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The basic machinery that detects DNA damage is the same through-
out the cell cycle. Here, we show, in contrast, that reversal of DNA
damage responses (DDRs) and recovery are fundamentally different
in G1 and G2 phases of the cell cycle. We find that distinct phos-
phatases are required to counteract the checkpoint response in G1 vs.
G2. Whereas WT p53-induced phosphatase 1 (Wip1) promotes re-
covery in G2-arrested cells by antagonizing p53, it is dispensable
for recovery from a G1 arrest. Instead, we identify phosphoprotein
phosphatase 4 catalytic subunit (PP4) to be specifically required for
cell cycle restart after DNA damage in G1. PP4 dephosphorylates
Krüppel-associated box domain-associated protein 1-S473 to repress
p53-dependent transcriptional activation of p21 when the DDR is
silenced. Taken together, our results show that PP4 and Wip1
are differentially required to counteract the p53-dependent cell
cycle arrest in G1 and G2, by antagonizing early or late p53-medi-
ated responses, respectively.

Acell’s genomic integrity is constantly challenged by endog-
enous and exogenous sources of DNA damage. Double-

strand breaks (DSBs) are particularly threatening to the genomic
stability of proliferative cells and provoke a checkpoint response
that coordinates repair processes with further cell cycle progression
to prevent the replication and segregation of broken DNA. This
DNA damage response (DDR) is orchestrated by multiple kinases
that sense the DNA damage and relay this signal (1). Cellular
recovery from a DNA damage insult ultimately requires the
termination of the DDR once repair of the DNA is complete.
PI3-kinase–related kinases (PIKKs), ataxia telangiectasia mu-

tated (ATM), and ATM- and Rad3-related (ATR) are activated by
distinct structures of damaged DNA and phosphorylate histone
H2AX in the vicinity of the damaged site to recruit repair proteins
(2). In addition to such local events, ATM and ATR activate a
subsequent layer of checkpoint kinase 2 (Chk2) and Chk1, respec-
tively, that disseminates from the damaged site (3, 4). ATM also
activates p38 mitogen-activated protein kinase (MAPK), which
coordinates the DDR outside the nucleus (5, 6). Combined, these
checkpoint kinases ensure that cell cycle progression is prevented at
the G1/S or G2/M boundary (7).
PIKKs and checkpoint kinases commonly converge on the tran-

scription factor p53, a key regulator of stress responses. Phosphor-
ylation of p53 prevents its degradation by mouse double minute 2
(Mdm2)-mediated polyubiquitination, allowing p53 to accumulate
and induce its target genes, including p21 (1). Both p53 and its
transcriptional target p21 are sufficient to impose an arrest in both
G1 and G2, and they are absolutely required for a bona fide
checkpoint arrest in G1 (8–11).
Recovery from a checkpoint-induced arrest requires silencing

of the checkpoint machinery and coincides with the removal of
phosphorylations deposited by PIKKs and other checkpoint
kinases. We have previously shown that WT p53-induced phos-
phatase 1 (Wip1) is essential for checkpoint recovery from a DNA
damage-induced arrest in G2, by preventing p53-dependent re-
pression of several mitotic regulators (12). Wip1 is also known to
act as a homeostatic antagonist of p53 by removal of ATM-

dependent S15 phosphorylation on p53 (13–16). In addition,
Wip1 dephosphorylates other ATM substrates, including ATM
itself, phosphorylated H2AX pS139 (γ-H2AX), Chk2, p38 MAPK,
and Mdm2 (14, 17–19). Given this role of Wip1 in the silencing of
p53 as well as other components of the DDR, we expected Wip1
to be essential for recovery from a G1 arrest. Here, we show, in-
stead, that Wip1 is not required for recovery from a G1 arrest
caused by γ-irradiation. This finding prompted us to screen for
other phosphatases that are essential for the reversal of a check-
point-dependent arrest in G1.

