

University of Dundee

Dynamic analysis of structures on multicore computers

Mackie, Robert

Published in:
Advances in Engineering Software

DOI:
10.1016/j.advengsoft.2013.03.006

Publication date:
2013

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Mackie, R. I. (2013). Dynamic analysis of structures on multicore computers: Achieving efficiency through object
oriented design. Advances in Engineering Software, 66, 3-9. 10.1016/j.advengsoft.2013.03.006

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Mar. 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/30657551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.advengsoft.2013.03.006
http://discovery.dundee.ac.uk/portal/en/research/dynamic-analysis-of-structures-on-multicore-computers(c8a39b4b-9c5f-4a31-a551-76577d0ab932).html

Dynamic analysis of structures on multicore computers – Achieving
efficiency through object oriented design

R.I. Mackie ⇑
Civil Engineering, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN, UK

a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Component-oriented
Object-oriented
Eigenproblems
Transient analysis
Seismic analysis
Parallel computing
Distributed computing

a b s t r a c t

The paper examines software design aspects of implementing parallel and distributed computing for
transient structural problems. Overall design is achieved using object and component oriented methods.
The ideas are implemented using .NET and the Task Parallel Library (TPL). Parallelisation and distribution
is applied both to single problems, and to solving multiple problems. The use of object-oriented design
means that the solvers and data are packaged together, and this helps facilitate distributed and parallel
solution. Factory objects are used to provide the solvers, and interfaces are used to represent both the
factory objects and solvers.

� 2013 Published by Elsevier Ltd.

1. Introductio n

There have been many changes in computing hardware and
software. One of the most recent is that virtually all computers
are now multi-core, typically dual or quad core. This has implica-
tions for the design of software, which has yet to be fully realised.
Techniques for parallel computing have largely been developed for
high-perform ance computing (HPC) on super computer s or clus-
ters of workstations. This has some relevance to the new world
on everyday computer s, but there are other possibilit ies as well.
One of these is the user-interaction and software. HPC is largely
geared at solving highly complex problems that require massive
computing resources and take a long time. This has some relevance
to normal computing as desktop computers are now capable of
solving much more complex problems than used to be the case.
Furthermore computer s are linked together on intranets and the
internet, so the creation of clusters of computers is relatively easy.
However, the usability of engineering software, and the way the
software can be used in design is equally important, and the power
and architecture of current computers changes what is now possi-
ble. This paper will look at some of the possibilities in the area of
dynamic analysis of structure s, with particular focus on seismic
engineering. However , the ideas presented are much more widely
applicable. The paper will also emphasise key software design
decisions that facilitate the exploitation of the modern computin g
environment.

Current software developmen ts are addressing the new envi-
ronment, in particular version 4.0 of Microsoft’s .NET framework.
The .NET framework was developed with distribut ed and multi-
threading computing in mind, and has had facilities for simplifying
software developmen t for this world. Version 4.0 has introduce d
the Task Parallel Library (TPL) [1] to facilitate software for multi-
core computing. There is a tendency to think that HPC should be
performed using MPI and on Linux machines . MPI and Linux defi-
nitely have their place, but the reasons for using .NET in the current
work are:

� Windows is the most commonl y used operating system. Now
on supercompute rs Unix/Linux based operating systems are
by far the most common. However, the overarching motiva-
tion behind the current work is that parallel and distribut ed
computin g are now part of the mainstream computing world.
Therefore it is appropriate to consider the application of tech-
nologies designed for mainstream computing.
� The .NET infrastructu re is available on all Windows computers,

so there is no need to install any further software.
� .NET provides parallelis ation and distribut ion in an object and

component oriented fashion, so it is consistent with the overall
design philosophy.

Dynamic problems in structure s are among the more expensive
in computational terms, they also generate an incredible amount of
data. So there are two problems that need to be addresse d in
software developmen t: efficient numerical problems, and data
handling . Work on parallelis m typically focuses on parallelis ing

0965-9978/$ - see front matter � 2013 Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.advengsoft.2013.03.006

⇑ Tel.: +44 1382 384702; fax: +44 1382 384816.
E-mail address: r.i.mackie@dundee.ac.uk

Advances in Engineering Software xxx (2013) xxx–xxx

Contents lists available at SciVerse ScienceDi rect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

Please cite this article in pres s as: Mackie RI. Dynam ic anal ysis of structures on multico re comp uters – Achieving efficiency through object orie nted desig n.
Adv Eng So ftw (2013), http://dx.doi.org/1 0.1016/j.adv engsoft.2 013.03.006

http://dx.doi.org/10.1016/j.advengsoft.2013.03.006
mailto:r.i.mackie@dundee.ac.uk
http://dx.doi.org/10.1016/j.advengsoft.2013.03.006
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft
http://dx.doi.org/10.1016/j.advengsoft.2013.03.006

the solution of a single problem. However, it can also sometimes be
useful to solve several problems at once, and in terms of parallel-
ism this is actually simpler as one can expect to achieve greater
speed-up. The work described in this paper will apply parallelisa-
tion to both aspects. While earthquake engineering provided the
motivation for this work, the software engineering aspects of this
work are much more widely applicable.

