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ABSTRACT 

 

At present, little is known about the effect(s) of organophosphorous compounds (OPs) 

on cardiomyocytes. In this study we have investigated the effects of phenyl saligenin 

phosphate (PSP), two organophosphorothioate insecticides (diazinon and chlorpyrifos) 

and their acutely toxic metabolites (diazoxon and chlorpyrifos oxon) on mitotic and 

differentiated H9c2 cardiomyoblasts. OP-induced cytotoxicity was assessed by 

monitoring MTT reduction, LDH release and caspase-3 activity. Cytotoxicity was not 

observed with diazinon, diazoxon or chlorpyrifos oxon (48 h exposure; 200 µM). 

Chlorpyrifos-induced cytotoxicity was only evident at concentrations >100 µM. In 

marked contrast, PSP displayed pronounced cytotoxicity towards mitotic and 

differentiated H9c2 cells. PSP triggered the activation of JNK1/2, but not ERK1/2, p38 

MAPK or PKB, suggesting a role for this pro-apoptotic protein kinase in PSP-induced cell 

death. The JNK1/2 inhibitor SP 600125 attenuated PSP-induced caspase-3 and JNK1/2 

activation, confirming the role of JNK1/2 in PSP-induced cytotoxicity. Fluorescently 

labelled PSP (dansylated PSP) was used to identify novel PSP binding proteins. 

Dansylated PSP displayed cytotoxicity towards differentiated H9c2 cells. 2D-gel 

electrophoresis profiles of cells treated with dansylated PSP (25 µM) were used to 

identify proteins fluorescently labelled with dansylated PSP. Proteomic analysis identified 

tropomyosin, heat shock protein β-1 and nucleolar protein 58 as novel protein targets for 

PSP. In summary, PSP triggers cytotoxicity in differentiated H9c2 cardiomyoblasts via 

JNK1/2-mediated activation of caspase-3. Further studies are required to investigate 

whether the identified novel protein targets of PSP play a role in the cytotoxicity of this 

OP, which is usually associated with the development of OP-induced delayed neuropathy.  
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INTRODUCTION 

Organophosphorous compounds (OPs) are widely used as insecticides (e.g. diazinon and 

chlorpyrifos) due to their ability to rapidly and irreversibly inhibit acetylcholinesterase 

(AChE) activity in neuromuscular junctions and the central nervous system.1-2 However, 

over-exposure can be fatal to non-target organisms including man. Some OPs are also 

extensively used as oil additives (e.g. tri-ortho-cresyl phosphate; TOCP) due to their 

ability to retain chemical properties under extreme conditions as in the case of aviation 

hydraulic fluids.3 The increased use of OPs over recent decades has heightened concerns 

about environmental pollution and food contamination, with numerous reports of human 

toxicity. Although the clinical effects of many OPs are linked to inhibition of AChE, 

damage to skeletal and cardiac muscle has been reported in studies of acute and chronic 

exposure.4-6 Hence, on-going research into OP-induced toxicity includes unravelling the 

molecular mechanisms underlying neurotoxicity and cardiotoxicity coupled with the 

identification of novel OP protein targets. 

   Regarding neurotoxicity, studies have shown that sub-acute exposure to some OPs is 

associated with various forms of delayed toxicity in non-target species.2 The clinical 

symptoms of one of these conditions, termed OP-induced delayed neuropathy (OPIDN), 

includes partial paralysis which appears 2-3 weeks following exposure to OPs such as 

TOCP.7-9 The molecular events responsible for OPIDN include inhibition of neuropathy 

target esterase (NTE), disruption of the axonal cytoskeleton7-9 and modulation of Ca2+ 

homeostasis.10-11 At present the majority of studies have focused on the effects of OPs 

on the central nervous system. There is very little information on the effect of OPs on 

muscle function, particularly toxic effects on cardiac muscle. 

   Previous studies have documented the cardiovascular consequences of acute OP 

poisoning, which include life-threatening ventricular arrhythmias and tachycardia.12-16 

However, despite these well-known cardiac disturbances, very few studies have 

investigated the direct effects of OPs on cardiomyocyte function. A recent study explored 

the morphological changes in the rat heart following chronic treatment with a sub-lethal 

dose of the OP methamidophos, an insecticide used in many developed countries.17 
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Results indicated that repetitive doses of methamidophos induced cardiac muscle fibre 

hypertrophy, suggesting that OPs may interfere with cardiomyocyte physiology. 

Interestingly, electron microscope analysis of myocardial cells obtained from rats treated 

with diazinon revealed ultra-structural changes including vacuolisation and mitochondrial 

swelling,18 again suggesting that OPs can disrupt cardiomyocyte physiology via AChE-

independent mechanisms.  

   The aim of the present study was to investigate the effect of OPs on the viability of 

mitotic and differentiated rat embryonic cardiomyoblast-derived H9c2 cells.19 These cells 

are used as an in-vitro model system since they display similar morphological, 

electrophysiological, and biochemical properties to primary cardiomyocytes.20 The OPs 

investigated were phenyl saligenin phosphate (PSP; an active congener of the OPIDN-

inducing metabolite of TOCP), two organophosphorothioate insecticides (diazinon and 

chlorpyrifos) and their acutely toxic metabolites (diazoxon and chlorpyrifos oxon). The 

results presented show that PSP, which is classed as a weak inhibitor of AChE, displays 

marked cytotoxicity towards differentiated H9c2 cells, whereas OPs classed as strong 

AChE inhibitors exhibited little or no cytotoxicity. Furthermore, PSP-induced 

cardiotoxicity appears to involve JNK1/2- mediated activation of caspase-3. 
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MATERIALS AND METHODS 

 

Materials 

Chlorpyrifos, chlorpyrifos oxon, diazinon and diazoxon were purchased from Greyhound 

Chromatography and Allied Chemicals (Birkenhead, Merseyside, UK). Phenyl saligenin 

phosphate (PSP) and dansylated PSP were synthesised in house at Nottingham Trent 

University (Figure 1). All-trans retinoic acid was obtained from Sigma Chemical Co. 

(Poole, Dorset, UK). LY 294002, PD 98059, SB 203580, SP 600 125 and wortmannin 

were obtained from Tocris Bioscience (Bristol, UK). Dulbeco’s modified Eagle’s Medium 

(DMEM), foetal calf serum, trypsin (10X), L-glutamine (200 mM), penicillin (10,000 

U/mL)/streptomycin (10,000 µg/mL) were purchased from BioWhittaker UK Ltd. 

