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 INTRODUCTION

Consider the anecdote of King Hiero asking Archimedes 

to prove that the amount of gold in his newly made 

crown equals the amount of gold given to the gold-

smiths. Archimedes considers the problem for some 

time, and becomes stuck in an impasse – he simply 

cannot see a solution. Some days later when taking a 

bath, he notices that his body displaces the water in the 

bath tub. Immediately, he has his flash of insight and

runs naked through the streets, crying out “Eureka! – I 

have found it” (Gruber, 1995). Archimedes clearly had 

the necessary knowledge to solve the problem, so why 

was it so hard for him to gain his insight? How was he 

able to overcome the impasse in which he was stuck?

Insight is still a “mysterious” phenomenon within 

problem solving literature. Currently, there are at 

least two theoretical accounts that try to explain the 

processes involved in insight problem solving in or-

der to “demystify insight” (Bowden et al. 2005): The 

first stresses the importance of heuristics (MacGregor, 

Ormerod, & Chronicle, 2001); the second stresses 

the necessity of a representational change (Ohlsson, 

1992). In this paper we make a further attempt to 

systematically disentangle the influence of heuristics

ABSTRACT

Insight problems are problems where the prob-

lem solver struggles to find a solution until 

* aha! * the solution suddenly appears. Two 

contemporary theories suggest that insight 

problems are difficult either because problem

solvers begin with an incorrect representation 

of the problem, or that problem solvers apply 

inappropriate heuristics to the problem. The rel-

ative contributions of representational change 

and inappropriate heuristics on the process of 

insight problem solving was studied with a task 

that required the problem solver to move two 

matchsticks in order to transform an incorrect 

arithmetic statement into a correct one. Prob-

lem solvers (N = 120) worked on two differ-

ent types of two-move matchstick arithmetic 

problems that both varied with respect to the 

effectiveness of heuristics and to the degree of  

a necessary representational change of the 

problem representation. A strong influence of

representational change on solution rates was 

found whereas the influence of heuristics had

minimal effects on solution rates. That is, the 

difficulty of insight problems within the two-

move matchstick arithmetic domain is governed 

by the degree of representational change re-

quired. A model is presented that details repre-

sentational change as the necessary condition 

for ensuring that appropriate heuristics can be 

applied on the proper problem representation.
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and representational change  by assessing whether 

the difficulty in solving insight problems is due to the

search for proper heuristics that can be applied or 

whether it is due to requiring a change of the initial 

problem representation into a problem representation 

that includes the solution (cf. Jones, 2003). The role 

of heuristics in problem solving will now be examined, 

before covering the insight literature in relation to 

heuristics and to representational change. The goals 

of the current paper will then be outlined.

 Heuristics in problem solving

No one would seriously entertain doubts about the im-

portance of heuristics for problem solving (Gigerenzer 

& Todd, 1999). Most current theorists consider heu-

ristics, or rules of thumb, to be the critical operators 

for the solution of problems (Kaplan & Simon, 1990; 

Mayer, 1992; Lovett & Anderson, 1996; Anderson & 

Lebiere, 1998). In particular, the information process-

ing account has strongly emphasized and focused on 

the role of heuristics (e.g., hill climbing, or means-end 

heuristics) as the key for understanding the human 

problem solving process – and this has been demon-

strated successfully for a variety of problems (e.g., 

Newell & Simon, 1972). 

Newell and Simon’s (1972) information processing 

account of problem solving suggests that problem sol-

vers initially generate an internal representation, the 

problem representation, of the given problem, or task 

– the initial state. Problem solving involves applying  

operators to transform the initial state into the desired 

goal state, with a multitude of possible intermedi-

ary states being created along the solution path. The 

closed set of all possible states of a problem is termed 

the problem space. Within the problem space there are 

more or less direct paths from the initial state through 

to the goal state. Newell and Simon suggest that heu-

ristics are used to help the problem solver navigate the 

problem space by the selection of effective operators 

that reduce the distance to the goal much more ef-

fectively than blind trial-and-error. As a general rule, 

Problem Space Theory suggests that the larger the 

problem space, the more difficult the problem.

 The most important heuristics are hill-climbing and 

means-ends analysis (Newell & Simon, 1972; Greeno, 

1974; Thomas, 1974; Anderson & Lebiere, 1998; 

Chronicle, MacGregor & Ormerod, 2004). In hill-climb-

ing, the problem solver selects operators that make the 

current state of the problem as similar as possible to 

the required goal state. As a result, there is a tendency 

to select moves that reduce the distance between the 

current and goal states as much as possible. This pat-

tern was consistently found in several empirical studies 

(Greeno, 1974; Atwood & Polson, 1976; Chronicle et 

al., 2004). In means-ends analysis, the problem solver 

reduces the problem into sub-goals and continues to 

create sub-goals until an available operator (means) 

can be applied. Sub-goals are worked off in a stepwise 

manner until the desired goal is attained. 

Although many problems can be described, analyzed 

and solved based on the assumptions of Problem Space 

Theory (Newell and Simon used cryptarithmetic prob-

lems and the Tower of Hanoi problem), these tend to 

be problems that are well-defined (i.e., where it is clear

what the initial state, goal state, and possible moves can 

be). In general, the more ill-defined a problem is, the

more difficult it is to explain in Problem Space Theory,

because it becomes difficult to derive the problem space

and hence apply heuristics to reduce the problem space. 

This is often the case for insight problems, which are 

often regarded as ill-defined. However, some insight

problems are difficult, even though they are well-defined

with clear initial and goal states, and with all of the avail-

able operators to change states in the problem also be-

ing clear. Furthermore, insight problems frequently have 

a small problem space. Problem Space Theory alone 

cannot account for insight problem solving phenomena, 

because its principles do not explain why people reach 

an impasse on clearly defined problems with a small

problem space, and why they require an insight in or-

der to solve them. Hitherto only a few attempts have 

been made to provide extensions for the Problem Space 

Theory in terms of insight problem solving. 

 One possible route of explanation involves the use 

of heuristics, suggesting that a potential failure to 

gain insight is due to the inappropriate application of 

heuristics (MacGregor, Ormerod, & Chronicle, 2001). 

Alternatively, another route of explanation is that the 

problem solver fails to generate an adequate problem 

representation, and thus representational change is 

required in order to see the solution (Ohlsson, 1992). 

We will now review the current thinking with respect 

to whether insight arises from people applying inap-

propriate heuristics or whether arises from people 

beginning problems with an incorrect problem rep-

resentation.

Insight: Inappropriate 
representation or inappropriate 
heuristics?

