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Abstract  

Energy consumption and greenhouse emissions across many countries have increased overtime despite widespread 

energy efficiency improvements. One explanation offered in the literature is the rebound effect (RE), however there 

is a debate about its magnitude and the appropriate model for estimating it. Using a combined stochastic frontier 

analysis (SFA) and two-stage dynamic panel data approach, we explore these two issues of magnitude and model for 

55 countries over the period 1980 to 2010. Our central estimates indicate that in the short-run, 100% energy 

efficiency improvement is followed by 90% rebound in energy consumption, but in the long-run it leads to a 136% 

decrease in energy consumption. Overall, our estimated cross-country RE magnitudes indicate the need to consider 

or account for RE when energy forecasts and policy measures are derived from potential energy efficiency savings.  
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1. INTRODUCTION 

There appears to be a consensus within the energy policy community about the contributions of energy 

efficiency improvements towards reducing global energy consumption and greenhouse emissions. Protagonists of 

energy efficiency improvement often highlight its non-costly nature, arguing that the resulting decrease in energy 

use may not require higher energy prices or result in slower economic growth. However, a strand of literature 

starting with the early works of Brookes (1979) and Khazzoom (1980) argues that the underlying assumption that 

energy efficiency improvements yield proportionate reduction in energy consumption is misleading. This view was 

recently elucidated by Saunders (2013) who argued that over time, rebound effects (RE) could potentially result in 

the partial or total erosion of energy savings arising from improved energy efficiency
1
.  

Since its inception, the RE literature has grown significantly, but controversies remain about its magnitude, 

mechanisms and the most appropriate approach to measuring it. Clearly, the debate has been more intense regarding 

macroeconomic RE since it approximates the net effect of different mechanisms that are complex and 

interdependent, and whose effects may vary over time and across efficiency sources.  This possibly explains the 

scarcity of macroeconomic RE studies
2
. Moreover, the few economy-wide studies use different empirical and 

theoretical approaches, with most of them covering different time periods. As expected, given the differences in 

methodological approaches and data sets, these studies are highly non-comparable. In particular, Dimitropoulos 

(2007) showed that the use of diverse models/methodologies and the lack of a widely accepted rigorous theoretical 

framework have contributed immensely to the controversies surrounding RE.  

Understanding the nature and estimating economy-wide RE is vitally important for a number of reasons. 

First, the key issues associated with RE, especially global climate change, require top-down macroeconomic 

analyses of different economies over long time frames, which microeconomic or bottom-up analysis may be 

inappropriate to handle. This is because effective climate change policies require multilateral co-operation and co-

ordination among different countries, thus there is need for a comparative and consistent measurement of RE across 

                                                           
1
 Rebound effect is not entirely bad on its own since the resulting increase in energy use contributes towards welfare and 

expansion of the production possibility space, but given the urgency required in tackling dangerous climate change, it is 
important to explicitly account for RE (especially when it is large) in global energy forecasts. 
2
 A recent meta-analytical survey can be found in Chakravarty et al. (2013). 
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different countries
3
. However, the available pool of studies

4
 is inadequate in the context of the broad, extensive and 

systematic cross-country analysis required to tackle climate change. Secondly, this analysis is crucial given the 

important role that energy efficiency plays in the derivation of future energy forecasts and in the formulation of 

wider energy policy measures. Possibly, due to the dearth of reliable and consistent estimates of RE, most of these 

forecasts and policy measures hardly account for RE, implying that such forecasts might have underestimated future 

energy consumption, if RE is significant or large. Thirdly, a broad and extensive cross-country analysis of RE, such 

as this one undertaken here, is crucial to the evolution of more useful debate on RE.  

As far as is known, no multi-country study of macroeconomic RE across several countries has been 

undertaken to provide greater clarity on the RE debate using a sound technique and consistent dataset. This is an 

important gap in literature given that RE arising from aggregate consumption and production by households and 

firms are likely to be of great significance and implication (Kydes, 1999).   

In this paper, our objective is to provide estimates of aggregate RE for a panel of 55 countries over the 

period 1980 to 2010 using a two-stage procedure. First, we estimate energy efficiency using Stochastic Frontier 

Analysis (SFA). Secondly, by employing a dynamic panel framework, and using the efficiency scores from the SFA 

model, we estimate short-run and long-run RE. To give an insight into our main empirical findings, we find 

significant RE magnitudes across sampled countries, especially non-OECD countries. However, an encouraging sign 

is the declining RE magnitudes for some countries over the sample period which possibly indicates the potential for 

energy efficiency in the future. 

The remainder of the paper proceeds as follows. Section 2 presents the modelling approach. Specifically, 

we present a two-stage estimation approach including the parametric SFA approach for estimating energy efficiency, 

and a generalized method of moments (GMM) model for estimating short-run and long-run RE. In section 3, the 

dataset is described in detail. Section 4 presents the empirical results from both models and the resulting rebound 

effects. We offer our concluding remarks and recommendations in Section 5. 

                                                           
3
 Most studies on economy-wide RE are country-specific and they often cover limited time frames. 

4
 The dearth of macro RE studies for developing countries is more severe.  Herring and Roy (2007)  argue that  macroeconomic 

RE are likely to be significantly higher in developing countries because their economic growth and development increasingly 
burden the global environment as they lift millions of people from poverty. 
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2. MODELLING AND THEORETICAL APPROACH 

Our aim is to estimate RE within a macroeconomic production function by accounting for the increase in 

energy use arising from energy efficiency gain. This efficiency saving is expected to impact energy consumption, 

resulting in energy conservation which is defined as: 

                     
     

    
                          (1) 

where E is energy consumption and Ef represents energy efficiency.    is also referred to as efficiency elasticity of 

energy demand, which allows us to derive RE: 

                          (2) 

Intuitively, RE represents the size or percentage of the energy efficiency savings that is lost such that if energy 

consumption E falls by 40% due to a 40% increase in energy efficiency, then        and    . In the same vein, 

if a 100% increase in energy efficiency yields only a 40% fall in energy consumption, then      . Given these 

discussions above, it is easy to see that five rebound conditions are possible (Saunders, 2000; Wei, 2010): 

               : ‘Backfire’ occurs as energy consumption increases due to improvements in energy 

efficiency;  

               : Full rebound as energy demand remains unchanged in the face of energy efficiency 

gains; 

                   : Partial rebound as energy consumption falls by a less-than-proportionate 

rate to efficiency improvements; 

                : Zero rebound implies a one-to-one or unit relationship between energy consumption 

and efficiency improvements;  

               : Super conservation as energy consumption falls by a more-than-proportionate rate 

with respect to efficiency gains. 