Antibodies were obtained from the following suppliers: monoclonal phospho-specific 

ERK1/2 (Thr202/Tyr204; M8159) from Sigma-Aldrich Co. Ltd (Poole, UK); polyclonal 

phospho-specific PKB (Ser473; 9271), polyclonal total unphosphorylated PKB (9272), 

monoclonal total unphosphorylated ERK1/2 (9107), polyclonal total unphosphorylated 

JNK (9252), monoclonal phospho-specific JNK (Thr183/Tyr185; 9251), polyclonal total 

unphosphorylated p38 MAPK (9212), monoclonal phospho-specific p38 MAPK 

(Thr180/Tyr182; 9216), and polyclonal anti- cleaved caspase-3 (9661) from New England 

Biolabs Ltd (Hitchin, UK).  All other chemicals were of analytical grade. Stock solutions of 

OPs were diluted in DMSO, which was present in all treatments including the control at a 

final concentration of 0.5% (v/v).  

 

Cell culture 

Rat embryonic cardiomyoblast-derived H9c2 cells were obtained from the European 

Collection of Animal Cell Cultures (Porton Down, UK). Undifferentiated cells were cultured in 

DMEM supplemented with 2 mM L-glutamine, 10% (v/v) foetal calf serum and penicillin 

(100 U/mL)/streptomycin (100 µg/mL). Cells were maintained in a humidified incubator 

(95% air/5% CO2 at 37°C) until 70-80% confluent and sub-cultured (1:5 split ratio) using 

trypsin (0.05% w/v)/EDTA (0.02% w/v). Differentiation of H9c2 cells was induced by 

culturing them for 7 days in DMEM supplemented with 1% (v/v) FBS and 10 nM all-trans 
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retinoic acid.21-22 The medium was replaced every two days and differentiation into a more 

cardiomyocyte-like phenotype was confirmed by monitoring the expression of cardiac 

troponin 1 via immunocytochemistry and Western blotting.22-23  

 

Immunocytochemistry 

Activation of caspase 3 was assessed via immunocytochemical staining. H9c2 cells were 

seeded in 8-well chamber slides (BD Falcon™ CultureSlide) at a density of 15,000 

cells/well and cultured for 24 h, after which the medium was removed, replaced with 

differentiation medium and incubated for a further 7 days, changing the medium every 

two days. The medium was removed and adherent differentiated cells washed with 

phosphate buffered saline (PBS) pre-warmed to 37°C. Cells were fixed with 3.7% (w/v) 

paraformaldehyde (Sigma-Aldrich, UK) in PBS, for 15 min at room temperature without 

agitation and washed gently three times for 5 min with PBS. After fixation, 

permeabilisation was performed by incubating cells for 15 min at room temperature with 

0.1% (v/v) Triton X-100 in PBS followed by washing three times for 5 min with PBS. 

Cells were incubated for 1 h at room temperature with 3% (w/v) bovine serum albumin 

(BSA) in PBS (BSA/PBS) to prevent non-specific antibody binding. They were incubated 

overnight at 4oC in a humidified chamber with anti-cleaved caspase-3 antibody (1:500) 

in BSA/PBS. Unbound primary antibody was then removed and the wells washed three 

times for 5 min with PBS. Cells were incubated for 2 h at 37oC in a humidified chamber 

with fluorescein isothiocyanate (FITC)-conjugated anti-mouse immunoglobulin G 

(Abcam, Cambridge, UK), diluted 1:1000 in 3% (w/v) BSA in PBS. The chamber slide 

was subsequently washed three times for 5 min with PBS, air dried and mounted with 

Vectashield medium (Vector Laboratories Ltd, Peterborough, UK) containing DAPI 

counterstain for nuclei visualisation. Finally slides were sealed using clear, colourless nail 

varnish and stained cells visualised using an Olympus DP71 epifluorescence microscope 

system equipped with an argon/krypton laser (FITC: Ex493/Em528; DAPI: Ex360/Em460).  

 

 



 

8 

 

 

MTT assay 

Undifferentiated H9c2 cells were plated in 24-well flat-bottomed plates at a final density of 

15,000 cells/well and cultured for 24 h in fully supplemented DMEM. Cells were 

subsequently induced to differentiate for 7 days, as described above, prior to 

organophosphate treatment. Following organophosphate exposure cell viability was 

determined by measuring the metabolic reduction of MTT (3-(4-5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide) to a purple coloured formazan product. Briefly, cells were 

incubated for 1 h in 0.5 mg/mL MTT (in the continued presence of OP) after which the 

medium was removed and replaced with 200 µL DMSO. The magnitude of the reduction 

reaction was determined by monitoring the absorbance of the solubilised formazan product 

at 570 nm. 

 

Lactate dehydrogenase assay 

H9c2 cells were plated in 96-well flat bottomed plates at a final density of 5,000 

cells/well and cultured for 24 h in fully supplemented DMEM. Cells were subsequently 

induced to differentiate for 7 days prior OP treatment. Following OP exposure the activity 

of lactate dehydrogenase (LDH) released into the culture medium was detected 

colourimetrically using the CytoTox 96® Non-Radioactive Cytotoxicity assay (Promega, 

Southampton, UK). Assays were performed according to the manufacturer’s instructions 

and changes in absorbance monitored at 490 nm. 

 

Acetylcholinesterase assay 

H9c2 cells induced to differentiate for 7 days in 175 cm2 cell culture flasks were detached 

by trypsinisation and collected by centrifugation in ice cold PBS. They were resuspended 

in 0.1 M phosphate buffer containing 0.2 % (v/v) Triton X-100 and assayed for 

acetylcholinesterase activity,24 adapted for microtitre plate format.25 Absorbance change 

at 405 nm was linear over a 10 min period. Data were expressed as mean specific 
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activity (absorbance change/min/mg protein) from at least three independent 

experiments. 

 

Western blot analysis of protein kinase phosphorylation and caspase 3 

activation 

Analysis of protein kinase phosphorylation was performed using H9c2 cells differentiated 

for 7 days in 25 cm2 tissue culture flasks. Following experimentation, cell supernatants 

were removed and the cells washed twice with 37°C PBS to remove serum proteins. A 

volume of  300 L of hot (100°C) sodium dodecyl sulphate buffer (0.5% w/v SDS in Tris 

buffered saline) was added and the resulting cell lysate boiled for 5 min prior to storage 

at -20°C. Protein concentration was determined using the Bio-Rad DC™ Protein Assay kit 

(Bio-Rad laboratories, Hertfordshire, UK) with BSA as the standard.  

   Protein samples (15 µg) were separated by sodium dodecyl sulphate/polyacrylamide 

gel electrophoresis (SDS/PAGE; 10 % (w/v) polyacrylamide gel) using a Bio-Rad Mini-

Protean III system. Proteins were transferred to nitrocellulose membranes using a Bio-

Rad Trans-Blot system (1 h at 100 V in 25 mM Tris, 192 mM glycine and 20% MeOH). 