The motivation for the current work is the analysis of space
structures under seismic loading. On the one hand, the object-or i-
ented implementation of modal and transient analysis algorithms
will be examine d. Earthquakes are by their very nature uncertain,
so it is useful to look at the behaviour of a structure under several
different earthquakes. The new environm ent makes this much
more feasible, and the design of software to facilitate this will be
described.

The advantages of parallel and distributed processing can be
used in various ways:

1. Application to individual algorithms.
2. Application to solving multiple problems simultaneou sly.
3. Overall program design.

This paper will look at all three of these aspects, making use of
object and component oriented programmin g design. It should be
noted that the primary emphasis of the current paper is on pro-
gram design rather than numerical efficiency. Therefore the focus
is on explaining design approaches to make implementati on of
flexible parallel and distributed programs easier on mainstream
computers.

2. Literature review

Modal analysis and time stepping are both well established, and
there are many algorithms for solving these problems. A good
description of general techniques relevant for finite element anal-
ysis can be found in Bathe [2]. There has been a significant amount
of work on parallelisation of both eigenproble ms solvers and time
stepping algorithms. The main methods used for eigensolutio n
methods are sub-space iteration, the Lanczos method, and compo-
nent mode synthesis.

PARPACK [3] is a parallel package for large eigenvalue problems.
Wu and Simon [4] implemented a parallel Lanczos method for the
symmetric generalised eigenvalue problem, and used MPI. Guarra-
cino et al. [5] used a block Lanczos algorithm to solve eigenprob-
lems on multiple computers. Honglin et al. [6] have used a
parallel implementation of the sub-space iteration method, and
applied it to non-linear problems.

Cross [7] and Aoyama and Yagawa [8] both used parallel imple-
mentations of the component mode synthesis method. They re-
ported near ideal speed-up on massively parallel computers.
However, the work was based on one dimensional splitting of
the structure into sub-domains .

Li et al. [9] described the uses of supercomp uters and Nastran
and Patran, and use IRAM (implicit restarted Arnoldi method) for
symmetric eigenpro blems, and achieved up to 75% speed-up
efficiency.

Most of the work has used MPI or other parallel methods. There
is very little on the object or component oriented implementati on,
the work of Heng and Mackie [10] being an exception to this. A
more general consideration of the use of MPI, Java and C# in par-
allel and distribut ed computing can be found in Mackie [11]. It
should be noted that another area that is receiving considerable
attention is the use of Graphics Processing Units (GPUs) for general
purpose computing, seeking to take advantag e of the fact that
GPUs have many cores and are high-perform ance [12].

Manolis et al. [13] uses sensitivity and stochasti c modellin g to
help develop retrofit strategies for structure s under seismic load-
ing. Such work requires many analyses. Dere and Sotelino [14] also
commented on the need for multiple analyses for establishing re-
sponse spectra in non-linear problems. They implemented a paral-
lel sub-domain solution approach using a group-impli cit
algorithm. Fu [15] also used a sub-domain approach, but with an
overlappi ng domain algorithm,

3. Object oriented program design

The work in this paper will be described within the context of
seismic engineering and space structures, but the work described
herein is not limited to this problem area. Rather, it is used as a
vehicle for demonstrat ing various program design principles and
methods .

As noted in the introduct ion, there are various ways in which
programs can take advantage of parallelism and distribut ed pro-
cessing. The most obvious, and probably the most common, is
the application of parallelism to individual problems . If multiple
problems need to be solved, then these too can be done in parallel.
Within the context of seismic engineering, earthquakes are by their
very nature stochastic, and the precise earthquake a structure may
have to endure is not known. So it can be useful to subject a struc-
ture to a variety of earthquakes. In addition, there is the general de-
sign of the program. The presence of multiple processors means
that the program can do several tasks at once, so often it is not nec-
essary for the program to stop completely while doing some tasks.
This can help with the overall usability and flow of the program.
The software described in thus paper was written using C# and
the .NET environment, version 4. C# is object and component ori-
ented, and version 4 of .NET has introduced the Task Parallel Li-
brary (TPL).

