
                                                              

University of Dundee

A novel marker, ARM58, confers antimony resistance to Leishmania spp

Nuhs, Andrea; Schäfer, Carola; Zander, Dorothea; Trübe, Leona; Tejera Nevado, Paloma;
Schmidt, Sonja; Arevalo, Jorge; Adaui, Vanessa; Maes, Louis; Dujardin, Jean-Claude; Clos,
Joachim
Published in:
International Journal for Parasitology: Drugs and Drug Resistance

DOI:
10.1016/j.ijpddr.2013.11.004

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Nuhs, A., Schäfer, C., Zander, D., Trübe, L., Tejera Nevado, P., Schmidt, S., ... Clos, J. (2014). A novel marker,
ARM58, confers antimony resistance to Leishmania spp. International Journal for Parasitology: Drugs and Drug
Resistance, 4(1), 37-47. https://doi.org/10.1016/j.ijpddr.2013.11.004

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/30660127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ijpddr.2013.11.004
https://discovery.dundee.ac.uk/en/publications/257571d4-d5a2-4331-9a33-fa98afdf5f96


International Journal for Parasitology: Drugs and Drug Resistance 4 (2014) 37–47
Contents lists available at ScienceDirect

International Journal for Parasitology:
Drugs and Drug Resistance

journal homepage: www.elsevier .com/locate / i jpddr
A novel marker, ARM58, confers antimony resistance to Leishmania spp.
2211-3207 � 2013 The Authors. Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.ijpddr.2013.11.004

⇑ Corresponding author. Address: Bernhard Nocht Institute for Tropical Medicine,
Bernhard Nocht St. 74, D20359 Hamburg, Germany. Tel.: +49 40 42818 481;
fax: +49 42818 512.

E-mail address: clos@bnitm.de (J. Clos).
1 Present address: Drug Discovery Unit, Division of Biological Chemistry and Drug

Discovery, University of Dundee, Dundee, UK.
2 Present address: Heinrich Pette Institute for Experimental Virology, Hamburg,

Germany.
3 Present address: Institute for Medical Microbiology, Virology and Hygiene,

Hamburg, Germany.
4 Present address: Euroimmun AG, Division Medical Scientific Information, Lübeck,

Germany.

Open access under CC BY-NC-ND license.
Andrea Nühs a,1, Carola Schäfer a,2, Dorothea Zander a, Leona Trübe a,3, Paloma Tejera Nevado a,
Sonja Schmidt a,4, Jorge Arevalo b, Vanessa Adaui b, Louis Maes d, Jean-Claude Dujardin c,d, Joachim Clos a,⇑
a Bernhard Nocht Institute for Tropical Medicine, D20359 Hamburg, Germany
b Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
c Instituut voor Tropische Geneeskunde, Antwerp, Belgium
d Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
a r t i c l e i n f o

Article history:
Received 24 August 2013
Received in revised form 22 November 2013
Accepted 25 November 2013
Available online 6 December 2013

Keywords:
Leishmania braziliensis
Antimony
Resistance
a b s t r a c t

Protozoa of the Leishmania genus cause a variety of disease forms that rank at the top of the list of
neglected tropical diseases. Anti-leishmanial drugs based on pentavalent antimony have been the main-
stay of therapy for over 60 years and resistance against them is increasingly encountered in the field. The
biochemical basis for this is poorly understood and likely diverse. No stringent correlation between
genetic markers and antimony resistance has so far been shown, prompting us to use a functional cloning
approach to identify markers of resistance. Using gene libraries derived from drug-resistant and drug-
sensitive Leishmania braziliensis clinical isolates in a functional cloning strategy, we repeatedly selected
one gene locus located on chromosome 20 whose amplification confers increased antimony (III) resis-
tance in vitro to an otherwise sensitive L. braziliensis clone. The gene responsible for the effect encodes
a previously hypothetical protein that we dubbed LbrARM58. It comprises four repeats of a domain of
unknown function, DUF1935, one of them harbouring a potential trans-membrane domain. The gene is
so far unique to the Leishmania genus, while a structurally related gene without antimony resistance
functionality is also found in Trypanosoma spp. Overexpression of LbrARM58 also confers antimony
resistance to promastigotes and intracellular amastigotes of the related species Leishmania infantum,
indicating a conserved function in Old World and New World Leishmania species. Our results also show
that in spite of their RNAi system, L. braziliensis promastigotes can serve as acceptor cells for episomally
propagated cosmid libraries, at least for the initial stages of functional cloning efforts.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Leishmaniasis is a parasitic disease caused by protozoa of the
genus Leishmania and found on four continents with an estimated
annual incidence of between 900,000 and 1.8 million cases (Alvar
et al., 2012). Leishmaniasis is a poverty related disease with many
endemic countries lacking the infrastructure and funds for effec-
tive treatment and control measures. The clinical manifestations
range from the generalised visceral leishmaniasis (VL) or Kala-
Azar, to cutaneous leishmaniasis (CL) and mucocutaneous infec-
tions (MCL) and are mostly determined by the infecting Leishmania
species.

Therapy against leishmaniasis still relies heavily on two formu-
lations of pentavalent antimony (SbV), meglumine antimoniate
(Glucantime�) and sodium stibogluconate (Pentostam�). Devel-
oped in the first half of the twentieth century, these compounds
are still the mainstay of therapy in most endemic regions. Resis-
tance against SbV has been on the rise since the 1970s. For Indian
Kala-azar, the high rate of antimonial treatment failure (>60%)
has all but eliminated those cost-effective drugs from the arsenal
of clinicians (Sundar, 2001; Croft et al., 2006).

Pentavalent antimony, SbV, is assumed to be a pro-drug,
requiring reduction to SbIII either by the parasite or by the host cell.
SbV has very little toxicity for promastigotes of Leishmania
donovani, apparently due to their inability to reduce SbV, whilst
amastigotes are susceptible to varying degrees depending on their
reducing capacity (Roberts et al., 1995; Shaked-Mishan et al.,
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2001). In L. tarentolae, a non-human pathogenic species, increased
levels of trypanothion were found to aid in the detoxification of
SbIII (Haimeur et al., 1999), as did increased levels of P-glycopro-
teins that act as extrusion pumps for SbIII (Grondin et al., 1997;
Ouellette et al., 1998). Conversely, the reduction of aquaglyceropo-
rin 1 levels is linked to reduced uptake of SbIII and increased resis-
tance in L. major (Gourbal et al., 2004).

The diversity of pathways linked to antimony resistance is fur-
ther compounded by a recent finding that some L. donovani isolates
from treatment failure cases can induce expression of host cell
multi-drug resistance genes (Mookerjee Basu et al., 2008; Mukher-
jee et al., 2013), thus relying on host cell functions for resistance to
therapy.