Now we turn to the multi-stage approach to estimating RE. The key objective is the econometric estimation of 

the efficiency elasticity    and we proceed as follows.  
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Stage One: Energy Efficiency Estimation 

Our starting point is the estimation of energy efficiency (  ) using the stochastic frontier analysis (SFA) 

(Aigner et al., 1977 and Meeusen and van den Broeck, 1977). The SFA allows for a composed error term which 

contains a one-sided error term to measure inefficiency in addition to the traditional two-sided error term which 

captures random noise. A number of studies have estimated efficiency in aggregate energy consumption. One of 

such is Filippini and Hunt (2011) who demonstrated the need for an econometric estimation of efficiency when 

estimating aggregate energy efficiency for 29 OECD countries using an energy demand SFA. The parametric 

estimation of energy efficiency using SFA is underscored by criticisms and inappropriateness of using energy 

intensity as a proxy for energy efficiency (see Filippini and Hunt, 2011; Saunders, 2013). More recently, Filippini 

and Hunt (2012) also estimated energy efficiency in residential energy demand for a panel data of 48 US states using 

an input requirement function (IRF).  

Although we employ the SFA, this study differs from the studies mentioned above by estimating a 

production technology using an input distance function (IDF)
5
, rather than an IRF. With an IRF, the objective is to 

radially contract energy use in an input vector for a given level of output, conditional on energy prices and other 

exogenous factors. By implication, other factor inputs are implicitly assumed to be fixed; hence studies relying on an 

IRF have arguably estimated short-run energy efficiency. However, an IDF seeks to radially contract energy and the 

other factor inputs in the input vector for a given level of output. This approach is consistent with long term energy 

efficiency estimation since in reality one would expect efficiency gains to alter relative/effective prices of factor 

inputs, resulting in factor substitution as firms adjust input combinations to take advantage of energy efficiency 

improvements. 

Our proposed production technology can be represented by the input requirement set      which represents 

the set of K inputs        which can produce a set of R outputs       i.e.                              . 

We can obtain an input distance function equation (see Kumbhakar and Lovell (2003):             which takes a 

                                                           
5
 Although Zhou et al (2012) estimated a stochastic input distance function for a sample of 21 OECD countries; we note that 

they employed cross-sectional data for only 2001. Moreover, unlike this study, they did not account for cross-country 
heterogeneity. 
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value of 1 if a country is efficient (i.e. on the frontier) but is greater than 1 when a country is inefficient     , so 

that: 

                               (3) 

where    . This input distance function is non-increasing in outputs, non-decreasing and homogeneous of degree 

one in inputs. By adopting a translog functional form in conjunction with the elements,                , and 

applying the linear homogeneity property, equation 3 can be written in  panel data context
6
:  

                                                         (4) 

where                represents the technology as the translog approximation to the log of the distance function; 

while     is the traditional symmetric error term representing sampling, specification and measurement errors, while 

    represents the non-negative inefficiency component of the composed error term.  

The energy efficiency of each country in each period is then estimated as the conditional expectation of the 

one-sided error term,       , given the composed error,     so that the energy inefficiency of each country   in 

period   is given by: 

                              (5) 

 where                        (6) 

The estimated (in) efficiency evaluates the degree to which a country could decrease the level of energy use relative 

to the country on the frontier, holding output constant. 

Exogenous Variables and Energy Efficiency  

The typical production frontier function assumes homogeneity of producers and homoscedasticity of the 

errors. However, these assumptions can be relaxed by introducing exogenous variables which are different from 

factor inputs but affect or influence the technical (in) efficiency of firms/countries into the different parts of the SFA 

model. It is desirable to evaluate the impact of observable country-specific exogenous factors on inefficiency 

because, in reality; such factors reflect the operating environment and are likely to be partly responsible for energy 

efficiency performance across countries (Kumbhakar and Lovell, 2003). Moreover, with this approach, it is possible 

                                                           
6
 We employ a panel data framework with time-varying inefficiency given the reasonably long timeframe of this study. It is 

unlikely that energy efficiency will be constant or time-invariant over a long period of time as in this study. 
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to address the problem of conditional heteroscedasticity in the energy inefficiency term. Hence, we introduce 

different exogenous variables into the variance of the inefficiency term to capture the impact of structure of 

economy, demography, geography, climate on energy inefficiency. In this case the variance of the pre-truncated 

inefficiency distribution is given as follows: 

                
 )          (7)  

      
                        (8) 

where     represents observable exogenous characteristics across countries while    are parameter estimates 

obtained in the single stage maximum likelihood ML estimation. In addition, we explore the ‘double-

heteroscedasticity’ model of Hadri (1999) which permits the exogenous variables to affect both the inefficiency 

component and the idiosyncratic error component of the disturbances, so that in addition to the assumption in (7) 

and (8), it is possible to have: 

                  
            (9) 

       
                       (10) 

Stage Two: Estimation of Rebound Effects 

After estimating energy efficiency using SFA above, we then compute short-run and long-run RE for each country 

as: 

                         (11)  

where    is the elasticity of energy consumption with respect to energy efficiency 
    

    
;  E is energy consumption 

and    is energy efficiency. The task in this second stage is the econometric estimation of    , the efficiency 

elasticity. We estimate short run (SR) and long run (LR) efficiency elasticity in order to compute SR and LR 

rebound effects a la equation (11). To achieve this, we utilize the Arellano-Bond (1991) autoregressive dynamic-

panel energy consumption model estimated by generalized method of moments, GMM, where the estimated energy 

efficiency in the first stage is included as a regressor, alongside energy price and national output. The GMM 

autoregressive dynamic panel model is written as: 
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                (12) 

where      is energy consumption, treated as the long-run equilibrium level of energy use by a country in time  . 

      is the lagged energy consumption while     is the corresponding real price of energy in time t,     represents a 

country’s real GDP at time  ;      denotes each country’s estimated efficiency from the IDF above in time  . The 

panel data error term consists of an unobserved country-specific component    and an idiosyncratic disturbance term 

which is assumed to be identically and independently distributed           .  

It can be seen in (12) that we explore non-linearity in the model by interacting energy efficiency with 

energy prices and income. This is because the relationship between energy efficiency and energy consumption as 

well as the other regressors (price and income) is likely to be non-linear. This is an important aspect of modelling 

energy technical progress, which could be price-induced, endogenous or exogenous; hence, models should be 

correctly specified accordingly (see Adeyemi and Hunt, 2014). Moreover, the non-linearity assumption allows us to 

evaluate efficiency elasticity and rebound effects at each given price and income level.  

From the parameter estimates of equation 12 above, short-run and long-run efficiency elasticity can be derived as 

follows: 

Short-run    
  

    

   
                     (13) 

Long-run    
  

               

   
        (14) 

Given these, short-run rebound is          
  and long-run rebound is          

 . Ceteris paribus, 

we expect both SR and LR efficiency elasticities to be negative since improved energy efficiency will most likely 

reduce the fuel required to deliver a given level of energy service. Therefore, the question of RE centers on the 

extent to which efficiency gain lowers energy use, so that the magnitude of RE depends on the size of    (i.e. the 

larger   , the smaller the RE magnitude). 