3.1. Parallelising of individual algorithms

The algorithms involved in seismic analysis are: (i) determina-
tion of the modal frequencies and mode shapes; (ii) modal super-
position; (iii) transient analysis.

Determinat ion of the vibration modes by the subspace iteration
method was examine d in [16]. The algorithm itself can be paralle-
lised. Further parallelisati on can be achieved by using domain
decompo sition. The paper described the use of a design pattern
which has also been used in the design of software for iterative
solvers [17]. The work described in [18] has been modified to use
the TPL, but the overall design remains the same. [10] described
the implementation of component mode synthesis. Work by others
has parallelised the Lanczos algorithm.

The results of the modal analysis can be used in the mode
superpos ition method, though naturally this applies only to linear
problems .

Transient analysis can be applied to linear and non-linear prob-
lems. Since the focus of the current work is on software design as-
pects, the work in the current paper is limited to the linear case.
The Hilber–Hughes–Taylor algorithm is used, and the design pat-
tern used for eigensolution and iterative solvers [16,17] is adopted.

The key feature of the design pattern is the separation of the
algorithm from the data. The algorithm for a particular problem re-
mains the same, but it may be implemented for many different
data structure s. For instance the standard solution would be the
use of a single domain, but the algorithm can also be impleme nted
for the domain decompo sition case. Furthermore, the data may be
stored locally or remotely, or a mixture of the two. Even then, for
each of these cases there are a multitude of sparse data storage
schemes that can be used. However, despite all these variation s,

2 R.I. Mackie / Advances in Engineering Software xxx (2013) xxx–xxx

Please cite this article in press as: Mackie RI. Dynamic anal ysis of struc tures on multico re comp uters – Achieving efficiency thro ugh object orie nted design.
Adv Eng So ftw (2013), http://dx.doi.org/1 0.1016/j.adv engsoft.2 013.03.006

http://dx.doi.org/10.1016/j.advengsoft.2013.03.006

the basic algorithm itself remains the same. Using this design pat-
tern means that the algorithm is isolated from the effects of
changes in data structure. This is an example of interfaces handling
complexity, by isolation.

Fig. 1 shows the general class structure, and Fig. 2 the class
structure for this particular case. Fig. 1 could be viewed as a design
pattern, the key feature is that the algorithm and data are sepa-
rated. ITimeStep perData is an interface that represents the finite
element model, and data associated with the algorithm. An inter-
face contains methods only with no impleme ntation, it defines
what something can do without giving any implementati on. So it
includes things like the stiffness and mass matrices. Two versions
of the interface have been created, one that just uses a single ma-
trix for the stiffness matrix and one for the mass matrix; and one
that uses the domain decompositi on approach. The latter approach
allows parallelism to be used. The objects can be local or distrib-
uted on remote computers.

TimeStepp erHt has the following definition

public class TimeStepp erHHT: MarshalByRefOb ject,

ITimeStep per,

IDisposab le

{

ITimeStep perData data;

IEQuakeRu nResults runResult s;

public TimeStepp erHHT(ITimeStepperData _data)

{

data = _data;

}

public void Calc(EarthquakeDat aSet

earthquak eData)

{

. . .

}

. . .

}

The object is initialised with an ITimeStep perData object. It
does not know whether this is local or remote, or whether it is
using a single domain or domain-decom position. All it knows is

that it impleme nts the ITimeStep perData interface, and that is
all that it needs to know. TimeStepp erHHT implements the
ITimeStep per interface:

public interface ITimeStep per

{

void Calc(EarthquakeDataSet earthquak eData);

IEQuakeRunResu lts RunResult s { get; }

}

This is a very simple interface , essentia lly saying that calculatio ns
will be carried out on a data set, and that the results of the calcula-
tions can be obtained . This means that it does not specify the time
steppin g algorit hm used. TimeStep perHHT uses the HHT algo-
rithm, and the Calc method itself has the following code:

public void Calc(EarthquakeDat aSet

earthquak eData)

{

. . .

runResults = data.MakeE

QuakeRunR esults(noTimeSteps,

earthquakeData);

data.Init();

data.Setup();

for (int i = 1; i < noTimeSte ps; i++)

{

data.DoTim eStep(i);

}

runResults.Cal cForce();

}

data is an ITimeStep perData object. First it creates a results ob-
ject, this also gives the data object information on the earhtquake.
Then it initialises the data object. The standard version of ITime-
StepperDa ta creates the stiffness and mass matrices in this meth-
od. The domain decompos ition version does the same sort of thing,
but for each sub-dom ain. Setup then prepares the object for doing
the time-step ping. Next the main time-st epping loop occurs. Finally

TimeStepperHHT

TimeStepperHHT(ITimeStepperData data)
IEQuakeRunResults Calc(EarthquakeDataSet
 equakeData);

ITimeStepperData

CalcData CalcData {get;}
double TimeStep {get; set;}
double RunTime {get; set;}
void Init();
Void CalcForce(int iTime);
IEQuakeRunResult
MakeEquakeRunResults();
void Setup();
void DoTimeStep(int iTime);

Fig. 2. Class structure for TimeStepperHHT.