In terms of solving insight problems, solutions 

are: (i) accompanied by an “Aha!” experience 
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(Bühler, 1907); (ii)  sudden in appearance (Novick & 

Sherman, 2003; Jung-Beeman et al., 2004, Bowden 

et al. 2005); (iii) unintended (Wegner, 2002); (iv) 

not stepwise (Metcalfe, 1986a, 1986b; Metcalfe & 

Wiebe, 1987). 

Aside from this phenomenological description 

of insight, there are a number of researchers who 

propose that insight problems are special because 

they require a representational change (Wertheimer, 

1959; Kaplan & Simon, 1990; Ohlsson, 1992; 

Sternberg & Davidson, 1995; Knoblich et al., 1999). 

According to this view, accomplishing a change in 

one’s representation is the main source of difficulty

in achieving insight. Representational change is an 

extension of the Gestalt term “Restructuring” (see 

Ohlsson, 1984a, 1984b), which states that either a 

change of the given constituents of the problem rep-

resentation (“seeing” the problem in another way) 

or a change of the goal representation is necessary 

to achieve insight. 

 For example, an inappropriate problem repre-

sentation that over-constrains the search space for 

a possible solution could be to search for a solution 

within a 2D space when a 3 D representation is re-

quired (e.g., the six-matchstick-problem introduced 

by Katona, 1940). That is, the problem solver’s goal 

representation only enables the selection of operators 

that move matchsticks in the 2D plain (Isaak & Just, 

1995). 

According to Ohlsson’s Representational Change 

Theory, representational change is not the result of 

a deliberate search, but the result of unconscious 

processes that occur when problem solvers get stuck 

in an impasse. An impasse is defined as a mental

state where problem solving behavior ceases and 

the problem solver does not know what to do next. 

To overcome an impasse a representational change is 

necessary. The trigger for a representational change 

is repeated failure due to the constraints of the initial 

problem representation.

 One unconscious process that relaxes self-imposed 

constraints induced by problem solvers’ prior know- 

ledge is termed constraint relaxation. Constraint relax-

ation extends the goal representation of the problem 

solver – e.g., relaxing the 2D constraint in the Katona 

problem and searching in 3D space for a solution. That 

is, the problem solvers’ problem space extends and as 

a result new solution options are available. Empirical 

evidence has shown that constraint relaxation is impor-

tant in the solving of insight problems across a variety 

of domains, such as matchstick arithmetic (Knoblich et 

al., 1999; Knoblich, Ohlsson & Raney, 2001; Öllinger & 

Knoblich, 2003), the car-park-game (Jones, 2003), and 

the tumor-problem (Grant & Spivey, 2003). Moreover, 

the principle can be applied to explain the difficulty of

many classical insight problems (Ohlsson, 1992; Isaak 

& Just, 1995). 

 An alternative position specifies that the prob-

lem difficulty of insight problems depends on the 

inappropriate application of heuristics (MacGregor, 

Ormerod & Chronicle, 2001; Ormerod, MacGregor 

& Chronicle, 2002; Chronicle et al., 2004). 

The Criterion for Satisfactory Progress Theory 

(MacGregor et al., 2001) focuses on the role heuris-

tics play within the problem solving process using a 

means-ends analysis framework. For the Criterion 

for Satisfactory Progress Theory, the difficulty of 

insight problems is not because of an inappropriate 

problem representation, but due to the application 

of inappropriate heuristics, a view that holds close 

to the assumptions of the original Problem Space 

Theory. The Criterion for Satisfactory Progress 

Theory suggests that problem solving follows two 

basic principles: (a) problem solvers seek to maxi-

mize each move such that the move results in a 

state which is as close as possible to the desired 

goal (hill-climbing); (b) problem solvers monitor 

their progress and only select moves that meet the 

criterion of progress – when a selected move fails 

to meet the criterion, there is an impulse to seek 

alternative solutions (c.f. Ormerod et al., 2002,  

p. 792). 

Maximization and progress monitoring are 

thus necessary in order for insightful moves to 

be sought, and these processes trigger the dis-

covery and retention of so-called promising states 

that meet the progress monitoring criterion and 

as a consequence attenuate the problem space. 

Furthermore, promising states lead to the realiza-

tion that novel moves are of potential value and 

as a consequence a re-conceptualisation of the 

problem space is possible. 

The probability of meeting an impasse also varies 

based on a person’s lookahead value. Lookahead is 

determined by the capacity of potential moves a per-

son can “look ahead” and hold in mind, which varies 

across individuals. Insight will be sought more quickly 

for people with a high lookahead capacity because 

they will realize more quickly that the problem at hand 

cannot be solved by the initially applied heuristics. 

MacGregor and colleagues have successfully applied 

the assumptions of maximization, progress monitoring 

and lookahead on the nine-dot problem and the eight-

coin problem (MacGregor et al., 2001; Ormerod et al., 
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2002), and recently on a set of other coin problems 

(Chronicle et al., 2004).

In summary, the Criterion for Satisfactory Progress 

Theory assumes that insight problems are difficult

because the problem solver applies the wrong heu-

ristics on the given problem representation, whereas 

the Representational Change Theory claims that the  

problem solver manipulates an inadequate problem 

representation.

 The present study

Both theories (Representational Change Theory and 

Criterion for Satisfactory Progress Theory) follow 

the tradition of the Problem Space Theory and both 

try to extend this account to explain insight prob-

lem solving. However, the Representational Change 

Theory assumes that a representational change is 

responsible for overcoming an impasse, whereas the 

Criterion for Satisfactory Progress Theory postulates 

that the realisation of applying an inappropriate heu-

ristic is the trigger for overcoming an impasse. As 

Jones (2003) demonstrated for the car-park game 

and Kershaw and Ohlsson (2004) showed for the 

nine-dot problem, it may not be helpful to polarize 

these theoretical approaches, since both of them are 

incapable of explaining the entire problem solving 

process for insight problems. Therefore, it seems 

more fruitful to identify what aspects of insight prob-

lems contribute to the overall problem difficulty, and

investigate which parts of each theory best explain 

these contributions. 

The goal of this study is to see whether the main 

source of difficulty in insight problems arises from

the need to change the problem representation or 

from the use of inappropriate heuristics. In order to 

examine this, a paradigm was developed in which 

the degree of representational change and the ef-

fectiveness of heuristics can be systematically varied 

at the same time.