Autoregressive models are common in studies estimating short-run and long-run elasticities because the 

response of energy consumption to changes in exogenous influences such as price and income are gradual in nature
7
. 

Furthermore, the use of partial adjustment models (PAM) stems partly from their simplicity considering that they do 

                                                           
7
 For instance, due to appliance stock and psychological reasons, households do not immediately change their energy use 

habits in response to a price increase as such changes may result in some disutility, hence the need for a partial adjustment 
approach in energy demand modeling. 
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not require the imposition of any specification on the model structure. However, the dynamic modeling approach 

can be generally complicated by issues such as the correlation between lagged values of the dependent variable and 

the error term, especially the country-specific heterogeneity component
8
 (Nickell 1981). This is because     is a 

function of the unobserved country-specific heterogeneity    which is time invariant, it then follows that        

which is one of the regressors, is correlated with    . Moreover,    may also be correlated with the other regressors, 

resulting in endogeneity issues
9
. Furthermore, the presence of the lagged dependent variable as one of the regressors 

may result in the problem of autocorrelation. Under these circumstances, parameter estimates are biased and 

inconsistent, particularly for OLS
10

.  

Thus, the generalized method of moments (GMM) procedure is employed in this study. In the first place, 

by using the GMM estimator, it is possible to control for cross-country heterogeneity, by the fixed effects term,   , 

including the case where the explanatory variables are correlated with the fixed effects. Secondly, the GMM 

estimator permits the regressors to be endogenous by exploiting the availability of pre-detemined variables as 

instruments. This is crucial since energy efficiency is potentially endogenous within the framework proposed here.  

Arellano and Bond (1991) derived two GMM estimators, namely one-step and two-step estimators, which 

allow for heteroscedasticity and autocorrelation in the idiosyncratic errors.  In the one step estimator, weighting 

matrices independent of parameter estimates are used. For the two-step estimator, the moment conditions are 

weighted by their covariance matrix often regarded as optimal weighting matrices. Thus the two-step estimator 

yields asymptotic efficiency gains over the one-step estimator, especially in large samples, when there are non-iid 

errors. In this case, the estimator can handle numerous instruments and it uses the consistent variance co-variance 

matrix from first step GMM which is robust to panel-specific autocorrelation and heteroskedasticity (Arellano and 

Bond, 1991). Given the large sample property of our sample and the potential efficiency gain, we employ the two-

step estimator, with the finite sample correction due to Windmeijer (2005). 

                                                           
8
 This is often referred to as the Nickel bias. 

9
 We explored the endogeneity issue by applying the Wu-Hausman test statistic to our dataset. First we regressed 

energy efficiency on the instruments and other exogenous variables. We then included the residuals from this 
regression as an additional regressor in the original equation (E=f (P, Y, Eff) which is found to be not statistically 
significant judging from the t-stat. Hence, this indicates that the data failed to reject the null of no endogeneity 
(see appendix). 
10

 See Roodman (2009 a, b)  for detailed discussions on the benefits of the GMM estimator, especially over other estimators 

such as the FE and 2SLS estimators 
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To ascertain the consistency and validity of the model, diagnostic tests namely autocorrelation (AR) test 

and the Hansen test for over-identifying restrictions are conducted under the null hypothesis of correct model 

specification and valid over-identifying restrictions. 

3. DATA AND DESCRIPTIVE STATISTICS  

The dataset is an unbalanced panel of annual data for 55 countries
11

 (including OECD and non-OECD, as 

listed in the results section) over the period 1980-2010, comprising 1631 observations in total. The number of 

countries and the length of time are largely determined by the availability of data for different countries
12

, as 

countries with too many missing observations were eliminated. The variables employed in this study are Y, K, L, E, 

M and z-variables. Y, K and L are all extracted from the Penn World Table (PWT) Version 8.0. Y is represented by 

“Real GDP at constant 2005 national prices (in mil. 2005US$)”. K is given by “Capital stock at constant 2005 

national prices (in mil. 2005US$)”. (L), the labour input is “Number of persons engaged (in millions)”. E is given by 

“Total Final Energy Consumption” in thousand tonnes of oil equivalent (ktoe), obtained from the International 

Energy Agency (IEA) database. M, the Material variable is taken from the Sustainable Europe Research Institute 

(SERI) materials flow database. It is represented by “used material extraction” in tonnes.  

The exogenous variables capturing observable cross-country heterogeneity are also are industrial share of 

value add, trade openness, population, area size
13

 and temperature. Population and trade openness are taken from the 

Penn World Tables (PWT); Industrial sector shares of value added is downloaded from the World Development 

Indicators (WDI) database. Land area in square km. is also taken from the WDI. Finally, annual average temperature 

data are taken from the Tyndall Centre for Climate Change Research database and the UNDP climate change 

database. These are then spliced with regional temperature data from the UK Met Office for 2007-2010. 

 

 

                                                           
11

 As much as data availability permitted, we have sampled from the widest and most policy-relevant population, especially 
considering some arguments in literature that the rebound effect is most serious for developing economies, given their 
relatively higher growth rates and limited level of technological advancement.  
12

 In particular, energy price data.  
13

 A more appropriate explanatory variable for area and population is residential population density as a larger country may 

have lots of nonresidential areas and low energy consuming activities. However, we were unable to find any dataset on 
"residential area". Moreover, we believe that our approach is consistent with earlier works on the impact of country size (via 
area size and population) on macroeconomic performance (see Milner and Westaway, 1994; Weyman-Jones and Milner, 2003). 
Further, other studies (e.g Hunt and Filippini, 2011) have shown that population and area size are explanatory variables for 
energy demand. In our case, the statistical significance of these variables indicates that they influenced energy use 
performance. 
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TABLE 1: DESCRIPTIVE STATAISTICS 

1631 Observations Variable Mean SD Min  Max 

Variables minimized i.e. inputs      

Capital (million US2005$) K 2884690.73 6755249 43697.65 75301295.05 

Labour (million people) L 36.77 103.11 .067 781.38 

Energy (ktoe) E 102473.8 228512.7 1742.55 1581622 

Materials  (tons) M 347359.5 989507.7 1603.44 16176128 

Variable held constant i.e. output      

GDP (million US2005$) Y 727134.7 1553914 13361.71 13144400 

Environmental variables       

Population (million people)    82.94 204.41 0.94 1330.14 

Area size (   )    1552501 2966275 670 16389950 

Industrial sector share (% of GDP)    33.66 8.99 9.19 78.66 

Temperature (degree Celsius)    15.67 8.45 -8.74 28.88 

Trade Openness (Trade % of GDP)    65.32 48.07 6.69 433.05 

Variables used in 2
nd

 stage      

Energy price index (2005=100)     79.59 30.76   0.02 192.06 
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Finally, in the second stage where an energy consumption function is estimated, we use energy prices     

which is taken from the IEA Energy Prices and Taxes database (Indices of End-use Prices for industry and 

households in the case of OECD countries, 2005=100) and energy price index taken from the International Labor 

Organization (ILO) database for the non-OECD countries. These are normalized to 2005 base year for consistency. 