Following transfer, the membranes were washed with Tris-buffered saline (TBS) and 

blocked for 1 h at room temperature in blocking buffer (5% (w/v) skimmed milk powder, 

0.1% (v/v) Tween-20 in TBS). Blots were incubated overnight at 4oC in blocking buffer 

with the following primary antibodies (1:1000 dilution unless otherwise indicated): 

phospho-specific ERK1/2, phospho-specific PKB (1:500), phospho-specific p38 MAPK, 

and phospho-specific JNK or cleaved active caspase 3 (1:500). The primary antibody was 

removed and the blot extensively washed three times for 5 min in TBS/Tween 20. Blots 

were then incubated for 1 h at room temperature with the appropriate secondary 

antibody (1:1000) coupled to horseradish peroxidase (DAKO Ltd, Cambridge, UK) in 

blocking buffer.  

  Following removal of the secondary antibody, blots were extensively washed as above 

developed using the Ultra Chemiluminescence Detection System (Cheshire Sciences Ltd, 

Chester, UK) and quantified by densitometry using Advanced Image Data Analysis 
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Software (Fuji; version 3.52). The uniform transfer of proteins to the nitrocellulose 

membrane was routinely monitored by transiently staining the membranes with Ponceau 

S stain (Sigma-Aldrich Co. Ltd) prior to application of the primary antibody. In addition, 

replicate samples from each experiment were analysed on separate blots using total 

ERK1/2, PKB, p38 MAPK and JNK (all 1:1000 dilution) primary antibodies in order to 

confirm the uniformity of protein loading. 

 

 

2D gel electrophoresis  

Two-dimensional gel electrophoresis was performed using differentiated H9c2 cells (7 

days) cultured in 75 cm2 tissue culture flasks. Following experimentation, culture 

supernatants were removed and cells washed twice with warm PBS (37°C) to remove 

serum proteins and lysed in 300 µL urea lysis buffer (8 M urea, 50 mM DTT, 4 % w/v 

CHAPS, 0.2 % v/v Bio-Lyte® 3/10 ampholyte; Bio-Rad, UK).   

  Samples (300 µg protein) were applied onto ReadyStrip™ IPG strips (pH 3-10; Bio-Rad, 

UK) and passively rehydrated for 1 h, then actively rehydrated for 16 h at 50 V followed 

by IEF (250 V for 20 min linear, 400 V for 2 h linear, 4000 V for 10,000 V/h rapid; slope 

down to 500 V for 25 h) using a PROTEAN IEF cell (Bio-Rad, UK).  Strips were 

transferred to equilibration buffer (6 M urea, 2% (w/v) SDS, 50% (v/v) glycerol, 2% 

(w/v) DTT, 1.5 M Tris/HCl pH 8.8,) for 10 min followed by a further 10 min in 2.5% 

(w/v) iodoacetamide in equilibration buffer. Following equilibration, IPG strips were 

subjected to SDS-PAGE in a 15% (w/v) polyacrylamide gel using a Bio-Rad Mini-Protean 

III system. After electrophoresis, gels were visualised and dansylated-PSP labelled 

proteins visualised under UV light (Syngene G-box) and then stained for 16 h using 

ProtoBlue™ safe colloidal Coomassie G-250 stain (Bio-Rad, UK) and photographed using 

a Syngene G-box with GeneSnap software (version 7.12.06). Images were analysed 

using Progenesis SameSpots (V 3.1.3030.23662) software (Nonlinear Dynamics, UK).   
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Mass Spectrometry analysis 

Selected spots were excised from the gel and dehydrated in acetonitrile for 5 min at 

37°C under gentle agitation, rehydrated in 25 mM NH4HCO3 for 10 min, and sequentially 

dehydrated, rehydrated and dehydrated. The gel pieces were incubated with mass 

spectrometry grade trypsin (Trypsin Gold; Promega; 0.55 µg per spot in 25 µl of 66.4 

mM ammonium bicarbonate) for 16 h at 37°C after which the reaction was terminated 

by adding 1% v/v trifluoroacetic acid (TFA). After tryptic digestion, peptides were de-

salted and concentrated prior to MALDI-TOF mass spectrometry using C18 ZipTips (200 Å 

pore size; Millipore, UK). Finally, 1.5 µL of the peptide digest was spotted onto a MTP 

384 Ground Steel MALDI target plate (Bruker; Germany) together with 1.5 µL of 5 

mg/mL α-cyano-4-hydroxycinnamic acid (CHCA) matrix mixture (Bruker Daltonics, UK) 

in 50 % (v/v) acetonitrile, 0.1% (v/v) TFA. Peptides were analysed using a Bruker 

UltrafleXtreme™ MALDI-TOFTOF mass spectrometer (reflectron positive mode, ion 

suppression m/z 650, mass range m/z 0-4000). Proteins were identified using Bruker-

Daltonics Biotools (v 3.2, build 2.3) software, searched against SwissProt database, rat 

species, using Mascot (version 2.3 server, Matrix Science, UK), PMF 100 ppm tolerance 

and reported according to percentage sequence coverage (SC%). MS/MS search 

parameters; MS tolerance 100 ppm, MS/MS tolerance 0.8 Da, three missed cleavages. 

All identified proteins exhibited Mascot scores which were considered statistically 

significant (p< 0.05). 

 

Binding of dansylated PSP to purified tropomyosin 

To validate the identification of one of the proteins labelled by dansylated PSP, purified 

human heart tropomyosin (10 µg; Lee Biosolutions, USA) was incubated for 1 h with 25 

µM dansylated PSP or un-labelled PSP. The purified tropomyosin was subjected to SDS-

PAGE on a 10% (w/v) polyacrylamide gel and fluorescence visualised under UV light.  
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Data analysis 

Unless otherwise specified, statistical significance was determined by ANOVA with a post 

hoc Tukey test (p<0.05 was considered statistically significant). Organophosphate IC50 

values (concentrations of drug producing 50% of the maximal inhibition) derived from MTT 

assays and EC50 values (concentrations of drug producing 50% of the maximal stimulation) 

derived from LDH assays were obtained by computer assisted curve fitting using Prism 

software (GraphPAD version 6, California, USA). All data are presented as means  S.E.M. 

The n in the text refers to the number of separate experiments. The number of replicates 

within each experiment is indicated, were appropriate, in the Figure legend. 
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RESULTS 

Effects of organophosphates on the viability of mitotic H9c2 cells 

  H9c2 cells are derived from embryonic rat heart tissue19 and have been used widely as 

an in vitro model, since they display similar morphological, electrophysiological and 

biochemical properties to primary cardiac myocytes.20 Initial experiments investigated 

the effects of OPs on the viability of mitotic H9c2 cells, which display properties of 

skeletal muscle. The effects of OP treatment on cell viability were assessed by 

monitoring MTT reduction (a measure of cellular dehydrogenase activity) and 

measurement of LDH activity released into the culture medium. At concentrations of up 

to 200 µM both diazinon and its acutely toxic metabolite diazoxon had no significant 

effect on MTT reduction or LDH release following 48 h exposure (data not shown). 

