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Defining the prognosis of renal cell carcinoma (RCC) using genetic tests is an evolving area. The prognostic significance of 9p
status in RCC, although described in the literature, remains underutilised in clinical practice. The study explored the causes of
this translational gap. A systematic review on the significance of 9p status in RCC was performed to assess its clinical applicability
and impact on clinical decision-making. Medline, Embase, and other electronic searches were made for studies reporting on 9p
status in RCC. We collected data on: genetic techniques, pathological parameters, clinical outcomes, and completeness of follow-up
assessment. Eleven studies reporting on 1,431 patients using different genetic techniques were included. The most commonly used
genetic technique for the assessment of 9p status in RCC was fluorescence in situ hybridization. Combined genomic hybridisation
(CGH), microsatellite analysis, karyotyping, and sequencing were other reported techniques. Various thresholds and cut-off values
were used for the diagnosis of 9p deletion in different studies. Standardization, interobserver agreement, and consensus on the
interpretation of test remained poor. The studies lacked validation and had high risk of bias and poor clinical applicability as
assessed by two independent reviewers using a modified quality assessment tool. Further protocol driven studies with standardised
methodology including use of appropriate positive and negative controls, assessment of interobserver variations, and evidenced
based follow-up protocols are needed to clarify the role of 9p status in predicting oncological outcomes in renal cell cancer.

1. Introduction

There are a number of challenges in renal cell carcinoma
(RCC) management owed to the lack of biomarkers for early
diagnosis and prognosis. Approximately 30% of patients have
metastasis at the time of diagnosis [1] and 30% develop
metastatic disease on followup after radical surgery for
clinically localized disease [1, 2]. Metastatic spread has vari-
able natural history with unpredictable response to targeted
therapy. On the other hand, the prognosis of locally advanced
nonmetastatic RCCs (pT3N0MO) exhibits a large variation
between patients with 50% cancer specific mortality at 5
years. Furthermore, a significant shift in the stage at diagnosis

has been observed in the past two decades with more
number of small renal masses (SRMs) (<4 cm) being diag-
nosed [3]. Current methods such as pathological parameters
from biopsies, measuring the lesion growth rate on serial
cross-sectional imaging, have been shown to be inaccurate
for predicting the true natural history of SRMs [4-6]. A
consensus realization is emerging, that there is a need for
reliable prognostic indicators, which then can be integrated
along with other established parameters into a model for risk
stratification as well as guiding clinical decision-making.
Cytogenetic subtyping plays an important role in RCC
by characterizing sporadic clear cell RCC (ccRCC) with loss
of 3p [7, 8] and papillary RCC (pRCC) with gain of chro-



mosomes 7 and 17 [9, 10]. The integration of cytogenetic
testing with the histopathology enhances diagnostic accuracy
of renal tumour biopsies [11-13].

The prognostic role of genetic aberrations has been exp-
lored in many studies investigating chromosomal copy num-
ber aberrations (CNAs) in relation to pathological parameters
and clinical outcomes [14-16]. One of the most frequent
nonrandom chromosomal CNAs confirmed in ¢ccRCC is 9p
deletion [17-20]. The significance of chromosome 9p has
been reported in several studies and has been suggested as
a marker of RCC aggressiveness [7, 21-28]. Two overlapping
studies, from the same institution, suggested that integration
of 9p status into prognostic models could improve the
predictive accuracy of ccRCC specific survival to 89% [16,
29]. There are, however, a number of factors which rem-
ain unclear, such as consensus on the genetic method
employed to detect 9p status, its clinical applicability, and cost
implications. Thus, there is an urgent need to gain insight into
the role of chromosome 9p status and its clinical applicability
through a systematic synthesis of the reported literature in
order to guide health care decision-makers, patients, and
organizational managers involved in the care of RCC.