 THE TASK

The task is an adaptation of the matchstick arith-

metic problems used by Knoblich and colleagues 

(Knoblich et al., 1999; Knoblich et al., 2001; 

Öllinger & Knoblich, 2003). The assumptions of the 

Representational Change Theory have been em-

pirically validated by this task. Within the match-

stick arithmetic task there are well defined insight 

problems where it is possible to determine the 

problem space (initial state, intermediate states, 

goal state). The great advantage of the matchstick 

arithmetic task is that problems can be constructed 

that have a similar outline, but that require differ-

ing degrees of representational change.

The basic matchstick arithmetic domain presents 

the problem solver with a roman numeral equation 

such as IV – III = III with the task of moving one 

matchstick to make the equation valid. According to 

the Representational Change Theory such a problem 

activates, according to prior knowledge, a goal repre-

sentation that represents the values of the equation 

as variable, whereas the operators (+, –, and =) are 

represented as constants (e.g.: Var1 const1 Var2 const2 

Var3, the prior knowledge hypothesis). This view has 

been supported empirically, with people’s initial eye 

movements being focused on the values in the equa-

tions rather than the operators (Knoblich et al., 2001). 

As a consequence, problem solvers will try to manipu-

late the values to attain the goal (in the example, the I 

of the IV is moved after the V to make VI – III = III), 

but they do not try to manipulate the operators of the 

equation. 

The same goal representation is established for 

the equation VI = III – III. Again, problem solvers 

will manipulate the values, but they will fail with this 

strategy. This problem requires a relaxation of the 

over-constrained goal representation which has to be 

changed to Var1 OP1 Var2 OP2 Var3. That is, the opera-

tors are also considered to be variable and therefore 

the possible search space for a solution becomes larger 

(in the example, one stick of the equal sign is moved 

into the minus sign VI – III = III). The extension 

of the problem solver’s initial problem representation 

marks the moment of insight. Actually, Knoblich and 

colleagues (1999, 2001) found empirically that the 

latter example is significantly more difficult than the

first. The most difficult problems, however, are equa-

tions of the type VI = VI + VI. This type of problem 

was consistently the most difficult problem in all our

experiments, but why? The problem has two sources 

of problem difficulty. First, the constraint that op-

erators are constants has to be relaxed and second, 

the more fundamental constraint that an equation 

per se consists of two different operators has to be 

overcome. After these insights the solution is trivial  

(VI = VI = VI) – a tautological structure is necessary 

to solve the problem. Table 1 summarizes the theo-

retical assumptions and the empirical results of the 

Knoblich et al. (1999, 2001) studies. Note that solu-

tion rate is the inverse measure of problem difficulty.

The more solutions to problems, the less difficult the

problem is.
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Test problems

For the purpose of the present study, we constructed a 

new set of equations that required varying extents of 

constraint relaxation. Each problem was adapted so as 

to require the problem solver to move two matchsticks 

in order to transform an incorrect arithmetic statement 

into a correct one. We constructed two different types 

of test problems. The test problems always consisted of 

one value-move and one operator-move. For example, 

in the equation IV = III – III, the I of the IV is moved 

after the V to make VI = III – III, and then one match-

stick from the = is moved to make the – into an =, and 

so the solution VI – III = III is attained. Problems of 

this form are designated the Value-Operator type. The 

second type of test problems required the manipula-

tion of a value and an operator to attain a tautological 

structure. For example, in the equation IV = IV + VI, 

the I from the value VI is moved before the V, giving 

IV = IV + IV, and then the vertical matchstick from 

the + is moved to make the + into a second =, so the 

solution has the tautological structure IV = IV = IV 

– designated the Value-Tautology problem type (see 

Table 2). 

The value-move is important – we already know 

from previous studies (e.g., Knoblich et al., 2001) 

that problem solvers will first of all look to change the

values in matchstick arithmetic problems. We created 

two different sub-types of Value-Operator and Value-

Tautology problems, each consisting of a different kind 

of value-move. With this manipulation we attempted to 

test the assumptions of the Criterion for Satisfactory 

Progress Theory. 

–Value (minus-value) problems consist of value-

moves that reduce the distance to the goal, support-

ing a pure hill-climbing heuristic. In contrast, +Value 

(plus-value) problems consist of value-moves that 

increase the distance to the goal, violating the hill-

climbing heuristic of the Criterion for Satisfactory 

Progress Theory. 

Let us exemplify this assumption: We assume that 

a perceived efficient heuristic to solve matchstick

arithmetic tasks may be to compare both sides of the 

equation, and select moves that reduce this difference 

as much as possible. That is, confronting the prob-

lem solver with the equation IX = IV – III (9 = 1)  

(a –Value-Operator problem) the difference between 

the both sides of the equation is 8. The question is: 

How can the problem solver reduce this difference? 

She can do this by moving the stick behind the V to be 

in front of it, IX = VI – III (9 = 3). That is, this move 

reduces the distance between the left and the right 

side of the equation by 2. This type of problem satis-

fies a hill-climbing strategy because the value-move

reduces the distance to the goal. 

In contrast, the equation IV = III – III (4 = 0)  

(a +Value-Operator problem) has no available value-

move that reduces the distance to goal. The only avail-

able moves increase the distance to goal – such as VI 

= III – III (6 = 0). After this move, other value-moves 

are available (e.g., VII = III – II, 7 = 1), but these also 

violate the hill-climbing heuristic. This type of problem 

does not satisfy a hill-climbing strategy because the 

value-move increases the distance to the goal. 

We were also able to generate –Value-Tautology 

and +Value-Tautology problems, following the same 

construction rules. As stated previously, the problems 

chosen were all constraint relaxation problems, so one 

of the two solution-moves was a constraint relaxation 

move, which varied in difficulty (see Table 2).

It should be noted that it was not possible to control 

the amount of value moves that were possible for each 

equation. For example, the equation IX = VIII – III 

only has one value move available (the I before the 

X) whereas for the equation VI = IV + VI all of the 

‘I’ matchsticks can be moved. This is a point that will 

Problem type Value Type Hybrid Type Operator Type Tautology

Task IX = VII + VI VI = VI + I IV = III - I IV = IV + IV

Solution XI = VII + IV VI = VII - I IV - III = I IV = IV = IV

Goal Repres. Var1 const1 Var2 const2

Var3

Var1 const1 Var2 OP
Var3

Var1 OP1 Var2 OP2

Var3

Var1 = Var2 OP
Var3

Solution rate ++++ +++ ++ +

Empirical 
solution rates

~ 90 % ~ 75 % ~ 60 % ~ 25 %

Table 1. 
Theoretical assumed solution rate of the different problem types. Italic font in the row Goal Representation indicates the loca-
tions in the equation that require changing. The gray shaded goal representation in the column Tautology indicates a deeper 
structural change of the equation. The number of ‘+’ are a qualitative indicator of  the expected solution rate. The empirical 
solution rates comprise the data found by Knoblich et al. (1999, 2001)
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be returned to in the results section where a specific

analysis that categorizes solution rates in relation to 

available value moves will show that the number of 

value moves available does not affect solution rates.