Algorithm

Calc
...

IData

…

Fig. 1. Algorithm data structure.

R.I. Mackie / Advances in Engineering Software xxx (2013) xxx–xxx 3

Please cite this article in pres s as: Mackie RI. Dynam ic anal ysis of structures on multico re comp uters – Achieving efficiency through object orie nted desig n.
Adv Eng So ftw (2013), http://dx.doi.org/1 0.1016/j.adv engsoft.2 013.03.006

http://dx.doi.org/10.1016/j.advengsoft.2013.03.006

the CalcForce method calculates the forces in all the members of
the space truss.

This same design pattern was first used in the context of itera-
tive solvers [16]. Many different data structures, and variations of
the algorithm (different pre-condi tioning strategies, Schur comple-
ment approaches, etc.) have been used, and the basic algorithm ob-
ject has remained unchanged. All the variations were handled by
developing new data objects, thus demonstrat ing the effectiveness
of the approach in isolating areas of complexity.

3.2. Solving multiple problems

As well as solving individual problems, parallelis m and distrib-
uted computing can also be used to solve several problems in par-
allel. One situation where this can be useful is in subjecting a
structure to several earthquakes. Earthquakes by their very nature
are unpredictable, so it can be beneficial to subject the structure to
a series of earthquakes, either based on previously recorded earth-
quakes, or artificially generate d accelerogr ams.

There are two aspects to the software design, parallelism and
distributed processing. Parallelism is implemented using the .NET
Task Parallel Library (TPL). At a basic level this has some similari-
ties to OpenMP, in the way that it allows easy parallelisation of
for loops. However, there are many more features to facilitate pro-
gram control, such as cancellation tokens. This latter aspect will be
discussed further in the next section.

The overall scheme is shown in Fig. 3. The client obtains the
earthquake data sets from a database. It then obtains a factory ob-
ject, called solverFactory. Factory objects are commonp lace in
object-orien ted programm ing and are a well-establishe d design
pattern. solverFac tory impleme nts a very simple interface IDy-
namicSolv erFactory that says it can return an object of type
ITimeStep per . Since a factory object is used the code is indepen-
dent of the type of solver used, and whether it is local or remote.
Then for each data set it executes DoTimeSte pping . The code
used for solving several problems is as follows:

MyLinkedL ist<Earthquake DataSet> dataSets;

Parallel.F orEach(dataSets, DoTimeSte pping);

Earthquak eDataSet is a class that contains the data for an
earthqua ke, in particular the accelerogram s. dataSets is the
linked list of several earthquakes that the structure is to be sub-
jected to. Parallel.F orEach is a parallelis ed version of the
ForEach keyword. The basic ForEach simply iterates sequentially
through the items in list, carrying out the required operations in
serial mode. The parallel version iterates through the list, but does
this in parallel. A new thread is used for each item in the list, so the
operation s are performed in parallel. .NET has a threadpool, and
takes threads from this pool. This means new threads are not cre-
ated, but are already available , so the process is efficient.

For each item in the list, data, it executes DoTimeStep-
ping(EarthquakeDat aSet data), and does this in parallel. The
parallel loop waits for the operations for each data set to complete
before exiting from the loop. A similar construct exists for for
loops, TPL also allows them to be used with greater control as well.

This simple programmin g construct works either on a single
machine with multiple cores, or for distribut ed operation.

The main part of the code for DoTimeSte pping is

void DoTimeSte pping(EarthquakeDataSet data)

{

. . .

TimeStepperHHT timeStepp er =

solverFac tory

.GetTimeSt epper(trussModel,calcDa ta);

IEquakeRunResu lts

results = timeStepp er.Calc(data);

results.Set(trussModel, data);

lock(resultsLock)

{

resultsSe ts.Add(results);

}

}

There are a number of points to pay attention to. The first is that
a factory object, called solverFac tory in the above code, is used
to supply the solver, called timeStepper. This means that the
code here works whether the solver is local or remote. The code
also works for different time stepping algorithms. All the code is
concerne d with is that solverFac tory returns an object that will
carry out the time-stepping operations. It is not concerned with
how it carries them out. The use of factory objects is a standard de-
sign pattern in object-orien ted programm ing. In the current con-
text its main advantage is that the details of creating and
maintain ing remote solvers is all contained within the factory ob-
ject, and so the rest of the program is isolated from these details. In
particular , for the distributed case the factory object has a list of
available host computer s and distributes the work around these
hosts. It also sponsors the remote objects to ensure that they re-
main ‘‘live’’. Moreove r, the factory could take implement load
balancing.