We aimed to systematically appraise and interpret the
reported evidence on the prognostic value of chromosome 9p
deletion in RCC by following a set of objectives:

(i) Evaluate the various genetic techniques employed to
assess chromosome 9p status in RCC including risk
of bias and concerns for clinical applicability.

(ii) Evaluate the correlation between chromosome 9p
status and pathological parameters.

(iii) Evaluate the impact of chromosome 9p deletion
on disease free survival (DFS) and cancer specific
survival (CSS) in RCC.

2. Methods

2.1. Search Strategy and Study Eligibility Criteria. We under-
took a systematic review of the RCC literature published bet-
ween 1 January 1990 and the last date of search on 25
September 2013 in the online databases such as Medline,
Embase, and PubMed. The terms used for search were ((chro-
mosome 9) OR (fluorescence in situ hybridization) OR
(comparative genomic hybridization) OR (cytogenetic) OR
(microsatellite) OR (karyotyping) OR (9p loss) OR (9p
deletion) OR (loss of heterozygosity) OR (sequencing)) AND
“renal cell carcinoma” [MeSH] AND (Humans [Mesh] AND
English [lang] AND adult [MeSH]). In addition, reference
lists were checked for relevant published studies for inclusion.
Studies in English language were included, if they evaluated
one or more genetic techniques assessing chromosome 9p
status in adult participants (age >18) of any gender with any
RCC subtype. For clinical outcome assessment, studies with
atleast 3 years of followup were included. We arbitrarily chose
3 years to allow an estimation of the discriminative ability of
the 9p status between those with poor and good oncological
outcomes. We excluded case reports and studies reporting on
participants with nonrenal tissue or on urothelial carcinoma.
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The latest report was included if there was more than one
report from the same institution, provided methodology was
the same and reviewers felt that there is a possible overlap of
study participants reported.

2.2. Data Analysis and Management of the Included Studies.
The reported data in the included studies, such as sample
size, inclusion criteria, patient demographics, genetic tech-
nique used for assessing deletion of chromosome 9p, vali-
dating techniques, clinicopathological parameters, follow-up
period, and survival were analyzed.

2.3. Quality Assessment. The quality of the included studies
was evaluated by three independent reviewers using the
“Strengthening the reporting of observational studies in
epidemiology (STROBE) tool” [30]. We modified this tool
for the purpose of this review and studies were scored as
“high risk of bias,” “low risk of bias,” or “unclear risk of bias”
and “high concerns regarding applicability, “low concerns
regarding applicability;” or “unclear concerns regarding appli-
cability” for four key domains: patient selection (domain 1),
defining threshold of the test (domain 2), validation of test
(domain 3), and flow and followup of cohort (domain 4).
The “unclear” category was used when insufficient data were
reported to permit judgment. We set a list of characteristics
of the most ideal test for assessing chromosome 9p dele-
tion (Table 1). To tailor the STROBE tool for studies about
chromosome 9p deletion, we adjusted the original signaling
questions of the tool according to this list and formulated
extra signaling questions to check applicability.

3. Results

Figure 1 shows the process of study selection. We identified
920 abstracts of which 158 were found to be relevant describ-
ing one or more genetic technique for assessing 9p deletion
in RCC. Of these, 145 studies were excluded, based on the
above mentioned criteria. Only 13 studies evaluated 9p status
in RCC in relation to pathological parameters and clinical
outcomes. We had to exclude one study as it was an earlier
report from the same institution with overlapping of cases
[16]. We also excluded another study as follow-up data were
not clearly stated [41]. Four studies were from the USA, 2
from Germany, 2 from Switzerland, 2 from Italy, and one from
China (Table 2).

3.1. Characteristics of the Included Studies. Eleven included
studies assessed 1431 patients. The quality of reporting in
most of the studies for demographic characteristics was poor.
Gender and median age of the cohort were reported in
five and six studies, respectively (Table 2). Single specialist
uro-pathologist assessed the tumours in 9 studies [29, 31-
37,39, 40], and status of report by a specialist pathologist was
unclear in the remaining included studies.

