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a b s t r a c t

The paper examines software design aspects of implementing parallel and distributed computing for 
transient structural problems. Overall design is achieved using object and component oriented methods.
The ideas are implemented using .NET and the Task Parallel Library (TPL). Parallelisation and distribution 
is applied both to single problems, and to solving multiple problems. The use of object-oriented design 
means that the solvers and data are packaged together, and this helps facilitate distributed and parallel 
solution. Factory objects are used to provide the solvers, and interfaces are used to represent both the 
factory objects and solvers.

� 2013 Published by Elsevier Ltd.

1. Introductio n

There have been many changes in computing hardware and 
software. One of the most recent is that virtually all computers 
are now multi-core, typically dual or quad core. This has implica- 
tions for the design of software, which has yet to be fully realised.
Techniques for parallel computing have largely been developed for 
high-perform ance computing (HPC) on super computer s or clus- 
ters of workstations. This has some relevance to the new world 
on everyday computer s, but there are other possibilit ies as well.
One of these is the user-interaction and software. HPC is largely 
geared at solving highly complex problems that require massive 
computing resources and take a long time. This has some relevance 
to normal computing as desktop computers are now capable of 
solving much more complex problems than used to be the case.
Furthermore computer s are linked together on intranets and the 
internet, so the creation of clusters of computers is relatively easy.
However, the usability of engineering software, and the way the 
software can be used in design is equally important, and the power 
and architecture of current computers changes what is now possi- 
ble. This paper will look at some of the possibilities in the area of 
dynamic analysis of structure s, with particular focus on seismic 
engineering. However , the ideas presented are much more widely 
applicable. The paper will also emphasise key software design 
decisions that facilitate the exploitation of the modern computin g
environment.

Current software developmen ts are addressing the new envi- 
ronment, in particular version 4.0 of Microsoft’s .NET framework.
The .NET framework was developed with distribut ed and multi- 
threading computing in mind, and has had facilities for simplifying 
software developmen t for this world. Version 4.0 has introduce d
the Task Parallel Library (TPL) [1] to facilitate software for multi- 
core computing. There is a tendency to think that HPC should be 
performed using MPI and on Linux machines . MPI and Linux defi-
nitely have their place, but the reasons for using .NET in the current 
work are:

� Windows is the most commonl y used operating system. Now 
on supercompute rs Unix/Linux based operating systems are 
by far the most common. However, the overarching motiva- 
tion behind the current work is that parallel and distribut ed 
computin g are now part of the mainstream computing world.
Therefore it is appropriate to consider the application of tech- 
nologies designed for mainstream computing.
� The .NET infrastructu re is available on all Windows computers,

so there is no need to install any further software.
� .NET provides parallelis ation and distribut ion in an object and 

component oriented fashion, so it is consistent with the overall 
design philosophy.

Dynamic problems in structure s are among the more expensive 
in computational terms, they also generate an incredible amount of 
data. So there are two problems that need to be addresse d in 
software developmen t: efficient numerical problems, and data 
handling . Work on parallelis m typically focuses on parallelis ing 
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the solution of a single problem. However, it can also sometimes be 
useful to solve several problems at once, and in terms of parallel- 
ism this is actually simpler as one can expect to achieve greater 
speed-up. The work described in this paper will apply parallelisa- 
tion to both aspects. While earthquake engineering provided the 
motivation for this work, the software engineering aspects of this 
work are much more widely applicable.

The motivation for the current work is the analysis of space 
structures under seismic loading. On the one hand, the object-or i- 
ented implementation of modal and transient analysis algorithms 
will be examine d. Earthquakes are by their very nature uncertain,
so it is useful to look at the behaviour of a structure under several 
different earthquakes. The new environm ent makes this much 
more feasible, and the design of software to facilitate this will be 
described.

The advantages of parallel and distributed processing can be 
used in various ways:

1. Application to individual algorithms.
2. Application to solving multiple problems simultaneou sly.
3. Overall program design.

