
The E¤ects of E¢ ciency and TFP Growth on Pollution in Europe: A

Multistage Spatial Analysis

Morakinyo Adetutu�, Anthony J. Glassy, Karligash Kenjegalievaz and

Robin C. Sicklesx{

2014

Abstract

It is common in e¢ ciency studies which analyse the environment for pollution to form

part of the production technology. Pollution therefore a¤ects e¢ ciency and the TFP growth

decomposition. As an alternative approach we draw on theoretical studies from the envi-

ronmental economics literature, which demonstrate that TFP a¤ects environmental quality.

Along these lines we adopt a two-stage empirical methodology. Firstly, we obtain two esti-

mates of productive performance (e¢ ciency and TFP growth) using a stochastic production

frontier framework in Stage 1 for European countries (1995 � 2008), from which we omit

emissions. Secondly, in Stage 2 these measures of productive performance are used as regres-

sors in spatial models of per capita nitrogen and sulphur emissions for European countries.

From our preferred Stage 2 spatial models we �nd that a country�s TFP growth must fall to

reduce its per capita nitrogen and sulphur emissions. This is likely to be because nitrogen

and sulphur emissions in the EU have been tightly regulated for a long period of time via

air quality standards and consequently, substantial reductions in emissions from cleaner and

more productive technology were achieved some time ago.
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1 Introduction

It is common practice in e¢ ciency studies where there is a negative externality associated with

production to jointly model the negative externality and the production of marketed output. By

far and away the most popular approach to model such a situation is non-parametric (i.e. Data

Envelopment Analysis, DEA) and involves using a multiple output-oriented speci�cation of the

production technology, where at least one output is undesirable. Studies which have adopted

this approach where at least one pollutant is modelled as an undesirable output include Färe et

al. (1989; 1996), Tyteca (1997), Hernandez-Sancho et al. (2000), Reinhard et al. (2000), Weber

and Domazlicky (2001) and Zaim and Taskin (2000). Alternative approaches are parametric

(i.e. Stochastic Frontier Analysis, SFA) and involve using either an input-oriented or multiple

output-oriented approach. Studies which use the input-oriented approach and where pollution is

the negative externality include Reinhard et al. (1999; 2000) and Atkinson and Dorfman (2005).

Glass et al. (2013a) also use the input-oriented approach where urban highway congestion is the

negative externality.1 There are two multiple output-oriented methods. The �rst involves using

an inverse transformation of the undesirable output to obtain a good output and has been applied

in the context of pollution by Fernández et al. (2005) and Koop and Tole (2008). The second

is due to Cuesta et al. (2009) and is the parametric counterpart to studies such as Färe et al.

(1989). With this method, a hyperbolic distance function is used where the outputs vector is

treated asymmetrically by allowing equiproportional desirable output expansion and undesirable

output contraction.

In all the aforementioned models the negative externality is included in the technology so

the externality therefore in�uences productive performance (i.e. e¢ ciency and TFP growth).

We use exclusively parametric techniques in our empirical analysis and as an alternative to the

above models we refer to the theoretical environmental economics literature which posits that

TFP in�uences environmental quality (Chimeli and Braden, 2005; Chimeli, 2007). Along these

lines we adopts a two-stage empirical methodology. First, we obtain two estimates of productive

performance for European countries (technical e¢ ciency and TFP growth) which have a well-

established foundation as they are obtained in Stage 1 using the stochastic production frontier

framework, from which we omit pollutants. Second, in Stage 2 these measures of productive

performance are used as regressors in models of per capita emissions of nitrogen and sulphur

oxides (NOx and SOx) for European countries.2 In the Stage 2 models we explicitly account for

1The approach in Reinhard et al. (1999; 2000) and Glass et al. (2013) involves estimating a standard input
distance frontier where the negative externality is modelled as an input. Atkinson and Dorfman (2005), on the
other hand, use an input distance frontier but instead of the negative externality being modelled as an input, the
externality is allowed to shift the best practice frontier.

2We can include both e¢ ciency and TFP growth as regressors in models of per capitaNOx and SOx emissions to
capture di¤erent aspects of productive performance for two reasons. Firstly, in contrast to TFP growth, e¢ ciency
is a level variable. Secondly, it will become clear further in the paper that the e¢ ciency change component of TFP
growth is relatively small. In addition, although we are not aware of an empirical study which uses measures of
productive performance from a �tted stochastic frontier model as independent variables in a second-stage model
of emissions, this approach is common in the extensive literature on banking e¢ ciency. For example, Wheelock
and Wilson (2000) use cost ine¢ ciency as an explanatory variable in a model of competing risks in U.S. banking;
Cipollini and Fiordelisi (2012) explain the �nancial distress of European banks using, among other things, pro�t
e¢ ciency; and cost e¢ ciency is a regressor in a model of bank competitiveness in Casu and Giradone (2009).
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the spatial dependence of per capita NOx and SOx emissions.

We focus on NOx and SOx rather than other pollutants such as carbon dioxide (CO2) because

the case for spatial modelling ofNOx and SOx is now well-established (see, for example, Maddison,

2006; 2007). More speci�cally, there are two arguments for spatial modelling of NOx and SOx.

The �rst relates to NOx and SOx being transboundary pollutants which in the context of the

models we estimate in Stage 2 means that a proportion of emissions which relate to economic

activity in one European country come to rest in another European country because of things

such as the prevailing wind direction and the distance emissions travel.3 On the other hand,

CO2 di¤ers from NOx and SOx as it is a global pollutant so emissions from any country in the

world will contribute to global warming and thus have a worldwide impact. Moreover, because

of the availability of rich meteorological source-receptor tables for NOx and SOx as a result of

the European Monitoring and Evaluation Program (EMEP), we capture the di¤erences in the

transboundary nature of NOx and SOx across European countries in the spatial modelling in

Stage 2. This is because the source-receptor tables contain the amount of emissions that relate

to economic activity in one European country but which travel to each of the other European

countries in the sample.4 Following some simple manipulation of the source-receptor tables we

obtain the spatial weights matrices for the per capita NOx and SOx models in Stage 2. To

illustrate, from the annual source-receptor tables over the period 1997�2008, the average fraction
of NOx and SOx emissions which are deposited outside a country�s own borders range from 28%

(Spain)-98% (Moldova) and from 14% (Spain)-95% (Latvia), respectively.5

The second argument for spatial modelling of NOx and SOx is a theoretical one and also

relates to the transboundary nature of the pollutants, which gives rise to the possibility of game

playing between European countries. As we have noted above, a large proportion of the NOx

and SOx emissions for some European countries come to rest outside their borders, whereas for

others only a small proportion of their emissions travel to countries elsewhere in Europe. In the

classic �acid rain game�(e.g. Halkos and Hutton, 1993) the emissions of sulphur dioxide (SO2) for

European countries are interdependent because countries respond to transboundary deposition of

pollution by adjusting their domestic emissions. In particular, for 27 European countries Halkos

and Hutton (1993) show that acid rain in Europe from SO2 emissions causes greater environmental

3Most emissions of a transboundary pollutant are internalised (i.e. emissions come to rest within the borders of
the country which is responsible) as they fall to ground in their dry form within 300 km of the source. Sulphuric
acid rain, on the other hand, is often externalised (i.e. it comes to rest outside of the borders of the country
which is responsible) as it can have a long-range impact and may fall to ground up to 2; 000 km from its source
(Maddison, 2007).

4As pointed out by an anonymous referee, Anselin (2001) outlines some of the issues which arise when using
spatial econometric techniques to model environmental quality. To illustrate, one issue which is often encountered
is the spatial scale mismatch between economic data for adminstrative units and the measurment of environmental
quality which may take the form of values for a regular grid of squares or pixels. This is not an issue in our empirical
analysis because the economic data, emissions data and EMEP source-receptor tables all relate to individual
European countries.

5As a result, relatively little of the impact associated with NOx and SOx emissions is felt by countries such as
Moldova and Latvia. To illustrate, gaseous sulphur dioxide emissions have been found to preceed small particulate
matter which have been linked to premature mortality (Pope et al., 1995). Also, these particles impair visibility
in urban areas and are thought to alter planetary re�ectivity masking temporarily the e¤ects of climate change
(Stern and Kaufman, 2000).
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damage when countries do not cooperate.6 This is because for a European country its privately

e¢ cient level of emissions are higher than its emissions under the e¢ cient cooperative solution.7

In Stage 1 we estimate non-spatial and local spatial stochastic production frontier models.