Three studies reported on pRCC and 8 studies focused
only on ccRCC (Table 2). In 2 studies, the cohort popula-
tion consisted of patients treated with radical nephrectomy
for stage pT3NOMO ccRCC [36, 37]. In the remaining 9
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Literature search on
chromomsome 9p
status in RCC
generated 920
articles

\

789 articles
excluded as
irrelevant from
title

158 abstracts and
articles with their
references reviewed
to assess suitability

for inclusion

A A

Included 11
observational
cohort studies

2 studies excluded
poor reporting of
followup
overlapping study
from same institution

Al N N \
Karyotyping Fluorescence in Comparative Microsatellite
) situ hybridization genomic analysis
(3 studies) hybridization (4 studies)
(2 studies) (2 studies) studies

F1GURE 1: Flow of studies in the review.

studies, there were no limitations on the stages included
in the analysis of chromosome 9p status. The data from
all the included studies were heterogeneous and correlation
between pathological parameters and 9p status was not
clearly described in most of the studies.

Different genetic techniques were employed for assessing
9p deletion (Table 3). Briefly, techniques are described below
and summarized in Table 3.

3.1.1. Interphase-Fluorescence In Situ Hybridization (I-FISH).
There were 484 tumours assessed for 9p deletion by I-
FISH in 4 studies. Brunelli et al. and La Rochelle et al.
performed I-FISH on tissue microarrays (TMAs) constructed
from FFPE blocks. Each tumour was represented with 3 cores.
In addition, at least 1 core of the adjacent normal tissue served
as negative control. Each core was 0.6 mm in diameter and 4
to 5 yum thick.

Whereas Schraml et al. performed I-FISH on whole FFPE
tissue sections with no negative control [39]. Sanjmyatav et
al. used single cell suspension extracted from fresh frozen
tumour tissue and 10 from normal kidney tissues as negative
control to set threshold for deletion [38].

Studies used dual-fluorescent centromeric probes con-
taining locus specific identifier (LSI) pl6 on 9p21 region
which is part of CDKN2A gene. Three studies agreed on
scoring signals in at least 100 neoplastic interphase nuclei
per tumour [32, 38, 39]. Only one study relied on 2 separate
investigators for I-FISH interpretation. However, there was
no report on the degree of interobserver variation and dis-
agreement was settled by consensus [29]. Only Sanjmyatav
et al. mentioned blinding of the I-FISH observer to the
final histopathology [38]. There was no consensus standard

methodology for defining chromosome 9p deletion in the 4
studies employing I-FISH. Two studies used negative control
of normal renal tissue to calculate the threshold for 9p
deletion [32, 38] which ranged between 10% and 31%. On the
other hand, it was completely arbitrary in the other 2 studies
ranging between 40% and 50% [29, 39]. I-FISH was the sole
technique employed in 2 studies with no confirmation by
subsequent validating technique [29, 32]. I-FISH was used
as an adjunct technique in the other 2 studies with good
concordance with array CGH results in one study [38].

3.1.2. Comparative Genomic Hybridization (CGH). CGH was
the main technique to assess chromosomal aberrations in 94
patients with ccRCC in 2 studies (Table 3). One study used
conventional CGH [36] and the other used array CGH [38].
DNA was extracted from fresh frozen tissue in one study
[38]. In the other study, it was extracted from both fresh
frozen tissue and FFPE sections [36]. The 2 studies identified
frequent similar nonrandom chromosomal CNAs including
loss of 3p, 9p, 8p, and 14q and gain of 5q and 7q. Sanjmyatav et
al. [38] used I-FISH for validation of array CGH results with
strong agreement and correlation with metastasis and CSS.

