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Abstract

Background: The high intracellular salt concentration required to maintain a halophilic lifestyle
poses challenges to haloarchaeal proteins that must stay soluble, stable and functional in this
extreme environment. Proliferating cell nuclear antigen (PCNA) is a fundamental protein involved
in maintaining genome integrity, with roles in both DNA replication and repair. To investigate the
halophilic adaptation of such a key protein we have crystallised and solved the structure of
Haloferax volcanii PCNA (HYPCNA) to a resolution of 2.0 A.

Results: The overall architecture of HYPCNA is very similar to other known PCNAs, which are
highly structurally conserved. Three commonly observed adaptations in halophilic proteins are
higher surface acidity, bound ions and increased numbers of intermolecular ion pairs (in oligomeric
proteins). HYPCNA possesses the former two adaptations but not the latter, despite functioning
as a homotrimer. Strikingly, the positive surface charge considered key to PCNA's role as a sliding
clamp is dramatically reduced in the halophilic protein. Instead, bound cations within the solvation
shell of HYPCNA may permit sliding along negatively charged DNA by reducing electrostatic
repulsion effects.

Conclusion: The extent to which individual proteins adapt to halophilic conditions varies,
presumably due to their diverse characteristics and roles within the cell. The number of ion pairs
observed in the HYPCNA monomer-monomer interface was unexpectedly low. This may reflect
the fact that the trimer is intrinsically stable over a wide range of salt concentrations and therefore
additional modifications for trimer maintenance in high salt conditions are not required. Halophilic
proteins frequently bind anions and cations and in H/PCNA cation binding may compensate for the
remarkable reduction in positive charge in the pore region, to facilitate functional interactions with
DNA. In this way, HYPCNA may harness its environment as opposed to simply surviving in extreme
halophilic conditions.
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Background

Analysis of the archaeal DNA replication and repair
machinery has highlighted key similarities with eukaryal
rather than bacterial processes and is generally regarded as
a good model to understand replication and repair in
eukaryotes [1]. One emergent model organism is the
extreme halophilic euryarchaeon, Haloferax wvolcanii,
which may be studied using a range of approaches,
including genetics, proteomics, biochemistry and struc-
tural analysis [2]. In particular, the relative ease of genetic
manipulation compared to other model archaea has con-
solidated its use in the laboratory [3].

Extreme halophiles do not simply tolerate high salt con-
centrations, but in fact require in excess of 1 M NaCl to
support growth [4]. To combat the high level of osmotic
stress this places them under, halophiles accumulate inor-
ganic ions, K* and Cl, at intracellular concentrations
approaching saturation [5]. All cellular proteins have
therefore adapted to function under these extreme condi-
tions. Various strategies for the halophilic adaptation of
proteins have been identified, including the accumulation
of acidic residues at the protein surface, a highly ordered
solvent network [6], counterbinding of ions [7] and an
increase in ion pairs [8] but these are by no means univer-
sal [9,10]. An understanding of how proteins remain sol-
uble and active under these conditions is of interest both
in terms of understanding adaptation to extreme environ-
ments and in biotechnology, to enhance protein engineer-
ing strategies.

One key component of the DNA replication machinery
that is conserved between archaea and eukaryotes is the
proliferating cell nuclear antigen (PCNA) processivity fac-
tor. PCNA is a trimeric, ring-shaped molecule with
pseudo-hexagonal symmetry that can accommodate dou-
ble-stranded DNA through a central pore. PCNA and
other processivity factors tether polymerases to DNA to
increase their processivity and are commonly referred to
as sliding clamps. Despite very limited sequence identity
(as little as 10% with the dimeric bacterial equivalent,
known as 3-clamp) there is a very high degree of structural
conservation from phage through to humans [11-14].

Sliding clamp processivity factors have been shown to be
essential for replication and genome maintenance in all
domains of life. Initial interest focused on their interac-
tions with DNA polymerases and a conserved binding
motif (PCNA-interacting peptide or PIP-box) was identi-
fied [15]. This motif facilitates binding of DNA polymer-
ases to the sliding clamps, enabling the high speed,
processive DNA synthesis required for genome replica-
tion. Subsequently, a wide range of DNA modifying and
repair enzymes have been found to interact with proces-
sivity factors, reinforcing the role of processivity factors as
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essential organisational components of the replication
machinery.

Each processivity factor monomer possesses one binding
pocket for a PIP-box bearing protein. This means that the
trimeric archaeal and eukaryotic PCNAs can bind up to
three partners simultaneously and the dimeric bacterial -
clamps two [16,17]. In this fashion processivity factors are
thought to facilitate hand-off between enzymes in related
pathways, providing temporal and spatial organisation
[18]. PIP-box motifs are normally located at the extreme
N- or C-terminus of the binding partner and the overall
nature of the interaction between PIP-box motif and
processivity factor is conserved from phage through to
humans [17]. The PIP-box consensus motif has been
defined as QxxI/L/MxxFF/Y [15]. The conserved
glutamine residue forms direct and water-mediated
hydrogen bonds with the surface of PCNA, whilst the aro-
matic components dock into a hydrophobic pocket situ-
ated near the interdomain connector loop [12]. Given
both the conserved nature of this interaction and the vast
number of identified binding partners, recent interest has
focused on establishing how access to PCNA, and there-
fore the DNA substrate, is regulated [19].