Compared with Northern India, treatment failure of antimony-
based drugs is less prevalent in South America. One of the chief
disease agents in Brazil, L. (Viannia) braziliensis, is known to be
sensitive to SbV treatment in vitro and responsive in the clinical
practice (Croft et al., 2006; Azeredo-Coutinho et al., 2007). Never-
theless, primary antimony therapy has a failure rate of �20–25%,
depending on the endemic region (Soto et al., 2005; Arevalo
et al., 2007; Llanos-Cuentas et al., 2008), and sensitivity varies be-
tween patient isolates, even before the start of the treatment
(Yardley et al., 2006; Azeredo-Coutinho et al., 2007). Infection with
L. braziliensis was associated with the highest antimonial treatment
failure rate (30.4%) among Peruvian patients with cutaneous leish-
maniasis (Arevalo et al., 2007). The correlation of in vitro drug sus-
ceptibility with therapeutic success is still debated as the
evaluation of antimony susceptibility by in vitro macrophage-
amastigote assays does not necessarily reflect the in vivo situation.

In L. braziliensis, natural antimony resistance does not appear to
be linked to phylogenetic markers, but emerges independently in
different lineages of this species (Adaui et al., 2011b). Additional
analyses show that expression of known and suspected marker
genes for SbIII/SbV resistance display isolate-specific fluctuations,
possibly representing a great clonal variety (Adaui et al., 2011a). Dif-
ferential gene expression analysis of 13 genes in 21 L. braziliensis
isolates showed a significant correlation between drug resistance
and elevated expression of ornithine carboxylase and trypanothion
reductase, but not stringent correlations (Adaui et al., 2011c). There-
fore, as in L. donovani, antimony resistance in L. braziliensis is a mul-
ti-gene trait resulting from a variety of molecular mechanisms.

However, there may be more marker genes that are yet uniden-
tified and whose nature may shed light on the pathways leading to
drug resistance. A successful strategy employed previously involved
the in vitro selection for SbIII or SbV tolerant parasite populations
that were subsequently subjected to an expression analysis for can-
didate genes. Unanticipated resistance genes cannot be detected in
this approach. Likewise, genetic linkage analyses cannot detect ran-
dom variations of gene expression within populations and isolates.
Other, non-hypothesis-driven strategies need to be implemented,
such as quantitative genomics and functional cloning.

Leishmania parasites are unicellular protozoa of the order Kine-
toplastida. Typical of this order is the lack of gene-specific tran-
scription regulation (Clayton, 2002), a unique feature among the
Eukaryota. Most Leishmania genes are transcribed as multi-cis-
tronic pre-mRNAs that are subject to subsequent processing
through trans-splicing and polyadenylation. Generally, protein
coding genes are not interrupted by introns. This fact makes gDNA
cosmid libraries the tool of choice for functional cloning in Old
World Leishmania (Clos and Choudhury, 2006). By contrast, the
use of selectable episomes is not feasible in the related Trypano-
soma brucei (Clayton, 1999), possibly due to the existence of an
RNA silencing system (Ullu et al., 2004). Recent evidence indicates
that L. (Viannia) braziliensis also possesses the genes encoding key
proteins of RNA silencing (Peacock et al., 2007), and is susceptible
to RNA interference (Lye et al., 2010). This was unknown at the on-
set of our study.

We have recently used a functional cloning strategy (Clos and
Choudhury, 2006) to search for genetic markers of drug resistance
in Leishmania infantum. Promastigotes were transfected with a
shuttle cosmid library of L. infantum genomic DNA and challenged
with the antileishmanial drug, Miltefosine. The two cosmids se-
lected overlapped in a single gene which was shown subsequently
to confer increased Miltefosine and SbIII resistance upon overex-
pression (Choudhury et al., 2008).

Expanding on the same strategy, we attempted to identify
genes that may differ between antimony resistant and antimony
sensitive Leishmania clinical isolates. Antimony resistance might
arise in a stepwise manner, first to SbV and then to SbIII (Yardley
et al., 2006; Rijal et al., 2007). This is supported by our observation
of three combinations of in vitro antimony susceptibility pheno-
types among field isolates: (i) parasites sensitive or (ii) tolerant
to both SbV and SbIII, and (iii) parasites tolerant to SbV only (the
majority) (Yardley et al., 2006; Rijal et al., 2007). In this study,
we used the SbIII- and SbV-resistant isolate MHOM/PE/02/PER104
of L. braziliensis (Yardley et al., 2006; Adaui et al., 2011a) as donor
for a genomic DNA cosmid library, to transfect SbIII s/SbV r clones of
isolate MHOM/PE/01/PER002 and to challenge the recombinant
population with antimonyl tartrate (SbIII). Five independent
screens using two libraries from resistant and sensitive isolates,
combined with two L. braziliensis clones and one L. peruviana
acceptor strain, yielded three cosmids that overlapped in the same
region of the L. braziliensis chromosome 20. The region harbours a
gene, LbrM20.0210, which upon overexpression in L. infantum in-
creases the IC50 for SbIII up to threefold and increases parasite sur-
vival inside macrophages under SbV pressure.
2. Materials and methods

2.1. Parasite strains and isolates

L. braziliensis isolates MHOM/PE/2002/PER104 (PER104) and
MHOM/PE/2001/PER002 (PER002) have been described (Soto
et al., 2005; Llanos-Cuentas et al., 2008). Of the latter, two clones
were isolated with confirmed SbIII s/SbV r phenotype. L. peruviana
strain MHOM/PE/??/ LC2434, clone 5, was a gift from Lenea
Campino, Lisbon. L. infantum strain MHOM/FR/91/LEM2259 was
described (Garin et al., 2001; Choudhury et al., 2008).
2.2. Parasite cultivation and selection procedures

Promastigotes were cultivated at 25 �C, pH 7.0 in Locke’s Solu-
tion (0.8% NaCl; 0.02% KCl; 0.03% KH2PO4; 0.01% MgSO4 � 7H2O;
0.1% NaHCO3; 0.25% glucose; all w/v) over Tobie’s blood agar
(20% rabbit blood, defibrinated; 1.5% agar; 1.5% Bacto-Tryptose;
0.4% NaCl; 0.04% KCl; 0.5% Na3PO4 � 12H2O) and with 1% L-gluta-
mine/Penicillin/Streptomycin (Sigma–Aldrich #D3462). G418
(Geneticin sulfate, Carl Roth) was added to 12 lg ml�1 for recom-
binant cell populations. Cell density was determined using Neu-
bauer chambers with 0.025 mm width.