The descriptive statistics of all the variables defined above are presented in Table 1 below. 

4. EMPIRICAL RESULTS 

4.1 Estimates of achieved energy efficiency from SFA Model 

We estimated four models: time-decay, pooled conditional mean, pooled conditional variance model and 

the conditional variances/double heteroskedatic model. We performed a range of diagnostics to reach our preferred 

model
14

. In particular, in order to avoid arbitrary assumptions, we checked for heteroscedastic error structure across 

our panel data using the likelihood ratio (LR) test procedure recommended by Wiggins and Poi (2001). The LR test, 

which approximately follows a chi-square distribution by nesting the homoscedastic model in the heteroscedastic 

model under the null hypothesis of homoscedasticity, clearly indicated the presence of heteroscedasticity in the 

model.  

This guided our attempt to address this heteroscedasticity problem using the double-heteroscedasticity 

model proposed by Hadri (1999). Further, we tested this preferred model as an unrestricted model against other 

alternative model specifications using the LR and Wald tests, with both tests strongly rejecting the restrictions. We 

further checked the theoretical appropriateness of the models by observing the curvature properties of the model. 

Based on our diagnostics, we conclude that our dataset favours the double condtional heteroscedasticity model 

(Hadri 1999) where exogenous variables influence both the inefficiency term and the two-sided error term. 

Therefore, our subsequent analysis is based on this preferred model.   

 

 

                                                           
14

 Maximum-likelihood estimations of the model were obtained using STATA 12. We conducted some sensitivity experiment by 
dropping some of the heterogeneous variables in turn to evaluate the impact on the estimated efficiency. We only observed 
slight variations in the efficiency scores and therefore ranks. In particular, we consistently found the same set of countries to be 
most efficient across all the models. Similarly, we find this to be the case for the least efficient countries too, indicating that the 
slight variations are of no substantial consequence. Interested readers can obtain the full range of experimented models and 
diagnostics from the authors. 
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TABLE 2: FIRST STAGE SFA MODEL RESULTS 

Variable Parameter 

 

 

Model 1 

Time-decay 

  

Model 2 

Pooled conditional 

mean 

 

Model 3 

Single conditional 

heteroscedasticity 

 

Model 4 

Double conditional 

heteroscedasticity 

Constant      1.069***  2.142*** 0.230*** 0.344*** 

   (0.04)  (0.05) (0.02) (0.01) 

            -0.657***  -0.383*** -0.954*** -0.849*** 

   (0.02)  (0.01) (0.01) (0.01) 

            0.418***  0.0742*** 0.443*** 0.428*** 

      (0.01)  (0.01) (0.01) (0.01) 

            0.437***  0.639*** 0.0423*** 0.202*** 

      (0.02)  (0.01) (0.01) (0.01) 

            0.053***  0.038*** 0.114*** 0.064*** 

      (0.01)  (0.01) (0.01) (0.01) 

           -0.008***  -0.001 0.002 -0.001 

   (0.00)  (0.00) (0.00) (0.00) 

Parameters 

in         

  

     

              0.618*** 0.363*** 0.787*** 

     (0.01) (0.1) (0.1) 

                0.022*** 0.755*** 0.435*** 

     (0.00) (0.1) (0.04) 

              0.409*** 8.405*** 4.113*** 

     (0.04) (1.38) (0.55) 

                -0.009*** -0.005 0.031*** 

     (0.00) (0.01) (0.01) 

                0.101*** 1.319*** 0.750*** 

     (0.01) (0.3) (0.2) 

       -0.001 -0.025 -0.028*** 

     (0.00) (0.02) (0.01) 
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Standard errors in parentheses.  *, **, *** denote statistical significance at the 10, 5 and 1% levels, respectively  

The output and inputs and environmental variables are in mean-corrected logarithms. Estimates of the first-

order coefficients and the inefficiency effects from the different models are presented in Table 2. All the estimated 

first-order coefficients on inputs and outputs have the appropriate signs and they are all statistically significant, 

implying that the model is generally consistent with our underlying assumption of a production technology. This 

conclusion is supported by regularity tests for economic properties which indicate that the preferred model largely 

satisfies the curvature properties
15

. For the inefficiency effects, we find all the coefficients on the environmental 

variables to be statistically significant and they all have a positive effect on the estimated inefficiency.     

Table 3 presents the average energy efficiency score and rank for every country over the whole sample 

period. The estimated energy efficiency of each country gives a relative measure or indication of change in energy 

efficiency over the sample period vis-à-vis the constructed IDF frontier. A key observation in Table 3 is that the 

estimated energy efficiency scores appear reasonable, particularly in terms of the countries’ distance to the estimated 

frontier. It can be seen that the OECD countries are closer to the frontier, while developing countries such as China, 

Brazil, India and Russia are found to be farthest from the frontier. This is to be expected in a way, given the huge 

technological gaps between them and the OECD countries. 

 

                                                           
15

 Monotonicity is confirmed at 100% of our data points for output; 97% for Capital; 96% for Labour and 83% for Materials. The 

concavity condition is satisfied at the sample mean, and at 88% of the data points. 

        -0.003*** -0.003 -0.0003 

     (0.00) (0.00) (0.00) 

LLF   1970.17  1175.15 334.75 479.92 

     0.004***     

     0.931***     

     0.989***  1.00***   

LR Stat      312.47 290.34 

Wald      112.03 735.70 
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TABLE 3: AVERAGE ENERGY EFFICIENCY SCORES AND RANKINGS 

Country  

Efficiency 

Score Rank 

Argentina 0.631 48 

Australia 0.782 40 

Austria 0.941 17 

Belgium 0.950 13 

Brazil 0.564 49 

Canada 0.875 31 

Chile 0.884 29 

China 0.317 55 

Czech Republic 0.869 32 

Denmark 0.962 2 

Dominican Republic 0.958 3 

Egypt 0.915 24 

Finland 0.936 18 

France 0.816 38 

Germany 0.825 35 

Greece 0.956 5 

Hungary 0.927 19 

India 0.462 53 

Indonesia 0.463 52 

Iran 0.640 47 

Ireland 0.956 6 

Israel 0.957 4 

Italy 0.901 27 

Japan 0.880 30 

Kuwait 0.952 9 

Libya 0.852 34 

Malaysia 0.703 42 

Mexico 0.825 36 

Morocco 0.915 23 

Netherlands 0.950 12 

New Zealand 0.953 8 

Nigeria 0.680 45 

Norway 0.946 15 

Pakistan 0.540 51 

Philippines 0.685 44 

Poland 0.643 46 

Portugal 0.949 14 

Russia 0.383 54 
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Saudi Arabia 0.860 33 