How has PCNA with such strict structural conservation
adapted to be soluble and functional at high salt concen-
trations and maintain its two key attributes under such
conditions, as a sliding clamp on DNA and as a binding
platform for numerous partners? To investigate these
questions we have over-expressed and purified the H. vol-
canii PCNA (HvPCNA), and solved the crystal structure to
2.0 A, sufficient resolution to visualise solvent compo-
nents at the protein surface.

Results

Overall architecture

The crystal structure of HYPCNA was solved to 2.0 A reso-
lution and contains one trimer in the asymmetric unit.
The overall architecture is very similar to other known
PCNA structures, as expected (Figure 1). Each domain
contributes two o-helices to line the ring, supported at the
outer edge by two B-sheets. Regions where disorder pre-
cluded modelling with any degree of confidence were
excluded from the final model. These are: chain A residues
29-31, 60-64, 81-84,90-96, 109-111and 116-119 and
chain B 91-95 and 124-126. Chain C is continuous
except for residues 81 and 82. The N-terminal methionine
is missing and the C-terminus is disordered in all chains
and is not modelled from residue 244. Subsequent analy-
sis will refer to chain C, as the electron density in this
monomer is the most extensive and clearly defined. 274
water molecules and nine sodium ions are modelled in
the asymmetric unit.
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Figure |

Architecture of HYPCNA. Cartoon representation of the HYPCNA trimer. Chain A is shown in purple, chain B in green and

chain Cin gold.

Comparative analysis is based on the known structures of
PCNA, excluding those complexed with peptides or other
binding partners. These are human (hPCNA
[PDB:1VYM]|[20]), yeast (yPCNA [PDB:1PLQ]|[21]), Pyro-
coccus furiosus (PfPCNA [PDB:1GE8][14]) and Archaeoglo-
bus fulgidus (AfPCNA [PDB:1RWZ][18]). Calculated rms
deviations range from 1.3 A (PfPCNA over 223 residues)
to 1.7 A (yPCNA over 225 residues), demonstrating the

high degree of structural conservation within the PCNA
family, despite their diverse archaeal and eukaryal origins.

Monomer-monomer interface

Adaptation at subunit interfaces to enable archaeal mul-
timeric proteins to remain stable under extreme condi-
tions has been observed. In the tetrameric malate
dehydrogenase of Haloarcula marismortui, intersubunit ion
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pair clusters have been identified in regions of the inter-
face that are solvent exposed and presumably more sensi-
tive to salt concentration [22]. Similar interactions were
noted in the Halobacterium salinarum dodecin structure
[23]. An increase has also been observed in PfPCNA,
which functions at high temperature [14].

Whilst the architecture of the monomer-monomer inter-
face is generally conserved in the known PCNA structures
and principally involves antiparallel B-strands forming an
extended B-sheet across the interface, the extent of hydro-
gen bonding and ion pairing between monomers varies.
Analysis using the PISA server [24] shows that the buried
surface area at the HUPCNA interface is relatively small at
1160 A2 (averaged over the ncs related subunits). Only
AfPCNA shows a smaller buried surface area of 1056 A2
(AfPCNA) compared to 1436 A2 (PfPCNA), 1308 A2
(hPCNA, averaged over ncs-related subunits) and 1809 A2
(yPCNA). The shortening of two strands of the 3-sheet on
one side of the archaeal interface (residues 102-103,
HvPCNA numbering) restricts the potential number of
main chain amide-carbonyl hydrogen bonds (Figure 2A),
reducing the size of the monomer-monomer interfaces in
the archaeal PCNAs, compared to the eukaryotic ones.

The hydrogen bonding interactions seen between
HvPCNA monomers are most similar to those of AfPCNA.
At the AfPCNA interface, only six main chain hydrogen
bonds and one involving side chains are formed, consist-
ent with the reduction in the intersubunit p-sheet.
HvPCNA also has a relatively small interface and so forms
just five main chain hydrogen bonds, with further side
chain interactions involving Asp172 OD2 with Tyr106
OH and Ala109 N (Figure 2B, Additional File 1: Table S1).
Also striking is the low number of ion pairs formed by
HvPCNA and AfPCNA, more reminiscent of the eukaryo-
tic PCNAs than PfPCNA. In yeast, human, A. fulgidus and
H. volcanii PCNAs, one side chain from each monomer
participates in ion pairing (Arg72 and Aspl72 in
HvPCNA). In comparison, PfPCNA forms 10 ion pairs at
the interface [14].