3.1.3. Microsatellite Analysis. Microsatellite analysis was used
as the main technique in 4 studies to assess 284 RCC (ccRCC
n = 253, pRCC n = 31) for chromosome 9p deletion [35,
37, 39, 40]. Two hundred and twenty-eight cases out of 284
cases (80%) were informative for microsatellite analysis with
survival data. In all the included studies for this technique,
analysis of allelic deletions or instability was performed using
arange of 2 to 4 polymorphic microsatellites on chromosome
9p (Table 3). One study assessed loss of heterozygosity (LOH)
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in other chromosomal regions besides 9p, such as chromo-
somes 3p, 8p, and 14q [37].

In all the studies, allelic loss was scored if the signal from
one allele was >50% reduced in the tumour DNA compared
with the controls. The presence of new, shifted alleles or the
appearance of new bands was considered as instability.

Li et al, using quantitative PCR, showed significantly
reduced expression of PTPRD in tumours exhibiting instabil-
ity or LOH at D9S168 locus (9p22-23) with good concordance
[35]. In the other study, several adjunct techniques were
employed but no reporting on concordance [39].

3.1.4. Karyotyping (Cytogenetic Profiling). There were 634
tumours investigated using karyotyping for 9p deletion in 4
studies. Hundred and fifteen were pRCC [33, 34] and 519 were
ccRCC [29, 31]. Two studies were reported from the same
institution [29, 34]. In all 4 studies, viable tumour samples
were obtained immediately after surgical extirpation and dis-
sected before being dissociated with collagenase II. Cells were
washed, cultured, and harvested according to the authors’
standard protocol. At least 20 metaphases were analyzed in
accordance with the International Standing Committee on
Human Cytogenetic Nomenclature by single cytogeneticist.

3.1.5. Sequence Analysis. Schraml et al. [39] assessed
CDKN2A sequence alterations in 113 ccRCC as an adjunct
technique to microsatellite analysis. They detected 24 bp
deletion within exon 1 of CDKN2A in 12% of the tumours
which did not correlate with pathological parameters or
cancer specific survival. They reported a homozygous G to
C trans-version in Exon 3 of CDKN2A in 78.7% of cases,
which correlated with higher tumour grade. The authors did
not report on concordance with microsatellite analysis or
I-FISH.

3.2. Detection Rate of Chromosome 9p Deletion in RCC.
Table 3 shows the detection rate of chromosome 9/9p loss in
all the included studies based on genetic techniques used. 9p
loss ranged between 13% and 36.9% in ccRCC and between
9% and 22% in pRCC.

3.3. Correlation between Chromosome 9p Status and Patholog-
ical Parameters. Six studies assessed the relationship between
chromosome 9p loss, grade, and stage of tumour specimens
[29, 33-35, 39, 40] (Table 4). For pRCC, two studies showed
that 9p loss was significantly associated with higher stage and
the more aggressive type Il pRCC [33, 34]. On the other hand,
9p loss was significantly associated with higher grade in one
study [40].

Whereas, in 2 studies reporting on ccRCC, 9p loss was
significantly more common in higher stage tumours [29, 35].
La Rochelle et al. also found correlation between 9p loss
and higher Fuhrman grades (G3/G4) [29]. Sanjmyatav and
colleagues also showed that loss of the region 9p21.3p24.1
on array CGH and I-FISH was significantly associated with
the presence of metastasis [38]. Controversially, Schraml et
al. found no association between stage, grade, and LOH at

9p21 [39]. Table 4 summarizes the studies which correlated
pathological parameters with 9p status.

3.4. Followup. Follow-up period in all the studies was eval-
uated from the date of surgical extirpation to the last known
followup or death. Follow-up data were available for 1,346 out
of 1,431 cases (94%). The median followup ranged between
31 and 73 months. Only in 4 studies, the authors followed a
standardized protocol for patients’ followup [29, 31, 35, 36].

