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Background: Ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia mutated and rad3 related (ATR) and
DNA-dependent protein kinase catalytic sub-unit (DNA-PKcs) play critical roles in DNA damage response
(DDR) by linking DNA damage sensing to DDR effectors that regulate cell cycle progression and DNA repair.
Our objective was to evaluate if ATM, ATR and DNA-PKcs expressions could predict response to therapy and clin-
ical outcome in epithelial ovarian cancers.
Methods:We investigated ATM, ATR, and DNA-PKcs expressions in ovarian epithelial cancers [protein expression
(n=194 patients), mRNA expression (n=156 patients)] and correlated to clinicopathological outcomes aswell
as expression of X-ray repair cross-complementing protein 1 (XRCC1), cell division cycle-45 (CDC45), cyclin-
dependent kinase 1(CDK1) and Ki-67 in tumours.
Results:High ATMprotein expressionwas associatedwith serous cystadenocarcinomas (p= 0.021) and platinum
resistance (p = 0.017). High DNA-PKcs protein expression was associated with serous cystadenocarcinomas

(p = 0.006) and advanced stage tumours (p = 0.018). High ATM protein (p = 0.001), high ATM mRNA (p =
0.018), high DNA-PKcs protein (p = 0.002), high DNA-PKcs mRNA (p = 0.044) and high ATR protein (p =
0.001) expressions are correlated with poor ovarian cancer specific survival (OCSS). In multivariate Cox model,
high DNA-PKcs (p = 0.006) and high ATR (p = 0.043) protein expressions remain independently associated
with poor OCSS.
Conclusions: ATM, ATR and DNA-PKcs expressions may have prognostic and predictive significances in epithelial
ovarian cancer.
General significance: The data presented here provides evidence that ATM, ATR and DNA-PKcs involved in DDR are
not only promising biomarkers but are also rational targets for personalized therapy in ovarian cancer.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Despite the efficacy of platinum based chemotherapy, the overall
prognosis for patients with advanced ovarian cancer remains poor
[1–3]. Resistance to platinating agents (carboplatin, cisplatin) is a formi-
dable clinical problem and may be directly related to proficient DNA
damage signalling and DNA repair in cancer cells [4,5]. ATM (ataxia-
telangiectasia mutated), ATR (ataxia-telangiectasia mutated and Rad3
related) kinases andDNA-PKcs (DNA-dependent protein kinase catalyt-
ic sub-unit) play critical roles in the DNA damage response (DDR) and
link DNA damage sensing to DDR effectors that regulate cell cycle
y, Division of Cancer and Stem
ttingham University Hospitals,
44 115 823 1849.
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progression and DNA repair [6–14].Whereas ATM and DNA-PK are pre-
dominantly activated by DNA double strand breaks (DSBs) [6–9,12],
ATR is activated in response to a number of DNA damaging lesions
that involve single-stranded (SS)–double-stranded (DS) junctions
such as those generated when replication fork encounters a DNA lesion
or during nucleotide excision repair or during resection of a DSB [10,11,
13,14]. Activated ATR and ATM phosphorylate Chk1 or Chk2 respective-
ly. This in turn modulates a number of other proteins involved in DNA
repair, cell cycle control and apoptosis [6–14]. Significant crosstalk and
redundancy also occur between the ATR, ATM and DNA-PKcs pathways
in order to maintain genomic stability in cells [15–18].

Given the complex network and the critical role in DDRwe hypoth-
esized and have provided evidence here that ATR, ATM and DNA-PKcs
expressions have prognostic and predictive significances in ovarian
cancer patients.
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Fig. 1.Microphotographs of ATM, DNA-PKcs and ATR expressions in ovarian epithelial cancer tissue (scale bar, 100 μM). (a) Negative, (b) high ATM protein expression, (c) high DNA-PK
protein expression, (d) high ATR protein expression.

Table 1
ATM expression and epithelial ovarian cancer.