Likelihood ratio (LR) tests indicate that all eleven local spatial frontier models are preferred

to the non-spatial frontier model. Furthermore, we use the Akaike Information Criteria (AIC)

and the Bayesian Information Criteria (BIC) to choose between the local spatial frontier models.

When we use the technical e¢ ciency and TFP growth variables from our preferred local spatial

frontier model as regressors in the spatial models of per capita NOx and SOx emissions, in both

models only TFP growth has signi�cant e¤ect. In particular, we �nd that TFP growth from our

preferred local spatial frontier model has a positive and marked e¤ect in the spatial models of

per capita NOx and SOx emissions. Putting these results into context, if it assumed that TFP

growth falls across Europe then the spatial models of per capita NOx and SOx emissions predict,

on average, that: (i) TFP growth of a European country would have to fall by 5:83% to achieve a

10% fall in its per capita NOx emissions; and (ii) TFP growth of a European country would have

to fall by 2:04% to achieve a 10% fall in its per capita SOx emissions. In both these cases the

fall in a country�s TFP growth to achieve a 10% fall in per capita emissions is smaller than the

corresponding non-spatial model predicts. This is because with the spatial speci�cation, some of

the fall in a country�s per capita emissions is due to a fall in TFP growth spillovers coming to the

country, which is overlooked by the non-spatial speci�cation.

Førsund and Hjalmarsson (1988) highlight the implications of the choice of technology in

energy intensive industries for long run technical change, where technical change is an important

determinant of energy usage and hence emissions. Given our spatial models of per capitaNOx and

SOx emissions predict that further reductions in per capita emissions would be at the expense of a

country�s TFP growth, we conclude that the easiest reductions in per capita emissions from using

newer capital which also leads to a rise in TFP growth have already occurred. This is entirely

plausible because in the EU NOx and SOx emissions have been tightly regulated for some time

via air quality standards. For example, to meet progressively tighter air quality standards there

has been widespread installation of �scrubbers� by EU coal-�red power plants to reduce SO2
emissions.8 In the context of stringent regulation of EU air quality, it is reasonable therefore to

conclude from our empirical results that the development and di¤usion of new greener technology

is key to further reductions in per capita NOx and SOx emissions. More speci�cally, renewable

energy technology undoubtedly has a big role to play in further reductions of per capita NOx and

SOx emissions and is the subject of very recent work by Førsund and Hjalmarsson (2011).

The remainder of this paper is organised as follows. Section 2 discusses how we account for the

spatial dependence in the cross-sections. In Section 3 we set out Stages 1 and 2 of the empirical

methodology. Section 4 discusses the data and the speci�cation of the spatial weights matrices.

In Section 5, the empirical results are presented and analysed. We conclude in Section 6 by

6Countries do not cooperate when each country only considers the national marginal damage of its emissions.
Alternatively, countries cooperate when each country considers the marginal damage of its emissions across Europe.

7See Figure 10:15 in Perman et al. (2003).
8An SO2 scrubber system is the informal name for �ue gas desulphurisation technology, which removes or

�scrubs�SO2 emissions from the exhaust of coal-�red power plants.
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summarising the salient features of the methodology and the key empirical �ndings.

2 Accounting for Spatial Dependence and Related Liter-

ature

In Stage 1 of the empirical methodology we incorporate spatial dependence into the SFA by

allowing spatial lags of the inputs and spatial lags of the exogenous variables to shift the production

frontier technology. The spatial lags of these variables depend on the spatial weights matrix which

must be speci�ed in advance of estimating the model. In Stage 1 we use eleven speci�cations of

the spatial weights matrix, where the speci�cations are weighted by various proxies for economic

distance or various proxies for geographical-economic distance. The �rst speci�cation of the

spatial weights matrix in Stage 1 is a comprehensive proxy for economic distance and involves

constructing a dense speci�cation of the spatial interaction by using all the pairwise import �ows

as spatial weights. We also use ten sparse speci�cations of the spatial weights matrix in Stage

1, all of which are subsets of the matrix weighted by the full set of import �ows. Speci�cally,

�ve of the ten sparse speci�cations are proxies for economic distance where the spatial weights

are imports on a country�s biggest 3 � 7 import �ows. The other �ve sparse speci�cations are
proxies for geographical-economic distance, where the weights are imports on a country�s nearest

3� 7 import �ows. In Section 4 we discuss these spatial weights matrices in more detail. We also
recognise that economic distance between two countries will di¤er depending on the direction.

We therefore provide a justi�cation for using import �ows rather than export �ows as a proxy for

economic distance.

Putting the Stage 1 methodology into context, it makes a contribution to the small body of

literature on spatial stochastic frontier modelling. A small number of studies estimate stochastic

frontier models which account for global spatial dependence (i.e. �rst order neighbour e¤ects

through to (N � 1)th order neighbour e¤ects) and calculate e¢ ciency using the cross-sectional
speci�c e¤ects. The �rst of these studies is due to Druska and Horrace (2004), who propose a

GMM spatial error stochastic frontier model with �xed e¤ects which is an extension of Kelejian

and Prucha�s (1999) speci�cation for cross-sectional data. Speci�cally, they model global spatial

dependence in production by including the spatial error term in the set of variables which shift

the production frontier technology. They then calculate time-invariant e¢ ciency from the cross-

sectional speci�c e¤ects using the Schmidt and Sickles (1984) panel data method. Glass et al.

(2013b; 2014) adopt a similar approach by following Cornwell et al. (1990) and using the �xed

e¤ects from a spatial lag stochastic frontier model to estimate time-varying e¢ ciency. With the

Druska and Horrace (2004) speci�cation, the spillover marginal e¤ect relates to the disturbance.

This e¤ect, however, is not as informative as spillover e¤ects which relate to the explanatory

variables, as is the case in Glass et al. (2013b; 2014) and for the local spatial stochastic frontier

model which we propose here. In addition, the local spatial stochastic frontier model which we

set out in Stage 1 di¤ers from the models in Druska and Horrace (2004) and Glass et al. (2013b;

2014) because rather than calculate e¢ ciency from the cross-sectional speci�c e¤ects, we calculate

e¢ ciency by making an assumption about the distribution of the ine¢ ciency component of the
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error term.

By introducing spatial lags of the inputs and spatial lags of the exogenous variables, all of

which shift the production frontier technology, we apply to SFA the approach used in Baltagi

and Levin (1986) and Baltagi et al. (2000) to analyse how cigarette demand in a U.S. state is

a¤ected by cigarette prices in neighbouring states. Although this approach only captures local

spatial dependence (i.e. �rst order neighbour e¤ects), it is a simple way to account for spatial

interaction. This is because, as is highlighted in Baltagi and Levin (1986) and Baltagi et al.

(2000), the local spatial variables are not endogenous so a local spatial stochastic frontier model

can be estimated using standard Maximum Likelihood (ML) procedures. Unlike a �tted local

spatial stochastic frontier model where the parameters can be interpreted as elasticities, if we

estimated a stochastic frontier model which accounts for global spatial dependence via a spatial

lag of the dependent variable, the coe¢ cients on the independent variables cannot be interpreted

as elasticities (LeSage and Pace, 2009). This is because the marginal e¤ect of an independent

variable is a function of the spatial lag variable. To disentangle the e¤ect of an independent

variable from the e¤ect of the spatial lag variable, LeSage and Pace (2009) propose an approach

to calculate direct (i.e. own) and indirect (i.e. spillover) elasticities.

In Stage 2 we estimate spatial lag models for per capita NOx and SOx emissions because as

we noted above, and importantly unlike the spatial error model, with the spatial lag speci�cation

we can distinguish between the direct and indirect marginal e¤ects of the independent variables.