Chlorpyrifos at 200 µM and 100 µM inhibited MTT reduction following 24 h and 48 h 

exposure (Figure 2) but had no effect on LDH release at these time points (data not 

shown). In contrast, chlorpyrifos oxon at concentrations up to 200 µM had no significant 

effect on MTT reduction or LDH release after 48 h exposure (data not shown).  

   Phenyl saligenin phosphate (PSP; an active congener of the OPIDN-inducing metabolite 

of TOCP) significantly inhibited the reduction of MTT and triggered the release of LDH 

following 24 h and 48 h treatment (for clarity data not shown). Subsequent experiments 

assessed the effects of PSP on MTT reduction and LDH release at earlier time points e.g. 

1, 2, 4, and 8 h (Figure 3). The data from these experiments revealed that PSP-induced 

inhibition of MTT reduction was first evident at 4 h (IC50 = 8.5  5.5 µM), with 

comparable results obtained at 8 h exposure (IC50 = 7.1  4.7 µM). Similarly, significant 

LDH release was first evident at 4 h (EC50 = 13  1.1 µM) and at 8 h (EC50 = 13  1.5 

µM), with levels of LDH release comparable to those observed following 24 h treatment 

All IC50 and EC50 plots are shown in Supplementary data Figure 1. Overall, these data 

indicate that PSP displays marked cytotoxicity towards mitotic H9c2 cells. 
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Effects of organophosphates on the viability of differentiated H9c2 cells 

  Mitotic H9c2 cells can be differentiated into a more cardiomyocyte-like phenotype by 

culturing the cells for 7 days in DMEM supplemented with 1% (v/v) FBS and 10 nM all-trans 

retinoic acid.21-22 Therefore, we investigated the effects of OPs on the viability of 

differentiated H9c2 cells. H9c2 differentiation was confirmed by monitoring the expression 

of cardiac troponin 1 by immunocytochemistry and Western blotting (data not shown) as 

originally described by Comelli et al.22 and confirmed in-house.23 At concentrations up to 

200 µM, both diazinon and diazoxon had no significant effect on MTT reduction or LDH 

release following 48 h exposure (data not shown).  Chlorpyrifos at 200 µM and 100 µM 

inhibited MTT reduction following 24 and 48 h exposure and at 200 µM triggered a small 

but significant release in LDH at these time points (Figure 4). In contrast, chlorpyrifos 

oxon at concentrations up to 200 µM had no significant effect on MTT reduction or LDH 

release after 48 h exposure (data not shown).  

   In differentiated cells, PSP significantly inhibited the reduction of MTT and triggered 

the release of LDH following 24 h and 48 h treatment (for clarity, data not shown). 

Subsequent experiments assessed the effects of PSP on MTT reduction and LDH release 

at earlier time points e.g. 1, 2, 4, and 8 h (Figure 5). The data from these experiments 

revealed that PSP-induced inhibition of MTT reduction was first evident at 2 h (IC50 = 6.5 

 1.2 µM), with further inhibition observed following 4 h (IC50 = 12.8  4.9 µM) and 8h 

(IC50 = 25  9.3 µM) exposure. In contrast, LDH release was first evident at 4 h (EC50 = 

15.8  6.1 µM) and increased at 8 h (EC50 = 15.1  4.3 µM), when levels of LDH release 

were comparable to those observed following 24 h treatment. All IC50 and EC50 plots are 

shown in Supplementary data Figure 2. Overall, these data indicate that PSP induces 

cytotoxicity in differentiated H9c2 cells. However, it should be noted that 100 % cell 

death was not achieved at any OP concentration or exposure time point. This could be 

due to a gradual loss of OP over time, for example due to serum protein binding or 

inactivation by enzymic and/or non-enzymic pathways. As the OPs used are hydrophobic 

they may also come out of solution at higher concentrations and longer exposure times, 

thus negating their potential to kill all of the cells. 
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   Whilst MTT reduction and LDH release and are widely used markers of cell viability, 

they do not discriminate between apoptotic and necrotic forms of cell death. To assess 

whether PSP-induced cell death involved apoptosis, we measured caspase-3 activation 

following PSP treatment. Caspase-3 activation was initially monitored by Western 

blotting using an antibody that recognises the large fragments (17/19 kDa) of activated 

caspase-3. As evident in Figure 6A, treatment of differentiated H9c2 cells with 25 M PSP 

for 4 h triggered a significant increase in caspase-3 activation. Similar results were 

obtained when PSP-induced caspase-3 activation was monitored via 

immunocytochemistry (Figure 6B).  

  In order to establish the relationship between the above cytotoxic effects and the level 

of AChE activity, cholinesterase assays were performed in the presence and absence of 

PSP. As can be seen in Figure 7, PSP was a very weak inhibitor of AChE activity in H9c2 

cells, with exposure to 25 µM causing only approximately 30% inhibition compared to 

control levels of activity. Additional experiments (data not shown) indicated much 

stronger inhibition of AChE by chlorpyrifos oxon. 

 

Effects of PSP on protein kinase phosphorylation 

PSP-induced cell death in mitotic and differentiated H9c2 cells may involve the 

modulation of pro-survival and/or pro-apoptotic signalling pathways. It is generally 

accepted that extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase 

B (PKB; also known as Akt) activation promotes cell survival by activating anti-apoptotic 

signalling pathways, whereas the activation of c-Jun N-terminal kinases (JNK) and p38 

mitogen-activated protein kinases (p38 MAPK) are associated with apoptotic cell 

death.26-27 PSP-induced modulation of protein kinase activity was assessed by Western 

blotting using phospho-specific antibodies that recognise phosphorylated motifs within 

activated ERK1/2 (pTEpY), p38 MAPK (pTGpY), JNK (pTPpY) and PKB (S473). Treatment of 

differentiated H9c2 cells for 1h, 2h, 4h and 8h with PSP (25 µM) had no significant effect on 

the levels of phosphorylated ERK1/2, p38 MAPK or PKB (data not shown). In marked 
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contrast, PSP (25 µM) induced a time-dependent increase in JNK1/2 activation in 

differentiated H9c2 cells (Figure 8).   