Given the absence of additional ion pairs in HYPCNA the
stability of the trimer over a range of KCI concentrations
(0.2 to 3.0 M) was assessed using size exclusion chroma-
tography. Figure 2C shows the elution profiles in the
extreme conditions 0.2 and 3.0 M KClI for clarity. In all
KCl (and equivalent NaCl) conditions tested, HYPCNA
eluted at a position consistent with a molecular weight of
80 kDa (trimer) based on calibration with molecular
weight standards. This analysis suggests that the HYPCNA
trimer is stable in both low and high salt conditions even
after incubation for four hours.
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Surface charge and conserved residues

One of the most characteristic forms of halophilic adapta-
tion is an increase in surface exposed acidic residues. It
was of particular interest to analyse the charge distribu-
tion of HYPCNA, given that a marked feature of the sliding
clamps is an overall acidic character, except for the sub-
stantial electropositive potential lining the central pore
and held to be essential for function [11,21]. Alteration in
amino acid usage is a commonly reported feature of halo-
philic euryarchaeota, with an increased number of aspar-
tate residues accompanied by a reduction in lysine most
frequently observed [22] (Additional File 1: Table S2). The
expected increase in aspartate usage (11.3%) is observed
in HyPCNA, although all of the PCNAs shown contain
more aspartate than average, as expected in proteins of an
acidic nature. Lysine usage is markedly reduced at 2.8% in
HvPCNA, compared to the next lowest (hPCNA) at 6.1%
and this has significant consequences for the surface
charge distribution. Alanine usage is high (11.3%) com-
pared to the other PCNA structures (5.0-7.8%), also
reported previously [6]. The net charge, calculated assum-
ing histidines to be neutral, of HYPCNA is -31, considera-
bly higher than the remaining PCNA structures (-13 to -
20) [25].

Whilst PCNA is known to be a predominantly acidic pro-
tein the inner pore usually bears a positive electrostatic
charge, proposed to enable free movement along the neg-
atively charged DNA backbone without repulsion [21].
The remaining protein surfaces are predominantly nega-
tively charged (Figure 3). HYPCNA is markedly different
from typical sliding clamps, with almost total loss of the
usual positive surface charge in the inner pore. The surface
of the more typical AfPCNA is shown for comparison (Fig-
ure 3), since it has the highest sequence identity to
HvPCNA of the solved structures (36%), along with yeast,
human and PfPCNA (Additional File 1: Figure S1 and
Additional Files 2 and 3).

The positive electrostatic surface in the pore region of typ-
ical PCNAs is due to an array of lysine and arginine resi-
dues on the 12 a-helices that line the pore. Classical
PCNAs have 9-12 lysines and arginines in this region (per
monomer), the majority projecting into the central pore.
In stark contrast, as shown in Figure 3, there is very limited
positive electrostatic surface lining the HvPCNA pore.
Examination of the inner ring reveals that HYPCNA pos-
sesses only two basic residues (per monomer), Lys143
and Lys205, that extend into the channel and are likely to
contribute significantly to the postulated water-mediated
interactions with the phosphate backbone of DNA pass-
ing through the pore [11].

The remaining basic residues lining the HYPCNA pore are

involved in interactions with other protein atoms and, as
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Figure 2

Interactions at the monomer-monomer interface. A. Superposition of known PCNA structures, showing variation in
the extent of the monomer-monomer interface. Red — H. volcanii; green — A. fulgidus [PDB:1RWZ]; cyan — P. furiosus
[PDB:1GES8]; purple — human [PDB:1VYM] and gold — yeast [PDB:1PLQ]. B. The monomers are coloured separately in red and
purple, with individual side chains directly involved in interactions shown in stick representation. Residues at the end of the
two [-strands involved are labelled. Hydrogen bonds are indicated by dashed lines. C. Size exclusion profiles of H/PCNA in 0.2
M KCI (solid line) and 3.0 M KClI (dotted line). The x axis indicates elution volume (mls) and the y axis shows absorbance at 280

nm.
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B.

Figure 3 (see legend on next page)
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Figure 3 (see previous page)

Surface charge distribution of HYPCNA compared with AfPCNA. A. Electrostatic surfaces of Hv (left) and AfPCNA
(right [PDB:1RWZ]) demonstrate that the acidic nature of PCNAs is more pronounced in HYPCNA and that the halophilic
protein lacks the positive electrostatic charge characteristic of the inner channel. The electrostatic potential was calculated
using the APBS package [43]. The accessible surface area is coloured according to the calculated electrostatic potential from -
10 kgT/e (red) to +10 kyT/e (blue). B. Penetration of basic residues into the central channel of HYPCNA (top) and AfPCNA
(bottom). The structures are depicted with a backbone trace with basic residues located on the a-helices lining the central
pore depicted in stick representation. In HYPCNA only Lys|43 and Lys205 project into the channel in the manner seen in clas-
sical PCNAs. Argl2, Arg72 and Argl40 are involved in substantial interactions with protein atoms and Lys201 is involved in
charge neutralisation at the sodium cluster site. In contrast the majority of the basic residues lining the AfPCNA pore project

into the channel.

such, are unlikely to mediate HUPCNA-DNA interactions
(Figure 3B). (i) Arg12 does not penetrate the central chan-
nel, instead forming hydrogen bonds with a solvent mol-
ecule and the main chain carbonyls of Ala77 and Ala80.
(ii) Arg72 and Argl40 are located in the vicinity of the
monomer-monomer interface and are directed away from
the pore. In particular, Arg72 is substantially involved in
interactions at the monomer-monomer interface, forming
an ion pair with Asp172 in the opposing monomer. (iii)
Lys201 is involved at the periphery of the sodium-binding
cluster located around residue 150 (described below),
forming ion pairs with Asp146 and Asp198.