Markers ATM (Low) ATM (high) p Value

Pathological parameters Number (%) Number (%)

Tumour type Serous 71 (52.6) 37 (72.5) 0.021
Mucinous 10 (7.4) 4 (7.8)
Endometroid 31 (23.0) 6 (11.8)
Clear cell 22 (16.3) 2 (3.9)
Others 1 (0.7) 2 (3.9)

FIGO stage I 47 (34.3) 12 (23.5) 0.470
II 19 (13.9) 8 (15.7)
III 59 (43.1) 24 (47.1)
IV 12 (8.8) 7 (13.7)

Grade 1 16 (12.4) 5 (9.8) 0.524
2 17 (13.2) 10 (19.6)
3 96 (74.4) 36 (70.6)

CA125 response CR 120 (88.9) 35 (85.2) 0.017
None CR 15 (11.1) 12 (14.8)

Platinum sensitivity Sensitive 95 (71.4) 31 (63.3) 0.017
Resistant 38 (28.6) 18 (36.7)

XRCC1 Low 78 (57.4) 16 (31.4) 0.002
High 58 (42.6) 35 (68.6)

ATR Low 90 (68.7) 33 (67.3) 0.862
High 41 (31.3) 16 (32.7)

DNA-PK Low 45 (36.3) 1 (2.3) 1.7 × 10−5

High 79 (63.7) 42 (97.7)
CDC45 Low 22 (19.1) 2 (4.8) 0.027

High 93 (80.9) 40 (95.2)
CDK1 Low 38 (34.9) 2 (5.4) 0.001

High 71 (65.1) 35 (94.6)
Ki67 Low 32 (51.6) 6 (14.6) 0.001

High 30 (48.4) 35 (85.4)

Significant p Values are in bold.

Table 2
DNA-PK and epithelial ovarian cancer.

Markers DNA-PK (Low) DNA-PK (High) p Value

Pathological parameters Number (%) Number (%)

Tumour type Serous 23 (41.1%) 88 (65.7%) 0.006
Mucinous 6 (10.7%) 8 (6.0%)
Endometroid 14 (25.0%) 24 (17.9%)
Clear cell 13 (23.2%) 11 (8.2%)
Others 0 (0%) 3 (2.2%)

FIGO stage I 26 (46.4%) 33 (24.3%) 0.018
II 7 (12.5%) 20 (14.7%)
III 20 (35.7%) 65 (47.8%)
IV 3 (5.4%) 18 (13.2%)

Grade 1 13 (24.5%) 9 (6.9%) 0.004
2 6 (11.3%) 21 (16.0%)
3 34 (64.2%) 101 (77.1%)

CA125 response CR 40 (90.9) 95 (81.2) 0.136
None CR 4 (9.1) 22 (18.8)

Platinum sensitivity Sensitive 34 (77.3) 74 (63.2) 0.091
Resistant 10 (22.7) 43 (36.8)

XRCC1 Low 30 (66.7) 53 (43.8) 0.009
High 15 (33.3) 68 (56.2)

ATM Low 45 (97.8) 79 (65.3) 0.001
High 1 (2.2) 42 (34.7)

ATR Low 31 (67.4) 81 (66.9) 0.956
High 15 (32.6) 40 (33.1)

CDC45 Low 13 (28.9) 9 (8.6) 0.001
High 32 (71.1) 96 (91.4)

CDK1 Low 25 (59.5) 12 (12.2) 0.001
High 17 (40.5) 86 (87.8)

Ki67 Low 35 (76.1) 76 (63.3) 0.118
High 11 (23.9) 44 (36.7)

Significant p Values are in bold.
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2. Methods

2.1. Protein expression cohort

Investigation of the expression of ATR, ATM, DNA-PKcs, XRCC1,
Ki-67, CDC45 and CDK1, in ovarian epithelial cancer was carried
out on tissue microarrays of 195 consecutive ovarian epithelial can-
cer cases treated at NottinghamUniversity Hospitals (NUH) between
2000 and 2007. Patients were comprehensively staged as per the In-
ternational Federation of Obstetricians and Gynaecologists (FIGO)
Staging System for Ovarian Cancer. Survival was calculated from
the operation date until the 1st of October 2012 when any remaining
survivors were censored. Patient demographics are summarized in
Supplementary Table 1. Platinum resistance was defined as patients
who had progression during first-line platinum chemotherapy or re-
lapse within 6 months after completion of platinum treatment.
2.2. Tissue microarray (TMA) and immunohistochemistry (IHC)

TMAs were constructed as described previously [19]. Briefly, trip-
licate tissue cores with a diameter of 0.6 mmwere taken from the tu-
mour and arrayed into a recipient paraffin block using a tissue
puncher/arrayer (Beecher Instruments, Silver Spring, MD, USA) as
previously described [19]. Four micron sections of the tissue array
block were cut and placed on Surgipath X-tra Adhesive microscope
slides (Leica Microsystems) for immunohistochemical staining.