This paper will look at all three of these aspects, making use of 
object and component oriented programmin g design. It should be 
noted that the primary emphasis of the current paper is on pro- 
gram design rather than numerical efficiency. Therefore the focus 
is on explaining design approaches to make implementati on of 
flexible parallel and distributed programs easier on mainstream 
computers.

2. Literature review 

Modal analysis and time stepping are both well established, and 
there are many algorithms for solving these problems. A good 
description of general techniques relevant for finite element anal- 
ysis can be found in Bathe [2]. There has been a significant amount 
of work on parallelisation of both eigenproble ms solvers and time 
stepping algorithms. The main methods used for eigensolutio n
methods are sub-space iteration, the Lanczos method, and compo- 
nent mode synthesis.

PARPACK [3] is a parallel package for large eigenvalue problems.
Wu and Simon [4] implemented a parallel Lanczos method for the 
symmetric generalised eigenvalue problem, and used MPI. Guarra- 
cino et al. [5] used a block Lanczos algorithm to solve eigenprob- 
lems on multiple computers. Honglin et al. [6] have used a
parallel implementation of the sub-space iteration method, and 
applied it to non-linear problems.

Cross [7] and Aoyama and Yagawa [8] both used parallel imple- 
mentations of the component mode synthesis method. They re- 
ported near ideal speed-up on massively parallel computers.
However, the work was based on one dimensional splitting of 
the structure into sub-domains .

Li et al. [9] described the uses of supercomp uters and Nastran 
and Patran, and use IRAM (implicit restarted Arnoldi method) for 
symmetric eigenpro blems, and achieved up to 75% speed-up 
efficiency.

Most of the work has used MPI or other parallel methods. There 
is very little on the object or component oriented implementati on,
the work of Heng and Mackie [10] being an exception to this. A
more general consideration of the use of MPI, Java and C# in par- 
allel and distribut ed computing can be found in Mackie [11]. It 
should be noted that another area that is receiving considerable 
attention is the use of Graphics Processing Units (GPUs) for general 
purpose computing, seeking to take advantag e of the fact that 
GPUs have many cores and are high-perform ance [12].

Manolis et al. [13] uses sensitivity and stochasti c modellin g to 
help develop retrofit strategies for structure s under seismic load- 
ing. Such work requires many analyses. Dere and Sotelino [14] also
commented on the need for multiple analyses for establishing re- 
sponse spectra in non-linear problems. They implemented a paral- 
lel sub-domain solution approach using a group-impli cit 
algorithm. Fu [15] also used a sub-domain approach, but with an 
overlappi ng domain algorithm,

3. Object oriented program design 

The work in this paper will be described within the context of 
seismic engineering and space structures, but the work described 
herein is not limited to this problem area. Rather, it is used as a
vehicle for demonstrat ing various program design principles and 
methods .

As noted in the introduct ion, there are various ways in which 
programs can take advantage of parallelism and distribut ed pro- 
cessing. The most obvious, and probably the most common, is 
the application of parallelism to individual problems . If multiple 
problems need to be solved, then these too can be done in parallel.
Within the context of seismic engineering, earthquakes are by their 
very nature stochastic, and the precise earthquake a structure may 
have to endure is not known. So it can be useful to subject a struc- 
ture to a variety of earthquakes. In addition, there is the general de- 
sign of the program. The presence of multiple processors means 
that the program can do several tasks at once, so often it is not nec- 
essary for the program to stop completely while doing some tasks.
This can help with the overall usability and flow of the program.
The software described in thus paper was written using C# and 
the .NET environment, version 4. C# is object and component ori- 
ented, and version 4 of .NET has introduced the Task Parallel Li- 
brary (TPL).

3.1. Parallelising of individual algorithms 

The algorithms involved in seismic analysis are: (i) determina- 
tion of the modal frequencies and mode shapes; (ii) modal super- 
position; (iii) transient analysis.

Determinat ion of the vibration modes by the subspace iteration 
method was examine d in [16]. The algorithm itself can be paralle- 
lised. Further parallelisati on can be achieved by using domain 
decompo sition. The paper described the use of a design pattern 
which has also been used in the design of software for iterative 
solvers [17]. The work described in [18] has been modified to use 
the TPL, but the overall design remains the same. [10] described
the implementation of component mode synthesis. Work by others 
has parallelised the Lanczos algorithm.