PIP-box binding

Comparison of the PIP-box binding surface of HYPCNA
with AfPCNA suggests this region is generally well con-
served. However, Met46 in HVPCNA has shifted in orien-
tation compared to both the unbound and complexed
forms of AfPCNA. This increases the accessible surface
area to 37.0 A2 in HUYPCNA compared to 23.1 A2 in
AfPCNA. This position is occupied by leucine in the
remaining PCNA structures and the orientation of the side
chain is more similar to A/PCNA than HvPCNA. The unu-
sual orientation of Met46 in HYPCNA, combined with the
substitution of Met at position 239 makes the binding
pocket for the turn of 3, helix in the PIP-box shallower
and less hydrophobic in nature (Figure 4A). Slight devia-
tions in the interdomain connector loop (residues 109-
129) have caused Ile122 to shift slightly in position, fur-
ther restricting the binding pocket (Figure 4B).

The C-terminal regions of the H. wvolcanii replicative
polymerases, PolB and PolD2 and the Y-family transle-
sion polymerase, PolY, were analysed. All three have can-
didate PIP-box motifs in good agreement with the
consensus sequence (Figure 4C). The only significant
deviation is in the terminal residue of PolY. This is aspar-
tate, in stark contrast to the bulky aromatic group nor-
mally found in this position. The 3, helix in the PIP-box
motif characteristically inserts two large aromatic groups
into the hydrophobic pocket at the base of the interdo-
main connector loop and this substantial hydrophobic

interaction plays a key role in binding. Modelling the
sequence of the putative PIP-box of PolY onto the AfFen1
peptide suggests a close, unfavourable contact between
the PolY C-terminal Asp and Met46 of PCNA. The equiv-
alent residue in the replicative polymerase PIP-boxes is
methionine which, given the relative flexibility of its side
chain, presumably could be accommodated in the bind-
ing pocket.

Solvent network and crystal packing

Solvent molecules were introduced during refinement
and rebuilding according to the approach described by
Richard and others [8]. More water molecules were
assigned to chain C than to chains A or B, reflecting the
more defined electron density in this region (Additional
File 1: Table S3). Whilst the number of solvent molecules
identified in the known PCNA structures is highly variable
and difficult to compare objectively as criteria for reten-
tion vary, it is apparent that the water molecules in
HvPCNA are very well defined and refine with a markedly
lower temperature factor than those in the remaining
structures. This is suggestive of a highly ordered solvent
network, consistent with findings in other halophilic pro-
teins [6]. The direct protein contacts involved in crystal
packing in HvPCNA are limited and predominantly
involve ion pairs between arginine and aspartate/gluta-
mate residues, totalling nine across the trimer. One main
chain hydrogen bond occurs between Pro410-GIn118N
in chain C with the OE1 group of the glutamine forming
an additional bond with the ND2 group of Asn43. The
carbonyl oxygen of Glu93(C) forms a hydrogen bond
with the NH2 group of Arg37(B). Other contacts are water
mediated, with the largest interface located around the
two-fold axis and centred on the carbonyl group of
Leu183. This interface involves substantial networks of
water molecules, as has been noted in previous structures
of halophilic proteins [6,25]. In addition, analysis of one
interface suggested the presence of a non-water solvent
ion and this is discussed in more detail below.

Page 7 of 15

(page number not for citation purposes)


http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1RWZ

BMC Structural Biology 2009, 9:55 http://www.biomedcentral.com/1472-6807/9/55

a1 s
I

-~//Ie122

B.

Consensus OxxIxxFF
L T
M

AF Fenl QATLERWF

Pol B QTGLGSFEM

Pol DP2 QOSGIADFM

Pol Y QSSLVEFD

C.

