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Abstract

This article presents a near real-time processing solution using MapReduce and Hadoop. The solution is aimed at
some of the data management and processing challenges facing the life sciences community. Research into genes
and their product proteins generates huge volumes of data that must be extensively preprocessed before any
biological insight can be gained. In order to carry out this processing in a timely manner, we have investigated the
use of techniques from the big data field. These are applied specifically to process data resulting from mass
spectrometers in the course of proteomic experiments. Here we present methods of handling the raw data in
Hadoop, and then we investigate a process for preprocessing the data using Java code and the MapReduce
framework to identify 2D and 3D peaks.

Introduction

The human genome project was one of the largest and

most well-known scientific endeavors of recent times. This

project characterized the entire set of genes found in human

DNA. Following on from this, the focus has now moved to

studying proteins, which are the products of genes found in

cells. Genes may act as a blueprint, but it is in fact the pro-

teins in a cell that carry out functions. Proteins are the

building blocks of cells and their study is very important in

the research of disease. Proteomics can be defined as the

large-scale study of protein properties, such as expression

levels, modifications, and interactions with other proteins. By

studying proteins and their properties, it is possible to gain a

deeper understanding of how proteins should function in

healthy cells compared with diseased cells.1 In a typical pro-

teomics experiment, an instrument called a mass spectrom-

eter may be used to identify proteins and measure their

quantities. However, because of the sensitivity of the instru-

ments, a protein molecule is in fact too large to be identified.

Hence, proteins must be broken down into smaller fragments

called peptides. The mix of peptides is fed into a column

before entering the mass spectrometer. Some of the peptides

pass through the column relatively rapidly, and others ef-

fectively bind slightly to the material in the column with the

result that their passage through the column is slowed as they

are retained for a while in the column. Mass spectrometers

measure the mass, charge, and retention time of particles—in

this case, the peptides. This data is captured as the mass-to-

charge ratio and quantity (measured as the ‘‘intensity’’) of the

peptide molecules. It is typically presented as a graphical

output (Fig. 1). Within each spectrum the data points form

Gaussian curves, with each curve representing a peptide

identification. Hence, the first step of computational analysis

is to identify these curves, known as 2D peaks. The next step

of the process takes into account the time element of the

instrument analysis. When a sample is submitted to an in-

strument, it can take between 100 minutes to 4 hours for the

sample to be fully analyzed. The sample passes through the

instrument, with smaller peptide molecules passing through

first, ranging all the way up to the largest peptide molecules at

the end. A spectrum (Fig. 1) is taken every second as a
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snapshot documenting what is present in the instrument at

that point in time. Each peptide may be seen in several

snapshots before it finishes passing through the instru-

ment. Hence, spectra need to be joined together in a third

dimension—time. This means that the 2D peaks now form

3D peaks, which must be computationally detected. An added

complication in the spectra arises from the fact that the same

peptide may be observed in nature with different masses. This

is caused by the natural occurrence of different forms of

carbon, which make up a peptide molecule. However, these

multiple forms of a peptide are predictable and form a pat-

tern in the spectra (Fig. 2). This

pattern is known as an isotopic en-

velope. As all peaks within this en-

velope belong to the same peptide,

they must be aggregated.

Any given experiment in proteomics

will often consist of multiple sam-

ples. The mass spectrometry instru-

mentation produces a RAW data file

for each sample processed. As the

number of samples and the indi-

vidual sample complexity increase,

the amount of data also increases proportionally. A typical

RAW file output from a Thermo Orbitrap mass spectrometer,

as used by the University of Dundee, contains approximately

40,000 scans and each scan contains approximately 20,000

data points. This results in any single dataset from an ex-

periment comprising up to 800,000,000 data points. Fur-

thermore, in the course of an experiment it is usual to create

several technical and biological replicates, which all add to the

volume of data generated. A large laboratory with 10 in-

struments in use could routinely produce billions of data

points per day. Current processing methods using desktop

computers would struggle to keep up with this volume of

data as it is produced. This leads to a backlog of data pro-

cessing as the time taken to process data exceeds the time

taken for the next experiment to run. The aim of this research

is to produce a system based on a horizontally scalable ar-

chitecture that, with the addition of computing nodes, will

allow the processing time to remain constant as the proces-

sing requirements increase.