Baseline problems

We introduced two additional problem types as base-

line conditions. These problem types serve as standard 

comparisons to the test problems, because both base-

line problems require either no constraint relaxation or 

constraint relaxation to a lesser degree than the test 

problems.

Value-Value problems require no constraint re-

laxation, but can be solved by two subsequent value-

moves. For example, in order to solve III = XI – IV, 

there are two value-moves III = IX – IV, and III = XI 

– VI, so the result is III = IX – VI (see Table 3). 

Value-Hybrid problems (see Tables 1 and 3) require 

both manipulating a value and moving a matchstick 

from an operator to a value. For example, in order to 

solve VI = IX + IV, the value-move changes IX into XI 

(VI = XI + IV) and the operator/value move changes + 

into – and VI into VII (result: VII = XI – IV). This prob-

lem type can be characterized as a hybrid between the 

Value-Value and the Value-Operator types.

Basic predictions from Criterion for 
Satisfactory Progress Theory 

According to the Criterion for Satisfactory Progress 

Theory, the problem solver should apply a maximising 

heuristic and therefore prefer moves that reduce the 

distance to goal (–Value problems in Table 2) to moves 

that increase the distance to goal (+Value problems 

in Table 2) (Chronicle et al., 2004). This prediction is 

also supported by studies that investigate the influ-

ence of hill-climbing on multi-step problems such as 

the Hobbit and Orcs problem (Greeno, 1974; Thomas, 

1974), and the water jug problems (Atwood & Polson, 

1976). These studies demonstrated convincingly that 

when the problem solver was required to select moves 

that increased the distance to the goal, these moves 

were very time consuming and error-prone. The stud-

ies demonstrated that move selection is determined by 

the tendency to make the current state as similar to 

the desired goal state as possible – i.e., to reduce the 

distance (or difference) between the current state and 

the goal state as much as possible.

In terms of the Criterion for Satisfactory Progress 

Theory, problem solvers test against a maximization 

criterion, trying to reduce the difference between the 

left and the right term of the equation. Problems that 

Table 2. 
Examples of the two-step matchstick arithmetic test problems, which entail a standard move (either –Value or +Value) and 
a constraint-relaxation (CR) move (Operator, or Tautology). –Value problems reduce the difference between the terms of the 
equation; +Value problems increase the difference (differences between the left and the right terms of the equation are shown 
in parentheses, with squared parentheses indicating the amount that a move increases or decreases the difference)

Value type CR type Task Value-move CR-move Solution

-Value Operator XIII = IX - VI
13 = 3 (10)

XIII = IX - IV
13 = 5 (8) [-2]

XIII - IX = VI
4 = 6 (2) [-8]

XIII - IX = IV
4 = 4 (0)

-Value Tautology IX = XI + IX
9 = 20 (11)

IX = IX + IX
9 = 9 + 9 (9) [-2]

IX = XI = IX
9 = 11 = 9 (2) [-9]

IX = IX = IX
9 = 9 = 9 (0)

+Value Operator IX = VIII - III
9 = 5 (4)

XI = VIII - III
11 = 5 (6) [+2]

IX - VIII = III
1 = 3 (2) [-2]

XI - VIII = III
3 = 3 (0)

+Value Tautology VI = IV + VI
6 = 10 (4)

VI = VI + VI
6 = 12 (6) [+2]

VI = IV = VI
6 = 4 = 6 (2) [-2]

VI = VI = VI
6 = 6 = 6 (0)

Table 3. 
Examples of two-move matchstick arithmetic baseline problems (differences between the left and the right terms of the 
equation are shown in parentheses, with squared parentheses indicating the amount that a move increases or decreases the 
difference)

Problem Type Task Move 1 Move 2 Solution

Value-Value III = XI - IV
3 = 7 (4)

III = XI - VI
3 = 5 (2) [-2]

III = IX - IV
3 = 5 (2) [-2]

III = IX - VI
4 = 4 (0)

Value-Hybrid IX = VIII - III
9 = 5 (4)

XI = VIII - III
11 = 5 (6) [+2]

IX - VIII = III
1 = 3 (2) [-2]

XI - VIII = III
3 = 3 (0)
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require the selection of moves that initially increase 

the distance to the goal (i.e., +Value-Operator and 

+Value-Tautology problems) should be more difficult

than problems where the selection of moves reduce 

the distance to the goal (i.e., –Value-Operator and 

–Value-Tautology problems). That is, the Criterion for 

Satisfactory Progress Theory expects a better perform-

ance for –Value problems than +Value problems.

It is important to note that the distance to goal ma-

nipulation as described above depends on the implicit 

assumption that the value-move is always selected 

before a constraint relaxation (CR) move (operator-, 

or tautology-move). We already know that problem 

solvers consider value moves first (e.g., Knoblich et 

al., 2001), but in addition, solution rates also support 

this assumption (see Table 1). Furthermore, as can be 

seen in Table 2, the CR moves in the –Value problems 

reduce the distance to goal substantially more than 

the CR moves in the +Value problems, so even if peo-

ple made CR moves first, the Criterion for Satisfactory

Progress Theory still predicts that –Value problems are 

easier. Nevertheless, an analysis of the type of first

move that participants make will be made in the re-

sults in order to verify this assumption.

Note that all of the problems used in each sub-

type are of similar difficulty. In the –Value problems

there is a similar distance to goal (–Value-Operator 

(10), –Value-Tautology (11)) and the same holds for 

the +Value condition (+Value-Operator (4), +Value-

Tautology (4)).

Taken together, the prediction of the Criterion for 

Satisfactory Progress Theory is that –Value problems 

are easier than +Value problems. The –Value prob-

lems not only reduce the distance to goal in their value 

moves (as opposed to increasing the distance for the 

+Value problems) but their CR moves also reduce the 

distance to the goal much further than the CR moves 

in the +Value problems. Therefore a major difference 

between the effects of the –Value and the +Value con-

dition is predicted. Within each of the conditions, there 

should not be a difference across problem sub-types, 

because each of them reduces the distance to the goal 

by a similar amount.