Figure 4

Analysis of the hydrophobic PIP-box binding pocket on the surface of HYPCNA. A. Hydrophobic surface of
HvPCNA (left) and uncomplexed AfPCNA (right — [PDB:1RWZ];) with the backbone of the AfFenl peptide
[PDB:1RXZ];shown in yellow. Amino acids are coloured according to the Kyte-Doolittle scale with blue for the most
hydrophilic residues to white (0.0) and orange-red for the most hydrophobic. Produced using Chimera [44]. B. Superposition
of HYPCNA (white) and AfPCNA (beige) [PDB:1RWZ] with the Fenl peptide depicted in red (from [PDB:1RXZ];. Met46 and
Met239 and interdomain connector loop residues are shown in stick representation with atomic colouring (HYPCNA number-
ing). C. Alignment of the candidate PIP-boxes of H. volcanii DNA polymerases with the PIP-box consensus sequence and that of
Affen| [PDB:1RWZ]. Conserved residues are highlighted in red.
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Cation binding

Another approach postulated for halophilic adaptation of
proteins is the presence of bound anions and cations [22],
observed in many of the structures solved to date of suffi-
cient resolution [6,8,23,25]. Whilst all solvent molecules
were originally assigned as waters, these were investigated
further if they possessed more than four hydrogen-bond-
ing partners, distances lower than normal for hydrogen
bonds and low refined temperature factors. Such mole-
cules were initially modelled as Na+, since this ion was
abundant in the crystallisation liquor and examination of
peaks in the Fo-Fc maps were not suggestive of Ca2+, also
present. Following careful refinement, three Na*ions over
two sites were retained in each monomer.

The principle cation binding site is located around a car-
boxylate cluster (Asp146, Asp150 and Asp198), towards
the inner edge of the ring and appears to contain two Na*
ions coordinated by the carboxylate groups, water mole-
cules and main chain carbonyls (Figure 5). One sodium
ion is coordinated with tetragonal bipyramid geometry by
the side chains of Asp146 and Asp150, carbonyl groups of
Ser149 and Asp150 and one solvent molecule. One sol-

http://www.biomedcentral.com/1472-6807/9/55

vent molecule is absent and is presumably more mobile
due to the lack of constraints from forming additional
hydrogen bonds with protein atoms. The other sodium
ion is coordinated by both OD1 and OD2 of Asp150 and
by five solvent molecules in a slightly distorted planar
pentagonal fashion. One of the solvent ligands is addi-
tionally associated with two solvent molecules and the
OD1 groups of Asp146, Asp150 and Asp198. Interestingly
the NZ group of Lys201 clearly interacts with Asp146
OD2 and Asp98 OD1, its associated charge permitting the
acidic side chains to orientate in this fashion.

A second site is located at a crystal-packing interface
between Leul27 and Asp157 in the neighbouring mono-
mer (Additional File 1: Figure S2). The carbonyl oxygen of
Leul27 interacts directly with the sodium ion, which is
further coordinated by four water molecules involved in
interactions with Asp157, Leul27, Alal129 and Glu216.
Details of the interactions in each monomer are shown,
together with average bond lengths (Additional File 1:
Table S4 and S5).

Figure 5

The sodium cluster adjacent to Asp150. Water molecules are shown in purple and sodium ions in red with hydrogen
bonds indicated by dashed black lines. Asp146, Asp 150, Asp198 and Lys201 are labeled and shown in stick representation. The
main chain carbonyl groups of Asp 146 and Ser149 are also shown.
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Discussion

The degree of structural conservation in processivity fac-
tors from phage through to humans is marked. The
trimeric PCNAs and dimeric B-clamps presumably arose
from a common, single domain ancestor by gene duplica-
tion and fusion events [26]. Further, the structures of
halophilic proteins solved to date indicate that overall
folds are generally well-conserved when compared with
their non-halophilic counterparts. Adaptation to high salt
conditions tends to involve changes to the surface
exposed residues or addition of small structural elements
(halophilic addition) rather than large structural changes
[6,9,25,27]. Taking these considerations into account, it is
not unexpected that the overall architecture of HYPCNA is
very similar to the known homotrimeric PCNA structures,
both archaeal and eukaryal.

Little evidence for halophilic adaptation is seen at the
monomer-monomer interface

One common form of halophilic adaptation that is not
seen in HYPCNA is an increase in inter-subunit ion pairs,
observed in a number of multimeric halophilic protein
structures [8,23]. Clearly adaptation reflects the nature of
interfaces and protein function, even within the individ-
ual protein; intersubunit ion pairing in the H. marismortui
malate dehydrogenase is more extensive in the dimer-
dimer than monomer-monomer interfaces, for example

[8].

Unlike many proteins where the multimeric interfaces
remain intact, the interface in PCNA is required to open
for loading onto DNA. However, the formation of excess
ion pairs in PfPCNA does not prevent loading of this pro-
tein onto DNA [28]. Size exclusion chromatography
shows that HYPCNA remains trimeric under a wide range
of KCI conditions. This suggests that the interface was
already sufficiently stable at extreme salt concentrations to
maintain the multimeric form and thus no selection pres-
sure was brought to bear requiring this form of halophilic
adaptation.