3.5. Chromosome 9p Status and Clear Cell RCC Prognosis.
In 7 ccRCC studies, 9p deletion was associated with worse
outcomes, including being an independent prognostic factor
in 3 studies on multivariate analysis [29, 32, 35]. On the other
hand, Antonelli et al. and Presti et al. demonstrated that 9p
deletion had no impact on ccRCC prognosis (Table 2). Two
studies showed that localized ccRCC with 9p deletion carried
a significantly higher risk of recurrence and cancer related
deaths compared to nondeleted tumours [29, 35]. The 5-year
DFS for 9p deleted tumours ranged between 26% and 50%
compared to 71% and 98% in tumours without 9p deletion.
Also, 5-year CSS ranged between 28% and 67% for 9p deleted
compared to 87%-98% for nondeleted 9p tumours (Table 2).
On multivariate analysis models, 9p loss was an independent
prognostic factor for both DFS and CSS in localized ccRCC
in one study (P = 0.15) [29, 35] and D9SS168 alterations
(LOH or instability) on 9p was an independent prognostic
factor for CSS in another study (P = 0.009) [35]. Two
studies concluded that 9p loss in pT3N0 M0 ccRCC tumours
was associated with worse DES [36] and CSS [39] only on
univariate analysis. Controversially, Presti et al., in a larger
cohort of patients with pT3N0 M0 ccRCC tumours, noticed a
trend towards worse DFS in patients with 9p deleted tumours
but this did not reach statistical significance [37]. Only in one
study with the largest number of cases, a subset analysis of
207 patients with SRMs (<4 cm) was undertaken. 9p deleted
tumours were associated significantly with lymph node and
distant metastasis (P = 0.03). The 5-year CSS and DFS were
56% and 68%, respectively, for 9p deleted tumours compared
to 90% and 97% for the nondeleted ones (P = 0.01). 9p
loss had an independent effect on DFS on multivariate
analysis model including T-stage, grade, and size (Hazard
ratio 6.65; P = 0.021) [29]. More recently, Sanjmyatav
et al. [38] assessed 53 ccRCCs (31 of which were metastatic)
to identify recurrent chromosomal aberrations associated
with metastatic disease. Loss of 9p21.3p24.1 was the most
prominent of these aberrations with the highest odds ratio
for metastatic risk and was linked to shorter CSS only on
univariate analysis. However, La Rochelle and colleagues
concluded that 9p status had no effect on CSS in cases with
metastatic disease at diagnosis (HR, 1.02; P = 0.9) [29].

3.6. Chromosome 9p Status and Papillary RCC Prognosis. In
pRCC, 5-year overall survival was 40% for patients with
LOH of D9S171 on 9p compared to 81% for patients without
deletion (P = 0.008) [40]. This deletion was an independent
predictor of prognosis on multivariate analysis including for
stage and grade. This study was limited by small number of
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TABLE 4: Correlation between pathological parameters and chromosome 9p status.
- 9 :sher’
Study Pathological parameters Chromosome 9/9p status (n=) or (%) Fisher’s exact test
9p loss 9p retained P=
pT1/2 12 29 0.27
T3/T4
(1) Schraml et al., 2001 [39] P13/ ? 38
NOMO 19 57 0.53
N+M+ 2 10
pT1/2 38 349 <0.01
T3/T4
(2) La Rochelle et al., 2010 [29] P > 257
NOMO 43 400 <0.01
N+M+ 54 206
T1/2 4 9
(3) Schraml et al., 2000 [40] P 0.054
pT3 2 7
pT1/2 12 40 0.007
T3/4
(4) Li et al., 2011 [35] pT3/ 14 12
NO 23 46 1
N+ 3 6
G1/2 6 33 Not assessed
G3/4 2 4
T1/2
(5) Gunawan et al., 2003 [33] b 3 3
pT3/4 4 6 0.004
NOMO 3 31
N+M+ 5 5 0.04
pT1/2 Not stated clearly 0.001
- i pT3/4
(6) Klatte et al., 2009 [16] N+ 50% 149% 0.027
M+ 67% 14% 0.002

TABLE 5: Assessment of bias and applicability of the included observational cohort studies.