Singapore 0.952 10 

Slovak Republic 0.951 11 

South Africa 0.699 43 

Spain 0.897 28 

Sri Lanka 0.916 22 

Sweden 0.945 16 

Switzerland 0.965 1 

Syria 0.820 37 

Tanzania 0.903 26 

Thailand 0.560 50 

Tunisia 0.917 21 

Turkey 0.955 7 

UAE 0.910 25 

United Kingdom 0.921 20 

US 0.808 39 

Venezuela 0.723 41 

 

4.2 Estimated results for dynamic panel data model  

The results
16

 of the estimated two-step GMM model
17

 are given in Table 4. Overall, most of the parameter estimates 

having the expected signs and within credible magnitude range.The coefficient on the lagged dependent variable in 

the Arellano-Bond results is 0.923, significant at the 1% level. While this appears close to unity, Bond (2002) and 

Roodman (2009) have shown that this coefficient needs only to be less than unity, as the requirements for its 

consistent estimation are relatively weak.  

The interaction terms indicate that, ceteris paribus, higher energy prices stimulated energy-augmenting 

technological progress so that a higher energy price results in a greater energy-reducing efficiency effect
18

. 

However, the reverse is the case for income or GDP. Moreover, by accounting for the interaction between price and 

efficiency, it is possible to disentangle price effects from other exogenous efficiency effects thereby reducing the 

                                                           
16

 We use the xtabond2 in STATA12.  Although T is fairly large (31 years), we restrict our set of lags to 2-3 lags given that more 

lags will result in a huge number of instruments and the attendant weakening of the instruments validity tests (see Roodman, 
2009a). 
17

 Given that energy efficiency gains could be exogenous or endogenous due to the effects of energy prices, regulations and 

policies, tastes etc. on energy efficiency, we explore a model with interaction between energy efficiency and the other 
regressors. Results show that these assumptions are accepted by the data. 
18

 This has been partly demonstrated by asymmetric price responses of energy demand where reductions in energy 

consumption via technical progress due to higher prices are not fully reversed in the face of lower prices. 
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problem of overestimating the efficiency elasticity. This possibly explains why the time trend is statistically 

insignificant as it is possible that the interaction terms have picked up some of the exogenous/time effects, causing 

this statistical insignificance. 

TABLE 4: GMM MODEL RESULTS  

 Dep. variable 

 Energy Consumption (E) 

Lagged E 0.923*** 

 (0.06) 

    -0.075* 

 (0.04) 

   0.078 

 (0.06) 

    -0.474** 

 (0.22) 

   0.001 

 (0.00) 

       -0.353** 

 (0.15) 

      0.148** 

 (0.07) 

      -0.032** 

 (0.02) 

constant 0.055*** 

 (0.02) 

Hansen Test (p-value) 0.606 

Ar(1) (p-value) 0.003 

Ar(2) (p-value) 0.448 

Windmeijer corrected standard errors in parentheses. *, ** and *** represents significant level at 10%, 5% and 1% 

respectively 
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For the system-GMM to be reliable, it is required that we fail to reject both null hypotheses on the Hansen 

test of over-identification and the AR test for serial correlation which is applied to the residuals in differences. From 

Table 4 above, notice that the p-values on the AR tests indicate first-order serial correlation, but no serial correlation 

at the second-order. This is consistent with a priori expectation since first-order serial correlation is expected in 

differences because      is related to        through the shared       term. Hence, to check for first-order serial 

correlation in levels, the second-order correlation in differences is checked as this will detect correlation between the 

      in      and the       in       . The Hansen test statistic indicates that we are unable to reject the null 

hypothesis of overall exogeneity of the instruments used in the GMM estimation, implying that the instruments are 

valid.  

4.3 Rebound Effects Estimates  

The estimated energy efficiency elasticities from the results in Table 5 above are -0.10 in the SR and -1.36 in the 

LR. These yield SR and LR rebound effects of 90% and -36% respectively, at the sample mean. The LR rebound 

estimate suggests that energy efficiency gain is likely to generate a more than proportionate reduction in energy use 

(a 1% energy efficiency gain will result in a 1.36% reduction in energy consumption), a situation referred to as super 

conservation in the RE literature.  

The smaller LR rebound estimate is consistent with the expectation that in the LR, 

learning/innovation/knowledge formation are likely to better help energy end-users to “lock-in” more energy 

efficiency savings. This LR result also possibly reflects the impact of the continuous global awareness and policy 

efforts of the climate change agenda. Turner (2009) found similar results whereby the energy increase pressures 

arising from rebound are partially or wholly offset by negative income, competitiveness and disinvestment effects, 

which also occur in response to falling energy prices. These effects were found to reduce domestic energy supply, 

leading to a contraction in the capital stock in these sectors, which in turn led to smaller long-run economy-wide 

rebound effects
19

.  

                                                           
19

 Birol and Keppler (2000) and Turner (2013) elucidated that the lack of attention to these energy supply issues in rebound 

analysis has led to the neglect of supply-side responses to demand-side rebound pressures. It is in this context that our 
macroeconomic rebound analysis embodies/captures these wider supply-side issues which yield smaller long-term rebound. 
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To compute point estimates of RE outside the sample mean (i.e. for each country and overtime), we 

calculate the point efficiency elasticity for each year across the entire sample.  In particular, our point estimates 

indicate that our modeling approach demonstrates the entire rebound possibilities, ranging from super-conservation 

to backfire. The computed RE magnitudes are quite substantial, ranging from an average of 18% for Dominican 

Republic to 117% for Russia over the entire sample period
20

. Our results also show some variation in rebound 

estimates overtime and across the sample countries (see appendix). Interestingly, overall, we find slightly different 

RE magnitudes and patterns between OECD and non-OECD countries. For instance, it is observed that RE 

magnitudes for non-OECD countries (with an average of 56%) are generally bigger those for OECD countries (with 

average 49%)
21

 while for the 7 OPEC countries in our sample we estimate an average RE of 60%. 

Also, for most OECD countries, we find generally increasing rebound magnitudes in the 1980s which 

stabilized in the 90s before declining in the 2000s. We also observed a spike in rebound levels around 2008/09 for 

most of the OECD countries, with the obvious suggestion being the recession which might have curbed RE around 

that period
22

. Interestingly, for the US, our estimates are consistent with results in Saunders (2013) who adopted a 

sectoral approach to estimating economy-wide RE for the US over 1960-2005. Saunders estimated aggregated SR 

and LR RE at 126% and 62% respectively, providing a band for our average US RE of 96% over the sample period. 