Basic predictions from the 
Representational Change Theory 

In contrast to the Criterion for Satisfactory Progress 

Theory, the Representational Change Theory sug-

gests that the difference between the Value-Tautology 

and Value-Operator problems has nothing to do with 

the value-move (–Value, or +Value). That is, for the 

Representational Change Theory, problem difficulty is

governed by the amount of constraint relaxation the 

problem type requires, so there should be no differ-

ence in performance for –Value and +Value-moves.

According to the Representational Change Theory, 

problem difficulty of the matchstick problems outlined

in Tables 1, 2 and 3 lies in the degree to which con-

straint relaxation is required. Four increasing levels of 

difficulty are given (Value-Value, Value-Hybrid, Value-

Operator, Value-Tautology), with Value-Value being the 

easiest and Value-Tautology the hardest. Knoblich et 

al. (1999, 2001) have already found that value type 

problems are solved more often than operator type 

problems, which in turn are solved more often than 

the tautological problems (see Table 1). Subsequently, 

for the two-step matchstick arithmetic problems, 

because the same “amount of difficulty” is added

to each problem type (Value, Hybrid, Operator, and 

Tautology), a similar pattern of solution rate is pre-

dicted: Value-Value > Value-Hybrid > Value-Operator 

> Value-Tautology. 

Predictions relating to providing  
a partial-solution

Participants find one-move matchstick problems dif-

ficult, and hence we assume that the solution of two-

move matchstick arithmetic problems will also be 

difficult. A partial-solution will therefore be provided

to the participants after a certain amount of time. 

Two different kinds of partial solution can be given: 

first, the value move can be shown, or second, the

constraint relaxation move can be shown. Informing 

participants of one move reduces the problem to a 

standard one-move matchstick arithmetic task (see 

Table 1). This means that for the Representational 

Change Theory, providing a CR move should be more 

effective than providing a value move, because the 

CR move reduces the problem to a one-move value 

problem. Providing a value move reduces the problem 

to a constraint relaxation problem and hence the same 

pattern of solution rate should be found as for past 

research: Operator move > Tautology move (Knoblich 

et al., 1999; Knoblich et al., 2001; Öllinger & Knoblich, 

2003).

Predictions for the Criterion for Satisfactory Progress 

Theory are dependent upon the remaining move to 

be made after the partial solution move is given. If 

a value move is given as the partial solution move, 

then there is a CR move remaining. As can be seen 

in Table 2, the CR moves in –Value problems reduce 

the distance to goal by a much greater amount than 
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the CR moves in +Value problems. The Criterion for 

Satisfactory Progress Theory therefore predicts better 

performance for –Value problems than +Value prob-

lems when a value move is given as the partial solution 

move. If a CR move is given as the partial solution 

move, the remaining value move always reduces the 

distance to goal by a factor of two, and so no differ-

ence across problems should be seen for CR moves as 

partial solution moves. In essence then, there should 

be a general performance benefit for –Value problems,

but particularly for –Value problems when a value 

move is given as a partial solution.

METHOD

Design

A 2 (value move: –Value, +Value) x 2 (partial-solu-

tion type: value move, constraint relaxation move) 

between subjects design resulted in four experimen-

tal groups. All groups were shown the (–/+Value)–

Tautology and (–/+Value)–Operator test problems and 

the two additional baseline problems (Value-Value and 

Value-Hybrid). The dependent variables were whether 

the problem was solved either before or after a partial 

solution, for each of the two blocks of problems.

Move verification

To verify the assumption that participants initially 

make value moves, the initial moves that participants 

made were recorded. Furthermore, we recorded how 

these moves altered the equation (i.e., whether they 

reduced the distance to the goal or increased it).

Participants

120 participants (37 male, 83 female; age range 17-

36) were recruited by advertising at the University of 

Munich and in local newspapers and received €12 each. 

Participants were screened beforehand for familiarity 

with Roman numerals. Each participant was randomly 

assigned to one of the four experimental conditions 

and tested individually. 

Material and apparatus

Twelve Roman numeral matchstick arithmetic prob-

lems were used, each of which could be solved by 

moving two matchsticks in order to transform a false 

arithmetic expression into a correct one. Each par-

ticipant solved six problems, with only four problems 

pertaining to this study. The two remaining problems 

were so-called chunk decomposition problems that 

require a different representational change than 

constraint relaxation problems (see Knoblich et al., 

1999, Ohlsson, 1992). To minimize the influence of

particular problems, we used two sets of problems: 

Set A and Set B. In table 2 the problems of Set A 

are displayed. For Set B we used similar problems 

that differ in their outline e.g. the Value-Tautology 

problems of Set B were IV = IV + VI and XI = IX + 

XI. For each participant a random order of problems 

was determined. Tables 2 and 3 give examples of the 

types of problem presented.

The study was fully computer-based using a pro-

gram implemented in JAVA (SDK 1.3) and run on a PC 

using Windows98. The problems were displayed on a 

Belina 17” monitor. 

Procedure

All participants were individually tested. Upon entering 

the lab, participants were seated in front of a computer 

screen and given instructions as to how the two-move 

matchstick arithmetic problems should be solved. 

The instructions noted: (1) that all problems could be 

solved by moving exactly two sticks; (2) that sticks 

could not be discarded; (3) that the only valid symbols 

were roman numerals and the arithmetic operators 

“+”, “–”, and “=”. Furthermore, the participants were 

asked to record all their “ideas” and solution attempts 

in a text field for notes.

The program display consisted of four horizontal 

areas (see Figure 1). The topmost area presented 

the problem; the second area was provided for par-

ticipants to make notes; the third area was used to 

present a partial solution move if the equation had 

not been solved after five minutes; and the lowermost

area was used for participants to type in solutions to 

the problems. At the beginning of each trial the par-

ticipants pressed an OK button at which point all text 

fields were erased and a new matchstick problem ap-

peared. Six keys on the keyboard were labeled “I”, 

“V”, “X”, “+”, “–” and “=”, and these were used for 

making notes and for entering proposed solutions. 

No other keys were functional during the experiment. 

Navigation across the areas was accomplished using 

a mouse.

Each participant worked on all six problems. The 

presentation of the problems was counterbalanced 

across participants. Participants were given ten min-

utes to solve each equation, unless they proposed 

a correct solution before this time limit. Immediate 

feedback was given regarding correct or incorrect 

solution attempts. If participants had not solved the 
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equation after five minutes, the partial solution move

gave either the value move or the constraint relaxation 

move (depending upon the experimental condition). If 

participants failed to solve an equation after ten min-

utes, they were shown the solution. 