Immunohistochemical staining for ATR, ATM, DNA-PK, XRCC1 Ki-67,
CDC45 and CDK1 was performed using Thermo Scientific Shandon
Sequenza chambers and the Leica Novolink max polymer detection
system (RE7280-K) according to manufacturer instructions (Leica
Microsystems). Pre-treatment of TMA sections was performed with
either citrate buffer (pH 6.0, 20 min, Microwave) or EDTA (pH 8.0,
25 min, hot water bath), depending on the antibody (Supplementary
Table S2). Sections heated in EDTA required a chamber suspended in
a hot water bath, followed by gradual cooling-transfer to warm TBS
solution for 10 min prior to immersion in cold water. TMA sections
were incubated at room temperature with each antibody according
to optimal conditions and summarized in supplementary Table S2.
Optimization protocols for ATM, ATR and DNA-PKcs are summarized
in Supplementary data 1. Negative controls with no primary anti-
body were included in each run and shown in Supplementary Fig. S1.
2.3. Evaluation of immune staining

The tumour cores were evaluated by expert pathologists blinded
to the clinico-pathological characteristics of patients in two different
settings. There was excellent intra and inter-observer agreements
(k N 0.8; Cohen's κ and multi-rater κ tests, respectively). Whole
field inspection of the core was scored, the sub cellular localisation
of each marker was identified (nuclear, cytoplasm, cell membrane),
and the optimal scoringmethodology was applied in each case (sum-
marized in Supplementary Table S2). Intensities of subcellular com-
partments were each assessed and grouped as follows: 0 = no
staining, 1 = weak staining, 2 = moderate staining, 3 = strong
staining. The percentage of tumour cells in each category was esti-
mated (0–100%). H-score (range 0–300) was calculated by multiply-
ing the intensity of staining and the percentage of staining. Not all
cores within the TMA were suitable for IHC analysis due to missing
cores or absence of tumour cells.
Fig. 2. Kaplan Meier curves for ATM protein expression showing overall ovarian cancer specific
Kaplan Meier curves for DNA-PKcs expression showing overall ovarian cancer specific surviva
Meier curves for ATR expression showing overall ovarian cancer specific survival (g), progress
2.4. Gene expression cohort

We performed gene expression studies in an ovarian cancer
cohort consisting of 156 patients treated at the University Medical
Centre, Groningen, Netherlands. The original study describing the
demographics and treatment characteristics has been published by
Crijns et al. [20]. Briefly, median age was 60 years (range 21–84),
79.6% of patients had FIGO stage IIIC disease, and all patients were
treated according to the Dutch guidelines and received cytoreductive
surgery followed by platinum based chemotherapy. Tumour samples
were microarray profiled on the Operon v3.0 probes two colour oli-
gonucleotide microarrays [21]. The microarray data are accessible
at the National Center for Biotechnology Information (NCBI) Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/ via series
accession number GSE13876) and can also be downloaded from
the Array express data set E-GEOD-13876 (http://www.ebi.ac.uk/
arrayexpress/experiments/E-GEOD-13876/). Data from the gene
probes relating to ATM, ATR and DNA-PK were extracted and a sur-
vival analysis was performed on the expression values. All data
were normalized using the global mean method (MAS5), and probe
set signal intensities were natural log transformed and scaled by
adjusting the mean signal to a target value of log 500.

2.5. Statistical analysis

Data analysis was performed using SPSS (SPSS, version 17 Chicago,
IL). Where appropriate, Pearson's Chi-square, Fisher's exact, Student's
t andANOVAoneway testswere used. Cumulative survival probabilities
were estimated using the Kaplan–Meier method, and differences be-
tween survival rates were tested for significance using the log-rank
test. Multivariate analysis for survivalwas performed using the Cox haz-
ard model. The proportional hazard assumption was tested using stan-
dard log–log plots. Hazard ratios (HR) and 95% confidence intervals
(95% CI) were estimated for each variable. p Value b 0.05 was consid-
ered significant.