The results of the modal analysis can be used in the mode 
superpos ition method, though naturally this applies only to linear 
problems .

Transient analysis can be applied to linear and non-linear prob- 
lems. Since the focus of the current work is on software design as- 
pects, the work in the current paper is limited to the linear case.
The Hilber–Hughes–Taylor algorithm is used, and the design pat- 
tern used for eigensolution and iterative solvers [16,17] is adopted.

The key feature of the design pattern is the separation of the 
algorithm from the data. The algorithm for a particular problem re- 
mains the same, but it may be implemented for many different 
data structure s. For instance the standard solution would be the 
use of a single domain, but the algorithm can also be impleme nted 
for the domain decompo sition case. Furthermore, the data may be 
stored locally or remotely, or a mixture of the two. Even then, for 
each of these cases there are a multitude of sparse data storage 
schemes that can be used. However, despite all these variation s,
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the basic algorithm itself remains the same. Using this design pat- 
tern means that the algorithm is isolated from the effects of 
changes in data structure. This is an example of interfaces handling 
complexity, by isolation.

Fig. 1 shows the general class structure, and Fig. 2 the class 
structure for this particular case. Fig. 1 could be viewed as a design 
pattern, the key feature is that the algorithm and data are sepa- 
rated. ITimeStep perData is an interface that represents the finite
element model, and data associated with the algorithm. An inter- 
face contains methods only with no impleme ntation, it defines
what something can do without giving any implementati on. So it 
includes things like the stiffness and mass matrices. Two versions 
of the interface have been created, one that just uses a single ma- 
trix for the stiffness matrix and one for the mass matrix; and one 
that uses the domain decompositi on approach. The latter approach 
allows parallelism to be used. The objects can be local or distrib- 
uted on remote computers.

TimeStepp erHt has the following definition

public class TimeStepp erHHT: MarshalByRefOb ject,

ITimeStep per,

IDisposab le 

{

ITimeStep perData data;

IEQuakeRu nResults runResult s;

public TimeStepp erHHT(ITimeStepperData _data)

{

data = _data;

}

public void Calc(EarthquakeDat aSet 

earthquak eData)

{

. . .

}

. . .

}

The object is initialised with an ITimeStep perData object. It 
does not know whether this is local or remote, or whether it is 
using a single domain or domain-decom position. All it knows is 

that it impleme nts the ITimeStep perData interface, and that is 
all that it needs to know. TimeStepp erHHT implements the 
ITimeStep per interface:

public interface ITimeStep per 

{

void Calc(EarthquakeDataSet earthquak eData);

IEQuakeRunResu lts RunResult s { get; }

}

This is a very simple interface , essentia lly saying that calculatio ns 
will be carried out on a data set, and that the results of the calcula- 
tions can be obtained . This means that it does not specify the time 
steppin g algorit hm used. TimeStep perHHT uses the HHT algo- 
rithm, and the Calc method itself has the following code:

public void Calc(EarthquakeDat aSet 

earthquak eData)

{

. . .

runResults = data.MakeE 

QuakeRunR esults(noTimeSteps,

earthquakeData );

data.Init();

data.Setup();

for (int i = 1; i < noTimeSte ps; i++)

{

data.DoTim eStep(i);

}

runResults.Cal cForce();

}

data is an ITimeStep perData object. First it creates a results ob- 
ject, this also gives the data object information on the earhtquake.
Then it initialises the data object. The standard version of ITime-
StepperDa ta creates the stiffness and mass matrices in this meth- 
od. The domain decompos ition version does the same sort of thing,
but for each sub-dom ain. Setup then prepares the object for doing 
the time-step ping. Next the main time-st epping loop occurs. Finally 

TimeStepperHHT

TimeStepperHHT(ITimeStepperData data) 
IEQuakeRunResults Calc(EarthquakeDataSet    
 equakeData);

ITimeStepperData

CalcData CalcData {get;}
double TimeStep {get; set;}
double RunTime {get; set;}
void Init();
Void CalcForce(int iTime);
IEQuakeRunResult 
MakeEquakeRunResults();
void Setup();
void DoTimeStep(int iTime);

Fig. 2. Class structure for TimeStepperHHT.