 RESULTS AND DISCUSSION

We analyzed the results in terms of overall solution 

rates for each condition, solution rates before a partial 

solution move was given, and solution rates after a par-

tial solution move. ANOVA was used for the majority of 

analyses. Although the data has binary characteristics, 

the use of ANOVA is warranted based on the theoretical 

assumptions by Greer and Dunlap (1997), and by its 

successful application by other authors (e.g., Knoblich 

et al., 1999; MacGregor et al., 2001). Finally, we con-

ducted a move-analysis of the participants’ move pro-

posals and ideas recorded in the note field (see Figure

1). We classified the selected moves with respect to

the applied moves of the equation (value move, hybrid 

move, or operator move), and calculated whether a se-

lected move reduced or increased the distance to goal.

Solution rates of the test problems 
before being given a partial 
solution move

Figure 2 shows solution rates for the two test prob-

lems before a partial solution move was given for 

each of the –Value and +Value-conditions. A mixed 

ANOVA with the between-factor Value type (–Value, 

+Value) and the within-factor Problem type (Operator, 

Tautology) showed no main effect of Value type  

[F(1, 118) = 1.54, p > .05]. However, there was 

a highly significant main effect of Problem type 

[F(1, 118) = 37.47, p < .001] with Operator problems 

being solved more often than Tautology problems. 

There was no reliable interaction between the two 

[F(1, 118) = .13, p > .05]. 

These findings suggest that the Value type ma-

nipulation did not influence problem difficulty, and that

it was, in fact, the Problem type that drove problem 

difficulty. Thus, for matchstick arithmetic problems,

people’s performance does not seem to be influenced

by the hill-climbing heuristic. This is further supported 

from the lack of an interaction between the Value type 

and Problem type variables. If both the Criterion for 

Satisfactory Progress Theory and Representational 

Change Theory had influenced problem solving, then

one would expect problems in the –Value-Operator          

condition to be easiest, and problems in the +Value-

Tautology to be the most difficult (i.e., one would ex-

pect an interaction). The lack of a main effect of Value 

type, the lack of an interaction between Value type and 

Problem type, and the fact that there is a main effect of 

Problem type all lead to the conclusion that problem dif-

ficulty in these sets of problems depended on the type

and level of constraint that needed to be relaxed.

Solution rates of all problem 
types before being given a partial 
solution move

Figure 3 illustrates the solution rates of the two base-

line problems and the two test problems averaged 

across participants. A one-way ANOVA with the factor 

Problem type revealed a highly significant main ef-

fect [F(1, 357) = 19.87, p < .001]. Pairwise post-hoc 

comparisons revealed significant differences between

all problem types (p < .05 or better) except the Value-

Hybrid and Value-Operator type (p > .05). This pat-

tern of problem difficulty replicated, in principle, the

findings of the one-move matchstick arithmetic do-

main (see Table 1). The Value-Value type was solved 

more often than any other problem type and the 

Figure 1. 
Display of the user interface

Figure 2. 
Solution rates by condition before a partial-solution was 
provided
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Value-Tautology was by far the most difficult problem

type. Value-Hybrid and Value-Operator problems lay 

in between. The solution rate of two-move matchstick 

arithmetic problems depended on the constraints that 

needed to be relaxed.

 

Solution rates of the test problems 
after being given a partial solution 
move

Figure 4 shows solution rates for the test problems after 

a partial solution was given, broken down by Value type. 

The figure clearly demonstrates the benefit of giving a 

CR move over a value move as a partial solution move. 

A mixed ANOVA with the two between-factors Value 

type and Partial solution type and the within-factor 

Problem type showed a highly significant main effect of

Partial solution type [F(1, 116) = 45.15, p < .001] with 

the CR moves proving more beneficial to solution rates

than the value moves (see Figure 4). There were no 

main effects of Value type [F(1, 116) = 0.51, p > .05] 

or Problem type [F(1, 116) = 1.06; p > .05]. However, 

there was a significant interaction between Partial 

solution type and Problem type [F(1, 116) = 6.24,  

p < .05]. That is, the deeper the level of constraint 

that was relaxed by the partial solution, the more ef-

fective the partial solution was. There were no further 

significant interactions between any combinations of

the factors (p > .05). 

The results support the partial solution move pre-

dictions of the Representational Change Theory, which 

suggested that giving people the CR move would be 

more beneficial than the value move. The results fail to

support the predictions of the Criterion for Satisfactory 

Progress Theory. There was no difference between –

Value and +Value groups, and there was no significant

interaction between value type and partial solution 

type [F(1, 116) = 1.66, p > .05]. Solution rates were 

not higher in the –Value condition when people were 

given the value move as the partial solution move.

Figure 5 shows all problem types (baseline and test 

problems; note that for the Value-Value problem, of 

course, no CR move exists, therefore this problem 

type is not included in the statistical analysis). A mixed 

ANOVA with the between-factor Partial solution move 

(Value move, CR move) and the within-factor Problem 

type (Value-Hybrid, Value-Operator, Value-Tautology) 

revealed a highly significant main effect for the factor

Partial solution move [F(1, 118) = 31.20, p < .001] 

with the CR move providing greater benefit to solu-

tion rates than the value move. Furthermore, there 

was a highly significant interaction between the fac-

tors [F(2, 236) = 7.87, p < .001]. There was no main 

effect of Problem type [F(2, 236) = 2.23, p > .05]. 

These results show (as do the black colored columns 

Figure 3. 
Problem difficulty of test and baseline problems before a
partial solution was given

Figure 4. 
Solution rates of the test problems after providing a partial-
solution. Solution rates are broken down by Value-type

Figure 5. 
Solution rates of the test and baseline problems after pro-
viding a partial-solution. Solution rates are broken down 
by Problem-type
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in Figure 5) that the greater the degree of constraint 

relaxation a problem type requires, the greater the 

benefit of giving that move as a partial solution move.

Giving a value move as partial solution move results 

in a pattern that is similar to the one-move results (as 

illustrated by the gray colored columns in Figure 5; see 

also Table 1 as a reference). For the Value-Value type 

the participants benefit equally, as would be expected.

Pairwise post-hoc comparisons for the value move as 

partial solution condition revealed highly significant

differences between the Value-Hybrid and the Value-

Operator problem types (p < .001). There was no sig-

nificant difference between the Value-Operator and the

Value-Tautology problems (p > .05).

In general the results show that, not surprisingly, 

providing a partial solution move facilitates the solu-

tion of the problems. However, solution rates clearly 

depend on the move type – CR moves are much more 

effective than value moves, at least for the test prob-

lems in this study. This finding can be summarized:

the more “difficult” the constraint that a partial solution

relaxes, the more a problem solver benefits from the

partial solution. 