Hadoop consists of Hadoop distributed file system (HDFS), a

distributed fault-tolerant file system, and MapReduce, a

framework used to distribute processing across clusters of

computers, first proposed by engi-

neers working for Google.2 It is de-

signed to be run on clusters of

commodity hardware and frees the

programmer from the complexity of

allocating, monitoring, and running

many parallel tasks. Apache Hadoop

is an open-source implementation

that is being widely evaluated and

adopted by the business community

as an alternative to traditional rela-

tional databases in terms of storage

and the types of analysis that can be

performed.3 In reviewing the current literature, there are very

few references to the use of MapReduce-style parallelization

for the processing of data created in the course of proteomic

experiments. There is reference to this paradigm being used

to show the possibility of identifying proteins by matching

peak lists to theoretical databases4–6 although these articles do

not detail the MapReduce steps process involved in the peak-

list production. Our research is concerned with the investi-

gation of using parallel compute clusters and programming

methods to develop efficient techniques for dealing with

larger data volumes and complexity while producing results

in a reasonable time frame. The specific algorithms used to

FIG. 1. Scan from a mass spectrometer with several 2D peaks identified.

‘‘CURRENT PROCESSING
METHODS USING DESKTOP

COMPUTERS WOULD
STRUGGLE TO KEEP UP

WITH THIS VOLUME OF DATA
AS IT IS PRODUCED.’’

Hillman et al.

ORIGINAL ARTICLE

MARY ANN LIEBERT, INC. � VOL. 2 NO. 1 � MARCH 2014 BIG DATA BD45



pick the 2D and 3D peaks are a Java representation of algo-

rithms developed at the University of Dundee. The research

detailing these algorithms is unpublished at the time of

writing this article and cannot be referenced. All of the output

from the MapReduce implementation has been extensively

validated against the output used in the development of the

new peak detection techniques and found to be accurate.

Using the MapReduce code on a horizontally scalable archi-

tecture, we expect to approach real-time output of processed

data. In this context, real time will be measured as being

within minutes as opposed to the many hours or days that

current processing methods take.

Data Processing

The output from a mass spectrometer will typically be a RAW

file in a vendor-specific binary format; the convention is to

convert these files into an XML format called mzML, which

was defined by the proteomics community.7 The files used in

the course of this work were converted using the msconvert

tool, part of the proteowizard tool set. The mzML standard

is designed for the storage of data and transfer between

researchers and institutions in a vendor- and platform-

independent format. It is acknowledged that conversion to this

format is necessary whatever the final processing steps taken.

Conversion to mzML from Thermo RAW files requires a

vendor-provided dll file that can be used only on a Windows

platform. The Windows PC–based conversion process using

msconvert takes several minutes to perform, which is a serial

process constant and not considered further in the parallel-

processing evaluation.

As files are loaded into the HDFS file system, the default

Hadoop behavior to split files into 64 Mb chunks to the

nearest newline character is likely to result in an XML file

being split between opening and closing tags. To avoid any

complexity of processing large (7 Gb + ) XML files, a new file

format was investigated that allows the data to be distributed

and scans to be processed in parallel rather than sequentially.