The Reporting Recommendations for Tumor Marker Prognostic
Studies (REMARK) criteria, recommended by McShane et al. [22],
were followed throughout this study. This work was approved by
the Nottingham Research Ethics Committee.

3. Results

3.1. Clinicopathological correlations

3.1.1. ATM
A total of 186 tumours were suitable for analysis of ATM nuclear

expression. 135/186 (72.6%) tumours were low for ATM expression
and 51/186 (27.4%) of the tumours were high for ATM expression
(Figs. 1a and b). High ATM expression was significantly associated
with serous cystadenocarcinomas (p = 0.021), CA-125 response to
chemotherapy (p = 0.017) and platinum resistance (p = 0.017).
High ATM is significantly associated with high XRCC1 (p = 0.002).
High ATM is also significantly associated with biomarkers involved
in cell cycle regulation such as high CDC45 (p = 0.027), high CDK1
(p = 0.001), and Ki67 (p = 0.001) (Table 1).

3.1.2. DNA-PKcs
A total of 190 tumours were suitable for analysis of DNA-PKcs nu-

clear expression. 56/190 (29.4%) tumours were low for DNA-PKcs
nuclear expression and 134/190 (70.5%) of the tumours were high
survival (OVCC) (a), progression free survival (b), ATM mRNA expression and OVCC (c).
l (d), progression free survival (e) and DNA-PKcs mRNA expression and OVCC (f). Kaplan
ion free survival (h) and ATR mRNA expression and OVCC (i).

http://www.ncbi.nlm.nih.gov/geo/
ncbi-geo:GSE13876
http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-13876/
http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-13876/
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Fig. 3. Kaplan Meier curves for ATM/ATR/DNA-PKcs expression together in ovarian tumours showing overall ovarian cancer specific survival (a) and progression free survival (b).
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for DNA-PKcs nuclear expression (Fig. 1c). High DNA-PKcs expres-
sion was significantly associated with serous cystadenocarcinomas
(p = 0.006), FIGO stage (p = 0.018) and grade (p = 0.004). High
DNA-PKcs is significantly associated with high XRCC1 (p = 0.009).
High DNA-PKcs is also significantly associated with biomarkers in-
volved in cell cycle regulation such as high CDC45 (p = 0.001) and
high CDK1 (p = 0.001) (Table 2).

3.1.3. ATR
A total of 177 tumours were suitable for analysis of ATR expression.

120/177 (67.8%) tumours was low for ATR nuclear expression and 57/
177 (32.2%) of the tumours was high for ATR nuclear expression
(Fig. 1d). There were no significant associations between ATR expres-
sion, clinicopathological variables or XRCC1 (Supplementary Table S3).

3.2. Survival analysis

3.2.1. Univariate analysis
High ATMnuclear expression in tumours showed an adverse clinical

outcomewith poor ovarian cancer specific survival (p= 0.01) (Fig. 2a)
and progression free survival (p = 0.026) (Fig. 2b) compared with tu-
mours that had low ATM expression. At the gene expression level,
high ATM mRNA expressers have poor survival compared to low ATM
mRNA expressers (p = 0.018) (Fig. 2c).

High DNA-PKcs expression in tumours showed an adverse clinical
outcome with poor ovarian cancer specific survival (p = 0.002)
(Fig. 2d) and progression free survival (p= 0.0002) (Fig. 2e) compared
with tumours that had low DNA-PKcs expression. At the gene expres-
sion level, high DNA-PKcs mRNA expressers have poor survival com-
pared to low DNA-PKcs mRNA expressers (p = 0.0044) (Fig. 2f).

High ATR expression in tumours showed an adverse clinical out-
come with poor ovarian cancer specific survival (p = 0.001) (Fig. 2g)
and progression free survival (p = 0.008) (Fig. 2h) compared with tu-
mours that had low ATR expression. At the gene expression level
there was no significant difference between high and low ATM mRNA
expressers (p = 0.584) (Fig. 2i).