 

 

Role of protein kinases in PSP-induced cell death 

To investigate the further the role of JNK1/2 in PSP-induced cell death, differentiated 

H9c2 cells were pre-treated for 30 min with the JNK1/2 inhibitor SP 600125 (10 µM),28 

prior to OP exposure. As shown in Figure 9, SP 600125 had no significant effect on 25 

µM PSP-induced inhibition of MTT reduction or LDH release following 4 h or 8 h OP 

exposure. Western blot analysis was subsequently used to establish whether SP 600125 

(10 µM) attenuates PSP-induced JNK1/2 activation in H9c2 cells. As depicted in Figure 

10, SP 600125 significantly inhibited PSP (25 µM)-induced JNK1/2 activation following 1h 

and 2 h OP exposure. However, SP 600125 did not block PSP-induced JNK1/2 activation 

after 4 h of exposure, which presumably accounts for the lack of effect observed with SP 

600125 when monitoring PSP-induced inhibition of MTT reduction and release of LDH at 

4 h and 8 h (Figure 9). Since PSP-induced caspase-3 activation was evident at 1 h and 2 

h OP exposure, we determined the effect of SP 600125 on PSP-induced caspase-3 

activation at these earlier time points via immunocytochemistry. As shown in Figure 11, 

SP 600125 (10 µM) attenuated PSP-induced caspase-3 activation confirming the 

involvement of JNK1/2 in PSP-mediated cell death in H9c2 cells. For comparison the 

kinase inhibitors PD 98059 (50 µM; MEK1/2 inhibitor), LY 294002 (30 µM; PI-3K 

inhibitor), wortmannin (100 nM; PI-3K inhibitor), and SB 203580 (30 µM; p38 MAPK 

inhibitor) had no significant effect on PSP-induced caspase-3 activation (data not 

shown). 

 

Identification of PSP binding proteins 

The results presented thus far indicate that PSP triggers cell death in H9c2 cells via 

JNK1/2 activation. In order to explore further the mechanism(s) of PSP-induced 

cytotoxicity we carried out studies using fluorescently labelled PSP (dansylated PSP) in 
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order to identify novel PSP binding proteins. Initial experiments confirmed that 

dansylated PSP caused similar levels of cytotoxicity as PSP in differentiated H9c2 cells 

(Figure 12). Identification of dansylated PSP labelled proteins was achieved by 2D-gel 

electrophoresis of cell lysates obtained from cells treated with dansylated PSP (1 h, 25 

µM; see Figure 13) followed by MALDI-TOF analysis of the peptides produced by trypsin 

digestion. Mass spectrometry analysis identified tropomyosin, heat shock protein 27 and 

nucleolar protein 58 as novel protein targets for PSP (Table 1). Tropomyosin was chosen 

for validation by incubation of purified human tropomyosin with dansylated PSP, followed 

by visualisation using SDS-PAGE. The data shown in Figure 14, confirmed that 

tropomyosin was labelled by dansylated PSP in H9c2 cells. 
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DISCUSSION 

  At present there is very little information on the direct effect of OPs on muscle function 

and, in particular, their toxic effects on cardiomyocytes. In this study we investigated the 

effect of OPs on mitotic and differentiated H9c2 cardiomyoblasts. Initial experiments 

examined chlorpyrifos and diazinon and their in vivo metabolites diazoxon and 

chlorpyrifos oxon. Cytotoxicity was not observed with diazinon, diazoxon or chlorpyrifos 

oxon (48 h exposure; 200 µM), whereas chlorpyrifos-induced cytotoxicity was only 

evident at concentrations >100 µM. These results are in stark contrast to the 

cardiovascular consequences of acute OP poisoning, which reflects over-activity of 

sympathetic and parasympathetic pathways due to enhanced levels of acetylcholine.12-16 

In summary, OPs that mediate acute in vivo toxicity, primarily via AChE inhibition, 

display little cytotoxicity towards H9c2 cardiomyoblasts. In marked contrast, PSP 

displayed pronounced cytotoxicity towards mitotic and differentiated H9c2 cells. PSP is 

an analogue of saligenin cyclic-o-tolyl phosphate (SCOTP), the in vivo metabolite of 

TOCP, and is classed as a weak inhibitor of AChE.29 Hence the cytotoxic effects of PSP 

observed in this study are presumably mediated via non-cholinergic mechanisms. The 

data from AChE activity assays confirm the weak effect of PSP on cholinesterase activity 

under the same experimental conditions, indicating that acute effects on AChE were not 

involved. However, it is important to note PSP is a potent inhibitor of 

butyrylcholinesterase, the activity of which is higher than acetylcholinesterase in rat 

heart. 30-31 Hence, in future work it would be of interest to monitor the effect of PSP on 

butyrylcholinesterase activity in H9c2 cells.  

  PSP is used in neuronal cell models investigating the molecular targets responsible for 

OP-induced delayed neuropathy (OPIDN), a condition associated with OPs such as 

TOCP.7-9 TOCP is an isomer of tricresyl phosphate (TCP), an OP with a wide range of 

applications due to its flame retardant and lubricant properties.32 For example, it is used 

in the aviation industry as a fuel and hydraulic fluid additive but also as a plasticiser, 

waterproofing agent and solvent. Since isomers of TCP have been detected in air cabins 
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and cockpits on commercial and military aircraft, it has been suggested that OP 

poisoning may be involved in the phenomenon of air cabin sickness.33 At present the 

cellular effect(s) of neuropathic OPs, such as PSP, on cardiomyocytes are largely 

unknown.  

Mechanisms of PSP-induced cytotoxicity 

In this study we initially assessed PSP-induced cytotoxicity by monitoring MTT reduction 

and LDH release. It is notable that PSP-induced toxicity was evident at 2 h when 

monitoring MTT reduction, whereas PSP toxicity assessed by LDH release was first 

detectable at 4 h.  The difference in sensitivity between MTT and LDH assays is in 

agreement with previous studies, which have reported the MTT assay as being more 

sensitive in detecting cytotoxic events.34 Treatment with PSP (25 µM) also triggered the 

rapid activation of caspase 3, suggesting that PSP-induced cytotoxicity involves apoptotic 

cell death. These cytotoxic effects are consistent with previous studies showing that PSP 

triggers a decrease in MTT reduction in mouse N2a neuroblastoma and human hepatic 

HepG2 cells (IC50 values of approximately 10-15 µM),35 and activation of caspase 3 in 

SH-SY5Y human neuroblastoma cells (10 and 100 µM).36 The IC50 values for PSP-induced 

toxicity obtained in this study (circa 10-20 µM) are comparable to those reported in N2a 

and HepG2 cells.35   

   In order to understand more clearly the mechanism(s) of PSP-induced cytotoxicity, the 

effect of PSP exposure on protein kinase cascades associated with cell survival (ERK1/2 and 

PKB) and cell death (p38 MAPK and JNK) was investigated. In view of their respective roles 

in cell death and cell survival, it would be predicted that PSP-induced cytotoxicity may 

involve attenuation of ERK1/2 and PKB signalling and/or activation of p38 MAPK and JNK. 