Algorithm

Calc
...

IData

…

Fig. 1. Algorithm data structure.
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the CalcForce method calculates the forces in all the members of 
the space truss.

This same design pattern was first used in the context of itera- 
tive solvers [16]. Many different data structures, and variations of 
the algorithm (different pre-condi tioning strategies, Schur comple- 
ment approaches, etc.) have been used, and the basic algorithm ob- 
ject has remained unchanged. All the variations were handled by 
developing new data objects, thus demonstrat ing the effectiveness 
of the approach in isolating areas of complexity.

3.2. Solving multiple problems 

As well as solving individual problems, parallelis m and distrib- 
uted computing can also be used to solve several problems in par- 
allel. One situation where this can be useful is in subjecting a
structure to several earthquakes. Earthquakes by their very nature 
are unpredictable, so it can be beneficial to subject the structure to 
a series of earthquakes, either based on previously recorded earth- 
quakes, or artificially generate d accelerogr ams.

There are two aspects to the software design, parallelism and 
distributed processing. Parallelism is implemented using the .NET 
Task Parallel Library (TPL). At a basic level this has some similari- 
ties to OpenMP, in the way that it allows easy parallelisation of 
for loops. However, there are many more features to facilitate pro- 
gram control, such as cancellation tokens. This latter aspect will be 
discussed further in the next section.

The overall scheme is shown in Fig. 3. The client obtains the 
earthquake data sets from a database. It then obtains a factory ob- 
ject, called solverFactory. Factory objects are commonp lace in 
object-orien ted programm ing and are a well-establishe d design 
pattern. solverFac tory impleme nts a very simple interface IDy-
namicSolv erFactory that says it can return an object of type 
ITimeStep per . Since a factory object is used the code is indepen- 
dent of the type of solver used, and whether it is local or remote.
Then for each data set it executes DoTimeSte pping . The code 
used for solving several problems is as follows:

MyLinkedL ist<Earthquake DataSet> dataSets;

Parallel.F orEach(dataSets, DoTimeSte pping);

Earthquak eDataSet is a class that contains the data for an 
earthqua ke, in particular the accelerogram s. dataSets is the 
linked list of several earthquakes that the structure is to be sub- 
jected to. Parallel.F orEach is a parallelis ed version of the 
ForEach keyword. The basic ForEach simply iterates sequentially 
through the items in list, carrying out the required operations in 
serial mode. The parallel version iterates through the list, but does 
this in parallel. A new thread is used for each item in the list, so the 
operation s are performed in parallel. .NET has a threadpool, and 
takes threads from this pool. This means new threads are not cre- 
ated, but are already available , so the process is efficient.

For each item in the list, data, it executes DoTimeStep-
ping(EarthquakeDat aSet data), and does this in parallel. The 
parallel loop waits for the operations for each data set to complete 
before exiting from the loop. A similar construct exists for for
loops, TPL also allows them to be used with greater control as well.

This simple programmin g construct works either on a single 
machine with multiple cores, or for distribut ed operation.

The main part of the code for DoTimeSte pping is

void DoTimeSte pping(EarthquakeDataSet data)

{

. . .

TimeStepperHHT timeStepp er =

solverFac tory 

.GetTimeSt epper(trussModel,calcDa ta);

IEquakeRunResu lts 

results = timeStepp er.Calc(data);

results.Set(trussModel, data);

lock(resultsLock)

{

resultsSe ts.Add(results);

}

}

There are a number of points to pay attention to. The first is that 
a factory object, called solverFac tory in the above code, is used 
to supply the solver, called timeStepper. This means that the 
code here works whether the solver is local or remote. The code 
also works for different time stepping algorithms. All the code is 
concerne d with is that solverFac tory returns an object that will 
carry out the time-stepping operations. It is not concerned with 
how it carries them out. The use of factory objects is a standard de- 
sign pattern in object-orien ted programm ing. In the current con- 
text its main advantage is that the details of creating and 
maintain ing remote solvers is all contained within the factory ob- 
ject, and so the rest of the program is isolated from these details. In 
particular , for the distributed case the factory object has a list of 
available host computer s and distributes the work around these 
hosts. It also sponsors the remote objects to ensure that they re- 
main ‘‘live’’. Moreove r, the factory could take implement load 
balancing.