Investigating ATM/DNA-PKcs/ATR protein together we found that
tumours that have high ATM/DNA-PKcs/ATR protein expression have
poor ovarian cancer specific survival (p= 0.000252) (Fig. 3a) and pro-
gression free survival (p = 0.001) (Fig. 3b) compared to tumours that
are low ATM/DNA-PKcs/ATR protein expressers.
Previously we have demonstrated that XRCC1, a key player in DNA
base excision repair, is an important prognostic and predictive biomark-
er in ovarian cancer [23]. Here, we have conducted an exploratory strat-
ification analysis based on XRCC1 status and ATM/DNA-PKcs/ATR
expression in ovarian cancer. As shown in Fig. 4a–f, ATM+/XRCC1+,
DNA-PKcs+/XRCC1+ and ATR+/XRCC1+ tumours have significantly
worse ovarian cancer specific survival and progression free survival
compared to tumours that are ATM-/XRCC1-, DNA-PKcs-/XRCC1- and
ATR-/XRCC1- respectively (ps ≤ 0.001).

3.2.2. Multivariate analysis
ATM, ATR, DNA-PKcs and XRCC1 protein expressions were investi-

gated in a Cox multivariate model that was also adjusted for FIGO
stage, grade, and residual tumour burden after surgery, chemotherapy
and CA-125 response (Table 3). For ovarian cancer specific survival
(OCSS), high DNA-PKcs (p = 0.043) and high ATR expression (p =
0.006) were independently associated with poor OCSS. FIGO stage
(p = 0.025), residual tumour burden after surgery (p = 0.015), grade
(p = 0.002) and CA-125 response (p b 0.0001) were additional factors
independently associated with poor OCSS. For progression free survival
(PFS), DNA-PKcs expression (p = 0.003) and XRCC1 expression (p =
0.004) were independently associated with poor PFS. FIGO stage
(p b 0.0001), grade (p = 0.024), residual tumour burden after surgery
(p = 0.002) and CA-125 response (p b 0.0001) were additional factors
independently associated with poor PFS (Supplementary Table S4).

4. Discussion

Overall prognosis for advanced ovarian cancer remains poor. Resis-
tance to platinum based chemotherapy adversely impacts patient out-
come [4,5]. DNA damage induced by platinum chemotherapy is, to a
large extent, processed by the DNA damage signalling and repair ma-
chinery in cells. Up-regulation of DNA damage signalling and repair
pathways may be an important cause of therapeutic resistance in ovar-
ian cancer. ATM, DNA-PKcs and ATR are key proteins involved in DNA
repair in response to DNA damaging chemotherapy [6–14]. Altered ex-
pression of ATM, DNA-PKcs and ATR may have prognostic and predic-
tive significances in ovarian cancer.

In the current studywe have provided evidence that ATM,DNA-PKcs
and ATR are promising biomarkers in ovarian cancer. We found that
high ATM expression was associated with serous cystadenocarcinomas,
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Table 3
Multivariate analysis.

p Value Exp (B) 95% CI for Exp (B)
Lower upper

Cancer specific survival
ATM 0.933 1.007 0.862 1.176
ATR 0.006 1.218 1.058 1.401
DNA-PK 0.043 1.389 1.010 1.911
XRCC1 0.111 1.195 0.960 1.487
Ca125 response 1.4 × 10−4 1.656 1.278 2.147
Chemotherapy regimen 0.659 1.115 0.687 1.811
FIGO stage 0.025 1.420 1.046 1.928
Grade 0.002 2.029 1.300 3.166
Residual burden 0.015 1.548 1.088 2.201

Progression free survival
ATM 0.261 0.919 0.793 1.065
ATR 0.225 1.086 0.950 1.240
DNA-PK 0.003 1.550 1.166 2.060
XRCC1 0.004 1.353 1.101 1.663
Ca125 response 1.9 × 10−9 2.230 1.716 2.898
Chemotherapy regime 0.200 1.323 0.863 2.028
FIGO stage 1.6 × 10−5 1.760 1.334 2.322
Grade 0.024 1.558 1.059 2.293
Residual burden 0.002 1.612 1.194 2.177