Move verification

At the outset of this investigation, it was assumed that 

people have an initial preference for value moves. First, 

this was supported from previous studies (e.g., Knoblich 

et al., 1999, 2001) and second, this was assumed for 

the predictions of the Criterion for Satisfactory Progress 

Theory, although the predictions were not actually de-

pendent on it. In order to check the preference for value 

moves, we analyzed the data recorded in the note field

(see Figure 1), where the participants were asked to 

key in all their ideas, proposals, and solution attempts. 

We analyzed the given proposals by counting up the 

type of manipulations that participants applied. In to-

tal, there were 690 inputs in the note field. 181 inputs

were invalid, that is, the inputs were not proper equa-

tions (either having a wrong number of values and/or 

operators). Of the remaining 509 equations, 60.89% 

were value moves, 22.47% moves were hybrid moves 

(moves between an operator and a value), and 16.64% 

were operator moves. Even when combining the hy-

brid moves and operator moves, a χ2-test showed that 

significantly more value moves were made than other

types of moves [χ2 (1) = 24.21, p < .001]. 

Another area of interest is the direction of the move 

(whether it reduces or increases the distance to the 

goal). The Criterion for Satisfactory Progress Theory 

predicts that people make moves that reduce the 

distance to the goal because they apply a hill-climb-

ing heuristic. Table 4 illustrates the distribution of the 

move types participants used, broken down by the 

experimental conditions (–Value condition and +Value 

condition). The analysis revealed an additional move 

type, labeled neutral moves that do not change the 

difference between the two sides of the equation. As 

Table 4 shows, in the vast majority of cases, partici-

pants selected moves that reduced the distance to the 

goal – supporting the prediction from the Criterion for 

Satisfactory Progress Theory.

We conducted χ2-tests for both –Value and +Value 

conditions. Even when combining neutral moves and 

increase moves, the analysis showed that people made 

significantly more reduce moves than other types of

move, for both the –Value condition (χ2(2) = 162.40, 

p < .001) and the +Value condition (χ2(1) = 95.19,  

p < .001). A further analysis compared the participants’ 

reduce move preference between the two conditions 

(–Value and +Value). A χ2-analysis revealed a signifi-

cant effect, χ2(1) = 8.55, p = .01, that is, people in the 

–Value condition had a higher frequency of selecting 

moves that reduce the distance to the goal than people 

in the +Value condition.

Number of value moves available

As stated earlier, we were not able to control the 

number of available value moves that participants 

could make in the problems given, and it is conceivable 

that performance systematically varied with the size 

of the given problem space. Therefore, we categorized 

all problems with respect to their number of available 

value moves for the first move and determined the

average performance of each category. Figure 6 plots 

the categories and the assigned performance. As can 

Table 4. 
Frequency of different moves that either did not change, increased, or reduced the amount between the left and the right side 
of the equation

neutral-moves increase-moves reduce-moves

-Value 21 (4.13%) 13 (2.55%) 248 (48.72 %)

+Value 24 (4.72%) 16 (3.14%) 187 (36.74 %)

total 45 (8.85%) 29 (5.69%) 435 (85.46 %)
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be seen, there was no systematic increase or decrease 

in performance based on this factor. A linear regres-

sion with the independent variable number of available 

first value moves and the dependent variable solution

rate revealed a non-significant regression coefficient 

R = .30, (p = .56), illustrating that the number of avail-

able value moves as a first move did not affect solution

rates.

The influence of problem sets A
and B on the solution rate

As mentioned above, we used two different sets of 

problems, A and B. Table 5 illustrates the solution per-

centages for the problems in sets A and B. The two 

sets revealed quite similar results. Again the solution 

rate varied by and large with the extent of the required 

constraint relaxation. A χ2-analysis between the two 

sets revealed no significant differences (p > .10).

GENERAL DISCUSSION

In the present study we were interested in the possi-

ble interplay of heuristics and representational change 

when solving insight problems. We aimed to contribute 

to the question whether the main source of problem 

difficulty of insight problems results from the use of

inappropriate heuristics (MacGregor et al., 2001), or 

from the constraints that problem solvers impose on a 

given problem (Ohlsson, 1992; Knoblich et al., 1999), 

or as a third possibility, whether both sources have an 

influence (Jones, 2003). In four groups we varied sys-

tematically the efficiency of heuristics and the degree

of necessary constraint relaxation. Our experimental 

manipulation did not reveal any significant influence of

heuristics, going against the predictions of the Criterion 

for Satisfactory Progress Theory. In contrast the solu-

tion rate was clearly driven by the degree of represen-

tational change, as predicted by the Representational 

Change Theory. 

Furthermore, there was, in general, a clear pattern of 

problem difficulty (see Figure 2 and Figure 3) that was

rather similar to the findings of Knoblich et al. (1999) in 

the single matchstick arithmetic domain (see Table 1). 

The more flexible the goal representation has to be, the

more difficult the problem becomes (Value-Tautology

> Value-Operator > Value-Hybrid > Value-Value; read 

“>” as “more difficult than”). Importantly, solution

rates for the Value-Operator problems were essentially 

higher than for the Value-Tautology problems. These 

findings can only be explained in terms of the neces-

sity of a representational change being crucial for the 

solution of insight problems, and argues against the 

assumption that problem solvers prefer a hill-climbing 

approach that reduces the distance to goal as much as 

possible (Chronicle et al., 2004). 

The results also showed that there was no difference 

across the –Value and +Value groups in terms of solu-

tion rates. Performance was not affected differentially 

by value moves that fulfill a maximization criterion that

reduces the distance to goal, in comparison to value 

moves that increase the distance to goal. Under the 

internal criterion of selecting moves that reduce the 

distance to goal, the Criterion for Satisfactory Progress 

Theory would predict that when solution moves fulfill

this criterion, performance should be improved over 

when solution moves do not fulfill this criterion. Such

predictions have not been borne out by the data pre-

sented here. 

Examining the baseline problems and the test prob-

lems, the Representational Change Theory claims that 

a more flexible goal representation makes operator

Figure 6. 
Solution rates of the test and baseline problems after pro-
viding a partial-solution. Solution rates are broken down by 
Problem-type

Value-Value Value-Hybrid Value-Operator Value-Tautology

Set A 48.3 36.67 31.67 3.34

Set B 48.3 31.67 40.0 11.67

Table 3. 
Solution rates of the different problem types broken down by problem set
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problems significantly more difficult than hybrid prob-

lems. Interestingly, there was no difference between 

Value-Operator and Value-Hybrid problems. However, 

after a value move was given as a partial solution, 

operator problems were significantly more difficult

than hybrid problems, fitting the predictions from the

Representational Change Theory. Clearly, making the 

matchstick problem a two-move problem increases the 

size of the problem space, and this has affected the 

influence of a more flexible goal representation on the

solution rate. A larger problem space and search space 

had more impact on the problem difficulty than the dif-

ferences in the necessary goal representation. This is 

a potential moment where heuristics could become im-

portant, because as the problem space becomes larger, 

people need effective heuristics that help to constrain 

the given problem space (Kaplan & Simon, 1990).