Risk of bias

Applicability concerns

Study Patients Definition Validation Flow and clinical Cohort . Techniqu'e arget Sampl'e size
selection  of threshold test followup selection ~ Mterpretation . yition and tissue
and threshold samples used
Antonelli et al., 2010 [31] High Low High Low Low Low Low High
Brunelli et al., 2008 [32] High Low High Low Low Low Low High
Gunawan et al., 2003 [33] High Low High High Low Low Low High
Klatte et al., 2009 [34] High Low High High Low Low Low High
La Rochelle et al., 2010 [29]  Low Low High Low Low Low Low High
Lietal, 2011 [35] High Low Low High Low Low Low High
Moch et al., 1996 [36] High Low High High Low Low low High
Presti et al., 2002 [37] High Low High Low Low Low Low High
Sanjmyatav et al., 2011 [38] High Low Low Low Low Low Low High
Schraml et al., 2000 [40] Low Low High High Low Low Low High
Schraml et al., 2001 [39] Low Low High High Low Low Low High

cases and lack of differentiation between the 2 subtypes of
pRCC. Klatte et al. and Gunawan et al., in an attempt to
characterize both subtypes of pRCC cytogenetically, detected
9p loss in few cases who seemed to have higher risk of
recurrence and cancer specific death, but only on univariate
analysis.

3.7. Assessment of Bias and Applicability. The STROBE assess-
ment (Table 5) demonstrates that all the included studies had
a high risk of bias, or high concerns regarding applicability in
all four domains. In general, most studies had a high risk of
bias in domain 1 of patient selection and had high concerns
regarding applicability, in domains 4A and 4B, the domains
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concerning the sample size and tissue samples used for the
analysis.

Only two studies chose consecutive cases as their sample
[29, 39]. For the rest of the studies, method of recruitment
was not clearly mentioned.

All the studies determined clearly the cut-off threshold
for the main technique employed before reporting the results.
However, there was a high concern regarding the various
arbitrary methods by which the cut-off threshold for 9p
deletion was decided in studies especially in those studies
using I-FISH as the main technique [29, 32].

Lack of validation was another limitation which could
have introduced bias especially when the main technique
tended to be observer dependent. Validation for 9p status
took place only in 2 studies [35, 38]. High risk of bias could
have also been introduced in case selection and clinical
followup due to missing data and lack of standard follow-
up protocol in some studies. The noninformative cases on
microsatellite analysis had to be excluded from survival
analysis. Also the validating technique was not employed
on all cases. In terms of applicability, there was high con-
cern regarding cohort selection, technique, interpretation of
results, and threshold decision in all the included studies as
summarized in Table 5.

4. Discussion

Our systematic appraisal of the literature summarizes the
evidence for 9p status and its clinical applicability in RCC.
The ideal study on chromosome 9p status in RCC has yet to
be performed to answer key clinical questions. All the studies
included in this review were retrospective observational in
nature with small cohorts of patients, except in one study,
where numbers were sufficient to allow subset analysis [29].
Moreover, there was a lack of reporting on measures to avoid
bias such as using consecutive cases, number of specialized
pathologists to characterize tumours, blinding the assessor of
9p status to pathological parameters and clinical outcome.
It was not possible to assess collectively the correlation
between 9p status, pathological parameters, and survival
due to lack of reporting on demographic characteristics, the
heterogeneity of the reported data including pathological
parameters, various genetic techniques, different tissue used,
variations in cut-off thresholds, and follow-up protocols.

Six studies reported a correlation between 9p deletion
and RCC aggressiveness (stage and grade) (Table 4). Chro-
mosome 9p loss was associated with worse survival in 9
studies. However, when included in multivariate analysis, it
had only an independent effect in three studies reporting on
ccRCC and one study on pRCC (Table 2). Also, integration
of 9p status in prognostic models for ccRCC improved the
predictive accuracy of CSS up to 89% in 2 studies from the
same institution [16, 29].