Results
Wip1 Is Required for Spontaneous Recovery After Low-Dose Irradiation
in G2, but Not G1.We previously uncovered the Wip1 phosphatase as
a critical regulator of recovery from a DNA damage-induced G2
arrest (12). How recovery from a DNA damage-induced G1 arrest
is regulated is not known. To study this process, we used non-
transformed retinal pigment epithelial (RPE) cells immortal-
ized with human telomerase reverse transcriptase (hTert) and
expressed fluorescent ubiquitination-based cell cycle indicators
(FUCCIs) (20).
G1 cells were identified by exclusive expression of Cdt1 (amino

acids 30–120) fused to an orange fluorescent protein (mKO2-
Cdt1) at the start of the experiment and followed over time to
the moment of S-phase entry, marked by the coexpression of
Geminin (amino acids 1–110) fused to a green fluorescent pro-
tein (mAG1-Geminin) (Fig. 1A). To determine the fate of S/G2
cells after irradiation, we followed cells exclusively expressing
fluorescent mAG1-Geminin into mitosis.
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In the absence of DNA damage, S-phase entry of G1 cells oc-
curred within 20 h, although after exposure to 1 Gy of γ-irradiation,
the rate of S-phase entry was much reduced with ∼53 ± 13% of
cells progressing within 48 h (Fig. 1B and Movie S1). The RPE-
FUCCI cells thus enable sensitive detection of recovery from ir-
radiation in G1.
Exposure in G2 resulted in a rapid checkpoint arrest of a de-

fined duration of 3.3 ± 1 h (measured as the time difference
between reaching half of the maximal mitotic entry). Approxi-
mately 60% of irradiated G2 cells ultimately entered mitosis
within 9 h, contrasting with the fourfold slower cell cycle pro-
gression of cells irradiated in G1 (Fig. 1C). RPE-FUCCI cells
that were irradiated in G2 but failed to enter mitosis returned to

a G1-like state expressing mKO2-Cdt1 3–15 h after irradiation
within the same time window as mitotic entry in the recovering
population (Fig. 1 C and D).
When we compared the performance of 1 Gy-irradiated RPE-

FUCCI cells after siRNA-mediated depletion of Wip1, the mi-
totic entry of cells irradiated in G2 was reduced twofold com-
pared with control siRNA-transfected cells, and the overall delay
in mitotic entry after irradiation was longer (5.6 ± 3 h) (Fig. 1C).
In contrast, we did not detect any effect on the spontaneous
recovery of cells irradiated in G1, either on the rate of S-phase
entry or on the percentage of cells that ultimately entered S-phase
(Fig. 1B). We obtained similar results with hTert-immortalized BJ
human foreskin fibroblasts expressing the FUCCI system (Fig. S1).
These results suggest that Wip1 is differentially required to promote
recovery in G1 vs. G2.
Wip1 is a transcriptional target of p53 (13) and a negative

regulator of DDR signaling by removing S15 phosphorylation on
p53 and S139 phosphorylation of H2AX (12, 15, 18). Induction
of Wip1 protein levels after irradiation is intact in RPE cells
synchronized inG1 by serum starvation and restimulation (Fig. S2).
siRNA-mediated depletion of Wip1 resulted in increased (both
basal and after irradiation) levels of S15 phosphorylation of p53
as detected by immunofluorescence of asynchronous cultures,
irrespective of cell cycle phase (Fig. 1E and Fig. S2). Furthermore,
cells depleted of Wip1 during G1 synchronization displayed
markedly elevated levels of γ-H2AX after irradiation (Fig. 1 F and
G), confirming that Wip1 is functional as a phosphatase following
DNA damage in both the G1 and G2 phases of the cell cycle.

DNA Damage Checkpoint in G1 Is Maintained by Chk2 and p38. Re-
dundancy of Wip1 for recovery from DNA damage in G1 sug-
gests recovery is differentially regulated during the different
phases of the cell cycle. To study how recovery from an irradi-
ation-induced arrest in G1 is controlled, we first tested which
checkpoint kinases maintain the G1 arrest. Exposure to 4 Gy of
irradiation arrested G1-synchronized RPE cells in G1 for at least
40 h, as measured by BrdU incorporation (Fig. 2A). Addition of
an ATM inhibitor (KU55933) before irradiation prevented the
cells from arresting in G1 (Fig. 2B), confirming that the observed
cell cycle arrest is a result of an ATM-dependent DSB response.
However, addition of ATM inhibitor at later time points failed to
abrogate the checkpoint arrest (Fig. 2B). ATM is the most up-
stream kinase to initiate signaling from a DSB, and it controls
the activation of several downstream checkpoint kinases, in-
cluding Chk1, Chk2, and p38 MAP kinase (7). We applied
inhibitors of these kinases to cells arrested in G1 for 16 h and
determined S-phase entry of the cells in the following 24 h.
Combinations of a Chk2 inhibitor and one of three different p38
MAPK inhibitors caused a full reversal of the established G1
arrest (Fig. 2 A and B and Fig. S2). A similar setup with BJ
fibroblasts confirmed a critical role for Chk2- and p38 MAPK-
dependent signaling to maintain a DNA damage-induced arrest
in G1 (Fig. S1).
As expected, the observed arrest requires p53 and p21, and it