If all the calculations were to be performed on the same com- 
puter, then the factory returns a standard local time stepper object.
If distribut ed solution was being used, then the factory object 
would create the object on a remote computer , and the calcula- 
tions would be carried out on that computer. More details will 
be given shortly. The factory object could return either a solver 
using standard solution, or one using domain decomposition.

The solver returned could use either serial or parallel solution.
Which would be the most efficient would vary from case to case.
For instance suppose four quad core computers were available .
Then if there were four earthquakes to be analysed it might be 
more efficient to use a domain decompositi on (i.e. parallel) based 
algorithm for the solution. However, if there were sixteen 

1.
2.

Fig. 3. Solving several problems.
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earthquakes then using a serial solver and relying purely on the 
coarse-grained parallelism could be better.

A second point is that the solver is encapsulated in an object,
rather than simply coded in a method. This has several advantag es.
One is that there is a different solver object for each earthquake 
data set, and so data integrity is handled easily. A second is that 
if a domain decompositi on solver is used, then if this exists on a re- 
mote computer , the remote computer automatically uses parallel- 
ism when executed on the remote machine. So we have an 
excellent example here of one of the advantages of the object-or i- 
ented approach, namely that it packages methods and data to- 
gether into a single entity, an object, and this makes for better 
program design, and helps facilitate distributed implementation.
The reason it does this is that it helps with data integrity. Good 
high level design decisions makes low level details easier to 
handle.

IEquakeRu nResults is an interface that defines the results set 
returned. The details would be different for standard and domain 
decompositi on models. In the current program, if a remote com- 
puter was used, the results are returned to the client. However,
since interfaces are used, it would be perfectly possible for the re- 
sults to remain on the remote computer, possibly stored on a re- 
mote database. So again we see the value of interfaces in 
program design. All that the client needs to know is that results 
are somehow or other accessible.

The results are then added to resultsSe ts . The lock keyword 
is used here to ensure that only one results set is added to 
resultsSe ts at a time, and so data conflicts are avoided. This is 
a simple illustration of a fundamenta l fact of parallel computing.
There are various mechanis ms and constructs, such as those avail- 
able in TPL, that make parallel programming easier. However, the 
logic of parallel programmin g is inherently more complex than 
that of serial programmin g, and the programm er has to understand 
what is going on. Currently at least, there is a limit to how much 
programmin g frameworks can help.

Distribut ed processin g is implemented using remote objects.
Details on some aspects of remote objects have been given else- 
where [18], and recently on deployment [19]. This latter reference 
described various ways in which remote objects can be imple- 
mented. The approach used here is for the solver programs to be 
on the remote computer s, and the client program to access them 
via an interface. When it starts the host program registers itself 
on a central register program, as shown in Fig. 4.

This program just keeps a record of which hosts are available.
The program then just sits there until a client seeks to obtain a fac- 
tory object from it. The use of interfaces creates a logical (and
physical in the case of remote objects) wall between the client pro- 
gram and the solver objects.

When the client program wants to create an object on the host 
it uses an object called DroneMana ger . The client then activates 
the factory object, which will exist on the remote computer, and 
the factory object is then used to create the solver object. This sol- 
ver object will also exist on the remote computer, and the calcula- 
tions are carried out on that computer. It would be possible for 
more sophisticated load balancing to be placed in DroneManager .
However , currently it just goes round the list of available hosts 
in turn. Data transfer costs are an issue in distributed systems 
and results of tests on clusters of Windows computers are reported 
elsewher e [11,19]. Further data when using WCF (Windows Com- 
municati on Foundation) has also been published by the author 
[20].