As expected from both theories, providing a partial 

solution move reduced the problem difficulty. Providing

either a value move or a CR move increased the solution 

rates, because providing part of the solution reduces 

the problem space. The asymmetry in the performance 

after providing a partial solution move supported the 

Representational Change Theory. A CR move was much 

more effective than a value move. CR moves reduced, 

according to the assumptions of the Representational 

Change Theory, the main source of problem difficulty.

CR moves provided the problem solvers with a more 

flexible goal representation than value moves did. In

principle, we also found the predicted pattern of prob-

lem difficulty after giving a value move as the partial

solution move – this reduces the problem to a one-

move problem whereby the pattern of problem diffi-

culty should be the same as that of previous literature 

(i.e., the more difficult the constraint to relax, the more

difficult the problem is to solve). That is, the necessity

of a more or less flexible goal representation drives

problem difficulty. After a value-move being given,

therefore, the solution rate of Value-Hybrid problems 

was, as expected, higher than the solution rate of 

Value-Operator problems. Value-Hybrid problems were 

also easier than the Value-Tautology problems. 

The predictions of the Criterion for Satisfactory 

Progress Theory with regard to providing partial so-

lution moves were not supported. The Criterion for 

Satisfactory Progress Theory argues that when a partial 

solution move is provided, the –Value condition should 

benefit more than the +Value condition. Specifically,

if a value move is given as the partial solution move, 

then the –Value condition should show an increase in 

solution rates over the +Value condition, because the 

remaining CR move reduces the distance to the goal 

more for the –Value problems. None of the results sup-

ported these predictions. 

A point worth mentioning is that the experimental 

design actually works somewhat against the hypoth-

eses of the Representational Change Theory, because 

there could have been a positive transfer due to the 

partial solutions (see Knoblich et al., 1999). Imagine 

the hypothetical case that a participant in the value 

move partial solution condition was confronted with the 

Value-Tautology problem type as her first problem and

she could not solve it. After the upper time limit the 

solution was provided to her, and after obtaining this 

information she knew that the manipulation of opera-

tors and the changing of the common structure of an 

equation were appropriate means to solve a matchstick 

arithmetic problem. Such knowledge should provide her 

with an advantage when solving the remainder of the 

matchstick problems. Taking this into account, the find-

ings presented here actually exceed our expectations. 

The analyses of the solution attempts and proposals 

keyed in the note field showed clearly that people pre-

ferred moves that manipulate values, as expected by 

the prior knowledge hypothesis of the Representational 

Change Theory. Furthermore, people preferred the 

selection of moves that actually reduce the distance 

to goal, as proposed by the Criterion for Satisfactory 

Progress Theory. Both findings support our experimen-

tal logic and gave us further insight into the processes 

that are involved in insight problem solving. 

 As often claimed by Knoblich and colleagues (1999, 

2001) some matchstick arithmetic problems are in-

sight problems because they require the problem 

solver to overcome prior knowledge. This follows the 

tradition of the Gestaltists who were the first to see

the relationship between the hampering influence of

prior knowledge and the difficulty of solving problems

that actually require overcoming such knowledge 

(Duncker, 1945; Maier, 1930, 1931; Luchins, 1942; 

Wertheimer, 1959; see also Ohlsson, 1984a, 1984b). 

In the matchstick arithmetic task, prior knowledge 

means that people have learned to solve arithmetic 

equations by changing the values of the equation. Now 

we can confirm this assumption, because more than

60% of the moves made were value-moves, although 

people learned more and more operator moves during 

the experiment (see above). Moreover, we can also 

confirm the Criterion for Satisfactory Progress Theory

assumption that people prefer moves that reduce the 

distance to goal. Almost all selected moves reduced 

the distance to goal. This preference was in principle 

independent from the experimental conditions, that 

is, whether problem solvers belonged to the –Value 
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or +Value conditions. However, as mentioned before, 

there is no indication that this preference influenced

the probability of solving an insight problem. In gen-

eral, the findings presented here suggest that the

problem difficulty of two-move matchstick arithmetic

tasks is not a result of the application of inappropriate 

heuristics, but the result of an inappropriate problem 

representation. 

The Representational Change Theory provides an 

explanation of the insight process that fits in with the

findings presented here much better than the Criterion

for Satisfactory Progress Theory. The remaining ques-

tion is whether the Criterion for Satisfactory Progress 

Theory and Representational Change Theory can both 

contribute to the comprehension and explanation of 

insight problems. The link between the two theories is 

the fact that a heuristic is likely to be worthless unless 

it is applied to an appropriate problem representation 

(Kaplan & Simon, 1990). While the current paper has 

attempted to demarcate the two theories, a more suit-

able approach may be to suggest that the Criterion 

for Satisfactory Progress Theory explains the phase 

before an impasse, where inappropriate heuristics are 

performed on an inappropriate representation, and the 

Representational Change Theory explains the phase 

within an impasse where the representation is changed 

such that more appropriate heuristics can be applied. 

Jones (2003) came to a similar conclusion – that is, 

insight (the representational change) opens the door 

for the appropriate application of well known strategies 

(heuristics). 

 This way of thinking also accounts for the findings

presented here. In our view insight depends on an un-

derlying representational change, whereby the process 

of a representational change is by and large an un-

conscious process that seems obviously non-stepwise, 

sudden, and discontinuous (Bowden, 1997; Bowden et 

al. 2005, Bowden & Beeman, 1998; Bowden & Jung-

Beeman, 2003; Grant & Spivey, 2003; Jung-Beeman et 

al., 2004; Metcalfe, 1986a, 1986b; Metcalfe & Wiebe, 

1987; Wegner, 2002). The representational change 

is the door opener that ensures that the appropriate 

heuristics can be applied to the proper problem rep-

resentation. The influence of heuristics on insight can

sometimes be more important (MacGregor et al., 2001; 

Ormerod et al., 2002; Chronicle et al., 2004) yet at the 

same time, it can occasionally play no major role, as in 

the study presented.
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