is prevented by siRNA-mediated depletion of either p53 or p21
(Fig. S2). Inhibition of Chk2 and p38 MAPK requires the presence
of Mdm2, but not Wip1, to promote S-phase entry in G1-arrested
cells, confirming that Wip1 is not necessary to revert these p53-
mediated responses (Fig. S2). Irradiation of G1 cells results in
increased protein levels of p53 and p21, and reduced cyclin-Cdk
activity, as evidenced by a lack of phosphorylation on the pocket
proteins retinoblastoma (Rb) and p130 (Fig. 2 C–E). Indeed,
treatment of cells with p38 MAPK and Chk2 inhibitors results in
loss of protein levels of p53 and p21 over a period of 8 h with
concomitant rephosphorylation of pocket proteins, coinciding
with the cell cycle restart (Fig. 2C). This phosphorylation of Rb
occurs without the resolution of remaining γ-H2AX foci (Fig. 2
D and E). Together, these experiments show that p38 MAPK
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and Chk2 cooperate to sustain activation of p53 and maintain
expression of p21 during the G1 arrest and that their inhibition
promotes checkpoint recovery even when DNA damage persists.

Phosphatases Required for Recovery from a G1 Arrest. Because p38
MAPK and Chk2 kinases are essential for the maintenance of
the checkpoint arrest in G1 (Fig. 2B), we expected checkpoint
recovery to require dephosphorylation or degradation of their
substrates. We therefore tested a siRNA library of 224 phos-
phatases and regulatory proteins to identify the phosphatase(s)
required for recovery of DNA-damaged G1 cells. We monitored
5′-ethynyl-2′-deoxyuridine (EdU) incorporation in RPE cells ir-
radiated (4 Gy) in G1 and stimulated to reenter the cell cycle by

inhibition of p38 MAPK and Chk2 (Fig. 3A and Dataset S1). The
majority of siRNAs did not prevent EdU incorporation after
serum stimulation or after inhibition of Chk2 and p38 MAPK in
cells arrested in G1 for 16 h, including siRNAs targeting Wip1.
Importantly, phophoprotein phosphatase 4 catalytic subunit
(PP4), phosphatases PSPH, PTPRN2, PP5, PTPN6, DUSP2, and
the B56delta-subunit of the PP2A phosphatase (PP2R5D) were
identified as potential regulators of G1 checkpoint recovery that
compromised EdU incorporation after DNA damage and sub-
sequent checkpoint silencing (recovery < mean − 2 SD of mock-
transfected) but allowed normal cell cycle progression in the
absence of damage (unperturbed/recovery >1.67, unperturbed
entry >67% of mock-transfected in more than two of three
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experiments). Phenotypes were confirmed with multiple single
siRNAs for PP4, PTPRN2, PTPN6, and DUSP2 (Fig. S3).

PP4 Is Required for Recovery After Irradiation in G1, but Not G2. To
look further into the reversal of Chk2 and p38 phosphorylations,
we proceeded with analysis of the only phosphoserine/phos-
phothreonine phosphatase, PP4. PP4 is a multimeric type 2A
phosphatase that functions in dimeric or trimeric complexes to
balance a wide range of signaling pathways (21–25). In particular,
PP4 in complex with its regulatory subunit 2 (PP4R2) has well-
documented roles in the reversal ofDDRphosphorylations (21, 26–
29). Indeed, we find that PP4R2, but not other regulatory subunits,
is required for recovery from aG1 checkpoint arrest after inhibition
of p38 MAPK and Chk2 (Fig. S3).
When we depleted PP4 or PP4R2 in RPE-FUCCI cells, effects