Although the overall architecture of the monomer-mono-
mer interface is conserved, a smaller surface area is buried
in the archaeal PCNAs as compared to the eukaryotic pro-
teins. The consequent reduction in main chain hydrogen
bonding interactions was noted in the PfPCNA structure
and was postulated to explain the ability of PfPCNA to self
load on circular DNA, in the absence of the RFC clamp
loader [28,29]. It seems likely, given the further reduction
in the buried surface area of Hv and AfPCNA, that such
self-loading is common to archaeal PCNAs and may prove
advantageous to organisms living under extreme condi-
tions.

http://www.biomedcentral.com/1472-6807/9/55

Amino acid usage affects the characteristic electrostatic
charge distribution of HvPCNA

The most commonly observed form of halophilic adapta-
tion, although by no means universal, is an increase in
surface exposed acidic residues, coupled with a reduction
in lysine usage [22,30]. These previously reported trends
certainly hold true for HUPCNA, as well as increased use of
alanine, presumably related to the lower hydrophobicity
of this amino acid [30]. The sliding clamps are all highly
acidic proteins, but the effect is more exaggerated in
HvPCNA as can clearly be seen by mapping the electro-
static potential onto the accessible surfaces of Hv and
AfPCNA (Figure 3).

The most unusual and striking feature of HYPCNA is the
almost complete absence of the typical distribution of
positive electrostatic charge on the inner surface of the
ring, usually provided by arginine and lysine side chains
[11,21]. The few positively charged residues that are
present are mostly involved in substantial interactions
with other protein atoms. The positively charged pore lin-
ing is predicted to reduce repulsion effects with the nega-
tively charged phosphate backbone of DNA, although
interactions are likely to be water mediated if DNA passes
perpendicularly through the clamps [11]. Recently it has
been suggested that DNA may be tilted under certain cir-
cumstances and directly contact the PCNA inner ring. Sin-
gle particle analysis of PfPCNA implicated a number of
residues in these contacts [31]. Of these, PfLys209 equates
to one of the two lysines (Lys205) in HvPCNA that do
project into the channel and PfHis75 is equivalent to
HvArg72. Whilst this residue does not protrude directly
into the channel in HVPCNA, interaction with tilted DNA
is not precluded.

While the precise positions of the arginine/lysine residues
are variable [32], the overall positive electrostatic poten-
tial lining the inner pore is conserved in all other sliding
clamp structures to date. The H. salinarum nucleoside
diphosphate kinase binds nucleotide in a virtually identi-
cal manner to a human homologue despite altered amino
acid usage for halophilic adaptation [27] and conserva-
tion of residues involved in substrate recognition and
binding has also been observed in other halophilic struc-
tures [6,9]. Presumably disfavoured residues are tolerated
when they are required for protein function. It is interest-
ing to note that a residue postulated to be involved in
direct contact with DNA is one of the few positive residues
retained in the HVPCNA pore.

H. volcanii PCNA is generally accepted to be an essential
protein in the cell [33]. It is most likely to function as a
processivity factor, in which case the lack of a positive
electrostatic potential does not abrogate its ability to slide
on DNA in vivo. Mutational analysis of human PCNA
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involving the basic side chains lining the central channel
suggested that although they were essential for stimula-
tion of polymerase activity, the mutations affected effi-
cient initiation, not actual clamp sliding along DNA [34].
Nonetheless, a single mutation in hPCNA had a severe
effect on clamp function and, by comparison, the reduc-
tion in basic side chains in HvPCNA is dramatic. How
does HvPCNA slide on DNA? One plausible explanation
is that bound counterions may neutralise the electrostatic
repulsion between the carboxylate side chains and the
phosphate backbone (see below). In addition, the effect
of bound water molecules lining the channel, first noticed
in the B-clamp structure [11], may be more profound for
HvPCNA given the stability and extent of hydration shells
in halophilic proteins [6].

The HvPCNA PIP-box pocket is shallower and less
hydrophobic

The overall composition of the hydrophobic pocket
involved in the interaction with PIP-box peptides is rela-
tively well conserved in HYPCNA. Modelling suggests that
the overall mode of contact would be maintained. Puta-
tive PIP-box motifs in the sequences of H. volcanii replica-
tive polymerases (PolB and PolD2) and a Y-family
translesion polymerase, PolY (Figure 4C) all retain the
conserved glutamine and a moderately hydrophobic resi-
due in the central conserved position. The only deviation
seen is in the bulky aromatic groups, typically FF or FY.
Deviation in this position is not unknown - many ther-
mophilic proteins, including the A. fulgidus Fen1 peptide
bound in the 1rxz structure, possess tryptophan in this
region [18,19].