Significant p Values are in bold.
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poor response to chemotherapy and platinum resistance. High DNA-
PKcs expression was associated with serous cystadenocarcinomas, ad-
vanced stage and high grade tumours. In univariate analysis, high
ATM, high DNA-PKcs and high ATR expression are associated with
poor ovarian cancer specific survival (OCSS) and progression free sur-
vival (PFS). Taken together, ATM+/DNA-PKcs+/ATR+ tumours had
theworst survival compared to ATM-/DNA-PK-/ATR- tumours. In a sep-
arate cohort, the adverse prognostic significance was also observed at
the mRNA level for ATM and DNA-PKcs implying that high protein
levels may be related to high ATM and DNA-PKcs mRNA levels in tu-
mours. For ATR, mRNA levels were not significant implying that post-
transcriptional mechanisms may be operating in certain tumours to in-
crease ATRprotein levels. In fact, pre-clinical evidence that such amech-
anismmay be operating to control ATR protein levels has recently been
demonstrated [24]. A limitation in the current study is thatwewere un-
able to compare protein and mRNA expressions in the same cohort.
Nevertheless, the clinical data presented here does suggest that high
ATM/DNA-PKcs/ATR expressing tumours may be less sensitive to che-
motherapy. The data is entirely consistent with pre-clinical studies
demonstrating an essential role for ATM, DNA-PKcs and ATR in deter-
miningplatinumsensitivity in cancer cell linemodels. Depletion or inhi-
bition by small molecule inhibitors has been shown to result in
platinum sensitivity [25–29]. In multivariate Cox model for OCSS, high
DNA-PKcs and high ATR expression was independently associated
with poor survival providing further evidence for prognostic and pre-
dictive significance in ovarian cancer. However, as discussed previously,
thedata is retrospective and is in need of prospective validation in larger
multicentre studies. Another limitation to the study is that we have in-
vestigated ATM, DNA-PKcs and ATR expressions only in static states.
Moreover, post-translational modification of downstream proteins
such as phosphorylation of Chk1 and Chk2 are essential for functional
capacity of pathways. Analyses of expression of phosphorylated Chk1,
phosphorylated Chk2 and autophosphorylated forms for ATM, DNA-
PKcs and ATR may provide further insights into the clinicopathological
significance of the DNA damage signalling pathways in ovarian cancers.

Recent studies have demonstrated significant cross-talk between
XRCC1 (a key player in base excision repair (BER) and single strand
break repair) and DDR [30–32]. ATM and DNA-PKcs are known to be in-
volved in the phosphorylation of XRCC1 to promote BER [30,31]. We
have recently shown that XRCC1 is key predictive biomarker of plati-
num resistance in ovarian cancers [23]. In the current study we there-
fore explored if patient stratification could be achieved based on
XRCC1, ATM, DNA-PKcs and ATR expression statuses in tumours.
ATM+/XRCC1+, DNA-PK+/XRCC1+ and ATR+/XRCC1+ tumours
had the worst survival compared to ATM-/XRCC1-, DNA-PK-/XRCC1-
and ATR-/XRCC1- tumours in our study. However, a limitation of our
study is that it is retrospective and involves a limited number of pa-
tients. Larger studies are required to confirm our findings. The recent
success of PARP1 inhibitors (that block BER and SSBR) in germ-line
BRCA deficient ovarian cancer [33,34] provides evidence that targeting
DNA repair is an important area for personalization of ovarian cancer
therapy. Although the data in germ-line BRCA deficient tumours is
promising, the search for such synthetic lethal relationships in the
more common sporadic epithelial ovarian cancer remains an area of
on-going investigation. In a recent pre-clinical study, we have demon-
strated that ATM, DNA-PKcs and ATR inhibitors are synthetically lethal
in XRCC1 deficient cancer cells [35,36]. Taken together, our data sug-
gests that XRCC1based personalization usingATM,DNA-PKcs or ATR in-
hibitors may be feasible and this approach clearly warrants further
investigation in vivo in sporadic epithelial ovarian cancers. The associa-
tions demonstrated herein between ATM, DNA-PKcs and cell cycle
markers such as CDK1 and CDC25 are also consistent with the known
roles of ATM and DNA-PKcs during cell cycle progression [37].

In conclusion, we have provided evidence that ATM, DNA-PKcs and
ATR are promising prognostic and predictive biomarkers in ovarian can-
cer. Our data supports a rational approach using small molecule inhibi-
tors of ATM, DNA-PKcs and ATR, currently under pharmaceutical
development, for ovarian cancer therapy.
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