Further, we estimate average RE at 55% for Spain, compared to Freire Gonzalez (2010) who estimated SR and LR 

RE at 35% and 49% respectively for household energy services in Catalonia (Spain) over the period 1999-2006. In 

terms of computable general equilibrium (CGE) studies, Allan et al. (2007) estimated UK RE for the year 2000 at 

30-50% while we estimated average UK RE over the sample period at 65%. 

In general, we find evidence of backfire in mostly non-OECD countries (Iran, Russia, Tanzania, India, 

Indonesia, Philippines, South Africa and Venezuela) with the US and Israel being the only OECD countries where 

we found backfire at some data points/for some given years. Overall, a very encouraging sign from our analysis is 

                                                           
20

 We restricted the dataset and estimations to OECD countries in order to examine the sensitivity of the rebound estimates to 

the sample. We found that, on average, the restricted rebound estimates was 8% lower than the whole sample estimates which 
indicates that the estimates are not too far apart. See Appendix 3 for a comparison of the estimates. 
21

 We observe even lower rebound levels for EU-OECD countries. 
22

 It is also noteworthy that the emissions targets from the Kyoto agreement come into effect around 2008.   
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the generally declining RE trend
23

 across many countries in this study, to the extent that super conservation was 

observed for Sri Lanka and Syria towards the end of our sample period 2009-10 (see appendix 1).  

5. CONCLUSION AND RECOMMENDATION  

RE is one of the most debated issues in the energy economics literature. A great deal of this debate derives from the 

lack of clarity on its nature and a consistent range for its estimate. This paper has attempted to estimate economy-

wide RE for 55 countries, and to the best of our knowledge, it is the first attempt to evaluate RE for several countries 

over a reasonably long timeframe. First we derive energy efficiency by adopting a specification that allows for 

estimation of energy efficiency across different heterogeneous economies within the panel SFA framework. 

Secondly, we estimate aggregate SR and LR efficiency elasticity of energy using a GMM energy consumption 

model. We then compute rebound effects from these efficiency elasticities.  

We estimate SR and LR rebound effect across sampled countries at 90% and -36% respectively. While the 

SR estimate shows significant RE, the LR indicates the potential for energy efficiency to significantly lower energy 

consumption in the future
24

. In particular, the country-wise estimates show larger RE magnitudes (and in some cases 

back-fire) for developing countries. This is consistent with the reasoning that developing countries are on a growth 

trajectory that requires greater energy consumption, to the extent that energy efficiency savings are easily “re-spent” 

to fuel further growth. Policy-wise, this finding should alert policy that RE in developing countries will potentially 

represent one of the most challenging energy and climate policy issues in the future. More importantly, despite the 

declining RE over the period under consideration, our results indicate that RE magnitudes are still large enough to 

be considered when constructing future energy scenarios. 

One limitation which we seriously attempted to address is that some important z-variables, especially those 

on energy efficiency policies and regulations could have been included in our analysis.  However, the challenge was 

the limited data and changing energy policy stance overtime
25

. In addition, we also add that our results cannot of 

                                                           
23

 Although the declining RE trend is an encouraging sign for the future, current RE levels are still significantly high to pose 

serious challenges to energy and climate policy plans. 
24

 Based on the LR estimate it is clear that energy efficiency improvement will remain an important policy measure, but the 
large rebound magnitudes suggest a need for an array of policy instruments to “lock-in” such efficiency gains and prevent their 
erosion by rebound effects. 
25

 For instance the most comprehensive subsidy information can be found on the OECD-IEA Fossil Fuel Subsidies database, 

which covers only 39 countries and spans a period of 5 years (2007-2011). Further, there is also the challenge that even when 
some descriptive energy policy information was available for OECD countries, we found changing policy stance over a period of 
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course establish complete causality, but we have demonstrated, with a high degree of confidence, the dimensions of 

the rebound effect using well-established modelling procedures.  

Finally, this study does not in any way attempt to downplay the role of energy efficiency measures and 

policies, but rather argues that energy policies in general are likely to be more effective with the incorporation of 

RE. A greater understanding of RE drivers is required to further assist policy makers. Ideally a sectoral analysis of 

RE for residential, industrial and electricity sectors across different countries should follow in order to decompose 

macro RE into its underlying sources.  
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time, where for instance, some policy measures were only implemented for a few years and discontinued thereafter, such that 
even dummy variables would overstate the impact of such discontinued policies overtime. However, it is the case that the 
country fixed effects included in our DPD instrumental variables estimation will pick up additional country specific effects 
including inter-country differences in energy policies. 
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APPENDIX 1: ANNUAL POINT ESTIMATES OF REBOUND EFFECTS 

Country  

 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Argentina 30% 29% 29% 29% 29% 28% 29% 46% 54% 45% 38% 45% 61% 69% 71% 78% 71% 71% 83% 73% 56% 60% 62% 59% 52% 44% 38% 39% 25% 39% 33% 

Australia 48% 47% 46% 44% 44% 44% 48% 50% 54% 55% 53% 51% 52% 52% 54% 54% 54% 55% 57% 57% 54% 55% 56% 57% 56% 53% 52% 54% 50% 53% 54% 

Austria 27% 24% 24% 26% 26% 26% 31% 34% 36% 37% 37% 39% 39% 40% 41% 40% 39% 39% 41% 44% 42% 43% 43% 43% 40% 39% 38% 38% 36% 38% 34% 

Belgium 37% 33% 31% 32% 32% 32% 41% 45% 48% 47% 45% 45% 46% 45% 47% 48% 47% 47% 49% 49% 46% 46% 47% 46% 44% 42% 41% 41% 37% 42% 41% 

Brazil 86% 81% 83% 83% 84% 85% 97% 96% 97% 94% 89% 90% 77% 78% 78% 78% 80% 82% 84% 84% 84% 86% 88% 79% 73% 63% 55% 52% 50% 48% 47% 

Canada 65% 61% 57% 56% 57% 58% 61% 63% 65% 66% 64% 63% 63% 64% 66% 67% 67% 67% 69% 68% 66% 65% 66% 64% 63% 60% 60% 61% 57% 64% 63% 

Chile 108% 100% 92% 82% 77% 70% 66% 62% 55% 49% 45% 42% 39% 38% 45% 47% 46% 48% 50% 49% 42% 38% 38% 36% 35% 33% 32% 32% 30% 35% 33% 

China 83% 83% 84% 86% 87% 87% 87% 88% 84% 76% 74% 70% 65% 62% 64% 65% 66% 68% 69% 70% 89% 89% 89% 89% 88% 87% 86% 87% 86% 87% 88% 

Czech Republic 

            