Alternatively, L. braziliensis and L. peruviana were cultivated at
25 �C, pH 7.0 in Schneider’s Insect Medium supplemented with
10% (v/v) heat-inactivated fetal calf serum, 2% (v/v) sterile filtered
human urine, 0.04% (w/v) NaHCO3, 0.079% (w/v) CaCl2 � 2H2O, and
25 lg ml-1 gentamycin. L. infantum was cultivated in supple-
mented Medium 199 (Krobitsch et al., 1998). G418 was added to
50 lg ml�1 for recombinant cell populations. Cell density was
monitored using a Schaerfe System CASY� cell counter. For growth
experiments, promastigotes were seeded at 5 � 105 cells ml�1 in
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modified M199 without G418 and cell density was monitored for
3 days.

2.3. In vitro infection

In vitro infections were performed as described (Reiling et al.,
2010). Bone marrow-derived macrophages (BMMs) were isolated
from femurs of C57BL/6 mice and incubated in Iscove‘s Modified
Dulbecco‘s Medium (IMDM) supplemented with 10% heat
inactivated FCS, 5% horse serum, and 30% L929 cell supernatant
containing macrophage colony-stimulating factor (MCSF),
modified after (Racoosin and Swanson, 1989). After differentia-
tion, BMMs were harvested, washed, and seeded into 8-well
chamber slides (Nunc) at a density of 4 � 105 cells/well.
Macrophages were incubated for 48 h at 37 �C and 9% CO2 to
permit adhesion. BMMs were then infected using stationary phase
promastigotes (Racoosin and Beverley, 1997) at 10 parasites per
macrophage. After 4 h of incubation at 37 �C in modified Medium
199 (Krobitsch et al., 1998), free parasites were washed off with
PBS. Incubation was continued for another 72 h in IMDM without
or with 160 lg ml-1 of Pentostam� at 37 �C and 9% CO2. The
medium was removed. The cells were washed twice in PBS and
subsequently fixed in ice-cold methanol. Infection rates were
assessed by nuclear staining with DAPI (1.25 lg ml�1, Sigma)
and fluorescence microscopy. Pentostam� (formulated for clinical
use, GlaxoSmithKline) was a gift from the Bundeswehr
Krankenhaus Hamburg, Tropical Medicine Unit.

2.4. Genomic DNA preparation and cosmid library construction

Construction of a Leishmania genomic DNA cosmid library in the
vector pcosTL (Kelly et al., 1994) has been described (Hoyer et al.,
2001). Briefly, cosmid libraries of L. braziliensis strains PER104 and
PER002 (Yardley et al., 2006; Adaui et al., 2011b) were prepared by
cleavage of the shuttle cosmid vector pcosTL with SmaI and BamHI
and ligation with size-selected Sau3AI partial digest products of
genomic DNA prepared by glass rod spooling from an ethanol pre-
cipitation (Sambrook and Russell, 2001). After packaging using the
Gigapack Gold II kit (Stratagene), the complexities of the libraries
were tested, after which the libraries were amplified and stored
at �70 �C.

2.5. Electroporation, selection, and recovery of cosmid DNA

Electrotransfection of Leishmania promastigotes was carried out
as described (Krobitsch et al., 1998). Promastigotes were harvested
during late log phase of growth, washed twice in ice–cold PBS, once
in pre-chilled electroporation buffer and suspended at a density of
1 � 108 ml�1 in electroporation buffer (Laban and Wirth, 1989;
Kapler et al., 1990). 50 lg of circular DNA in an electroporation
cuvette was mixed on ice with 0.4 ml of the cell suspension. The
mixture was immediately subjected to electroporation using a
Bio-Rad Gene Pulser apparatus. Electrotransfection of DNA was
carried out by three pulses at 2.750 V/cm and 25 lF in a 4 mm
electroporation cuvette. Mock transfection was performed in
identical fashion, however without plasmid or cosmid DNA, to
obtain negative control strains for antibiotic selection. Following
electroporation, cells were kept on ice for 10 min before they were
transferred to 10 ml drug-free medium. G418 (12–50 lg ml�1) was
added after 24 h for selection of recombinant cells.

Dose-inhibition curves for antimonyl tartrate (Sigma–Aldrich
#383376) were established by seeding the promastigotes at
5 � 105 ml�1 in medium containing various concentrations of a
drug, but lacking the selection antibiotic G418. For primary
screens, the selection was performed in the presence of G418, to
select against spontaneous drug resistance.
Recombinant populations of promastigotes transfected either
with cosmid library DNA or with the unmodified vector, pcosTL,
were seeded in G418-containing medium with SbIII at a concentra-
tion that inhibits >95% of the growth. This was determined empir-
ically for each batch of antimonyl tartrate and parasite strain.
When a cell density of 1 � 107 cells ml�1 was reached, the cells
were suspended in fresh medium containing the drug. Cultivation
was continued for several days. Conditions were deemed stringent
if the control population transfected with the vector pcosTL did not
show growth. Surviving parasites were harvested for cosmid
isolation.

Cosmid DNA was prepared from Leishmania promastigotes by
alkaline lysis, following the protocol for plasmid DNA mini-prepa-
ration (Sambrook and Russell, 2001). After phenol/chloroform/iso-
amylalcohol (25:24:1) extraction, cosmid DNA was precipitated by
adding 0.7 vol. 2-propanol, washed once with 70% ethanol and -
dissolved in Tris/EDTA (pH 8.0) buffer.

2.6. Cosmid characterisation

Approximately 100 ng of cosmid DNA was mixed on ice with Li-
brary Efficiency DH5a Competent Cells (Invitrogen). Transfection
was performed following the manufacturer’s protocol, and recom-
binant bacteria were plated on LB agar under ampicillin selection.

Cosmid DNA mini-preparations were performed from P50 indi-
vidual colonies, and the isolated cosmid DNA was subjected to ana-
lytical digest with the restriction enzymes EcoRV and XbaI. The
pattern of restriction fragments was analysed by field inversion
gel electrophoresis (Reiling et al., 2010).

2.7. Construction of cosmid derivates

The cosmid pcosC1.6 was cut with AflII and re-ligated to create
derivative (a). Digest with BamHI and subsequent re-ligation
yielded construct (b). A combined digest with NdeI and BamHI fol-
lowed by Klenow enzyme fill-in reaction and ligation yielded con-
struct (c). Excising the XbaI fragment and fusing it into the XbaI site
of pcosTL resulted in construct (d). To produce construct (e),
pcosC1.6 was digested with XbaI and SpeI, and the resulting
5200 bp fragment was ligated into XbaI-opened pcosTL vector.
Using BclI instead of SpeI in the second step produced construct
(210), while cutting construct (e) with XbaI and BclI followed by
Klenow enzyme treatment and ligation resulted in construct
(220). Schematic representations can be found in Fig. 1C and in
Supplementary data 2.