PSP did not significantly modulate ERK1/2, p38 MAPK or PKB phosphorylation status in 

differentiated H9c2 cells. However, PSP (25 µM) triggered a robust and time-dependent 

activation of JNK1/2. These data are in agreement with previous studies that have reported 

the modulation of protein kinase signalling by sub-lethal concentrations of PSP. For 
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example, PSP triggered activation of ERK1/2 in mouse N2a neuroblastoma cells (2.5 µM; 4 

h)37 and activation of PKB in human SH-SY5Y neuroblastoma cells (0.1 µM).38 It is notable 

that the effect of PSP on PKB activation in SH-SY5Y cells was a consequence of OP-induced 

activation of the low affinity neurotrophin p75 receptor.38 Further studies are required in 

order to elucidate the molecular mechanism(s) of PSP-induced JNK1/2 activation in 

differentiated H9c2 cells. 

   To verify the role of JNK1/2, we determined the effect of the JNK1/2 inhibitor SP 

600125 on PSP-induced inhibition of MTT reduction and release of LDH. Pre-treatment 

with SP 600125 had no significant effect on 25 µM PSP-induced inhibition of MTT 

reduction or LDH release following 4 h or 8 h OP exposure. However, subsequent 

experiments revealed that, whilst SP 600125 attenuated PSP-induced JNK1/2 activation 

following 1 h and 2 h PSP exposure, it was ineffective at blocking PSP-induced JNK1/2 

activation at 4 h. These observations presumably account for the lack of effect of SP 

600125 when assessing cell viability at 4 h and 8 h time points, using MTT and LDH 

assays. The reversible inhibition of PSP-induced JNK1/2 activation by SP 600125 may 

reflect removal of the inhibitor from the cell (although the inhibitor was present 

throughout the experiment) and/or metabolism to an inactive metabolite. However, SP 

600125 did block caspase 3 activation at 1 h confirming the involvement of JNK1/2 in 

PSP-induced apoptosis. It is interesting to note that although SP 600125 blocked 

caspase 3 activation at 4 h, it did not block PSP-induced JNK1/2 activation at 4 h. This is 

presumably a consequence of caspase 3 activation being downstream of JNK1/2 and 

hence inhibition of JNK1/2 at early time points ( 2 h) prevents subsequent caspase 3 

activation.     

In terms of the clinical relevance of our data, similar levels of neurodegenerative 

metabolite saligenin cyclic -o-tolyl phosphate (of which PSP in a structural analogue) are 

more likely to be achieved in heart tissue after deliberate or accidental exposure to 

significant amounts of tri-ortho-cresyl phosphate, than via normal levels of occupational 

exposure. However, given that the activation of caspase-3 occurs within the first hour of 



 

21 

 

exposure to 25 µM PSP, it is possible that such levels could  be achieved only transiently 

in vivo. In this respect it is interesting to note that levels of more than 100 µM TOCP (39 

µg/g) were observed in heart tissue from rats given repeated oral doses (50 mg/kg) of 

this compound, suggesting that relatively high levels of metabolite are achievable.39 It 

may also be that longer exposure to PSP at lower concentrations can also induce caspase 

activation. In this respect, preliminary data (not shown) indicate that LDH release is 

significantly increased by exposure to 6 µM PSP for 24-48 h.  

Identification of PSP binding proteins 

  It is becoming increasing apparent that OPs interact with and/or modulate a number of 

molecular targets besides AChE.  These include cytoskeletal proteins, proteolytic 

enzymes, mitochondrial enzymes, and signalling molecules.2,38 Furthermore, a prominent 

target for OPs that induce OPIDN, is neuropathy target esterase (NTE), a member of the 

patatin-like phospholipase (PNPLA) family whose functions include regulation of lipid 

metabolism and cell signalling.40-41 Although NTE (PNPLA6) has been detected in non-

neuronal tissues including human heart,42 it is not known if mitotic or differentiated H9c2 

cells express NTE. Although beyond the scope of the present study, it would be of 

interest to investigate NTE expression and the effect of PSP on NTE activity in H9c2 cells.  

  In this study, we used fluorescently labelled PSP (dansylated PSP) in order to identify 

novel PSP binding proteins in H9c2 cardiomyocytes. Mass spectrometry analysis 

identified tropomyosin, heat shock protein β-1 and nucleolar protein 58 as novel protein 

targets for PSP. Heat shock protein β-1 (also known as HSP-27) is a member of small 

heat shock protein family and is involved in the regulation of apoptosis, protection of 

cells against oxidative stress and modulation of the cytoskeleton.43-44 Hence it is 

plausible that PSP binding modulates the functioning of heat shock protein β-1 leading to 

induction of apoptosis. In skeletal and cardiac muscle tropomyosin regulates the 

interaction between actin and myosin, whereas in non-muscle cells it plays a role in 

regulating the actin cytoskeleton.45 Given the emerging role of the actin cytoskeleton as 

a regulator of apoptosis,46 it is conceivable that PSP binding to tropomyosin alters its 
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interaction with other actin binding proteins (e.g. cofilin) that are linked to cytoskeleton 

mediated modulation of apoptotic signalling.46 Finally, PSP also bound to nucleolar 

protein 58 which is required for 60S ribosomal subunit biogenesis.47 PSP binding to this 

protein might impair the translation of proteins essential for cell survival. It is important 

to note that the observed molecular weight (kDa) and isoelectric point (pI) values for 

nucleolar protein 58 are lower than the expected values suggesting the identification of a 

proteolytic degradation product. Further work is therefore required in order to confirm 

the identity of nucleolar protein 58  as a PSP-binding protein. Overall, it remains to be 

established if there is a definitive link between any of these novel protein targets and 

PSP-induced cytotoxicity. 

 

  In summary, this study has investigated for the first time the effect of OPs on 

cardiomyocytes using differentiated H9c2 cells, a cell-based model system that displays a 

robust cardiomyocyte-like phenotype. The in vivo metabolites of OPs classified as potent 

AChE inhibitors (diazoxon and chlorpyrifos oxon) displayed no cytotoxicity towards 

mitotic or differentiated H9c2 cells. In contrast, PSP, a weak AChE inhibitor, triggered 

cytotoxicity in differentiated H9c2 cardiomyoblasts via a pathway involving JNK1/2-

mediated activation of caspase-3.  Furthermore, proteomic analysis using fluorescently 

labelled PSP identified tropomyosin, heat shock protein β-1 and nucleolar protein 58 as 

novel protein targets for PSP. Finally, whilst this study has focused on the effects and 

mechanisms of cytotoxic concentrations of PSP, on-going studies are exploring the 

effect(s) of sub-lethal concentrations of PSP on the differentiation of H9c2 cells and 

potential modulation of G-protein coupled receptor signalling pathways associated with 

cardiomyocytes.  