32% 33% 36% 38% 38% 38% 37% 33% 35% 37% 37% 37% 35% 34% 35% 33% 33% 32% 

Denmark 29% 24% 24% 27% 30% 30% 35% 35% 36% 35% 38% 37% 38% 37% 40% 40% 38% 38% 38% 37% 33% 34% 34% 34% 35% 33% 32% 33% 31% 34% 31% 

Dominican 

Rep 21% 20% 18% 20% 21% 20% 20% 21% 21% 19% 17% 15% 17% 17% 16% 14% 14% 14% 14% 13% 12% 26% 26% 22% 20% 17% 16% 15% 13% 22% 21% 

Egypt 94% 96% 98% 98% 101% 95% 92% 92% 90% 89% 82% 68% 54% 48% 46% 46% 46% 45% 46% 48% 46% 46% 47% 47% 42% 41% 39% 37% 31% 28% 25% 

Finland 26% 24% 26% 27% 29% 30% 37% 38% 40% 41% 38% 37% 37% 34% 37% 37% 34% 35% 36% 36% 34% 35% 35% 32% 32% 31% 31% 33% 29% 29% 28% 

France 57% 55% 54% 54% 55% 54% 61% 63% 66% 66% 67% 68% 69% 68% 69% 70% 69% 69% 71% 71% 68% 69% 70% 70% 70% 67% 66% 66% 63% 66% 64% 

Germany 68% 65% 65% 67% 67% 67% 74% 76% 78% 76% 77% 78% 79% 80% 79% 81% 81% 81% 83% 82% 79% 79% 78% 76% 76% 72% 70% 70% 67% 69% 68% 

Greece 22% 20% 23% 23% 24% 23% 26% 29% 33% 37% 32% 31% 31% 31% 34% 36% 36% 37% 41% 42% 36% 38% 41% 42% 40% 38% 37% 37% 34% 38% 31% 

Hungary 50% 46% 47% 45% 48% 48% 36% 36% 36% 39% 26% 27% 30% 33% 35% 36% 35% 32% 32% 31% 30% 33% 34% 32% 33% 31% 29% 27% 24% 25% 25% 

India 87% 84% 79% 77% 74% 72% 70% 69% 109% 109% 108% 104% 101% 99% 98% 97% 95% 92% 90% 89% 82% 78% 75% 75% 75% 74% 74% 73% 71% 75% 75% 

Indonesia 108% 106% 96% 85% 76% 73% 72% 72% 73% 72% 99% 99% 97% 93% 92% 92% 92% 92% 84% 81% 79% 73% 63% 56% 55% 53% 51% 51% 49% 48% 48% 

Iran 89% 84% 82% 81% 79% 78% 71% 63% 61% 63% 63% 154% 143% 137% 133% 124% 112% 101% 90% 77% 69% 65% 61% 57% 54% 53% 53% 49% 

   Ireland 14% 10% 9% 9% 11% 11% 14% 18% 20% 21% 22% 23% 25% 26% 28% 30% 29% 31% 36% 37% 37% 38% 40% 38% 36% 33% 31% 32% 28% 30% 

 Israel 224% 193% 138% 90% 76% 26% 21% 30% 35% 35% 31% 33% 34% 37% 39% 40% 37% 37% 39% 36% 36% 38% 36% 34% 33% 31% 31% 31% 31% 34% 33% 

Italy 68% 65% 63% 62% 63% 64% 71% 72% 73% 73% 70% 68% 69% 68% 69% 69% 69% 69% 71% 71% 68% 68% 68% 68% 68% 66% 63% 64% 61% 63% 62% 

Japan 58% 57% 56% 59% 60% 62% 66% 69% 72% 74% 75% 76% 77% 77% 77% 79% 80% 79% 81% 81% 81% 80% 81% 81% 81% 79% 77% 77% 73% 77% 77% 

Kuwait 

      

27% 28% 25% 28% 23% 15% 

   

27% 28% 28% 28% 26% 24% 24% 25% 27% 28% 28% 31% 32% 32% 31% 32% 

Libya 

      

16% 14% 17% 19% 25% 22% 25% 28% 29% 32% 33% 36% 35% 36% 37% 32% 29% 32% 32% 24% 26% 27% 27% 24% 23% 

Malaysia 26% 23% 23% 24% 23% 23% 24% 26% 27% 27% 27% 28% 30% 31% 33% 34% 36% 36% 34% 35% 36% 36% 36% 38% 39% 39% 38% 38% 37% 37% 37% 

Mexico 79% 69% 67% 58% 59% 62% 60% 65% 63% 66% 67% 66% 65% 66% 68% 68% 68% 68% 70% 68% 66% 66% 65% 63% 62% 62% 62% 63% 62% 63% 62% 

Morocco 33% 30% 30% 27% 25% 22% 21% 19% 20% 19% 33% 32% 30% 28% 28% 24% 23% 22% 23% 22% 22% 22% 22% 22% 22% 22% 22% 21% 22% 22% 23% 

Netherlands 51% 46% 44% 45% 44% 45% 52% 56% 58% 58% 57% 56% 57% 55% 56% 57% 56% 56% 57% 57% 54% 54% 54% 54% 53% 50% 49% 49% 48% 49% 51% 

New 

Zealand 11% 10% 11% 12% 13% 14% 20% 21% 22% 23% 24% 25% 24% 26% 27% 28% 28% 27% 29% 31% 28% 29% 30% 29% 27% 24% 21% 

    Nigeria 57% 61% 57% 60% 73% 76% 53% 55% 70% 72% 76% 76% 88% 91% 50% 43% 52% 56% 59% 41% 40% 48% 49% 55% 44% 36% 39% 42% 44% 40% 35% 

Norway 39% 37% 37% 36% 37% 38% 42% 43% 42% 43% 41% 39% 40% 40% 40% 40% 39% 40% 42% 43% 42% 41% 42% 36% 39% 39% 36% 41% 38% 40% 36% 

Pakistan 81% 82% 82% 82% 81% 80% 80% 80% 79% 75% 73% 68% 67% 64% 61% 57% 55% 50% 45% 48% 44% 44% 45% 44% 44% 43% 40% 39% 34% 29% 29% 

Philippines 125% 118% 114% 109% 93% 83% 86% 86% 85% 83% 76% 67% 65% 63% 61% 61% 60% 57% 56% 54% 51% 47% 46% 45% 43% 38% 35% 35% 33% 32% 31% 

Poland 65% 60% 62% 61% 64% 63% 66% 65% 62% 66% 59% 55% 52% 52% 54% 57% 58% 58% 59% 57% 53% 52% 52% 51% 50% 48% 48% 49% 45% 47% 45% 

Portugal 20% 19% 17% 15% 15% 14% 17% 20% 23% 26% 29% 29% 29% 29% 30% 32% 34% 35% 36% 39% 39% 39% 41% 39% 38% 35% 33% 33% 32% 35% 32% 