2.8. cDNA synthesis and qPCR

Real-time qPCR was performed essentially as described
(Choudhury et al., 2008). Gene-specific primers were 20.0210.F2
(50-TGATGATGAAGGTGACCGTGACG-30) and 20.0210.B3 (50-AAG-
GAGGGTGTAGACGACGCTCTC-30). LbrM20.0210 mRNA abundance
was calculated relative to the actin signal.

2.9. In silico DNA analysis and data handling

Significance was assessed by the Mann–Whitney U-test (Mann
and Whitney, 1947). All statistical analyses were performed using
the Prism Software (GraphPad). Sequencing was performed by a
commercial provider (AGOWA, Berlin). We used the MacVector™
suite software (Versions 10.5–12.7) for in silico sequence analysis.
BLAST searches were performed at standard settings, using the Tri-
Tryp web site (http://tritrypdb.org/tritrypdb//). Open reading
frames were identified both by onsite analysis, using MacVector™,
and by mining of the TriTryp Genome Databases. Sequence
alignments were done in ClustalW using the MUSCLE algorithm

http://tritrypdb.org/tritrypdb//
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Fig. 1. (A) Sequence alignment between the experimentally determined insert sequence of pcosC1.6 and L. braziliensis chromosome 20. The 50 �15 kb of the insert align in reverse
complimentary direction with the 50 end of chromosome 20, whilst the C0-terminal 24 kb align in colinear fashion with chromosome 20 sequences between positions 56 and
80 kb. (B) Schematic representation of the overlapping genomic DNA inserts of cosmid C1.6, A3 and B1. Eight open reading frames (ORFs) are present in all three cosmid inserts.
The four digit gene numbers correspond to the systematic numbers for chromosome 20 (LbrM20.____) derived from version 2 of the L. braziliensis genome project. The total length
of each insert (to the right in [bp]) was derived from end-sequencing. Green boxes symbolise ORFs for hypothetical proteins, orange boxes stand for conserved hypothetical
proteins, and yellow boxes signify coding regions for proteins with predicted functions. Hatched boxes stand for incomplete ORFs. Vertical dotted lines connect identical ORFs
found in all 3 cosmids. Note that the sequence was incomplete in the genome project, causing the apparent non-linear numbering of gene candidates. (C) Truncation of cosmid
insert C1.6. The inserts of seven deletion constructs derived from the cosmid pcosC1.6 are schematically shown. The deletions are represented by the dashed lines. The positions of
AflII, BamHI, BclI, SpeI and XbaI restriction sites are shown on insert C1.6. (D) Recovery rates [%] of cosmid pcosC1.6 and its truncated derivatives after selection in L. infantum.
Promastigotes transfected with pcosC1.6 and any of the truncated variants (pcos-a to pcos-e, pcos210, pcos220) were mixed at equal ratio (C0). Two control cultures cultivated
without SbIII for 12 days (C12) or 21 days (C21) were analysed along with the cultures selected at 500 lM SbIII for 12 days (S12) or at 400 lM SbIII for 21 days (S21). Episomes from
surviving parasites were isolated and used for transformation of E. coli. From each transformation, the cosmid DNAs from 50 bacterial colonies were characterised by RFLA, and the
share [%] of each cosmid type is displayed.
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included with the MacVector� software package. Transmembrane
domain predictions were performed at the TMpred website (http://
www.ch.embnet.org/software/TMPRED_form.html) (Hofmann and
Stoffel, 1993). Figures were compiled using the Intaglio� vector
graphics software.

2.10. Animal ethics

The isolation of bone marrow-derived macrophages from
sacrificed mice was done in accordance with the German animal
protection laws and regulations.

3. Results

3.1. Library construction and transfection

The genomic DNA from two L. braziliensis isolates, the SbIII resis-
tant MHOM/PE/02/PER104 (PER104) and the SbIII sensitive MHOM/
PE/01/PER002 (PER002), were used for construction of two cosmid
libraries, pcos104 and pcos002 respectively. The cosmid library
DNAs were then used for stable transfection of L. braziliensis
PER002, clone 7, promastigotes. In addition, the cosmid library
pcos104 was electro-transfected into L. peruviana promastigotes,
to test whether the outcome of the screen was influenced by the
acceptor species. The number of recombinant parasites per electro-
poration reaction was determined by limiting dilution analysis (not
shown). Results varied between 960 and 1900 clones per reaction.
We therefore pooled 6 electroporation reactions for each library
to ensure the necessary number of >4200 clones, that is needed to
cover the L. braziliensis genome with a confidence of >99%.

3.2. First selection (S1) of PER002cl7 parasites bearing the pcos104
library

First, we established the sensitivity of PER002 promastigotes
against SbIII in biphasic medium. Dose-inhibition curves suggested
that growth of a control strain bearing the empty cosmid vector,
PER002 [pcosTL], was reduced by >95% at 90 lM antimonyl tar-
trate (data not shown). We decided to perform selections at two
concentrations, 25 and 90 lM.

We next selected the cosmid library from the SbIII resistant iso-
late PER104 in the SbIII sensitive PER002 background. PER002cl7[p-
cos104] promastigotes were seeded in vitro at 1 � 107 cells ml�1 in
biphasic medium and challenged with antimonyl tartrate.
PER002cl7[pcosTL] controls were cultivated in parallel. The chal-
lenge was maintained for up to 33 days, or until the library-trans-
fected populations showed significant growth. In total, three
selections (S1.1–S1.3) were performed, one (S1.1) at 25 lM and
two (S1.2 and S1.3) at 90 lM SbIII.

The cosmid DNA from the surviving parasite populations was
isolated and then used for transformation of competent Escherichia
coli DH5a cells. The cosmid DNA from P50 resulting E. coli clones
Table 1
Outcomes for 6 independent selection screens.