If all the calculations were to be performed on the same com-
puter, then the factory returns a standard local time stepper object.
If distribut ed solution was being used, then the factory object
would create the object on a remote computer , and the calcula-
tions would be carried out on that computer. More details will
be given shortly. The factory object could return either a solver
using standard solution, or one using domain decomposition.

The solver returned could use either serial or parallel solution.
Which would be the most efficient would vary from case to case.
For instance suppose four quad core computers were available .
Then if there were four earthquakes to be analysed it might be
more efficient to use a domain decompositi on (i.e. parallel) based
algorithm for the solution. However, if there were sixteen

1.
2.

Fig. 3. Solving several problems.

4 R.I. Mackie / Advances in Engineering Software xxx (2013) xxx–xxx

Please cite this article in press as: Mackie RI. Dynamic anal ysis of struc tures on multico re comp uters – Achieving efficiency thro ugh object orie nted design.
Adv Eng So ftw (2013), http://dx.doi.org/1 0.1016/j.adv engsoft.2 013.03.006

http://dx.doi.org/10.1016/j.advengsoft.2013.03.006

earthquakes then using a serial solver and relying purely on the
coarse-grained parallelism could be better.

A second point is that the solver is encapsulated in an object,
rather than simply coded in a method. This has several advantag es.
One is that there is a different solver object for each earthquake
data set, and so data integrity is handled easily. A second is that
if a domain decompositi on solver is used, then if this exists on a re-
mote computer , the remote computer automatically uses parallel-
ism when executed on the remote machine. So we have an
excellent example here of one of the advantages of the object-or i-
ented approach, namely that it packages methods and data to-
gether into a single entity, an object, and this makes for better
program design, and helps facilitate distributed implementation.
The reason it does this is that it helps with data integrity. Good
high level design decisions makes low level details easier to
handle.

IEquakeRu nResults is an interface that defines the results set
returned. The details would be different for standard and domain
decompositi on models. In the current program, if a remote com-
puter was used, the results are returned to the client. However,
since interfaces are used, it would be perfectly possible for the re-
sults to remain on the remote computer, possibly stored on a re-
mote database. So again we see the value of interfaces in
program design. All that the client needs to know is that results
are somehow or other accessible.

The results are then added to resultsSe ts . The lock keyword
is used here to ensure that only one results set is added to
resultsSe ts at a time, and so data conflicts are avoided. This is
a simple illustration of a fundamenta l fact of parallel computing.
There are various mechanis ms and constructs, such as those avail-
able in TPL, that make parallel programming easier. However, the
logic of parallel programmin g is inherently more complex than
that of serial programmin g, and the programm er has to understand
what is going on. Currently at least, there is a limit to how much
programmin g frameworks can help.

Distribut ed processin g is implemented using remote objects.
Details on some aspects of remote objects have been given else-
where [18], and recently on deployment [19]. This latter reference
described various ways in which remote objects can be imple-
mented. The approach used here is for the solver programs to be
on the remote computer s, and the client program to access them
via an interface. When it starts the host program registers itself
on a central register program, as shown in Fig. 4.

This program just keeps a record of which hosts are available.
The program then just sits there until a client seeks to obtain a fac-
tory object from it. The use of interfaces creates a logical (and
physical in the case of remote objects) wall between the client pro-
gram and the solver objects.

When the client program wants to create an object on the host
it uses an object called DroneMana ger . The client then activates
the factory object, which will exist on the remote computer, and
the factory object is then used to create the solver object. This sol-
ver object will also exist on the remote computer, and the calcula-
tions are carried out on that computer. It would be possible for
more sophisticated load balancing to be placed in DroneManager .
However , currently it just goes round the list of available hosts
in turn. Data transfer costs are an issue in distributed systems
and results of tests on clusters of Windows computers are reported
elsewher e [11,19]. Further data when using WCF (Windows Com-
municati on Foundation) has also been published by the author
[20].

A factory object is used because an interface is used to represent
it, and the object can only be created using the default constructor.
So members of the factory object then enable the solver objects to
be created with parameters.