on cell cycle progression of unperturbed cells were limited (Fig. 3
B and C). In contrast, with depletion of Wip1, which did not
affect the spontaneous recovery of cells irradiated (1 Gy) in G1,
depletion of either PP4 or PP4R2 reduced recovery by 75 ± 15%
and 64 ± 7%, respectively (Fig. 3 B and C and Movie S2).
Conversely, the PP4 phosphatase complex did not contribute
significantly to mitotic progression of cells irradiated in G2
(mAG1-Geminin+, mKO2-Cdt1−), whereas mitotic progression
was reduced by 46± 7% in the absence ofWip1 (Figs. 1C and 3C).
BJ-hTert FUCCI cells showed a similar G1-specific defect after
2 Gy of γ-irradiation when PP4 or PP4R2 was depleted (Fig. S1).
These results confirm a critical role for the PP4 phosphatase

complex in G1, but more importantly, they reveal differential
and complementary requirements for checkpoint recovery in
different phases of the cell cycle.
Inhibition of p38 and Chk2 promotes recovery in the presence of

persistent foci of γ-H2AX (Fig. 2 D and E) but not after depletion
of PP4 or PP4R2 (Fig. 3A and Fig. S3), indicating that PP4 acts
independent of DNA repair. Indeed, foci of γ-H2AX disappeared
with normal kinetics in PP4-depleted RPE cells irradiated in G1
(Fig. S4). The DNA damage-induced checkpoint in G1 absolutely
requires a functional p53 pathway (11), and whenever we code-
pleted PP4 and p53 or PP4R2 and p53 in G1-synchronized RPE
cells or RPE-FUCCI cells, we observed a complete checkpoint
override (Fig. S4). PP4 must therefore act downstream of p38 and
Chk2 in the reversal of p53-dependent responses.

We had observed previously that p53’s principal transcrip-
tional target, p21, is eliminated within several hours after inhi-
bition of p38 and Chk2 kinases (Fig. 2C). Although p53 protein
levels dropped normally after checkpoint silencing in PP4-
depleted cells (Fig. S4), we found elevated levels of p21 throughout
the arrest in G1 that persisted after checkpoint silencing (Fig.
3D), suggesting a role to antagonize p21, particularly once the
DDR is terminated.

PP4-PP4R2 Regulates Krüppel-Associated Box Domain-Associated
Protein 1 S473 Phosphorylation to Eliminate p21 in Recovery. Tran-
scription of p21 is dynamically regulated to enable rapid expression
in response to stress, as well as to ensure timely shutdown of
transcription when the stressor is under control (30). The Krüppel-
associated box domain-associated protein 1 (KAP1) is a transcrip-
tional corepressor protein for the p21 gene CDKN1A and prevents
transcription initiation of the poised promoter (31, 32). Its activity
is impeded by DNA damage through phosphorylation by ATM on
S824 and by Chk1/Chk2 on S473 (31, 33–35). Dephosphorylation
of these sites, in turn, is regulated by PP4 (36). Consistently, we find
that PP4-depleted cells display increased and prolonged phos-
phorylation of KAP1 in response to damage (Fig. 4A). ATM-
dependent phosphorylation on S824 is rapid and transient, even after
depletion of PP4, and it disappears within the first hours after irra-
diation. Checkpoint kinase-dependent phosphorylation of S473, on
the other hand, is delayed in onset, is pan-nuclear, and persists well
up to 16 h after irradiation (Fig. 4 A and B), as described before (34,
36). These observations suggested to us that PP4might be required to
reactivate KAP1 during recovery by removing the Chk2-dependent
phosphorylation on S473 and repressing p21 transcription.
Upon inhibition of p38 MAPK and Chk2, phosphorylation on

S473 of KAP1 was lost within 2 h (Fig. 4B), correlating with
decreasing levels of p21 protein (Fig. 3D) as observed by im-
munofluorescence. In PP4 or PP4R2-depleted cells, however,
phosphorylation on S473 was sustained.
Because persistent phosphorylation is inhibitory to KAP1