Selection Acceptor strain Donor strain SbIII (lM)

S1.1 PER002 PER104 25
S1.2 PER002 PER104 90
S1.3 PER002 PER104 90
S2.1 PER002 PER002 75
S2.2 PER002 PER002 75
S3 L. peruviana PER104 15

Screens S1.1–S1.3 were performed using the SbIII sensitive strain PER002 and a cosmid l
consecutively performed using PER002 both as donor and acceptor, and screen 3 was perf
(column 3) and selection time (column 4) varied depending on antimony batch variations
given in column 5, while the corresponding chromosomal regions are given in column 6
was isolated and subjected to restriction fragment length analysis
(RFLA) (Supplementary data 1). One cosmid, designated pcosC1.6,
was dominant in all three selections (Table 1). In selection S1 un-
der low antimony pressure (25 lM SbIII), pcosC1.6 was identified
in 66% of the bacterial clones. In selections S1.2 and S1.3 (both at
90 lM SbIII), the same cosmid was recovered from 90% to 98%
respectively of the analysed clones. Another cosmid that appeared
frequently turned out to be a plasmid contamination, likely con-
tracted during E. coli transformation (Supplementary data 1). The
fact that only one cosmid species was recovered after 90 lM SbIII

selection experiments implicates a strong selective pressure to-
wards a/the gene/s harboured in cosmid pcosC1.6.

Partial 50- and 30 sequence analysis of the genomic DNA insert of
pcosC1.6 was performed and used for an alignment with the L. bra-
ziliensis genome project. The region bracketed by the partial se-
quences contained two large gaps. Using a primer walking
strategy, we filled those sequence gaps to obtain a complete se-
quence of the pcosC1.6 insert (Supplementary data 3). Alignment
of the complete insert sequence with the L. braziliensis chromo-
some 20 (CHR20) sequence (as of Sep 20, 2013) results in a split
alignment (Fig. 1A). The 50 �15 kb align in reverse complimentary
direction to the telomere end of CHR20 (positions �50–14,000)
whilst the 30 24 kb of the cosmid insert align in colinear fashion
to CHR20 sequences between positions 56,000 and 80,000. This
can be either due to a ligation artefact during library construction
joining two smaller DNA fragments or to a faulty contig building
for CHR20. The cosmid insert thus comprises 39 kb of genomic
DNA and includes eleven complete and one partial open reading
frames (Fig. 1B, Supplementary data 2).

3.3. Quantification of the effect by pcosC1.6

To quantify the effect of the pcosC1.6 episomes, we performed a
dose-inhibition experiment. The SbIII susceptibilities of acceptor
and library donor parasites, PER002cl7 and PER104, are different.
We found PER104 (Fig. 2A, full circles) to have a >2-fold higher
IC50 (50%-inhibitory concentration) than PER002cl7 (Fig. 2A, open
circles). The vector control strain PER002cl7[pcosTL] showed an
IC50 of 7 lM antimonyl tartrate, whilst the PER002cl7[pcosC1.6]
parasites displayed an IC50 of 16 lM. This 2.3-fold difference
caused by the pcosC1.6 transgene is therefore measurable, repro-
ducible (n = 5, p = 0.002) and in the range of the donor strain
PER104.

3.4. Second selection (S2) of PER002cl7 parasites bearing the pcos002
library

The SbIII resistance conferred by pcosC1.6 may be caused by a
sequence variation in the responsible gene or by the overexpres-
sion from an episome. To distinguish between these possibilities,
we also performed a selection using the recombinant population
PER002cl7[pcos002]. This was designed to identify gene(s) that
Time (d) Selected cosmids (%) Chromosome/region

18 C1.6 (66) 20/903 984–946 647
33 C1.6 (90) 20/903 984–946 647
15 C1.6 (98) 20/903 984–946 647
17 A3 (10) 20/913 015–951 701
17 A3 (96) 20/913 015–951 701
30 B1 (40) 20/908 315–951 075

ibrary derived from the SbIII resistant strain PER104; screens S2.1.1 and S2.1.2 were
ormed using L. peruviana as receptor and strain PER104 as donor. SbIII concentrations
. The dominant selected cosmids and their share of the overall recovered cosmids are
.

http://www.ch.embnet.org/software/TMPRED_form.html
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Fig. 2. (A) Dose–effect of antimonyl tartrate (SbIII) on the growth of L. braziliensis strains PER104 and PER002 transfected with cosmid pcosTL or pcosC1.6 respectively. Growth
at 0 lM SbIII was defined as 100%. The dashed arrows indicate the 50% inhibiting concentration (IC50). Significance (IC50): p = 0.002, n = 6. (B) Effect of pcosC1.6 in L. infantum.
Empty vector pcosTL and cosmid pcosC1.6 were transfected into L. infantum and selected under G418. Cells of both recombinant populations (5 � 105 cells ml�1) were grown
under the indicated SbIII concentrations for 72 h. The diagram shows the cell density after 72 h relative to the control culture (0 lM SbIII). Numerical IC50 values are indicated.
Significance (IC50) p = 0.016, n = 5. (C) Constructs pcos-210, pcos-220, and the empty vector pcosTL were transfected into L. infantum and selected under G418. Cells of each
recombinant population (5 � 105 cells ml�1) were challenged with the indicated SbIII concentrations for 72 h. The diagram shows the cell density after 72 h relative to the
control culture (0 lM SbIII). The bars indicate the mean error. Significance (IC50) p = 0.008, n = 5. (D) Control of LbrM20.0210 expression by qPCR. Expression mediated by
cosmid pcosC1.6 was given the value 1. Note that L. infantum expresses a homologous gene that is not amplified by the species-specific primers. Thus, the degree of
overexpression cannot be determined. (E) Quantification of LbrM20.0210 expression in L. braziliensis strains PER002[pcosTL] and PER002cl7[pcosC1.6]. Expression in the
control strain PER002cl7[pcosTL] was assigned the value 1. n = 6. The standard error of means is depicted.
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induce SbIII resistance by gene over-expression only, as donor and
acceptor strain gDNAs are identical. The parasites were seeded in
supplemented Schneider‘s insect medium at 5 � 105 cells ml�1

and challenged with 75 lM SbIII, the empirically determined IC95

(95%-inhibitory concentration) for that batch of antimonyl tartrate.
After 17 days of selection, cosmid DNA was isolated from the sur-
viving, recombinant parasites. Competent E. coli XL1-blue cells
were transformed with the recovered cosmid DNA. RFLA was per-
formed for 100 bacterial clones (data not shown). Five cosmid spe-
cies (pcosA1-5) were detected after the initial screen (S2.1).
Parasites bearing the cosmids pcosA1-5 at equal ratios were then
subjected to a second screen (S2.2) under the same conditions.
After the secondary selection, 96% of the recovered cosmids corre-
sponded to pcosA3.

Cosmid pcosA3, like pcosC1.6, contains genomic DNA derived
from chromosome 20 and overlaps the genomic DNA insert of
pcosC1.6 (Fig. 1B). This indicates that a quantitative effect is under-
lying the increased SbIII tolerance, meaning that both pcosA3 and
pcosC1.6 act through an increase of the relevant gene copy
number(s).