3.3. Overall program design

While the preceding sections describe the main aspects of using
parallelis m and distributed processing, there are other aspects to
program design that help with the overall operation of the pro-
gram. The traditional mode of operation of programs is that they
do one operation, even though that operation itself may use paral-
lelism, at a time; this is a throwback to the time when most com-
puters were predominantl y serial. Programs can be much more
responsiv e and flexible if tasks are carried out in separate threads,
so that no task complete ly freezes the program. This does intro-
duce more complexity as there needs to be proper co-ordination
between tasks and program control. An earlier paper [21] de-
scribed some mechanism s for handling this scenario. .NET has a
number of features which enable these aspects to be handled
properly.

A simple example of the differenc e between the serial and
event-dr iven approach can be seen by considering the current pro-
gram. Within the program if modal super-position is to be used,
then there are various tasks that can be carried out. These include:

1. Read the model data file.
2. Calculate vibration modes of the structure.
3. Read in the earthquake data files.
4. Carry out transient analysis.
5. Visualise the results.

The tasks can be carried out in a serial manner, with each task
carried out one after another. However, there is no logical necessity
for things to be done this way. The earthqua ke data and model data
can be read independen tly of each other, and calculation of the
vibration modes is independen t of the earthquake data.

In order to take advantage of the ability to do tasks in a non-se-
rial manner various things need to be done. First the tasks need to
be executed in different threads. Secondly, the tasks may need to
feed back progress to the main program. Thirdly the main program
may need to cancel the tasks. .NET provides features which help
facilitate this.

One of these is the Backgroun dWorker class. This is a class
which manages some of the aspects of carrying out calculatio ns
in separate threads, and it uses various events as the means of
achieving this. The most important is that a method is defined
which actually does the work (e.g. calculate the vibration modes).
Of most relevance in the current section is that it has two other
events, one related to progress and one related to completion. So
the worker method can fire the BackgroundWork er ReportPro -
gress event at various junctures and the main program can
decided how to report, and possibly respond to, the progress.

Register Host

Host

Host

Register Host

Program

Drone Manager

Obtain Host list

Obtain solver

Fig. 4. Distributed host architecture.

R.I. Mackie / Advances in Engineering Software xxx (2013) xxx–xxx 5

Please cite this article in pres s as: Mackie RI. Dynam ic anal ysis of structures on multico re comp uters – Achieving efficiency through object orie nted desig n.
Adv Eng So ftw (2013), http://dx.doi.org/1 0.1016/j.adv engsoft.2 013.03.006

http://dx.doi.org/10.1016/j.advengsoft.2013.03.006

Similarly Backgroun dWorker method fires a completion event
when it has finished its calculations and the main program can
then take appropriate action.

The TPL has Cancellat ionTokens . These can be passed
around various objects, so if some part of the program decides cer-
tain tasks need to stop, it can set the appropriate token, and any
tasks that have possession of that token, will take suitable action
the next time they check the state of the token. Note that the task
is not forced to stop, rather the program tells it that it would like it
to stop. The reason for this is that only the task knows how to stop
gracefully.

The key features of these control and communicati on mecha-
nisms are subscribing to events, firing events, and communicati on
tokens. As described briefly, .NET has a number on inbuilt facilities
for impleme nting these mechanism s. However, the same design
approach can and is used in other environm ents.

4. Results

The subspace iteration method was used on two square-on-
square offset space trusses. One is 20 � 20 m, and the other
60 � 60 m. Fig. 5 shows a picture of the 20 � 20 space truss. The
truss has pin supports at each of the four corners.

The 20 � 20 space truss model had 2048 bar elements, 545
nodes and 1623 degrees of freedom. The 60 � 60 space truss had
12,800 elements, 3281 nodes and 9831 degrees of freedom. Both
structures were subjected to seismic excitation, and transient anal-
ysis was used to predict the response. In the current work the anal-
ysis was limited to the linear case as the primary focus was on the
software engineeri ng aspects. The calculatio ns were carried out on
a variety of machines. These were:

A – One Intel Core i7, 2.80 GHz quad core, 6 GB Ram, Windows 7
(64 bit).
B – Intel Core 2 Quad Q9450, 2.66 GHz, 3 GB Ram Windows 7
(32 bit).
C – Cluster of Intel duo E8400 3 GHz, 3 GB Ram, Windows XP.

Various combinati ons of machines and calculation runs were
executed. Fig. 6 shows the speed up gained by using the domain
decompositi on version of the time stepper, these were carried
out on Machine A. As can be seen, a speed up of approximat ely
two is achieved. The structure was split into four sub-domains.