The differences observed in the HYPCNA structure are sub-
tle and lead to a reduction but not elimination of the over-
all hydrophobic character, consistent with observations
that halophilic proteins can demonstrate a reduced hydro-
phobic surface [6] (Figure 4). The depth of the hydropho-
bic pocket is reduced and it is likely that, in the
intracellular environment of H. wolcanii, a moderately
hydrophobic residue such as methionine substituting for
phenylalanine in the replicative polymerase PIP-boxes
would permit stable binding, due to the exaggeration of
hydrophobic effects in high salt conditions. The aspartate
residue at the extreme C-terminus would not favourably
interact with the hydrophobic pocket and given its termi-
nal position could flip out of the pocket. Previous struc-
tural studies have suggested that Y-family polymerases
PIP-boxes show a greater tendency to diverge from the
canonical sequence than do replicative polymerases so
this finding is not unexpected [17].

http://www.biomedcentral.com/1472-6807/9/55

The HvPCNA solvent shell is well ordered and contributes

to crystal packing

HvPCNA possesses a well-ordered solvent network,
extending into the second hydration shell. The majority of
water molecules assigned in the HYPCNA structure are in
the first hydration shell and have temperature factors sim-
ilar to the overall B factors for the protein atoms in each
chain (Table 1). Networks of water molecules are
observed at many of the crystal contacts with neighbour-
ing molecules, a feature which has been observed in sev-
eral crystal structures of halophilic proteins [6,25].
Utilisation of water-mediated crystal contacts has been
postulated to compensate for the electrostatic repulsion
effects of highly acidic molecules [25]. Ton pairs also play
arole in crystal packing in HYPCNA and are more evident
than main chain and side chain hydrogen bonding inter-
actions.

Cation binding

Surface-bound ions, both anions and cations, have been
identified in the vast majority of halophilic protein struc-
tures [6,8,23,25]. Cations have been proposed to counter
the charge effect resulting from the excess of acidic resi-
dues on the protein surface, although they have not been
sufficiently evident in crystal structures to totally neutral-
ise that effect [6]. Additionally, ion binding has been

Table |: Data collection and refinement statistics.

All data (outer shell
Data Collection

Space group 2
Cell dimensions
a, b, c(A) 83.4, 143.8,78.0
By (%) 90.0, 121.6, 90.0
Resolution (A) 37.96-2.00 (2.11-2.00)
Rimerge 0.066 (0.315)
<l/cl> 11.6 (3.3)
Completeness (%) 95.3 (95.9)
Redundancy 2.5 (2.5)
Refinement
Resolution (A) 25.0-2.0
No. of unique reflections 47498
Reryse 0.214
Riree 0.259
rms deviation from ideal values
bond lengths (A) 0.023
bond angles (°) 2.171
Number of atoms/au 5498
B factor (A2)
protein
chain A 28.5
chain B 285
chain C 21.3
waters 27.6
Na* ions 22.0
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shown to be involved in substrate recognition [6] and in
stabilising the complex salt bridges required to maintain
the H. marismortui malate dehydrogenase tetramer [8].

Two ion-binding sites per monomer were observed in the
HvPCNA structure, comprising three ions in total. These
were tentatively identified as sodium based on the bond
lengths, lack of residual density following modelling
water molecules and prevalence of Na+ in the mother lig-
uor. The sites are remarkably consistent throughout the
ncs-related subunits.

One site is involved in crystal packing, a commonly
observed feature [23,25]. It seems likely that many more
cations are bound across the surface of acidic halophilic
proteins and those at crystal packing interfaces are most
easily visualised, due to their greater degree of order.

The sodium cluster located around Asp150 is considera-
bly more intriguing. The carboxylate moieties face each
other, which is not an energetically favourable conforma-
tion and is partially neutralized by the side chain of
Lys201. Asp150 is conserved as an acidic amino acid,
most usually aspartate, in all PCNA sequences currently
available in SwissProt, with the exception of those from
Trichoplusia and some viruses. Such conservation in a fam-
ily of proteins that are notoriously poorly conserved at the
sequence level hints at some currently unknown function
that is perhaps protected by the sodium cluster.

Another possibility is that the cations act to replace the
basic residues that line the channels of other PCNAs (Fig-
ure 6). Although no further unambiguous cations have
been identified lining the channel, previous studies have
suggested proteins bind many more cations and waters
than are visible utilising X-ray crystallography [8]. The
cluster may provide a particularly stable conformation for
cation binding, such that it is fully occupied and well
ordered in the crystal. Sodium and water molecules are
difficult to distinguish in electron density maps, particu-
larly if occupancy is reduced by transient association. The
pore is not accessible for crystal packing interactions,
where order can reveal the presence of bound ions.

It seems likely that HYPCNA contains many more surface
bound cations than identified in this structure and that a
proportion of these will line the central pore, given the
presence of aspartate residues in this region. This is con-
sistent with the proposal that ion-binding may not simply
protect halophilic proteins but also allow them to harness
their environment [8], in this case compensating for the
loss of lysine residues and reducing charge repulsion
effects between the acidic protein surface and phosphate
backbone of DNA. Although the electropositive nature of
the central pore is conserved amongst PCNAs the exact
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position of the residues is not. This lack of positional con-
servation may permit the basic side chains to be replaced
by bound cations, except in positions where direct inter-
actions with DNA may occur.

Conclusion

The halophilic structures solved to date represent a diverse
range of proteins and the adaptation each of these has
undergone will reflect their own unique characteristics
and functions within the cell. It is not surprising that,
although trends exist, there is no single universal determi-
nant for halophilic adaptation. HYPCNA displays some
common features and some unique facets. No increase in
inter-subunit ions pairs is observed and this is consistent
with the stability of the HYPCNA trimer across a range of
salt concentrations. Two common features are the
increased acidity of the surface, despite the PCNA family
already displaying marked electronegative surfaces, and
the presence of bound ions, in this case cations, the latter
potentially countering the effects of the former to main-
tain biological structure and function under extreme halo-
philic conditions.