The average direct e¤ect estimates the average impact of changing an independent variable in a

particular cross-sectional unit on that unit�s dependent variable, and takes into account feedback

e¤ects (i.e. e¤ects which pass through �rst order neighbours and higher order neighbours via the

spatial multiplier matrix and back to the unit which initiated the change). The average indirect

e¤ect can be calculated two ways which yield estimates of the same magnitude. The �rst way

of calculating the average indirect e¤ect estimates the average impact on one unit�s dependent

variable following a change in an independent variable for all the other units. The second way

estimates the average impact of a change in an independent variable for one unit on the dependent

variable of all the other units. The average total e¤ect of an independent variable is the sum of

the average direct and average indirect elasticities. By calculating and interpreting the direct,

indirect and total marginal e¤ects, we extend recent studies which estimate the spatial lag model

to analyse sulphur emissions for European countries (Ivanova, 2011; Maddison, 2006; 2007).

3 Empirical Methodology

3.1 E¢ ciency and Productivity Analysis in Stage 1

3.1.1 A Stochastic Frontier Model with Local Spatial Dependence

Technical e¢ ciency is the �rst aspect of productive performance which is used as an independent

variable in the spatial lag models of per capita NOx and SOx emissions. Sets of e¢ ciency scores

are obtained from non-spatial and local spatial stochastic frontier models. The local spatial

stochastic frontier models for panel data which we estimate have the following form, where lower
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case letters denote logged variables unless otherwise stated.

yit = �+ TL (xit; t) + zit� +
NX
j=1

wijxjt�+

NX
j=1

wijqjt� + vit � uit; (1)

i = 1; :::N ; t = 1; :::; T

where N is a cross-section of units operating over a �xed time dimension T , yit is the output of

the ith unit at time t and � is the intercept parameter. xit is a (1�R) vector of input levels, t is
a time trend and TL (xit; t) = xit+

1
2
x
0
it�xit+ �1t+ �2t

2+ xitt� represents the technology as the

translog approximation of the log of the production function, where  is a vector of parameters

and � is a matrix of parameters to be estimated. When estimating a country production function,

a Cobb-Douglas speci�cation is often used which may involve imposing constant returns to scale.

We, however, use the �exible translog speci�cation which, unlike the Cobb-Douglas function,

allows returns to scale to vary at every point in the sample. Since we use the estimation results

for Eq. 1 to compute TFP growth over the sample by summing its three components (technical

change, e¢ ciency change and scale change), by allowing returns to scale to vary we do not assume

at every point in the sample that the scale change component of TFP growth is zero. In addition,

zit is a (1 �M) vector of exogenous characteristics for the ith unit, xjt is a (1 � R) vector of

input levels for the jth neighbouring unit and qjt is a (1� P ) vector of exogenous characteristics

for the jth neighbouring unit, where � , � and � are vectors of parameters to be estimated.

wij is the known ijth element of the (N �N) spatial weights matrix, W. W captures the

spatial arrangement of the cross-sectional units and also the strength of the spatial interaction

in the cross-sections. W must be speci�ed prior to estimation and is usually speci�ed according

to some measure of geographical or economic proximity. As is standard in applied spatial econo-

metrics, all the diagonal elements ofW are set to zero to recognise that no unit can be its own

neighbour and we also use a row-normalisedW. W is normalized to have row sums of unity so

that a spatially lagged variable is a weighted average of observations for neighbouring units, which

preserves the scaling of the data for neighbouring units across space and thus facilitates interpre-

tation. Whereas only the z variables shift the production frontier technology for the non-spatial

counterpart of Eq. 1, the z variables, the spatial lags of the inputs
�PN

j=1wijxjt�
�
and the spatial

lags of the exogenous variables
�PN

j=1wijqjt�
�
all shift the production frontier technology in Eq.

1.

As is standard in SFA, the error structure is "it = vit � uit, where it is assumed that "it is

the observed deviation from the best practice production frontier, vit is the symmetric normally

distributed idiosyncratic error term, vit � N (0; �2v), uit is a non-negative error term which mea-

sures time-variant ine¢ ciency, and vit and uit are both i.i.d. Speci�cally, it is assumed that uit
follows a truncated normal distribution, where the distribution has a mean � and is truncated

at zero, uit � jN (�; �2u)j. This is a more �exible assumption than assuming that uit follows a
non-negative half-normal distribution with a mean of zero, uit � jN (0; �2u)j (see Stevenson, 1980,
for further details).
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3.1.2 Generalised Malmquist TFP Growth

The second aspect of productive performance which is used as a regressor in the spatial lag models

of per capita NOx and SOx emissions is TFP growth. For the technology in Eq. 1, TFP growth

is the rate of growth of output minus the rate of growth in a multiple input quantity index. Orea

(2002) notes that any TFP growth index should be characterised by four properties: (i) identity,

(ii) monotonicity, (iii) separability and (iv) proportionality. The implications of the four properties

for a production frontier technology are as follows. Identity requires that if inputs and output

do not change, the TFP growth index is unity. Monotonicity requires that the weighted input

growth rate is chosen so that higher output and a lower input unambiguously improve TFP growth.

Separability, which is a property of the technology set of Eq. 1, permits generalization from a

single output and a single input to multiple inputs in the case of Eq. 1. Finally, proportionality

requires that the weights for the input growth index sum to unity. Speci�cally, the measure of TFP

growth which we use is a Generalised Malmquist TFP index. Coelli et al. (2003) demonstrate

that a Generalised Malmquist TFP index which satis�es the above properties can be constructed

from the translog approximation of the production function. Since lnTEit = �uit, where TE
denotes technical e¢ ciency, and by making use of the quadratic identity lemma (Caves et al.,

1982) the following expression for lnTFPGit+1 can be obtained.

lnTFPGit+1 = [lnTEit+1 � lnTEit] + 1
2
[(@yit+1=@t) + (@yit=@t)]

+

�
1
2

r=RP
r=1

((exr;it+1SFit+1) + (exr;itSFit)) (xr;it+1=xr;it)

�
;

(2)

where TFPGit+1 measures Generalised Malmquist TFP growth for the ith unit in period t + 1

and exr is a column vector of input elasticities (r = 1; :::; R). SF is the scale factor (see Saal et

al., 2007):

SF =

0BB@
r=RP
r=1

exr + 1

r=RP
r=1

exr

1CCA = 1�RTS;

and RTS is the scale elasticity of the technology:

RTS = �

0BB@ @y
r=RP
r=1

@xr

1CCA
�1

�
 
r=RX
r=1

exr

!�1
:

The three terms in square brackets in Eq. 2 represent the familiar Generalised Malmquist

decomposition of TFPG into e¢ ciency change, EC, technical change, TC, and scale change, SC:

TFPG = EC + TC + SC: (3)

Using the estimates of technical e¢ ciency and the �rst order and second order elasticity and scale

parameters from the �tted translog stochastic production frontier (Eq. 1) we calculate EC, TC
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and SC and sum to obtain TFPG.

3.2 Spatial Lag Model in Stage 2

The speci�cation of the spatial lag model for panel data which we estimate is:

eit = �
NX
j=1

wijejt + �+ git� +  i + "it; (4)

where eit is per capita emissions of NOx or SOx for the ith country at time t, � is the intercept

parameter, git is a (1�K) vector of observations for the independent variables where k = 1; :::; K,
and � is a (K � 1) vector of parameters to be estimated.  i is a unit speci�c time-invariant

e¤ect to capture unobserved heterogeneity (�xed e¤ects, FEs, or random e¤ects, REs) and "it is

an i.i.d disturbance for i and t with zero mean and variance �2. wij in Eq. 1 di¤ers from wij

in Eq. 4 because the spatial weights matrices are pre-speci�ed di¤erently. Otherwise the above

discussion ofW for Eq. 1 also applies here. The inclusion of the spatial lag term, �
PN

j=1wijejt,

in Eq. 4 captures the global spatial dependence of the dependent variable. � is the spatial lag

parameter and as is standard in applied spatial econometrics we make the following assumptions.

(i) (I� �W) is non-singular and the parameter space of � is
�

1
fmin

; 1
�
, where I is the (N �N)

identity matrix and fmin is the most negative real characteristic root ofW. Since we use a row-

normalisedW in Stage 2, 1 is the largest real characteristic root ofW which rules out explosive

growth. (ii) The row and column sums of W and (I� �W) are bounded uniformly in absolute

value before W is row-normalized. As a result of this assumption the spatial process for the

dependent variable has a �fading�memory (e.g. Kelejian and Prucha, 1998; 2010).

We estimate the spatial lag speci�cation rather than a spatial error model because the spatial

lag term is a more explicit representation of global spatial dependence than the spatial error term.