function, we tested whether KAP1 depletion would mimic de-
pletion of PP4 or PP4R2. Indeed, cells depleted of KAP1 had
elevated levels of p21 in response to DNA damage in G1, failed
to eliminate p21 protein and mRNA after pharmacological
checkpoint silencing, and did not progress to S-phase (Fig. 4C
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Fig. 4. PP4 dephosphorylates KAP1 S473 to elimi-
nate p21 during recovery from a G1 arrest. (A) In-
hibitory phosphorylations of KAP1 on S824 and S473
detected by Western blot in response to irradiation
48 h after siRNA transfection in G1-synchronized RPE
cells. (B) KAP1 S473-phosphorylation 16 h after irra-
diation determined by immunofluorescence and af-
ter inhibition of p38 and Chk2 in G1-synchronized
RPE cells. Nuclei are outlined in white based on DAPI
signal, and the nuclear mean fluorescence of pS473
was quantified. (Scale bar: 75 μm.) (C) RPE cells
treated as in Fig. 3A. S-phase entry was detected by
EdU incorporation 40 h after irradiation. (D) Mean
nuclear fluorescence intensity of p21 by immunofluo-
rescence of cells treated as in B. (E) Stable RPE clones
expressing FLAG-KAP1 or S473A mutant were trans-
fected with siRNA targeting endogenous KAP1 alone
(control) or in combination with PP4 during serum
starvation and treated further as in C. Protein levels
of the same experiments were detected by Western
blot (Fig. S4). Immunofluorescence experiments are
representative of three independent experiments.
Whiskers represent 5–95% of data points. *P <
0.0001. Error bars represent SD (n = 3).
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and Fig. S4). To pinpoint KAP1 further as the relevant substrate
of PP4/PP4R2, we replaced endogenous KAP1 with a non-
phosphorylatable S473A mutant and assessed its ability to
circumvent the requirement for PP4 in recovery from a G1
arrest. When we thus prevented initial phosphorylation of
KAP1 S473 after DNA damage, cells progressed to S-phase (Fig. 4E
and Fig. S4) upon checkpoint silencing without PP4, confirming
phosphorylated S473 on KAP1 as the critical substrate for PP4 in
recovery from a G1 arrest. Taken together, these data show that
PP4 is required for recovery in G1 by promoting the dephos-
phorylation of S473 on KAP1, allowing it to repress p21.

Wip1, but Not PP4, Prevents p53-Dependent Repression of Cyclin B1.
The p21 and p53 are sufficient to induce a cell cycle arrest in
both G1 and G2 (8, 9), yet we find that PP4 is only required in
G1 to recover from the checkpoint-induced cell cycle arrest.
Inversely, Wip1 is required to moderate p53 activity during a G2
arrest (12), but we show here that its activity is not essential to
recover from a checkpoint-induced arrest established in G1.
Because depletion of Wip1 was shown to lead to p53-dependent
repression of cyclin B1, we examined if we could confirm a dif-
ferential requirement forWip1 and PP4 in G2 by analysis of cyclin
B1 expression during an ongoing DDR. To this end, we made use
of RPE cells in which the endogenous locus of cyclin B1 was
C-terminally fused to YFP, allowing sensitive and quantitative
detection of endogenous cyclin B1 levels under its normal tran-
scriptional and posttranscriptional regulation (Fig. S5).
As expected, codepletion of p53 and Wip1 relieved the G2

recovery defect in RPE cells observed by Wip1 depletion alone
(Fig. S5). In addition, the rate of cyclin B1-YFP accumulation
decreased in a p53-dependent manner starting 2 h after irradi-
ation (Fig. 5 A and B and Fig. S5). When Wip1 was depleted,
cyclin B1-YFP failed to accumulate beyond 2 h after damage and
started to decline to nondetectable levels after 4 to 8 h, corre-
sponding in time to the loss of the Geminin probe in irradiated
RPE-FUCCI cells (Fig. 1D). Depletion of PP4R2 or KAP1 had
no effect on cyclin B1-YFP levels during this checkpoint arrest,
indicating that PP4-dependent dephosphorylation of KAP1 has
no role in p53-mediated regulation of cyclin B1 immediately
after DNA damage. Consistent with this notion, we find that
KAP1 S473 dephosphorylation occurs well after the onset of
cyclin B1 repression (Fig. 4A and Fig. S4).

Discussion
At any given time, the vast majority of cells with proliferative
capacity in the human body are in G0/G1. However, we know
little about the particular molecular pathways that these cells use
to recover from a DNA damage insult and resume proliferation.
We do know that deregulation of the p53 and Rb pathways is
common in cancer and results in the loss of a functional G1
checkpoint (11, 37, 38). Not only are G1-specific mechanisms in
dealing with DNA damage undeniably significant for normal
cellular behavior, but their frequent inactivation in cancer also
highlights a pivotal role in preventing the accumulation of mu-
tations during carcinogenesis.
We find that recovery from irradiation in G1 or G2 of the cell