Several techniques were used to assess 9p deletion; each
had its own advantages and limitations. I-FISH can be applied
on either fresh or FFPE tissue. It assessed chromosomal CNAs
at a single cell level. However, I-FISH scoring was more likely
to be influenced by fading of signals, overlapping of cells,
and angle of tissue slicing from paraffin blocks, which could

result in interobserver variability. In addition, the lack of
standardization of scoring with different cut-off thresholds
used to determine 9p loss represents a major challenge to the
applicability of I-FISH in a clinical setting [42].

Microsatellites are useful in detecting LOH of a locus or
gene; however, more microsatellites are required to reliably
detect chromosomal CNAs. Also, one out of five cases
tested for 9p deletion by microsatellites in this review was
noninformative and had to be excluded from analysis.

In contrast to I-FISH and microsatellites, Karyotyping
and CGH assess the whole genome for chromosomal abnor-
malities which could be implicated in tumour progression.
However, Karyotyping relies on cell culture from fresh
tumour tissue, with potential culture failure rate ranging
between 10 and 12% [16, 31]. It can underestimate 9p loss due
to chromosomal condensation of mitoses, lack of precision to
detect microdeletions, and frequent complex rearrangements
[43]. CGH is more sensitive for chromosomal CNAs due to
its high resolution. However, it can miss translocations. Also,
due to bulk extraction of the DNA, genomic heterogeneity
information can be diluted or masked [44].

Some genes on chromosome 9p have been suggested to
play a role in ccRCC progression. However, none of them has
been confirmed to be the rate limiting gene. The low level
of expression of carbonic anhydrase IX (CAIX) gene located
on locus 9pl13 by immunohistochemistry was shown to be
associated with worse prognosis [14, 45, 46]. Also low levels
of pl6INK4a protein expression, which is encoded by cyclin-
dependent kinase inhibitor 2A (CDKN2A) gene located on
9p21, had an effect on prognosis [47, 48]. Li et al. reported
that D9S168 microsatellite alterations, located at 9p23-24
gene region, which encodes for protein tyrosine phosphate
receptor delta (PTPRD), could contribute to worse prognosis
[35]. The process of RCC progression is complex involving
various genetic and epigenetic events. Results from genome
sequence analysis helped to closely study and identify new
mutations within genes implicated in RCC progression such
as PBRMI, SETD2, and BAPI1 [19, 49, 50].

4.1. Implications for Clinical Practice. The review showed that
the reported evidence was not strong enough for the trans-
lation of 9p status genetic testing into clinical practice. The
reported literature showed a high concern for bias and
applicability. We estimated that it will take a few years until
chromosome 9p status can be integrated as a part of routine
clinical practice for every patient with RCC in the public,
social insurance health-care system. The technique has to be
reliable, cost-effective, timely, and of equitable manner before
being adopted widely.

4.2. Implications for Research. A number of recommenda-
tions could be made based on our study.

(a) Protocols for genetic techniques needs to be standard-
ized and thresholds for deletion agreed upon. Tissue
sampling needs to be assessed with tumour genomic
heterogeneity kept in mind to reduce sampling bias.
Also interobserver agreement should be reported.
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(b) The results of new and emerging molecular genetic
techniques need to be validated using a complemen-
tary technique including appropriate use of negative
and positive controls.

(c) Further well-designed prospective studies are requir-
ed to confirm the role of 9p deletion in RCC progres-
sion and prognosis.

(d) Further studies are required to identify the rate limit-
ing genetic aberration on chromosome 9p implicated
in clinical progression of the disease in the context of
genetic and epigenetic factors.

5. Conclusion

The evidence for chromosome 9p status in RCC is emerging
mainly focusing on its value in predicting clinical outcomes;
however, a number of concerns regarding methodology of
research, quality of reporting, and its applicability in clinical
practice exist. Future research is needed to address these
issues.
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