3.5. Third selection (S3) of L. peruviana parasites bearing the pcos104
library

To test whether the closely related L. peruviana yields a similar
selection result, a recombinant population of L. peruviana
[pcos104] was cultivated in vitro in supplemented Schneider‘s in-
sect medium and then seeded at 1 � 105 cells ml�1 under a chal-
lenge of 15 lM SbIII, due to that species’s much lower tolerance
for antimonyl tartrate. After 30 days of in vitro cultivation, cosmid
DNA was isolated from the selected population and transformed
into competent E. coli XL1-blue cells. RFLA of 50 bacterial clones
was performed (data not shown), and a dominant cosmid, pcosB1
was recovered from 40% of the bacterial clones.

Again, the selected cosmid, pcosB1, corresponds to sequences
on chromosome 20 and overlaps the inserts of both pcosC1.6 and
pcosA3 (Table 1, Fig. 1B). Thus, five independent in vitro selections
under antimonyl tartrate implicate the same genomic region on
chromosome 20. The gene(s) responsible for the selective advan-
tage must therefore code for (a) dominant, dose-dependent resis-
tance marker(s) located there.

Furthermore, the isolation of 3 different cosmids with synthenic
gene arrays covering essentially the same region on CHR20 argues
against ligation artefacts as the basis for the split sequence align-
ment between cosmid inserts and the current CHR20 sequence.

3.6. Functional deletion analysis of pcosC1.6

To identify the candidate gene(s) responsible for SbIII-resistance,
the cosmid pcosC1.6 was truncated by digestion with different
restriction enzymes and subsequent re-ligation, resulting in seven
constructs that represent different regions of pcosC1.6 (Fig. 1C).
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These constructs were then transfected into L. braziliensis PER002
clone 7. The recombinant strains were then mixed and selected un-
der SbIII. We could not observe the selection of specific truncated
pcosC1.6 derivates in those selections, and dose-inhibition experi-
ments for selected transgenic parasite strains were also inconclu-
sive (data not shown).

At that time, studies of the L. braziliensis genome revealed that
the components of RNA interference (RNAi) pathways exist in the
subgenus Viannia (Peacock et al., 2007) and that gene regulation
due to homologous dsRNA may occur. This was since confirmed
(Lye et al., 2010). This led us to suspect that dsRNA may interfere
with the overexpression from the truncated cosmid episomes.
Our constructs and experimental set-up did not allow for an anal-
ysis of dsRNA-mediated RNA breakdown by qPCR. Nevertheless,
we decided to test the constructs in another species known for
the absence of RNAi (Beverley, 2003).

3.7. Selection for the resistance-mediating gene using L. infantum as
acceptor species

We decided to use the Old World Leishmania species, L. infan-
tum, which lacks genes for key components of the RNAi machinery,
such as Argonaute and Dicer, and for which we had experience
regarding experimental SbIII resistance (Choudhury et al., 2008).
First, we confirmed that the L. braziliensis-derived cosmid pcosC1.6
conferred elevated IC50 for SbIII to L. infantum. We performed dose-
inhibition growth experiments with L. infantum bearing either the
empty vector, pcosTL, or the selected cosmid pcosC1.6. Indeed, the
IC50 of L. infantum [pcosC1.6] was approximately twice that of L.
infantum [pcosTL] (Fig. 2B).

We next performed two independent SbIII screens with L. infan-
tum strains bearing the cosmid pcosC1.6 and its truncated deriva-
tives (Fig. 1C) and mixed at equal ratios (culture C0). We seeded
two cultures each at 4 � 104 cells ml�1 and selected them either
for 12 days at 500 lM SbIII (S12) or for 21 days at 400 lM SbIII

(S21) lM SbIII. Two groups (C12 and C21) were also cultivated for
12 and 21 days respectively, but without antimony pressure. After
12 days (C12 and S12) or 21 days (C21 and S21) of in vitro cultivation,
cosmid DNA was isolated from the resulting populations. E. coli
XL1-blue cells were transformed with the re-isolated cosmids.
The cosmids from 50 bacterial clones for each selection or control
culture were prepared, and RFLA was performed on them to deter-
mine the prevalence of truncated derivatives of pcosC1.6.
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vector pcosTL or with pcos-210. After removal of free parasites, the infected macrophage
the cells were fixed with ice–cold methanol, stained with DAPI, and subjected to fluoresce
of parasites. Experiments were performed in quadruplicate and on separate days. The m
tested using the Mann–Whitney ranking test. n = 4. (B) Basic expression rate of ARM58
resistant), measured by qPCR. Experiments were done in duplicate, arbitrary units. (C) AR
Clone PER002cl7[pcos-210] was subjected to in vitro passage for 4 weeks with twice-w
50 lg ml�1 G418 (3), under 3 lM SbIII (4), or under 10 lM SbIII (5). The PER002cl7 wild ty
in duplicate for each culture (n = 4). The bars indicate the medians. Asterisks indicate si
Cosmid pcos-210, harbouring only the gene LbrM20.0210, was
the most dominant of the recovered transgenes and recovered
from 82% (S12) to 57% (S21) respectively of the bacterial clones
(Fig. 1D). Constructs (a and e), both also harbouring LbrM20.0210,
were recovered at lesser rates. This means that 92% (S12) and 86%
(S21) of the re-isolated constructs carry the LbrM20.0210 gene.
Since the recovery rates for these cosmids from the non-selected
populations were 610%, the cause for LbrM20.0210 selection must
be an in vitro SbIII resistance mediated by this gene.
3.8. Analysis of the L. braziliensis resistance gene in L. infantum

The effect of LbrM20.0210 was further verified and quantified
by performing individual SbIII dose-inhibition experiments for L.
infantum carrying the constructs pcosTL (vector control), pcos210
(suspected resistance gene), and pcos-220 (negative control).
While Lin[pcosTL] and Lin[pcos-220] show indistinguishable
dose-inhibition curves (Fig. 2C), Lin[pcos-210] increases the IC50

for SbIII 2.3-fold.
We also confirmed the expression of LbrM20.0210 in L. infan-

tum transfected with pcosC1.6 and with pcos-210, using real-time
qPCR (Fig. 2D). Expression was �3-fold higher from the pcos-210
construct compared to the original cosmid, pcosC1.6. As expected,
L. infantum controls did not express the L. braziliensis gene. This re-
sult explains the preferential selection of pcos-210 over pcosC1.6
as shown in Fig. 1D. To determine the general level of overexpres-
sion from pcosC1.6 over the L. braziliensis wild type PER002cl7, we
performed another qPCR with cDNA derived from PER002[pcosTL]
and PER002[pcosC1.6]. Fig. 2E shows the result. The pcosC1.6
transgene gives rise to a 5.5-fold elevated LbrM20.0210 RNA level.
Although not directly applicable to the L. infantum system, this
indicates a sizeable overexpression of LbrM20.0210 in the recom-
binant parasites.
3.9. Overexpression of LbrM20.0210 protects intracellular amastigotes
against antimony (V)

Antimony (V) is reduced to antimony (III) in Leishmania
amastigotes and in macrophages, with the trivalent form being
the cytotoxic principle. SbIII resistant strains are usually SbV-resis-
tant, but not necessarily vice versa. Therefore, we next tested
whether overexpression of LbrM20.0210 also protects the relevant
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life cycle stage, intracellular amastigotes, against an SbV-based
drug formulation, namely Pentostam�.