A factory object is used because an interface is used to represent 
it, and the object can only be created using the default constructor.
So members of the factory object then enable the solver objects to 
be created with parameters.

3.3. Overall program design 

While the preceding sections describe the main aspects of using 
parallelis m and distributed processing, there are other aspects to 
program design that help with the overall operation of the pro- 
gram. The traditional mode of operation of programs is that they 
do one operation, even though that operation itself may use paral- 
lelism, at a time; this is a throwback to the time when most com- 
puters were predominantl y serial. Programs can be much more 
responsiv e and flexible if tasks are carried out in separate threads,
so that no task complete ly freezes the program. This does intro- 
duce more complexity as there needs to be proper co-ordination 
between tasks and program control. An earlier paper [21] de-
scribed some mechanism s for handling this scenario. .NET has a
number of features which enable these aspects to be handled 
properly.

A simple example of the differenc e between the serial and 
event-dr iven approach can be seen by considering the current pro- 
gram. Within the program if modal super-position is to be used,
then there are various tasks that can be carried out. These include:

1. Read the model data file.
2. Calculate vibration modes of the structure.
3. Read in the earthquake data files.
4. Carry out transient analysis.
5. Visualise the results.

The tasks can be carried out in a serial manner, with each task 
carried out one after another. However, there is no logical necessity 
for things to be done this way. The earthqua ke data and model data 
can be read independen tly of each other, and calculation of the 
vibration modes is independen t of the earthquake data.

In order to take advantage of the ability to do tasks in a non-se- 
rial manner various things need to be done. First the tasks need to 
be executed in different threads. Secondly, the tasks may need to 
feed back progress to the main program. Thirdly the main program 
may need to cancel the tasks. .NET provides features which help 
facilitate this.

One of these is the Backgroun dWorker class. This is a class 
which manages some of the aspects of carrying out calculatio ns 
in separate threads, and it uses various events as the means of 
achieving this. The most important is that a method is defined
which actually does the work (e.g. calculate the vibration modes).
Of most relevance in the current section is that it has two other 
events, one related to progress and one related to completion. So 
the worker method can fire the BackgroundWork er ReportPro -
gress event at various junctures and the main program can 
decided how to report, and possibly respond to, the progress.

Register Host

Host

Host

Register Host

Program

Drone Manager

Obtain Host list

Obtain solver

Fig. 4. Distributed host architecture.
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Similarly Backgroun dWorker method fires a completion event 
when it has finished its calculations and the main program can 
then take appropriate action.

The TPL has Cancellat ionTokens . These can be passed 
around various objects, so if some part of the program decides cer- 
tain tasks need to stop, it can set the appropriate token, and any 
tasks that have possession of that token, will take suitable action 
the next time they check the state of the token. Note that the task 
is not forced to stop, rather the program tells it that it would like it 
to stop. The reason for this is that only the task knows how to stop 
gracefully.

The key features of these control and communicati on mecha- 
nisms are subscribing to events, firing events, and communicati on 
tokens. As described briefly, .NET has a number on inbuilt facilities 
for impleme nting these mechanism s. However, the same design 
approach can and is used in other environm ents.

4. Results 

The subspace iteration method was used on two square-on- 
square offset space trusses. One is 20 � 20 m, and the other 
60 � 60 m. Fig. 5 shows a picture of the 20 � 20 space truss. The 
truss has pin supports at each of the four corners.

The 20 � 20 space truss model had 2048 bar elements, 545 
nodes and 1623 degrees of freedom. The 60 � 60 space truss had 
12,800 elements, 3281 nodes and 9831 degrees of freedom. Both 
structures were subjected to seismic excitation, and transient anal- 
ysis was used to predict the response. In the current work the anal- 
ysis was limited to the linear case as the primary focus was on the 
software engineeri ng aspects. The calculatio ns were carried out on 
a variety of machines. These were:

A – One Intel Core i7, 2.80 GHz quad core, 6 GB Ram, Windows 7
(64 bit).
B – Intel Core 2 Quad Q9450, 2.66 GHz, 3 GB Ram Windows 7
(32 bit).
C – Cluster of Intel duo E8400 3 GHz, 3 GB Ram, Windows XP.