XML file conversion
The XML data consists of a header section containing in-

formation about the environment in which the experiment

was performed, for example, machine settings, researcher

details, date, and time. Subsequently, there is a section con-

taining information about each scan performed with the data

from the scan held as two Base64-encoded strings, one for the

mass-to-charge ratio and one for the intensity of the particles

detected. In order to create a new file format holding just the

information relevant for detecting the peptides (and hence

the proteins) present in the sample, two methods of XML

parsing were investigated. The first is called document object

model (DOM), which is unsuitable for large files as all data is

read into memory before processing. The second method

investigated was the SAX parser or Simple API for XML. This

parser processes the input file in a sequential manner and

does not attempt to read the entire file into memory. The

SAX parser library is very simple to use: a convertor was

written and compiled, and conversion between mzML and

the new tab-delimited file format tested and timed. This has

proved remarkably successful: an initial 5.4 Gb mzML file can

be converted into a tab-delimited flat file format in under 3

minutes using a midlevel laptop (quadcore i5 processor@

2.5 Ghz and a solid-state drive). This puts the conversion

time from a 5.4 Gb vendor-specific RAW file to mzML and

finally to tab-delimited format at approximately 10 minutes.

The new file format contains the following data as tab-

delimited columns: scan number, mslevel, retention time,

m/z Base64 array, intensity Base64 array, precursor ion m/z,

precursor ion intensity, and precursor ion charge. To be

processed in Hadoop, the data needs to be moved into the

Hadoop file system; the default method is to copy the data

FIG. 2. Peaks within an isotopic envelope.
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onto a Linux server and then use the Hadoop–fs put com-

mand. To make this more efficient, we can make use of the

Hadoop Java API to convert the XML files to tab-delimited

and move the delimited output directly into HDFS in one

step.

The remainder of the information in the mzML file is still

important to the complete understanding of the outcome of

an experiment. A hybrid-load architecture was discussed in

previous work by Hillman,8 where metadata was stored in a

normalized schema in a relational database and the scan in-

formation in a file system. However, the metadata is not

discussed in any further detail in this

article.

2D peak picking
In order to pick out the peaks in

each scan, a Map task is needed.

Here the key/value input is created

by a standard file input task with the

key being the byte offset into the file

and the value being the text from the

file up to the next newline character.

This is where the tab-delimited file

format greatly simplifies processing,

as each record in the file up to a carriage return represents a

single scan from the mass spectrometer. In this way each scan

can be processed completely independently of the others, and

therefore the 2D peak-picking process can be made to operate

in parallel. As Hadoop is a linearly scalable architecture, it is

also a simple matter to time how many scans can be pro-

cessed in a time frame and calculate how many data nodes

will be needed to process a complete experiment in a desired

period. The Map task decodes the Base64 binary arrays

storing the mass-to-charge and intensity data and loads them

into Java arrays in memory. Each peak is detected by using a

slope detection algorithm. Overlapping peaks introduce some

degree of complexity here. In addition, noise in the signal and

the way the instrument measures the peptides mean that the

peaks can be shifted slightly; however, it is possible to com-

pensate for this by calculating a theoretical peak by fitting an

ideal Gaussian curve to the data (Fig. 3).

De-isotoping 2D peaks
Because of the presence of carbon isotopes, it is necessary to

identify peaks within an isotopic envelope that represent the

same peptide. This can be done in the same Map task as the

2D peak picking. As the scan data is

looped over and the weighted theo-

retical peaks identified, the mass-to-

charge ratio, intensity, and other

relevant information is stored in an

array. Once a first pass over, the scan

is completed, and the weighted peak

array can be processed to look for

isotopic peaks. This is carried out by

joining the array back on itself with

an inner and outer loop. As peaks

are matched within an isotopic

window, the charge can be calcu-

lated, thus completing the first step

in the parallel-processing workflow.

3D peak picking
The 2D peaks identified so far are indicators of the presence

of a peptide. As stated above, the mass spectrometer carries

out multiple scans because any one peptide can take several

seconds to pass through the machine. Hence, the same pep-

tide appears as multiple 2D peaks in multiple scans. By

treating these multiple peaks as a single 3D peak and calcu-

lating the volume under that peak, it is possible to calculate

‘‘THE REMAINDER OF THE
INFORMATION IN THE MZML
FILE IS STILL IMPORTANT

TO THE COMPLETE
UNDERSTANDING OF

THE OUTCOME OF
AN EXPERIMENT.’’