Consequently, as we noted above, from a spatial lag model we can estimate indirect elasticities

for the g variables. From a spatial error model, however, the only indirect elasticity which can

be estimated is for ", which is not particularly informative. LeSage and Pace (2009) suggest the

following approach to calculate the direct, indirect and total marginal e¤ects for the g variables

and the associated signi�cance levels. Stacking successive cross-sections we can rewrite Eq. 4 as

follows:

et = (I� �W)�1 ��+ (I� �W)�1  + (I� �W)�1Gt� + (I� �W)�1 "t; (5)

where et is an (N �1) vector of stacked observations for per capita NOx or SOx emissions, � is an

(N � 1) vector of ones,  is an (N � 1) vector of FEs or REs, Gt is an (N �K) matrix of stacked

observations for the independent variables and "t is an (N � 1) vector of stacked idiosyncratic
disturbances. Di¤erentiating Eq. 5 with respect to the kth independent variable, gk;t, yields the

following vector of partial derivatives:
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h
@e
@gk;1

@e
@gk;2

: : @e
@gk;N

i
t
=

266666664

@e1
@gk;1

@e1
@gk;2

: : @e1
@gk;N

@e2
@gk;1

@e2
@gk;2

: : @e2
@gk;N

: : : : :

: : : : :
@eN
@gk;1

@eN
@gk;2

: : @eN
@gk;N

377777775
t

(6a)

= (I� �W)�1

26666664
�k 0 : : 0

0 �k : : 0

: : : : :

: : : : :

0 0 : : �k

37777775 ; (6b)

where the right-hand side of Eq. 6b is independent of the time index. Since either Eq. 6a or Eq.

6b yield di¤erent direct (i.e. own) and indirect (i.e. spillover) elasticities for each unit, to facilitate

interpretation LeSage and Pace (2009) suggest reporting a mean direct elasticity (average of the

diagonal elements on the right-hand side of Eq. 6b), a mean indirect elasticity (either the average

row sum or average column sum of the non-diagonal elements on the right-hand side of Eq. 6b

which yield estimates of the mean indirect elasticity of the same magnitude) and a mean total

elasticity (sum of the mean direct and mean indirect elasticities).

Calculation of the mean direct, mean indirect and mean total elasticities is straightforward

but calculation of the associated signi�cance levels is less so. This is because having estimated

Eq. 4, it cannot be established from the t statistics derived from the variance-covariance matrix

whether the mean direct, mean indirect and mean total elasticities are signi�cant. This is because,

as we have seen from Eq. 6b, the mean direct, mean indirect and mean total elasticities are

calculated using a number of coe¢ cients and the dispersion of the mean direct, mean indirect

and mean total elasticities therefore depends on the dispersion of all the coe¢ cient estimates

used to calculate these elasticities. LeSage and Pace (2009) therefore propose Bayesian MCMC

simulation of the distributions of the mean direct, mean indirect and mean total e¤ects using

the variance-covariance matrix associated with the ML estimates. This involves drawing 1; 000

parameter combinations of (�̂; �̂; �̂2) from the variance-covariance matrix where each parameter

has a random component drawn from a normal distribution with a mean of zero and a standard

deviation of one. Mean direct, mean indirect and mean total elasticities are then calculated

for each parameter combination using the right-hand side of Eq. 6b. The mean elasticities

which we report are the averages over the 1; 000 estimates of the mean e¤ects. The associated t

statistics are obtained by dividing the reported mean elasticity by the standard deviation across

the corresponding 1; 000 mean elasticities.

A spatial lag model can be estimated parametrically using ML, GMM and Bayesian MCMC.

Here we follow the procedure in Elhorst (2009) and use ML to estimate Eq. 4. The estimation of

Eq. 4 has a number of important features. Firstly, since the spatial lag variable is endogenous,

the assumption of the standard regression model that E
h�PN

j=1wijejt

�
"it

i
= 0 is violated. We
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adjust for this endogeneity and also the fact that "t is not observed in the usual way by introducing

to the log-likelihood function the scaled logged determinant of the Jacobian of the transformation

from "t to et (i.e. include as a term in the log-likelihood function T ln jI� �Wj). Secondly, when
we account for the time-invariant unobserved heterogeneity in Eq. 4 using FEs, we demean in

space to circumvent the incidental parameter problem associated with the FEs, which eliminates

these e¤ects (and the intercept). Lee and Yu (2010) show that demeaning in space to estimate a

FEs spatial model which contains the spatial lag variable results in a biased estimate of �2 if N

is large and T is �xed, which we denote �2B where the bias is of the type identi�ed in Neyman

and Scott (1948). Following Lee and Yu (2010) and Elhorst (2012) we correct for this bias by

replacing �2B with the bias corrected estimate of �
2, �2BC =

T�2

(T�1) , which changes the standard

errors. Thirdly, when we account for the time-invariant unobserved heterogeneity using REs and

as a result,  i in Eq. 4 denotes the ith element of a random variable  which is i.i.d with zero

mean and variance �2 ; an additional parameter, & = �2 =�
2, is introduced to Eq. 4 which denotes

the weight attached to the variation in the cross-sections.

4 Data and Speci�cation of the W Matrices

Throughout Stages 1 and 2 of the analysis the data is for 40 European countries which is a good

representative sample of Europe with only a relatively small number of countries omitted to obtain

a balanced panel for Stage 2, which is a standard approach in applied spatial econometrics.9 See

Appendix 1 for a complete list of the 40 countries. The sample period for the SFA in Stage 1 is

1995� 2008 so the study period for the calculation of TFP growth in Stage 1 and the estimation
of the spatial lag models in Stage 2 is 1996� 2008. The data for Stages 1 and 2 is logged where it
is appropriate and the continuous variables which relate to the SFA are then normalised around

their mean values so we can interpret the �rst order parameters from the translog function as

elasticities. In Stage 1, output is real GDP in 2005 international dollars, y, and the �rst input is

the labour input and is the number of people engaged, x1. The second input is real capital stock

in 2005 international dollars, x2.

To calculate y, x1 and x2 we follow Badunenko et al. (2008). We extracted data for the

following variables from the Penn World Table Version 7:0 (Heston et al., 2011), PWT 7:0:

real GDP per capita in 2005 international dollars calculated using the Laspeyres index and the

chain method, denoted as rgdpl and rgdpch in PWT 7:0; population, pop; real GDP per worker

calculated using the chain method, rgdpwok; and investment as a share of rgdpl, ki. Recently,

Johnson et al. (2013) reestimated a number of classic empirical macroeconomic models using

di¤erent vintages of the Penn World Table. They conclude that the estimation results are not

robust across the di¤erent vintages. It will become apparent, however, that we obtain reasonable

estimates of the key input elasticities at the sample mean using data from PWT7:0.

9Although global spatial estimators such as that which we use in Stage 2 can be extended to unbalanced
panel data, their asymptotic properties may become problematic if the reason why data are missing is not known
(Elhorst, 2009). Extending global spatial estimators from balanced to unbalanced panel data therefore involves
making a strong assumption about why observations are missing. For example, Pfa¤ermayr (2013) assumes that
data are missing at random for an unbalanced spatial panel.
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x1 = (rgdpch � pop)=rgdpwok, y = x1 � rgdpwok and we estimate the data for x2 in two steps.
Firstly, we calculate real aggregate investment which is rgdpl�pop�ki. Secondly, real capital stock
in 1995 is assumed to be depreciated real aggregate investment in 1994, where we follow much

of the literature on estimating capital stock and use a depreciation rate of 6%.10 Real capital

stock for the remainder of the sample is then estimated using the perpetual inventory method.

z in Eq. 1 is a (1 � 4) vector of the following variables: (i) arable land as a share of total land,
z1, where the data is from the World Bank; (ii) sum of imports and exports as a share of GDP

(i.e. trade openness), z2; (iii) government spending as a share of GDP, z3, where the data for z2
and z3 is from PWT 7:0; and (iv) a dummy variable for EU membership, z4. Wq is a (1 � 3)
vector of spatial lags of the z1, z2 and z3 variables. We omit a spatial lag of the z4 variable to

avoid perfect collinearity. If we included a spatial lag of z4, the z4 and Wz4 variables would be

perfectly collinear because z4 = Wz4. This is because pre-multiplying a dummy variable by a

spatial weights matrix yields the dummy variable. For the same reason we do not include spatial

lags of t and t2 as exogenous characteristics, although to account for own technical progress we

include t, t2 and the cross terms including t as part of the technology.