Various combinati ons of machines and calculation runs were 
executed. Fig. 6 shows the speed up gained by using the domain 
decompositi on version of the time stepper, these were carried 
out on Machine A. As can be seen, a speed up of approximat ely 
two is achieved. The structure was split into four sub-domains.

Fig. 7 shows the speed-up achieved solving multiple problems.
4(A) and 8(A) involved solving 4 and 8 problems, respectively, on 
machine A. 8(A + B) used machines A and B for 8 problems . As 
there are only 4 physical cores on both machines it is not surpris- 
ing that there is little change in speed-up in going from 4(A) to 
8(A). There is some further speed-up for 8(A + B), it should be 
noted that machine B is a little slower than machine A. The speed 

up was calculated by comparing the time for 4 (or 8 problems )
with 4 (or 8) times the time for 1 problem.

For multiple problems the serial time stepping solver was used,
rather than the domain decomposition method. The reason for this 
was that mixing domain decompositi on with solving multiple 
problems on a single computer was detrimental to efficiency when 
the number of problems multiplied by the number of domains ex- 
ceeded the number of cores available. If just two problems were 
solved, then using A and B and domain decomposition did result 
in significant speed-up , with a factor of 1.44 over using domain 
decompo sition on a single machine, 2.23 over using serial solution 
on a single machine.

The final batch of tests was involved in using the cluster of ma- 
chines defined in C. Fig. 8 shows the speed up for the 20 � 20 prob- 
lem, run for ten seconds. For one machine the speed-up was 

Fig. 5. 20 � 20 Space truss.

Fig. 6. Speed-up achieved using domain decomposition – Machine A.

Fig. 7. Speed-up for multiple problems.

Fig. 8. Speed-up for Cluster C – 20 � 20 problem.
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around 1.7 whether there were 2, 4 or 8 problems. The reason why 
there is any speed-up at all is that the machine is dual core. For two 
machines the speed-up gets close to 3 for 4 or 8 problems. With 4
machines the speed-up for 8 problems is 6.5, and this increases 
further to just over 7 for 8 machines. Even with 4 machines there 
are still 8 processors, so in principal there should be no further 
speed-up going from 4 to 8 machines for 8 problems. However, it 
does appear that using two machines is slightly better than one.
The extra cache memory available may be a factor here.

Fig. 9 shows the equivalent results for the 60 � 60 problem. The 
pattern is the same, though with slightly higher speed-up s. In all 
these cases the underlying problem was linear, and the next stage 
will be to extend the software to solve non-linear problems.

5. Conclusion s

The widespread availability of multi-core and distributed com- 
puters opens up new possibilities for general engineeri ng software.
In order to realise these advantag es requires changes in the way 
the programs are designed.

The current paper has focused on transient analysis. The new 
architectures can be used to solver individua l problems using par- 
allel methods. They are particularly relevant for scenarios where 
multiple problems need to be solved.

Object and component oriented software design methods can 
be used to help facilitate the developmen t of code that take advan- 
tage of the current hardware architectur es. In particular, the use of 
objects helps to package the solver, so it can then be distribut ed to 
remote computers as desired.

The use of interfaces isolates areas of complexity, and means 
that much of the software is oblivious to the type of solver that 
is being used, or whether remote or local solution is being used.

Further to the direct problem of parallelism and distributed 
computing, there are other impacts on overall software design,
and features within a framework, such as event-drive n driven,
can be used to enable overall control of the program, and to soft- 
ware enhance flexibility.

The ideas were implemented in a software program to solve 
seismic problems . As mentioned in the introduction, the emphasis 
in this paper has been on design approaches, and the algorithms 
and code have not been highly optimised. If better algorithms were 
impleme nted these could be ‘‘plugged’’ into the current frame- 
work. Even so, the speed-up obtained is reasonable.
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