 

 

Funding 

This work was supported by a PhD studentship from the Saudi Arabian government 

(S10712).  



 

23 

 

 

ABBREVIATIONS 

AChE, acetylcholinesterase; BAS, bovine serum albumin; ERK1/2; extracellular signal-

regulated kinase 1/2; JNK1/2, c-Jun N-terminal kinase 1/2; LDH, lactate dehydrogenase; 

MTT, 3-(4-5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide;  NTE, neuropathy 

target esterase; OP, organophosphorous compounds; OPIDN, OP-induced delayed 

neuropathy; PI-3K; phosphatidyl inositol 3-kinase; PKB, protein kinase B; p38 MAPK, 

p38 mitogen-activated protein kinase; PSP, phenyl saligenin phosphate; TBS, Tris-

buffered saline; TOCP, tri-ortho-cresyl phosphate;  
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FIGURE LEGENDS 

 

Figure 1. Chemical structures of A) phenyl saligenin phosphate (PSP) and B) dansylated 

PSP. 

 

Figure 2. Effect of chlorpyrifos on the viability of mitotic H9c2 cells monitored by MTT 

reduction.  Mitotic H9c2 cells were exposed to the indicated concentrations of 

chlorpyrifos for A) 24 h and B) 48 h. Following chlorpyrifos exposure cell viability was 

assessed by measuring the metabolic reduction of MTT by cellular dehydrogenases. Data 

are expressed as the percentage of control cells (=100%) and represent the mean  SEM 

of four independent experiments each performed in quadruplicate. ****p0.0001 versus 

control response. 

 

Figure 3. Effect of phenyl saligenin phosphate (PSP) on the viability of mitotic H9c2 cells 

monitored by MTT reduction and LDH release.  Mitotic H9c2 cells were exposed to the 

indicated concentrations of PSP for 4 h (panels A and B) 8 h (panels C and D). Following 

PSP exposure cell viability was assessed by measuring the metabolic reduction of MTT by 

cellular dehydrogenases (A and C) and release of LDH (B and D). Data are expressed as 

the percentage of control cells (=100%) and represent the mean  SEM of three 

independent experiments each performed in quadruplicate (MTT) or sextuplicate (LDH). 

*p0.05, ** p<0.01, ***p<0.001 and ****p<0.0001 versus control response. 

 

Figure 4. Effect of chlorpyrifos on the viability of differentiated H9c2 cells monitored by 

MTT reduction and LDH release.  Differentiated H9c2 cells (7 day) were exposed to the 

indicated concentrations of chlorpyrifos for 24 h (panels A and B) 48 h (panels C and D). 

Following chlorpyrifos exposure cell viability was assessed by measuring the metabolic 

reduction of MTT by cellular dehydrogenases (A and C) and release of LDH (B and D). 

Data are expressed as the percentage of control cells (=100%) and represent the mean 

 SEM of three independent experiments each performed in quadruplicate (MTT) or 
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sextuplicate (LDH). *p0.05, ** p<0.01, ***p<0.001 and ****p<0.0001 versus control 

response. 

 

Figure 5. Effect of phenyl saligenin phosphate (PSP) on the viability of differentiated 

H9c2 cells monitored by MTT reduction and LDH release.  Differentiated H9c2 cells (7 

day) were exposed to the indicated concentrations of PSP for 2 h (panel A), 4 h (panels 

B and D) 8 h (panels C and E). Following PSP exposure cell viability was assessed by 

measuring the metabolic reduction of MTT by cellular dehydrogenases (A, B, C) and 

release of LDH (D, E). Data are expressed as the percentage of control cells (=100%) 

and represent the mean  SEM of at least three independent experiments each 

performed in quadruplicate (MTT) or sextuplicate (LDH). *p0.05, ** p<0.01, 

***p<0.001 and ****p<0.0001 versus control response. 

 

 

Figure 6. PSP-induced caspase-3 activation in differentiated H9c2 cells. Differentiated 

H9c2 cells (7 day) were incubated without (-) or with (+) 25 µM PSP for the indicated 

time periods. Following PSP exposure caspase-3 activation was assessed via A) Western 

blotting using anti-active caspase 3 antibody or B) via immunocytochemistry using anti- 

active caspase 3 antibody (green) and DAPI counterstain for nuclei visualisation (blue). 

Images presented are from one experiment and representative of three. In (A) data are 

expressed as the percentage of reactivity control cell lysates and represent the mean  

SEM of three independent experiments. *p0.05 versus time matched control cells. 

 

Figure 7.  Effects of PSP on acetylcholinesterase activity. Cells were induced to 

differentiate for 7 days and then exposed to PSP (8h, 25 µM). Shown are the mean 

specific activities ± SEM from three independent experiments. Asterisk indicates a 

significant difference from the non PSP treated control (Student’s T test; p<0.05). 
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Figure 8. PSP-induced JNK1/2 activation in differentiated H9c2 cells. Differentiated H9c2 

cells (7 days) were exposed to 25 µM PSP for the indicated time periods. Following PSP 

exposure JNK1/2 activation was assessed via Western blotting using a phospho-specific 

JNK1/2 antibody. Samples were subsequently analysed on separate blots using an 

antibody that recognises total JNK1/2. Quantified data are expressed as the ratio of 

phosphorylated JNK1/2 to total JNK1/2 and represent the mean  SEM of four 

independent experiments. ****p0.0001 versus control cells.   

 

Figure 9. Effect of the JNK1/2 inhibitor SP 600125 on PSP-induced inhibition of MTT 

reduction and release of LDH. Differentiated H9c2 cells (7 days) were exposed to 25 µM 

PSP for 4 h (panels A and B) and 8 h  (panels C and D) in the presence and absence of 

SP 600125 as indicated. Following PSP exposure cell viability was assessed by measuring 

the metabolic reduction of MTT by mitochondrial dehydrogenases (B and D) and release 

of LDH (A and C). Data are expressed as the percentage of control cells (=100%) and 

represent the mean  SEM of at least three independent experiments each performed in 

quadruplicate (MTT) or sextuplicate (LDH). *p0.05, ** p<0.01, ***p<0.001 and 

****p<0.0001 versus control response. 

 

Figure 10. Effect of the JNK1/2 inhibitor SP 600125 on PSP-induced JNK1/2 activation. 