Eq. 1 is estimated using eleven row-normalised speci�cations ofW. The spatial weights in all

eleven speci�cations are calculated using data from the IMF Direction of Trade Statistics database

on import �ows in 2000 US dollars for the period 2000 � 2008. The �rst speci�cation of W is

a densely speci�ed comprehensive proxy for economic distance and is denoted WAll. WAll is

constructed by using the average real imports of the ith country from each of the other countries

in the sample as spatial weights. The other ten speci�cations of W are sparsely populated, �ve

of which are proxies for geographical-economic distance (denotedW3Near; :::;W7Near) and use as

spatial weights average real imports of the ith country from the nearest 3� 7 countries according
to distances between capital cities. The remaining �ve speci�cations ofW are additional proxies

for economic distance (denotedW3Big; :::;W7Big) and use as spatial weights average real imports

of the ith country on its biggest 3� 7 real import �ows. Finally, we note that economic distance
or geographical-economic distance between two countries will di¤er depending on the direction.

Put another way, economic distance or geographical-economic distance between two countries will

di¤er depending on whether the spatial weights are based on real import �ows or real export �ows.

For Stage 1, the weights are based on average real import �ows. This is because the spatial lags

of the inputs and the spatial lags of the exogenous characteristics are weighted averages of the

observations for some/all of the other countries in the sample and imports is a more appropriate

indicator of the extent to which a country draws on, for instance, the labour force and the capital

stock of another country in the sample.

For the spatial lag models in Stage 2, the dependent variable is per capita emissions of nitrogen

oxides, NOx=Pop, or per capita emissions of sulphur oxides, SOx=Pop. The NOx and SOx

emissions data is that which is used in the EMEP models and reports. We do not use the NOx

10We thank Joseph Pearlman for suggesting this approach to estimate real capital stock for the �rst year of the
sample. Although this is not the usual approach to estimate real capital stock for the �rst year of a sample, it
will become apparent that the capital elasticities in Stage 1 using this approach are sensible. The conventional
approach to estimate real capital stock for the �rst year of a sample is to use fully depreciated real GDP but this
would require several years of additional data, which was not available for all the countries in the sample.
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and SOx emissions data which countries submit to EMEP because of missing observations and

inaccuracies. For example, there can be inaccuracies because there is an incentive for countries to

underreport emissions. In Figure 1 we present average annual per capita emissions of NOx and

average annual per capita emissions of SOx over the study period for Stage 2. We also present as

a comparator average annual per capita emissions of CO2. It is therefore evident that NOx=Pop

and, in particular, SOx=Pop have fallen over the study period which is due to stringent regulation

of both pollutants in the EU via air quality standards.

[Insert Figure 1]

The spatial weights matrices in Stage 2 are based on the 1997� 2008 EMEP source-receptor
tables forNOx and SOx emissions. These tables are also referred to as transport matrices or blame

matrices. To obtain the spatial weights matrices we calculate average source-receptor tables for

NOx and SOx over the above time period, set all the elements on the main diagonal equal to

zero and row normalise. Each cell in the NOx and SOx spatial weights matrices refers to wij and

is the fraction of country j�s total emissions which are deposited outside its borders in country i

(Ivanova, 2011).11

The independent variables in the Stage 2 spatial lag models are based on those used by Cole

(2007) in his country level analysis of SO2 and CO2 emissions. Speci�cally, the regressors in the

Stage 2 models are: (i) real GDP per capita (2005 international dollars in 000s), RGDP=Pop,

where the data is from PWT 7:0; (ii) (RGDP=Pop)2 to capture the possibility of there being a

threshold level of income below which per capita emissions rise and beyond which they fall i.e. an

Environmental Kuznets Curve (EKC) relationship;12 (iii) sum of exports and imports as a share

of GDP, Trade_Share, is included to capture the e¤ect of trade openness, where the data is from

PWT 7:0;13 and (iv) value added by the industrial sector as a share of GDP, Ind_Share, where

the data is from the World Bank.14 This core set of independent variables is then supplemented

with TFPG and TE from a Stage 1 non-spatial or local spatial stochastic frontier model. The

descriptive statistics for the continuous variables which are used in Stages 1 and 2 are presented

in Table 1 and are for the raw data.
11As noted in 3:1:1 above, all the speci�cations of W in Stage 1 are row-normalized so the spatial lags of the

inputs and exogenous variable which shift the production frontier technology in Eq. 1 are weighted averages of
observations for neighbouring units. The speci�cation of W in Stage 2 is also row-normalised. The spatial lag
of the dependent variable in Stage 2 is therefore a weighted average of observations for the dependent variable
for neighbouring units. As result, in Stages 1 and 2 spillovers are positively related to the relative (and not the
absolute) measure of proximity used to con�gureW.
12We control for the possibility of an EKC relationship but this is not a relationship which we focus on in this

paper. This is because, �rstly, the empirical focus of Stage 2 is the direct and indirect e¤ects of TFPG and TE on
NOx=Pop and SOx=Pop. Secondly, the EKC literature is very well developed. For an up-to-date appraisal of the
EKC literature see Carson (2010). Furthermore, we explored including (RGDP=Pop)3 to capture the possibility of
a further turning point but for reasons which are explained in the analysis of the results this variable was dropped.
13The impact of trade on the environment is an issue which has received a lot of attention in recent years. We

control for the e¤ect of trade on the environment but we do not focus on this relationship in the analysis of the
results because our interests lie elsewhere. For a recent survey of the literature on the trade-environment nexus
see Frankel (2009).
14We follow the spatial analysis of sulphur emissions in Europe by Ivanova (2011) and do not include dummy

variables for international environmental agreements (IEAs). This is because a lot of the empirical evidence on
the e¤ects of IEAs suggests that they are symbolic, as they mandate reductions in pollution which would have
been achieved in their absence (e.g. Murdoch and Sandler, 1997; Murdoch et al., 1997). See Ivanova (2011) for a
discussion of the empirical and game theoretic rationales for not including dummy variables relating to IEAs.
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[Insert Table 1]

5 Results and Analysis

5.1 E¢ ciency and Productivity Results from Stage 1

5.1.1 Model Selection and Estimation Results for the Stochastic Frontier Models

The non-spatial stochastic frontier model and all the local spatial stochastic frontier models are

�tted using the Battese and Coelli (1992) time-varying decay estimator. As we touched on above,

to test each of the eleven local spatial stochastic frontier models against the non-spatial model we

perform a series of LR tests. The null hypothesis for each LR test is that the coe¢ cients on the

spatial lags of the inputs and the coe¢ cients on the spatial lags of the exogenous characteristics

are not jointly signi�cant. For all the local spatial stochastic frontier models we reject the null at

the 0:1% level, thereby justifying the inclusion of spatial lags of the inputs and spatial lags of the

exogenous characteristics.15. Given that the LR tests favour each of the local spatial stochastic

frontier models over the base non-spatial model, we adopt the approach which Pfa¤ermayr (2009)

uses to choose between di¤erent spatial weights matrices for a spatial lag model and use the AIC

to choose between the local spatial models. To check the robustness of the model selection using

the AIC we also use the BIC. We have a strong preference for theW7Near as it yields the lowest

values of the AIC and BIC. The values of the AIC and BIC support the LR test results, as we

again favour the eleven local spatial stochastic frontier models over the non-spatial model because

all the local spatial models have lower AIC and BIC values. The values of the AIC and BIC for

the non-spatial and local spatial stochastic frontier models are presented in Appendix 2.

Notwithstanding that the time-varying decay estimator assumes that the annual rate of change

in ine¢ ciency is the same for all countries in the sample, the e¢ ciency scores from our preferred

W7Near local spatial model are sensible because, as we would expect, the �ve countries with the

highest average e¢ ciency scores over the study period are from Northern and Western Europe

(1. Luxembourg; 2. UK; 3. Norway; 4. Netherlands; 5. Sweden) and the �ve countries with

the lowest average e¢ ciency scores are from Eastern Europe (40. Moldova; 39. Armenia; 38.

