 
through a mechanism involving phos-
phorylation of HIF by glycogen syn-
thase kinase 3β (GSK3β), followed by 
ubiquitination and proteasomal deg-
radation31. Furthermore, it has been 

Interestingly, we also have revealed 
a mechanism where IκBα ubiquit-
ination is prevented by hypoxia, and 
sumoylation on lysine 21 through 
Sumo-2/3 takes place, resulting in 
NF-κB activation6. Sumoylation is not 
only important in activating NF-κB, 
but also to stabilise HIF in hypoxia. 
It has been reported in mice the role 
for SENP1, a Sumo protease, a modu-
lator of EPO production by regulating 
HIF-1α stability during hypoxia. HIF 
is sumoylated in hypoxia, promoting 
its interaction with VLH and conse-
quent degradation through the pro-
teasome16. Furthermore, HIF-2α is 
also a target of sumoylation, which 
reduces its transcription activity17. It 
has recently been shown that VHL is 
inactivated through sumoylation by a 
SUMO E3 ligase in hypoxia18.

Although most of the knowledge 
regarding HIF has been derived from 
studies following hypoxic stress, 
HIF-α stabilisation has also been 
found in non-hypoxic settings, such 
as relatively well-oxygenated regions 
of tumours, and in diseases such 
as rheumatoid arthritis and diabe-
tes19–20.HIF has been shown to be 
induced in response to growth fac-
tors (e.g. insulin-like growth factor 1 
and platelet-derived growth factor), 
cytokines (e.g. TNF-α and IL-1 (In-
terleukin-1)), ROS (Reactive Oxygen 
Species), all of which are activators 
of the transcription factor NF-κB3,21. 
Furthermore, our and other labora-
tories have shown that NF-κB is a di-
rect modulator of HIF expression by 
regulating basal, TNF-α and hypoxia-
induced HIF expression3,22–23.

An additional level of functional 
crosstalk resides in the number of 
common target genes. Perhaps, the 
most well-studied gene activated 
by HIF and NF-κB is VEGF (Vascular 
Endothelial Growth Factor), a po-
tent angiogenic growth factor24–25. 
Apart from VEGF, many important 
genes are regulated by HIF and NF-
κB (Table 1). These include cytokines 
and chemokines, such as TNF-α, IL-
1β and IL-8. In addition, cell death 

shown to interact with RelA in EGF-
induced cells12. The authors showed 
that EGF-induced HIF-1α interacts 
with RelA, and this interaction is cru-
cial for RelA bound to the PKM pro-
moter, and PKM2 expression. Fur-
thermore, HIF-1α is a co-activator 
of PKM2 transcription, and plays an 
important role in aerobic glycolysis 
and tumour growth12.

Thus far, no reports exist to prove 
interactions between the addition-
al NF-κB family members and HIF 
subunits. In addition, whether the 
reported physical associations are 
also evident under hypoxia and/or 
inflammation conditions is also not 
clear. Furthermore, additional work 
is necessary to determine if the phys-
ical interaction between NF-κB and 
HIF subunits is DNA-dependent or 
if indeed it is the result of protein–
protein interactions. Nevertheless, 
given the reports on the physical 
crosstalk between HIF and NF-κB, 
it is likely that a functional involve-
ment of HIF over the NF-κB pathway 
happens, and therefore it will be im-
portant to study the physiological 
relevance of these interactions in a 
cellular context. 

HIF and NF-κB functional 
crosstalk, shared targets and 
activating stimuli
Even though HIF is the central tran-
scription factor in response to hy-
poxia in the cell, other proteins have 
been reported to have an important 
role in the hypoxic response13. Sever-
al reports have shown that NF-κB is 
activated during hypoxia6,14. Our lab-
oratory has investigated the mecha-
nism by which NF-κB is initially 
activated in hypoxia; we showed that 
IKK and TAK1 are induced in hypoxia 
independent of the molecular oxygen 
sensors, PHD1 to 3, or HIF-1α. IKK 
and TAK1 are activated by a mecha-
nism involving Ca2+/calmodulin- 
dependent protein kinase II (CaMKII), 
which had been already implicated 
in response to hypoxia-ischaemia 
during brain development in vivo15. 
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shown that FBW7 associates physi-
cally with HIF-1α, and this results in 
HIF-α degradation, and control of the 
hypoxia response in vivo32. Our own 
work, in collaboration with Sangfelt’s 
laboratory, has shown that FBW7 in-
teracts directly with p100 via a con-
served degron and that it promotes 
degradation of p100 through the 
GSK3β in phosphorylation-dependent 
manner. This interaction also affects 
the complex between the active form 
of p100, p52, and RelB, which con-
sequently changes the apoptotic bal-
ance in the cell30. However, what is 
the contribution of FBW7-mediated 
regulation of NF-κB towards the regu-
lation of HIF-1α is not yet known. Fur-
ther work will be needed to detangle 
this intense crosstalk.