L. infantum promastigotes transfected either with the vector
pcosTL or with pcos210 were grown to stationary phase in vitro
and used to infect bone marrow-derived murine macrophages
in vitro. After 4 h, the free parasites were removed and the infected
cells were overlayered with medium without or with 160 lg ml�1

SbV. Fig. 3A shows the accumulated results from 4 separate infec-
tion experiments. In the absence of SbV, the infection rates of L.
infantum [pcosTL] and L. infantum [pcos-210] show only insignifi-
cant variation. Under SbV treatment of infected macrophages we
observe significant (p = 0.029) differences. While L. infantum
[pcosTL] infection rates drop by 90%, the effect on the L. infantum
[pcos-210] parasites is less severe. This indicates that LbrM20.0210
can partially protect intracellular amastigotes of L. infantum
against the effect of an SbV-containing drug. We therefore assigned
the moniker ARM58 (antimony resistance marker of 58 kDa) to
LbrM20.0210 and its product.

3.10. ARM58 in Sb resistant and sensitive isolates

To assess whether ARM58 gene copy number and/or RNA abun-
dance vary between strains, we performed a comparative qPCR
analysis to quantify ARM58 RNA in L. braziliensis strains PER002
(SbIII-sensitive acceptor strain in this study) and PER104 (natural
SbIII-resistant donor strain for gDNA library). At least based on
the qPCR results (Fig. 3B), we cannot detect variations in ARM58
mRNA levels in the two isolates. Since the strains show different
SbIII sensitivities in vitro, we can exclude variant mRNA levels as
cause.

We also assessed the stability of ARM58 overexpression under
different conditions. L. brasiliensis PER002[pcos-210] were kept
without selection, under G418 (50 lg ml�1), or under SbIII (3 or
10 lM) for 4 weeks, with twice weekly medium changes. Follow-
ing these in vitro passages, we collected the selected parasites, iso-
lated RNAs from each population, and performed cDNA synthesis
and qPCR on them. Fig. 3C shows the results, with wild type L. bra-
ziliensis PER002cl7 as control. We observe no difference between
the unselected population bearing the transgene and the popula-
tion selected under G418, indicating that the transgene is stable
for >4 weeks without selection. The mRNA levels are 3-fold ele-
vated compared with the wild type control population. Under SbIII

selection, however, ARM58 mRNA levels increase significantly to
800% of wild type expression. This is good indication that the
ARM58 gene is indeed selected under SbIII pressure. Lacking an
ARM58-specific antibody, we can only assume that those changes
translate into higher protein levels.

Lastly, we analysed whether there may be sequence polymor-
phisms in ARM58 causing different functionality in isolates
PER002 and PER104. We amplified the ARM58 open reading frame
DNA from genomic DNA of either isolate and subcloned the prod-
ucts into plasmid pBluescript II KS+. Three plasmid clones each
were subjected to sequence analysis. Indeed, both sequences dif-
fered in one base pair from the sequence published in the TriTryp
database, resulting in a S235A amino acid exchange (data not
shown). We also observed two base pair changes between isolates
PER002 and PER104 (data not shown). However, both polymor-
phisms are silent as neither base pair change translates into an
amino acid exchange. From these data, we conclude that ARM58
exerts its role as resistance marker in a solely quantitative manner.

3.11. ARM58 is unique to the Leishmaniae

The chromosomal region harbouring ARM58 is syntenic for at
least 5 Leishmania species (Fig. 4A), although usually found on lar-
ger chromosomes, i.e. CHR33 in the New World species L. mexicana
and CHR34 in the Old World Leishmaniae L. infantum, L. major, and
L. tarentolae. Upstream of ARM58, a structurally related gene,
LbrM20.0200, is found that does not confer antimony resistance
(Fig. 1D, construct (d)). We dubbed this gene ARM58rel (ARM58-re-
lated). While ARM58 is notably absent from the corresponding T.
brucei region, ARM58rel is present. Thus, ARM58 is unique to Leish-
mania spp.

ARM58 and ARM58rel form distinct lineages (Fig. 4B) and show
considerable sequence divergence. The gene products, ARM58 and
ARM58rel, consist of four similar domains of unknown function,
DUF1935. This type of domain is also found singly in various cal-
pain-like cysteine peptidases, also described as SMPs (Tull et al.,
2004). However, an arrangement of four DUF1935 is exclusive to
ARM58 and ARM58rel. Comparing the two putative amino acid se-
quences domain by domain, there is no obvious candidate domain
for the drug resistance functionality. The degree of amino acid con-
servation in the DUF1935 varies between 56% and 64%, with the
fourth DUF1935 being the least conserved (Fig. 4C). Also, an inser-
tion between DUF1935-III and DUF1935-IV is unique to ARM58.
Moreover, a search for possible transmembrane domains
(Hofmann and Stoffel, 1993) identified a candidate TMD within
DUF1935-III (Fig. 4D).
4. Discussion

Resistance against antimony-based antileishmanial drugs was
first noted in Northern India in the 1970s and has since reached
alarming numbers. In high-endemicity areas the percentage of
non-responders can exceed 60% rendering this mainstay treatment
unusable (Croft et al., 2006).

Several molecules have been reported as effectors of antimony
tolerance. The multi-drug resistance (MDR) loci that encode mem-
brane-associated P-glycoproteins were shown to play a role in lab-
oratory induced resistance (Legare et al., 2001; Ouellette et al.,
2001). Gene copy number and the resulting increased expression
of P-glycoproteins rendered promastigotes more resistant against
SbV. Abundance of aquaglyceroporins is inversely correlated with
antimony resistance (Gourbal et al., 2004). Also, expression levels
of the cytosolic chaperones Hsp70 and Hsp90 were reported to cor-
relate with antimony tolerance (Brochu et al., 2004; Vergnes et al.,
2007) suggesting that the protective effects of chaperones may
ameliorate toxicity. A very large protein, P299, confers SbIII and
Miltefosine resistance when overexpressed in L. infantum (Choudh-
ury et al., 2008). Yet another resistance mechanism seems to in-
volve the parasite-mediated activation of host P-glycoproteins
that will extrude SbV before it can be reduced to the toxic form,
SbIII (Mookerjee Basu et al., 2008).