Azerbaijan; 37. Ukraine; 36. Belarus).16 On economic grounds a case could be made for theWAll

model over the other ten local spatial models because the other ten speci�cations ofW are based

on imports from a relatively narrow range of countries, when in reality a country imports from a

much wider range of countries. Despite this economic case for theWAll model our preferred model

is W7Near. This is because the e¢ ciency scores from the WAll model are not as reasonable as

those from theW7Near model. For example, on average, three of the �ve most e¢ cient countries

over the study period from theWAll model are from eastern Europe (1. Macedonia; 2. Germany;

15To further illustrate, the LR test statistics range from 68:98 (W4Near)� 180:35 (W7Near) for the eleven tests.
16We experimented with a range of other e¢ ciency estimators by allowing the non-spatial and spatial variables

which shift the frontier technology to also a¤ect the mean of the pre-truncated ine¢ ciency distribution or a¤ect
the variance of the ine¢ ciency distribution and/or the variance of the idiosyncratic disturbance. Despite a number
of countries in the sample being at di¤erent stages of development and transition we obtained the most sensible
set of e¢ ciencies using the time varying decay estimator.
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3. Greece; 4. Poland; 5. Lithuania). We revisit the e¢ ciency estimates in more detail in 5:1:2.

The �tted parameters for the non-spatial stochastic frontier model and �ve local spatial sto-

chastic frontier models, including our preferredW7Near model, are presented in Table 2.17 In the

analysis of the estimation results for the non-spatial and local spatial stochastic frontier models

we place the emphasis on comparing the �ndings from the non-spatial model and our preferred

W7Near model, and only present the estimation results for other local spatial models for illustrative

purposes.

[Insert Table 2]

All the input elasticities from the non-spatial and local spatial stochastic frontier models are

signi�cant at the 0:1% level and satisfy the monotonicity conditions at the sample mean as they

are all positive. It is evident from Table 2 that the labour and capital elasticities from the non-

spatial stochastic frontier model are 0:710 and 0:332, respectively. Again from Table 2 we can

see that the labour elasticity from our preferredW7Near local spatial model falls to 0:570 and the

capital elasticity rises to 0:435 when the local spatial variables are introduced. For the other local

spatial stochastic frontier models (WAll,W3Near �W6Near andW3Big �W7Big) the labour and

capital elasticities range from 0:561� 0:637 and 0:406� 0:440, respectively. It is therefore evident
that for all the non-spatial and local spatial frontier models the labour elasticity is larger than

the capital elasticity, which is also what a number of key macroeconomic studies observe (e.g.

Ireland, 2004, and Smets and Wouters, 2003). Irrespective of whether local spatial dependence

is accounted for, production is always at least broadly characterised by constant returns to scale

with an estimate of 1:042 from the non-spatial model, 1:005 from theW7Near model and estimates

ranging from 0:989�1:049 for the other local spatial frontier models. Finding evidence of constant
returns to scale at the sample mean is consistent with the assumption of constant returns in classic

macroeconomic theories (e.g. Ireland, 2004, and Smets and Wouters, 2003) and with evidence

from key empirical macroeconomic studies (e.g. Burnside et al., 1995).

Moving on to brie�y discuss some of the local spatial parameters. To present a clearer picture

when discussing the results for some of the other local spatial variables, we focus on the �ndings

from our preferred W7Near model. It is apparent from the �tted W7Near model in Table 2

that the coe¢ cient on the spatial lag of the labour input (Wx1), �1, is positive, non-negligible

and signi�cant at the 0:1% level. This suggests that, on average, there are marked positive

labour productivity spillovers from a country�s nearest seven import partners. In contrast, the

coe¢ cient on the spatial lag of the capital input (Wx2), �2, from the �tted W7Near model is

negative, non-negligible and signi�cant at the 0:1% level. This indicates that, on average, there

are non-negligible negative capital productivity spillovers from a country�s nearest seven import

partners, which begs the question: Why might we observe positive labour productivity spillovers

and negative capital productivity spillovers? The negative capital productivity spillovers may

indicate that a country�s exports will fall if, on average, the capital stock of its seven nearest

import partners rises. The positive labour productivity spillovers, on the other hand, may re�ect

17The �tted local spatial stochastic frontier models which are not reported are available from the corresponding
author upon request.
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the opportunity for a country to export more when, on average, the labour force of its seven

nearest import partners increases.

5.1.2 E¢ ciency Scores

A TE score of 1 would place a country on the best practice production frontier and indicate

that the country�s output is as high as possible given its inputs. In the following analysis of the

e¢ ciency scores from the non-spatial and local spatial frontier models we place the emphasis on

comparing the base set of e¢ ciencies from the non-spatial model with those from our preferred

W7Near model. In Appendix 3 we present the average e¢ ciency scores for the 40 countries from

the non-spatial model and our preferred W7Near model, as well as those from four other local

spatial models for illustrative purposes.

The e¢ ciency results for the non-spatial model and the W7Near model are similar. From

Appendix 3 we can see that the average country e¢ ciency and the standard deviation of the

e¢ ciencies for the non-spatial model are 0:607 and 0:244, respectively. These are very similar to the

average country e¢ ciency of 0:576 and the standard deviation of the e¢ ciencies of 0:266 from the

W7Near model. The similarity between the average e¢ ciencies and the average e¢ ciency rankings

from the non-spatial model and theW7Near model is evident because the Pearson correlation and

the Spearman Rank correlation are in both cases around 0:97. This suggests that, on average,

there is only a negligible amount of upward bias in mean e¢ ciency from the non-spatial model

vis-à-vis theW7Near model. However, it will become apparent in due course that even though the

e¢ ciency results from the non-spatial model and theW7Near model are similar, the two e¢ ciency

variables have very di¤erent e¤ects on per capita NOx and SOx emissions in the Stage 2 models.

The above cursory glance in 5:1:1 at the average e¢ ciency scores for individual countries from

the non-spatial model and theW7Near model suggests that the e¢ ciency estimates are reasonable.

We reached this conclusion because for both the non-spatial model and the W7Near model, on

average, the �ve most e¢ cient countries are from Northern and Western Europe and the �ve least

e¢ cient countries are from Eastern Europe. We would expect these countries to be at the top

and bottom of the e¢ ciency rankings because of their geographical location and they have mean

real income per capita in the top and bottom thirds of the sample.

Looking now at the time pro�les of the mean e¢ ciencies for EU and non-EU countries from

the base non-spatial model and the W7Near model in panels (i) and (ii) of Figure 2. There are

two striking features of Fig 2 (i) and Fig 2 (ii). Firstly, for both the non-spatial model and

the W7Near model, the mean annual e¢ ciency of EU countries is substantially larger than the

mean annual e¢ ciency for the non-EU cohort over the entire study period. Secondly, it is evident

that the only noticeable change in the mean annual e¢ ciencies for EU and non-EU countries

from the non-spatial model and the W7Near model is due to the expansion of the EU in 2004.

Speci�cally, it is apparent that in 2004 there is a fall in the mean e¢ ciency of EU countries and

a smaller fall in the mean e¢ ciency of non-EU countries. This suggests that, on average, the

poor performance of the 2004 accession countries vis-à-vis their EU peers outweighs their high

relative performance when they were in the non-EU cohort. This is particularly the case when

we consider the implications of the 2004 enlargement for mean e¢ ciency over the remainder of
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the sample. Our �ndings suggest that the 2004 enlargement resulted in a downward shift in the

mean e¢ ciency of EU countries, whereas the decline in the mean e¢ ciency of non-EU countries

appears to have been temporary.

[Insert Figure 2]

5.1.3 TFP Growth

Annual e¢ ciency change, annual technical change and annual scale change are obtained for each

country from the �tted non-spatial and local spatial translog production frontiers using Eq. 2 and

our summed to obtain annual TFPG. To provide an insight into the TFPG variables which are

used as a regressors in the Stage 2 models, in panels (i) and (ii) of Figure 3 we present average

annual TFPG from: (i) the base non-spatial frontier model and (ii) the preferredW7Near frontier

model. We also present the three constituent parts of average annual TFPG. In Figure 3 a value

of 1:0 for the TFP index or either of its three constituent parts indicates that the annual growth

rate is zero.