HIF protein regulation is medi-
ated by the tumour suppressor VHL. 
VHL promotes K48 ubiquitination of 
HIF-α subunits in normoxia25. VHL 
has also been shown to negatively 
regulate NF-κB activity33 and HIF-
independent mechanisms have been 
put forward34. With further research 
being conducted, it is very likely that 
additional common regulators will 
be identified.

Conclusion
The crosstalk between HIF and NF-
κB pathways is extensive and in-
tensive (Figure 3). From physical to 
functional interactions in response 
to many common stimuli, it is pos-
sible to speculate that this crosstalk 
helps coordinate the cellular re-
sponse adopted by the cell. With the 
overlap of these common regulators 
of HIF and NF-κB would not be sur-
prising to find a functional involve-
ment of HIF in processes where NF-
κB is involved, such as infection and 
inflammation. Taken together all the 
communalities between HIF and NF-
κB pathways, there is no doubt that 
a crosstalk occurs which can poten-
tially bring new insights for thera-
peutic intervention in situations of 
disease, including cancer, stroke and 
inflammatory conditions. 

Table 1 Shared target genes between HIF and NF-jB. Here is shown the list of 
genes and their function, described as targets of both HIF and NF-jB transcrip-
tion factors 

Gene Symbol Function
ABCB1 P-glycoprotein-drug resistance
ASPH Aspartyl-beta-hydroxylase
BCL2L11 Pro-apoptotic Bcl-2 homolog
BNIP3 Hypoxia-inducible death factor
CCND1 Cyclin D1
CDKN1A Cyclin-dependent kinase inhibitor
EDN1 Vasoconstrictor peptide/mitogen
ENG Endothelial cell membrane glycoprotein
ENO2 Enolase 2 gamma
EPO Erythropoietin
FN1 Extracellular attachment
GAD1 Glutamic acid decarboxylase
GADD45B DNA repair/cell cycle
HMOX1 Hemeoxygenase
IGFBP1 Insulin-like growth factor binding protein-1
IGFBP2 Insulin-like growth factor binding protein-2
IL1B Interleukin-1β
IL8 Interleukin-8α chemokine
IRF1 Interferon regulatory factor-1
KLF10 TGF-β early response gene
MYLK Myosin light chain kinase
NOS2A Inducible nitric oxide synthase
NR3C1 Glucocorticoid receptor
PGK1 Phosphoglycerate kinase 1
PIGF Placenta Growth Factor
PIM1 Ser/Thr kinase
PMAIP1 Pro-apoptotic member of the Bcl-2 protein family
PPP5C Protein phosphatase 5
PTGS2 Cyclooxygenase
PTPN13 Protein phosphatase
SERPINE1 Plasminogen activator inhibitor
SLC16A1 Monocarboxylate transporter isoform 1
SLC6A6 Taurine Uptake Transporter
TERT Telomerase catalytic subunit
TF Transferrin
TFF3 Peptide in response to gut irritation
TFR1 Transferrin Rceptor
TGM2 Tissue transglutaminase
UCP2 Uncoupling protein-2
UGCGL1 Glycosphingolipid
VEGF Vascular endothelial growth factor
VIM Intermediate filament protein
WT1 Zinc finger transcription factor
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Figure 3: HIF and NF-κB crosstalk. In this figure, communalities between HIF 
and NF-κB pathways have been shown, which highlight the crosstalk that occurs 
in a variety of conditions (common stimuli). Some of the shared target genes 
between HIF and NF-κB (common target genes) as well as some regulators of 
both pathways, and protein interactions described so far between HIF and NF-
κB are also shown.
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