Fig. 7 shows the speed-up achieved solving multiple problems.
4(A) and 8(A) involved solving 4 and 8 problems, respectively, on
machine A. 8(A + B) used machines A and B for 8 problems . As
there are only 4 physical cores on both machines it is not surpris-
ing that there is little change in speed-up in going from 4(A) to
8(A). There is some further speed-up for 8(A + B), it should be
noted that machine B is a little slower than machine A. The speed

up was calculated by comparing the time for 4 (or 8 problems)
with 4 (or 8) times the time for 1 problem.

For multiple problems the serial time stepping solver was used,
rather than the domain decomposition method. The reason for this
was that mixing domain decompositi on with solving multiple
problems on a single computer was detrimental to efficiency when
the number of problems multiplied by the number of domains ex-
ceeded the number of cores available. If just two problems were
solved, then using A and B and domain decomposition did result
in significant speed-up , with a factor of 1.44 over using domain
decompo sition on a single machine, 2.23 over using serial solution
on a single machine.

The final batch of tests was involved in using the cluster of ma-
chines defined in C. Fig. 8 shows the speed up for the 20 � 20 prob-
lem, run for ten seconds. For one machine the speed-up was

Fig. 5. 20 � 20 Space truss.

Fig. 6. Speed-up achieved using domain decomposition – Machine A.

Fig. 7. Speed-up for multiple problems.

Fig. 8. Speed-up for Cluster C – 20 � 20 problem.

6 R.I. Mackie / Advances in Engineering Software xxx (2013) xxx–xxx

Please cite this article in press as: Mackie RI. Dynamic anal ysis of struc tures on multico re comp uters – Achieving efficiency thro ugh object orie nted design.
Adv Eng So ftw (2013), http://dx.doi.org/1 0.1016/j.adv engsoft.2 013.03.006

http://dx.doi.org/10.1016/j.advengsoft.2013.03.006

around 1.7 whether there were 2, 4 or 8 problems. The reason why
there is any speed-up at all is that the machine is dual core. For two
machines the speed-up gets close to 3 for 4 or 8 problems. With 4
machines the speed-up for 8 problems is 6.5, and this increases
further to just over 7 for 8 machines. Even with 4 machines there
are still 8 processors, so in principal there should be no further
speed-up going from 4 to 8 machines for 8 problems. However, it
does appear that using two machines is slightly better than one.
The extra cache memory available may be a factor here.

Fig. 9 shows the equivalent results for the 60 � 60 problem. The
pattern is the same, though with slightly higher speed-up s. In all
these cases the underlying problem was linear, and the next stage
will be to extend the software to solve non-linear problems.

5. Conclusion s

The widespread availability of multi-core and distributed com-
puters opens up new possibilities for general engineeri ng software.
In order to realise these advantag es requires changes in the way
the programs are designed.

The current paper has focused on transient analysis. The new
architectures can be used to solver individua l problems using par-
allel methods. They are particularly relevant for scenarios where
multiple problems need to be solved.

Object and component oriented software design methods can
be used to help facilitate the developmen t of code that take advan-
tage of the current hardware architectur es. In particular, the use of
objects helps to package the solver, so it can then be distribut ed to
remote computers as desired.

The use of interfaces isolates areas of complexity, and means
that much of the software is oblivious to the type of solver that
is being used, or whether remote or local solution is being used.

Further to the direct problem of parallelism and distributed
computing, there are other impacts on overall software design,
and features within a framework, such as event-drive n driven,
can be used to enable overall control of the program, and to soft-
ware enhance flexibility.

The ideas were implemented in a software program to solve
seismic problems . As mentioned in the introduction, the emphasis
in this paper has been on design approaches, and the algorithms
and code have not been highly optimised. If better algorithms were
impleme nted these could be ‘‘plugged’’ into the current frame-
work. Even so, the speed-up obtained is reasonable.

References

[1] Freeman A. Pro. NET 4.0 parallel programming in C#. APress; 2010.
[2] Bathe K-J. Finite element procedures in engineering analysis. Englewood Cliffs,

New Jersey, USA: Prentice-Hall; 1995 .
[3] PARPACK. <http://www.caam.rice.edu/~kristyn/parpack_home.html>.
[4] Wu K, Simon HD. A parallel Lanczos method for symmetric generalized

eigenvalue problems. Comput Vis Sci 1999;2:37–46.
[5] Guarracino MR, Perla F, Zanetti P. A parallel block Lanczos algorithm and its

implementation for the evaluation of some eigenvalues of large sparse
symmetric matrices on multiple computers. Int J Appl Math Comput Sci
2006;16:241–9.