Methods

Cloning, expression and purification

HvPCNA was amplified from H. wvolcanii genomic DNA
(wild type DS2[4]) and cloned into the Ndel/BamHI sites
of pACYC184-11b [35] for expression purposes. HYPCNA
was over-expressed in E. coli B834 (DE3); cells were grown
in LB containing 34 pg/ml chloramphenicol at 37°C to an
ODy,0f 0.6-0.8. Expression was induced by the addition
of 1 mM IPTG for 2 hours at 37°C. Cells were harvested
by centrifugation and resuspended in buffer A (50 mM
HEPES pH 7.0, 1.0 M NaCl) and protease inhibitor cock-
tail tablets (Roche) prior to lysis via sonication and clari-
fication by centrifugation. The 60-80% fraction from
ammonium sulphate precipitation was resuspended in
buffer A and dialysed against buffer A prior to application
to a 26/60 Superdex 200 (GE Healthcare) size exclusion
column equilibrated and run in buffer A. A well-defined
peak was observed at an elution volume consistent with
that of an assembled trimer of PCNA. Fractions were
pooled and diluted to a final concentration of 50 mM
HEPES pH 7.0 and 400 mM NaCl for application to Q-
sepharose FF (GE Healthcare) and were eluted in buffer A
and concentrated using a Vivapore 10/20 7500 Da cutoff
(Vivascience). Concentrated protein was stored at 4°C.

Crystallisation and data collection

Crystals were grown using the sitting drop vapour diffu-
sion method. 3 ul of HYPCNA at 5 mg/ml was mixed with
3 pl of precipitant solution containing 0.2 M CaCl,, 0.1 M
HEPES pH 7.5 and 18% PEG 400. The drops were equili-
brated against 500 pl of the precipitant solution supple-
mented with 1 M NaCl and incubated at 10°C. Cubic
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Figure 6

Context of the sodium cluster in relation to the central pore. A. Backbone representation of the trimer showing the
global position of the cluster. Each monomer is coloured separately and the sodium ions within the cluster are shown as red
spheres. B. The local environment of the cluster, demonstrating the proximity of the coordinating aspartates (Asp 146, Asp150
and Asp198) to the three lysine residues within the channel (Lys143, Lys201 and Lys205). Lys201 is involved in charge neutral-
isation within the cluster. Sodium ions are shown as red spheres.
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crystals were obtained within two weeks and were washed
in mother liquor and used for seeding fresh drops. This
approach produced two crystal forms; form I crystals were
cubic with dimensions of approximately 120 um, form II
crystals were smaller (50 um and irregularly shaped) and
were observed after several weeks and in a small propor-
tion of wells. Form 1 crystals were cryoprotected via the
addition of 0.6 pl glycerol and 0.7 pl PEG 400 to the drop
and were allowed to dehydrate for 2 hours prior to freez-
ing. Form II crystals were frozen directly in mother liquor.
Data to 2.6 A were collected on form I on ID14-4 at the
ESRF and to 2.0 A on form II at IO3 at the DLS.

Structure determination/refinement

Data were processed using IMOSFLM and programmes
contained in the CCP4 suite [36,37]. Molecular replace-
ment on crystal form I was carried out using BALBES [38],
with PDB:1RWZ as the search model, yielding a solution
containing three monomers in the asymmetric unit. Vis-
ual inspection of the resulting maps confirmed the pres-
ence of a fourth monomer. The asymmetric unit contains
one intact trimer, with the fourth subunit producing the
biological trimer via the crystallographic 3-fold axis. The
partially refined structure was used as the search model for
the second crystal form, which diffracted to higher resolu-
tion. Molecular replacement in this instance was per-
formed using MOLREP [39] and produced one trimer in
the asymmetric unit. Refinement in both cases was per-
formed using the twin refinement option in REFMAC [40]
interspersed with manual building using the COOT visu-
alisation package [41]. Water molecules and cations were
assigned according to the criteria laid out by Richard and
others [8]. No ncs restraints were applied during refine-
ment. Data collection and refinement statistics are shown
in Table 1. Figures were prepared with the PyMol molecu-
lar graphics package unless stated otherwise [42]. Coordi-
nates have been deposited at the Protein Data Bank with
the accession code 3IFV.

Comparative size exclusion chromatography

HvPCNA purified as described was fractionated on a 10/
300 Superdex 200 (GE Healthcare) size exclusion column
equilibrated in buffer containing 50 mM HEPES pH 7.0
and either 0.2 or 3.0 M KCI. Equivalent amounts of pro-
tein were incubated in the respective buffer for 4 hours
prior to loading. The flow rate was maintained at 0.5 ml/
min.
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