[Insert Figure 3]

It is apparent from Figure 3 that the corresponding estimates of TFPG, scale change, technical

change and e¢ ciency change from the non-spatial model and theW7Near model have similar, or

at the very least broadly similar, time pro�les. In addition, in both cases in Figure 3 scale change

is the principal driver of TFPG. We also posit that the rather large estimates of TFPG in

the �rst few years of the sample in Figure 3 are because TFPG in the early years of the study

period is highly dependent on the initial conditions. Given it is the estimates of the scale change

component of TFPG in the �rst few years which are high this is most probably an adjustment

to the assumption about the value of real capital stock in the �rst year of the sample.18 Over the

study period TFPG will be progressively less dependent on the initial conditions. This is evident

from Figure 3 for our preferred W7Near model where we can see from 2000 � 01 through to the
end of the study period, the estimates of TFPG are much more reasonable at just over 10%.

5.2 Elasticities from the Spatial Lag Models in Stage 2

In Table 3 we present the estimation results for ten Stage 2 models. The distinction between

the models in Table 3 is in terms of the dependent variable (NOx=Pop or SOx=Pop) and/or

the speci�cation of the model. The speci�cation of the reported models in Table 3 is provided

in parentheses, where the �rst element in parentheses denotes whether a non-spatial (NSp) or

spatial (Sp) speci�cation is used for the Stage 2 model and the second element denotes the Stage

1 model from which the TE and TFPG regressors are obtained.

[Insert Table 3]

18It was noted in footnote 10 above that the assumption about the value of real capital stock in the �rst year
of the sample yields reasonable estimates of the capital elasticities at the sample mean for the non-spatial and
local spatial frontier models. This assumption about the initial value of real capital stock, however, is not the
conventional approach to obtain a starting value for the stock and was made because of data availability issues.
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Our preferred speci�cation of the Stage 2 models is a pooled model. This is because we

estimated models 5 and 6 in Table 3, which do not include TE and TFPG as regressors, using

pooled data and introduced FEs and REs in successive models. For the pooled models: (i) the

(in)direct RGDP=Pop elasticities are signi�cant and positive; (ii) the (in)direct (RGDP=Pop)2

parameters are negative and signi�cant; and (iii) the (in)direct RGDP=Pop e¤ect is larger than

the (in)direct (RGDP=Pop)2 e¤ect. (i)-(iii) constitutes evidence of an (in)direct EKC. A direct

EKC, or in the parlance of a non-spatial model an own EKC, refers to the well-established inverted

U-shaped relationship between a country�s RGDP=Pop and itsNOx=Pop or SOx=Pop. A indirect

EKC is a new contribution and although not core to this paper is a feature of spatial pollution

models which contain the spatial lag variable. A indirect EKC using, for example, the �rst way

of calculating the indirect marginal e¤ects which was discussed above is an inverted U-shaped

relationship between RGDP=Pop for the other countries in the sample and a country�s NOx=Pop

or SOx=Pop. The FEs and REs speci�cations of models 5 and 6, however, do not yield a complete

set of signi�cant direct and indirect RGDP=Pop and (RGDP=Pop)2 elasticities. This suggests

that the FEs and REs are capturing latent heterogeneity which is embodied in RGDP=Pop

or (RGDP=Pop)2.19 For this reason we prefer the pooled spatial lag speci�cation of the Stage 2

models. We also explored including (RGDP=Pop)3 as an additional independent variable because

of the possibility of a further turning point. When this variable was added to models 5 and 6

in Table 3, the direct and indirect (RGDP=Pop)3 e¤ects were a long way from being signi�cant

so this variable was omitted. To facilitate comparisons between models (RGDP=Pop)3 was not

included in any other model speci�cations.

Our preferred Stage 2 speci�cations for NOx=Pop and SOx=Pop are models 9 and 10, respec-

tively. This is for two reasons. Firstly, we prefer the W7Near stochastic frontier model in Stage

1 so the preferred Stage 2 speci�cation is therefore one where the TE and TFPG independent

variables are from theW7Near Stage 1 model. Secondly, we can see from the reported results for

models 9 and 10 that in both cases the � coe¢ cient is signi�cant at the 1% level or lower, which

justi�es a spatial lag speci�cation rather than models 1�4, which are all non-spatial speci�cations.
Accordingly, in this discussion of the Stage 2 results we focus on models 9 and 10 and in particular

the results for TE and TFPG as they represent the principal empirical contribution of the paper.

The estimation results for the other eight non-spatial and spatial Stage 2 models are reported

and touched on in the discussion for reasons of comparison. We note that � cannot be interpreted

as an elasticity which is why we calculate the direct, indirect and total elasticities. That said,

the estimates of � can be used to indicate the degree of spatial dependence. The estimate of � in

model 10 is just over twice the estimate in model 9, which indicates that SOx=Pop is much more

spatially dependent than NOx=Pop, which is what we would expect to �nd.

In models 3 and 4, which are the non-spatial counterparts of models 9 and 10, the own

coe¢ cients on the TFPG and TE variables are non-negligible and signi�cant at the 1% level or

lower. The estimation results for models 9 and 10 for TE are at odds with those for models 3 and

4 and thus justify the spatial lag speci�cation. This is because the direct TE coe¢ cients in models

19When the FEs and REs are correlated with variables like this, the estimated parameters can be biased and
inconsistent.
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9 and 10 are a long way from being signi�cant. To put the implications of the own/direct, indirect

and total TFPG and TE elasticities from models 3, 4, 9 and 10 which are signi�cant at the 5%

level or lower into context, let us consider the changes in TFPG and TE in an average country

and on average across the other countries in the sample to reduce NOx=Pop and SOx=Pop by

10% in a country. The implications are quite dramatic because from model 3 we can conclude

that to reduce NOx=Pop by, on average, 10% for a European country, the country�s TFPG must

fall by 8:26% or the country�s TE must fall by 13:51%.20 In contrast, for model 9 a reduction

of NOx=Pop by, on average, 10% for a European country would require a much smaller fall in

the country�s TFPG if there was a fall in TFPG across Europe. This is because, unlike model

3, in model 9 a country�s NOx=Pop does not just fall because its TFPG has fallen but also

because the TFPG spillovers which come from other countries in the sample fall, where the latter

follows automatically from a spatial lag speci�cation if there is a fall in TFPG across Europe. To

illustrate, from panel (i) of Table 4 we can see for model 9, which is the (Sp�W7Near) speci�cation

in Table 4, that a reduction inNOx=Pop by, on average, 10% for a European country would require

only a 5:83% fall in the country�s TFPG and a 1:41% decline in TFPG spillovers coming to the

country from other countries.21

[Insert Table 4]

Model 4 in Table 3 predicts that to reduce SOx=Pop by, on average, 10% for a European

country, the country�s TFPG must fall by 3:83% or the country�s TE must fall by 5:62%. From

model 10, however, a reduction of SOx=Pop by, on average, 10% for a European country would

require a much smaller fall in the country�s TFPG if there was a fall in TFPG across Europe.

This is evident because from panel (ii) of Table 4, the results for the (Sp�W7Near) model indicate

that a reduction in SOx=Pop by, on average, 10% for a European country would require only

a 2:04% fall in the country�s TFPG and a 1:32% decline in TFPG spillovers coming to the

country from other countries. Furthermore, as comparators Table 4 also contains the declines in

direct, indirect and total TFPG or TE for some of the other Stage 2 spatial lag models to reduce

NOx=Pop or SOx=Pop by, on average, 10% in a country.

As noted in the opening section of this paper, Førsund and Hjalmarsson (1988) point out

the implications of the choice of technology in energy intensive industries for long run technical

change, where technical change is a key factor a¤ecting energy usage and thus emissions. From

our preferred (Sp�W7Near) speci�cation of the Stage 2 models for NOx=Pop and SOx=Pop we

�nd for both pollutants that a country�s TFPG must fall to achieve further reductions in per

capita emissions. This implies that the easiest reductions in emissions from using newer capital

which also leads to a rise in TFPG have already been taken advantage of. This stands to reason

because NOx and SOx emissions in the EU have been tightly regulated for a long period of time.