[6] Honglin L, Xicheng W, Xinli L, Hailei Z, Kun Y. A parallel subspace iteration
method with mdal transfer for electronic-structure calculation. In: Int conf on
parallel algorithms and computing environments. The Chinese University of
Hong Kong; October 8–11, 2003.

[7] Cross J-M. Component mode synthesis method and parallel computing. C R
l’Academie Sci, Ser IIb: Mecanique Phys Chim Astron 1999;327:13–8.

[8] Aoyama Y, Yagawa G. Large-scale eigenvalue analysis of structures using
component mode synthesis. JSME Int J Ser A 2001;44:631–40.

[9] Li L, Jin X, Li Y, Wei J. A parallel solver for structural modal analysis based on
commercial FEA code. Int J Adv Manuf Technol 2005;25:199–204.

[10] Heng BCP, Mackie RI. Parallel modal analysis with concurrent distributed
objects. Computers and Structures 2010;88:1444–1458. http://dx.doi.org/
10.1016/j.compstruc.2008.06.002.

[11] Mackie RI. High performance computing on low cost computers: a review of
parallel and distributed computing methodologies for finite element analysis.
In: Topping BHV, Adam JM, Pallarés FJ, Bru R, Romero ML, editors.
Developments and applications in engineering computational technology.
Stirlingshire, UK: Saxe-Coburg Publications; 2010 [chapter 12].

[12] GPGPU. <http://gpgpu.org/about>.
[13] Manolis GD, Panigiotopoulos CG, Paraskevopoulos EA, Karaoulanis FE,

Vadaloukas GN, Papachristidis AG. Retrofit strategy issues for structures
under earthquake loading using sensitivity-optimization procedures.
Earthquakes and Structures 2010;1:109–27.

[14] Dere Y, Sotelino ED. Solution of transient nonlinear structural dynamics
problems using the modified iterative group-implicit algorithm. In: Topping
BHV, Bittnar Z, editors. Proceedings of the third international conference on
engineering computational technology. United Kingdom: Civil-Comp Press,
Stirling; 2002 [paper 34].

[15] Fu C. A parallel algorithm for nonlinear dynamic finite element analysis. In: 1st
Int conf on information science and engineering, Nanjing, PR China; 2009.

[16] Mackie RI. Implementing modal analysis software on multi-core computers:
with application to seismic analysis of space trusses. In: Topping BHV, Adam
JM, Pallarés FJ, Bru R, Romero ML, editors. Proceedings of the 10th
international conference on engineering computational technology.
Stirlingshire, United Kingdom: Civil-Comp Press; 2010 [paper 332].

[17] Mackie RI. Object oriented programming of distributed iterative equation
solvers. Comput Struct 2008;86:511–9.

[18] Mackie RI. Programming distributed finite element analysis: an object
oriented approach. Saxe-Coburg, Stirling; 2007. ISBN:978-1-874672-31-9.

[19] Mackie RI. Design and deployment of distributed numerical applications using
.NET and component oriented programming. Adv Eng Softw 2009;40:665–74.

[20] Mackie RI. Application of service oriented architecture to finite element
analysis. Adv Eng Softw 2012;52:72–80.

[21] Mackie RI. Using objects to handle calculation control in finite element
modelling. Comput Struct 2002;80:2001–9.

Fig. 9. Speed-up for Cluster C – 60 � 60 problem.

R.I. Mackie / Advances in Engineering Software xxx (2013) xxx–xxx 7

Please cite this article in pres s as: Mackie RI. Dynam ic anal ysis of structures on multico re comp uters – Achieving efficiency through object orie nted desig n.
Adv Eng So ftw (2013), http://dx.doi.org/1 0.1016/j.adv engsoft.2 013.03.006

http://refhub.elsevier.com/S0965-9978(13)00033-1/h0005
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0005
http://www.caam.rice.edu/~kristyn/parpack_home.html
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0010
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0010
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0015
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0015
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0015
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0015
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0020
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0020
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0025
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0025
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0030
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0030
http://www.gpgpu.org/about
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0055
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0055
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0055
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0055
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0035
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0035
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0040
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0040
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0045
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0045
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0050
http://refhub.elsevier.com/S0965-9978(13)00033-1/h0050
http://dx.doi.org/10.1016/j.advengsoft.2013.03.006

	Dynamic analysis of structures on multicore computers – Achieving efficiency through object oriented design
	1 Introduction
	2 Literature review
	3 Object oriented program design
	3.1 Parallelising of individual algorithms
	3.2 Solving multiple problems
	3.3 Overall program design

	4 Results
	5 Conclusions
	References