FIG. 3. Overlapping curves with theoretical peaks identified.
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the quantity of the peptide in the sample. Once the 2D peaks

have been identified from the individual scans, the dataset is

greatly reduced. Where the original scan may have contained

20,000 data points, the total number of 2D peaks could

number below 2000. This reduction in data is important, as

now that the first Map step is com-

plete, the data will need to be re-

distributed around the cluster and

written out to disk. The redistribu-

tion is performed by the shuffle step

of the MapReduce process as it di-

rects the Map output key and value

pairs to the correct reducer. The 3D

peaks are detected by looking across

the scans and matching 2D peaks

within a mass and a retention time

window. These windows will need to

overlap to ensure that all peaks are

detected, and this is also handled by

the output from the 2D peak Map

task. A custom partitioner function is required to ensure that

the output of the initial 2D peaking process is ordered cor-

rectly by the mass of the peak, the scan number, and the

retention time and to allow the overlap window. The reason

for this is that a similar algorithm that detected the 2D peaks

can now be used to detect the 3D ones across the scans. This

step is a Reduce step as the 3D peaks will occur within a mass

window (chosen to be 7 ppm in this work). In this way, the

2D and 3D peak-picking process fits well into the MapReduce

programming framework, and where data needs to be re-

distributed, the dataset has been greatly reduced by the

Map Task.

3D isotopic envelopes
In the same way as described above for the 2D peaks, the 3D

peaks also require a de-isotoping step. To do this, the 3D

peaks can again be stored in an array and the same techniques

used to identify peaks that have different masses but, because

of the presence of carbon isotopes, are actually the same

peptide. At this point we have calculated the mass and in-

tensity of molecules and can either output the results or move

on to further processing such as detection of stable isotope

labeling by amino acids in cell culture (SILAC) or database

search.

Evaluation
As stated above, the 2D and 3D peak-picking process fits very

well into the MapReduce framework. Each scan produced by

the mass spectrometer can be processed independently by a

Map task. This Map task can handle complexity such as de-

coding the Base64 arrays, removing noise in the signal, and

handling overlapping peaks. The 3D peak picking follows a

similar pattern to the 2D but in a Reduce task that needs to

look across scans in an overlapping mass window. Timings

have been calculated on the 2D process for comparison with a

desktop PC-based process that uses MaxQuant software to do

the processing.

Using a test Hadoop cluster running Hadoop in Virtual

machines on a Windows host machine, timings were taken

for the 2D peak-picking process.

The timings were compared using 2,

3, and 4 data nodes with each node

having 2 Map slots. Even on this

small scale, the linear scalability of

Hadoop can be seen with a reason-

ably consistent number of scans per

second per Map task. The comple-

tion times were impressive com-

pared with a conventional PC-based

process, which completed the same

task in around 22 minutes. Using

the metric of 25 scans per slot per

second, a Hadoop cluster containing

10 data nodes with 16 Map slots

would be able to process 4,000 scans per second.

Discussion/Future Work

There are many areas still to be researched in this process,

including the SILAC pair/triplet detection and, importantly,

the database search that identifies the peptides by their mass

and ties the peptides to a given protein.9 A complete version

of the process coded in the MapReduce framework will allow

timings to be taken and compared across platforms and

Hadoop configurations. This will also allow direct compari-

son with the desktop computer processing that is currently

carried out. Hadoop open-source software is constantly being

updated and added to as the community seeks to expand and

improve on its capabilities. Already in the beta stages of re-

lease, developments such as YARN, Tez, and Impala are

promising improvements in speed, usability, or both. A

properly designed and researched process will allow future

work to take advantage of technical developments with-

out having to revalidate and redesign the methodology

for processing raw mass spectrometer data into actionable

information.
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