Our in vitro selection screens using two cosmid libraries of
genomic DNA from resistant or sensitive L. braziliensis isolates
identified a single genomic region from chromosome 20 of L. bra-
ziliensis. Episomal transgenes derived from this region confer SbIII

resistance not only to L. braziliensis, but also to other species such
as L. (Viannia) peruviana and a European isolate of L. infantum.

It is most interesting that in five selection screens using three
host parasite strains and two libraries, only LbrM20.0210-contain-
ing cosmids dominated the surviving populations. We have no evi-
dence that any of the established or suspected antimony resistance
markers was selected in our screens. Given the rather stringent
selection protocol using SbIII at 90 lM (>95% growth inhibition),
our screen may not reflect the typical protocol for raising sponta-
neous drug resistant strains by gradually increasing the drug con-
centration (Haimeur et al., 2000; Brochu et al., 2003). It is possible
that some of the known markers were not well represented in the
library, but it would be unlikely that none of them were present in
the cosmid libraries since the calculated representation of genes
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exceeded 99% in the recombinant populations. Therefore, ARM58
appears to be a dominant marker of SbIII resistance conferring
unparalleled protection under stringent selection.

The product of ARM58 confers increased tolerance to both SbIII

and SbV, regardless of whether the gene originated in strain
PER104 or PER002. This was in keeping with the results of a se-
quence comparison between the ARM58 homologues from
PER104 and PER002 which yielded identical putative amino acid
sequences and ruled out ARM58 sequence polymorphisms as cause
for varying resistance phenotypes.

On the other hand, we did not see any variation of ARM58
expression, at least at the RNA level. Nevertheless, selection of
the ARM58 transgenic parasites under SbIII resulted in an increased
expression, presumably by selection for higher transgene copy
numbers (Fig. 3C). In the field, gene copy numbers can also vary,
even within isolates, based on a highly variable chromosome ploi-
dy in Leishmania spp. (Ubeda et al., 2008; Leprohon et al., 2009;
Rogers et al., 2011; Mannaert et al., 2012). Therefore, our results
do not rule out a natural amplification of chromosome 20 or parts
thereof under antimony challenge.

ARM58 functionality is not restricted to SbIII-sensitive
L. braziliensis acceptor strains either. It could also confer SbIII and
SbV resistance to L. infantum. While there is a high degree of syn-
teny in this genomic region between Leishmania species (Fig. 4A),
the amino acid sequence identity between the L. braziliensis and
L. infantum orthologs is only 81%, with 7% similar amino acids (data
not shown), underscoring the evolutionary distance between sensu
stricto Leishmaniae and the Viannia subgenus.

We have tried to obtain information regarding the subcellular
localisation of ARM58. We produced polyclonal antibodies against
the protein after expression in E. coli. The antibodies recognise the
recombinantly expressed protein with good specificity and
sensitivity. However, no signals were obtained in Western blots
of Leishmania cell lysates (Schäfer, unpublished data), suggesting
post-translational modification of ARM58 in Leishmania. Another
Leishmania protein sharing a single DUF1935, SMP-1 (Small Myri-
stoylated Protein), forms a b-sandwich structure (Gooley et al.,
2006; Tull et al., 2010), bears post-translational modifications such
as myristoylation (Tull et al., 2004) and associates with the flagel-
lar membrane (Tull et al., 2010, 2012). It is conceivable that ARM58
with its four DUF1935 might also be membrane associated. Indeed,
a ARM58::mCHERRY fusion protein localises close to the flagellar
pocket in L. infantum (Schäfer et al., 2013).

A dedicated deletion mutational analysis is required to find out
whether one or more of the DUF1935 in ARM58 is mediating anti-
mony resistance and whether the insertion sequence between
DUF1935-III and DUF1935-IV plays any role. Given the discourag-
ing experience with L. braziliensis as acceptor organisms for short
episomal transgenes, such analyses will be carried out in a better
suited model, i.e. L. infantum. Indeed, the L. infantum ortholog of
ARM58, LinJ34.0220, is also capable of conferring antimony resis-
tance and has been subject to deletion mutagenesis as well as cell
biological analysis (Schäfer et al., 2013).

A remaining question is whether expression rates and/or gene
copy numbers for ARM58 or its orthologs in other Leishmaniae var-
ies between natural drug sensitive and drug resistant isolates. This
should be investigated by using isolates from hot spots of drug
resistance, such as Northern India (Croft et al., 2006), and using
L. donovani.

Our experience shows that the Viannia subgenus (i.e. L. brazili-
ensis complex) is less accommodating for functional cloning than
Old World Leishmania or L. mexicana complex members. While
the selection of full-length cosmids appeared to work reliably – 5
independent screens identified the same genomic region – we
encountered problems with decreasing length gDNA inserts. This
problem persisted even when different vectors were used (not
shown) and irrespective of the number of in vitro passages to
which the recombinant strains were subjected. It is possible that
shorter gDNA sections are more likely to give rise to antisense
RNA production which would then interfere with the stability of
sense transcripts (Peacock et al., 2007; Lye et al., 2010). Consider-
ing our limited experience we propose to restrict functional clon-
ing in L. braziliensis to the primary screens with full length
cosmids. For subsequent steps, Old World Leishmania spp. can be
used as acceptor cells. Alternatively, gene integration strategies
may be employed similar to the situation with T. brucei (Clayton,
1999).
5. Conclusion

In spite of a strategy aimed at identifying structurally distinct
drug resistance markers from resistant versus sensitive L. brazilien-
sis isolates, the screen yielded a marker gene that acts in a gene
dose-dependent manner. The gene codes for a hypothetical protein
of 58 kD comprising four structurally related DUF1935 domains,
with one possible trans-membrane domain. The gene and its prod-
uct are functionally conserved in Old World and New World Leish-
mania spp., but not beyond. ARM58 overexpression protects both
free living promastigotes and intracellular amastigotes against
the effects of SbIII and SbV respectively. More must be learned
about the impact of ARM58 in vivo, its possible role in clinical anti-
mony treatment failure, its function in antimony tolerance and the
significance of its tetra-partite domain structure.
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