Russia 

            

361% 253% 195% 155% 140% 129% 125% 112% 98% 89% 79% 75% 71% 66% 62% 59% 55% 53% 52% 

Saudi 

Arabia 

      

76% 64% 65% 55% 57% 60% 77% 78% 78% 59% 60% 60% 60% 45% 46% 45% 45% 47% 48% 49% 64% 71% 75% 76% 73% 

Singapore 7% 7% 8% 10% 13% 13% 17% 22% 25% 27% 27% 27% 30% 32% 34% 33% 32% 33% 33% 36% 30% 28% 32% 32% 33% 31% 26% 28% 21% 26% 27% 

Slovak Republic 

            

22% 25% 30% 31% 29% 31% 29% 25% 26% 27% 23% 22% 21% 20% 22% 20% 21% 22% 

S.Africa 117% 114% 109% 104% 103% 100% 94% 91% 87% 84% 79% 75% 70% 65% 63% 60% 59% 56% 54% 52% 50% 48% 46% 44% 43% 42% 41% 39% 33% 38% 37% 
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Spain 50% 43% 43% 42% 42% 44% 48% 51% 54% 56% 56% 55% 55% 54% 55% 57% 57% 58% 61% 61% 59% 61% 62% 63% 63% 60% 59% 61% 57% 60% 58% 

Sri Lanka 97% 86% 85% 76% 71% 70% 70% 70% 66% 62% 59% 55% 54% 49% 45% 44% 42% 41% 41% 41% 36% 31% 28% 24% 22% 18% 11% 4% 0% 0% 0% 

Sweden 50% 47% 45% 46% 46% 47% 52% 52% 53% 51% 47% 46% 47% 46% 47% 49% 47% 47% 48% 48% 45% 44% 45% 42% 41% 40% 38% 38% 34% 35% 34% 

Switzerland 27% 26% 27% 29% 30% 30% 38% 40% 42% 41% 42% 42% 44% 42% 43% 43% 42% 41% 44% 43% 40% 42% 43% 43% 42% 40% 38% 39% 36% 42% 39% 

Syria 106% 90% 81% 78% 77% 75% 66% 62% 56% 46% 47% 45% 38% 38% 30% 19% 20% 22% 23% 22% 22% 23% 20% 18% 19% 19% 19% 18% 9% 0% 

 Tanzania 176% 165% 158% 147% 135% 125% 120% 111% 108% 98% 85% 78% 72% 64% 51% 41% 32% 26% 22% 20% 18% 18% 14% 14% 12% 9% 7% 6% 4% 5% 4% 

Thailand 65% 60% 60% 60% 61% 58% 56% 57% 58% 60% 61% 61% 62% 62% 62% 62% 62% 58% 51% 52% 50% 48% 48% 48% 48% 48% 46% 47% 53% 56% 54% 

Tunisia 32% 29% 23% 19% 17% 15% 15% 14% 14% 14% 29% 27% 26% 24% 23% 22% 22% 21% 21% 20% 21% 20% 20% 19% 18% 16% 14% 14% 13% 12% 9% 

Turkey 111% 96% 68% 60% 47% 49% 51% 56% 64% 61% 58% 57% 56% 61% 59% 62% 58% 57% 59% 55% 54% 49% 50% 53% 56% 54% 55% 56% 52% 52% 52% 

UAE 

      

25% 30% 30% 30% 32% 31% 31% 39% 40% 40% 42% 42% 43% 43% 42% 42% 39% 39% 39% 38% 37% 40% 42% 41% 41% 

UK 58% 55% 55% 56% 57% 58% 62% 64% 67% 68% 68% 68% 68% 68% 68% 69% 69% 69% 70% 69% 68% 70% 71% 71% 71% 68% 65% 65% 61% 61% 61% 

USA 81% 80% 80% 82% 84% 86% 93% 94% 96% 97% 95% 97% 98% 100% 101% 102% 102% 103% 107% 108% 103% 103% 106% 103% 100% 96% 94% 93% 90% 97% 95% 

Venezuela 213% 205% 204% 202% 196% 192% 193% 188% 183% 163% 152% 145% 152% 134% 113% 103% 86% 62% 46% 36% 37% 37% 35% 34% 36% 37% 38% 38% 38% 36% 43% 
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APPENDIX 2: STEPS IN THE HAUSMAN-WU TEST 

First Regression: Basic Panel Energy Demand Model 

 

 

 

 

 

 

 

 

 

t statistics in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 

 

Second Regression: Energy Efficiency Model 

 (1) 

 eff 

lnp 0.0805
***

 

 (10.69) 

  

lny -0.0527
***

 

 (-19.64) 

  

t 0.000251 

 (0.61) 

  

p*eff -0.0109 

 (-0.30) 

  

y*eff 0.311
***

 

 (19.62) 

  

p*y 0.0144
**

 

 (3.16) 

  

_cons 0.0216
***

 

 (5.12) 

N 1631 

t statistics in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 

 

 

 

 (1) 

 lne 

lnp -0.112
***

 

 (-9.15) 

  

lny 0.917
***

 

 (122.72) 

  

eff -1.447
***

 

 (-25.27) 

  

_cons -2.11e-08 

 (-0.00) 

N 1631 
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Third Regression: Energy Demand Model with Residuals from Second Efficiency Model 

 (1) 

 lne 

lnp -0.118
***

 

 (-7.99) 

  

lny 0.921
***

 

 (95.15) 

  

eff -1.365
***

 

 (-11.08) 

  

uhat -0.105 

 (-0.76) 

  

_cons -2.10e-08 

 (-0.00) 

N 1631 

t statistics in parentheses 
*
 p < 0.05, 

**
 p < 0.01, 

***
 p < 0.001 

 

APPENDIX 3: AVERAGE REBOUND SENSITIVITY TO DATA SAMPLE 

  Restricted Sample Whole Sample Difference 

 Australia  44% 52% 8% 

 Austria  32% 36% 4% 

 Belgium  35% 43% 8% 

 Canada  51% 63% 12% 

 Denmark  28% 34% 6% 

 Finland  26% 33% 7% 

 France  57% 65% 8% 

 Germany  63% 74% 11% 

 Greece  30% 33% 3% 

 Ireland  22% 26% 4% 

 Italy  57% 67% 10% 

 Japan  66% 74% 8% 

 Netherlands  43% 53% 10% 

 New Zealand  18% 23% 5% 

 Norway  32% 40% 8% 

 Portugal  28% 29% 1% 

 Spain  49% 55% 6% 

 Sweden  34% 45% 11% 

 Switzerland  34% 39% 5% 

 United Kingdom  56% 65% 9% 

 US  81% 96% 15% 
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