cycle is fundamentally different, in terms of their kinetics, in the
checkpoint kinases that maintain the arrest and the phosphatases
that promote recovery. In two nontransformed hTert-immortalized
cell lines, we show that mitotic entry after exposure to irradiation is
restricted in time, whereas S-phase entry after exposure to the same
dose is permitted 72 h after the insult (Fig. 1). Within several hours
after irradiation in G2, p53-dependent responses compromise the
competence for further cell cycle progression, whereas a G1 arrest
remains fully reversible in the first 16 h (Fig. 2).
Our experiments show that these differences are paralleled by

a differential requirement for phosphatases in the reversal of the
DDR in a G1-arrested cell vs. a G2-arrested cell (Fig. 5C). PP4

facilitates turning off engaged p21 transcription, and thereby
antagonizes the p53 pathway to allow recovery from a G1 arrest
hours after irradiation. Even though Wip1 acts on DDR sub-
strates in G1, it is redundant for the elimination of p21 after
checkpoint silencing, and Wip1 is therefore dispensable for recovery
from irradiation in G1. In G2, however, Wip1 is essential to
prevent premature p53-dependent loss of cyclin B1, and possibly
other mitotic regulators, immediately after irradiation to permit
subsequent recovery. Thus, both phosphatases antagonize p53-
dependent responses, but each does so in a distinct time frame,
required for recovery in distinct phases of the cell cycle.
Contrary to our expectations, depletion of Wip1 did not affect

cell cycle restart of G1-arrested cells. Even in mouse embryonic
fibroblasts from Wip1 KO animals, S-phase entry after irradia-
tion is only decreased by 10% (39). This limited role of Wip1 in
recovery from a G1 arrest after irradiation is striking, given the
overt effects on p53 S15 and H2AX phosphorylation levels and
its requirement for recovery from a G2 arrest. Nonetheless, even
though γ-H2AX is cleared inefficiently in the absence of Wip1,
most foci are resolved within 16 h, allowing ample time for the
relatively slow recovery from a G1 arrest to occur. Our results
predict that the proposed clinical application of compounds that
inhibit Wip1 will prove ineffective for tumors that retain a G1
checkpoint arrest after DNA damage and most effective for p53-
proficient tumors that arrest primarily in G2 (40).
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Overexpression of Wip1 and PP4 occurs frequently in cancer
and is associated with poor disease outcome (41–43). Because
carcinogenesis requires multiple mutation events, overexpressed
Wip1 or PP4 may help overcome the anticancer barrier posed by
the DDR, promoting cell cycle progression after damage to the
DNA and acquisition of additional mutations. In established
tumors, overexpressed Wip1 and PP4 may promote recovery at
the expense of the envisioned cell killing, conferring resistance to
conventional genotoxic chemotherapy and radiotherapy.
Reversibility of a DNA damage-induced checkpoint arrest is

an inherent prerequisite for cellular recovery after repair of the
damaged DNA. Although the machinery that detects DNA
damage is shared throughout the cell cycle, available repair path-
ways and the cell cycle machinery that must be called to a halt
differ significantly in G1 and G2. Reversal of DNA damage-
induced checkpoints in G1 and G2 is correspondingly regulated
in distinct manners.

Materials and Methods
Cell Culture. The hTert-immortalized BJ fibroblasts, hTert-immortalized ret-
inal pigment epithelium, and derived cell linesweremaintained in DMEM/F12

(Gibco) supplemented with ultraglutamine, penicillin/streptomycin, and
6% (vol/vol) FBS.

G1 Synchronization, Checkpoint Silencing, and Flow Cytometry.We seeded RPE
or BJ-hTert cells grown to confluency at 15,000 cm−2 and withdrew serum for
36 h after cell attachment. Six hours after serum stimulation, cells were
exposed to γ-irradiation from a caesium-137 source (1 Gy·min−1). Inhibitors
and BrdU (10 μM; Sigma) or EdU (10 μM; Invitrogen) were added as in-
dicated, and at various time points, cells were collected by trypsinization or
fixed in wells for automated fluorescence microscopy.

Immunofluorescence. At indicated time points after irradiation and inhibitor
treatment, we fixed cells in PBS-buffered 3.7% formaldehyde permeabilized
with −20 °C methanol and blocked aspecific binding with Tris-buffered sa-
line containing 4% BSA and 0.1% Tween-20 before antibody incubation
for immunofluorescence.
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