Differentiated H9c2 cells (7 day) were exposed to 25 µM PSP for A) 1 h, B) 2h, and C) 4 

h in the presence and absence of SP 600125 (10 µM; 30 min pre-incubation). Following 

PSP exposure JNK1/2 activation was assessed via Western blotting using a phospho-

specific JNK1/2 antibody. Samples were subsequently analysed on a separate blot using 

an antibody that recognises total JNK1/2. Data are expressed as the percentage of 

control cells (100%) and represent the mean  SEM of three independent experiments. 

*p0.05 versus untreated control cells.   

 

Figure 11. Effect of the JNK1/2 inhibitor SP 600125 on PSP-induced caspase 3 activation. 

Differentiated H9c2 cells (7 day) were exposed to 25 µM PSP for A) 1 h, B) 2h, and C) 4 
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h in the presence and absence of SP 600125 (10 µM; 30 min pre-incubation). Following 

PSP exposure caspase 3 activation was assessed via immunocytochemistry using active 

caspase 3 antibody (green) and DAPI counterstain for nuclei visualisation (blue). Scale 

bar = 100 µm. Images presented are from one experiment and representative of four. 

Quantified data are expressed as the percentage of control cells and represent the mean 

 SEM of four independent experiments. ** p<0.01, ***p<0.001 and ****p<0.0001, a) 

versus control and b) versus PSP alone treated cells. 

 

Figure 12. Effect of dansylated PSP on the viability of differentiated H9c2 cells monitored 

by MTT reduction and LDH release.  Differentiated H9c2 cells (7 day) were exposed to 

the indicated concentrations of dansylated PSP for 8 h. Following PSP exposure cell 

viability was assessed by measuring the metabolic reduction of MTT by mitochondrial 

dehydrogenases (A) and the release of LDH (B). Data are expressed as the percentage 

of control cells (=100%) and represent the mean  SEM of three (MTT) or four (LDH) 

independent experiments each performed in quadruplicate (MTT) or sextuplicate (LDH). 

*p0.05, ** p<0.01, ***p<0.001 and ****p<0.0001 versus control response. 

 

 

Figure 13. Visualisation of proteins labelled with dansylated PSP.  Differentiated H9c2 

cells were untreated or treated with dansylated PSP (8 h, 25 µM) and cell lysates 

processed and analysed by 2D gel electrophoresis using pH 3-10 gradient strips. Gels 

were visualised under UV light (panels A and B) prior to staining with ProtoBlue™safe 

colloidal Coomassie G-250 stain (panels C and D). Gel images were analysed using 

Progenesis SameSpots software and circled spots represent those labelled with 

dansylated PSP. Spot 1: nucleolar protein 58; Spot 2: tropomyosin -4; Spot 3: heat 

shock protein β-1. A list of identified proteins labelled by dansylated PSP is provided in 

Table 1.  
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Figure 14. Labelling of purified human heart tropomyosin with dansylated PSP. Human 

heart tropomyosin (10 µg) was incubated for 1 h in presence or absence of 

dansylated/unlabelled PSP (25 µM). Tropomyosin samples were then subjected to 10% 

(w/v) polyacrylamide gel electrophoresis and subsequently stained with coomassie blue 

(A) and visualised under UV light (B). Lane 1: tropomyosin incubated with Tris-buffered 

saline; Lane 2: tropomyosin incubated with DMSO; Lane 3: tropomyosin incubated with 

PSP; Lane 4: tropomyosin incubated with dansylated PSP. 
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Table 1. Identification of PSP-binding proteins in differentiated H9c2 cells. H9c2 cells 

treated with dansylated PSP (1 h, 25 µM) were analysed by 2D gel electrophoresis and 

PSP-labelled proteins identified using MALDI-TOF MSa (PMF) or MS/MSb as described in 

Materials and Methods. Sequence data was analysed using MASCOT software and 

reported according to percentage sequence coverage (SC%) or mascot score (ion scores 

for MS/MS  > 27 indicate identity or extensive homology; >51 for PMF). All identified 

proteins exhibited MASCOT scores which were considered statistically significant 

(p<0.05). 

 

 

Spot  
number 

Protein Accession 
no. 

PMF  
Sequence 
Coverage 
(%)a 

Identified 
Peptide 
sequence 
(MS/MS) 

Mascot 
scoreb 

 

kDa pI 

 

2 
 
3 
 
 
 

1 

 
Tropomyosin -4  

 
Heat shock 
protein β-1   
(HSP-27) 
 
Nucleolar protein 
58  

 

P09495 
 
P42930 
 
 
 

Q9Q286 

 

39 
 
 
 
 
 

32 

 

 
 
LFDQAFGVPR 

 

52/51 
 
80/27 
 
 
 

52/51 

 

28.5 
 
22.9 
 
 
 

59.5 

 

4.4 
 
6.1 
 
 
 

9.2 
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Figure 1 
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Figure 3. 
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Figure 4. 
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Figure 5.  
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Figure 10. 
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Figure 11. 
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Figure 12. 
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Figure 13. 
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Figure 14. 
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Supplementary data 

 

Figure 1 Effect of phenyl saligenin phosphate (PSP) on the viability of mitotic H9c2 cells 

monitored by MTT reduction and LDH release.  Mitotic H9c2 cells were exposed to the 

indicated concentrations of PSP for 4 h (panels A and B) 8 h (panels C and D). Following 

PSP exposure cell viability was assessed by measuring the metabolic reduction of MTT by 

cellular dehydrogenases (A and C) and release of LDH (B and D). Organophosphate 

concentration response curves were obtained by computer assisted curve fitting using 

Prism software  as described in Materials and Methods. Data are expressed as the 

percentage of control cells (=100%; ) and represent the mean  SEM of three 

independent experiments each performed in quadruplicate (MTT) or sextuplicate (LDH). 

*p0.05, ** p<0.01, ***p<0.001 and ****p<0.0001 versus control response. 
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Figure 2. Effect of phenyl saligenin phosphate (PSP) on the viability of differentiated 

H9c2 cells monitored by MTT reduction and LDH release.  Differentiated H9c2 cells (7 

day) were exposed to the indicated concentrations of PSP for 2 h (panel A), 4 h (panels 

B and D) 8 h (panels C and E). Following PSP exposure cell viability was assessed by 

measuring the metabolic reduction of MTT by cellular dehydrogenases (A, B, C) and 

release of LDH (D, E). Organophosphate concentration response curves were obtained by 

computer assisted curve fitting using Prism software  as described in Materials and Methods 

Data are expressed as the percentage of control cells (=100%; ) and represent the 

mean  SEM of at least three independent experiments each performed in quadruplicate 

(MTT) or sextuplicate (LDH). *p0.05, ** p<0.01, ***p<0.001 and ****p<0.0001 

versus control response. 

 

 
 