The development and di¤usion of greener technology will therefore be key to further reductions

in NOx=Pop and SOx=Pop. More speci�cally, renewable energy technology, which Førsund and

20 �10:00
1:21 = �8:26 and �10:00

0:74 = �13:51, where 1:21 and 0:74 are the signi�cant own TFPG and TE parameters,
respectively, from model 3.
21 �10:00

1:381 = �7:24, where 1:381 is the signi�cant total TFPG parameter from model 9. Then �7:24 � 1:112
1:381 =

�5:83 and �7:24 + 5:83 = �1:41, where 1:112 is the signi�cant direct TFPG parameter from model 9.
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Hjalmarsson (2011) focus on in their very recent work, will evidently have a big role to play in

further reductions of NOx=Pop and SOx=Pop.

Finally, since the principal empirical contribution of this paper are the direct, indirect and

total TFPG and TE elasticities from the spatial lag models for NOx=Pop and SOx=Pop, we

only discuss the elasticities for some of the other variables very brie�y. One striking feature of

the direct and indirect elasticities for other variables is that the direct Trade_Share and direct

Ind_Share elasticities di¤er between the (Sp�W7Near) models for NOx=Pop and SOx=Pop. This

is evident because the direct Trade_Share elasticity from the (Sp�W7Near) model for NOx=Pop

is not signi�cant but in the corresponding model for SOx=Pop, the direct Trade_Share elasticity

is signi�cant at the 1% level taking a value of 0:29. Conversely, the direct Ind_Share elasticity

from the (Sp�W7Near) model for SOx=Pop is not signi�cant, whereas this elasticity from the

(Sp�W7Near) model for NOx=Pop is signi�cant at the 5% level taking a value of 0:47.

6 Concluding Remarks

It is usual in the DEA and SFA literature where there is a negative externality associated with

production to jointly model the negative externality and the production of marketed output using

a distance function. By including the negative externality in the production technology, the ex-

ternality in�uences productive performance (i.e. e¢ ciency and TFP growth). We, however, have

drawn on theoretical work from the environmental economics literature which posits that TFP

in�uences environmental quality to suggest an alternative way of using e¢ ciency and produc-

tivity techniques to model pollution. Rather than use a single stage approach by incorporating

emissions into an input-oriented or multiple output-oriented speci�cation of the technology we

adopted a two-stage approach. In Stage 1 we omitted emissions from the technology so that per

capita emissions could be the dependent variable in the Stage 2 models. Furthermore, in our

empirical analysis we modi�ed the approach used in the theoretical environmental economics lit-

erature by using two measures of productive performance (technical e¢ ciency and TFP growth)

as determinants in the Stage 2 models of per capita emissions.

A feature of Stages 1 and 2 of the analysis is the modelling of the cross-sectional spatial

dependence. In Stage 1 we make a contribution to the �edgling literature on spatial SFA by

proposing a stochastic frontier framework which accounts for local spatial dependence (i.e. �rst

order neighbour e¤ects). We accounted for local spatial dependence by introducing spatial lags of

the independent variables as additional variables which shift the frontier technology. As we have

highlighted above these local spatial variables are not endogenous so the local spatial stochastic

frontier framework that we propose can easily be applied more widely as it can be estimated

using standard ML procedures. Moreover, in the empirical application in Stage 1 to aggregate

production of European countries, the LR test results and values of the AIC and BIC all suggest

that the eleven local spatial stochastic frontier models are preferred to the non-spatial model.

The AIC and BIC were also used to identify a preferred local spatial stochastic frontier model. In

contrast, the Stage 2 spatial models contain a spatial lag of the dependent variable and therefore

di¤er from the Stage 1 models as they take account of global spatial dependence in the cross-
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sections (i.e. �rst order through to (N � 1)th order neighbour e¤ects).
Finally, we note that our �ndings on the e¤ect of TFP growth on per capita NOx and SOx

emissions from the preferred Stage 2 spatial models are interesting from a methodological per-

spective and also a policy perspective. In brief, from our preferred Stage 2 spatial models and

the corresponding non-spatial models we �nd that a country�s TFP growth must fall to reduce

its per capita NOx or SOx emissions. For both pollutants, to achieve a pre-speci�ed reduction in

per capita emissions, our preferred spatial models suggest that the fall in a country�s TFP growth

is smaller than that from the corresponding non-spatial model. This is because in the Stage 2

spatial models, some of the fall in a country�s per capita emissions is due to a fall in TFP growth

spillovers coming to the country which is overlooked in the non-spatial speci�cation.
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Figure 1: Average annual per capita emissions over the study period for Stage 2
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Figure 2: Annual mean e¢ ciencies from the non-spatial model and the preferred local spatial
model

25



Figure 3: Average TFP growth decompositions from the non-spatial model and the preferred local
spatial model

26



Table 1: Summary statistics
Variable Mean St.Dev. Min Max

Stage 1
Real GDP (millions) y 391; 000 618; 000 5; 877 2; 800; 000
Labour (000s) x1 9; 338 14; 212 139 75; 730
Real capital stock (millions) Dep Rate= 6:0% x2 481; 000 850; 000 1; 786 5; 130; 000
Arable land as a share of total land z1 0:25 0:14 0:0006 0:57
Sum of exports and imports as a share z2 0:92 0:44 0:29 3:24
of GDP
Government spending as a share of GDP z3 0:09 0:03 0:05 0:16
Stage 2
NOx emissions per capita (Kg) NOx

Pop
24:96 13:33 5:20 96:19

SOx emissions per capita (Kg) SOx
Pop

27:13 30:45 1:72 243:06

Real GDP per capita (000s) RGDP
Pop

20:94 14:15 1:47 89:81

Value added by the industrial sector as Ind_Share 0:30 0:08 0:14 0:70
a share of GDP
Sum of exports and imports as a share Trade_Share 0:94 0:45 0:31 3:24
of GDP
Technical E¢ ciency TE 0:41� 0:61 0:21� 0:27 0:05� 0:11 0:98� 0:99
TFP Growth TFPG 0:09� 0:17 0:05� 0:09 �0:06� 0:02 0:29� 0:51
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Table 4: E¢ ciency and TFP growth changes to cut per capita emissions by 10 per cent
Panel i: 10% cut in per capita NOx emissions in an average European country

Stage 2 Model E¢ ciency TFP Growth
Drect (%) Indirect (%) Total (%) Direct (%) Indirect (%) Total (%)

Sp�NSp �8:07 �3:09 �11:16 �5:16 �1:97 �7:13
Sp�WAll NA NA NA �6:84 NA �7:82
Sp�W3Near NA NA NA �5:69 �1:74 �7:43
Sp�W7Near NA NA NA �5:83 �1:41 �7:24
Sp�W3Big NA NA NA �5:14 �1:52 �6:66
Sp�W7Big NA NA NA �6:29 NA �7:40

Panel ii: 10% cut in per capita SOx emissions in an average European country

Stage 2 Model E¢ ciency TFP Growth
Direct (%) Indirect (%) Total (%) Direct (%) Indirect (%) Total (%)

Sp�NSp �2:68 �1:92 �4:60 �1:74 �1:25 �2:99
Sp�WAll NA NA NA �2:16 �1:37 �3:53
Sp�W3Near NA NA NA �2:12 �1:40 �3:52
Sp�W7Near NA NA NA �2:04 �1:32 �3:36
Sp�W3Big NA NA NA �1:61 �1:18 �2:79
Sp�W7Big �2:69 �1:47 �4:16 �2:36 �1:28 �3:64
Note: NA is used to denote where the corresponding parameter is not signi�cant at the
5% level or lower.
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Appendix 1: Countries in the sample

Albania Denmark Latvia Romania
Armenia Estonia Lithuania Russia
Austria Finland Luxembourg Slovakia
Azerbaijan France Macedonia Slovenia
Belarus Germany Malta Spain
Belgium Greece Moldova Sweden
Bulgaria Hungary Netherlands Switzerland
Croatia Iceland Norway Turkey
Cyprus Ireland Poland Ukraine
Czech Republic Italy Portugal UK

Appendix 2: Values of the information criteria for the stochastic frontier models

Model AIC BIC

Base non-spatial �1323:05 �1245:15
WAll �1467:57 �1368:03
W3Near �1398:26 �1298:72
W4Near �1382:03 �1282:48
W5Near �1421:76 �1322:21
W6Near �1479:07 �1379:52
W7Near �1493:40 �1393:86
W3Big �1425:49 �1325:95
W4Big �1455:53 �1355:98
W5Big �1483:98 �1384:44
W6Big �1481:38 �1381:84
W7Big �1459:40 �1359:86
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